
“tesi” — 2018/7/9 — 21:43 — page i — #1

Program Synthesis for
Generalized Planning

Javier Segovia Aguas

TESI DOCTORAL UPF / 2018

Thesis advisor

Prof. Dr. Anders Jonsson,
Department of Information and Communication Technologies



“tesi” — 2018/7/9 — 21:43 — page ii — #2



“tesi” — 2018/7/9 — 21:43 — page iii — #3

To my family and specially to my beloved future wife

iii



“tesi” — 2018/7/9 — 21:43 — page iv — #4



“tesi” — 2018/7/9 — 21:43 — page v — #5

Acknowledgements
This thesis would be impossible to write without the help and support of many
people. First I have to express my gratitude to my PhD supervisor Anders Jonsson
for his infinite patience and being the light I needed in the darkest moments. You
are an exceptional researcher and a better person in which I hope to become one
day. I am also grateful to team-up with Sergio Jiménez for such a nice discussions
about life, future and research. You are an amazing human being. We have all
worked well and hard to explore new research lanes and building bridges between
scientific communities. I have the feeling this is just the beginning, thank you
both.

It has also been a pleasure to share these years of teaching duties, deadlines and
contests with generous and wonderful people. Thanks in no special order to Fil-
ippos Kominis for giving always a different perspective about life; Damir Lotinac
for offering everything he has at his disposal in every situation; Jonathan Ferrer for
his happiness and kind answers of every single question I had; Guillem Francés
for your insightful talks and showing that research is more than epsilon; Oussam
Larkem for his resilience when things do not go as expected; Iulia Olkhovskaia for
teaching us useful words in russian; and Miquel Junyent for his peaceful attitude
even in situations of maximum stress.

I am very thankful to people from the Artificial Intelligence and Machine
Learning group of Universitat Pompeu Fabra. I have learnt a lot from all of you
Hector Palacios, Dimitri Ognibene, Martı́ Sánchez, Vicenç Gómez, Gergely Neu,
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Abstract
Generalized planning is the problem of finding an algorithm-like solution called
generalized plan to multiple planning instances. The two main tasks to perform
in generalized planning are synthesizing and validating generalized plans. In this
thesis, we represent generalized plans as a planning programs, enhanced with
conditional goto conditions, or finite state controllers. Then, we compile gen-
eralized planning problems to PDDL such that we can compute programs using
off-the-shelf classical planners. Because solutions to generalized planning are
similar to algorithms, we can build libraries of previous knowledge and reuse
them if necessary using a call stack. This feature extends to planning programs
with procedures, hierarchical finite state controllers and allows recursion. Finally,
we introduce new application areas for planning, e.g. unsupervised classification
of instances or context-free grammar generation, by defining non-deterministic
choice functions for planning programs.
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Resumen
La Planificación Generalizada es el problema de encontrar una solución en forma
de algoritmo llamada plan generalizado a múltiples instancias de planificación.
Las principales tareas son la sı́ntesis y la validación de planes generalizados. En
esta tesis, representamos los planes generalizados como programas de planifica-
ción mejorados con saltos condicionales, o controladores de estado finitos. Des-
pués, compilamos problemas de planificación generalizada a PDDL tal que po-
damos computarlos utilizando cualquier planificador clásico que esté listo para
usarse. Como las soluciones son algoritmos, podemos construir librerı́as de co-
nocimiento previo y reutilizarlas con una pila de llamadas. Esta caracterı́stica se
extiende a los programas de planificación con procedimientos, a los controladores
de estado finitos jerárquicos y permite recursividad. Finalmente, damos a conocer
nuevas areas dónde aplicar planificación, por ejemplo la clasificación no super-
visada de instancias o la generación de gramática libre de contexto, gracias a la
definición de una función de elección no determinista.
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Resum
La Planificació Generalitzada és el problema de trobar una solució en forma
d’algorisme anomenat pla generalitzat a múltiples instàncies de planificació. Les
principals tasques són la sı́ntesi i la validació de plans generalizats. En aquesta
tesi, representem els plans generalizats com programes de planificació millorats
amb salts condicionals, o controladors d’estat finits. Després, compilem proble-
mes de planificació generalitzada a PDDL per poder computar-los amb qualsevol
planificador clàssic que estigui llest per utilitzar-se. Com les solucions són algo-
rismes, podem construir llibreries de coneixement previ y reutilitzar-les amb una
pila de trucades. Aquesta caracterı́stica s’estén als programes de planificació amb
procediments, als controladors d’estat finits jeràrquics i permet recursivitat. Fi-
nalmente, donem a conèixer noves àrees on aplicar planificació, per exemple la
classificació no supervisada d’instàncies o la generació de gramàtica lliure de
context, gràcies a la definició d’una funció d’elecció no determinista.
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Preface
The interest of general solvers is rooted in the origins of Artificial Intelligence
(Newell et al., 1959) with the motivation of mimicking the human thinking pro-
cess. One possible interpretation of a general solver, is the capability of solving
problems from any domain independently. Part I of the thesis starts with Classical
Planning, whose solvers fall into the category of being domain independent, so
instances from different planning domains can be solved using the same classi-
cal planning solver (see Chapter 1). Another possible interpretation of a general
solver, is the generalization over a set of problems, also known as Generalized
Planning (see Chapter 2). In other words, the general solver must find a solution
that solves each problem from a set of planning problems (Hu and De Giacomo,
2011). The solution to a generalized planning problem is a generalized plan. In
the rest of this thesis we show multiple representations and computations of gen-
eralized plans.

We mainly represent and compute generalized plans as planning programs in
Part II. A planning program is a set of instructions enhanced with conditional
gotos that can be programmed and executed (see Chapter 3). We show a method-
ology to compile a set of planning problems into a single PDDL domain and
instance. Then, we can use any off-the-shelf classical planner to synthesize and
validate programs.

We continue with an extension of planning programs with a call stack that
simulates a computer stack in PDDL (see Chapter 4). This allows to include and
call previous knowledge in form of planning programs as procedures. We can
even synthesize recursive solutions when procedures call themselves, and if pro-
cedures have parameters they can find solutions like a depth-first search (DFS)
algorithm for traversing a binary tree. In addition to planning program formalism
and influenced by Baier et al. [2007], we show results when instructions are lifted
such that they are used as Domain Control Knowledge (DCK). We define plan-
ning programs with lifted actions as non-deterministic planning programs (see
Chapter 5).

Programs synthesis (Gulwani et al., 2017) is the problem of automatically find-
ing a program given some input specification. These programs are represented in
many different formalisms, i.e. from logical formulae (Cresswell and Codding-
ton, 2004; Patrizi et al., 2011), to Finite State Controllers (FSCs) (Bonet et al.,
2010; Hu and De Giacomo, 2013). Thus, in Part III we explore the connection of
program synthesis as generalized planning with FSCs. In Chapter 6 we show how
to synthesize FSCs following a similar approach to planning programs. Further-
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more, the call stack already implemented in Chapter 4 can be used to generate a
hierarchy of FSCs.

In Part IV, we extend planning programs with the concept of choice instruc-
tion. The first approach includes the formalism of planning programs with pro-
cedures, and adds a non-deterministic choice function that can call online any of
the previous procedures to solve a planning instance. This problem of choosing
the correct procedure to execute is connected to plan recognition (Ramı́rez and
Geffner, 2010). Thus, we call unsupervised classification of planning instances
(see Chapter 7) the process of automatically determining the procedure that cor-
rectly solves a planning problem. In the second approach, the non-determinist
choice function is programmed on the first line of each procedure, and the planner
has to choose online a valid program line to jump and execute a piece of code.
This representation is equivalent to a context-free grammar (CFG) from which we
can perform the tasks of string parsing and production using a classical planner
(see Chapter 8).

The last part of the thesis (Part V) is to discuss the related work (see Chapter 9)
of the previous chapters. The idea of dedicating a chapter to this topic is to avoid
repeating citations because some previous work is connected to many chapters.
The last chapter is to wrap-up the dissertation (see Chapter 10) and explain some
future work to move towards a general AI.

Most of the content of this dissertation is under review or has been published
in the following articles:

• Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Generalized
planning with procedural domain control knowledge. In Proceedings of the
Twenty-Sixth International Conference on Automated Planning and Schedul-
ing, pages 285-293, 2016. [Chapter 4]

• Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Hierarchi-
cal finite state controllers for generalized planning. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, pages
3235-3241, 2016. (winner of IJCAI-16 Distinguished Paper Award) [Chap-
ter 6]

• Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Unsupervised
Classification of Planning Instances. In Proceedings of the Twenty-Seventh
International Conference on Automated Planning and Scheduling, pages
452-460, 2017. [Chapter 7]

• Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Generating
context-free grammars using classical planning. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, pages 4391-
4397, 2017. [Chapter 8]
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• Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Computing
Hierarchical Finite State Controllers with Classical Planning. In Journal
of Artificial Intelligence Research, 2018. (accepted for publication) [Chap-
ter 6]

• Javier Segovia-Aguas, Sergio Jiménez, and Anders Jonsson. Computing
programs for generalized planning using a classical planner. In Artificial
Intelligence, 2018. (major revision submitted) [Chapter 3, Chapter 4, and
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• Sergio Jiménez, Javier Segovia-Aguas, and Anders Jonsson. A review of
generalized planning. In The Knowledge Engineering Review, 2018. (major
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Automatic generation of high-level state features for generalized planning.
In Proceedings of the Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, pages 3199-3205, 2016.
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PART I

Background
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CHAPTER 1

Classical Planning

In this chapter we introduce the state model and factored representation of Classi-
cal Planning. We then explain how the model can be extended with conditional ef-
fects and conclude with a review of its complexity for plan existence and bounded
plan existence.

1.1 Introduction
Planning is one of the branches of Artificial Intelligence, also called Automated
Planning and Scheduling or AI Planning. The agents or systems are in charge of
solving the planning problems by following a strategy or a sequence of actions.

One particular case of AI Planning is Classical Planning (Russell et al., 1995),
where the environment and the actions are deterministic. On one hand, classical
planning requires a language to specify the problem. The most extended lan-
guage in the planning community is called Planning Domain Definition Language
(PDDL). On the other hand, it requires solvers or planners to compute solutions
or plans.

Definition 1.1 (Classical Planning). Classical planning can be stated as a path
finding problem on a directed graph, where nodes are states and the directed
edges are the actions. Applying an action in a state always leads to the same new
state. The solution is a sequence of actions called plan, that applied in the initial
state reaches a goal state.

Because classical planning is a path finding problem, we can use any search
algorithm to solve it, but the main limitation is that problems may have huge

3



“tesi” — 2018/7/9 — 21:43 — page 4 — #30

state spaces, e.g. 21000 states. In that case we need some improvements over the
classic search algorithms such as Breadth First Search (BrFS), Best First Search
(BFS), A∗ among others, that either are too slow or require too much memory.
The two main techniques we are going to consider in this work are planning with
Heuristic Search (Bonet and Geffner, 2001) and Structure Search (Lipovetzky and
Geffner, 2012). These techniques find solutions in practice to problems that are
theoretically intractable.

Definition 1.2 (Heuristic Search). Heuristic Search is the process of using heuris-
tics in search algorithms to speed up solution finding. A heuristic is a function to
estimate the path cost from the current state to a goal state.

Heuristics use information of a goal condition to estimate a value in the cur-
rent state that represent the cost-to-go for reaching a goal. For this reason heuris-
tic search is goal oriented. Heuristics can be computed automatically in domain
independent solvers, but also can be chosen for domain-specific solvers follow-
ing a trade-off criteria of optimality, completeness, and time complexity. The
most commonly used heuristic search solver is the Fast-Downward (FD) system
(Helmert, 2006a) with the LAMA-2011 setting (Richter and Westphal, 2010).

Definition 1.3 (Structure Search). Structure Search is a blind search technique
that exploits the changes in the state when an action is performed. In order to
decide if a new state should be expanded or pruned, it computes a value based on
the changes in the new state and checks this value against a given bound.

In contrast with heuristic search, structure search only uses information of the
current and the next state, so it is not goal oriented. Serialized Iterative Width (IW)
(Lipovetzky and Geffner, 2012) is a planner that can solve a significant amount
of problems in the plan satisfiability track from the International Planning Com-
petition (IPC) (Vallati et al., 2015) but in most of the problems heuristic search
perfoms better.

The state-of-the-art solver is called Best First Width Search (BFWS) (Lipovet-
zky and Geffner, 2017). It is a heuristic search algorithm that prioritizes states by
the value provided of the computation of structure search techniques. In other
words, it combines the advantages of both techniques into a heuristic search ap-
proach.

1.2 The State Model
The planning state model is represented by a tuple S = 〈S, s0, SG, A, θ, c〉 where:

• S is the finite set of discrete states.
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• s0 ∈ S is the initial state.

• SG ⊆ S is the set of goal states.

• A is the set of actions, and A(s) ⊆ A is the set of actions that are applicable
in state s ∈ S.

• θ(s, a) is the deterministic transition function that maps state and action
pairs into a state, θ : S × A→ S.

• c(s, a) is the cost function that maps state and action pairs into a value,
c : S × A→ R+. By default this value is always 1.

The transition and cost functions are defined over the set of applicable actions.
Thus s′ = θ(s, a) and c(s, a) exist when a ∈ A(s), also denoted as a(s).

A plan π is a sequence of applicable actions 〈a1(s0), ..., an(sn−1)〉 ∈ A where
each step i ∈ [1, n] genetares a new state si = θ(si−1, ai(si−1)) . A solution is a
plan that solves the planning problem that when applied in the initial state s0 ∈ S
reaches a goal state sn ∈ SG in n steps.

Definition 1.4 (Plan Space). Plan Space is the set of all possible plans that solve
a planning problem. So any of these plans applied in the initial state reaches a
goal state.

Equation 1.1 shows the general cost computation of a plan. When actions have
default costs, the cost of a plan is equivalent to the size of the plan |π|.

cost(π) =
n∑
i=1

c(si−1, ai). (1.1)

A plan is considered optimal if its cost is the minimum among all plans in the
plan space. There could be multiple optimal plans for a problem, for instance a
2 × 2 grid where an agent should move from the bottom-left corner to the top-
right corner through adjacent tiles (or tiles that share one side), has two possible
optimal plans: either i) it moves up and then right; or ii) it moves right and then
up.

1.3 Factored Representation and Languages
A factored representation describes the state with a set of variables that have finite
and discrete values. It is used to simplify the model description with huge state-
spaces and be more informative for planning techniques.
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In the year 1971, the automated planner Stanford Research Institute Problem
Solver (STRIPS ) (Fikes and Nilsson, 1971) was developed as a planning solver to
find sequences of actions of world models in conjunction with robotics research.
Later, the same name was used as a formal input language for classical planning
solvers. From now on we refer to STRIPS as the language and not the planner.
In STRIPS , the factored representation of the state is a set of boolean variables
that can be either true or false. The STRIPS model is a 4-tuple P = 〈F,A, I,G〉
where:

• F is the set of propositional variables

• A is the set of actions

• I ⊆ F is the initial state, that is a subset of the propositions

• G ⊆ F is the goal condition and is another subset of the propositions

The set of fluents F are propositional variables that are used to describe states.
We define propositional variables as instantiations of predicates with arguments.
A predicate p belongs to the set of predicate symbols Ψ, and has an associated
argument list of arity ar(p). Given the set of objects Ω, the set of fluents F is
induced from the assignment of objects to each predicate, i.e. F = {p(ω) : p ∈
Ψ, ω ∈ Ωar(p)}, where Ωar(p) is the ar(p)-th cartesian product of set Ω.

In order to simplify definitions throughout this thesis we refer to valuations of
fluents f ∈ F as literals. A literal l = f is used to denote that l assigns true to
f , while l = ¬f assigns false to f . The set of literals L is well-defined if it does
not assign conflicting values to any fluent, i.e. for some fluent f ∈ F , the set of
literals L does not contain f and ¬f at the same time where f = ¬(¬f). Also it
is fully-assigned if it assigns values to all fluents f ∈ F where |L| = |F |. We use
¬L to denote the complement of L such that ¬L = {¬l : l ∈ L}.

Now we describe a state s as a well-defined and fully-assigned set of literals
L such that |s| = |F |, resulting in a state-space S bounded in size by 2|F |. Then,
we have a well-defined and fully-assigned initial state described as s0 = {f : f ∈
I} ∪ {¬f : f 6∈ I}, and set of goal states SG = {s ∈ S : G ⊆ s}. In case we only
consider a subset of fluents F ′ ⊆ F , we denote s|F ′ as the projection of s onto F ′,
defined as s|F ′ = (s ∩ F ′) ∪ (s ∩ ¬F ′).

Every action a ∈ A is composed of preconditions pre(a) ⊆ F , negative effects
del(a) ⊆ F and positive effects add(a) ⊆ F . An action is applicable if and only
if the preconditions of the action holds in the state s, i.e. pre(a) ⊆ s, and the
transition function θ(s, a) produces a new well-defined state removing first the
negative effects and then adding the positive effects, as shown in Equation 1.2.

θ(s, a) = (s \ del(a)) ∪ add(a) (1.2)
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Planning Languages

The Action Description Language (ADL) (Pednault, 1994) extended STRIPS al-
lowing actions to have conditional effects, so some effects are triggered depending
on the state. In contrast to STRIPS , ADL allows existential quantification, nega-
tive literals, goals with disjunctions, different object types, and while variables in
STRIPS are either true or false, in ADL they can be true, false or undefined.

In the year 1998, with the aim to make a standard representation of planning
languages, the Planning Domain Definition Language (PDDL) (McDermott et al.,
1998) was published. The IPC has been used to compare planning solvers perfor-
mance but also to include new features to the language. These are the different
published versions:

• PDDL1.2 is the version used in the first international planning competition
IPC-98 (Long et al., 2000) where the planning problem model is splitted
into a domain and a problem description.

• PDDL2.1 (Fox and Long, 2003) introduced numeric fluents so resources
can be represented. In previous versions, actions were directly applied in
discrete time, but in this version actions can be described and performed in
continuous space, so they are described as temporal or durative actions.

• PDDL2.2 (Edelkamp and Hoffmann, 2004) introduced derived predicates
that can represent dependency among literals through transitive closures.
This version also introduces timed initial literals where some literals are
triggered by independent events at different times.

• PDDL3.0 (Gerevini and Long, 2006) introduced hard constraints called
state-trajectory constraints that must be true along the execution of a plan,
and soft constraints called preferences where plans that satisfy them are
considered of better quality.

• PDDL3.1 introduced object-fluents where any function can be an object
type. This feature is a reformulation of Functional STRIPS (Geffner, 2000).

In this dissertation we are going to focus on PDDL2.2, that is the language
supported by the most common planning systems like Fast-Forward (FF) (Hoff-
mann, 2001), Fast-Downward (FD) (Helmert, 2006a), and Best First Width Search
(BFWS) (Lipovetzky and Geffner, 2017) developed under the Lightweight Auto-
mated Planning Toolkit (LAPKT) (Ramirez et al., 2015). There are also other
planning languages like situation calculus (McCarthy, 1963), SAS+ (Bäckström
and Nebel, 1995), and PDDL extensions for multiagent planning called MAPL

7
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A W
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Figure 1.1: Example of a navigation task in a 5×5 grid where the agent is blocked
by a wall when it tries to move right. The agent position is specified with letter A,
the walls placed in the grid are represented with Ws, and the goal to achieve is to
reach the tile marked G.

(Brenner, 2003), PPDDL (Younes and Littman, 2004) for probabilistic planning
among others.

In PDDL, the planning problem model is splitted into domain and problem.
Under this formalism, the domain is considered a classical planning frame defined
by the tuple Φ = 〈F,A〉, where F is a set of fluents andA is a set of actions. Then,
given a classical planning frame Φ, the problem is instantiated from an initial state
I and a goal condition G. Thus, we can define multiple planning problems with
the same planning frame Φ, e.g. P1 = 〈F,A, I1, G1〉, P2 = 〈F,A, I2, G2〉, and so
on.

1.4 Planning with Conditional Effects
Conditional effects have been a requirement since the first IPC, where the effects
of the action to apply are triggered if their conditions hold in the state. This is a
more expressive representation of actions in the model and a basic requirement for
generalized planning. This is also feature already shown in confomant planning
(Palacios and Geffner, 2009) where a sequence of actions can be reused for many
initial states, e.g. the right action of a grid domain like in Figure 1.1 has two
possible outcomes, either the agent moves to the right cell if it is empty or the
agent stays in the same cell if it is in the rightmost cell of the grid or there is a
wall to the right cell.

We consider the fragment of classical planning with conditional effects that
includes negative conditions and goals. A planning problem with conditional ef-
fects is still a tuple P = 〈F,A, I,G〉 on a planning frame Φ = 〈F,A〉, and the
only thing that changes is the definition of actions in A. Each action a ∈ A has
a well-defined literal set pre(a) called the precondition and a set of conditional

8
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effects cond(a). Each conditional effect C B E ∈ cond(a) is composed of two
well-defined literal sets C (the condition) and E (the effect).

An action a ∈ A is applicable in state s if and only if pre(a) ⊆ s, and the
resulting set of triggered effects is

eff(s, a) =
⋃

CBE∈cond(a),C⊆s

E,

i.e. effects whose conditions hold in s. We assume that eff(s, a) is a well-defined
literal set for each state s and action a. The result of applying a in s is a new state
θ(s, a) = (s \ ¬eff(s, a)) ∪ eff(s, a).

Lemma 1.1. For any state s and action a, θ(s, a) is a well-defined state.

Proof. By assumption, eff(s, a) is a well-defined literal set. Consider any fluent
f ∈ F . There are three cases:

1. eff(s, a) does not mention f . Then the set operations have no effect on f ,
so θ(s, a) assigns the same value to f as s.

2. eff(s, a) and s assign the same value to f . Then subtracting ¬eff(s, a) from
s has no effect on f , and taking the union with eff(s, a) adds the valuation
already present in s, so θ(s, a) assigns the same value to f as s.

3. eff(s, a) and s assign different values to f . Then subtracting ¬eff(s, a) from
s eliminates any mention of f , and taking the union with eff(s, a) causes
θ(s, a) to assign the same value to f as eff(s, a).

We have shown that θ(s, a) assigns precisely one value to each fluent f , which is
the definition of a state.

1.5 Complexity
The computational complexity in planning has been deeply studied (Bylander,
1994). In that research, Bylander analyzed the complexity for plan existence and
bounded plan existence of a planning problem S in its factored representation. We
refer to plan existence as a decision problem PE(S) that is defined by the question,
does a plan π exists for planning problem S?. And to bounded plan existence as
a decision problem PC(S, k) that is defined by the question, does a plan π exists
for planning problem S with cost(π) ≤ k?. Bylander prooved that plan existence
PE(S) and bounded plan existence PC(S, k) problems are PSPACE-complete,
which means they are worst case intractable and require polynomial memory
space. Then, he shows for constant k, the bounded plan existence PC(S, k) is
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an NP-complete problem that can be used to find an optimal plan π∗ for plan-
ning problem S. Despite the fact that classical planning problems are worst case
intractable, in practice the state-of-the-art solvers are able to find solutions in rea-
sonable time.

1.6 Examples

The classical planning domain we use as an example is Visit-All, where an agent
must visit the whole grid starting in the bottom-left corner. This domain was
proposed by Geffner and Lipovetzky for the International Planning Competition
of 2011. They expose the limits of state-of-the-art heuristics for multiple goal
problems, when moving towards a goal is in conflict to reach the others.

In Figure 1.2 there is an agent in the bottom-right corner, of a 3× 3 grid, that
has already visited two cells.

AV V

Figure 1.2: Example of a Visit-All task in a 3 × 3 grid. The agent is the A, the
visited cells are Vs, and the rest are the cells the agent must visit.

So to describe last example as PDDL instance, we have to reset agent position
to the bottom-left corner or coordinate (1, 1), and no cells visited as shown in
Figure 1.3.

The Visit-All PDDL domain is in Figure 1.4 which consists of a domain name,
a set of language requirements, types of objects, a set of predicates, and four
actions to move the agent in a cardinal direction and a fifth to visit the current
cell. Then for the example used in Figure 1.2 we represent the model in PDDL as
the conjunction of domain and instance.

Figure 1.5 shows how the previous Visit-All domain can be translated into
a domain with conditional effects. The key idea is to avoid parameters in the
actions, keeping the preconditions if they do not depend in the parameters and
adding all the execution logic of the action in the effects. Because of the size of
the domain we just provide the move right action that corresponds to increase by
one the x-coordinate.

10
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(define (problem grid-3)
(:domain visit-all)
(:objects v1 v2 v3 - value )
(:init

(consec v1 v2) (consec v2 v3)
(xpos v1) (ypos v1)

)
(:goal (and

(visited v1 v3) (visited v2 v3) (visited v3 v3)
(visited v1 v2) (visited v2 v2) (visited v3 v2)
(visited v1 v1) (visited v2 v1) (visited v3 v1)

))
)

Figure 1.3: Visit-All instance of a 3× 3 grid

1.7 Thesis Outline

In this chapter we have introduced the classical planning model and different lan-
guages to represent a planning problem. We have chosen PDDL as the standard
language in its version PDDL2.2 to use along this dissertation so we can use any
off-the-shelf classical planner. We have formalized the use of literals and condi-
tional effects in the planning model. The first one is used to simplify the formal-
ization of different ideas that allow negative conditions. And the second one is
required to trigger different action effects in different states, as happens in confor-
mant planning where a plan must work for any initial state from the set of possible
initial states.

In Chapter 2 we introduce the concept and formalization of a generalized plan-
ning problem and the solutions called generalized plans. Chapter 3 is the first
contribution of this dissertation where a set of planning problems can be com-
piled into a single one, and solving this single problem corresponds to compute
and validate a planning program that represents a generalized plan. Chapter 4
shows a way to compute planning programs simulating a stack with PDDL that
allows nested procedures, procedures with parameters and recursive calls. It is
followed by non-deterministic planning programs in Chapter 5. The first three
correspond to control flow solutions, while the last one belongs to domain control
knowledge. We report results for each kind of solution representation.

Another way to represent generalized plans from a different perspective are
Finite State Controllers (FSCs), and there is a close connection between this and

11
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(define (domain visit-all)
(:requirements :typing)
(:types value - object)
(:predicates
(xpos ?v - value)
(ypos ?v - value)
(consec ?v1 ?v2 - value)
(visited ?v1 ?v2 - value)
)
(:action right
:parameters (?v1 ?v2 - value)
:precondition (and (xpos ?v1) (consec ?v1 ?v2) )
:effect (and (xpos ?v2) (not (xpos ?v1)) )

)
(:action left
:parameters (?v1 ?v2 - value)
:precondition (and (xpos ?v2) (consec ?v1 ?v2) )
:effect (and (xpos ?v1) (not (xpos ?v2)) )

)
(:action up
:parameters (?v1 ?v2 - value)
:precondition (and (ypos ?v1) (consec ?v1 ?v2) )
:effect (and (ypos ?v2) (not (ypos ?v1)) )

)
(:action down
:parameters (?v1 ?v2 - value)
:precondition (and (ypos ?v2) (consec ?v1 ?v2) )
:effect (and (ypos ?v1) (not (ypos ?v2)) )

)
(:action visit
:parameters (?v1 ?v2 - value)
:precondition (and (xpos ?v1) (ypos ?v2) )
:effect (and (visit ?v1 ?v2) )

)
)

Figure 1.4: Visit-All domain
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(:action right
:parameters ()
:precondition ()
:effect (and

(forall (?v1 ?v2 - value)
(when (and (xpos ?v1) (consec ?v1 ?v2))

(and (not (xpos ?v1)) (xpos ?v2)))))
)

Figure 1.5: Parameter free action with conditional effects in Visit-All domain

planning programs. We talk about FSCs in Chapter 6 and how to use the PDDL
stack to allow a FSC to call another FSC, so that solutions are now Hierarchical
FSCs.

The Chapters 3 to 6 are the basic contributions of this thesis, and constitute the
baseline to create new landscapes for the planning community as Chapter 7 shows
for structured prediction of planning instances, where planning problems are clas-
sified into planning program clusters, or Chapter 8 where planning programs can
be used to generate context-free grammars.

Finally, we talk in Chapter 9 about the related work to the different chapters,
and in Chapter 10 we sum up this work and show ongoing and future work di-
rections that build bridges between planning and learning communities through
program synthesis.
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CHAPTER 2

Generalized Planning

In Chapter 2 we review how Artificial Intelligence has solved problems with the
intention to generalize over domains since the early beginning. We continue with
relevant definitions in Generalized Planning (GP) field that affect to problem and
solution representation. We also show strategies to compute GP plans, and how
problems can be described with a general scheme and evaluated with a set of
characteristics.

2.1 Introduction
Since the early days in AI, researchers have been interested in finding a tool that
can imitate human thinking process by solving problems generally (Newell et al.,
1959). The concept of general solving has two possible meanings, the most com-
mon refers to the mechanism used for solving problems from any domain inde-
pendently, and the other one is about finding solutions that can be used to solve
any problem from the same domain.

Classical Planning or the vanilla model of Automated Planning (AP), intro-
duced in Chapter 1, uses a special case of general problem solvers that are plan-
ning solvers. Then, given a model description and a set of instances, the solver
has to search for a valid plan that solves each particular planning instance. These
solutions cannot be used to solve other planning instances.

Generalized Planning (GP) is an extension of AP that combines challenges
from planning and knowledge representation communities. There are multiple
languages for describing GP problems, and different ways to represent and com-
pute solutions. We define a solution to a GP problem, the one that can solve a set
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of problems. GP problems are defined either by properties shared by all instances
(Srivastava et al., 2011a) or a set of representative instances (Hu and De Giacomo,
2011).

We use the formal definition of a GP problem from previous approaches (Hu
and De Giacomo, 2011):

Definition 2.1 (Generalized Planning Problem). A Generalized Planning Problem
P = {P1, P2, . . .} is the problem of solving a set of planning instances that share
some common structure (also known as sharing the agent), i.e. the action scheme
and observations.

For instance, our approaches to generalized planning are represented as a finite
set with T planning problems. Thus, we formalize a generalized planning problem
as P = {P1, . . . , PT}. We usually define GP problems with T ≥ 2 but in some
special cases we can generalize from a single instance.

This definition of a generalized planning problem is not as restrictive as it first
may appear. We can define a large fluent set F and action set A, and use the initial
state It of each planning problem Pt to “switch on/off” certain elements. This
way, we can address planning problems of various sizes in P , as long as F and
A are sufficiently large to accommodate the largest planning problem in P . For
example, in a list traversal problem, we can define a set of list nodes x0, . . . , x20,
and use the fluent end(x5) to indicate that the given list has length 5. Even though
there are fluents in F and actions in A associated with the list nodes x6, . . . , x20,
these fluents and action are not used in this particular planning problem.

Figure 2.1: Three different example instances from blocksworld. Each instance
shows the blocks configuration for the initial state (left side) and goal state (right
side).

In Figure 2.1 there are several planning problems from Blocksworld domain
where a configuration of blocks should be changed into another setting. Therefore,
we can formulate a Blocksworld generalized planning problem from Figure 2.1 as
P = {P1, P2, P3}.

Then, a generalized planner is required to compute a solution a generalized
planning task P . We also use generalized plan as a generalized planning task
solution with the following formal definition:

16
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Definition 2.2 (Generalized Plan). A generalized plan Π is an algorithm-like
structure that solves a generalized planning task P composed of a set of plan-
ning instances.

We consider a generalized plan Π valid if and only if it solves each one of the
planning instances in Pt ∈ P s.t. t ≤ |P|. A generalized plan in Figure 2.1 can
be any algorithmic-like solution that builds the correct block towers setting after
unstacking and putting all blocks onto the table.

that put all blocks onto the table and then stack blocks in the correct order and
tower.

We have two possible problems from a generalized planning task specification.
The first one is the generation of a generalized plan Π given a generalized planning
task P . We also refer to the generation problem as computation or synthesis.
The second one is the validation of a generalized plan Π in a planning instance
P = 〈F,A, I,G〉.

Once a generalized plan is computed, we can talk about concepts that in other
fields like learning have been explored for long time, e.g. generalization. In
Supervised Learning, generalization is used to measure the out-of-sample error or
the error of the computed solution with samples that have not been used in the
training process. Thus we can define generalization in Generalized Planning as
the following:

Definition 2.3 (Generalization). Generalization is the validation of a generalized
plan Π, synthesized from GP problem P , over a different set of planning instances
P ′ such that P ′ ∩ P = ∅. Even though, new planning instances from P ′ must
share the same set of actions and observations as the ones in P .

There are general solvers that produce general plans with diverse forms like
DS-planners (Winner and Veloso, 2003), generalized policies(Martı́n and Geffner,
2004) and Finite State Machines (Bonet et al., 2010) (FSMs). Each of them has
different syntax and semantics but all include conditional transitions that when
executed allow to solve multiple planning instances.

2.2 Abstract Generalized Planning Framework

In this section we introduce the concept of a common framework for generalized
planning, where any GP problem and solution can be represented and computed
whether they meet the definitions from Section 2.1. We will explain and formal-
ize several representations and computing algorithms of generalized plans in the
following chapters.
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A contribution in the Generalized Planning community can be in any of these
topics: i) problem representation; ii) generalized planner for computing a plan; or
iii) plan representation.

We cotribute in this dissertation with a common generalized problem repre-
sentation, where multiple planning instances are compiled into a single one, as in
previous approaches (Hu and De Giacomo, 2011). This compilation produces a
single PDDL task which is benefited from state-of-the-art planning techniques by
using any off-the-shelf classical planner. Furthermore, we contribute significantly
with several computations and representations of generalized plans, i.e. programs,
finite state controllers, grammars as we will explain later.

The representation of a generalized plan depends on the level of specification
(fully, partially or non-specified generalized plans), the algorithm-like execution
of the generalized plan (Albore et al., 2009; Levesque, 2005; Bonet et al., 2010;
Jiménez and Jonsson, 2015), and evaluation metrics like coverage or succinctness.
The computation of a generalized plan describes the strategy to find solutions and
how they can be reused as previous knowledge to find solutions to other problems.

Independently of the approach used, generalized planning follows the struc-
ture of an abstract framework where the input is a generalized problem P and
the output is a generalized plan Π. This introduces the concept of generalized
planner:

Definition 2.4 (Generalized Planner). A Generalized Planner is a framework that
solves generalized problems whose solutions are generalized plans. The Gener-
alized Planner is in charge of interpreting and if needed translating the input, as
well as computing solutions and mapping those to the desired output structures
that correspond to generalized plans.

Figure 2.2: Abstract Generalized Planning Framework
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The abstract generalized planning framework is graphically described in Fig-
ure 2.2. The input to a generalized planner is explicitly defined as a set of tasks
or problems and a domain formalized as P , and the set of problems are created
from a problem generator that follows either implicitly a logic formula or property
that all instances have to satisfy, or explicitly a set of planning instances, as in our
approaches. Then the generalized planner has to compute a solution to the set of
problems. The solution is the computation of the generalized plan that solve all
input problems.

We have also contributed to other representations, that are not explained in
the thesis, like high-level state features in the form of conjuctive queries that are
automatically synthesized (Lotinac et al., 2016). As explained in Section 1.4, we
use the representation of actions with conditional effects for all the compilations.

We constrain the state representation to first order logic that uses quantified
variables. Each state contains a set of literals with the and, or and not logical
connections. Then, quantified variables with transitive closures can represent un-
bounded sets of states. In Figure 2.3 we have an example of a derived predicate
with a transitive closure, that describes when a block is above another block in a
blocksworld setting.

(:derived (above ?x ?y - block)
(or (on ?x ?y)

(exists (?z - block)
(and (on ?x ?z) (above ?z ?y)))))

Figure 2.3: PDDL derived predicate with one existentially quantified variable ?z
that leverages recursion to capture when a block ?x is above another block ?y.

2.3 Generalized Plans

Most of the contributions in the generalized planning community are novel algo-
rithms for computing generalized plans. As we introduced, a generalized plan is
an algorithm-like structure that solve a set of planning tasks and eventually can be
used to solve new planning instances.

In this section we explain the categories for representing generalized plans,
as well as their execution and validation, the synthesis strategies and the multiple
metrics for evaluating generalized plans.
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2.3.1 Representation
The representation of a generalized plan is the level of the specification of the solu-
tion that consist on the problem of selecting the action to apply next. Throughout
this thesis we are going to introduce approaches with different generalized plan
representations.

• Fully specified are the generalized plans that have only one applicable ac-
tion every time, so the selection problem becomes trivial. We refer to fully
specified solutions as deterministic execution because there is no search in
the selection problem.

• Partially specified are the generalized plans that only consider a subset of
actions from the whole set of applicable actions at each time step while
searching for a plan. Thus these generalized plans are called Domain Con-
trol Knowledge (DCK), where the selection problem is a decision making
problem that is constrained to a subset of actions.

• Non-specified is the case where all applicable actions are considered as the
next action to apply. Therefore the selection problem is equivalent to a plan-
ning problem given a domain specification. A domain model can be seen as
a form of generalized plan that covers any solvable instance representable
with the domain, but the complexity is still PSPACE-complete when ap-
plied to a planning instance (see Section 1.5.

2.3.2 Execution and Validation
In contrast to a classical plan, a generalized plan must include the relevant infor-
mation for a posterior execution and validation over new planning instances. As
we explained above, a generalized plan is control flow when is fully specified, or
domain control knowledge when it is partially specified. In both cases we need
mechanisms that work for multiple problems like branching and looping.

Definition 2.5 (Branching). Branching in generalized planning is a control struc-
ture that when executed in a GP problem branches the plan after evaluating a
condition in the current state.

Definition 2.6 (Looping). Lopping in generalized planning is the repetition mech-
anism that allows to execute multiple times parts of an algorithm-like solution.

