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ABSTRACT

The objective of this thesis is to provide a temporal analysis of the struc-
tural and interaction dynamics of large evolving graphs. In this thesis we
propose new definitions of important graph metrics in order to include the
temporal dimension of the dynamic graphs. We further extend the three
important problems of data mining, in the temporal setting. The three
problems that we propose are temporal graph summarization, temporal
community search and temporal betweenness centrality. We start with the
high level analysis of the dynamic graph and with the problem of tem-
poral graph summarization. Our approach is based on a modification of
graph clustering in temporal graphs. Then in a mid-level approach, we
continue with the problem of community search. Our solution is based
on extracting a temporal selective connector according to our definition
of shortest-fastest paths. Finally, analyzing the graph in the vertex level,
we propose a new metric for temporal betweenness centrality, based on
shortest-fastest paths, and we provide an algorithm for quickly computing
it. Additionally, we propose a distributed version of all our algorithms,
that help our techniques to scale up to million vertices. We, finally, eval-
uate the validity of our methods in terms of efficiency and effectiveness
with extensive experimentation on large-scale real-world graphs.
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RESUMEN

El objetivo de esta tesis es proporcionar un análisis temporal de las
dinámicas estructurales y de interacción de grafos masivos dinámicos.
Para esto proponemos nuevas definiciones de métricas en grafos im-
portantes para incluir la dimensión temporal de los grafos dinámicos.
Además, ampliamos tres problemas importantes de minerı́a de datos en
un contexto temporal. Ellos son los resúmenes de grafos temporales, la
búsqueda de comunidades en un contexto temporal y la centralidad tem-
poral en grafos. Comenzamos con el análisis de alto nivel de los grafos
dinámicos y con el problema de resúmenes de grafos temporales. Nuestro
enfoque se basa en una modificación de agrupamiento de grafos tempo-
rales. Luego, en un enfoque de nivel medio, continuamos con el prob-
lema de búsqueda de comunidades en un contexto temporal, es decir, la
evolución de las comunidades en le tiempo. Nuestra solución se basa en
extraer un conector selectivo temporal de acuerdo con nuestra definición
de caminos más cortos y más rápidos. Finalmente, al analizar el gráfo al
nivel de vértices, proponemos una nueva métrica para centralidad tempo-
ral de grafos basada en los caminos más cortos y más rápidos, proporcio-
nando un algoritmo para calcularla rápidamente. Además, proponemos
una versión distribuida de todos nuestros algoritmos, que permiten que
nuestras técnicas a escalar hasta millones de vértices. Finalmente, eval-
uamos la validez de nuestros métodos en términos de eficiencia y efec-
tividad con extensos experimentos en gráfos de gran escala en el mundo
real.
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RESUM

L’objectiu d’aquesta tesi és proporcionar una anàlisi temporal de l’evo-
lució estructural i d’interacció de grans gràfics dinàmics. En aquesta tesi
proposem noves definicions de mètriques de gràfiques importants per tal
d’incloure la dimensió temporal dels gràfics dinàmics. Ampliem tres pro-
blemes importants de mineria de dades en gràfics per a un entorn tempo-
ral. Els tres problemes són el resum de gràfics temporals, la cerca tem-
poral de comunitats i la centralitat temporal dels gràfics. Comencem amb
l’anàlisi d’alt nivell del gràfic dinàmic i amb el problema del resum de
gràfics temporals. El nostre enfocament es basa en una modificació de
la clusterització en gràfics temporals. Després, en un enfocament de ni-
vell mitjà, continuem amb el problema de la recerca de la comunitat. La
nostra solució es basa en extreure un connector selectiu temporal d’acord
amb la nostra definició de camins més curts-ràpids. Finalment, analitzant
el gràfic a nivell de vèrtex, proposem una nova mètrica per a la centra-
litat temporal de l’entesa, basada en els camins més curts i més ràpids,
i proporcionem un algoritme per calcular-lo ràpidament. A més, propo-
sem una versió distribuı̈da de tots els nostres algoritmes, que ajuden a les
nostres tècniques a escalar fins a milions de vèrtexs. Finalment, avaluem
la validesa dels nostres mètodes en termes d’eficiència i eficàcia amb una
àmplia experimentació en gràfics del món real a gran escala.
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ΠΕΡΙΛΗΨΗ

Ο σκοπός αυτής της διατριβής είναι η ανάλυση στον χρόνο των δομών

και των αλληλεπιδράσεων μεγάλων δυναμικών γράφων. Σε αυτή τη
διατριβή προτείνουμε νέους ορισμούς για σημαντικά μεγέθη γράφων

ώστε να συμπεριλάβουμε την διάσταση του χρόνου των δυναμικών

γράφων. Επιπλέον, επεκτείνουμε τρία σημαντικά προβλήματα του data
mining σε δυναμικούς γράφους. Τα τρία προβλήματα που προτείνουμε
είναι: χρονική περίληψη γράφων (temporal graph summarization), χρο-
νική εύρεση κοινοτήτων (temporal community search) και χρονική κεν-
τρικότητα ενδιαμεσότητας (temporal betweenness centrality). Ξεκινάμε
αναλύοντας τον γράφω ολιστικά και με το πρόβλημα της χρονικής

περίληψης. Η προσέγγισή μας βασίζεται σε παραλλαγή ομαδοποίησης
(clustering) για δυναμικούς γράφους. Συνεχίζοντας σε μία ενδιάμεσου
επιπέδου ανάλυση συνεχίζουμε με το πρόβλημα της εύρεσης κοινοτήτων.
Η λύση μας βασίζεται στην εύρεση ενός χρονικά επιλεκτικού συνδέσμου

σύμφωνα με τον ορισμό των συντομότερων ταχύτερων διαδρομών. Σε
ένα πιο χαμηλό επίπεδο ανάλυσης, προτείνουμε μία νέα μετρική μονάδα
για την χρονική κεντρικότητα ενδιαμεσότητας, βασισμένη, επίσης, στον
ορισμό των συντομότερων ταχύτερων διαδρομών και παρουσιάζουμε

έναν αλγόριθμο για τον γρήγορο υπολογισμό της. Επίσης, προτείνουμε
κατανεμημένους αλγορίθμους, που βοηθούν στην εκτέλεση των τεχ-
νικών σε γράφους εκατομμυρίων κόμβων. Τελικά, επιβεβαιώνουμε τις
μεθόδους μας σε σχέση με την αποτελεσματικότητα και την εγκυρότητά

τους, χρησιμοποιώντας για τα πειράματά μας μεγάλους γράφους.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Systems with interactive entities are often modeled as networks. These
networks can be found in various fields, like biology, sociology, computer
science, communications, etc. Scientists, in order to study this diverse
number of networks, proposed an abstraction in which the actors of the
network are represented with vertices and the interactions between the
actors are represented with edges. Questions like, how well connected is a
vertex in the network, how far two vertices lie from each other, how many
communities are formed in the network and which is the longest distance
between two pairs of vertices in the network, can be very interesting for
our attempt to understand these networks.

Graphs are mathematical models to represent networks. Using graphs
allow us to use a powerful toolbox of metrics, algorithms and techniques
that is useful for network analysis. A graph can be analyzed according to
its structural and interaction dynamics between the vertices. For example,
the topological structure of graphs can be characterized by a wide variety
of measures [32]. To understand a large connected graph we need to
study it both with respect to its large-scale features but also to zoom into
the details [54, 55]. Structural properties like size, diameter, connectivity

1



and connected components are properties of the topology of the graph,
and normally characterize the graph holistically. These properties give us
a high level view of the graph and allow us to compare various graphs
with each other. Properties that characterize subgraphs of the graph, like
network motifs, cliques and trusses, allow us to view graphs in a lower
abstraction level. Therefore, one can choose a neighborhood of interest
and get a more detailed view of the graph. Centrality measures, like de-
gree, closeness and betweenness centralities, characterize each vertex of
the graph and allow us to study it at the lowest level of abstraction.

Depending on the level of abstraction that we study the graph each
time, we can define several important problems, that are well studied in
graph theory. Problems like, clustering, partitioning and summarization
are important graph mining problems that refer to the entire graph. In
the medium level of abstraction, important problems like community de-
tection, community search, dense subgraphs, minimum connectors give
insights on a neighborhood or an induced subgraph of the graph. Finally,
shortest paths and reachability between pairs of nodes are some of the
well studied problems of the lowest level of abstraction.

These problems just mentioned are very well studied in static graphs.
However, many of the graphs that are modeled and studied as static
graphs, contain temporal information that is omitted for simplicity. A
great variety of networks, e.g., social, protein, mobile phone, the Web
and human interaction, just to mention a few, can be better understood if
we include the temporal dimension. This is because, in these networks,
edges may not be continuously active. The time when an edge gets acti-
vated and deactivated or the duration that an edge remains active play a
very important role in the structural and interaction analysis of the graphs.
Similarly to the network topology, the temporal structure of the graph can
also affect the interaction dynamics of the system. For instance, in a dis-
ease contagion network or an information diffusion network, the temporal
information is crucial for the understanding the spreading of a disease or
the information.

However, when we move from the traditional static graph theory to
the dynamic view, we have to abandon some fundamental properties that
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hold for static graphs. For instance, the transitivity property, which is
the basis for defining many metrics, does not necessarily hold in dynamic
graphs. Therefore, we need to redefine the static graph metrics to cor-
rectly incorporate the temporal information.

An additional challenge is that the size of dynamic graphs can increase
up to million of nodes and billion of edges. This is why we need to
propose algorithms that scale to the number of vertices and the number of
edges. The problem becomes even more demanding when we want to use
some of the classical computationally intensive data mining algorithms.
These algorithms can become even more demanding when we use them in
the setting of dynamic graphs. One solution to this problem is to employ
techniques that distribute the computation to several computational units,
which requires re-design of the algorithms to function in the distributed
setting.

1.2 Goals and Contributions
The purpose of this thesis is to present models that elucidate the temporal
characteristics of dynamic graphs and algorithms for analyzing their topo-
logical and temporal structure. Our main work is divided in four chapters.
We next provide a brief summary of our contributions:

• Dynamic Graph Representation and Processing (Chapter 3). We
present the temporal models proposed by this thesis and which vary
according to the problem we study. Additionally, we introduce the
notion of shortest-fastest paths (SFPs). These paths are the tem-
poral equivalent of shortest paths in the setting of dynamic graphs.
They combine spatial length a temporal duration, as a linear combi-
nation, governed by a parameter. This definition of shortest fastest
paths will be the basis for defining and studying the two temporal
problems presented in Chapters 5 and 6.

• Temporal Graph Summarization (Chapter 4). In this part of the
thesis, we tackle the problem of temporal graph summarization of
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graph streams. We propose two online algorithms for summariz-
ing large evolving graphs based on a modification of the clustering
k-means algorithm. The first method, is based on tensor stream
clustering. The second method, in an effort to reduce the memory
requirements of the algorithm, uses a modification of microclus-
ters, a structure that keeps statistical information and is used as an
intermediate structure of the clustering. In order to increase the
scalability we propose a distributed version of our algorithms for
both methods based on the Apache Spark framework. Extensive
experimentation on several real-world and synthetic-datasets show
the efficiency and effectiveness of our methods. We finally, provide
a synthetic-dataset generator for tunning the characteristics of the
synthetic datasets that we use, for better evaluation of our methods.

Our work of temporal graph summarization was published in IEEE
International Conference on Big Data (Big Data), 2016, under the
title “Scalable dynamic graph summarization” [117]. An ex-
tended version has been conditionally accepted in IEEE Transac-
tions on Knowledge Discovery and Exploration.

• Temporal Community Search (Chapter 5). In this part of the the-
sis we extend the problem of community search to its temporal set-
ting. Given a query set, we identify a community that connects this
query set, by finding a selective temporal connector. The definition
of the selective connector is based on the shortest-fastest path defi-
nition, which is proposed in Chapter 3. The temporal community is
produced by minimizing the inefficiency of the subnetwork induced
by the selective connector. This community is outlier tolerant and
the vertices that are included in the community are added parsi-
moniously. Finally, since the dynamic graph evolves constantly in
time, we propose a method for adaptive update of the query set
in time. For better scalability, we propose a distributed algorithm,
based on the Apache Spark framework.

• Temporal Betweenness Centrality (Chapter 6). In this part of the
thesis, we use again the notion of shortest-fastest paths to define
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the famous betweenness centrality measure in a temporal setting.
We propose a new metric that captures the temporal aspects of the
network and is highly sensitive to the changes of the observation
period and the parameter that governs the linear combination in the
temporal path. We further extend Brandes’ algorithm, which is the
best known algorithm for betweenness centrality computation in
static graphs, to our temporal setting. Then we prove the correct-
ness of our algorithm. We provide both serial and distributed al-
gorithms. Our distributed implementation, based on Apache Spark,
allows us to scale our algorithm up to millions of vertices. Finally,
we provide an extended experimental evaluation in a large number
of real-world datasets that show the efficiency and effectiveness of
our method. An application on information propagation shows that
our proposed method outperforms all the baselines in the task of
detecting the vertices that propagate information the most.

1.3 Organization

The thesis is organized as follows. In Chapter 2 we provide the impor-
tant background and review of the state of art. In Chapter 3 we give an
overview of the existing models of representation and processing of dy-
namic graphs. Then we provide the formal description of the temporal
models proposed by this thesis and we introduce the concept of shortest-
fastest paths. In Chapters 4, 5 and 6 we study the temporal graphs through
problems that correspond to three different levels of analysis, as shown in
Figure 1.1. In Chapter 4 we start with the macro-level of analysis of the
graph. We tackle the problem of temporal graph summarization, which
gives us compact overview of the evolution of the entire graph in inter-
vals of time. In Chapter 5 we continue with the meso-level of analysis,
where we present the problem of temporal community search with adap-
tive query updates. In this problem we search for interesting communities
of the graph in intervals of time, given a set of vertices of interest. In
Chapter 6, in a micro-level of analysis, we zoom even further and we ana-
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(a) Macro-level (b) Meso-level (c) Micro-level 

Chapter 4 Chapter 5 Chapter 6

Figure 1.1: Macro, meso and micro levels of analysis and the correspond-
ing chapters of the thesis. In the macro-level we analyze the entire graph
(left part of the figure). In the meso-level we analyze interesting regions
of the graph (middle part of the figure). Finally, in the micro-level, we
focus on the characteristics of the vertex (right part of the figure).

lyze an important metric of the vertex, its betweenness centrality in time.
We propose a new metric for temporal betweenness centrality based on
shortest-fastest paths. Finally, in Chapter 7 we conclude by providing the
summary of the thesis. Additionally, we discuss future research directions
of the problems proposed in this thesis and further research directions for
problems in dynamic graphs.
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CHAPTER 2

STATE OF THE ART

In this chapter, we provide a review of the related literature that is relevant
to our work. We organize it in four different sections and we emphasize
those parts that are most relevant to our objectives.

2.1 Graph Summarization
A wide variety of papers focus on compression and summarization tech-
niques for graph structures, each one of them to serve different applica-
tions. A good survey on the topic can be found in [81].

Graph Compression. The papers by Adler and Mitzenmacher [2], Suel
and Yuan [109] and Boldi and Vigna [19] discuss techniques to compress
the Web graph so as to reduce the bits used to encode the links. Boldi and
Vigna [19], inspired by previous solutions [97], propose a compression
technique for web graphs that exploits their statistical properties and more
specifically the locality of reference and similarity of adjacency links.
This technique is used to compress web graphs which represent URLs as
nodes and hyperlinks as directed arcs. One node of the graph x has a link
to another node y if there is a hyperlink in page x that directs to page y.
Boldi and Vigna showed that can be compressed down to three bits of
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storage/edge. Chierichetti et al. [29] extend the approach of Web graphs
to social graphs and show that some of the problems are NP-hard. In Boldi
et al. [18] they extend the approach of web graphs to social networks of
other kinds and manage to decrease the cost of storage of a link to almost
half.

Suel and Yuan [109] try to compress the structure so that occupies
less space, while supporting the same operations as an adjacency list rep-
resentation of a labeled graph. For compressing efficiently web links, they
distinguish them into two categories: global and local links. Claude and
Navarro [30] exploit the same regularities by using a different approach
build on Re-Pair [73] that compresses the adjacency lists. However, their
approximate version of Re-Pair adapts to the available space and sec-
ondary memory and achieves comparable space efficiency like [19], while
improving navigation time significantly.

Brisaboa et al. [24] exploit the sparseness and clustering of the ad-
jacency matrix and propose a compact representation of the graph which
enables fast and efficient navigation to obtain direct or reverse neighbours.
Hernández and Navarro [52] and Buehrer and Chellapilla [25], introduce
a web graph compression mechanism which aids to community detection
using connected bipartite graphs and replacing them with virtual vertices
achieving an important compression ratio.

Toivonen et al. [115] propose an approach for graph summarization
tailored to weighted graphs, which creates a summary that preserves the
distances between vertices. Fan et al. [38] present two different sum-
maries, one for reachability queries and one for graph patterns. Maserrat
and Pei [85] address the problem of compressing social networks and ef-
ficiently answer out-neighbour and in-neighbour queries in sublinear time
using the compressed graph. These proposals are highly query-specific,
while the summaries of this work are general-purpose and can be used to
answer different types of queries.

Shah et al. [106] approach the problem of graph summarization as a
compression problem, and further extend it to dynamic graphs. Adhikari
et al. [1] propose a node-grouping technique with diffusion-equivalent
representation on dynamic graphs. Other approaches by Tang et al. [112],
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Figure 2.1: Input graph and optimal partition for k = 2.

Khan and Aggarwal [65] and Qu et al. [96], include graph sketches, which
are general purpose synopsis that maintain structural and frequency prop-
erties of graph streams or summarizing dynamic networks by capturing
only some of the most interesting nodes and edges over time. Sun et
al. [110] propose an incremental algorithm for dynamic tensor analysis
which aims at dimensionality reduction to produce compact summaries
for high-order and high-dimensional data.

Lossy Graph Summarization. LeFevre and Terzi [76] propose a novel
semantics for answering simple and complex queries on graph sum-
maries. They use an enriched “supergraph” as a summary, associating
an integer to each supernode (a set of vertices) and to each superedge
(an edge between two supernodes), representing respectively the number
of edges (in the original graph) between vertices in the supernode and
between the two sets of vertices connected by the superedge. From this
lossy representation one can infer an expected adjacency matrix, where
the expectation is taken over the set of possible worlds (i.e., graphs that
are compatible with the summary). Thus, from the summary one can
derive approximated answers for graph properties, such as adjacency, de-
gree or eigenvector centrality can be answered in a closed form whereas,
more complex queries, such as PageRank. Their method follows a greedy
heuristic resembling an agglomerative hierarchical clustering with no
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quality guarantee.
More in detail, they introduce a method to find a good summary of

the input graph and formulate three different problems of compression
and partitioning. Compression of the graphs for space efficiency gives
rise to two problems. The transformation of a graph to a summary of
maximum k-nodes that is also called the k-Gs problem. As input the user
gives a number k along with the graph to be summarized, whereas, the
output is a graph that has a maximum of k super-nodes. For the sec-
ond problem, named Gs, the number of the output nodes is specified by
using information-theoretic arguments and by adopting a Minimun De-
scription Length formulation. The last problem deals with summarization
techniques that provide security and anonymity to the users, also called
k-CGs. In this case the summarization of the input graph will consist
of super-nodes that contain a minimum number of k nodes of the input
graph.

Given a summary graph they propose a way to compute the expected
adjacency matrix Ā and based on this they define two different objective
functions. In the k-Gs and k-CGs problems they try to minimize the ob-
jective function which is the reconstruction error of the summary, that is
calculated based on the adjacency matrix of the original graph and the
expected adjacency matrix of the summary graph. In the case of the Gs
problem they try to minimize the objective function which in this case
computes the number of bits for encoding and describing the proposed
model. In order to compute the summaries they use greedy algorithms
and hierarchical clustering iteratively. The cost of computation after ap-
plying the heuristics SamplePairs and LinearCheck for k-Gs and Gs is
reduced from O(n4) to O(n3). The evaluation of the methods proposed
are in terms of quality of the summary or the extent to which it alters
the results of queries and efficiency of the computation cost among the
heuristics proposed.

At this point it is important to differentiate their technique from the
already existing variants of graph partitioning, that focus on finding dense
graph components. For [76] even nodes that are not connected with each
other, can form a supernode as shown in Figure 2.1
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Riondato et al. [98] build on the work of LeFevre and Terzi [76]
and, by exposing a connection between graph summarization and geo-
metric clustering problems (i.e., k-means and k-median), they propose a
clustering-based approach to produce lossy summaries of given size with
quality guarantees. Their approach is based on minimizing the error while
reconstructing the original graph from the summary graph.

Navlakha et al. [89] propose a summary consisting of two compo-
nents: a graph of “supernodes” (sets of nodes) and “superedges” (sets of
edges), and a table of “corrections” representing the edges that should be
removed or added to obtain the exact graph. Liu et al. [80] follow the
definition of Navlakha et al. [89] and present the first distributed algo-
rithm for summarizing large-scale graphs. A different approach followed
by Tian et al. [114] and Liu et al. [82], for graphs with labeled vertices,
is to create “homogeneous” supernodes, i.e., to partition vertices so that
vertices in the same set have, as much as possible, the same attribute
values. Tian et al. [114] propose SNAP that summarizes graphs by gath-
ering groups of nodes that share the same categorical attributes. Further-
more, nodes inside groups are adjacent for all types of relationships with
the nodes of the same group (attribute- and relationship-compatibility).
k-SNAP further extends SNAP and allows the users to control the size
of their summaries, by relaxing the homogeneity requirement for the re-
lationships. Zhang et al. [124] build on k-SNAP and propose CANAL
which automatically categorizes numerical attribute values by exploiting
their similarities and the link structure of the nodes of the graph. They
further propose three aspects of interestingness which includes Diversity,
Coverage and Conciseness.

Data Stream Clustering. Aggarwal et al. [4] study the problem of
clustering evolving data streams over different time horizons. They use
Micro-clusters that provide spatial and temporal information of the evolv-
ing streams that are used for a horizon-specific offline clustering. Micro-
clusters are a temporal extension of cluster feature vectors introduced by
Zhang et al. [125] in their BIRCH method. In the micro-clusters it is
maintained statistical information about the data locality of the nodes.

11



Their additivity property make them an adequate choice for clustering
data streams. The snapshots in which the micro-clusters are stored, fol-
low the Pyramidal Time Frame which is a technique used to store data
in different levels of granularity based on their arrival in time. A good
survey on graph stream algorithms can be found in [87]

Our work, based on [76, 98], aims at developing a summary for dy-
namic graphs that, while small enough to be stored in limited space (e.g.,
in main memory), can also be used to compute approximate but fast an-
swers to queries about the original graph. As mentioned before, Shah
et al. [106] deal with the problem of lossless dynamic-graph compres-
sion. Instead, we tackle the problem of lossy summarization of dynamic
graphs. The summaries we produce have a simpler topology than the in-
put graph, and can be used as substitutes at the cost of introducing an
error. Our algorithms are distributed by design with scalability as main
goal. Differently from the work by Liu et al. [80], the task distribution of
our algorithm does not create dependencies or requirements for message-
passing supervision.

2.2 Temporal Paths and Connectors

Temporal Paths. Given a dynamic network, where edges are times-
tamped, temporal paths are paths in the graph structure, along the tem-
poral dimension. In particular, temporal paths must be time-respecting,
that is, edges along a path appear in either strictly increasing or non-
decreasing time [64]. Bui-Xuan et al. [26] study interesting paths as ei-
ther shortest, fastest or foremost journeys. Wu et al. [121] propose more
efficient methods to compute these paths in both streaming and trans-
formed graph models. Recently, some parallel and distributed algorithms
for computing temporal paths [90, 122] have been proposed.

Tang et al. [111] define non-decreasing time paths in non-overlapping
windows of time, restricting the number of simultaneous interactions in
one timespan to a fixed value. The length of the path is defined as the
difference in time between the first and the last interaction of the path.
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Pereira et al. [93] define as shortest path (or better said fastest path), the
path with the minimum duration without considering the number of in-
termediate nodes. Their algorithm has high space and time costs (at least
cubic). Gunturi et al. [49] define shortest path in an observation period
similarly to [93] and propose and epoch-point based approach to avoid re-
dundant computation of shortest paths when the network does not change.
Kim and Anderson [67] restrict their model to one edge per timestamp
and define as shortest path within a fixed interval of time, the path with
the shortest distance in terms of hops. Afrasiabi et al. [3] define foremost
BC, based on foremost journeys, i.e., the paths that have the earliest ar-
rival time. Finally, Williams et al. [120] define as spatio-temporal shortest
paths the paths that, starting from a specific time, have the smallest topo-
logical length and arrive earliest to the destination.

Given a dynamic network, where edges are timestamped, temporal
paths are paths in the graph structure, along the temporal dimension. In
particular, temporal paths must be time-respecting, that is, edges along
a path appear in non-decreasing time [64]. Bui-Xuan et al. [26] study
interesting paths as either shortest, fastest or foremost journeys. Wu et
al. [121] propose more efficient methods to compute these paths in both
streaming and transformed graph models. Recently, some parallel and
distributed algorithms for computing temporal paths [90, 122] have been
proposed.

Our approach differs from this literature as it considers non-
decreasing time paths but also allows simultaneous interactions of the
vertices in one time instance similar to [121]. It allows multiple additions
and deletions of vertices and edges in time and considers both spatial and
time distance of the paths as a linear combination, without imposing fur-
ther constraints on the starting and finishing times of the paths.

