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Caminante, son tus huellas
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y al volver la vista atrás
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In the last decade recurrent neural networks have revolutionized the field
of artificial intelligence. Their cyclic connections provide them with mem-
ory and thus with the capability of modeling processes with temporal con-
text. Echo-state networks are a framework for recurrent neural networks
that enormously simplifies their design and training. In this thesis we ex-
plore the capabilities of echo-state networks and their application in EEG
feature extraction and classification problems. In a first study, we proved
that such networks are capable of detecting generalized synchronization
changes between two chaotic time-series. In a second study, we used echo-
state networks to characterize the non-stationary nature of what has been
considered so far to be a stationary brain response, namely steady-state
visual evoked potentials (SSVEPs). Finally, in a third study, we success-
fully proposed a novel biomarker for attention deficit hyperactivity dis-
order (ADHD), which is capable of quantifying EEG dynamical changes
between low and normal attention-arousal conditions. The results pre-
sented here demonstrate the excellent non-stationary detection capabilities
of these networks, and their applicability to electrophysiological data anal-
ysis.
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Resumen
En la última decada las redes neuronales recurrentes han revolucionado el
campo de la inteligencia artificial. Sus conexiones cíclicas les proporcio-
nan memoria y por tanto la capacidad de modelar problemas con contexto
temporal. Las redes echo-state simplifican enormemente el diseño y en-
trenamiento de las redes recurrentes. En esta tesis exploramos el uso de
redes echo-state y su aplicación en problemas de clasificación y detección
de patrones en señales EEG. En un primer estudio demostramos que son
capaces de detectar cambios de sincronización generalizada entre dos se-
ries temporales caóticas. En un segundo utilizamos redes echo-state para
caracterizar la no estacionaridad de un fenómeno considerado de estado
estable, potenciales visuales evocados steady-sate (SSVEP). Finalmente en
un tercer estudio proponemos un nuevo biomarcardor para TDAH capaz
de cuantificar cambios en la dinámica de la señal EEG entre condiciones ba-
jas y normales de excitación. Los resultados aquí presentados demuestran
la excelente capacidad de detección de patrones no estacionarios de estas
redes, así como su aplicabilidad en el análisis de datos electrofisiológicos.

Resum
En l’última dècada les xarxes neuronals recurrents han revolucionat el camp
de la intel·ligència artificial. Llurs connexions cícliques els proporcionen
memòria i, per tant, la capacitat de modelar problemes amb context tem-
poral. Les xarxes echo-state simplifiquen enormement el disseny i entre-
nament de les xarxes recurrents. En aquesta tesi explorem l’ús de xarxes
echo-state i la seva aplicació en problemes de classificació i reconeixement
de patrons en senyals d’EEG. En un primer estudi demostrem que són ca-
paços de detectar canvis de sincronització generalitzada entre dues sèries
temporals caòtiques. En un segon, emprem xarxes echo-state per caracter-
itzar la part no estacionària d’un fenomen considerat estable fins ara, els
anomenats potencials visual evocats d’estat estable (SSVEP - acrònim en
anglès). Finalment, en un tercer estudi, proposem un nou marcardor per
al TDAH que permet quantificar els canvis en la dinàmica del senyal EEG
entre condicions baixes i normals d’activació. Els resultats aquí presentats
demostren l’excel·lent capacitat de detecció dels processos no estacionaris
de les xarxesecho-state així com la seva aplicabilitat en l’anàlisi de dades
electrofisiològiques.
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Preface
The idea of doing a PhD started in 2008 while pursuing my master's the-
sis at Philips Research. It was there, and accidentally, that I first discovered
computational neuroscience and scientific research. There was some magic
in simply putting a wired cap on someone's head and starting to look at
the electricity produced by their brain. The best part was to confront these
dirty and noisy signals and extract information out of them. There was
no manual, all that was needed was patience, hard work, a lot of reading
and a bit of imagination. Six years later, and with other professional experi-
ences in between, I finally decided to enroll the thesis work presented here.

When looking at a temporal EEG series, one immediately realizes that
the brain is not steady-state, nor stationary. Nature is dynamic and so is
the brain. The brain is chaos, complexity, coupling and decoupling, noise,
synchronicity, fluctuations, and interactions. Stationary analysis of neural
time-series, such as rhythmic band power monitoring, is still largely em-
ployed in computational neuroscience. However, the nature of the brain
advocates for the use of non-stationary techniques capable of detecting
richer signal dynamics.

Recurrent neural networks incorporate feedback connections or loops, which
allows them to encode temporal information and converts them into a
dynamical system. In this thesis I investigate the use of recurrent neu-
ral networks, in their echo-state form, for the dynamical characterization
and classification of neural time-series. I hope with this work to have con-
tributed my bit to the development of this field.
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1 Introduction

1.1 Motivation and General Goals

We are currently witnessing the machine and deep learning revolution.
The artificial intelligence era has brought us face and speech recognition,
self-driving cars, conversations with Siri, Alexa and Cortana, and online
search algorithms that have changed the way we interact with the world.
It has already transformed fields such as healthcare, economics, market-
ing, security and communication. Its success comes from the fact that ma-
chine learning algorithms do not need to be explicitly programmed, they
are fed with data and automatically adapt their parameters, based on the
information provided. One of the most popular machine learning mod-
els are neural networks. They are biologically inspired by brain function
and consist of a finite network of interconnected artificial neurons. Neural
networks are not new, in the late 1950s MADALINE was the first neural
network applied to a real-world problem [1], however, their use remained
limited for decades. A renaissance started in 1980s with the application of
the backpropagation algorithm to neural networks training [2]. Recent ad-
vances in computer processing capabilities and parallelization, network ar-
chitectures, learning algorithms and data availability have unleashed their
potential and led to their widespread use. A particularly interesting appli-
cation of neural networks is in the understanding of the brain itself [3][4].

The brain is a dynamic system that produces nonlinear electrical activity
[5] that can be measured through electroencephalography (EEG), among
other brain monitoring techniques. Methodologies capable of detecting
neural complexity, temporal dynamics and synchronicity between brain
sources are therefore necessary for the analysis and understanding of brain
functioning. Recurrent neural networks (RNN) are a neural network fam-
ily that is characterized by incorporating cyclic connections which provide
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memory and the capability of decoding non-stationary temporal informa-
tion.

Many architectures for the construction and training of RNNs exist, while
the one adopted in this Thesis is Reservoir Computing (RC) in its Echo-
State Network (ESN) modality [6]. ESNs appeared as a new approach
towards understanding and training recurrent neural networks based on
the principle that if the network fulfills certain properties, adaptation of
all connections between neurons is not necessary to solve prediction prob-
lems. During the training, therefore, most connections are randomly gen-
erated. This property is known as the Echo-State Property (ESP) and is
accomplished if the dependency to initial conditions is lost with time [6].
ESNs thus enormously simplify the training process and reduce its com-
putational cost with respect to other RNNs architectures. Echo-state net-
works have proved to deliver excellent performance in many tasks and ap-
plications in economics, physical modeling, optics and robotics. They are
currently an active research topic [7][8] and a valuable approach in physi-
ological characterization [9].

Stationary methodologies are widely used in EEG characterization. Ap-
proaches such as spectral analysis still hold as state-of-the-art in many
fields. The general objective of this Thesis is to investigate brain dynamics
by using echo-state networks in the analysis of electrophysiological data.
We aim to develop efficient methods capable of characterizing neural non-
stationary dynamics and compare their performance with existing station-
ary approaches. In this first chapter we intend to introduce every specific
topic addressed in this Thesis, with the objective of providing the necessary
background for a good understanding of the following chapters.

1.2 Chaotic Dynamics and Synchronization

The study of brain dynamics aims at mathematically characterizing neural
activity in order to understand the underlying brain process and its cor-
relation with physical and mental states. This study can be approached
following different strategies. Conventional approaches are based on lin-
ear models which study neural stationary dynamics.
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The brain produces complex, nonlinear dynamics that can be measured
through the EEG [10]. In particular, EEG signals have also been considered
to be the result of nonlinear dynamic systems that exhibit chaotic behav-
ior [11]. Since the mid-1980s chaos theory has been applied to the analy-
sis of neural dynamics with increased interest from the scientific commu-
nity [12][13]. This chaotic behavior is considered to “serve as the essential
ground state for the neural perceptual apparatus” [14]. The brain has been
observed to behave as a deterministic chaotic attractor, for example, dur-
ing epileptic seizures [11]. In this Thesis we follow this latter approach
to characterize and study the brain dynamics as a nonlinear phenomenon.
Therefore, we have adopted a machine learning approach in the form of
echo-state networks (ESNs), which is capable of capturing nonlinear dy-
namics and the chaotic nature of brain signals [15].

In this Thesis we attempt to analyze the relationships between structural
and functional brain sources as a chaotic synchronization problem. To val-
idate the capabilities of ESNs in the detection of chaotic synchronization
(in its generalized synchronization form), we have conducted a theoreti-
cal work, which is presented in Chapter 2, which proves their capability
of accurately detecting changes in generalized synchronization between
two coupled attractors. When ESNs are applied in the analysis of neural
time-series, they are used in a fashion so that they are capable of detecting
dynamic patterns, but also complex relationships between EEG channels.
These works are presented in Chapters 3 and 4. In this section we intro-
duce the differences between stationary and non-stationary systems. Sub-
sequently we introduce chaotic systems, how they can be synchronized,
and the most relevant forms of synchronization between chaotic systems.

1.2.1 Stationary and Non-Stationary Systems

Digital signal processing (DSP) studies time-series digitally collected. This
process implies the discretization of the amplitude of continuous tempo-
ral observations that are mapped into a finite set of values [16]. Mathe-
matically, these time series can be seen as stochastic processes that can be
divided into stationary and non-stationary [17]. Stationary processes are
characterized by statistical properties that are invariant over time, and are
therefore easily predictable. Standard deviation, covariance and mean are
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examples of time-invariant statistical metrics that can be used to character-
ize stationary signals.

Formally speaking, a stationary stochastic process is strictly or strongly
stationary if its joint probability distribution does not change when shifted
in time [18]. Joint distributions quantify the relationship between two or
more events, while the probability density function (PDF) describes the rel-
ative likelihood for a random variable to take on a given value. As a con-
sequence, all moments of a stationary process are the same no matter the
instant at which they are measured. Purely random distributions such as
the Gaussian distribution are examples of stationary processes. The prob-
ability density function of a Gaussian distribution, for example, is only
characterized by its mean or expectation (µ) and its variance (σ2).

Real-world data evidences that strong stationarity and purely Gaussian
processes are distributions rarely found [19]. The definition of strong sta-
tionarity is thus too strict for most processes and a less rigid approach is
needed for real-world observations. The definition of weak stationarity
only concerns the shift-invariance of first and second moments of a pro-
cess. In non-stationary processes statistical properties such as the mean,
variance and covariance change over time. Non-stationary signals thus
show trends, events, and cycles that make it difficult (or in many cases
impossible) to be forecasted or modeled.

1.2.2 Chaotic Systems

Non-stationary systems are dynamical processes whose internal state vari-
ables follow temporal rules [20]. They consist of a state space whose coor-
dinates describe the state at a given time and a dynamical rule that drives
the immediate future state based on current ones. There are two main types
of dynamical system, with discrete and continuous time. Continuous time
dynamical systems are expressed using ordinary, partial or delayed differ-
ential equations (ODEs, PDEs, DDEs), while in discrete systems, the states
update in time is defined as a mapping.

Chaotic systems are dynamical systems that show high sensitivity to ini-
tial conditions. Many examples of chaotic systems exist, among them the
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Rössler attractor. This system, defined by the following nonlinear ODE,
and whose trajectories are displayed in Figure 1.1, has been employed in
Chapter 2.

dx/dt = −y− z

dy/dt = x + ay

dz/dt = b + z(x− c)

FIGURE 1.1: The Rössler attractor in its chaotic mode (Fig-
ure taken from [21]).

1.2.3 Synchronization in Chaotic Systems

Due to their long-term unpredictable nature, chaotic systems seem to defy
synchronization. Two identical chaotic systems starting from slightly dif-
ferent initial conditions will show trajectories that would exponentially
separate. Therefore the term synchronization shall be re-defined when re-
ferred to chaotic systems. Synchronization occurs when chaotic systems
are coupled in a way that they adjust their trajectories. It has been defined
by Boccaletti as "the process wherein two (or many) chaotic systems (either
equivalent or nonequivalent) adjust a given property of their motion to a
common behavior, due to coupling or forcing. This ranges from complete
agreement of trajectories to locking of phases [22]".

There are two possible configurations to achieve synchronization between
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two chaotic systems: unidirectional and bidirectional coupling. Unidirec-
tional coupling can be achieved in master–slave configuration, where one
system freely evolves and drives the evolution of the other. In bidirectional
coupling both systems influence the evolution of each other, inducing an
adjustment of the trajectories onto a common manifold. Different synchro-
nization states can be produced between chaotic systems, among them:
complete synchronization (CS) [23], phase synchronization (PS) [24], lag
synchronization (LS) [25], almost synchronization (AS) [26] and general-
ized synchronization (GS) [27]. As explained in Chapter 2, in this Thesis
two Rössler attractors have been synchronized via unidirectional coupling
in order to produce time sequences that exhibit generalized synchroniza-
tion.

The generalized synchronization phenomenon describes a non-trivial syn-
chronization between the trajectories of two non-identical coupled sys-
tems. As it will be further explained in Chapter 2, one example of how
to achieve generalized synchronization between two different coupled at-
tractors was proposed by Rulkov in [27]. Taking two different attractors
X and Y, with completely synchronized trajectories as displayed in Figure
1.2A, Rulkov proposed to apply a nonlinear transformation to Y convert-
ing it into Z. Figure 1.2B shows the relationship between X and Z, where a
straight line denoting identical synchronization is no longer observed, but
a complex relationship between the attractors exists. In spite of this lack of
linear correlation, synchronization has not been lost since only a nonlinear
transformation was applied to completely synchronized systems. In this
case it can be determined that both systems show generalized synchroniza-
tion. Several methodologies for the detection of generalized synchroniza-
tion exist, including the replica method, the synchronization likelihood,
and the mutual false nearest neighbor method [28][29]. In Chapter 2 we
propose an alternative methodology based on echo-state networks.
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FIGURE 1.2: A) Identical Synchronization between X2(t)
and Y2(t), B) Generalized Synchronization between X2(t)

and Z2(t)

1.3 Echo-State Networks

Machine learning is a subfield of computer science and artificial intelli-
gence that aims to build computer systems that automatically adapt their
parameters in order to make accurate predictions based on experience [30].
This experience is given in the form of data observations or examples.

Supervised machine learning, the approach used in this Thesis, uses la-
beled examples to predict a system output. In practice, using a training
signal consisting of a set of data observations and their target output (de-
noted herein as teacher-forced-output), the machine learning algorithm
adapts the values of its variables to make predictions. The trained machine
learning algorithm can thus be used for mapping unseen examples. These
algorithms are usually self-adapted through the minimization of what is
known as its cost function, generally a function of the error between the
target and the output. The cost function also provides a metric on how well
the algorithm learned the regression or classification problem for which it
was trained.
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A popular supervised machine learning approach are artificial neural net-
works (ANN). ANNs have stirred up the field of artificial intelligence due
to their excellent information processing capabilities. They have proved
capable of accurately modeling complex real-world problems due to their
noise tolerance, high parallelism, capability to generalize and the fulfill-
ment of the representation theorem [31][32]. In this Thesis we investigate
the capabilities and applicability to electrophysiological analysis of Echo
State Networks (ESNs). For this reason, in this section we first introduce
ANNs taking as starting point their most simple form, the artificial neuron.
We later provide a detailed explanation of ESNs capabilities, architecture,
parameterization and training.

1.3.1 Artificial Neurons

Ramón y Cajal, considered by many as the father of modern neuroscience,
first introduced the idea that individual cells, later called neurons [33],
were the structural constituents of the human brain. Cajal demonstrated
that the nervous system was formed by a network of millions of intercon-
nected neurons capable of transmitting information. Figure 1.3 shows one
of Cajal's depictions of a neural ensemble. The mechanism by which neu-
rons communicate with one another is known as synaptic coupling [34].

FIGURE 1.3: Santiago Ramón y Cajal (1899), Human Brain
Cortex
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During the synaptic transmission process, the post-synaptic neuron re-
ceives in its dendrites electrochemical spikes, which can be either excita-
tory or inhibitory. A single neuron can receive thousands of synaptic in-
puts from many different pre-synaptic neurons. The post-synaptic neuron
integrates these inputs, and depending on the outcome of the integration,
the neuron can fire transmitting its action potential to other neurons con-
nected to its axon. The human cortex is estimated to contain approximately
10 billion neurons and 60 trillion synaptic connections [35].