These are the two main mechanisms to exploit the structure for multiple prob-
lems. Branching is useful whether input problems differ in their solutions in a
specific condition, while looping is used for repetitive tasks that always follow
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the same execution sequence. The problem in Figure 2.4 consist of unstacking
and dropping blocks from a tower until a green block is held and collected. Thus,
Figure 2.4 is a clear example that uses branching and looping techniques with a
FSC. This FSC works as follows in q0: i) if it holds a block and there is no green
in top of the tower, it collects the block and remains in q0; ii) if it does not hold a
block but observes green block in the top of the tower, the block is unstacked and
continues in q0; and iii) if it does not observe H or G, then a block from the top
of the tower is unstacked and moves to controller state q1. Then, the FSC behaves
in q1: i) unstacking a block from the top of the tower if it does not observe H
or G; ii) dropping the current block if it observes H and G; and iii) dropping the
block if it is holding one and it is not observing green from the top of the blocks
tower. Independently of what q1 observes, it performs an action and goes back to
q0 (looping); while q0 evaluates three possible expressions where only one can be
true in the current state, and in two of these expressions it continues in q0 and in
the other one it jumps to q1 (branching).

Figure 2.4: FSC for collecting a green block in a tower of blocks by observing
whether a block is being held (H), and whether the top block is green (G).

In the literature, branching and looping in planning have been explored as
multiple formalisms. Approaches like HTNs, AND/OR trees or policies that use
branching, can be compiled to classical planning (Alford et al., 2009; Albore et al.,
2009; Ivankovic and Haslum, 2015). Other approaches have shown the benefits
of planning with loops as programs (Levesque, 2005), using policies that gener-
alize (Bonet and Geffner, 2015) or automatically deriving Finite State Machines
(FSMs) (Bonet et al., 2010). These mechanisms can be effectively modelled with
planning actions extended with conditional effects.

The execution of any generalized plan formalism can be sequential or parallel
for the sets of planning instances. In the sequential execution, instances in the
generalized planning task Pt ∈ P are solved one after the other in the given order.
In parallel execution, instances are solved in parallel but requires a more complex
control structure for state progression. In this dissertation, we follow a sequential
approach to compute generalized plans to sets of planning instances.
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The validation of a generalized plan is obtained from the execution of the
generalized plan in a given planning instance. The result from executing a plan
in a planning instance is either a success proof when the generalized plan applied
in the initial state reaches a goal state, or a failure otherwise. The two possible
failures are:

1. The generalized plan is unsound when:

• the execution is trapped into an infinite loop,

• the action a that must be applied next is invalid because its precondi-
tions does not hold in the current state pre(a) 6⊆ s.

2. The generalized plan is incomplete when it is not in a terminal state, i.e.
G 6⊆ s, and it does not find an action to apply next (e.g. a policy with no
applicable rule in the current state).

The validator tool VAL (Howey et al., 2004) was used for first time in the 3rd

International Planning Competition (Long and Fox, 2003). VAL can be used to
validate generalized plans that are in PDDL and fully specified whose executions
are deterministic. In these cases it is trivial to detect any failure of a generalized
plan in a planning instance. Although for partially specified generalized plans, a
planner is required to validate the execution in a given instance and more complex
structures are needed to justify execution failures.

2.3.3 Computation

A previous step to the execution of a generalized plan is its computation or synthe-
sis. Although the representation of the generalized plan has a significant impact
in the synthesis of the solution.

There are two main strategies in the computation of generalized plans. The
first one is the bottom-up approach that receives as an input planning instances,
computes a solution to a single planning instance, generalizes and finally it tries
to merge this solution to other solutions incrementally. The second one is the top-
down approach where given a set of planning instances, the solution is searched in
plan space to solve the whole set of instances. All our works is based in top-down
strategies for different plan representations and features.

These strategies are tightly connected to Machine Learning techniques. The
bottom-up strategy is an on-line algorithm whose generalize plan can be updated
anytime, while the top-down strategy is an off-line algorithm that just covers the
input set of planning instances.
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Regarding with the implementation complexity, top-down approaches can be
easily compiled into other forms of problem solving, while bottom-up requires a
complex mechanism of merging solutions.

Throughout this thesis we are going to introduce compilations to PDDL that
follow a top-down approach whose solutions correspond to programs or FSCs. We
will also show how these generalized plan representations allow to reuse previous
knowledge so we can compute much complex problems in a procedural execution
of previous generalized plans.

2.3.4 Evaluation
The plans in classical planning are evaluated in time performance and quality as
expressed in Equation 1.1. The set of planning problems are benchmarks, and the
main evaluation of the solutions is the coverage.

Definition 2.7 (Coverage). The Coverage is the number of solved problems from
the total amount of planning problems.

In generalized planning, the generalized planning problem P is described as a
set of planning tasks which is similar to a benchmark of planning problems. Thus,
one possible metric to measure the quality of a generalized plan is the coverage
of the solution over a set of planning instances. One of the requirements of a
generalized plan Π is to solve all planning instances from P , so the coverage
should be measured using planning instances that do not belong to the generalized
planning task P 6∈ P as we expressed in Definition 2.3 of generalization.

Generalized plans are represented as data structures or algorithms, so we can
use metrics from algorithm analysis like succinctness and complexity in addition
to coverage.

Definition 2.8 (Succinctness). The Succinctness of a generalized plan Π is the
size of the solution |Π|. The size can be measured as the number of programmed
lines in an algorithm, the number of controllers in a FSC, the amount of policy
rules and so on.

Definition 2.9 (Complexity). The Complexity of a generalized plan is the asymp-
totic analysis of time and space functions regarding with the input variables that
are used to describe the planning instances. For instance, the big-O notation is
used in computational complexity theory for function analysis and the study of
complexity classes.

The coverage and succinctness metrics can be empirically measured and for-
malized, but complexity must be analyzed by hand and only the memory and
execution time of generalized plans over many planning instances can give a clue
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of space complexity and time complexity of the solution. In this thesis we mea-
sure coverage in many experiments and succinctness is intrinsic to the problem
representation.

2.4 Summary
In Chapter 2 we have introduced the concept of Generalized Planning and how
it can be described as an abstract framework that is composed of a problem rep-
resentation, a generalized planner that computes an algorithm, and a generalized
plan representation.

We use the definition of a generalized planning problem from previous work
(Hu and De Giacomo, 2011), where a generalized planning task is a set of T
planning instances P = {P1, · · · , PT}. Then, our generalized planner is going to
translate the set of planning tasks into a single planning problem that can be solved
with an off-the-shelf classical planner. The output of a generalized planner is an
algorithm-like solution called generalized plan Π that must solve each planning
instance from the generalized planning task.
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PART II

Planning Programs and Domain
Control Knowledge
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CHAPTER 3

Planning Programs

In this chapter we introduce the concept of planning programs, that is our repre-
sentation and computation of generalized plans, and we prove some theoretical
properties. Then we run experiments for generating and validating basic planning
programs, and we show the performance of planning programs empirically when
inputs and bounds are randomly generated, and a comparison of heuristics.

3.1 Introduction
The aim of a generalized planning problem P (see Definition 2.1) is to compute a
solution called generalized plan Π (see Definition 2.2). In this dissertation we are
going to focus on representing generalized plans as planning programs.

Definition 3.1 (Planning Program). A Planning Program is a generalized plan
represented by a sequence of instructions Π = 〈w0, ..., wn〉 given a STRIPS frame
Φ = 〈F,A〉. A planning program Π is valid if and only if it solves each planning
instance from the generalized planning task P ∈ P .

Planning programs can be synthesized and validated from a generlized plan-
ning perspective. In this case, GP is related to automated programming which is
the computation of programs from abstract input information that have some struc-
ture or rules in common. These program solutions range from simple functions
to algorithm-like formalisms. Major fields like mathematical programming (Va-
jda, 2009), inductive logic programming (Muggleton, 1999) or more specifically
agent programming (De Giacomo et al., 2016) can be considered special cases of
automated programming.
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Our representation of planning programs requires a more complex execution
than a sequence of planning actions to represent solutions to multiple planning in-
stances. Thus, they are enhanced with goto instructions that allow branching and
looping, i.e. conditional constructs for jumping forwards (branching) or back-
wards (looping) in the program.

Representing plans as programs have been previously explored (Lang and
Zanuttini, 2012). They introduce program formalisms for planning similar to
ours as Knowledge-Based Programs (KBP) that can be interpretable in execu-
tion time and they can be an exponential number of times more compact than
classical plans. Thus, this work is about compact representation of solutions as
programs. The programs are represented as logical formulae from an epistemic
logic perspective that allow branching and looping. Then, they analyze that pro-
gram verification complexity of a KBP is EXPSPACE-complete in the general
case while we express planning programs as a set of instructions that can be syn-
thesized and validated with classical planners whose complexity is analyzed in
Section 1.5. In this chapter we constrain the programs to deterministic and fully
observable environments.

3.2 Planning Program Representation
A basic planning program is a set of instructions where each instruction wi, such
that 0 ≤ i ≤ n, is associated with a program line i and is drawn from a set of
instructions I. We define the set of instructions as I = A ∪ Igo ∪ {end}, where
Igo = {goto(i′, !f) : 0 ≤ i′ ≤ n, i′ 6∈ {i, i+ 1}, f ∈ F}.

In other words, each instruction is either a planning action a ∈ A, a goto
instruction goto(i′, !f) or a termination instruction end. A termination instruc-
tion acts as an explicit marker that program execution should end, similar to a
return statement in programming. We explicitly require that the last instruction
wn should equal end, and since this instruction is fixed, we say that Π has |Π| = n
program lines, even though Π in fact contains n+ 1 instructions.

The execution model for a planning program Π consists of a program state
(s, i), i.e. a pair of a planning state s ⊆ F and a program counter whose value is
the current program line i, 0 ≤ i ≤ n. Given a program state (s, i), the execution
of instruction wi on line i is defined as follows:

• If wi ∈ A, the new program state is (s′, i + 1), where s′ = θ(s, wi) is the
result of applying action wi in planning state s, and the program counter is
simply incremented.

• If wi = goto(i′, !f), the new program state is (s, i + 1) if f ∈ s, and (s, i′)
otherwise. We adopt the convention of jumping to line i′ whenever f is false
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in s. Note that the planning state s remains unchanged.

• If wi = end, execution terminates.

To execute a planning program Π on a planning problem P = 〈F,A, I,G〉,
we set the initial program state to (I, 0), i.e. the initial state of P and program
line 0. We say that Π solves P if and only if the execution terminates and the
goal condition holds in the resulting program state (s, i), i.e. G ⊆ s ∧ wi =
end. Because planning programs are generalied plans, they have the same failure
reasons (see Subsection 2.3.2) when a planning program Π is applied to a classical
planning instance P :

1. Execution terminates in program state (s, i) but the goal condition does not
hold, i.e. G * s ∧ wi = end.

2. When executing an action wi ∈ A in program state (s, i), the precondition
of wi does not hold, i.e. pre(wi) * s.

3. Execution enters an infinite loop that never reaches an end instruction.

This execution model is deterministic and hence a basic planning program can
be viewed as a form of compact reactive plan for the subset of planning problems
defined by the STRIPS frame Φ = 〈F,A〉 that display a certain structure.

Figure 3.1(a) shows an example planning program Π for navigating to the
(1, 1) cell in a grid. Variables x and y represent the position of the current grid
cell. Instructions dec(x) and dec(y) decrement by 1 the value of x and y.
The goto instructions goto(0,!(x=1)) and goto(2,!(y=1)) jump to line
0 when x 6= 1 and to line 2 when y 6= 1, respectively. The execution of Π on
the planning problem illustrated in Figure 3.1(b) produces the following sequence
of planning actions: 〈dec(x),dec(x),dec(x),dec(y),dec(y)〉. In this
example Π solves any planning problem of this type whose goal is to be at cell
(1, 1), no matter the grid size.

3.3 Computing Programs with Classical Planning
In this section we describe an approach to automatically compute basic planning
programs. The idea is to define a compilation that takes as input a generalized
planning problem P = {P1, ..., PT} and a number of program lines n and outputs
a classical planning problem Pn. The intuition behind the compilation is to extend
a given planning frame 〈F,A〉 with new fluents for encoding the instructions on
the program lines of the planning program, as well as the program state (s, i). In
Section 3.4 we show proofs of correctness for this compilation. With respect to
the actions, the compilation replaces the actions in A with:
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0. dec(x)
1. goto(0,!(x=1))
2. dec(y)
3. goto(2,!(y=1))
4. end

(a)

I

G

(b)

Figure 3.1: (a) Example planning program Π for navigating to cell (1, 1); (b) An
execution of Π starting at cell (4,3).

• Programming actions that program an instruction (sequential, conditional
goto or termination) on a given program line. Only empty lines can be
programmed and initially all the program lines are empty.

• Execution actions that implement the execution model described in the pre-
vious section, thereby updating the program state. To execute an instruction
on a program line, the instruction has to be programmed first. However, it
is not necessary to program all instructions before executing: rather, pro-
gramming and executing are interleaved, where a programming action is
performed if the program counter is on an empty program line, and an ex-
ecuting action requires a programmed instruction to update the state and
program counter.

For simplicity, we first define the compilation for a single planning problem,
and later extend it to generalized planning. Given a planning problem P =
〈F,A, I,G〉 and a number of program lines n, the output of the compilation is
a classical planning problem Pn = 〈Fn, An, In, Gn〉. The idea is to define Pn such
that any plan π that solves Pn induces a planning program Π that solves P .

To specify Pn we have to introduce prior notation. Let Fpc = {pci : 0 ≤ i ≤
n} be the fluents encoding the program counter and let Fins = {insi,w : 0 ≤ i ≤
n,w ∈ I ∪ {nil}} be the fluents encoding that instruction w was programmed on
line i. Here, nil denotes an empty instruction, indicating that a line has not yet
been programmed.

Let w ∈ I be an instruction in the instruction set I = A ∪ Igo ∪ {end}. For
each program line i, 0 ≤ i ≤ n, we define wi as a classical planning action that
executes instruction w on line i. In doing so, we disallow instructions other than
end on the last line n, and we disallow end on the first line 0.

• For each sequential instruction a ∈ A, let ai, 0 ≤ i < n, be a classical
planning action with precondition pre(ai) = pre(a)∪ {pci} and conditional
effects cond(ai) = cond(a) ∪ {∅B {¬pci, pci+1}}
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• For each conditional goto instruction goto(i′, !f) ∈ Igo, let goi
′,f
i , 0 ≤ i <

n, be a classical action with precondition pre(goi
′,f
i ) = {pci}, and condi-

tional effects cond(goi
′,f
i ) = {∅B {¬pci}, {¬f}B {pci′}, {f}B {pci+1}}.

• Let the termination instruction endi, 0 < i ≤ n, be a classical action defined
as pre(endi) = G ∪ {pci} and cond(endi) = {∅B {done}}.

Since w may be executed multiple times, we define two versions: P(wi), that
is only applicable on an empty line i and programs w on that line, and E(wi), that
is only applicable when instruction w already appears on line i and repeats the
execution of w:

pre(P(wi)) = pre(wi) ∪ {insi,nil},
cond(P(wi)) = {∅B {¬insi,nil, insi,w}},

pre(E(wi)) = pre(wi) ∪ {insi,w},
cond(E(wi)) = cond(wi).

In other words, P (wi) programs wi on an empty line i, and E(wi) repeats the
execution of wi when it is already programmed on line i.

At this point we are ready to define Pn = 〈Fn, An, In, Gn〉:

• Fn = F ∪ Fpc ∪ Fins ∪ {done},

• An = {P(ai),E(ai) : a ∈ A, 0 ≤ i < n}∪{P(goi
′,f
i ),E(goi

′,f
i ) : goto(i′, !f) ∈

Igo, 0 ≤ i < n} ∪ {P(endi),E(endi) : 0 < i ≤ n},

• In = I ∪ {insi,nil : 0 ≤ i ≤ n} ∪ {pc0},

• Gn = {done}.

We next extend to address generalized planning problems P = {P1, . . . , PT}
defined over multiple planning instances. In this case the solution plan π is a
sequence of actions that programs Π and simulates the execution of the induced
program Π on each of the T classical planning instances, each with a different
initial state and goal condition. Specifically, the process of executing the induced
planning program Π in a set of planning instances works as follows:

1. we set t = 1, which means the current planning instance to solve is the first
one in the GP task P .

2. Then, we verify that Π solves the first planning problem Pt,
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3. we move to the next instance with t = t+ 1 and repeat previous step while
t ≤ T .

Because the execution is sequential, we say the GP problem is correctly validated
if we have validated the last instance PT from the set P .

Given a generalized planning task P = {P1, . . . , PT}, the output of the com-
pilation is a classical planning task P ′n = 〈F ′n, A′n, I ′n, G′n〉. Since P ′n is similar to
the planning task Pn presented above, we only describe the differences:

• The set of fluents F ′n = Fn ∪ Ftest includes a fluent set Ftest = {testt : 1 ≤
t ≤ T} that models the active individual planning problem. Initially test1

is true and testt are false for 2 ≤ t ≤ T , and the initial state on fluents in F
is I1, i.e. I ′n = I1 ∪ {insi,nil : 0 ≤ i ≤ n} ∪ {pc0} ∪ {test1}, and the goal is
G′n = {done}.

• The set of actions A′n contains all actions in An, but redefines the actions
corresponding to the termination instructions. Actions endt,i, 0 < i ≤ n are
now defined differently for each individual planning problem t, 1 ≤ t ≤ T :

– Nonending tests (t < T ) preconditions: pre(endt,i) = Gt∪{pci, testt}
– Conditional effects of nonending tests: cond(endt,i) = {∅ B {¬pci,

pc0,¬testt, testt+1}} ∪ {{¬f}B {f} : f ∈ I t+1} ∪ {{f}B {¬f} :
f /∈ I t+1}

– Ending tests (t = T ) preconditions: pre(endT,i) = GT ∪ {pci, testT}
– Conditional effects of ending tests: cond(endT,i) = {∅B {done}}.

For t < T , action endt,i is applicable when Gt and testt hold, and the effect
is resetting the program counter to pc0, incrementing the current active test
and setting fluents in F to their value in the initial state I t+1 of the next
planning problem. Action endT,i is defined as the previous action endi,
and is needed to achieve the goal fluent done. As before, we add actions
P(endt,i) and E(endt,i) to the setA′n for each t, 1 ≤ t ≤ T , and i, 0 < i ≤ n.

3.4 Theoretical Properties
In this section we prove several theoretical properties regarding basic planning
programs. First, we show that the compilation is sound and complete and pro-
vide a bound on its size. Then, we prove that plan validation and plan existence
is PSPACE-complete. Since a planning program Π is defined in terms of the
number of program lines |Π|, we focus on bounded plan existence; if the num-
ber of program lines is unbounded, a basic planning program can represent any
sequential plan without the need for goto instructions.
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3.4.1 Soundness, Completeness and Size
Theorem 3.1 (Soundness). Any plan π that solves P ′n induces a planning program
Π = 〈w0, . . . , wn〉 that solves P .

Proof. As already argued, the subsequence of programming actions of type P(wi)
that appear in the plan π induces a planning program Π. The only way to achieve
the goal fluent done is to execute the termination instruction endT,i. Hence the
last instruction programmed has to be a termination instruction, ensuring that the
induced planning program Π is well-defined. (Note that Π might have less than
n program lines since we could program the termination instruction on a line i
satisfying 0 < i < n.)

The remainder of the proof follows from observing that the execute actions
E(wi) precisely implement the execution model for basic planning programs. Ex-
ecuting an action instruction a in program state (s, i) has the effect of updating
the planning state as s′ = θ(s, a) and incrementing i. Executing a goto action
goi

′,f
i in (s, i) has the effect of jumping to line i′ if f does not hold in s and else

increment i. Finally, executing a termination action endt,i is only possible if the
goal condition Gt holds for the current planning problem Pt, 1 ≤ t ≤ T . The
effect of endt,i is to reset the program state to (It+1, 0), i.e. the initial state of the
next planning problem Pt+1 and program line 0.

As detailed above, the execution of a basic planning program Π is a deter-
ministic process that fails to solve a generalized planning problem P only under
three conditions. If the plan π is generated via our compilation, none of the three
conditions hold: the precondition of each action instruction has to hold during exe-
cution, the goal condition is checked once execution terminates, and infinite loops
would prevent the plan π from solving the compiled planning problem P ′n. Execu-
tion starts on the first individual classical planning problem P1 ∈ P and finishes
when the last problem PT has been solved. The only way to achieve this condition
is by programming the instructions of Π, which cannot be deleted once they are
programmed, and successively validating that the program solves all the problems
in P , iteratively switching from one problem Pt ∈ P to the next. Switching is
only possible when Gt, the goal condition of problem Pt, holds. Hence for π to
solve P ′n, the simulated execution of the induced planning program Π has to solve
each problem Pt, 1 ≤ t ≤ T , i.e. Π solves P .

Theorem 3.2 (Completeness). If there exists a planning program Π that solves P
such that |Π| ≤ n, there exists a corresponding plan π that solves P ′n.

Proof. We construct a plan π as follows. Whenever we are on an empty line i,
we program the instruction specified by Π. Otherwise we repeat execution of the
instruction already programmed on line i. The plan π constructed this way has
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the effect of programming Π and simulating the execution of Π on each planning
problem in P . Since Π solves P , Π solves each individual problem Pt, 1 ≤ t ≤ T ,
and hence the goal condition Gt is satisfied after simulating the execution of Π on
Pt. This implies that the plan π solves P ′n.

Note that the compilation is not complete in the sense that the bound n on the
number of program lines may be too small to accommodate a planning program
Π that solves P . In many domains a bounded program can only solve a general-
ized planning task if a high-level state representation is available that accurately
discriminates among states. For instance, the program in Figure 3.1 cannot be
computed if n < 4. Larger values of n do not formally affect the completeness of
our approach but they do affect its practical performance since classical planners
are sensitive to the input size.

Theorem 3.3 (Size). Given a generalized planning problemP = {P1, . . . , PT} on
a planning frame Φ = 〈F,A〉 and a bound n on the number of program lines, the
size of the compiled problem P ′n = 〈F ′n, A′n, I ′n, G′n〉 is given by |F ′n| = O(n|A|+
n2|F |+ T ) and |A′n| = O(n|A|+ n2|F |+ nT ).

Proof. By inspection of the fluent set F ′n and the action set A′n. The set F ′n is
composed of F , Fpc, Fins, Ftest and the single fluent done. The size of Fpc is n+1,
the size of Ftest is T , while Fins contains n + 1 copies of each action in A, goto
instruction in Igo, empty marker nil and end instruction end. Hence the size of Fins
is (n+1)(|A|+(n+1)|F |+2) = O(n|A|+n2|F |), which dominates the sizes of
F and Fpc. The action set A′n defines one action per instruction in I, including T
copies of the end instruction, for a total of |A|+(n+1)|F |+T . There are n copies
of each such instruction, one per program line, and two versions that program and
repeat an instruction on a given line, for a total of 2n(|A| + (n + 1)|F | + T ) =
O(n|A|+ n2|F |+ nT ).

Note that the number of goto instructions is the dominant term, growing as
O(n2|F |). We now introduce an optimization that reduces the number of goto
instructions from O(n2|F |) to O(n|F | + n2). The idea is to split actions of type
gotoi

′,f
i into two actions: evalfi , that evaluates condition f on line i, and jmpi

′

i ,
that performs the conditional jump according to the evaluation outcome. This is
inspired by assembly languages that separate comparison instructions that modify
flags registers, e.g., CMP and TEST in the x86 assembly language, from jump
instructions that update the program counter according to these flag registers, e.g.,
JZ and JNZ in x86 assembly.

To implement the split we introduce two new fluents acc and eval, initially
false. Fluent acc records the outcome of the evaluation, while eval indicates that
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the evaluation has been performed. Actions evalfi and jmpi
′

i are defined as

pre(evalfi ) = {pci,¬eval},
cond(evalfi ) = {{f}B {acc}} ∪ {∅B {eval}},

pre(jmpi
′

i ) = {pci, eval},
cond(jmpi

′

i ) = {∅B {¬pci,¬eval}, {¬acc}B {pci′}, {acc}B {pci+1,¬acc}}.

Likewise, we can replace each fluent insi,w ∈ Fins which indicates that a goto
instruction w = goto(i′, !f) has been programmed on line i by two fluents insi,f
and insi,i′ , where the former indicates that f is the condition of the goto instruction
on line i, and the latter indicates that we should jump to line i′ if f is false. As
a result of the optimization, the size of the planning problem P ′n becomes |F ′n| =
O(n(|A|+ |F |+ n) + T ) and |A′n| = O(n(|A|+ |F |+ n+ T )).

3.4.2 Plan Validation and Bounded Plan Existence
We formally define two decision problems for the class of basic planning pro-
grams, which we call PP. The two decision problems correspond to plan validation
and bounded plan existence of basic planning programs.

VAL(PP) (plan validation for basic planning programs)
INSTANCE: A planning problem P = 〈F,A, I,G〉 and a planning program Π.
QUESTION: Does Π solve P ?

BPE(PP) (bounded plan existence for basic planning programs)
INSTANCE: A planning problem P = 〈F,A, I,G〉 and an integer n.
QUESTION: Does there exist a planning program Π with at most n
program lines that solves P ?

We proceed to prove that the complexity of both decision problems is PSPACE-
complete.

Theorem 3.4. VAL(PP) is PSPACE-complete.

Proof. Membership: Simply use the execution model to check whether a given
planning program Π solves a planning problem P . To store the program state
(s, i) we need |F | + log n space. Processing an instruction and testing for failure
conditions 1 and 2 can be easily done in polynomial time and space. To check
whether execution enters into an infinite loop, we can maintain a count of the
number of instructions processed. If this count exceeds 2|F |n without reaching the
end instruction, this means that at least one program state has been repeated, in
which case we stop and report failure. To store the count we also need |F |+ log n
space, which is polynomial in P and Π.
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Hardness: We adapt Bylander’s reduction from polynomial-space determin-
istic Turing machine (DTM) acceptance to plan existence for classical planning
(Bylander, 1994). Given a DTM M with a tape of fixed size KM , the idea is to
define a planning frame ΦM = 〈F,A〉 such that the set F contains fluents derived
from the following predicates:

• at(j, q): Is M currently at tape position j and state q?

• in(j, σM): Is σM the symbol in tape position j of M?

• accept: Does M accept on a given input?

We define a single action simulate with empty precondition and one condi-
tional effect per transition of M . In other words, A = {simulate}. Each
conditional effect of simulate is on the following form:

{at(j, q), in(j, σM)}B {¬at(j, q),¬in(j, σM), at(j′, q′), in(j, σ′M)}.

When M is at tape position j and state q and σM is the symbol in j, the transition
replaces σM with σ′M and moves to tape position j′ ∈ {j − 1, j + 1} and state q′.
If, instead, M accepts the current configuration, the conditional effect becomes

{at(j, q), in(j, σM)}B {accept}.

Given the planning frame ΦM and an input string xM , we can construct a
planning problem P x

M = 〈F,A, I,G〉 such that the initial state I initializes the
tape position to 1 and the state to q0, and encodes the input string xM on the tape:

I = {at(1, q0), in(0,#), in(1, xM1), . . . , in(k, xMk
), in(k+1,#), . . . , in(KM ,#)},

where # is the blank symbol, k is the length of the input string xM and KM is the
fixed size of the tape. The goal condition is always defined as G = {accept}.

We now construct the following planning program ΠM with two program
lines:

0. simulate
1. goto(0,!accept)
2. end

Because of the conditional effects of simulate, lines 0 and 1 constitute a loop
that repeatedly simulates a transition of M starting from the initial state. This
loop only terminates if M eventually accepts, in which case the goal state G is
trivially satisfied when execution terminates on line 2. Hence, for any input string
xM , the planning program ΠM solves P x

M if and only if M accepts on input xM .
Since the size of P x

M and ΠM is polynomial in the size of M , we have produced
a reduction from DTM acceptance to VAL(PP). Since the former is a PSPACE-
complete decision problem, this proves that VAL(PP) is PSPACE-hard.
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Theorem 3.5. BPE(PP) is PSPACE-complete for n ≥ 2.

Proof. Membership: Non-deterministically guess a planning program Π with n
program lines. Due to Theorem 3.4, validating whether Π solves P is in PSPACE.
Hence the overall procedure is in NPSPACE = PSPACE.

Hardness: Given a DTM M and an input string xM , consider the planning
problem P x

M from the proof of Theorem 3.4. There exists a planning program
with 2 program lines, namely ΠM , that solves P x

M if and only if M accepts on
input xM . Hence we have reduced DTM acceptance to BPE(PP) for n = 2,
implying that the latter is PSPACE-hard.

3.5 Experiments

Along this dissertation we are going to use mainly, in all the experiments, the
classical planner Fast Downward (Helmert, 2006b) (FD) in the LAMA-2011 set-
ting (Richter and Westphal, 2010), and sometimes we explicitly introduce other
planners from the Lightweight Automated Planning Toolkit (LAPKT) (Ramirez
et al., 2015). All compilations introduced in this dissertation correspond to set-
tings of the Automated Programming Framework (APF) 1. The computer used for
these experiments is an Intel Core i5 3.10 Ghz x 4 processor with a 4 GB memory
bound.

For planning programs we perform two sets of experiments. In the first set
we take as input a generalized planning problem P , and use the compilation P ′n
to automatically generate a planning program Π with at most n lines that solves
P . In the second set of experiments we take as input a planning problem P and
a planning program Π, and determine whether Π solves P . Thus the two sets
of experiments roughly correspond to the two decision problems BPE(PP) and
VAL(PP), although plan generation goes beyond plan existence in that we actually
produce the planning program Π that solves the instance (or set of instances).

In order to compute the compilation P ′n we use the APF. For plan generation
we use FD running in an Intel Core i5 3.10 Ghz x 4 processor with a time limit of
3600s and a memory bound of 4 GB. For validation we use FD in the same setting
and a Breadth First Search (BrFS) planner from the LAPKT.

We evaluate this approach in the following domains: Find, Reverse, Select
and Triangular. In Find we must count the number of occurrences of a specific
element in a vector. In Reverse we have to reverse the content of a vector. In
Select, given a vector of integers we have to search for the minimum element and

1The public APF repository is at the following URL: https://github.com/aig-upf/automated-
programming-framework.
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corresponding index. In Triangular the aim is to compute the triangular number∑N
i=1 i for a given integer N .
The domains above have been defined and fine-tuned independently so far.

However, when a set of domains share many features, they can be defined on a
common planning frame Φ = 〈F,A〉. Therefore, we have defined a domain called
Pointers that represents a vector of pointers pointing to certain elements, and ac-
tions to increment/decrement pointers and swapping the content of two pointers.
From the common planning frame we can generate all planning instances of the
three domains Find, Reverse and Select. The implementation of common plan-
ning frames is similar to programming, in which the set of possible statements is
fixed for different problems.

In Table 3.1, for each domain we report the number of lines required to gener-
ate a planning program, and the number of instances of the generalized planning
problem P provided as input, where each instance may test a corner case. Then,
we solve the compiled planning instance P ′n using a classical planner, generating
a number of fluents and actions in the preprocessing step. The resulting plan π
induces a planning program Π that solves the generalized planning problem, and
we report the searching, preprocessing and total time. The fluents and actions
provide intuition of the size of the output planning problem P ′n.

n Instances F A Search(s) Prepro(s) Total(s)
Find 4 3 671 1044 274.20 0.66 274.86
Reverse 4 2 666 1041 86.96 0.92 87.86
Select 4 4 1028 1688 178.94 25.26 204.20
Triangular 3 2 323 324 0.38 0.47 0.85

Table 3.1: Plan generation for Planning Programs. Program lines and number of
used instances; fluents and actions; search, preprocess and total time (in seconds)
elapsed while computing the solution.

When domains are created as common planning frames for multiple prob-
lems, it could affect to the performance of plan search as reported in Table 3.1
for Find, Reverse and Select. The reason is that defining more actions broadens
the scope of problems that can be solved, yet possibly increasing the branch-
ing factor. However, the irrelevant actions (actions that will never be used but
are considered in the search) to solve a specific planning instance can be re-
moved in the preprocessing phase by including static fluents in the instance to
select the action scheme from the domain, i.e. including fluents from predicate
(available− action?a− actionID) and adding each fluent in the precondition of
the corresponding action.

Figure 3.2 shows the resulting planning programs in the four domains. In Find,
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0. goto(2,!(found(a)))
1. inc(c)
2. inc-pointer(a)
3. goto(0,!(eq(a,tail)))
4. end

(a)

0. swap(*a,*b)
1. inc-pointer(a)
2. dec-pointer(b)
3. goto(0,!(lt(b,a)))
4. end

(b)
0. goto(2,!(lt(*a,*b)))
1. assign(b,a)
2. inc-pointer(a)
3. goto(0,!(eq(a,tail)))
4. end

(c)

0. add(x,y)
1. dec(y)
2. goto(0,!(eq(y,0))
3. end

(d)

Figure 3.2: Illustration of the generated programs. (a) Πfind for counting the
number of occurrences of an element in a vector; (b) Πreverse for reversing a vec-
tor; (c) Πselect for selecting the minimum element of a vector; (d) Πtriangular for
computing

∑N
i=1 i.

pointer a initially points to the head of the vector, while counter c equals 0. Lines
2-3 use a to iterate over all elements, while lines 0-1 increment c whenever the
content of a equals the element we are looking for. In Reverse, a initially points
to the head and b to the tail. The program repeatedly swaps the contents of a and
b and move a and b towards the middle of the vector. In Select, a and b initially
point to the head, and again, lines 2-3 use a to iterate over all elements. Whenever
the content of a is less than that of b, line 1 assigns a to b, effectively storing the
minimum element in b. In Triangular, y initially stores the integer N , and the
program stores the result

∑N
i=1 i in x.

In a second set of experiments we validate each planning program from Fig-
ure 3.2 on a larger instance, also defined as instances with more objects but with
the same set of observations and action scheme. Because the planning programs
are given as input, we directly add fluents of type insi,w to the initial state of P ′n. In
Find, Reverse and Select, we tested the planning programs on vectors of size 30,
significantly larger than those used as input for plan generation. In Triangular, the
aim was to compute the sum of the first 6 natural numbers. Apart from validating
each planning program using the two planners FD and BrFS (compiled tests), we
also compare the time taken for each planner to compute the solution from scratch
without using the planning program (classical tests).

The results of the second set of experiments are shown in Table 3.2. For
Compiled Tests, BrFS performs always faster than FD and capable of solving
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every compiled instance. In several cases, and mostly for Classical Tests, the
planners were unable to compute a solution within the given time limit (TE =
Time-Exceeded) showing how helpful DCK is.

Compiled Tests Classical Tests
F A FD BrFS F A FD BrFS

Find 118 9 0.73 0.65 427 5 TE TE
Reverse 404 7 TE 1.82 394 4 TE TE
Select 119 9 4.74 0.64 264 4 TE TE
Triangular Number 53 6 TE 0.33 44 5 TE 0.38

Table 3.2: Generalized plan validation. In Compiled Tests, we compute the flu-
ents, actions and total time (in seconds) to obtain a plan for FD and BrFS. In
Classical Tests, we compute the fluents, actions and time taken by FD and BrFS
to solve the instance without using the planning program.

Even though validation only involves the deterministic execution of a program
on a given instance, the preprocessing step of FD often struggles to generate the
corresponding fluents and actions. In particular, this happens when the number of
objects of the input planning instance is very large. For instance, the Find domain
is validated on an instance with 31 objects corresponding to values and indices of
a vector, and the total time of FD is dominated by preprocessing, while search is
extremely fast. This is the reason that FD fails to validate many input instances.
The BrFS setting of the LAPKT planner performs a simpler preprocessing step,
so the total time is always smaller than that of FD.

3.6 Generalization Ability of the Compilation

In this section we use the same benchmarks as for basic planning programs: Find,
Reverse, Select and Triangular number. We analyze the generalization ability of
the compilation in two experiments. In the first experiment, we assign the same
instances for program generation as in previous experiments and iteratively incre-
ment the bounds of the compilation. In the second experiment, we provide the
correct bounds for which a generalized plan can be found but the input instances
are randomly generated. Both experiments give an insight into how well the com-
pilation generalizes to different parameters and inputs. We used the FD system
in the LAMA-2011 setting for these experiments, and a time bound of 600 sec-
onds for generating a planning program and 600 seconds more to validate every
instance. Finally we analyze FD on different heuristics to check how informative
they are for generating planning programs.
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We describe the methodology that we use in order to generate and validate
programs. Our framework requires a configuration file that specifies the compila-
tion type (basic or extension), the domain, the set of instances for generation, the
set of instances for validation and the required bounds (number of lines, size of
the stack, maximum execution time, etc.). Often, for a planning program to gen-
eralize it is necessary to define appropriate derived predicates and provide just the
right amount of informative input instances. For instance, a grid domain where
the problem is to reach the rightmost cell can be captured in diverse settings. One
option is to include a derived predicated that is true in the goal cell (similar to
looping on observations), another option is to provide two instances of different
row lengths to avoid converging on a constant row length, etc.

In Table 3.3 we show the results of the first experiment. Every row has a
bounded number of lines and stack size that are used to check when FD finds a
solution. In this case the only human input is the set of instances, while bounds
are incremented automatically. For each combination of lines and stack size we
report the total time that FD takes to solve the problem. NSF means no solution
was found, and TE means that preprocessing did not finish within the alloted
time bound. In case a program is generated, we validate it over a random set of
instances as a metric of generalization. There are four subcolumns F (Find), R
(Reverse), S (Select) and T (Triangular Sum) for each column of Instances, Total
Time and Validation, indicating the different domains. Results in bold indicate
the best solution obtained for each domain. We remark that for the best solutions
found, failure to solve some instances was due to timeout in the preprocessing
step, not due to an incorrect solution.

