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Abstract 
 Improving mathematical abilities is important for 
educational systems and for society overall. We present two training 
regimes based on numerical representations. 

 In Study 1, we show that a three-week computer-based 
quantity discrimination training, focused on enhancing the accuracy 
of the Approximate Number System (ANS), improved mathematics 
performance in low-performing 7-to-8-year-old children.  

 In Study 2, we show that a novel numerical estimation 
training enhancing mappings between Arabic digits and quantities, 
improved overall mathematical competence in all children, going 
beyond the improvements obtained by training ANS. 

 In Study 3, we show that performance in both trainings 
correlate, in different extend, with school math marks, but we 
especially found a consistent and extended relation between the 
ability of mapping digits to quantities and the school math marks in 
pupils from 8 to 13 years of age.  

 Thus, training the precision of the digit-quantity relation 
may improve mathematical competence, particularly in the first 
crucial years of exposure to formal mathematics.  

 

 

 

 

 

 

 

 

 

 



 vii 

Resum  
 La millora de les habilitats matemàtiques es un objectiu 
important pels sistemes educatius i per la societat en general. Aquí 
presentem dos entrenaments basats en representacions numèriques.  

 A l’estudi 1, mostrem com entrenant la discriminació de 
quantitats durant tres setmanes amb la intenció de fer més precís el 
Sistema d’Aproximació Numèric (ANS), millora el rendiment 
matemàtic del nens de 7-8 anys de baix perfil acadèmic  

 A l’estudi 2, mostrem com un inèdit entrenament 
d’estimació numèrica dissenyat per incrementar la precisió en 
relacionar els dígits Aràbics amb les quantitats que representen,  
provoca una millora generalitzada de la competència matemàtica en 
tots els perfils acadèmics en nens de 7 a 8 anys.  

 A l’estudi 3, mostrem com el rendiment en els dos 
entrenaments correlaciona amb les notes de matemàtiques a l’escola 
encara que en diferent mesura, essent l’habilitat de relacionar els 
dígits amb les quantitats, la que correlaciona amb les notes en més 
cursos escolars, des dels 8 anys fins als 13.  

 Així, entrenar la precisió en relacionar els dígits amb 
quantitats provoca una millora de la competència matemàtica, 
sobretot en els primers anys crucials d'exposició a les matemàtiques 
formals.  
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Preface 

 Across school years, many children struggle with 
mathematics affecting their confidence and future career choice, 
eventually creating a social problem. Society in general, and the 
educational system in particular, have a responsibility for the 
generation of this problematic situation. Indeed, several societal 
factors contribute to it: socioeconomic status, math anxiety, gender 
discrimination, or teacher biases, among others. Another important 
factor, we believe, is that the educational systems overestimate 7-8 
year olds’ comprehension of some basic aspects of mathematical 
language. An appropriate, evidence-based training of basic number 
abilities may complement standard school teaching routines, in an 
effortless and playful way, potentially generating long-lasting 
benefits in children’s mathematical abilities and self-confidence, 
starting from these crucial founding years of their initiation to 
mathematical concepts. In the classroom, one typically observes a 
range of mathematical skill from low-performing to high-
performing children. Parents, teachers, and community leaders all 
share a desire to help children improve in school. Perhaps this 
desire can be most keenly felt for low-performing children who are 
struggling alongside their middle- and high-performing peers. The 
mathematical abilities required in the classroom range from simpler 
skills, like intuitive estimation and comparison of numbers of items, 
to more complex abilities such as multiplication. One interest of 
researchers in cognitive science and education is to understand the 
range of mathematical content taught in school (e.g., addition, 
subtraction, multiplication) and the range of basic cognitive abilities 
that support this content. 

 I would like to confess that I am very pleased to have 
contributed to both, the research in numerical cognition and the 
educational system. The Digits computer program that I have 
developed, for the time being, has met the expectations of helping 
children improve their mathematical abilities. 

 I hope you enjoy your reading. Nuria Ferres Forga 
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1. INTRODUCTION  

1.1 Learning Mathematics   
 Mathematical competence is a fundamental factor in 
important aspects of life. It correlates with socioeconomic status 
and success in the professional world (Parsons & Bynner, 2005; 
Ritchie & Bates, 2013); with health status (Peters, Hart, Tusler, & 
Fraenkel, 2014); and of course with academic achievements (Geary, 
Hoard, Nugent, & Bailey, 2013; Jordan, Kaplan, Ramineni, & 
Locuniak, 2009; Papay, Murnane, & Willett, 2014; Watts, Duncan, 
Siegler, & Davis-Kean, 2014). It is thus equally fundamental to 
understand how mathematical skills are acquired and how they can 
be improved, especially in the critical early years of schooling. 

 The process of learning mathematics to enhance 
mathematical competence can be approached from two dimensions. 
First, social and educational aspects have a particularly important 
influence. Numerous scientific studies have been dedicated to this 
dimension. Socioeconomic status plays a role (Ramani & Siegler, 
2011; Thien & Ong, 2015; Verdine et al., 2014), but so do gender 
(J. S. Hyde & Mertz, 2009; Stoet, Bailey, Moore, & Geary, 2016), 
math anxiety (Jansen et al., 2013; Maloney & Beilock, 2012; M.I. 
Núñez-Peña, Suárez-Pellicioni, & Bono, 2013; Pletzer, Kronbichler, 
Nuerk, & Kerschbaum, 2015; Z. Wang et al., 2014), motivation and 
predisposition to mathematics (Cerda et al., 2015; Simzar, Domina, 
& Tran, 2016), language development and bilingualism (Moll, 
Snowling, Göbel, & Hulme, 2015; Spelke & Tsivkin, 2001; Van 
Rinsveld, Brunner, Landerl, Schiltz, & Ugen, 2015), or teacher 
effects (Demaray & Elliot, 1998; Desimone & Long, 2010; 
Tournaki, 2003). More recently, we know that the use of 
educational software and game-based learning can be added to this 
already long list (Bugden, DeWind, & Brannon, 2016; Desoete & 
Praet, 2013; Niederhauser & Stoddart, 2001; Praet & Desoete, 
2014).  
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 Second, an extensive scientific literature documents the 
importance of cognitive processes in the acquisition of 
mathematical skills, starting from those more directly related to 
numerical cognition. We will expand on them in the next few 
sections. To ensure that students can develop their mathematical 
skills in the most appropriate, enriching and efficient way possible, 
these two approaches should be more interconnected so that they 
can benefit each other (Coch & Ansari, 2009; Siegler, 2003),. 
Furthermore, when we deal with children, this process should also 
be easy, interesting, and fun as much as possible. But to achieve 
these goals, a deep understanding of the pillars on which the 
construction of mathematical competence can be built is necessary. 

 How can scientific knowledge on numerical cognition help 
students at school to learn and understand mathematics better? And, 
at the same time, how can students’ numerical performance at 
school serve to broaden our knowledge of cognition? In this thesis, 
we have focused our research on this double dilemma: using what 
we know about numerical cognition to improve mathematical 
education, and using mathematical performance in educational 
settings to have a glimpse on some aspects of the underlying 
cognitive processes. Inspired by the current scientific knowledge on 
numerical cognition and mathematics education, enriched by my 
personal experiences and knowledge in the field of education, I 
have created a numerical computer training regime. I adapted it to 
children in order to help them learning mathematics at early and 
crucial years in which this learning takes place. I also explored how 
it can be also used to test numerical abilities in children and 
teenagers. I called this game the Digits game. Basically, Digits 
game trains the precision in mapping Arabic digits to the quantities 
they represent by a numerical estimation task.   

To advance our knowledge of the effectiveness of existing 
methods, while at the same time creating a yardstick for the method 
I elaborate, I have explored the results of a prolonged training with 
an existing computer testing program, the Panamath game 
(Halberda, Mazzocco, & Feigenson, 2008), which has been studied 
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over large populations (Halberda, Ly, Wilmer, Naiman, & Germine, 
2012), although its effectiveness in prolonged training were 
unknown. This program measures the approximate number system 
abilities by means of a quantity discrimination task. We used it here 
as a test for students, but also as a training method for children. In 
this way, at the same time, we could test aspects of the program 
which were unknown and compare our novel method with a more 
established, scientifically motivated, computer-based method. 
Finally, the results of the training and test procedure we obtained 
with our studies with children and teenagers have provided a mass 
of interesting information to continue improving our knowledge 
about numerical cognition and mathematical education. This is the 
content of the current work: 

 In Study 1 (Chapter 2), we trained 7-8-year-old children 
with a three-week Approximate Number System training regime 
based on Panamath game, comparing its efficiency with a control 
group of children exposed to a computer training schedule not 
involving mathematical activities.  

 In Study 2 (Chapter 3), we compared the same ANS-based 
training regime with a novel, digit-quantity-mapping training 
regime, the Digits game, for the same training length and at the 
same ages.  

 In Study 3 (Chapter 4), we tested pupils from 8 to 16 years 
of age. We assessed their abilities at playing both games, extracting 
information about their ANS accuracy and their Digit-quantity 
mapping precision, and studied the relation between such abilities 
and how they correlate with pupil's school marks in mathematics.  

 

1.1.1 Cognitive process in learning mathematics: 
Numerical Cognition 
 Thirty years ago, numerical abilities were considered as a 
derived product of human linguistic competence. In the nineties, 
however, a disruptive series of scientific papers allowed us to 
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elaborate a different perspective on the cognitive processes involved 
in numbers. These papers brought to light the existence of a number 
sense; from them, a novel field of “numerical cognition” was born 
(Dehaene, 1992).  

Since this seminal work, most researchers assume that a 
preverbal magnitude system, the Approximate Number System 
(ANS), forms the basis of number processing when we estimate 
quantities, compare between them, and even allows us to 
approximate basic additions. We share this system, which has no 
basis on language, with other animals (Agrillo, Piffer, & Bisazza, 
2011; Beran, Evans, & Harris, 2008; Bisazza, Piffer, Serena, & 
Agrillo, 2010; Dadda, Piffer, Agrillo, & Bisazza, 2009; Dehaene, 
Dehaene-Lambertz, & Cohen, 1998; Elena, Petrazzini, Agrillo, 
Izard, & Bisazza, 2016; Jones et al., 2014; Jones & Brannon, 2012; 
Miletto Petrazzini, Agrillo, Izard, & Bisazza, 2015), people of other 
cultures (McCrink, Spelke, Dehaene, & Pica, 2013; Pica, Lemer, 
Izard, & Dehaene, 2004), and preverbal infants (Brannon, 2006; 
Feigenson et al., 2004; Hyde, 2011; Hyde & Spelke, 2011; Libertus 
& Brannon, 2009; Xu & Spelke, 2000; Xu et al., 2005; Izard et al., 
2008). Even newborn infants seem to have numerical 
representations  (Antell & Keating, 1983; Coubart, Izard, Spelke, 
Marie, & Streri, 2014; de Hevia, Izard, Coubart, Spelke, & Streri, 
2014; Izard et al., 2009).  

 The number sense is at the very foundation of numerical 
thinking, because numbers exist to represent magnitudes. However, 
approximate perceptions of quantities are not a sufficient foundation 
for our mathematical abilities. Even simple arithmetics calls for a 
symbolic and accurate mathematical language that allows us to 
precisely calculate the results of operations, following exact 
calculation algorithms (Bonny & Lourenco, 2013; Butterworth, 
2010; Lemer, Dehaene, Spelke, & Cohen, 2003). Without this 
exactness, our mathematical competence would remain in the realm 
of approximation (Dehaene, 2001). 
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After the discovery of the approximate number system, 
some studies explored the relation between the ANS and symbolic 
mathematics. Thus, Dehaene and Cohen (1997) indicated that 
different levels of numerical skills – notably, approximate skills and 
exact calculations -- rely on partially separate cerebral circuits. 
Dehaene and Cohen (1991) presented the case of a patient with a 
sever lesion in his left hemisphere that impaired his exact 
calculation abilities, but preserved his approximation abilities. 
These results, together with others, led Dehaene (1992) to propose 
the triple-code model of number representation. According to it, 
numbers are represented at least in three different forms: 1) a visual 
Arabic code in which numbers are represented as digits, localized in 
the bilateral inferior ventral occipito-temporal areas; 2) a verbal 
code in which numbers are represented by words, subserved by the 
left-hemispheric perisylvian areas, and 3) an analogical quantity or 
magnitude code, in the bilateral inferior parietal areas (specifically 
in the intraparietal sulcus IPS where our approximate number 
system is located) encoding semantical knowledge about numerical 
quantities. The model included two basics routes by which simple 
arithmetic problems can be solved. One route is direct and active 
when the solution to an operation has been acquired by rote verbal 
learning, such as when we memorize arithmetic facts like 
multiplications tables or single-digit additions tables. This direct 
route is blind to the meaning of the numbers manipulated, because 
only the visual Arabic code (digits) and the verbal code (words) 
representations are activated, and involves a left cortico-subcortical 
loop. The second route is the indirect semantic route. In it, the 
operands of the problem are encoded as quantity representations, 
acquiring their semantic meaning in the bilateral inferior parietal 
areas. This second route is used when we must calculate complex 
additions (including for example 11 + 4), subtractions or divisions. 
In short, the indirect semantic route is active any time we are 
solving arithmetic operations that are not normally acquired by rote 
verbal learning. 
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These two routes or pathways to solve arithmetic operations 
(by rote or semantic) use different neural mechanisms that could 
dissociate as a consequence of cerebral lesions. Indeed, Dehaene & 
Cohen (1997), presented the case of two patients with different 
lesions. When damage was in the inferior parietal lobule, the 
semantical representation of numerical quantities was impaired, 
affecting subtraction and division more than the single-digit 
additions or multiplications, especially those with small numbers. 
This selective loss was consistent with the triple code model 
because the retrieval of rote verbal knowledge was spared. By 
contrast, tasks which required the knowledge of the quantities 
represented by numbers resulted in impaired performance. This was 
so for numerical comparison, numerical proximity judgements, 
number bisection tasks, exact calculations (subtraction, division, as 
well as additions and multiplications with large numbers), or 
approximations of computations. Thus, the role of the inferior 
parietal region seems to be critical in performing semantically 
operations on numerical quantities. 

In the second patient, the cerebral lesion was affecting the 
direct route, the circuit involved in learning by rote arithmetic facts. 
As a consequence, facts such as multiplication problems were the 
most impaired. By contrast, tasks involving quantitative number 
knowledge were spared. This pattern was the opposite to that of the 
first patient. 

 Subsequent results suggested that the lateral prefrontal 
cortex interacts with the intraparietal sulcus in approximate number 
representations (Nieder & Dehaene, 2009). A recent meta-analyses 
confirmed that bilateral parietal areas and frontal areas are both 
involved in number processing (Sokolowski, Fias, Mousa, & 
Ansari, 2017). 

Importantly, the bilateral organization of the parietal areas 
and the grade of activation of the frontal areas are both affected by 
development. As for the development of the organization of the 
parietal areas, in 4 year-old children the involvement of the  inferior 
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parietal cortex (and in particular  the horizontal Intraparietal sulcus, 
hIPS)  in the representation of numerosity seems to be the same as 
that in the adult brain (Cantlon, Brannon, Carter, & Pelphrey, 
2006). There are several indications that right parietal region may 
be functional very early in life, before any arithmetic learning, 
supporting early numerosity abilities (Izard et al., 2008). However, 
during development there is a progressive shift from the 
predominance of the right hIPS to a bilateral compensation 
(Manuela Piazza & Izard, 2009). The left parietal cortex develops 
with age, acquiring an increased functional specialization in mental 
arithmetic (Ansari & Dhital, 2006; Rivera, Reiss, Eckert, & Menon, 
2005). This may be the result of the development of mathematical 
language in the left hemisphere, since Arabic digits are more 
accurately coded than numerosity, in the left parietal area more than 
in the right hIPS (M. Piazza, Pinel, Le Bihan, & Dehaene, 2007; 
Manuela Piazza & Izard, 2009). Indeed, in a study with more than 
200 adult participants, the only two areas that were found to have 
increased activity with age were a left inferior/middle temporal 
region and a left supramarginal/IPS region, related with the 
representations of numbers (Pinel & Dehaene, 2010). And more 
recent studies found that in children non-symbolic tasks elicited 
right IPS activation while more bilateral activation occurred for 
number words, suggesting that the left IPS plays a greater role in 
symbolic numerical tasks (Emerson & Cantlon, 2015; Lussier & 
Cantlon, 2017; Vogel, Goffin, & Ansari, 2015). 

 Also, the grade of activation of frontal areas changes across 
development, while the process of learning unfolds. Children show 
elevated prefrontal cortex activity while processing number 
symbols. When 6-7 year old children compare  numerical symbolic 
(digits) and nonsymbolic (dots) values, as in adults the  occipito-
temporal and the parietal cortices were active (Cantlon et al. (2009); 
however, these tasks also recruited the inferior frontal cortex to a 
greater degree than in adults. Several studies (e.g. Ansari, Garcia, 
Lucas, Hamon, & Dhital, 2005) suggest that the frontal cortex 
participates in forming the initial links between symbolic and 
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nonsymbolic numerical representations, so that children recruit the 
inferior frontal cortex at an early stage of development to form 
associations among numerical values at a notation-independent 
level of abstraction. Developmental changes show a shift from a 
strong involvement of the right frontal areas towards the 
intraparietal and posterior parietal regions in processing symbolic 
magnitudes. This ontogenetic shift in activation may reflect an 
increasingly flexible mapping between Arabic digits and the 
quantities they represent. An increasing automaticity of these 
mappings may require less involvement of the frontal areas, until 
the parietal regions become fully functionally specialized for 
processing numerical quantities. 

 These developmental results are consistent with the 
progressive automatization and consolidation of the link between 
Arabic digits and their corresponding quantities from 6 to 22 years  
of age (Rubinsten, Henik, Berger, & Shahar-Shalev, 2002). While 
the early stages how the mapping between number words and 
approximations of sets remains to be fully articulated, there is 
ample consensus that by the age of 6 children have formed this 
functional mapping, although the precision and biases involved in 
this mapping will likely continue to undergo development even into 
the adult years (Izard & Dehaene, 2008; Sullivan & Barner, 2014). 

  

1.1.2 Two core systems depending on the size of the 
numerosity   
 Several studies indicate that our number sense processes 
estimations differently according to the size of the quantity to be 
estimated (Feigenson et al., 2004). Our ability to enumerate small 
numbers of objects, between 1 and 4, is faster and more accurate 
than when there are more than four objects (Mou & VanMarle, 
2014; Trick & Pylyshyn, 1993, 1994). Thus, small numerosities can 
be rapidly subitized while large numerosities can only be 
approximately estimated (Dehaene, 1992; Revkin, Piazza, Izard, 
Cohen, & Dehaene, 2008). These data suggested that different 
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processes may be involved while dealing with small and large 
quantities (D. C. Hyde & Spelke, 2011; Vuokko, Niemivirta, & 
Helenius, 2013) These two core systems seems to be present at all 
ages. What changes across early development is the border between 
small and large numerosities; going from 2-3 to 3-4 (Coubart et al., 
2014). The existence of two different process is also supported by 
brain imaging research (D. C. Hyde & Spelke, 2009; M. Piazza, 
Giacomini, Le Bihan, & Dehaene, 2003).  

 

1.1.3 Arabic Digits: naming the digit 
 Arabic digits are a precise representation of quantities; 
however, we continue translating them to an approximate 
representation, accordingly to the accuracy of our approximate 
number system. This process of representing quantities is automatic 
(Dehaene, Naccache, et al., 1998; Dehaene & Akhavein, 1995; 
Dehaene & Naccache, 2001; den Heyer & Briand, 1986; Girelli, 
Lucangeli, & Butterworth, 2000; Henik & Tzelgov, 1982; Tzelgov, 
Meyer, & Henik, 1992), irrepressible (Henik & Tzelgov, 1982; 
Tzelgov et al., 1992), and unconscious (Naccache & Dehaene, 
2001a, 2001b; Reynvoet & Ratinckx, 2004).  Indeed, whenever we 
perform tasks involving quantities, it is possible to observe two 
laws that our ANS follows: the distance effect and the size (or 
magnitude) effect (Cordes, Gelman, Gallistel, & Whalen, 2001; 
Dehaene, 2007; Dehaene, Dehaene-Lambertz, et al., 1998; van 
Oeffelen & Vos, 1982). Now, once the meaning of digits is 
acquired, the distance effect occurs also when comparing Arabic 
digits, just as when we directly compare sets of dots. This is 
evidence that digits are not compared as symbols,  but are recoded 
and computed as quantities (Dehaene, 1992). Thus, both laws, 
distance and magnitude effects, continue to affect our ability to 
discriminate digits, whether they be single-digit (Moyer & 
Landauer, 1967) or two-digit Arabic numbers (Dehaene, Dupoux, & 
Mehler, 1990; Hinrichs, Yurko, & Hu, 1981; Pinel, Dehaene, 
Rivière, & LeBihan, 2001).  
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  Recent studies indicated that not only word numerals but 
also Arabic digits can be named without accessing to its magnitude 
representation (Herrera & Macizo, 2011). Thus, digits are processed 
more as words than as pictures, using an asemantic route to access 
phonological information. It is assumed that the simple reading of 
number words, like any word, can be done without retrieving their 
meaning, by a direct connection between the orthography and the 
phonology of the words (Fias, Reynvoet, & Brysbaert, 2001). On 
the other hand, naming non-symbolic quantities, like pictures, 
requires an access to the mental representation of the quantity, that 
is to say, its meaning (e.g., a dice; Roelofs, 2006). However, an 
interesting question is the case of numerical symbols such as Arabic 
digits, which maintain an arbitrary relation both to their phonology 
and to their meaning. It has been observed access to phonological 
information when naming Arabic digits without previous access to 
their meaning (Herrera & Macizo, 2011, 2012). Previous studies in 
picture naming tasks have shown that if pictures presented belong to 
the same semantic category, e.g., vehicles (blocked condition), the 
response times are greater than if pictures presented belong to 
different semantic categories, e.g., vehicles and animals (mixed 
condition). This effect has been called semantic interference. 
However, when the task is to read words, there is no difference 
between the blocked and the mixed condition (Kroll & Stewart, 
1994). This difference between pictures and words or digits is a 
consequence of the different stages required to access to the 
phonological information of the word. Therefore, Arabic digits are 
processed like words, not like pictures, so we can read Arabic digits 
without activating their meaning. Thus, children may learn to name 
Arabic digits without this implying an understanding of their 
meaning.  

 

1.1.4 The number line and the ordering task   
 Several studies suggest that we represent ordinal sequences 
spatially organized in an ordered mental line. This mapping occurs   
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both for numerical (Izard & Dehaene, 2008; Odic, Le Corre, & 
Halberda, 2015; Rouder & Geary, 2014), and non-numerical 
learned sequences, such as months, letters (Gevers, Reynvoet, & 
Fias, 2003) or days of the week (Gevers, Reynvoet, & Fias, 2004). 
The order in which the sequence is mentally represented is activated 
even when the ordinal position is irrelevant for the task. 
Furthermore, the fact that a sequence is ordered – even if it is a 
numerical sequence –– does not mean that its ordering maps onto 
numbers. For example, in the case of the letters, as reported by 
Gevers et al. (2003), numerically recoding each letter to numbers is 
unlikely as the translation  has a timing cost (Jou & Aldridge, 1999) 
incompatible with participants responses. Thus, the association 
between ordinal sequences and space is not necessarily related to 
numerical values. This is also the case of children who know how to 
recite numbers. The fact that they know how to order numbers in a 
line does not mean that they know their numerical meaning. 
Ordering of the number words, or of the Arabic digits, can be 
acquired before acquiring the meaning of cardinality. It is a task that 
can be compared to that of an adult when ordering the letters of the 
alphabet.  

 The association of numbers and space may be facilitated by 
the organization of the brain: numerical and spatial arrangements 
partially share parietal neuronal networks (Hubbard, Piazza, Pinel, 
& Dehaene, 2005). Also, there is a strong correlation between 
spatial and mathematical competences in 12- to 14-years old 
children (Hermelin & O’Connor, 1986).  

 The specific direction in which numbers are mentally 
ordered can be measured by the SNARC effect (Spatial-Numerical 
Association of Response Codes effect). This shows a preference 
with faster responses when larger numbers are on the right side or 
smaller numbers on the left side of the space, indicating a direction 
of the number mental line that increases from left to right (de Hevia, 
Vallar, & Girelli, 2008; Dehaene, Bossini, & Giraux, 1993; 
Hubbard et al., 2005). This direction may respond to a cultural 
construct. For example when the writing  system goes from right to 
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left, the mental representation of digits in space is also reversed, 
(Dehaene et al., 1993; Zebian, 2005)). Thus, the habits of reading 
and writing could be the cause of the spatial orientation that we 
confer to the mental line of numbers. Consistently, in children the 
SNARC effect has been found to emerge when reading and writing 
are well consolidated, after the age of 10 (Berch, Foley, Hill, & 
Ryan, 1999).  

 It is, however, possible that this bias is much deeper, as left-
to-right preferences appear to be present in preverbal infants (Bulf, 
de Hevia, Gariboldi, & Macchi Cassia, 2017; Rugani & de Hevia, 
2017), or even at birth (de Hevia et al., 2014). 

 This may suggest that some property of the spatial 
arrangement is directly dependent on low-level responses of the 
brain. 

