Chapter5:Proof systems for
ASL



1 Introduction

In this chapter, we present different consequence relations which are sound and
in some cases complete with respect to the consequence relation between sen-
tences and specifications of different ASLker and ASLnf languages and a proof
system for the refinement relation between specifications presented in the chap-
ter of the semantics of ASL. The consequence relations will be defined in terms
of proof systems in order to give adequate representations of the consequence
relations in the type theory UTT following the techniques presented in chapter
3. Most of the consequence relations will be presented for a given ASLker spec-
ification language in some cases with an arbitrary but fixed algebraic institution
and in others with the concrete algebraic institutions FOLEQ and HOL pre-
sented in the previous chapter. For the latter, we will also present consequence
relations for the institutions of FOLFEQ and HOL by means of proof systems.

The judgements which we will use for the definition of the proof systems for
the algebraic institutions FOLFEQ and HOL are:

e ¢. This judgement means that the formula ¢ holds.

e ¢ : 7. This judgement will be used for the definition of Ilyor, and it means
that the higher-order formula ¢ has type T.

® O =5 Xronrg ¢- This judgement will be used for the definition of llgor
and it means that the higher-order formulas ¢ and ¢’ are equivalent by

B-equality.

The proof system for FOLEQ (Trorrg(T, X)) for any set of sentences T' with
signature ¥ will be formulated as a natural deduction system with the only
sequent I' = x5, 5q ¢ where in this case Xrorgg is a finite set of pairs of
variable and its associated sort and the proof system for HOL (Tgor (T, X))
for any set of assumptions T' with signature ¥ will be formulated with the
following sequents:

o I' = x,,, ¢ where in this case Xgo7, is is a finite set of pairs of variable
and its associated higher-order type

e Xyor P ¢ : 7 where ¢ is a higher-order formula and 7 its associated type
in Typesmor, ().

® ¢ =p xyuo; ¢ where ¢ and ¢’ are higher-order formulas.

In the following definitions, INSFH will range over FOLEQ and HOL:

Definition 1.1 The consequence relation Fe My vsra(,z): P(|Seninsra (X)) x
|Seninsrr (X)| for a given X € |AlgSig| is defined as follows:

'ty ¢ & Any closed sequent of the form ' =x ¢

has a derivation in Uynspy (T, X).



Definition 1.2 A consequence relation Fx 11, yormr,n): PlSenrnvsrm (X)) x
|Senrnsrm (X)| is sound if it satisfies the following condition:

Vo € Seninsrr (X).T bs i yern(Ts) ¢ =

(AN A Esinsra ¥) = (A Esinsra 6)
Yer

Definition 1.3 A consequence relation Fx 1, yopm(r,n): P(|Senrnsrm (X)) x
|Seninsrr (X)| is sound and complete if it satisfies the following condition:

Vo € Seninsrr (8).I b, yvern(ms) ¢ &

(AN A Esgnsra ) = (A Esinsrr ¢)
el

The proof systems which are used in the definition of consequence relations
can be divided in non-compositional and compositional proof systems. The non-
compositional proof systems are inductively defined by specification expressions
for ASLker specifications languages assigning for every case specific rules and
axioms, and for ASLnf specification languages, these proof systems are defined
for the normal forms of the specifications. The compositional proof systems are
defined by a single set of rules in such a way that the derivations of the proof
systems preserve the structure of the specification.

Our usual denotation of these proof systems will be T147%s where ATNS
is a concrete or an arbitrary institution and ASL is an ASLker or an ASLnf
specification language. If the definition of the proof system is not the same for
all the specification expressions of the language, we will denote by TT47% < (SP)
the proof system associated to the specification expression SP of ASL.

Finally, we present a proof system for the refinement of specifications of a
concrete BASLker specification language which we will refer to as RBASL
with a fixed but arbitrary algebraic institution.

2 Non-compositional proof systems

2.1 Inductively defined by specification expressions

In this subsection, we present this kind of proof systems for a BAS Lker specifi-
cation language which we will denote as RBASL with the algebraic institutions
FOLEQ@ and HOL. RBASL includes a renaming and a reachability operator
appart from the common operators of BASLker languages. We present first
the language RBASL and then the proof systems and consequence relations
associated to these institutions.

Definition 2.1 A reachability constraint for a given signature ¥ = (S, Op) is
a pair of a set of sorts and a set of functions (Sg, Fr) such that Sg C S and
forany fis1X...xs, >s€Fr, s € Sr.



Definition 2.2 For any signature ¥ = (S,0p) € AlgSig, an algebra A €
Alg(X) satisfies a reachability constraint (Sg,Fr) of ¥ (A & (Sr,Fr)) if
the following condition holds:

AE (Sr,Fr) © Vs € Sr.Vv € A,.
Jt e T(S’y:ﬂ)(Xs_s,R).ﬂa 1 Xs_s5p — A.Lx(t) =

Definition 2.3 RBASL is a BASLker language with additionally the follow-
ing operators:

Signature(rename SP by o) = X

Symbols(rename SP by o) = o'(Symbols(SP))

Models(rename  SP by o) = { A€ Alg(X)|A|, € Models(SP) }

Signature(reach SP with (Sg,Fr)) = Signature(SP)
Symbols(reach SP with (Sr,Fr)) = Symbols(SP)

Models(reach SP with (Sg,Fr)) = {A € Models(SP) | A & (Sr,Fr)}

where o : Signature(SP) — X is a bijective signature morphism and o' is the
pushout morphism of the following diagram:

Sym(SP) -2 PO(i, o)

Sign(SP) Z— %
where i is the inclusion i : Signature(SP) — Symbols(SP).

Similarly to the consequence relations associated to the proof systems for
FOLE@ and HOL, we can define consequence relations of sentences of FOLEQ
and HOL from specification expressions using non-compositional proof systems.
The definition of these consequence relation will use a function Symbols, which
given a proof system 11755, (where again INSFH ranges over FOLE(Q and
HOL) and a specification expression SP € SPEX(ASL) will return the sym-
bols of the proof system TI{5E ., (SP) since we won’t assume that the symbols
of the specification expression SP is equal to the symbols of the proof system
H?ﬁgFH (SP). We will just assume that there exists an inclusion morphism

between Signature(SP) and Symbols(1145L, ., SP). Also, the definition of
the consequence relation will use the function I'env which given a proof sys-
tem and an specification expression SP € SPEX(ASL) will return the set of

assumptions which we can use for the derivation of sentences from the given



specification expression. Finally, it will also be used the function Rules which
given a proof system and an specification expression, it will return the proof
rules of the proof system.

For any bijective signature morphism o : Symbols(TI{sL ., (SP)) — ¥,
we will also denote by o the renaming function which given a proof system
MAGE 1 (SP) will return the resulting proof system of applying to every sen-
tence of every rule of the given proof system the morphism between sentences
o:S8eniNsFH (Symbols(H?ﬁgFH (SP))) — Senrnsru (X').

The definition of the consequence relation associated to these non-compositional

proof systems and some of its properties are as follows:

Definition 2.4 The consequence relation I_HIAIQS.éFH which relates specification

expressions SP € SPEX(ASL) with sentences ¢ € Sen(Symbols(TI{5 L, SP))
is defined as follows:

SP Fpast ¢ < Any closed sequent of the form

ASL S
Tenv(II{gpm, SP) = Symbols(MASL ... SP),X ¢ has a derivation

in Rules(TI{5L,,, SP).

Definition 2.5 For any signature ¥ € AlgSig, a X-algebra A € Alg(X) satis-
fies a closed sequent of the form I = x ¢ if the following condition holds:

(/\ A Esinsra ) = A Esinsrn ¢
Yer

Definition 2.6 For any signature © € AlgSig, a T-algebra A € Alg(X) sat-
isfies a closed sequent of the form X » ¢ : 7 if [¢]lp,a € [7]a for any
Typesuor (X)-sorted valuation p such that for any x : 7 € X, v € Dom (p-).

Definition 2.7 For any signature ¥ € AlgSig, a X-algebra A € Alg(X) sat-

isfies a closed sequent of the form ¢ =xp5 ¢ if [¢]lp,a = [¢']54 for any
Typespor (X)-sorted valuation p such that for any z: 7 € X, x € Dom,(p,).

Definition 2.8 For any signature ¥ € AlgSig, a X-algebra A € Alg(X) satis-
fies A5 L if for all the rules of the natural deduction system the following
condition holds:

e If A satisfies all the sequents of the premises then A satisfies the sequent
of the conclusion.

Definition 2.9 A consequence relation I—H;;X%FH(SP) is sound if for all spec-

ification expressions SP € SPEX(ASL) and for all A € Models(SP) there
exists a Symbols(TI4SL . (SP))-algebra A’ which satisfies the following condi-

tions (which we will refer as soundness conditions):



o A/|Signature(SP) = A.
o Vi € Tenv(1{g%py, SP).A" = 9.

o A’ satisfies Rules(I{3Lpy, SP).