From Table 3.3 we can conclude that when the bounds are too small, it is im-
possible for the planner to find a solution. On the other hand, when the bounds are
too large, the planner often does not find a solution, either because preprocessing
takes too long, or because search cannot handle the larger state space. In addi-
tion, when the bounds are too large, the planner often finds a program with more
lines that does not generalize well to other instances. It is clear that the compila-
tion is relatively sensitive to the bounds, but the selection of bounds can still be
automated by iterating over different combinations of the bounds.

In the second experiment, instances are randomly generated while the number
of lines and stack size are fixed. In each row we specify the number of instances
that are chosen from the full set of randomly generated instances. Then we run
four independent experiments, each with a different set of instances. Table 3.4
reports the best program found among the four experiments for each row. We
evaluate programs according to how many instances they solve in the validation
phase, and as a tiebreaker we use the preprocessing and search time.

Since previous experiments established the best possible validation perfor-
mance of generated programs, we can compare the obtained solutions to the best
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Lines Stack Instances Total Time(s) Validation
F R S T F R S T F R S T

2 1 3 2 4 2 NSF NSF NSF NSF 0/40 0/40 0/40 0/6
2 5 3 2 4 2 NSF NSF NSF NSF 0/40 0/40 0/40 0/6
2 10 3 2 4 2 NSF NSF NSF NSF 0/40 0/40 0/40 0/6
2 20 3 2 4 2 NSF NSF NSF NSF 0/40 0/40 0/40 0/6
3 1 3 2 4 2 NSF NSF NSF 1.27 0/40 0/40 0/40 4/6
3 5 3 2 4 2 NSF NSF NSF 4.39 0/40 0/40 0/40 4/6
3 10 3 2 4 2 NSF NSF NSF 8.86 0/40 0/40 0/40 4/6
3 20 3 2 4 2 NSF NSF TE 17.76 0/40 0/40 0/40 4/6
4 1 3 2 4 2 245.96 90.58 199.57 1.49 27/40 20/40 35/40 4/6
4 5 3 2 4 2 NSF 376.62 NSF 5.40 0/40 20/40 0/40 4/6
4 10 3 2 4 2 NSF NSF NSF 10.63 0/40 0/40 0/40 4/6
4 20 3 2 4 2 NSF NSF TE 20.94 0/40 0/40 0/40 4/6
5 1 3 2 4 2 570.36 66.13 NSF 1.97 2/40 20/40 0/40 4/6
5 5 3 2 4 2 NSF 290.10 NSF 7.15 0/40 20/40 0/40 4/6
5 10 3 2 4 2 NSF 30.20 NSF 13.38 0/40 5/40 0/40 4/6
5 20 3 2 4 2 NSF 71.55 TE 27.43 0/40 5/40 0/40 4/6
6 1 3 2 4 2 NSF 188.90 NSF 3 0/40 20/40 0/40 4/6
6 5 3 2 4 2 NSF 12.46 NSF 12.40 0/40 5/40 0/40 4/6
6 10 3 2 4 2 NSF 24.90 TE 26.53 0/40 5/40 0/40 4/6
6 20 3 2 4 2 NSF 49.22 TE 42.31 0/40 5/40 0/40 4/6
7 1 3 2 4 2 NSF 4.66 NSF 5.56 0/40 5/40 0/40 4/6
7 5 3 2 4 2 NSF 17.50 NSF 21.24 0/40 5/40 0/40 4/6
7 10 3 2 4 2 NSF 34.01 TE 41.06 0/40 5/40 0/40 4/6
7 20 3 2 4 2 NSF 73.74 TE 84.23 0/40 5/40 0/40 4/6
8 1 3 2 4 2 100.9 5.98 NSF 7.36 3/40 5/40 0/40 4/6
8 5 3 2 4 2 78.20 20.10 NSF 28.39 3/40 5/40 0/40 4/6
8 10 3 2 4 2 NSF 47.31 TE 55.61 0/40 5/40 0/40 4/6
8 20 3 2 4 2 NSF 97.97 TE 116.26 0/40 5/40 0/40 4/6
9 1 3 2 4 2 NSF 6.91 NSF 10.38 0/40 5/40 0/40 4/6
9 5 3 2 4 2 NSF 27.88 NSF 40.65 0/40 5/40 0/40 4/6
9 10 3 2 4 2 NSF 48.65 TE 81.49 0/40 5/40 0/40 4/6
9 20 3 2 4 2 NSF 100.40 TE NSF 0/40 5/40 0/40 0/6

10 1 3 2 4 2 121.37 7.76 NSF 15.6 3/40 5/40 0/40 2/6
10 5 3 2 4 2 NSF 28.78 NSF 64.04 0/40 5/40 0/40 2/6
10 10 3 2 4 2 NSF 56.30 TE 320.81 0/40 5/40 0/40 2/6
10 20 3 2 4 2 NSF 116.31 TE NSF 0/40 5/40 0/40 0/6

Table 3.3: Plan generation for different bounds in Find (F), Reverse(R), Select(S)
and Triangular Sum(T) domains using FD in the LAMA-2011 setting. Program
lines, stack size and number of instances used; total time (in seconds including
preprocessing and search) elapsed while computing the solution for each domain.
In case the planning program is correctly generated, the last column shows the val-
idation over multiple instances. We report here No-Solution-Found (NSF) when
the planner explores the state space without finding a solution or if there is no
solution within the time bound. Also we use Time-Exceeded (TE) when the pre-
processing did not finish within the time bound.
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# Inst Lines Total Time(s) Validation
F R S T F R S T F R S T

1 4 4 4 3 0.99 40.47 3.96 0.19 3/40 17/40 2/40 1/6
2 4 4 4 3 0.61 48.4 NSF 0.96 4/40 15/40 0/40 4/6
3 4 4 4 3 416.27 48.03 TE TE 6/40 15/40 0/40 0/6
4 4 4 4 3 20.94 TE NSF TE 15/40 0/40 0/40 0/6
5 4 4 4 3 NSF 49.23 TE TE 0/40 15/40 0/40 0/6
6 4 4 4 3 NSF TE TE TE 0/40 0/40 0/40 0/6
7 4 4 4 3 NSF TE 423.04 TE 0/40 0/40 35/40 0/6
8 4 4 4 3 NSF 99.25 TE TE 0/40 15/40 0/40 0/6
9 4 4 4 3 NSF TE TE TE 0/40 0/40 0/40 0/6
10 4 4 4 3 NSF TE TE TE 0/40 0/40 0/40 0/6

Table 3.4: Plan generation with random instances in Find (F), Reverse(R), Se-
lect(S) and Triangular Sum(T) using FD in the LAMA-2011 setting and only one
stack level. For each setting we ran four random experiments with different in-
put instances, reporting the program lines and total time (in seconds). For each
setting we choose the best result among the four randomly generated inputs in
terms of the validation showed in the last column. We report No-Solution-Found
(NSF) when the planner explores the state space or exceeds the time bound, and
Time-Exceeded (TE) when the preprocessing step exceeds the time bound.

results in Table 3.3. In the Find domain, the best validation outcome is produced
with an input of 4 random instances, while the results in Table 3.3 were obtained
using only three instances, and the resulting program does not generalize as well,
solving 15 instances compared to 27. In Reverse, the best validation is with just
one instance, but generalization is again worse, solving 17 instances compared to
20. In Select and Triangular Sum, the best solution achieves the same validation
measure as in Table 3.3 (35 and 4, respectively), but Select needs 7 input in-
stances, more than the 4 instances used in Table 3.3. Again, we can conclude that
the compilation is relatively sensitive to the nature and number of input instances.

Finally, we ran experiments with different heuristics to find out whether some
heuristics are better at searching solutions to our planning problems compilation.
Since the structure of the output planning problems is similar for all domains, we
believe that this is an indicative of how heuristics handle these problems. The
outcome of this experiment appears in Table 3.5 and we use the same setting as in
Table 3.1, but only one heuristic is allowed for each generation phase.

The heuristic evaluation shown in Table 3.5 is about the performance on gener-
ation of basic planning programs for different domains like Find, Reverse, Select
and Triangular Sum. The results show that delete-free relaxation is only helpful
for easy problems like Triangular Sum but becomes unfeasible when problems
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have deeper plan lengths yielding in most of the cases either to Time-Exceeded or
Memory-Exceeded. We have to remark that Landmark count has shown a great
computational time performance even in complex domains like Select, but the
main limitation using this heuristic is memory because of its fast generation rate.
Thus, LAMA-2011 setting is not the one with best performance but has shown
great adaptability to every domain balancing exploration and generation rates, be-
ing the only one capable of generating every single planning program.

3.7 Summary
In this chapter we have introduced the concept of planning programs as a for-
malism for generalized planning. We represent planning programs with a set of
instructions that could be either sequential, terminal or conditional gotos that al-
low branching and looping. Then, we split the computation logic of a planning
program into programming and executing actions. Whilst the first ones are used to
synthesize a program, the second ones are used to apply actions and the program
execution logic.

We also prove in this chapter soundness, completeness and size theorems for
computing planning programs. In addition, we prove that decision problems for
basic planning programs (PP) like plan validation (VAL(PP)) and bounded plan
existence (BPE(PP)) are PSPACE-complete.

Finally, we report several experiments where the first ones are for testing
VAL(PP) and BPE(PP) decision problems, and the second ones to measure per-
formance on random inputs and bounds. We conclude from the last experiments
that bounds can be found iteratively when the set of input instances is given, but
planning programs are hard to generalize whether the set of instances is randomly
chosen.
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Domain Heuristic Expanded Evaluated Generated Plan Prepro(s) Search(s)

Find

Additive - - - - 0.66 ME
Blind - - - - 0.71 ME
Causal graph - - - - 0.72 ME
Context-enhanced - - - - 0.67 ME
FF 139703 526586 605448 51 0.71 30.96
Goal count - - - - 0.75 ME
LAMA-2011 298514 2558305 5970288 51 0.66 274.20
Landmark count - - - - 0.70 ME

Reverse

Additive - - - - 1.03 ME
Blind - - - - 1.03 ME
Causal graph 1846988 1846989 3108541 22 0.92 20.88
Context-enhanced - - - - 1.01 TE
FF - - - - 0.92 TE
Goal count - - - - 0.98 ME
LAMA-2011 226342 557364 7095513 22 0.92 86.96
Landmark count 2785250 2785251 4507445 22 1.05 19.52

Select

Additive - - - - 31.36 TE
Blind - - - - 28.94 ME
Causal graph 3931314 3931315 7291302 73 31.58 235.86
Context-enhanced - - - - 28.47 TE
FF 185522 3282971 3435140 73 25.1 604.48
Goal count - - - - 29.12 ME
LAMA-2011 152195 434383 6279369 73 25.26 178.94
Landmark count 10643057 10643058 21145893 73 28.20 99.44

Triangular

Additive 46 62 314 26 0.30 0.02

Sum

Blind 266183 266184 400632 26 0.28 1.60
Causal graph 540 541 987 26 0.32 0.04
Context-enhanced 46 62 314 26 0.30 0.02
FF 46 62 314 26 0.40 0.12
Goal count 266183 266184 400632 26 0.28 1.18
LAMA-2011 2872 5744 8406 26 0.47 0.38
Landmark count 75906 75907 139145 26 0.66 0.36

Table 3.5: Heuristics evaluations for planning program generation in Find, Re-
verse, Select and Triangular Sum domains. The columns indicate the number of
expanded, evaluated and generated nodes during the search phase. We report the
plan size, preprocessing time and search time (in seconds). There are cases where
heuristics do not help to find the planning program reporting Time-Exceeded (TE)
or Memory-Exceeded (ME) that corresponds to slow exploration and/or fast gen-
eration of nodes. The results with best computational total time for each domain
are marked in bold.

45



“tesi” — 2018/7/9 — 21:43 — page 46 — #72



“tesi” — 2018/7/9 — 21:43 — page 47 — #73

CHAPTER 4

Generalized Planning with
Procedural Domain Control

Knowledge

In Chapter 2 we introduced the different kinds of generalized plan representations
from which we are going to use two throughout this thesis, control flow and do-
main control knowledge. In this chapter, we extend planning programs defined in
Chapter 3 with a stack model that allow execution of previous knowledge in the
form of procedures. Then, we explore previous knowledge as procedures with pa-
rameters and non-deterministic executions including the choice instructions and
lifted instructions. Finally, we report theoretical properties and experiments for
each planning program representation.

4.1 Introduction

A generalized planning task P is a set of planning instances that share some com-
mon structure. We introduce an approach that applies when problems can be hier-
archically decomposed. We make the assumption that a solution to a generalized
planning task can be found using branching and looping control structures, and
previous knowledge in the form of procedures. We follow a divide-and-conquer
approach where first we compute a planning program from a generalized planning
problem and then we use that solution as a callable procedure to solve the overall
generalized planning task.
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Definition 4.1 (Procedure). A Procedure Π is an executable set of program in-
structions {w0, · · · , wn} used to solve a subtask from a complex programming
problem P . In structured programming, complex problems are solved by decom-
posing them into procedures that can be used as previous knowledge by calling
them.

In Subsection 2.3.1 we introduced the possible generalized plan representa-
tions. Procedures are generalized plans that can be reused for solving more com-
plex problems, but their execution depends on the representation. If procedures
are fully specified, the execution is deterministic with only one possible action to
apply next, while partially specified procedures are used as DCK that narrows the
search to a subset of applicable actions but still requires a solver to compute a
fully specified solution.

Previous work shows the improvements of procedural DCK in search. Macro-
actions were among the first suggestions to speed up planning and their compu-
tation have been deeply studied (Fikes et al., 1972; Botea et al., 2005; Coles and
Smith, 2007; Jonsson, 2009). They can help to solve planning problems faster,
but they are not always applicable even if they are parameterized, e.g. a macro
that moves 4 times to the right in a row can not solve a problem of moving 5 times
right or even worse, it will fail trying to solve the problem of going in the opposite
direction like going to the leftmost cell of the row.

Other approaches to represent DCK are expressed as control rules (Veloso
et al., 1995), temporal logic formulae (Bacchus and Kabanza, 2000), HTNs (Erol
et al., 1996), reactive policies (Yoon et al., 2008; De la Rosa et al., 2011), proce-
dural DCK (Baier et al., 2007) or finite state machines (Bonet et al., 2010; Hu and
De Giacomo, 2013).

We are going to focus on procedural DCK in the form of planning programs.
Recent work implemented planning programs with one level callable procedure
(Jiménez and Jonsson, 2015). In that case, the planning program is composed of
a main program and a procedure where both are computed at the same time and
the main program can use the procedure.

In this chapter we introduce one of the core contributions of this thesis com-
pared to previous work. We have implemented a stack model in PDDL that allows
callable procedures in the form of planning programs. Planning programs can be
automatically synthesized, but they can be also partially or fully hand-coded and
used as previous knowledge to solve complex tasks in planning. We have con-
tributed four planning program representations, two that are deterministic and two
that are non-deterministic. The first two are with or without paremetrized proce-
dures, while the other two use a choice instructions and lifted instructions that
require a solver to compute a plan.
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4.2 Nested Procedure Calls
There are planning problems that can be decomposable into subtasks. For every
subtask we can synthesize a planning program that is included as a procedure in
a bag of knowledge. We define a planning program with procedures as a set of
instructions wi that can call any of previous m procedures and nest planning pro-
grams executions. Then, we need a special mechanism for nesting the execution
of procedures. Thus, we have modelled a stack in PDDL where state-of-the-art
planners can push and pop procedures in execution time.

In our approach, a procedure Π is a planning program that requires call in-
structions to interact and call other procedures. The set of call instructions is
defined as Icall = {call(j′) : 0 ≤ j′ ≤ m}. Then, the set of possible in-
structions for planning programs is extended with the set of call instructions,
I = A ∪ Igo ∪ {end} ∪ Icall.

The set of computed planning programs or procedures can be used as previous
knowledge and executed as procedural DCK. In previous work (Baier et al., 2007)
procedural DCK is hand-coded by experts and tested in several planning domains
like rovers, storage and trucks. Fritz et al. [2008] formalized callable procedures
but they were not implemented in PDDL. The first implementation of callable pro-
cedures in PDDL (Jiménez and Jonsson, 2015) worked only for 1-level procedure
calls.

Given a classical planning frame Φ = 〈F,A〉, we formalize the extension of
planning programs with procedures as Π = 〈Θ, FL〉 where:

• Θ = {Π0, · · · ,Πm} is a set of planning programs defined in Φ.

• FL ⊆ F is a subset of local fluents.

The main procedure is always Π0 by convention and the planning programs
from Θ is previous knowledge with the name of auxiliary procedures {Π1, · · · ,Πm}.
We define the size of a planning program with procedures |Π| as the total number
of program lines of all procedures, |Π| = |Π0|+ · · ·+ |Πm|.

4.2.1 The stack model
In the execution model of planning programs with procedures, we distinguish
between local and global states that are used later in the call stack implementation.

Procedures are defined on sets of global and local fluents. So, states are par-
titioned as s = sg ∪ sl where the first part correspond to the global state sg and
the second to the local state sl. Given a subset of local fluents FL, the global state
is the projection (see Section 1.3) described as sg = s|F\FL

and the local state as
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sl = s|FL
. Now that we have formalized the projection of the global and local

states, we can define the call stack.

Definition 4.2 (Call Stack). A Call Stack Ξ is a tuple (j, i, sl), where j is an index
that refers to a procedure Πj , 0 ≤ j ≤ m, i is a program line, 0 ≤ i ≤ |Πj|, and
sl is a local state. This data structure processes the elements following a Last-In
First-Out (LIFO) strategy. The possible actions to perform in a stack are adding
(push) procedures, removing (pop) procedures and modifying the element on the
top of the stack.

In what follows we use Ξ⊕ (j, i, sl) to denote a call stack recursively defined
by a call stack Ξ and a top element (j, i, sl). The size of the call stack is defined
by |Ξ|, and to ensure that the execution model remains bounded in the PDDL
compilation, we impose an upper bound on the size of the call stack |Ξ| = `.

4.2.2 Executing Planning Programs with Nested Procedure Calls
The execution model for a planning program with procedures consists of a pro-
gram state (sg,Ξ), where sg is a global state and Ξ is a call stack. Given a program
state (sg,Ξ ⊕ (j, i, sl)), the execution of instruction wji on line i of procedure Πj

is defined as follows:

• If wji ∈ A, the new program state is (s′|F\FL
,Ξ ⊕ (j, i + 1, s′|FL

)), where
s′ = θ(sg ∪ sl, wji ) is the state resulting from applying action wji in state
s = sg ∪ sl and s′|F\FL

and s′|FL
are the corresponding global and local

states. Just as in the execution model for basic programs, the program line i
is incremented.

• If wji = goto(i’,!f), the new program state is (sg,Ξ⊕ (j, i+ 1, sl)) if
f ∈ sg ∪ sl and (sg,Σ ⊕ (j, i′, sl)) otherwise. The only effect is changing
the program line, and a jump only occurs if f is false, like in the execution
model for basic programs.

• If wji = call(j’), the new program state is (sg,Ξ ⊕ (j, i + 1, sl) ⊕
(j′, 0, ∅)). In other words, calling a procedure Πj′ has the effect of (1) in-
crementing the program line i at the top of the stack; and (2) pushing a new
element onto the call stack to start the execution of the new procedure Πj′

on line 0.

• If wji = end, the new program state is (sg,Ξ), i.e. a termination instruction
has the effect of terminating a procedure by popping element (j, i, sl) from
the top of the call stack. The execution of a planning program with pro-
cedures does not necessarily terminate when executing an end instruction.
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Instead, execution terminates when the call stack becomes empty, i.e. in
program state (sg,Ξ) such that |Ξ| = 0.

To execute a planning program with procedures Π on a planning problem P =
〈F,A, I,G〉, we set the initial program state to (I|F\FL

, (0, 0, I|FL
)), i.e. the initial

state of P is partitioned into global and local states and execution is initially on
program line 0 of the main program Π0. We assume that the goal condition G is
completely defined on the set of global fluents F \ FL and we say that Π solves
P if and only if execution terminates and the goal condition holds in the resulting
program state, i.e. (sg,Ξ) ∧ G ⊆ sg ∧ |Ξ| = 0. As a consequence of the bound `
on the size of the call stack, there is now a fourth reason why a planning program
with procedures may fail to solve a generalized planning problem:

4. Execution does not terminate because, when executing a call instruction
call(j’) in program state (sg,Ξ), the size of Ξ equals `, i.e. |Ξ| = `.

Executing such a procedure call would result in a call stack whose size exceeds
the upper bound `, i.e. a stack overflow. The extended execution model is still
deterministic, so a planning program with procedures can again be viewed as a
form of compact reactive plan for the class of planning problems defined by the
corresponding generalized planning task.

Figure 4.1(a) shows an example planning program with procedures 〈{Π0, . . . ,
Π4}, ∅〉 for visiting the four corners of an n × n grid starting from any initial
position in the grid. Variables x and y that represent the agent position in the grid
are global, and there are no local fluents, i.e. s|F\FL

= s and s|FL
= ∅ for every

state s. Procedure Π1 refers to the basic planning program defined in Figure 3.1,
Π2 is a procedure for reaching the last column of an n× n grid, Π3 is a procedure
for reaching the last row of an n × n grid and Π4 is a procedure for reaching the
first column.

To allow for arbitrary grid sizes, we must define derived fluents like x = n
and y = n whose values are true if the agent is currently in the last column or row,
respectively. These derived fluents can be described with is-max(x) that is true
precisely when the current assigment to x equals the maximum value which must
be included as fluent in the instance, e.g. max-value(x, v5) to indicate taht
maximum value in the domain of variable x is 5. The conditional effect of action
inc(x) does not trigger if is-max(x) is true, i.e. if the value of x is already
maximal. Figure 4.1(b) shows an example execution of the program on a planning
problem whose initial state places the agent at position (4, 3).

51



“tesi” — 2018/7/9 — 21:43 — page 52 — #78

Π0: 0. call(1) Π2: 0. inc(x) Π4: 0. dec(x)
1. call(2) 1. goto(0,!(x=n)) 1. goto(0,!(x=1))
2. call(3) 2. end 2. end
3. call(4)
4. end Π3: 0. inc(y)

1. goto(0,!(y=n))
2. end

(a)

I

(b)

Figure 4.1: Planning program with procedures 〈{Π0, . . . ,Π4}, ∅〉 for visiting the
four corners of an n× n grid (Π1 is defined by the program in Figure 3.1) and an
execution example of the program in a 5× 5 grid starting from cell (4, 3).

4.3 Parameterized Procedures
In this section we take advantage of variable representation to extend procedure
calls with arguments. Procedural arguments make it possible to reduce the size
of programs and to represent compact plans for tasks that demand recursive solu-
tions.

Defining actions on variables is mostly a matter of problem representation.
As already mentioned in Section 1.3, we assume that the fluents of a classical
planning frame Φ = 〈F,A〉 are instantiated from a set of predicates Ψ and a
set of objects Ω. We now introduce the additional assumption that there exists a
predicate assign(v, x) ∈ Ψ and that Ω is partitioned into two sets Ωv (the variable
objects) and Ωx (the value objects). Intuitively, a fluent assign(v, x), v ∈ Ωv and
x ∈ Ωx, is true if and only if x is the value currently assigned to the variable v.
A given variable represents exactly one value at a time, so for a given v, fluents
assign(v, x), x ∈ Ωx, are mutex invariants (only one is true at any moment). All
other predicates in Ψ are instantiated on value objects in Ωx only.

Let FK = {assign(v, x) : v ∈ Ωv, x ∈ Ωx} be the subset of fluents induced
by the predicate assign. Given a planning program with procedures Π = 〈Θ, FL〉,
we assume that FK ⊆ FL, i.e. that all fluents in FK are local. Furthermore, to
each procedure Πj ∈ Θ, 0 ≤ j ≤ m, we associate an arity ar(j) and a parameter
list $(j) ∈ Ω

ar(j)
v consisting of ar(j) variable objects. This is similar to how

action schema are defined using arguments in PDDL. We also redefine the set of
procedure calls as

Icall = {call(j’,ω) : 0 ≤ j′ ≤ m,ω ∈ Ωar(j′)
v },

where ω is the list of ar(j′) variable objects passed as arguments when calling
procedure Πj′ .
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The execution model for planning programs with procedural arguments (in-
cluding the conditions for termination, success and failure) is inherited from the
execution model previously defined for planning programs with procedures. The
only term that has to be redefined is the execution of a procedure call instruction
with arguments:

• If wji = call(j’,ω) and the current program state is (sg,Ξ ⊕ (j, i, sl)),
then the new program state is (sg,Ξ⊕(j, i+1, sl)⊕(j′, 0, s′l)) where the local
state s′l is obtained as follows. For each value object x ∈ Ωx and each z,
1 ≤ z ≤ ar(j′), we set assign($(j′)z, x) to true if and only if assign(ωz, x)
is true in sl. This has the effect of copying the value of variable ωz onto
its corresponding variable $(j′)z in the parameter list of procedure Πj′ .
For that we need copies of local fluents FL for each stack level as we will
introduce in the following section.

4.4 Computing Planning Programs with Procedures
In this section we extend the compilation from Chapter 3 with procedures, imple-
menting the procedure call mechanism with a finite-size stack that can be modeled
in PDDL and that is inspired by the compilation of fault tolerant planning into
classical planning (Domshlak, 2013). Our finite-size stack is a pair 〈FL, `〉 where
FL ⊆ F is the subset of local fluents, i.e., fluents that can be allocated in the stack,
and ` is the maximum number of levels in the stack. Implicitly this stack model
defines:

• A set of fluents F `
L = {fk : f ∈ FL, 1 ≤ k ≤ `} that contains replicas of the

fluents in FL parameterized with the stack level k. These fluents represent
the ` partial states that can be stored in the stack.

• A set of fluents F `
top = {topk}0≤k≤` representing which is the top level of

the stack at the current time.

• Actions push and pop that are the canonical stack operations, with pushFQ

for pushing a subset of stackable fluents FQ ⊆ FL to the top level of the
stack and pop for popping any fluent in FL from the top level of the stack.

To compute programs with callable procedures we extend our compilation
with new local fluents representing 1) the current procedure; 2) the current pro-
gram line of the procedure; and 3) the local state of each call stack level. We also
add new actions that implement programming and execution of procedure call in-
structions as well as termination instructions for the procedures. Intuitively the
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execution of a procedure call instruction pushes onto the stack the current proce-
dure, the program line and the local state. Likewise the execution of a termination
instruction pops all this information from the stack.

As a first step we detail the compilation for computing programs with pro-
cedures without arguments, and then we explain the extension of the compila-
tion to deal with procedural arguments. Formally the new compilation takes as
input a generalized planning problem P = {〈F,A, I1, G1〉, . . . , 〈F,A, IT , GT 〉}
and three bounds n, m and ` and outputs a classical planning problem P `

n,m =
〈F `

n,m, A
`
n,m, I

`
n,m, G

`
n,m〉. Here, n bounds the number of lines for each procedure,

m bounds the number of procedures and ` bounds the stack size.
Given the planning problem Pt, 1 ≤ t ≤ T , let It,g = It ∩ (F \ FL) be the

initial global state of Pt, and let I1
t,l = {f 1 : f ∈ It ∩ FL} be the initial local state

of Pt encoded on level k = 1 of the stack. The planning problem P `
n,m is defined

as follows:

• F `
n,m = (F \ FL) ∪ F `

L ∪ F `
top ∪ F `

pc ∪ Fm
ins ∪ Ftest ∪ {done} where

– F `
pc contains the local fluents for indicating the current line and pro-

cedure executed. Formally, F `
pc = {pcki : 0 ≤ i ≤ n, 1 ≤ k ≤

`} ∪ {prockj : 0 ≤ j ≤ m, 1 ≤ k ≤ `}.

– Fm
ins encodes the instructions of the main and auxiliary procedures. In

other words, the same fluents Fins defined for the previous compilation
but parametized with the procedure id, plus new fluents that encode
call instructions: Fm

ins = {insi,j,w : 0 ≤ i ≤ n, 0 ≤ j ≤ m,w ∈
A ∪ Igo ∪ Icall ∪ {nil, end}}.

• The initial state sets all the program lines (main and auxiliary procedures)
as empty and sets the procedure on stack level 1 to 0 (the main procedure)
with the program counter pointing to the first line of that procedure. The
initial state on fluents in F is I1, hence I`n,m = I1,g ∪ I1

1,l ∪ {insi,j,nil : 0 ≤
i ≤ n, 0 ≤ j ≤ m} ∪ {top1, pc1

0, proc1
0}. As before, the goal condition is

defined as G`
n,m = {done}.

• The actions are defined as follows:

– For each instruction w ∈ A ∪ Igo, an action wki,j parameterized not
only on the program line i but also on the procedure j and stack level
k. Let wki be the corresponding action wi defined in Section 3.3 with
superscript k added to all program counters and local fluents. In other
words, we have copies of the action wi for each stack level. Then wki,j
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is defined as

pre(wki,j) = pre(wki ) ∪ {topk, prockj},
cond(wki,j) = cond(wki ).

Note that these actions only alter the top element of the call stack.

– For each call instruction call(j’) ∈ Icall, an action callj
′,k
i,j also

parameterized on i, j and k, 1 ≤ k < `:

pre(callj
′,k
i,j ) = {pcki , insi,j,call(j′), topk, prockj}, (4.1)

cond(callj
′,k
i,j ) = {∅B {¬pcki , pcki+1,¬topk, topk+1, pck+1

0 , prock+1
j′ }}.

(4.2)

Note that the effect is to push a new program line (j′, 0) onto the stack.
Also note that j = j′ implies a recursive call.

– An action endk+1
i,j that simulates the termination on line i of procedure

j on stack level k + 1, 0 ≤ k < `:

pre(endk+1
i,j ) = {pck+1

i , insi,j,end, topk+1, prock+1
j },

cond(endk+1
i,j ) = {∅B {¬pck+1

i ,¬topk+1,¬prock+1
j , topk},

∅B {¬fk+1 : f ∈ FL}}.

Note that the effect is to pop the program line (j, i) from the stack,
deleting all local fluents.

• As before, the action set A`n,m is composed of the program action P (wki,j)
and execute action E(wki,j) for each action wki,j defined above.

• For each planning problem Pt, 1 ≤ t ≤ T , we also need a termination action
termt that simulates the successful termination of the planning program on
Pt when the stack is empty:

pre(termt) = Gt ∪ {top0}, t < T,

cond(termt) = {∅B I1
t+1,l∪
{¬top0, top1, pc1

0, proc1
0}}∪

{{¬f}B {f} : f ∈ It+1,g}∪
{{f}B {¬f} : f /∈ It+1,g}, t < T,

pre(termT ) = GT ∪ {top0},
cond(termT ) = {∅B {done}}.

Note that the effect of termt, t < T , is to reset the program state to the
initial state of problem Pt+1.
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Now we define the extension to our compilation for programming and execut-
ing parameterized calls to procedures. Apart from the program counter and the
current procedure, a procedure call with arguments also pushes onto the stack the
arguments of the call. Formally the classical planning task P `

n,m that results from
the compilation is extended as follows:

• We assume that there exists a new set of local fluents {assign(v, x) : v ∈
Ωv, x ∈ Ωx} ⊆ FL that encode assignments of type v = x.

• The actions for programming a call instruction are redefined to indicate
not only the called procedure but also the specific values passed to that
procedure. To define the actions that execute a call to procedure j′ passing
a list of parameters we use the actions callj

′,k
i,j defined in Equations (4.1)

and (4.2). For each variable combination Γ(j′) ∈ Ω
ar(j′)
v , we introduce a

new action callj
′,k
i,j Γ(j′) formulated as:

pre(callj
′,k
i,j Γ(j′)) = pre(callj

′,k
i,j ),

cond(callj
′,k
i,j Γ(j′)) = cond(callj

′,k
i,j )∪

{{assignk(vq, x)}B {assignk+1(uq, x)} : vq ∈ Γ(j′),

x ∈ Ωx, uq ∈ $(j′), 1 ≤ q ≤ |$(j′)|}.

In other words, callj
′,k
i,j Γ(j′) has the effect of copying the value of each vari-

able vq ∈ Γ(j′) on level k of the stack to the corresponding local variable
uq ∈ $(j′) on level k + 1 of the stack. Recall that $(j′) ∈ Ω

ar(j′)
v is the

parameter list of procedure j consisting of ar(j′) variable objects.

4.4.1 Benefits of computing planning programs with parame-
terized procedures

Compared to the compilation for basic planning programs, the number of actions
increases approximately by a factor of `m, which is to be expected since actions
are parameterized on the procedure and stack level.

The benefit of extending the compilation with procedure calls comes from:

1. Representing solutions compactly using procedural arguments and recur-
sion. An example is one of the programs we generate in Section 4.6 for
DFS traversing binary trees whose depth does not exceed the size of the call
stack. A classical plan for this task consists of an action sequence whose
length is linear in the number of tree nodes, and hence exponential in the
depth of the tree. In contrast, a recursive definition of Depth-First Search
(DFS) only requires a 6-line program, as reported in the experiments below.
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2. Reusing existing programs as auxiliary procedures. If auxiliary procedures
are provided, the only instructions that a plan has to program are those of
the main program Π0. Reducing the number of empty program lines de-
creases the number of possible planning programs and hence the number
of applicable actions. In the experiments below we computed the planning
program of Figure 4.1 given the four auxiliary procedures Π1, Π2, Π3 and
Π4 that have already been programmed.

The final benefit of including a given auxiliary procedure is contingent on how
much the reused procedure contributes to solving the overall problem. A key issue
for effectively reusing existing programs as auxiliary procedures is how to gen-
erate auxiliary procedures that are helpful to solve a given generalized planning
task. One option is for a domain expert to hand-craft auxiliary procedures (Baier
et al., 2007), and this might be the best choice if such knowledge is readily avail-
able. However, since each procedure is indeed a program of its own, we can use
our compilation to compute each of these program from examples (albeit without
auxiliary procedures). For instance, to compute the auxiliary procedure Π1 for
navigating to the (0, 0) position (see Figure 3.1), we define a generalized plan-
ning problem P1 by generating individual planning problems with different initial
states whose goal condition is to be at position (0, 0). We then use the compilation
from Chapter 3 to generate a basic planning program Π1 that solves P1. Similarly,
we generate programs Π2, Π3, Π4 for reaching the other three corners of a grid.
We then designate these programs as procedures Π1, . . . ,Π4 of a planning pro-
gram with procedures.

To incrementally compute and reuse auxiliary procedures we need to assume
the existence of a specific decomposition of the overall problem into a set of
subtasks, and appropriately extend the definition of a generalized planning prob-
lem. A similar assumption is done in Hierarchical Goal Network (HGN) planning
where a network of subgoals is specified to boost the search of a hierarchical plan-
ner (Shivashankar et al., 2012). An interesting open research direction is to auto-
matically discover these decompositions of planning problems and previous work
on the automatic generation of planning hierarchies (Hogg et al., 2008; Lotinac
and Jonsson, 2016) is a good starting point to address this research question.

4.5 Theoretical Properties of Planning Programs with
Procedures

We formally prove several properties of the extended compilation for planning
programs with procedures. In particular, we start proving the soundness, com-
pleteness and a bound on the compilation size. Then, we continue with a complex-
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ity analysis of plan validation and bounded plan existence for planning programs
with procedures.

Theorem 4.1 (Soundness). Any plan π that solves P `
n,m induces a planning pro-

gram with procedures Π that solves P .

Proof. The proof is very similar to the proof of Theorem 3.1. Whenever the cur-
rent program line of a procedure is empty, π has to program an instruction on
that line, else repeat execution of the instruction already programmed on that line.
Hence the fluent set Fm

ins implicitly induces a planning program with procedures
Π.

Although the execution model is more complicated than for basic planning
programs, the repeat actions of P `

n,m precisely implement the execution model for
planning programs with procedures. Hence the plan π has the effect of simulat-
ing the execution of Π on each planning problem in P . To solve P `

n,m, the goal
condition Gt has to hold for each problem Pt ∈ P , proving that Π solves P .

Theorem 4.2 (Completeness). If there exists a planning program with procedures
Π that solves P such that 1) Π contains at most m auxiliary procedures; 2) each
procedure of Π contains at most n program lines; and 3) executing Π on the
planning problems in P does not require a call stack whose size exceeds `, then
there exists a plan π that solves P `

n,m.

Proof. Construct a plan π by always programming the instruction indicated by
Π, and repeatedly simulate the execution of Π on the planning problems in P ,
terminating when the stack becomes empty. Since Π solves P and fits within the
given bounds, the plan π constructed this way is guaranteed to solve P `

n,m.

The extended compilation adds a new source of incompleteness. The bound `
on the stack size limits the depth of nested procedure calls which can also make
P `
n,m unsolvable. For example, a program that implements the recursive version

of DFS, needs at least ` ≥ 3 stack levels for solving the problem of visiting all the
nodes of a tree with depth 3 without causing a stack overflow.

Theorem 4.3 (Size). Given a generalized planning problem P = {P1, . . . , PT}
on a planning frame Φ = 〈F,A〉, a subset FL ⊆ F of local fluents and bounds
`, m and n, the size of the compiled problem P `

n,m = 〈F `
n,m, A

`
n,m, I

`
n,m, G

`
n,m〉

is given by |F `
n,m| = O(`(|FL| + m + n) + mn(|A| + |F | + m + n) + T ) and

|A`n,m| = O(`mn(|A|+ |F |+m+ n+ T )).