 Several studies indicates that the number mental line 
undergoes a logarithmic compression, so that large numbers are 
underrepresented and small numbers overrepresented (Arnaud, 
Hubbard, Dehaene, & Sackur, 2010; Banks & Hill, 1974; Dehaene, 
2007; Shepard, Kilpatric, & Cunningham, 1975). This logarithmic 
representation of numbers could be proportional to the frequency in 
which numerals are used, as small numbers are more often read or 
heard (Dehaene & Mehler, 1992), but not to its cardinality. In the 
task of placing a number within a segment labeled with 1 at the left 
and 10 (or 100) at the right, it has been observed that both, the 
kindergarteners (Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi, 
2010; Booth & Siegler, 2006) and the Amazonian Mundurukú 
(Dehaene, Izard, Spelke, & Pica, 2008), do not place numbers 
linearly. Small numbers are represented more in the middle, 
following the logarithmic compression of our number mental line. 
Improving in this task, that is shifting from a logarithmic to a linear 
positioning of numbers corresponding more to their actual 
quantities, occurs latter on development. With education, slowly 
comes the awareness of the meaning of each number, and of the fact 
that it is always 1 unit of increment or decrement that separates each 
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number. However, other explanations are possible. Cohen & 
Sarnecka (2014) used two types of number-lines: the bounded line, 
that is the traditional line in which both endpoints are labeled (e.g., 
0 – 20); and the unbounded line, where only the lower bound (e.g., 
0) is marked. They found that developmental changes in 
performance on the traditionally bounded number line, shifting 
from logarithmic to linear representation, reflects the improvement 
in children’s measurement skills, rather than changes in their 
understanding of numerical quantities. 

 Importantly, a calibration of number mental line can be 
obtained, not by counting or ordering numbers, but by exposing 
participants to the information about the quantitative meaning of 
numbers, such showing how many dots correspond to a given 
number  (Izard & Dehaene, 2008). Arithmetic skills do not seem to 
benefit from the knowledge of the numerical order per se, but they 
do seem to improve with the knowledge of the quantity represented 
by the digits, for example in numerical magnitude comparison tasks 
(Vogel, Remark, & Ansari, 2014). 

 Taking all these considerations into account, we propose that 
ordering numbers is not a reliable way to measure knowledge of 
cardinality in children. At school, one of the activities that teachers 
prepare for young children is to order numbers. Success at this task 
can give the false illusion that children understand what they are 
doing. More importantly for our purposes, we suggest that the most 
directly way to improve the comprehension of cardinality, and with 
it, potentially of mathematical skills, is to create (or reinforce) the 
mapping between digits and their magnitudes, that is, the quantities 
they represent. 

 

1.1.5 Acquiring the meaning of numerals and counting 
 Acquiring the meaning of numerals requires grasping the 
notion of exact quantities and constructing the mapping between 
quantities and digits. This process undergoes a long development. 
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 Before counting, but not until two and half years of age, 
children begin to distinguish numbers from other adjectives, 
probably in virtue of the syntax of the number words (Wynn, 1990, 
1992). Children could then learn the number-word meanings one at 
a time and in order, possibly by using some form of mutual 
exclusivity (Sarnecka & Lee, 2009). 

 For small numerosities, learning to map quantities to their 
corresponding numerals could not be related to the process of 
counting since this mapping is prior to the acquisition of the 
counting principles (Le Corre & Carey, 2007).  An important 
counting principle (there are five principles; Gelman & Gallistel, 
1978) is the cardinal principle (CP) that represents the property of 
the cardinal number of the set: the final item counted in the set 
represents the number of items in the set.  Instead of counting, 
subitizing seems to be a more primitive tool (Benoit, Lehalle, & 
Jouen, 2004) since 3 years old children, before they figured out the 
cardinal principle of counting, are already better on determining the 
number of objects on short and simultaneous presentation of items 
than on short but one by one presentations of the same items.  

 Children are taught to count and, although they know that 
these numbers are related to quantities, they ignore their exact 
meaning (Sarnecka & Carey, 2008; Wynn, 1990, 1992). It seems 
that it takes about six months after the acquisition of counting 
principles for children to begin mapping numerals beyond “four” to 
their corresponding quantities. They succeed at this mapping 
approximately at 5 years of age (Le Corre & Carey, 2007).  Often 
the passage between the acquisition of counting principles and the 
understanding of how numerals map to quantities is long, extending 
into a child’s 4th or 5th year of life even for counting words below 
20 (Carey, 2004; Wynn, 1990, 1992). Wagner & Johnson (2011) 
found that children younger than 5 years maintain some 
correspondence between bigger number words (e.g., “seven” versus 
“four”) and larger sets of items.   
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 During the process, improvements in counting (that is, in 
verbal number knowledge) are related to improvements in 
approximate number system acuity at 3-4 years of age (Shusterman, 
Slusser, Halberda, & Odic, 2016). It has been suggested that once 
children master the cardinal principle, they understand that adding 
one object means to move forward one word in their list of numbers 
(Sarnecka & Carey, 2008). However, this may not be the case. Le 
Corre (2014) found that the acquisition of the cardinal principle 
(CP) does not imply an understanding that the order of number 
words corresponds to the size of the numerosities they denote. He 
showed that recent CP-knowers were able to compare number 
words (e.g., “six” and “ten”) only if they could map them onto non-
symbolic quantities. Thus, the activity of counting, by itself, does 
not imply the understanding of cardinality. Even in special 
populations, counting without understanding could be associated 
with a slower mathematical learning process, as in the case for 
people with Williams syndrome (Ansari et al., 2003; Libertus, 
Feigenson, Halberda, & Landau, 2014). Similarly, in patient with a 
lesion in the inferior parietal lobule (where the ANS has been 
localized), the recitation of ordinal sequences (for example, the 
alphabet, musical notes, the days of week and months) was perfect. 
So was numerical series learned by rote like the recitation of the 
number sequence readily, the even or odd number series until the 
end of his rote knowledge of this series. However, when the task 
required jumping of 1, 2, or 3 units back or forth in the number line, 
a patient with these lesions was severely impaired, and blocks after 
counting backward for a few items (Dehaene & Cohen, 1997). 

 In summary, it is important to note that repeating the activity 
of counting without an understanding of what numerals mean, that 
is, simply reciting the count list, is not the goal of a numeration 
system. This ability can even mask the fact that children may lack a 
real knowledge of numbers and what they mean. 
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1.1.6 Numerical Cognition and Math performance at 
School. The studies in the present dissertation. 
 Two basic cognitive numerical abilities may have an effect 
on school math performance: The approximate sense of quantities 
provided by ANS, our non-symbolic and innate sense of number; 
and the mapping between Arabic digits and the quantities they 
represent. Accordingly, we centered our research on the relation 
between these abilities and to math school performance. Our main 
aim is to see if they could be improved by some form of easy, 
playful and efficient direct training. 

 Several studies indicate that there is a relation between ANS 
and school math performance (Amalric & Dehaene, 2016; 
Feigenson, Libertus, & Halberda, 2013; Halberda & Feigenson, 
2008; Halberda et al., 2012, 2008; Y. He et al., 2016; Libertus, 
Feigenson, & Halberda, 2013a; Mazzocco, Feigenson, & Halberda, 
2011a, 2011b; Shusterman et al., 2016; A. Starr, Libertus, & 
Brannon, 2013). However, this relation is not always found 
(Butterworth, 2010; Libertus, Feigenson, & Halberda, 2013b; 
Sasanguie, Defever, Maertens, & Reynvoet, 2014), though meta-
analyses suggest that it is probably a real fact (Chen & Li, 2014). 
The variability in the results could be explained by the non-linearity 
of the relation across childhood development (Purpura & Logan, 
2015); math anxiety can also be a factor, as in high math-anxious 
individuals ANS is less precise (M. Isabel Núñez-Peña & Suárez-
Pellicioni, 2014); the math profile of the students can also count, 
given that the correlation between ANS precision and mathematical 
achievement is stronger for children with a less positive math 
profile compared to high-performing children (Bonny & Lourenco, 
2013).  

 In our Study 1 (Ferres-Forga, Bonatti, & Halberda, 2017) we 
performed the first prolonged training of ANS, in a standard school 
setting. Consistent with the above results, we found that training a 
non-symbolic comparison task during three weeks at 7-8 year of age 
does not benefit every child equally, but rather improves the 
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mathematical abilities of those children with a less positive 
mathematical profile. In addition, the benefits induced by such 
training are mainly concentrated in symbolic tasks which  do not 
require exact answers, although they do require an implicit  
understanding of additions, subtractions and multiplications.  

 In Study 2 (Ferres-Forga, Halberda, & Bonatti, 2017), we 
took another approach. Following the theoretical motivations 
presented above, we tried to directly train a sense of cardinality at 
the same age. We independently trained the digit-to-quantity 
mapping and the ANS, in order to test whether such training could 
generate further improvements with respect to ANS training. Our 
ANS training group repeated the same non-symbolic comparison 
routine trained in Study 1. It also obtained the same benefits; that is, 
children improved in symbolic tasks in which an exact answer was 
not required, although in Study 2 all groups, and not only low-
profile children, benefited. In neither studies, did children who 
underwent ANS training improved their performance in symbolic 
additions and subtractions when an exact answer was required.    

 By contrast, in Study 2 the group of participants who were 
trained in the mapping digits and quantities showed a general 
improvement in their mathematical competence, whether the tests 
required exact answers or not. Thus, it seems that strengthening the 
mapping between digits and quantities generates an improvement 
on top of any improvement obtained by means of a regime based on 
training the ANS. 

 Finally, in Study 3 we test (but not train) 529 students aged 
between age 8 and 16. Participants performed a one-hour session in 
which they undertook a quantity discrimination task meant to probe 
their ANS, and a numerical estimation task assessing their digit-
quantity mapping abilities. With this ample sample of participants, 
we could extend our research in several directions. First, and 
foremost, we asked which of the two abilities is a better predictive 
factor of school math performance, as assessed by participants’ 
school math marks. 
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 At the same time, we could verify several other aspects of 
the relation between math performance and the two systems that our 
training and tests probed. We could check whether ANS accuracy, 
as well as the accuracy in mapping Arabic digits to quantities 
increases with age; we could test whether the relation between the 
digit-quantity mapping and symbolic math performance that we 
found in Study 2 at 7-8 years could extended to older ages. Finally, 
we could have within-participant measures of ANS accuracy and 
digit-quantity mapping accuracy, a measure we could not collect in 
our previous studies. Thus, we could also study to what extent these 
two abilities correlate, and if this correlation depends on the age. 

 Overall, seven hundred and ten students participated in our 
studies. Thanks to them, this thesis has been possible. 
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2. EXPERIMENTAL SECTION 1 

 

2.1 Study 1 
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Abstract 

 
 We investigated whether training in Approximate Number 
System precision (ANS) would transfer to improved School Math 
Performance in 7-9-year-olds compared to a Business as Usual 
(BAU) Control group. All children participated in Pre- and Post-
Training assessments of Addition, Subtraction and Multiplication 
abilities. During 3-weeks of training (20-minutes per day, two days 
per week), we found that children in the ANS Training group 
increased in ANS efficiency both within and across the training 
days. Individual differences in ANS efficiency were related to math 
performance. And, ANS training improved math performance 
beyond BAU for low-performing children. We suggest that in this 
age range ANS discrimination training may have positive effects on 
math abilities in low-performing children. 

 

Keywords: approximate number system, early childhood, early 
mathematics, learning math in children, low-achieving students, 
math ability, mathematics education, number sense, school 
mathematics. 
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1. Introduction 
  

 In the classroom, one typically observes a range of 
mathematical skill from low-performing to high-performing 
children (Haworth, Kovas, Petrill, & Plomin, 2007; Simzar et al., 
2016).  Parents, teachers, and community leaders all share a desire 
to help children improve in school, and perhaps this desire can be 
most keenly felt for low-performing children who are struggling 
alongside their middle- and high-performing peers. The 
mathematical abilities required in the classroom range from simpler 
skills like intuitive estimation and comparison of numbers of items 
to more complex abilities such as multiplication. One interest of 
researchers in cognitive science and education is to understand the 
range of mathematical content taught in school (e.g., addition, 
subtraction, multiplication) and the range of basic cognitive abilities 
that support this content (e.g., the Approximate Number System or 
Number Sense, Working Memory, Executive Function), and to 
determine if training in basic cognition can help struggling students 
improve. This is an area of active research. Here, we tested whether 
a 3-week computer approximate number activity (twice per week) 
can improve children’s approximate number abilities (in low- 
middle- and high-performing children) and whether such 
improvement will transfer to school math skills. 

 Mathematical skills, even early on, are an important 
predictor of life outcomes such as health and salary (Parsons & 
Bynner, 2005; Peters et al., 2014; Ritchie & Bates, 2013). Early 
mathematical skills also predict later academic achievements in 
school and in college (Geary et al., 2013; Jordan et al., 2009; Papay 
et al., 2014; Watts et al., 2014). The importance of the early years in 
developing mathematical skills has been investigated (Cerda et al., 
2015), and results suggest that children who start school behind 
their peers are at higher risk of being left behind throughout their 
schooling, resulting in lower academic achievement and continuing 
difficulties into adulthood (Aubrey, Godfrey, & Dahl, 2006; Geary, 
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2013; Watts et al., 2014). While improving the performance of 
students at all levels is important, helping low-performing students 
may present us with added difficulties because factors such as 
motivation (Simzar et al., 2016), math anxiety (Pletzer et al., 2015; 
Z. Wang et al., 2014), lack of a predisposition towards mathematics 
(Cerda et al., 2015), and the effects of teachers’ predictions 
(Demaray & Elliot, 1998; Tournaki, 2003) come into play. Game-
based training of basic math skills may be helpful in this regard as it 
may be less threatening to children who are low-performing in 
mathematics.  

 Classroom-based interventions and teaching have been 
somewhat less effective in helping low-performing students 
(Desimone & Long, 2010; Kroesbergen, Luit, & Maas, 2004; 
Morgan, Farkas, & Maczuga, 2015). However, there is a possibility 
that even very basic intuitive practice (e.g., with estimating and 
comparing the numbers of items in collections) could help low-
performing children (Bonny & Lourenco, 2013; Bugden & Ansari, 
2015; Dyson, Jordan, Beliakoff, & Hassinger-Das, 2015; González 
et al., 2015). Previous research has found a relationship between 
individual differences in formal mathematics ability and precision 
of a basic intuitive sense of number (for review see Feigenson, 
Libertus, & Halberda, 2013). This relationship can be found at 
multiple ages: in preschoolers (Bonny & Lourenco, 2013; Gray & 
Reeve, 2014; Libertus, Feigenson, & Halberda, 2011; Mazzocco et 
al., 2011b; Moore, vanMarle, & Geary, 2016; Shusterman et al., 
2016; A. Starr et al., 2013; Wong, Ho, & Tang, 2016), in primary 
school children (Gilmore, McCarthy, & Spelke, 2010; Nosworthy, 
Bugden, Archibald, Evans, & Ansari, 2013; Pinheiro-Chagas et al., 
2014), in adolescents (Geary et al., 2013) and in adults (Amalric & 
Dehaene, 2016; Castronovo & Göbel, 2012). This basic intuitive 
sense of number comes from a cognitive system called the 
Approximate Number System (ANS), which supports our estimates 
of number (e.g., “there are around 100 marbles in that jar”, visually 
estimating), our ordinal comparisons of number (e.g., “this jar has 
more marbles than that jar”), and basic arithmetic operations over 
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collections (e.g., “I can remove around half of the marbles from this 
jar to make this jar roughly equal to that jar in number”) (Arrighi, 
Togoli, & Burr, 2014; Jessica F Cantlon, Platt, & Brannon, 2009). 
The ANS is present and measurable in young babies (Feigenson et 
al., 2004; D. C. Hyde, 2011; D. C. Hyde & Spelke, 2011), people of 
all cultures (McCrink et al., 2013; Pica et al., 2004), all ages 
(Halberda et al., 2012), and even in other animals (Agrillo et al., 
2011; Beran et al., 2008; Bisazza et al., 2010; Dadda et al., 2009; 
Dehaene, Dehaene-Lambertz, et al., 1998; Jones et al., 2014; Jones 
& Brannon, 2012). In this sense, the ANS is part of the most basic 
foundations for our understanding of number and mathematics. 

 The relationship between the ANS and school math ability 
appears to hold across the entire life span (Halberda et al., 2012). 
Preschoolers, students and adults who are able to make more 
precise and accurate rapid number estimates also tend to do better 
on tests of formal, written, mathematics (Amalric & Dehaene, 2016; 
Halberda et al., 2008; Y. He et al., 2016; Libertus et al., 2011). This 
is true even if one controls for general intelligence, verbal ability, 
and many other cognitive factors (Libertus et al., 2013a). Early 
differences in ANS precision also predict later performance in 
school mathematics (Mazzocco et al., 2011b). 

 The ANS is not fixed across life.  Instead, ANS precision 
improves throughout the school-age years, attaining its highest 
precision sometime around age 30 years (Halberda & Feigenson, 
2008; Halberda et al., 2012). These developmental improvements 
highlight a hope that intervening to improve ANS precision might 
transfer to improvements in school mathematics. Because these 
basic math intuitions can be built into computer tasks (Halberda et 
al., 2008; D. C. Hyde, Khanum, & Spelke, 2014; Park & Brannon, 
2014), game-based learning that increases ANS precision could 
help to train these early skills in low-performing students (Bugden 
et al., 2016; Fuhs & McNeil, 2015; Praet & Desoete, 2014). 
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 Several recent papers suggest that interventions can improve 
ANS precision and that these improvements may transfer to school 
mathematics performance. However, the exact nature of the training 
and the strength of the results are still unknown.  For example, a 
brief (5-minute) intervention to improve ANS confidence 
transferred to immediate gains in simple arithmetic (J. Wang, Odic, 
Halberda, & Feigenson, 2016) but the persistence of these gains 
over an extended period remains unexplored. In other studies, it has 
also been observed that training in ANS arithmetic (e.g., estimating 
the results of adding and subtracting clouds of dots) can lead to 
improvements in symbolic mathematics in children (D. C. Hyde et 
al., 2014; Obersteiner, Reiss, & Ufer, 2013; Park, Bermudez, 
Roberts, & Brannon, 2016), in adolescents (Knoll et al., 2016), and 
in adults (Dewind & Brannon, 2012; Park & Brannon, 2014), but 
training in simple ordinal comparisons of two collections (e.g., 
which jar has more marbles) did not show similarly strong transfer 
results (Lindskog & Winman, 2016; Park & Brannon, 2014, 2016; 
Pinheiro-Chagas et al., 2014). Thus, it remains to be determined 
which types of ANS training will be most effective, at which ages, 
and in which types of children. At the moment, we still don’t know 
which students will benefit most from ANS training.  No previous 
study has focused on the differential effect that ANS training may 
have on children with different mathematical skills. 

 In the current study, we focused on second-graders, ages 7- 
to 9-years old.  Formal symbolic school mathematics in second 
grade includes additions, subtractions, and multiplications, and 
these operations represent different levels of difficulty for a child; 
for example additions are easier than subtractions (Knops, Dehaene, 
Berteletti, & Zorzi, 2014; Linsen, Verschaffel, Reynvoet, & De 
Smedt, 2014), and subtractions are easier than multiplications 
(Prado et al., 2011). We wanted to know if three-weeks of ANS 
training in basic ordinal comparisons (e.g., which jar has more 
marbles) could enhance mathematical abilities in additions, 
subtractions, and multiplications and if improvements were related 
to children's initial mathematical skills.  
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2. Methods 
2.1 Participants 
 Ninety-one children (44 girls; average age = 7 years 10 
months, range from 7 years 3 months to 9 years 3 months) were 
recruited from Hamelin International Laie School 
(http://www.hamelininternacionallaie.com/school/). Most children 
came from families of middle to high socioeconomic status. The 
study was conducted at the premises of the school. Participants 
came from four different classrooms. These classes were each 
served by one of two teachers of mathematics (i.e., each teacher 
separately taught two classes). There was both a Business as Usual 
Control group (BAU Control, n= 47) and an Approximate Number 
System Training group (ANS Training, n= 44), whose difference is 
explained below. Each teacher was randomly assigned both a BAU 
Control group and an ANS Training group across their two separate 
classes. This allowed us to counterbalance treatment and controls 
across the two teachers. All training activity occurred during the 
classes’ normal computer technology class-time. Computer time 
and math instruction time were kept separate throughout the study, 
and teachers and research staff did not highlight or discuss any 
possible relationship between the computer activity and math class 
performance with the students. 

 

2.2 Materials 
 Mathematical competence assessment. In order to 
determine participants’ mathematical competence, we prepared 
three problem booklets for use as pencil and paper tests. Two of the 
test booklets contained straightforward arithmetic problems: one 
additions test booklet (Figure 1a) and one subtractions test booklet 
(Figure 1b). For these, the child simply had to write in the correct 
answer to the addition or subtraction problems. The third test 
booklet was a novel operations test booklet (Figure 1c). In it, each 
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problem was presented with its result, but the operation sign was 
omitted from the equation. The child had to decide whether the 
problem solution demanded an addition, a subtraction, or a 
multiplication sign in order to complete correctly. This third booklet 
presented a kind of problem that had not been taught before in class. 

 Because the children’s school grades were not detailed 
enough to allow a classification of children according to their 
mathematical abilities, we planned to use the additions and 
subtractions subtests to classify them into three groups, separating 
low-, middle- and high-performing children. Then, we used the 
novel operations subtest as a measure of pre- and post-training 
performance.  

 Item difficulty, for each of the three subtests, was created 
under the supervision of the teachers. Two versions of each subtest 
were prepared, with different problems and different orders, so that 
we could prepare unique pre- and post-training booklets and 
counterbalance them across the sessions to control tests effects. 
Difficulty and problem order were randomized. We created a large 
number of problems for each subtest. During testing, children were 
asked to solve as many problems as they could during a 6-minute 
speeded test. The number of problems in the booklet was such that 
we could ensure that they could not complete all of them during the 
allotted time. The additions subtest included 210 problems 
presented on 10 sheets. The subtractions subtest included 190 
problems presented on 10 sheets presented in a column operation 
algorithm form (Figure 1a and b). In the additions subtest, the 
maximum number that each addendum could reach was 18, 
resulting in the highest sum being 18 + 18 and the lowest being 0 + 
0. In the subtractions subtest, both the minuend and subtrahend 
ranged between 0 and 18; the result of the subtractions was always 
positive. 

 The operations subtest included 117 problems presented on 
3 sheets (Figure 1c). For each problem, children had to write in the 
appropriate operation sign. This task included problems of addition, 
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subtraction and multiplication. In the addition problems of the 
operations subtest, the maximum number that the first addendum 
could reach was 7 and the second 10. In the subtractions problems, 
both the minuend and subtrahend ranged between 1 and 11, with the 
result being always positive. In the multiplications problems, only 
the timetables of 1 to 5 and 10 were used, because those were the 
timetables children had been exposed to, according to their teachers. 
The three types of operations (addition, subtraction, multiplication) 
and the problem difficulties were presented in random order. One of 
the versions of the operations subtest contained forty-two additions, 
thirty-eight subtractions and thirty-seven multiplications while the 
other version contained forty-three additions, thirty-nine 
subtractions and thirty-five multiplications. 

 
Figure 1. Examples of problems in additions subtest (a), subtractions 
subtest (b) and operations subtest (c). Examples of the three models of 
objects size to control for surface area: size confounded (d), size 
controlled (e) and stochastic size-control (f). 
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 Computer Activities. Children trained in the computer 
classroom of the school, at a fixed schedule (see Procedure). In the 
classroom, twenty-five Hewlett Packard laptops were available 
(model: HP 620, Pentium (R) Dual Core 2.30GHz, 4GB DRAM, 
64-bit; operative system: Windows 7 Home Premium). Each had 
individual headphones, which the children wore during training. 
The activities were different for the training and control groups. For 
the control group, the computer ran two commercial programs, Tux 
Paint, and Microsoft Word. For the experimental group, the 
computer ran a modified version of the computer game Panamath 
(Halberda et al., 2008), written in Java SE6. In this version, the 
program would generate trials displaying collections of items 
contained inside two rectangles appearing on the sides of the screen. 
For example, twelve teddy bears could appear inside the left 
rectangle and 6 blue dots inside the right rectangle. The number of 
items within each rectangle was always between 5 and 21. The 
items were presented in seven different ratios (larger set/smaller 
set). The ratios could be 3, 2, 1.5, 1.25, 1.17, 1.14, 1.1. For 
example, in a 3-ratio trial children could see 21 blue dots vs. 7 
yellow dots. Smaller ratios correspond to more difficult trials. On 
each trial, the items were displayed for 1382 ms.  

 To vary the relationship between surface area and number, 
the ANS Training used three different models for controlling object 
size. Forty-two percent of the trials were size-confounded (or 
object-size controlled). In them, items average size was equal for 
both sets, so that cumulative surface area occupied by the objects 
was congruent with the number of objects (Figure 1d). Forty-two 
percent of the trails were size-controlled. In them, the average size 
of the objects was smaller for the larger set, so that the ratio of the 
cumulative area occupied by the objects in each set was 1 (Figure 
1e). In the remaining 16% of trails, object sizes were stochastically 
varied in order to give children no consistent size cue for number. 
In these, the average size of the objects varied randomly between 
being size anti-correlated (where the numerically larger set had less 
total area on the screen), size-controlled, and size confounded 
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(where the numerically larger set had more total area on the screen). 
We called these runs stochastic size control (Figure 1f). The 
training regime of the experimental and control groups is explained 
in Procedure. 

 

2.3 Procedure 
 The experiment was run in three phases: Pre-training, 
Experimental/Control training, and Post-training. The Pre-training 
and Post-training assessments were intended to measure the 
mathematical competence of the participants before and after 
training. These assessments were conducted in the children's 
respective classrooms, in the presence of their math teacher. 

 Each of the Pre-training and Post-training assessments 
required children to answer as many questions as possible in 6 
minutes. Children were given 3 booklets containing the addition, 
subtractions and operation problems. They always began with the 
additions subtest. After completing this 6-minute test, they had to 
stop answering and wait until they were given the next test. This 
second test was always the subtractions subtest, administered with 
the same 6-minute procedure. The third and final test was the 
operations subtest. For this test, the teacher had to explain to the 
children what they were supposed to do more fully, given that the 
kind of problem presented was new to them. The teacher briefly 
described the problem structure and completed 3 examples on the 
board, in front of the class: one example for each of addition, 
subtraction and multiplication. Children watched as the teacher 
explained the examples and then they began the 6-minute 
assessment of the operations subtest. 