Proposition 2.10 If¢ € Senayns(Signature(SP)) and Friase (sp) is sound

Proof:
Assume that SP Fpase (sp) 0.

We have to show that for all A € Models(SP) A |= ¢.

Let A’ be the Symbols(TT5% Ly, SP)-algebra which satisfies the soundness
conditions for a given Signature(SP)—algebra A.

Since SP l_r[fﬁépy(sp) ¢, there exists a derivation of the sequent

ASL
Lenv(NrNsrms SP) = symbols(MASE, .,.5P), X @

and since A’ satisfies H‘I“ﬁngH(SP) we can deduce that

( /\ A Esymbots(1A5L, 5P) ¥) = A Esymbols(ASL, 5P) @

INSFH
yelenv (G py,SP)

By the second soundness condition, we have that A" g, 015 (ruast, . sp) ¢ and

since A'[signature(sp) = A and ¢ € Senrnsrm (Signature(SP)), we have that
A ':Signature(SP) ¢

Definition 2.11 A consequence relation FHIAX?QFH(SP) is sound and complete

if for all specification expressions SP € SPEX(ASL), for all sentences ¢ €
|Seninsrm (Symbols(MASL L, SP))| for all A € Models(SP), if A = ¢ there
exists a Symbols(TI4S L npy (SP))-algebra A’ such that A" satisfies the soundness

conditions and A" |= ¢ if and only if SP l_Hf‘ﬁ_éFH(SP) @.

Different kind of non-compositional proof systems inductively defined by
specification expressions have been developed for the behavioural operators. In
[HS96], these operators can just be applied to basic specifications, whereas in
[HWBY7] they can be applied to any kind of specification expressions. In [HS96]
it is developed specific proof systems for the behaviour and the abstract oper-
ator for standard and behavioural theories and they use higher-order logic as
specification logic, whereas in [HWB97] they present proof systems for the be-
haviour, abstract and quotient operator but just for standard theories and they
use finitary and infinitary first-order logic. In this subsection, we will present
in an arbitrary but fixed algebraic institutions, proof systems for the common
operators of ASLker specification languages, and after that we will present two
proof systems inductively defined by specification expressions for the BAS Lker



specification language RBASL: one with the algebraic institution FOLFQ and
the other with the algebraic institution HOL. Again, the design of the proof
systems is based on [Hen97] and the axiomatisation of the indistinguishability
relation for the proof system of higher-order logic is based on [HS96].
Basically, the proof systems for the behavioural operators are defined as the
proof systems of structured specifications whose semantics are equivalent to the
semantics of the behavioural operators. The result which states the equivalence
is presented in this chapter in theorem 5.2.39 for the proof system of higher-
order logic. For first-order logic, the proof system is designed in a similar way
but instead of having an axiomatisation of the indistinguishability relation in
first-order logic, we have proof rules to derive proofs about indistinguishability.

2.1.1 Proof system for the common operators

Definition 2.12 Let ASL be any ASLker specification language with an ar-
bitrary but fized algebraic institution AINS. The proof system Ilarns(ASL)
is inductively defined for the two common operators of ASLker languages as
follows:

Rules(ﬂﬁ%’,s, <E,®>)=Tarns(P,X)
Symbols(IT47ke, <X, ®>) =X

T’em)(ﬂﬁﬁ{}s, <L,d>) =0

Rules(Hﬁfﬁ,S, SPy+x SPy) = inl”(Rules(Hﬁfﬁ,S, SPy))U inr”(Rules(HﬁfJ{;S, SP))
Symbols(TT435k s, SPy +5 SPy) =

inl"(Symbols(TT43 5 o, SP1)) Uinr' (Symbols(TT43 %, SPs))

Fenv(Hf\}qﬁS, SPi+x SPy) =

inl"(Tenv(TT47% s, SP1)) Uinr’ (Tenv(TT47 % g, SP2))

Rules(lI47L s, SP|s) = Rules(Il43%, SP)
Symbols(Il47%¢, SP|s) = Symbols(I47ks, SP)
Fenu(I43he, SPIs) = Teno(45ks, SP)

where the overloaded symbols inl" and inr'' are the pushout morphisms of the
following diagram:



inl" ‘
Sym(II47%s, SP1) - Sym(I47%s, SP1) +x Sym(IT47%s, SP»)

Sign(SPy) int + Sign(SP1) +x Sign(SPs) inr'
by d > Sign(SPy) o - Sym(I1475 s, SP2)

and inl" and inr" also denote the usual renaming functions between environ-
ments and proof systems which use the pushouts morphisms with the same name.

Since Signature(SPi) +x Signature(SPy) is a pushout iss is the unique
morphism with arity

iss : Signature(SPy) +x Signature(SPy) —

Symbols(TT47E s, SP1) +5 Symbols(TT47k s, SP,)

and the pushouts can be chosen in such a way that iss is an inclusion.

Theorem 2.13 Let ASLK be the ASLker specification language with just the
two common operators of this class of languages. If Fr1 ;<) i sound then
"H;‘fﬁ,g’ is sound and if by, < (9) 75 sound and complete then "H;‘fﬁ,g’ is sound
and complete.

2.1.2 The proof system Hﬁg,‘)%

Definition 2.14 The natural deduction system Hpoppg(T) is defined by the
following set of rules for any T' € P(|Senarns(X)]):

{} =x true (7) I'=x false D ¢ (F)
I'=x ¢1 A P2 I'=x ¢1 A 0o
I'=x ¢1 (/\El) I =x ¢ (/\Er)

Fix(ﬁl F:>X¢2

I'=x ¢1 Ao (A1)
Loxbn _Toxdy

F=xd1Ver I'=xéd1D¢% I'=xd2D9

=xv (VE)
T'u{¢} =x false I'=x1¢ TI'=x
I'=>x ¢ (=) =x¢ (—F)



Tu¢ =x ¢ F'=>x¢D¢ T=x o

I'=sx¢D¢" (D ) I'=>x ¢ (D e)
I'=x o[t/x]
I'=x dz:s.¢ tE€Tn,(X) (an
I'=x s TU{d) = xufes) ¥
I'=x ¢ (3E)
FZ}XU{x:s}(ﬁ
I'=x Vr:s.¢ (V I)
I'=>x Vo :s.¢
——— te Ty (X
Toxofz) (S g
I'=2xr=s I'=>xs=t
I'=sxt=t (REFL) F=xr=t (TRANYS)
[=xt=s F:>Xu{z:s’} ¢ls/x] T=xt=s
F=>xs=t (SY M) I = xu{est) O[t/] (SUBST)

In the next definitions, we present different relational signatures which ex-
tend a given signature with the following symbols:

e Symbols to denote the indistinguishability relation for every sort of the
signature and symbols to denote a definedness predicate also for every sort
of the signature.

e The same extension as in the previous one plus symbols to denote a pseu-
doepimorphism between the original signature and a disjoint copy.

e The same extension as in the previous one plus symbols to denote contexts
and context application.

Definition 2.15 The relational signature X[~, D] is defined for any signature
Y = (S,0p) and for any S-families of new symbols ~, D as:

YN[~y D] =X U {~s:sx s|se S} U{D, :s|s € S}

Definition 2.16 The relational signature X[~, D, Tcopy] for any signature ¥ =
(S, Op), for any bijective signature morphism Copy : ¥ — Copy(X) such that
Y N Copy(X) = @ and for any S—family of new symbols ~, D and 7 is defined
as:

Y[~y Dy meopy] = El~, DIU Copy(X) U {m, : s — Copy(s)|s € S}



Remark: The relational signature Copy(X)[~, D, mcopy—1] stands for the
following signature:

Copy(Z)[~, D, mcopy—1] = Copy(E)[~, DJUX U {m, : Copy(s) — s|s € S}
Definition 2.17 The relational signature X[~, D, T¢opy, 2, ¢, cappl] for any sig-
nature ¥ = (S, Op), for any bijective signature morphism Copy : ¥ — Copy(X)

such that © N Copy(X) = B, for any S—family of new symbols ~, m and z and
for any new symbols ¢, c_appl is defined as follows:

Sorts(S[~, D, Tcopys 2, ¢, cappl]) =
Sorts(X)[~, D, Tcopy] U {c[r — s] | r€ S,s € S}
Ops(X[~, D, mcopy, z, ¢, cappl]) = Ops(X[~, D, Tcopy]) U
{c[zs] : c[s — s]|s€ S} U
{e[r, flie[r = s1]x...xe[r = s,] = e[r — s] |
reS, fis1x...xs, »>s€0p} U
{cappl[r,s]:c[r = s] x » = s|reS,seS}

Prs(Z[~, D, Tcopy; 2, ¢, cappl]) = Pr(X[~, D])

In the following, some proof rules to prove sentences of the form Vz :
S.D,(z) D ¢ are presented:

Definition 2.18 The set of rules D_sr[X[~, D], In] is defined as follows:

D_sr[X[~, D],In] = {D_sr[X[~, D],In,s] | s € In}

and the rule D_sr[X[~, D], In, s] is defined for every sort s € S — In as follows:

{T =x Vzy1:81.....Y2, : 5,.
sésé{mi/x} ) ¢{f($1aa$n)/r}|
fis1 x ... X s, = s€Ops(X)}

I=xVe:s.Di(z) D¢

Next, proof rules to define the proof system associated to the reachability
operator are presented:

Definition 2.19 The set of rules Reach_sr[3, (Sr, Fr)] is defined as follows:

Reach_sr[Z, (Sr, Fr)) = {Reach_sr[X, (Sgr,Fr),s] | s € S}

10



and the rule Reach_sr[X, (Sr, Fr), s] is defined for every sort s € Sg as follows:

{T' =x Ya1:81.... Vo, : s,.