Temporal Connectors. The minimum spanning tree problem is closely
related to paths in static graphs. It is a tree that has minimal total weight
and connects all the vertices of the graph. Gunturi et al. [48] introduces
the concept for temporal networks, which they call time sub-interval min-
imum spanning tree. Huang et al. [56] study the problem of minimum
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spanning trees in temporal graphs and propose two definitions based on
the optimization of time and cost. Their approximation algorithm targets
on solving the problem of minimum Steiner trees that induces a solution
for the problem of minimum spanning trees in temporal graphs.

Steiner tree of the graph, is a tree rooted at a vertex r that connects,
with minimal cost, a set of terminal nodes which is subset of the set
of nodes of the graph. The best approximation algorithm for comput-
ing the directed Steiner tree in static graphs is proposed by Charikar et
al. [28]. They propose an improved approximation algorithm to the di-
rected Steiner tree problem for temporal graphs, based on a graph trans-
formation from temporal to static graphs. Rozenshtein et al. [102] pro-
pose an improved approximation algorithm of [28] to compute sets of
directed Steiner trees adapted to their definition of global shortest paths.
On the other hand, we propose one definition of the Steiner tree based on
the optimization of a linear combination of time and spatial cost, as we
will show in the next section.

2.3 Community Search

Given a graph G = (V,E) and a set of query vertices Q ⊆ V , a very
wide family of problems requires to find a connected subgraph H of G,
that contains all query vertices Q and that exhibits some nice properties
of cohesiveness, compactness or density. This type of problem has been
studied under different names, e.g., community search [11, 31, 108], seed
set expansion [8,69], connectivity subgraphs [7,37,105,116], just to men-
tion a few.

Faloutsos et al. [37] address the problem of finding a subgraph that
connects two query vertices (|Q| = 2) and contains at most b other
vertices, optimizing a measure of proximity based on electrical-current
flows. Tong and Faloutsos [116] extend [37] by introducing the concept
of Center-piece Subgraph dealing with query sets of any size. Koren et
al. [70] redefine proximity using the notion of cycle-free effective con-
ductance and propose a branch and bound algorithm. All the approaches
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described above require several parameters: common to all is the size of
the required solution, plus all the usual parameters of PageRank methods,
e.g., the jumpback probability, or the number of iterations.

Sozio and Gionis [108] define the (parameter-free) optimization prob-
lem of finding a connected subgraph containing Q and maximizing the
minimum degree. They propose an efficient algorithm; however, their al-
gorithm tends to return extremely large solutions (it should be noted that
for the same query Q many different optimal solutions of different sizes
exist). To circumnavigate this drawback they also study a constrained
version of their problem, with an upper bound on the size of the output
community. In this case, the problem becomes NP-hard, and they propose
a heuristic where the quality of the solution produced can be arbitrarily far
away from the optimal value of a solution to the unconstrained problem.

Ruchansky et al. [105] introduce the parameter-free problem of ex-
tracting the Minimum Wiener Connector, that is the connected subgraph
containing Q which minimizes the pairwise sum of shortest-path dis-
tances among its vertices. The Minimum Wiener Connector adheres to
the parsimonious vertex addition principle, it is typically small, dense,
and contains vertices with high betweenness centrality. However, being
a connected subgraph is neither tolerant to outliers nor able to expose
multiple communities.

While optimizing for different objective functions, the bulk of this
literature (see [57] for a recent survey) shares a common aspect: the solu-
tion must be a connected subgraph of the input graph containing the set of
query vertices. Three recent approaches allow disconnected solutions in
community search: allowing disconnected solutions is equivalent to allow
some query vertices not to participate in the solution, thus being recog-
nized as outliers. We call this version of the problem relaxed community
search.

Relaxed Community Search. Akoglu et al. [7] study the problem of
finding pathways, i.e., connection subgraphs for a large query set Q, in
terms of the Minimum Description Length (MDL) principle. According
to MDL, a pathway is simple when only a few bits are needed to relay
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which edges should be followed to visit all of Q.
Given a graph G and a query set Q, Gionis et al. [44] study the prob-

lem of finding a connected subgraph of G that has more vertices that
belong to Q than vertices that do not. For a candidate solution S that has
p vertices from Q and r not in Q, they define the discrepancy of S as a
linear combination of p and r, and study the problem of maximizing dis-
crepancy . They show that the problem is NP-hard and develop efficient
heuristic algorithms.

Ruchansky et al. [104] study the parameter-free problem of finding
the minimum inefficiency subgraph (which we will recall more formally
in Section 4.2): they show that the problem is NP-hard and develop an
efficient greedy algorithm. The minimum inefficiency subgraph exhibits
some nice properties:

• Parsimonious vertex addition. Vertices are added toQ to form the
solution, if and only if they help form more “cohesive” subgraphs
by better connecting the vertices in Q.

• Outlier tolerance. If Q contains vertices which are “far” from the
rest of Q, those remain disconnected in the solution and are consid-
ered as outliers.

• Multi-community awareness. If the query vertices Q belong to
two or more communities, then the solution recognizes this situa-
tion and does not attempt bridging them.

Ruchansky et al. [104] also provide an empirical comparison with the
two previous methods for relaxed community search [7, 44].

In this work we borrow from [104] the notion of network inefficiency,
giving it a temporal dimension, thus, adapting it to the analysis of dy-
namic networks.

Dynamic Networks. The notion of ∆-clique has been proposed in [53,
118], as a set of vertices in which each pair is in contact at least every ∆
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timestamps. Complementary approaches study the problem of discover-
ing dense temporal subgraphs whose edges occur in short time intervals
considering the exact timestamp of the occurrences [103], and the prob-
lem of maintaining the densest subgraph in the dynamic graph model [36].
A slightly different, but still related body of literature focuses on fre-
quent evolution patterns in temporal attributed graphs [16, 35, 58], link-
formation rules in temporal networks [23, 78], and the discovery of dy-
namic relationships and events [33] or of correlated activity patterns [42].
A good survey on the topic of evolution of networks can be found in [6].
Bogdanov et al. [17] and Ma et al. [17] study the problem of finding a
subgraph that maximizes the sum of edge weights in a network whose
topology remains fixed but edge weights evolve over time.

2.4 Centrality Measures

In graph theory, there have been proposed numerous centrality measures
that indicate the importance of the vertices with respect to various prop-
erties such as their degree, their average distance to the other vertices and
the number of shortest paths to which they participate etc. Some of the
most important centrality measures on static graphs are the Decree, Close-
ness, Harmonic, Betweenness, Eigenvector, Katz and PageRank centrali-
ties. An axiomatic approach and survey is presented by Boldi and Vigna
in their work [20], where they discuss the properties of the most important
centrality measures.

The conceptually simplest centrality measure is the degree centrality.
It is defined as the number of edges that are incident upon a vertex in the
graph. Closeness centrality, introduced by Bavelas [13], is defined as the
average length of shortest paths between the node and all other nodes in
the graph. Given a graph G = (V,E) we define as closeness centrality of
vertex u:

CC(u) =
1∑

v d(v, u)
,

where u, v ∈ V and d(v, u) is the length of the shortest path between v
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and u. Betweenness centrality (BC) was introduced by Anthonisse [10]
for edges and rephrased by Freeman [41] for vertices. Betweenness cen-
trality of a vertex v quantifies the proportion of shortest paths that pass
through v in the graph. It indicates the number of times that the vertex
acts as ”bridge” in the shortest path between two other vertices in the
graph. More formally, we have:

CB(u) =
∑

s 6=u6=t∈V

σst(u)

σst
,

where σst(u) is the number of shortest paths from s to t that pass through
v and σst is the total number of shortest paths between s and t.

Other important centrality measures like eigenvector centrality, Katz
centrality and PageRank centrality, indicate the importance of a vertex as
influencer in the graph.

In the endeavor to translate these quantities from static to temporal
graphs, we see that there is no unique definition. Our interpretation of
the temporal centrality measures, depend highly on the definition of the
”edge” and the various definitions temporal paths, as we described in
section 2.2. Some work on temporal centrality measures are proposed
in [67, 91, 101, 113].

In this work we mainly focus on temporal betweenness centrality. An
overview of the related work for betweenness centrality in static and dy-
namic graphs is given next.

Static and Incremental Betweenness Centrality. For the problem of
computing betweenness centrality of all vertices in a static graph, Bran-
des’ algorithm [21] achieves the current best asymptotic time with linear
space. This significantly improves the approach of naively computing
and accumulating all pairs shortest paths (APSP). More recent studies
[15, 47, 60, 62, 72, 75, 94] have been devoted to incrementaly maintain-
ing/updating static BC on dynamic networks. These networks are treated
as streaming graphs where edges are inserted or removed. Kas et al. [62]
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and Green et al. [47] are the first proposals of update algorithms for evolv-
ing graphs to avoid full betweenness centrality re-computation. Kourtel-
lis et al. [72] extended [47] to fully dynamic and improved in both time
and space together with a scalable distributed implementation. Jamour
et al. [60] propose an incremental distributed computation that uses lin-
ear space and outperforms the previous works. Our work differs from
the incremental approaches, since at every time instance our algorithm
receives as input the latest view of the graph and removes the most obso-
lete one out of the observation window, which implies multiple additions
and deletions of nodes and edges. Furthermore, we aim at computing
the betweenness centrality values of the vertices in a time frame (tem-
poral betweenness centrality), that differs to the above approaches that
incrementally calculate/update the static betweenness centralities of the
vertices in a streaming fashion.

Extending betweenness centrality definition to consider temporal as-
pects has been investigated by [3, 49, 50, 67, 93, 111, 120] using the
temporal path definitions analyzed in 2.2. For the sake of scalabil-
ity, researchers [14, 51, 99, 100] have recently focused on approxi-
mated betweenness centrality computation via sampling-based methods.
Bergamini et al. [15] carefully combined and modified parts of [72]
and [62] to obtain the empirically fastest algorithm for approximate be-
tweenness centrality in evolving graphs. On the other hand, our work
focuses on exactly computing temporal betweenness centrality in fully
dynamic graphs.
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CHAPTER 3

DYNAMIC GRAPH
REPRESENTATIONS

AND PROCESSING

A network is represented as a graph, which is a mathematical object con-
sisting of a set of vertices and a set of edges. Vertices, which correspond
to the main actors of the network, are coupled in the graph with edges.
These edges indicate the interactions between the actors of the network.
When the structure and the interactions between the actors of the network
do not change during the observation period, we can represent it with a
static graph. However, in many cases, the networks evolve in time. Ac-
tors can be added or removed, causing structural changes, and the inter-
action between them can also vary in time. Therefore, we need to model
these networks as dynamic graphs that capture the temporal order of these
changes.

In this work we study dynamic graphs in terms of their structural an
interaction changes during some observation period. There are several
proposed representation models of such networks [43, 49, 54, 67, 88, 91]
and the choice of each one depends on the phenomena under study. In
this section we give an overview of the different models and we discuss
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Figure 3.1: Interactions between actors of the network observed in the
period from tstart = 0 to tend = T . The number and the duration of
interactions and for each pair of actors can vary during the observation
period.

in detail the model that we use in this work.

3.1 Dynamic Graph Model Representations

Let us assume, for now, that the observation period of a network is finite,
with start time tstart and end time tend. During this period we observe
interactions between the actors that change in time and others that do
not. Interactions can activate after the start time and deactivate before the
end time. They can also activate and deactivate various times during this
period. Let us refer to the example of Figure 3.1. This diagram shows
the duration of the interactions between the actors of a network during
an observation period starting at tstart = 0 and finishing at tend = T .
The interaction between the actors with id 0 and 5 is activated at tstart
and does not change until tend. However, the other interactions can be
activated and deactivated various times, i.e. interaction between actors 3
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Snapshot Model

Figure 3.2: Overview of Dynamic Graph Model Representations.

and 4. The duration between the interactions can also vary, for instance,
interaction between actors 2 and 3 is much larger than the one of actors 4
and 5.

These types of dynamic networks can be represented as dynamic
graphs. We define a dynamic graph as G = (V , E) where V is the set of
vertices of the graph (i.e. actors of the network) and E is the set of edges
during the observation period (i.e. interactions between the actors). We
define as E the set of quadruplet {(u, v, t, δt)}, where u, v ∈ V , t ∈ [0, T ]
is the starting time of the edge and δt is the duration of the edge. In this
chapter we analyze undirected unweighted dynamic graph. However, the
same analysis holds for directed and weighted dynamic graphs.

Following we give an overview of the main representation schemes to
deal with dynamic graphs, which are based on static graph representation
and we discuss their usefulness depending on the task at hand. Figure 3.2
shows the overview of the representation schemes that are analyzed in the
rest of the section. A small survey of the representation models can be
found in the work of Zaki et al. [123].

In the rest of the chapter, for simplicity, we refer to the network as
graph, to the actors of the network as vertices and to the interactions be-
tween the actors as edges.
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Figure 3.3: Three types of time aggregated static graphs that correspond
to the edge stream of Figure 3.1. On the left part of the figure we se the
unweighted aggregated graph. From middle to right we see two different
types of weighted aggregated graphs. The types of weights depend on
the duration of the edge (middle graph) and the number of edges (right
graph), during the observation period.

3.1.1 Time Aggregated Static Graphs

The simplest representation of a dynamic graph G consists in constructing
an aggregated static graph G = (V,E) where V = {v ∈ V} and E =
{(u, v) : u, v ∈ V, ∃(u, v, t, δt) ∈ E}. In other words, the aggregated
static graph contains all the vertices that appear in the dynamic graph.
The edges that appear between two vertices of the dynamic graph are
flattened in a single edge. An example of this graph is shown in Figure 3.3
(left graph). In this thesis we refer to this aggregated graph as “OR” static
aggregated graph, since each edge needs to appear at least one time during
the observation period.

We can further define the weighted aggregated static graph, which
contains information about the duration or the number of the edges in
the dynamic graph. More formally we have G = (V,E,w) where
w : E → R+, if the weight represents duration, or w : E → N, if
the weight represents number of edges. An example of such graphs is
shown in Figure 3.3 (middle and right graphs). The middle graph shows
a weighted aggregated static graph. We see that, since the edge between
vertices 0 and 2 is active during the entire observation period, the weigh
of the edge is T . On the other hand, the rest of the edges have smaller
weight. The right graph of Figure 3.3 shows the distinct number of edges
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Figure 3.4: Discretization of the observation period [0, T )] in 6 intervals.
Each interval Ti = [ti, ti + T

6
).

that appeared between two vertices. Vertices 3 and 4 have two distinct
edges in the observation period, which results in a weight equal to 2,
whereas, the rest of the edges, that appear only once have weight one.

3.1.2 Temporal Graphs
Representing a dynamic graph as aggregated static graph is usually an
oversimplification which eliminates basic properties of the original graph.
Let us go back to the example of Figure 3.1 and the path between the
vertices 1 and 4. In the aggregated graph of Figure 3.3 there are three
different paths that connect vertex 1 and 4. The first path is materialized
through vertex 0 and 5, the second through vertex 2 and the third through
vertices 2 and 3. It is important here to observe that the paths from vertex
1 to 4 are equal to the paths from vertex 4 to 1 since the graph is undirected
and therefore the transitivity property is maintained. Now let us observe
again the edge stream of Figure 3.1. The edges that connect vertex 1 with
vertices 0 and 2 appear at the beginning of the observation period and then
disappear. The edges that connect vertex 4 with vertices 5 and 2 appear
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only at the end of the observation period whereas, the edge that connects
vertex 4 with vertex 3 appears at the early beginning and at the end of
the period. Therefore, there is no valid path that connects vertex 4 and
vertex 0. This observation reflects the importance of the time ordering of
the edges, which cannot be omitted when we study the evolution of the
dynamic graph. In information dissemination, communication, data flow
and physical proximity graphs, just to mention a few, this information is
crucial for understanding and quantifying the changes that have occurred
in the network.

To this end, we need to utilize frameworks that maintain the temporal
information and do not alternate basic graph properties such as connec-
tivity, distances, centrality measures etc. The natural way to do so is to
include time as an additional dimension of the graph. In many cases, the
contact between a pair of nodes is instantaneous which means that δt→ 0.
In such cases, it is practical to define a finite interval of time [t, t+∆t) and
construct the graph by adding an edge between each pair of nodes, given
that there is at least one active edge during that interval. More formally,
in order to consider that an edge (u, v, ti, δti) is active during the interval
[t, t+ ∆t) there should be either ti ∈ [t, t+ ∆t), or ti + δti ∈ [t, t+ ∆t)
or (ti < t) ∧ (ti + δti ≥ t+ ∆t). Figure 3.4 shows such discretization of
the observation period [0, T ) of Figure 3.1, where ∆t = T

6
.

The graphs that maintain the temporal information of the edges are
called temporal graphs or temporally-detailed graphs and can be coarsely
classified into two categories. The effectiveness of the representation,
however, depends heavily on the user-specified time granularity [81].
Works by Soundarajan et al. [107] study the problem of determining the
granularity of aggregating timestamped edges. Kiernan and Terzi [66],
formally define, as an optimization problem, the problem of finding the
best segmental grouping for dynamic graphs. However, this direction of
the problem is beyond the scope of this thesis.

Flow-path Model. The graph consists of timestamped vertices and di-
rected edges. An example of the flow-path model is shown in Figure 3.5.
For each vertex v we create a timestamped version of it (v, ti) for each
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0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,3 1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5

3,0 3,1 3,2 3,3 3,4 3,5

4,0 4,1 4,2 4,3 4,4 4,5

5,0 5,1 5,2 5,3 5,4 5,5

0,6

1,6

2,6

3,6

4,6

5,6

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 

Figure 3.5: Flow-path model that corresponds to the edge stream of Fig-
ure 3.4. It consists of timestamped vertices and directed edges. Each
version of a vertex is connected with an other version of the same vertex
with consecutive timestamp. An edge between two different vertices is
materialized with two directed edges.

ti in the observation period. The directed edges between the vertices oc-
cur in the interval Ti = [ti, ti + 1) between two vertices with consecutive
timestamps. Let us consider the edge between vertex 0 and vertex 1 of
Figure 3.4 that occurs during the interval T0. This edge is materialized by
the two directed edges ((0, 0), (0, 1)) and ((1, 0), (0, 1)) in the flow-path
model. Similarly, the edge between the vertices 4 and 5 in the interval T5
is materialized by ((4, 5), (5, 6)) and ((5, 5), (4, 6)). Finally, the flow path
model contains directed edges between the versions of the same vertex in
consecutive timestamps. This representation facilitates the identification
of the flow of the paths in the graph. In the example, it is easy to iden-
tify that there is a path from vertex 1 to vertex 4 that includes the vertices
(1, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5) and (4, 6) but there is no path from
the vertex 4 to the vertex 1. This model can be expressed analytically as
an adjacency matrix. The order of the adjacency matrix are |t|N , where
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Figure 3.6: Snapshot model that corresponds to the edge stream of Fig-
ure 3.4. Each snapshot is the time aggregated static graph during an inter-
val Ti.

|t| is the number of timestamps and N is the number of vertices of the
graph.

Snapshot Model. In this model we represent the dynamic graph with a
series of snapshots. Each snapshot represents a valid state of a network at
the time ti which contains aggregated information during an interval Ti.
Figure 3.6 shows an example of the snapshot model that corresponds to
the edge stream of Figure 3.4 in six consecutive timestamps. This repre-
sentation model is used to study the temporal evolution of the patterns of
the activity between the vertices and the evolution of the structure of the
dynamic graph. We can express this model analytically as a sequence of
adjacency matrices, each one of which corresponds to one timestamp.
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Figure 3.7: Dynamic maintenance model with streaming edge process-
ing. The graph updates are done using as input an edge at a time. The
stream of edges can be potentially infinite.

3.2 Dynamic Graph Processing

3.2.1 Dynamic Graph Analysis
The techniques that are used to analyze the dynamic graphs can be classi-
fied into two broad categories [6]. The first technique considers the graph
as a stream of edges that are processed incrementally. The second method
utilizes the temporal information and is used to analyze the graph in an
interval of time.

Dynamic Maintenance. This analysis model considers a stream of up-
dates in terms of an edge stream. It assumes that new edges are added to
the graph or existing edges are removed from it. In the case of weighted
graphs, there can be additional updates in the weight of the edges. The
edges arrive one by one and the graph is updated incrementally to its lat-
est version upon every edge arrival. Although the edges are processed
in time order, each graph update contains aggregated time information,
which is oblivious of the time ordering of the edges. Examples of dy-
namic maintenance of graph metrics for dynamic graphs can be found
in the works [51, 72, 87]. Figure 3.7 shows an example of the dynamic
maintenance model. On the left part of the figure we see the view of the
dynamic graph before the arrival of the edge (4,5), which is the last edge
on the edge stream. On the right part we see the updated view of the
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T0 T1 T2 T3 T4 T5

Figure 3.8: Temporal Analysis of the snapshot model. The input is a,
potentially infinite, stream of snapshots. The analysis of the dynamic
graph is done by processing the snapshots in time respecting order.

graph after the arrival of the last edge. The algorithms that utilize the dy-
namic maintenance update the graph metrics under study after every edge
update.

Temporal Analysis. In order to maintain the temporal ordering of the
edges, this model processes a temporally detailed graph (see subsec-
tion 3.1.2). In the case of the Flow Path model, at every timestamp, new
timestamped vertices arrive and connect with the already existing vertices
of the graph with older timestamps through directed edges. In the analyt-
ical representation, this corresponds to an adjacency matrix with increas-
ing order. At each timestamp new N timestamped vertices are added to
the already existing adjacency matrix. In the case of the snapshot model,
each snapshot that arrives at every new timestamp, describes the dynamic
graph during the latest interval of time, as we described above. The input
can be seen as a time series of snapshots that is processed incrementally.
The analysis of the graph is done considering these snapshots in time or-
der. This model is expressed analytically as a time series of adjacency
matrices. These adjacency matrices form an 3-order adjacency tensor
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W0 W1 W2 W3

W4 W5

Figure 3.9: An example of the sliding window model with length of the
window |W | = 3. With gray color we indicate the snapshots of the graph
that are included in the window. With red color we indicate the snapshots
of the graph that have been recently removed from the window.

with the time dimension to be increased constantly in time. Figure 3.8
shows an example of the temporal analysis of the snapshot model.

3.2.2 Sliding Window Model

In the rest of this work, the dynamic graphs are represented as temporal
graphs and are represented using both the flow-path model and the snap-
shot model, depending on the task at hand. In order to efficiently mea-
sure the temporal properties of the graph, we utilize the temporal analysis
model. Since the input can be an infinite stream of snapshots, considering
all the snapshots since the beginning of the observation period can be im-
practical. In order to avoid analyzing obsolete information we utilize the
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sliding window technique introduced by Datar et al. [34].
Sliding window is a technique that is frequently used in the data

stream mining due to the emphasis on the most recent data and the re-
striction of the memory requirements. In this technique we keep a fixed
size window over the data stream, while we update the content of the
window as new transactions arrive. At every timestamp, a new snapshot
appears in the snapshot stream. The window slides one position on the
data stream in order to drop the most obsolete snapshot of the graph and
include the most recent one.

Figure 3.9 shows the sliding window technique. In this example we
define a sliding window W of length |W | = 3. In the first timestamp we
only see the first snapshot of the dynamic graph. Therefore, the sliding
window W0 contains only one snapshot and the rest of the two positions
remain empty. When the third snapshot arrives the sliding window has
filled all its empty positions. The snapshots that are included in the sliding
window are marked with gray color. In the next timestamp, the fourth
snapshot arrives and takes the rightmost position of the window, while
the first snapshot is removed from the window. The recently removed
snapshot is marked with red color.

In the rest of this work, the analysis of the dynamic graphs in terms of
their temporal properties are always restricted in fixed size sliding win-
dows. However, the size of the sliding window is always tunable and it
depends on the application at hand.

3.3 Our Temporal Model

In this thesis, we consider as temporal graph a continuous stream of times-
tamped edges (u, v, t), where u, v ∈ V are vertices and t is a timestamp
from a potentially infinite temporal domain T . We can represent the tem-
poral graph as the sequence of sets of edges that arrive at each timestamp,
i.e., G = 〈E0, E1, . . . , Et, . . .〉whereEi = {(u, v, i)}. A window graph is
a projection of G over a temporal interval (or window): i.e., given the win-
dow W = [t− (|W | − 1), t] of length |W |, we denote GW = (V,EW ) the
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window graph defined over W , where EW =
⋃
i∈W Ei. We also denote

as Vt the subset of vertices V that appear in timestamp t.
For the dynamic graph representation we used both temporal methods

described in subsection 3.1.2. In Chapter 4, the macro-level analysis, we
begin with representing the dynamic graph as a timeseries of snapshots
defined in a sliding window W . This window W defines an adjacency
tensor of fixed length that describes the evolution of the graph in the win-
dow restricted time-frame. This representation allow us to view the graph
in a macro-level, without giving attention in the flow-path of the vertices.

For the meso-level and micro-level analysis of the graph, that corre-
spond to Chapters 5 and 6, respectively, we need to zoom into the de-
tails and more specifically we study the temporal paths between the ver-
tices. Therefore, the most adequate representation model is the flow-path
model. We additionally, restrict our analysis in a graph window W in
which we define the temporal graph under study.

We following give our definition for the temporal path which is used
in this thesis.