 All tests were administered in Pre-training and Post-training: 
Pre-training occurred two days before the first training session 
(initial assessment) and Post-training occurred one day after training 
completion (final assessment). All tests contained more equations 
than could be solved in six minutes, so that potential speed and 
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accuracy improvements induced by the training could be assessed 
by comparing Pre- and Post-test. 

 The training phase was administered in six different sessions 
within a three-week period, at a pace of two sessions per week. 
Both the intervention and control groups were trained on the same 
days (every Wednesday and Friday), for the same amount of time, 
and in the same computer classroom. Of the four classes 
participating in the study, classes A (n=24) and B (n=24) had one of 
the two math teachers as their yearly teacher, and classes C (n=23) 
and D (n=20) had the other teacher.  Classes B and D composed the 
control group, while classes A and C composed the intervention 
group, so that teacher effects could be controlled. Class A was 
trained on Wednesdays 12 to 12:30 and on Fridays 9:30 to 10; class 
B on Wednesdays 4:30 to 5pm and Fridays 12 to 12:30; class C on 
Wednesdays 12:30 to 1pm and Fridays 9 to 9:30; and class D on 
Wednesdays 4 to 4:30pm and Fridays 12:30 to 1pm. 

 Control "Business as Usual" (BAU). In the BAU Control 
group, children practiced Tux Paint and Microsoft Word. Practicing 
the latter, they learned to change the type and the size of the fonts, 
to copy, cut, paste, undo, redo, and add a picture on a document. 
Practicing the former, they learned the different tools the program 
offers to draw and modify drawings on screen. Neither activities 
involved approximate number comparison training. Computer 
classes started with teachers' instructions, after which children 
worked individually. 

 Approximate Number System Training (ANS Training). 
In the ANS Training group, children practiced the Panamath 
quantity discrimination game. During training, the computer teacher 
and the experimenter were always present. Children wore 
headphones and trained simultaneously. By observation, children 
appeared to like this game. 
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 The ANS Training presented children with a sequence of 
pictures, asking them to make ordinal comparisons of the rapidly 
flashed collections appearing onscreen.  On each trial, a child would 
see two collections of items appearing on the sides of the screen. 
The child would need to rapidly estimate which side had more items 
(Figure 1 d-f), typing their answers on a keyboard (“f” and “j” keys 
for left or right side respectively). Children could not count the 
items, because the onscreen presentation of the objects was too brief 
(≈1.3 seconds). Rather, they had to rapidly estimate which of the 
two sets on each side of the screen had more items. Different 
collections of items were used on each run of trials, so that the game 
maintained children's interest. For example, one run could present 
blue dots vs. yellow dots; another could present cars vs. bears; yet 
another could display birds vs. dogs.  There were 35 trials per run. 
Children completed approximately 24 runs over the course of three 
weeks.  Feedback was provided after every response: a high-pitched 
beep indicated a correct answer while a low-pitched beep indicated 
an incorrect answer.  

 When introducing the ANS Training game, children were 
told that they would play a game where they would see some 
objects (for example, blue and yellow dots) and they would have to 
choose if there were more blue dots than yellow, or vice-versa, on 
each trial. They were informed that two different sounds would 
provide them with feedback about the correctness of their answer. 
Children were also told that the game would vary in difficulty. They 
were informed that both speed and accuracy were important in the 
game. Each participant completed a total of 24 runs except six 
participants that completed 21 runs, one participant completed 22 
runs and one participant completed 20 runs. Each run was 
comprised of 35 trials (taking approximately 5 minutes of 
gameplay). Always each run started with the easiest ratio during the 
first five trials. Then, every five trials the game increased in 
difficulty, with the ratios becoming closer to 1, until the seven 
different ratios were presented in the 35 trials forming each run. 
This procedure was implemented with the aim to increase children’s 
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ANS precision and confidence as observed in previous studies using 
brief interventions (Odic, Hock, & Halberda, 2012; J. Wang et al., 
2016). Children completed the ANS Training during their regular 
computer class time and it was never described as a math training 
game.  In contrast, the Pre- and Post-Training assessments were 
completed in the students’ regular classroom during regular class 
time. The teacher and experimenter were careful not to draw any 
attention or connection between the ANS Training game and the 
Pre- and Post- paper and pencil assessments. 

  

3. Results 
3.1 Approximate number comparison training 
 First, we asked whether performance on our ANS Training 
task showed the signatures of engaging the Approximate Number 
System. The main signature is ratio-dependent performance that 
results in a specific curve of percent correct as a function of ratio 
(Feigenson et al., 2004; Libertus & Brannon, 2009; A. B. Starr, 
Libertus, & Brannon, 2013). Specifically, participants' accuracy at 
determining the bigger of two approximate numerosities decreases 
as the ratio between the numbers decreases (i.e. a ratio of 1.1 occurs 
when the larger set is 11 and the smaller set is 10, and a ratio of 2.0 
occurs when the larger set is 20 and the smaller set is 10). This 
ratio-dependence is predicted by Weber’s law and a formal model 
of discrimination performance predicts a specific curve of 
percentage of correct answers as a function of ratio. Figure 2 
presents of the data from the ANS Training group, separated by the 
type of size control of the stimuli. The ratio-dependent performance 
curve is observed for all three of the size-control trial types. That is, 
as the numerical ratio between the two collections becomes easier 
(e.g., ratio 3 versus ratio 1.2) children's percentage of correct 
responses improves. Furthermore, notice that even though overall 
percent correct is somewhat lower, the curve of ratio-dependent 
performance is seen for the stochastic size-controlled and size-
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controlled trials, and children chose the numerically greater 
collection well above chance. 

 In all cases, children's performance exhibits the smooth 
curve of the Approximate Number System. That is, even if size 
contributes somewhat to children’s decisions, children are making 
decisions based on number using their ANS. It must be admitted, 
however, that these three trial types do not exhaust all of the 
possible ways in which total area, item size, density etc. may 
contribute to number decisions (Abreu-Mendoza, Soto-Alba, & 
Arias-Trejo, 2013; Clayton, Gilmore, & Inglis, 2015; L. He, Zhou, 
Zhou, He, & Chen, 2015; Hollingsworth, Simmons, Coates, & 
Cross, 1991; Izard & Dehaene, 2008; Leibovich & Henik, 2013; M. 
Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). Such controls 
were not our main aim here – for our purposes it would be fine if 
our training game gives children practice on area, items size, 
density, convex hull and any other of a host of visual cues. As can 
be seen in the curves of Figure 2 (above 50% performance), 
children are using these cues to make decisions that agree with set 
cardinality. 

 The curves in Figure 2 are generated by fitting a model of 
Weber’s law to the mean performance of children in each ratio for 
each size control type. That is, each child contributes equally to the 
curves, the curves are fit to the group means, and the error bars are 
±SE for the group performance. 
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Figure 2. Accuracy on the ANS acuity task is a function of the ratio 
between numerical values. X-axis shows the seven different ratios 
presented during the training (1.1, 1.14, 1.17, 1.25, 1.5, 2, 3). The three 
ways of manipulating surface-area are shown, each with a corresponding 
Weber curve, consistent with children making their choice based on 
number. 

 

 Next, we asked if the ANS Training worked. Did children 
get better at the ANS Training task across training sessions? Across 
all ANS training sessions, on average, children responded correctly 
on 69.24% of trials (SD = 7.85%) and their average RT was 825.22 
ms (SD = 340.05 ms). Combining both measures of RT and 
accuracy, children’s performance on the ANS Training task can be 
analyzed in terms of efficiency, operationalized as the percentage 
correct divided by the RT. This measure allows us to include both 
improvements in RT (i.e., getting faster) and improvements in 
percent correct (i.e., becoming more accurate) in our measure of 
ANS performance. If children's ANS performance improved across 
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sessions, efficiency should increase during the three weeks of 
training. Figure 3 presents the measure of efficiency across training 
sessions. Indeed, children became more efficient at the ANS 
Training task. The linear fit shows a significant increase in 
efficiency as children progressed through the ANS training (R2 = 
0.83), showing that the ANS training worked. 

 

 

Figure 3. Efficiency (Percentage correct / RT) on the ANS comparison 
task as a function of progress in training (composed by 24 runs across 
three weeks; n=47), The line is a fit of the mean efficiency of the group in 
each session. Error bars present ±SE for the group performance. 

 

 Next, we asked whether the ANS training also worked on 
the more local scale of a single day. That is, did children improve 
within each training day as they progressed through multiple 
sessions of the ANS Training task? Children always did at least 3 
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individual runs of the ANS Training task during each day of 
training. Figure 4 presents the efficiency for the first, second and 
third run of each day, collapsed across all training days. We ran a 
one-way between-participant ANOVA with Run (first, second, 
third) as the factor and Efficiency as dependent variable. We 
observed a main effect of Run (F(2,138) =5.37, p=0.006). That is, 
children’s efficiency did increase also throughout each day. 

 

 
Figure 4. Efficiency (Percent Correct / RT) during the first, second and 
third run of each training day, showing improvement in efficiency across 
runs within each day. 

 

 So far, we have seen that our ANS Training task 
successfully engaged children in making approximate number 
decisions (Figure 2), and that the ANS Training task worked to 
improve children’s ANS efficiency both within each day of training 
(Figure 4) and across the entire 3-weeks of ANS training (Figure 3). 
Before we ask whether ANS training transferred to symbolic math 
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performance, we want to ask one more important question: is ANS 
efficiency related to school math performance?   

 While still a controversial claim, many papers have 
suggested a relationship between ANS performance and symbolic 
mathematics performance (e.g., written school mathematics). 
Because we included subtests for Additions, Subtractions and 
Operations in our Pre-training measures, we were able to test if 
performance on these measures of Symbolic Mathematics 
Performance correlate with children’s ANS performance throughout 
the ANS training. In order to perform this test, we collapsed across 
all ANS sessions to get one measure of ANS efficiency for each 
child. We also computed the total number of problems answered 
correctly across our three Symbolic Mathematics Assessments in 
Pre-training (Addition, Subtraction, Operations). There is a 
significant correlation between Symbolic Mathematics Performance 
in Pre-training and ANS efficiency throughout the ANS Training 
task (R2 = 0.146, p = 0.008; Figure 5). That is, the children with 
higher symbolic mathematics performance also had higher ANS 
efficiency. While previous demonstrations of this relationship 
between ANS acuity and math ability have relied on brief measures 
of ANS acuity (Booth & Siegler, 2006; Gilmore et al., 2010; 
Halberda et al., 2012, 2008; Y. He et al., 2016; Libertus et al., 2011; 
Libertus, Odic, & Halberda, 2012; Lyons & Beilock, 2011; 
Sasanguie, De Smedt, Defever, & Reynvoet, 2012) here we extend 
these results to a much longer temporal interval, showing that this 
relationship holds even when ANS efficiency is measured across 
three-weeks of training experience.  

 So far, our results suggest that: 1) our ANS Training task 
successfully engaged children in making approximate number 
decisions (Figure 2); 2) the ANS Training task worked to improve 
children’s ANS efficiency both within each day of training (Figure 
4) and across the entire 3-weeks of ANS training (Figure 3); and 3) 
performance on our ANS training task correlated with Symbolic 
Math Performance (Figure 5). Thus, our design – with Pre- and 
Post-training measures of Symbolic Math Performance and an 
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effective ANS Training task – will provide a sufficient test of 
whether ANS training improvements – in basic ordinal comparison 
– will transfer to symbolic mathematics performance. 

 

 
Figure 5. Correlation between Approximate Number Performance 
(measured as Efficiency across all sessions of the approximate number 
comparison task) and Symbolic Math Ability (measured as the number of 
correct answers in Additions, Subtractions and Operations in Pre-
training). Each point represents a child. 

  

3.2 Pre- and Post-training Tests 
 Next, we turned to looking at Pre- and Post-training 
Symbolic Math Performance. First, we considered the Symbolic 
Math Test (Additions, Subtractions, Operations) collapsed into a 
single measure of the total number of correct answers across these 
three subtests for each student. Collapsing across all levels of ability 
(low- to high-performing students), we found, surprisingly, that 
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training did not have a main effect on Symbolic Math Performance. 
In a 2 Training Condition (BAU Control, ANS Training) X 2 Time 
(Pre-, Post-training) ANOVA we found a main effect of Time (F(1,89) 
=111, p<0.001), no effect of Training Condition (F(1,89) =0.78, 
p=0.38) and no interaction (F(1,89) =1.76, p=0.19). This suggests that 
both the BAU Control children and ANS Training children got 
better at our Symbolic Math Test (perhaps from maturation or retest 
effects) and that we did not see a global difference between ANS 
Training and BAU Control children before separating into low-, 
middle-, and high-performing children (Figure 6). 

 

 

Figure 6. Total correct answers in Symbolic Math Assessment in 
Pre- and Post-training, for the BAU Control and ANS Training groups. 

  

 Next, Considering the wide differences between children's 
mathematical abilities and our interests in the potential differential 
effect of training on children with different starting points, we 
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investigated the relationship between number of correct answers on 
the Symbolic Math Test during pre-training (i.e., initial math 
ability) and percentage growth in symbolic math performance from 
pre- to post-training (i.e., how much did children improve in 
symbolic math performance over the course of the month). This 
relationship can be seen in Figure 7, and a linear regression on these 
variables returned a significant effect (R2 = .103, p = .002). 
Specifically, children who gave fewer correct answers on the pre-
training Symbolic Math Test showed higher percentage gains in 
symbolic math ability from pre- to post-test. Because of these 
differences in gains across the groups, we next turned to 
investigating possible heterogeneity in the gain scores for low-, 
middle- and high-performing children.  

 

 
Figure 7. Percentage improvement in symbolic math for both BAU 
Control and ANS Training children as a function of Total correct answers 
in Symbolic Math Assessment in Pre-training. 
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 To investigate the effect of initial math performance, we 
split our groups into tertiles according to their results in the pre-
training Additions and Subtractions subtests (i.e., the Arithmetic 
test). We used the Arithmetic test (Additions and Subtractions) to 
perform a classification into “high”, “middle” and “low” achieving 
students, because this test is composed of the kinds of problems 
children are most familiar with and have practiced in school. 
Indeed, our teachers were currently using students’ addition and 
subtraction performance in the classroom to evaluate and assign 
grades. In contrast, the Operations subtest was novel and involved 
the teacher leading the children through several practice problems 
during our testing sessions. For this reason, performance on the 
Operations subtest can be used as an outcome measure, because it 
assesses how children deal with aspects of mathematical practice 
that they have not been extensively trained to solve. The Operations 
subtest also had the nice feature of including addition and 
subtraction operations as well as multiplications, thereby allowing 
us to look at the outcomes for each of these types of operations 
within a novel test.   

 We grouped all of our children together (N=91) and 
computed the total number of problems answered correctly on the 
Symbolic Arithmetic Math Test (Additions and Subtractions 
subtests) in Pre-training (Figure 8). From this estimate (Figure 8), 
we grouped children into Low-performing (the lower 33% of all 
children), Middle-performing (from 33%-66%), and High-
performing (the upper 33% of all children). These percentages 
resulted in the following cutoffs: below 65 correct responses for the 
Low-performing group, between 66 and 86 for the Middle-
performing group, and above 86 correct responses for the High-
performing group (Figure 8). This grouping resulted in roughly 
equal sample sizes in each of our groups of interest (nlow-BAU= 15, 
nlow-ANS = 15, nmiddle-BAU = 16, nmiddle-ANS = 16, nhigh-BAU = 13, nhigh-

ANS = 16). Because our sample was composed of children attending 
a non-elite private school in Barcelona, it was representative of the 
normally-occurring range of mathematical abilities in the Spanish 
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school program, and it did not include supremely gifted students or 
students who were greatly below the typical level in the tested age 
class. For this reason, our grouping criteria is likely to capture 
differences between Low-, Middle- and High-performing students 
with typical mathematical abilities.  

 

 
Figure 8. Histogram for correct answers in the Symbolic Arithmetic pre 
test (Additions and Subtractions subtests). 

 

 Considering that the grouping variable was measured in the 
pretest, before any training, we expected to have no significant 
differences in the average number of correct answers in our 
Symbolic Math Pre-training Test between groups at any of the three 
Symbolic Math Levels (Low-, Middle-, High-performing). In a 2 
Training Condition (ANS Training, BAU Control) by 3 Symbolic 
Math Level (Low-, Middle-, High-performing) ANOVA, we found 
a main effect of Symbolic Math Level (F(2,85) =77.3, p<0.001), 
which shows that our grouping variable was effective at grouping 
students by their Pre-training Symbolic Math performance, no 
effect of Training Condition (p = .5), and a significant interaction of 
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Training Condition and Symbolic Math Level (F(2,85) =5.53, 
p=0.005). Bonferroni post hoc tests revealed that this interaction 
was driven by the total correct answers in Math Pre-training being 
significantly lower for the BAU Control group than for the ANS 
Training group for High-performing children (p = .03) while other 
subgroups did not differ (Figure 9). While this appears to be simply 
a random result of grouping, it is worth bearing in mind that this 
difference may make it harder to see ANS Training benefits in the 
High-performing ANS Training group compared to the High-
performing BAU Control group. 

 

 
Figure 9. Total correct answers in Math Pre test for each level (Low, 
Middle, High) and for each condition (BAU Control and ANS Training). 
For High-performing children there was a significant difference between 
BAU Control and ANS Training groups. 
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 Next, we looked at our outcome variable (the Operations 
subtest) both before and after training for Low-, Middle-, and High-
performing children. Recall that the Operations subtest assessed 
children’s understanding of which operation (addition, subtraction, 
multiplication) was appropriate within the context of a problem 
(e.g., Figure 1c). A 2 Training Condition (ANS Training, BAU 
Control) X 3 Symbolic Math Level (Low-, Middle-, High-
performing) X 2 Time (Pre-, Post-training) mixed ANOVA 
revealed a main effect of Time (F(1,85) =82.14, p<0.001) and of 
Symbolic Math Level (F(2,85) =22.75, p<0.001) indicating that the 
three groups of children by math level differed from each other (as 
expected), and that all children improved with time, regardless of 
the training regime (Figure 10). Indeed, Bonferroni post-hoc tests 
revealed strong differences from Pre- to Post-training Operations in 
all groups (Figure 10). However, most importantly, there was a 
triple interaction between the three factors (F(2,85) =5.74, p=0.004). 
That is, the training was not equally effective for all groups. 
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Figure 10. Total correct answers in Pre and Post Operations subtest by 
Symbolic Math Levels (Low-, Middle-, High-performing) and Training 
Condition (BAU Control, ANS Training). (p-values: Bonferroni-
corrected). 

 

 In order to better explore this result and more easily compare 
across groups, we combined Pre- and Post-training scores into 
percentage change scores (computed as the number of correct 
responses in Post-training minus the number of correct responses in 
Pre-training, divided by the number of correct responses in Pre-
training). These give a measure of how much each group increased 
their performance from Pre- to Post-training.  One participant 
provided a percent change in the Operations subtest that exceeded 3 
SDs from the mean and we excluded them from this analysis. We 
ran a two-way between-participants ANOVA with Symbolic Math 
Level (Low-, Middle-, High-performing) and Training Condition 
(ANS Training, BAU Control) as factors, and percent change on the 
Operations subtest as the dependent variable.  There were no effects 
of Symbolic Math Level (F(2,84) =0.859, p=0.4) or Training 
Condition, (F(1,84) =0.002, p=0.9). However, their interaction was 
significant (F(2,84) =7.523, p=0.0009; Figure 11). The Bonferroni 
post-hoc tests revealed that the percentage change in the Operations 
subtest was higher for the ANS Training group than for the BAU 
Control group in Low-performing children (p= 0.025) (Figure 11), 
but not for the Middle-performing children (p=0.41).  For the 
Higher-performing children there was an effect in the opposite 
direction, with the BAU Control group scoring higher than ANS 
Training group (p=0.004).  However, recall, as we already noticed, 
that for this group differences in both math level were already 
present in the Pre-training phase (Figure 9), with the BAU Control 
group scoring lower than the ANS Training group. This was also 
true for the Operations test, where the High-performing ANS 
Training children had significantly higher performance compared to 
BAU Control children (t(27) = 2.09, p = 0.04). The baseline 
difference on the Operation test between High-performing BAU and 
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ANS Training children makes it more difficult for the High-
performing ANS Training children to show gains in percentage 
change performance, due to ceiling effects, and may explain why 
the direction of the training effect was inverse (Figures 10 & 11).  
No such baseline differences occurred in the Low- and the Middle-
performing groups, for which the initial level in the Operation 
subtest was more balanced. We thus focus on the improvement in 
the Operations subtest for the ANS Training Low-performing 
children relative to the BAU Control children.  

 

 
Figure 11. Percentage change in Operations subtest by Symbolic Math 
Level (Low-, Middle-, High-performing) and Training Condition (BAU 
Control, ANS Training). 

  

 For the Low-performing children, we evaluated the 
percentage change in each of the three problem types of the 
Operations subtest: Additions, Subtractions, and Multiplications. 
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 We wanted to find out whether Low-performing children 
would show gains in all three problem types, or in just a subset. We 
ran a 2 Training Condition (ANS Training, BAU Control) X 3 
Problem Type (Additions, Subtractions, Multiplications) mixed 
ANOVA. It revealed a main effect of Training Condition, with ANS 
Training children showing greater percentage change than BAU 
Control children (p = 0.01), no effect of Problem Type (p = 0.91) 
and no significant interaction (p = 0.76; Figure 12). That is, Low-
performing ANS Training children improved on all types of 
operations in the Operations subtest (Additions, Subtractions, 
Multiplications), and these improvements exceeded those in the 
Low-performing BAU Control children. This suggests that ANS 
Training was successful, beyond Business as Usual (BAU), in 
training children’s ANS and transferring these improvements to 
Operations performance. 
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Figure 12. Percentage change for the three operations (Additions, 
Subtractions and Multiplications) that appeared within the Operations 
subtest, for Low-performing Symbolic Math children by Training 
Condition (BAU Control, ANS Training).  
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4. Discussion 
 There are several aspects of our results that we find very 
useful in order to understand the effect of ANS training on children 
of the target age. A first question, which continues to be hotly 
debated, is whether ANS precision can be effectively measured, and 
whether individual differences in ANS precision will relate to 
performance in school mathematics (Clayton & Gilmore, 2014; 
Patalano, Saltiel, Machlin, & Barth, 2015; Sasanguie et al., 2014). 
In the present study, we found curves in performance as a function 
of ratio, even for size-controlled and stochastic size-controlled 
trials. We firmly believe that continued exploration into the 
contributions of other dimensions like area, convex hull and density 
will be invaluable, but this result suggests that our ANS task did 
measure ANS precision (Figure 2). In the present case, we were 
interested in simply measuring performance on the ANS task, 
training this ability, and exploring potential transfers to Symbolic 
Mathematics Performance. The debate surrounding which visual 
aspects of a dot display are engaged during a number task will 
undoubtedly continue. But, notice that if our task happened to train 
a “convex hull detection ability”, then our results would be an 
interesting and important demonstration that this training transfers 
to improved Symbolic Math Performance for Low-performing 
children. 

 We found that individual differences in ANS efficiency were 
related to Symbolic Math performance (Figure 5). We also found 
that approximately 20-minutes of ANS discrimination practice per 
day led to significant increases in ANS efficiency over the course of 
3-weeks of training (Figure 3) and that efficiency increased across 
the three sessions within each day (Figure 4). This extends recent 
results that have shown some trainability of ANS precision (Knoll 
et al., 2016; Obersteiner et al., 2013; Park et al., 2016; Park & 
Brannon, 2014). 
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 These successes allowed us to test whether improvements in 
ANS efficiency would transfer to improved symbolic mathematics 
performance. Here, our results were more mixed. Overall, both our 
BAU Control children and ANS Training children improved in 
Symbolic Math Performance from Pre- to Post-training (Figure 6).  

 The lack of a specific benefit of ANS training across all 
levels of math ability could be interpreted as an indication that ANS 
discrimination training is not particularly relevant for improving 
Symbolic Math Performance. Two factors lead us to reject this 
conclusion. First, improvements in math performance could be due 
to retest improvements, maturation or practice, over and above the 
specific training we implemented. These independent factors may 
have obscured any transfer effects we might have detected at the 
level of the entire group. Because large studies testing ANS training 
over extended periods of time are not available, it is still premature 
to assess the relative importance of all these factors. 

 Second, and most importantly, we did find positive transfer 
for the most Low-performing children. In the present sample, 
children who were struggling in symbolic arithmetic relative to their 
peers showed significantly greater gains in the ANS Training 
condition compared to the Low-performing children in the BAU 
Control condition. This motivates us to suggest, quite cautiously, 
that ANS discrimination training may be more effective for Low-
performing children in this age range.  

 Thus, while supporting and extending some of the recent 
literature on ANS precision and its relationship with symbolic 
mathematics, our results are noteworthy for how they may constrain 
the role of ANS discrimination training as a function of pre-existing 
math ability. On the one hand, our results may show that ANS 
discrimination training as an intervention for improving symbolic 
math performance may not be a general panacea. Other training 
may be more effective (e.g., non-symbolic arithmetic training; Park 
& Brannon, 2014). On the other hand, they may indicate that proper 
training programs require focusing on the particular background 
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knowledge that children possess prior to the training, on the overall 
school program they attend, or on the particular moment in their 
development of mathematical knowledge in which the training is 
implemented. Once we have a clearer understanding of these and 
other factors, ANS discrimination training may have its proper 
place in contributing to improvements in mathematical abilities. 
Future work should continue to determine which types of training 
work best, adapted to the environmental and institutional 
conditions, to children's level of knowledge, and to the ages for 
which such training programs are offered. 
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Abstract 

 
 Arabic digits are a precise representation of quantities, 
which evoke approximate representations based on the approximate 
number system (ANS). Studies suggest that both exact and 
approximate abilities may be crucial for school math performance – 
ANS training can improve children's math performance and 
understanding the exact cardinalities indicated by Arabic digits may 
be a gateway to improving arithmetic skills. Here, we explore 
whether directly training the relation between Arabic digits and the 
quantities they represent helps children to become more proficient 
in mathematics. With a three-week computer-trained regime that 
can be easily added to the school schedule, we show that 
strengthening the Digit-Quantity relation improves 7-year-old's 
competence in additions and subtractions, over and above the 
improvement obtained by a regime based in training ANS precision 
alone. 

