Chapter6:Adequate
encodings of proof systems

for ASL

1 Introduction

In this chapter, we present the encodings of two more interesting proof systems
presented in the previous chapter and in the appendix you can find the complete
encoding of the proof system for higher-order logic. In this chapter, first we ex-
plain how to encode the finitary versions of the non-compositional proof systems
for ASL inductively defined by specification expressions and finally, we present
a full encoding for the proof system for refinement of ASL specifications.

All the previous encodings which we have presented so far are adequate
(including the ones of the appendix), in the sense that there exists a bijection
between the closed derivations of a concrete judgement of the proof systems
and the inhabitants of the application of the judgement to the inductive relation
which encodes the proof systems, but the second presented in this chapter is just
full in the sense that there exists a total injection €,.; between the derivations
of a concrete refinement judgement (SP >3» SPI) and the application of
this judgement to the inductive relation which encodes the proof system for
refinement. Another interesting property of €, is that there exists a function
6;51], which satisfies the following condition

Vé € Aﬂﬁ?I\A}gL»(SP > SPI) E_e]f (E,-ef (5) =4

This last encoding is not adequate because we use proof obligations with proof
text to encode the side conditions of the proof system which are difficult to
encode in type theory either because we can not find a syntactic characterization
of the side condition or because the syntactic proofs of the side conditions are
tedious or complicated.

2 Adequate encoding of TTHE75L

The encoding of the non-compositional proof system ng’gi‘“ is based on the
proof system for higher-order logic presented in the appendix. Here, we just
present the general lines to develop the adequate encoding.

The main difficulty is the calculation of the symbols of the signature asso-
ciated to a proof system of a given specification expression. In order to give an
effective procedure to calculate the different pushouts which appear in the defi-
nitions, the encoded signature is extended with symbol indexes which are used
to solve the name clashes in specification expressions with, for example, the sum
operator or the rename and export operator. We have to differentiate between
the new symbols introduced twice by a sum operator SP; +x SP» which don’t
belong to the common signature ¥ and we have to differentiate between the
hidden symbols of a specification expression of the form SP|y with the visible
symbols with the same name after applying a renaming to SP|x. Additionally,
for the behavioural operators we have to proceed in a similar way as in the
rename operator to control the name clashes generated by the disjoint copy of
the signature of the specification which is required.

The encoded signature is calculated with the function €gym which given a
specification expression and a symbol index returns the signature (with symbol
indexes associated to sorts and operations) associated to the proof system of
the given specification expression.

First, we define signatures with indexes and then we define the function
€sym- For simplicity and without loss of expressive power, we will assume a
predefined total ordering between the sorts and operations of a given signature.
This will avoid us to use quotient types by a permutation relation to represent
signatures which are a little bit cumbersome and not really necessary for these
encodings.

Definition 2.1 For any ¥ € |AlgSig|, the inductive relation Sorts is induc-
tively defined by the following set of constructors:

{s_Srts: Sorts | s € Sorts(X)}

Remark: We assume predefined the equality function Eqbool_Srts : Sorts —
Sorts — Bool

Definition 2.2 For any X € |AlgSig|, the inductive relation Ops is inductively
defined by the following set of constructors:

{fOps:0ps| f:s1X...X58, = s€X and f is not overloaded in L}U
{fs1_..._5,_5.Ops: Ops |

fis1X...X 8, = s €Y and fis overloaded in ¥}

Remark: We assume predefined the equality function Eqbool_Ops : Ops —
Ops — Bool section.

Definition 2.3 The type Sym_index is defined as Var_index.

Remark: We assume predefined the function mazind_Si : Sym_index —
Sym_index — Sym_index which given two indexes returns the mazimum of the
two.

Definition 2.4 The type Ind_sorts is defined as (Pair Sorts Sort_index).
Definition 2.5 The type Ind_ops is defined as (Pair Ops Op_index).