A o{zi/x} O 6 {f(zr,... wn) /x} |

$i=s

fis1 X ... X 8, = s€Fr}
I'=x Ve:s.¢

In the following, proof rules to derive proofs about indistinguishability are
presented. The proof rules appear in the proof system of the behavioural oper-
ators and there are two different kind of proof rules:

e proof rules which define the indistinguishability relation.

e proof rules to perform context induction to reason about formulas of the
form Veat : c[r — s].¢

Definition 2.20 The set of rules Indist_rel_sr[X[~]] is defined as follows:
e For each sort s € S — Obs, the following rule:

I'=x A Vext:c[r— obs].
obs€eObs
c_appl[s, obs](cxt,t) = c_appl[s, obs](cxt,r)

e - Dy (t)& Dy ()

e The following context induction rule for each r € § and s € S — In such

that r # s:
{[ = x Yeaty : c[r = s1].... Vexty : c[r — sn]-
N & {cat;[cat} D & {c[r, fl(cxtq,..., cxt,)/cat} |
- fi81 X ... X s, — s€Op}

I'=x Vet : c[r — s].¢

o The following context induction rule for each r € S and s € S — In such
that r = s:

{T = x Vexty :e[r — s1].... Next, 2 e[r — s,]. ¢ {c[z5]/cxt} A
N & {cat;[cat} D & {c[r, fl(cxtq,..., cxt,)/cat} |

$i=s8

fis1 X ... X s, — s€&Op}
I'=x Vet : c[r — s].¢

e For each sort s € Obs, the following rule:

T'kxt=r

m Ds (t)&:Ds (1")

11



In the following, you will find the axiomatisation of the pseudoepimorphism
used in the proof system for the behavioural operator. This axiomatisation is
formulated over the signatur X[~, D, m¢,,,] and it contains the following axioms:

e axioms to determine that 7c,py is an homomorphism.
e axioms to determine that the homomorphism m¢c,py is surjective.

e axioms to establish the compatibility between the indistinguishability re-
lation for every sort of the signature and the set theoretical equality asso-
ciated to the disjoint copy of the given sort.

Definition 2.21 The set of sentences pEpirorrQ[X[~, D, Tcopy]] is defined
as:

pEpiroLrq(E[~, D, mcopy], Obs, In] = Hom[X[~, D, mcopy], Obs, In] U

Epihom[E[~, D, Tcopyl, Obs, In] U ~ —comp[E[~, D, Tcopyl, Obs, In]
where

Hom[X[~, mcopy], Obs, In] = U {Vt1:81.... Vtn @ 8.

fis1X... X8, —8€0D

Dy, (t;) =
i€[1l..n],s,€S—1In

TCopy,s (f(t1, -+ tn)) = Copy(f)(Tcopy,s: (T1)s - -+ s TCopy,s, (tn))}

Epihom[X[~, Tcopyl, Obs, In] =

U {Vy:Copy(s).3z : s.D,[X, In](2) A Tcopy,s(2) =y)}
se€S—In

L% {Vy : Copy(s).3z : 5. Tcopy,s (z) = )}
s€in

~ —comp[X[~, Tcopy], Obs, In] =

U {Vz:sVy:s.D,[%, In](z) A Ds[Z, In](y) =
se€eS—In

T ~s Y S Toopy,s(T) = Tcopy,s(¥)}

UI Vo1 sVy: 5.2~ Yy Toopy,s(2) = Toopy,s(¥)}
s€ln

12



Finally, we present an axiomatisation of the function application between
contexts and values.

Definition 2.22 The set of sentences Az _c_appl[X[~, D, Tcopy, 2, ¢, cappl]] is
defined as:

A.’L‘_C_(lppl[E[N, D, TCopyy %5 Cs c_appl]] =

{Am_c_appl[E[N, D, TCopyy %y Cs C_llppl], r S] | S S, RS S}
where

Ax_c_appl[E[N, D7 TCopys %y Cy c_appl], T 5] =

Yo : rcappl[r, sl(c[zr],v) = v A c_appl[r,s](z,v) = = A

; A 5 Yeaty :e[r — s1].... Neat, :e[r — sp].Vv 1
81 X... XS, —=s€EOp

c_appl[r, sl(c[r, fl(caty, ..., cxty),v) =

f(e-appl[r, s1](cxt1,v),. .., cappllr, s,](czt,, v)) Jifr=s

Yo i r.coappllr, s](z,v) = z A

; A . Yeaty :e[r — s1].... Neat, :e[r — sp].Vv 1
81 X... X8, —s€0p

c_appl[r, sl(c[r, fl(caty, ..., cxty),v) =

fle_applr, s1](catq,v),. .., c.appllr, sp](cxty, v)) Jifr# s

Definition 2.23 The proof system nﬁg;‘gg is inductively defined for the spe-
cific operators of the language as follows:

Rules(l’[ggf;%é, rename SP by o)= 0'"(Rules(l_[§gf§]é, SP))

Symbols‘(ngngQ, rename SP by o)=
J”(Symbols(ﬂ?ﬁf%fé, SP))

Tenv(MEBASL Egsrename  SP by o) =

(Fem)(ﬂggégé, SP))

13



Rules(Hggfgfé,reach SP with (Sg,Fr)) = Rules(l’[ggf;%é,sp) U
Reach_sr[Signature(SP), (Sr, Fr)]
Symbols(l_[ggfgg,reach SP with (Sg,Fr)) =

Symbols(l_[ggf%]é ,SP)

Fenv(Hggffjé,reach SP with (Sg,Fr)) = Fenv(Hggf]SEé’SP)

Rules(Hggfg%,behaviour SP wrt =)=
Com(Rutes(T235h. 5P)) U
Indist_rel_sr[X[~], Obs,In] U D_sr[X[~, D], In]
Symbols(ng‘gfgg,behaviour SP wrt =)=
Copy”(Symbols(Hggféé ,SP)) UZX[~, Tcopy, %, ¢, cappl]
Fenv(Hggfgg,behaviour SP wrt =)=
Tenv(rename SP by Copy)U
pEpirorEQ[X[~, TCopy; 2, ¢, c.appl]] U

Al‘_(,’_(lppl [E [N, T Copyy %y Cs ('—”ppl]] >)

Rules(HggfgIé,abstract SP by =)=
Rules(Hggfgé,behaviour SP/~ wrt =)

Symbols(nggfgé,abstract SP by =)=
Symbols(l’[ﬁgfgé,behaviour SP/~ wrt r)

Fenv(l’[ﬁg‘;}ﬁé,abstract SP by =)=

Fem)(ng‘gi‘gg,behaviour SP/~ wrt =)

14



Rules(Hggfgfé,SP/ r) =
Rules(NES2 3G, rename - SP by Copy)U
Indist_rel_sr[Copy(X)[~, Tcopy—1, cOPYz, copyc, copyc_appl],
Copy(Obs), Copy(In)] U D_sr[Copy(X)[~, D], Copy(In)]
Symbols(l’[ggffgé,sp/ ~) =

Copy" (Symbols(SP, H?Bf% NU

Copy(Z)[~, Tcopy—1, copyz, copyc, copyc_appl]
Fenv(H??féé ,SP/ ~) =

Tenv(rename SP by Copy)U

pEpiroreq(Copy(X)[~, mcopy—1, copyz, copye, copyc_appl],

Copy(Obs), Copy(In)]] U

Az _c_appl[Copy(X)[~, Tcopy—1, copyz, copyc, copyc_appl],

Copy(Obs), Copy(In)]] >

where ¥ is the signature of the argument specification SP for every case and
the overloaded function symbol o' is used here as the pushout of the following
diagram:

Sym(NEBASE  SP) 22 PO(i, o")
gl ] |
y—¥
wherei: % <« Sym(Hggff;é, SP) and it is also used as the renaming function

of environments and of the proof system H%f%(SP) which use the pushout
Just described in the obvious and standard way, and the overloaded symbol Copy'’
is the pushout morphism of the following diagram:

Sym(TEBASE | SP)Z2PO(i, Copy)

ZT Copy T

Yy — Copy(Y)

15



where 1: X — Symbols(nggfgé, SP) and

Copy" (Symbols (H?gff;é, SP)) N

Y[~y Teopy, 2, ¢, cappl] = Copy(X)

and also

Copy’ (Symbols(TIEH7 36, SP)) N Copy(T)

[~, TCopy—1, COPYZz, copye, copyc_appl] = Copy(X)

The symbol Copy" is also used as the renaming functions of environmnents
and of set of rules using the pushout morphism just described with the same
name in the obvious and standard way.