Definition 3.1 (Temporal path). A temporal path between a pair of ver-
tices u, v ∈ V in a window graph GW = (V,EW ) is a sequence of edges
p(u, v) = {(u = v0, v1, t0), (v1, v2, t1), . . . , (vn, vn+1 = v, tn)} such that
∀i ∈ [1, n] it holds that ti−1 ≤ ti.

When dealing with temporal dynamic graphs, one can use different
characteristics to define the interestingness of a path between two ver-
tices. In fact, besides the usual spatial definition of shortest path based
on the number of intermediate vertices, one can also consider the tempo-
ral duration of the path itself. For instance, Wu et al. [121] study four
different types of interesting paths over temporal graphs within a time
window: (1) earliest-arrival path, (2) latest-departure path, (3) fastest
path, and (4) shortest path.

We next introduce our notion of interesting path, that we call shortest-
fastest path, which combines and generalizes the last two definitions by
Wu et al. [121]. For this, we utilize a user define parameter that gov-
erns the spatial and temporal dimensions of the temporal path as a linear
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combination.

Definition 3.2 (Shortest Fastest Path). Given a user-defined parameter
α ∈ [0, 1] we define as shortest fastest path (SFP) between a pair of
vertices u, v ∈ V in a window graph GW , a valid temporal path p(u, v) =
{(u, v1, t0), . . . , (vn, v, tn)} minimizing the cost:

L(p) = α|p(u, v)|+ (1− α)(tn − t0) (3.1)

When there is no temporal p path in a graph window between two ver-
tices we define L(p) =∞. We additionally, denote as distance dGW

(v, u)
the cost of the shortest fastest path from vertex v to vertex u, where
v, u ∈ V :

dGW
(v, u) = L(p∗(v, u)),

where p∗(v, u) = argmin L(p(v, u)).
As said above, our definition generalizes both shortest and fastest path

notions. In fact by setting α = 1 we obtain shortest paths, while setting
α = 0 we obtain fastest paths. In general, depending on the application
at hand, one can tune the parameter α to give more importance to the
temporal dimension (α < 0.5) or the spatial one (α > 0.5). The parameter
α can also be tuned in such a way to favor one dimension, but using
the other dimension for tie-breaking among equivalent paths in the first
dimension. More in details, by setting α to a small positive quantity ε,
the temporal paths that we obtain by Equation (3.1) correspond to fastest
paths with the minimum number of intermediate hops. Similarly, if we
set α = 1− ε, Equation (3.1) will return the shortest paths that expand in
fewer number of timestamps. Finally, if we want to give equal importance
to space and time we need to set the parameter α = 0.5.

Example 3.1. Let us consider two snapshots of a graph in Figure 3.10.
The temporal path from vertex 0 to vertex 3, according to Definition 3.1
can be materialized in two different ways. The first temporal path, ex-
pands only in timestamp 0 and passes through vertex 1 and 2. We high-
light the path with red color. The second path, which is highlighted with
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Figure 3.10: Shortest fastest paths with respect to α. When α < 0.5
the shortest fastest path from vertex 0 to vertex 3 has length 3α (path
marked with red color). When α > 0.5 the shortest fastest path has length
2α+ (1−α) (path marked with blue color), whereas, when α = 0.5 both
paths are shortest fastest paths.

blue color, expands in timestamp 0 with the edge (0, 1) and in timestamp
1 with the edge (1, 3). According to Definition 3.2 the length of the first
path is 3α, whereas, the second path has length 2α+ (1− a) = a+ 1. If
α < 0.5 the shortest fastest path is the red path. If α > 0.5 the shortest
fastest path is the blue path. Finally, when α = 0.5 both red and blue
paths are shortest-fastest paths.

In order to integrate the parameter α in our representation model, we
propose a modification of the flow-path model which we call graph trans-
formation. Given a graph window GW = (V,EW ), we transform it to a
static, directed and weighted graphG′(V ′, E ′, r), where r is the weighting
function, as follows:

• Vertices: for each t ∈ W , v ∈ Vt we create a vertex id as a pair
vertex-timestamp (v, t), i.e., V ′ = {(v, t) : t ∈ W, v ∈ Vt}.

• Edges: for each v ∈ V and each pair of timespans ti, tj ∈ W
with tj = min{t : (v, t) ∈ V ′, t > ti}, we create a directed edge
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Figure 3.11: General graph transformation for the dynamic graph of Fig-
ure 3.10.

Algorithm 1: General Graph Transformation
input : VW =

⋃
i∈W Vi, EW =

⋃
i∈W Ei, α,W

output : Transformed graph G′

1 V ′ ←
⋃
{(v, t) : v ∈ Vt, t ∈ W} //vertex renaming

2 E ′ ←
⋃
{((v, t), (u, t), α) : v, u ∈ Vt, t ∈ W} //static edges

3 E ′ ← E ′ ∪ {((v, t), (u, t′), (t′ − t)(1− α)) : (v, t), (v, t′) ∈
V ′, t′ = min{ti : (v, ti) ∈ V ′, ti > t}} //temporal edges

4 return G′ = (V ′, E ′)

((v, ti), (v, tj)) with weight (tj − ti)(1− α). The edges in EW , are
instead assigned a weight of α.

Algorithm 1 shows the general case of the graph transformation algo-
rithm. In line 1 we change the name of the vertices to their timestamped
version. In line 2 we connect the edges that exist in the input stream and
appropriately adjust the weight to incorporate the parameter α. Finally,
in line 3 we connect the different versions of the vertices with tempo-
ral edges of appropriate weight. The modifications of the general graph
transformation model, to serve the algorithmic requirements, will be dis-
cussed separately at the corresponding chapters. Figure 3.11 shows the
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transformed graph that corresponds to the dynamic graph of Figure 3.10.

3.4 Discussion

In this chapter we discussed the different representation and processing
schemes for dynamic graphs. In the dynamic maintenance model the
temporal information is taken into account only at the time of processing
each input edge. However, for the calculation of measures of topological
structure and interaction patterns, such as paths, connected components,
distances, centrality measures etc., the graph that is used is the time ag-
gregated static graph after the latest edge update. Therefore, these mea-
sures do not contain the temporal information of the dynamic graph. On
the other hand, by processing timestamps of the graph in time respecting
order, these measurements can change significantly. The time aggregated
graph of Figure 3.7 (right graph) has diameter 2. However, while process-
ing the graph as streams of snapshots, the temporal diameter of the graph
has different value. Since there is no temporal path that connects vertex 4
with vertex 1, the temporal diameter of the graph in timestamps T0 − T5
is infinite.

On the overall, we can say that the dynamic maintenance model is
used to maintain the result of some data mining process, as the structure of
the graph changes in time. On the other hand, the temporal analysis help
us to understand and quantify the changes to which the graph undergoes
in the studied time-frame. In other words, the temporal analysis, focus
on modeling the change, rather than adjusting the previous results. In
the rest of this work, we focus on the analysis of the temporal structural
measurements and the temporal interaction patterns among the vertices
of dynamic graphs which can be significantly different from their static
version.

In this chapter we also discussed the temporal models proposed in
this thesis. According to the level of analysis, we propose a combina-
tion of snapshot model with sliding window (macro-level) or flow-path
model with sliding window (meso and micro level). For the the macro-
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analysis we use additionally the adjacency tensor representation which is
presented in chapter 4. For the meso-level and micro-level analysis we
additionally define the notion of temporal path and the shortest fastest
path.
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CHAPTER 4

TEMPORAL
GRAPH SUMMARIZATION

4.1 Introduction

In a variety of application domains such as social networks, molecular
biology, and communication networks, the data of interest is routinely
represented as a very large graph with millions of vertices and billions of
edges. This abundance of data can potentially enable more accurate anal-
ysis of the phenomena under study. However, as the graphs under analysis
grow, mining and visualizing them becomes computationally challeng-
ing. In fact, the running time of most graph algorithms grows with the
size of the input (number of vertices and/or edges): executing them on
huge graphs might be impractical, especially when the input is too large
to fit in main memory. The picture gets even worse when considering the
dynamic nature of most of the graphs of interest, such as social networks,
communication networks, or the Web.

Graph summarization speeds up the analysis by creating a lossy con-
cise representation of the graph that fits into main memory. Answers to
otherwise expensive queries can then be computed using the summary
without accessing the exact representation on disk. Query answers com-
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puted on the summary incur a minimal loss of accuracy. When multiple
graph analysis tasks can be performed on the same summary, the cost
of building the summary is amortized across its life cycle. Summaries
can also be used for privacy purposes [76], to create easily interpretable
visualizations of the graph [89], or to store a compressed version of the
graph [98].

In this chapter we tackle the problem of building high quality sum-
maries for dynamic graphs. In particular, we aim at creating summaries
of a dynamic graph over a sliding window of a pre-fixed size. At every
new timestamp, as the graph evolves, the time window of interest includes
a new adjacency matrix and discards the oldest one that occurred w times-
tamps ago, as described in section 3.2.2. Therefore the information of in-
terest for the summarization is a 3-order tensor of dimension N ×N ×w
where N is the number of nodes and w is the prefixed length.

We consider a general setting where each entry of the adjacency ma-
trix at every timestamp contains a number in [0, 1]. This can be used to
model interaction networks, where the entry (i, j) of the adjacency matrix
at time t can indicate the strength of the link or the amount of information
exchange between i and j during the timestamp t. From the classic dy-
namic graph standpoint, an edge (i, j) which has always been associated
to a value of 0 up to timestamp t, when it takes a value > 0, is an edge
that appears for the first time at t. Similarly an edge that starts having 0
weight after t can be considered to disappear after t.

In this chapter we introduce a new version of the dynamic graph
summarization problem, by generalizing the definition by LeFevre and
Terzi [76] (discussed next) to the dynamic graph setting in a streaming
context.

Our main contributions can be summarized as follows:

• We introduce the problem of dynamic graph summarization in a
streaming context by generalizing the problem definition for static
graphs of LeFevre and Terzi [76].

• We design two online, distributed, and tunable algorithms for sum-
marizing dynamic large-scale graphs. The first one is inspired by
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Riondato et al. [98] and it is based on clustering. The second
one overcomes the main limitation of the first one (memory re-
quirements) by using the micro-clusters concept from Aggarwal et
al. [4], adapted to our graph-stream setting.

• Our algorithms are distributed by design, and we implement them
over the Apache Spark framework, so as to address the problem of
scalability for large-scale graphs and massive streams.

• We experiment on several synthetic and real-world dynamic graphs,
showing that we can effectively and efficiently use our sum-
maries to answer temporal and probabilistic queries on the dynamic
graphs.

The rest of the chapter is organized as follows. In Section 4.2 we give the
preliminary definitions and the formal problem statement. In Section 4.3
we present the two algorithms in full details. In Section 4.4 we discuss the
distributed implementation on Apache Spark. In Section 4.5, we present
our empirical evaluation. Finally, we give provide a discussion of our
work in Section 4.6.

A preliminary version of this work was presented in [117].

4.2 Problem Formulation
In this section we first define the problem of static graph summarization.
We then present the problem of dynamic graph summarization in tensors
in the setting of both static and sliding graph windows.

4.2.1 Static Graph Summarization
Given a weighted graph G(V,E, ε) with V = {V1, . . . , VN}, a weight
function ε : E → [0, 1], and k ∈ N (k ≤ N ); a k-summary of G is an
undirected, complete, weighted graph G′(S, S×S, σ) uniquely identified
by a k-partition of V , i.e., S = {S1, ..., Sk}, with

⋃
i∈[1,k] Si = V and
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Si ∩ Sj = ∅ if i 6= j. The function σ : S × S → [0, 1] maintains the
average edge weight among the nodes contained in two supernodes, and
is given by

σ(Si, Sj) =

∑
u∈Si,`∈Sj

ε(u, `)

|Si||Sj|
, Si 6= Sj

and

σ(Si, Si) = 2

∑
u∈Si,`∈Si

ε(u, `)

|Si||Si − 1|
.

For ease of presentation, in the rest of the chapter we define the main
concepts using the adjacency matrices of G and G′, denoted as AG and
AG′ , respectively.

We can find as many k-summaries as the number of k-partitions of
the nodes V . Following LeFevre and Terzi [76], the goal is to find the
summary G′ that minimizes the reconstruction error. That is, the error
incurred by reconstructing our best guess of the base graph G from the
summary G′:

RE(AG|AG′) =
1

N2

N−1∑
i=0

N−1∑
j=0

|AG(Vi, Vj)− AG′(s(Vi), s(Vj))|

where s is the mapping function from nodes to the supernodes they be-
long to. For simplicity, in the above formula, we use the entire adjacency
matrix of the graph. However, since the graphs are undirected, we could
also have used half the matrix.

Riondato et al. [98] show that the problem of minimizing the recon-
struction error with guaranteed quality, can be approximately reduced to
a traditional k-means clustering problem where the elements to be clus-
tered are the adjacency list of each node: the clusters are then used as the
supernodes.
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w
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N

Figure 4.1: 3-order tensor of dimension N × N × w where N is the
number of nodes and w is the prefixed length of the window W . One of
the nodes of the tensor (Node1) is highlighted with red.

4.2.2 Tensor Summarization
Given a windowW = [t−(w−1), t], were t is a timestamp of a potentially
infinite temporal domain T , we consider next a time series of w = |W |
static graphs as described before. The time series of static graphs can be
expressed as a time series of adjacency matrices AGt ∈ [0, 1]NN , or as a
3-order tensor AWG ∈ [0, 1]NNw as depicted in Figure 4.1. Similarly to
the static graph case, given k ≤ N we define as k-summary of the tensor
AWG the adjacency matrix AG′ ∈ [0, 1]kk which is uniquely identified by a
k-partition S = {S1, ..., Sk} of V :

AG′(Si, Sj) =

w∑
t=0

∑
u∈Si,l∈Sj

AWG (u, l, t)

w|Si||Sj|
, Si 6= Sj (4.1)

and

AG′(Si, Sj) =

2
w∑
t=0

∑
u∈Si,l∈Sj

AWG (u, l, t)

w|Si||Sj − 1|
, Si = Sj. (4.2)

The reconstruction error for tensor summarization is defined as fol-
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AW0 AW1 AW2

Figure 4.2: Sliding tensor-window in three consecutive timestamps. At
every timestamp the window slides one position to include the newest
snapshot of the graph and remove the most obsolete.

lows:

RE(AWG |AG′) =

w−1∑
t=0

N−1∑
i=0

N−1∑
j=0

|AWG (Vi, Vj, t)− AG′(s(Vi), s(Vj))|

wN2
.

(4.3)

4.2.3 Dynamic Graph Summarization via Tensor
Streaming

In the streaming setting we are given a streaming graph (an infinite se-
quence of static graphs) and a window length w: the goal is to produce a
tensor summary for the latest w timestamps.

More formally, we are given a graph stream Gt(V,E, f), described
by its set of nodes V = {V1, ..., VN}, edges E ⊂ V × V and a func-
tion f t : E × T → [0, 1] with T = [0, t], t ∈ N. This can be repre-
sented as a time series of adjacency matrices where each adjacency ma-
trix AG ∈ [0, 1]NN . At each time stamp t we have a new adjacency matrix
as input, which represents the last instance of the dynamic graph. As
time passes by, the information contained in old adjacency matrices can
become obsolete and no longer interesting. Therefore, we define a win-
dow Wt of fixed length w, that limits our interest to the w more recent
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Figure 4.3: Overview of the clustering process of kC algorithm: sum-
marizing a tensor window to supernodes. In kC approach every node is
clustered to the supernodes.

instances of the dynamic graph. We refer to this window as a sliding ten-
sor window, which is updated at each timestamp with the latest adjacency
matrix while the oldest adjacency matrix is removed. Figure 4.2 shows
the tensor window that indicates which of the timestamps are considered
for the summarization, for three consequent timestamps.

At each time stamp ti, we summarize the adjacency matrices that are
included in the tensor window, i.e., the tensor AWt

G ∈ [0, 1]NNw, where
Wt ∈ [t− (w − 1), t]. The tensor summary is defined as in Section 4.2.2
by minimizing the reconstruction error of Eq. (4.3). Finally, the values of
the adjacency matrix AG′Wt are computed by Equations (4.1) and (4.2).

4.3 Algorithms

In this section we first describe our baseline clustering-based algorithm
inspired by Riondato et al. [98], kC, which is effective but memory inten-
sive, and then the more memory efficient and scalable µC, based on the
use of micro-clusters.
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Algorithm 2: kC
input : Graph Gt(V,E) as AGt ∈ [0, 1]NN , number of

supernodes k, length w of window
output : Summary graph G′(S, S × S) as A′G ∈ [0, 1]kk, function

s : V → S
1 t ← 0
2 AW0 ← Initialize the adjacency tensor window with zero
3 while true do
4 A ← Read input graph AGt

5 AWt ← Slide window and update with A
6 C ← k-means(AWt)
7 s← Calculate mapping function from nodes to supernodes
8 G′Wt ← Calculate summary from C //Equations (4.1) & (4.2)
9 report (G′Wt , s)

10 t ← t+ 1

4.3.1 Baseline Algorithm: kC

Following Riondato et al. [98], we apply the k-means algorithm to cluster
the nodes of the graph and thus produce the summary of the tensor that
is currently inside the sliding window of length w. Figure 4.1 shows a
tensor window of length w, and highlights one of the matrices (Node1)
that are the input for the clustering algorithm. We treat each matrix as a
w×N vector for the purpose of clustering. After clustering these vectors,
each cluster represents a super-node of the summary graph.

Algorithm 2 describes kC. For timestamp t = 0 were we initialize
the tensor window (lines 1,2) and continue with the computation of the
summary (lines 4-9). The rest of the algorithm (lines 3-10) describes the
streaming behavior of the algorithm for the following timestamps (line
10). A high-level overview of the process is shown in figure 4.3.

Since the algorithm needs to work in a high-dimensional space, we
prefer to use cosine distance rather than Euclidean distance to measure
the distance between two data points [5]. This variant of k-means is also
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known as spherical k-means. The input graph changes continuously, as
a new adjacency matrix arrives at each timestamp (line 4). Additionally,
at each timestamp the tensor window slides to include the newly arrived
adjacency matrix (line 5), and exclude the oldest one, as shown in Fig-
ure 4.2.

Computational complexity and limitations. Computing the cosine dis-
tance between two Nw-dimensional vectors requires O(Nw) time. The
clustering algorithm computes the distance of each of the N vectors to
the center of each of the k clusters. Let the number of iterations for the
k-means be bounded by I . Thus, the computational complexity of the al-
gorithm for a single tensor window isO(N2wkI). The space requirement
is O(N2w +Nwk), where the first term accounts for the tensor window,
and the second for the clusters’ centroids.

We repeat the same procedure at each new timestamp without taking
into account that the tensor window is updated with N2 new values, and
drops N2 old values, whereas (w − 2)N2 values of the window remain
unchanged. Clearly, although it is desirable to leverage this fact, the base-
line algorithm described fails to do so. Indeed, kC simply discards the
previous computation, and re-executes the algorithm from scratch. In the
next algorithm we show how to take advantage of this consideration.

4.3.2 Micro-clustering Algorithm: µC
The key idea towards space-efficiency and scalability is to make use of
the clustering obtained at the previous timestamp, updating it to match
the new information arrived, instead of recomputing it from scratch at
every new timestamp. To this end, we add an extra intermediate step in
between the input step and the final clustering that creates the supernodes,
consisting in summarizing the input data via micro-clusters. At any given
time, the algorithm maintains a fixed amount of micro-clusters q that is set
to be significantly larger than the number of clusters k, and significantly
smaller than the number of input vectors N . Each micro-cluster (µC) is
characterized by its centroid and some statistical information about the
input vectors it contains in a concise representation (described further).
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The centroid of the micro-cluster (µc) is an (Nw)-dimensional vector
that is the mean value of the coordinates of the vectors it contains. The
statistics of the micro-cluster include the standard deviation (SD) of the
vectors from the centroid, and the frequencies F of the nodes that are
included in the micro-cluster. In addition to the structure of the micro-
cluster, µC also keeps the IDs of the nodes contained in the last tensor
window. For each node we also keep the timestamps (IDList) in which
the node is contained in the micro-cluster (within the period w of the
current window).

Definition 4.1. A micro-cluster µCi is the tuple (F, µc, SD,
IDList), where the entries are defined as follows:

• F is a vector of length w that gives the number of vectors that are
included in the micro-cluster i at each timestamp in the current
window (i.e, the zero-th moment).

• µc is the centroid of the micro-cluster, which is represented by a
vector ∈ [0, 1]Nw. The centroid is the mean of the coordinates of all
the vectors included in the micro-cluster (i.e., the first moment).

• SD represents the standard deviation of the distances of all the
vectors that are included in the micro-cluster from its centroid in
the latest timestamp (i.e., the second moment).

• IDList is a list of tuples (NodeID, BitMapID) that stores the IDs of
the nodes that are included in the micro-cluster, along with a bitmap
of length w that represents the timestamps in which the node was
included in the micro-cluster. The least significant bit represents
the latest arrival. The sum of the bits of the bitmaps with the same
ID in all existing micro-clusters is constant and equal to w.

Algorithm 3 describes the different steps of µC for every timestamp
(lines 3-10). The input of the algorithm is an adjacency matrix AGt that
corresponds to the graph Gt of the current timestamp. Figure 4.4 shows
the tensor window of length w and highlights one of the N vectors At0
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Algorithm 3: µC
input : Graph Gt(V,E) as AGt ∈ [0, 1]NN , q, k, w
output : Summary graph G′(S, S × S) as A′G ∈ [0, 1]kk, function

s : V → S
1 t ← 0
2 while true do
3 A ← Read input graph AGt

4 µC ← µC-kmeans(A) //Algorithm 4
5 µC ← µC-maintenance(µC) //Algorithm 6
6 C ← C-kmeans(µC)
7 s← Calculate mapping from nodes to supernodes
8 G′ ← Calculate summary from C //Equations (4.1) & (4.2)
9 report (G′, s)

10 t ← t+ 1

of the input for the clustering algorithm. The algorithm does not keep the
input data that arrived in the previousw−1 time stamps, since it only uses
statistical information that is stored in the micro-clusters. Micro-clusters
are initialized by executing a modified k-means algorithm for the initial
adjacency matrix AGt , similar to what is described above. At this point
the seeds of the k-means algorithm are selected randomly from the input
vectors. The same procedure is followed at every timestamp to reflect the
changes in the sliding window (line 4). Once the micro-clusters have been
established, they can be passed to the µC-maintenance phase (line 5) that
is explained in detail further. After the maintenance phase, the micro-
clusters can be clustered to the final clusters (line 6), we calculate the
mapping function from input nodes to clusters (lines 7) and the summary
nodes (lines 8,17). At the end of every timestamp the algorithm outputs
the summary graph G′ and the mapping function s (line 10).

From input to micro-clusters. At each timestamp, N new vectors arrive
and get absorbed by the micro-clusters. Algorithm 4 describes how the in-
put is added to the micro-clusters. First, µC finds the closest micro-cluster
to the current input vector v∗, i.e., µC∗ = mini dist(µCi, v

∗), where dist
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Figure 4.4: Overview of the clustering process of µC algorithm: sum-
marizing a tensor window by micro-clusters. In µC approach, at each
timestamp t all the Ati (highlighted with red) are clustered to the micro-
clusters. The micro-clusters include statistical information from the pre-
vious timestamps. Finally, the micro-clusters are clustered to the supern-
odes.

is the cosine distance between two vectors, and µCi is represented by its
centroid (lines 6-14). The micro-cluster updates the values of the cen-
troids and checks if their distance from their previous value exceeds a
predefined threshold (lines 16-19). If this is the case, the process contin-
ues until either the centroids do not change more than this threshold or the
number of the iterations exceeds a predefined value (line 20). Otherwise,
the micro-cluster absorbs the vector and updates its statistics (described
by Algorithm 5). Lines 1-8 of Algorithm 5 show the process of selecting
the micro-cluster that absorbs each vector and in lines 9-12 the process
of updating the statistics of each micro-cluster. The statistics include the
update of the IDList and its bitmap array that represents the existence of
a node in the micro-cluster. Additionally, updates the values of F [0], the
standard deviation of the absorbed points and calculates the centroid of
the micro-cluster.