 

Keywords: approximate number system, children, digit-quantity 
relation, mathematics education, numerical cognition, numerical 
symbolic and nonsymbolic representations. 
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1. Introduction 
 The construction of mathematical competence is a complex 
task of which we still lack a complete understanding, although 
much progress has been made in the last 15 years to unveil the 
complexity of the mental processes involved. The translation of 
such scientific understanding into practical ways to improve 
mathematical skills during the crucial ages when basic 
mathematical abilities are being acquired still has a long way to go. 
This is not surprising, considering for instance that many factors 
may affect this achievement, such as gender (Stoet et al., 2016), 
motivation (Simzar et al., 2016), socioeconomic status (Thien & 
Ong, 2015; Verdine et al., 2014), language development (Moll et 
al., 2015), math anxiety (Pletzer et al., 2015), lack of  predisposition 
to mathematics (Cerda et al., 2015), or the effects of teachers’ 
biases (Demaray & Elliot, 1998; Tournaki, 2003). These are all 
important factors which contribute to success in school 
mathematics.  Here, we will focus our study on some very basic 
math skills – the ability to estimate a number of items in a 
collection, to translate this estimate into an Arabic digits notation 
(numerical estimation) or to determine which of two collections is 
greater in number (quantity discrimination). These foundational 
mechanisms of number representation require coordinating skills 
that may be important for success in school mathematics. 

 Numerical thinking relies on a number sense: an 
approximate and non-linguistic ability to estimate quantities, to 
compare between two of them, and to approximate very basic 
arithmetic operations, also called the Approximate Number System 
(ANS). We share this system with other non-linguistic animals, 
adults from other cultures and preverbal infants (Brannon, 2006; 
Feigenson et al., 2004; Libertus & Brannon, 2009; Pica et al., 2004; 
Xu & Spelke, 2000). 

 However, the existence of a number sense is not sufficient to 
explain our ability to understand and compute exact operations with 
numbers and to follow exact calculation algorithms (Butterworth, 
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2010). Indeed, these and other more advanced mathematical 
abilities require a symbolic and accurate mathematical language 
(Bonny & Lourenco, 2013; Dehaene, 2001; Gordon, 2004; Lemer et 
al., 2003; McCrink et al., 2013; Pica et al., 2004).  

 Researchers have begun to discover some of the relations 
between the ANS and symbolic math competence – e.g., the 
discovery of psychophysical algorithms that describe humans’ 
ability to translate between digits and quantity (Odic, Im, Eisinger, 
Ly, & Halberda, 2015). But this relation between the ANS and 
symbolic math competence is not perfect and error-free. For 
example, it has been documented that humans have a tendency to 
underestimate the number of items in collections (Hollingsworth et 
al., 1991; Kemp, 1984; Krueger, 1982; Revkin et al., 2008) and are 
able to renormalize their estimates based on feedback (Izard & 
Dehaene, 2008). The development of these findings into concrete 
training programs to help children has yet to be robustly explored. 

 More generally, many studies have revealed a connection 
between the Approximate Number System and school math 
performance (Amalric & Dehaene, 2016; Feigenson et al., 2013; 
Halberda & Feigenson, 2008; Halberda et al., 2012, 2008; Y. He et 
al., 2016; Libertus et al., 2013a; Mazzocco et al., 2011a, 2011b; 
Shusterman et al., 2016; A. Starr et al., 2013). However, this 
relation is not always found (Butterworth, 2010; Libertus et al., 
2013b), though meta-analyses suggest it is a real result (Chen & Li, 
2014). One reason for the diversity of results may be that the 
relation between the ANS and school mathematics may be affected 
by several factors: non-linearity across childhood development 
(Purpura & Logan, 2015); math anxiety fluctuations (ANS may be 
less precise in high math-anxious individuals; Núñez-Peña & 
Suárez-Pellicioni, 2014); or skill level (the correlation between 
ANS precision and mathematical competence is stronger in children 
with lower mathematical scores than in those with higher scores; 
Bonny & Lourenco, 2013). Ferres-Forga, Bonatti, & Halberda 
(2017) found that training in a nonsymbolic comparison task 
(quantity discrimination) for a three-week period in 7-8 year olds 
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did not benefit every student equally, but rather improved the 
mathematical abilities of those children with low-starting skills 
(Ferres-Forga, Bonatti, et al., 2017). In addition, these benefits were 
mainly visible in symbolic tasks which did not require an exact 
answer, but required an understanding of the nature of mathematical 
operations tested (additions, subtractions and multiplications). 
Training the approximate number system may increase the 
awareness of what these operations do, and, in Ferres-Forga et al’s 
sample (2017), such training might improve operations 
understanding of the lowest achieving children, but not exact 
calculation abilities. 

 Such training studies may be a valuable way to study the 
relation between approximate and exact math abilities. If one trains 
the ANS or school math abilities, do these benefits transfer to other 
math skills? Here we will focus on training the skill of translating 
from quantity estimates to Arabic digits (i.e., numerical estimation) 
and on comparing two quantities (i.e., quantity discrimination).  
While quantity discrimination has been the focus of previous 
studies (Ferres-Forga, Bonatti, et al., 2017; D. C. Hyde et al., 2014; 
Libertus & Brannon, 2010; Park & Starns, 2015; A. Starr et al., 
2013; J. Wang et al., 2016), numerical estimation has been less 
studied as a training intervention (Laski & Siegler, 2007). 

 Exact arithmetic abilities with precise calculation require a 
system of symbolic numerals, without which we would not be able 
to perform exact calculations. The process by which we acquire the 
meaning of numerals is complex and undergoes a long 
development, both in the creation of exact concepts of quantities 
and in the establishment of the mapping between quantities and 
digits. During this process, children are taught to count but the 
simple fact that children know how to recite the number words is far 
from a proof that they understand what such words mean (Sarnecka 
& Carey, 2008; Wynn, 1990, 1992). Often the passage between the 
acquisition of counting principles and the understanding of how 
numerals map to quantities is long, extending into a child’s 4th or 5th 
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year of life even for counting words below 20 (Carey, 2004; Wynn, 
1990, 1992).  

 In contrast, the ability to estimate an approximate number of 
items is a skill that infants appear to have at birth (Coubart et al., 
2014) or shortly after birth (Xu & Spelke, 2000). When shown 8 
dots on a screen over and over, infants will become bored; but they 
will recover some of their interest if the number of items is changed 
(e.g., 16 dots), even controlling for many of the relevant continuous 
parameters that may be confounded with number (e.g., total area, 
density) (Xu et al., 2005).  The particular visual cues infants rely on 
in such studies is still to be determined (Abreu-Mendoza et al., 
2013; Clayton et al., 2015; L. He et al., 2015; Hollingsworth et al., 
1991; Leibovich & Henik, 2013; M. Piazza et al., 2004), but results 
suggest that infant abilities are continuous with later abilities to 
estimate and discriminate number throughout childhood and across 
the lifespan (Halberda & Feigenson, 2008; Libertus & Brannon, 
2009). 

 The relation between these early abilities to estimate 
approximate number and children’s knowledge of the counting 
words remains a bit mysterious.  Le Corre & Carey (2007), using a 
dot estimation task and a counting task, found that children did not 
systematically extend their approximate number knowledge to the 
numbers in their count list until after age 5 years – significantly 
after they were proficient counters.  But Wagner & Johnson (2011), 
found that children younger than 5 years maintained some 
correspondence between bigger number words (e.g., “seven” versus 
“four”) and larger sets of items.  Lastly, in an attempt to synthesize 
these disparate findings, Odic, Le Corre, & Halberda (2015) found 
that mapping from a collection to a number word may be more 
difficult for young children than mapping from a number word to a 
constructed set. While the early stages of making this mapping 
between number words and approximations of sets remain to be 
fully articulated, all agree that by the age of 6 years children have 
formed a functional mapping between them (though, the precision 
and biases involved in this mapping will likely continue to undergo 
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development even into the adult years (Izard & Dehaene, 2008; 
Sullivan & Barner, 2014). 

 Arabic digits are a precise representation of quantities, but 
their translation into an approximate, nonsymbolic system of 
representation is automatic (Dehaene, Naccache, et al., 1998; 
Dehaene & Akhavein, 1995; Dehaene & Naccache, 2001; den 
Heyer & Briand, 1986; Girelli et al., 2000; Henik & Tzelgov, 1982; 
Tzelgov et al., 1992), irrepressible (Henik & Tzelgov, 1982; 
Tzelgov et al., 1992), and unconscious (Naccache & Dehaene, 
2001a, 2001b; Reynvoet & Ratinckx, 2004). Furthermore, any task 
with quantities reveals two phenomena that strongly suggest the 
signature of an ANS conversion: the distance effect and the 
magnitude effect (Cordes et al., 2001; Dehaene, 2007; Dehaene, 
Dehaene-Lambertz, et al., 1998; van Oeffelen & Vos, 1982); both 
phenomena appear also when we discriminate digits, indicating that 
when we compare Arabic digits we are transcoding them into a 
nonsymbolic format, probably an analogic and approximate 
representation (Dehaene, 1992; Dehaene et al., 1990; Hinrichs et al., 
1981; Moyer & Landauer, 1967; Pinel et al., 2001). 

 Several studies suggest that we represent numerical 
sequences spatially organized along an ordered mental line (Izard & 
Dehaene, 2008; Odic, Le Corre, et al., 2015; Rouder & Geary, 
2014). However, the signature of a spatial response mapping is not 
exclusively related to numerical magnitudes. Indeed, any ordinal 
sequence, even sequences such as months, letters (Gevers et al., 
2003) or days of the week (Gevers et al., 2004), are represented as 
spatially organized in an ordered mental line, even if the ordinal 
position, or the very fact that quantities are being expressed, is 
irrelevant for the task.  

 Thus, while ordinality is applicable to any sequence, 
cardinality is at the very essence of numbers: an accurate 
understanding of this concept is needed in order to master 
mathematical operations. This fact suggests that a simple training of 
how quantities are spatially placed onto an approximate 
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nonsymbolic number line may prove a necessary, but not sufficient, 
aspect of constructing a functioning number system. What such a 
training may not provide is a fostering of the exact nature of the 
relation between a digit and its associated quantity, the cardinality. 
That this may be achieved is suggested by the fact that the 
analogical representations of numerosity can be 'calibrated' by 
strengthening the mapping between symbols and quantities. Izard & 
Dehaene (2008) showed that by exposing adult participants to a few 
trials in which they were told the number of dots on display for one 
single reference point, their accuracy in the estimations of the 
numbers of dots on screen improved, even for values which were 
far from the given reference point. Also, importantly, an 
overestimated reference point induced global overestimation, while 
an underestimated point induced global underestimation (Izard & 
Dehaene, 2008). Laski & Siegler (2007) showed that giving 
categorical information to calibrate big, medium or small numbers 
promote linear and accurate estimation in kindergartners. Some data 
also suggest that the ability to compare two numbers digitally 
presented, correlates with mathematical abilities even when ANS 
acuity does not (Guillaume, Gevers, & Content, 2016). Even in 6-8 
year olds more accurate mapping between Arabic symbols and 
nonsymbolic representations of number is related to mathematics 
achievement (Mundy & Gilmore, 2009), and individual children’s 
acquisition of cardinal principle is related to an improvement in 
ANS acuity (Shusterman et al., 2016). Such results suggest that if 
children were led to increase their accuracy in assessment of the 
exact quantities corresponding to digits, thus better calibrating the 
quantitative meaning of numbers, an induced overall better 
understanding of the digit-quantity relation may be generated, 
potentially percolating in a generalized improvement in their exact 
calculation abilities. In the present study, we develop a training 
aimed at strengthening the relation between symbolic and 
nonsymbolic representations of number. Because our previous work 
suggests that training the approximate nonsymbolic comparison 
task for a 3-week period improves mathematical abilities in 7-year 
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old low-performing children relative to a non-mathematical control 
(Ferres-Forga, Bonatti, et al., 2017), we focused on this age class 
and assigned our ANS quantity discrimination training, whose 
effectiveness we previously assessed (Ferres-Forga, Bonatti, et al., 
2017), to the current control, while exploring more deeply the 
possible benefits of numerical estimation training (mapping from 
quantity to digits) above and beyond the benefits of quantity 
discrimination training. 

 

2. Methods 
2.1. Participants 
 Ninety-one children (38 girls; average age = 7 yrs 9 mos, 
range = 6 yrs 4 mos-8 yrs 9 mos) participated in the study. The 
children mostly came from middle-to-high socioeconomic status 
families. The study was conducted at the Hamelin International Laie 
School (http://www.hamelininternacionallaie.com/school/), at the 
premises of the school. Participants attended four different 
classrooms, taught by two different teachers. Two classes were 
randomly assigned to the Quantity Discrimination Training group 
(n= 46) and the other two classes to the Numerical Estimation 
Training group (n= 45), with the constraint that assignment was 
counterbalanced across the two teachers. We explain the differences 
in training below. All participants completed the full training, 
except for one child in the Numerical Estimation Training group 
who completed the initial test but completed neither the whole 
training nor the final assessment and was excluded from analysis. 
All training activities were integrated in the normal class schedule, 
during the computer technology class-time, so that, for children, the 
training regimes appeared to be standard class activities. In this 
way, any effect due to potential deviations of the experiments from 
class routine was minimized. Computer training and math class time 
were kept separate throughout the study. Teachers and research staff 
did not mention any relation between the computer activity and 
math class performance to the students. 
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2.2. Materials 
2.2.1. Mathematical competence assessment.  

 In order to determine participants’ mathematical 
competence, we administered three pencil and paper tests contained 
in three different test booklets (Ferres-Forga, Bonatti, et al., 2017): 
an Addition test (Figure 1a); a Subtraction test (Figure 1b); and an 
Operation test (Figure 1c). When working with the Addition or 
Subtraction tests, children had to write the exact answer to the 
addition or subtraction problems presented. These two tests were 
entirely composed of problems that children were accustomed to in 
standard mathematical activity at school. By contrast, the Operation 
test contained a novel kind of problems that children had not been 
exposed to before. In them, each equation already contained the 
result of the computation, but the operation sign itself was omitted. 
Children had to write the operation sign demanded by the problem 
(an addition, a subtraction, or a multiplication) to answer correctly.  

 All the problems in the three test booklets were created 
under the supervision of the class teachers, who helped in adjusting 
problem difficulty to an adequate level for the students. Two 
versions of each test were prepared, with different problems and 
different orders, but with the same basic set of problems. In this 
way, different booklets could be used for the pre- and post-training 
tests, and could be counterbalanced across the sessions, so as to 
control for tests effects. Difficulty and problem order were 
randomized. During testing, children were asked to solve as many 
problems as they could during six minutes for each test. We created 
a large number of problems for each test, so that the children could 
not complete all of the problems during the allotted time.  

 The Addition test included 210 problems presented in a 
column operation algorithm form, printed on 10 pages. The 
maximum number that each addendum could reach was 18, with the 
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highest sum being 18 + 18 and the lowest sum being 0 + 0 (Figure 
1a). 

 The Subtraction test included 190 problems presented in a 
column operation algorithm form, printed on 10 pages. Both the 
minuend and subtrahend ranged between 0 and 18; the result of the 
subtractions was always positive (Figure 1b). 

 The Operation test included 117 problems presented in 
horizontal format, printed on 3 pages (Figure 1c). The problems 
were equations whose unknown operation could be an addition, a 
subtraction or a multiplication sign. In the addition equations, the 
first addendum had a maximum value of 7 and the second of 10. In 
the subtraction equations, both the minuend and subtrahend ranged 
between 1 and 11, with the result being always positive. In the 
multiplication equations, only the timetables of 1 to 5 and of 10 
were used, because those were the timetables children had been 
exposed to, according to their teachers. The three types of 
operations (addition, subtraction, multiplication) and the problem 
difficulties were presented in random order. One of the versions of 
the operations test contained forty-two additions, thirty-eight 
subtractions and thirty-seven multiplications while the other version 
contained forty-three additions, thirty-nine subtractions and thirty-
five multiplications. 
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Figure 1. Examples of problems in additions test (a), subtractions test (b) 
and operations test (c). Examples of the three models of objects size to 
control for surface area: size-confounded (d), size-controlled (e) and 
stochastic size-control (f). 

 

2.2.2. Computer Activities.  

 Twenty-eight computers (model: clon PCs, Intel(R) 
Core(TM) i3-4170 CPU @ 3.70 GHz, 4GB RAM, 64-bit; monitor: 
17” LCD 16/9 from ASUS; operative system: Windows 7 
Professional) were used for the training activities. The children 
wore headphones during training. Importantly, while the specific 
training activities were new to them, children were already 
acquainted with the material and the training class, so that the 
training would not appear as an out-of-the ordinary activity. The 
two experimental groups were trained with different activities.  

 

2.2.2.1. Quantity Discrimination Training.  

 For this group, the computer ran a modified version of the 
computer game Panamath (Halberda et al., 2008), written in Java 
SE6. In this version, the program would generate trials displaying 
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collections of items contained inside two rectangles appearing on 
the sides of the screen. For example, twelve teddy bears could 
appear inside the left rectangle and 6 blue dots inside the right 
rectangle. The number of items within each rectangle was always 
between 5 and 21. The items were presented in seven different 
ratios (larger set/smaller set). The ratios could be 3, 2, 1.5, 1.25, 
1.17, 1.14, and 1.1. For example, on a 3-ratio trial children could 
see 21 blue dots in the right side of the screen and 7 yellow dots in 
the left side. Smaller ratios correspond to more difficult trials. On 
each trial, the items were displayed for 1382 msec. A run was 
composed of 35 consecutive trials. To vary the relation between 
surface area and number, the ANS Training implemented three 
different models controlling object size: size-confounded (42% of 
the trials in each run; Figure 1d), size-controlled (42% of the trials; 
Figure 1e), and stochastic size-control (16% of the trials; Figure 1f). 
In size-confounded trials, the average size of the items was equal 
for both sets, so that the cumulative surface area occupied by the 
objects was congruent with the number of objects. In size-controlled 
trials, the average size of the objects was smaller for the larger set, 
so that the ratio of the cumulative area occupied by the objects in 
each set was equated. In stochastic size-control trials, object sizes 
were stochastically varied to give children no consistent size cue for 
number. In these, the average size of the objects varied randomly 
between size-anti-correlated pictures (in which the numerically 
larger set occupied less total area on screen), size-controlled 
pictures, and size confounded pictures (where the numerically 
larger set occupied more total area on the screen).  

 

2.2.2.1. Numerical Estimation Training.  

 For this group, the computer ran the “Digits” game, written 
in PsychoPy v1.83.01. The Digits game program generated two 
types of trials, the passive learning trials and the active training 
trials. A run was composed by 35 consecutive trials; seven of them 
were passive learning trials and 28 were active training trials. In the 
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passive learning trials, a collection of items was presented on screen 
while a prerecorded voice named the exact number of items. These 
trials lasted 1200 ms (Figure 2a). In the active training trials, the 
program first presented a collection of items for 1 s, in silence 
(Figure 2a). Then, the collection disappeared and three digits were 
presented on screen until the child clicked on one of them, ideally 
the one that represented the quantity of the previous collection of 
items (Figure 2b).  

 The purpose of the passive learning trials was to provide 
children opportunities to directly calibrate their estimation system 
before the active training trials began (Izard & Dehaene, 2008; 
Krueger, 1989). Considering that these trials were passive, the 
program presented them in decreasing order of difficulty (from 
bigger to smaller sets of items), so that the easier passive learning 
trials were always presented last, thus increasing children's 
confidence before the active learning trials started.  

 Active training trials were presented in increasing order of 
difficulty, a procedure which is known to facilitate learning (Odic et 
al., 2012; J. Wang et al., 2016). Because the distance between digits 
and the numerosity of the set presented in each trial are subject to 
known effects (respectively, the distance and size effects (Cordes et 
al., 2001; Dehaene, 2007; Dehaene, Dehaene-Lambertz, et al., 
1998; van Oeffelen & Vos, 1982)) we manipulated these factors in 
the construction of the game. Thus, the distance between the correct 
choice (that is, the digit representing the exact number of items) and 
the distractor choices manipulated the distance. Distances ranged 
between -6 and 6 from the true value; the greater the distance 
between the digits, the easier the task of the child. For example, if 
the target number was 15, a decision between 18, 21, and 15 (or +3, 
+6, and 0 distance from the correct choice) was easier than the 
decision between 15, 13, and 17 (0, +2,-2). Thus, throughout each 
training session, the distances between the correct digit and the 
other two digits decreased in each run. For the first run, distances 
could be (0,3,6), (-6,-3,0), or (-3,0,3).  We call this set Span 6. For 
the second run, distances could be (0,2,4), (-4,-2,0), or (-2,0,2), or 
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Span 4. Finally, for the third run distances could be (0,1,2), (-2,-
1,0), or (-1,0,1), or Span 2. 

 The size effect was manipulated by incrementing the size of 
the collections presented in active training trials. Therefore, by 
manipulating distance and size, the difficulty of the game increased 
throughout the session and within each run. All set sizes, from 1 
item to 21 items, had to be estimated in each of the three spans. 
Furthermore, the distances for possible answers were maintained 
irrespective of the target answer, rather than scaling the distractor 
answers relative to the true answer by some ratio (e.g., larger 
distances for the competing answers as the target value becomes 
larger). This was a conscious explicit choice. While scaling the 
answers is also possible, and might even be preferred in methods 
used to assess ANS precision rather than training numerical 
estimation, here we wanted trial difficulty to increase with target 
number.  For our training purposes, this has the goal of providing 
greater guidance for larger quantities; for example, on a trial with 
target value 19, the three answer options on a difficult Span 2 trial 
would all provide a strong teaching signal (e.g., 18, 19, 20) for 
helping to teach children the correct numerical region for an answer 
(e.g., teaching to overcome an underestimation bias). The position 
of the correct digit (left, middle, right) as well as its numerical 
relation with respect to the other two digits (the smallest, in the 
middle, the largest) were balanced across trials. 

 In both types of trials (passive learning and active training), 
the collections of items ranged from 1 to 21, all with the same size 
and orientation. 
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Figure 2. Digits computer game. Example of a learning trial (a) that 
would be the same for either passive (i.e., with a spoken numerical label 
“twelve”) or active learning trial (i.e., no verbal label), and (b) the 
response screen for the active learning trial.  The collection of items (a) 
for an active learning trial would appear for 1 s, in silence, then, the 
collection would disappear and three answer options (b) would be 
presented on screen until the child clicked on one of them. 

2.3. Procedure 
 The experiment was run in three phases: Pre-training 
Assessment, Training, and Post-training Assessment.  

 

2.3.1. Pre-training and Post-training assessments.  

 These assessments were intended to measure the 
mathematical competence of the participants before and after 
training. The Pre-training assessment was administered three days 
before the first training session. The Post-training assessment was 
administered three days after training completion. These 
assessments were conducted in the children's respective classrooms, 
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in the presence of their math teacher. Each of the Pre-training and 
Post-training assessments required children to answer as many 
questions as possible in 6 minutes. The assessments always began 
with the Additions test. After completing this 6-minute test, 
children had to stop answering, return the additions booklet, and 
wait until they were given the subtractions booklet. This second, 
Subtractions test, followed the same 6-minute procedure. The third 
and final test was the Operations test. For this, the teacher had to 
explain the task to the children in more detail, given that the kind of 
problem presented was new to them. The teacher briefly described 
the equation structures and completed 3 examples on the board, in 
front of the class: one equation example each for addition, 
subtraction and multiplication.  Children watched as the teacher 
explained the examples and then they began the 6-minute 
assessment of the Operations test. 

 In the Additions and Subtractions Tests, for an answer to be 
considered correct the child had to write the exact result of the 
computation. In the Operations Test, for an answer to be correct the 
child had to write the correct operation sign (additions, subtraction 
or multiplication). 

 All tests contained more problems than could be solved in 
six minutes, so that potential speed and accuracy improvements 
induced by the training could be assessed by comparing the number 
of correct answers in Pre- and Post-test.  

 The Pre- and Post-Training assessments were completed in 
the students’ regular classrooms, during their regular math class 
time. The teacher and the experimenter carefully avoided drawing 
any attention to the possible connections between the Quantity 
Discrimination and Numerical Estimation Training games and the 
Pre- and Post- paper and pencil assessments. 
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2.3.2. Training phase.  

 This phase was administered in six different sessions within 
a three-week period, at a pace of two sessions per week. Both 
groups were trained for the same amount of time, in the same 
computer classroom, during their regular computer class time, and 
always in the presence of the math teacher of their respective class 
and the experimenter. After the experimenter gave them the 
instructions, they worked individually. Children of both groups 
appeared to like the games included in their training sessions.  