Proof. By inspection of the fluent set F `
n,m and the action set A`n,m. The set F `

n,m

is defined as (F \FL)∪F `
L∪F `

top∪F `
pc∪Fm

ins∪Ftest∪{done}. The collective size
of F `

L∪F `
top∪F `

pc equals (`+1)(|FL|+1+n+1+m+1) = O(`(|FL|+m+n)).
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The size of Fm
ins equals O(mn(|A| + |F | + m + n)), where the term m2n is due

to call instructions and we have used the optimization for goto instructions from
Chapter 3. The action set A`n,m defines the same instructions as before, plus call
instructions, for a total of |A|+ |F |+ n+ 1 + T +m+ 1. There are `mn copies
of each such instruction, one per stack level, procedure and program line, and two
versions that program and repeat an instruction, for a total of 2`mn(|A| + |F | +
n+ 1 + T +m+ 1) = O(`mn(|A|+ |F |+m+ n+ T )).

We also prove that plan validation and bounded plan existence are PSPACE-
complete for planning programs with procedures. Hence including procedures
in planning programs does not increase the worst-case complexity of the related
decision problems, as long as we bound the size of the call stack. We extend the
two decision problems from Chapter 3 to the class PP-P of planning programs
with procedures.

VAL(PP-P) (plan validation for planning programs with procedures)
INSTANCE: A planning problem P = 〈F,A, I,G〉, a planning program

Π and an integer `.
QUESTION: Does Π solve P using a call stack of size no more than `?

BPE(PP-P) (bounded plan existence for planning programs with procedures)
INSTANCE: A planning problem P = 〈F,A, I,G〉 and integers `, m and n.
QUESTION: Does there exist a planning program Π with at most m

procedures and n program lines that solves P using a call stack
of size no more than `?

Theorem 4.4. VAL(PP-P) is PSPACE-complete.

Proof. Membership: Similar to the proof for basic planning programs, we can
use the execution model to check whether a planning program with procedures Π
solves a planning problem P using a call stack of size no more than `. To store a
program state (sg,Ξ) we need |F |−|FL|+`(logm+log n+|FL|) space: |F |−|FL|
space to store the global state sg ∈ F \ FL, and logm + log n + |FL| space to
store each element (j, i, sl) of the call stack, with a maximum of ` such elements.
Processing an instruction and testing preconditions and the goal condition can be
done in polynomial time and space. Testing whether we exceed the size of the
call stack is also trivial given the current program state and instruction. To check
whether execution enters into an infinite loop, we can maintain a count of the
number of instructions processed, and report failure if this count exceeds the total
number 2|F |−|FL| × (mn2|FL|)` of possible program states. Maintaining this count
also requires |F | − |FL|+ `(logm+ log n+ |FL|) space, which is polynomial in
P , Π and `.
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Hardness: We show that there is a polynomial-time reduction from VAL(PP)
to VAL(PP-P). Given a planning problem P = 〈F,A, I,G〉 and a basic planning
program Π, construct a planning program with procedures Π′ = 〈{Π}, F 〉, i.e. Π′

has a single procedure that acts as the main program and is equal to Π, and the
set of local fluents is FL = F . Since Π is a basic planning program it contains
no recursive calls to itself, a call stack of size ` = 1 is sufficient to execute Π′.
Since Π is the main program of Π′, Π′ solves P if and only if Π solves P . Since
VAL(PP) is PSPACE-complete due to Theorem 3.4, this implies that VAL(PP-
P) is PSPACE-hard.

Theorem 4.5. BPE(PP-P) is PSPACE-complete for ` ≥ 1, m ≥ 1 and n ≥ 2.

Proof. Membership: Non-deterministically guess a planning program with proce-
dures Π with m procedures and n program lines. Due to Theorem 4.4, validating
whether Π solves P using a call stack of size at most ` is in PSPACE. Hence the
overall procedure is in NPSPACE = PSPACE.

Hardness: By reduction from BPE(PP). Namely, there exists a basic planning
program Π with n program lines that solves P if and only if there exists a planning
program with procedures Π′ = 〈{Π}, F 〉 that solves P using a call stack of size
` = 1, where Π′ has m = 1 procedures. Since BPE(PP) is PSPACE-complete
for n ≥ 2, this implies that BPE(PP) is PSPACE-hard for ` ≥ 1, m ≥ 1 and
n ≥ 2.

We remark that although there is no complexity theoretic benefit of extending
planning programs with procedures, in practice decomposing a planning program
into procedures often results in more compact solutions easier to be computed
by planners. Procedures also make it possible to decompose a problem into sub-
problems, compute a separate planning program for each sub-problem and reuse
them at different problems.

4.6 Nested Procedure Experiments
We perform two sets of experiments for planning programs with procedures, cor-
responding to plan generation and plan validation. All domains used in these
experiments can be hierarchically decomposed into procedures, so they can be
represented succinctly. In GreenBlock, the aim is to find and collect a green block
in a tower of blocks. In Fibonacci, the aim is to compute the n-th number in the
Fibonacci sequence. In Gripper, the aim is to move all balls from one room to
the next. In Hall-A, the aim is to visit the four corners of a grid (cf. Figure 4.1).
In Sorting, the aim is to sort the elements of a vector. In Trees, the aim is to visit
all the nodes of a given binary tree. In Visit-all, the aim is to visit all cells of a
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grid. Finally, in Visual-M, the aim is to find a marked block in a configuration of
multiple towers of blocks.

We also introduce a novel domain called Excel, inspired by the Flash Fill fea-
ture of Microsoft Excel to automatically program macros from examples. There
are five problems in this domain: 1) add a parenthesis at the end of a word; 2)
extract the number of seconds from a timer in the MM:SS.HH format (minutes,
seconds and hundredths of a second); 3) given name and surname strings, form a
single string formatted as surname, space and name; 4) given name and surname
strings, form a string with the name, space and the first letter of the surname; and
5) given name and surname strings, form a string with first letter of the name, a
space and the first letter of the surname.

Again we can represent different generalized planning tasks using the same
planning frame Φ = 〈F,A〉. For example, instances of Triangular and Fibonacci
are represented using the Variables PDDL domain that include operators to incre-
ment or decrement variables, assign and add the value of a variable to another one.
Likewise, the instances of the Hall-A and Visit-all tasks are represented using a
generic Grid domain that includes operators for visiting cells and moving one
cell, in any cardinal direction. All Excel instances are also represented using the
same PDDL domain.

In each domain, except for Trees whose solution comprises just one proce-
dure, plan generation proceeds in several steps. We manually decompose the
overall problem into two or more subproblems. For each subproblem we pro-
vide a separate generalized planning problem whose instances correspond to that
subproblem. For example, in Sorting, that corresponds to the selection-sort algo-
rithm, the subproblem is to select the minimum element from a vector, and for
each instance there is a pointer that starts at the first position of the vector, and
the goal condition is to bring the pointer to the minimum element. In Trees, the
problem is not decomposed, but the resulting main program makes recursive calls
to itself, so the call stack is still needed to solve the problem.

Let P0, . . . ,Pm be the sequence of generalized planning problems, where P0

corresponds to the overall problem we want to solve. For each problem Pj in
decreasing order of j (m,m − 1, . . .), we generate a planning program Πj that
solves Pj . While doing so, the programs Πj+1, . . . ,Πm are included as auxiliary
procedures. In other words, only the lines of the main program are empty, and the
remaining programs are encoded as part of the initial state. Hence generating the
program Πj amounts to programming the instructions of the main program, which
can include calls to the auxiliary procedures, and then executing the program to
ensure it solves Pj . Also note that the number of procedures increases for each
subproblem, such that Πm has no auxiliary procedures, while Π0 uses all the other
programs Π2, . . . ,Πm as auxiliary procedures.

Table 4.1 reports the plan generation results. Compared to Table 3.1, we added
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Proc Lines Inst Stack Fluents Actions Search(s) Total(s)
GreenBlock 2 (4,3) (6,5) (2,2) (306,250) (932,559) (0.90,0.04) 4.1
Excel-1 2 (3,2) (2,1) (2,2) (4167,4265) (11517,11838) (3.16,0.53) 9.75
Excel-2 2 (3,2) (2,1) (2,2) (4167,3282) (11517,6122) (3.23,0.24) 11.92
Excel-3 2 (3,3) (2,1) (2,2) (4167,7301) (11517,20538) (3.09,5.29) 19.94
Excel-4 2 (3,3) (2,1) (2,2) (4167,7301) (11517,20538) (3.13,328.41) 342.91
Excel-5 2 (3,3) (2,1) (2,2) (4167,7301) (11517,20538) (3.09,0.64) 15.30
Fibonacci 2 (3,3) (2,4) (2,2) (321,341) (579,607) (1.01,1.48) 4.94
Gripper 3 (3,3,3) (2,2,2) (2,2,2) (305,307,403) (651,665,859) (0.05,0.04,1.06) 2.49
Hall-A 5 (5,5, (2,2, (2,2, (1029,1041, (3925,3951, (86.77,69.18,100.97, 1069.12

5,5,4) 2,2,2) 2,2,2) 1053,1065,888) 3977,4003,2624) 350.23,455.73)
Sorting 2 (4,4) (4,3) (2,2) (556,549) (1988,1779) 28.91
Trees 1 6 1 4 638 4164 154.76 155.85
Visit-all 3 (3,2,4) (2,2,2) (2,2,2) (801,582,816) (1911,879,2569) (0.22,0.04,24.70) 26.67
Visual-M 3 (4,4,4) (4,2,5) (2,2,2) (274,238,279) (724,649,650) (0.38,0.03,5.90) 12.25

Table 4.1: Plan generation for planning programs with procedures. Number of
procedures; for each procedure: program lines, instances, stack size, fluents, ac-
tions, search time; total time including preprocessing (in seconds) elapsed while
computing the overall solution.

bounds on the number of procedures and stack size. Since subproblems are solved
separately, each procedure corresponds to a separate call to the classical planner.
For each procedure, we therefore report the number of program lines, number of
instances, stack size, number of fluents, number of actions, and search time. We
also report the total time to solve all subproblems related to a domain. Times are
reported in seconds.

As an illustration, we show four of the obtained programs where subproblems
were hand-picked for each auxiliary procedure. The solution to Gripper appears
in Figure 4.2. In Π1 the agent picks up balls with both grippers and moves to
the second room. In Π2 the agent drops both balls and moves back to the first
room. Π0 makes repeated calls to Π1 and Π2 until there are no balls left in the first
room. Note that we changed the representation of the Gripper domain in order to
generalize: instead of representing individual balls, we represent the number of
balls in each room, and the conditional effect of actions such as pick-left is
to decrement the number of balls in the current room of the robot.

0. call(1)
1. call(2)
2. goto(0,!(no-balls-in-rooma))
3. end

(a) Π0: pick up and drop balls until none left

0. pick-left
1. pick-right
2. move
3. end

(b) Π1: pick up balls

0. drop-left
1. drop-right
2. move
3. end

(c) Π2: drop balls

Figure 4.2: Program with procedures for the Gripper.
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The solution to Sorting appears in Figure 4.3 and corresponds to the selec-
tion sort algorithm. There are four pointers: itermax, pointing to the tail of
the vector; outer, indicating the start position in every loop; inner, iterating
from outer to itermax in each loop; and mark, pointing to the minimum el-
ement found so far in each loop. Procedure Π1 repeatedly increments inner,
and assigns inner to mark if its content is the smallest found so far. Proce-
dure Π0 repeatedly calls Π1 to select the minimum element (stored in mark),
and then swaps the contents of outer and mark. We remark that the action
inc-pointer(outer) on line 2 has the secondary effect of setting the pointer
inner equal to outer; this is the reason why line 3 refers to inner instead of
outer.

0. call(1)
1. swap(*mark,*outer)
2. inc-pointer(outer)
3. goto(0,!(eq(inner,itermax)))
4. end

(a) Π0: repeatedly select minimum value
and swap contents

0. inc-pointer(inner)
1. goto(3,!(lt(*inner,*mark)))
2. assign(mark,inner)
3. goto(0,!(eq(inner,itermax)))
4. end

(b) Π1: select minimum value from cur-
rent position outer

Figure 4.3: Program with procedures for Sorting.

In Trees, there is a set of global fluents to mark nodes as visited and two
variables current and child that are used locally to point to nodes of the tree.
Figure 4.4 shows the resulting planning program. The program first visits the
current node and copies the left child of the current node to child. In case the
current node is a leaf (i.e. not internal) execution finishes, else the right child of
the current node is copied to current. Then the program makes two recursive
calls to itself for each of the two variables child and current. In this way it
visits all the tree nodes in a depth-first search fashion.

The programs for Excel are shown in Figure 4.5. Each string has two indices
lo and hi. Each of the five Excel tasks share the same procedure Π1 which
is parameterized on a string str-var and copies all characters of str-var
between lo and hi to another string res. Program Π(0,E1) calls Π1 and then
appends a right parenthesis. Program Π(0,E2) selects the substring between ’:’ and
’.’ by setting the two indices appropriately before copying. Program Π(0,E3) first
copies the surname, then appends a space character, and then copies the name.
Program Π(0,E4) copies the name and then appends a space character and the first
letter of the surname. Finally, program Π(0,E5) appends the first character of the
name and surname with a space character in between.
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0. visit( current )
1. copy-left( child, current )
2. goto( 6, !( isinternal( current ) ) )
3. copy-right( current, current )
4. call( 0, child )
5. call( 0, current )
6. end

Figure 4.4: Recursive program for Trees.

0. append-str(res,str-var)
1. inc-loindex(str-var)
2. goto(0,!(empty(str-var)))
3. end

(a) Π1: copy substring of str-var to res

0. call(1,str-var)
1. append-char(res,’)’)
2. end

(b) Π(0,E1): append ’)’ to a string

0. get-substr(str-var,’:’,’.’)
1. call(1,str-var)
2. end

(c) Π(0,E2): get the seconds from a timer

0. call(1,surname-var)
1. append-char(res,’ ’)
2. call(1,name-var)
3. end

(d) Π(0,E3): copy surname, space and name

0. call(1,name-var)
1. append-char(res,’ ’)
2. append-str(res,surname-var)
3. end

(e) Π(0,E4): copy name, space and initial

0. append-str(res,name-var)
1. append-char(res,’ ’)
2. append-str(res,surname-var)
3. end

(f) Π(0,E5): copy space-separated initials

Figure 4.5: Planning programs for Excel, where Π1 is a common procedure.

Like in Chapter 3, we ran a second set of experiments in which we validated
the generated programs. In GreenBlock, we tested the planning program on a
tower of 100 blocks where the green block was the third starting from the bottom.
In Excel we used the name “MAXIMILIAN” and surname “FEATHERSTONE-
HAUGH” for problems [3, 5], and the same surname in problem 1. In Problem
2 the given timer was 01:59.23. In Fibonacci, we tested the program on the 6th

Fibonacci number. In Gripper, the test consisted in moving 30 balls to the next
room. In Hall-A, the agent had to visit the four corners of a 100 × 100 grid. In
Sorting, the test was to sort a vector of 50 random elements. In Trees, we tested
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the program on a binary tree with 20 nodes and maximum depth 8. In Visit-all,
all cells of a 30 × 30 grid must be visited. Finally, in Visual-M, the agent had
to process 10 towers with maximum height 10, with the marked block in the last
tower.

Table 4.2 presents the plan validation results obtained with the FD and BrFS
planners. The reported data include the number of fluents and actions, and the
total time FD and BrFS needs to compute a solution. Results are obtained for
two configurations: i) the instance that encodes the given planning program in
the initial state (compiled tests); and ii) the classical domain and instance without
using the planning program (classical tests). This way, we can compare how hard
it is to solve a given classical planning instance compared to validating a planning
program on the instance (i.e. using the program as control knowledge). As before,
Time-Exceeded (TE) indicates that no solution was found within the given time
limit.

Compiled Tests Classical Tests
Fluents Actions FD-Total BrFS-Total Fluents Actions FD-Total BrFS-Total

GreenBlock 421 14 2.14 1.89 404 3 1.01 0.87
Excel-1 352 10 0.34 0.39 433 56 0.38 ME
Excel-2 106 10 0.67 0.21 117 56 0.08 0.13
Excel-3 640 11 1.33 0.94 798 106 2.18 ME
Excel-4 450 11 0.78 0.82 558 106 1.02 1.76
Excel-5 347 4 0.48 0.54 408 106 0.81 0.83
Fibonacci 71 11 TE 0.29 56 8 TE 0.36
Gripper 206 15 1.02 0.47 158 5 0.49 TE
Hall-A 10026 46 5.88 5.02 10206 5 1.94 TE
Sorting 2820 17 TE 26.12 2803 4 TE TE
Trees 661 197 0.56 0.50 61 10 0.03 8.04
Visit-all 1045 19 7.58 1.93 1029 5 TE TE
Visual-M 45 22 0.55 0.32 48 5 0.12 0.07

Table 4.2: Plan validation for planning programs with procedures. In Compiled
Tests, we compute the fluents, actions and total time (in seconds) to obtain a plan
for FD and BrFS. In Classical Tests, we compute the fluents, actions and time
taken by FD and BrFS to solve the instance without using the planning program.

We see that in most domains, the planners are able to quickly compute a so-
lution even in the absence of a planning program, sometimes even faster than
when a planning program is provided. The reason of being faster without the
compilation is because some classical instances require less steps than compiled
instances, and no matter how many objects the instance has if it can always be
solved with few actions, thus the complexity on those domains is on generating
programs but not on validating them. A similar situation is found when the ac-
tions to solve an instance, like in GreenBlock domain, are repetitive becoming a
straight forward search in the classical instance so the control flow only adds com-
plexity. Also, FD spend all the alloted time in preprocessing for some domains
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like Fibonacci and Sorting where predicates with 2 or 3 arity like (sum v1 v2
v3) or (lessthan v1 v2) require to ground all value combinations, while a
simple blind search is enough to get a plan. Remarkably in Sorting and Visit-all
domains, no planner is able to solve the planning instance without the given plan-
ning program showing that control flow becomes important for complex domains
where heuristic search is not helpful at all.

4.7 Summary
Planning programs as generalized planning is a flexible formalism that permits
many extensions to represent problems and solution structures.

In this work we define the concept of procedures similar to functions for pro-
gramming languages. When executing code, functions are pushed and popped
from a stack, so we implemented a call stack in PDDL that simulates that behav-
ior. This extension allows nesting procedure calls but it may fail if the execution
reaches the stack size which is described as stack overflow.

When procedures are parameterized, the state is divided into local and global
states. This allows to synthesize algorithms like depth-first search (DFS) in a
binary tree traversing problem. We also prove the same theorems as in the last
chapter but applied to planning programs with procedures (PP-P) instead of basic
planning programs (PP).

We conclude with experiments that compute and validate programs with dif-
ferent bounds in the number of procedures, program lines, input instances and
stack size for tasks that are hierarchically decomposable like Flash Fill or Selection-
Sort.
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CHAPTER 5

Non-Deterministic Planning
Programs

In Chapter 4 we have introduced planning programs with procedures that are com-
puted and validated deterministically. The executions up to this moment corre-
spond to a control flow where only one action is applicable at every time step.
This is no longer valid for problems with choices like BLOCKSWORLD, where an
unstack from a tower is not enough if blocks are not serialized. Also, instances in
the generalized planning task sometimes do not share a clear common structure
and need to be treated separately. An alternative approach for such scenarios is
to represent and compute solutions with non-deterministic execution (Baier et al.,
2007), i.e. solutions with open segments that are only determined when the so-
lution is executed on a particular instance. This Chapter 5 introduces choice in-
structions and lifted action instructions, two different extensions of our planning
program formalism to achieve generalization through non-deterministic execu-
tion. The chapter describes both how to represent and compute solutions of this
kind.

5.1 Planning Programs with Choice Instructions
The first extension refers to choice actions that, inspired by the let instructions
from functional programming, assign a value to a variable in a generalized plan.
Our approach closely follows that of Srivastava et al. [2011b] who first introduced
choice actions for generalized planning.

The extension is based on the formalism for planning programs with variables:
for any planning frame Φ = 〈F,A〉, fluents in F are instantiated from a set of
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predicates Ψ and a set of objects Ω. In addition, Ω is partitioned into variable
objects Ωv and value objects Ωx and there exists a predicate assign(v, x) ∈ Ψ
such that v ∈ Ωv and x ∈ Ωx. With this defined we can now extend the instruction
set I with the following set of choice instructions:

Ichoice = {choose(ω, p) : ω ∈ Ωar(p)
v , p ∈ Ψ}.

A choice instruction choose(ω, p) assigns a value to each of the variables in ω.
These values result from a unification of the predicate p with the current state,
which means that a fluent instantiated by assigning those values to p holds in the
state where the choice instruction is executed. In general, the arguments of a
choice action are determined by evaluating a given first order formula (Srivastava
et al., 2011b), but we restrict this formula to a single predicate (the formula could
however be extended to a conjunctive query).

The execution model for a choice instruction wi is defined for basic planning
programs as follows (we assume that the current program state is (s, i) and that
wi is the instruction on the current line i):

• If wi = choose(ω, p), the new program state is (s′, i + 1), where the new
state s′ is constructed in two steps. The first step non-deterministically
chooses a unification of p with the current state. The second step assigns
to each variable v ∈ ω the corresponding argument value from the chosen
unification. The assignment is done making fluent assign(v, x) true and flu-
ents assign(v, x′) false for each value object x′ 6= x that is not in the chosen
unification. Other than this assignment, s′ is identical to s.

A basic planning program has three failure conditions (see Section 3.2). When we
include choice instructions, we are introducing a fourth failure condition:

4. Execution does not terminate because, when executing a choice instruction
choose(ω, p), we cannot unify predicate p with the current state.

We are considering extensions from Chapter 4 and Chapter 5 independent,
so failure conditions are independent too. Although both extensions could be
combined, in which case they would have five failure conditions.

We illustrate the idea of a planning program with choice instructions using the
well-known BLOCKSWORLD domain. The following planning program is able to
solve any instance of BLOCKSWORLD for which the goal is to put all the blocks on
the table. This generalized planning task is more complex than unstacking a single
tower of blocks, a task commonly solved by FSCs (Bonet et al., 2010), because
there can now be an arbitrary number of towers, each with different height. A
compact generalized plan that solves this task can be defined using one choice
instruction:
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0. choose(v,clear)
1. unstack(v)
2. putdown(v)
3. goto(0,!(all-clear))
4. end

The choice instruction choose(v, clear) assigns to the variable v a block ob-
ject that is currently clear and captures the key knowledge of the block to move
next. This block is then unstacked and put down on the table. The derived pred-
icate all-clear tests whether all blocks are clear, which is only possible if
they are all on the table. This program assumes that the actions unstack(v)
and putdown(v) are defined in terms of a variable object v rather than a block
object (the latter is usually how the BLOCKSWORLD domain is modeled).

To compute planning programs with choice actions we extend the compilation
explained in the computation of basic planning programs (see Section 3.3). For
each choice instruction choose(ω, p) ∈ Ichoice, let chooseω,p,χi be a classical ac-
tion where χ ∈ Ω

ar(p)
x is a list of value objects that can be used to unify predicate

p with the current state:

pre(chooseω,p,χi ) ={pci, p(χ)},
cond(chooseω,p,χi ) ={∅B {¬pci, pci+1},∪

{assign(vq, xq)} : vq ∈ ω, xq ∈ χ, 1 ≤ q ≤ |ar(p)|,∪
{¬assign(vq, x)} : vq ∈ ω, x ∈ Ωx, x 6= xq, 1 ≤ q ≤ |ar(p)|}.

The compilation is extended with two versions of the previous classical plan-
ning action, P(choosep,ω,χi ), that is only applicable on an empty line i and pro-
grams the corresponding choice instruction on that line, and E(choosep,ω,χi ), that
is only applicable when the choice instruction already appears on line i and exe-
cutes the action.

5.2 Planning Programs with Lifted Action Instruc-
tions

Here we go one step further and increase the portion of a planning program that
can be unspecified. A planning program with lifted action instructions is a plan-
ning program in which action instructions have unknown arguments until the in-
struction is executed on a particular planning instance.

A PDDL action scheme (also called operators or lifted actions) is parameter-
ized on a set of arguments. Similar to how fluents are induced from predicates,

69



“tesi” — 2018/7/9 — 21:43 — page 70 — #96

a set of actions is induced from a PDDL lifted action by assigning objects to
its arguments. In the following we assume that the actions of a planning frame
Φ = 〈F,A〉 are induced from a set of lifted actions A and a set of objects Ω.
Under this assumption, the instruction of a planning program can be a lifted ac-
tion α ∈ A. Since the arguments of a lifted action are unspecified, a lifted action
instruction effectively models a non-deterministic choice.

Given the current program state (s, i), the execution model for lifted action
instructions is defined as:

• If wi ∈ A, the new program state is (s′, i + 1), where s′ = θ(s, wi(x))
is the result of applying an action wi(x) ∈ A induced from wi, where ev-
ery argument x ∈ Ωar(wi) of wi is non-deterministically chosen such that
pre(wi(x)) ⊆ s, i.e. such that wi(x) is applicable in s.

Additionally, the execution of a lifted action instruction fails if there is no possible
applicable instantiations for that instruction.

Now we show a planning program with lifted action instructions for solving
the BLOCKSWORLD task of putting all the blocks on the table. Each execution of
unstack(?b1,?b2) non-deterministically assigns concrete block objects to
parameters ?b1 and ?b2 among the possible applicable instantiations. Likewise
each putdown(?b3) execution assigns a concrete block object to parameter
?b3.

0. unstack(?b1,?b2)
1. putdown(?b3)
2. goto(0,!(all-clear))
3. end

We remark that the execution semantics of lifted action instructions is an-
gelic (Marthi et al., 2007): not every assignment of blocks to the arguments ?b1,
?b2 and ?b3 leads to a valid plan. Rather, it is necessary to use a planner to
determine valid assignments of objects to arguments.

To compute planning programs with lifted action a small modification in the
compilation of Chapter 3 for basic planning programs is required. The modi-
fication is a redefinition of the classical planning actions for programming and
executing action instructions. A lifted action wi ∈ A induces one action wi(x) for
each assignment x ∈ Ωar(wi) to the arguments ofwi. The actions for programming
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and executing a lifted action instruction are defined as follows:

pre(P(wi(x)) = pre(wi(x)) ∪ {insi,nil},
cond(P(wi(x)) = {∅B {¬insi,nil, insi,wi

}},
pre(E(wi(x)) = pre(wi(x)) ∪ {insi,wi

},
cond(E(wi(x)) = cond(wi(x)).

5.3 Experiments
In these experiments we use several domains from previous sections, but with a
slight modification. In the new version of the domains, action instructions have
parameters, so the resulting planning programs include lifted instructions. In pre-
vious experiments, because we were using parameter-free actions, the execution
of planning programs was deterministic. In the new domains with parameterized
instructions, the execution of a planning program requires the planner to select the
values of the action parameters each time an action instruction is executed. Simi-
lar to Hierarchical Task Networks (HTNs) (Alford et al., 2009), non-deterministic
planning programs require the planner to compute a fully specified solution, con-
straining the form of the solution by pruning the actions that do not agree with
the given program. Therefore planning program with choice instructions or lifted
action instructions, can be viewed as Domain-specific Control Knowledge (Zim-
merman and Kambhampati, 2003; Jiménez et al., 2012). However, unlike HTNs,
planning program with choice instructions or lifted action instructions can be ex-
ploited straightforward with an off-the-shelf classical planner.

Apart from existing domains, we added the Blocksworld domain. Our ap-
proach is to manually decompose the problem into two subproblems, where the
first subproblem is to put all blocks on the table, and the second subproblem is
to stack the blocks to form towers. The goal condition for the first subproblem
is that all blocks should be on the table, and the goal condition for the second
subproblem is usually expressed using fluents on(A,B), on(B,C), etc. However, in
our simpler version, the goal is instead to form several towers of a given height,
regardless of the specific placement of blocks.

Table 5.1 shows the results of the experiments for computing non-deterministic
planning programs. The table reports the number of procedures; for each proce-
dure: number of program lines, number of instances, stack size, number of fluents
and actions, search time and preprocessing time; the total time to solve the overall
problem. Note that the planner fails to solve one subproblem for Hall-A using the
same decomposition as for procedures in the previous chapter when actions are
given as lifted instructions. The programs obtained for each domain are similar
to those described in Chapter 4. However, since action instructions are lifted, the
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Domain Proc Lines Inst Stack Fluents Actions Total
Hall-A 5 (5,5, (2,2, 2 (1029,-, (4645,-, TE

5,5,4) 2,2,2) -,-,-) -,-,-)
Fibonacci 2 (3,3) (2,4) 2 (321,341) (2043,2209) 1.44
Visit-all 3 (3,2,4) 2 2 (585,438,616) (1875,1038,2375) 44.49
Blocks 2 (4,3) (6,5) 2 (306,250) (1124,713) 205.75
Sorting 2 (4,4) (4,3) 2 (540,549) (2484,8981) 33.25
Triangular 1 3 2 1 291 588 0.31
Visual-M 3 (4,2,4) (4,2,5) 2 (274,135,279) (964,284,782) 12.57
Blocksworld 2 (3,4) (3,2) 2 (214,214) (651,651) 0.86

Table 5.1: Plan generation for non-deterministic planning programs. Number of
procedures; for each procedure: number of lines and instances, stack size, number
of fluents and actions; and total time (in seconds) elapsed while computing the
solution.

planner has to assign objects to action parameters and perform search to reach
the goal. Figure 5.1 shows the resulting planning program for the Blocksworld
domain. Procedure Π1 repeatedly unstacks a block from another and puts it on
the table until all blocks are clear. Procedure Π0 first calls Π1, then repeatedly
picks up a block and stacks it on top of another block, until the number of current
towers equals the number of target towers.

0. call(1)
1. pick-up(?b1)
2. stack(?b2,?b3 )
3. goto(1,!(eq(current-towers,target-towers)))
4. end

(a) Π0: reaches the number of target towers by stacking blocks onto others
0. unstack(?b1,?b2)
1. put-down(?b3)
2. goto(0,!(all-clear))
3. end

(b) Π1: put all blocks on table

Figure 5.1: Non-deterministic planning program for Blocksworld.

Regarding performance, FD has to ground the lifted instructions by assigning
objects to their parameters, which causes an increase in the number of operators
because in previous chapters original actions were parameter-free with all logic
in the conditional effects. As a result, both the preprocessing time and the search
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time is generally larger than for deterministic planning programs. On the flip side,
there are domains such as Blocksworld that can not be solved by deterministic
planning programs, while lifted instructions make it possible.

For validation we use the same instances as in Chapter 4 and address the
same experiment reported in Table 4.2, but with non-deterministic programs act-
ing as DCK instead of determinstic planning program with procedures. For the
Blocksworld, we used an instance with 100 blocks to provide an example of how
hard is to solve large classical planning instances versus the corresponding com-
piled instance with a non-deterministic planning program acting as DCK. Ta-
ble 5.2 summarizes the obtained results and reports the number of fluents and
actions, and total time that FD and BRFS needed to compute a plan. Again, we
tested both the compiled problem that encodes the planning program in the ini-
tial state (compiled tests), and the classical domain and instance without DCK
(classical tests). Only in Fibonacci BRFS performs better than FD because of
the required preprocessing burden. And the classical instance of Visual-M is No-
Solution-Found (NSF) because the BrFS planner does not support axioms and is
a requirement for the classical domain.

Domain Compiled Tests/Classical Tests
Fluents Actions FD-Total BrFS-Total

Hall-A -/20200 -/10396 -/1.64 -/TE
Fibonacci 74/56 481/8 0.29/TE 0.008/0.02
Visit-all 2018/1984 1065/1081 9.79/3.91 26.43/158.02
Blocks 735/705 20209/399 7.63/0.94 54.01/0.83
Sorting 258/241 26073/26060 TE/186.32 33.58/TE
Triangular Number 151/242 1835/7740 0.31/1.35 0.012/0.02
Visual-M 62/26 48/41 0.33/0.02 0.37/NSF
Blocksworld 10540/10504 20009/20000 112.45/269.59 NSF/TE

Table 5.2: Plan validation of non-deterministic planning programs. In Compiled
Tests, we compute the fluents, actions and total time (in seconds) to obtain a plan
for FD and BrFS. In Classical Tests, we compute the fluents, actions and time
taken by FD and BrFS to solve the instance without using the planning program.
In every cell, the left value corresponds to a compiled test and the right value to a
classical tests.

5.4 Summary
In this chapter we introduce extensions to basic planning programs (see Chap-
ter 3) that use the concept of choice actions following Srivastava et al. [2011b]
approach.
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This extension is based on the formalism of planning programs with variables
where we have a set of variable objects Ωv and a set of value objects Ωx that can
be assigned to the first set. As before, every extension could add failure condi-
tions which in this case is the execution of a choice instruction that cannot unify
the corresponding predicate with the current state. This approach solves the prob-
lem of putting onto the table all blocks from a setting of blocks tower. In every
execution, the planning program assigns a clear block from a tower and puts it
onto the table until all blocks are clear.

Furthermore, planning programs can be unspecified with lifted action instruc-
tions as previous work on planning as DCK (Baier et al., 2007). This approach
programs instructions but parameters are assigned online in the search phase of the
planner. We show performance reports on synthesizing and validating planning
programs with lifted instructions, including Blocksworld to previous domains.
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PART III

Combining Generalized Planning
and Hierarchies of Controllers
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CHAPTER 6

Hierarchical Finite State Controllers
for Generalized Planning

Finite State Controllers (FSCs) are mathematical models represented with states
and links, that control the transitions between the states based on possible input
events. There are two well-studied types of FSCs in the automata theory field,
deterministic and non-deterministic.

In this chapter we are going to focus on deterministic FSCs, their adaptation
to planning, and how they can be extended for generalized planning. Then we in-
troduce a novel approach that correspond to a hierarchy of FSCs where transitions
in the automaton can be calls to other automata or recursive calls. We also prove
soundness and completeness of the approach as well as the relation between Hi-
erarchical FSCs (HFSCs) and Planning Programs. Finally we report experiments
of computing and validating HFSCs in different domains, and we analyze the per-
formance of computing HFSCs for multiple permutations of the input tests.

6.1 Introduction
In Artificial Intelligence there are many solution representations as introduced
in Chapter 2. One of the most effective and compact representations is Finite
State Controllers (FSCs), also known as Finite State Machines (FSMs). They
have been applied to different fields including robotics (Brooks, 1989) and video-
games (Buckland, 2004).

Definition 6.1 (Finite State Controller). A Finite State Controller (FSC) is a graph
structure where nodes are states and the edges are transitions, and each transition

77



“tesi” — 2018/7/9 — 21:43 — page 78 — #104

has a condition that causes the transition to fire. An FSC has an initial state
where the execution starts and a finite number of states. It is optional to include a
terminal controller state in an FSC, although executions could be infinite.

In planning, solutions can be exponentially large in the input size. Thus, ex-
pressing solutions as FSCs benefits planning in solution compactness (Bäckström
et al., 2014) and generalization. Then, FSCs can be used as generalized plan
representations that may solve multiple planning problems that share a common
structure. These planning problems can be arbitrarily large, as well as described
with partial observability and non-deterministic actions (Bonet et al., 2010; Hu
and Levesque, 2011; Srivastava et al., 2011b; Hu and De Giacomo, 2013).

In Figure 6.1 we show a binary tree with max depth three and fifteen nodes.
The problem consist of traversing the whole binary tree visiting all the nodes. In
this example, a classical plan consist of a sequence of actions whose length is
linear in the number of nodes, and hence exponential in the depth of the tree. In
contrast, the recursive definition of a the Depth-First Search (DFS) algorithm only
requires a few lines of code and it is able to traverse any binary tree, no matter
its size. Basic FSCs are not capable of representing recursion, and the iterative
definition of the DFS algorithm requires an external data structure, being much
more complex to implement. Thus, the binary tree traversal is an example that
shows the main limitations of FSCs and a motivation for defining Hierarchical
FSCs.

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

Figure 6.1: Binary tree with fifteen nodes. The nodes in the tree are labeled
following a DFS order.

As we said above, FSCs can represent generalized plans, and by extension
Hierarchical FSCs can be represented and computed as generalized planning so-
lutions too. Our HFSCs approach is novel in three ways:

1. An HFSCs can involve multiple individual FSCs.
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2. We have a call stack similar to previous chapters(see Definition 4.2), where
FSCs are pushed every time they call other FSCs.

3. Each FSC has a paramater list. When an FSC call another FSC, it must spec-
ify the arguments assigned to the parameters. It is possible to implement re-
cursion by allowing FSCs to call themselves assigning different arguments
to the parameters.

The problem described in Figure 6.1 can be solved with the recursive HFSC
shown in Figure 6.2 that is called C[n]. The controller C[n] implements a recur-
sive DFS that traverses a binary tree, and it is represented as a directed graph
where controller states are connected to other controller states or themselves. The
transitions of the controller states are named edges, and each one is tagged with
a condition/action label, that denotes the condition under which the action is ap-
plied. Here the controller C[n] has a lone parameter that represents the current
node of the binary tree. Condition isNull(n) tests whether n has no assigned value,
isVisited(n) tests whether n is an already visited node, while a hyphen ‘−’ indi-
cates that the transition fires no matter what. Action visit(n) visits node n, while
copyL(n,m) and copyR(n,m) assign the left and right child of node n to m, re-
spectively. Action call(m) is a recursive call to the controller itself, assigning
argument m to the only parameter of the controller and restarting execution from
its initial controller state q0. This is similar to how planning programs work, so
we will show how they are connected later.

Q0 Q1 Q2 Q3

-/copyL(n,child) !isNull(n)/visit(n)

isNull(n)/visit(n)

isVisited(n)/copyR(n,n)
!isVisited(n)/call(child)

Figure 6.2: Hierarchical FSC C[n] that traverses a binary tree. The lone parameter
[n] of the controller represents the current node being visited of the binary tree.