Note that although the proof system for the behaviour and quotient operators
is defined in terms of the proof system of a structured specification expression,
it is not needed to apply to the symbols of these proof systems the pushouts to
avoid name clashes in structured specifications since the conditions which satisfy
the pushout Copy" guarantee no name clashes.

Theorem 2.24 The consequence relation I—Hgg?gé is sound.

Proof:

The proof is by induction on specification expressions. For the two common
operators the proof is trivial since Fr.,, o (@) is sound. For the rest of the
cases, we have to prove the following propositions:

e For all specification expressions SP € SPEX(RBASL) such that Signature(SP) =
Y = (S,0p), if }—Hggfgg(sp) is sound then FH?B?%%(SPIE) is sound which
follows trivially.

e For all specification expressions SP € SPEX(RBASL) such that Signature(SP) =
Y =(S,O0p), ifl_nggfgg(sp) is sound then angfgg(rename sp by o

is sound where o : Signature(SP) — X'.

Assume that SP € SPEX(RBASL) and assume that "H;?gfgg(sp) is

sound.

We have to prove that for any A € Models(rename SP by o) there

exists a Symbols(l_[ggfg[é (rename SP by o))-algebra (which we will

refer as A’) such that:

- Ally = A
— V¢ € Tenv(TT47% s, rename  SP by o). A" = .
— A’ satisfies TI47% s (rename  SP by o).
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Since A|, € Models(SP), by soundness of angfgé(sp), we know that

there exists a Symbols(ﬂggfgé (SP)-algebra which we will refer as A"

such that:

- Ay = Al,.
— V¢ € Tenv(TT47% 5, SP). A" = 9.

— A" satisfies 14754 (SP).

It is straightforward to prove that the Symbols(l_[ggfgg (rename SP by o))
-algebra A’ = All|(i;o”)—1 where ¢ is the pushout morphism of i : ¥ —
Symbols(TT47 5 (SP)) and o : & — X of the definition the proof system

for this operator, satisfies the soundness conditions of the satisfaction con-

dition of AINS and because A" satisfies the soundness conditions for the

proof system T147% ¢ (SP).

e For all specification expressions SP € SPEX(RBASL) such that Signature(SP) =

L= (5,0p), ifFnzzass (sp) issound then Frnsacs reach 5P with  (sz,7x))

is sound.
Assume that SP € SPEX(RBASL) and assume that l_H?gféé(SP) is
sound.

To prove that I-HRBASL is sound, we have to
FOLE (

L(reach sp with (sx,7x))
define for any A € Models(reach SP with (Sg,Fr)),

a Symbols(Hggfgé (reach SP with (Sgr,Fr)))-algebra B which sat-
isfies the soundness conditions.

Assume that A € Models(reach SP with (Sg,Fr)). By the se-
mantics of the reachability operator, we know also that A € Models(SP).

Since Hggféé(SP) is sound, we know that there exists a
Symbols(l_[ggfg]é(SP))—algebra A’ such that A’ satisfies the soundness

conditions and therefore A'|signature(sp) = A.

Assume that B is a Symbols(ﬂ?gffjg(SP))—algebra which satisfies the
soundness conditions and B'|5ignam,~e(5p) = A. To prove that B satisfies
the soundness conditions we have to show that:

— Blsignature(sp) = A which obviously holds

— V¢ € Tenv(lT47kg, reach SP with (Sg,Fgr)).B = ¥ which

holds since [env(I147L reach SP with (Sr,Fr)) = lenv(l147L,, SP).

— B satisfies H?gfgfé (reach SP with (Sg,Fr)) because B sat-
isfies
H?gffjjé (SP) and for each sort s € Sg B satisfies Reach_sr[Z, (Sg, Fr), §]
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and it follows trivially by term induction on the carrier set B, since
B|5igmm,,e(5p) = A satisfies the reachability constraint.

e For all specification expressions SP € SPEX(RBASL) such that Signature(SP) =
X =(S,0p),if }_Hggfglé(sp) is sound then }_Hl{igz‘gg(behaviour sP wrt =)

is sound.

Assume that SP € SPEX(RBASL) and assume that "H;?gfgg(sp) is

sound.

To prove that l—HRBASL( ~) is sound, we have to
FOLEQ ~

behaviour sp wrt

define for any A € Models(behaviour SP wrt =),

a Symbols(l_[ggfgé (behaviour SP wrt =))-algebra B such that:

- B|5ignature(5P) — A
— V¢ € Tenv(1147% 5, SP).B = ¢.

— B satisfies H?gff;]é(behaviour SP wrt =)

Since H?gffjfé (SP) is sound, there exists a Symbols(l_[ggégé (SP))-algebra

A’ such that A'|signature(sp) = A/NT’ObS and A’ satisfies Hggféé(sp).

The Symbols(ﬂggfgé (behaviour SP wrt =))-algebra B isdefined
as follows:

Blsignature(sp) = A ( and therefore it satisfies the first condition).

Blc, 11(Symbols(IIBBASL (5 p))) = Allcopyr-1
PY Y FOLEQ

Bz, = €4 for every sort s € S.
where

€a,s(v) = [v] _obs,n for all v € A;.

NA,S
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In,0b
Bl., =~"17"" for every sort s € S.
y

Blefr,s) = {Afrv: A[[n],.[au{(z”frv)}(czr) |
a € (X, = A), czr € Ty (X1, U {2, }) Hor every sort s,r € S
and for a S-sorted infinite enumerable set of variables such that

for every sort s€ S X, N z, = 0.

¢lzs|p = 25 for every sort s € S

clr, fle(cx, ..., cen) = f(cx1,...,cxy) for every sort r € S,

fis1X...xXs, > s€Op,

cx1 €Tss, (X U{z}), ..., cen €Tx 5, (X1n U{zr})

cappl[r, s|p(Afrv : A[In], Loui(z,, fro)y (€27),10) =
Iou{(zprvyy (c27) for all a @ X7, — A[In],

for all czr € Ty (X1, U{z,}) and for all rv € A[In],

To show that
Yy € Fenv(ﬂﬁfﬁ,s,behaviour SP wrt =~).BE7Y

we have to prove the following propositions:

— Vi € Tenv(lI47L s, rename SP by Copy).B = ¢ which follows
by the induction hypotheses and the proof of soundness for the re-
name operator.

— B = pEpiroLeQ[X[~, Tcopy 2, ¢, c_appl]] A

B A.c.appl[Sl, TG apy 2 ¢, c.appl]
B = pEpirorLrg[X[~, Tcopy, 2, ¢, c.appl]] because for every sort s

. . Obs,I
B, can be seen as an epimorphism between A and A/~ 0" and
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therefore B satisfies Hom[X[mcopy], Epihom[E[mcopy]] and also ~
—comp[X[~, Tcopy]]. The proof of B = Ax_c_appl[S[~, Tcopy, 2, ¢, c_appl]]
is straightforward.

And to show that B satisfies Hggf}%g(behaviour SP wrt &) we
have to show the following propositions:

- B|C’opy”(5ymbols(H§gf§é(SP))) satisfies H?gff;é(rename SP by Copy).

Since A € Models(behaviour SP wrt =), wehave that A/Ngbs,ln c
Models (SP) and by induction hypotheses we have that A’ satisfies
H?gffjg(SP) where A'|signature(sp) = A/Ngbs’ln. Therefore,

B|Copy“(5ymbols(r[§gf§g(SP))) satisfies Hggfég (rename SP by Copy).

— B satisfies Indist_rel_sr[X[~, Tcopy, 2, ¢, ceappl], Obs, In].
B satisfies

F'=x A Veat:c[r— obs].
obs€Obs

c_appl[r, obs](cxt,t) = c_appl|r, obs](czt,r)
F=xt~r

D, [, In](t)& D, [2, In](r)

for each sort s € § — Obs and

Fl—Xt:r

Ty Do[Z ] ()&D, [2, In] (r)

In,0b
for each sort s € S because B|. =",
1

B satisfies

{T = x Vexty : c[r — s1].... Next, : e[r — s,].