 

2.3.2.1. Quantity Discrimination Training.   

 In this group children practiced the Panamath quantity 
discrimination game. This game does not require any understanding 
of the relation between digits and quantities. On each trial, children 
saw a picture of two collections of items appear on either side of the 
screen. They needed to rapidly estimate which side had more items 
(Figure 1 d-f), typing their answers on a keyboard (“f” and “j” keys 
for left or right side respectively). Children could not count the 
items, because the onscreen presentation of the objects was too brief 
(≈1.3 seconds). Rather, they had to rapidly estimate which of the 
two sets on each side of the screen had more items. Feedback was 
provided after every response: a high-pitched beep indicated a 
correct answer while a low-pitched beep indicated an incorrect 
answer. Thirty-five consecutive trials formed a run, taking 
approximately 6-7 minutes each run. Different collections of items 
were used on each run, so that the game maintained children's 
interest. For example, one run could present blue dots vs. yellow 
dots; another could present cars vs. bears; yet another could display 
birds vs. dogs. Always, the first five trials of each run presented the 
easiest ratio. Then, every five trials the game increased in difficulty, 
with the ratios becoming closer to 1 (without ever reaching 1), until 
the seven different ratios were presented. This procedure was 
implemented with the aim to increase children’s ANS precision and 
confidence over the course of training, as observed in previous 
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studies using brief interventions (Odic et al., 2012; J. Wang et al., 
2016).  

 When introducing this Discrimination Training game, 
children were told that they would play a game where they would 
see some objects -- for example, blue and yellow dots --and would 
have to choose if there were more blue dots than yellow, or vice-
versa. They were informed that two different sounds would provide 
them with feedback about the correctness of their answer. Children 
were also told that the game would vary in difficulty. They were 
informed that both speed and accuracy were important. Each 
participant completed a total of 24 runs over the course of three 
weeks, except for six participants who completed 21 runs, one who 
completed 22 runs and one who completed 20. Considering the 
minimal amount of training that they lost, these children were kept 
in the data analysis.  

 

2.3.2.2. Numerical Estimation Training.  

 To train children’s ability to map from approximate to exact 
quantities when processing digits, children belonging to the 
Numerical Estimation Training group practiced the Digits game. 
The training had the same number of runs and trials: 35 trials per 
run, with approximately 24 runs completed over the course of three 
weeks. Each run started with seven passive learning trials (Figure 
2a). Children needed not take any action during these trials. The 
following 28 trials composing each run were active training trials 
(Figures 2ab). The collection of items appearing on screen remained 
visible for too a short time for children to be able to sequentially 
count the number of items. Rather, they could respond by giving 
their best guess. The three digits among which they had to choose 
remained on screen until the choice was made, by clicking the 
mouse on one of them. Feedback was provided after every response, 
with a high-pitch beep for correct answers and a low-pitch beep for 
incorrect answers, as in the Discrimination Training. Different items 
were used on each run, in order to keep children interested. And, as 
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explained above, the trial difficulty increased within each run and 
throughout the session.  

 When introducing the Numerical Estimation Training game, 
children were told they would play a game where they would first 
see a collection of objects for a very short time, while an audio 
recording would tell them how many objects were in the collection. 
They were told that they would have to pay attention to these trials, 
but not take any action. They were also informed that they would 
then see many trials where a collection would be shown for a short 
period, after which they would have to decide their numerosity by 
choosing one of three digits that would appear on screen 
immediately after the disappearance of the items. They were 
informed that two different sounds would provide them with 
feedback about the correctness of their answer. Children were also 
told that the difficulty of the game would increase within each 
session. They were informed that both speed and accuracy were 
important. 

 

3. Results 
3.1. Quantity Discrimination Training 
 The main signature of the Approximate Number System is 
ratio-dependent performance resulting in a specific curve of percent 
correct as a function of ratio (Feigenson et al., 2004; Libertus & 
Brannon, 2009; Starr, Libertus, & Brannon, 2013).  Specifically, 
participants' accuracy at determining the bigger of two approximate 
numerosities decreases as the ratio between the numbers decreases.  
This ratio-dependence is predicted by Weber’s law and a formal 
model of discrimination performance predicts a specific curve of 
percentage of correct answers as a function of ratio. We checked 
that performance on our Quantity Discrimination Training task 
showed this signature. Figure 3 presents the data from the Quantity 
Discrimination Training group, separated by the type of size control 
for the stimuli. The ratio-dependent performance curve is observed 
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for all three trial types. That is, as the numerical ratio between the 
two collections became easier (e.g., ratio 3 versus ratio 1.2) 
children's percentage of correct responses improved, regardless of 
the type of size control for the trial. Also, children chose the 
numerically greater collection well above chance as shown by 
planned t-tests: Size Confounded, t (45) = 20.34, p < 0.001; Size 
Controlled, t (45) = 22.76, p < 0.001; Stochastic Size Controlled, t 
(45) = 12.47, p < 0.001.  

 In all cases, children's performance exhibits the smooth 
curve of the Approximate Number System. That is, even if size 
contributes somewhat to children’s decisions, children's numerical 
decisions were likely based on the ANS.  The curves in Figure 3 are 
generated by fitting a model of Weber’s law to the mean 
performance of children in each ratio for each size control type. 
That is, each child contributes equally to the curves, the curves are 
fit to the group means, and the error bars are ±SE for the group 
performance. 

 

 



 

 90 

 
Figure 3. Accuracy on the Quantity Discrimination Training task as a 
function of the ratio between numerical values. The x-axis shows the seven 
different ratios presented during the training (1.1, 1.14, 1.17, 1.25, 1.5, 2, 
3). The three ways of manipulating surface-area are shown, each with a 
corresponding Weber curve, consistent with children making their choice 
based primarily on number, while being effected somewhat by continuous 
factors. 

 

 Another measure of performance is children’s response time 
– how long does it take children to make their response on each 
trial.  Best performance in the ANS Discrimination task will occur 
when participants make the correct choice in as little time as 
possible.  Thus, one indication of improving performance may be 
decreasing response time across successive runs of the Quantity 
Discrimination Training task.  In Figure 4 we show the mean RT for 
the group for each run (±SE). A logarithmic training slope was 
computed for each child. Children had significantly negative 
training slopes for response time across training sessions: t (45) = -
7.3, p < 0.001; Figure 4. 
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Figure 4. Response Time (RT) on the Quantity Discrimination Training 
task as a function of progress in training (composed of 24 runs in six 
sessions across three weeks). Error bars present ±SE for the group 
performance.  The logarithmic regression line represents the average 
slope and intercept across participants (n = 46). 

 

 On average, children responded correctly on 72.2% of trials 
(SD = 7.1%), and their average RT was 952.8 ms (SD = 325.4 ms).  
Combining both measures of RT and accuracy, children’s 
performance on the Quantity Discrimination Training task can be 
analyzed in terms of efficiency, operationalized as the percentage 
correct divided by the RT. This measure allows us to include both 
improvements in RT (i.e., getting faster) and improvements in 
percent correct (i.e., becoming more accurate) in our measure of 
ANS performance. A linear training slope was computed for each 
child.  Children had significantly positive slopes for efficiency 
across training sessions consistent with their performance 
improving across training sessions: t (45) = 7.3, p < 0.001; Figure 5. 
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Figure 5. Efficiency (Percentage correct / RT) on the Quantity 
Discrimination Training task as a function of progress in training 
(composed of 24 runs in six sessions across three weeks). Error bars 
present ±SE for the group performance.  The linear regression line 
represents the average slope and intercept across participants (n = 46). 

 

3.2. Numerical Estimation Training.  
 In the Numerical Estimation Training task, children viewed 
a quantity of briefly flashed items and had to choose the correct 
match among 3 possible digits. Children completed 3 runs on each 
day including an Easy (Span 6), Medium (Span 4) and Hard (Span 
2) run.  

 Participants’ accuracy across runs is displayed in Figure 6.  
Consistent with predictions, children did better on the Easy and 
Medium runs, as seen in a main effect of Difficulty in a 3 Difficulty 
repeated measures ANOVA: F(2,86) = 139.9, p < 0.001. Children 
were also above chance at all levels of difficulty as revealed by 
planned t-tests: Easy, t (43) = 19.1, p < 0.001; Medium, t (43) = 
20.1, p < 0.001; Hard, t (43) = 12.7, p < 0.001.  
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Figure 6. Percent Correct (chance = 33%) on the Numerical Estimation 
Training task as a function of progress in training (composed of 24 runs 
in six sessions across three weeks). Error bars represent ±SE for the 
group performance. The three linear regression lines (one for each level 
of Difficulty (Easy, Medium, Hard) represent the average slope and 
intercept across participants (n = 44). 

 

 Next, we analyzed children’s response time – how long it 
takes children to make their choice on each trial. In Figure 7 we 
show the mean RT for the group for each run (±SE). A logarithmic 
training slope was computed for each child. Children had 
significantly negative training slopes for response time across 
training sessions: t (43) = -3.38, p = 0.001; Figure 7. 
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Figure 7. Response Time (RT) on the Numerical Estimation Training task 
as a function of progress in training (composed of 24 runs in six sessions 
across three weeks). Error bars represent ±SE for the group performance. 
The logarithmic regression line represents the average slope and 
intercept across participants (n = 44). 

 

 On average, children responded correctly on 51.3% of trials 
(chance = 33%; SD = 6.3%). Average RT was 2234.6 ms (SD = 615 
ms). The efficiency, operationalized as the percentage correct 
divided by RT, increased as children progressed throughout the 
sessions of the Numerical Estimation Training (Figure 8). A linear 
training slope was computed for each child. Children had 
significantly positive slopes for efficiency across training sessions 
consistent with their performance improving: t (43) = 2.75, p = 
0.008; Figure 8. 
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Figure 8. Efficiency (Percentage correct / RT) on the Numerical 
Estimation Training task as a function of training runs. Error bars 
represent ±SE for the group performance at each run.  The linear 
regression line represents the average slope and intercept across 
participants (n = 44).  

 

 In sum, both the Quantity Discrimination Training and the 
Numerical Estimation Training showed signatures of engaging the 
ANS and had the appropriate level of difficulty so that children’s 
task efficiency could improve during the 3 weeks of training.  

 

3.3. Effects of training on symbolic mathematics 
 The measure of main interest for this study is the effect of 
training on children's mathematical performance, Pre versus Post-
training in Additions, Subtractions and Operations tests.  
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3.3.1. Additions Test.  

 A 2 x 2 mixed ANOVA, with Training Condition (Quantity 
Discrimination or Numerical Estimation Training) as a between-
participant factor and Phase (Pre-, Post-training) as a within-
participant factor, and total correct answers as the dependent 
variable, revealed a main effect of phase (F(1,88) =10.03, p=0.002, 
η2=0.01) and a significant Training Condition-Phase interaction 
(F(1,88) =7.03, p=0.009, η2=0.008). Bonferroni post hoc tests revealed 
that this interaction was driven by the fact that in the Numerical 
Estimation Training group the total correct answers in the Post-
training phase were higher than in the Pre-training phase 
(respectively, MPost = 43.34, SD = 3.33 and MPre = 35.6, SD = 3.15, 
p < .0001; Figure 9), while the improvements for the Quantity 
Discrimination Training group were not significant (respectively, 
MPost = 37.74, SD = 3.52 and MPre = 37, SD = 2.68, p > .05; Figure 
9). This suggests that Numerical Estimation Training significantly 
improved speeded Additions performance while Quantity 
Discrimination Training did not. 

 

3.3.2. Subtractions Test.  

 An identical ANOVA was run for correct answers in the 
Subtractions Test. It revealed a main effect of phase (F(1,88) =34.32, 
p<0.001, η2=0.03), a strong tendency towards an effect of training 
condition (F(1,88) =3.72, p=0.057, η2=0.037),  and a significant 
Training Condition-Phase interaction (F(1,88) =6.58, p=0.012, 
η2=0.006). With respect to the significant interaction, Bonferroni 
post hoc tests revealed that in both training conditions the total 
correct answers increased from Pre-training to Post-training. 
Nevertheless, in the Numerical Estimation Training group the total 
correct answers increased more than in the Quantity Discrimination 
Training group (Numerical Estimation group, MPost = 47.81, SD = 
3.86, MPre = 37.22, SD = 3.18, p < .0001; Quantity Discrimination 
group, MPost = 35.98, SD = 3.26, MPre = 31.69, SD = 2.54, p < .027). 
In both cases the changes were significant, but they were smaller for 
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the Quantity Discrimination group (Figure 9). And, while there was 
no difference in total correct answers between the groups in Pre-
training (p > .05, Figure 9), children in the Numerical Estimation 
Training group scored significantly higher in the Post-training 
(p=0.021; Figure 9). 

 Thus, both Additions Test and Subtractions Test 
performance suggest that the Numerical Estimation Training was 
more effective than the Quantity Discrimination Training for 
generating significant improvements in children’s school math 
performance after training.  

 

3.3.3. Operations Test.  

 An identical ANOVA was run for correct answers in the 
Operations Test. It revealed a main effect of phase (F(1,88) =29.33, 
p<0.001, η2=0.04), no effect of group and no interaction (Figure 9). 
This suggests that both Quantity Discrimination Training and 
Numerical Estimation Training were effective for improving 
children’s performance on the novel test of Operations. 
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Figure 9. Total correct answers in the Symbolic Tests in the Pre- and 
Post-training phases, for the Quantity Discrimination and Numerical 
Estimation Training conditions. Asterisks indicate significant post hoc 
tests. Plus signs indicate significant interactions, with number of symbols 
indicating the P-values of the tests (* p < .05, ** p < .01, *** p < .001, + 
p < .05, ++ p < .01). 

 

4. Discussion 
 Even the most basic calculations that we make in grade 
school (e.g., 2 + 2 =) involve a complex orchestration of mental 
abilities. An incomplete list of these abilities includes: different core 
systems of numbers, such as the Approximate Number System 
(Brannon, 2006; Feigenson et al., 2004; Halberda & Feigenson, 
2008; Libertus & Brannon, 2009; Pica et al., 2004; Xu & Spelke, 
2000) or our precise sense of very small quantities (D. C. Hyde & 
Spelke, 2011; Mou & VanMarle, 2014; Trick & Pylyshyn, 1993, 
1994); special systems of notations for numbers, such as the Arabic 
digit code (Dehaene, 2001); words in a natural language expressing 
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number, such as quantifiers for numerical expressions in English 
(Dehaene, 1992); and learned computational techniques, such as 
those performed with paper-and pencil (Ferres-Forga, Bonatti, et al., 
2017; Nosworthy et al., 2013). Our increased awareness of the 
mental complexity of elementary mathematical operation offers 
exciting possibilities to devise novel ways to improve children’s 
abilities to succeed in their first, crucial, years of mathematical 
education. 

 In Ferres-Forga et al. (2017), we explored the effects of a 
prolonged training of quantity discrimination in the ANS and its 
impact on children’s school math performance. We found that such 
ANS training improves math performance in low-achieving 
children, and in particular, that it improves the comprehension of 
how a result varies as a function of the operations to be performed 
on the operands (addition, subtraction or multiplication). A possible 
explanation is that a prolonged training of discrimination with the 
ANS gives rise to a better understanding of how operations change 
quantities – although, in Ferres-Forga et al (2017) quantity 
discrimination training did not improve the children’s performance 
with explicit addition and subtraction problems. In the present 
study, we found slightly larger benefits for quantity discrimination 
training, at least qualitatively. We again found that 3 weeks of 
Quantity Discrimination training led to improvements in 
understanding Operations – in this case for the group of children as 
a whole and not just for the low-achievers. We also found some 
improvement in Subtractions, but no improvements in Additions. It 
may be that Quantity Discrimination training will be most effective 
for younger and lower-achieving students.  Further research is 
needed. What we can conclude, though, is that the potential benefits 
of Quantity Discrimination training are not as far-reaching as one 
might hope. 

 In the present study, we also investigated a second form of 
training – Numerical Estimation Training. This training focuses on 
a fundamental aspect of the basic understanding of numbers: the 
relation between their approximate quantities in the ANS and the 
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exact cardinalities that refer to them, expressed as digits. In order to 
improve children’s understanding of such relations, we devised a 
novel training regime: the Digits game. Its aim is to directly train 
the relation between a digit and the quantity it represents, providing 
the link between the ability to approximate the quantity of items 
without counting them and the symbolic language of mathematics. 
Notice that this link is not taught by the traditional Quantity 
Discrimination Training – which only focuses on comparing one 
approximate quantity with another, with no link to exact digits. Our 
intuition was that linking approximate quantities to digits would 
form a more robust type of training for transfer to school arithmetic.  

 We found that, over and above any potential improvement 
caused by ANS training, Numerical Estimation Training improves 
children’s abilities to correctly solve exact additions and 
subtractions. For these computational abilities, training the link 
between Arabic digits and their nonsymbolic quantity 
representations proved to be beneficial above and beyond a highly 
comparable ANS Quantity Discrimination Training. Both training 
regimes had similar effects in the understanding of Operations. It is 
worth noticing that Operations performance requires no exact 
numerical accuracy, whereas the Additions and Subtractions Tests 
require formulating exact answers. Focusing children’s attention on 
the exactness of the relation between digits and their referred 
quantities may better equip them to understand whether a 
calculation requiring an exact answer has indeed given the expected 
results. This better sense of exactness may build upon other positive 
effects of training provided by both training regimes. 

 The possible importance of building a mapping between 
quantity representations (e.g., the ANS) and our numerically 
discrete representations (e.g., digits, number words, number line) 
for math performance has been explored by several authors. 
Mappings from number words to quantities seem to emerge as 
children begin to understand counting (from 3-5 years of age) 
(Odic, Le Corre, et al., 2015), and mappings in the reverse 
direction, from quantities to number words, may emerge later (e.g., 
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around 5-7 years of age) (Le Corre & Carey, 2007; Odic, Le Corre, 
et al., 2015). Both of these directions could help to support a sense 
of the relative size of numbers (e.g., how big is 17). And, this sense 
of “how big is 17” seems to also aid in children’s understanding of 
the linearly ordered number line emerging during the early 
elementary school years (Laski & Siegler, 2007; Siegler & 
Robinson, 1982). The ordering of digits may be an important factor 
in early elementary school, although it may not directly correlate 
with arithmetic achievement (Vogel, Remark, & Ansari, 2014). We 
showed that a training aimed at giving children a better grasp of the 
quantities associated to digits helps their mathematical abilities. 
Arguably, a better understanding of cardinalities may also improve 
children's grasp of ordinal relations among digits. And, later in life, 
an understanding of the ordering of digits may play a crucial role in 
linking our ANS and our math abilities, though the role of the ANS 
in such digit ordering tasks is hotly debated (Goffin & Ansari, 2016; 
Lyons & Beilock, 2013; Turconi, Jemel, Rossion, & Seron, 2004). 
At present, the conclusion from these literatures is that establishing 
a proper mapping between numerical symbols and their quantities 
may be important in order to improve mathematical abilities, but 
that much more research, across ages and across tasks is needed. In 
the current study, we sought to explicitly train the mapping from 
quantity to digits and we found significant improvements in 
Additions, Subtractions, and Operations performance on 7-8 year 
olds.  

 While the structure of the current study does not allow us to 
pinpoint the exact origin of the advantage that Numerical 
Estimation Training provided, it is interesting to speculate on why it 
may be effective. One possibility is that it may induce a better 
calibration of the meaning of digits. Numerical Estimation Training 
may cement anchor points of reference bridging the gap between 
the digit language and the world of quantities at some points of the 
numerical sequence (Izard & Dehaene, 2008). Recall that our 
Numerical Estimation Training provided increasing guidance to the 
correct number across the runs each day. And, because we 
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maintained the spacing of answers across all target numbers (i.e., 1-
21), answers at the highest level of difficulty (i.e., span 2) were very 
difficult and exposed children to a teaching signal relevant to each 
trial (e.g., the answer is either 20, 21 or 22), together with the 
passive trials in which the exact mapping between digits and 
quantities was also stressed. These factors may have been crucial 
for setting up correct anchors and training the children, providing 
them with a better understanding of the relation between digits and 
quantities. This deceptively simple form of calibration may have 
cascading effects. It may allow children to better exploit both 
symbolic and the nonsymbolic representations automatically created 
while dealing with numbers and quantities, essentially acting as a 
lever to multiply the efficiency of other pre-existing representations 
such as those generated by the ANS.  

 A second, non-exclusive possibility, is that Numerical 
Estimation Training may foster the process of the acquisition of 
numerical language. The relation between digits and quantities is 
essentially arbitrary (e.g., “three” & 3 → {x, y, z}). The acquisition 
of the language of numbers is a developmentally protracted process, 
not unlike the acquisition of another arbitrary but fundamental code 
such as reading.  Mapping from digits or words to quantities can 
happen in either direction and at any moment, and children must 
understand the arbitrary nature of these mappings as well as their 
underlying regularities. Solidifying the understanding of the relation 
between digits and quantities could be as important as fostering 
phonological awareness in reading acquisition (Vanbinst, Ansari, 
Ghesquière, & Smedt, 2016). Neuropsychological data on the 
circuits involved in number processing may provide us some 
understanding of what such learning may do to the brain. Our 
approximate number system is associated with the intraparietal 
region of both hemispheres (Izard et al., 2008) while the match 
between quantities and digits recruits a distinct left-hemisphere 
circuit associated with linguistic symbols. The functional 
specialization of the left parietal circuit develops with schooling 
experience across a wide age span (Ansari & Dhital, 2006; Pinel & 
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Dehaene, 2010; Rivera et al., 2005). It is not impossible that 
procedures such as Numerical Estimation Training reinforce the 
establishment of a common and better functioning integrated 
network, precisely at the very onset of children’s protracted period 
of exposure to mathematical education. Further research is needed 
to explore such hypotheses.  

 In conclusion, the current results, coupled with Ferres-Forga 
et al.’s (2017) training study, suggest that, while training based on 
Quantity Discrimination with the Approximate Number System 
could help children who are struggling in mathematics to better 
understand the basic arithmetic operations, in order to bring about 
an overall improvement in children’s ability to successfully 
complete exact arithmetic calculations improving their 
understanding of the meanings of digits may be crucial. We submit 
that the educational systems could overestimate 7-8 year olds’ 
comprehension of this basic aspect of mathematical language. An 
appropriate training of mapping from quantity to digit may 
complement standard school teaching routines, in an effortless and 
playful way, potentially generating long-lasting benefits in 
children’s mathematical abilities and self-confidence, starting from 
these crucial founding years of their initiation to mathematical 
concepts. 
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4. EXPERIMENTAL SECTION 3 

4.1 Introduction 
 Our intuitive sense of number, generally described as the 
Approximate Number System (ANS), is the basis for a non-
linguistic ability to approximate quantity representations without 
the need for symbolic numbers or counting skills (Butterworth, 
1999; Dehaene, 1997; Halberda, Mazzocco, & Feigenson, 2008). 
We share such system with other animals (Dehaene, Dehaene-
Lambertz, et al., 1998; Elena et al., 2016) and preverbal infants 
(Brannon, 2006; Feigenson et al., 2004; Hyde, 2011; Hyde & 
Spelke, 2011; Libertus & Brannon, 2009; Xu & Spelke, 2000; Xu et 
al., 2005; Izard et al., 2008). Even newborn infants seem to have 
numerical representations  (Antell & Keating, 1983; Coubart et al., 
2014; de Hevia et al., 2014; Izard et al., 2009). 

 The way in which ANS represents quantity information is 
such that smaller quantities are represented more precisely than 
larger quantities following Weber’s Law (Dehaene, 1997; 
Feigenson, Dehaene & Spelke, 2004). The Weber fraction can thus 
be understood as an index of ANS acuity (Dehaene, 1997). The 
precision of the ANS increases with cognitive development, 
indicating some flexibility of this capacity (Halberda & Feigenson, 
2008). Some researches indicate that ANS precision is trainable 
(Knoll et al., 2016; Obersteiner et al., 2013; Park et al., 2016; Park 
& Brannon, 2014). 

 Several lines of research suggest that ANS acuity relates 
with symbolic math performance (Feigenson et al., 2013) 
throughout development and into adulthood (Halberda, Mazzocco 
& Feigenson, 2008; Halberda et al., 2012)(Starr, Libertus & 
Brannon, 2014; Jordan, Kaplan, Olah & Locuniak, 2006).  

 In Studies 1 and 2 (Chapters 2 and 3), we trained the ANS 
with a quantity discrimination task by playing the Panamath 
computer program during a period of three weeks. Participants were 
7-8-year-old children. We verified that our ANS training showed a 
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ratio-dependent performance predicted by Weber’s law. We could 
also verify that ANS precision was trainable in a short period and in 
a longer period since the efficiency in the performance of the 
quantity discrimination task increased significantly within each day 
and over the course of the training. We could also see the relation 
between ANS acuity and symbolic math performance (Figure 5, 
Study 1, Chapter 2). Finally, the training transferred improvements 
to the symbolic math test (Figures 1a and 1b, Chapters 2 and 3). 
However, in both studies, benefits were mainly transferred to the 
operations test in which children had to find the operation that 
accomplishes the equality (3 ☐ 5 = 15; addition, subtraction or 
multiplication), but any numerical answer is required (Figures 11-
12, Study 1, Chapter 2; Figure 9, Study 2, Chapter 3).  

 The Approximate Number System is not sufficient to 
compute exact operations with numbers and to progress to more 
advanced mathematics; an accurate mathematical language is 
needed (Bonny & Lourenco, 2013; Butterworth, 2010; Dehaene, 
2001; Gordon, 2004; Lemer et al., 2003; McCrink et al., 2013; M. 
Piazza, Pica, Izard, Spelke, & Dehaene, 2013; Pica et al., 2004).  
Arabic digits are a precise representation of quantities and 
understanding its cardinality is crucial for the improvement of 
arithmetic skills. For example, Mundy & Gilmore (2009) found that 
in 6-8 year-old children the accuracy in mapping Arabic digits and 
nonsymbolic representations was related to mathematics 
achievement. 

 In Study 2 (Chapter 3, Ferres-Forga, Halberda, & Bonatti, 
2017) we independently trained the ANS with the same quantity 
discrimination task as in Study 1, and the mapping between digits 
and quantities with a Numerical Estimation task by asking children 
to play with the Digits program, in a three-week computer-trained 
regime. We verified that the precision of the mapping between 
digits and quantities could be trained (Figure 8, Study 2, Chapter 3). 
We found that strengthening the digits-quantity mapping results in a 
generalized improvement of 7-year-olds’ math competence. Such 
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improvement adds to those that a regime based on training ANS can 
provide. Thus, we propose that training the DQR helps children to 
become more proficient in exact mathematics.  