Artificial neural networks (ANNs) are biologically-inspired information
processing implementations that imitate the functioning of the brain. The
basic information-processing unit of ANNs is called neuron, but also re-
ferred to as node or unit. Frank Rosenblatt's perceptron [36] is considered
the first artificial neural network. It consists of a single layer network that
works as a linear binary classification predictor. Artificial neurons inte-
grate input signals through connecting links that model synaptic connec-
tions. These links are characterized by a fixed weight or strength which is
set during the training process. Figure 1.4A displays a graphical represen-
tation of an artificial neuron with n connecting links. The signals xi feed
the neuron multiplied by its corresponding weight wi. Weighted inputs are
then linearly combined in the summing junction. It is important to remark
that synaptic weight ranges include negative and positive values, and can
therefore act as inhibitory or excitatory links. A bias factor is then applied
for lowering or increasing the input of the activation function. The acti-
vation function transforms the weighted averaged inputs into an output
value y that is transmitted to other connected neurons. Activation func-
tions can be linear and nonlinear. Among most used activation functions
are the step, identity, hyperbolic tangent, sigmoid or rectified linear unit.

1.3.2 Artificial Neural Networks

Rosenblatt's perceptron is only capable of solving linearly separable prob-
lems, a factor that remarkably limits its applicability to real-world prob-
lems. A solution to overcome this limitation is to use layers of intercon-
nected neurons constructing what is known as a multilayer perceptron
(MLP) [37]. MLPs are organized in three layers of neurons: input, hid-
den and output. Figure 1.4B depicts the MLP architecture. Input weights



10 Chapter 1. Introduction

FIGURE 1.4: A) Artificial neuron diagram B) Multilayer
perceptron with two hidden layers

(Win) connect the input nodes into the hidden layer. Internal weights (W)
connect nodes between hidden layers among them. Finally output weights
(Wout) map the hidden nodes into output nodes. During the training pro-
cess, input, hidden and output connection weights are optimized in order
to minimize the error between the network and the desired teacher output.
The development of back-propagation algorithms in the mid-1980s revo-
lutionized neural networks, providing a computationally efficient method
for training MLPs [38]. Static neural networks such as the MLPs are imple-
mented in a feed-forward fashion, with information flowing from input to
output. Feed-forward systems thus treat each example one by one, being
incapable of retaining states and thus of detecting temporal context.

Adding feedback connections allows an MLP to encode information with
temporal context and thus to incorporate memory, converting it into a dy-
namical system. There are two basic approaches of incorporating feedback:
local feedback, which is applied to a single neuron, and global feedback,
which is implemented as recurrent connections within and/or among neu-
rons of different layers [39]. Recurrent networks have recently gone from
impractical to being a widely used approach thanks to recent advances in
architectures, training algorithms, and parallel computing [40]. The main
issue in recurrent neural networks, as in all nonlinear dynamical systems,
is their potential instability as explained in the literature [41]. With con-
ventional descending gradient-based algorithms such as back propagation
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through time (BPTT), error signals propagating backwards in time tend to
either blow up or vanish [42]. Truncated backpropagation through time
(TBPTT) offers a solution to this problem [43]. In TBPTT a maximum
number of time-steps in which the error is backwards propagated is con-
strained. Obviously, while a small number of time-steps solves the explod-
ing vanishing gradient issue, it limits the network capability of detecting
long-time dependencies. Modern neural networks such as long-short term
memory (LSTM) architectures [44] overcome this limitation.

1.3.3 Echo-State Networks

In 2001 a new approach for recurrent neural networks was proposed in-
dependently and simultaneously by Jaeger under the name of Echo State-
Networks (ESN) [6], and Maass under the name of Liquid State Machines
(LSM) [45]. Both together constituted a new trend towards understand-
ing, training, designing and applying RNNs, grouped under what came
to be known as Reservoir Computing (RC) [46]. Today, RC has incor-
porated other related methods and extensions developed since, such as
Backpropagation-Decorrelation [47] and Evolino [48].

Figure 1.5 shows a basic ESN architecture. The depicted network has two
input units (Ni = 2), a single output unit (No = 1) and five internal or
hidden units (N = 5). Input, internal, back-propagation and output con-
nectivity weights are respectively represented by W in, W, Wback and Wout.
ESNs without output to hidden layer back-propagation connections, as
the one presented here, are the typical choice for purely input-driven pat-
tern recognition and classification tasks. This is the architecture that has
been applied in this Thesis. The two-dimensional signal u(n) of Ns timing-
points inputs the network that produces the output signal y(n).

ESNs are based on the principle that if the network fulfills what is known
as the echo-state property (ESP), then the adaptation of all weights is not
necessary, and therefore most of the network connections can be randomly
generated [49]. The echo-state property is satisfied if the state of the net-
work asymptotically depends only on the input signal, implying that ini-
tial condition dependencies are progressively lost. In practice, input and
back-propagation weights do not affect the echo-state property, which only
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FIGURE 1.5: Echo-state network architecture with two in-
put, five hidden and one output unit.

depends on internal weights. It has been noticed that the ESP is granted if
the spectral radius, calculated as the largest absolute eigenvalue of hidden
connections, is smaller than the unity [50]. This fact has led to an erroneous
identification of the ESP with a spectral radius smaller than one. It has been
demonstrated that the ESP depends on the nature of the input signal and
the algebraical characteristics of the dynamical reservoir [51][52]. In gen-
eral, the larger the input, the further above unity the spectral radius can be
while the ESP still holds. Therefore, there is not yet a theoretical principle
whereby the spectral radius can be set a priori, being necessary its ad-hoc
adaptation.

The Dynamical Reservoir

The untrained network with randomly generated weights forms the dy-
namical reservoir (DR) and consists of input, back-projection and inter-
nal weights. The ESN approach enormously simplifies RNNs, providing a
computationally inexpensive method in which adaptation of all weights is
not necessary, but only readout connections need to be trained.
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ESNs are not yet a perfectly mature approach and further advances, ex-
tensions and demonstrations of their practical applicability shall be ad-
dressed. One important line of research is currently the reservoir construc-
tion. Random creation of the dynamical reservoir delivers excellent clas-
sification and accuracy results in many tasks, however the effects of the
network topology on task performance in many cases remain uncertain.
Advances in the understanding of the reservoir characteristics effects may
lead to a more optimal and efficient reservoir design. Several reservoir
optimization algorithms are currently being investigated, which according
to Lukosevicius [53] can be grouped in 1) generic, 2) unsupervised pre-
training in which the reservoir is pre-trained with respect to the input, and
3) supervised pre-trained in which the reservoir is constructed based on
the input and target data. In this Thesis work we do not investigate the
reservoir topology and its implications in the network dynamics, follow-
ing instead the generic method. This method is considered the classic form
of constructing DRs and is the most used. It has proven to deliver good
results irrespective of input and target adaptation.

To construct an appropriate reservoir following the generic method [53],
the hidden layer shall be large, sparse, and random. The rationale is that
many internal units guarantee rich dynamics, sparse connectivity loosely
couples activation signals, and random connections guarantee different
dynamics. The reservoir is generally constructed using a symmetric dis-
tribution of connecting weights around the zero values. Input and back-
propagation weights are usually dense (although they can also be sparse)
and generated using a uniform distribution. Echo-state networks stan-
dardly use sigmoid activation functions.

The DR provides temporal context and works as a nonlinear expansion
of the input. The idea behind ESNs is that random connections in the
reservoir allow known states to echo. If the reservoir receives an input
with states similar to those which it was trained on, its dynamics will start
following these known trajectories. Therefore the reservoir should pro-
vide rich dynamics that are extracted as a linear combination of the output
weights [54]. In general, the number of units in ESNs is larger compared
to other machine learning approaches. Reservoirs of thousands of neurons
are not uncommon, as we will see in the following chapters. The larger the
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reservoir is the richer its dynamics, although it is important to be aware of
the possible over-fitting if a large number of internal units is chosen, which
would lead to poor generalization [55].

ESN Training

In ESN training, the first step is to construct the dynamical reservoir, con-
sisting of randomly generated input, internal and back-propagation weights.
ESNs training is a supervised machine learning problem in which for a
given training input (utrain) and target output (ytarget), output weights (Wout)
are learned to minimize the error between the network output and the de-
sired target. The training input is passed through randomly generated in-
put, internal and back-propagation connectivity matrices in order to obtain
the N-dimensional signal X. ESN output (y) can therefore be expressed as
y = X ∗ wout.

Output weights can be calculated using any linear regression or classifi-
cation algorithm. Ridge regression, also known as Tikhonov regulariza-
tion, is in general the most common approach to train ESNs [56]. In any
case many other methods such as linear least-mean-square error or sup-
port vector machines have successfully been employed in ESNs training.

In ridge regression, additional information apart from the error between
the output and desired target is introduced to the minimization problem.
In ESNs, large readout weights can be very sensitive to deviations from
training conditions leading to poor generalization and unstable solutions
[57]. To overcome this problem, the cost function to be minimized in ESN
training is the root-mean squared error between teacher-forced and ESN
output plus the weighted magnitude of the squared output weights. The
selection of the optimal regularization parameter λ, is in general assessed
through extensive search on a logarithmic grid. The ESN ridge regression
cost function can be depicted mathematically as:

Cost =
Ns

∑
i=1

(y(s)− ytarget(s)) + λ||wout||2
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Parameterization of Echo-State Networks

In this Thesis work we have followed the indications for applying ESN
proposed by Lukosevicius [58]. In analogy to other machine learning ap-
proaches, the global parameters of ESNs rule its behavior and pattern-
recognition capabilities. Their ad-hoc adaptation is crucial to achieve an
optimal performance. Key global parameters in ESN training are the size
of the hidden layer, the sparsity, the spectral radius, the leaking rate, and
the input scaling. These factors are described in detail in what follows.

The Reservoir Size is crucial to construct reservoirs with rich dynamics,
and is given by the number of internal units. For difficult tasks the
reservoir should be as big as computationally affordable.

The Input Scaling drives the non-linearity of the reservoir. A general prac-
tice in ESNs is to scale together all inputs to a common scaling factor.
Assuming the use of sigmoid activation functions, if input values are
close to 0, input layer neurons operate virtually linearly. With large
input values, neurons saturate and start acting as binary switches.
Linear tasks thus require small input scaling factors while complex
tasks demand larger ones.

The Spectral Radius is computed as the largest absolute eigenvalue of con-
nectivity matrix of the hidden layer. This quantity governs the time-
scale of the reservoir and determines how the influence of inputs re-
mains in the system [54]. In general, long memory tasks require a
larger spectral radius. On the other hand, a larger spectral radius has
the effect of driving input signals into a more nonlinear region. Thus
this quantity also has an influence on the DR dynamics.

The Sparsity determines the connectivity degree of the network. Although
early ESN reports suggest to have a sparse reservoir, in practice sparse
connections tend to give only a slightly better performance [58]. In
large reservoirs however, sparsity can reduce computational costs
during training.

The Leaking Rate determines the speed at which the reservoir updates
the dynamics in case leaky-integrated discrete-time continuous-value
artificial neurons are employed.
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In summary, when selecting the ESN global parameters, one has to con-
sider that the nonlinearity of the network is given by the scaling of input
and internal weights (input scaling and spectral radius). The dynamics
update speed is given by the leaking rate, if leaky-integrated neurons are
employed.

ESN Training Summary

In summary, ESN construction and training can follow this recipe [50]:

1. Set a meaningful training input U and its corresponding teacher-
forced output Ytarget.

2. Select the reservoir global parameters: neuron activation, spectral ra-
dius, function, sparsity and reservoir size.

3. Create a random dynamical reservoir with the selected global param-
eters (w, wback). Attach input units by creating random all-to-all con-
nections (win).

4. Standardize input training data to zero-mean standard deviation one.

5. Multiply the input training data by the selected input scaling factor.

6. Pass the training data through the dynamical reservoir.

7. Discard the N initial transient samples.

8. Train the output weights using the selected linear regression method-
ology minimizing the error between the output and teacher-forced
output.

9. The ESN is ready to use. Ensure that it generalizes well and that the
performance is adequate feeding the system with unseen data. If the
results are not satisfactory, further selection of global parameters may
be necessary.
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1.4 Electroencephalography

The brain produces non-stationary electrical activity which can be mea-
sured by electroencephalography (EEG). In this Thesis we study the appli-
cation of echo-state networks to EEG feature extraction and classification
problems. Because of this, in this section we introduce this technique, com-
paring it with other brain monitoring methods. We also describe the brain
dynamics and rhythms that can be measured by the EEG, and show how
EEG recordings are analyzed. We end up with a summary of the most rel-
evant EEG feature extraction methodologies.

Two types of EEG techniques exist: intracranial and extracranial [59]. In-
tracranial EEG, also referred to as electrocorticography, records directly
from the brain through surgically implanted electrodes pointing to spe-
cific brain areas. In contrast, extracranial EEG is a non-invasive technique
that places the electrodes on the surface of the scalp. Scalp electrodes mea-
sure the voltage difference between the recording electrode and a reference
electrode. Figure 1.6 shows Enobio®, a new generation non-invasive EEG
device. In this Thesis we are focused exclusively on the analysis of ex-
tracranial EEG, and thus hereinafter any explicit mention to EEG refers to
this technique [60].

FIGURE 1.6: Neuroelectrics Enobio® EEG sensor
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EEG measures the pooled electrical activity generated by large numbers of
neurons. When a broad population of neurons fire in a synchronized way
and are spatially organized, their activity lines up creating waves that can
reach the scalp [61]. From its early days, EEG has been characterized by
its oscillatory activity. The first discoveries from Berger already mentioned
rhythmic electrical activity recorded from the human scalp. This finding
was followed by a popularization of Hebb's theory [62] stating that neu-
rons do not work in isolation but rather tend to work in synchrony. The
brain needs to integrate these widespread neural assemblies to carry out
coordinated actions and thus synchronize them. Coordinated assemblies
that produce coherent activity generate oscillations that can be seen in the
EEG.

Neurons are interconnected and present feedforward and feedback loops
that make it easier for them to fire collectively. The signal generated by
the cooperative action of nearby neurons is known as local field potential
(LFP). LFPs reflect the average behavior of the action potentials of large
numbers of interacting neurons and are considered the building blocks of
EEG [63]. To reach the scalp these electrical signals go through layers of
tissue, fluids, the skull and the skin. All these layers have different electri-
cal and conductivity properties distorting and attenuating the signal that is
measured in the EEG. This process that takes place as LFPs are transferred
to the scalp results in some loss of specific information [64]. Pyramidal cor-
tical neurons mainly contribute to scalp voltage as they are well-aligned
and fire in a synchronized manner. It has been estimated that about 50,000
of these neurons in the superficial cortical layers dominate the EEG signal
[64]. Deep brain sources are difficult to measure in the EEG as neurons in
subcortical structures are usually not as well spatially organized and also
are further from recording electrodes [64]. Figure 1.7 shows a 32-channel,
one-minute EEG recording to illustrate the type of signals that we will be
analyzing.
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FIGURE 1.7: One-minute 32-Channel Electroencephalo-
graphic signal.

Besides EEG other brain monitoring methods exist, among them magne-
toencephalography (MEG), functional magnetic resonance imaging (fMRI),
positron emission tomography (PET) and near-infrared spectroscopy (NIRS).
Figure 1.8 compares different brain monitoring techniques in terms of tem-
poral resolution, spatial resolution, and of the degree of immobility neces-
sary to perform good quality recordings. Compared to these techniques,
EEG has poor spatial resolution, poor signal to noise ratio and low sen-
sitivity to neural activity occurring below the cortex. On the other hand,
EEG is significantly cheaper, customizable, and has an excellent temporal
resolution (being able to achieve the order of micro-seconds). Additionally,
the new generation of portable EEG devices such as Enobio, displayed in
Figure 1.6, makes it possible to perform recordings outside laboratory con-
ditions boosting the experimental possibilities. Besides, participants wear-
ing wireless EEG devices can move during EEG assessments [65]. It is for
all these reasons that EEG is a widely used brain monitoring technique in
neuroscience.
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FIGURE 1.8: A comparison of brain monitoring techniques
in terms of temporal resolution, spatial resolution, and de-

gree of immobility (Figure taken from [65])

1.4.1 Brain Rhythms

Rhythmic EEG activity is grouped in bands, which are labeled with Greek
letters following Berger [66]. Many definitions of EEG bands exist, a classi-
fication used commonly can be the following: Delta (δ): 0-4 Hz, Theta (θ):
4-8 Hz, Alpha (α): 8-12 Hz Beta (β): 12-30 Hz, and Gamma (γ) above 30
Hz. Rhythmic activity within a certain band has been seen to have a char-
acteristic power distribution and to correlate with different physiological
or cognitive functions. Below we summarize the traditional classification
of EEG bands and their most relevant activity interpretation [67]–[69].