Algorithm 4 starts by selecting the seeds of the clusters and dropping
the least recent statistics in order to keep the most recent ones. In the
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Figure 4.5: Example of µC algorithm for two consecutive timestamps.
In both figures the input data that are clustered at each timestamp are
those in red. In black are the data that have been clustered in previous
timestamps. After the input data are clustered to the micro-clusters, the
statistical information is updated and the micro-clusters pass on the main-
tenance phase. Finally, the micro-clusters are clustered to the supernodes.

online phase of the algorithm, the seeds of k-means are selected to be
the values of the centroids of the micro-clusters computed in the previous
timestamp (line 2). In this way the algorithm can converge faster given
that the edges between the nodes do not change significantly. Addition-
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Algorithm 4: µC-kmeans
input : A, µC, iterations, cutoff
output : µC

1 foreach µCi ∈ µC do
2 µCi.seed ← µCi.µc[0]
3 Update µCi for new timestamp
4 rounds ← 0
5 while shift > cutoff and rounds < iterations do
6 foreach Ai ∈ A do
7 Index ← 0
8 min dist ← cos dist(µC0.seed, Ai)
9 foreach j ∈ [1, µ− 1] do

10 dist ← cos dist(µCj.seed, Ai)
11 if distance < min dist then
12 Index ← j
13 min dist ← distance

14 µCIndex absorbs vector Ai
15 max shift ← 0
16 foreach µCi ∈ µC do
17 µCi.centroid[0] ← Update with average of the absorbed

points
18 shift ← cos dist(µCi.seed, µCi.centroid[0])
19 max shift ← max(shift,max shift)

20 if max shift ≤ cutoff or rounds ≥ iterations then
21 Algorithm 5
22 else
23 round← round+ 1

24 return µC

ally, we shift all the bitmaps of the IDList left by one so that the least
significant bit (lsb) is free to be updated by the new arrivals. Addition-
ally, we remove the least recent value of F , we set SD = 0 and we shift
the centroid µc of the micro-cluster to liberate the position for the new
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Algorithm 5: update µC statistics
1 foreach Ai ∈ A do
2 Index ← 0
3 min dist ← cos dist(µC0.seed, Ai)
4 foreach j ∈ [1, µ− 1] do
5 dist ← cos dist(µCj.seed, Ai)
6 if distance < min dist then
7 Index ← j
8 min dist ← distance

9 µCIndex.IDList.append(i)
10 µCIndex.SD + = min dist2

11 µCIndex.F [0] ← µCIndex.F [0] + 1
12 µCIndex.µc[0] ← Calculate the average of the points in

µCIndex

centroid (line 3). Figure 4.5 shows the clustering process from the input
data to the micro-clusters and the computation of the centroids for two
consecutive timestamps.

Micro-cluster maintenance phase. If the newly absorbed vectors cause
the micro-cluster to shift its centroid beyond a maximum boundary, then
the micro-cluster is split. We define the maximum boundary of a micro-
cluster as the standard deviation of the distances of the vectors that belong
to the micro-cluster from its centroid. Additionally, if a micro-cluster has
absorbed fewer vectors than a threshold, then it is merged. Algorithm 6
describes the maintenance phase of the µC algorithm. The input of the
algorithm is the micro-clusters µC, the adjacency matrix A, and the split
and merge thresholds θ1, θ2, respectively. If a micro-cluster needs to be
absorbed, a new micro-cluster should be split, in order to keep the total
number of micro-clusters q unaltered. The input of the maintenance al-
gorithm (Algorithm 6) are the micro-clusters µC, the input matrix A the
split threshold, and the merge threshold. The micro-clusters with F [0]
less than a threshold form the ListMerge (line 1) whereas the ones with
SD larger than a threshold form the ListSplit list. The next step is to
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Algorithm 6: µC maintenance
input : µC, adjacency matrix A, θ1, θ2
output : Updated µC
Initialization:

1 ListMerge←{µCi | Fi[0] < θ1}
//List of µCs to be merged when number of vectors are less than θ1

2 ListSplit←{µCi | SDi > θ2}
//Candidates of µCs to be split when SD is beyond the threshold θ2

3 ListSplit ← Rank ListSplit by non-increasing SD
4 H← take top |ListMerge| micro-clusters

//List of µCs to be split of size |ListMerge|
Merge phase:

5 foreach µci ∈ ListMerge do
6 Find µcj closest to µci
7 µCj← Merge(µCj, µCi)
8 Update statistics of µCj

Split phase:
9 foreach µCi ∈ H do

10 µCempty ← Pop the first empty micro-cluster of the
ListMerge

11 Assign seeds to µCempty and µCi from µCi.IDList randomly
K-means algorithm:

12 while not converge do
13 foreach id ∈ µCi.IDList do
14 Assign Aid to the closest micro-cluster between µCi

and µCempty
15 Update statistics for µCempty and µCi
16 return µC

rank the ListSplit (line 3) by non-increasing SD and select only the top
|ListMerge| elements to form the H list (line 4), which contains all the
micro-clusters that needs to be split. In this way we ensure that we merge
the same number of micro-clusters as we split, so that the total number of
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micro-clusters remains q. In the merge phase of the algorithm (lines 5-8),
all micro-clusters that exist in the ListMerge are merged to the micro-
cluster with the closest centroid. Finally, in the split phase of the algo-
rithm (lines 9-15) each micro-cluster of the H list is partitioned in two.
One part of it remains in the original micro-cluster and the other part is
assigned to the micro-cluster that remained empty from the merge phase
of the algorithm. This process is described in lines 12 to 15.

From micro-clusters to supernodes. The next step is to assign the
micro-clusters to the supernodes. µC does so by using the k-means al-
gorithm. The micro-clusters are considered as weighted pseudo-points.
The value of the pseudo-point is the centroid of the micro-cluster, and the
weight is the F value (i.e., the number of vectors) stored in each micro-
cluster. The output of this step is a mapping from micro-clusters to su-
pernodes that represents the summary graph.

To complete the construction of the summary, we need to assign each
vector in the micro-cluster within the window (which represents one node
in the input tensor) to a super-node. The super-node merges all the
IDLists of the micro-clusters in it. Recall that the IDList of each micro-
cluster contains the information of which vector is included in the specific
micro-cluster. Finally, each input node is assigned to the super-node that
contained it the most during the current window, i.e., the assignment from
node to super-node is decided by majority voting.

Computational complexity. Let q be the total number of micro-clusters,
then the cost of clustering N vectors is O(qN2). To remove the oldest Fi
of all the micro-clusters we need q operations, and to update the bitmaps
of all micro-clusters we need a maximum of Nw operations. As a re-
sult, µC needsO(qN2 +Nw+ q) operations for maintaining the existing
micro-clusters. The time complexity for clustering the micro-clusters to
the supernodes is O(kqN).

Each micro-cluster keeps an (Nw)-dimensional vector as its centroid,
and two w-dimensional vectors for the frequencies and the standard devi-
ation. Additionally, the IDList of all q micro-clusters has a maximum of
O(wN) tuples. Considering q micro-clusters, the overall space require-

55



RDD
Partition 1

RDD
Partition 3

RDD
Partition 2

RDDTensor Data Cluster of machines

Figure 4.6: From tensor data to RDD. The tensor data are partitioned
horizontally to create the RDD. Each partition of the RDD is processed
by one executor processes.

ment of the algorithm is O(qwN).

4.4 Distributed Implementation
As described in the previous section, both kC and µC have a computa-
tional complexity which might become prohibitive on large scale graphs
and for large window sizes. Our solution to this problem is to distribute
the computation on a cluster of machines (CM).

The core of both algorithms is the online k-means algorithm which re-
quires, at each timestamp, to compute the distances between all the input
vectors and the centroids of all (micro-)clusters. Each vector is assigned
to the closest (micro-)cluster, and the new centroids are computed as the
average of the vectors in each cluster. The algorithm is repeated until it
converges, or until it reaches the maximum number of iterations.

Conceptually, the algorithm is composed by three parts: (i) assign-
ment of the vectors to the clusters, (ii) computation of the new centroids
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Figure 4.7: High-level overview of the distributed implementation of
the kC algorithm using parallelize(), map(), ReduceByKey() and collect()
functions.

of the clusters, and (iii) computation of the distance between the old and
the new centroids. In the first part, the assignment of each vector to the
clusters is completely independent from each other, i.e., the computation
is completely parallel, provided that the centroids of the clusters are avail-
able to all the processes. Therefore, we parallelize by partitioning the in-
put vectors across the CM. The second part of the algorithm requires all
the results from the first phase to proceed. This part is implemented by
exchanging messages between parallel processes. The third part and last
of the algorithm is fairly inexpensive and can be executed locally.

For the implementation of the distributed algorithm we use the
Apache Spark framework.1 The architecture of Spark has a master pro-
cess which is connected to several executor processes. These executors

1http://spark.apache.org
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Algorithm 7: Distributed kC
input : Graph Gt(V,E) as AGt ∈ [0, 1]NN , number of

supernodes k, length of window w, cutoff
output : Summary graph G′(S, S × S) as A′G ∈ [0, 1]kk, function

s : V → S
1 t ← 0
2 AW0 ← Initialize the adjacency tensor window with zero
3 while true do
4 A ← Read input graph AGt

5 AWt ← Slide window and update with A
6 foreach i ∈ N do
7 pointsRDD ← sc.parallelize((AWt [i].coords, AWt [i].id)
8 centroidsold ← random(AWt ,k)
9 while biggest shift > cutoff do

10 pointsassign ← pointsRDD.map(lambda x:
kmeans(x,centroidsold))

11 centroidRDD ← pointsassign.reduceByKey()
12 centroids ← centroidRDD.collect()
13 point.population ← pointsassign.countByKey()
14 biggest shift ← diff(centroids, centroidsold)
15 centroidsold ← centroids
16 C ← Cluster values from centroids
17 s← Mapping function from nodes to supernodes
18 G′Wt ← Calculate summary from C //Equations (4.1) & (4.2)
19 report (G′Wt , s)
20 t ← t+ 1

can be distributed over the CM. The main (driver) program runs in the
master, except for the parts of the algorithm that are explicitly distributed
to the executors. Once the executors finish their distributed computation,
the results are sent back to the master, which continues with the execution
of the serial parts of the algorithm.

The basic abstraction in Spark is the Resilient Distributed Dataset
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Algorithm 8: Distributed µC
input : Graph Gt(V,E) as AGt ∈ [0, 1]NN , number of

micro-clusters q, number of supernodes k, length of
window w, cuttoff

output : Summary graph G′(S, S × S) as A′G ∈ [0, 1]kk, function
s : V → S

1 t ← 0
2 while true do
3 A ← Read input graph AGt

4 Algorithm 9 //Clustering pointsRDD to µC
5 µC ← µC-maintenance(µC) //Algorithm 6
6 Algorithm 10 //Clustering µC to C
7 s← Calculate mapping from nodes to supernodes
8 G′ ← Calculate summary from C //Equations (4.1) & (4.2)
9 report (G′, s)

10 t ← t+ 1

(RDD) that supports two types of operations: transformations and ac-
tions. Transformations, create a new RDD, based on the existing one,
whereas actions evaluate a function on the RDD, and return the result to
the master program. In our implementation, the first RDD is created by
the vectors to be clustered. On this dataset we apply a transformation
via the map() and the reduceByKey() functions to compute the distance of
all vectors from the centroids, to assign the vectors to the clusters and to
sum the values of the points. Then we use actions, countByKey(), reduce-
ByKeyLocally() and collect(), to evaluate the results of the transformation,
and return to the master the number of vectors of each cluster and the sum
of the values of the vector of each cluster, which are combined to com-
pute the centroid of each cluster. Both transformations and actions are
handled by Spark environment and therefore the algorithm does not inter-
fere with the exchange of messages between the executors. The final part
of the algorithm is executed locally in the master, by keeping the previous
centroids in memory.
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Algorithm 9: Clustering pointsRDD to µC
1 pointsRDD ← sc.parallelize((A[i].coords, A[i].id) for i in

range(N ))
2 µC-centrold = random(A,q)
3 while biggest shift > cutoff do
4 pointsassign = pointsRDD.map(lambda x: µC-kmeans(x,

µC-centrold))
5 µC-centr ← pointsassign.reduceByKeyLocally()
6 point.population ← pointsassign.countByKey() biggest shift

← diff(µC-centr,µC- centrold)
7 µC-centrold ← µC-centr;
8 µC ← update µC values from the centroids

Algorithm 7 describes the distributed implementation of the algo-
rithm 2. The tensor data is used to create the RDD (lines 6, 7) that dis-
tributed to the CM. The tensor is cut horizontally and distributed to the
machines as shown in Figure 4.6. Therefore, each machine is responsible
for clustering N

|CM | points with the distributed k-means (lines 9-15). Lines
12 and 13 are responsible for evaluating the RDDs and return the values
to the main program. After distributed k-means converges, the algorithm
continues with updating the values of the clusters (line 16), calculating the
summary and the mapping function (lines 17, 18) and finally reports the
summary for each timestamp (line 19). Figure 4.7 shows an overview of
the spark functions that were used to implement the distributed k-means
that are described in algorithm 7 (lines 6-15).

1 1 Algorithm 8 describes the distributed version of algorithm 3.
The algorithm can be divided in three parts. The first part, in line 4 (Al-
gorithm 9), describes the distributed version of clustering the input points
to the micro-clusters. Line 5 refers to the maintenance algorithm (Algo-
rithm 6) and finally, line 6 describe the distributed version of clustering
the micro-clusters to the supernodes. At the end of each timestamp, the al-
gorithm reports the mapping function and the summary graph (lines 7, 8).
In Algorithm 9 we create the RDD from the input points ( 1) that are clus-
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Algorithm 10: Clustering µC to C
1 µC-pointsRDD ← sc.parallelize((µC[i].coords, µC[i].F ) for i in

range(q))
2 centrold ← random(µC.centroid,k)
3 while biggest shift > cutoff do
4 µC-pointsassign ← µC-pointsRDD.map(lambda x:

C-kmeans(x, centrold)
5 centr ← µC-pointsassign.reduceByKeyLocally()
6 biggest shift ← diff(centr,centrold)
7 centrold ← centr
8 population ← For each cluster sum µC.F vectors
9 C ← update C from the centr and the population

tered to the micro-clusters using a modified k-means (lines 2- 8). Next, in
Algorithm 10 we create the RDD from the micro-clusters in line 1, that
are finally clustered to the supernodes (lines 2- 9).

4.5 Experimental Evaluation

4.5.1 Datasets and Experimental Setup
For our experiments we use a dataset extracted from the Twitter hashtag
co-occurrences, Yahoo! Network Flows Data,2 and a synthetic dataset.
Based on them we create 13 different datasets of various sizes and densi-
ties for 16 consecutive timestamps, which are summarized in Table 5.2.

Twitter hashtag co-occurrences. We collect all hashtag co-
occurrences for December 2014 from Twitter that included only
Latin characters and numbers. Each hashtag represents a node of the
graph and the co-occurrence with another hashtag denotes an edge of the
graph. A large fraction of the hashtags appears in the dataset only few

2https://webscope.sandbox.yahoo.com/catalog.php?datatype=g
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Table 4.1: Dataset names, number of nodes N , number of edges M , and
density ρ.

Graph N M ρ

Synth2kSparse
2005

2522874 0.08
Synth2kDense 4257061 0.10
Synth4kSparse

4023
10646970 0.08

Synth4kDense 16537369 0.10
Synth6kSparse

6015
23505535 0.08

Synth6kDense 37415417 0.10
Synth8kSparse

8243
43979220 0.08

Synth8kDense 68386928 0.10

Twitter7k 7493 15698940 0.03
Twitter9k 9683 19380438 0.02
Twitter13k 13755 24981361 0.01
Twitter24k 24650 36015735 0.007

NetFlow 250021 7882015 1.576E-5

times during the entire month, making it extremely sparse. Therefore,
we introduce a minimum threshold of appearances of the hashtags
during the entire month. By changing the value of the threshold (20 000,
15 000, 10 000, 5 000) we obtain four different datasets with varying
sizes and densities: Twitter7K, Twitter9K, Twitter13k, and Twitter24k,
respectively (Table 5.2). We collect data for 16 days and separate it
according to the day of publication in 16 consecutive timestamps. The
edges of the graph are weighted and represent the number of times that
two hashtags co-occurred in a day, normalized by the maximal number
of co-occurrences between any two hashtags each day.

Yahoo! Network Flows Data. Provided by Yahoo Webscope for Graph
and Social Data, this dataset contains communication patterns between
end-users. The nodes of the graph are the IP-addresses of the users and
the weights on the edges are the normalized value of the sum of octets that
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Algorithm 11: Synthetic Data
input : approximate number of nodes n, number of clusters C,

number of timestamps w, sparsity of the dataset sparsity
output : Tensor

1 foreach i ∈ range(C) do
2 Ni← random(n−0.4n

C
, n+0.4n

C
)

3 N←
∑
Ni

4 Tensor ← initialize with 0
5 foreach i ∈ range(C) do

//Puts weights to the intra-cluster edges
6 Ci ← random.uniform(0.4, 0.8)
7 foreach j ∈ range(t) do
8 Ci ← Ci + (−1)j∆
9 edgesCi

← create intra edges(Ni, Ci, j, 0.01)
10 Tensor ← Tensor[j].update(edgesCi

)

11 foreach i ∈ range(C) do
//Puts weigh to the inter-cluster edges

12 connectionsCi
← random.int(0, C

sparsity
)

//Number of connections of each cluster with the rest
13 map[i] ← random(range(C), connectionsCi

) //Dictionary
with connections between clusters

14 foreach j ∈ range(t) do
15 edgesCi

← inter edges(map[i], 0.001)
16 Tensor ← Tensor.update(edgesCi

)

17 return Tensor

have been exchanged between the nodes. The data are separated in files
of 15-minute intervals. For our experiments we use the first 16 files from
8:00 to 11:30 of the 29th of April of 2008, to create our 16 consecutive
timestamps. In our dataset we include only IP-addresses that appear at
least 100 times.

Synthetic Data. To evaluate the scalability of our methods, we create a
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Figure 4.8: Synthetic Dataset represented as a tensor. We create clusters
in the tensor to simulate frequent communication patterns for nodes inside
the same cluster and rare or no-communication patterns between nodes of
different clusters.

synthetic data-generator that can produce data with varying size, struc-
ture, and density. The synthetic dataset is a 3-order tensor T ∈ [0, 1]NNw,
where N corresponds to the number of nodes of the dynamic graph and
w is the total number of timestamps that we produce. To simulate the
dynamic graph we need to take into account that each node can have fre-
quent, rare or no communication with the rest of the nodes of the graph.
The weights of the edges of the nodes with high communication will be
higher than for those with rare communication. For the nodes with no
communication, the edge weight will be zero. To simulate this behavior,
we create clusters in the tensor T as shown in Figure 4.8. The values of
the intra-cluster edges (areas of the tensor that are highlighted in colors
in Figure 4.8) are high and represent the nodes with the frequent com-
munication. The rest of the values, the inter-cluster edges (white areas in
Figure 4.8), have lower or zero value.

Our synthetic data generator takes as input the approximate number
of nodes N (approximate size of the dataset), the number of timestamps
t, the number of clusters C that exist in the tensor T and the sparsity of
the dataset sparsity (Algorithm 11). The number of nodes that exist at
each cluster C is given by a random number between the values n−0.4n

C

and n+0.4n
C

(Algorithm 11 lines 1, 2). Consequently, the sum of the nodes
that exist in all clusters will approximate the input valueN (Algorithm 11
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line 3). The next step is to create the tensor T and initialize it with zeros
(line 4).

Lines 5-10 of Algorithm 11 describe the computation of the weights
of the intra-cluster edges. For each one of the clusters of the tensor we
choose a random value between 0.4 and 0.8 to assign to the centroid of
the cluster (line 6). At each timestamp the centroid of the cluster moves
to some direction by ∆, and consequently the values of the edges change
as well, so that we produce the dynamic communication patterns on the
resulting graph. The ∆ value is multiplied by (−1)j , where j is the num-
ber of the timestamp, to avoid the movement of the centroids to only one
direction (line 8). To determine the weights of the intra-edges we add
to the value of the centroid of the cluster a random Gaussian noise with
mean 1× 10−2 and a small deviation (line 9). Therefore, the values of the
intra-edges are similar to each other.

Finally, we take care of the inter-cluster communication of the nodes
(lines 11-16). For each cluster we choose with how many of the rest of
the clusters will communicate. This number is the outcome of a function
that returns integers between 0 and C

sparsity
(line 12), where sparsity is

the value that can be tuned to create datasets with different densities. The
weights of the inter-edges get a non-negative random Gaussian value with
mean 0.001 (line 15) and small standard deviation. Therefore, the inter-
edges have zero or very low value weights.

For our experiments we produce eight different datasets. For all the
datasets we set C = 500 and t = 16. We produce datasets of four dif-
ferent sizes by setting the parameter N to 2005, 4023, 6015, and 8243.
Additionally, for each N we produce a sparse and a dense dataset. The
characteristics of these datasets are also presented in Table 5.2.

Experimental Setup. We run all the experiments on 400 cores dis-
tributed across 30 machines, each one having 24 cores Intel(R) Xeon(R)
CPU E5-2430 @ 2.20GHz. The master process runs on a 96GB-RAM
machine, whereas the worker processes on 23 machines with 24GB, 4
with 48GB, 2 with 96GB, and 1 with 192GB of memory. At each worker
node we allocate 12GB of memory which is the maximum amount that
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Figure 4.9: Efficiency results for Twitter13k and NetFlow datasets. The
left plots of (a) and (b) show the execution time for different number of
clusters. The right plots (a) and (b) show the execution time for different
window sizes.

can be used by all applications running on worker nodes. We limit the
amount of memory of each executor process on the worker-nodes to 3GB.
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4.5.2 Efficiency and Scalability

We use kC and µC to summarize Twitter13k and NetFlow datasets and
we report the execution time as we increase the number of supernodes
of the summaries, the length of the tensor window, and the number of
the micro-clusters (for µC). We begin with the µC method and how the
number of micro-clusters affect the efficiency of the algorithm. In the
left plot of Figure 4.10 we report the execution time results for different
number of micro-clusters when we set the number of supernodes equal
to 150 and the tensor window equal to 9. We see that the execution time
increases with the number of micro-clusters. From this plot we notice
that after 400 micro-clusters the execution time increases faster. For the
rest of the experiments we decide to keep the number of micro-clusters,
doubling the number of supernodes.

Figure 4.9(a) shows the results for the Twitter13k dataset as we in-
crease the number of supernodes from 50 to 250 (left plot) and the size
of the window from 3 to 15 (right plot). The plot on the left uses win-
dow size 9 and the results of the execution time refer to the timestamp 8
which is the first one where the entire window is full of adjacency matri-
ces (timestamp 0 is the first timestamp of the algorithm that contains one
non-zero adjacency matrix). Our kC algorithm is always faster than µC
and almost linear with respect to the number of supernodes, whereas the
execution time of µC increases much faster. However, the big advantage
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Figure 4.11: Reconstruction error results for Twitter13k and NetFlow
datasets. The left plots of (a) and (b) show the reconstruction error for
different number of clusters. The right plots of (a) and (b) show the re-
construction error for different window sizes.

of our µC is shown on the right plot of Figure 4.9(a) where we compare
the two methods while we increase the size of the window. Although kC
is faster than µC, we see that it fails to execute for large windows (greater
than 9) due to the linearly-increasing memory requirements. This shows
the advantage of µC, which can produce results even when the size of
the window increases to 15, since its memory requirements increase sub-
linearly. Figure 4.9(b) shows the results for NetFlow data. In this case
µC is always faster than the kC algorithm due to the much larger fraction
of N/q than in the Twitter13k. Therefore, the overhead of µC due to the
intermediate step of micro-clustering is not noticeable whereas the over-
head from the increasing the number of nodes reduces the efficiency of
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Figure 4.12: Scalability: (a) execution time results for different sizes of
Twitter data (Twitter7k, Twitter9k, Twitter13k, Twitter24k); (b) execution
time for the synthetic datasets.

the kC algorithm.

The last set of quantitative experiments present the scalability of both
algorithms for different number of nodes and for different graph densi-
ties. For these experiments we use the different versions of Twitter and
synthetic datasets. Figure 4.12(a) shows that the kC method is always
faster than µC but fails for the Twitter24k dataset due to its high memory
requirements. However, we cannot give definitive trends on the scala-
bility of the two algorithms since the different versions of the Twitter
datasets have different densities. Figure 4.12(b) shows the execution time
using synthetic datasets of two different densities and four different graph
sizes. In both, sparse and dense datasets, kC is always faster than µC.
Moreover, the difference in execution time between the two methods in
the dense sets is much larger than in the sparse case.
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4.5.3 Reconstruction Error

We compute the reconstruction error, which represents the sum of the dif-
ferences of the weights of the edges between the original graph and what
can be reconstructed from the summary graph, according to Equation 4.3.
Figure 4.11(a) shows the results of the reconstruction error for Twitter13k
dataset while we increase the number of supernodes (left plot) and the size
of the window (right plot). In both plots the reconstruction error of the
kC method is decreasing while we increase the number of supernodes and
the size of the window. The reconstruction error of µC is always smaller
but it is not always decreasing when we increase the number of clusters or
the size of the window. This is due to the micro-cluster structure, which
allows the input nodes to enter different micro-clusters at each timestamp
and therefore spikes on the behavior of the communication patterns of the
input data are reflected on the summary. On the other hand, kC allows
spikes of input data to be smoothed during the window and not be noticed
in the reconstruction error (right plot of Figure 4.11(b)). Finally, the re-
construction error decreases as we increase the number of micro-clusters
while keeping fixed the number of supernodes (right plot of Figure 4.10).

4.5.4 Queries

We now test our methods on approximately answering interesting queries
from the generated summaries. While our framework is general in nature,
here we focus on a specific class of queries that consider the tensor as a
probabilistic data structure. Moreover, we focus on queries having a time
component which can be expressed as a sliding windowing operator.

A probabilistic (or uncertain) graph G = (V,E, p) is an undirected
graph associated with a function p : E → [0, 1] associating each edge
e with a probability p(e) that the edge exists in the graph. We examine
three problems in this setting: edge density, node degree and number of
triangles on a time window W = [1, w].
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Edge density. Given two subsets of vertices S1 ⊆ V and S2 ⊆ V ,
where |S1 ∩ S2| = 0, the expected edge density E[ES1,S2 ] between S1 and
S2 is defined as the normalized sum of the probabilities between the two
subsets

E[ES1,S2 ] =
E[|{(u, v) ∈ E : u ∈ S1, v ∈ S2}|]

|S1||S2|
.