 The ANS and the accurate symbolic math abilities rely on 
partially separate cerebral circuits with a differential lateralization: 
left inferior parietal cortex appears to be specialized for symbolic 
numbers processing, while right superior parietal lobule for 
nonsymbolic sets of items (ANS) (Dehaene & Cohen, 1991, 1997; 
Sokolowski et al., 2017). In addition, symbolic math abilities are 
more dependent on learning than ANS abilities. We would like to 
know how they are related and how this relation changes across 
ages. 

 With this background, we wanted to extend our research in 
several aspects:  

1) We wanted to confirm that the accuracy in ANS increases with 
age.  

2) We wanted to know how stable the relation between ANS 
accuracy and school math performance evolves across years. This 
question is important because we did find a relation between ANS 
and symbolic math in 7-8 year olds, but this relation was not found 
when an exact numerical answer was required.  

3) We wanted to verify if the accuracy in the mapping between 
Arabic digits and quantities improves with age.  

4) We wanted to know if the relation between the digit-quantity 
mapping and the symbolic math performance that we found in 7-8 
years old could be also found in older students.  

5) We wanted to have within-participant measures of ANS accuracy 
and digit-quantity mapping accuracy, so that we could accurately 
study the correlations of this two abilities, and across ages. Indeed, 
in Studies 1 and 2, participants belonged to one or the other 
training, and it was not possible to do otherwise given our training 
design. For this reason, we do not have data referring to the same 
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students about the two kinds of accuracies. Information about this 
point appear to us to be crucial. 

These were the objectives of our Study 3. Our math tests 
have proven to be an appropriate tool for assessing the level of 
arithmetic of second grade children (7-8 year olds) before and after 
training. However, since we wanted to extend the research to older 
students, we needed a standard and age-related tool to measure 
students’ math competence. To this purpose, we decided to use the 
school math marks of all students who participated in the study. The 
School kindly provided us with these data. 

 Our previous researches were centered on second-grade 
students, that is on 7-to-8 year olds. In the present research, we 
could examine the records of 529 students aged between 8 and 16 
years, going from third to tenth grade. Participants performed a one-
hour session in which they played two games: a Numerical 
Estimation task (Digits program) and a Quantity Discrimination 
task (Panamath program). The order of the games was 
counterbalanced between participants. In addition, we could consult 
their school math marks at their second and third assessment period, 
corresponding to the second and third quarter of the school year (2nd 
Evaluation and 3rd Evaluation hereafter). The test session was 
administered at the beginning of the third quarter. Thus, the session 
was at the beginning of the third quarter. In this way, the school 
marks at 2nd and 3rd Evaluations corresponded to two equivalent 
periods before and after the session. In addition, using the two math 
scores closest to the session, instead of one, gave us more stability 
as we avoided some transient and unrepresentative fluctuations of 
some students. Therefore, we have used the school math marks of 
2nd and 3rd Evaluations to strengthen our conclusions about the 
correlations we have found.  

 We report our detailed analyses below. In summary, our 
results show that ANS accuracy was affected by the ratio of the set 
sizes to be compared and was predicted by Weber’s law in all ages. 
This accuracy increased with age, from 8 to 16 years. Furthermore, 
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the accuracy in the mapping between Arabic digits and quantities 
showed size, distance and position effects. It also increased with 
age. However, the relation between accuracies in ANS and the 
mapping between digits and quantities was not straightforward, as it 
turned out to be age-dependent.  A correlation existed at grades 4th 
to 8th, but there was not such correlation among our youngest 
participants (3rd grade), nor among our oldest students (9th to 10th). 
Taking each task separately, in both tasks we found a positive 
correlation between percentage correct and response time. That is, 
the longer it took participants to answer, the greater their percentage 
of correct answers was. Turning to the relation between our tasks 
and school math scores, we found that the percentage of correct 
answers in the numerical estimation task (mapping digits-quantity) 
positively correlates with math school grades, both for 2nd and 3rd 
Evaluations, for a continuous and wide range of students from grade 
3rd to grade 7th (8-to-13 years). For the quantity discrimination task 
(ANS), the correlation with school math in both evaluations was 
only found for 6th, 7th, and 10th grades, making the interpretation of 
this relation more difficult.  

 

4.2 Methods 
4.2.1 Participants 
 Students of the Hamelin International Laie School 
(http://www.hamelininternationallaie.com/school) participated in 
this study  (n= 529; 257 girls; average age = 11 y 9 m, range 8 y 2 
m to 16 y 9 m). They were pupils from third to tenth grade. Twenty-
four classes were involved: four of 3rd grade (n = 92; 45 girls; 
average age = 8 y 9 m, range 8 y 2 m to 9 y 6 m); four of 4th grade 
(n = 86; 36 girls; average age = 9 y 9 m, range 9 y 1 m to 10 y 5 m); 
three of 5th grade (n = 62; 34 girls; average age = 10 y 10 m, range 9 
y 6 m to 11 y 10 m); three  of 6th grade (n = 79; 41 girls; average 
age = 11 y 11 m, range 11 y 1 m to 15 y 3 m), three  of 7th grade (n 
= 72; 30 girls; average age = 12 y 10 m, range 12 y to 14 y 3 m), 
three of 8th grade (n = 58; 23 girls; average age = 13 y 9 m, range 13 

http://www.hamelininternationallaie.com/school)
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y to 14 y 3 m), two of 9th grade (n = 41; 22 girls; average age = 14 y 
10 m, range  14 y 3 m to 15 y 8 m); and two of 10th grade (n = 39; 
26 girls; average age = 15 y 10 m, range 14 y 6 m to 16 y 9 m). The 
students mostly came from middle to high socioeconomic status 
families. 

 The study consisted of one one-hour session, conducted at 
the premises of the school. The session was integrated in the class 
schedule, during the computer technology class-time. Participants 
played two games: a Numerical Estimation task and a Quantity 
Discrimination task. The order was counterbalanced between 
participants. Four students were excluded because of impaired hand 
motor skills (n=1, 5th grade), impaired vision (n=1, 9th grade), 
comprehension problems (n=1, 6th grade) and behavioral problems 
(n=1, 7th grade). 

 Numerical Estimation task. We retained a total of 524 
participants for analysis (254 girls). Of them, 516 completed 100% 
of the trials. Other students who did not completed the full set of 
trials (90% of the trials, n=1; 78% of the trials, n=7; 50% of the 
trials, n=1) were included in the analysis. One 4th grade student 
completed less than 8% of the trials and was excluded from further 
analyses. Of the 524 participants retained for analysis, 92 students 
(45 girls) were in 3rd grade, 85 students (35 girls) in 4th grade, 
61students (33 girls) in 5th grade, 78 students (40 girls) in 6th grade, 
71 students (30 girls) in 7th grade, 58 students (23 girls) in 8th grade, 
40 students (22 girls) in 9th grade and 39 students (26 girls) in 10th 
grade. 

 Quantity Discrimination task. We retained a total of 503 
participants for analysis (244 girls). Of them, 500 completed the 
100% of the trials and 3 completed the 50% of the trials. Technical 
problems precluded some students from performing the test (n=22). 
Of the participants retained for analysis, 71 students (35 girls) were 
in 3rd grade, 86 students (36 girls) in 4th grade, 61 students (33 girls) 
in 5th grade, 77 students (39 girls) in 6th grade, 71 students (30 girls) 
in 7th grade, 58 students (23 girls) in 8th grade, 40 students (22 girls) 
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in 9th grade and finally, 39 students (26 girls) belonged to 10th 
grade. 

 

4.2.2 Materials 
 Computer Activities. Twenty-eight computers (model: clon 
PCs, Intel® Core™ i3-4170 CPU @ 3.70 GHz, 4GB RAM, 64-bit; 
monitor: 17” LCD 16/9 ASUS; operative system: Windows 7 
Professional) were used for the session. The students wore 
headphones during training. While both activities (Quantity 
Discrimination and Numerical Estimation tasks) were new to them, 
students were already acquainted with the material and the 
computer classroom. 

a) Quantity Discrimination Task 

 For this activity, the computer ran a modified version of the 
computer game Panamath (Halberda et al., 2008), written in Java 
SE6. In this version, the program would generate trials displaying 
collections of items contained inside two rectangles appearing on 
the sides of the screen. For example, twelve yellow dots could 
appear inside the left rectangle and six blue dots inside the right 
rectangle. The number of items within each rectangle was always 
between 5 and 21. The items were presented in seven different 
ratios (larger set/smaller set). The ratios could be 3, 2, 1.5, 1.25, 
1.17, 1.14, and 1.1. For example, on a 3-ratio trial children could 
see 21 blue dots in the right side of the screen and 7 yellow dots in 
the left side. Smaller ratios correspond to more difficult trials. On 
each trial, the items were displayed for 1382 msec. A run was 
composed of 35 consecutive trials. Different collections of items 
were used on each run, so that the game maintained children's 
interest. For example, one run could present blue dots vs. yellow 
dots; another could present cars vs. bears; yet another could display 
birds vs. dogs. 

 To vary the relation between surface area and number during 
the session, Panamath game implemented two different models 
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controlling object size: half of the trials were size-confounded 
(Figure 4.1a), and the other half were size-controlled (Figure 4.1b). 
In size-confounded trials, the average size of the items was equal 
for both sets, so that the cumulative surface area occupied by the 
objects was congruent with the number of objects. In size-controlled 
trials, the average size of the objects was smaller for the larger set, 
so that the ratio of the cumulative area occupied by the objects in 
each set was equated. 

 
Figure 4.1. Examples of the two models of objects size to control for 
surface area: size-confounded (a), size-controlled (b) used in the trials of 
this study. 

 

b) Numerical Estimation task  

 For this activity, the computer ran the “Digits” game, written 
in PsychoPy v1.83.01. The Digits game program generated two 
types of trials, the passive trials and the active trials. A run was 
composed by thirty-five consecutive trials; seven of them were 
passive trials and twenty-eight were active trials. In the passive 
trials, a collection of items was presented on screen while a 
prerecorded voice named the exact number of items. These trials 
lasted 1200 ms (Figure 4.2a). In the active trials, the program first 
presented a collection of items for 1 s, in silence (Figure 4.2a). 
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Then, the collection disappeared and three digits were presented on 
screen until the child clicked on one of them, ideally the one that 
represented the quantity of the previous collection of items (Figure 
4.2b). Different collections of items were used in each run to keep 
students’ interest (dots, tucks, dogs…). 

 The purpose of the passive trials was to provide participants 
opportunities to directly calibrate their estimation system before the 
active trials began (Izard & Dehaene, 2008; Krueger, 1989). 
Considering that these trials were passive, the program presented 
them in decreasing order of difficulty (from bigger to smaller sets of 
items), so that the easier passive trials were always presented last, 
thus increasing students’ confidence before the active trials started.  

 Active trials were presented in increasing order of difficulty, 
a procedure which is known to facilitate learning (Odic et al., 2012; 
J. Wang et al., 2016). Because the distance between digits and the 
numerosity of the set presented in each trial are subject to known 
effects (respectively, the distance and size effects (Cordes et al., 
2001; Dehaene, 2007; Dehaene, Dehaene-Lambertz, et al., 1998; 
van Oeffelen & Vos, 1982)) we manipulated these factors in the 
construction of the game. Thus, the distance between the correct 
choice (that is, the digit representing the exact number of items) and 
the distractor choices manipulated the distance effect. Distances 
ranged between -6 and 6 from the true value; the greater the 
distance between the digits, the easier the task of the participant. 
For example, if the target number was 15, a decision between 18, 
21, and 15 (or +3, +6, and 0 distance from the correct choice) was 
easier than the decision between 15, 13, and 17 (0, +2, -2). Thus, 
throughout each set, the distances between the correct digit and the 
other two digits decreased in each run. For the first run, distances 
could be (0, 3, 6), (6, -3, 0), or (-3, 0, 3). We call this set Span 6. 
For the second run, distances could be (0, 2, 4), (-4, -2, 0), or (-2, 0, 
2), or Span 4. Finally, for the third run distances could be (0, 1, 2), 
(-2, -1, 0), or (-1, 0, 1), or Span 2.  
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 The size effect was manipulated by incrementing the size of 
the collections presented in active trials. Therefore, by manipulating 
distance and size, the difficulty of the game increased within each 
run. All set sizes, from 1 item to 21 items, had to be estimated in 
each of the three spans. Furthermore, the distances for possible 
answers were maintained irrespective of the target answer, rather 
than scaling the distractor answers relative to the true answer by 
some ratio (e.g., larger distances for the competing answers as the 
target value becomes larger). This was a conscious explicit choice. 
While scaling the answers is also possible, and might even be 
preferred in methods used to assess Approximate Number System 
precision rather than assessing the numerical estimation precision, 
here we wanted trial difficulty to increase with target number. This 
has the goal of providing greater guidance for larger quantities; for 
example, on a trial with target value 19, the three answer options on 
a difficult Span 2 trial would all provide a strong guidance signal 
(e.g., 18, 19, 20) for helping to show participants the correct 
numerical region for an answer (e.g., helping to overcome an 
underestimation bias).  

 The position of the correct digit (left, middle, right) as well 
as its numerical relation with respect to the other two digits (the 
smallest, in the middle, the largest) were balanced across trials. 

 In both types of trials (passive and active), the collections of 
items ranged from 1 to 21, all with the same size and orientation. 
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Figure 4.2. Digits computer game. Example of a trial (a) that would be 
the same for either passive (i.e., with a spoken numerical label “twelve”) 
or active trial (i.e., no verbal label), and (b) the response screen for the 
active trial. The collection of items (a) for an active trial would appear for 
1 s, in silence, then, the collection would disappear and three answer 
options (b) would be presented on screen until the student clicked on one 
of them. 

  

4.2.3 Procedure 
 The activity was performed in one one-hour session at each 
of the 24 classes. All sessions were held in presence of the math 
teacher of the class and of the experimenter. After the experimenter 
gave them instructions,  participants worked individually.  

 Students played two whole rounds for each game, Panamath 
(quantity discrimination task) and Digits (numerical estimation 
task). Each round consisted of three runs, each of which was formed 
by 35 trials. Each run took approximately 5 minutes. The difficulty 
of the game was reset at each round. After the session, students 
appeared to like both games. 

 

a) Quantity Discrimination Task 
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 To evaluate the approximate number system accuracy of the 
students they performed a Quantity Discrimination task by playing 
Panamath game. This game does not require any understanding of 
the relation between digits and quantities. On each trial, students 
saw a picture of two collections of items appear on either side of the 
screen. They needed to rapidly estimate which side had more items 
(Figure 4.1 a-b), typing their answers on a keyboard (“f” and “j” 
keys for left or right side respectively). Students could not count the 
items, because the onscreen presentation of the objects was too brief 
(≈1.3 seconds). Rather, they had to rapidly estimate which of the 
two sets in each side of the screen had more items. Feedback was 
provided after every response: a high-pitched beep indicated a 
correct answer while a low-pitched beep indicated an incorrect 
answer. Thirty-five consecutive trials formed a run. Always, the 
first five trials of each run presented the easiest ratio. Then, every 
five trials the game increased in difficulty, with the ratios becoming 
closer to 1 (without ever reaching 1), until the seven different ratios 
were presented. This procedure was implemented with the aim to 
increase participants’ ANS precision and confidence over the course 
of the session, as observed in previous studies using brief 
interventions (Odic et al., 2012; J. Wang et al., 2016).  

 When introducing this Quantity Discrimination task, 
students were told that they would play a game where they would 
see some objects -- for example, blue and yellow dots --and would 
have to choose if there were more blue dots than yellow, or vice-
versa. They were informed that two different sounds would provide 
them with feedback about the correctness of their answer. Students 
were also told that the game would increase in difficulty throughout 
each round and that they would play the game twice (two whole 
rounds). They were informed that both speed and accuracy were 
important. 

b) Numerical Estimation Task 

 To assess students’ knowledge required to map from 
quantities to the exactitude of the digits, participants performed a 
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Numerical Estimation task by playing Digits game. In this game, 
the thirty-five trials presented in each run differentiated into two 
types: passive and active trials. Each run started with seven passive 
trials (Figure 4.2a). Students need not to take any action during 
these trials. The following twenty-eight trials composing each run 
were active trials (Figures 4.2a and 4.2b, never presented 
simultaneously on the screen). The collection of items appearing on 
screen remained visible for a too short time for participants to be 
able to count the number of items. Rather, they could respond by 
giving their best guess. The three digits among which they had to 
choose remained on screen until the choice was made, by clicking 
the mouse on one of them. Feedback was provided after every 
response, with a high-pitch beep for correct answers and a low-pitch 
beep for incorrect answers, as in the quantity discrimination task. 
And, as explained above, the trial difficulty increased with every 
run in each round. 

 When introducing the Digits game, students were told they 
would play a game where they would first see a collection of 
objects for a very short time, while an audio recording would tell 
them how many objects were in the collection. They were told that 
they would have to pay attention to these trials, but not take any 
action. They were also informed that they would then see many 
trials where a collection would be shown for a short period, after 
which they would have to decide their numerosity by choosing one 
of three digits that would appear on screen immediately after the 
disappearance of the items. They were informed that two different 
sounds would provide them with feedback about the correctness of 
their answer. Students were also told that the difficulty of the game 
would increase throughout each round and that they would play 
twice the game (two whole rounds). They were informed that both 
speed and accuracy were important. 
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4.3 Results 
 Because of the complexity of the results, we summarize the 
main structure of this section. We first analyze the responses to the 
two tasks separately, in order to draw a profile of the tasks (Section 
4.3.1 and 4.3.2) We will then turn our analysis to the relation 
between the tasks and participant’s school math performance. 
Finally, we will study the relations among tasks. Appendix xx and 
yy will present the details of some of the analysis presented here.   

4.3.1 Quantity Discrimination Task 
 We recall that in this task, participants (n= 503) briefly 
viewed pictures of two collections of items appearing on either side 
of the screen. For each picture, they had to rapidly estimate which 
side had more items. Students completed a total of six runs (35 
trials each run) with the same structure. In them, the ratio between 
the two sets of items decreased every 5 trials, making the game to 
become more difficult within each run. 

4.3.1.1 Percentage of correct answers. Size and distance effect  

 We checked that performance in the Quantity 
Discrimination task showed the main signature of the Approximate 
Number System (Feigenson et al., 2004; Libertus & Brannon, 2009; 
Starr, Libertus, & Brannon, 2013). To anticipate the main result of 
this part of our analysis, participants' accuracy at determining the 
bigger of two approximate numerosities decreased as the ratio 
between the numbers decreased.  This ratio-dependence is predicted 
by Weber’s law with a specific curve of percentage of correct 
answers as a function of ratio (Figure 4.3). Below, I report more 
detailed analyses. 

 Figure 4.3 presents the data from the Quantity 
Discrimination task from all grades together (8-16 year olds; n= 
503), separated by the type of size control for the stimuli. The ratio-
dependent performance curve is observed for both trial types. That 
is, as the numerical ratio between the two collections became easier 
(e.g., ratio 3 versus ratio 1.2) students' percentage of correct 



 

 133 

responses improved, regardless of the type of size control for the 
trial. The curves in Figure 4.3 are generated by fitting a model of 
Weber’s law to the mean performance of student in each ratio for 
each size control type. That is, each student contributes equally to 
the curves, the curves are fit to the group means, and the error bars 
are ±SE for the group performance. 

 Participants chose the numerically greater collection well 
above chance as shown by planned t-tests for Size Confounded 
trials: t (502) = 83.2, p < 0.001; and for Size Controlled trials, t 
(502) = 80.4, p < 0.001). Students’ performance exhibits the smooth 
curve of the Approximate Number System. Therefore, we suggest 
that even if size contributes somewhat to children’s decisions, 
children's numerical decisions were likely based on the ANS.   

 
Figure 4.3. Accuracy on the Quantity Discrimination task as a function of 
the ratio between number of items of each set. The x-axis shows the seven 
different ratios presented during the training (1.1, 1.14, 1.17, 1.25, 1.5, 2, 
3). The two ways of manipulating surface-area are shown, each with a 
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corresponding Weber curve, consistent with students making their choice 
based primarily on number. 

 

 Collapsing all trials disregarding what type of size control 
they implemented, participants responded correctly on 81.5% of the 
trials (SD = 8%). We can observe differences in the ratio-dependent 
performance curve according to the grade the students were 
attending (Figure 4.4). In general, the older the students were, the 
better they performed in the Quantity Discrimination task, with the 
exception that 10th grade did worse than 9th. 

 

 
Figure 4.4. Accuracy on the Quantity Discrimination task as a function of 
the ratio between number of items of each set. All trials collapsed 
regardless of their type of control size, and splitted by grades. The x-axis 
shows the seven different ratios presented during the training (1.1, 1.14, 
1.17, 1.25, 1.5, 2, 3). 
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4.3.1.2 Response Time  

 On average, the Response Time was 885 ms (SD = 281 ms). 
The response time (RT) decreased across successive runs of the 
Quantity Discrimination task. This indicates that students 
augmented their speed during the session. In Figure 4.5 we show 
the mean RT for the group at each run (±SE). A logarithmic slope 
was computed for each student. Participants had significantly 
negative training slopes for response time across the session: t (502) 
= -22.2, p < 0.001. The decreasing response time across successive 
runs could be an indication that participants improved their 
performance during the session. 

 
Figure 4.5. Response Time (RT) on the Quantity Discrimination task as a 
function of progress during the session (composed of 6 runs). Error bars 
present ±SE for the group performance. The logarithmic regression line 
represents the average slope and intercept across participants (n =503). 

 

4.3.1.3 Efficiency 

 The efficiency, operationalized as the percentage of correct 
answers divided by RT, increased rapidly across the first four runs, 
and maintained the same level for the following two runs (5 and 6), 
suggesting that there might be a ceiling in participants’ performance 
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(Figure 4.6). It should be noted that, in Quantity Discrimination 
task, each run had the same structure (35 trials with an increment of 
difficulty every five trials). Thus, difficulty increases within runs, 
but not between runs. A linear training slope was computed for each 
child. Students had significantly positive slopes for efficiency, 
consistent with their performance improving through the session (t 
(502) = 19.3, p < 0.001; Figure 4.6). 

 
Figure 4.6. Efficiency (Percentage correct / RT) on the Quantity 
Discrimination task. Error bars represent ±SE for the group efficiency at 
each run.  The linear regression line represents the average slope and 
intercept across participants (n = 503). 

 

4.3.2 Numerical Estimation Task 
 We recall that in this task students (n= 524) viewed a 
quantity of briefly flashed items and had to choose the correct 
match among three possible digits. Students completed a total of six 
runs, split into two rounds of three runs (round 1= Runs 1 to 3; 
round 2= Runs 4 to 6). The structure in both rounds was the same, 
with the three runs increasing in difficult from Easy (Span 6, Run 1 
and 4), to Medium (Span 4, Run 2 and 5), and Hard (Span 2, Run 3 
and 6).  In each of the three types of runs, participants were asked to 
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estimate all set sizes, from 1 to 21 items. Therefore, their 
performance was affected by size effect (size of the collections 
incremented in each run), and by distance effect (span or distance 
decremented in each run).  

4.3.2.1 Percentage of correct answers. Size and distance effects. 

 On average, students responded correctly on 63.15% of the 
trials (SD = 7.9%; chance = 33%).  

a) Size effect 

 Consistent with the predictions, students had a higher 
percentage of correct answers when the size of the collection was 
smaller. A precise subitizing response for items 1 to 3 can be 
observed. Starting from size 4, one can notice the difference in 
participants perception of small and large numerosities (Feigenson 
et al., 2004; Figure 4.7). However, for older ages from 10 to 16 year 
olds (5th to 9th grade), size 4 could be considered inside the range of 
subitizing (Figures 4.8, 4.11). The higher the number of items was, 
the worse the performance was. Interestingly, the only size 
collection in which participants performed below chance was the 
largest one, 21 items (Figure 4.7). Presumably, out of the range of 
our test, performance for sizes above 21 would not recover from 
chance response level. 

 Disregarding the special case of the subitizing range (which 
does not affect our overall analysis), a simple regression line 
predicts the percentage of correct answers (PC) as a function of the 
number of items (N): PC = 104 - 3.6 × N, explaining more than the 
90% of the variance in the percentage of correct answers (R2 = 0.93, 
p < 0.001; Figure 4.7). 
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Figure 4.7 Percentage of correct answers (chance = 33%) on the 
Numerical Estimation task as a function of the number of items presented 
in each trial (size effect). Error bars represent ±SE for the group 
performance. The regression line (P correct = 104 - 3.6 × N; being N the 
number of items) represents the average slope and intercept across 
participants (n= 524; R2=0.93, p < 0.001). 

  

 This model was valid at each school grade. We calculated a 
regression line (Figure 4.8): PC3 = 95 - 3.4 x N; PC4 = 99 - 3.5 x N; 
PC5 = 104 - 3.7 x N; PC6 = 106 - 3.6 x N; PC7 = 108 - 3.7 x N; PC8 
= 109 - 3.7 x N; PC9 = 110 - 3.5 x N; PC10 = 109 - 3.6 x N. Indeed, 
the variations in the percentage of correct answers as a function of 
the number of items (the slope of the regression line), showed very 
few variations between grades (M = -3.6, SD = 0.11, SE = 0.04). 
However, the intercepts of the eight regression lines (M = 105, SD = 
5.4, SE = 1.9) showed that different grades have different levels of 
knowledge of the cardinalities 1-21: The higher the grade which the 
students were attending was, the better the mapping between digits 
and quantities was. We only found one exception at the 10th grade, 
whose percentage of correct answers was situated below that of the 
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9th grade (Figures 4.8, 4.9, 4.10), similarly to what happened in case 
of other test, the Quantity Discrimination task. We believe that this 
exception may be due to random characteristics of one of the two 
grades (delayed 10th grade or advanced 9th grade) and/or to the size 
of the samples (9th grade, n = 40; 10th grade, n = 39), which are 
smaller respect to the other grades. 