Delta: Irregular delta complexes in temporal regions appear in the healthy
elderly population. Delta enhancement is linked to drowsiness onset
and is seen during slow-wave sleep. It has also been linked to de-
manding sustained attention tasks. Abnormalities in the delta band
are related to encephalopathies and usually indicate a structural le-
sion involving the white matter of the ipsilateral hemisphere.

Theta: Frontal theta activity is induced by emotions and sustained concen-
tration. Theta activity is enhanced by hyperventilation, drowsiness
and sleep. It is also linked to memory and emotion regulation.

Alpha: Alpha activity is enhanced by eye closing and is characterized by
a dominant frequency within the alpha range known as individual
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peak-alpha frequency (PAF). The alpha band is related to relaxation,
aging, visual perception and attention.

Beta: Beta activity is enhanced during drowsiness, light sleep, anxiety, and
with mental activation. Abnormal beta activity suggests cortical gray
matter anomalies and drug effects.

Gamma: Gamma rhythms are related to perception, higher mental activity
and consciousness.

As of today there is no agreement in standard frequency ranges and band
distributions are often considered arbitrary “like the straight-line country
borders between the African nations drawn by the colonialists” [60]. Some
scientists have also expressed their skepticism about the value of brain os-
cillation research in advancing the understanding of brain processes un-
derlying cognitive functions [70]. Figure 1.9 shows a typical EEG spectrum
along with band power limits.

FIGURE 1.9: Example of an EEG spectrum (black line) with
its approximation of band powers given by the areas of the

gray bars (Figure taken from [71]).
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1.4.2 EEG Preprocessing

The first step in EEG analysis is preprocessing. This stage aims at cleaning
and preparing the data reliably for the subsequent feature extraction and
classification phases. It is crucial to highlight the importance of working
with reliable data. It does not matter which algorithms we use to decon-
taminate poorly recorded data, if the data quality is not sufficient for the
analysis to be performed. It is thus a good practice when analyzing EEG
series to discard those sequences where data-acquisition problems were re-
ported or poor overall quality is detected.

A standard preprocessing pipeline cannot be defined as it has to be fully
adapted to the experimental data and subsequent phases of the analysis,
although some proposals have been done for enabling its automation [72].
Typical EEG preprocessing stages include: filtering, referencing, epoching,
signal decomposition, artifact correction and artifact rejection, among oth-
ers.

Filtering: The purpose of filtering is to remove unwanted frequency com-
ponents from temporal time-series while keeping the rest of the spec-
trum. Depending on the frequency components to be rejected, high
pass, low pass, band pass, band reject, notch, and comb filters can be
applied.

Artifact Correction: EEG is highly sensitive to non-physiological and phys-
iological artifacts, even in controlled laboratory conditions. Among
their sources we find subject movements, muscular activation, eyes
and eyelid movements, artifacts related to the cardiac activity, and
electromagnetic interference such as power line noise. If possible, it
is highly recommended to remove or reduce the influence of such
nuisance signals.

Channel Reference: Channel referencing enhances the EEG signal to noise
ratio (SNR). The choice of the reference channel(s) will depend on the
properties of the EEG which are under study (e.g. whether symme-
try needs to be fulfilled). Numerical comparison between referencing
approaches suggests that average reference best approximates large-
scale brain networks [73]. Some of the commonly used references



1.4. Electroencephalography 23

in EEG analysis are bipolar, linked mastoids, common average, and
double banana [74][72].

Epoching: EEG recordings can typically last for minutes or hours. Many
analyses and feature extraction processes require these to be split into
time windows also known as epochs. Epochs are in general short-
time, typically of a few seconds of duration, and in some cases can be
considered pseudo-stationary [75].

Epoch Processing and Rejection: Extracted epochs may need further pro-
cessing to enhance their SNR and to typically remove their offset and
trend. After signal cleaning and processing, some epochs may still
contain non-physiological artifacts, which should be detected to be
discarded from further analysis. The methodology to detect artifacts
depends in general on the statistical properties of the artifacts them-
selves. A simple amplitude threshold that marks epochs whose max-
imum absolute amplitude crosses the threshold of what is considered
as non-physiological is valid in many cases.

Signal Decomposition: The preprocessing stage may require the signal
decomposition of EEG. Independent and Principal Component Anal-
ysis (ICA, PCA) are commonly used techniques [76]. Independent
component analysis, for example, separates the n-channel EEG sig-
nal into n additive independent components (IC), assuming that the
components are non-Gaussian signals and that they are statistically
independent from each other. Principal Component Analysis is gen-
erally used for dimension-reduction. It is capable of finding a num-
ber of principal components (PC) smaller than n that still contains
most of the information of the multichannel EEG signal. PCA uses
orthogonal transformations to find maximal data variability at each
individually calculated PC.

1.4.3 EEG Features

Once the EEG signals have been processed, they can be used to compute
features, aiming to extract meaningful information within the temporal
EEG series that may explain its underlying physiological process. Many
feature extraction techniques exist, in general involving transformations of
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the temporal EEG epochs into other domains. In this section we describe
the most relevant features used in EEG analysis.

Event-Related Potentials

Event-Related potentials (ERPs) measure the temporal brain response time-
locked to a specific sensory, cognitive, or motor event [77]. The amplitude
of the elicited potentials is typically a few micro-volts and therefore not
visible within a single epoch. ERPs are extracted by the averaging of mul-
tiple trials time-locked to the same event. This averaging process mini-
mizes interferences and background brain activity while the underlying
ERP persists. The result is a series of positive and negative deflections that
are characterized by their latency and amplitude. ERPs are widely used in
clinical and cognitive neuroscience.

Spectral Analysis

Fourier-transform-based spectral EEG analyses stand on the decomposi-
tion of EEG time-series into a finite number of sinusoidal components.
By studying these sinusoidal waveforms it is possible to analyze the am-
plitude, frequency and phase of brain rhythms. In computational neuro-
science the Fourier transform (FT), and in particular its algorithmic imple-
mentation known as fast Fourier transform (FFT) [78], have been largely
used for the frequency analysis of EEG time-series. The Fourier transform-
based approaches assume the signal to be stationary ignoring any time-
varying spectral content within the calculation window. Then to overcome
this limitation, the EEG series are split into short-time sequences where
EEG rhythms are considered to be pseudo-stationary. To calculate the total
spectral response of an EEG sequence the average spectral response calcu-
lated at window level is performed [79].

The fact that EEG signals are non-stationary limits the efficacy of Fourier-
based methodologies. Wavelet-based spectral analysis is less dependent on
the window length, being capable of detecting smaller frequency changes
not identified by Fourier-transform based methodologies [80]. A Wavelet
transform (WT) decomposes the EEG series into a set of basis functions
called wavelets. These are obtained by shifts, dilatations and contractions
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of a waveform called mother-wavelet. Wavelets are capable of integrat-
ing temporal and frequency information. An optimal shifting, scaling and
mother wavelet parameterization is in consequence crucial to achieve solid
results.

Connectivity Analysis and Synchronization

As previously explained, EEG electrodes measure the electrical signals pro-
duced by large numbers of synchronized neural ensembles that produce
local field potentials. These neural ensembles do not work in isolation and
influence one another. The relationship between recorded local field po-
tentials, and more generally between brain regions, is studied by means
of synchronicity and connectivity. In this section we provide an overview
of the most relevant methodologies used to assess signal correlations be-
tween EEG electrodes [81]. These metrics provide valuable information for
the understanding of the ongoing neural dynamics and are widely used
for the characterization of abnormal brain activity. In Chapters 3 and 4 we
propose new methodologies, based on echo-state networks, for EEG fea-
ture extraction and classification, which exploit the connectivity and syn-
chronization between EEG channels.

The Intersite Phase Clustering (IPC) follows the assumption that the syn-
chronization is produced by a clustering of phase values at each time-
frequency point. IPC measures phase relationships between two elec-
trodes over time by computing their average angle differences. It re-
quires the phase differences at each time-frequency point to be simi-
lar along trials.

The Phase Lag Index (PLI) assesses functional connectivity from EEG record-
ings by measuring the asymmetry of the distribution of phase differ-
ences between two EEG channels [82].

The Mutual Information (MI) detects the shared information between elec-
trodes. Its concept is linked to that of the entropy of a random vari-
able. It is capable of detecting both linear and nonlinear interactions
by analyzing the joint probability distribution of the signal coming
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from two electrodes. In spite of its dynamical capabilities, MI nu-
merical results are difficult to interpret as they do not differentiate
between positive and negative relationships between electrodes.

The Granger Causality (GC) is a statistical test for assessing if the signal
from one electrode can forecast that of another. The application of the
Granger causality assumes that the analyzed signals are stationary in
terms of their covariance if the variance in one electrode can be pre-
dicted by the variance in another electrode earlier in time. Its main
advantage lies in its ability to establish the direction of a connection
between two brain areas.

The Synchronization Likelihood (SL) is an estimate of the dynamical de-
pendencies between two electrodes that is closely related to the con-
cept of generalized synchronization, therefore accounting for nonlin-
ear dependencies between EEG channels [28].

The Cross-Frequency Coupling (CFC) measures the dynamic interaction
between oscillations among different brain rhythms. The two main
forms of CFC are phase amplitude coupling (PAC), and phase-phase
coupling (PPC). In PAC (also called nested oscillations) the phase of
the lower frequency oscillation (nesting) drives the amplitude of the
coupled higher frequency oscillation (nested), which results in the
synchronization of the amplitude envelope in faster rhythms with
the phase in slow rhythms.

The Magnitude-Squared Coherence (MSC) is a stationary metric of the
correlation in the frequency domain between a pair of electrodes. Its
cross spectral density-based analysis delivers the degree of likelihood
between them normalized in the 0-1 range.

Dynamical EEG Analysis and Signal Complexity

The brain is a sophisticated system that produces non-stationary multivari-
ate complex dynamics. The nature of the brain therefore advocates for the
use of techniques capable of characterizing complex dynamics in EEG time
series. Recurrent neural networks, and in particular echo-state networks,
are capable of decoding complex temporal dynamics. In this section we
present the most used approaches to characterize complexity in the EEG.
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The Lempel Ziv Welch (LZW) algorithm is a universal lossless data com-
pression algorithm that measures the repetitiveness of detected sub-
complexes after EEG binarization.

The Entropy is a metric that measures the amount of information con-
veyed by an EEG sequence. Many forms of measuring entropy exist,
among which the ones most used in EEG analysis are permutation,
sequence and multiscale entropy.

The Fractal Dimension provides a metric of complexity comparing scale
changes in fractal patterns.

1.5 Steady State Visual Evoked Potentials

SSVEPs are a resonance phenomenon that can be measured in the EEG,
elicited when gazing at a repetitive visual stimulation source (RVS). During
SSVEPs, the neural oscillatory activity synchronizes with the RVS, more
prominently in the primary visual cortex. As a consequence, SSVEP com-
ponents in the EEG match the RVS frequency and its harmonics, resulting
in an energy increase at these frequencies that is phase-locked with the
stimulation [83]. SSVEP is mainly considered a steady-state stationary re-
sponse.

In this Thesis we propose a novel methodology for characterizing a brain
evoked response, known as State Visual Evoked Potentials (SSVEPs). We
have developed a new methodology using echo-state networks that proved
to be capable of accurately detecting SSVEPs. This work is presented in
Section 3. In this section we describe the SSVEP phenomena and the SSVEP
dynamics that can be measured in the EEG. We summarize state-of-the-art
methodologies for SSVEP dynamics characterization, ending up with the
most relevant SSVEP applications in cognitive and clinical neuroscience.

Figure 1.10 depicts the average spectral response over various stimulation
trials for one subject while gazing at a 12 Hz RVS (red) compared to periods
with no visual stimulation (blue). An energy increase at the stimulation fre-
quency (12 Hz) and its second harmonic (24 Hz) is clearly observed during
visual stimulation. However, a few studies have suggested that SSVEP dy-
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FIGURE 1.10: EEG spectrum during 12Hz visual stimula-
tion (red) and non-visual stimulation (blue).

namics may be richer than a simple resonance effect. SSVEP bursts have
been reported to show patterns of large scale synchronicity [84]. In high
frequency SSVEPs, after the stimulation onset, a short-time transient re-
sponse (< 500ms) has been seen to exhibit an increase in delta and theta
power over fronto-central and occipital regions [85].

1.5.1 SSVEP Response Variability

SSVEP amplitude response and phase alignment have been proved to be
subject and age-dependent [86]. One of the factors that influences the
strength and spatial distribution of SSVEP the most is the stimulation fre-
quency [87]. Stimulation source properties such as color, stimulation pat-
tern or luminosity also affect SSVEP dynamics [88]. Recent studies have
demonstrated that the SSVEP response can be enhanced through neuro-
feedback training. Subjects who were able to decrease their alpha power
showed a statistical significant strengthening of their later SSVEP response
[89].

In SSVEP-based applications where a good detection performance is nec-
essary, as in brain-computer interfaces (BCI), the RVS should be personal-
ized. In practice, the stimulation frequencies that elicit the response with
the larger amplitudes are selected during a calibration process. In Figure
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FIGURE 1.11: AsTeRICS project participant using a 2-
degree of freedom SSVEP-based BCI application

4.11 a spinal cord injury patient participating in AsTeRICS project [90][91]
uses a 2-degree of freedom BCI application. AsTeRICS goal was to create
flexible communication solutions for people with severe motor disabili-
ties. Within the framework of AsTeRICS, the SSVEP data analyzed and
presented in Chapter 3 was recorded.

1.5.2 SSVEP Detection

Many feature extraction techniques are used for the characterization and
detection of SSVEPs [92][93][94]. These techniques exploit the steadiness
and stationarity of the response, studying the resonance effect induced at
the stimulation frequency and its harmonics. The most popular feature
extraction approaches are listed below.

Power Spectral Density Analysis (PSDA)

PSDA-based approaches use the power spectral density estimation, e.g.
the Welch method [79], to convert the temporal SSVEP response into the
spectral domain. These techniques monitor the phase and amplitude at the
frequency bins corresponding to the stimulation frequency and its harmon-
ics. Typical approaches evaluate the power ratio between the frequencies
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of interest and neighboring frequency bins. [95]. The rationale of this ap-
proach can be easily understood looking at the average spectral response
during RVS as displayed in Figure 1.10.

Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis is a multivariable calibration-less statistical
method to calculate the maximal correlation between two multi-channel
signals. CCA finds the weight that maximizes the correlation between a
multi-channel SSVEP time-series and a vector space formed by a set of
sine-cosine signals at the stimulation frequency and its harmonics [96].
CCA-based techniques have proved to outperform other methodologies
in terms of detection accuracy, having reported information transfer rates
larger than 150 bits per minute [97].

Multivariate Synchronization Index (MSI)

MSI is a multichannel calibration-less method for frequency detection. MSI
characterizes the synchronization between a multichannel SSVEP time-series
and reference signals synthetically generated set of sine-cosine series at
the frequencies of interest [98]. This method has reported excellent perfor-
mance, especially for short data length and a small number of channels.

Least Absolute Shrinkage and Selection Operator - LASSO

LASSO is a regression method that performs both variable selection and
regularization. LASSO penalizes the absolute value of regression coeffi-
cients in order to enhance detection accuracy. LASSO computes the lin-
ear regression between the SSVEP time-series and reference signals at the
stimulation frequency and its harmonics. This method yields to robust de-
tection when shorter time windows are used [99].

Double-Partial Least-Squares - DPLS

DPLS is a novel training-free approach consisting of a double-layer of par-
tial least-squares. The first layer serves as spatial filter while the second
acts as feature extractor [100].
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1.5.3 Applications

SSVEP response is analyzed in many paradigms both in cognitive and clin-
ical neuroscience [101]. The most popular SSVEP-based applications are
summarized below.

Brain Computer Interfaces

SSVEPs are an excellent choice for the construction of brain computer in-
terfaces (BCI). BCI provides a direct communication pathway connecting
the brain to a computer or other external device, and therefore not relying
on normal action pathways through peripheral nerves and muscles [102].
This fact makes BCIs the ideal approach for assistive technologies (AT) that
aim at overcoming motor limitations. SSVEP-based BCIs offer two main
advantages compared to other modalities: they have a larger information
transfer rate, and they require a shorter calibration time [103]. A typical
SSVEP-based BCI system with N degrees of freedom employs N indepen-
dent light sources with different visual patterns. Each light source is then
associated with a particular action of the BCI system. When the user wants
the system to perform a specific action, he/she should therefore gaze at its
associated light source.

Cognitive Psychology

Attention
SSVEP response has long been used as an index of visual-spatial selective
attention [104]. An enhancement in SSVEP amplitude has proved to be
attention-driven, and is more prominent in occipital and temporal areas
[105][106].

Perception
SSVEPs have also been successfully applied to the study of human body
perception. SSVEP amplitude differences were observed when presenting
images of bodies with respect to objects [107]. SSVEP response linked to
face recognition has been used to study socio-emotional perception [108].