Definition 2.6 The type of signatures with indexes is defined as
Signature = (Pair (List Ind_sorts)(List Ind_ops))

We assume predefined the following functions and inductive relations:

e the function Ltbool_Srts : Ind_sorts — Ind_sorts — Bool which given
two indexed sorts sy, s returns true if sy is lower than sy and false other-
wise.

e the function Ltbool_Ops : Ind_ops — Ind_ops — Bool and the func-
tions Fqbool_Isrts : Ind_sorts — Ind_sorts — Bool and FEgbool_Tops :
Ind_ops — Ind_ops — Bool.

e the functions sort_sl : List Ind_sorts — List Ind_Sorts which given a list
of indexed sorts, sorts the given list eliminating repeated elements and
analogously sort_opl : List Ind_ops — List Ind_ops. See [McK92] for a
verified algorithm for sorting in UI'T' using primitive recursion.

e the inductive relations Sorted_sl : List Ind_sorts — Prop and Sorted_opl :
List Ind_ops — Prop which check that the lists are sorted.

The well-formedness of indexed signatures is checked with the following in-
ductive relation

Definition 2.7 The inductive relation
W fsignature : Tsign : Signature. Prop
is defined by the following constructors:
wfsign_c: 1lsl : List Ind_sorts.Ilopl : List Ind_ops.

MMnrsl : Norep_list Ind_sorts Eqbool_Isrts sl.

IInropl : Noreplist Ind_ops Eqbool_Iops opl.

[Issl : Sorted sl.1lsopl : Sorted opl.

W fsignature (sl, opl)

Definition 2.8 The encoding function €y, which given a symbol index and a
specification expression returns a pair the signature with indexes associated to

the proof system of the specification expression together with the highest index
used is inductively defined as follows:

€sym (ind, < T, ® >) = mkpair (esymist (ind, Sorts(X)), €symopt (ind, Ops(X)) ind
where
€symisi (ind, []) = (nil Ind_sorts)
€symisi(ind, cons s sl) = (cons Ind_sorts (mkpair s_Stts ind) (€;ymis (ind, sl)))
€symopl (ind,[]) = nil ops
€symopl (ind, cons op : s1 X ... X sp = sopl) =
(cons (mkpair (op_Ops ind)
(€symopt (ind, opl))) , if op not overloaded in ¥

(cons (mkpair (op_si-..._sp_s_Ops ind)

(€symopt (ind, opl))) , if op overloaded in X

€sym (ind, SP 4% SP2) =
mkpair((riny (SP1, X, SP2) U rine (SP1, X, SP,))) (next Vi (mazim_Si indy inds))
where

mkpair indsymspy indy = €,y (ind, SPy)

mkpair indsymspy indy = €,y (ind, SPy)

nameclashset = {symb | symb € Symbols(SP;),
symb, € Symbols(SPy),symb ¢ X}
Pini (SP1, 2, SPy) = {(symb, next_Vi (maxind_Si indy inds)) |

symb € nameclashset }U

{(symb, ind) |(symb, ind) € indsymsp,, symb ¢ nameclashset}

Pine (SP1, X, SPy) = {(symb, ind) | (symb, ind) € indsymsp, }

€sym (ind, SPi|x) = €;ym (ind, SP)

€sym (ind,rename SP by o) =

mkpair ((ron (SP,c)) U {(symb,ind) | symb € L})(next_Vi ind;)

where

mkpair indsymspy indy = €;ym (ind, SP)

nameclashset = {symb | symb € Symbols(SP),symb ¢ Signature(SP)
symb € X}

ron(SP,X) = {(symb, next_Viind;) | symb € nameclashset}U
{(symb,ind’) | (symb,ind’) € indsymsp,

symb ¢ nameclashset, symb ¢ Signature(SP)}

where o : Signature(SP) — X
€sym (ind,reach SP with (Sr,Fr)) = €ym (ind, SP)

€sym (ind,behaviour SP wrt =) = mkpair ((rcopy(SP, Copy))U
{(symb, ind) | symb € Copy(Signature(SP))}) (next Vi indy)

where

mkpair indsymsp, indy = €;ym (ind, SP)

nameclashset = {symb | symb € Symbols(SP),symb ¢ Signature(SP),
symb € Copy(Signature(SP)) }

Tcopy (SP, L) = {(symb,next_Viind) | symb € nameclashset}U
{(symb,ind") | (symb,ind') € indsymspi, symb ¢ nameclashset,
{(ms_-Ops, (next_Viindy)) | s € Sorts(Signature(SP))}U

{(~s -Ops,next _Viindy) | s € Sorts(Signature(SP))}

€sym (ind,abstract SP by =) = ¢,ym (ind,behaviour SP/~ wrt =)