N o {ecxtifcxt} D ¢ {c[r, fl(caty,...,caty)/cat} |

fi81 X ... X s, — s€Op}
T =x Vext : c[r — s].¢

by induction on the context czt : ¢[r — s]

e For all specification expressions SP € SPEX(RBASL) such that Signature(SP) =
¥ = (S,0p), if '_Hlp%gfgé(sp) is sound then angfgé(sp/m) is sound.
Assume that SP € SPEX(RBASL) and assume that angfgé(sp) is
sound. To prove that }_Hggfzé(sp/z) is sound, we have to define for any

A € Models(SP/ ~), a Symbols(l_[ggfgé (SP/ =))-algebra B such that:

- B|Signature(SP) =A
— Vi € Tenv(1147 54, SP/ ~).B |= 9.
— B satisfies H?gfgé(SP/ ~)
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By the definition of Models(SP/ ), we know that there exists a Signature(SP)-
algebra A’ such that A’ NZ’Obs = A and A" € Models(SP). In the fol-

lowing, we will denote by A : A’/Ng,bs’jn — A the isomorphism between

A Ng?s’m and A. By induction hypotheses, we know that there exists a

Symbols(l_[ggf}%lé (SP))-algebra A" such that A”[signature(sp) = A" and

A" satisfies Hgg‘égg (SP). The Symbols(HIFzg‘égg (SP/ wv))-algebra B is

defined as follows:

B|x, = A(and therefore it satisfies the first condition).
B|C0py”(5ymbols(l_[§gfgé(SP))) = AHlCOpy”—l-

BWCDM(S) = €Al copy—1,Copy(s)foT every sort s € S.

where

6/—l,C’opy(s)(v) = h([U]NCopy(Obs),Copy(In))for any Ain Alg(copy(z))a
A, Copy(s)

for any s € S and for any v € Acgpy(s)

Copy(In),Copy(Obs)
B =R,
Copy(s) A'lcopy—1,Copy(s)

Bletcopy(r),copy(s)] =
{Afrv s Allcopy—1[Copy(In)]copy(r) - Taui(zcopyiryfrv)t (€27) |
a € (Xcopy(im) = A'); czr € Teopy(s),copy(s) (Xcopy(rn) U {zcopy(r) }) }
for every sort s,r € S and for a S-sorted infinite enumerable set of

variables such that for every sort s € S X, N z, = 0.

c[zcopy(s)]B = ZCopy(s)for every sort s € §

c[Copy(r), Copy(f)]B(cx1,...,cxn) = Copy(f)(cx1,... cxy)
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for every sort 7€ S, f:s51 x...x s, > s €Op,
cx1 € Teopy(x),Copy(s1) (Xcopy(in) UL zcopy(r) })s -+ 5

cxy € TCopy(Z),Copy(sn)(XCopy(In) u {ZCopy(r)})

c_appl[Copy(r), Copy(s)]n
(Afrv: Al[Copy(In)]c(,py(r).Iau{(ZCopy(mfm,)}(czr_), rv) =

IOAU{(ZCopy(r)vr'U)}(CZT') fOI' aH (67 XCOpy(In) — A[Copy(fn)],

for all czr € Teopy(z),copy(s) (Xcopy(rn) U {Zcopy(r) })
and for all rv € A[Copy(In)]copy(s) -
To show that
Vi) € Tenu(IT47% g, SP/ ~).B =4

we have to show the following propositions:

— Vi € Tenv(I47L s, rename SP by Copy).B = v which follows
by the induction hypotheses and the proof of soundness for the re-
name operator.

— B | pEpiroreq[Copy(X)[~, mcopy—1, 2, ¢, cappl]] A

B = Az_c_appl[Copy(X)[~, mcopy—1, 2, ¢, c.appl]]
B E pEpiroreg[Copy(Z)[~, Tcopy—1, 2, ¢, c.appl]] because for every
sort s Br,, ., can be seen as an epimorphism between A’ and A and
therefore B satisfies Hom[Copy(X)[~, Tcopy], Epihom[Copy(Z)[~
, Teopy]] and also ~ —comp[Copy(X)[~, Tcopy]]. The proof of B |
Az _c_appl[E[~, Tcopy, %, ¢, c.appl]] is straightforward.

And to show that B satisfies Hggf}%g (SP/ ~) we have to show the fol-
lowing propositions:

- B|Copy”(5ymbols(1'[§gfgg(SP))) satisfies Hggfgé(rename SP by Copy).

Since A’ € Models(SP), by induction hypotheses we have that A"
satisfies Hggféé (SP) where A" |signature(sp) = A’. Therefore,

B|Copy”(5ymbols(1'[§gfgg(SP))) satisfies Hggfgé(rename SP by Copy).

— B satisfies Indist_rel_sr[Copy(Z)[~, Tcopy—1, 2, ¢, c.appl], Copy(Obs),
Copy(In)] in the same way as in the case of the behavioural operator.
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e For all specification expressions SP € SPEX(RBASL) such that Signature(SP) =
Y =(5,0p),if '_H?gfgé(sp) is sound then }_Hlﬁgfgg(abstract sp by =
is sound.
It is trivial since by the two previous proofs we know that if I—Hggfgé(gp)

is sound then l—HRBAS _, is sound.
FOLE N)

#:L(behaviour sp/x  wrt

Theorem 2.25 There is no sound and complete consequence relation of the
form angfgé for RBASL.

Proof:

See [MS85]. The basic idea of the proof is to define a specification SP such that
the set {¢ | SP |= ¢} is not recursively enumerable since they work with conse-
quence relations F which are recursively enumerable. They show that the set of
sentences which satisfy the single sorted algebra N AT with carrier set the nat-
ural numbers and with the usual operations zero, succ, substract, add, multiply
(where substractyar(m,n) = 0 if n > m) is not recursively enumerable. They
use equational logic with data constraints to define an specification whose class
of models is the class of algebras isomorphic to VAT. Since all the consequence
relations of our proof systems are recursively enumerable because we work with
natural deduction systems with a finite set of finitary rules, the proof is valid
for our framework if we define the specification in RBASL. We will refer to this
specification as NSP and it is defined as follows:

NSP = reach Nat with (nat, (zero : nat, succ : nat — nat))
where

Nat = < (nat,zero: nat, succ : nat — nat,add : nat x nat — nat,

substract : nat x nat — nat, multiply : nat X nat — nat),

(Vm, n : nat.add(n, zero) = n A add(n, succ(m)) = succ(add(n, m))A

(Vm, n : nat.substract(zero,n) = zeroA
substract(suce(n), succ(m)) = substract(n, m))A

(Vm, n : nat.multiply(n, zero) = zeroA
multiply(n, suce(m)) = add(n, multiply(n, m))

(Vm,n : nat.~(n = n + suce(m))) >

It is trivial to show that

Models(NSP) = {A| A= NAT}
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since one can prove that there exists an isomorphism between any model of
NSP and the initial model of NSP which is isomorphic to NAT.

2.1.3 The proof system ME215T

Before presenting the proof system I15245% associated to the specification lan-

guage RBASL, we present the proof system of the higher order logic HOL
Mgor (T). This proof system is split in three different kind of rules: derivation
rules, typing rules and proof rules which determine the g-equality. All of them
are standard rules presented in a natural deduction style.