Working Memory
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Differences in SSVEP response were found when performing working mem-
ory tasks at both low and high demand [109]. Age is generally accompa-
nied by a decline in memory performance. The 13 Hz SSVEP associated
with a spatial working memory task has been studied in statistical popula-
tions split into midlife (40-60 years old) and elder (61-82 years old) groups.
Evidence of age-related under-activation in frontal regions has been ob-
served, suggesting an age-related decline in working memory performance
[110]. Concurrently, power differences in SSVEPs in the alpha and gamma
frequency range have proven to be associated with age and cognition, and
thus can be used to examine cognitive status in old age populations [111].

Clinical Markers

Autism
Low-level visual processing is atypical in autism spectrum disorders (ASDs).
SSVEP amplitude response over a wide range of stimulation frequencies,
along with its topographical distribution, have been used to characterize
the ASD population [112][113].

Schizophrenia
A reduction in neural activity at the alpha band has been reported in pa-
tients suffering from schizophrenia. Concurrently, SSVEP studies have
provided strong evidence of early-stage visual processing deficits in schizophre-
nia [114]. When SSVEP responses are elicited within the alpha range, the
occipital deficit in alpha power was partially reverted, but the frontal deficit
persisted [114].

1.6 Attention Deficit Hyperactivity Disorder - ADHD

Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most com-
mon neurodevelopmental disorders in childhood. EEG has been used for
decades for the characterization of abnormal neural activity in ADHD chil-
dren [115]. Given ADHD diagnosis uncertainties, medication side effects,
and how it is applied, ADHD research has recently moved to the develop-
ment of biomarkers that support ADHD clinical diagnosis. In this Thesis
we propose a novel ADHD biomarker based on echo-state networks, work
that is presented in Chapter 4. In this section we present ADHD and its
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symptoms. We briefly introduce how it is diagnosed and potential treat-
ments. We conclude with a review of state-of-the-art ADHD EEG biomark-
ers.

ADHD is characterized by inattention, distractibility, hyperactivity and im-
pulsivity [116]. In the USA, ADHD was conceptualized as a pathological
disorder in the year 2000 in the 4th edition of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV) [117]. DSM-IV has been used since
in the USA and the rest of the world for formal ADHD diagnosis until it
was replaced by its 5th edition (DSM-V) in 2013 [118]. According to DSM
criteria the prevalence rate of ADHD is estimated between 5-7% [119]. The
DSM equivalent in the EU is the International Statistical Classification of
Diseases and Related Health Problems (ICD) [120], with an estimated 1-2%
prevalence rate. Three main subtypes of ADHD are diagnosed:

Predominantly hyperactive/impulsive subtype (ADHD-H): predominantly
hyperactive or impulsive symptoms with few or no inattentive symp-
toms. This is the least frequent ADHD subtype.

Predominantly inattentive subtype (ADHD-I): mainly inattentive symp-
toms with few or no hyperactive symptoms.

Combined subtype (ADHD-C): both inattentive and hyperactive symp-
toms.

The male-to-female gender ratio indicates that ADHD is more common in
boys. ADHD is in general diagnosed at an early age and its symptoms
clearly decline with age. Up to 80% of children grow out of ADHD in
adulthood [121], a fact that supports the hypothesis of a maturational lag.
ADHD symptoms have a severe impact on the lives of children, negatively
influencing their academical performance and their social and familiar re-
lationships.

1.6.1 ADHD Diagnosis

ADHD diagnosis is in general assessed based on 1) physical examination
of the child, 2) interview with the child, and 3) interviews with parents and
teachers. The symptoms must be consistent, persistent and negatively af-
fect behavior, academic performance and social interactions.
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At least six of the following symptoms are required in order to be diag-
nosed with inattentive ADHD following DSM-V.

1. Difficulties sustaining attention and remaining focused during play
activities, lectures, conversations or reading. Gets bored easily.

2. Absence and distraction when listening or being spoken to.

3. Difficulty to follow instructions and easily sidetracked.

4. Task and activity planning and organization difficulties.

5. Forgetfulness in daily activities.

6. Daydreams and becomes easily distracted.

7. Reluctance to engage in tasks that require sustained mental effort.

8. Loss of daily items (telephone, keys, school materials).

9. Misses important details or makes careless mistakes in daily activi-
ties, homework and tests.

At least six of the following symptoms are required in order to be diag-
nosed with hyperactive ADHD.

1. Squirms in seat or taps hands or feet.

2. Unable to remain quietly seated.

3. Talks unreasonably.

4. Difficulties in waiting in line.

5. Often interrupts other children's conversations or activities.

6. Unable to be still for prolonged time.

7. Unable to engage in leisure activities quietly.

8. Restless behavior, frequently runs impetuously when inappropriate.

9. Inability to wait for turn in a conversation.
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Figure 1.12 shows a multidimensional space of ADHD symptoms [121].
As pointed out by the scientific community, ADHD assessment is subjec-
tive and heavily biased towards personal practice and experience, which
leads to an intrinsic risk of mis- and over-diagnosis [122][123][124]. Be-
sides, inattention and impulsivity symptoms are not unique to ADHD and
also appear in other mental disorders such as anxiety or depression.

FIGURE 1.12: Multidimensional space of ADHD symp-
toms.

Finding solid quantitative evidence of neuro-psychophysiological dysfunc-
tion in the ADHD population has become one of the most relevant chal-
lenges in neuroscience research in the last decades. A robust physiological
marker for ADHD is necessary to further understand its underlying neu-
rophysiological mechanisms and will potentially help in a more accurate
diagnosis.

1.6.2 The Hypo-Arousal Theory

Arousal is defined as the psychological state of being awake or reactive to
stimuli and has long been considered a pathogenic factor in ADHD [125].
The hypo-arousal theory is based on the principle that the ADHD popu-
lation looks for self-stimulation in order to achieve normal arousal levels
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through excessive activity. Arousal deficits and structural alterations in re-
gions involved in modulating arousal and vigilance [126] are believed to
be derived from dopamine deficiencies [127]. This is the hypothesis fol-
lowed in this Thesis to propose a novel EEG-based biomarker as presented
in Chapter 5.

Other hypotheses such as the cognitive-energetic model [128] did not fo-
cus on underarousal per se, but rather in the difficulties in arousal man-
agement. The cognitive-energetic model proposes that ADHD deficits are
due to a more unstable energetic pool formed by three interrelated com-
ponents: arousal, activation, and effort. Following this approach, arousal
instabilities are suspected to be affected by the characteristics of the task
and thus larger during highly demanding activities.

1.6.3 ADHD Treatment

ADHD is mainly treated with medication, psychotherapy, behavior ther-
apy, and often a combination of them. For over 50 years and increasingly
since the 1990s, medications for ADHD are mostly based on stimulants
(i.e. amphetamine or methylphenidate) that block the dopamine and nor-
adrenaline pathways [129]. Even though they are considered as safe drugs,
they have frequent side effects such as appetite suppression, abdominal
pain, insomnia, headache, and anorexia [130]. However, there is no knowl-
edge on which medication improves symptoms with lower side effects.
They are currently applied in a "trial and error" manner for each diagnosed
child [131]. Recent longitudinal studies report that stimulant medication,
behavior therapy or multimodal treatments in ADHD have limited long-
term beneficial effects [132]. Alternative treatments have been proposed
for ADHD such as neurofeedback, transcranial or magnetic stimulation.
Their efficacy is nevertheless still under investigation.

1.6.4 ADHD EEG Markers

In recent years electroencephalographic measures have been widely used
to report neurophysiological abnormalities in ADHD children [133]. De-
spite the great advances in the last decades, state-of-the-art ADHD EEG
features do not support their use as a stand-alone diagnostic tool [134],
although present developments anticipate its utility in the clinical setting
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[115]. EEG biomarker discovery, therefore, remains a hot research topic. In
this section we present a summary of EEG features that can potentially be
used in decision support systems aiming at supporting ADHD diagnosis.

Stationary ADHD Characterization

The most reported pattern found in ADHD is an excessive power in slow
waves, located in front-central regions [135]. EEG slow wave enhance-
ment has been traditionally linked to hypo-arousal brain states [136]. These
power abnormalities found when comparing ADHDs and their age matched
control group are usually found in the theta band [137].

Theta power increase has been broadly reported to be accompanied by
power deficits in fast waves, usually in the Beta band [133]. Theta-beta
ratio (TBR), which combines slow activity power increase and fast activ-
ity power decrease, has long been used as ADHD biomarker [138]. The
US Food and Drug Administration (FDA) approved the Neuropsychiatric
EEG-Based ADHD Assessment Aid (NEBA® system), which uses the theta-
beta ratio to support the diagnosis of ADHD [135]. However recent studies
failed to replicate TBR discrimination performance between ADHD and
healthy controls suggesting its inaccuracy in ADHD prediction [139].

TBR may be explained by a broadband brain activity slowing in ADHD
children. This slowing is distinctly manifested in the alpha band, character-
ized by a dominating frequency known as peak alpha frequency (PAF). A
theta power increase may reflect individuals with slow alpha peak, shifted
towards the theta band, in addition to real increased theta activity. Several
studies report PAF slowing in ADHD children [140][141].

Dynamic Characterization of ADHD Patterns

Increased entropy in slow rhythms (delta and theta) along with decreased
complexity in alpha has been observed in ADHD during the performance
of continuous performance tasks (CPT) [142]. During eyes-closed resting
state chaotic dynamics, calculated using multifractal singularity spectrum
and Lyapunov exponents, exhibited lower entropy in ADHD subjects in
the prefrontal cortex [143]. During a visual cognitive task, LZW complex-
ity scores were significantly higher in control subjects, with the maximum
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value in the anterior region [144]. EEG complexity alterations suggest
that cortical activation may not be enough to meet the cognitive require-
ments of highly demanding attention tasks [145]. A new dynamical ADHD
biomarker based on echo-state networks is presented in Chapter 4.

1.7 Thesis Organization

This Thesis is organized as a compendium of three publications. They
cover specific topics and can be seen as independent studies. Chapters
2, 3 and 4 contain these articles, which are either accepted for publication
or under peer review.

In the second chapter we present "Detection of Generalized Synchroniza-
tion Using Echo State Networks", an article published in the journal Chaos
in March 2018. The analysis of preliminary results after using ESN in EEG
data suggested that the network was actually detecting complex synchro-
nization between EEG channels. This hint led us to an exploratory work in
which using in-silico signals we aimed to study in detail their capabilities
for the detection of chaotic synchronization. Two chaotic attractors were
sequentially coupled and de-coupled, constructing a continuous temporal
series consisting of concatenated sequences of periods of generalized syn-
chronization alternating with periods of no synchronization. As explained
in Section 1.3, generalized synchronization is a type of chaotic synchroniza-
tion with applications in communications and biological systems. ESNs
proved to be capable of detecting generalized synchronization with great
accuracy, even in the presence of relatively high noise levels.

In the third chapter we present "Echo State Networks Ensemble for SSVEP
Dynamical Online Detection", a work submitted to PLOS ONE in June
2018 and currently under revision. Steady-state visual evoked potentials
(SSVEPs) are a resonance phenomenon measured in the EEG that appears
when gazing at a visual stimulation source. This phenomenon is usually
considered to be purely stationary. Using ESN we studied the dynamical
characteristics of the SSVEP response and proposed a novel non-stationary
methodology for SSVEP detection based on an ensemble ESN with poten-
tial applicability in brain-computer interfaces. The proposed methodology
outperformed state-of-the-art stationary approaches in terms of accuracy
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and information transfer rate.

In the fourth chapter we present the work "Hypoarousal non-stationary
ADHD biomarker based on echo state networks", submitted to the Jour-
nal of Neuroscience Methods in June 2018 and currently under review. In
this work we successfully propose a novel EEG biomarker for one of the
most common neurodevelopmental disorders of childhood, namely atten-
tion deficit hyperactivity disorder (ADHD). The proposed biomarker is ca-
pable of quantifying changes in non-stationary EEG patterns between two
cognitive states: normal and low arousal conditions. These changes re-
vealed to be abnormal in the ADHD population.

Finally in the fifth chapter we finish with a results discussion, conclusions,
key findings and prospects for future work.
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2 Detection of generalized
synchronization using echo
state networks

Ibáñez-Soria D, Garcia-Ojalvo J, Soria-Frisch A, Ruffini G. Detection 
of generalized synchronization using echo state networks. Chaos. 2018 
Mar;28(3):033118. DOI: 10.1063/1.5010285

https://aip.scitation.org/doi/abs/10.1063/1.5010285
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3 Echo State Networks
Ensemble for SSVEP
Dynamical Online Detection
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Background: 

Recent years have witnessed an increased interest in the use of steady 

state visual evoked potentials (SSVEPs) in brain computer interfaces 

(BCI), SSVEP is considered a stationary brain process that appears 

when gazing at a stimulation light source. 

New Methods: 

The complex nature of brain processes advocates for non-linear EEG 

analysis techniques. In this work we explore the use of an Echo State 

Networks (ESN) based architecture for dynamical SSVEP detection.  

Results: 

When simulating a 6-degrees of freedom BCI system, an information 

transfer rate of 49bits/min was achieved. Detection accuracy proved to 

be similar for observation windows ranging from 0.5 to 4 seconds.  

Comparison with existing methods: 

SSVEP detection performance has been compared to standard 

canonical correlation analysis (CCA). CCA achieved a maximum 

information transfer rate of 21 bits/minute. In this case detection 

accuracy increased along with the observation window length 

Conclusions: 

According to here presented results ESN outperforms standard 

canonical correlation and has proved to require shorter observation 

time windows. However ESN and CCA approaches delivered diverse 

classification accuracies at subject level for various stimulation 

frequencies, proving to be complementary methods. A possible 

explanation of these results may be the occurrence of evoked responses 

of different nature, which are then detected by different approaches. 

While reservoir computing methods are able to detect complex 

dynamical patterns and/or complex synchronization among EEG 

channels, CCA exclusively captures stationary patterns. Therefore, the 

ESN-based approach may be used to extend the definition of steady-

state response, considered so far a stationary process.  

 

 
Highlights—  

▪ We present a novel SSVEP dynamical detection approach based 

on ESN. 

▪ This is the first time ESNs are applied to SSVEP based BCI 

systems. 

▪ We provide experimental validation of proposed methodology. 

▪ Experimental results indicate non-stationarity in SSVEP 

patterns. 

 
 

 
Keywords— Reservoir Computing, BCI, SSVEP, Echo State 

Networks, EEG, Dynamical Systems, Canonical Correlation Analysis 

 

I. INTRODUCTION 

A Brain Computer Interface (BCI) provides a direct 

communication pathway connecting the brain to a computer or 

other external device. BCIs do not rely on the brain’s normal 

action pathways through peripheral nerves and muscles, 

making them an ideal technology for systems assisting or 

repairing human cognitive or sensory-motor functions [1]. 

Different modalities for the realization of BCI exist; the most 

commonly used ones being motor imagery, P300, and Steady 

State Visual Evoked Potentials (SSVEP) [2]. SSVEP-based 

BCIs offer two main advantages [3]: i) they have a larger 

information transfer rate, and ii) they require a shorter 

calibration time. 

Many SSVEP-based BCI systems rely on a protocol where the 

subject decides voluntarily when to interact with the BCI 

application. When the system detects the user’s intention to 

perform an action, the visual stimulation is presented during a 

short time period. A typical SSVEP-based BCI system with 𝑁𝑠 

degrees of freedom employs 𝑁𝑠 independent light sources 

flickering at different frequencies. Each light source is 

associated then to a particular action of the BCI system. 

Therefore, when the user wants the system to perform a specific 

action, he\she shall gaze at its associated light source. Detection 

methodologies aim at determining immediately after the short-

time stimulation period which of the stimulation frequencies in 

the BCI set-up elicited a visual evoked response.  

Steady-state visual evoked potentials, which appear when a 

person gazes at a flickering light source, are measured by 

electroencephalography (EEG). The flickering frequency of the 

light source can range from 1 to 100 Hz [5]. SSVEPs appear as 

oscillatory components in the user’s EEG matching the 

stimulation frequency and its harmonics, they are mainly 

observed in the primary visual cortex, and are characterized by 

an energy increase that is phase-locked with the visual stimulus 

[5]. The SSVEP response is a subject- and stimulation-

dependent phenomenon determined by the stimulation 
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frequency, its intensity, color, and duty cycle [2].  

The brain is a complex, dynamical system that generates non-

stationary EEG patterns [6]. This complexity limits the efficacy 

of non-dynamical feature extraction and classification methods. 

In this context, it is worth mentioning that the study of transient 

responses of complex dynamical systems has recently led to the 

proposal of a new information-processing approach, known as 

Reservoir Computing (RC). This paradigm opens a wide variety 

of possibilities for EEG analysis in general and for real-time 

applications, such as BCI in particular. Although RC techniques 

have been applied with excellent results to motor imagery [7], 

they have never been used for SSVEP detection before (to our 

best knowledge). This is probably due to the assumed stationary 

nature of the SSVEP response. In this work we aim to exploit 

the capabilities of reservoir computing for online SSVEP 

detection. The performance of the proposed RC approach is 

compared to standard canonical correlation analysis (CCA), 

which has shown better performance than traditional fast 

Fourier transform-based spectrum estimation methods [8]. 