Intuitively, by repeatedly assigning the right child of n to n itself (using the
action copyR(n, n)), the controller C[n] has the effect of visiting all nodes on
the rightmost branch of the tree until the current variable has no value (or after
visiting a leaf). Moreover, by assigning the left child of n to child (using the action
copyL(n, child)) and making the recursive call call(child), the controller C[n] is
recursively executed on all left sub-trees. The controller state q3 is a terminal state,
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and the action visit(n) on the transition to q3 is in fact not needed and could be
removed. However, the hierarchical FSC of Figure 6.2 is automatically generated
by our approach, so we present conditions and actions exactly as they appear.

The main contributions of this chapter are in the representation, computation
and theoretical properties of FSCs for planning. Firstly, we formalize FSCs for
planning to allow the synthesis of the observation function, the transitions and the
output functions of a FSC. Secondly, we propose a formal definition of hierar-
chical FSCs for planning where controllers can call other controllers, including
recursion as a special case, using a call stack. Thirdly, we have implemented a
novel approach to compute HFSCs for planning. The method consist of a compi-
lation that takes as input a set of classical planning problems from a given domain,
and the output is a single classical plan whose solution induces a HFSC. The
HFSC is computed and validated at the same time on the input planning prob-
lems. Fourthly, we study the relation of Mealy machines and FSCs for classical
and generalized planning, as well as the comparisson between FSCs and Planning
Programs from Chapter 3. Lastly, we report exhaustive empirical experiments of
HFSCs and they performance on different input orderings.

6.2 Finite State Controllers for Planning

FSCs for planning in the literature (Bonet et al., 2010; Hu and De Giacomo, 2013)
are similar to transducers that, in addition to processing input, produce output. We
first define transducers and then explain how FSCs for planning are derived from
transducers.

Definition 6.2 (Mealy Machine). A finite state transducer or Mealy machine is a
tuple ∆ = 〈Q, q0, Q⊥, Σ,Λ,Υ,Γ〉:

• Q is a finite set of controller states where q0 ∈ Q is the initial controller
state and Q⊥ ⊆ Q is the subset of terminal controller states,

• Σ is a finite set of input symbols called the input alphabet,

• Λ is a finite set of output symbols called the output alphabet,

• Υ : Q× Σ→ Q is a transition function mapping pairs of a controller state
and an input symbol to the corresponding next state,

• Γ : Q × Σ → Λ is an output function mapping pairs of a controller state
and an input symbol to the corresponding output symbol,
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When in q ∈ Q, on receiving input σ ∈ Σ, the transducer ∆ transitions to
q′ = Υ(q, σ) and outputs symbol λ = Γ(q, σ). This process starts with q = q0 and
it is repeated for q = q′ until q′ ∈ Q⊥, is a terminal controller state, or until the
sequence of input symbols is exhausted.

Given a classical planning problem with conditional effects P = 〈F,A, I,G〉,
an FSC for P is a pair C = (∆, O) of a transducer ∆ = 〈Q, q0, Q⊥,Σ, A,Υ,Γ〉
and an observation function O : 2F → Σ. The observation function maps the
current planning state to an observation i.e., a symbol in the input alphabet of the
transducer. The transitions of the transducer ∆ do not rely then on an external
input, but rather on the current planning state. On the other hand, the output al-
phabet of this particular transducer is given by the set of actions A in the planning
problem P .

The world state of an FSC for P is a pair (q, s) that consists of a controller
state q ∈ Q and a planning state s, with the initial world state given by (q0, I).
Given C, an FSC for P , and a world state (q, s), then C transitions to a new world
state (q′, s′) that is computed as follows:

1. First we retrieve the observation O(s) ∈ Σ symbol that is associated with
the current planning state s.

2. Then we compute the new controller state q′ = Υ(q, O(s)) and the planning
action a ∈ A to apply next, a = Γ(q, O(s)).

3. Finally we compute the new planning state s′ = θ(s, a) that results from
applying action a in the planning state s.

We use (q, s) →C (q′, s′) to denote the transition from (q, s) to (q′, s′), and
we use (q0, s0) →u

C (qu, su) to denote a sequence of u such transitions. For
(q0, s0) →u

C (qu, su) to be well-defined, all intermediate actions have to be ap-
plicable, i.e. pre(ai) ⊆ si−1 for each ai = Γ(qi−1, O(si−1)), 1 ≤ i ≤ u. Each
transition Υ(q, O(s)) is associated with a single observation of the current plan-
ning state. However, FSCs for planning can represent expressive state queries
including the no-op action in A.

Definition 6.3 (No-op action). The no-op action is an action that when applied
does not modify the planning state and affects only the next controller state which
allows to concatenate state queries, e.g. decision trees.

.
In previous work (Bonet et al., 2010; Hu and De Giacomo, 2013), the set

Q⊥ of terminal controller states is empty, and termination is implicitly defined as
G ⊆ s, i.e. the goal condition G has to hold in the planning state s of the current
world state (q, s). Hence a given controller C solves P if and only if there exists
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a well-defined transition sequence (q0, I) →u
C (qu, su), u ≥ 0, such that G ⊆ su.

This means that goal achievement has to be tested after executing every action
for checking termination. Further, the authors assume that the observation func-
tion is given as input to synthesize a FSC that solves a given contingent planning
problem.

Recall that a generalized planning problem P = {P1, . . . , PT} is a finite
set of planning instances, where each Pt = 〈Ft, A, It, Gt〉, 1 ≤ t ≤ T , that
share the same action schema A. An FSC for a generalized planning problem
P is a pair C = (∆,O) of a transducer ∆ = 〈Q, q0, Q⊥,Σ, A,Υ,Γ〉 and a set
O of observation functions Ot : 2Ft → Σ, 1 ≤ t ≤ T . The preconditions and
conditional effects of actions in A could have different definitions for different
planning problems in P . An FSC C = (∆,O) solves P if and only if Ct = (∆, Ot)
solves each Pt, 1 ≤ t ≤ T . The authors (Hu and De Giacomo, 2011; Bonet et al.,
2010) show how to synthesize the transition function Υ and output function Γ
given all other elements of C (including the observation functions O1, . . . , OT )
such that C solves P .

6.3 Computing Finite State Controllers
This section details our novel formalism of FSCs for planning and presents our
compilation approach for computing FSCs using an off-the-shelf classical planner.
The compilation takes as input a classical planning instance, and outputs another
classical planning instance whose solution induces (1) an FSC plus (2), a proof
that the FSC solves the input planning instance. The output of the compilation is
formalized in the standard PDDL language so off-the-shelf classical planners can
be used to compute the FSCs.

6.3.1 A Novel Definition of FSCs for Planning
We reformulate the previous definition of FSCs for planning. Given a classical
planning problem with conditional effects P = 〈F,A, I,G〉, an FSC for P is a
pair C = (∆, ϕ) of a transducer ∆ = 〈Q, q0, q⊥, {0, 1}, A,Υ,Γ〉 and a function
ϕ : Q → F that maps a controller state into a fluent from the given planning
problem.

Compared to the previous definition of FSCs for planning, this novel formal-
ism introduced the following modifications:

• There is a single terminal controller state q⊥. The reason for including an
explicit terminal controller state q⊥ is that we will later extend our definition
to hierarchies of FSCs in which the goal G is not necessarily satisfied when
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the execution of an FSC terminates. In addition, including an explicit ter-
minal state allows us to use controllers as acceptor automata for recognition
tasks.

• The input alphabet is simply {0, 1} and the mapping ϕ induces an observa-
tion function O : Q× 2F → {0, 1} that maps pairs of a controller state and
a planning state into either 0 or 1. Formally, O(q, s) = ϕ(q) ∈ s, where
ϕ(q) ∈ s is interpreted as a test whose outcome equals 1 iff fluent ϕ(q) is
true in the planning state s, and 0 otherwise. Note that when ϕ(q) is a static
fluent, i.e. its value is not changed by any action in A, then the outcome of
O(q, s) is always the same (either 0 or 1).

• The observation function O is defined on controller states in addition to
planning states. With this we aim synthesizing the observation function O
in addition to Υ and Γ, in contrast to previous work in which O is given
and shared among all the controller states. To keep the space of observa-
tion functions tractable, we restrict ourselves to the simplest observation
set {0, 1} . Moreover, we only consider observation functions that use the
mapping ϕ to test the truth value of a single fluent, so synthesizing O is
equivalent to synthesizing ϕ. Note that our observation function is expres-
sive since there is nothing that prevents a fluent ϕ(q) from being a derived
fluent that is, a fluent that holds when an arbitrary formula over primitive
fluents holds.

The execution model of FSCs for planning is the same as before but now, we
say that an FSC C = (∆, ϕ) solves P if and only if there exists a well-defined
transition sequence (q0, I) →u

C (q⊥, su), u ≥ 0, such that G ⊆ su, where q⊥ is
the terminal controller state. The execution of an FSC on a planning problem
P = 〈F,A, I,G〉 can fail for any of the following three reasons similarly to basic
planning programs failure conditions (see Section 3.2):

1. The execution terminates in a world state (q⊥, su) but the goal condition
does not hold, i.e. G 6⊆ su.

2. For some world state (qi, si) with 0 ≤ i ≤ u, the action ai = Γ(qi, O(qi, si))
cannot be applied because the precondition of ai does not hold in si, i.e.
pre(ai) 6⊆ si.

3. The execution enters an infinite loop that never reaches the terminal state
q⊥.

To illustrate our new definition of FSCs for planning, we use an example of an
FSC of this kind for the traversal of a linked list. We model this task as a classical
planning problem P = 〈F,A, I,G〉, where F contains the following fluents:
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• For each list node x, fluents visited(x) denoting that x has been visited,
end(x) denoting that node x is the end of the list, and assign(n, x) denoting
that variable n points to the list node x.

• For each pair of list nodes x, y, a fluent succ(x, y) identifying y as the suc-
cessor node of x in the linked list.

• A fluent isEnd(n) denoting that variable n points to the end of the linked
list. This fluent is implemented with the derived predicate isEnd(n) ≡
∃x assign(n, x) ∧ end(x).

The action set A contains a no-op action, named a⊥, such that pre(a⊥) =
cond(a⊥) = ∅ as well as the following two kinds of actions:

• visit(n), that mark the list node assigned to n as visited:

pre(visit(n)) = ∅,
cond(visit(n)) = {{assign(n, x)}B {visited(x)} : ∀x}.

• step(n), that move n to the next node in the linked list:

pre(step(n)) = ∅,
cond(step(n)) = {{assign(n, x), succ(x, y)}B

{¬assign(n, x), assign(n, y)} : ∀x, y}.

For a linked list of length k, the initial state I and goal condition G are defined as
follows:

I = {assign(n, x0), succ(x0, x1), . . . , succ(xk−1, xk), end(xk)},
G = {visited(x0), . . . , visited(xk−1)}. (6.1)

Figure 6.3 shows a three-state FSC that solves a traversing list planning problem
P . The edge (q0, q2) with label isEnd(n)/a⊥ encodes that ϕ(q0) = isEnd(n),
Υ(q0, 1) = q2, Γ(q0, 1) = a⊥, i.e. encodes the transition and associated action
when isEnd(n) holds in the current planning state. The edge (q0, q1) with label
!isEnd(n)/visit(n) encodes the transition and action when isEnd(n) does not hold,
i.e. Υ(q0, 0) = q1 and Γ(q0, 0) = visit(n). The edge (q1, q0) with label −/step(n)
denotes that, when in q1, the transition and action are always the same no matter
the current planning state. We remind that a⊥ is the no-op action (see Defini-
tion 6.3.
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q0 q1 q2
!isEnd(n)/visit(n)

−/step(n)

isEnd(n)/a⊥

Figure 6.3: FSC for the task of traversing a linked list.

6.3.2 Computing FSCs for Classical Planning
This section describes our compilation for computing an FSC that solves a given
classical planning problem. The idea behind the compilation is to include the
current controller state, as part of the planning state, and to define two types of
actions: program actions that program the three functions ϕ, Υ and Γ for each
controller state, and execute actions that simulate the execution of the controller
by evaluating the programmed functions ϕ, Υ and Γ in the current planning state.

Formally, the compilation takes as input a classical planning problem P =
〈F,A, I,G〉 and a bound n on the number of controller states, and outputs an-
other classical planning problem Pn = {Fn, An, In, Gn}. Any plan that solves Pn
generates an FSC C = (〈Q, q0, q⊥, {0, 1}, A,Υ,Γ〉, ϕ) and validates that C solves
P .

We first set Q = {q0, . . . , qn} and q⊥ ≡ qn. The functions ϕ, Υ and Γ are not
defined on q⊥, so we say that C has n controller states (even though |Q| = n+ 1).
Now we proceed to define the compilation.

The set of fluents Fn = F ∪ Ffun ∪ Faux, where Ffun contains the fluents
needed to encode the functions ϕ, Υ and Γ:

• For each q ∈ Q and f ∈ F , a fluent condfq that holds iff f is the condition
associated with q, i.e. if ϕ(q) = f .

• For each q, q′ ∈ Q and b ∈ {0, 1}, a fluent succbq,q′ that holds iff Υ(q, b) = q′.

• For each q ∈ Q, b ∈ {0, 1} and a ∈ A, a fluent actbq,a that holds iff Γ(q, b) =
a.

• For each q ∈ Q and b ∈ {0, 1}, fluents nocondq, nosuccbq and noactbq that
hold iff we have yet to program the functions ϕ, Υ and Γ, respectively, for
q and b.

Moreover, Faux contains the following fluents:

• For each q ∈ Q, a fluent csq that holds iff q is the current controller state.
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• Fluents evl and app that hold iff we are done evaluating the condition or
applying the action corresponding to the current controller state, and fluents
o0 and o1 representing the outcome of the evaluation (0 or 1).

The initial state and goal condition equal In = I ∪ {csq0} ∪ {nocondq, noactbq,
nosuccbq : q ∈ Q, b ∈ {0, 1}} and Gn = G ∪ {csqn}. Finally, the set of actions An
replaces the actions in A with the following actions:

• For each q ∈ Q and f ∈ F , an action pcondfq for programming ϕ(q) = f :

pre(pcondfq ) = {csq, nocondq},
cond(pcondfq ) = {∅B {¬nocondq, condfq}}.

• For each q ∈ Q and f ∈ F , an action econdfq that evaluates the condition of
the current controller state:

pre(econdfq ) = {csq, condfq ,¬evl},
cond(econdfq ) = {∅B {evl}, {¬f}B {o0}, {f}B {o1}}.

• For each q ∈ Q, b ∈ {0, 1} and a ∈ A, an action pactbq,a for programming
Γ(q, b) = a:

pre(pactbq,a) = pre(a) ∪ {csq, evl, ob, noactbq},
cond(pactbq,a) = {∅B {¬noactbq, actbq,a}}.

• For each q ∈ Q, b ∈ {0, 1} and a ∈ A, an action eactbq,a that applies the
action of the current controller state:

pre(eactbq,a) = pre(a) ∪ {csq, evl, ob, actbq,a,¬app},
cond(eactbq,a) = cond(a) ∪ {∅B {app}}.

• For each q, q′ ∈ Q and b ∈ {0, 1}, an action psuccbq,q′ for programming
T (q, b) = q′:

pre(psuccbq,q′) = {csq, evl, ob, app, nosuccbq},
cond(psuccbq,q′) = {∅B {¬nosuccbq, succbq,q′}}.

• For each q, q′ ∈ Q and b ∈ {0, 1}, an action esuccbq,q′ that transitions to the
next controller state:

pre(esuccbq,q′) = {csq, evl, ob, app, succbq,q′},
cond(esuccbq,q′) = {∅B {¬csq,¬evl,¬ob,¬app, csq′}}.
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Actions pcondfq , pactbq,a and psuccbq,q′ program the three functions ϕ, Υ and Γ,
respectively that encode the possible transitions of the controller, while econdfq ,
eactbq,a and esuccbq,q′ execute the corresponding function. Fluents evl and app con-
trol the order of the execution such that ϕ is always executed first, then Γ, and
finally Υ.

We remark that the functions ϕ, Υ and Γ are programmed online: actions
pcondfq , pactbq,a and psuccbq,q′ are only applicable when the current controller state
is q and the current observation is b, respectively. As a consequence, a plan that
solves Pn may not always program ϕ, Υ and Γ for all the controller states in
Q, in which case the resulting FSC ignores the unprogrammed controller states.
One benefit of this online approach is that we can immediately check whether
the precondition of a given action a ∈ A holds (note that pre(a) is part of the
precondition of the action pactbq,a for programming a).

Breaking symmetries

The compilation Pn also includes a mechanism for symmetry breaking, which we
proceed to describe. For simplicity we excluded this mechanism from the above
definition of Pn. To program a transition to a controller state q′ using an action
psuccbq,q′ , q

′ has to be available. Initially, only q1 and qn are available. When we
visit q1 for the first time, q2 becomes available, etc. It is straightforward to imple-
ment this mechanism using fluents availableq and conditional effects of esuccbq,q′ .
With this mechanism in place, we avoid generating multiple permutations of the
same FSC that only rename the controller states.

6.3.3 Example

We show how to generate the three-state controller of Figure 6.3 with our Pn
compilation. Recall that the initial state output by our compilation is In = I ∪
{csq0}∪{nocondq, noactbq, nosuccbq : q ∈ Q, b ∈ {0, 1}}. In this example, where I
is given by the expression (6.1), the only applicable actions at In are pcondfq0 for
programming the value of ϕ(q0). To produce the FSC in Figure 6.3, the planner
chooses f = isEnd(n). The effect of action pcondfq0 is {¬nocondq0 , condfq0}.

In the resulting state, the only applicable action is econdfq0 . Since isEnd(n) is
not true in the current state, the effect of econdfq0 is {evl, o0}. At this state, the only
applicable actions are pact0

q0,a
, a ∈ A, for programming the value of Γ(q0, 0). To

produce the FSC in Figure 6.3, the planner chooses a = visit(n). The effect of
pact0

q0,a
is to add fluent act0

q0,a
, causing eact0

q0,a
to be the only applicable action.

In turn, the effect of eact0
q0,a

is {visited(x0), app}, where visited(x0) is the effect
of a and app indicates that we have applied action a = Γ(q0, 0).
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Now the only applicable actions are psucc0
q0,q

, q ∈ Q, for programming the
value of Υ(q0, 0). In the case of computing the FSC of Figure 6.3, the planner
chooses q = q1. The effect of psucc0

q0,q
is to add fluent succ0

q0,q
, causing esucc0

q0,q

to be the only applicable action. The effect of esucc0
q0,q

is {¬csq0 ,¬evl,¬o0,¬app,

csq1}, representing a transition from q0 to q1 and making actions pcondfq1 applica-
ble. So far, the applied action sequence is:

〈pcondisEnd(n)
q0

, econdisEnd(n)
q0

, pact0
q0,visit(n), eact0

q0,visit(n), psucc0
q0,q1

, esucc0
q0,q1
〉.

Next, to program and simulate the transition from q1 to q0, the planner chooses
a similar action sequence. Here, any static fluent can be used to produce the FSC
in Figure 6.3, e.g. ϕ(q1) = succ(x0, x2), since this transition fires no matter what.

〈pcondsucc(x0,x2)
q1

, econdsucc(x0,x2)
q1

, pact0
q1,step(n), eact0

q1,step(n), psucc0
q1,q0

, esucc0
q1,q0
〉.

Since Φ(q), Γ(q, 0) and T (q, 0) are already programmed for q ∈ {q0, q1}, to
simulate now the transition from q0 to q1 and back to q0 we only need execute
actions (no programming actions are necessary here):

〈econdisEnd(n)
q0

, eact0
q0,visit(n), esucc0

q0,q1
, econdsucc(x0,x2)

q1
, eact0

q1,step(n), esucc0
q1,q0
〉.

The result is to visit x1 and move n from pointing to x1 to pointing to x2. This
cycle repeats until the effect of econdisEnd(n)

q0
is {evl, o1}, indicating that fluent

isEnd(n) is true. When this happens we can program and simulate the transition
from q0 to q2 using the following action sequence:

〈pact1
q0,a⊥

, eact1
q0,a⊥

, psucc1
q0,q2

, esucc1
q0,q2
〉.

Since q2 is the terminal controller state and all list nodes have been visited, the
goal condition Gn is satisfied. Note that Gn is only satisfied after the execution of
the programmed FSC guarantees to solve the input planning problem P .

6.3.4 Properties
Here we analyze the theoretical properties of our Pn compilation for synthesizing
an FSC that solves a classical planning task P .

Theorem 6.1 (Soundness). Any plan π that solves Pn induces an FSC that solves
P .

Proof. Once π programs the functions ϕ, Υ and Γ of the FSC they cannot be
altered. Programming actions pcondfq , pactbq,a and psuccbq,q′ delete fluents nocondq,
noactbq and nosuccbq respectively, and there are no actions in An for adding these
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fluents, which bans the later application of actions pcondfq , pactbq,a or psuccbq,q′ for
the same values of q and b.

The plan π deterministically executes the FSC (the programmed ϕ, Υ and Γ
functions) on the input planning problem P . The only way to change the current
controller state from q to q′ is to apply a partial action sequence 〈econdfq , eactbq,a,
esuccbq,q′〉 for some f ∈ F , a ∈ A, b ∈ {0, 1}. Because of the corresponding
preconditions condfq , actbq,a and succbq,q′ of these actions, this means that program-
ming actions pcondfq , pactbq,a and psuccbq,q′ have to be applied in advance. Further,
since condfq , actbq,a and succbq,q′ are true for at most a single combination of values
of f , a and q′, this uniquely determines the value of the functions ϕ, Υ and Γ for
q and b.

Eventually π executes the programmed FSC on P until it solves P . The subset
of fluents {csq : q ∈ Q} ∪ F ⊆ Fn represents the current world state (q, s) of an
FSC C with controller states Q = {q0, . . . , qn}. The definition of In sets the initial
world state is (q0, I). To satisfy the goal condition Gn, π has to simulate a well-
defined transition sequence (q0, I) →u

C (qn, s), 0 ≤ u, such that G holds in s,
i.e. G ⊆ s.

The partial action sequence 〈econdfq , eactbq,a, esuccbq,q′〉 precisely simulates a
well-defined transition (q, s) →C (q′, s′) of C. Action econdfq adds ob where b ∈
{0, 1} is the truth value of f in s. Action eactbq,a applies the action a in s to obtain
a new state s′ = θ(s, a). Finally, action esuccbq,q′ transitions to controller state
q′. This deterministic execution continues until we reach a terminal state (qn, s)
or revisit a world state. If π solves Pn, execution finishes in (qn, s) and the goal
condition G holds in s, which is the definition of the FSC solving P .

Theorem 6.2 (Completeness). If there exists an FSC C = (〈Q, q0, q⊥, {0, 1}, A,Υ,
Γ〉, ϕ) that solves P , there exists a corresponding plan π that solves Pn for each
n ≥ |Q| − 1.

Proof. By definition, fluents condfq , actbq,a and succbq,q′ can altogether determine
the ϕ, Υ and Γ functions of any FSC (provided that there is an enough amount n
of controller states). Therefore, a plan π can be built that programs the functions
ϕ, Γ and Υ of any FSC making the appropriate fluents true among condfq , actbq,a
and succbq,q′ using the corresponding actions pcondfq , pactbq,a and psuccbq,q′ .

The fact that C solves P implies that there exists a sequence of well-defined
world transitions (q0, I)→u

C (qn, s), 0 ≤ u, such that G ⊆ s. The execution of the
sequence of world transitions of any FSC can be simulated using action sequences
of type 〈econdfq , eactbq,a, esuccbq,q′〉. Therefore, the plan π can be extended simu-
lating the execution of the functions ϕ, Γ and Υ, starting from (q0, I) and until
reaching a world state (qn, s) s.t. G ⊆ s. This is the definition of π satisfying the
goal condition Gn to solve Pn.
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Our compilation is not complete in the sense that the bound n on the number
of controller states may be too small to accommodate an FSC that solves P . For
instance, the FSC in Figure 6.2 cannot be computed if n < 3. Larger values of
n do not formally affect the completeness of our approach but they do affect its
practical performance since the sets Fn and An grow with the parameter n and
classical planners are sensitive to the input size.

6.3.5 Computing FSCs for Generalized Planning
This section presents an extension of our compilation to compute FSCs for gen-
eralized planning. The input to the compilation is no longer a single classical
planning problem, but a finite set of classical planning problems that define the
generalized planning problem P = {P1, . . . , PT}. The output of the extended
compilation is a classical planning problem whose solution induces an FSC C and
validates that C solves every classical planning problem Pt, 1 ≤ t ≤ T .

Let us modify the definition of a generalized planning problem P = {P1, . . . ,
PT} such that now the planning problems Pt = 〈F,A, It, Gt〉, 1 ≤ t ≤ T , share
the fluent set F in addition to the action set A. Even though the action set is
shared, the precise effects of an action is determined by the state where the action
is applied due to conditional effects. An FSC for P is a pair C = (∆, ϕ) of
a transducer ∆ and a mapping ϕ, inducing an observation function O which is
shared among the planning problems in P . As before, the FSC C solves P iff C
solves each Pt, 1 ≤ t ≤ T .

Since the extension of the compilation, P ′n = 〈F ′n, A′n, I ′n, G′n〉, is similar to
the original compilation Pn = 〈Fn, An, In, Gn〉, we define P ′n in terms of Pn:

• The set of fluents is F ′n = Fn ∪ Ftest, where Ftest = {testt : 1 ≤ t ≤ T}
models the current classical planning problem in P that is being solved.

• The set of actions isA′n = An∪Aend, whereAend includes actions endt, 1 ≤
t < T , for ending the execution on the current classical planning problem in
P and enabling the next one:

pre(endt) = Gt ∪ {csqn , testt},
cond(endt) = {∅B {¬csqn , csq0 ,¬testt, testt+1}}

∪ {{¬f}B {f} : f ∈ It+1} ∪ {{f}B {¬f} : ¬f ∈ It+1}}.

The precondition tests that we have reached the goals Gt of the current
problem Pt in the terminal controller state qn, while the effect resets the
world state to (q0, It+1), i.e. the initial state of the next problem Pt+1, which
becomes the current problem.
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• The initial state is I ′n = I1 ∪ {csq0 , test1} ∪ {nocondq, noactbq, nosuccbq : q ∈
Q, b ∈ {0, 1}}, while the goal condition is G′n = GT ∪ {csqn , testT}.

A plan solving P ′n induces an FSC C and iterates over the classical planning prob-
lems Pt ∈ P , 1 ≤ t ≤ T using actions of type endt and hence, validating that C
solves every P1, . . . , PT .

6.4 Hierarchical Finite State Controllers
This section extends our FSCs formalism to hierarchical FSCs. The extension
allows a controller to call other controllers, forming hierarchies of FSCs and en-
abling the reuse of existing controllers. In addition, a hierarchical FSC have a
list of parameters. This makes it possible to implement recursive solutions by
allowing an given controller to call itself with different arguments.

6.4.1 Parameter passing
To explain the intuition behind hierarchical FSCs, we borrow several concepts
from programming. An FSC is similar to a procedure in programming, i.e. an
independent program unit with an associated set of program instructions. A pro-
cedure can be called an arbitrary number of times, which consists in executing
the associated program instructions. Procedure calls are organized in a call stack
that keeps track of where execution should continue once the execution of a given
procedure ends.

A procedure may contain local variables whose values are different for each
call to the procedure. Some of these local variables may be designated as param-
eters of the procedure. When a procedure is called, it is necessary to specify the
values of its parameters. Since local variables have different values for different
procedure calls, each level of the call stack maintains a copy of each local variable,
storing its value for the current procedure call.

Similar to planning programs with procedures (see Chapter 4), the first step
necessary for defining hierarchical FSCs is to introduce the concept of local vari-
able. Given a classical planning problem P = 〈F,A, I,G〉 we assume that the
set of fluents F of a planning problem are instantiated from a set of predicates
Ψ and a set of objects Ω. Our approach is to designate a subset of objects,
Ωv = {v1, . . . , vq} ⊆ Ω , as local variables. To represent the assignment of
values to local variables we use the same formulation as in Section 4.3.

In programming, a procedure call can either assign a concrete value to a pa-
rameter, or pass a variable as argument such that the current value of the variable
is assigned to the parameter. In this work we are assuming that parameter pass-
ing is always of the second type, i.e. the arguments passed to the parameters of a

91



“tesi” — 2018/7/9 — 21:43 — page 92 — #118

controller are also local variable objects in Ωv. With this regard, the same local
variables can be reused for all the controllers in a hierarchical FSC, even if these
local variables have different uses in the different controllers. The reason is that
each level of the stack maintains a copy of each local variable.

6.4.2 Hierarchical FSCs for planning
We are now ready to define a hierarchical FSC for a classical planning problem P
as a pairH = (C, C1), where C = {C1, . . . , Cm} is a set of FSCs for P and C1 ∈ C
is the root FSC. Each FSC Ci = (〈Q, q0, q⊥, {0, 1},Λ,Υi,Γi〉, ϕi), 1 ≤ i ≤ m,
shares the set of controller states Q and output set Λ, and differs only in the three
functions ϕi, Υi and Γi that govern the transitions of Ci. In addition, each FSC Ci
has an arity ri ≤ |Ωv|. Because of symmetry, WLOG we define the parameter list
of Ci as [v1, . . . , vki ], i.e. the ri first local variable objects in Ωv.

The shared output set Λ = A∪Z extends the set of primitive planning actions
A to include also the set of possible calls Z = {Ci[p] : Ci ∈ C, p ∈ Ωri

v }. That is,
each transition of a controller Ci either (1), applies an action in A or (2), calls an
FSC Cj[p] with the specific arguments p ∈ Ωri

v . We remark that a call action in Z
can be used to implement recursion making a controller to call itself.

The execution model of hierarchical FSCs for planning

To model the execution of a hierarchical FSC H on a classical planning problem
P , we introduce the concept of a call stack for FSCs. Because of the local fluents
assign(v, x), a planning state s = sl ∪ sg can be decomposed into a local state sl
and a global state sg. Each level of the call stack maintains its own copy of the
local state sl, while the global state sg is shared among all levels of the call stack.
The execution of a hierarchical FSC on P starts at the root controller C1 in state
(q0, I) and on level 0 of the call stack.

For a given controller Ci and world state (q, s) with s = sl ∪ sg, if Γi(q,
O(q, s)) = a returns an action a ∈ A, the execution semantics is the same as for
single FSCs. However, when Γi(q, O(q, s)) = Cj[p] returns an FSC call in Z , we
push call Cj[p] onto the call stack, setting the world state to (q0, s

′
l ∪ sg), i.e. the

initial controller state q0 and a new local state s′l obtained from sl by copying the
value of each local variable in p to the corresponding parameter in the parameter
list [v1, . . . , vki ] of Cj . Execution then proceeds on the next stack level following
the definition of Cj .

When we reach a terminal state (q⊥, s
′) of Cj with s′ = s′l ∪ s′g, control is re-

turned to the parent controller Ci by popping the procedure call Cj[p] from the call
stack. Specifically, the state of Ci becomes (q′, sl ∪ s′g) where q′ = Υi(q, O(q, s))
is the next controller state according to the transition function Υi, and sl is the
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assignment to the local variables already stored in the call stack. The execution of
H on P terminates when it reaches a terminal state (q⊥, s) on stack level 0, andH
solves P iff G ⊆ s.

To ensure that the execution model remains finite, we define an upper bound
` on the size of the call stack. As a consequence, the execution of a hierarchical
FSCH on a classical planning problem P has a fourth failure condition:

4. Execution does not terminate because, when executing an FSC call Cj[p] ∈
Z the size of the stack equals `. Executing such a call would result in a call
stack whose size exceeds the upper bound `, i.e. a stack overflow.

An example of hierarchical FSC for planning

To illustrate our definition of hierarchical FSCs for planning, we use binary tree
traversal as an example (Figure 6.1). In addition to the tree nodes, we introduce
two local variable objects Ωv = {n, child}, and define the actions on variable
objects. We can model this task as a planning problem P = 〈F,A, I,G〉, where
F contains the following fluents:

• For each tree node x, a fluent visited(x) denoting that x has been visited.

• For each pair of tree nodes x, y, two fluents left(x, y) and right(x, y) denot-
ing that y is the left or right child of x, respectively.

• For each variable v ∈ {n, child} and tree node x, a fluent assign(v, x) de-
noting that x is assigned to the variable v, and a fluent isNull(v) indicating
that v is empty.

• For each v ∈ {n, child}, a fluent isVisited(v) denoting that the node as-
signed to v has been visited, modelled as a derived predicate isVisited(v) ≡
∃x assign(v, x) ∧ visited(x).

The action set A contains the following actions:

• For each v ∈ {n, child}, an action visit(v) that marks the node assigned to
v as visited:

pre(visit(v)) = ∅,
cond(visit(v)) = {{assign(v, x)}B {visited(x)} : ∀x}.
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• For each u, v ∈ {n, child}, an action copyL(u, v) that copies the left child
of u onto v:

pre(copyL(u, v)) = ∅,
cond(copyL(u, v)) = {∅B {isNull(v),¬assign(v, x) : ∀x}}

∪ {{assign(u, x), left(x, y)}B
{¬isNull(v), assign(v, y)} : ∀x, y}.

By default, the effect is isNull(v), but if u has a left child that node is as-
signed to v.

• For each u, v ∈ {n, child}, an action copyR(u, v) that copies the right child
of u onto v, with a definition analogous to copyL(u, v).

For the binary tree in Figure 6.1, the initial state I and goal conditionG are defined
as

I = {assign(n, x0), left(x0, x1), right(x0, x9), . . . , right(x13, x15)},
G = {visited(x1), . . . , visited(x15)}. (6.2)

Figure 6.2 shows a hierarchical FSCH = ({C}, C) that solves P . Even thoughH
contains a single FSC C, it is still hierarchical in the sense that C includes a call to
itself, represented by the edge (q2, q0) with label !isVisited(n)/call(child). Note
that C has a single parameter, which we define as the first variable object in Ωv,
namely n.

6.4.3 Computing Hierarchical Finite State Controllers
We now describe a compilation from a classical planning problem P = 〈F,A, I,G〉
into another classical planning problem P `

n,m = 〈F `
n,m, A

`
n,m, I

`
n,m, G

`
n,m〉, such

that solving P `
n,m amounts to programming a hierarchical FSC H = 〈C, C1〉 and

simulating its execution on P . The parameters of the compilation are n, a bound
on the number of controller states, m that is a bound on the number of FSCs and `,
a bound on the stack size. For each Ci ∈ C, the compilation also needs to specify
a bound ri on the number of parameters of the corresponding controller.

The set of fluents is given by F `
n,m = Fr ∪ F `

a ∪ Fm
fun ∪ F `

aux ∪ FH where

• Fr is the set of fluents instantiated from predicates different from assign.

• F `
a = {fk : 0 ≤ k ≤ `, f ∈ Fa}, where Fa = {assignv,x : v ∈ Ωv, x ∈

Ω \ Ωv} is the set of fluents instantiated from assign. By parameterizing on
the stack level k, all fluents in Fa are evaluated with respect to the current
stack level.
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• Fm
fun = {f i : f ∈ Ffun, 1 ≤ i ≤ m} where, as before, Ffun is the set of

fluents modelling the functions ϕ, Υ and Γ, which we parameterize on the
FSC Ci, 1 ≤ i ≤ m.

• F `
aux = {fk : f ∈ Faux, 0 ≤ k ≤ `} where, as before, Faux is the set of

fluents representing the execution model, which we parameterize now on
the stack level k.

Moreover, FH contains the following additional fluents:

• For each k, 0 ≤ k ≤ `, a fluent lvlk denoting that k is the current level of
the call stack.

• For each Ci ∈ C and k, 0 ≤ k ≤ `, a fluent fsci,k denoting that Ci is the FSC
being executed on stack level k.

• For each q ∈ Q, b ∈ {0, 1}, Ci, Cj ∈ C and p ∈ Ω
rj
v , a fluent callb,iq,j(p)

denoting that Γi(q, b) = Cj[p].

The initial state and goal condition are defined as I`n,m = (I ∩Fr)∪{f 0 : f ∈ I ∩
Fa}∪{cs0

q0
, lvl0, fsc1,0}∪{nocondiq, noactb,iq , nosuccb,iq : q ∈ Q, b ∈ {0, 1}, Ci ∈ C}

and G`
n,m = G∪{cs0

qn}. In other words, fluents of type assignv,x ∈ Fa are initially
marked with stack level 0, the controller state on level 0 is q0, the current stack
level is 0, the FSC on level 0 is C1, and the functions ϕi, Υi and Γi are yet to be
programmed for any FSC Ci ∈ C. To satisfy the goal we have to reach the terminal
state qn on level 0 of the stack.

To establish the actions in the set A`n,m, we first adapt all actions in An by
parameterizing on the FSC Ci ∈ C and stack level k, 0 ≤ k ≤ `, adding pre-
conditions lvlk and fsci,k, and modifying the remaining preconditions and effects
accordingly. As an illustration we provide the definition of the resulting action
pcondf,i,kq :

pre(pcondf,i,kq ) = {lvlk, fsci,k, cskq , nocondiq},
cond(pcondf,i,kq ) = {∅B {¬nocondiq, condf,iq }}.

Compared to the old version of pcondfq , the current controller state cskq ∈ F `
aux

refers to the stack level k, and fluents nocondiq and condf,iq in Fm
fun refer to the

FSC Ci. The precondition models the fact that we can only program the function
ϕi of Ci in controller state q on stack level k when k is the current stack level, Ci
is being executed on level k, the current controller state on level k is q, and ϕi has
not been previously programmed in q.