€sym (ind, SP/ ~) = mkpair ((rcopyr—1(indi, SP, Copy))U
{(symb, ind) | symb € Copy(Signature(SP))}) (next_Viind;)
where
mkpair indsymspy indi = €;ym (ind, SP)
nameclashset = {symb | symb € Symbols(SP),symb ¢ Signature(SP)
,symb € Copy(Signature(SP)) }
Pcopy'—1(SP,X) = {(symb,next_Viind,) | symb € nameclashset}U
{(symb,ind') | (symb, ind') € indsymsp1,
symb ¢ nameclashset }U
{(75_Ops, (next Viindy)) | s € Sorts(Signature(SP))}U

{(~s Ops,next Viindy) | s € Sorts(Signature(SP))}

The rest of the encoding of the proof system is very similar to the encoding
of higher-order logic, with the additional task to encode for each specification
expression the specific assumptions which are defined by the function Tenwv.

For example, the encoding of the proof system for a specification expres-
sion of the form SP; +y5 SP; would consist of the encoding of the rules of the
proof system of higher-order logic for formulas with the symbols of SP; and for
formulas with the symbols of SP, (both appropriately indexed via the previ-
ous function) and the encoding of the assumptions would be the encoding of
the assumptions associated to SP; together with the ones associated to SPs
appropiately renamed to the symbols with indexes of the proof system.

3 Encoding of the proof system for refinement

In this section, we present the full encoding of the following proof system for
refinement of ASL presented in previous chapter. We explicit the set of free
variables and well-formedness conditions in order to be able to give an adequate
encoding of the proof system:

(basicss,)

(sumss)

(exportss.)

(reachss,)

. .
<%, 0> >x SPI Signature(SPI) A (SPI £ ®)

Sp’ > x rename SPI|inr(5ignature(SP’)) by inrsz’g_l

SP >>>X rename SPI|inl(5ignaturE(5P)) by inlSig_l
SP +x SP' >»x SPI

X p» SPI’
SP >>x SpPr

SP|s >x SPI

Signature(SPI) = ¥ AN PEXTOF(SPI',SPI)

SP >»x SPI
reach SP with (Sr,Fr) >>»x SPI

Mod(SPI) = (Sr,Fr)

SP >»x rename SPI by o7!
(renamess,) rename SP by o >>»x SPI

SP >x SPI/N
(behaviourss,) behaviour SP wrt =~ >»x SPI

behaviour SP wrt =~ >»x SPI

(abstractss,) abstract SP by =>»x SPI Behc(SP)
X p» SPI
SP >»x SPI'
d(SP,SPI, SPI'
(quotientss,) SP/~>>x SPI Cond(SP,SPI,SPI")

First, we give adequate encodings of well-formed specification expressions
and after that we give the encoding of the proof system for refinement. The
sentences of well-formed specifications will be the higher-order terms of type
Prop presented in the appendix but this is quite irrellevant for the presentation.

Definition 3.1 The set of well-formed specifications closed by a set of free vari-
ables X (denoted as X w» SP) is inductively defined by the following rules:

{X » ¢: Prop}
Xpr<X, o>

(basic_wfs)

X » SPL X p» SP,; . .
X » SP 15 5P, Y C Sign(SP1) A X C Sign(SP) (sum_wfs)

% Y CSP (exportwfs)
X » SP

o 5
X » rename SP by JBZJ(Szgn(SP), ,0) (rename_wfs)

X p» SP
X » reach SP with (Sr,Fr)

(Swr, Fr) C Sign(SP) (reach_wfs)

X > behav)i(ou_:‘ SSI,JP . In,Obs C Sign(SP) (behaviour_wfs)

X » SP
X p abstract SP by

— In,0bs C Sign(SP) (abstract_wfs)

% In, Obs C Sign(SP) (quotient_wfs)
where Bij(Signature(SP), %,) stands for the following condition:
Bij(Signature(SP),E,0) = (Dom(c) = Sign(SP))A

Vs, s' € Sorts(Sign(SP)).o(s) = o(s)) D s =5 A

Vs € Sorts(X).3s’ € Sorts(Sign(SP)).o(s') = s

Yop:si X...X s, = s € Ops(Sign(SP)).Nop' : s§ x ... x s, = s' € Ops(Sign(SP)).
olop:si X...X s, >s) = olop’ :s) x...xsl, =) D
opisiX...Xsp—=>s8) = opfishx...xs, =5