The paper is structured as follows. In section 2 we provide an 

overview of reservoir computing. We present the new 

methodology based on RC in section 3. In section 4 we describe 

our experimental protocol, and in section 5 we provide results 

for the two approaches under comparison. We conclude with a 

discussion in section 6.  

II. RESERVOIR COMPUTING 

Artificial neural networks have been extensively used for the 

analysis of stationary problems in computational intelligence. 

These architectures are well understood due to their feed-

forward structure and non-dynamical nature. It is in general not 

possible to detect temporal dynamics using feed-forward 

structures. A possible temporal generalization strategy is to add 

recurrent connections, which allow the system to encode time-

dependent information by providing the network with fading 

memory and transforming it into a complex system [9]. In 

contrast with feed-forward networks, neural networks whose 

activation is fed unidirectionally from input to output, recurrent 

neural networks (RNNs) present at least one cyclic path of 

synaptic connections, implementing a nonlinear dynamical 

system [10]. Dynamical systems are commonly used to model 

non-stationary physical phenomena. These models are 

extensively used in a wide variety of fields including finance 

[11], economics [12] and physiology [13]. 

Since the early 1980s, a wide variety of approaches for adaptive 

learning in networks with recurrent connections have been 

proposed [14]. Training RNNs has traditionally been more 

complex and computationally more expensive than training 

feedforward neural networks. Additionally, cyclic connections 

can provoke nonlinear bifurcations leading to drastic changes 

in its behavior [15]. Echo State Networks (ESN) [16] and 

Liquid State Machines [17] together constitute a new approach 

towards training and applying Recurrent Neural Networks, 

grouped under what came to be known as reservoir computing 

(RC). RC is based on the principle that supervised adaptation of 

all interconnection weights in RNNs is not necessary: training 

a supervised readout from the reservoir is sufficient to obtain 

excellent performance in many tasks [18]. This approach has 

certain analogies with kernel methods in ML, with the reservoir 

performing a nonlinear high-dimensional projection of the input 

signal for discriminating samples that are not linearly separable 

in the original space. At the same time, the so-called dynamical 

reservoir, which is formed by a randomly connected network of 

varying number of nodes, serves as a memory providing the 

temporal context [19].  

The global structure of an RNN is depicted in Fig. 1. Following 

the nomenclature and model adopted by Jaeger in [10] we 

consider a network of 𝐾 input units, N internal units, and L 

output units. Input, internal and output connection weights are 

defined respectively by the connection weight matrices 𝑊𝑖𝑛, 𝑊 

and 𝑊𝑜𝑢𝑡 , 𝑎𝑛𝑑 𝑏𝑎ck-projection weight matrix by 𝑊𝑏𝑎𝑐𝑘. In 

ESN-based supervised training the random input (𝑊𝑖𝑛), 

internal (𝑊) and back-propagation weights (𝑊𝑏𝑎𝑐𝑘) matrices 

form the dynamical reservoir (DR). A DR is an echo state 

network if it presents the echo state property. This property 

states that the current state of a network, which is running for 

an infinite time, is uniquely determined by the history of the 

input and the teacher-forced output (i.e. the initial state of the 

RNN does not matter, since it is forgotten). The echo state 

property has proved to be linked with the characteristics of the 

reservoir, with the input signals and with the input and back-

propagation weights [20,21,22]. The weight matrix is usually 

characterized by its spectral radius, defined as the largest 

absolute eigenvalue of the weight matrix. It is closely connected 

with the intrinsic dynamical timescale of the reservoir, and is 

therefore a key ESN training parameter. A small spectral radius 

leads to a faster RNN response. In most practical applications, 

a spectral radius below unity ensures the echo state property 

[23]. Other key training parameters in RC are the input scaling 

and the model size [23]. The model size is defined by the 

number of internal units N. Generally, a larger DR can learn 

more complex dynamics, or a given dynamics with greater 

accuracy. It is very important however to be aware of the 

possible over-fitting if a large number of internal units is 

chosen, which would lead to poor generalization [10]. The input 

scaling determines the degree of nonlinearity in the reservoir 

responses. Tasks close to linear require small input scaling 

factors, while highly nonlinear tasks demand larger input 

scaling values. 
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Fig.  1 Echo State Network architecture with 2 inputs and 1 output 

III. METHODS 

A. Canonical Correlation Analysis 

Canonical correlation analysis (CCA) [24] is a multivariable 

calibration-less statistical method to calculate the maximal 

correlation between two multi-channel signals. CCA is widely 

used in statistical analysis and information mining [25, 26]. 

SSVEP-based BCI systems have largely used CCA-based 

methods in recent years due to its excellent accuracy and 

information transfer rate [27, 28]. Given two multidimensional 

random variables 𝑋, 𝑌 and their linear transformation 𝑥̃ = 𝑤𝑇𝑋 

and 𝑦̃ = 𝑣𝑇𝑌, CCA finds the weight vectors 𝑤 and 𝑣 that 

maximize the correlation between 𝑥̃ and 𝑦̃. Canonical 

correlation therefore seeks a pair of linear transformations for 

𝑋 and 𝑌 such that when the multidimensional variables are 

transformed, the corresponding coordinates are maximally 

correlated [29]:  

 

                   𝜌 = 𝑚𝑎𝑥
𝐸[𝑥̃𝑦̃]

√𝐸[𝑥2]𝐸[𝑦̃2]
=

𝑤𝑇𝑋𝑌𝑣

√𝑤𝑇𝑋𝑋𝑤𝑣𝑇𝑌𝑌𝑣
 (1) 

 

The SSVEP response is characterized by oscillations in the 

visual cortex matching the stimulation frequency and its 

harmonics. The performance of a given stimulation frequency 

𝑓𝑖 is evaluated by computing the canonical correlation between 

the EEG sequence under evaluation (𝑋) and a reference signal 

(𝑌), constructed as a set of sine-cosine series at the stimulation 

frequency and its 𝑁ℎ harmonics of duration equal to that of the 

EEG sequence.  

 

                              𝑌 =

(

 
 

sin (2𝜋𝑓𝑖𝑡)

Cos (2𝜋𝑓𝑖𝑡)
…

sin (2𝜋𝑁ℎ 𝑓𝑖𝑡)

Cos (2𝜋𝑁ℎ 𝑓𝑖𝑡))

 
 

 (2) 

 

The maximal canonical correlation (𝜌𝑖) is calculated for all 𝑁 

stimulation frequencies ( 𝑓𝑖  ) being tested. In standard CCA the 

stimulation frequency delivering the largest canonical 

correlation (𝜌) is selected as responsible of eliciting the visual 

response [30]. 

B. Reservoir-Computing Ensemble SSVEP Detection 

In this section, we propose a novel approach for extraction and 

classification of SSVEP features, based on an ensemble of as 

many echo state networks as degrees of freedom the SSVEP-

based BCI application has. Each ESN is trained to detect the 

elicited response to a particular stimulation frequency. The 

proposed approach is able to detect linear and nonlinear patterns 

in the EEG response, boosting the capabilities of state-of-the-

art stationary detection methodologies.  

 

1) Temporal SSVEP Feature Extraction: 

SSVEP EEG temporal components are calculated for each of 

the 𝑁𝑒 electrode signals (which are denoted as 𝑥𝑖(𝑛), 𝑖 =

1,2,3…𝑁𝑒). The SSVEP temporal response at 𝑓𝑖 for harmonic 

𝐾 is computed by filtering the raw EEG using a band-pass FIR 

filter (1 Hz bandwidth) with its central frequency at 𝐾 ∙ 𝑓𝑖. The 

ensemble response of every harmonic under evaluation is 

computed by adding the calculated temporal response of each 

harmonic, obtaining the 𝑥𝑖
𝑓𝑖(𝑛) vector. 

 

2) ESN Construction: 

ESNs (one per stimulation frequency) have been configured to 

have one output node, and as many input nodes as EEG 

electrodes measure the visual evoked response (𝑁𝑒). As will be 

explained in following sections, the optimal number of internal 

units, spectral radius, and input scaling factor are calculated 

using three-fold cross validation exhaustive search.  

The temporal decomposition of SSVEP components coming 

from each electrode (𝑥𝑖
𝑓𝑖(𝑛))) feeds the 𝑁𝑒 input nodes of the 

ESN targeting detection of 𝑓𝑖. The proposed ESN detection and 

classification methodology is applied to an EEG recording 

acquired during the interleaving of 𝑁𝑠 non-stimulation periods 

followed by 𝑁𝑠 stimulation ones, where the visual stimulation 

is presented at 𝑓𝑖. The function of the ESN is to discriminate 

visual stimulation periods at 𝑓𝑖 from non-stimulation periods or 

stimulation periods at other frequencies. For this two-class 

classification problem, during ESN training, the network 

outputs (𝑦𝑓𝑖(𝑛)) of samples corresponding to stimulation 

periods at 𝑓𝑖 are set to 1, while the output of samples 

corresponding to non-stimulation periods are set to -1. 

Therefore, during the ESN recall the associated ESN output is 

maximized during the visual stimulation period. 
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Fig.  2 Proposed RC-based SSVEP Feature Extraction Architecture 

for the detection of the stimulation frequency 𝒇𝒊. 

3) Stimulation Frequency Detection: 

SSVEP frequency detection aims at determining which 

stimulation frequency among the ones under evaluation (𝑓𝑖  , 

with 𝑖 = 1,2…𝑁) elicited the visual response during a 

stimulation trial. To achieve this, the RC-based architecture has 

been designed as an ensemble of 𝑁 ESNs, where each ESN has 

been trained for each particular stimulation frequency 𝑓𝑖. The 

SSVEP response at each frequency (𝑅𝑓𝑖) is assessed as the 

difference between the averaged ESN output (𝑦𝑓𝑖(𝑛)) during 

the stimulation observation window and a baseline sequence 

prior the stimulation. As the ESN output is maximized during 

stimulation periods at the trained stimulation frequency, the 

stimulation frequency with maximal 𝑅𝑓𝑖 will be selected as 

responsible of eliciting the visual response. 

IV. EXPERIMENTAL METHOD 

Five Caucasian male subjects S1 to S5 with average age 33.6 

years participated in six recording sessions each, where 

oscillatory visual stimuli were presented at six different 

frequencies 𝑓𝑖: 12, 14, 16, 18, 20 and 22 Hz. Although a strong 

SSVEP response can be obtained for stimulation frequencies in 

the range 5–20 Hz [31], stimulation frequencies below 12 Hz 

were discarded because the subjects found them uncomfortable. 

The visual stimuli were presented using stimulation sources 

consisting of an array of flickering light emitting diodes (LEDs) 

through a diffusing panel of 100 squared centimeters, 

developed specifically for this study. Stimulation sources 

integrated a communication layer through which their 

stimulation frequency, duty cycle, luminosity and color could 

be configured. In this study, the LED current was modulated in 

the form of a squared 50% duty-cycle excitation and with white 

color for every stimulation frequency. 

Each session consisted of one recording per stimulation 

frequency. In each recording, 𝑁𝑠 = 15 stimulation trials 

(duration randomly ranging from 4 to 5 seconds), where the 

visual stimulus was presented, were followed by the same 

number of non-stimulation trials (duration randomly ranging 

from 5 to 8 seconds) with no visual stimulation. Visual stimuli 

were presented using two stimulation sources next to each 

other. Higher number of simultaneous stimulation sources, 

which would reproduce for instance a BCI system of 6 degrees 

of freedom, were not used because of limitations in the 

available hardware and stimulus-presentation platform. In our 

case, one stimulation source was placed on the right of the 

subject, presenting the stimulation frequency under evaluation, 

while the one placed on the left presented a frequency randomly 

selected among the other frequencies used in the experiment. 

Stimulation sources were separated by approximately 25 cm. 

The user was comfortably seated at one-meter distance from the 

stimulation sources and was instructed to look at the stimulation 

source placed on his right when hearing a beep sound (played 

one second before the stimulation started). EEG was acquired 

using an Enobio® recording system at a sampling rate of 250 

samples/second from three channels placed in O1, Oz and O2, 

according to the 10-20 system [32], with the electrical reference 

placed in the right ear-lobe. Background ambient light remained 

homogeneous throughout all experimental sessions. The 

AsTeRICS [33] platform was used to record the EEG streaming 

data, control the stimulation panels, and trigger the recording. 

V. PERFORMANCE EVALUATION AND RESULTS 

The goal of the performance evaluation is to determine whether 

RC-ESNs are a suitable tool to be used in practical SSVEP-

based BCI applications. To do so its performance is compared 

to standard canonical correlation detection. Although, as 

mentioned above, all six stimulation frequencies being tested 

were not simultaneously presented due to hardware limitations, 

a BCI system with six degrees of freedom is simulated. In 

operational conditions the detection methodologies will aim to 

determine which of the 6 frequencies under evaluation (12, 14, 

16, 18, 20 and 22 Hz) is responsible for eliciting the evoked 

potential after the stimulation trial. Self-paced BCIs require the 

system to prompt the user for a response and therefore ignore 

unexpected user input. The performance of such systems is 

usually measured using the information-transfer rate B [34], 

which quantifies (in bits per minute) the amount of information 

reliably received by the system [35]. Denoting the application 

speed in trials/second by V, the classifier accuracy by P and the 

number of degrees of freedom of the BCI system by N, the 

information transfer rate is calculated as:  

 

     𝐵 = 𝑉 [𝑙𝑜𝑔2(𝑁) + 𝑃𝑙𝑜𝑔2(𝑃) + (1 − 𝑃)𝑙𝑜𝑔2 (
1−𝑃

𝑁−1
)] ∗ 60      (3) 

 

1) Canonical Correlation Analysis: 

Recordings have been band-pass filtered using a finite 

impulse response filter with 250 coefficients and high and 

low cut-off frequencies set to 1 and 45 Hz, respectively. 
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The filtering aims to reduce the influence of high 

amplitude low-frequency components caused by motion 

artifacts and bad electrode-skin contact, as well as 

reducing power line-noise interferences. After filtering, 

stimulation sequences have been extracted and split into 

shorter observation windows starting at the beginning of 

the visual stimulation. Maximal canonical correlation has 

been calculated for each stimulation frequency and its 

second harmonic. Table 1 presents the detection accuracy 

and ITR for the 6-degree-of-freedom BCI-system under 

test in 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4-second observation 

windows. Figure 3 shows the individual ITR and 

detection accuracy for each participant for the proposed 

observation windows. Detection accuracy has been 

proven to increase along with the observation window 

length, achieving a maximum of 65% in the 4-second 

observation window. The maximum information transfer 

rate, 21 bits/minute, was obtained in the 1.5-second 

observation window. The data shows an important 

amount of subject variability: while some subjects 

achieve an excellent detection accuracy and ITR (Subject 

3 has 92% classification accuracy for a 4-second 

observation window and a ITR of 75 bits/minute in 1.5-

second windows), others deliver poor classification 

results (Subject 5 has 23% detection accuracy for 4-

second observation windows and a maximum ITR of 6 

bits/minute). 

 

2) ESN Parameterization and Stimulation Frequency 

Detection 

ESN networks have been configured to have 𝑁𝑒 = 3 input 

nodes and one output node. Input nodes are fed with the 

filtered signals coming from O1, Oz and O2. The 

activation function of the network nodes is set to a 

hyperbolic tangent. A washout duration of 250 samples 

has been applied. 

RC-ESN Optimal Parameterization: 

The optimal number of internal units, spectral radius and 

input scaling has been calculated through exhaustive 

search. The detection accuracy calculated over 4-second 

observation windows and 0.5-second baseline has been 

assessed for every combination of internal units (from 10 

to 200), spectral radius (from 0 to 1) and input scaling 

factor (0.001, 0.01, 0.1 and 1). In order to keep the 

temporal dynamics, recordings (containing 15 stimulation 

trials) have been split into three non-overlapping time 

series consisting of five consecutive stimulation/non-

stimulation trials. Cross-validation using the 

concatenation of two-time series as training set and the 

remaining series as test set has been employed to evaluate 

every tuple under test. In each stimulation sequence under 

evaluation, the frequency maximizing the difference 

between the average ESN output in the 4-second 

observation window and the average ESN output in a 0.5-

second baseline measured before the stimulation trial is 

selected as responsible of eliciting the visual evoked 

response. A spectral radius of 0.7, 140 internal units and 

0.1 input scaling factor was found to deliver the best 

average classification accuracy across subjects (65.4%).  