In addition to the actions adapted from An, the set A`n,m also contains the
following new actions:
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• For each q ∈ Q, b ∈ {0, 1}, Ci, Cj ∈ C, p ∈ Ω
rj
v and k, 0 ≤ k < `, an action

pcallb,i,kq,j (p) to program a call from the current FSC Ci to FSC Cj:

pre(pcallb,i,kq,j (p)) = {lvlk, fsci,k, cskq , evlk, ob,k, noactb,iq },
cond(pcallb,i,kq,j (p)) = {∅B {¬noactb,iq , callb,iq,j(p)}}.

• For each q ∈ Q, b ∈ {0, 1}, Ci, Cj ∈ C, p ∈ Ω
rj
v and l, 0 ≤ k < `, an action

ecallb,i,kq,j (p) that executes an FSC call:

pre(ecallb,i,kq,j (p)) = {lvlk, fsci,k, cskq , evlk, ob,k, callb,iq,j(p),¬appk},
cond(ecallb,i,kq,j (p)) = {∅B {¬lvlk, lvlk+1, fscj,k+1, csk+1

q0
, appk}}

∪ {{assignkpr,x}B {assignk+1
vr,x} : 1 ≤ r ≤ rj, x ∈ Ωx}.

• For each Ci ∈ C and k, 0 < k ≤ `, an action termi,k:

pre(termi,k) = {lvlk, fsci,k, cskqn},
cond(termi,k) = {∅B {¬lvlk,¬fsci,k,¬cskqn , lvlk−1}}∪

{∅B {¬assignkv,x : v ∈ Ωv, x ∈ Ωx}}.

As an alternative to pactb,i,kq,a , the action pcallb,i,kq,j (p) programs an FSC call Cj[p],
i.e. defines the output function as Γi(q, b) = Cj[p]. Action ecallb,i,kq,j (p) executes
this FSC call by incrementing the current stack level to k + 1 and setting the con-
troller state on level k+1 to q0. The conditional effect {assignkpr,x}B{assignk+1

Lrj ,x
}

effectively copies the value of the argument pr on level k to the corresponding
parameter Lrj of Cj on level k + 1. When in the terminal state qn, the termina-
tion action termi,k decrements the stack level to k − 1 and deletes all temporary
information about stack level k.

Besides computing a hierarchical FSC starting from scratch, the P `
n,m compi-

lation is flexible to reuse existing solutions. In this regard, our compilation can
also partially specify the functions Γi, Λi and ϕi of an FSC Ci by setting to True
the corresponding fluents of type condf,iq , actb,iq,a, succb,iq,q′ and callb,iq,j(p) in the initial
state I`n,m. This way, we can incorporate prior knowledge regarding the config-
uration of some previously existing FSCs in C. Interestingly, this idea can be
exploited to determine whether a given string e belongs to the regular language
defined by a given FSC by ignoring the actions for programming the transition
function. In this case, a solution plan π represents the transitions in the given FSC
proving that the string e is accepted.

The P `
n,m compilation can also be extended to address a generalized planning

problem P = {P1, . . . , PT} in a way analogous to Pn. Specifically, each action

96



“tesi” — 2018/7/9 — 21:43 — page 97 — #123

endt, 1 ≤ t < T , should have precondition Gt ∪ {cs0
qn} and reset the state to

It+1 ∪ {cs0
q0
}, i.e. the system should reach the terminal state qn on stack level

0 and satisfy the goal condition Gt of Pt before execution proceeds on the next
problem Pt+1 ∈ P . To solve P `

n,m, a plan hence has to simulate the execution of
H on all planning problems in P .

6.4.4 Example
We show how the compilation P `

n,m computes the hierarchical FSC in Figure 6.2
for binary tree traversal (with m = 1). Recall that the initial state is given by
I`n,m = (I∩Fr)∪{f 0 : f ∈ I∩Fa}∪{cs0

q0
, lvl0, fsc1,0}∪{nocondiq, noactb,iq , nosuccb,iq :

q ∈ Q, b ∈ {0, 1}, Ci ∈ C}, with I given by the expression (6.2).
At I`n,m the only applicable actions are pcondf,1,0q0

, f ∈ F , for programming the
value of ϕ1(q0) on stack level 0. In Figure 6.2 this transition fires no matter what
so any static fluent can be programmmed here, e.g. f = left(x1, x3). Similar to the
example in Section 6.3.3, the following action sequence programs and simulates
the complete transition from q0 to q1 on level 0 of the stack:

〈pcondleft(x1,x3),1,0
q0

, econdleft(x1,x3),1,0
q0

, pact0,1,0
q0,copyL(n,child),

eact0,1,0
q0,copyL(n,child), psucc0,1,0

q0,q1
, esucc0,1,0

q0,q1
〉.

The action sequences for programming the transitions from q1 to q2 and from q2

to itself are analogous. The resulting action sequence on A is 〈copyL(n, child),
visit(n), copyR(n, n)〉, and the corresponding effect on F is {assign0

child,x2
,

visited(x1),¬assign0
n,x1

, assign0
n,x9
}.

The programming and simulation of the recursive call of the controller in Fig-
ure 6.2 occurs in the partial state {csq2 , o

0}, i.e. when isVisited(n) is false in con-
troller state q2. To replicate the FSC in Figure 6.2, the planner should program and
simulate the recursive call using actions pcall0,1,0q2,1

(child) and ecall0,1,0q2,1
(child). The

effect of ecall0,1,0q2,1
(child) is {¬lvl0, lvl1, fsc1,1, cs1

q0
, app0, assign1

n,x2
}, where the as-

signment assign1
n,x2

is copied from assign0
child,x2

due to the argument child being
passed to the lone parameter n of the FSC C1 being called. As a result, execution
of the controller on P continues on level 1 of the call stack.

On stack level 1, execution is deterministic, resulting in the same transition
sequence q0 → q1 → q2 → q2 → q0 and causing another recursive call but
using now action ecall0,1,1q2,1

(child), that assigns node x3 to n on level 2 of the stack.
Recursion continues until isNull(n) becomes true, in which case we can program
and simulate the transition from q1 to the terminal controller state q3. In turn,
this allows us to pop an FSC call from the stack. At this point, since appk was
added by ecall0,1,kq2,1

(child) at the previous stack level k, we can finally program and
simulate the transition from q2 to q0 using actions psucc0,1,k

q2,q0
and esucc0,1,k

q2,q0
. Note
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that the bound ` on the stack size has to be sufficiently large to accomodate all
recursive calls otherwise P `

n,m will not have a solution. In the particular case of
binary tree traversal, ` has to be larger than the tree depth.

6.4.5 Properties
Here we analyze the theoretical properties of our compilation P `

n,m for synthesiz-
ing hierarchical FSCs.

Theorem 6.3 (Soundness). Any plan π that solves P `
n,m induces a hierarchical

FSCH = (C, C1) that solves P .

Proof. First we show that at any moment, a single fluent of type lvlk is true, de-
noting the top level of the stack, and that all fluents for levels k+ 1 and higher are
set to False. In the initial state I`n,m, the top level is lvl0 and all fluents for level
1 and higher are false. The only actions for changing the top level are ecallb,i,kq,j (p)

for pushing an FSC call onto level k + 1 of the stack, and termi,k for popping
an FSC call from level k of the stack. Note that ecallb,i,kq,j (p) deletes lvlk and adds
lvlk+1, and only adds fluents for level k+1. Likewise, termi,k deletes lvlk and adds
lvlk−1, and deletes all fluents for level k proving that the claim holds.

Next we show that for each stack level k, at or below the top, fluents fsci,k and
cskq uniquely determine the current FSC Ci ∈ C and the current controller state
q ∈ Q. In the initial state, only fsc1,0 and cs0

q0
are true, i.e. the current FSC is C1

in controller state q0 on stack level 0. Action ecallb,i,kq,j (p) adds {fscj,k+1, csk+1
q0
},

indicating that Cj is the FSC pushed onto level k + 1 of the stack in controller
state q0. Action termi,k deletes {fsci,k, cskqn}, indicating that the FSC call to Ci is
popped from level k of the stack. As happens with simple FSCs, the only action
for changing the controller state is esuccb,i,kq,q′ , which transitions from q to q′ when
b is the outcome of the observation function in q. The only difference here is that
esuccb,i,kq,q′ is parameterized by i and k. Because of precondition {lvlk, fsci,k} of
esuccb,i,kq,q′ , k has to be the top level of the stack and Ci has to be the FSC that is
executing on level k of the stack.

Now we show that actions pcallb,i,kq,j (p) and ecallb,i,kq,j (p) for programming and
executing an FSC call Cj[p] and action termi,k for terminating an FSC call cor-
rectly simulate the execution model for hierarhical FSCs. Since pcallb,i,kq,j (p) has
the same precondition {cskq , evlk, ob,k, noactb,iq } as pactb,i,kq,a , and since both delete
noactb,iq , programming an FSC call for q and b in FSC Ci is an alternative to pro-
gramming an action for q and b, effectively establishing the value of the function
Γi(q, b) ∈ A∪Z . The effect of ecallb,i,kq,j (p) is {lvlk+1, fscj,k+1, csk+1

q0
}, pushing the

FSC call Cj[p] onto the call stack and making Cj the active FSC on the top level
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k + 1. Moreover, the conditional effect {{assignkpr,x} B {assignk+1
vr,x} : 1 ≤ r ≤

rj, x ∈ Ωx} copies the values of the variable objects in p onto the variable ob-
jects v1, . . . , vrj that constitute the parameters of Cj . Finally, action termi,k pops
the FSC call involving Ci from the stack when the terminal controller state qn has
been reached.

It only remains to reuse the argument from the proof of Theorem 6.1 to show
that the actions adapted fromAn, program and simulate the execution of an FSC Ci
on a single stack level. The actions adapted from An, i.e. those for programming
or executing a function among ϕi, Υi and Γi, 1 ≤ i ≤ m, include the extra
precondition {lvlk, fsci,k}. In other words, the corresponding FSC Ci has to be
active on the top of the stack. Other than that, these actions behave just as for
single FSCs.

Theorem 6.4 (Completeness). If there exists a hierarchical FSCH = (C, C1) that
solves P then there exists a plan π that solves P `

n,m given that the n, m, and `
bounds are large enough.

Proof. The plan π is built as follows. Whenever the execution ofH on P (starting
with the initial planning state I , the first state of the root controller C1, and an
empty call stack) reaches a controller state q ∈ Q of an FSC Ci for the first time,
then π programs the three functions ϕi, Υi and Γi of the FSC Ci as specified
by H, and using the corresponding programming actions pcondf,i,kq , pactb,i,kq,a or
psuccb,i,kq,q′ . As an alternative to pactb,i,kq,a , the FSC calls of H are programmed with
pcallb,i,kq,j (p).

Once this execution reaches a controller state whose transition functions en-
coded by ϕi, Υi and Γi are already programmed, an action sequence of type
〈econdf,i,kq , eactb,i,kq,a , esuccb,i,kq,q′ 〉 that simulates the execution of the corresponding
transition is added to the plan π. Note that in this case an action ecallb,i,kq,j (p) is
executed as an alternative to eactb,i,kq,a , when the transition to simulate represents
a controller call, and a termi,k action is used to simulate the termination of the
execution of a controller Ci ∈ C.

A plan π built this way has the effect of programming H and simulating the
execution ofH on P . The fact thatH = (C, C1) solves P implies that the simula-
tion of the execution ofH on P ends achievingGwhile leaving the root controller
C1 at its terminal state and with the call stack empty, which is also the definition
of a plan π solving P `

n,m.
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6.5 Comparing FSCs and Planning Programs

Planning programs represent compact and generalized plans assigning planning
actions to an enumeration of program lines (see Chapter 3). Apart from plan-
ning actions, the lines of a planning program can also contain goto instructions
to implement control flow. Figure 6.4(a) shows a three-line planning program for
decreasing the value of variable n until achieving the goal condition n = 0. This
program assumes that n initially has a positive value, and that the effect of action
dec(n) is to decrement the current value of n. Instruction goto(0,!(n=0)),
in line one, indicates a conditional jump to line 0 if the value of variable n is not
0.

0. dec(n)
1. goto(0,!(n=0))
2. end

(a)

q0 q1 q2

−/dec(n) (n=0)/−

!(n=0)/−

(b)

q0 q1
(n=0)/−

!(n=0)/dec(n)

(c)

Figure 6.4: a) Three-line planning program for decreasing variable n until achiev-
ing n = 0; b) an equivalent three-state FSC; c) a more compact FSC representing
the same generalized plan.

Essentially, planning programs can be understood as syntactic sugar for FSCs
that separate the control flow structures from the primitive planning actions to
become more human readable. On the other hand, FSCs can be more compact.
Both programs and FSCs can represent hierarchical and recursive solutions as well
as reuse existing solutions. Moreover, both programs and FSCs can be computed
following a top-down approach that searches in a bounded space of solutions,
e.g. exploiting compilations that programs an automaton and validates it on the
input instances.

Theorem 6.5. For any planning program Π with n program lines, there exists an
equivalent FSC C with n controller states.

Proof. Given a planning problem P = 〈F,A, I,G〉 and a planning program Π =
〈w0, . . . , wn〉, we prove the theorem by constructing an equivalent FSC C =
(〈Q, q0, qn, {0, 1}, A,Υ,Γ〉, ϕ), where Q = {q0, . . . , qn} has as many controller
states as Π has program lines. For each controller state qi ∈ Q, the functions ϕ, Υ
and Γ are defined as follows:
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• If the instruction wi on line i of program Π is a primitive planning action,
i.e. an action in A, then Υ(qi, 0) = Υ(qi, 1) = qi+1 always transitions to
the next controller state qi+1, and Γ(qi, 0) = Γ(qi, 1) = wi always returns
action wi (ϕ(qi) can be arbitrarily defined since the transition is always to
qi+1 no matter what fluent we associate with qi).

• If the instruction wi is a goto(j, !f) instruction, then ϕ(qi) = f associates
fluent f with qi, Υ(qi, 0) = qj and Υ(qi, 1) = qi+1 cause a transition to qj
if f is false, else to qi+1, and Γ(qi, 0) = Γ(qi, 1) = a⊥ returns the no-op
action.

The world state (s, i) of a planning program Π comprises a planning state s and a
program line i. We prove by induction that executing Π from (s, i) is equivalent
to executing C from (qi, s), where qi is the controller state that corresponds to line
i.

The base case is given by (s, n), in which case the execution of both Π and C
terminates in the same state s (just as qn is always a terminal controller state, the
last instruction wn of Π is always a termination instruction). The inductive case is
given by world state (s, i) such that i < n:

• If wi ∈ A, the resulting world state is (s′, i + 1) for Π, and (qi+1, s
′) for C,

where s′ = θ(s, wi) is the result of applying the action wi in the planning
state s.

• If wi is a goto instruction goto(j, !f), the resulting world state is (s, j) for
Π and (qj, s) for C if f is false, and (s, i + 1) for Π and (qi+1, s) for C if f
is true.

In each case, the resulting pair of world states (s′, i′) and (qi′ , s
′) are identical,

so by hypothesis of induction executing Π from (s′, i′) is equivalent to executing
C from (qi′ , s

′). In particular, this means that executing Π from the initial world
state (I, 0) is equivalent to executing C from (q0, I), proving that Π and C are
equivalent generalized plans.

Figure 6.4(b) shows the equivalent FSC that we construct following the proof
of Theorem 6.5 for the planning program in Figure 6.4(a). Now we prove also
the other direction of Theorem 6.5 and prove hence, that planning programs are
as expressive as FSCs (but not necessarily as compact):

Theorem 6.6. For any FSC C with n controller states, there exists an equivalent
planning program Π with 5× n program lines.

Proof. Given a planning problem P = 〈F,A, I,G〉 and an FSC C = (∆, ϕ)
with ∆ = 〈Q, q0, qn, {0, 1}, A,Υ,Γ〉, we prove the theorem by constructing an
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equivalent planning program Π = 〈w0, . . . , w5n〉 with five times as many lines as
C has controller states.

For a given controller state qi ∈ Q, let ϕ(qi) = f , Υ(qi, 0) = qj , Υ(qi, 1) = qk,
Γ(qi, 0) = a, Γ(qi, 1) = b be the transitions from qi. We can exactly represent
these same transitions from qi using the following partial program:

5i: goto(5i+3,!f)
5i+1: b
5i+2: goto(5k,!false)
5i+3: a
5i+4: goto(5j,!false)

Here, false is a dummy fluent whose value is always false, causing the cor-
responding goto condition to trigger every time. Executing the above partial
program replicates the transition from qi, so Π and C are equivalent generalized
plans.

FSCs are at least as compact as planning programs, and often strictly more
compact (as shown in Figure 6.4(c)). In practice, this gives FSCs an advantage
over planning programs, since a smaller bound on the number of controller states
typically results in faster generation of FSCs.

6.6 Evaluation
This section evaluates the performance of our approach for the computation of
FSCs in a selection of generalized planning benchmarks and programming tasks
taken from Bonet et al. 2010, Srivastava et al. 2011b and some from Chapter 4.

6.6.1 Experimental setup and benchmarks

All experiments are run on a processor Intel Core i7 2.60GHz x 4 with a 4GB
memory bound and time limit of 3600s. We compute the corresponding FSCs
solving the classical planning problem that results from our compilation. The
classical planning instances output by our compilation are solved running the fol-
lowing two classical planners:

1. FAST DOWNWARD (Helmert, 2006b) with the LAMA-2011 setting (Richter
and Westphal, 2010).

2. BEST-FIRST WIDTH SEARCH with the Dual-BFWS setting (Lipovetzky
and Geffner, 2017).
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We briefly describe here each of the evaluation benchmarks. In the AnBn

domain the goal is to compute a general controller that parses strings consisting
of n A’s followed by n B’s. In Blocks, the goal is to compute a controller that
unstack blocks from a single tower until a green block is found. In Fibonacci
we calculate the nth Fibonacci number. In Gripper, the goal is to transport a set
of balls from one room to another using a two-gripper robot. In List, the goal is
to visit all the nodes of a linked list (as in the example of Section 6.3) while in
Reverse, the goal is to reverse the elements of a linked list. In the Serial Binary
Adder (SBA) domain, we compute a controller that implements the algorithm for
the addition of two binary numbers of unbounded size. In Triangular Sum, the
goal is to compute

∑n
i=1 i for a given n. In Tree/DFS, the goal is to visit all nodes

of binary trees whose the nodes may have one child, two children or none. Finally
in Visitall, the goal is to visit all the cells of a rectangular grid.

6.6.2 Computing FSCs and Hierarchical FSCs with classical
planning

We show the results of our compilation in the introduced benchmarks for comput-
ing hierarchical controllers in Table 6.1.

FD BFWS
Domain |C| Kind |Q| |P| Time(s) |π| Time(s) |π|
AnBn 1 R 2 1 0.52 46 0.58 39
Blocks 1 OC 3 5 2.73 65 1.08 65
Fibonacci 2 HC 3,2 2,4 2.81,8.28 30,173 3.54,4.81 34,183
Gripper 1 OC 3 2 5.34 140 8.65 135
Hall-A 5 HC 2,2,2, 2,2,2, 13.27,5.60,19.09, 58,46,46, 29.64,204.88,284.91, 46,46,43,

2,2 2,2 32.93,203.03 46,195 82.06,20.31 46,189
List 1 OC 2 6 0.14 159 0.14 159
Reverse 1 OC 3 2 43.56 62 13.85 49
SBA 7 HC 1,1,1,1 2,2,2,2 0.20,0.31,0.44,0.55, 14,14,14,14, 0.07,0.13,0.01,0.01, 14,14,14,14,

1,1,2 4,4,8 0.79,0.91,271.92 38,38,267 0.62,1.79,ME 38,38,ME
T. Sum 1 OC 2 4 7.06 61 14.40 66
Tree/DFS 1 RP 3 4 921.08 422 ME ME
Visitall 2 HC 2,2 3,2 0.40,25.23 84,314 7.01,ME 84,ME

Table 6.1: Number of controllers used, solution kind (OC=One Controller,
HC=Hierarchical Controller, R=Recursivity, RP=Recursivity with Parameters),
solution size and instances in P . For each controller: planning time and plan
length required for computing the controller.

In many domains our compilation computes a single FSC (OC = One Con-
troller) that solves the input planning instances; there are two domains where the
computed solution is a recursive controller (R = Recursivity; RP = Recursivity
with Parameters) that are single FSCs that call themselves. For the rest of do-
mains the solutions are hierarchical FSCs (HC = Hierarchical Controller) where
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controllers call to other controllers. All solutions with |C| > 1 fall into this last
category.

In addition to the kind and size of the computed FSCs we also report |P|, the
number of classical planning instances given as input to the compilation. Last but
not least we report, for each domain, the planning time and plan length required
by the classical planners FAST DOWNWARD and BEST-FIRST WIDTH SEARCH

to compute the controllers. We report Memory Exceeded (ME) if the planner
overflows the memory limit. We have no outcomes reporting timebound errors,
because memory overflows before exceeding the time limit.

Overall the BEST-FIRST WIDTH SEARCH configuration does not require as
much preprocessing time as FAST DOWNWARD. However, even though the nov-
elty exploration implemented by BFWS expands and evaluates nodes very fast, in
certain benchmarks requires a larger amount of memory than FD. Next we discuss
the obtained solutions for each domain.

The AnBn domain is solved with a recursive FSC without parameters. String
parsing problems can be formalized as a generalized planning problem. Actions
in this domain parse the current letter in the input string and progress the string
iterator. If the current letter is still an a, the FSC makes a recursive call to itself
else, it parses a b before terminating. Thus, it will process each letter a using n
recursive calls, and a letter b before returning from each recursion, processing a
total of n b’s.

Compared to planning programs obtained in Chapter 4, the computed FSCs
comprise a smaller number of controller states, reducing the time required to com-
pute a generalized plan for the same tasks.

Results on the Serial-Binary Adder domain are reported to show how single
FSCs, that solve a very specific problem like computing the bit sum and carry from
two inputs and a carry, can be combined into a hierarchical FSC that iteratively
calls previous FSCs to simulate the addition operation of two unbounded binary
numbers.

The solution computed for the Tree/DFS domain corresponds to the FSC of
Figure 6.2 encoding the condition isNull(n) as equals(n, n), where equals is a
derived predicate that tests whether two variables have the same value. When ap-
plied to a leaf node n, the action copyR(n, n) deletes the current value of n with-
out adding another value. Hence, evaluating equals(n, n) returns false when
no node is assigned to variable n, i.e. copyR(n, n) or copyL(n, n) when n has no
right or left child correspondingly.

In Visitall both, BEST-FIRST WIDTH SEARCH and FAST DOWNWARD, fail
to generate a single FSC within the given time bound. Even if we attempt to
generate a hierarchical FSC from scratch, these planners cannot find a solution
within the given time bound. Instead, our approach is to generate a hierarchical
FSC incrementally. We first generate a single FSC, Figure 6.5(a), that solves the
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subproblem of visiting all cells in a single row. We then use our compilation
to generate a second FSC, Figure 6.5(b), that iterates for each row and in every
iteration, calls the first controller to visit the current row and then goes back to the
first column until there are no more rows to visit.

(a) FSC-1, visits every cell in a row. (b) FSC-2, for every row, calls FSC-1 and goes back to the
first column.

Figure 6.5: Hierarchical FSC that visits all cells of a grid.

6.6.3 Assessing the influence of the input instances
Our compilation programs a controller and validates it on the set P of classi-
cal planning instances that is given as input. The next experiment evidences that
the performance of this process is affected by the order in which the planning
instances in P are given as input. This ordering has a positive impact in the per-
formance when the first input instances forces the compilation to program an FSC
that generalizes to the remaining instances. On the other hand, the ordering has
a negative impact when the programmed FSCs overfit to the first input instances
so the planner requires expensive backtracks to validate the remaining input in-
stances.

Table 6.2 shows the performance of our compilation approach for all the possi-
ble orderings of the given input instances. For this analysis we considered only the
domains that can be solved with a single FSC. For each domain, the Table 6.2 re-
ports the number of instances and their possible orderings, factorial in the number
of instances. Then for both classical planners, BFWS and FD, the table reports
the minimum, maximum and average planning time (in seconds) computed for
the given orderings. The last column reports the planning time given the input
ordering reported in Table 6.1 to serve as a reference.

From these results we can conclude that there is a significant difference in the
planning times (in some cases by orders of magnitude from best to worst case,
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Domain |P| Orderings FD BFWS
Min Max Avg Ref Min Max Avg Ref

Gripper 2 2 3.12 4.88 4.00 4.88 8.12 34.86 21.49 8.12
Blocks 5 120 2.18 568.04 87.22 2.36 0.41 520.22 43.25 0.78
List 6 720 0.02 0.04 0.04 0.04 0.02 0.15 0.03 0.02
T. Sum 4 24 2.90 9.78 4.85 7.94 0.26 18.69 6.11 14.46
Reverse 2 2 42.0 51.34 46.67 42.00 16.16 86.59 51.38 16.16

Table 6.2: For each domain we report the number of instances and possible order-
ings. For each planner, the minimum, maximum and average times (in secs) for
the orderings and the planning time given the ordering from Table 6.1.

like in the Blocks domain) that depends on the particular ordering of the input
instances and the used planner. When a human specifies the input order (e.g. the
results reported in Table 6.1) performance usually is below the average running
time, but also depends on the used planning system. What can be a good ordering
for one planner can result bad for the other planner, like in the Gripper domain.

6.7 Summary
Finite State Controllers (FSCs) for planning are similar to transducers or a Mealy
Machine. In this chapter we show a model to compute deterministic FSCs with a
novel definition that is related to planning programs (see Chapter 3). In contrast
to previous approaches that synthesize FSCs (Bonet et al., 2010; Hu and De Gi-
acomo, 2013), we include a technique for breaking symmetries that increase the
synthesis performance.

Furthermore, we have proved that our approach to compute FSCs for plan-
ning are sound and complete. This compilation can be extended to generalized
planning to solve many planning tasks with a single FSC. In addition, we can im-
plement a call stack (see Section 4.2) which allows FSCs to call other FSCs or
themselves in case of recursive solutions. These are the techniques required to
describe one of the most important contributions in the thesis, Hierarchical Finite
State Controllers (HFSCs). We also prove that HFSCs are sound and complete.

Then we compare FSCs and planning programs showing that for every plan-
ning program Π there is an equivalent FSC C and vice versa, but FSCs are at
least as compact as planning programs, and often strictly more compact (see Sec-
tion 6.5). In the evaluation we compute similar tasks with HFSCs as in planning
programs (see Chapter 4) like DFS. Also we show that HFSCs solve recursively
grammar parsing tasks like AnBn. Finally, we report time performance experi-
ments on different ordering permutations in the set of input instances, concluding
that the time impact when solving a set of instances sequentially is of orders of
magnitude, leaving the automatic ordering of inputs as an open issue.
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PART IV

New Landscapes for Planning
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CHAPTER 7

Unsupervised Classification of
Planning Instances

This Chapter 7 creates a new landscape for planning, where instances can be clas-
sified into labels such that we can predict their behavior. We start describing the
meaning of an unsupervised classification task, how clusters can be computed and
how to determine class labels to new input instances. After that, we formalize
an unsupervised classification task for planning and show some results in the two
different tasks of computing clusters and determining class labels. The aim of this
chapter is to build bridges between Machine Learning and Planning through the
connection of topics like unsupervised classification, behavior prediction and task
generalization from a planning perspective.

7.1 Introduction
In Machine Learning (ML) there are two main classification approaches based
on the input data and the way output is represented. The first one is supervised
learning, where the input data has been classified into groups described by a set
of features that corresponds to a desired output. Then, a cost function should con-
verge to a minimum value such that the learnt model produce the best expected
outcome over the input set. And the second one is unsupervised learning, where
the input data is raw, thus there are no classes or features, and is the machine pur-
pose to organize this information into different groups, even finding the features
that describe them. For the feasibility of such a hard task, some kind of infor-
mation must be provided to learn the model, like how many different classes we
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can classify our input (clustering) and/or a distance metric among the input that
should be minimized (kernel).

The outputs in ML are either integer values in the case of classification tasks
or scalar values for regression tasks. Supervised learning can deal with both while
unsupervised learning is used only for classification. Nevertheless, there is a new
task called structured prediction (Bakir et al., 2007) where outputs represent more
complex structural information about inputs. Classification and structured predic-
tion are tightly related in terms of the approach to get the output, so one method
to get solutions in raw inputs could be unsupervised learning.

This Chapter 7 is inspired in recent approaches like Lake et al. (2015) and El-
lis et al. (2015) that synthesize programs in order to output structured information
about inputs. The first one uses a Bayesian program learning framework that can
generalize even from one example, and solutions are represented with probabilis-
tic programs used for structured prediction of new inputs. Besides classification,
they can generate examples from these programs which in many cases pass the
“visual Turing tests” for world alphabets characters. The second one, provides
an unsupervised program synthesis algorithm that given some hard constraints for
the symbolic search and a specific grammar, it can enconde input images into a
probabilistic program and generate images from this program. Programs are a nat-
ural knowledge representation for many domains, are easy to interpret by humans,
and can compactly express relatively complex operations on inputs.

In ML we require some features and functions to find a structure or pattern
to map inputs into outputs, but how is it possible to classify planning instances
without a learning model?. Classical planning maps an initial state (input) into a
goal state by applying a plan (output) that is composed of a sequence of actions,
so it makes sense to classify planning instances according to behaviors rather than
feature values. Using previous approaches based on structured prediction where
solutions are expressed as programs, we can get the idea to automatically syn-
thesize programs taking advantage of planning programs formalism introduced in
Chapter 3.

Then, we used unsupervised classification of planning instances as a clustering
problem where given a set of instances and a number of clusters, we can group
instances into clusters that correspond to planning programs. Planning instances
are assigned to a cluster if and only if the associated planning program maps
their input states into a goal state for all of them. Thus, we can understand an
unsupervised classification task as predicting the structured behavior of a planning
instance.

As an illustrating example, consider the problem of navigating through a grid
from an initial position to a goal position. Figure 7.1(a) represents three dif-
ferent planning instances of this type. These instances can all be represented
using the same variables and actions: variables x and y that represent the cur-
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I1

G1

I2

G2G3

I3

(a)

0 . dec (x )
1 . go to ( 0 , ! ( x = xG ) )
2 . dec (y )
3 . go to ( 2 , ! ( y = yG ) )
4 . end

(b)

Figure 7.1: (a) Three different instances of grid navigation; (b) a planning program
Π1 that solves all of them.

rent position, variables xG and yG that represent the goal position, and actions
{dec(x), dec(y), inc(x), inc(y)} that decrement/increment the value of x or y.
Although these three instances have different initial states and goals, they are
solved by the planning program Π1 in Figure 7.1(b): independently of the grid
size x is decremented until reaching the goal column, and y is decremented until
reaching the goal row. Note that we could solve these instances using three dif-
ferent planning programs, in which case they would no longer be considered to
display the same behavior. This illustrates that we must have an idea of how many
behaviors we want to capture in a domain. We understand behaviors as programs,
and each instance from the set of input instances must be solved at least by one
program. Whether we use a large bound of programs, they could overfit some
tasks while using a low bound could make impossible finding a solution to the
whole set of input instances.

The main contribution of this chapter is to show that classical planning is a
good alternative for program synthesis, structured prediction and unsupervised
methods. This alternative is represented using planning programs that are com-
piled into classical planning problems so they can be computed with an off-the-
shelf classical planner. On the one hand, planning programs are more expressive
than previous approaches. Ellis, Solar-Lezama, and Tenenbaum (2015), for ex-
ample, only consider programs generated by an acyclic grammar, a restriction not
shared by planning programs that allow conditional gotos and recursivity. On the
other hand, planning programs cannot handle noisy inputs because they are de-
terministic while previous approaches are probabilistic and can deal with more
realistic problems. Even though, there are many options to allow deterministic
problems to deal with noisy inputs that we will comment later.
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7.2 Classification of Planning Instances

The term classification means to assign a class, and if applied to planning in-
stances is to assign a class to each instance. Thus we have an unlabelled set of
planning problems (or instances without class) E = {P1, . . . , PT}. This set is
equivalent to a generalized planning tasks from Chapter 2, where each planning
problem Pt ∈ E with 1 ≤ t ≤ T is instantiated from a planning frame Φ = 〈F,A〉
which fluents and actions are shared for all planning instances. We consider Γ(Φ)
the function over the planning frame that yields to the set of all possible planning
instances, so that each Pt ∈ Γ(Φ).

As we said, the set of unlabelled planning instances E is described in the same
way of a generalized planning task P , but in spite of getting a single generalized
plan to solve all the instances, we cover all instances with multiple generalized
plans such that each instance of E can be classified and solved by at least one
of the generalized plans. Since we have multiple unlabelled instances that can
be grouped according to some criterion into different generalized plans, we look
upon this is an unsupervised classification task. In contrast, whether we know a
priori the class label for each planning instance, the task would be transformed
into a supervised classification task where E = E1 ∪ E2 ∪ . . . ∪ ET ′ such that
T ′ ≤ T , ∀(Ei ⊆ E) : (1 ≤ i ≤ T ′) and ∀(Ei ∩ Ej = ∅) : (1 ≤ i, j ≤ T ′), (i 6= j),
so Ei with 1 ≤ i ≤ T ′ represents the set of planning instances for i-th class that
must be solved with a single generalized plan.

Because class labels for each one of the input instances are not given, we need
an unsupervised method to solve the problem. A common approach for unsuper-
vised classification is clustering, where instances are grouped into the same class
(cluster) if they share some common behavior while the rest are classified in other
classes (clusters).

This approach for unsupervised classification considers planning instances to
be similar if their solution share some common structure, i.e. both can be solved
using the same generalized plan. In other words, a generalized plan acts as a
class prototype (Liu et al., 2009) if it solves all instances that belong to that class.
For instance, Figure 7.1(b) shows the program Π1 that solves the three planning
instances illustrated in Figure 7.1(a) and represents the prototype for this cluster
of different planning instances.

Then, we can formally describe an unsupervised classification task as a 3-
tupple 〈Φ, E ,m〉 where:

• Φ = 〈F,A〉 is the classical planning frame.

• E = {P1, . . . , PT} is the finite set of unlabelled planning instances drawn
from Φ, i.e. Pt ∈ Γ(Φ), 1 ≤ t ≤ T .
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• And m is the number of clusters, that implicitly defines a set of class la-
bels CL = {c1, . . . , cm} that correspond to generalized plans {Π1, . . . ,Πm}
respectively.

After that, we introduce a model for the unsupervised classification task 〈Φ, E ,m〉
defined by the 2-tupple 〈G, cf〉 where:

• G = {Π1, . . . ,Πm} is the set of generalized plans, one for each class label,
where all unlabelled instances can be classified and solved.

• cf : E → CL is a non-deterministic choice function that assigns a class label
cf(Pt) ∈ CL to each input instance Pt ∈ E such that the corresponding
generalized pla solves Pt.

The model 〈G, cf〉 is valid if and only if each input instance Pt ∈ E can be
classified into a class label cj ∈ CL, with the non-deterministic choice function
cf(Pt) = cj , whose corresponding generalized plan Πj solves the instance Pt.
Another option that is not used in this approach but can describe when a model is
valid, is to check there are no misclassifications for the input instances in E . This
does not apply in our case, because we want to get models that can classify all
instances, independently whether they are in the expected class or not, as long as
the generalized plans can solve them correctly.

Regarding with cf function, it implicitly defines a partition of the input in-
stances into each one of the clusters, in such a way that each planning instance is
mapped into a cluster, and the group of instances that are in the same cluster are
equivalent to a generalized planning problem Pj , 1 ≤ j ≤ m whose solution is
given by the generalized plan Πj .

Once the model for unsupervised classification is introduced, we can define
the two tasks for a set of planning instances:

1. Given an unsupervised classification task 〈Φ, E ,m〉, compute a valid model
〈G, cf〉 where all planning instances in E are classified and solved.

2. Given an unsupervised classification task 〈Φ, E ,m〉 and a valid model 〈G, cf〉,
classify a planning instance P ∈ Γ(Φ) \ E (i.e. instantiated from Φ but not
included among the inputs) by determining its class label cj ∈ CL that cor-
responds to a generalized plan Πj .

This second task can also be understood as plan recognition (Ramı́rez and
Geffner, 2010) using plan libraries in the form of generalized plans and where in-
puts are not sequences of observations but pairs of initial state and goal condition.
Following this section we are going to explain with more detail how to carry out
both tasks.
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Π0: 0. choose(Π1|Π2) Π1: 0. dec(x) Π2: 0. inc(x)
1. end 1. goto(0,!(x = 0)) 1. goto(0,!(x = n))

2. dec(y) 2. inc(y)
3. goto(2,!(y = 0)) 3. goto(2,!(y = n))
4. end 4. end

Figure 7.2: An unsupervised classification model with two clusters of plan-
ning instances represented as a planning program with a choice instruction
choose(Π1|Π2).

7.2.1 Computing Classification Models

In this section we explain how to compute a valid model 〈G, cf〉 given an unsu-
pervised classification task 〈Φ, E ,m〉.

The new model is an extension of previous planning programs from Chapter 3.
There are two main extensions, one is related to the set of planning programs G,
while the other is related to the non-deterministic choice function cf that maps
input instances to class labels.

The first extension is to allow the execution of the cf function adding a choice
instruction to the original set of instructions I. The choice instruction is defined
as choose(Π1, . . . ,Πm) where each Πj with 1 ≤ j ≤ m is a planning program in
G.