Yop:si X...x s, > s€O0ps(X).Top' 18] x...x s/, =5 € Ops(Sign(SP)).
olop' sy x...xs, =>s) = oprsy X...x8, 28

Definition 3.2 The type signature morphism is defined as follows:

Signature_morphism = Pair Signature

(Pair (List (Pair Ind_sorts Ind_sorts)) (List (Pair Ind_ops Ind_ops)))

Remark: The first component of type Signature is the domain signature of the
signature morphism.

In appendix G, one can find the following operations on signature morphisms:

e get_dom_sm : Signature_morphism — Signature which given a signature
morphism, returns the domain of the signature morphism.

e get_ran_sm : Signature_morphism — Signature which given a signature
morphism, returns the range of the signature morphism.

e inverse_sm : Signature_morphism — Signature_morphism which given
a signature morphism, returns the inverse of the signature morphism.

Definition 3.3 The inductive type Specification is defined by the following set
of constructors:

10

base_spec : Signature — (List Holterm) — Specification
sum_spec : Specification — Signature — Specification — Specification

ezxport_spec : Speci fication — Signature — Specification

rename_spec : Specification — Signature_morphism — Specification
reach_spec : Specification — Signature — Specification
behaviour _spec : Specification — (List Ind_sorts) — (List Ind_sorts)

— Specification

abstract _spec : Specification — (List Ind_sorts) — (List Ind_sorts)
— Specification
quotient _spec : Specification — (List Ind_sorts) — (List Ind_sorts)

— Specification

In appendix G, you can find the following operations on signatures and
specification expressions:

o new_ndex : Signature — Sym_indexr — Signature which given a sig-
nature and a symbol index assigns the symbol index to all the sorts and
operations of the signature.

e union_Sign : Signature — Signature — Signature which given two
signatures, returns the union of the two signatures.

e intersect_Sign : Signature — Signature — Signature which given two
signatures, returns the intersection of the two signatures.

o dif f_Sign : Signature — Signature — Signature which given two sig-
natures, returns the difference of the first by the second signature.

o nameclash_sign : Signature — Signature — Signature — Signature
which given three signatures returns the signature which is the intersection
of the first and third and has no symbols of the second.

o Signature_sp : Specification — Signature which given a specification
expression, returns the signature of the specification.

11

And in the same appendix, we present the following inductive relations which
are useful for the definition of the inductive relation which represents well-
formed specifications:

e Same_signature : llsign, sign’ : Signature.Prop which given two signa-
tures checks whether they are the same.

o Subsignature : Tsign, sign’ : Signature. Prop which given two subsigna-
tures, checks whether the first is subsignature of the second.

o Subsorts : sl : List Ind_sorts.sign’ : Signature.Prop which given a list
of sorts and a signature checks whether the list of sorts is included in the
sorts of the signature.

e Bijective : Ilsign : Signature.llsignm : Signature_morphism.Prop which
given a signature and a signature morphism, checks whether the domain
of the signature morphism is tha same as the given signature and the
signature morphism is bijective.

The following definition represents well-formed specifications:
Definition 3.4 The inductive relation
W fspec : Tlvs : Var_set. Ilsp : Speci fication. Prop

is defined by the following set of constructors:

base_wfsp : lvs : Holvar_set.Ilsign : Signature.

[Thtl : Holterm list.llwfs : W fsignature sign.

Mw fhtl : W fhtermlist vs htl.W fspec (base_spec sign htl)
sum_wfsp: Tvs : Holvar_set.Ilsp : Speci fication.Ilsign : Signature.

Msp’ : Specification.Mw fsign : W fsignature sign.

Msubsp : Subsignature sign (Signature_sp sp).

Msubsp’ : Subsignature sign (Signature_sp sp').

Mwfsp: W fspec vs sp.llwfsp’ : W fspec vs sp'.