RC-ESN SSVEP Detection:  

The previously calculated optimal spectral radius, internal 

units and input scaling are applied to SSVEP detection in 

0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4-second observation 

windows using a baseline of 0.5 seconds. Cross-

validation as described in Section 5.2.1 above has been 

used to assess the detection performance at each 

observation window. The average of three independent 

iterations has been calculated in order to reduce the 

random dynamical reservoir construction. Table 1 

presents the calculated detection accuracy and ITR, 

considering the trial duration as the addition of the 

observation window and the initial baseline duration. 

Figure 4 presents individual ITR and detection accuracy 

for each participant. Unlike in canonical correlation 

analysis, observation window duration does not influence 

the detection accuracy of the RC-ESN-based detection. 

Similar average and individual detection performance is 

achieved for every observation window length under test. 

Average detection accuracy for every observation 

window is similar to the maximum accuracy obtained for 

CCA, in this case in 4-second windows. This fact boosts 

the maximum obtained ITR that reaches 49 bits/minute in 

0.5-second windows. 

ESN Parameterization Influence in SSVEP detection: 

The spectral radius is intimately connected to the 

timescale of the reservoir and is a key ESN parameter. 

The impact of spectral radius is evaluated by setting the 

number of internal units to 140, the input scaling to 0.1 

and computing the detection performance through cross 

fold validation as described in Section 5.2.1, for spectral 

radius values of between 0 and 1. Setting the spectral 

radius to zero kills the recurrence in the reservoir. Since 



Chapter 3. Echo State Networks Ensemble for SSVEP Dynamical Online
Detection

55

 6 

feedback weights are used, such a zero-spectral-radius 

system would amount to an IIR filter. Figure 5 shows 

individual and average detection accuracy performance 

for different observation windows. The results reveal that 

performance significantly decreases for a zero-spectral 

radius system, proving that the system is actually 

exploiting the within-reservoir recurrence to perform the 

SSVEP detection. According to Figure 5, the average 

performance of all observation windows under test shows 

that average detection accuracy slightly improves along 

with the spectral radius up to a spectral radius value of 

0.7.  

The model size, defined by the number of internal units, 

is also a key training parameter. In general, more internal 

units can learn more complex dynamics, although it is 

very important to avoid over-fitting of the training set if a 

large number of internal units is used. The influence of 

model size in SSVEP detection performance is evaluated 

setting the spectral radius to 0.7, the input scaling factor 

to 0.1 and calculating the detection performance through 

three-fold cross validation as described in Section 5.2.1, 

for a number of internal units ranging from 10 to 200. In 

Figure 5 the detection performance of the model size 

under evaluation is presented. The results show that 

average detection performance increases asymptotically 

with model size.  

Table 1 Detection accuracy percentage and ITR (within brackets) in 

bits / minute 

 

 
Fig.  3 Information transfer rate (left) and detection accuracy (right) 

at different observation-window length using standard CCA 

detection. 

 

Fig.  4 Information transfer rate (left) and detection accuracy (right) 

at different observation-window length using ESN-based detection. 

 

Fig.  5 Detection accuracy of the ESN-based method as function of 

the number of internal units (left) and spectral radius (right). 

Individual Stimulation Frequency Detection 

SSVEP is a subject-dependent phenomenon in which a given 

stimulation frequency has proved to range from excellent 

classification accuracy to random classification among subjects 

[36]. The feasibility of an SSVEP-based system thus strongly 

depends on the appropriate individualization of used 

stimulation frequencies. Table 2 presents the detection accuracy 

for each stimulation frequency obtained for the observation 

windows delivering largest average detection accuracy along all 

stimulation frequencies for CCA and ESN-based 

methodologies, respectively 4 and 2 seconds.  ESN-based 

methodologies significantly improve the average detection 

accuracy of subjects 1 and 5, while standard CCA performs 

better in subject 2 and 4. Both methodologies deliver similar 

average classification performance for subject 3. Results show 

that the ESN-based method significantly improves 

classification in some stimulation frequencies and subjects 

compared to CCA (subject 1, stimulation frequency 20 Hz) and 

vice versa (subject 2 stimulation frequency 14 Hz). These 

classification differences may prove the elicitation of evoked 

responses of different nature, explaining why stationary and 

dynamical detection methodologies perform differently. The 

brain response to a flickering stimulation has traditionally been 

considered to be a steady-state system, in which the effect 

elicited is considered to be unchanging in time. In the cases in 

which reservoir computing outperforms CCA, complex 

dynamical patterns and/or complex synchronization among 
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EEG channels may have been detected. The complex nature of 

the elicited visual stimulation response shall be studied further 

in order to complete the definition of steady-state visual evoked 

potentials. In any case, our results indicate that standard CCA 

and ESN-based methodologies are complementary in terms of 

SSVEP detection. 

 

Table 2 Detection accuracy percentage of canonical correlation 

analysis (4-seconds observation window) and proposed ESN-based 

methodologies (2-seconds observation window) 

 

VI. DISCUSSION AND CONCLUSIONS 

We have presented a reliable SSVEP-detection methodology 

based on reservoir computing with online capabilities. Its 

performance has been successfully compared to standard 

canonical correlation analysis for the construction of a BCI 

system of six degrees of freedom. The information transfer rate 

of the hereby proposed approach does not overcome state of the 

art high-speed SSVEP approaches such as Nakanishi’s [39]. 

However it is limited in terms of degrees of freedom (6 instead 

of 32), covers a larger stimulation frequency range (from 6 to 

22 instead of from 8 to 15) without phase-coding and uses a 

smaller number of electrodes. 

The performance of our proposed ESN-based method proved to 

be non-dependent from observation window length, delivering 

similar detection accuracy for windows ranging from 0.5 to 4 

seconds (from 61% to 65%). In contrast, CCA showed a strong 

dependence on the stimulation window duration, with 0.5-

second observation windows delivering random classification, 

and accuracy increasing with window length, reaching a 

maximum detection accuracy of 65% in 4-second windows. 

These results highlight the communication capabilities of the 

ESN-based method, which achieves an average information 

transfer rate of 49 bits/minute (with a maximum ITR of 108 

bits/minute obtained for a single subject), compared with the 

maximum average information transfer rate of 21 bits/minute 

achieved by the CCA method. The ESN-based method achieves 

an excellent information transfer rate for a six-degrees-of-

freedom BCI system compared to other state of the art high-rate 

SSVEP systems [2,37,38].  

SSVEP is a subject-dependent technique in which the 

stimulation frequency defines the classification performance. In 

this study, a wide range of frequencies ranging from 10 to 22 

Hz in steps of 2 Hz is used to simulate a six-degrees-of-freedom 

SSVEP-based BCI system. Individualized stimulation 

frequency selection is expected to improve the detection 

accuracy of both CCA and ESN-based methods. Both 

methodologies have proved to be complementary in terms of 

detection accuracy. The ESN and CCA-based methods proved 

to deliver excellent detection accuracy at different stimulation 

frequencies. For instance, in our study Subject 5 offered 87% 

detection accuracy at 20Hz stimulation when using the ESN-

based detection methodologies, and near-to-random 

classification with the CCA-based method. In contrast, Subject 

2 showed 80% detection accuracy for CCA-based methods and 

33% for the ESN-based technique. A possible explanation for 

this behavior could be that in different subjects each stimulation 

frequency may elicit evoked responses of different nature, in 

terms of their dynamical/stationary characteristics. 

Specifically, reservoir computing methods are able to detect 

complex dynamical patterns and/or complex synchronization 

among EEG channels, in contrast to stationary patterns detected 

by canonical correlation analysis. The brain response to a 

flickering stimulation has traditionally been considered to be a 

steady-state system, in which the effect elicited is considered to 

be unchanging in time. The hypothesis of complex dynamical 

activity elicited by visual repetitive stimulation shall be further 

studied in order to complete, if confirmed, the definition of 

steady-state visual evoked response. 
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Background: 

Attention Deficit Hyperactivity Disorder (ADHD) is one of the 

most common neurodevelopmental disorders in childhood. 

ADHD assessment is subjective and heavily biased towards 

clinical practice and experience, which leads to high 

misdiagnosis. Finding solid quantitative evidence of neuro-

psychophysiological dysfunction in the ADHD population has 

therefore become one of the most relevant challenges in 

computational neuroscience. 

New Method: 

This study proposes a novel non-stationary ADHD biomarker 

based on Echo-State-Networks capable of quantifying changes 

in EEG non-stationary dynamics between low (resting with 

eyes closed) and normal (resting with eyes open) arousal states. 

According to the hypo-arousal theory, ADHD population 

shows arousal deficits and looks for self-stimulation through 

excessive activity in order to achieve normal arousal levels.  

Results: 

We successfully verified the hypothesis that measured 

differences between these two conditions are altered in the 

ADHD population. Statistically significant differences were 

found only in theta and beta rhythms. Our neural network 

discriminates better in the ADHD population, suggesting that 

differences in EEG patterns between low and normal arousal 

conditions are larger in the ADHD population. 

Comparison with Existing Methods: 

Traditionally, ADHD biomarkers have revealed an increase in 

stationary power in the theta band and a decrease in beta. The 

non-stationary metric here proposed finds significant 

differences at the same brain rhythms. Compared to stationary 

band power, our metric provides larger statistical significance 

in the data-set under test. 

Conclusion 

A novel non-stationary ADHD biomarker capable of measuring 

complex synchronization and non-stationary changes between 
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low and normal arousal conditions has been successfully 

presented and tested. 

Highlights: 

-We have successfully proposed a novel non-stationary EEG 

biomarker for ADHD. 

-This biomarker is capable of quantifying changes between 

low and normal arousal states. 

-It has shown statistical significance when comparing ADHD 

and control populations. 

-It was successfully compared to state of the art. 

-Echo State Networks have been applied for the first time in 

ADHD characterization. 

 
Key Words—Reservoir Computing, ADHD, Echo State 

Networks, EEG, Biomarkers 

I. INTRODUCTION 

Attention deficit hyperactivity disorder (ADHD) [1] is a 

chronic, pervasive childhood disorder characterized by low 

frustration tolerance, excessive impulsivity, distractibility, and 

inability to sustain attention and concentration [2, 3, 4]. It is one 

of the most commonly diagnosed [2] and investigated [4] 

neurodevelopmental disorders of childhood. The diagnosis of 

ADHD is based on the evaluation of 9 symptoms of inattention 

(IN) and 9 symptoms of hyperactivity/impulsivity (HI) using 

DSM-IV [5]. ADHD diagnosis is usually stratified in 3 

presentations or subtypes: combined (6 or more IN and 6 or 

more HI symptoms), predominantly inattentive (6 or more IN 

and less than 6 HI symptoms), and predominantly 

hyperactive/impulsive (6 or more HI and less than 6 IN 

symptoms). The diagnosis of ADHD has a high prevalence rate 

that is estimated between 5% and 7% [6, 7].  

 

Although ADHD is currently considered a neurodevelopmental 

disorder [8], the diagnostic criteria continue to be based 

primarily on subjective behavioral assessment derived from 

parent and teacher reports, interviews, or direct observation. 
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Therefore, as Crippa et al. (2017) point out, the diagnosis is 

heavily based on the experience and practical knowledge of 

clinicians. This has at least two important consequences. First, 

there is a social and scientific concern about the reliability and 

variability of this approach to diagnosis, and the potential for 

high probability of a misdiagnosis [9,10]. And, second, 

although some authors consider that brain structural and 

functional deficits have been proven to be associated with 

ADHD [10], there is not a clear consensus about this point. 

Therefore, finding solid evidence of neuropsychophysiological 

dysfunction in ADHD has become one of the most relevant 

challenges in mental health research. 

 

In recent years, electroencephalographic (EEG) measures in 

resting-state conditions have been widely used to monitor 

neurophysiological abnormalities in the ADHD population 

[11]. Most reported findings have shown that the ADHD 

population presents an increased power in fronto-central 

regions in low frequencies (typically in the theta band) [12, 13] 

with decreased power in fast frequencies (typically in the beta 

band) [14, 15]. Theta/beta ratio (TBR) has long been used as an 

ADHD biomarker [16]. The US Food and Drug Administration 

(FDA) approved the Neuropsychiatric EEG-Based ADHD 

Assessment Aid (NEBA®), which uses the theta-beta ratio of 

the EEG measured in the central EEG electrode Cz combined 

with a clinician’s evaluation to support the diagnosis of ADHD. 

NEBA cutoffs for analysis were pre-established and are 

different for adolescents and children [17,18]. However, not all 

recent studies could validate the usage of TBR, as a biomarker 

for diagnosing ADHD. Recent studies documented an 

insufficient accuracy for TBR and theta power in distinguishing 

children with ADHD from a control group [11, 19, 20]. 

Therefore the discovery of novel robust ADHD biomarkers 

remains a hot research topic.  

 

EEG band-power assessments assume a large degree of 

temporal stability in brain oscillations. Typically, in EEG 

analysis the signal is split into short-time epochs that are 

considered to be pseudo-stationary. Band power is estimated at 

each epoch and subsequently averaged across them [21]. 

However, it is well known that the brain is a complex system 

that generates non-stationary EEG patterns of high 

dimensionality [22, 23]. Such dynamic, chaotic behavior 

advocates for the use of non-stationary EEG analysis 

techniques for EEG feature extraction and classification. Here 

we apply this approach to reexamine the hypothesis that ADHD 

is associated with a hypoaroused brain state, suggested by 

scientific evidence over the past decades. This hypothesis is 

based on the fact that arousal and attention are related and 

overlapping concepts [24]. Arousal acts as a modulator of 

attention levels, with changes in arousal followed by changes in 

attention [25]. Recent theories, such as the cognitive-energetic 

model [26], include the concepts of arousal, activation, and 

alertness as basic mechanisms in ADHD [27, 28, 29].  

 

Following the hypoarousal ADHD theory, our hypothesis is that 

the magnitude of EEG differences between low 

attention/arousal states (during eyes closed) with respect to 

normal attention/arousal states (during eyes open), may be 

altered in the ADHD population. We test here this hypothesis 

through the study of band-power stationary features, but also 

dynamical alterations in the temporal dynamics. To this effect, 

a novel approach based on recurrent neural networks (RNN) in 

its reservoir computing (RC) form (echo-state networks) is 

proposed.  

 

EEG Differences between eyes open (EO) and closed (EC) 

conditions have been largely reported in the alpha band. 

Arousal increase during EO with respect to resting state with 

EC has been associated with a global decrease of EEG alpha 

levels [30]. Alpha levels are in general substantially reduced in 

amplitude by eye opening [31] and its regime is characterized 

by a dominating oscillatory rhythm known as the individual or 

peak alpha frequency (IAF or PAF). This rhythm is however 

not strictly monotonic, varying over a range of about 1 Hz [32]. 

Regarding EO-EC changes in other EEG bands, in the EO 

condition, reductions of absolute power levels in the delta, theta 

and beta bands been reported in children. Power topographic 

changes across the scalp have been also observed in all bands 

[33].  

 

We hypothesize that the EEG dynamic regimes during 

interleaving intervals of EC-EO, are discriminated through the 

application of RC differently for ADHD and healthy subjects. 

RC has been applied in the past to several EEG feature 

extraction and classification problems such as brain computer 

interfaces [34, 35], epileptic seizure [36], prognosis in 

Parkinson’s disease [37] or event detection [38]. In a previous 

work [39] we have demonstrated the capability of RC to well 

characterize complex dynamics among EEG channels. In the 

paper presented herein we employ RC to characterize complex 

dynamics between EEG channel pairs, within frequency bands, 

which represent therefore a non-linear connectivity between 

them. To the best of our knowledge, RC has never been applied 

as a marker for the dynamic characterization of EEG in ADHD. 

 

II. RESERVOIR COMPUTING 

Artificial Neural Networks (ANNs) are computational models 

inspired by the structure and function of the brain [40, 41, 42]. 

Their structure consists of a network of interconnected artificial 

neurons also known as nodes or units. Artificial neurons 

transmit signals from one to another along the network 

simulating the biological synapse process. In practice, artificial 

neurons receive signals from connected neurons, with a fixed 

weight (𝑤𝑖) that is set during the network training process. The 

activation function of each neuron non-linearly maps the sum 

of input weighted connections into the signal transmitted to 

other neurons. Typical activation functions in ANN are the 

rectified linear unit, the sigmoid, the hyperbolic tangent or the 

unit step. A representation of an artificial neuron is displayed in 

Figure 1.  

  

ANNs in general present three stratums of neurons: the input, 

hidden and output layer. Figure 2 represents a network similar 

to the one used in this work with 2 input units and one output 

unit. In the network two input signals 𝑢1(𝑛) and  𝑢2(𝑛) feed the 

two units of the input layer whose goal is to interface with input 
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data. Input weights 𝑊𝑖𝑛 map the input nodes into the hidden 

layer. Internal weights (𝑊) interconnect hidden layer units 

while output weights (𝑊𝑜𝑢𝑡) map the hidden nodes into a single 

output node. Adding loops to the hidden layer (𝑊𝑏𝑎𝑐𝑘) 

transforms what would otherwise be a standard feedforward 

network (e.g. multilayer perceptron) into a recurrent network, 

and allows the model to encode time-resolved information and 

thus to incorporate memory, converting it into a dynamical 

system [43].  