Clearly, if S1 and S2 are singletons (i.e, S1 = {u} and S2 = {v}), then
E[ES1,S2 ] reduces to the edge probability p(u, v).

This quantity can be easily generalized to the setting considered in
this chapter, i.e., a tensor AWG , by considering the expectations over the
window W = [1, w]:

E
W

[ES1,S2 ] =

∑W
t=1 E[|{(u, v) ∈ Et : u ∈ S1, v ∈ S2}|]

w|S1||S2|

which is equal to:

E
W

[ES1,S2 ] =

∑w
t=1

∑
∀u∈S1,∀v∈S2

AGt(u, v)

w|S1||S2|
.

The same query in the summary graph is defined as

E
W

[ES1,S2 ] =

∑
∀u∈S1,∀v∈S2

AG′
t
(s(u), s(v))

|S1||S2|
,

where AG′
t

is the adjacency matrix of the summary of the tensor window
AWG , and s is the mapping function from nodes to supernodes.
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Node degree. Given a subset of vertices S ⊆ V the expected node de-
gree is defined as E[DS ] of the nodes of S:

E[DS ] = E[|{(u, v) : u ∈ S, v ∈ V }|],

which in the case of the window W = [1, w] over a tensor AWG is defined
as :

E
W

[DS ] =

∑W
t=1 E[|{(u, v) : u ∈ S, v ∈ V }|]

w

which is equal to:

E
W

[DS ] =

∑w
t=1

∑
∀u∈S,∀v∈V

AGt(u, v)

w
.

The same query is defined for the summary graph as:

E
W

[DS ] =
∑

∀u∈S,∀v∈V

AG′
t
(s(u), s(v)),

Probabilistic triangles. Given a tensor AWG over a time window W we
define a triangle a triplet of vertices {u, v, z} ∈ V iff each of the three
edges e1 = (u, v), e2 = (v, z), e3 = (u, z) exists in at least one timestamp
of W . The probability that the edge e1 exists in at least a timestamp of W
is

P (e1,W ) = 1−
∏
t∈W

(1− AGt(e1)).

Then we can define the probability of the triplet of vertices {u, v, z} being
a triangle as:

Ptriangle(u, v, z) =
3∏
i=1

P (ei,W ),
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Table 4.2: Edge Density query for different size of S for k =150, w
=9 and timestamp = 9 of Twitter13k. We present statistics of the rela-
tive results (Result in the summary graph

Result in the original graph ) and the relative average execution time
(Execution time in the summary graph

Execution time in the original graph ) when we execute the same query 105 times.

Method |S| min max mean median σ time

kC 20 0.001 3183.12 14.64 5.06 46.10 0.05
µC 20 0.001 2644.6 10.33 3.97 28.61 0.05

kC 200 0.02 11.39 1.63 1.49 0.92 0.05
µC 200 0.017 6.82 1.12 1.03 0.62 0.05

kC 2000 0.41 2.24 1.04 1.03 0.21 0.06
µC 2000 0.27 1.49 0.71 0.70 0.15 0.06

and therefore the expected number of triangles in the tensor AWG is:

∑
∀u,v,z∈AGt

Ptriangles(u, v, z).

Results. We execute the queries edge density and node degree for three
different sizes of samples S of the Twitter13k dataset. For each size of
sample we execute the same query 105 times, each one using a differ-
ent random sample of nodes. For both methods the results of all execu-
tions are normalized over the corresponding results of the query applied
on the original graph, i.e. Value of query in the summary graph

Value of the query in the original graph . From the 105 re-
sults for each query and sample size, we report the minimum, maximum,
mean, median and the standard deviation of the normalized results for
both methods. The last column presents the relative average execution
time i.e. time of query in the summary graph

time of query in the original graph .
In Table 4.2 we present the normalized results for the query edge den-

sity. We see that as the sample size increases the fraction of the median
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Table 4.3: Node Degree query for differen size of S for k =150, w
=9 and timestamp = 9 of Twitter13k. We present statistics of the rela-
tive results (Result in the summary graph

Result in the original graph ) and the relative average execution time
(Execution time in the summary graph

Execution time in the original graph ) when we execute the same query 105 times.

Method |S| min max mean median σ time

kC 10 0.03 93.519 2.32 1.72 2.31 0.5
µC 10 0.02 34.44 1.62 1.25 1.49 0.5

kC 100 0.14 6.22 1.34 1.29 0.63 0.17
µC 100 0.08 3.40 0.92 0.89 0.43 0.17

kC 1000 0.43 2.12 1.04 1.03 0.22 0.5
µC 1000 0.30 1.42 0.71 0.70 0.15 0.5

value decreases importantly. For sample size S = 20 the results of the
original graph are 5 times smaller than the results on the summary graph
for method kC and 3.9 for µC. However, for sample size S = 200 and
S = 2000 the fraction decreases to 49% and 3% for kC and between 30%
and 3% for µC. The relative execution time is between 0.05 and 0.06,
which means that the query in the summary graphs run 95% faster than
the queries in the original graph for both methods. The average execution
time for the sample size S={20, 200, 2000} is {0.02, 0.2, 23} seconds for
the original graph and for both methods kC and µC {0.0001, 0.01, 1,5}
seconds.

In Table 4.3 we present the results for the query node degree. As the
set size S = {10, 100, 1000} increases, the fraction of the median value
decreases from 72% to 3% for kC and between 11% to 30% for µC. The
relative execution time, as described above, is between 0.5 and 0.17 which
means that the query on the summary graph for both kC and µC run 50%
to 83% times faster than on the original graph. The average execution
times on the original graph for S = {10, 100, 1000} are {0.0009, 0.02,
0.08} seconds and {0.0005, 0.005, 0.05} seconds for the summary graphs
for both methods.
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Table 4.4: Results for the probabilistic triangles query for k = 500, w =
9 and t = 9. Query results on the original graph and on the summaries
for kC and µC.

Graph Query Result
Original kC µC

Synth2kSparse 17843.99 19373.60 14380.57
Synth4kSparse 185890.24 204059.95 214144.52
Synth6kSparse 634455.22 705767.37 755808.25

Table 4.5: Relative error of the kC and µC with respect to the original
graph query result of Table 4.4.

Graph Relative error
|orig.−kC|

orig.
|orig.−µC|

orig.

Synth2kSparse 0.08 0.19
Synth4kSparse 0.09 0.15
Synth6kSparse 0.11 0.19

Tables 4.4, 4.5 and 4.6 shows summarized results for the query prob-
abilistic triangles. In Table 4.4 we report the results of the queries in the
original graph and in the two summaries that are produced by kC and µC.
We also report the relative error between the original and the summary
result in Table 4.5 and, finally, the computation time for the calculation of
the query in Table 4.6. For our experiments we use the entire graph so that
we do not alter any of the properties of the graphs which are important for
the calculation of the triangles. Due to the computational complexity of
the query on the original graph, we could not calculate it on the real-world
data, but only for the smaller of the synthetic datasets. The execution time
is two orders of magnitude faster when computing the query on the sum-
mary graphs and the relative error of the queries remain very small for
both methods. In particular, kC has always smaller relative error which
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Table 4.6: Computational time on the original and on the summaries
graphs for kC and µC (k = 500, w = 9 and t = 9), for the probabilistic
triangles query.

Graph Computation time (sec)
Original kC µC

Synth2kSparse 30878 174 181
Synth4kSparse 257124 175 171
Synth6kSparse 900939 171 170

takes values between 0.08 and 0.11.

4.6 Discussion
In this chapter we propose two methods for temporal graph summariza-
tion in dynamic graphs. The first method, kC, based on clustering is fast
but memory expensive. In order to avoid the recomputation of the en-
tries that remain the same as in the previous timestamp, we propose µC,
a method that keeps statistical information of the previous computations
in an intermediate step and uses this information for the clustering. Al-
though µC is effective for very large windows, where kC fails to exe-
cute due to memory requirements, it is much slower than kC. However,
this does not hold in the case of very large graphs, where the overhead
of increasing number of data in the tensor reduces the efficiency sig-
nificantly in the kC method. Additionally, in µC, when the fraction of
input N

q
is increasing, the overhead due to the intermediate step is signifi-

cantly reduced. Both methods have small reconstruction error, which can
be demonstrated in the query results. Both methods produce summaries
that can be used to accurately respond graph queries orders of magnitude
faster than in the original graph.
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CHAPTER 5

TEMPORAL
COMMUNITY SEARCH

5.1 Introduction

Finding substructures of a graph that connect vertices of interest is a fun-
damental graph mining problem. These substructures help us understand
the dynamics of the relationships that exist among these vertices. To un-
derstand the importance of the problem, we can consider, for instance,
a research collaboration network, where we can study the dynamics be-
tween a specific set of researchers. Studying these dynamics, we can
additionally find other collaborators that form part of these dynamics and
participate in the pathways with them. The problem can have various
applications in friendship recomendation, control of infectious disease,
semantic expansion and more.

This problem is already studied for the case of static graphs under
different names. Formally, we want to fin connected component that con-
nects all query vertices of a graph G = (V,E) and optimizes an objective
function. Depending on the application and the objective function, the
problem can take various names, e.g., community search, seed set expan-
sion, connectivity graphs, etc. In most of the cases, the connectedness
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requirement can force an outlier vertex to enter the connected component
and therefore, the solution can end up being very large and not very infor-
mative.

Although the problem is well known and studied under different vari-
ations, most works, so far, focus on static networks. However, many of
the networks of interest carry time information which can be very impor-
tant for understanding the dynamics between the vertices. For instance,
interactome, which is the set of molecular interactions in a cell, can be
modeled as a network, in which the vertices are proteins and through their
connections can perform biological functions. The connections between
the proteins are not constantly active, and therefore a dynamic analysis is
more appropriate for understanding properly this complex network [95].
In communication networks, for example, the edges represent correspon-
dence between two actors of the network. If a user A communicates with
a user B at some time t0 and later in time, the user B communicates with
a user C the flow of information can pass from user A to user C, but not
in the opposite direction. Therefore, we see that the time ordering plays
an important role to the correctness of the solution.

In this work, we formally introduce the problem of community search
in dynamic networks with adaptive query updates. Our objective is to
find a temporal connector that includes all the vertices of interest. This
temporal connector, connects the vertices with communication paths that
should be seen as paths both in space (i.e., network structure) and in time
(i.e., network evolution). In this chapter, we use the bi-objective notion of
path that considers both space and time that was introduced in Section 3.3.
Based on this notion of shortest path, we propose a novel temporal Steiner
connector, which is very sensitive to the observation interval and to the
parameter that governs the importance of space and time. Based on this
connector we identify the community of interest, by removing greedily
the vertices of the connector until we optimize our objective function. Our
objective function, based on the notion of network inefficiency introduced
by Ruchansky et al. [104], is further extended to capture the temporal
activity of the vertices.

Since the network changes constantly in time, we expect that the con-
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nectors evolve as well. Therefore, it is natural that the query set is en-
riched during the evolution, with new vertices, that formed part of the
solution of the previous time instances. As long as the added vertices re-
main related to the initial query set, they are maintained to it. Otherwise,
they are removed from the query set. In this way, the connector becomes
more dense in time. We call this problem temporal adaptive community
search.

The approach developed in this chapter starts with a graph transfor-
mation that flattens the temporal graph while maintaining the temporal
information. We continue with computing the transitive closure of the
transformed graph, which is an requirement for computing the Steiner
connector. However, this process is computationally intensive and can be
a serious bottleneck for the scaling of our proposed algorithms in large
graphs. For this reason, we devise a distributed algorithm in Apache
Spark 1 that exploits the lazy evaluation of the Spark framework and com-
putes the transitive closure of each pair only when it is necessary.

The contributions of this chapter can be summarized as follows:

• We use the definition of shortest-fastest paths (SFPs) introduced
in Section 3.3, that combines spatial length and temporal duration,
based on which we define a new distance measure for temporal
paths.

• Next we extend the definition of network inefficiency to its temporal
setting and we define the problem of adaptive community search
over a static temporal window defined over a dynamic graph G.

• Based on the adaptive community search in static temporal win-
dows, we further extend our problem definition to the sliding win-
dow setting and to the adaptive query update.

• We devise a distributed implementation for computing the temporal
connector in Apache Spark for higher efficiency and scalability.

1https://spark.apache.org/
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• We provide experimentation on real world dynamic networks and
we present several case studies.

The rest of the chapter is organized as follows. We formally introduce
the problem in Section 5.2 and we discuss our solution in Section 5.3. In
Section 5.4 we present the evaluation of our proposed model and we fi-
nally provide a discussion of our methods and main results in Section 5.5.

5.2 Spatio-temporal Inefficiency and Adaptive
Community Search

5.2.1 Static Network Inefficiency

Given a simple undirected graph G = (V,E) we denote with G[S] the
subgraph induced by the subset of vertices S ⊆ V , i.e. G[S] = (S,E[S])
where E[S] = {(u, v) ∈ E|u, v ∈ S}. A very natural measure of
the cohesiveness of a subgraph G[S] is the total shortest-path distance
dG[S](u, v) between every pair of vertices u, v ∈ S [104, 105]. Shortest
paths define fundamental structural properties of networks, playing a key
role in basic mechanisms such as their evolution [71], the formation of
communities [45], and the propagation of information; e.g., betweenness
centrality [12], defined as the fraction of shortest paths that a vertex takes
part in, is a measure of the extent to which an actor has control over infor-
mation flow in the network. One issue with shortest-path distance is that
it is enough to have one disconnected vertex to have an infinite measure.
A simple yet elegant workaround to this issue is to use the reciprocal of
the shortest-path distance [84]; this has the useful property of handling
∞ neatly (assuming by convention that∞−1 = 0). This is the idea at the
basis of network efficiency, a graph-theoretic notion that was introduced
by Latora and Marchiori [74] as a measure of how efficiently a network
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Figure 5.1: Example of a dynamic graph in three consecutive timestamps
(left to right) and its equivalent static graphs (OR and AND).

G = (V,E) can exchange information:

E(G) =
1

|V |(|V | − 1)

∑
u,v∈V
u6=v

1

dG(u, v)
.

Finding the subgraph G[S] with S ⊇ Q that maximizes network effi-
ciencyis unfortunately, is meaningless. In fact, as shown in [104], the
normalization factor |V |(|V |−1) allows vertices totally unrelated to Q to
be added to improve the efficiency. For this reason Ruchansky et al. [104]
introduce the notion of network inefficiency defined as

I(G) =
∑

u,v∈V,u6=v

1− 1

dG(v, u)
. (5.1)

We next extend this notion to temporal dynamic networks.
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Table 5.1: Length of shortest paths and shortest fastest paths between
vertices u, v in the static graphs (OR and AND) and temporal graph.

u v dORG (u, v) dANDG (u, v) dGW
(u, v) dGW

(v, u)

1 2 1 1 α α
1 3 2 2 2α 2α
1 4 3 ∞ 3α 3α
1 5 4 ∞ 4α 4α
1 6 4 ∞ ∞ 2α + 2
2 3 1 1 α α
2 4 2 ∞ 2α 2α
2 5 3 ∞ 3α 3α
2 6 3 ∞ ∞ α + 2
3 4 1 ∞ α α
3 5 2 ∞ 2α 2α
3 6 2 ∞ ∞ 2
4 5 1 1 α α
4 5 1 ∞ α α
5 6 1 ∞ α α

5.2.2 Temporal Network Inefficiency
Let us now consider the temporal model described in Section 3.3. The
temporal path consists of a sequence of timestamped vertices. It is worth
noticing that in a dynamic graph, even if undirected, the shortest-path
distance between a pair of vertices is no longer symmetric, due to the no-
tion of temporal path. As we have already mentioned in Section 3.3,
the distance between two vertices is defined as the cost of the short-
est fastest path between the two vertices, i.e., dG(u, v) = L(p∗(u, v)),
where p∗(u, v) = argmin L(p(u, v)). Additionally, we notice that while
dG(u, v) ∈ [1,∞] in the static case, with our definition of temporal paths,
the minimum value that dG(u, v) can take is α.

Example 5.1. Consider the example of Figure 5.1. The first three graphs
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Figure 5.2: Minimum inefficiency subgraphs in window graphs. On the
up part of the figure we see the window graph for W = [t0 − (|W | −
1), t0]: (a) a window graph, (b) query vertices Qt0 marked with blue in
the window graph and added vertices marked with gray. On the down
part of the figure we see the window graph for W = [t1 − (|W | − 1), t1],
i.e., the following timestamp. Graph (c) shows the minimum inefficiency
subgraph when we use the adaptive query set selection, whereas graph (d)
shows the subgraph when the query set remains equal to Qt0 .
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show the three consecutive timestamps of a dynamic graph. The path
between vertices 6 and 1 can be materialized in three timestamps through
the edge (6, 4) in timestamp 0, and the edges (4, 3), (3, 2) and (2, 1) in
timestamp 2. However, the path p(1, 6) does not exist, because there is no
time respecting sequence of edges.

The last two graphs, represent the static version of the dynamic graph
of the first three snapshots. The static graph OR represents the graph
that contains an edge between a pair of vertices, if there is at least one
timestamp in which the edge exists. On the other hand, the AND static
graph, contains an edge between a pair of vertices if this edge exists in
all timestamps of the dynamic graph.

Now let us look Table 5.1. The first two columns show the differ-
ent vertices of the graph for which we calculate their distance. The two
middle columns represent distances in the static graphs OR and AND,
respectively, and finally, the last two columns represent distances between
two vertices in both directions, calculated according to Definition 3.2. We
notice that the distances between two vertices can vary significantly in the
four cases. Let us take vertex 2 and 6. The distance in the OR graph is
3, whereas in the AND graph is∞. Finally, dGW

(2, 6) = ∞, whereas,
dGW

(6, 2) = α + 2 since p(6, 2) = 3 and it expands in 2 timestamps.
Therefore, the SFP will have length 3α+ 2(1− a) = α+ 2, according to
Definition 3.2.

Now let us extend the definition of the network inefficiency in static
graphs to dynamic graphs.

Definition 5.1 (Temporal Network Inefficiency). Given a window graph
GW = (VW ,EW ) we define its inefficiency as

I(GW ) =
∑

u,v∈VW ,u6=v

(1− α
dGW

(v,u)
) + (1− α

dGW
(u,v)

)

2
.

Definition 5.1 differs from Equation 5.1 in two main points. The first
is that it uses reciprocal of the distance between two vertices, multiplied
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by α. This is to keep the values of the inefficiency in the interval [0, 1], as
in the static case, since as we mentioned before, the minimum length of
a temporal path is α. The second change, is due to the asymmetry in the
distance of the temporal path between two vertices. Therefore, for each
pair of vertices, we calculate the inefficiency that introduce in the network
by considering the distance of both directions of the path.

Example 5.2. The inefficiency of the static graphs, given the values of the
lengths of the shortest paths in the third and fourth column of Table 5.1
and according to Definition 5.1 is 11

2
for the OR graph and 23

2
for the

AND graph. In the case of the dynamic graph, the temporal inefficiency
according to Definition 5.1 and the lengths of the SFPs (columns 5 and 6
of the table) is 79

12
+ α3+6α2+6α

4(α+1)(α+2)
.

Now let us focus in the value of the inefficiency of the dynamic graph.
From the definition of shortest-fastest paths (Definition 3.1) we have that
the parameter α takes values between 0 and 1 and that the value of it
regulates the importance of the spatial and the temporal dimensions of
the temporal path. When α is closer to 1 the temporal dimension is close
to 0, whereas, when α is closer to 0 the temporal dimension is closer to
1. Accordingly, the inefficiency of the dynamic graph when α = 0 is 6.6,
whereas, when α = 1 the temporal inefficiency is 11

2
which is equal to the

inefficiency of the static OR graph.

Definition 5.2. Given a window graph GW = (VW ,EW ), and a set of
vertices S ⊆ VW let GW [S] be the subgraph of the window graph GW in-
duced by S : GW [S] = (S,EW [S]) where EW [S] = {(u, v) ∈ EW |u, v ∈
S}.

Example 5.3. Figure 5.2(a) shows a window graph defined in a window
W = [t1−(|W |−1), t1]. Let us suppose that there is a set of vertices in the
window graph that we want to study, i.e., a query set Q. In the example of
Figure 5.2 we set as query set Q = {v2, v3, v5, v7, v10, v11, v16, v19} and
we mark it with blue color in Figure 5.2(b). Our objective is to find a
subgraph of this window graph, that contains the query set Q and at the
same time that minimizes the temporal inefficiency.
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Problem Statement. Given a set of query nodes Q ⊆ VW we need
to find a window subgraph GW [S] = (S,EW [S]), where Q ⊆ S that
minimizes the network inefficiency.

5.2.3 Static Window Case
Let us suppose that the graph window W is static and defined in an inter-
val [ti − (|W | − 1), ti], with ti ∈ T . We next define formally the problem
for the static window case.

Problem 5.1. [Static window case] Given a window graph GW =
(VW ,EW ), a parameter α ∈ [0, 1] and a query set Q ⊆ VW , find the
minimum inefficiency window subgraph:

H∗ = argmin
GW [S]:Q⊆S⊆VW

I(GW [S]).

5.2.4 Sliding Window Case
Let us now consider the case of a sliding window W = [t − (|W | −
1), t] with t ∈ T , which is a window with predefined length |W |. In this
setting, the timestamp t is increasing continuously in time and therefore,
the window W is updated with the last snapshot of the graph, while it
removes the most obsolete. At every timestamp t the window can be
considered as a static window and therefore, the problem can be induced
to Problem 5.1.

At every timestamp, the temporal community that is computed, con-
tains vertices that do not exist in the query set. These vertices form part
of the community and, thus, it makes sense to include them in the query
set of the next timestamp. However, if the added vertices do not form part
of the solution at some future timestamp, they can be removed from the
query set.

Problem 5.2. [Sliding window case] Given a set of queries Qt0 ⊆ VW , a
window length |W |, a parameter a ∈ [0, 1] and a timestamp t ∈ T that
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increases continuously in time, compute the minimum inefficiency window
subgraph H∗ = (VH ,EH) of the window graph GW = (VW ,EW ) defined
by the window W = [t − (|W | − 1), t] as described by Problem 5.1.
Additionally, compute the query set Qt+1, where Qt+1 = {v ∈ VH |∃u :
(v, u) ∈ EH ∨ (u, v) ∈ EH}

⋃
Qt0 .

According to Problem 5.2, in the sliding window case, we calculate
the minimum inefficiency subgraph of a window graph, given an initial
set of query nodes Qt0 . The vertices that are included in this subgraph
will form the query set of the next round. In case that some vertex is an
outlier and it is not contained in the initial query setQt0 it will be removed
from the query set of the next round.

5.3 Algorithms
In this section we introduce our method for computing the minimum inef-
ficiency dynamic subgraph, given as input a window graph GW , a set of
query vertices Q, and a user-defined parameter α ∈ [0, 1]. To this end, we
need to compute a dynamic connector HW that connects all of Q in the
window W and then iteratively remove non-query vertices, as long as, by
removing them, the inefficiency is reduced.

Our approach consists of three phases. In the first phase we initially
transform the dynamic graph (inspired by [56]), defined by the graph win-
dow, to a static graph by linking the various replicas of the same vertex
in different timestamps and appropriately weighting these edges and the
original edges. The graph transformation algorithm is an extension of
the general graph transformation algorithm (Algorithm 1) which is de-
scribed in Section 3.3. Afterwards, we compute the transitive closure of
the transformed graph which will be used in the next phase. In the second
phase, we compute the dynamic Steiner tree with the minimum cost that
connects all query vertices of Q in the window W . For this we use the
notion of shortest-fastest paths and we employ the graph transformation
to efficiently compute the minimum Steiner tree. Following, we extract
the dynamic connectorHW , that is induced by the minimum Steiner tree.
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Figure 5.3: Example of a window graph GW with |W | = 2 (left), its cor-
responding transformed graph G′ according to the general graph transfor-
mation algorithm (Algorithm 1) described in Section 3.3.

In the final phase, starting from the subgraph computed in phase two, we
find the minimum inefficiency dynamic subgraph by applying a greedy
relaxing algorithm. Next, we describe formally and in detail the three
phases of our approach.

Phase 1: Graph Transformation. Given a window graph GW =
(VW ,EW ), a user defined parameter α and a query setQ, we transform the
graph GW to a static, directed and weighted graph G′(V ′, E ′, r), where r
is the weighting function, as follows:

• Vertices: for each t ∈ W , v ∈ Vt we create a vertex id as a pair
vertex-timestamp (v, t), i.e., {(v, t) : t ∈ W, v ∈ Vt}. These
vertices are the timestamped versions for vertex v in the trans-
formed graph. Additionally, for each vertex q ∈ Q we create a
dummy destination vertex (q,−1). Finally, we maintain the ver-
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Figure 5.4: Extended graph transformation of the window graph shown
in Figure 5.3. Given a query set Q = {0, 5} we see on the left part of
the figure the addition of the source dummy vertices. On the right part of
the figure we see the addition of the dummy destination vertices. Starting
from the dummy source vertex 0, we additionally show the computation
of shortest-fastest paths, according to α (left) and the transitive closure
computation process (right).

tices {q ∈ Q} which represent our dummy source vertices. We
have V ′ = {(v, t) : t ∈ W, v ∈ Vt}

⋃
{(q,−1)q ∈ Q}

⋃
{q ∈ Q}.