W fspec vs (sum_spec sp sign sp')

12

export_wfsp : TMvs : Holvar_set.Tlsp : Speci fication.Ilsign : Signature.
Mw fsign : W fsignature sign.Tlw fsp : W fspeci fication vs sp.
Isubs : Subsignature sign (Signature_sp sp).
W fspecification vs (export_spec sp sign)
rename_w fsp : [lvs : Holvar_set.Ilsp : Speci fication.
Msignm : Signature_morphism.Ilbij : Bijective (Signature_sp sp) signm.

Mwfsp : W fspecification vs sp.W fspeci fication vs (rename_spec sp signm)

reach_wfsp : Mlvs : Holvar_set.Ilsp : Speci fication.Ilsign : Signature.
Mwfsp : W fspecification vs sp.Ilsubs : Subsignature sign (Signature_sp sp).
W fspecification vs (reach_spec sp sign)

behaviour_w fsp : Tlvs : Holvar_set.Isp : Specification.T1Obs, I'n : (List Ind_sorts).
Mwfsp: W fspecification vs sp.
Tsubs : Subsort In (Signature_sp sp).Isubs : Subsort Obs (Signature_sp sp).

W fspecification vs (behaviour_spec sp sign)

abstract wfsp : Tlvs : Holvar _set.Tlsp : Specification.TIObs, In : (List Ind_sorts).
Mwfsp : W fspecification vs sp.
Tsubs : Subsort In (Signature_sp sp).Tsubs : Subsort Obs (Signature_sp sp).
W fspecification vs (abstract_spec sp sign)

quotient_w fsp : Mvs : Holvar_set.Ilsp : Specification.T1Obs, In : (List Ind_sorts).
Mwfsp : W fspecification vs sp.
Isubs : Subsort In (Signature_sp sp).Ilsubs : Subsort Obs (Signature_sp sp).

W fspecification vs (quotient_spec sp sign)

13

For the definition of the proof system for refinement we need the resulting
signatures after applying a pushout morphism (inl,inr) to the signatures of the
left and right specification expressions of a sum operator respectively. Apart
from these two definitions, we need also the definitions of the pushout morphisms
associated to the three signatures of a sum operator. These definitions are also
in the appendix and they have the following names and arities:

e inl_sums : Specification — Signature — Specification — Signature
e inr_sums : Specification — Signature — Specification — Signature

e inlsm_sums : Specification — Signature — Specification —
Signature_morphism

e inrsm_sums : Specification — Signature — Specification —
Signature_morphism

Now, we start the encoding of the proof system for refinement presented in

last chapter. First, we define the inductive relations which represent the proof
obligations of the proof system.

Definition 3.5 The type Proof_symbol is defined as Var_smbol.
Definition 3.6 The type Proof_text is defined as Ne list Proof _text.
Definition 3.7 The inductive relation

Basic_po : llsp : Speci fication I1ht : Holterm.Ilpt : Proof text.Prop

is defined by the following constructors:
basicpo_c : Tlsp : Speci fication I1ht : List Holterm.Ilpt : Proof text.
Basic_po sp ht pt
Definition 3.8 The inductive relation
Pezxt_po : Tlsp, sp’ : Specification.Tipt : Proof text.Prop
is defined by the following constructors:
pextpo_c : Msp, sp’ : SpecificationTlpt : Proof text.

Pext_po sp sp’ pt

14

Definition 3.9 The inductive relation
Reach_po : Tsp : Speci fication.Ilrsign : Signature Ilpt : Proof text.Prop
is defined by the following constructors:
reachpo_c : llsp : Speci fication Ilrsign : Signature.llpt : Proof text.
Reach_po sp rsign pt
Definition 3.10 The inductive relation
Behcomp_po : Tlsp : Specification.Ilpt : Proof text.Prop
is defined by the following constructors:
behcomp_c : llsp : Specification.llpt : Proof text.

Behcomp_po sp pt

Definition 3.11 The inductive relation

Qmodeq_po : Tlsp, sp’ : Speci fication.TIpt : Proof _text. Prop
is defined by the following constructors:

gmodeqgpo_c : llsp, sp’ : Specification.llpt : Proof text.

gmodeq_po sp sp’ pt

And finally, we define the inductive relation which represents the proof sys-
tem for refinement and we present the theorem which establishes the adequacy
of the representation.