 

In the 2000s, reservoir computing (RC) –a new framework for 

training, understanding and using Recurrent Neural Networks– 

was proposed independently and simultaneously under the 

names of Echo State Networks (ESNs) [44] and Liquid State 

Machines [45]. Reservoir computing is based on the principle 

that certain structural properties of the network make the 

supervised training of all weights unnecessary. In particular, if 

the network obeys an algebraic property known as the echo state 

property (ESP) only readout connections need to be adapted in 

a supervised way. The untrained network, whose weights are 

fixed and randomly generated, is known as the dynamical 

reservoir (DR) and consists of input-scaling, back-projection 

and internal weights. The reservoir provides memory while 

nonlinearly expanding the input signal [46]. 

 

The ESP holds if the state of the network asymptotically 

depends only on the input signal, implying that initial 

conditions dependencies are lost progressively. In practice, 

input and back-propagation weights do not affect the echo state 

property that only depends on the internal weights of the hidden 

layer. In most applications if the spectral radius of internal 

weights, calculated as the largest absolute eigenvalue of the 

adjacency matrix of the reservoir, is kept below one the ESP 

holds [46], although unlikely exceptions have been reported 

[47]. 

 

According to ESN best practices [46], the most important 

global-parameters that shall be optimized are the: 1) input 

scaling, 2) spectral radius, 3) leaking rate and 4) reservoir size. 

When scaling the network inputs, in practice the same input 

scaling factor is applied to 𝑢1(𝑛) and 𝑢2(𝑛). The input scaling 

drives the degree of nonlinearity in the reservoir. Linear tasks 

require small input scaling factors while complex tasks demand 

larger input scaling values, easily saturating the nodes and thus 

transforming them into binary switches. The spectral radius 

governs the time scale of the reservoir, and thus determines how 

the influence of inputs remains in the system [48], whereas the 

leak rate determines the speed of the reservoir to update 

dynamics. The reservoir size is given by the number of internal 

units and is in general larger in ESNs compared to other neural 

network approaches [49]. It has to be large enough to learn the 

dynamics of the input signals, but not too large so it generalizes 

well with non-training data. The best approach for output 

weight training is ridge regression regularization, which 

removes the requirement of injecting noise in the network 

inputs to ensure a good generalization [46, 50].  

 

Reservoir computing greatly simplifies the training of recurrent 

neural networks. The dynamical reservoir is randomly 

constructed according to selected global parameters. Once the 

DR weights are fixed, readout connections are learnt using a 

training input and a teacher-forced output. The network is thus 

able to efficiently perform tasks with complex temporal 

information with a low-training cost, since only the readout 

weights need to be trained. 

 
Fig. 1.  Artifical Neuron representation 

 

 
Fig. 2.  Recurrent Neural Network Representation. 

III. METHODS 

A. Participants 

52 children aged 7-11 participated in this study. All subjects 

brought signed parental informed consent and were assigned to 

one of two groups: clinical diagnosed ADHD group or healthy 

controls. Children diagnosed with ADHD were recruited from 

clinical units specialized in pediatric disorders in Palma de 

Mallorca, Spain. To be considered for the ADHD group, 

children had to fulfill the following inclusion criteria: (1) being 

clinically diagnosed with ADHD by a specialist based on DSM-

IV criteria (2) not having comorbidity problems of mental 

retardation, autism, bipolar or psychotic disorders, history of 

epileptic seizures or any other relevant medical disorder. 28 

children were first recruited and assessed into this group, but 

during the data analysis 7 of them had to be rejected: 3 because 

they had taken medication 24h prior to the EEG assessment, and 

other 4 due to noisy EEG recordings. The final ADHD group 

thus included 21 children: 12 with combined ADHD subtype 

(11 males and 1 female) and 9 with inattentive subtype (3 males 

and 6 females). 

Healthy controls were selected from standard school age-

matched classrooms. The research team met with the schools’ 

principals and tutors, and gave them a dossier (including the 

informed consent) explaining the project. This dossier was sent 

home with the kids for their parents. Inclusion criteria for this 

group were: (1) not having any psychopathology diagnosis, 

neither mental retardation or learning disorders, (2) not showing 

behavioral problems nor learning difficulties in class (as 

asserted by their tutors) (3) not having major family problems 
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that could interfere with their participation in the study. In the 

original control sample there were 43 children, but 13 had to be 

rejected at the final analysis: 7 of them due to academic 

problems, other 5 due to noisy EEG recordings, and the 

remaining one due to visual difficulties that prevented him from 

carrying out one of the experimental tasks. Thus, the final group 

of healthy controls consisted of a sample of 30 participants. The 

demographic characteristics of the experimental groups are 

summarized in Table 1 below. 

TABLE I 

EXPERIMENTAL POPULATION DEMOGRAPHIC CHARACTERISTICS 
 

 ADHD (n = 21) Control (n = 30)    

Age in years M 9.6 (SD 1.4) M 9.3 (SD 1.5)    

Male/Female 14 / 7 13 / 17    

ADHD C/I 12 / 9 -    

Medication (Yes/No) 6 / 15 -    

 

B. Experimental Procedure 

The most relevant findings in ADHD biomarkers have been 

obtained in fronto-central regions [51]. Therefore, in this study 

we measured the brain activity of the participants in C3, Cz, C4, 

F3, Fz and F4 using six Ag/AgCl electrodes according to the 

10/10 EEG standard positioning system [52]. EEG data was 

obtained with a Neuroelectrics Enobio® recording system at a 

sampling rate of 500 Hz. The CMS/DRL electrical reference 

was placed in the right mastoid. The experimental protocol 

consisted of a 3-minutes resting-state eyes-open (EO) recording 

followed by a 3-minute eyes-closed (EC) recording. 

Participants were instructed to stay still looking at a fixation 

cross displayed in a computer screen at one meter-distance.  

 

 
Fig. 3.  Position of F3, Fz, F4, C3, Cz and C4 according to 10/20 system 

 

C. ESN-Based Dynamical Synchronization Metric 

We now introduce our ESN-based approach aiming at 

quantifying within-subject dynamical differences between 

resting EO and EC states at specific frequency bands. The final 

goal is to employ such performance measure as a surrogate for 

the differences of EEG signal dynamics, and therefore as a 

marker for characterizing ADHD patients. The following 

paragraphs describe the signal processing and analysis pipeline 

that lead to the computation of the aforementioned biomarker.  

 

Recordings are first filtered using a finite impulse response 

filter (FIR) at the following bands: theta1 (4-6 Hz), theta2 (6 -

10 Hz), alpha1 (8 - 11 Hz), alpha2 (10 - 13 Hz), beta1 (13-20 

Hz), beta2 (20-30 Hz), gamma1 (25-35 Hz) and gamma2 (35-

45 Hz). The reference method has a substantial impact on 

potential measurements. Many reference strategies can be used 

in EEG analysis, including single electrode reference, linked-

ears, linked-mastoids, ipsilateral-ear, contralateral-ear, bipolar 

references, the tip of the nose or weighted electrode sum [53]. 

Each modality has its own advantages and disadvantages. In 

practice, the electrode reference is chosen based on the 

electrode montage and the characteristics of the feature to be 

calculated. In this work the average reference of central 

electrodes C3, Cz and C4 has been used as reference. Frontal 

electrodes were not selected for referencing as they are likely 

affected by ocular artifacts. Given we are explicitly taking EO 

intervals into account, the use of frontal signals in the 

referencing process could distort the EEG dynamics of other 

channels. 

 

After referencing, channels C3, Cz, C4, F3, Fz and F4 are split 

into 10-second epochs with no overlap. Epochs containing 

samples larger than 75uVs at any channel after de-meaning are 

rejected, as they are considered to be contaminated by artifacts. 

Since we are only interested in signal dynamics, each 10-second 

epoch is individually standardized to mean zero and standard 

deviation one, removing the amplitude information. EC and EO 

standardized epochs are then sequentially concatenated creating 

a continuous EO-EC series for each channel and frequency 

band. EO-EC series are then smoothed by calculating its 

envelope using the Hilbert transform [54]. Smoothing removes 

the possible edge effects produced by the concatenation EO and 

EC sequences. 

 

Given we want to extract a connectivity measure, ESN 

networks are fed with the previously presented interleaving 

temporal dynamics of EO and EC series coming from two EEG 

channels filtered at the same frequency band. A teacher-forced 

signal with EO samples set to 1 and EC samples set to -1 is used 

for training, through which the network learns to distinguish 

between the two regimes. In previous works we have 

demonstrated that among other dynamics, ESNs are capable of 

detecting complex synchronization between two temporal time-

series such as generalized synchronization [55]. We thus expect 

ESN to be capable of detecting synchronization variations 

among channels between the EO and EC regimes. This is why 

we will define the resulting biomarker as Channel Dynamical 

Synchronization Metric (CDSM). We set the ESN node 

activation function to the hyperbolic tangent, the spectral radius 

to 0.8, the input-scaling factor to 0.1, the ridge regression 

coefficient to 0.5, and the number of units in the hidden layer to 

500. The network output is low-pass filtered at 5 Hz in order to 

remove high-frequency components. 

 

We train thus the network to discriminate between EO and EC 

regimes for every combination of pairs of electrodes at one 

frequency band. To quantify the discrimination capability we 

compute the mean squared error (MSE) between the teacher-

forced signal and the trained ESN output. We call this measure 

the Channel Dynamical Synchronization Metric (CDSM). This 
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feature quantifies how well the network learns to discriminate 

between the EO and EC conditions at a certain band for a pair 

of electrodes. The Dynamical Connectivity Index (DCI) of an 

electrode for a certain band is defined as the average CDSM of 

its combination with every other electrode. In order to reduce 

the random effect introduced by the dynamical reservoir 

construction, we calculate the average CDSM over five 

independent initialization of the ESN, and use these replicates 

for further statistical analysis.  

D. Stationary Analysis 

We performed a comparative evaluation of the newly proposed 

approach with a conventional stationary spectral analysis. The 

goal is to obtain a better understanding of the ESN results and 

to explore non-dynamical changes in the EEG rhythms. The 

average stationary spectral response and power at frequency 

bands defined in 2.C is computed for each subject at EO and 

EC conditions using as reference also the average of C3, Cz and 

C4. The ratio of the average band power per channel between 

EC and EO conditions was calculated to measure the stationary 

differences between these two conditions at subject level for the 

sake of comparison with the proposed DCI. 

E. Statistical Analysis 

The statistical analysis aims at measuring if the samples under 

comparison, belonging respectively to ADHD and control 

groups are independent and therefore coming from populations 

with different distribution. According to the Kolgomorov-

Smirnoff test result [56] all samples under test do not present a 

Gaussian distribution. Therefore, we used a nonparametric two-

sided Wilkoxon rank-sum test [57], which unlike the t-test does 

not assume normal distributions, to identify statistical 

differences between the ADHD and control groups. The null 

hypothesis was rejected only if the obtained probability value 

was less than 5%. Statistical significance between groups is 

here represented by * for probabilities below 5%, ** for 

probabilities below 1% and *** for probabilities below 0.1%. 

IV. RESULTS 

A. Dynamical Synchronization Metric Analysis 

Figure 4 shows a connectivity representation of the statistically 

significant p-values (p<0.05) obtained when comparing ADHD 

and control populations.  We observe that the synchronization 

metric proposed here discriminates well between populations, 

especially in theta and beta bands. Figure 5 and 6 depicts the 

ADHD (blue) and control (red) CDSM grand averages and 

standard error of the mean (SEM) in the theta1 and beta1 bands. 

Given that the CDSM quantifies the error between the ESN 

output and the EO-EC ground truth, we can conclude that the 

network learned better the difference between the two 

conditions in the ADHD population. This advocates for the 

presence of larger differences in the dynamical regimes of the 

EEG in the ADHD group than in this of the healthy controls. 

  

 

 

 
Fig. 4. Connectivity CDSM representation of statistically significant p-values 

when comparing ADHD and control populations 

 
Fig. 5. Theta1 CDSM grand averages and SEM 

 

 
Fig. 6. Beta1 CDSM grand averages and SEM 

 

Figure 7 displays the grand average Dynamical Connectivity 

Index together with the standard error of the mean. Results are 

consistent with previously discussed findings. The DCI is 

smaller in the ADHD population, showing a larger difference 

in its temporal dynamics between EC-EO conditions. Table II 

summarizes the statistical significance when comparing the two 

groups. As can be observed, differences between groups are 

representative in the theta1, beta1 and beta2 bands. 
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Fig. 7. Dynamical Connectivity Index (DCI) grand averages and standard 

error of the mean in ADHD and control populations 

 
TABLE II 

DYNAMICAL CONNECTIVITY INDEX STATISTICAL SIGNIFICANCE WHEN 

COMPARING ADHD AND CONTROL POLLUTIONS 

 

 

Dynamical Connectivity Index 

θ1 θ2 α1 α2 β1 β2 γ1 γ2 

C3 **    *    

Cz **    ** * º  

C4 **    * **   

F3 **    **    

Fz **    **    

F4 **    ** *   

 

B. Stationary Band Power Analysis 

Figure 8 represents the grand average spectral response together 

with the standard error of the mean in the 4-45Hz frequency 

interval. We can observe that the energy in theta and alpha 

increases in the EC condition for both the ADHD and control 

groups.  When we look independently at each condition we 

observe an EEG slowing both in EO and EC. This effect is 

manifested as a shift of the alpha peak frequency towards lower 

frequencies and an energy increase of low frequency 

components.  

 

Figure 9 and 10 represent the power grand averages and 

standard error of the mean for the ADHD and control 

populations, for both the EO and EC conditions. We observe a 

power increase in low frequency bands theta and alpha in the 

ADHD populations for the two conditions. Statistically 

significant power differences between ADHD and Control 

groups are presented in Table III and IV, where we can observe 

that theta2 delivers the most statistically significant differences 

both for EO and EC conditions. 

 

Figure 11 shows the grand average and standard error of the 

mean of the EC-EO power ratio metric as defined in section 

3.D. In both populations we observe a power increase during 

EC in low frequencies (theta and alpha), while in high 

frequencies (beta and gamma) the power increases in EO. 

Statistical differences between ADHD and control  populations 

were not found at any band or electrode. 

 

 
Fig. 8. Grand average spectral response and standard error of the mean of 

ADHD EO, ADHD EC, Control EO and Control EC populations 

 

 
Fig. 9. Power grand averages for ADHD and control population in eyes open 

 

 
Fig. 10. Power grand averages for ADHD and control population in eyes 
closed 

 

 
Fig. 11. EC-EO power ratio grand averages in ADHD and control populations 

 
TABLE III 
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EYES OPEN STATIONARY POWER STATISTICAL SIGNIFICANCE WHEN 

COMPARING ADHD AND CONTROL POLUATIONS 

 Stationary Eyes Closed 

θ1 θ2 α1 α2 β1 β2 γ1 γ2 

C3         

Cz  **       

C4         

F3 * **   *    

Fz * **       

F4  **   *    

 
 

TABLE IV 

EYES CLOSED STATIONARY POWER STATISTICAL SIGNIFICANCE WHEN 

COMPARING ADHD AND CONTROL POLUATIONS 

 Stationary Eyes Open 

θ1 θ2 α1 α2 β1 β2 γ1 γ2 

C3  **       

Cz  *       

C4  **       

F3  **   *    

Fz  *       

F4  *   *    

 

V. DISCUSSION 

The diagnostic of ADHD is currently established based on 

subjective behavioral measures. ADHD diagnosis is therefore 

biased by cultural, practice and experience factors of clinicians. 

In the last decades, it has been shown that children suffering 

from ADHD may have different neural organization, especially 

in central and frontal areas compared to their age-matched 

control population. This fact advocates for the use of non-

invasive brain monitoring techniques, such as EEG, to quantify 

abnormal brain activity patterns. Despite great advances in the 

field of ADHD biomarker discovery, the current state-of-the-art 

methodologies, such as the well accepted stationary theta 

increase, beta decrease in ADHDs, have proved insufficiently 

accurate in many scenarios. Moreover, the non-stationary and 

chaotic nature of brain activity supports the use of non-

stationary techniques capable of detecting abnormal signal 

dynamics. 

 

ADHD, among other behavioral symptoms, is characterized by 

a child’s inability to sustain attention as well as inappropriate 

arousal levels. In this study, we propose to study brain activity 

disparity between low arousal/attention levels (resting eyes 

closed) and normal attention/arousal levels (resting eyes open) 

as explained in section 1. Following the ADHD hypoarousal 

approach our hypothesis relies in that the disparity between 

these two conditions may be altered in the ADHD population. 