• Edges: for each v ∈ V and each pair of timespans ti, tj ∈ W
with tj = min{t : (v, t) ∈ V ′, t > ti}, we create a directed edge
((v, ti), (v, tj)) with weight (tj− ti)(1−α). These edges (temporal
edges) connect the timestamped versions of each vertex with the
appropriate weight. The edges in EW (static edges), are instead
assigned a weight of α. For each t ∈ W we create the weighted
static edges {((v, t), (u, t), a) : ∃(v, u) ∈ Et}. For each dummy
source vertex q ∈ Q we create directed edges with zero weight that
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Algorithm 12: GraphTransformation
input : VW =

⋃
i∈W Vi, EW =

⋃
i∈W Ei, α, Q, Q′, W

output : Transformed graph G′

1 V ′ ←
⋃
{(v, t) : v ∈ Vt, t ∈ W} //vertex renaming

2 E ′ ←
⋃
{((v, t), (u, t), α) : v, u ∈ Vt, t ∈ W} //static edges

3 E ′ ← E ′ ∪ {((v, t), (u, t′), (t′ − t)(1− α)) : (v, t), (v, t′) ∈
V ′, t′ = min{ti : (v, ti) ∈ V ′, ti > t}} //temporal edges

4 V ′ ← V ′ ∪Q′ ∪Q //adds dummy source and destination vertices
5 E ′ ← E ′ ∪ {(u, (u, t), 0) : (u, t) ∈ V ′, u ∈ Q} //connect dummy

source vertices
6 E ′ ← E ′ ∪ {((u, t), (u,−1), 0) : (u, t) ∈ V ′, (u,−1) ∈ Q′}

//connect dummy destination vertices
7 return G′ = (V ′, E ′)

connect the dummy source vertex with all its timestamped versions
in V ′. Finally, from all the timestamped versions of each q ∈ Q we
create directed edges with zero weight to the dummy destination
vertex (q,−1).

Figure 5.3 shows the general graph transformation process, described by
Algorithm 1 of Section 3.3, which is extended here. On the left part of
the figures we see the window graph GW defined in a window with length
|W | = 2. Figure 5.4 shows this extension. Let us suppose that our query
set Q consists of vertices with id 0 and id 5. At this point we add a
dummy source vertex for each one of the vertices in Q (marked with red)
and we connect them to their timestamped versions with edges with zero
weight (left part of the figure). Finally, we add the dummy destination
vertices (0,−1) and (5,−1) (marked with blue color) and we connect
each timestamped version of the query vertices with edges of zero weight
(right part of the figure). Algorithm 12 (lines 1- 3) describes the general
graph transformation process. In line 4 we add the dummy source and
destination vertices and in lines 5 and 6 we connect the dummy source
and destination vertices with zero edge weights.

Let us consider now a pair of vertices (u, v) ∈ V × V , and let us
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define P (u, v) = {p((u, ti), (v, tj))|ti, tj ∈ W} the set of all paths from
any replica of u to any replica of v in the transformed graph G′. Let us
also denote `(p) the length of one such path p, i.e., the sum of the weights
of the edges in the path. Thanks to the edge labeling in G′, the following
(straightforward) lemma holds.

Lemma 5.1. A path p on the transformed graph G′ from a replica of u to
a replica of v, corresponds to a valid temporal path p′ from u to v in the
window graph GW , and the length of p in G′ corresponds to the cost of p′

in GW , i.e.,
`(p) = L(p′).

Following this observation, our method aims at computing the transi-
tive closure of the window graph GW which corresponds to the transitive
closure of the transformed graphG′. For this, we compute for each pair of
vertices (u, v) ∈ V × V , the length of the shortest path from any replica
of u to any replica of v (and viceversa), on the transformed graph G′.

Let `∗(u, v) = argmin p∈P (u,v) `(p). We want to compute the length
of the path |SP (u, v)|, where SP (u, v) = {p ∈ P (u, v)|`(p) =
`∗(u, v)},∀(u, v) ∈ V ×V . In order to compute the length of the shortest
path from any replica of u to any other vertex in G′, we create a dummy
source vertex u and connect it to all the replicas of u in G′ by means of
directed arcs with weight of 0. An example of computation of the shortest
path that starts from the vertex with id 0 is shown in Figure 5.4 (right).
In this case we need to concurrently calculate all shortest path from the
vertices (0, 0) and (0, 1). Therefore, we run Dijkstra’s algorithm starting
from the dummy source vertex 0 as source, returning only the length of
the shortest paths to the rest of the vertices of G′.

Theorem 5.1. Running Dijkstra’s algorithm from dummy source vertex u
correctly finds the set of all the shortest paths from any replica of u to a
vertex (v, t) ∈ V ′ .

Proof. First we observe that in a shortest path p(u, (v, t)) there is at most
one intermediate vertex from the set {(u, t′) : t′ ∈ W}, that can by proved
by absurd. Therefore, a shortest path from a dummy source vertex u to
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a vertex (v, t) ∈ V ′ will be p(u, (v, t)) = 〈u, (u, ti), xi..., (v, t)〉 where
xi 6= (u, tj) for any tj ∈ W . Using Bellman Criterion on shortest paths
of static graphs [21], we have that the shortest path from (u, ti) to (v, t)
can be obtained by removing u from the path p(u, (v, t)).

Let us go back to the example of Figure 5.4. In our attempt to calculate
the shortest-fastest path from vertex with id 0 to the vertex with id 5 we
can run some shortest path algorithm starting from the dummy source
vertex 0 of the transformed graph. The algorithm detects a shortest path in
timestamp zero and in timestamp one, with length 3α and α, respectively
(marked in red). Up to this point, vertex (5, 0) and (5, 1) are treated as
different vertices. However, these are the two versions of the vertex with
id 5 and therefore, the algorithm should choose the shortest path among
them which corresponds to the shortest-fastest path. For this, we augment
the transformed graph with a dummy destination vertex (5,−1) and we
connect all the versions of the vertex with id 5 with directed arcs with
zero weight, as shown in Figure 5.4 (right graph). Let us call Q′ the set of
the dummy destination vertices. Algorithm 12 (lines 4- 6) describes the
above process. The shortest path from dummy source vertex u ∈ V ′ to
the dummy destination vertex (v,−1) ∈ V ′ corresponds to the shortest-
fastest path between vertices u ∈ VW and v ∈ VW .

Theorem 5.2. The shortest path from a dummy source vertex u to a
dummy destination vertex (v,−1) on the augmented transformed graph
G′ corresponds to the SFP from the vertex u ∈ VW to the vertex v ∈ VW .

Proof. Straightforward from Lemma 5.1 and Theorem 5.1.

Depending on the value of the parameter α the SFPs between two
vertices can vary significantly. Consider the example of Figure 5.4 (third
graph) and the pair of vertices with id (in the original graph) 0 and 4. The
SFP from vertex with id 0 to vertex with id 4 can come from both times-
tamp zero and one, when α < 0.5 (paths highlighted with blue color).
In this case, there are four SFPs from vertex 0 to vertex 4 all of which
have length 3α. However, if α > 0.5 the SFP will expand to both times-
tamps zero and one (path highlighted with green color) with length 1 +α.
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Finally, when α = 0.5 all the previous paths (blue and green paths) are
SFPs.

Phase 2: Dynamic Steiner Tree. Our next objective is to find a con-
nector HW that connects all vertices of Q. To this end, we compute the
minimum dynamic Steiner tree, from which we induce the dynamic con-
nector HW . But first let us recall the definition of the minimum Steiner
tree in static graphs:

Definition 5.3 (Minimum Steiner Tree in Static Graphs). Let G =
(V,E,w) be a static weighted graph, where V is the set of vertices,
E = {(u, v) : u, v ∈ V } is the set of edges and w : V × V → [0, 1]
is the weighting function of the edges. Given a set of terminal vertices
Q ⊂ V and a root vertex r, we call Steiner Tree T the tree rooted at
vertex r and contains a path from r to every q ∈ Q. We call mini-
mum Steiner Tree T ∗ = (VT , ET ) the Steiner Tree that minimizes the
cost CT =

∑
(u,v)∈ET

w(u, v).

Following, we extend the definition of the minimum Steiner tree to
the case of dynamic graphs:

Definition 5.4 (Minimum Dynamic Steiner Tree). Let us now consider a
window graph GW = (VW ,EW ). Given a set of terminal vertices Q ⊂
VW and a root vertex r ∈ VW , we call dynamic Steiner tree TW , the tree
rooted at r which contains valid temporal paths from r to every q ∈ Q.
We call minimum dynamic Steiner Tree the tree T∗W = (VTW

, ETW
) that

minimizes the cost CTW
= |ETW

|.

According to Lemma 5.1 a dynamic Steiner tree on a window graph
GW corresponds to a static Steiner tree on the transformed graph G′.
Therefore, our objective is to calculate the minimum Steiner tree on the
transformed graph, that connects every q ∈ Q. To this end, we select a
vertex qi ∈ Q as root vertex and as terminals the vertices in Q′ and we
employ a modification of the approximation algorithm described by [56].

Figure 5.5 shows the process described above in order to compute
the minimum Steiner tree with root vertex 0 and terminal vertices Q′ =
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Figure 5.5: Minimum dynamic Steiner trees with terminal vertices
[(0,−1), (4,−1), (1,−1)] rooted at 0. When α > 0.5 the up right is the
minimum Steiner tree. When α < 0.5 the down left and right are both
minimum Steiner trees. When α = 0.5 all three are minimum Steiner
trees.
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[(0,−1), (1,−1), (4,−1)]. We repeat the process, choosing each time a
different root vertex r ∈ Q. Finally, we choose as minimum Steiner tree
T the tree that has the minimum cost among the resulting Steiner trees Tr
with r ∈ Q.

Similarly to the case of SFPs, minimum Steiner trees can vary de-
pending on the value of the parameter α. Figure 5.5 (up right and down
left and right), shows the resulting Steiner trees, with root vertex 0 and
terminal vertices Q′ = [(0,−1), (1,−1), (4,−1)], when varying the value
of the parameter α. The down left and right graph of Figure 5.5 shows the
two minimum Steiner trees when α < 0.5. When α > 0.5, the up right
graph is the only minimum Steiner tree. Finally, when α = 0.5, all three
Steiner trees are minimum Steiner trees.

The last step of phase 2 is the computation of the Steiner connector
which is induced by the minimum Steiner tree T . We have that H =
(VH , EH) where VH = {(v, t)|(v, t) ∈ V ′, ∃tiinW : (v, ti) ∈ T} and
EH = {(v, u) ∈ E ′|v ∈ VH , u ∈ VH}. Finally, the dynamic connector
H = (VH, EH) where VH = {v ∈ VW |∃t ∈ W : (v, t) ∈ VH} and
EH = {(u, v) ∈ EW |∃ti, tj ∈ W : ((u, ti), (v, tj)) ∈ EH}.

Phase 3: Minimum Inefficiency Dynamic Subgraph. In the last phase
of the process, starting with the Steiner connector H , we compute the
minimum inefficiency dynamic subgraph HW . The algorithm, iteratively
removes from the induced sub-graph H all vertices that do not appear
in the query set in a greedy manner and computes their inefficiency. Fi-
nally, it returns the sub-graph that minimizes the inefficiency, which is the
minimum inefficiency subgraphHW .

Algorithm 13 describes phases 1-3. Lines 1 and 2 describe the cre-
ation of the dummy destination nodes and the graph transformation of the
window graph of phase 1. Phase 2 is described in lines 3 to 7. In the
for loop of line 4 we compute the Steiner tree starting from each dummy
source node (query node) with terminal vertices the dummy destination
nodes Q′. The tree Tr that minimizes the cost function among all Tr with
r ∈ Q is chosen as the minimum Steiner tree (line 6) from which we in-
duce the Steiner connector in line 7. Finally, phase 3 is described in lines 8
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Algorithm 13: Minimum Inefficiency Dynamic Subgraph
input : W , Window Graph GW = (VW ,EW ), α, query vertices

Q ⊆ VW

output : Selective connectorHW s.t. Q ⊆ VH ⊆ VW

1 Q′ ← {(u,−1) : u ∈ Q} //dummy destination vertices
2 G′ ← GraphTransformation(VW ,EW , α,Q,Q

′,W ) //Algorithm 12
3 G′ ← Transitive closure of G′

4 for r ∈ Q do
5 Tr ← MinimumSteinerTree(G′, r, Q′)
6 T ← argmin r∈Q cost(Tr) //minimun Steiner tree T = (VT , ET )

7 H ← G′[T ] //Steiner connector H = (VH , EH)

8 i ← 0
9 while VH \ {(u, t) : u ∈ Q} do

10 Hi ← GW [VH ] //dynamic connectorHi = (VHi , EHi)

11 i ← i+ 1
12 for u ∈ {VHi

} do
13 cu ← I(G′[VH \ {(u, t) ∈ VH}])
14 v ← argmin u cu
15 VH ← VH \ {(v, t) ∈ VH}
16 HW ← argmin j∈[0,i] I(Hj)

17 returnHW

to 17. In the while loop of line 9 we compute greedily the inefficiency of
each Steiner connector while we remove each vertex (all the versions of
each vertex) that are not contained in the query set Q. In line 10 we
compute the dynamic connector induced by the static connector H as de-
scribed in phase 2. In the for loop of line 12 we choose the vertex that, by
removing it, minimizes the inefficiency each time. After the while loop in
line 16 we choose the dynamic connector with the minimum inefficiency
and we return it at line 17.
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Sliding window case

Next we will discuss the problem of computing the minimum inefficiency
dynamic subgraph in the sliding window case. In this setting, we consider
an infinite stream of input graphs. At each timestamp the input graph is
the latest snapshot of the dynamic graph, that updates the windowW . The
window W slides one position in order to include the new input and leave
outside the most obsolete snapshot. The process for the computation of
the minimum inefficiency dynamic subgraph continues as described in the
static window case. However, after the computation of the dynamic sub-
graphHt

W , we update the query set for the next round. Qt+1 = Q0

⋃
V t
H.

If the subgraph Ht
W is disconnected, the query set of the next round is

considered to be Q0.

Distributed implementation

For the computation of the Steiner tree as described in [56] it is required
some preprocessing in order to extract the transitive closure of the graph.
For this, it is necessary to employ some computationally expensive algo-
rithm like Floyd-Warshall, with computational complexity O(V 3). The
complexity of the algorithm is high due to the computation of the tran-
sitive closure between all pairs of nodes. This adds to the streaming al-
gorithms computational complexity which is prohibitive for large scale
graph. In order to avoid this step, we exploit the properties of the al-
gorithm and we calculate on the fly the transitive closure between two
vertices in the graph, when this is required. To this end, instead of using
Floyd-Warshall algorithm, we use Dijkstra’s algorithm, and we calculate
the shortest paths from a given source vertex to the rest of the vertices of
the graph.

For the implementation of our algorithms we use the Apache Spark
framework.
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Algorithm 14: MIDS: sliding window case
input : W , α, query vertices Q0 ⊆ VW

output : Selective connectorHW s.t. Q ⊆ VH ⊆ VW , Qt+1

1 GW ← [], V ′ ← ∅, E ′ ← ∅, t← 0
2 while t < rounds do
3 read Gt(Vt, Et) //Read new timestamp
4 V ′←V ′ ∪ {(v, t) : v ∈ Vt} //Vertex renaming
5 V ′ ← V ′ \{(v, ti) : ti = t− (|W |− 2)} //Remove obsolete nodes
6 E ′←E ′ ∪ {((v, t), (u, t), α) : (v, t) ∈ V ′, (u, t) ∈ V ′ and

(v, u) ∈ Et} //static edges
7 E ′←E ′ ∪ {((v, t′), (v, t), (1− α)(t− t′))}, where

t′ = max{ti : (v, ti) ∈ V ′, ti < t} //temporal edges
8 E ′←E ′ \ {((v, ti), (u, tj)) : ti = t− (|W | − 2)} //Remove

obsolete edges
9 V ′ ← V ′ ∪Q′t ∪Qt //adds dummy source and destination vertices

10 E ′ ← E ′ ∪ {(u, (u, t), 0) : (u, t) ∈ V ′, u ∈ Qt} //connect
dummy source vertices

11 E ′ ←
E ′∪{((u, t), (u,−1), 0) : (u, t) ∈ V ′, (u,−1) ∈ Q′t} //connect
dummy destination vertices

12 Q′t ← {(u,−1) : u ∈ Qt} //dummy destination vertices
13 Algorithm 13 lines 3- 16
14 if EH 6= ∅ then
15 Qt+1 ← Q0

⋃
{u ∈ VH : ∃v ∈ VH : (u, v) ∈ EH}

16 else
17 Qt+1 ← Q0

18 reportHW , Qt+1

19 t ← t+ 1
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Table 5.2: Dataset name, number of vertices n, number of edges m, time
span T and temporal granularity.

Network n m T
time

granularity

HighSchool 327 40 896 41 1 hour

DBLP 46 160 377 852 18 1 year

5.4 Experimental Evaluation

5.4.1 Datasets and Environment

We use two real-world dynamic networks summarized in Table 5.2:

HighSchool: This is human contact data available from SocioPatterns
(http://www.sociopatterns.org/) and described in [86]. Ver-
tices represent students of a high school and edges represent face-to-face
contacts of the students of nine classes during 5 days. The data expand in
41 hourly timestamps.

DBLP: This is the co-authorship network of 16 conferences and journals
(VLDB, SIGMOD, ICDE, EDBT, KDD, ICDM, SIGIR, CIKM, WWW,
WSDM, ECIR, ECML, TKDE, TODS, IEEE BigData and Data Mining
and Knowledge Discovery) collected from the DBLP database (http:
//dblp.uni-trier.de/). Each vertex is an author and each edge
represents co-authorship. It contains 18 yearly timestamps that expand
from the 2000 to 2017.

Experimental Environment: We run our experiments in a 3.1 GHz Intel
Core i7 machine with 16 GB of memory. We used local mode Spark exe-
cution with four worker nodes. In each worker we allocate one executor.
For the computation of the Steiner tree we set the recursion depth to 1.

99

http://www.sociopatterns.org/
http://dblp.uni-trier.de/
http://dblp.uni-trier.de/


t = [0,1]

790 452

960 491

t = [11,16]

790

960 491

615

452

790

960
241

615 452

491

893

t = [17,22]

790

960

241

615
452

491

893

t = [18,23]

909

790

960

241

615 452

491

893

t = [19,24]

909

790

960

615 452

491893

t = [20,25]

909

t = [13]

790 452

960 491

615

Figure 5.6: HighSchool dataset. Query set initial marked with blue
color. Query set added marked with red color. Nodes added in the com-
munity are white. Nodes that will be removed in the next timestamp are
marked with light red. Length of window |W | = 6 and α = 0.1. Edges
are timestamped.

5.4.2 Case Studies

Following we present two case studies to which we apply our method.
The first one, shown in Figure 5.6, shows the result of the adaptive com-
munity search, for several timestamps of the HighSchool dataset. In Fig-
ure 5.6 we present the most interesting intervals of the execution. The
initial query set is Q0 = {790, 452, 960, 491} that we use in timestamp 0.
In timestamp 13 the solution contains, apart from the vertices of the query
set, the vertex 615, which is highlighted. From timestamp 14 and on, the
vertex with id 615 is part of the extensive query set and in the figure is
marked with red color. The execution with the extended query set con-
tinues and until timestamp 23 in the solution we have also vertices with
ids 839 and 241 that have been included in the extended query set and are
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Figure 5.7: example DBLP. Query set initial marked with blue color.
Query set added marked with red color. Nodes added in the community
are white. Length of window |W | = 4 and α = 0.1. Edges are times-
tamped.

marked with red. Additionally, the vertex with id 909 is the newest vertex
to have entered in the solution and in the following timestamp will be also
part of the query set. In the timestamp 24, the vertex with id 241, that had
been added in the extended query set, does not have any edge with the rest
of the vertices of the solution. This means that it should be left outside
from the solution and removed from the extended query set. This vertex
is marked with light red in the Figure.

101



35 36 37 38 39
Timestamp

0.0

0.2

0.4

0.6

0.8

1.0

Ja
cc

a
rd

 S
im

ila
ri

ty

Figure 5.8: Jaccard similarity for the communities detected for α = 0.1
and α = 0.9 for HighSchool dataset in five consecutive timestamps. The
window length is set to |W | = 6.

A similar case study is conducted on the DBLP dataset. The initial
query vertices are scientists marked with blue. We see parts of the results
during the period 2000 to 2017. With red are marked the vertices that are
added in the extended query set after being included in the solution in the
previous timestamp. We see that the method identifies dense communities
that include the initial query set and gradually updates the extended query
set with vertices that are included in previous solutions. Finally, when
some of the vertices of the extended query set become outliers, they are
removed from it.

5.4.3 Effect of the Parameter α
We next study the effect of the parameter α in HighSchool and DBLP
datasets. In the static window case, we report the Jaccard similarity for
the edgesets of the communities detected for α = 0.1 and α = 0.9. Fig-
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Figure 5.9: Jaccard similarity for the communities detected for α = 0.1
and α = 0.9 for DBLP dataset in four consecutive timestamps. The win-
dow length is set to |W | = 4.

ure 5.8 shows the Jaccard similarity for HighSchool when we set the
window size to |W | = 6. The query set Q is the one described in the
case study. We report results for five consecutive timestamps. Since each
snapshot of the dataset corresponds to one hour data, the results reported
correspond to 6 hour window interval. Therefore, at timestamp 35, we
see the results starting fro the 30th hour until the end or the 35th hour. We
observe that the communities that our method detects vary significantly
according to α, i.e., the edge sets of the two communities have Jaccard
similarity at about 0.5. Similar results we see for the DBLP dataset, pre-
sented in Figure 5.9. In this case, we present results for four consecutive
timestamps and for window size W = 4. Each timestamp corresponds
to one year of scientific collaborations. Therefore, timestamp 12 corre-
sponds to a window of four years of collaboration between 2009 to 2012.
The results show that the communities of DBLP are very sensitive to the
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Figure 5.10: Scalability results for the DBLP dataset for different sizes
of query sets Q and for different sizes of window W .

changes of the parameter α. However, we see that as the network evolves,
the effect of the parameter α is reduced from 0.2, which means that the
communities detected are very different, to 0.7, which means that the
communities are still very different but with bigger similarities than be-
fore.

5.4.4 Scalability

We next present the scalability results while increasing the size of the
query set Q and the size of the window |W |. Figure 5.10 shows the to-
tal execution time of the distributed version of our algorithm for |Q| =
[4, 6, 8]. We present results for window size |W | = 4 (red line), |W | = 4
(green line) and |W | = 6 (blue line). We see that our algorithm scales
well with the size of the query set Q. We additionally notice, that the
execution time doubles with respect to the increasing window size.
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5.5 Discussion
In this chapter we proposed a method to compute a temporal community
given a set of vertices of interest. We present a method to compute a
temporal connector with minimum temporal inefficiency, that is based on
the notion of shortest-fastest paths. We extend the notion of the temporal
network inefficiency, which is based on the minimum temporal distance
between the vertices. Computing the Steiner tree of a graph, given a set
of terminal vertices, is a computational intensive task. For this reason, we
devise a distributed version of our algorithm for better scalability.

Our experimental evaluation shows that our communities are outlier
tolerant, the addition of the vertices is done parsimoniously and the query
set is updated as the network evolves in time. Our model is sensitive to
the parameter α that regulates the importance of the spatial and temporal
distance. We demonstrate that the identified communities can be very
different as the parameter α takes values in the interval [0, 1]. Finally, we
showed that our distributed algorithm scales well as we increase the size
of the query set Q and the size of the window W .
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CHAPTER 6

TEMPORAL
BETWEENNESS CENTRALITY

6.1 Introduction

Measuring the importance of a vertex in terms of its position in a static
network structure, i.e., its centrality, is a fundamental task in network
analysis. An actor in a network can be deemed important thanks to its
ability to influence other actors, as well as to spread or to block informa-
tion propagation. As shortest paths are often used to model the flow of
information in a network, one of the most studied measures of the im-
portance of a vertex is betweenness centrality (BC), i.e., the fraction of
shortest paths that pass through it [10, 41]. BC has been used to ana-
lyze a variety of different networks such as, e.g., social [79], protein [61],
wireless ad-hoc [83], mobile phone call [27], and multiplayer online gam-
ing [9] networks, just to mention a few. It is also at the basis of one of the
first and most well-known algorithms for community detection [45].

However, real-world networks are rarely static: new vertices arrive
and old vertices disappear, as well as new connections are created or re-
moved continuously. Therefore, the analysis of dynamic networks is re-
ceiving increasing attention. In this regard, substantial research effort has
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been devoted to the problem of dynamically maintaining BC values up-
to-date on streaming graphs: this is to say that at each temporal instant,
the BC value of each vertex should match the current status of the net-
work structure, avoiding to recompute everything from scratch each time.
Contrarily, the problem of defining and computing notions of BC on a
sequence of contiguous temporal snapshots (i.e., a temporal window) has
received little attention (brief survey in Section 2.4).

When we drop the strong assumption of measuring centrality instant
by instant, we can obtain interesting temporal characterization of a net-
work. For instance a path from vertex a to vertex b might materialize in
two different timestamps, e.g., by means of an edge (a, c) at time 1 and
an edge (c, b) at time 4, even if the two edges never coexist at the same
time. Similarly, a path from a to b might materialize through edges (a, d)
and (d, f) at time 2 and edge (f, b) at time 3. Although the first path is
shorter in terms of network structure, the second one is faster in terms of
temporal duration. The second path also starts later and ends earlier.