Definition 2.26 The natural deduction system Ilgor (T') is defined by the fol-
lowing set of rules for any T € P(|Senarns(X)]):

FU¢=x¢

P=x¢D¢" (D i)

I'=>x¢2¢" T=x¢
F'=x ¢ (D e

r = XUz:T ¢
I'=>xVe:rg (Vi)

F'=xVe:r¢ Xpit:r

['=x ¢{t/z} (Ve)
I'=>x¢ ¢ =xp ¢
I'=sx ¢ (CONV)
where the set of typing rules of this proof system is:
X}mT:TxTEXT (ASS)
Xpitiist ... Xpit,:s,
: n — b))
X [l i) is LI X T EER ppp
XU{z1:7,...,2, : T} » ¢ : Prop

XpMey:im,oo o, 20t T) @ [T1,...,T] (AABS)

Xptiim .. XWitp:imm Xwt:i[r,...,m
X »t(t1,...,t,) : Prop (AMPPL)

XUz:7p» ¢:Prop
XpVz:r.¢:Prop (V)

Xp»¢:Prop X p» ¢ :Prop
X» ¢D ¢ :Prop (D)
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and the B-equality rules are:

ml‘é){r (V(l?"@q)
Xptiist ... Xpit,:s,
t1 =p,x t'l...'tn =8,X t;

fltseosta) =p,x f(ths-- 1)

fisiX...Xsp 55, €X  (Termeq)

Xpt(ty,...,ty):Prop t =g x t'

i1 =p,X tll R 7 =p,X t;L (Appleq)
t(t1y e tn) =px t' (... 1) '

Xpti:mg ... Xpit,:m,
XpMet:7T,.oo @0 i) @ [T, ..., Tn)
o {ti/z1}.. {ta/zn} =px ¢

Llambdae
AMz1:my ooy Zn i) (B, .00 4 t0) =p,x @ ( )
XpMep:im, oo 200 T0). 0t [T1, -0, T
¢ =B, XU{z1:T1,00 & niTn } ¢I {1‘1/1‘/1}{33“/1*:1}
! AL Lambdae
M1 Ty 2t ) =g, x Ay 71, ..., 8, 1 T) ( 9
XU{z:7}» ¢:Prop
— o7 Hafz'
¢ Zpxutery O2/a'} (Foralleq)

Ve:1.¢ =g x Va':7.¢'

X » ¢ : Prop
X » ¢ : Prop
¢ =px ¢
- (Sym
PR (Sym)

Definition 2.27 The encoding of the logical operators false, true, =, vV, A, 3
is as follows:

false =4.; VP : Prop.P

true =4e; VP : Prop.P D P

t=rr=4ey VP: [T, PtDOPr

NG =4y VP : Prop.(¢ D¢ DP)D P
&V @' =4ep VP : Prop.(¢ D P)D (¢’ D P)

DPFP
Jz: 7.0 =gy VP : Prop.((Vz : 7.¢) D P) D P
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Proposition 2.28 The following set of rules is admissible in the proof system
Mgor(T) for any environment T € P(|Senarns (T)]):

{} = x true (7) I'=x false D ¢ (F)
I'=x ¢1 A I'=x ¢1 A ¢
I'=x ¢4 (/\El) I'=x ¢ (/\ET)

F'=x¢1 I'=x ¢

I'=x ¢1 A P2 (/\I)
I'=x ¢y I'=x ¢
F'=x ¢1V P2 (VH) F'=x ¢1V o (VI?’)

F=Sxd1Vor I'=2xé1D¢% I'=xdaD9
F=x4 (VE)

Xpt:r TU{t:7}=x ¢{t/z}
F=x3z:71.¢ (3I)

F'=sx3dz:r¢ TU{s} = Xu{z:7} (4
F=x ¢ (HE)

Iy {¢} =X false I'=x 1/) I'=x —|¢
I'=x ¢ (=I) I=x¢ (—F)

In the next definitions, we present different relational signatures which extend
a given signature with the following symbols:

e Symbols to denote the indistinguishability relation for every sort of the
signature.

e The same extension as in the previous one plus symbols to denote a pseu-
doepimorphism between the original signature and a disjoint copy.

Definition 2.29 The relational signature X[~] is defined for any signature ¥ =
(S, Op) and for any S-family of new symbols ~ as:

Y~ =X U{~;:sx s|s € S}
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Definition 2.30 The relational signature X[~, Tcopy] for any signature ¥ =
(S, Op), for any bijective signature morphism Copy : ¥ — Copy(X) such that
Y N Copy(X) = and for any S—family of new symbols ~ and 7 is defined as:

X[~y Teopy] = E[~]U Copy(Z) U {ms : s — Copy(s)|s € S}

Remark:  The relational signature Copy(X)[~, Tcopy—1] stands for the
following signature:

Copy(Z)[~, Tcopy—1] = Copy(Z)[~] U X U {m, : Copy(s) — s|s € S}

Here we present some axioms used to define the proof system for the reach-
ability operator:

Definition 2.31 The set of sentences Reach_az[X, (Sr,Fr)] for any reacha-
bility constraint (S, Fr) of ¥ is defined as follows:

Reach_az[X, (Sr, Fr)] = {VP : [s].( A (Vo1 :51.... Vo, : 5,.

fis1Xu.Xsn—>s€EFR

(. . /} P(z;) D P(f(z1,...,2,))) D Vz:s.P(z)| s€Fr}
1€|1l..n),5,=s

In the following, there are some definitions which axiomatise the indistinguisha-
bility relation in higher-order logic. This axiomatisation contains the following
axioms:

e Axioms to determine which a given value is reachable.

e Axioms to determine which a given relation coincide with the set-theoretical
equality.

e Axioms to determine that a family of relations is a congruence.

Definition 2.32 The Sorts(X)-family of sentences D[X, In] for any In C Sorts(X)
is defined as follows:

D[E, In] = {D,[X,In] | s € Sorts(X)}

where

DX, In] = Az : s.(VP : [s].( A (V&1 s1.... Ya, @ sp.
Fi51X.. X5, —>5€EO0pPs(X)

(' [1/} P(z;) D P(f(z1,...,2,))))) D Puz) yifseS—1In
tell.on],si=s

Dg[X, In] = Az : s.true yifseln
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Definition 2.33 The set of sentences Indist_rel[(S, Op)[~], Obs, In] is defined
as follows:

Indist_rel[(S, Op)[~], Obs, In] = { Indist_rel[(S, Op)[~],Obs,In,s] | s € S}
where

Indist_rel[(S, Op)[~],Obs,In,s] = Az : s.Ay : s.35¢s5 Ryt [8', ).
Ri(z,y) ANOBSEQI(S,Op), R,Obs,In] A

CONGI(S,0p), R,0bs, In] N DX, In](x) AN D%, In](y)

OBSEQ[(S,0p), R,Obs,In]= A Vuv:obs.Yw : obs.

obs€Obs

Dops [Z, In](v) A Dops [E, In](w) = (Rops(v,w) & v = w)

CONG(S,Op), R, Obs, In] =

Vaoy:s1.Vy1 :81. ... Vo, i s, Vyn @ sp.
fis1X.Xsp,—s€0p

(Rs](I],yl) VAN Rm(mn,yn) =

Rs(f(mla-" 7In)7f(y]7--- 7yn)))

Here, we present an axiomatisation of a pseudoepimorphism over the signa-
ture X[~, Tcopy] in higher-order logic. This axiomatisation is equivalent to the
one presented in first-order logic.

Definition 2.34 The set of sentences pEpigor [X[~, Tcopy], Obs, In] is defined

as:
pEpigor[E[~, Tcopyl, Obs, In] = Hom[X[~, Tcopy], Obs, In] U
Epihom[X[~, Tcopyl, Obs, In] U ~ —comp[X[~, T¢copy], Obs, In]
where
Hom[X[~, m¢opy], Obs, In] = U {Vt1 :s1.... Vi, s,

fis1 X . Xsp,—=>s€EOP

A Dy[S, In](t:) =
1€[1..n]

TCopy,s (F(ts - ytn)) = Copy(f)(mcopy,s, (T1)s -+ s TCopy,s, (tn))}
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Epihom[X[~, Tcopy], Obs, In] =

LGJS{Vy : Copy(s).Jx : s.Ds[Z, In](x) N Tcopy,s(2) =y)}

~ —comp|X[~, Tcopyl; Obs, In] =

LEJS{‘V’.I' 1.y 5. DX, In](x) A D, [2, In](y) =

T ~5 Y& Teopy,s(T) = Teopy,s(y)}

In the following definitions, we define specification expressions using an ex-
tended version of RBASL with relational signatures and we prove some equiv-
alences between the semantics of some of these specification expressions and
the semantics of the behavioural operator. The semantics of RBASL with
relational signatures is extended in the obvious way basically just replacing sig-
natures by relational signatures. The specification expressions defined below are
used to establish an equivalence between the semantics of behavioural opera-

tors and structured specifications which are the basis to define the proof system

RBASL
1_[HOL .

Definition 2.35 The specification expression BSP[X[~, Tcopy], Obs, In] for any
signature X = (S,0p), for any bijective signature morphism Copy : ¥ —
Copy(X) such that ¥ N Copy(X) = @ and for any S—family of new symbols
~ and 7 is defined as:

BSP[Z[N? WCopy]a ObS, In] =< Z[Na WCopy]a
{Va : s.Vy: s.x ~; y & Indist_rel[X[~],Obs, In, s|(z,y) | s€ S} U
pEpi[S[~, mcopyl; Obs, In] >
Definition 2.36 For any specification expression SP with signature ¥ = (S, Op),
for any signature morphism Copy : ¥ — Copy(X) and Copy' : T — Copy' (2)
such that ¥ N Copy(X) = @ and X N Copy'(X) = 0, for any S—family of new
symbols ~ and =, the specification expression GBSP[SP, Copy, X[~, Tcopy']] is
defined as:
GBSP[SP, Copy, Z[~, Tcopy], Obs, In] =

rename SP by Copy + BSP[Z[~, Tcopy'], Obs, In]
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Lemma 2.37 Let Rgbs’m be a S-family of partial congruences which satisfies
the following condition:

Vobs € Obs.Nv, w € Aops[Xrn].(v Rgf’jgi" w e v = w)
then
Vs € SVv,w € A[Xr,].v Rg?j’m w = v Ngf’:’m w

Proof sketch:
It follows by context induction. The proof of the general case uses that R is a
S-family of partial congruences which coincides with the set theoretical equality
for observable sorts.