The second extension is a planning program that only contains the choice in-
struction called Π0 (cf. Figure 7.2). From Π0, with the non-deterministic function
encoded in the choice instruction, we can choose which planning program among
Π1, . . . ,Πm is going to be executed and programmed in case of empty lines. Thus,
choosing planning programs is akin to call instructions where planning programs
can call to other planning programs introduced in Chapter 4, but in this case only
Π0 can call other programs in the execution of the choice instruction.

In Figure 7.2 there is an unsupervised classification model with two clusters
or class labels that correspond to planning programs Π1 and Π2. The planning
problem is represented in a n × n grid where an agent can move to any arbitrary
position, but the planning programs act as prototypes for moving bottom-left cor-
ner and top-right corner respectively, so given an instance of the planning problem,
a classical planner must decide to which cluster the instance belongs and validate
the assignment. In order to generalize we use to include fluents to express the
minimum and maximum values (e.g. xmax, ymax), and sometimes operators like
equals, less than, greater than and so on.

The execution model of a planning program behaves in the same way as be-
fore for all instructions and conditions like termination, success and failure, the
only difference is the extension of the choice instruction choose(Π1| . . . |Πm) that
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must define how affects to the program state (s, i, j) where planning state s is on
line i of planning program j.

Once the program state is in the choice instruction wi = choose(Π1| . . . |Πm)
it must choose which planning program among Π1, . . . ,Πm must be programmed
and executed, setting the new program state to (s, 0, j) that means the planning
state remains the same while the program counter moves from (s, 0, 0), first line
of Π0, to the first line of Πj , the rest is equivalent to a planning program execution.

The new compilation requires as input an unsupervised classification task
〈Φ, E ,m〉 and a number of lines n, and outputs a classical planning instance with
conditional effects Pn,m = 〈Fn,m, An,m, In,m, Gn,m〉.

• Fn,m is the fluent set that extends Fn with m+ 1 planning programs Π0,Π1,
. . . ,Πm with n lines. So we make a copy of fj of each fluent f ∈ Fpc∪Fins
for each planning program Πj where 0 ≤ j ≤ m.

• An,m is the action set that extends An in different ways:

– Every ai ∈ An that simulates an instruction in a specific line, is copied
as ai,j for each planning program Πj where 0 ≤ j ≤ m. Then, for
every ai,j we include two actions P(ai,j) and E(ai,j) for programming
an instruction and executing a planning action ai,j respectively.

– Also terminal actions are modified to adapt its execution for multiple
planning programs. So, action endt,i,j where t < T resets the pro-
gram state to (It+1, 0, 0) that represents the initial state of instance
Pt+1 starting from line 0 in the planning program Π0.

– The last extension are the m choose actions choosej with 1 ≤ j ≤
m. It selects one of the planning programs among Π1, . . . ,Πm and is
defined as:

pre(choosej) = {pc0,0},
cond(choosej) = {¬pc0,0, pc0,j}.

• In,m is the initial state and it is defined as In but including all empty lines for
planning programs Π1, . . . ,Πm and a choice instruction choose(Π1| . . . |Πm)
in the first line of Π0. The program state is initialized to (I1, 0, 0), i.e. the
initial state of the input instance P1 and line 0 of the planning program Π0.

• Gn,m is the goal condition and is defined with the fluent {done} as before.

Lemma 7.1. Any plan π that solves Pn,m corresponds to a valid model 〈G, cf〉
for the unsupervised classification task 〈Φ, E ,m〉.
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Proof. To solve Pn,m the plan π has to simulate the choice instruction for each
input instance Pt, 1 ≤ t ≤ T , actively choosing a planning program among
Π1, . . . ,Πm. This active choice corresponds exactly to the mapping cf from input
instances to class labels. In addition, for each input Pt, π has to program the
instructions (if not yet programmed) of the chosen planning program Πj , 1 ≤
j ≤ m, and then simulate the execution of Πj on Pt. For π to solve Pn,m, this
simulated execution has to successfully validate that Πj solves Pt. Hence G =
{Π1, . . . ,Πm} satisfies the property required for the model 〈G, cf〉 to be valid.

7.2.2 Determining Class Labels
A second task is, given a valid model 〈G, cf〉 for the unsupervised classification
task 〈Φ, E ,m〉, to determine the class label of a classical planning instance P =
〈F,A, I,G〉 ∈ Γ(Φ) \ E choosing the planning program Πj with 1 ≤ j ≤ m
whose execution solves P . This instance is instantiated from the planning frame
Φ and does not belong to the original set of unlabelled planning instances E .

Once the model is given, planning programs are like policies where planners
do not need to make decisions, they just check the preconditions and apply the
effects of the actions. Nevertheless, Π0 is the only that has a non-deterministic
choice function cf , so given the model, this is the only decision for the planners
that is to choose the planning program to execute. Once a planing program Πj ∈ G
is chosen, Πj is executed so that we verify if it solves P . In case we do not solve
P , the planner tries the next best option, otherwise we classify P with the class
label cj ∈ CL.

In Figure 7.3 there is an example of an unsupervised classification task in a
grid domain of size 5 × 5. The tasks to perform is moving bottom-left or top-
right corners, so the model is the same as in Figure 7.2. Now consider E =
{P1, P2, P3, P4} so they were used to compute the model, and we must determine
the class cj ∈ CL with 1 ≤ j ≤ m of a new instance P5. In case the goal is to
move bottom-left corner, cf(P5) = c1, otherwise cf(P5) = c2.

There are two main unsolved problems regarding with P classification:

1. There are multiple planning programs Πj ∈ G that solve P .

2. There is no planning program Πj ∈ G that applied on P reaches a goal
condition G.

For the first case, the choosen planning program could be the one with the
lowest cost and in case of a tie the planner would decide arbitrary any of the
optimal planning programs. We can predict the structure of planning problem P ,
so any decision of a planning program that solves P can be considered correct
but is still an open question. In the second case is more complex, there is nothing
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Figure 7.3: Unsupervised Classification Task in a Grid domain of 5 × 5 with an
unlabelled planning instance P5.

specified for those cases so one possible solution can be to choose the planning
program that has the closest expanded state s to a goal condition G. One option
for this measure is considering the planning program Πj in the planning program
state (s, i, j) with the largest set of fluents in the intersection s∩G. In other words,
consider X (Π(P )) the set of expanded states of planning program Π executed on
a planning instance P , and δ(s) a function that counts the fluents assigned to true
in s. Then we can choose the planning program that minimizes the distance to a
goal condition like argminΠj

δ(s ∩G) : s ∈ X (Πj(P )) ∧ Πj ∈ G.
The field of Machine Learning has a variety of approaches for error minimiza-

tion and improving classification accuracy of input data. In our case, determining
class labels can be a first step in planning to connect with machine learning ap-
proaches for error detection and to improve the quality of planning programs.

7.3 Unsupervised Classification as Planning
Supervised classification can be modeled as a generalized planning task (Lotinac
et al., 2016), where the set of noise-free input instances are described with features
and every instance has been assigned to a label. Then, a solution to this general-
ized planning task would be a structured program that correctly classifies every
instance into the corresponding label. These programs must synthesize the condi-
tions with form of conjunctive queries over the set of features, that after evaluated
to true or false determine to which class an instance belongs. The nesting of con-
ditions in programs can be seen as decision trees for noise-free data that is close
to contingent plans (Albore et al., 2009). In this work, they produce a decision
tree as a contingent plan, where internal nodes are sensing actions and leafs are
the classical actions to perform in the world. In other words, internal nodes can be
considered as conditions while leafs are the actions to determine a label or class.

In this chapter we show that outputs from unsupervised classification as plan-
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ning can have the form of a decision tree. The main difference is that instances
are not labeled and it is the job of a planner to find the mapping of inputs into
structured outputs. These outputs are clusters that correspond to planning pro-
grams. The aim of our approach is not to be competitive with state-of-the-art ML
techniques when solving unsupervised classification tasks but to go deep in the
connection of automated planning and ML models.

Definition 7.1 (Unsupervised classification Task). An Unsupervised Classifica-
tion Task is the task of assigning a class label to each unlabeled input example
from E = {e1, · · · , eT}, given a set of clusters CL = {c1, · · · , cm}.

Then, each input et, 1 ≤ t ≤ T is an assignment of values to variables, where
variables are in a finite set X = {x1, · · · , xι}, and each variable xi with 1 ≤ i ≤ ι
has an associated finite domainD(xi). Only one possible value can be assigned to
a variable, considering the domain of the variable as an invariant of the task. Thus,
the unsupervised classification task can be modeled as a generalized planning task
P = {P1, · · · , PT} such that each individual planning task Pt = 〈F,A, It, Gt〉
with 1 ≤ t ≤ T , models the classification of the tth example:

• F is the set of fluents to represent the classical planning instances, and some
others to control if an instance has been already classified by assigning a
class label.

• A contains the set of actions necessary to label a given example with a
class label in CL. For instance, in a two-class unsupervised classifica-
tion, CL = {c1, c2} correspond to fluents class1 and class2, while A =
{setClass1, setClass2} is the set of actions that set these fluents to true and
another one called classified to prevent classifying the same instances in
multiple classes. Formally, action setClassc is defined as follows:

pre(setClassc) ={¬classified},
cond(setClassc) ={∅B {classified, classc}}.

• It contains the fluents that describe the tth example and {¬classified} while
Gt = {classified} requires that the example has been labeled.

The generalized planning problem P = {P1, · · · , PT} models an unsuper-
vised classification task of T instances with a solution Π that maps every input
instance into a class from cluster CL = {c1, · · · , cm}. The solution has a con-
straint that every class must be used at least once som ≤ T . As shown in previous
chapters, this generalized planning task can be compiled into classical planning
where Π has the form of a planning program that has to correctly assign classes to
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Π0: 0. goto(3,!(y = ¬x1 ∧ x2))
1. setClass1
2. end
3. setClass2
4. end

Figure 7.4: Example planning program for the two-cluster classification task of
learning examples that correspond to the logic formulae y = x1 → x2 and y =
x2 → x1.

unlabeled input instances. For instance, in a two-class unsupervised classification
task, fluents class1 and class2 are also goals of the planning instance resulting from
the compilation to classical planning.

Modelling a ML task as classical planning is straightforward if it is described
using logic, like Michalski’s train classification task (Michalski et al., 2013). Al-
though, the features that describe each example may have finite domains, so flu-
ents F in the classical planning task are instantiated from the set of predicates Ψ
and objects Ω. The objects set is splitted in two parts, one for variable objects Ωv,
and the other one for value objects Ωx. Then, given a variable v ∈ Ωv and a value
x ∈ Ωx, the predicate assign(v, x) is true iff variable v has value x. A given vari-
able represents exactly one value at a time, so for a given v, fluents assign(v, x),
such that x ∈ Ωx, are invariants.

We show here a simple unsupervised classification task that can be modeled
in this way. The task is a two-cluster classification of examples that correspond to
the different value combinations of three Boolean variables, x1, x2 and y. More
precisely, there is a total of eight examples, four corresponding to the variable
values of the formula y = x1 → x2 (the first cluster) and the other four corre-
sponding to the formula y = x2 → x1 (the second cluster). Figure 7.4 shows a
program Π that solves this unsupervised classification task.

Even though there are different ways of clustering the examples, a classical
planner would prefer compact cluster models, like the one shown in Figure 7.4,
i.e. that requires a small number of program lines. The fluent y = ¬x1 ∧ x2 that
appears in the goto instruction (line 0) represents a derived fluent that holds in all
the states for which the encoded formula is satisfied.

To synthesize the planning program in Figure 7.4 starting from scratch we
need to automatically discover the condition y = ¬x1∧x2 that determines how the
input examples should be classified. In this case the unsupervised learning task is
to identify the derived fluents that allow a compact classification model. This task
can be addressed by extending the compilation for solving generalized planning
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tasks with a unification mechanism (Lotinac et al., 2016). Note that this is a more
traditional ML task than the structured prediction addressed in previous sections,
which classifies examples according to behavior rather than their features.

7.4 Evaluation
The setting to run the experiments are the same explained in Chapter 3 but using an
extended version of the original compilation. In this section we show two kinds
of experiments, ones to solve an unsupervised planning task computing a valid
model, and others to determining a planning program that solves an unlabelled
planning instance given a valid model.

1. Compute a valid classification model 〈G, cf〉 given an unsupervised classi-
fication task 〈Φ, E ,m〉.

2. Classify a given planning instance P given an existing model 〈G, cf〉 by
determining the planning program in G that solves P .

Insts n m F A Search Prep Total

Grid
H-V 4 2 4 284 292 0.04 1.23 1.27
Quadrant 4 4 2 356 634 5.77 1.04 6.81

List Visit 4 4 2 362 762 0.20 0.51 0.71

Bool
Assign 8 2 2 220 194 0.17 0.38 0.55
Nor-Nand 8 3 2 326 330 0.79 0.56 1.35

Table 7.1: Number of learning instances; bounds on the number of lines per cluster
and clusters; number of fluents and actions in the compiled classical planning
task; search, preprocessing and total time (in seconds) elapsed while computing
the solution.

7.4.1 Benchmarks
The instances used in experiments come from three generic domains (i.e. planning
frames). In these generic domains, all planning instances share the planning frame
Φ = 〈F,A〉. This means that we can first create clusters for the planning instances
in E , compute the planning program that provides the prototype behavior of each
cluster, and then test multiple planning instances for each task to see how they are
classified.
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In the first domain, Grid, the goal is to navigate to a goal position by incre-
menting or decrementing the x or y values. The domain also includes fluents that
represent the goal position (cf. the example in Figure 7.1). The second domain,
List, models lists of integers, in which actions iterate over list elements or apply
an operation to the current list element. In the third domain, Boolean Circuits,
actions consist of applying Boolean functions such as and, not, and or with con-
ditional effects, using Boolean variables {x1, x2, y} to create the circuits.

For the Grid domain we created two different classification tasks: H-V that
comprise horizontal and vertical navigation tasks and Quadrant where navigation
is done towards the top-right or bottom-left quadrant (cf. Figure 7.3).

In the List domain we tested a Visit task whose classes are to perform op-
erations (i.e. visit) on all the list elements or only on every second element (odd
positions in the list). For the Boolean Circuits domain we implemented two tasks:
Assign, in which the aim is to perform either of these two operations x1 ← x2 and
x2 ← x1; and NOR-NAND, in which the aim is to correctly create and classify
nor and nand circuits.

7.4.2 Computing Classification Models

Table 7.1 summarizes the results of the first kind of experiments. In this table
we provide the number of input instances, the bounded number of lines for each
planning program, and the number of clusters (each corresponding to a planning
program). Also we report some data of the planning compilation like the num-
ber of fluents and actions the planner has to handle, and the times required for
preprocessing and search.

The solutions obtained in H-V were four clusters, of two program lines each,
corresponding to decreasing or increasing the x or y variables in order to reach
the target position along a horizontal or vertical line.

Π1 : 0.inc(x), 1.goto(0, !(x = xG)),

Π2 : 0.dec(y), 1.goto(0, !(y = yG)),

Π3 : 0.dec(x), 1.goto(0, !(x = xG)),

Π4 : 0.inc(y), 1.goto(0, !(y = yG)).

Regarding the Quadrant task, the two planning programs have to navigate to
a specific target position in one of the two quadrants (top-right or bottom-left).
Both planning programs have four lines to solve the planning instances.
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Π1 : 0.inc(x), 1.goto(0, !(x = xG)), 2.inc(y), 3.goto(0, !(y = yG)),

Π2 : 0.dec(x), 1.goto(0, !(x = xG)), 2.dec(y), 3.goto(0, !(y = yG)).

In the task for the List domain, the first program Π1 visits all elements of the
list, while the second program Π2 only visits every second element by applying
the next action twice in each iteration.

Π1 : 0.visit(n), 1.next(n), 2.goto(0, !(n = nil)),

Π2 : 0.visit(n), 1.next(n), 2.next(n), 3.goto(0, !(n = nil)).

In the Boolean Circuits domain, the input is always the whole set of Boolean
variable assignments corresponding to a given Boolean circuit. In this case, in-
stead of obtaining the expected Boolean functions, the planner finds sequences
of actions that set the outcome to true or false. Thus it classifies input instances
depending on the value of the variable in the goal condition (true or false). The
prototype planning programs for clusters in Assign are

Π1 : 0.not(x1), 1.and(x1, x2),

Π2 : 0.not(x2), 1.or(x2, x1),

while in NOR-NAND they are

Π1 : 0.not(y), 1.or(x1, y),

Π2 : 0.or(x1, x2), 1.not(x1).

The not(var) function directly modifies the var value while or(var1,var2) and
and(var1,var2) assign the result of the boolean operation to the left variable var1.
The Boolean functions computed for the Assign task appear in Table 7.2, and
those for NOR-NAND in Table 7.3. Their input instances are the four possible
combinations of two boolean variables x1 and x2 for two program classifiers (eight
instances in total), and the goals are to assign specific values to x1, x2 and/or y.
The planner classifications are in bold in the tables (e.g. Assign input x1 = 0 and
x2 = 1 for task x2 ← x1, is classified into Π2 such that x2 becomes 0). In order to
avoid planners to just assign a value to a variable, like NOR-NAND domain that
requires a more complex strategy, the resulting values have to be assigned to x1

and y.
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Assign
Input Output Π1 Output Π2 Goal x1 → x2 Goal x2 → x1

x1 x2 x1 x2 x1 x2 x1 x2 c x1 x2 c

0 0 0 0 0 1 0 0 1 0 0 1
0 1 1 1 0 0 0 0 1 1 1 2
1 0 0 0 1 1 1 1 2 0 0 1
1 1 0 1 1 1 1 1 2 1 1 2

Table 7.2: Boolean results for Assign task. The columns are the initial state; the
output of Π1 and Π2 from each initial state; the goals for both tasks and c is the
class label assigned by the planner that corresponds to planning program Πc that
solves the planning problem.

NOR-NAND
Input Output Π1 Output Π2 Goal NOR Goal NAND

x1 x2 y x1 x2 y x1 x2 y x1 x2 y c x1 x2 y c

0 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1
0 1 0 1 1 1 0 1 0 0 1 0 2 1 1 1 1
1 0 0 1 0 1 0 0 0 0 0 0 2 1 1 1 1
1 1 0 1 1 1 0 1 0 0 1 0 2 0 1 0 2

Table 7.3: Boolean results for NOR-NAND task. The columns are the initial
state; the output of Π1 and Π2 from each initial state; the goals for both tasks and
c is the class label assigned by the planner that corresponds to planning program
Πc that solves the planning problem.

7.4.3 Determining Class Labels

For the second kind of experiments we create additional instances for the tasks
H-V, Quadrant and Visit. We were unable to test the Boolean Circuits domain
because the previous inputs already included all possible variable assignments
corresponding to a given Boolean circuit. In addition, we test a new generic do-
main called Pointers in which the three possible clusters have to perform find,
select and reverse tasks on lists. The find task counts the number of occurrences
of a given element in a list, the select task searches for the minimum element in
the list, and the reverse task reverses the order of the elements in the list.

Table 7.4 displays the same features as in Table 7.1, but the planning programs
are already programmed for each cluster, so the instructions are included as flu-
ents in the initial state of the compiled classical planning instance and the set of
instances are included as tests in the domain (correctly classified / total number of
instances). The idea is to check the outcome of noise-free classification for more
complex problems, instead of dedicating resources to the search of the planning
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Domain Task Tests n m Facts Oper Search Prep Total

Grid
H-V 8/8 2 4 180 52 0.06 10.31 10.37
Quadrant 6/6 4 2 102 30 0.02 0.98 1.00

List Visit 8/8 4 2 122 30 0.04 1.60 1.64
Pointers FRS 7/7 4 3 175 46 0.43 23.42 23.85

Table 7.4: Number of tests (Correctly Classified/Total); bounds on lines per clus-
ter and clusters; number of facts and operators; search, preprocessing and total
time (in seconds) elapsed while computing the solution.

programs themselves, a costly operation due to the exponential complexity in the
bound on the number of lines.

All the tests in the second table have been classified correctly using the pro-
vided knowledge in the form of existing planning programs. Nevertheless, we can
find some extreme cases where planning programs with different structures can
come up to the same result given an instance. In these situations, the classical
planner can classify the instance in an arbitrary way, using by default the plan
length, since its behavior is consistent with any of the clusters.

7.5 Summary
In this chapter we have formalized the concept of unsupervised classification tasks
using classical planning. These kind of tasks follow a prototype-based clustering
where different planning instances are grouped into clusters that share some com-
mon structure. To do so we have extended previous compilations for generalized
planning tasks (see Chapter 3) to perform unsupervised classification of planning
instances using an off-the-shelf classical planner.

As previous approaches, we assume some bounds are given like the maximum
number of lines n for a planning program and the number of clusters m in the
unsupervised planning task. In case these bounds are low, the planner would
not be able to find a solution either because it needs more number of lines to
find the program for a specific cluster or it detects more patterns over the input
instances than the current number of clusters. In the other cases where bounds
are high, it could affect in two different ways, either in search perfomance where
the program space is huge or overfitting over input instances. We understand
overfitting for planning programs as finding wrong patterns over conditions that
do not generalize, or overfitting for unsupervised classification tasks as finding
more clusters than expected with the same set of instances, being easier to fail on
classifying a new instance.

Generalized planning in this chapter is strongly connected to unsupervised
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learning. We can understand all the set of reachable states from a planning search
as examples, and the action or actions we can apply in each state as the labeling
process. In other words, it is the relation of assigning actions to reachable states.
There are bottom-up approaches where the generalized plan is induced from clas-
sical plans, in these cases we consider classical plans as labels and generalized
planning would correspond to a supervised learning approach (De la Rosa et al.,
2011).

This work is capable to compute models for noise-free unsupervised classifi-
cation tasks and for that reason can not compete with state-of-art ML approaches
that can deal with noisy and continuous data (e.g. 2D clustering). So, we do
not find a solution until all examples are classified into a cluster and solved, even
though it does not mean we can misclassify some examples due to an ambiguous
structure. However, automated planning and ML can take profit of each other with
this work because ML can bring new benchmarks to planning while planning can
push the scope of ML techniques in order to find more structured outputs.

There are different ways where this work can be pushed but one of the biggest
issues is the complexity of planning in the number of lines. One possible direc-
tion is to find programs based on some criterion. For that we can use previous ap-
proaches like program by sketching (Solar-Lezama, 2008) or generate programs
from acyclic grammars (Ellis et al., 2015) that are used to synthesize providing
partial information or restrictions for structure prediction. A similar work on re-
stricting the search space that can be used in the compilation as Domain Control
Knowledge for programs (Baier et al., 2007).
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CHAPTER 8

Generating Context-Free
Grammars using Classical Planning

In this Chapter 8 we study the syntactic representation of languages in the field of
formal languages. Specifically we focus in context-free grammars that are com-
posed of symbols and production rules. This set of rules can be expressed as an
action scheme in a planning frame. Thus, context-free grammars can be parsed
with a common planning frame when production rules are shared. Once context-
free grammars share a common structure they can be computed as a generalized
planning problem like in Chapter 3 with the requirement of a choice instruction
similar to the one introduced in Chapter 7.

We formalize a context-free grammar as a generalized planning problem. Then
we can solve parsing and producing tasks, where the first one correctly validates
an input string in the set of rules of a context-free grammar, and the second one
generates the set of grammar rules given the most basic producing rules, e.g. pro-
ducing characters a, b and so on.

8.1 Introduction
A formal language F is often defined as a formal grammar which is composed
of an alphabet and a set of rules. This set of rules describe the structure of the
language and the words that can be generated.

Definition 8.1 (Alphabet). An Alphabet T is a set of terminal symbols or letters
in the context of a formal grammar. For instance, any binary number can be
represented with an alphabet T = {0, 1}.
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Definition 8.2 (Expressions). An Expression is a (possibly infinite) set of words
that can be generated with the alphabet T , and the syntactic rules R of a formal
grammar. Non-terminal symbols V are expressions in themselves that can contain
terminal and non-terminal symbols.

Thus, formal grammars are defined by an alphabet, a set of non-terminal sym-
bols and expressions that represent the grammar rules from which we derive two
tasks:

• Production: Given a formal grammar F , generate strings that belong to the
language represented by the grammar.

• Parsing (also known as recognition): Given a formal grammar F and a
string, determine whether the string belongs to the language represented by
the grammar.

Chomsky defined four classes of formal grammars that differ in the form and
generative capacity of their rules (Chomsky, 2002). In this chapter we focus on
Context-Free Grammars (CFGs), where the left-hand side of a grammar rule is al-
ways a single non-terminal symbol, and the right-hand side is a set of expressions.
The set of words that can be generated with a CFG never contain non-terminal
symbols, so all strings that corresponds to the language are described with termi-
nal symbols from the alphabet T .

To illustrate this Figure 8.1(a) shows an example CFG that contains a single
non-terminal symbol, S, and three terminal symbols (a, b and ε, where ε denotes
the empty string). This CFG defines three production rules that can generate,
for instance, the string aabbaa by applying the first rule twice, then the second
rule once and finally, the third rule once again. The parse tree in Figure 8.1(b)
exemplifies the previous rule application and proves that the string aabbaa belongs
to the language defined by the grammar.

Learning the entire class of CFGs using only positive examples, i.e. strings that
belong to the corresponding formal language, is not identifiable in the limit (Gold,
1967). In this chapter we address the generation of CFGs from positive examples
but: (1) for a bounded maximum number of non-terminal symbols in the grammar
and (2), a bounded maximum size of the rules in the grammar (i.e. a maximum
number of expressions in the right-hand side of the grammar rules).

Our approach is compiling this inductive learning task into a classical plan-
ning task whose solutions are sequences of actions that build and validate a CFG
compliant with the input strings. The reported empirical results show that our
compilation can generate CFGs from small amounts of input data (even a single
input string in some cases) using an off-the-shelf classical planner. In addition,
we show that the compilation is also suitable for implementing the two canonical
tasks of CFGs, string production and string recognition.
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S → aSa
S → bSb
S → ε

S
/ | \

a S a
/ | \

a S a
/ | \

b S b
|
ε

Figure 8.1: (a) Example of a context-free grammar; (b) the corresponding parse
tree for the string aabbaa.

8.2 Context-Free Gramars
A context-free grammar can be defined as a formal grammar with a tuple F =
〈V, v0, T ,R〉 where:

• V is the finite set of non-terminal symbols, also called variables. Each
v ∈ V represents a sub-language of the language defined by the grammar.

• v0 ∈ V is the initial non-terminal symbol that represents the whole gram-
mar.

• T is the finite set of terminal symbols, which are disjoint from the set of
non-terminal symbols, i.e. V ∩ T 6= ∅. The set of terminal symbols is the
alphabet of the language defined by F and can contain the empty string,
which we denote by ε ∈ T .

• R : V → (V ∪ T )∗ is the finite set of production rules in the grammar. By
definition rules ζ ∈ R always contain a single non-terminal symbol on the
left-hand side.

The example shown in Figure 8.1(a) is a 1-variable CFG since it defines a
single non-terminal symbol. Therefore, the formal language described in this ex-
ample has only one non-terminal symbol V = {S} that is also the initial non-
terminal symbol of the CFG v0 = S. The alphabet is T = {a, b, ε} which means
that contains the empty string ε, and the two letters a and b, and the set of rules is
R = {S → aSa, S → bSb, S → ε}.

For any two strings e1, e2 ∈ (V ∪A)∗ we say that e1 directly yields e2, denoted
by e1 ⇒ e2, if and only if there exists a rule η → µ ∈ R such that e1 = u1ηu2 and
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e2 = u1µu2 with u1, u2 ∈ (V ∪A)∗. Furthermore we say e1 yields e2, denoted by
e1 ⇒∗ e2, iff ∃i ≥ 0 and ∃u1, . . . , ui such that e1 = u1 ⇒ u2 ⇒ . . . ⇒ ui = e2.
For instance, Figure 8.1(b) shows how the string S yields the string aabbaa. The
language of a CFG, L(F) = {e ∈ A∗ : v0 ⇒∗ e}, is the set of strings that contain
only terminal symbols and that can be yielded from the string that contains only
the initial non-terminal symbol v0. We remark that in this example the language
can generate an infinite set of words.

Given a CFG F and a string e ∈ L(F) that belongs to its language, we define
a parse tree KF ,e as an ordered, rooted tree that determines a concrete syntactic
structure of e according to the rules in F :

• Each node in a parse tree KF ,e is either:

– An internal node that corresponds to the application of a rule ζ ∈ R.

– A leaf node that corresponds to a terminal symbol τ ∈ T and has no
outgoing branches.

• Edges in a parse tree KF ,e connect non-terminal symbols to terminal or
non-terminal symbols following the rulesR in F .

8.3 Representing CFGs as Generalized Planning
We model the generation of CFGs from positive examples as a generalized plan-
ning problem that is eventually solved with an off-the-shelf classical planner us-
ing the compilation proposed in Section 4.2. We formalize the task of generating
CFGs as a tuple 〈T , E ,m〉, where:

• T is the finite set of terminal symbols.

• E = {e1, . . . , eT} is the finite set of input strings containing only terminal
symbols: et ∈ T ∗, 1 ≤ t ≤ T .

• m is a bound on the number of non-terminal symbols Vm = {v0, . . . , vm}.
As a consequence, m implicitly defines the space of possible rules, Vm →
(Vm ∪ T )∗.

A solution to this inductive learning task is a CFG F = 〈Vm, v0, T ,Rm〉 such
that, for every e ∈ E , there exists a parse tree KF ,e.

Our approach for solving 〈T , E ,m〉 is modeling this task as a generalized
planning task P = {P1, . . . , PT} where each input string et ∈ E corresponds
to an individual classical planning task Pt ∈ P such that 1 ≤ t ≤ T and Pt =
〈F,A, It, Gt〉 is defined as follows:
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• F comprises the fluents for modeling input strings as lists of symbols. These
fluents are string(id1, τ) and next(id1, id2), where 0 ≤ id1, id2 ≤ z, τ ∈ T
and z is a bound on the string length. For instance, the string abba is encoded
as:

string(i0, a), string(i1, b), string(i2, b), string(i3, a),
next(i0, i1), next(i1, i2), next(i2, i3), next(i3, i4).

In addition, F includes fluents pos(id), 0 ≤ id ≤ z, to indicate the current
string position, and symb(τ), τ ∈ T , to indicate the symbol at the current
string position.

• A contains the actions for parsing the current symbol of an input string.
There is a parseτ action for each symbol τ ∈ T , e.g. A = {parsea, parseb}
for the CFG of Figure 8.1(a). Action parseτ recognizes that τ is at the
current position of the string and advances the position.

pre(parseτ ) = {symb(τ)},
cond(parseτ ) = {{pos(i1), next(i1, i2), string(i2, τ

′)}B
{¬pos(i1), pos(i2),¬symb(τ), symb(τ ′)} : ∀i1, i2, τ

′}.

• It contains the fluents encoding the t-th string, et ∈ E , and its initial position
pos(0).

• Gt requires that et is parsed, i.e. Gt = {pos(|et|)}.

According to this definition, a solution Π to a generalized planning problem
P that models a CFG generation task 〈T , E ,m〉 parses every et ∈ E . We assume
that a solution toP is in the form of planning programs enhanced with procedures.
However, there is no need of conditional gotos to represent CFGs in planning.

Then, we extend planning programs formalism with choice instructions. Choice
instructions are intended to jump to a target line of a planning program and are
defined as Ichoice = {choose(Target)}, where Target ⊆ {1, . . . , n} is a subset of
possible target program lines.

Figure 8.2 shows a planning program with a choice instruction that encodes
the CFG in Figure 8.1(a). In this example instruction choose(1|5|8) repre-
sents a jump to one of these three possible targets, line 1, line 5 or line 8. We also
show in this example how to execute expressions that contain non-terminal sym-
bols. In this case we use the call instructions that can call other non-terminal
symbols and themselves recursively. We define the set of call instructions as
Icall = {call(j′) : 0 ≤ j′ ≤ m} where m is the number of non-terminal sym-
bols. Therefore, after removing conditional gotos and including choice and call
instructions, the set of instructions for a CFG is I = A ∪ Ichoice ∪ Icall ∪ {end}.
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Π0: 0. choose(1|5|8)
1. parse a
2. call(0)
3. parse a
4. end
5. parse b
6. call(0)
7. parse b
8. end

Figure 8.2: Planning program that represents the CFG in Figure 8.1(a).

The representation of CFGs with planning programs is done associating each
non-terminal symbol vj ∈ Vm with a planning program Πj . Choice instructions
always appear on the first line of Πj and represent possible jumps to the lines
coding the grammar rules, vj → (vj ∪ T )∗, associated to the corresponding non-
terminal symbol. Initially, the subset of target program lines only includes 1 and
n, i.e. choose(1|8) for the example in Figure 8.2. Whenever we program an end
instruction on a line i, we add i + 1 to the subset of target lines, leading to the
choice instruction choose(1|5|8) in Figure 8.2.

The execution model for a planning program Π that represents a CFG consist
of a program state (s,Ξ) where s is the planning state and Ξ is a call stack. Given
a program state (s,Ξ ⊕ (j, i)), the execution of instruction wji ∈ I on line i of
procedure Πj is defined as follows:

• If wji ∈ A, the new program state is (s′,Ξ⊕ (j, i+ 1)), where s′ = θ(s, wji )
is the resulting state from applying a sequential action wji in state s.

• If wji = choose(Target), it actively chooses to jump to a new line i′ ∈
Target, changing the program state from (s,Ξ⊕ (j, i)) to (s,Ξ⊕ (j, i′)).

• If wji = call(j′), the new program state is (s,Ξ⊕ (j, i+ 1)⊕ (j′, 0). In other
words, calling a procedure Πj′ from Πj has the effect of (1) incrementing
the program line at the top of the stack; and (2) pushing a new element onto
the stack to start the execution of Πj′ on line 0.

• If wji = end, the new program state is (s,Ξ), i.e. a termination instruction
has the effect of terminating a procedure by popping element (j, i) from the
top of the call stack.

To execute a CFG as a planning program with procedures Π on a planning
problem P = 〈F,A, I,G〉, we set the initial planning state on program line 0 of
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the main program Π0. To ensure that the execution remains bounded we impose
an upper bound ` on the size of the call stack.

The execution terminates successfully when the goal condition holds in the
planning state G ⊆ s and the call stack is empty, i.e. in program state (s,Ξ)
with |Ξ| = 0. Otherwise, executing Π on P can fail for the same reasons as
in Section 3.2 but without entering into infinite loops because there are no goto
conditions:

1. Execution terminates in program state (s,Ξ) with |Ξ| = 0 but the goal
condition does not hold, i.e. G 6⊆ s.

2. When executing action wi ∈ A in program state (s,Ξ), the precondition of
wi does not hold, i.e. pre(wi) 6⊆ s.

3. Executing a call instruction call(j’) in program state (s,Ξ) exceeds the stacks
size |Ξ| = `, i.e. causes a stack overflow.

8.4 Computing CFGs with Classical Planning
To compute CFGs with classical planning we need as input a CFG generation task
〈T , E ,m〉 such that |et| ≤ z for each et ∈ E , a number of program lines n and a
stack size `, and outputs a classical planning instance P `,z

n,m = 〈F `,z
n,m, A

`,z
n,m, I

`,z
n,m,

G`,z
n,m〉. The compilation is almost identical to the compilation described in Sec-

tion 4.4; the only relevant differences are that procedures do not have parameters,
there are not conditional gotos, the fluents added in F `,z

n,m are the choice instruc-
tions ins0,j,choose, such that 0 ≤ j ≤ m, and A`,zn,m includes actions for simulating
the execution of choice instructions choose(Target)ki′,j , where i′ ∈ Target:

pre(choose(Target)ki′,j) = {pck0, topk, prockj , ins0,j,choose},
cond(choose(Target)ki′,j) = {∅B {¬pck0, pcki′}}.

Lemma 8.1. Any classical plan π that solves P `,z
n,m induces a valid model F =

〈Vm, v0, T ,Rm〉 for the CFG generation task 〈T , E ,m〉.
Proof. Once the instructions of a planning program Π = {Π0, . . . ,Πm} are pro-
grammed they can only be executed. The classical plan π has to program the
instructions (if not yet programmed) of Π and simulate its execution, actively
choosing the jumps defined by the choice instructions and their corresponding
subsets of target lines. This simulation is done for the planning task Pt encoding
the t-th string in E and the active choice corresponds exactly to the construction of
the parse tree for the t-th string. If this is done for every 1 ≤ t ≤ T , the CFG in-
duced by π satisfies the solution condition for the solutions of the CFG generation
task 〈T , E ,m〉.
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8.4.1 Parsing and Production with Classical Planning
String production and string parsing for arbitrary CFGs can also be addressed
using our compilation and an off-the-shelf classical planner.

Parsing

Let e /∈ E be a new string, and let Pe = 〈F `,z
n,m, A

`,z
n,m, Ie, Ge〉 be the classical

planning instance for parsing the string e, i.e. instantiated on the planning frame
as the problem P `,z

n,m. In this case we can use a classical planner to determine
whether e ∈ L(F).

Our approach is to specify F in the initial state of Pe, making initially true the
fluents insi,j,w that correspond to the planning program that encodes F , allowing
only the executing actions E(wki,j) and ignoring the actions P(wki,j) for program-
ming instructions. A solution plan πe to Pe is then constrained to the actions that
execute the instructions specified by F and represents a parse tree KF ,e. Essen-
tially, parsing consists in correctly choosing the target program line i′ each time a
choice instruction is executed.

Interestingly parsing can also be understood as activity recognition using plan
libraries that are in the form of CFGs (Ramirez and Geffner, 2016).

Production

We can produce a string e ∈ L(F) using our compilation and an off-the-shelf
classical planner.