 

 
Figure 4.8. Percentage of correct answers (chance = 33%) on the 
Numerical Estimation task as a function of the number of items presented 
in each trial (size effect), and split by grades.  
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Figure 4.9. Percentage of correct answers on the Numerical Estimation 
task for the collections of 1 to 10 items (size effect), and split by grades. 

 

 
Figure 4.10. Percentage of correct answers on the Numerical Estimation 
task for the collections of 11 to 21 items (size effect), and split by grades. 
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 Performance in lower grades, and especially third (8-9 year 
olds) and fourth (9-10 year olds) grades, dropped more markedly 
when the collections were formed by four or more items. This could 
indicate an age-dependent distinction between small and large 
numerosities that was still being developed at these ages. It has been 
reported this development during the first year of life (Coubart et 
al., 2014; Figure 4.11) . 

 
Figure 4.11. Percentage of correct answers on the Numerical Estimation 
task for the collections of 1 to 5 items (size effect), split by grades. 

 

b) Distance effect 

 Participants’ accuracy across the six runs is displayed in 
Figure 4.12. Consistent with predictions, participants did better on 
the Easy and Medium runs, in which the distances between digits 
were bigger (Span 6 and 4 respectively), than in Hard runs. 
Repeated measures ANOVA revealed a main effect of Difficulty 
(F(2,1046) = 1439, p < 0.001). Students were above chance at all 
levels of difficulty as revealed by planned t-tests: Easy, t (523) = 
87.55, p < 0.001; Medium, t (523) = 70.73, p < 0.001; Hard, t (523) 
= 59.93, p < 0.001. 
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Figure 4.12. Percent Correct (chance = 33%) on the Numerical 
Estimation task across 6 runs in one session. Error bars represent ±SE for 
the group performance. The three linear regression lines (one for each 
level of Difficulty (Easy, Medium, Hard) represent the average slope and 
intercept across participants (n = 524). 

 Participants’ correct responses improved from the Easy run 
of the first round to the Easy run of the second round (that is, Run1 
and Run4; MRun1=71.8%, SERun1=5.1%; MRun4=74.4%, 
SERun4=5.6%; t (1012) = -3.32, p < 0.001). The improvement of the 
Medium and of the Hard runs of the two rounds (respectively, 
(Run2 and Run5, Run3 and Run6) was not significant. 

 The distance effect showed to be consistent with each small 
variation of the numerical distance between the three digits 
proposed for selection in active trials. In Figure 4.13 each level of 
difficulty (numerical distance) is splitted in two: Easy (Spans 6 and 
5), Medium (Spans 4 and 3), Hard (Spans 2 and 1); being numerical 
distances for Span 6: (0, 3, 6) and (6, -3, 0); for Span 5: (-3, 0, 3); 
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for Span 4: (0, 2, 4) and (-4, -2, 0); for Span 3: (-2, 0, 2); for Span 2: 
(0, 1, 2) and (-2, -1, 0); and finally, numerical distances for Span 1: 
(-1, 0, 1). The percentage of correct answers decreased as the 
numerical distance indicated by the spans decreased gradually. 

 .3. 

 
Figure 4.13. Percent Correct (chance = 33%) on the Numerical 
Estimation task by type of run difficulty (n = 524). Error bars represent 
±SE for the group performance. Each level of Difficulty Easy, Medium, 
and Hard is now split in two: Easy (Spans 6 and 5), Medium (Spans 4 and 
3), Hard (Spans 2 and 1); being distances for Span 6: (0, 3, 6) and (6, -3, 
0); distance for Span 5 (-3, 0, 3); distances for Span 4: (0, 2, 4), (-4, -2, 
0); distance for Span 3 (-2, 0, 2); distances for Span 2: (0, 1, 2), (-2, -1, 
0); and distance for Span 1 (-1, 0, 1). 

 

c) Size and Distance effects combined 

 The distance effect is also accompanied by a size effect. For 
equal numerical distances, performance decreased as the numbers to 
be compared became larger (Figure 4.14). 
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Figure 4.14. Percentage correct as a function of the number of items 
presented in each active trial (size effect). Regression lines are separated 
by distance (distance effect). The horizontal dashed line represents 
random performance. 

 

d) Position of the target 

 The position of the target between the three digits was 
another factor that affected student performance. When the target 
was positioned in the middle, the percentage of correct answers 
reached a 74.8% (chance = 33%), a high value in all grades (SD= 
0.7). However, when the position of the target in the triplet was on 
the left (M= 60.7%, SD= 8%) or on the right ((M= 57.8%, SD= 
6.3%), the percentage of correct responses decreased, especially in 
lower grades (3rd, 4th and 5th; Figure 4.15). 
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Figure 4.15. Percentage of correct answers in the Numerical Estimation 
task split by position of the target number (left, middle, right) and by 
school grade. 

 

 This position effect could also be observed in the three 
difficult levels of the Runs (Easy, Medium, Hard; Figure 4.16). On 
average, considering all participants together (n=524), students 
responded correctly on 63.15% of trials (SD = 7.9). When the target 
was in the middle of the triplet, the responses in all school grades, 
and for all levels of difficulty, were above average (Figure 4.16). 
This was not the case when the target was on the side of a triplet: a) 
for hard difficulty trials, all grades had percentage of correct 
answers below the average but above the chance level, regardless of 
the side of the target (left or right; Figure 4.16); b) for medium 
difficulty trials, only 3rd, 4th and 5th grades had a value below the 
average, regardless of the side of the target (left or right; Figure 
4.16); c) for easy trials, 3rd grade had a value below the average, 
regardless the side of the target; and regarding 4th and 5th grades 
when the target was at the right, their values of percentage of 
correctness were also below the average (Figure 4.16). 
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Figure 4.16. Percentage of correct answers on the Numerical Estimation 
task split by position of the target number (left, middle, right), the 
difficulty of the trials (Easy, Medium, Hard) and by the scholar grades 
that participated in the study. The horizontal dashed line at 33% 
represents random performance. The horizontal dashed line at 63% 
represents the average performance. 

 We speculate that the level of executive functions required 
to inhibit the election of the easiest position (middle) in order to 
choose the correct answer when it is in one side of the triplet, could 
not be developed until 6th grade (12-13 year olds). 

 

4.3.2.2 Response Time 

 We analyzed student’s response time (RT), that is, the time 
it took participants to make their choices on each trial. On average, 
the Response Time was 2040.23 ms (SD = 643.08 ms). Figure 4.10 
shows the mean RT for the whole sample for each run (±SE). A 
logarithmic slope was computed for each child through the session. 
Students had significantly negative slopes for response time through 
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the session: t (523) = -7.25, p < 0.001; Figure 4.17. The decreasing 
response time across successive runs is an indication of improving 
performance during the session. 

 

 
Figure 4.17. Response Time (RT) on the Numerical Estimation task 
through the session. Error bars represent ±SE for the group performance. 
The logarithmic regression line represents the average slope and 
intercept across participants (n = 524). 

 

4.3.2.3 Efficiency 

 The efficiency, operationalized as the percentage of correct 
answers divided by RT, decreased within each round (round 1 = 
Run 1, 2, and 3; round 2 = Run 4, 5, and 6) due to the increasing 
level of difficulty. However, between runs of equal difficulty, the 
efficiency increased significantly (easy runs: t (1004) = -4.17, p < 
0.001; medium runs: t (1007) = -3.5; hard runs: t (999) = -4.67, p < 
0.001, p < 0.001; Figure 4.18), showing that students progressed 
through the session, and suggesting that their ability to map digits to 
quantities, ie their knowledge of cardinality, could improve with 
practice. 
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Figure 4.18. Efficiency (Percentage correct / RT) on the Numerical 
Estimation task. Error bars represent ±SE for the group efficiency at each 
run. The three linear regression lines (one for each level of Difficulty 
(Easy, Medium, Hard) represent the average slope and intercept across 
participants (n = 524). 

 

4.3.3 Relation between the numerical cognition tasks and 
between school math performance 
4.3.3.1 School Math Performance 

 We considered students’ math marks provided by the school 
the measure of students’ school math performance. The school year 
was divided into three quarters that conclude in three evaluations: 
from the beginning of the course in mid-September until the 
Christmas holidays takes place the first quarter. The second quarter 
begins in January and ends in March approximately, depending on 
the date of Easter holidays; and finally, the third and last quarter of 
the scholar year begins in April and ends in June, approximately. 
Each quarter has its own qualification: first, second, and third 
evaluation.  
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 Considering that the twenty-four classes involved in this 
research took their one-hour session test during April and first week 
of May, the situation on the student’s math performance at the time 
of the investigation could be appropriately determined by the 
second and third evaluations, i.e. by school marks obtained in the 
quarters before and after our session test.  

 School marks range from 0 to 10. Any rating below 5 
indicates that the quarter was not been successfully passed. Below, 
we analyze the correlation between the school math marks and the 
performance in the numerical estimation and the quantity 
discrimination tasks.  In Appendix 1, we present the analysis of the 
assumption of normal distribution of school math marks. Because 
the math marks did not follow a normal distribution in any of the 
grades that participated in the study, to analyze the correlation 
between them and performance in the numerical estimation and 
quantity discrimination tasks, we used non-parametric tests. 

 

4.3.3.2 Correlation between school math performance and 
numerical cognition tasks: Numerical Estimation (Digits game) 
and Quantity Discrimination (Panamath game) 

 To analyze the correlation between students’ school math 
marks and their performance at numerical cognition tasks 
(Numerical Estimation (NE), and Quantity Discrimination (QD)), 
we used a non-parametric statistic: Spearman’s correlation 
coefficient (rs), because the school marks were not normally 
distributed (see Appendix 1). We tested correlations between school 
math marks and two main measures of our tasks, namely, 
percentage of Correct answers (PC) and Response Time (RT). We 
studied the correlation of these measures and the school math marks 
at 2nd and 3rd Evaluation (Tables 1 to 8). We consider that using 
both school math marks instead of only one, is a conservative 
procedure that provides us more stability to avoid some transient 
and unrepresentative fluctuations of some students.  
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 Each grade may differ from those of previous years, with 
different group dynamics and level of performance, also with 
respect to other grades of the same year. School marks are adapted 
to the idiosyncrasy of each grade for each year. That is why, mixing 
all the grades as if the marks were consistent among all of them 
would be a mistake and introduce noise in the measures. We have 
chosen to carry out the analysis of each grade separately, in a more 
laborious process but that we consider more correct. 

 Appendix 2 reports the detailed analyses of the correlations 
on each age group. Below, we will report the summary of these 
analyses.  

 First, because not all students of 3rd, 4th and 6th grades could 
perform both tasks, to analyze correlations between tasks and 
school math marks, we considered the smallest sample of both tasks 
for that specific grades. Figure 4.18a shows the number of 
participants by grade that performed both tasks, and that were used 
to calculate the correlations. Should be considered in the 
interpretation of the results that 9th and 10th grades represented the 
smallest samples. 

 

 
Figure 4.18a. Number of participants by grade that performed both tasks, 
Numerical Estimation task and Quantity Discrimination task. 
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 Figure 4.18b shows a summary of the number of evaluations 
(none, only one: 2nd or 3rd, both: 2nd and 3rd) in which math marks 
correlate with the percentage of correct answers in Numerical 
Estimation task (NE) and Quantity Discrimination task (QD). When 
percentage correct correlates only in one evaluation with math 
marks, we consider this correlation unrepresentative to extrapolate 
to general school math performance of the student. This was the 
case of QD task for 4th grade where the correlation was significant 
only at 3rd evaluation, and for 8th grade where the correlation was 
significant only at 2nd evaluation (Figure 4.18b). 

 
Figure 4.18b. Number of evaluations (none, only one: 2nd or 3rd, both: 2nd 
and 3rd) in which math marks correlate with the percentage of correct 
answers in Numerical Estimation task (NE) and Quantity Discrimination 
task (QD) splitted by school grades. 

  

 A brief mention about the correlation between the 
percentage of correct answers in QD task and school math marks at 
10th grade. While this result is interpretable since the correlation is 
significant in both evaluations and also goes in the direction of 
previous literature (Libertus et al., 2011), we want to be cautious on 
its interpretation because of three reasons: 1) at this age the cohort 
was quite reduced with respect to the previous age groups, 2) the 
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other grades with the same pattern (correlation significant at both 
evaluations) in QD task were only 6th and 7th grade. Thus, we can 
not explain the result in terms of a range of ages, but rather it seems 
an isolated result. 3) This grade showed an unexpected pattern in 
both tasks because its percentage of correct answers was situated 
below that of the 9th grade (Figure 4.4 for QD task, and Figures 4.8, 
4.9, 4.10 for NE task). This may be due to random characteristics 
that could confer a special idiosyncrasy to the sample of 10th grade.   

 Considering the numerical cognition tasks that we are 
analyzing, the percentage of correct answers alone is a variable that 
better explains the performance on the task than the response time 
alone. Having said this, there are two grades, 6th and 10th, in which 
the response time of QD task positively correlated with school math 
marks, indicating that pupils who responded more slowly also had 
higher math marks. 

 

4.3.3.3 Correlation between numerical cognition tasks: 
Numerical Estimation (Digits game) and Quantity 
Discrimination (Panamath game) 

 The performance in both task, NE task and QD task, is 
described by the percentage of correct answers mainly, and the 
response time secondarily. We wanted to know if both measures 
separately correlated between tasks. 

 Appendix 2 reports the detailed analyses of the correlations 
on each age group. Below, we will report the summary of these 
analyses. 

 The percentage of correct answers correlated between tasks 
from 4th to 8th grade. Considering that percentage correct is the main 
measure that explains the performance in the tasks, overall the data 
suggests that the tasks could be related at this range of grades (4th to 
8th). The response time correlated also between tasks from 3rd to 8th 
grade, with the only exception of 6th grade. Thus, the speed of 
responses had similar profiles in both tasks. 
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 Unlike other grades, in 9th and 10th grades no significant 
correlation was observed in performance between tasks. These two 
grades corresponded to the older students, from 14 to 16 year olds. 

 

4.3.3.4 Correlation between Percentage of Correct answers and 
Response Time 

 Appendix 2 reports the detailed analyses of the correlations 
on each age group. Below, we will report the summary of these 
analyses. 

 Considering both tasks separately, the correlation between 
the percentage of correct answers and the response time was 
significant and positive in both tasks for all grades, with the only 
exception in 9th grade where the correlation was significant only in 
QD task.  

 Overall, the longer the time to respond was, the higher the 
percentage of correct answers was. Therefore, a speed-accuracy 
tradeoff clearly appeared. This fact may be the basis for specific 
pedagogical guidelines, suggesting that being quicker at responding 
should not be encouraged, at least in numerical cognition tasks, 
since it's no virtue to go fast while making correct performance 
worse. 

 

4.4 Discussion 
  Our Studies 1 and 2 showed that a quantity discrimination 
training and a numerical estimation training have different effects 
on symbolic arithmetic. While training the ANS through a quantity 
discrimination task transferred improvements in symbolic math 
only when exact calculations were not required, training the Digit-
Quantity mapping through a numerical estimation task transferred 
improvements to symbolic math both when an exact answer was 
required and when it was not. The results of Study 1 and 2 are 
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consistent with the fact that the Approximate Number System is not 
sufficient to compute exact operations with numbers, because these 
calculations also require the establishment and understanding of the 
exactness of mathematical language (Bonny & Lourenco, 2013; 
Butterworth, 2010; Dehaene, 2001; Gordon, 2004; Lemer et al., 
2003; McCrink et al., 2013; Pica et al., 2004). Since Arabic digits 
are the precise representation of quantities, training this mapping 
seems to facilitate calculations with numbers, thus percolating into 
an improvement of arithmetic skills (Figure 9, Study 2). Ours is not 
the only study that shows the importance of a proper understanding 
of the exactness of mathematical language; Mundy & Gilmore 
(2009) also found that the accuracy in mapping Arabic digits and 
nonsymbolic representations is related to mathematics achievement 
in 6-8-year-old children.  

 ANS and symbolic math abilities relay on different cognitive 
mechanisms: left inferior parietal cortex is specialized for symbolic 
numbers processing, while right superior parietal lobule for 
nonsymbolic quantities (Dehaene & Cohen, 1991, 1997; 
Sokolowski et al., 2017). Furthermore, to improve the accuracy in 
mapping Arabic digits to quantities, learning could have a more 
prominent role than the improvement of ANS accuracy, which rely 
on very primitive abilities shared by all humans and many 
nonhuman animals. In this study, we explored both abilities in a 
school environment, testing a wide range of ages going from 8 years 
to 16 years of age.  

 Our first task has been to assess the kinds of phenomena that 
characterize the two tasks. Overall, we showed that the quantity 
discrimination test exhibited the signature of the ANS. This is a 
ratio-dependent performance predicted by Weber’s law that results 
in a specific curve of percentage of correct answers as a function of 
ratio (Figure 4.3; Feigenson et al., 2004; Libertus & Brannon, 2009; 
A. B. Starr, Libertus, & Brannon, 2013). We also found that the 
performance curves obtained for each grade improved with the age 
of the students (Figure 4.4). The smaller the “large set/small set” 
ratio was, the more difficult the task of discrimination was. The 
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ceiling performance (around 90%) for grades 3rd and 4th (8-10 
years) was approximately at ratio 2. The ceiling performance 
(between 97 and 100%) of older students was located at ratios 1.5 to 
1.75. These data confirm that ANS accuracy increases with age, at 
least from 8 to 16 years (Halberda & Feigenson, 2008).  

 Also, the Number Estimation task was characterized by a set 
of known signatures such as size and distance effects. Indeed, the 
percentage of correct answers was exhibited the size, the distance, 
and the “position of the target” effects. The size effect appears in 
the different rates of correct responses as a function of set size. 
Participants gave more correct answers to smaller sets sizes (Figure 
4.7). For collections of one, two, or three items (and four items for 
older students, Figures 4.8 and 4.11), performance was almost 
flawless. This is the range of subitizing (Revkin et al., 2008). 
Beyond this range, performance deteriorates, to the point of getting 
close to random for high numerosities. Notably, participants were 
practically always above chance, with the exception of the biggest 
set size (21; Figure 4.7), and even in that case, at least the older 
students performed above chance (Figure 4.10). Thus, we could 
verify that accuracy in the mapping between Arabic digits and 
quantities was affected by the size of the collections and improved 
with age, from 8 to 16 year olds (Figures 4.8, 4.9, 4.10, 4.11). 
Regarding the distance effect, participants performed better in the 
runs with bigger distances between digits (Figures 4.12 and 4.13). 
The distance effect was also accompanied by a size effect. For equal 
numerical distances, performance decreases as the numbers to be 
compared become larger (Figure 4.14). Finally, the position of the 
target (left, middle, right) influenced the correctness of the 
responses. When the target was in the middle, the percentage of 
correct answers was definitely higher than when it was on the sides 
(middle: 75%, left: 60%, and right 58%). This effect was more 
marked for the younger children (3rd, 4th, and 5th grades; Figure 
4.15). Also, the effect of the position affected especially the most 
difficult runs (smaller distance between digits), where all grades 
performed below the average when the target was on one side, but 
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above the average when the target was in the middle (Figure 4.16). 
Thus, position effect could be age and difficulty affected. We 
speculate that executive functions are required to inhibit the election 
of the easiest position (middle) in order to choose the correct 
answer when it is presented on one side of the triplet. 

 We have also analyzed the relation between the percentage 
of correct answers and the time to respond, in both tasks separately. 
Results indicate that slower response time gave more correct 
answers in both numerical cognition tasks. We have two 
suggestions; first, it should be reconsidered the interpretation of the 
response time in numerical cognition tests since the longer the time 
to respond was, the higher the percentage of correct answers was; 
and second, in numerical cognition tasks, being quicker at 
responding should not be encouraged by the teachers at school or by 
experimenters at laboratories. 

 But our main questions concern the relations between the 
two tasks (and whether this relation changes across ages) and the 
power that these tasks have to predict school math performance 
(and whether this too changes across ages). As for the first point, in 
most of our cohorts (from 4th to 8th grade) the percentage of correct 
answers in the two tasks positively correlated. The exceptions were 
the younger cohort (3rd grade), and the two oldest cohorts (9th, and 
10th grades). The response time, however, correlated between tasks 
from 3rd to 8th grade, with the only exception of 6th grade. Thus, the 
speed of responses had similar profiles in both tasks. 

 The interpretation of the lack of correlation between the task 
in the older age groups is difficult, because the sample size is 
smaller than the other samples. Lack of sufficient power may have 
hidden the existence of relations among the tasks. Also, it has to be 
considered that, precisely only these two grades, had an unexpected 
pattern in both tasks since grade 10th had a percentage of correct 
answers situated below that of the 9th grade (Figure 4.4 for QD task, 
and Figures 4.8, 4.9, 4.10 for NE task), which may reflect some 
random characteristic of one or both of the samples of these two 
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grades. In the case for our youngest participants, we suggest that the 
dissociation between the two tasks in percentage of correct answers 
is real. Remember that this age is also the closest one to the 
participants in Studies 1 and 2, where we found differential effects 
of prolonged trainings with a Numerical Estimation task and a 
Quantity Discrimination task. A possible explanation of these 
results could be as follows. At a young age, when knowledge of the 
meaning of the digits is limited, the digit-quantity mapping ability is 
relatively independent from ANS. The link between ANS and the 
symbolic mathematical language is still to be properly established.  
It is also at this age training this ability may have its strongest 
effects, precisely because the understanding of the exactness of the 
relation between digits and quantities does not fall out automatically 
from an already existing ANS. With learning, and the improvement 
of the notion of cardinality, the bridge between ANS and exact 
determination of the quantities may close, and hence a better ANS 
can, not only provide approximate evaluations of quantities, but 
also improve the efficiency of the digit-quantity mapping.   

 Our second main question focuses on the relation between 
school math performance and the two tests we studied. Overall, the 
Quantity Discrimination task correlated with school math grades at 
grades 6th, 7th and 10th (or at 12-13 and 16 years of age), where 
“clearly” here means that the correlation held for both school 
evaluations. It is difficult to interpret a result not showing a uniform 
pattern across different ages. For 6th and 7th grades, correlation was 
positive, suggesting that in some limited cases ANS can indeed 
predict school performance. However, the case of the isolate result 
for 10th grade, could respond to other aspects such as the size of the 
sample (the smallest one), or some random characteristics that could 
confer a special idiosyncrasy to the students of this grade. It should 
be recalled that precisely 10th showed an unexpected pattern in both 
tasks because its percentage of correct answers was situated below 
that of the 9th grade (Figure 4.4 for QD task, and Figures 4.8, 4.9, 
4.10 for NE task). 
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 Importantly, clearer results appeared when inspecting the 
Numerical Estimation task. There, we found a remarkable 
correlation between the school math marks and the results in that 
task. This occurred for an extended period in development going 
from 3rd to 7th grade, or from 8 to 13 years of age, that may 
establish the foundations for better learning and confidence in later 
years. 

Although a correlation does not imply the existence of a 
causal relation, nor does it allow us to draw conclusions about the 
direction of this hypothetical causal relation, we suggest that it is a 
better knowledge of the meaning of the digits that can cause 
children to be better in math at school. We have shown in Study 2 
that training the Digit-Quantity relation translates into a generalized 
improvement in mathematical abilities, and not only in one 
particular aspect of mathematical knowledge; as well as other 
studies also indicated it (Booth & Siegler, 2008; Mundy & Gilmore, 
2009). 

 The interpretation of the lack of this correlation in older age 
groups (from 14 to 16 years of age) is difficult. Besides a problem 
of sample sizes, since precisely the last three grades had the 
smallest samples (Figure 4.18a), specially 9th and 10th grades; we 
suggest here other explanations. A possible explanation is that their 
knowledge of cardinality, at least until 21 (the biggest set of items 
in our test), is sufficient to solve the requirements from school 
mathematics. In addition, the school curriculum for older students, 
with an increase of complexity and abstraction, for example in 
terms of algebra, trigonometry, statistics…, could be less dependent 
of the knowledge of cardinality of the first 21 Arabic digits. And 
finally, a conceptual reason could be that in order to get to a correct 
answer in a mathematical operation, the understanding that the 
solution is precise and unique is fundamental. Answering that 3+2 
is equal to 6 gives a good approximation of the real result of the 
operation, but does not count as a correct answer. A correct answer, 
and with it the awareness of the existence of a mistake, can only 
come once one realizes that “5” means exactly five. Possibly, again, 



 

 159 

the consolidation of this concept is fundamental in the very first 
years of mathematical practice, and once acquired, does not have 
the same role. Thus, older students may not benefit of a finer ability 
to perform a numerical estimation task because they have already 
acquired and interiorized the awareness of the crucial importance of 
exactness in order to understand cardinals.  

 The proposed interpretations have to be further explored, but 
we believe that they can provide the blueprint for further 
educational interventions, which we hope to be able to realize in the 
coming years. 
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5. GENERAL DISCUSSION 

5.1 The role of ANS training on symbolic 
mathematics performance 
 In this section, we want to summarize the main results of our 
work, and propose some speculative hypotheses of why we found 
what we found. We insist on the word “speculative”, hoping that the 
reader understands that the aim of our dissertation was less 
theoretical than practical: finding ways to improve children’s 
mathematical performance in particularly crucial school years. 
Theory helped us to find practical ways to address our question. 
Now the result of our practices could be helped to give back 
something to what the theory gave us: some insights in what may 
have happened and why in our training studies.  But here is where 
our dissertation stops and another, deeper and longer work, should 
begin. We can only point at the directions that this work should 
take.  