These examples highlight the need of reconsidering the notion of
shortest path when reasoning on an extended temporal window in a dy-
namic network. Wu et al. [121] define four different types of interesting
paths over temporal graphs: (1) earliest-arrival path, (2) latest-departure
path, (3) fastest path, and (4) shortest path.

In this chapter we use the generalization of the last two of these no-
tions, by means of a linear combination, governed by a parameter as dis-
cussed in Section 3.3. This parameter, allows us to give more importance
to the length of the path in terms of hops or to its temporal duration.
Based on this novel definition of paths, the shortest-fastest paths (SFPs),
we introduce a new measure of temporal betweenness centrality (TBC)
and study how to efficiently compute it. Our analysis starts in a static
time window which includes snapshots of a graph at different timestamps
and continues with the sliding window case where new snapshots of the
graph appear in a streaming fashion, while old snapshots are discarded as
they fall out of the current window.

In our endeavour of developing methods for TBC the main challenge
is given by the fact that measuring BC is computationally intensive even in
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simple static graphs. Indeed, the best known algorithm for BC, proposed
by Brandes [21], runs in O(nm) time. Dealing with TBC in dynamic
networks does not make things easier.

The approach developed in this chapter starts with a graph transfor-
mation that converts a temporal graph in a unique directed and weighted
graph. We show that, thanks to a careful weighting of the links in this
transformed graph, we can obtain all the SFPs by computing all-pairs
shortest paths in the transformed graph, and by filtering out some of them.
We then extend Brandes’ algorithm [21] to deal with the novel notion of
TBC: the resulting algorithm computes, on the basis of their participation
in SPFs, the TBC of all the vertices for a given temporal window of a
dynamic temporal graph. Then we extend our method to deal with a slid-
ing temporal window. Finally, we devise a distributed implementation in
Apache Spark which achieves efficiency and scalability for this computa-
tionally intensive task, as confirmed by our extensive experimentation.

The contributions of this chapter can be summarized as follows:

• In Section 6.2 we define a notion of temporal betweenness central-
ity based on shortest fastest paths, that combine spatial length and
temporal duration and was introduced in section 3.3.

• We extend Brandes’ algorithm to compute this new notion of tem-
poral betweenness centrality over a static temporal window in Sec-
tion 6.3 and we prove theoretically the correctness of the algorithm.
Then we extend our algorithm to the sliding window case in Sec-
tion 6.4.

• In Section 6.4 we devise a distributed implementation of the method
in Apache Spark for higher efficiency and scalability.

• Our extensive experimentation on several real-world dynamic net-
work, in Section 6.5, provides insights on how our notion of tem-
poral betweenness centrality is sensitive to the observation interval.
We also study the parameter governing importance of distance and
duration of the temporal paths.
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• An application to information propagation, in Section 6.6, proves
that our notion of temporal betweenness centrality outperforms
static betweenness centrality in the task of identifying the best
nodes at propagating information.

6.2 Problem Formulation

We define our notion of temporal betweenness centrality based on short-
est fastest paths, that were introduced in section 3.3. Before, we re-
call the standard definition of betweenness centrality on a static graph
G = (V,E). Let σ(s, d) denote the total number of shortest paths from s
to d in G; moreover, for any v ∈ V , let σ(s, d|v) be the number of short-
est paths from s to d that pass through v. Note here that σ(s, s) = 1 and
σ(s, d|v) = 0 if v ∈ s, d [21]. For every vertex v ∈ V its betweenness
centrality (BC) is defined as:

BC(v) =
∑

s,d∈V,s 6=d

σ(s, d|v)

σ(s, d)
. (6.1)

Let us now consider a temporal graph as defined at the beginning of
this section. Given a window W let GW = (V,EW ) denote the corre-
sponding window graph. Let σSFP (s, d) be the number of SFPs from
vertex s to vertex d in GW according to Definition 3.2 in section 3.3.

Definition 6.1 (Temporal Betweenness Centrality). Temporal between-
ness centrality of a vertex v in a window graph GW is defined as:

TBC(v) =
∑

s,d∈V,s 6=d

σSFP (s, d|v)

σSFP (s, d)

The first problem studied in this chapter is as follows.
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Problem 6.1 (Static Window Case). Given a window graph GW =
(V,EW ) and a parameter α ∈ [0, 1], compute the TBC(v) ∀v ∈ V .

After having proposed our algorithm to solve Problem 6.1 (in Sec-
tion 6.3), we move to the sliding window case (Section 6.4), in which at
every new timestamp the window W slides, one position, to include the
latest set of edges while excluding the set that falls outside of the limits
of the window, as defined in the next problem statement.

Problem 6.2 (Sliding Window Case). Given a window length |W |, a pa-
rameter α ∈ [0, 1] and a timestamp t ∈ T that increases continuously in
time, compute the TBC(v) ∀v ∈ V in the window graph GW = (V,EW )
defined by the window W = [t− (|W | − 1), t].

6.3 Static Window Case
In this section we introduce our method for computing the temporal be-
tweenness centrality of all vertices, given a parameter α ∈ [0, 1] and a
window graph GW .

6.3.1 Computing Shortest Fastest Paths
Our approach to compute all-pairs SFPs consists of three phases. In the
first phase (inspired by [121]) we transform the input window graph to a
static graph by linking, through directed edges, the various replicas of the
same vertex in different snapshot and by appropriately weighting these
auxiliary edges and the original edges. Additionally, for each vertex v of
the original graph, we create a dummy vertex connected to all the tem-
poral replicas of v. In the second phase, for each dummy vertex we run
Dijkstra’s algorithm to compute the shortest paths to all the other vertices
in the transformed graph. Finally, in the third phase, we aggregate the
results so that vertices with the same id across different timestamps are
considered as the same vertex. We next describe more formally all three
phases.
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Figure 6.1: An input window graph GW (up) and the transformed
graph G′ according to the general graph transformation algorithm (Al-
gorithm 1)(down).

Phase 1: Graph Transformation. Let us recall now the general graph
transformation that we discussed in Section 3.3. For the needs of this
problem we extend Algorithm 1. Given a graph window GW = (V,EW ),
we transform it to a static, directed and weighted graph G′(V ′, E ′, r),
where r is the weighting function, as follows:

• Vertices: for each t ∈ W , v ∈ Vt we create a vertex id as a pair
vertex-timestamp (v, t), i.e., {(v, t) : t ∈ W, v ∈ Vt}. For each
vertex v ∈ V we create a dummy source vertex (v,−1). Finally we
have V ′ = {(v, t) : t ∈ W, v ∈ Vt}

⋃
{(v,−1), v ∈ V }.
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Figure 6.2: The transformed graph G′ of Figure 6.1 augmented with one
dummy vertex that corresponds to the vertex with id 0.

• Edges: for each v ∈ V and each pair of timespans ti, tj ∈ W
with tj = min{t : (v, t) ∈ V ′, t > ti}, we create a directed edge
((v, ti), (v, tj)) with weight (tj − ti)(1 − α). The edges in EW ,
are instead assigned a weight of α. For each t ∈ W we create the
weighted static edges {((v, t), (u, t), a) : ∃(v, u) ∈ Et}. Finally,
for each dummy source vertex v we create directed zero weight
edges to each version of v ∈ V ′.

An example of the general graph transformation algorithm (Algo-
rithm 1)is shown in Figure 6.1. The figure shows a window graph defined
in a window of length |W | = 3. In Figure 6.2 we show an example of the
dummy source vertex that corresponds to the vertex with id 0.

Let us remember the Lemma 5.1 of Section 5.3.

Lemma. A path p on the transformed graph G′ from a replica of u to a
replica of v, corresponds to a valid temporal path p′ from u to v in the
window graph GW , and the length of p in G′ corresponds to the cost of p′

in GW , i.e., `(p) = L(p′).
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Following this observation, our method computes, for each pair of
vertices (u, v), all the shortest paths from any replica of u to any replica
of v (and viceversa), on the transformed graph G′.

Let `∗(u, v) = argmin p∈P (u,v) `(p). We want to compute the set of
path SP (u, v) = {p ∈ P (u, v)|`(p) = `∗(u, v)},∀(u, v) ∈ V × V .

This is achieved in the next two phases. Phase 2 produces, for any
vertex (v, t) ∈ V ′, the shortest paths among all the paths from any replica
of u. Phase 3 instead aggregates all the shortest paths from any replica of
u to any replica of v to finally produce SP (u, v).

Phase 2: Shortest Paths in the Transformed Graph. In order to com-
pute the shortest paths from any replica of u to any other vertex in G′,
phase 2 creates uses the dummy vertex (u,−1) which is connected it to
all the replicas of u in G′ by means of directed arcs with weight of 0. An
example is given in Figure 6.2, where we want to calculate all shortest
paths that start from the vertex with id 0. In this case, we need to con-
currently calculate all shortest paths from vertices (0, 0), (0, 1) and (0, 2).
Therefore we create the dummy vertex (0,−1) with directed edges to the
vertices (0, 0), (0, 1) and (0, 2) highlighted in red. Finally, we run Dijk-
stra’s algorithm with the dummy vertex as source, returning three lists:

• S, which is the list of vertices (v, t) ∈ V ′ in non-decreasing dis-
tance from the source (u,−1),

• D, which contains the distance, i.e., the length of the shortest path,
of each vertex (v, t) ∈ V ′ from (u,−1),

• P , which is the list of predecessors for each vertex (v, t) ∈ V ′ in
all the shortest paths from (u,−1).

Next we prove that our procedure is sound, i.e., by running Dijkstra’s
algorithm in the transformed graph G′ augmented with the dummy vertex
(u,−1), we obtain, for each vertex (v, t) ∈ V ′, the shortest paths from
any replica of u. First let us recall the Bellman Criterion on shortest paths
of static graphs [21]:
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Lemma 6.1 (Bellman Criterion - static graphs). Given a static graph
G(V,E) a vertex v ∈ V lies on a shortest path between vertices s, w ∈ V
if and only if dG(s, w) = dG(s, v)+dG(v, w) where dG(s, w) is the length
of the shortest path from s to w in the graph G.

The next observation is that in a shortest path from the dummy vertex
(u,−1) to a vertex (v, t) ∈ V ′ can contain only one replica of the vertex
u.

Lemma 6.2. In a shortest path p((u,−1), (v, t)) here is at most one in-
termediate vertex from the set {(u, t′) : t′ ∈ W}.

Proof. By absurd let us assume that there are two vertices (u, t0)
and (u, t1) which are replicas of the source (u,−1) in a short-
est path p((u,−1), (v, t)) with t0 < t1 ≤ tj . This means that
the shortest path from (s,−1) to v′ will be p((u,−1), (v, t)) =
〈(u,−1), (u, t0), ..., (u, t1), ..., (v, t)〉. Given that the dummy vertex
(u,−1) is directly connected to all the replicas of u with links of null
cost, this would imply that it exists another path p((u,−1), (v, t)) =
〈(u,−1), (u, t1), ..., (v, t)〉 which is shorter than the shortest path.

Theorem 6.1. Running Dijkstra’s algorithm from dummy source vertex
(u,−1) correctly finds the set of all the shortest paths from any replica of
u to a vertex (v, t) ∈ V ′ .

Proof. Consider a shortest path p((u,−1), (v, t)) from the dummy source
vertex (u,−1) to a vertex (v, t) ∈ V ′. From Lemma 6.2 we know
that p((u,−1), (v, t)) = 〈(u,−1), (u, ti), xi..., (v, t)〉 where xi 6= (u, tj)
for any tj ∈ W . From Lemma 6.1 we have that d((u,−1), v) =
d((u,−1), (u, ti)) + d((u, ti), (v, t)), which means that the shortest path
from (u, ti) to (v, t) can be obtained by removing the vertex (u,−1) from
the path p((u,−1), (v, t)).

Phase 3: Aggregation. Consider the example of Figure 6.3 with a
transformed graph defined over only two timestamps. Consider the pair of
vertices with id (in the original graph) 0 and 5. Dijkstra’s algorithm over
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the transformed graph detects two shortest paths (marked in red) from
some replica of 0 to some replica of 5. At the end of phase 2, vertices
with the same id but different timestamps are still treated as different and
thus we have two different results (shortest path in timestamp 0 and in
timestamp 1). However, (5, 0) and (5, 1) are the same vertex viewed in
two different timestamps. Therefore, the SFP from vertex with id 0 to
the vertex with id 5 is the one with source (0, 1), destination (5, 1) and
length α. On the other hand, the SFP from vertex with id 0 to vertex with
id 4 can come from both timestamp zero and one, when α < 0.5 (paths
highlighted with blue color). In this case, there are four paths from vertex
0 to vertex 4 all of which have length 3α.

Therefore in phase 3 we need to aggregate all the shortest paths that
regard the same vertex id. This is done by removing from S vertices for
which a replica with the same vertex id has appeared earlier in the list
with smaller distance. Following [21] we use an “augmented” Dijkstra
that also maintains an additional structure σ that contains the number of
shortest paths from the source vertex (u,−1) to each of the other vertices:
this will result useful later in Section 6.3.2 to compute the temporal be-
tweenness centrality. When we update S also σ and D must be updated
accordingly: in the pseudocode in Algorithm 15, we use S ′, D′ and σ′ to
denote the updated S,D and σ, respectively.

All-Pair Shortest-Fastest Paths (APSFP). Algorithm 15 summarizes
the method. Given GW and α the algorithm starts with the graph trans-
formation (lines 1-4) as described in phase1 . Lines 5 to 11 computes
the shortest paths in the transformed graph as described in phase 2 and
outputs the structures S, P,D and σ. Finally, the aggregation process de-
scribed in phase 3 is given in lines 12 to 20. In this phase we use the
output of phase 2 to compute σ′, which is the dictionary that contains the
number of shortest paths (after the merging) of each vertex v ∈ V ′ from
the source vertex (u,−1) and is initially empty (line 12). At the end of
phase 3 it holds that the σ′uv =

∑
(v,t):t∈W σ′[u][(v, t)], where σ′uv is the

number of SFPs between u and v for the given α in GW .
To produce σ′ we need to employ the auxiliary structure D′ (initially
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Figure 6.3: Shortest paths on a transformed graph defined over two times-
tamps. Paths from vertex 0 to vertex 5 are marked with red. Paths from
vertex 0 to vertex 4 are marked with blue and green. For α < 0.5 SFPs are
only the blue paths. For α > 0.5 the only SFP is the green path, whereas,
for α = 0.5 both blue and green are SFPs.

empty), which contains the distance of each v ∈ V from the source vertex.
We start by traversing all vertices (v, t) contained in S and add their dis-
tance D[(v, t)] in D′, if these vertices are endpoints of some shortest path
after merging (condition in line 15). If (v, t) is endpoint of some short-
est path, we update the value of σ′[u][(v, t)] with the value of σ[u][(v, t)],
otherwise, we set it to 0.

Theorem 6.2. Algorithm 15 computes all SFPs from each vertex u ∈ V
to the rest of the vertices on the graph window GW .

Proof. Algorithm 15 constructs structure S ′[u] from S[u], that contains all
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Algorithm 15: All-pair Shortest-Fastest Paths (APSFP)
input : GW = (V,EW ) = {(Vt, Et) : t ∈ W}, |W |, α
output : S, S ′, P , D, σ, σ′

1 V ′ ← ∅; E ′ ← ∅
2 V ′←

⋃
{(v, t) : v ∈ Vt, t ∈ W}

3 E ′←
⋃
{((u, t), (v, t), α) : (u, v) ∈ Et, t ∈ W}

4 E ′←E ′ ∪ {((v, t), (v, t′), (1− α)(t′ − t)) : (v, t) ∈ V ′}, where
t′ = min{ti : (v, ti) ∈ V ′, ti > t}

5 for u ∈ V do
6 V ′u ← V ′ ∪ {(u,−1)}
7 for t ∈ W do
8 if (u, t) ∈ V ′ then
9 E ′u ← E ′ ∪ {((u,−1), (u, t), 0)}

10 G′u← (V ′u, E
′
u)

11 S[u], P [u], D[u], σ[u] ← Dijkstra(G′u, (u,−1))
12 S ′[u]← []; D′[u]← {}; σ′[u]← {};
13 for (i = 0; i < |S|; i = i+ 1) do
14 (x, t)← S[u][i]
15 if ((x, t) 6= u) and (x 6∈ D′[u] or D[u][(x, t)] = D′[u][x])

then
16 S ′[u].append((x, t))
17 D′[u][x] ← D[u][(x, t)]
18 σ′[u][(x, t)] ← σ[u][(x, t)]

19 else
20 σ′[u][(x, t)] = 0

vertices in non-decreasing distance from the source (u,−1). The distance
of each vertex from the source is the sum of the weight α, when an edge
corresponds to a hop during one timestamp, and (tj − ti)(1 − α) when
the edge corresponds to a hop between vertices of the same id that appear
in timestamps ti and tj . Thus, as already highlighted in Lemma 1, the
length of one of these paths in the transformed graph corresponds to the
cost L(·) in Definition 3.2. By selecting from S[u], among the vertices
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of the same id, the ones with the smallest distance from the source, we
construct the structure S ′[u] that contains the destination vertices of all
and only the SFPs from u.

6.3.2 Temporal Betweenness Centrality

Brandes’ Algorithm. In a static graph G(V,E) Brandes’ algo-
rithm [21] uses the notion of dependency of a vertex s ∈ V to another,
intermediate, vertex v ∈ V , defined as

δs•(v) =
∑
w∈V

δsw(v).

At this point we remind that the pair-dependency δsw(v) = σsw(v)
σsw

of the
vertices s, w on the vertex v is the number of shortest paths from s to w
that v lies on divided by the total number of shortest paths from s to w.
Note here that σsw is the number of shortest paths from s to w, σsw(v) is
the number of shortest paths from s to w that go through v and finally that
σss = 1 and σsw(v) = 0 if v ∈ {s, w}. Brandes proves that the above
partial sums obey a recursive relation which is the core of its algorithm:

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw
· (1 + δs•(w)),

where Ps(w) is the list of the predecessors of node w on shortest paths
from s. In other words, the dependency of s on the vertex v can be cal-
culated using the dependencies s on the successors of v. Each successor
w of v contributes to δs•(v) their dependency score δs•(w) plus 1 which is
the shortest path that starts from s to w. This value is multiplied by the
ratio σsv

σsw
which is the proportion of shortest paths from s to w passing by

the vertex v and the edge {v, w}. Therefore, by traversing the vertices in
non-increasing distance from s we can accumulate the dependency scores
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for all vertices. Finally, the betweenness centrality of a vertex v can be
calculated as:

BC(v) =
∑

s 6=v 6=w∈V

δsw(v).

Extending Brandes’ algorithm to window graphs. Consider Fig-
ure 6.3: the SFP from vertex with id 0 to the vertex with id 5, is only
the path that includes vertices 〈(0, 1), (5, 1)〉 as vertex (5, 0) is not a desti-
nation of any SFPs starting from source with id 0. However, vertex (5, 0)
lies on the shortest path from (0, 0) to (6, 0) and therefore there is pair de-
pendency of vertices (0, 0) and (6, 0) to the vertex (5, 0) which should be
calculated. Finally, in order to compute the dependency of vertex (0, 0) to
the vertex (2, 0), which is the end-point of the SFP, we should also con-
sider the dependency of vertex (5, 0) even if it is not the endpoint of any
SFP.

Definition 6.2. Given shortest paths and shortest-fastest paths counts (σ
and σ′) we can define the pair-dependency δst(v) of a pair of vertices s, t
to the vertex v in a graph window, where s, t, v ∈ V ′:

δst(v) =
σst(v)

σst

σ′st
σst

According to Definition 6.2 the pair dependency of vertices s, t on v
will be either 0, if vertex t is not end-point of any SFP, or σst(v)

σst
, since σ′

st

σst
is either 0 or 1.

Theorem 6.3. The dependency of s ∈ V ′ on any vertex v ∈ V ′ obeys:

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw
·
(
σ′sw
σsw

+ δs•(w)

)

Proof. According to proof of correctness of Brandes’ algorithm [21, The-
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orem 6], we have that

δs•(v) =
∑
t∈V ′

δst(v) =
∑
t∈V ′

∑
w:v∈Ps(w)

δst(v, {v, w}) =

∑
w:v∈Ps(w)

∑
t∈V ′

δst(v, {v, w}), (6.2)

where δst(v, {v, w}) is the pair-dependency that includes the edge
{v, w}. More formally we have that δst(v, {v, w}) = σst(v,{v,w})

σst
, where

σst(v, {v, w}) is the number of shortest paths from s to t that include both
the vertex v and the edge {v, w}.

Let w be any vertex with v ∈ Ps(w). If vertex t = w then from
σsw paths that go from s to w only σsv pass from vertex v first. In case
that vertex w is not an end-point of some SFP, δst(v, {v, w}) = 0. When
t = w, these two cases can be expressed as δst(v, {v, w}) = σsv

σsw

σ′
sw

σsw
.

Recall that σ
′
sw

σsw
is either 0 or 1.

In case that t 6= w, if t is the end-point of some SFP (σ′st = σst),
we have δst(v, {v, w}) = σsv

σsw

σst(w)
σst

(see [21]) and 0 otherwise. There-
fore, when t 6= w these two cases can be expressed as δst(v, {v, w}) =
σsv
σsw

σst(w)
σst

σ′
st

σst
. The above are summed up by:

δst(v, {v, w}) =


σsv
σsw

σ′sw
σsw

, t = w

σsv
σsw

σst(w)

σst

σ′st
σst

, t 6= w

and from Equation 6.2:

δs•(v) =
∑

w:v∈Ps(w)

 σsv
σsw

σ′sw
σsw

+
∑

t∈V ′\{w}

σsv
σsw

σst(w)

σst

σ′st
σst
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=
∑

w:v∈Ps(w)

σsv
σsw

(
σ′sw
σsw

+ δs•(w)

)

Merging TBC Results. Until here, our algorithm computes the tempo-
ral betweenness centralities of all vertices in the transformed graph, i.e.
for all vertices (v, t) in V ′. The final step of our approach is to merge
the BC results of the vertices with the same id in different timestamps to
compute TBC for all vertices v ∈ V .

Theorem 6.4. The temporal betweenness centrality of a vertex v in a
graph window GW is the sum of the temporal betweenness centralities of
this vertex in all timestamps of the window W .

TBC(v) =
∑
t∈W

TBC((v, t))

Proof. The dependency of a vertex s ∈ V to a vertex v ∈ V is:

δs•(v) =
∑
w∈V ′

δsw(v) =
∑
w∈V ′

σsw(v)

σsw

σ′sw
σsw

=

∑
w∈V ′

∑
t∈W σsw((v, t))

σsw

σ′sw
σsw

=
∑
t∈W

δs•((v, t))

Finally, we have that:

TBC(v) =
∑
s∈V

δs•(v) =
∑
s∈V

∑
t∈W

δs•((v, t)) =
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Algorithm 16: Sliding Window TBC
input : |W |, α, rounds
output : TBC

1 GW ← [], V ′ = ∅, E ′ = ∅, t = 0
2 while t < rounds do
3 read Gt(Vt, Et) //Read new timestamp
4 V ′←V ′ ∪ {(v, t) : v ∈ Vt} //vertex renaming
5 V ′ ← V ′ \ {(v, ti) : ti = t− (|W | − 2)}
6 E ′←E ′ ∪ {((v, t), (u, t), α) : (v, t) ∈ V ′, (u, t) ∈ V ′ and

(v, u) ∈ Et} //static edges
7 E ′←E ′ ∪ {((v, t′), (v, t), (1− α)(t− t′))}, where

t′ = max{ti : (v, ti) ∈ V ′, ti < t} //temporal edges
8 G′ = (V ′, E ′)
9 TBC ← Algorithm 17

10 report TBC
11 t+ +

∑
t∈W

∑
s∈V

δs•((v, t)) =
∑
t∈W

TBC((v, t))

6.4 Sliding Window Case
In this section we extend the static window TBC to the sliding window
setting. We consider an infinite stream of input graphs that update the
window graph at every timestamp with the newest snapshot of the tempo-
ral graph, and at the same time, we remove the most obsolete snapshot.
This process implies changes on the values of the TBCs of the vertices,
not only due to the changes on the shortest paths between the existing
vertices, but also due to the appearance and removal of the vertices and
edges in the window graph at every timestamp.

Figure 6.4 shows the case of a sliding window of length 3 in three
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Figure 6.4: Transformed graph for 3 consecutive timestamps for |W | =
3. The figure shows the second timestamp (Timestamp 1) where W con-
tains two snapshots of G. In the last instance of the figure we the most
obsolete snapshot is removed from W for the newest one to enter.

consecutive timestamps. Timestamp 0, which does not appear in the fig-
ure, contains only the first snapshot of the graph in the rightmost position
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Algorithm 17: Distributed TBC
1 ids ← {v ∈

⋃
t∈W Vt}

2 distrIds ← sc. parallelize(ids)
3 dependencies RDD ← distrIds.map(lambda s:

dependencies(s, |W |, G′, t)) //Algorithm 18.
4 TBC ← dependencies RDD.reduce(lambda δx,•,δy,•:

sum(δx,•,δy,•)) //Sum values of δx,• and δy,• by key.

of the window. Timestamp 1 (left side of Figure 6.4) shows the window
after the appearance of the second snapshot of the graph. Therefore, the
first snapshot moves one position to the left of the window and gives its
position to the new timestamp. Finally, we create the links between the
vertices with same ids in the different timestamps. In the next timestamp,
when a new snapshot arrives, occupies the rightmost position of the win-
dow, whereas, the older snapshots move one position to the left. If all
the positions of the window are occupied, the oldest snapshot is removed
from the window graph, as shown in the right part of Figure 6.4 marked
with red color (Timestamp 3).