Again we use a classical planning instance Pe that represents the parsing of
example e with F also specified in the initial state of Pe and ignoring the actions
for programming instructions. The difference with the previous task is that here
the linked list that encodes the string e is initially empty (the corresponding fluents
are false at Ie). This list is filled up, symbol by symbol, by the actions that execute
F until reaching the end of the string. To do so actions parseτ are replaced with
actions produceτ that add symbol τ ∈ T at the current position of the string.
Formally, produceτ is defined as:

pre(produceτ ) = {active},
cond(produceτ ) = {{pos(i1)}B {string(i1, τ)} : ∀i1}
∪ {{pos(i1), next(i1, i2)}B {¬pos(i1), pos(i2)} : ∀i1, i2}
∪ {{pos(i1), next(i1, z)}B {¬active} : ∀i1, i2},

where active is a fluent that keeps track of whether we have reached the end of the
string to be generated.
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Text production using grammars and classical planning is a well studied task
(Schwenger et al., 2016; Koller and Hoffmann, 2010). This task is also related to
the compilation of domain-specific control knowledge for planning (Baier et al.,
2007; Alford et al., 2009).

8.5 Evaluation
We designed two types of experiments: (1) Generation, for computing CFGs com-
pliant with a set of input strings and (2), Recognition for parsing unseen input
strings given a CFG. All the experiments are run on an Intel Core i5 3.10 GHz x 4
with 4 GB of RAM, using the classical planner Fast Downward Helmert (2006b),
with the LAMA-2011 configuration, and a planning time limit of 600 seconds.

We created six domains that correspond to CFGs with different structure and
alphabet. The domain AnBn corresponds to theAnBn language. The Parenthesis
domain corresponds to the strings that can be formed following one of two well-
balanced parenthesis distributions, sequential ()() . . . or enclosing ((. . .)). Paren-
thesis Multiple corresponds to the enclosing well-balanced parenthesis distribu-
tion but using a larger alphabet, T = {(, {, [, ], }, )}. In the Binary Arithmetics
domain the alphabet contains two possible binary values {0, 1} and two operators
{+,−}, and corresponds to the language of the arithmetic expressions composed
by an arbitrary binary number, an operator and another binary number. For Arith-
metics the alphabet includes the values {0, . . . , 9} and the operators {+,−, ∗, /},
and the language is the set of expressions formed as decimal number, operator and
decimal number. Finally, a simplified English Grammar that includes Sentence,
Noun Phrase and Verb Phrase as non-terminal symbols while adjective, adverb,
noun and verb are terminal symbols.

Table 8.1 shows the results of the Generation tasks. For each domain we
report the number m of non-terminal symbols, the size of the stack, the procedure
lines (per non-terminal symbol), the number of input strings (per non-terminal
symbol) and the planning time for computing each procedure corresponding to a
non-terminal symbol.

The Generation results show that non-terminal symbols are used with two
aims: i) abstracting a set of terminal symbols, e.g. the first procedure of the
Arithmetics domain (with 20 lines, learned from 10 strings in 10.3 seconds) pro-
cesses any digit in the set {0, . . . , 9}; ii) grouping multiple rules, e.g. in English
Grammar one procedure represents a Noun Phrase (NP ) that is composed of one
or more adjectives (a) and a noun (n), so it computes the rules NP → an|aNP .

Table 8.2 shows the results for the Recognition tasks. In these experiments the
CFGs grammars are given so we explore the performance of our approach using
larger stack sizes. For each domain we report the size of the stack (which limits
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m Stack Lines Strings Time(s)
AnBn 1 5 5 1 0.3
Parenthesis 1 5 5 2 0.4
P. Multiple 1 5 12 3 53.1
Binary A. 2 4 (6,8) (4,2) (0.6,1.8)
Arithmetics 4 8 (20,8,3,4) (10,4,1,4) (10.3,3.7,3.5,14.6)
E. Grammar 3 10 (6,3,3) (2,1,1) (1.4,0.3,1.9)

Table 8.1: Generation task results.

the max depth of the possible parse trees), the number of strings, and the total
planning time required for parsing the strings.

Stack Strings Time(s)
AnBn 51 1 70.67
Parenthesis 52 1 19.29
P. Multiple 52 1 129.19
Binary A. 15 2 62.87
Arithmetics 25 4 137.76
E. Grammar 92 1 325.44

Table 8.2: Recognition task results.

8.6 Summary
In this Chapter 8 we have introduced the concept of a formal language F , i.e. a
context-free grammar, which is composed of an alphabet T and a set of syntactic
rules R. From a formal language we can perform two tasks. The first one is
producing a (possibly infinite) set of words L(F) and the second one is parsing
a string that belongs to the language. The formal language is formalized as a
CFG, and we propose a compilation to classical planning problem whose solution
corresponds to a CFG in the form of a planning program.

The generation of CFGs has been exhaustively studied in previous work. For
instance, learning CFGs given a corpus of a correctly parsed input string (Sakak-
ibara, 1992; Langley and Stromsten, 2000). Another example, is inferring CFGs
using positive and negative examples (De la Higuera, 2010; Muggleton et al.,
2014). In our approach, we generate CFGs using only a small set of positive
examples (in some cases even one single string that belongs to the language).
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Furthermore we have implemented a compilation to PDDL that benefits straight-
forwardly from research advances in classical planning and that is also suitable
for production and recognition tasks with arbitrary CFGs.

The size of the compilation output depends direclty in the chosen bounds. We
have four bounds m, n, ` and z that correspond to the number of non-terminal
symbols, the maximum number of lines of a planning program (or CFG), the size
of the stack and the length of the largest input string. Whether these bounds are
too small, the classical planner used to solve the output planning task will not be
able to find a solution. Larger values for these bounds affects practically to our
approach in two ways: i) the performance of classical planners is sensitive to the
size of the input, ii) and a stack size that is large enough to parse the string can
overfit the problem by programming a choice to a terminal symbol and a recursive
call.

The number of input strings also affects to the size of the compilation. Empir-
ical results show that our approach is able to generate non-trivil CFGs from very
small data sets. Interestingly our approach can also follow an incremental strategy
where we generate the CFG for a given sub-language and then encode this sub-
grammar as an auxiliary procedure for generating more challenging CFGs like in
Chapter 4 and Chapter 6.

This work could be extended adding negative input strings, which would re-
quire a mechanism for validating that a given CFG does not generate a given
string. Another interesting direction is to accept incomplete strings such that they
can be completed by combining the parsing and production mechanisms.
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PART V

Discussion
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CHAPTER 9

Related Work

In Chapter 9 we are going to review the most relevant publications in topics con-
nected to generalized planning with planning programs and finite state controllers,
to program synthesis, activity recognition and generating grammars. We are aware
that it is possible to find missing citations, but we have connected our work to
those that inspired us to publish.

9.1 Contingent and Conformant Planning
Conformant planning computes sequences of actions whose execution is consis-
tent with a set of different initial states (Palacios and Geffner, 2009). The differ-
ence to the classical planning model is the uncertainty in the initial state, which is
described by means of clauses. A conformant plan is a sequence of actions that
solves all the classical planning tasks given by the set of possible initial states that
satisfy these clauses. The execution of same sequence of actions can produce dif-
ferent outcomes for different initial states because actions have conditional effects.
The main approaches for conformant planning are uncertainty reduction and be-
lief propagation. On the one hand, the conformant planning problem is compiled
into classical planning to compute a prefix plan that removes any relevant uncer-
tainty (Palacios and Geffner, 2009), and a postfix plan that transforms the state (or
partial state), where the relevant uncertainty is removed, into a state that achieves
the goals of the conformant planning task. On the other hand, belief propagation
consist of searching in the belief state space where the root belief state represents
the set of possible initial states, and the goals are those belief states such that all
possible states in the belief state satisfy a goal condition (Hoffmann and Brafman,
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2006; Cimatti et al., 2004). While the previous approach leverages the classical
planning machinery, this approach requires (1) mechanisms for the compact rep-
resentation and update of beliefs states and (2), effective heuristics to guide the
search in the space of belief states.

Contingent planning extends the conformant planning model with a sensing
model. This sensing model is a function that maps state-action pairs (the true state
of the system and the last action done) into a non-empty set of observations (Al-
bore et al., 2009, 2011). Observations provide only partial information about the
true state of the system because the same observation may be possible in differ-
ent states. A contingent plan must satisfy that its execution reaches a goal belief
state in a finite number of steps, and that conditions for branching and looping are
constrained to observations (or the subset of state variables that are observable).
Like generalized plans, contingent plans can have different forms such as policies,
AND/OR graphs, FSCs, or programs (Bonet et al., 2010).

POMDP planning extends the contingent planning model allowing to encode
uncertainty through probability distributions, rather than with sets of possible ini-
tial states and with sets of possible observations (Geffner and Bonet, 2013). With
this regard, the Bayes’ rule is used to update belief states after an action applica-
tion or after an observation of the current state. The aim of a POMDPs solution
is to maximize the expected cost to the goals, so POMDP planning becomes an
optimization task.

An optimal conformant/contingent/POMDP plan is the one that minimizes the
cost of achieving the goals in the worst case. Generalized planning can be seen as
a particular example of contingent/POMDP planning, where: (1) the instances to
be solved share the same goals, (2) the initial state of that instances is a state in
the set of possible initial states of the contingent/POMDP planning task and (3),
there is full observability so the conditions for branching and looping can refer to
the value of any state variable.

9.2 Planning with Control Knowledge
In this section we review related work from multiple fields that are connected to
generalized planning. We must mention that generalized planning (see Chapter 2)
has been studied from planning and learning perspectives.

9.2.1 Macro-Actions
Macro-actions (i.e. action sub-sequences) were among the first suggestions to
compute general knowledge for planning and there are several approaches in the
literature for computing them (Botea et al., 2005; Coles and Smith, 2007; Jonsson,
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2009). However, the sequential execution flow fixed by macro-actions is usually
too rigid and, even when macros are parameterized, they have to be combined
with control-flow structures in order to generalize to more planning instances.

9.2.2 Generalized Policies
Generalized policies are a more flexible formalism than macros. A generalized
policy is a set of rules mapping states and goals into actions; hence generalized
policies are reactive and do not explicitly represent action sequences. Computing
good generalized policies is however complex. Early algorithms for computing
generalized policies (Khardon, 1999; Martı́n and Geffner, 2004) first compute
sequential plans, and then attempt to generalize the policy rules from these plans,
a difficult task because of the high number of symmetries and transpositions that
commonly appear in sequential plans. Moreover, a generalized policy cannot be
added in a straightforward way to a domain theory. However, we have introduced
several formalisms in previous chapters that are related to generalized policies.
For instance, planning programs (see Chapter 3) and Finite State Controllers (see
Chapter 6) guide classical planners effectively with Domain Control Knowledge
(DCK), similar to previous approaches for generating generalized policies (Yoon
et al., 2008; De la Rosa et al., 2011).

9.2.3 Procedural Domain Control Knowledge
Domain Control Knowledge refers to knowledge about the structure of planning
solutions. Planning with DCK can also be seen as a form of generalized planning,
that constrains the space of possible solutions, but requires a planner to produce a
fully specified solution for a particular classical planning instance. This approach
is connected to planning with control rules (Bacchus and Kabanza, 2000; Veloso
et al., 1995) and hierarchical planning (Shivashankar et al., 2012; Nau et al., 2003).

Procedural DCK (see Chapter 4) in the form of Golog-like programs (Baier
et al., 2007; Fritz et al., 2008) include conditionals and loops as well as non-
deterministic choice actions that constrain the search for a solution plan. Never-
theless they are not proper generalized plans since it is still necessary to apply a
planner to solve each individual planning problem. In contrast to our approach
in Chapter 5, they are hand-crafted and do not implement PDDL mechanisms for
procedure calling.

9.2.4 Finite State Machines
Previous work on computing Finite State Machines (FSMs) (Bonet et al., 2010)
also uses a compilation that interleaves programming a FSM with verifying that
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it satisfies a set of test cases. The generation of a FSM is however different since
it starts from a partially observable planning model and uses a compilation from
conformant to classical planning (Palacios and Geffner, 2009). FSMs can be un-
derstood as a way of representing and computing procedural DCK that (1) does
not implement procedure calls and recursion; (2) does not reuse FSMs for simi-
lar tasks. Another difference is that our conditional goto instructions can branch
on any fluent without the need to predefine a subset of observations, although we
would also benefit from restricting the number of branch conditions.

9.2.5 Hierarchical Planning
Hierarchical planning is the problem of finding an ordered sequence of actions
given a high-level goal specification. It is formalized as a Hierarchical Task Net-
work (HTN) that is a powerful mechanism to represent libraries of plans (Nau
et al., 2003; Shivashankar et al., 2012). HTNs are defined as a set of primitive
tasks, a set of compound tasks that are decomposed into simpler tasks, the decom-
position methods and a set of goal tasks. The level of specifications to reach a
goal task has a strong relation with the production rules of CFGs (see Chapter 8).

The previous work in generating HTNs (Hogg et al., 2008; Lotinac and Jon-
sson, 2016) show that HTNs can be computed from problems to encode domain
knowledge that can be applied to any instance of the domain. Thus, generating
an HTN is similar to a generalize planning task which opens an interesting re-
search direction to extend our approach for computing HTNs from flat sequences
of actions. This is also related to Inductive Logic Programming (ILP) (Muggle-
ton, 1999) that learns logic programs from examples. Unlike logic programs or
HTNs, the CFGs we generate are propositional and do not include variables but
they allow recursive solutions.

9.2.6 Case-Based Planning
There are two main strategies called top-down or bottom-up to compute a solution
to a generalized planning task (see Subsection 2.3.3). In our approaches we use
the top-down strategy, searching in the space of programs to cover the whole set of
planning instances. While in Case-Based Planning (CBP) (Borrajo et al., 2015)
they use the second approach. In order to solve a generalized planning task, they
look at a single planning instance, compute a solution that solves it, generalizes
it, and then applies to the current solution the merging method with the solutions
found previously. The CBP techniques incrementally increase the coverage of a
generalized plan but require complex merging methods. This approach is related
to works on plan repair (Fox et al., 2006) since it demands identifying why a
solution does not cover a given instance and adapting it to the uncovered instance.
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The Distill system (Winner and Veloso, 2003) lies in this category and, as our
work in Chapter 3, uses programs to represent generalized plans. However, its
representation is different and its performance was not tested over a wide range of
diverse generalized planning tasks as we did in Chapters 3, 4 and 5.

9.3 Program Synthesis
Program synthesis (Gulwani et al., 2017) is the task of automatically generating a
program that satisfies a given high-level input specification. Many ideas from this
research field are relevant to generalized planning but they are not immediately ap-
plicable since generalized planning follows a domain-independent approach and
handles its own specific representation for states, actions and goals. Here we re-
view the most successful approaches for program synthesis:

9.3.1 Programming by Example
Programming by Example (PbE) computes a set of programs consistent with a
given set of input-output examples. Input-output examples are intuitive for non-
programmers to create programs. Moreover, this type of specification makes pro-
gram synthesis more tractable than reasoning with abstract program states. PbE
techniques have already been deployed in the real world and are part of the FLASH

FILL feature of Excel in Office 2013 (see Section 4.6) that generates programs
for string transformation (Gulwani, 2011). In this case the set of synthesized pro-
grams are represented succinctly in a restricted Domain-Specific Language (DSL)
using a data-structure called version space algebras (Mitchell, 1982). The pro-
grams are computed with a domain-specific search that implements a divide and
conquer approach.

9.3.2 Programming by Sketching
In Programming by Sketching (PbS), programmers provide a partially specified
program, i.e. a program that expresses the high-level structure of an implemen-
tation but that leaves low level details undefined to be determined by the syn-
thesizer (Solar-Lezama et al., 2006). This form of program synthesis relies on a
programming language called SKETCH, for sketching partial programs. PbS im-
plements a counterexample-driven iteration over a synthesize-validate loop built
from two communicating SAT solvers, the inductive synthesizer and the valida-
tor, to automatically generate test inputs and ensure that the program satisfy them.
Even though in the worst case, the synthesis problem to a quantified boolean sat-
isfiability (QBF) is PSPACE-complete, and can be solved in time exponential in
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the number of quantified variables, this counterexample-driven search terminates
on many real problems after solving only a few SAT instances (Lake et al., 2015).

9.3.3 Bounded Synthesis

Bounded synthesis addresses the synthesis of finite-state transition systems that
satisfy a given Linear Temporal Logic (LTL) formula (Schewe and Finkbeiner,
2007; De Giacomo and Vardi, 2015). The mainstream approach for bounded syn-
thesis is compiling this task into a satisfiability modulo theories (SMT) (Barrett
and Tinelli, 2018) problem. The compilation requires fixing a bound on the sys-
tem parameters, such as the number of rejecting states, with which it proposes
theories that are solved using SAT-based techniques. In our case we have a set of
planning tasks to solve that must be covered in a specific order by a generalized
plan (see Chapter 2). This is inspired in Machine Learning (ML) and unit tests in
Test-Driven Development (TDD).

9.4 GOLOG

The GOLOG family of action languages has proven useful for programming au-
tonomous behavior that is able to generalize (Levesque et al., 1997). Apart from
conditionals, loops and recursive procedures, GOLOG programs can contain non-
deterministic parts. A GOLOG program does not need to represent a fully spec-
ified solution, but a sketch of it, where the non-deterministic parts are gaps to be
filled by the system. The GOLOG programmer can determine the right balance
between predefined behavior and leaving certain parts to be solved by the system
by means of search. The basic GOLOG interpreter uses the PROLOG back-
tracking mechanism to resolve the search. This mechanism basically amounts to
blind search, so when addressing planning tasks, it soon becomes unfeasible for
all but the smallest instance sizes. INDIGOLOG (Sardina et al., 2004) extends
GOLOG to contain a number of built-in planning mechanisms. Furthermore the
semantics compatibility between GOLOG and PDDL (Röger et al., 2008) can be
exploited and a PDDL planner can be embedded (Claßen et al., 2008) to address
the sub-problems that are combinatorial in nature. We defined our own program-
ming language that defines the space of possible generalized plans. In this lan-
guage branching and loops are implemented with the same construct (conditional
gotos) to keep the solution space as reduced as possible (see Chapter 3).

146



“tesi” — 2018/7/9 — 21:43 — page 147 — #173

9.5 Hierarchical Finite State Controllers
We dedicate a section to compare work related to Hierarchical Finite State Con-
trollers (see Chapter 6) for the relevance in this dissertation and the novelty of the
approach. The main difference from our approach with previous work on auto-
matically generating FSCs (Bonet et al., 2010; Hu and De Giacomo, 2013) rely on
a partially observable planning model in which the observation function is given
as input, while in our classical planning compilation, the observation function is
synthesized in addition to the transition and output functions of FSCs. Thus, we
generate hierarchical FSCs that branch on any fluent since all fluents, are con-
sidered observable. Further, our approach provides a call mechanism that makes
it possible to generate recursive solutions and to incorporate prior knowledge as
existing FSCs.

Hierarchical FSCs are related to the planning programs formalism for the rep-
resentation and computation of compact and generalized plans (see Chapter 4).
These programs are a special case of FSCs, and in general, FSCs can represent
plans more compactly than planning programs. Another related formalism is au-
tomaton plans (Bäckström et al., 2014), which also store sequential plans com-
pactly using hierarchies of finite state automata. However, automaton plans are
Mealy machines whose transitions depend on the symbols of an explicit input
string. Hence automaton plans are not suitable for representing generalized plans,
and their focus is instead on the compression of sequential plans.

Apart from solution plans, finite state automata can represent other objects in
planning. For instance, the domain transition graph is an automaton for represent-
ing the possible values of planning state variables (Chen et al., 2008). Toropila
and Barták [2010] also used finite state machines to represent the domains of the
state variables of a given planning instance. Another examples are the LOCM sys-
tem, that uses finite state machines to represent planning domain models (Cress-
well et al., 2013) or Hickmott et al. [2007] that used Petri nets to represent an
entire planning instance.

9.6 Hierarchical Reinforcement Learning
Reinforcement Learning (RL) (Sutton and Barto, 1998) is the problem of learning
a policy by interacting with the world while obtaining positives and negatives re-
wards. The literature explores different approaches like Shavlik [1990], Parr and
Russell [1998], Dietterich [2000] and Chentanez et al. [2005] that leverages hi-
erarchical decompositions of complex sequential problems and learn when every
controller should be applied. In some cases this knowledge can be iteratively in-
cluded in the bag of controllers, in other cases this set is closed but can be reused
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to solve more complex tasks, options or to learn more complex concepts. This is
related to Chapter 4 where the hierarchical decomposition is in form of planning
programs with procedures or to Chapter 6 where we have hierarchical finite state
controllers that allow recursive calls.

Although in the best case, learning converges to a solution that minimizes a
cost function (or maximizes a reward); in domains with huge state spaces, full
observability and a distant horizon, it may become unfeasible for RL approaches
to reach a goal and even harder to converge, so our approach of generalized plan-
ning that benefits from planning techniques can be applied to explore only the
promising state space sections.

9.7 Activity Recognition
On the one hand, the set of planning instances that belong to a generalized plan-
ning task can be understood as an unsupervised learning method (see Chapter 7)
where input examples and class labels correspond to reachable states and a gen-
eralized plan. Thus, a generalize plan is the learned cluster model that applies to
every reachable state its corresponding action. We consider a set of classical plans
as labels if we can induce from this set a generalized plan. This would correspond
to supervised learning (De la Rosa et al., 2011).

On the other hand, the generation of CFGs can also be understood in terms of
activity recognition (see Chapter 8), such that the library of activities is formalized
as a CFG, the library is initially unknown, and the input strings encode observa-
tions of the activities to recognize. Activity recognition is traditionally considered
independent of the research done on automated planning, using handcrafted li-
braries of activities and specific algorithms (Ravi et al., 2005). An exception is
the work by Ramı́rez and Geffner [2009; 2010] where goal recognition is formu-
lated and solved with planning. As far as we know our compilation of CFGs to
generalized planning (see Chapter 8) is the first that integrates the tasks of gram-
mar generation, string parsing and string production using a common planning
model and an off-the-shelf classical planner.

148



“tesi” — 2018/7/9 — 21:43 — page 149 — #175

CHAPTER 10

Summary

In this Chapter 10 we show a summary of the most relevant contributions of this
dissertation followed by a discussion of possible future directions where this work
could be extended and new challenges.

10.1 Contributions
We have contributed to different fields of Artificial Intelligence from a planning
perspective approach. Our intuition is that often, control strategies can be ex-
pressed using relatively simple pieces of code that interact with each other. All
our models explain how several problems with different origins are connected
when represented as programs, benefiting from state-of-the-art tools in classical
planning. This is the list of most relevant contributions:

1. We have proposed several formalisms to compute procedural DCK (see
Chapter 4 to Chapter 6) over a wide range of domains and exploit them
with off-the-shelf classical planners. These are the first implementations
of procedural DCK to PDDL while allowing nested and recursive calls.
This allows us to compute generalized plans to non-trivial tasks such as
Selection-Sort or DFS for traversing binary trees of variable size.

2. We set down the theoretical foundations of the planning program formalism
and show that plan validation and plan existence for planning programs are
PSPACE-complete. In addition we provide formal characterizations of the
solutions that can be represented with our formalism and prove that the
expressiveness of our different forms of planning programs is equivalent
(see Chapter 3 and Chapter 4).
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3. We formalized the concepts of deterministic and non-deterministic planning
programs for generalized planning. Regarding non-deterministic planning
programs execution, we introduced two new formalisms: choice instruc-
tions and lifted action instructions (see Chapter 5).

4. We show how to implement the validation mechanism for planning pro-
grams within our compilation. We use this mechanism to show that reusing
generalized plans and using generalized plans as control knowledge allow
us to solve planning instances that are difficult to solve using current classi-
cal planners, like blocksworld instances with 100 blocks (see Chapter 5).

5. We reformulated the transition function of FSCs for planning (see Chap-
ter 6) to allow binary branching to reduce the space of possible controllers.
Furthermore, we formalized the definition of hierarchical FSCs for plan-
ning that allows FSCs to call other FSCs, including recursion as special
case using a call stack.

6. Work in Chapter 6 presents a study of the relation of Mealy machines and
FSCs for classical and generalized planning, as well as a formal and empiri-
cal comparison of hierarchical FSCs with the planning program formalism
for generalized planning (see Chapter 4).

7. In terms of performance, the computation of planning programs is enhanced
by reducing the number of actions needed to execute conditional goto in-
structions (see Chapter 4), and the computation of hierarchical FSCs with
a symmetry breaking control (see Chapter 6).

8. We connected classical planning with structured prediction with the synthe-
sis of programs (see Chapter 7). The planning programs we propose (see
Chapter 3) are more expressive than previous approaches (Ellis et al., 2015)
that only consider programs generated by an acyclic grammar. However,
our programs are deterministic rather than probabilistic, which limits their
applicability when inputs are noisy.

9. Context-free grammars (CFGs) can be represented using planning programs
(see Chapter 8). We can generate CFGs from small amounts of input data
(even a single input string in some cases). A CFG is an extension of plan-
ning programs with choice instructions that decide which rule to apply for
the two canonical tasks of CFGs, string parsing and string production.

10. Finally, we put in context all recent works of generalized planning. These
works can be described with an abstract framework for generalized planning
(see Chapter 2).
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10.2 Future Work and Open Challenges
In the last section of this dissertation we explore different topics that can extend
planning program or FSC representations. Generalized planning is a broad field
which can benefit from planning and learning communities, where each contribu-
tion could be in long-term relevant to both.

Planning Program Heuristics

FAST DOWNWARD, the planner used in the evaluation, is the most widely used
in the planning community and is a good touchstone to evaluate the capacity of
classical planners to address generalized planning tasks. On the other hand, Fast
Downward is a heuristic-search based planner whose heuristics are based in the
delete relaxation of the planning problem and typically has difficulties with prob-
lems that include dead-ends, such as those in our compilations. The domains
resulting from our compilation encode key information in the delete effects of ac-
tions: when an instruction is programmed on a line i, the fluent insi,nil is deleted,
preventing us from programming another instruction on the same line. In a delete-
free relaxation, insi,nil remains true, making it possible to program any number of
instructions on the same line. As a consequence, a solution to the delete-free re-
laxation can effectively use different programs to solve the individual instances
of a generalized planning problem, which results in a poor approximation of how
difficult the original problem is. In addition, a program suitable for a particular
individual instance might not be suitable for solving the next instance, causing
dead-ends and deep backtracking. In the future it would be interesting to explore
novel planning techniques that deal better with these issues like a proper heuristic
for synthesizing planning programs.

Hierarchical FSCs for LTL representations

A different application of finite state machines for planning is to compile LTL
representations of temporally extended goals, i.e. conditions that must hold over
the intermediate states of a plan, into a non-deterministic automaton Baier and
McIlraith [2006]. Related to this, the techniques for bound synthesis show how to
address the computation of finite-state transition systems that satisfy a given LTL
formula (Finkbeiner and Schewe, 2013). An interesting research direction is how
to adapt our approach for the computation of automata of these kinds.

Bounds and Problem decomposition

Automatic generation of planning programs and FSCs take as input a bound on
the number of lines, controller states, stack size and so on. An iterative deepening
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approach could be implemented to automatically derive these bounds. Another
issue is the specification of representative subproblems to generate procedures or
hierarchical FSCs in an incremental fashion. Inspired by “Test Driven Develop-
ment” (Beck et al., 2001), we believe that defining subproblems is a step towards
automation.

So far, the utility of our compilations are limited to tasks solvable with small
planning programs. Part of the reason is that the number of possible programs is
exponential in the number of program lines. In addition, some domains require
complex state queries to compute a compact generalized plan. For instance, a
compact while general solution for sokoban requires defining complex connectiv-
ity properties, such as reachable, that involve recursion (Ivankovic and Haslum,
2015). For these reasons our current approaches cannot compute effective DCK
for arbitrary classical planning domains. We have shown that we can address more
challenging tasks if a subtask decomposition is available. In this case we can sep-
arately compute auxiliary procedures for each of the subtasks and incrementally
reuse them. An interesting open research direction is then to automatically dis-
cover these subtask decompositions.

Covering strategy

The evaluation in Chapter 6 evidenced the impact of the order of the input tasks in
the experimental performance of our compilation. Even though the planner could
also be used to determine this order, a better approach is to compute generalized
plans considering the parallel execution of the programs or controllers over all
the instances. An interesting research direction is then the use of techniques for
progressing belief states, like in conformant or contingent planning (Palacios and
Geffner, 2009; Albore et al., 2009).

Generating relevant examples

The selection of relevant examples that can produce a solution that generalize is
related to the topic of quality data versus big data. A key issue is to determine
which instances generalize most efficiently. Currently this selection of informa-
tive instances is done by hand, and an interesting research direction is to develop
techniques for automatic instance selection. In this case implicit representations
of the planning instances (Srivastava et al., 2011b) seem more useful since they
can act as generative models. Since planning problems are highly structured there
is no guarantee that randomly sampled problems are relevant for solving a given
generalized planning task. An interesting research direction would be to study
how to generate examples of this kind. A good starting point could be previous
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work on generating random walks (Fern et al., 2004) and active learning (Fuente-
taja and Borrajo, 2006) in planning domains.

Generalizing metrics

We follow an inductive approach to generalization, and hence we can only guar-
antee that the solution generalizes over the instances of the generalized planning
problem, much as in previous work on computing programs or FSCs. This is an
open issue in planning that can be solved following a machine learning approach,
where the validation of a generalized solution is traditionally done by means of
statistics and validation sets.

More expressive planning programs

Finally, we are only able to generate high-level state features in the form of con-
junctive queries, and hence we cannot produce from scratch programs that contain
features with unbounded transitive or recursive closures. This kind of features are
known to be useful for some planning domains, e.g. the above feature (the transi-
tive closure of on) for the Blocksworld domain. Also functional STRIPS (Geffner,
2000; Frances and Geffner, 2016) would enhace our compilations avoiding to
ground objects like mathematical expressions. In the near future we would like to
extend our approach to generating more expressive features.

We hope to solve all these challenges in the future as well as detecting new
ones that could be relevant to the scientific community.
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PART VI

Appendix
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APPENDIX A

Notation

Classical Planning

• S: state model

• S: set of states

• s: a state

• s0: initial state (state model)

• SG: set of goal states

• A: set of actions

• a: an action

• a(s): applicable action

• θ: transition function

• c: cost function

• π: classical plan

• |π|: size of a classical plan

• P : classical planning problem

• F : set of fluents
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• f : a fluent

• I: initial state(STRIPS model)

• G: goal condition

• L: set of literals

• l: a literal

• pre(a): preconditions of an action

• del(a): delete effects of an action

• add(a): adding effects of an action

• Φ: classical planning frame

• cond(a): set of conditional effects of an action

• C: condition of an action (conditional effects)

• E: effect of an action (conditional effects)

• C B E ∈ cond(a): conditional effect of an action

• eff(s, a): triggered effects in a state-action pair

• PE(S): plan existence problem

• PC(S, k): bounded plan existence

• π∗: optimal plan

Generalized Planning

• P: generalized planning problem

• Π: generalized plan

• Π(P ): application of a generalized plan to a planning problem P

• |Π|: size of a generalized plan

Basic Planning Programs

• Π: planning program

• w: program instruction
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• I: set of instructions

• Igo: set of goto instructions

• n: bounded number of lines

• Pn: compilation of a planning problem bounded with a planning program
of n lines

• Fpc: set of fluents that encode the program counters

• Fins: set of fluents that encode the instructions

• P(w): programming action of instruction w

• E(w): executing action of instruction w

• T : number of planning instances from a generalized planning task

• P ′n: compilation of a generalized planning task bounded with a planning
program of n lines

• Ftest: set of test fluents that models the active individual planning problems

• M : Deterministic Turing Machine (DTM)

• KM : tape size of a DTM

• ΦM : planning frame of a DTM

• σM : symbol in a tape position of a DTM

• xM : input string of a DTM

• P x
M : DTM planning problem

• ΠM : DTM planning program

Planning Programs with Procedures

• Icall: set of call instructions

• m: number of procedures

• Θ: set of planning programs defined by Φ

• FL: subset of local fluents
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• Π: planning program with procedures defined by 〈Θ, FL〉

• Π0: main procedure

• Πm: m-th procedure

• s|F ′: projection of s onto subset of fluents F ′

• sg: global state

• sl: local state

• Ξ: call stack

• Ξ⊕ (i, j, sl): call stack with top element (i, j, sl)

• `: call stack size

• (sg,Ξ): program state

• Ψ: set of predicates

• Ωv: variable objects (a variable object is v)

• Ωx: value objects(a value objects is x)

• FK : subset of local fluents induced by the predicate assign

• ar(j): arity of procedure Πj

• $(j): parameter list with ar(j) variable objects

• k: current stack level

• F `
L: set of local fluents for each stack level

• fk: local fluent in the stack level k

• FQ: subset of stackable fluents

• P `
n,m: a planning problem bounded with n lines, m procedures and a stack

size of `

• F `
top: set of fluents that represent the top level of the stack

• It,g: initial global state of Pt

• I1
t,l: initial local state of Pt in the stack level 1
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• F `
pc: set of program counters and procedures fluents for each stack level

• Fm
ins: set of fluents that represent the instructions (including call instruc-

tions) of the main and auxiliary procedures.

• Γ(j′): variable from a parameter list

• callj
′,k
i,j Γ(j′): action that copies each variable in the next stack level

Non-deterministic Planning Programs

• Ichoice: set of choice instructions

• χ: list of value objects that can be used to unify a predicate with the current
state

Hierarchical Finite State Controllers

• ∆: Mealy machine or finite state transducer

• Q: finite set of controller states

• q0: initial controller state

• Q⊥: subset of terminal controller states

• Σ: is a finite set of input symbols or input alphabet

• Λ: is a finite set of output symbols or output alphabet

• Υ: transition function that maps a controller state and input symbol to the
corresponding next controller state

• Γ: output function that maps a controller state and input symbol to the cor-
responding output symbol

• σ: input symbol

• λ: output symbol

• C: FSC composed of a Mealy machine and an observation function.

• O: observation function that maps a planning state to an input symbol.

• (q, s): world state (FSCs)

• O: set of observation functions that maps a classical planning state of a test
to an input symbol
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• ϕ: maps a controller state into a fluent from the given planning problem

• a⊥: no-op action

• Ffun: set of fluents that encode the conditions, transitions and actions be-
tween the controller states. It also encodes the empty ϕ, Υ and Γ (to be
programmed).

• Faux: set of fluents corresponding to current state, evaluation of conditions
and if an action has been applied.

• b: boolean result of evaluating a condition

• pcondfq : program condition as fluent f in controller state q

• pactbq,a: program action a in controller state q when evaluated to b

• psuccbq,q′: program successor controller state q′ in q when evaluated to b

• econdfq : execute condition (evaluate)

• eactbq,a: execute action (apply sequential action)

• esuccbq,q′: execute successor (move to new controller state q′)

• H: hierarchical finite state controller (HFSC)

• C: set of FSCs

• C1: root FSC

• Z: set of FSC calls

• P `
n,m: planning problem compilation (HFSC) with stack size `, n controller

states per FSC, and m FSCs

• Fr: set of fluents instantiated from predicates that are different from assign.

• F `
a : set of fluents instantiated from assign predicate for each stack level

• Fm
fun: copy of each Ffun fluent for each FSC

• F `
aux: copy of each Faux fluent for each stack level

• FH : set of fluents to indicate the level in the call stack, the FSC executing
in each stack level, and call fluents
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• pcallb,i,kq,j : program call action in controller state q, stack level k, when eval-
uated as b. The current FSC is Ci that calls FSC Cj .

• ecallb,i,kq,j : execute call action

• termi,k: popping Ci from stack level k

• Cj[p]: j-th FSC with argument p

• pr: value of FSC argument

• Lrj : parameter of FSC Cj with an assigned copy of pr

Unsupervised Classification of Planning Instances

• E : unlabeled set of planning instances

• Γ(Φ): function over the planning frame that yields to the set of all possible
planning instances

• m: number of clusters (unsupervised classification)

• 〈Φ, E ,m〉: unsupervised classification task

• G: set of generalized plans (set of classes where each class correspond to a
planning program)

• CL: class labels

• cf : E → CL: non-deterministic choice function

• 〈G, cf〉: model for the unsupervised classification task

• X (Π(P )): set of expanded states when planning program Π(P ) is executed

• δ(s): counting function of true assignments of fluents in state s

• X: finite set of variables

• D(xi): finite domain of values for variable xi

Generating Context-Free Grammars using Classical Planning

• F : formal language, i.e. a context-free grammar

• T : an alphabet or set of terminal symbols

• R: set of syntactic rules of a formal grammar
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• V : set of non-terminal symbols

• ε: empty string

• v0: initial non-terminal symbol that represents the whole grammar

• ζ: a definition rule that contains a non-terminal symbol in the left-hand side
and an expression in the right-hand side.

• L(F): the language of a context-free grammar. It is the whole set of possi-
ble strings generated from an initial non-terminal symbol.

• e: string from a CFG language L(F)

• KF ,e: parse tree of string e using a formal language F

• τ : a terminal symbol

• E : finite set of input strings

• m: bound in the number of non-terminal symbols (similar to the number of
procedures)

• 〈T , E ,m〉: context-free grammar generation task

• parseτ : action that recognizes the current terminal symbol τ in the string

• Ichoice: set of choice instructions

• Target ⊆ {1, . . . , n}: subset of possible target program lines

• P `,z
n,m: classical planning problem compilation that represents a CFG gener-

ation task

• ins0,j,choose: choose instruction programmed in line 0 of a planning program
procedure Πj

• choose(Target)ki′,j: action to choose a Target program line i′, in a planning
program procedure Πj and stack level k

• πe: classical plan that solves the parsing problem of an input string e

• produceτ : action that generates a terminal symbol τ in the current position
of a string
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