Chapter7:Conclusions and
future work



1 Conclusions

In this thesis, we have introduced the notion of algebraic design framework and
after that, we have chosen a kernel one (ASL with refinement) to present an
implementation strategy of such a framework reusing the current technology of
therem provers for type theories with inductive and dependent types.

First, we have presented a new principle of encoding in an expressive type
theory U'T'T with a higher-order intuitionistic logic and inductive and dependent
types. We have shown that the new principle of encoding improves the one of LF
and we have presented several examples of encoding of logical systems including
one which is not possible to develop in LF.

Next, we have presented the ASL framework with refinement generalizing the
semantics of the behavioural operators in an algebraic institution with arbitrary
partial congruences and equivalence relations between algebras. We have also
defined the notion of behavioural algebraic institution in order to define the
normal form of the behavioural operators and to relate the generalised semantics
with an alternative semantics presented in [HS96] for higher-order logic.

After that, we have presented some of the proof systems presented in [HWB97]
and [Hen97] for the deduction of properties from ASL specifications and for the
refinement of ASL specifications. We have redesigned a certain kind of non-
structured proof systems, the ones that were inductively defined by specification
expressions adding specific extra rules and axioms for each case, since it was
not possible to give an adequate encoding in UTT because originally they were
infinitary proof systems. We have presented them as finitary proof systems with
first-order and higher-order logic with a concrete observational equality.

Finally, we have presented the encoding of some of the proof systems for
deduction and refinement in UTT. Most of the encodings are adequate, in the
sense that there exists a bijection between the derivations of the encoded proof
systems and the normal forms of the inhabitants of the inductive relations which
represent the proof systems. One exception is the proof system for refinement
because proof obligations to represent side-conditions are used.

As we have mentioned several times in this thesis, the main goal of this work
is to reuse current and future technology of theorem provers of expressive type
theories to develop theorem provers for algebraic design frameworks. Today, we
have the following proof support from the current proof checker of UTT [LP92]:

e Type inference. Given a term of the type theory, the system calculates
the principal type of the term.

e Refinement of proofs. The basic idea of refinement of proofs is to prove
a goal with the conclusion of a theorem which is already proved. In the
case of the Lego proof assistant the procedure is as follows:

— If the theorem and the goal unifies, the goal is proved.

— If not, if the theorem is a TT-abstraction, subgoals with the type of the
arguments of the theorem are generated till the resulting theorem,



after applying the proofs of the subgoals (represented as metavari-
ables) to the original theorem, is unifiable with the original goal. See
Lego’s manual ([LP92]) for examples.

— Otherwise the refinement fails.

e Assistance in inductive reasoning. The main assistance of this issue is the
automatic generation of the inductive principles and computational rules
associated to an inductive type from the formation and introduction rules
which defines the inductive type.

e Inversion tactics. These tactics consists basically of searching a proof of
a goal which is an application of an inductive relation to a whole list of
correct arguments. The searching procedures is to prove all the premises
of the constructors which succesfully refine the current goal. See [McB]
for details.

2 Future work

Some possible improvements of the presented framework which in most of the
cases can also be applied to CASL are the following:

e Include functional and object-oriented programming languages in these
frameworks. We consider the functional paradigm easier to begin with
and we think that the work of Aspinall in ASL + ([SST92], [Asp97]) is a
good start. On the other hand, we think that further research is needed
in developing proof systems for verification of functional programs and
in adding new features to the functional programming language like for
example laziness or control operators.

e Make more flexible the notion of refinement of the framework presented in
this thesis in a way that the signature of the abstract and refined specifi-
cation do not have to coincide, and introduce in the resulting frameworks
higher-order parameterisation and modular facilities.

e Develop medium-size case studies like for example in the design of critical
parts of compiler design or global computation.



References

[Asp97]

[Hen97]

[F1S96]

[HWB97]

[LP92]

[McB]

[SST92]

David Aspinall. Type Systems for Modular Programs and Specifica-
tions. PhD thesis, University of Edinburgh, 1997.

Rolf Hennicker. Structured Specifications with Behavioural Operators:
Semantics, Proof Methods and Applications. Habilitationsschrift,
Institut fir Informatik, Ludwig-Maximilians-Universitat Miinchen,

June 1997.

Martin Hofmann and Donald Sannella. On behavioural abstraction
and behavioural satisfaction in higher-order logic. Theoretical Com-

puter Science, 167:3-45, 1996.

Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems
for structured specifications with observability operators. Theoretical
Computer Science, 173, February 1997.

Zhaohui Luo and Randy Pollack. LEGO proof development system:
User’s manual. Report ECS-LFCS-92-211, Department of Computer
Science, University of Edinburgh, May 1992.

Conor McBride. Inverting inductively defined relations in LEGO. To
appear in TYPES96.

Donald Sanella, Stefan Sokolowski, and Andrzej Tarlecki. Toward
formal development of programs from algebraic specifications: pa-

rameterisation revisited. ECS-LFCS-92-222, July 1992.