The following lemma can also be found in [HS96]:

Lemma 2.38 The sentence Indist_rel[(S, Op)[~], Obs, In, s] for any sorts € S
and for any free variables x,y € X satisfies the following condition which we
will refer as the indistinguishability condition:

Vs € SVA € Alg(X).Vp € {z,y} — A.

[Tndist rel[S[~], Obs, In](z,y)],,a < p()~5s " p(y)

Theorem 2.39 For any specification expression SP with signature ¥ = (S, Op),
for any signature morphism Copy : ¥ — Copy(X) such that ¥ N Copy(X) = 0,
for any S—family of symbols ~ and w the two following equivalences between
specification expressions hold:

behaviour SP wrt ~ = GBSP[SP,Copy,X[~, Tcopyl, Obs, In]|x

SP/~ = GBSP[SP,Copy, Copy(X)[~, mcopy—1], Copy(Obs), Copy(In)]|s
Proof:

e behaviour SP wrt =~ = GBSP[SP, Copy, X[~, Tcopyl, Obs, In]|s.
Assume that BEHSP = BSP[X[~, Tcopy], Obs, In]. We differentiate two
cases:

— A € Models(behaviour SP wrt =)=
A € Models(GBSP[SP, Copy, X[~, Tcopy], Obs, In]|x).
Assume that A € Models(behaviour SP wrt ). The propo-
sition which we have to prove is equivalent to

3B € Models(GBSP[SP, Copy, X[~, Tcopyl, Obs, In]).Bls = A

To prove this proposition we will build an algebra B € M odels(GBSP
[SP, Copy, X[~, Tcopyl, Obs, In]) such that B|y = A. The algebra B

is defined as follows:

30



* B|2:A.

* B|Copy(2) = A/N2687In|copy—1'
% Br, =e€a,, for every sort s € S.
where
fA,s('U) = [U]Ngbs’ln for all v € A;.
8

In,0b
* B., =r5,"""" for every sort s € S
’

To show that B € Models(GBSP[SP, Copy, X[~, Tcopyl, Obs, In])
we have to show that Blcopy(x)lcopy € Models(SP) which obvi-
ously holds since Bl|copy(s)lcopy = A/xSP " and A/ €
Models(SP).

We have to show also that

B € Models(< X[~, ﬂ'Copy],
Indist_rel[X[~], Obs, In] U pEpi[S[~, Tcopy], Obs, In] >)

This proposition holds because B |= Indist_rel[X[~], Obs, In] and
B | pEpi[X[~, Tcopy], Obs, In].

B = Indist_rel[X[~], Obs, In] holds since for every sort s B., =
Ng&osbs and Indist_rel[X[~], Obs, In] satisfies the indistinguishabil-
ity condition, and B |= pEpi[X[~, Tc,py]] holds since for every sort

. . Obs, T
s, Br, can be seen as an epimorphism between A and A/~ """ and

therefore B satisfies Hom[X[m¢opy, Obs, In], Epihom[E[ﬂ'coz;y], Obs, In]
and also ~ —comp[X[~, Tcopy], Obs, In].
A € Models(GBSP[SP, Copy, X[~, Tcopy], Obs, In]|s) =

A € Models(behaviour SP wrt r).

Assume that A € Models(GBSP[SP, Copy, X[~, Tcopy], Obs, In]|x).

This proposition can be rewritten to
AB € Models(GBSP[SP, Copy, X[~, Tcopy], Obs, In]).B|s = A

Let B be a Signature(GBSP[SP, Copy, X[~, Tcopy], Obs, In])-algebra

such that B € Models(GBSP[SP,Copy, Z[~, Tcopy], Obs, In]) and

Bl|s = A. By the definition of Models(GBSP[SP, Copy, X[~, Tcopy), Obs, In])
we have that B € Models(BEHSP) and because of the indistin-
guishability condition together with the definition of pEpi[X[~, Tcopy]]

we have that

3C € Alg(Copy(X)).Cleopy = A/N(jbs’m & Blcopy(z) =C
Let C be a Copy(X)-algebra such that C|copy = A/mﬁ‘””" and

Blcopy(zy = C. By the definition of Models(GBSP[SP, Copy, ¥
[~, Tcopyl, Obs, In]|x) and since B|copy(s) = C we have that C' €
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Models(rename SP by Copy) and since Clcopy = A/Ngbs,ln

and SP is closed under isomorphism we have that A/Nfibs’In €

Models(SP) and therefore

A € Models(behaviour SP wrt =)

e SP/ ~= GBSP[SP,Copy, Copy(X)[~, Tcopy—1], Copy(Obs), Copy(In)]|s.
Assume that
QGBSP = GBSP[SP,Copy, Copy(Z)[~, Tcopy—1], Copy(Obs), Copy(In)]|s.

We differentiate two cases:

— A€ Models(SP/ ~) = A € Models(QGBSP)

Assume that A € Models(SP/ ~). The proposition which we have
to prove is equivalent to

dB € Models(QGBSP) . Bls = A
To prove this proposition we will build an algebra
B € Models(QGBSP)

such that B|s = A. By the proposition A € Models(SP/ =) we
know that

34" € Alg(Signature(SP)).A" /x0T = A & A’ € Models(SP)

Let A’ be a Signature(SP)-algebra such that A’/N(jbs’jn >~ A and

A € Models(SP) and let h : A'/Ngf’s’m — A be the isomorphism
which relates each other. The algebra B is defined as follows:

* Bls = A.

* Bloopy(z) = A'lcopy-1-

* BWCDM(S) = €Al copy_1,Copy(s) TOT every sort s € S.
where
EA,Copy(s)(v) = h([v]NCopy(Obs),Copy(In))

NA,Copy(s)

« B _NCopy(In),Copy(Obs)

~Gopy(s) = R A Gopyor,Copy(s)

To show that B € Models(QGBSP) we have to show that Blcopy(s)|copy €
M odels(SP) which obviously holds since B|copy(s)|copy = A" and we
have to show also that

B € Models(BSP[Copy(X)[~, Tcopy—1); Copy(Obs), Copy(In)])

which holds since B = Indist_rel[Copy(X)[~], Obs,In] and B =
pEpi[E[N, WCOpy—l]]-
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B | Indist_rel[Copy(X)[~], Obs, In] holds since for every sort s

B = wGoryIn),Copy(Obs) 1 q Indist_rel[Copy(X)[~], Copy(Obs), Copy(In)]

~Copy(s) NB|CDPy()3),C0py(s)
satisfies the indistinguishability condition. B | pEpi[Copy(X)[~
, TCopy—1]] holds since for every sort s, B,TCOM(S) can be seen as an
epimorphism between A’ and A and therefore B satisfies Hom[X[~
s TCopy], Obs, In], Epihom[X[m¢copy], Obs, In] and also ~ —comp[X[~
, TCopy], Obs, In].

— A € Models(QGBSP) = A € Models(SP/ ~). Assume that A €
Models(QGBSP). By this proposition we know that there exists
a Signature(QQGBSP)-algebra B such that B € Models(QGBSP)
and B|y = A. By the definition of Models(QQGBSP) we have that
Blcopy(s)lcopy € Models(SP) and together with the definitions of
Indist_rel[Copy(X)[~], Copy(Obs), Copy(In)] and pEpi[Copy(X)[~
s TCopy—1]; Copy(Obs), Copy(In)] we have that A = Blcopy(s) |copy/wgbs’1".
Therefore, by the definition of Models(SP/Ngbs’In) we have that
A € Models(SP/~Q" ™).