To measure it we propose a machine-learning based 

methodology capable of learning dynamical differences 

between EC-EO conditions. An echo state network input is fed 

using the filtered temporal series of pairs of electrodes and 

trained to discriminate between these two. As the amplitude 

information of these series is removed through standardization, 

the neural network is believed only to capture the signal 

dynamics. In previous works we have proved that ESNs are 

capable of detecting generalized synchronization between two 

temporal time-series [55]. As we are in a similar scenario we 

expect ESN to, among other dynamics, detect synchronization 

variations among channels between EC and EO regimes. The 

difference between EO and EC has also been studied through a 

stationary approach that computes the power ratio between EC 

and EO.  

 

We have analyzed EEG recordings of 21 ADHD children and 

30 age-matched controls and studied statistical differences 

between these two groups. To this effect we have evaluated the 

performance of stationary power during resting EO and EC, 

stationary EC-EO power differences and the outcome of the 

CDSM and DCI features her proposed. Stationary spectral 

analysis showed an EEG slowing both for EC and EO in the 

ADHD population, where grand average alpha peak frequency 

was shifted towards slower frequencies in the ADHD 

population (Figure 7). A generalized slowing in brain activity 

can be linked to neurodegenerative and neurodevelopmental 

disorders and has been largely reported in the ADHD 

population [58, 59]. Stationary power delivers a statistically 

significant increase of theta in the ADHD population both in 

EC and EO conditions (Table III and IV). ADHD children have 

been largely reported to a show fairly consistent fronto-central 

theta increase in resting state conditions that has traditionally 

been associated to a hypo-arousal state [60, 61]. The outcome 

of this spectral stationary analysis confirms the reliability on the 

data-set, as two of most reported findings in the literature could 

be replicated. 

 

The EO-EC stationary power ratio did not deliver statistical 

differences between the ADHD group and the control 

population. On the other hand, when analyzing the dynamical 

variations measured through the hereby proposed Dynamical 

Connectivity Index, statistically significant differences were 

found in the theta and beta bands. Abnormalities in these bands 

have been largely reported in the ADHD population as 

previously stated in section 1. This study confirms that not only 

the stationary activity of the brain, but also its temporal 

dynamics, may be affected at these bands. We have 

demonstrated that our trained network discriminates better 

between EC and EO regimes in the ADHD population. This 

finding indicates an abnormal disparity between low and 

normal attention/arousal conditions in ADHDs.  

 

Compared to stationary power analysis, the DCI metric here 

proposed provides larger statistical significance between 

groups, as observed when comparing results displayed in Table 

II versus Table III and IV. While DCI provides 11 electrode-

band combinations with null hypothesis probability values 

below 1%, the EO and EC stationary power together provides 

8. Whereas these differences were found in theta2 in the 

stationary power analysis both for EC and EO, DCI provided 

statistically significant differences below 1% in theta1 and 

beta1.  

 

Reservoir-computing methodologies, and in particular ESNs, 

have proved to be an effective technique for EEG feature 

extraction [39]. Although ESNs have been applied to other EEG 

analysis scenarios including author’s work in Parkinson’s 

disease prognosis [37], this is the first time, to our best 

knowledge, that it has been used in the ADHD field. The 

proposed methodology is however not only tied to ADHD 
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characterization. The here presented approach of measuring the 

training error of a recurrent neural network used to classify 

concatenated sequences of different physiological states can be 

applied to other biomarker discovery modalities. Authors plan 

in the future to apply this procedure in the field of autism 

disorder characterization.  
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5 Conclusions, Perspectives
and Future Work

5.1 Discussion

Nature is dynamic and so is the brain. Therefore, the electrical signals
produced by the brain and measured by electroencephalography present
non-stationary and chaotic dynamics. Following this rationale, in this The-
sis we have successfully employed recurrent neural networks, following
the echo-state network (ESN) approach, for feature extraction and classifi-
cation of EEG signals. We have advanced in the understanding of the de-
tection capabilities of ESNs, demonstrating that ESNs can detect temporal
changes in generalized synchronization between two chaotic time-series.
We have also used ESNs to characterize the non-stationary dynamics of
what is so far considered to be a steady-state phenomenon, SSVEP. Finally,
in the field of EEG biomarker discovery, we have successfully proposed
a novel non-stationary biomarker for attention deficit hyperactivity disor-
der. In this section we present and discuss the most relevant findings in
each of the studies performed in this Thesis.

5.1.1 Detection of Chaotic Synchronization

Many forms of chaotic synchronization exist including complete, phase,
lag and generalized synchronization. In this Thesis we have attempted to
analyze the relationships between structural and functional brain regions
as a generalized synchronization problem, using ESNs to detect it.

As a first step we have conducted a theoretical study using a chaotic model.
Two chaotic Rössler attractors were coupled to construct a series of gener-
alized synchronized sequences interleaved with unsynchronized episodes.
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We have demonstrated that ESNs are able to discriminate between time-
locked generalized synchronized sequences and unsynchronized ones with
great accuracy. The robustness of ESNs for the detection of generalized
synchronization in real-world conditions was analyzed by adding noise to
the network inputs. ESNs proved to be robust to relatively high levels of
noise, supporting the feasibility of their use with real-world data.

Several methodologies for the detection of generalized synchronization ex-
ist, including the replica method, the synchronization likelihood, and the
mutual false nearest neighbor method [28][29][27]. Compared to them,
after their training, ESNs are computationally less costly and can be ap-
plied in a continuous manner. This opens the possibility of developing ap-
plications based on ESNs capable of monitoring chaotic synchronization
changes in real-time. All in all, we have proposed a novel methodology,
computationally efficient and with online capabilities for generalized syn-
chronization detection.

5.1.2 Non-Stationary Analysis of Electrophysiological Data Us-
ing Echo-State Networks

Stationary methodologies are common in electrophysiology. However, the
brain is known to produce high-dimensional non-stationary dynamics, and
thus methodologies capable of capturing these patterns are convenient for
EEG analysis. In this Thesis we have used ESNs which, as other RNN
architectures, incorporate cyclic connections that provide the system with
memory and thus with the capability of decoding temporal information.
ESNs are capable of detecting neural complexity, non-stationary tempo-
ral dynamics, and, as demonstrated in this Thesis, chaotic synchronization
between brain sources. We have demonstrated the convenience of non-
stationary approaches for feature extraction and detection in two different
scenarios. This statement is particularly supported through its comparison
with respect to state-of-the-art stationary methodologies.

When ESNs were first introduced in 2001, their novelty was to provide
a stable and simple training algorithm at a time when the problem of train-
ing RNNs was still not resolved. As of today, with new developments in
gradient descend training methods such as Truncated Back Propagation
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Through Time (TBPTT), this issue can be considered as sorted out [50].
This fact and the advent of deep learning and other recurrent neural net-
works architectures such as LSTMs (capable of encoding simultaneously
short-and long-term memory) has limited the popularity of ESNs. How-
ever, ESNs are still a hot research topic. Their easy training, dynamic capa-
bilities, modularity, distinctive architecture, along with their high perfor-
mance makes them an ideal RNN choice in multiple scenarios.

In this Thesis we have demonstrated that ESNs are capable of approaching
complex problems in the field of EEG data analysis with excellent perfor-
mance. We have successfully applied ESNs for EEG feature extraction and
classification in two different scenarios: 1) in SSVEP characterization and
2) in ADHD biomarker discovery. As in other EEG-based machine learn-
ing approaches it has been necessary to implement pre-processing stages
that clean and reduce the complexity of EEG signals.

5.1.3 Non-Stationary Characterization of SSVEP Using ESN

Steady-state visual evoked potentials appear as oscillatory components
matching the visual flickering frequency and its harmonics when gazing
at a repetitive visual stimulation source. This phenomenon is considered
to be purely stationary, as explained in Section 1.5. Therefore, state-of-
the-art SSVEP detection methods such as PSDA, MSI or CCA exploit this
steadiness. Although SSVEP is considered stationary, in this Thesis we
have explored non-stationary SSVEP dynamics using ESNs.

We have presented a novel non-stationary SSVEP-detection methodology
based on reservoir computing and successfully compared its performance
with stationary Canonical Correlation Analysis. To this effect we designed
and carried out an experimental campaign in which five participants were
stimulated with frequencies ranging from 10 to 22 Hz. Stationary and
ESN-based detection delivered dissimilar classifications. For some subjects
and frequencies ESN-based methodologies delivered excellent classifica-
tion accuracy and stationary analysis random detection, while the oppo-
site occurred for other subjects. Our results are consistent with the fact that
SSVEP response is a subject, age and stimulation dependent phenomenon.
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In particular, we conjecture from our results that these performance dis-
crepancies may reflect the elicitation of evoked responses of a different na-
ture: stationary and non-stationary.

We compared the performance of our proposed ESN-based methodology
with the standard CCA approach for different observation windows. The
detection capabilities of the ESN-based method proved to be robust with
respect to the observation window duration, delivering similar detection
accuracy for windows ranging from 0.5 to 4 seconds. On the contrary, in
CCA, performance increased with the window length, delivering random
classification for 0.5-second windows. This fact favors the communica-
tion capabilities of the ESN-based method, which achieves an information
transfer rate of 49 bits/minute (with a maximum ITR of 108 bits/minute for
one specific subject) compared to the 21 bits/minute rate achieved by the
CCA method. Our hypothesis is that the classification capabilities of ESNs
may lie in the detection of non-stationary SSVEP dynamics. All things con-
sidered, our results validate the application of ESNs in SSVEP-based appli-
cations.

5.1.4 ESN-Based ADHD Biomarker

Attention-Deficit Hyperactivity Disorder (ADHD), introduced in Section
1.5, is one of the most common neurodevelopmental and psychiatric disor-
ders of childhood. ADHD diagnosis is based on interviews and behavioral
observation. Thus ADHD diagnosis is subjective and depends heavily on
the experience and practical knowledge of clinicians. Likewise, medication
shows serious side effects and is generally applied in a trial and error man-
ner. Reliable markers that support ADHD diagnosis are thus necessary.

Given its non-invasiveness, cost-effectiveness and brain monitoring capa-
bilities, EEG has been used for decades in ADHD characterization. In this
Thesis we propose a novel non-stationary ADHD biomarker inspired in the
hypoarousal ADHD theory. This theory states that ADHD children show
arousal deficits and try to compensate them by way of self-stimulation
through excessive activity. We propose a novel approach that quantifies
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EEG differences between two conditions: 1) low arousal state (resting eyes-
closed) and 2) normal arousal states (resting eyes-open). We successfully
validated the hypothesis that differences between the two conditions are
abnormal in the ADHD population.

The new methodology proposed here, based on ESNs, is capable of quanti-
fying non-stationary differences and synchronization changes between the
eyes-closed and eyes-open conditions within pairs of electrodes. These dif-
ferences are measured at specific brain rhythms. Our results show that the
ADHD population (N=21) has larger differences between conditions than
its age-matched control (N=31) population. These differences are statisti-
cally significant between groups in the theta and beta bands. Interestingly
these are the same bands of largely reported alterations in band power,
suggesting that both stationary and non-stationary dynamics within these
bands may be altered in the ADHD population. Differences between the
eyes-closed and eyes-open conditions were also assessed using stationary
band power approaches. In this case no statistical significance between
groups was found in the study populations. The statistical significance of
the proposed non-stationary feature was larger than state-of-the-art band-
power approaches, highlighting its applicability for the characterization of
ADHD.

In summary, our results reveal a new robust feature of ADHD that can
be used to quantify changes in the non-stationary dynamics between low-
and normal-arousal conditions. This is the first time, to the best of our
knowledge, that ESNs are used for ADHD characterization.

5.2 Summary of Achievements

• We have demonstrated that ESNs are capable of detecting changes in
generalized synchronization between two chaotic time series.

• We have validated the applicability of ESNs to EEG analysis in two
different scenarios, in both at the therapeutic (BCI) and diagnostic
(ADHD) applications.

• ESNs have been applied for the first time to SSVEP characterization.
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• Based on the obtained results, we have made the hypothesis that, in
addition to its well known steady-state response, SSVEP may possess
non-stationary features.

• A novel methodology for SSVEP detection based on an ensemble
of ESNs has been proposed. The proposed approach outperformed
state-of-the-art stationary methodologies in terms of information trans-
fer rate.

• We have applied ESNs for the first time to ADHD characterization.

• We have successfully proposed a novel ADHD biomarker based on
ESNs, capable of quantifying non-stationary changes between low
and normal arousal conditions.

5.3 Perspective and Future Work

5.3.1 ESN Chaotic Synchronization Detection Capabilities

Echo-state networks have proven to be capable of detecting generalized
synchronization changes between two temporal series. This demonstrates
their ability to detect chaotic synchronization. Synchronization presents a
variety of forms depending on the nature of the interacting systems. Many
types of chaotic synchronization exist, among them lag, phase and ampli-
tude envelope synchronization. The synchronization detection capabilities
of ESNs should be further explored for these and other forms of synchro-
nization between coupled dynamical systems.

5.3.2 Generalized Synchronization Detection Validation Using Ex-
perimental Data

In this Thesis two Rössler attractors have being numerically simulated.
These attractors are coupled and de-coupled in order to simulate general-
ized synchronized time sequences, followed by unsynchronized ones. Real
environments have been simulated through the addition of Gaussian noise
of different amplitude levels to these attractors, as a first stage to validate
real-world feasibility. It is possible to construct driver and driven attractors
using electronic circuits and coupled them in a generalized synchronized
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way [146]. Using the data obtained by digitally collecting the outcome of
these circuits, the capabilities of ESNs for the detection of generalized syn-
chronization can be tested in experimental data.

5.3.3 Comparison with Other Generalized Synchronization De-
tection Approaches

Several methodologies exist for the detection of generalized synchroniza-
tion. In order to gain a better understanding of the capabilities of ESNs,
its detection performance and computational cost, among others, can be
compared with respect to state-of-the-art generalized synchronization de-
tection methodologies. This comparison may be of special interest in noisy
environments that simulate their applicability in real world scenarios.

5.3.4 Non-Stationary Nature of the SSVEP

Based on our results, our hypothesis is that apart from the largely reported
steady-state resonance effect, the neural response to repetitive visual stim-
ulation may possess any non-stationary properties. However the type of
dynamics this form of stimulation may elicit remains unknown. Signal
complexity, chaotic patterns and different forms of synchronization should
be studied in order to gain a better understanding of the underlying pro-
cesses elicited by repetitive visual stimulation. The study of these dynam-
ics would be of special interest for the fields of cognitive and clinical neu-
roscience.

5.3.5 Hybrid Stationary/Non-Stationary BCI Approach

In this Thesis we have proposed a novel SSVEP extraction and classifica-
tion methodology based on an ensemble of ESNs. The proposed method-
ology outperforms state-of-the-art canonical correlation analysis (CCA) in
terms of detection accuracy and information transfer rate when a BCI sys-
tem with 6 degrees of freedom is simulated. Results suggest that method-
ologies (ESN and CCA) are capturing different features of the SSVEP re-
sponse, and are thus complementary. It would be interesting to validate
the efficacy of the ESN-based detection method using a larger experimental
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data-set. Additionally, the construction of a BCI system capable of quanti-
fying both the stationary and non-stationary dynamics of SSVEP response
may deliver a better detection performance.

5.3.6 ADHD Biomarker Validation

Compared to other ADHD studies, the experimental data-set used here,
consisting of 51 children with ages ranging from 7 to 11 years old, is con-
sidered adequate to demonstrate the validity of the novel ADHD feature
proposed in this Thesis. Nevertheless, further studies should confirm its
efficacy using different, and in particular larger, data-sets. ADHD is a very
heterogeneous disorder, with three main symptoms-based sub-types: inat-
tentive, hyperactive and combined, as presented in Section 1.5. The ESN-
based approach presented here can be applied to age, gender or ADHD
type stratified data. This may serve to gain a better understanding of the
abnormal EEG dynamics in ADHD children and improve statistical signif-
icance between ADHD and the control group. We plan to carry out this
validation within the Horizon 2020 EU project STIPED (Grant agreement
number 731827), which aims to study non-invasive brain stimulation in
pediatric neuro-psychiatric disorders.

5.3.7 Decision Support System for ADHD Diagnosis

We can also envision the feasibility of designing a decision-support system
using the ESN-based biomarker proposed here. This system would sup-
port clinicians in establishing the ADHD diagnosis. Its performance could
be compared to NEBA, introduced in Section 1.5.4., which is so far the only
FDA approved EEG-based method to assist in ADHD diagnosis.

5.3.8 Application to Other Neurodevelopmental Disorders

The ADHD feature presented here is based in quantifying non-stationary
differences between two cognitive states, in this case resting eyes-open and
eyes-closed conditions. This methodology could be used in other biomarker-
discovery scenarios with the same cognitive states, or other higher de-
manding mental tasks. We plan to apply this procedure in the near future
to the field of autism disorder biomarker discovery also within STIPED
project.
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