The calculation of the TBCs of the vertices in a window is done in
the following steps that are shown in Algorithm 16. The newest times-
tamp, upon arrival (line 3), takes the rightmost position in the window, its
vertices are renamed, the edges get weighted, while the leftmost snapshot
is removed (lines 4-7) so as to produce the updated transformed graph
(line 8). To compute the TBC of the vertices (line 9) Algorithm 16 calls
the distributed process described by Algorithm 17. In line 2 of Algo-
rithm 17 all ids = {v ∈

⋃
t∈W Vt} are distributed across the computation

entities. Following, the algorithm computes the dependencies of each ver-
tex s ∈ GW to every other vertex (line 3), with the function described by
Algorithm 18. Finally, all dependency results are summed up in line 4.
The result of this summation, is the value of the TBC of all vertices in
GW , according to Theorem 6.4.

Algorithm 18 calculates the dependencies of a vertex to the rest of
the vertices in a window and is called for each one of the vertex ids of
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Algorithm 18: Dependencies
input : s,W,G′(V ′, E ′), t
output : δs•

1 Add dummy vertex (s,-1): Algorithm 15 lines 6-10
2 S, P, D, σ ← Dijkstra(G′s, (s,−1))
3 SFPs: Algorithm 15 lines 12-20
4 δs• ← Brandes(S, S ′, P, σ, σ′, s,W )
5 report δs•

the graph. First creates the dummy vertex (line 1) and then calculates
the shortest paths from the dummy vertex to the rest of the vertices us-
ing Dijkstra’s algorithm (line 2). The calculation of SFPs, described in
Algorithm 15 remains the same. The final step is the calculation of the
dependencies (line 4) using the extended Brandes’ algorithm for window
graphs as described in Section 6.3.2.

Distributed implementation. Due to its computational complexity, BC
can be prohibitive to compute for large scale graphs. This is mostly due to
the calculation of APSPs that cannot be avoided. However, by exploiting
the properties of the algorithms, i.e., the independence of the calculation
of Dijkstra’s algorithm for each source vertex and the summation of the
dependencies to compute the TBCs of the vertices, we can distribute the
computation on a cluster of machine cores (CM). Therefore, while the
complexity of the calculation remains the same, we can have a theoretical
improvement of the execution time up to a factor of 1

|CM | , where |CM | is
the number of cores.

For the implementation of our algorithms we used the Apache Spark
framework. Figure 6.5 shows an overview of the distributed process that
is described by Algorithm 17. The first step is the distribution of the data,
i.e., the vertex ids of the window graph, across the CM. Spark framework
uses the notion of Resilient Distributed Dataset (RDD), which is the basic
Spark abstraction. Each computation machine has assigned one partition
of the data, for which is exclusively responsible. The computation of

126



ids

RDD Partition 1 RDD Partition k

reduce()
using sum()

dependencies() dependencies()

TBC

sc.parallelize()

map()
using dependencies()

Figure 6.5: High level overview of the distributed implementation de-
scribed by Algorithm 17. Vertex ids are distributed to the CM, whereas,
the graph is replicated. Dependencies calculated in CM are summed to
produce the TBC results.

the shortest paths and the dependencies from all source vertices of the
partition to the rest of the vertices of the graph is done in parallel for
all CM. After the computation of the dependencies in the various cores
we need to sum the values in order to calculate the TBC of the vertices
(reduce() function in Figure 6.5). The summation of the dependencies,
which is inexpensive, is done locally by the main worker process of the
cluster.

Complexity. Given a source s ∈ V the length and the number of SFPs
can be determined in O(m + n log n), where m is the total number of
edges in the transformed graph. Therefore, the computational complexity
for the serial algorithm is O(n(m+ n log n)). The computational cost of
the distributed algorithm is reduced by a factor of |CM | to O( n

|CM |(m +

n log n)). The space complexity of the serial algorithm is O(m + n),
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Table 6.1: Dataset name, number of vertices n, number of edges m, time
span T and temporal granularity.

Network n m T
time

granularity

Infectious 279 3 928 10 1 hour

LastFM 1 372 596 496 314 1 day

MathOverflow 12 491 147 968 27 1 month

DBLP 35 851 316 570 18 1 year

FBwall 44 609 310 089 13 1 month

WikiConflict 116 230 4 524 510 60 1 month

WikiTalk 1 094 018 8 020 640 2185 1 day

whereas, the distributed algorithm, which maintains each structure for
each source node s, requires O( n

|CM |(m+ n)) space.

6.5 Experimental Evaluation
We use seven real-world dynamic networks summarized in Table 6.1.

Infectious: This is human contact data available from SocioPatterns
(http://www.sociopatterns.org/) and described in [59]. Ver-
tices represent visitors of an exhibition and edges represent face-to-face
contacts. The data expand in 10 hourly timestamps.

LastFm: This dataset contains the graph of friendship between the users
of Last.fm together with a timestamped activity log, i.e., users listening
to songs. We define a temporal edge when two users, which are friends
in the social network, listen to the same song. It expands in 314 daily
timestamps from 1/1/2012 to 11/9/2012.

MathOverflow: The vertices of this graph are users of the Math Over-
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flow website. An edge represents answers or comments to questions or
comments between two users. The dataset expands in 35 monthly times-
tamps between 2014 and early 2016. This network was created in [92]
and is available at https://snap.stanford.edu.

DBLP: This is the co-authorship network of nine conferences (VLDB,
SIGMOD, ICDE, EDBT, KDD, ICDM, SIGIR, CIKM and WWW) col-
lected from the DBLP database (http://dblp.uni-trier.de/).
Each vertex is an author and each edge represents co-authorship. It con-
tains 18 yearly timestamps that expand from the 2000 to 2017.

FBwall: Each vertex represents a user of the Facebook social network.
Each edge is a wall post from one user to some other user’s wall. For
our experiments we created 13 monthly timestamps from January 2008 to
January 2009. This communication network is described in [119] and is
available at the http://konect.uni-koblenz.de/.

WikiConflict: Each vertex represents a user of English Wikipedia and
each edge represents a conflict between two users. This is a subset of
the dataset described by [22] and is available at the Konect database. It
contains 60 monthly timestamps from 2004 to 2009.

WikiTalk: Each vertex represents a user of Wikipedia and an edge be-
tween two users represents an edit from one user to the Talk page of the
other user. It contains 2185 daily timestamps, is described by [77,92] and
is available at https://snap.stanford.edu.

Experimental Environment: We created a Spark cluster of 80 cores
that expand in 5 machines. Each machine has 16 cores Intel(R) Xeon(R)
CPU E5620 @ 2.40 GHz. The driver program has a limited memory of
6GB and runs in one core of the cluster. We created 5 worker nodes, one
per each machine. In each worker we raise 3 executors with 5 cores per
executor. For each executor we allocate 7GB of memory. In total we use
up to 70 cores out of the 75 available on the Spark cluster (5 workers × 3
executors × 5 cores).
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Figure 6.6: Cumulative function for spatial and time distance of SFPs of
pairs of vertices randomly selected. We present results for two values of
|W | for Infectious and LastFM datasets.

Reproducibility: Our code (serial and distributed version) is available
at https://goo.gl/PAAJvp.

6.5.1 Shortest-fastest Paths Characterization
Figures 6.6 and 6.7 report a characterization of SFPs in terms of temporal
duration and spatial length (as number of hops on the network structure),
between pairs of randomly selected vertices, for various |W | and α. For
each dataset we present four plots that show the cumulative function of
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Figure 6.7: Cumulative function for spatial and time distance of SFPs of
pairs of vertices randomly selected. We present results for two values of
|W | for DBLP and FBwall datasets.

pairs of vertices: i.e., on the y-axis we have the number of pairs of vertices
that have (temporal or spatial) distance smaller than the value on the x-
axis. Starting from top to bottom in Figure 6.6 we present the results for
|W | = 6 and |W | = 10 for the Infectious dataset and |W |=6 and |W |=12
for the LastFM dataset. Similarly, Figure 6.7 shows the results for |W |=6
and |W |=12 for the DBLP and the FBwall datasets. For Infectious we
have used up to |W | = 10 window length, since the dataset contains only
10 timestamps. On the other hand, for the rest of the datasets, we could
use even larger size of window. For the Infectious dataset we select 130
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pairs of vertices, for the LastFM dataset we select 600 pairs of vertices,
whereas, for DBLP and FBwall we selected 1 000 pairs. The difference
on the number of selected pairs is according to the size of the dataset.

In both Figures 6.6 and 6.7 we observe that when α takes small values
(α = 0.001 marked with a red line), the number of pair of vertices with
smaller temporal distance is much higher than in the case of higher α (α =
0.999 marked with a blue line). Depending on the dataset the difference
between the number of pairs can vary up to 200 (FBwall dataset). For all
different datasets the red line converges faster to the total number of pairs
and follows the green line (α = 0.5) and the blue line (α = 0.999). On
the other hand, the blue line converges always faster in the case of spatial
distance and is followed by the green and the red lines. These results are
as expected and match the desired behaviour of the parameter α: smaller
values of α means less importance on the spatial distance, while higher
values of α reduces the weight of temporal dimension, and thus the SFPs
are more likely to expand over several timestamps. SFPs affect directly
TBC and therefore, we expect that varying α will impact the value of
TBC, as we show in the following subsection.

6.5.2 Temporal Betweenness Centrality
We next characterize the behaviour of TBC against static BC, against
time, and against α.

TBC vs. Static BC. We compare the ranking of importance of the ver-
tices by means of TBC, with the rankings that we can obtain by applying
static BC to the dynamic network. In particular, we consider three ways
of applying static BC to a dynamic network: i.e., maximum, average and
union-graph. For the maximum and average characterizations we fix a
window length and we run the static BC algorithm at each one of the
snapshots of the window. The value of BC of each vertex is the maximum
and the average of the values in these snapshots. The union-graph char-
acterization is obtained by merging the snapshots of the graph to create a
static graph with the union of vertices and edges. The BC of each vertex
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Figure 6.8: Jaccard and Kendall Tau values for max (TBC vs. maximum),
avg (TBC vs. average) and union (TBC vs. union-graph). We present
results for different values of |W | and α for Infectious and LastFM
datasets.

is given by running the static BC algorithm on the union graph.

Figures 6.8 and 6.9 show the results of the Jaccard and Kendall Tau
similarity measures comparing the rankings of TBC versus maximum
(max with red color), TBC versus average (avg with green color) and
TBC versus union-graph (union with blue color) for different values of
|W | and α. Jaccard is measured among the top-10 vertices by centrality
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Figure 6.9: Jaccard and Kendall Tau values for max (TBC vs. maximum),
avg (TBC vs. average) and union (TBC vs. union-graph). We present
results for different values of |W | and α for DBLP and FBwall datasets.

value. Kendall Tau is measured in the first 15% of the total rank of V
by centrality, and discarding the vertices which are not common in the
two compared rankings. As expected, both Jaccard and Kendall Tau sim-
ilarities are higher for small windows, whereas, for larger windows the
importance of using a temporal notion of centrality increases, resulting in
lower similarity values. In most of the cases, for the different values of
α, max and avg get smaller values as we increase α. This situation is re-
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Figure 6.10: In the Infectious network, the figure shows how the TBC
values change along time for four different vertices. We use |W |=[4,6,8]
and α = 0.5 for six consecutive timestamps (3-8).

versed for the union-graph which, by construction, includes all temporal
paths including not valid ones, i.e., paths that go back in time.

TBC vs. Time. In this experiment we present how the value of TBC
changes in time for four vertices taken from the Infectious dataset and
show significant changes depending on the choice of parameters. Fig-
ure 6.10 shows the ranking of the vertices in a range of 6 timestamps
(timestamps 3 to 8) for three different window lengths |W | = [4, 6, 8].
On the y-axis we report the ranking of the vertices in the network, where
a value of 1 indicates the most central vertex in the graph. It is impor-
tant to note here that depending on the window length the ranking of the
vertices can change significantly. For example, we observe that vertex
3 (blue line) has a better ranking value comparing to vertex 1 (red line)
for window |W | = 4 at timestamp 6. This situation changes when the
window increases to length 6 and 8. This confirms our hypothesis that
the length of the observation period can change dramatically the vertices’
centrality.

Figure 6.11 shows the ranking of four vertices of MathOverflow
dataset for timestamps 14 to 26. In this set of plots we observe how
the ranking of the vertices change while changing the length of W
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Figure 6.11: In the MathOverflow network we present TBC vs. time
for four different vertices that show significant changes depending on the
choice of parameters. We use |W |=[9,12,15] and α = [0.001, 0.5, 0.999]
for 13 consecutive timestamps (14-26).

(|W |=[9,12,15]) and also the value of α (α = [0.001, 0.5, 0.999]). For
α = 0.5 (second line plots) different values of |W | result in different
rankings. For example vertex 2 (green line) has better rank than vertex 1
(red line) in window 9, which changes dramatically for windows 12 and
15. Finally, for a fixed |W | and for different values of α, the rankings also
vary significantly. For example, for |W | = 12 the rank of vertex 2 has
improved w.r.t. vertex 4 in timestamps 17 to 21 as α gets bigger values.

TBC vs. α. Next, we present the difference between the rankings of
the vertices for various |W | and for different α values for all datasets.
Figure 6.12 shows the Jaccard and Kendall Tau similarity measures for the
top 15% of the vertices for with α = 0.001 and α = 0.999. For Infectious
we use |W | = [2, 4, 6, 8] whereas, for the rest of the datasets we use
|W | = [3, 6, 9, 12]. For Infectious we see that for |W | = 4 Kendall
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Figure 6.12: Kendall Tau and Jaccard similarity for the rankings of TBC
method for α = [0.001, 0.999] and different W for all datasets.

Tau is less than 0.4 whereas Jaccard similarity is 1. This means that the
top-15% of the two rankings contain the same vertices but the ranking
of the vertices is very different. We also see greater dissimilarity of the
rankings as the window grows for the majority of the datasets. These
results, support our hypothesis that by giving different weights to spatial
and time links (different values of α), vertices can have very different
BCs.

6.5.3 Scalability

Figure 6.13 shows the performance gain when we increase the number
of the machine cores for different |W | on MathOverflow and WikiTalk
datasets. We performed experiments for the serial version of our imple-
mentation (|CM | = 1) and for the distributed version using up to 70
cores. Dashed lines show the optimal performance by dividing the execu-
tion time of the serial version by the number of cores. We show that the
execution time of our distributed implementation can get up to 30 times
faster for |CM | = 70.
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Figure 6.13: Execution time vs. |CM | for the serial and distributed ver-
sions for MathOverflow and WikiTalk for various |W |. Straight lines
show execution times. Dashed lines show the optimal speedup.

6.6 Information Propagation

In this section we compare the information propagation capability of ver-
tices with high TBC measure against the three versions of static BC de-
scribed before (maximum, average, and union-graph) applied to temporal
interaction networks, plus a pure static case, i.e., static BC applied to the
static social network.

For our experiment we used the LastFM dataset: if user v1 listens
to a song at timestamp t1 and the user v2 listens to the same song at a
timestamp t2 > t1, there is a probability that the user v1 has influenced
the user v2, if v1 and v2 are connected in the friendship graph. We con-
struct the graph of the influence between the vertices, that expands in
314 timestamps, which is our window graph (GW ) used to compute TBC,
with α = 0.5, and the three notions of static BC (maximum, average,
and union-graph). For the static case instead, we only use the friend-
ship graph and compute static BC there. For assessing the capability of
nodes in spreading information we adopt the independent cascade model
(IC) [63]: we construct the probabilistic graph (Gp), where each direct
edge (v1, v2) is labeled with a probability p(v1,v2) = #interactions(v1→v2)

#actions(v1)

i.e., the vertex v1 can influence the vertex v2, as it is described by [46].
Starting from a source vertex of the Gp we calculate the number of
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Figure 6.14: Number of infected vertices on the graph when we infect
the top-k vertices of each ranking.

vertices that are infected if we infect first the source vertex using the IC
model. We repeat the process for 10,000 times and we keep the average of
the number of vertices infected. Finally, we sum the number of vertices
that were infected by all k vertices. Figure 6.14 shows the results for
various k values and for the static case, max, avg, union and TBC. If we
select the top-k vertices of TBC we get always more vertices infected with
up to 1035 more vertices from the second better method (avg) for k =
70. Finally, union and static methods give the least number of infected
vertices.

6.7 Discussion
In this chapter we introduce a novel metric of temporal betweenness cen-
trality. This metric is highly sensitive to the observation period and the
importance that is given to the temporal span over the spatial distance
covered by a path. In the experimental evaluation we demonstrate that
the rankings produced by the various baselines are significantly different
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from the rankings produced by our metric. We prove, with an application
to information propagation, that our novel metric, outperforms the base-
lines in the task of identifying the most important nodes for propagating
information.

Measuring betweenness centrality is a computationally intensive task
even in static graphs. Brandes’ algorithm is the best known algorithm for
exactly computing betweenness centrality in static graphs. Computing
it in temporal networks can be an even more challenging task. In this
chapter, we extend Brandes’ algorithm, and we prove the correctness of
our algorithms. Our distributed implementation reduces the execution
time, however, the theoretical complexity of the algorithms remain the
same.
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CHAPTER 7

CONCLUSIONS

In this thesis we develop algorithms and techniques to analyze dynamic
graphs. Various representation and processing methods have been pro-
posed, each one serving a different purpose. In this thesis we use the
temporal information of the dynamic graphs, which we consider as an
additional dimension. The models that we propose for representation and
processing of our temporal graphs help us to study their evolution in time.
We analyze the dynamic graphs according to their structural and interac-
tion dynamics in intervals of time.

Our work can be structured in terms of the level of analysis into macro,
meso and micro level. In a macro-level analysis we tackle the problem of
graph summarization, which is based on a temporal graph clustering tech-
nique. In the meso-level analysis we propose the problem of temporal
community search, which is based on the problem of finding a temporal
vertex connector. Finally, in a micro-level analysis, we work on the prob-
lem of temporal betweenness centrality, which is based on the new notion
of temporal paths.

In this chapter we summarize our work and contributions. We addi-
tionally discuss open problems and future research directions on temporal
graphs.
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7.1 Summary

In Chapter 3 we discuss the ways of representation and processing of the
dynamic graphs. We propose two representation models that integrate the
temporal information of the dynamic graphs. The choice of representa-
tion model depends on the level of analysis, i.e., macro, meso, or micro.
The first representation model treats the dynamic graph as a time series
of snapshots defined in a sliding window. Each snapshot is represented as
an adjacency matrix and the time series within the sliding window forms
an adjacency tensor. This representation model, allows us to view the
graph in a micro-level and thus, it is used for the temporal graph summa-
rization problem. The second representation model, is a modification of
the flow-path model. This representation allows us to have a view of the
time respecting temporal paths. This representation model is used for the
meso and micro level of analysis, where our metrics are based on tem-
poral paths. In temporal dynamic graphs, a communication path should
be seen as a path both in space (i.e., the network structure) and in time
(i.e., the network evolution). Towards this goal, we additionally, propose
the bi-objective notion of shortest-fastest path (SFP) in temporal graphs,
which considers both space and time as a linear combination governed by
a parameter.

Large-scale dynamic interaction graphs can be challenging to process
and store, due to their size and the continuous change of communica-
tion patterns between nodes. In Chapter 4 we address the problem of
summarizing large-scale dynamic graphs, while maintaining the evolu-
tion of their structure and the communication patterns. Our approach is
based on grouping the nodes of the graph in supernodes according to their
connectivity and communication patterns. The resulting summary graph
preserves the information about the evolution of the graph within a time
window.

We propose two online algorithms for summarizing this type of
graphs. Our baseline algorithm kC based on clustering is fast but rather
expensive in memory. The second method we propose, named µC, re-
duces the memory requirements by introducing an intermediate step that
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keeps statistics of the clustering of the previous rounds. We apply our
methods to several dynamic graphs showing that we can efficiently use
the summary graphs to answer temporal and probabilistic graph queries.
Extensive experiments on several real-world and synthetic graphs show
that our techniques scale to graphs with millions of edges and that they
produce good quality summaries with small reconstruction error. Our
work was the basis for addressing the problem of tensor decomposition
that captures the multi-way structure of time-evolving networks [40].

In Chapter 5 we study the problem of finding a selective temporal
connector, given a set of query vertices. The resulting connector, which
can form one or more communities, can give a useful insight on the rela-
tionship between the vertices of interest. To this direction, we propose a
method for computing a temporal selective connector, based on temporal
paths. The community notion that we propose minimizes the temporal
inefficiency, a notion that we have extended to the temporal graph setting.
Our proposed algorithm, extracts cohesive temporal communities at ev-
ery timestamp and additionally updates the query set as the communities
evolve in time.

Measures of centrality of vertices in a network are usually defined
solely on the basis of the network structure. In highly dynamic net-
works, where vertices appear and disappear and their connectivity con-
stantly changes, we need to redefine our measures of centrality to properly
capture the temporal dimension of the network structure evolution. Be-
tweenness centrality (BC), one of the most studied measures, defines the
importance of a vertex as a mediator between available communication
paths.

Based on the notion of shortest-fastest paths defined in Chapter 3, we
propose in Chapter 6 a novel temporal betweenness centrality (TBC) met-
ric, which is highly sensitive to the observation interval and the parameter
that regulates the importance of space and time distances of vertices. This
new metric can provide better understanding of the communication medi-
ators in temporal networks. We provide an efficient algorithm to exactly
compute all-pairs shortest fastest paths and the corresponding values of
the temporal betweenness centrality in static and sliding temporal win-
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dows. Additionally, we propose an efficient distributed algorithm that
makes our algorithm scale to graphs of millions of vertices. We provide
a thorough experimentation on a large variety of datasets, both for the
characterization of shortest-fastest paths and the temporal betweenness
centrality of the vertices. An application to the analysis of information
propagation proves that our notion of temporal betweenness centrality
outperforms static BC in the task of identifying the best vertices for prop-
agating information.

For all the different algorithmic problems, we provide distributed al-
gorithms based on the Apache Spark architecture. In this way we address
the problem of scalability for large graphs and massive streams.

7.2 Future Directions

In this work we have tackled some important problems on temporal
graphs. However, we acknowledge that there is still a large number of
problems that remain unexplored. We next provide a discussion of re-
search directions that offer possibilities for future work.

The lack of datasets, baselines and ground truth for the metrics can
become very challenging at the time of evaluating a temporal metric or
technique. In this work we presented a synthetic dataset for the quan-
titative evaluation of our methods. However, one interesting area of
improvement is the generalization and standardization of the evaluation
techniques. This can be done by proposing more sophisticated synthetic
datasets, with tunable properties that are extended to the temporal setting,
such as temporal degree distribution of the vertices, temporal clustering
coefficient, etc.

One immediate future direction regarding temporal graph summariza-
tion, which is presented in Chapter 4, is to study networks with addi-
tional information and different semantics. Temporal attributed graphs
and graphs with textual data can be some of the potential graphs of inter-
est. Multi-layer graphs [68] and multi-view graphs are becoming increas-
ingly important as the data are getting richer. This can lead to a new re-
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search direction towards temporal multi-layer and multi-view graph sum-
marization. Finally, the most challenging part is to design algorithms with
theoretical guarantees.

In the temporal community search problem, which is presented in
Chapter 5, as an immediate future work, we plan to extend our algorithms
to approximation algorithms with quality guarantees. Additionally, the
problem can have further practical applications, such as query or tag sug-
gestions. Another interesting direction for the community search prob-
lem, is to identify temporal attributed communities and understand how
and why these communities are formed and evolve in time. Therefore, the
techniques presented in Chapter 5 can be extended to temporal attributed
graphs [39], in order to identify temporal attributed communities given a
query set of interest.

In Chapter 6 we study the problem of temporal betweenness central-
ity. As future work, it would be interesting to define the temporal be-
tweenness centrality for edges. The immediate application to the problem
of community detection in static graphs can be further extended in the
temporal setting. This approach can give good insights about temporal
communities in temporal windows. Betweenness centrality is a highly
computationally expensive metric, that is why researchers have turned
their attention to approximate methods in the case of static graphs. An
interesting research direction would be to develop techniques for calcu-
lating approximate temporal betweenness centrality in dynamic graphs.

As a general research direction, the above problems can be further
investigated in other time window functions, e.g., exponential. Addition-
ally, the area of counting and enumerating complex temporal motifs, i.e.,
small subgraph patterns in temporal graphs, has not been explored suf-
ficiently. Finally, another research direction is the modeling of visual-
ization techniques for temporal networks in order to capture reachability,
latency and other properties of the temporal graph that are difficult to
model in one dimension.
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[55] P. Holme and J. Saramäki. Temporal Networks as a Modeling
Framework, pages 1–14. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013.

[56] S. Huang, A. W. Fu, and R. Liu. Minimum spanning trees in tem-
poral graphs. In SIGMOD 2015.

[57] X. Huang, L. V. S. Lakshmanan, and J. Xu. Community search over
big graphs: Models, algorithms, and opportunities. In Tutorial at
ICDE 2017.

[58] A. Inokuchi and T. Washio. Mining frequent graph sequence pat-
terns induced by vertices. In Proceedings of the 2010 SIAM In-
ternational Conference on Data Mining, pages 466–477. SIAM,
2010.
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