Definition 2.40 The proof system NEB45L s inductively defined for the spe-
cific operators of the language as follows:

Rules(NEBA5L rename SP by o) = o(Rules(IIEB45L S p))
Symbols(ITEB45L rename SP by o) =
o' (Symbols(IEB45L S P)Y)

Cenv(MMEZASL ‘rename SP by o) =o"(Tenv(TEZ4SL S P))

Rules(IEB45L reach SP with (Sg,Fr)) = Rules(I1EB45L §p)
Symbols(I1EE45L reach SP with (Sg,Fr)) = Symbols(IEE45L Sp)
Fenv(Hﬁ%ﬁSL’reach SP with (Sg,Fr)) = Fenv(HfIgéSL7 SP)U

Reach_az[Signature(SP), (Sg, Fr)]
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Rules(TTEB45L behaviour SP wrt =)=

Copy" (Rules(TIEBASL g p))
Symbols(TIEBASL hehaviour SP wrt =)=

Copy" (Symbols(TIEBASLY SP) U S[~, Tcopy]
Tenv(MTEB4SL behaviour SP wrt =) =

Tenv(rename SP by Copy)U

Tenv(BSP[E[~, Tcopyl, Obs, In])

Rules(IE245L abstract SP by =)=

Rules(ITEBAST hehaviour SP/~ wrt =)

Symbols(TIEBASL abstract SP by =)=
Symbols(TIEBASL hehaviour SP/~ wrt =)
Cenv(TEBASL abstract SP by =)=

Penv(IEB1SL behaviour SP/~ wrt =)

Rules(TEBASL GP/ ~) = Copy” (Rules(TTEB45T S P))
Symbols(TIEBASL (SP/ a) =

Copy" (Symbol s(TTFE7°", SP)) U Copy(S)[~, Tcopy—1]
Penv(MEBASL SP/ aj) = Tenv(NEBASL rename SP by Copy)U

Tenv(BSP[Copy(X)[~, Tcopy—1], Copy(Obs), Copy(In)])

where ¥ is the signature of the argument specification SP for every case and
the overloaded function symbol o' is used here as the pushout of the following
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diagram:

Sym(TTEBASL gp) 7 pOy(i, o)
il |
E % EI
where i : 5« Sym(TIEBASL 'GP and it is also used as the renaming function
of environments and of the proof system TIEBASL(SPY which use the pushout
Just described , and the overloaded symbol Copy” is the pushout morphism of
the following diagram:

Copy” .
Sym(HgBa%SLaSP) — PO(i, Copy)

T om |

y—— " Copy(X)

where i : Y < Symbols(TTEB15L SPY and

Copy" (Symbols(IIfz31° L, SP)) N X[~, meopy] =

Copy" (%)

The symbol Copy" is also used as the renaming functions of environmnents and
of set of rules using the pushout morphism just described with the same name.

Theorem 2.41 The consequence relation Frrpass is sound.

Proof:
The proof is by induction of specification expression in a similar way as the
proof of soundness of angggg where the proofs for the cases of the behaviour

and quotient operator, theorem 2.42 is used.

Theorem 2.42 There is no sound and complete consequence relation of the

form }—Hgg;£SL fOT RBASL

Proof:
It follows in the same way as the incompleteness of Hggf}%]@

2.2 The normal form approach

In this subsection, we present the consequence relation ¢ paszn,z which re-
lates specification expressions SP € SPEX(BASLN) of an arbitrary but fixed
BASLnf specification language BASLN with a fixed but arbitrary behavioural
algebraic institution BAINS with signature ¥ € |AlgSig| and sentences
¢ € |Senparns(X)|.- The consequence relation is defined using a consequence
relation for the behavioural algebraic institution BAINS which we will refer to
as Fparns,s-

The consequence relation F, parnys,y is sound if Fgarng,y is sound and
Frnsx is sound and complete if Fp 47y, y is sound and complete.
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Definition 2.43 Assume that l_BAINS,EZ P(|S€nBAINS (E)|)x |Senparns (E)|
where BAINS is a behavioural algebraic institution and & € |AlgSig|. The
consequence relation byt pasins: SPEX(BASLN) x |Senparns(X)| where
BASLN is an arbitrary but ficed BASLnf specification language is defined as
follows:

SP FnpBasing ¢ & V¥ Fpainss ¢

where nf(SP) = <X, ¥ > |y.

Theorem 2.44 l_nf,BASLN,E is sound ifl_BAINS,E is sound and l_nf,BASLN,E
is sound and complete if Fparng,y is sound and complete.

3 Compositional proof systems

In this section we present the compositional proof system M545% for an ASLker

language which we will denote as SASL with a fixed but arbitrary algebraic in-
stitution ATNS. SASL includes just a renaming operator appart from the
common operators of ASLker languages and see [BCH] or [Hen97] for an ex-
tension of the compositional proof system to observability operators.

Definition 3.1 SASL is a ASLker language with additionally the following
operators:

Signature(rename SP by o) = X

Symbols(rename SP by o) = o'(Symbols(SP))

Models(rename SP by o) = { A€ Alg(X)|A|, € Models(SP) }

where o : Signature(SP) — X is a bijective signature morphism and o' is
the pushout morphism of the following diagram:

Sym(SP) - PO(i, )

Sign(SP) -~ D

where i is the inclusion i : Signature(SP) < Symbols(SP).

The proof system has just the sequent SP }_Hi?ffé ¢ where SP €
SPEX(SASL) and ¢ € Senarng(Signature(SP)) and uses the consequence
relation Frr,,vet P(|Senarns(E)|)x |Senarns(Signature(SP))| Tt is defined
by the following set of rules:

{ (basic;) <X, {d1,...,0n}> Frsasc o | ¢i € < 1yen b >} U
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SP Frngpge 61 oo SP Frgasz 6n {01,000, 0n) Frisgns ¢
{ (pi) SP Frsact 6 :

(suml)  SP 4z SP' Fusase 6,

SP' Frsase ¢
(sumr) SP +x SP’ "Hi?f,g ?,

SP l_HSASL ¢

AINS
¢ € Senarns(X)
(exzp)  SP|g Fpsasz ¢ ( ’

SP Fnsaze o' (9)

(ren) rename SP by o Fpsasc 6}

One can prove soundness of the proof system with respect to the satisfaction
relation between specifications and sentences and to prove completeness it is
needed to assume some properties of the arbitrary but fixed algebraic institution
and its associated consequence relation Fx i, . See [Cen94] for a proof for
the case of a first-order logic and [BCH] for a general proof using institutions.

4 Proof system for refinement

The proof system for the refinement of specifications of the BAS Lker specifica-
tion language RBASL presented in previous section with a fixed but arbitrary
algebraic institution ATNS (TTFPA2L2>) has just the sequent SP 3> SPI

for any specification expressions SP,SPI € SPEX(RBASL) and uses the

following definition:

Definition 4.1 Let ASL be an ASLker specification language with an arbitrary
but fized algebraic institution AINS. Assume that SP,SP' € SPEX(ASL).
SP is a persistent extension of SP' (denoted by PEXTOF(SP,SP')) if the

following condition holds:
e There exists an inclusion with arity Signature(SP') < Signature(SP)
o Models(SP') = Models(SP)|signature(sP)-
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This proof system is inductively defined by the abstract specification expres-
sion as follows:

(basicss) <Y 3>> SPI Signature(SPI) = ¥ A (SPI E @)

SP’" >» rename 1
SP >» rename SPl|ini(signature(sp)) by inlsig™

(sumss) SP +5 SP' > SPI

SPI|inr(signature(spry) by inrsig”
1

SP 3 SPI' . _ ,
(ezports)  SPls s pPT wnaturc(SPI) = X A PEXTOF(SPI',SPI)

SP >» SPI
Mod(SPI
(reachss) reach SP with (Sr,Fr) > SPI od(SPI) E (Sr,Fr)

SP > rename SPI by o1
(renamess,) rename SP by o >» SPI

SP > SPI/~
(behaviourss, ) behaviour SP wrt =~ SPI

behaviour SP wrt ~>3>» SPI

(abstractss,) abstract SP by =>» SPI Behe(SP)
SP >» SpPI
_ = d(SP,SPI,SPI'
(quotientss,) SP/ ~>> SPI Cond(SP, SPI, SPT)

where

Cond(SP,SPI,SPI') = (Signature(SPI) = Signature(SP) A
Mod(SPI'/ ~) = Mod(SPI))

~

Behc(SP) = Models(SP) C Models(behaviour SP wrt =)

and

inl : Signature(SP) — Signature(SP) +yx Signature(SP')

and

inr : Signature(SP') — Signature(SP) +x Signature(SP')
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are the pushouts morphismsof i : ¥ < Signature(SP) and i’ : ¥ < Signature(SP’),
inl(Signature(SP)), inr(Signature(SP’)) are the obvious subsignatures of Signature(SP)+yx
Signature(SP') and inlsign : Signature(SP) — inl(Signature(SP)) and inrsign :
Signature(SP') — inr(Signature(SP’)) are the obvious signature morphisms

defined with the pushouts morphisms inl and inr. The proof of the following

theorem can be found in [BCH] and in [Hen97].

Theorem 4.2 For any specification expressions SP,SPI € SPEX(RBASL),

SP ~ SPI if and only of if there exists a derivation of the sequent SP >
SPI in AH??&AEQL»(SP > SPI)
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