Definition 3.12 The inductive relation
RefineRBASLHOL : lsp : Specification.llvs : Holvar _set.Ilsp’ : Specification.Prop

is defined by the following set of constructors:
basic_ref : Tlvs : Holvar_set.Tlsign : Signature.IThtl : List Holterm.
Isp : Specification.Ilpt : Proof text.

IIsames : Same_signature sign (Signature_sp sp).Ilbpo : Basic_po sp htl pt.

RefineRBASLHOL (base_spec sign htl) vs sp

15

sum_ref : Tlsp, sp’, spi : Specification.Tsign : Signature.llvs : Holvar_set.
Mrefsp : RefineRBASLHOL sp vs
(rename_spec (export _spec spi (inl_sums sp sign sp'))
(inverse(inlsm_sums sp sign sp')).
Mrefsp’ : RefineRBASLHOL sp' vs
(rename_spec (export_spec spi (inr_sums sp sign sp'))
(inverse(inrsm_sums sp sign sp')).

RefineRBASLHOL (sum_spec sp sign sp') vs spi

ren_ref : Tlvs : Holvar_set.Ilsp, spi : Specification.Ilsm : Signature_morphism.
Mrefsp: RefineRBASLHOL sp vs (rename_spec spi (inverse_sm sm)).

RefineRBASLHOL (rename_spec spi sm) vs sp

exp_ref : Tlvs : Holvar_set.Ilsp, spi, spi’ : Speci fication.
MMsign : Signature.llpt : Proof text
Mwfsp' : W fspecification vs spi’.
Msames : Samesignature sign (Signature_sp spi).Ilbpo : Pextof_po spi’ spi pt
Mrefsp : RefineRBASLHOL sp vs spi’.

RefineRBASLHOL (export_spec sp sign) vs spi

16

ref _reach : Mlvs : Holvar_set.Ilsp, spi : Speci fication.
Msign : Signature.Tlpt : Proof _text.
[Mreachpo : Reach_po sp sign pt.
Mrefr: RefineRBASLHOL sp vs spi

RefineRBASLHOL (reach_spec sp sign) vs spi

ref _behaviour : Tvs : Holvar_set.Ilsp, spi : Specification.Ilsl, sl : List Ind_sorts.
Mrefr: RefineRBASLHOL sp vs (quotient _spec spi sl sl')

RefineRBASLHOL (behaviour_spec sp sl sl') vs spi

ref _abstract : Mlvs : Holvar_set.Ilsp, spi : Speci fication.
Isl, sl : List Ind_sorts.llpt : Proof text
Trefr : RefineRBASLHOL (behaviour_spec sp sl sl') vs spi
Tbehpo : Behcomp_po sp pt.

RefineRBASLHOL (abstract_spec sp sl sl') vs spi

ref _quotient : Tlvs : Holvar_set.Ilsp, spi, spi’ : Speci fication.
Isl, s’ : List Ind_sorts.lpt : Proof _text
Tw fspi’ : W fspecification vs spi’.
Tlrefr : RefineRBASLHOL sp vs spi'.
Mlsams : Same_signature (Signature_sp sp) (Signature_sp spi).
TThehpo : Qmodeq_po spi spi’ pt.

RefineRBASLHOL (quotient_spec sp sl sl') vs spi

17

Assuming predefined the following encoding and decoding functions on well-
formed specification:

€sp : Holvar_set — SPEX(RBASL) — Specification

es_pl : Holvar_set — Specification — SPEX(RBASL)

we can prove the following theorem:

Theorem 3.13 For any sequence of variables X, for any specification expres-
sion sp,sp’ € SPEX(ASL) such that X » sp and X » sp’, there exists a total
injective function €.y between closed derivations of the judgement sp > sp’
and the inhabitants of the inductive relation

RefineRBASLHOL (e5p (€45 X) sp) (evs X) (€sp (€us X) sp).

There exists also an injective function er_elf such that for all derivations § of
the judgement sp >>x sp’, €rep—1 (€rep 6) = 6

Proof:
The proof is similar to the ones presented for the proof systems for higher-order
logic but obviously a little bit simpler and the definition of the function er_ﬁlf is
performed in the same way as in the proof systems for higher-order logic.

18

References

[McK92] James Hugh McKinna. Deliverables: A Categorical Approach to Pro-
gram Development in Type Theory. PhD thesis, University of Edin-
burgh, November 1992.

19