 In Study 1 (chapter 2; Ferres-Forga, Bonatti, et al., 2017) 
and Study 2 (chapter 3; (Ferres-Forga, Halberda, et al., 2017) we 
measured the arithmetic competence of ninety-one, and ninety, 7-8 
year old children respectively, with two six-minute paper-and-
pencil tests of symbolic math. One test for additions and one for 
subtractions were presented in the typical formats used in the 
schools (Figures 1a and 1b; Studies 1 and 2). We also measured 
pupil’s initial level of mathematical reasoning with a six-minute test 
of operation-deduction problems (3 ☐ 5 = 15; Figure 1c; Studies 1 
and 2). In it, participants had to find the operation (addition, 
subtraction or multiplication) that rendered the equality true. In both 
studies, a group of participants who trained the ANS (Approximate 
Number System) with a Quantity Discrimination task by playing the 
Panamath program.  

 We first verified that our ANS tests related with formal 
mathematic abilities, as expected by previous literature (Feigenson 
et al., 2013; Halberda et al., 2008; Libertus et al., 2012), showing 
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that individual differences in ANS efficiency were related to the 
number of correct answers in the math pre-test (Figure 5, Study 1). 
We also verified that our ANS training showed the typical ANS 
signature: a ratio-dependent performance predicted by Weber’s law. 
This resulted in a specific curve of percentage of correct answers as 
a function of ratio (Figure 2, Study 1; Figure 3, Study 2; Dehaene, 
1997; Feigenson et al., 2004; Libertus & Brannon, 2009; A. B. Starr 
et al., 2013). Finally, we checked that precision in the ANS could be 
trained  (Knoll et al., 2016; Obersteiner et al., 2013; Park et al., 
2016; Park & Brannon, 2014): indeed, ANS efficiency increased 
over the course of the 3-week training period (Figure 3, Study 1; 
Figure 5, Study 2) and even across the three runs within each day 
(Figure 4, Study 1). 

 We then looked at the effects of training on children’s 
mathematical performance. Training the ANS transferred to 
improvements in post-training symbolic math tests. However, in 
both studies, benefits were mainly apparent in the operations test. 
Specifically, in the first study only those children with a low-profile 
in arithmetics improved, and only in the operations test; in the 
second study the improvement was not limited to low-performing 
children. 

 Let us focus on what improvement in our operation test may 
indicate (Figures 11-12, Study 1; Figure 9, Study 2). The ability to 
solve a problem presented in a format such as: 3 ☐ 5 = 15, requires 
a comprehension on how the result varies as a function of the 
operation to be performed on the operands, that is, on how each 
arithmetic operation changes quantities. Stating it in a very simple 
way, the result is “more” for addition, “less” for subtraction, and 
“much more” for multiplication. This knowledge may be enough to 
correctly solve the problems, without the need of calculating the 
exact result of the operation. Even solving the exact calculation 
wrongly, but approximately right, could still be enough to solve the 
problem satisfactorily. This is an important aspect of mathematical 
knowledge, but it is not what makes one be able to solve 
mathematics operations correctly. 
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  It is indeed true that there was a remarkable aspect of this 
improvement. During ANS training, the arithmetic rules were 
neither explained nor practiced. Children knew it beforehand, 
because at this age they practice additions, subtractions and some 
multiplications in school. But nevertheless, the fact that comparing 
two quantities of dots for a 3-week period improved how the way 
some children understand what an operation does is something to be 
stressed. Possibly, the training modified how those children who did 
not understand how the arithmetic operations change the quantities, 
but only applied the calculation algorithms mechanically, see what 
an operation does. This could be especially true for multiplication. 
The complexity of this operation is bigger than that of a subtraction, 
and that of a subtraction is bigger than that of an addition. Children 
are sensitive to this hierarchy (Knops et al., 2014; Linsen et al., 
2014; Prado et al., 2011). However, the fact that in Study 1 low-
performing ANS Training group improved on all types of 
operations in the Operations subtest (Additions, Subtractions, 
Multiplications; Figure 12, Study 1) suggests that the benefits that 
they received from the training are generalized to any operation. 

  Another issue to consider in the resolution of the operation 
test is that, since it was not strictly necessary to perform the 
calculation (and in case the child did it, it was not essential that the 
result was exact, just a good approximation could be enough), it 
follows that it was not needed, although desirable, a precise 
mapping between digits and quantities. Thus, just with an 
approximate mapping the child still had chances to solve correctly 
the problems presented in the operations tests.  

 To recap, to solve the problems in the operations test, the 
understanding of the arithmetic operations was needed, although it 
was not needed the exact calculation; the basic arithmetic rules 
(“more” for additions, “less” for subtractions, and “much more” for 
multiplications) were not explained nor practiced in the ANS 
training, so they had to be already known since there was a baseline 
of correct answers in the pre-test; and finally, an approximate 
mapping between digits and quantities could be enough and, in any 
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case, it was not practiced in the ANS training either. Then, why 
training the ANS by quantities comparisons transferred into a 
significant improvement in the operations test in both studies, with 
different participants?  

 We suggest that with the ANS training, children may get 
used to think about quantities, the meaning of the digits, even if 
they do not know precisely the mapping between particular digits 
and its particular quantities, – something neither reinforced nor 
needed in this training. This feeling of quantities can then help in 
the task of comparing what unknown operation best feet an equation 
like 3 ☐ 5 = 15, because it can help them to look for “more”, “less” 
or “much more” in the result of that operation. After all, there are 
similarities between the task of comparing the two sets of items at 
both sides of the screen looking for “where are more?” in the ANS 
training and the task of comparing at both sides of the equal sign, 3 
☐ 5 = 15, looking for “more”, “less” or “much more”. The quantity 
comparison in the training could have helped children to think about 
magnitudes (the meaning of numbers). We may speculate that this 
cognitive mechanism could be related with the activation of the 
intraparietal region of both hemispheres (Izard et al., 2008), where 
the approximate number system is located. 

 Consistent with this explanation are two facts: a) that mostly 
low-performing children benefited from ANS training (that is, those 
children who may have not assimilated what an operation does); b) 
that improvement did not transfer to the additions and subtractions 
tests, in neither of the two studies, because in these tests a precise 
calculation is required. 

 At the same time, the results obtained are consistent with the 
idea that the existence of a number sense (ANS) is not sufficient to 
explain our ability to compute exact arithmetic operations, to follow 
calculation algorithms with numbers, and in general, to progress 
towards more advanced mathematical abilities (Butterworth, 2010). 
An accurate symbolic mathematical language is required (Bonny & 
Lourenco, 2013; Dehaene, 2001; Gordon, 2004; Lemer et al., 2003; 
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McCrink et al., 2013; Pica et al., 2004). The language of Arabic 
digits offers exactly that: a precise representation of quantities. 

 Although the potential benefits of our extended ANS 
training are not as far-reaching as one might have hoped, there may 
still be a place for this type of training. Our suggestion is that for 
younger and lower-achieving students this training could be a 
complement to give them the opportunity of thinking about 
quantities and to give them a sense of magnitudes in an effortless 
and playful way.  

 However, could it not be more beneficial to directly train the 
mapping between digits and quantities, so that the child gets, not 
only a sense of, but also the value of these magnitudes, when she 
thinks about numbers? This hypothesis led us to the main idea of 
our novel training, realized in Study 2. 

 

5.2 Training the Digit-Quantity mapping and its 
effects on symbolic mathematics  
 In Study 2 (chapter 3; Ferres-Forga, Halberda, & Bonatti, 
2017) we independently trained the mapping between Arabic digits 
and quantities with a Numerical Estimation task, by asking chidren 
to play the Digits program for a three-week period. Other children 
were trained in ANS precision with a quantity discrimination task, 
playing the the same Panamath program, for the same time, the 
same days of the week, in the same class and with the same 
computers. 

 We verified that the precision of the mapping between digits 
and quantities was trainable, since performance efficiency increased 
during the course of 3-weeks of training (Figure 8, Study 2). This is 
consistent with the increasing functional specialization of the left 
parietal cortex due to arithmetic activity and mathematical language 
development, such as codification of Arabic digits  (Ansari & 
Dhital, 2006; M. Piazza et al., 2007; Manuela Piazza & Izard, 2009; 
Rivera et al., 2005).  
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 Our main result was that strengthening the mapping between 
digits and quantities, resulted in a generalized improvement of 7-
year-olds’ mathematical competence. Training the relation between 
Arabic digits and their non-symbolic quantity representations 
enhanced the understanding of the exact relation between digits and 
their meaning. It makes children focus on the cardinality that digits 
refer to. This is, most likely, what makes the significant 
improvement in arithmetics skills possible (Figure 9, Study 2). We 
measuerd arithmetic competence with the same three math tests 
used in Study 1 (Figures 1a and 1b; Studies 1 and 2). According to 
this common yardstick, the Numerical Estimation training resulted 
in a consistent improvement piling on top of any improvement that 
a regime based on training ANS may have provided (Figure 9; 
Study 2). These results confirm our hypothesis. Thus, we suggest 
that training the mapping between digits and quantities may 
generate substantial benefits, improving mathematical competence 
in 7-8-year-old children. Our results are consistent with the finding 
that in 6-8 year olds the accuracy of mapping Arabic digits to 
nonsymbolic representations is related to mathematics achievements 
(Mundy & Gilmore, 2009). 

 There are several aspects to consider when training the 
mapping between digits and quantities through a numerical 
estimation task. Arabic digits are a precise representation of 
quantities; so, an improvement in the comprehension of their 
meaning and the knowledge of the cardinality they represent was 
the purpose of this training. What the training may do is to help 
children to think of a specific magnitude when they think about 
numbers – to give them the clear idea that the more precisely one 
gets the mapping between a digit and a quantity, the better off she is 
when doing mathematics. 

 The training can improve children in the Operations test (3 
☐ 5 = 15) because, just as ANS  training, it also accomplishes the 
mission of getting children used to think about quantities as the 
meanings of digits. Besides, individual children’s acquisition of 
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cardinal principle is related to an improvement in ANS acuity 
(Shusterman et al., 2016).  

 When the problem to solve consists in exact calculation 
(additions and subtractions tests) where an exact answer is required, 
is when the positive effects of training with digits and quantities 
could be evidenced. In the Additions and Subtractions test (Figures 
1a and 1b; Studies 1 and 2), results indicate that the Numerical 
Estimation training was more effective than the Quantity 
Discrimination training for generating significant improvements 
additions and subtractions performance after training (Figure 9, 
Study 2). At 7-8 years of age, children already know how to add, 
subtract and multiply (tables 1 to 5 and 10). Considering that in 
neither training any arithmetic was taught, why a training aimed at 
giving children a better grasp of the quantities associated to digits, 
transfers into an improvement in their ability to calculate exact 
additions and subtractions, in a way in which simply focusing on 
ANS does not?  

 Taken as linguistic objects, Arabic digits are arbitrary words, 
as arbitrary as any other word in a natural language. Thus, the 
relation between Arabic digits and quantities has to be learned in 
order to master the mathematical language just as the relation 
between words and objects has to be learned in order to master a 
natural language. However, in the case of digits and quantities 
above the range of subitizing, could be necessary some practice to 
improve the calibration, although it can be achieved (Izard & 
Dehaene, 2008). Probably, it is not essential a perfect and exact 
association digit-quantity, but the more accurate the mapping the 
better (Mundy & Gilmore, 2009). 

 We may imagine that this training could rely on cognitive 
mechanism exploiting specific brain networks, partly endogenous 
and partly generated during the process of learning. The cognitive 
mechanism could be recruiting (in addition to the intraparietal 
region), a distinct left-hemisphere circuit associated with 
mathematic language for storing and retrieving math symbols and 
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arithmetic facts, build on education-specific strategies (Dehaene, 
2011). Indeed, crucially, the functional specialization of this left 
parietal circuit develops with schooling experience across a wide 
age span (Ansari & Dhital, 2006; Pinel & Dehaene, 2010; Rivera et 
al., 2005), so again practice could lead to improvement. Perhaps our 
training regime acts to the establishment of these circuits, and this 
in turn could lead to generate the improvements we found. 

 The basic arithmetic operations can be learned by 
mechanically executing calculation algorithms: just follow the 
instructions. These instructions, such as: “carry one…”, or “plus the 
one carried over…”… may be helpful to arrive at the correct result 
of one operation but lead children away from the real meaning of 
what they are doing. Children also learn timetables (and sometimes 
even basic additions and subtractions) by heart. Per se, these 
“school strategies” are not a problem. The problem is when they are 
used without a full comprehension of what they mean. This could 
easily happen for some children. For them, repeating the basic 
arithmetic operations over and over will not be of any help to solve 
the problem of understanding the meaning of what they are doing. 
This memory-based learning process does not improve their 
mathematical competence. It is not surprising then that lack of 
motivation (Simzar et al., 2016), predisposition (Cerda et al., 2015), 
and math anxiety (Pletzer et al., 2015; Z. Wang et al., 2014) come 
into play. Meanwhile, other students may somehow understand the 
mathematical language and the meaning of the strategies; for them, 
the practice of arithmetic takes on a different value, further helping 
to improve their mathematical competence. And so, a growing gap 
may be created between children who are "good at math" and those 
who are not. Changing this self-concept at later stages, will not be 
so easy. 

 Improving arithmetic skills, by reinforcing (or even creating) 
the relation between Arabic digits and the quantities they represent, 
can help to see the meaning of the calculation strategies that are 
learned at school. It can contribute to see mathematical calculations 
for what they are, to better “see” the objects that they manipulate. 
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We submit that the educational systems overestimate 7-8-year-olds’ 
comprehension of this basic aspect of mathematical language. An 
appropriate training of this relation may complement standard 
school teaching, potentially generating long-lasting benefits in 
children’s mathematical abilities and self-confidence. 

 

5.3 ANS, Digit-Quantity mapping and School 
performance: concluding remarks. 
 In Studies 1 and 2, we have centered our attention to 7-8-
year-old children. We trained their Approximate Number System by 
a quantity discrimination task. We have shown some of its 
advantages and its limits. The improvement it provides was not 
general and was not as solid as one would like to have it. Because 
mathematics has its own language, to improve math performance 
we need to “speak” in the language of numbers. This is a precise 
language, where approximation has no place. The Arabic digits 
reflect this precision. We thought that, for children to improve in 
mathematics, it was necessary to link their ANS with that language 
in the most precise and unequivocal way possible. This was the 
underlying motivation of our study 2. With a numerical estimation 
training (Digits computer program), children had to map Arabic 
digits to quantities. Thus, without using any indirect task with digits 
such as naming, counting or ordering, we obtained considerable 
benefits in arithmetic performance for all children of the trained 
age. 

 Once these benefits established, many questions come to the 
mind. Our study 3 was an attempt at finding at least some of them. 
They fall under two main broad topics: how numerical cognition 
develops and how numerical cognition relates with mathematics as 
practiced at school. 

The development of numerical cognition 

 In study 3, we verified that ANS accuracy increases with 
age, at least from 8 to 16 year (Halberda & Feigenson, 2008). 
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Taking this result together with Study 1 and 2, we can extend this 
range from 7 to 16 years. As we showed, also the accuracy in the 
digits-quantities mapping improves with age, at least from 7 to 16 
years.  

We also found a remarkable speed-accuracy tradeoff both numerical 
cognition tasks, across all ages (8 to 16). When the students took 
more time to respond, their percentage of correctness increased. 
These findings suggest some interesting conclusions about the 
development of numerical cognition we should consider. In the field 
of research and proposing it as a topic to be improved in future 
investigations: a) the interpretation that small response times are 
better could be wrong; b) It could be an erroneous strategy to give 
participants instructions that both, speed and accuracy were 
important. In the field of education and specifically in mathematics, 
this may be the basis for pedagogical guidelines, suggesting that 
being quicker at responding should not be encouraged. Quite the 
opposite, teacher should insist on the importance of giving a correct 
answer regardless of how long it may take. Grasping the meaning 
should be prized over acquiring a skill. 

Numerical cognition and mathematics at school  

 The most important relation for its implications for the 
educational word is the relation between numerical cognition and 
mathematics at school. Our measure of school performance is very 
reliable and conservative. We could check school performance in 
two successive quarters of the school year, and our tests was run 
between them. 

 The ability to map quantities into digits correlated positively 
with school math grades for a continuous and wide range of ages, 
from grade 3rd to grade 7th (8-to-13 years). A good knowledge of 
cardinality, that is of the quantities digit represent, is something 
relatively easy to achieve, but it may cause significant 
improvements in children’s mathematical competence. Adding the 
results of study 2, we can conclude that the range of ages in which 
could be important to train the digit-quantity mapping extend from 
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7 to 13 years. These ages are crucial to establish the foundations for 
a better learning in advanced mathematics, as well as to give 
children confidence about their own possibilities. 

Having a more precise ANS correlated with school grades, but only 
at some ages.  The impact of training this ability to improve math 
competence in students is less marked than training the digit-
quantity relations. It can still be useful in an indirect way, because 
we know that this ability correlates with the knowledge of the digit-
quantity mapping. Thus, it could still be useful in order to help 
young children and low-profile students, especially because training 
it does not require the added difficulty of knowing any symbolic 
mathematical language.   

 

5.4 Future directions 
The research developed in this thesis has shed light on some 
questions concerning the relation between some basic mathematical 
abilities and mathematical performance. At the same time, other 
questions and hypothesis have come to the fore. With the firm 
commitment to make our research useful to the educational system, 
we propose some future directions of development. 

One limitation of our studies is that our participants mainly came 
from middle-to-high socioeconomic environments. However, we 
found that some of the training regimes we tested were particularly 
useful to low-performing children. We believe that the training 
systems explored in this thesis have the potential of being most 
effective in less fortunate background, where stronger support and 
alternative corollary activities are most needed. We would like to 
confirm this hypothesis. 

A second line of research that we would like to explore concerns the 
relation between mathematical abilities and dyslexia. Dyslexic 
individuals also have serious deficits in simple arithmetic (Callens, 
Tops, & Brysbaert, 2012; De Smedt & Boets, 2010; Evans, 
Flowers, Napoliello, Olulade, & Eden, 2014). Perhaps a training 
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particularly centered on strengthening the relation between symbols 
and quantities, such as the Digits computer game, may have 
particularly beneficial effects among those who have the most 
difficulties in relating written symbols and their meanings in the 
development of mathematical language. 

Finally, one very important fact that almost any research in 
developmental cognition has stressed is the centrality of early 
intervention. Biases and failures in mathematical performance 
appear very early, for example math anxiety (Maloney & Beilock, 
2012). Currently, we have no data that address the question of how 
a specific training of the digit-quantity relation, appropriately 
adapted to earlier ages (3 to 6 year olds) could influence the 
understanding of activities with digits such as counting or ordering, 
and of the very basic mathematical facts. Even here, our research 
opens at the same time some novel perspectives and shows how 
much still needs to be done in order to understand how cognitively 
inspired interventions could affect learning and development, for 
the benefit of children and society. 

 

 

  



 

 173 

References 
Abreu-Mendoza, R. A., Soto-Alba, E. E., & Arias-Trejo, N. (2013). 

Area vs. density: influence of visual variables and cardinality 
knowledge in early number comparison. Frontiers in 
Psychology, 4, 805. http://doi.org/10.3389/fpsyg.2013.00805 

Agrillo, C., Piffer, L., & Bisazza, A. (2011). Number versus 
continuous quantity in numerosity judgments by fish. 
Cognition, 119(2), 281–287. 
http://doi.org/10.1016/j.cognition.2010.10.022 

Amalric, M., & Dehaene, S. (2016). Origins of the brain networks 
for advanced mathematics in expert mathematicians. 
Proceedings of the National Academy of Sciences, 201603205. 
http://doi.org/10.1073/pnas.1603205113 

Ansari, D., & Dhital, B. (2006). Age-related Changes in the 
Activation of the Intraparietal Sulcus during Nonsymbolic 
Magnitude Processing: An Event-related Functional Magnetic 
Resonance Imaging Study. Journal of Cognitive Neuroscience, 
18(11), 1820–1828. 
http://doi.org/10.1162/jocn.2006.18.11.1820 

Ansari, D., Donlan, C., Thomas, M. S. C., Ewing, S. A., Peen, T., & 
Karmiloff-Smith, A. (2003). What makes counting count? 
Verbal and visuo-spatial contributions to typical and atypical 
number development. Journal of Experimental Child 
Psychology, 85(1), 50–62. http://doi.org/10.1016/S0022-
0965(03)00026-2 

Ansari, D., Garcia, N., Lucas, E., Hamon, K., & Dhital, B. (2005). 
Neural correlates of symbolic number processing in children 
and adults. NeuroReport, 16(16), 1769–1773. 
http://doi.org/10.1097/01.wnr.0000183905.23396.f1 

Antell, S. E., & Keating, D. P. (1983). Perception of Numerical 
Invariance in Neonates. Child Development, 54(3), 695. 
http://doi.org/10.2307/1130057 

Arnaud, V., Hubbard, E. M., Dehaene, S., & Sackur, J. (2010). 
Number line compression and the illusory perception of 
random numbers. Experimental Psychology, 57(6), 446–454. 
http://doi.org/10.1027/1618-3169/a000055 

Arrighi, R., Togoli, I., & Burr, D. C. (2014). A generalized sense of 
number. Proceedings. Biological Sciences / The Royal Society, 
281(1797), 20141791-. http://doi.org/10.1098/rspb.2014.1791 

Aubrey, C., Godfrey, R., & Dahl, S. (2006). Early mathematics 



 

 174 

development and later achievement: Further evidence. 
Mathematics Education Research Journal, 18(1), 27–46. 
http://doi.org/10.1007/BF03217428 

Banks, W. P., & Hill, D. K. (1974). The apparent magnitude of 
number scaled by random production. Journal of Experimental 
Psychology, 102(2), 353–376. http://doi.org/10.1037/h0035850 

Benoit, L., Lehalle, H., & Jouen, F. (2004). Do young children 
acquire number words through subitizing or counting? 
Cognitive Development, 19(3), 291–307. 
http://doi.org/10.1016/j.cogdev.2004.03.005 

Beran, M. J., Evans, T. A., & Harris, E. H. (2008). Perception of 
food amounts by chimpanzees based on the number, size, 
contour length and visibility of items. Animal Behaviour, 
75(5), 1793–1802. 
http://doi.org/10.1016/j.anbehav.2007.10.035 

Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. (1999). 
Extracting parity and magnitude from Arabic numerals: 
developmental changes in number processing and mental 
representation. Journal of Experimental Child Psychology, 
74(4), 286–308. http://doi.org/10.1006/jecp.1999.2518 

Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. 
(2010). Numerical estimation in preschoolers. Developmental 
Psychology, 46(2), 545–51. http://doi.org/10.1037/a0017887 

Bisazza, A., Piffer, L., Serena, G., & Agrillo, C. (2010). Ontogeny 
of numerical abilities in fish. PLoS ONE, 5(11). 
http://doi.org/10.1371/journal.pone.0015516 

Bonny, J. W., & Lourenco, S. F. (2013). The approximate number 
system and its relation to early math achievement: evidence 
from the preschool years. Journal of Experimental Child 
Psychology, 114(3), 375–88. 
http://doi.org/10.1016/j.jecp.2012.09.015 

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual 
differences in pure numerical estimation. Developmental 
Psychology, 42(1), 189–201. http://doi.org/10.1037/0012-
1649.41.6.189 

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude 
representations influence arithmetic learning. Child 
Development, 79(4), 1016–1031. http://doi.org/10.1111/j.1467-
8624.2008.01173.x 

Brannon, E. M. (2006). The representation of numerical magnitude. 
Current Opinion in Neurobiology, 16(2), 222–229. 



 

 175 

http://doi.org/10.1016/j.conb.2006.03.002 
Bugden, S., & Ansari, D. (2015). Probing the nature of deficits in 

the “Approximate Number System” in children with persistent 
Developmental Dyscalculia. Developmental Science. 
http://doi.org/10.1111/desc.12324 

Bugden, S., DeWind, N. K., & Brannon, E. M. (2016). Using 
cognitive training studies to unravel the mechanisms by which 
the approximate number system supports symbolic math 
ability. Current Opinion in Behavioral Sciences, 10, 73–80. 
http://doi.org/10.1016/j.cobeha.2016.05.002 

Bulf, H., de Hevia, M. D., Gariboldi, V., & Macchi Cassia, V. 
(2017). Infants learn better from left to right: a directional bias 
in infants’ sequence learning. Scientific Reports, 7(1), 2437. 
http://doi.org/10.1038/s41598-017-02466-w 

Butterworth, B. (2010). Foundational numerical capacities and the 
origins of dyscalculia. Trends in Cognitive Sciences, 14(12), 
534–41. http://doi.org/10.1016/j.tics.2010.09.007 

Callens, M., Tops, W., & Brysbaert, M. (2012). Cognitive profile of 
students Who enter higher education with an indication of 
Dyslexia. PLoS ONE, 7(6), e38081. 
http://doi.org/10.1371/journal.pone.0038081 

Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. 
(2006). Functional imaging of numerical processing in adults 
and 4-y-old children. PLoS Biology, 4(5), e125. 
http://doi.org/10.1371/journal.pbio.0040125 

Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. 
M., & Pelphrey, K. A. (2009). The Neural Development of an 
Abstract Concept of Number. Journal of Cognitive 
Neuroscience, 21(11), 2217–2229. 
http://doi.org/10.1162/jocn.2008.21159 

Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the 
number domain. Trends in Cognitive Sciences, 13(2), 83–91. 
http://doi.org/10.1016/j.tics.2008.11.007 

Carey, S. (2004). Bootstrapping & the origin of concepts. Daedalus 
(Vol. 133). http://doi.org/10.1162/001152604772746701 

Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics 
education on the number sense. PloS One, 7(4), e33832. 
http://doi.org/10.1371/journal.pone.0033832 

Cerda, G., Pérez, C., Navarro, J. I., Aguilar, M., Casas, J. a, & 
Aragón, E. (2015). Explanatory model of emotional-cognitive 
variables in school mathematics performance: a longitudinal 



 

 176 

study in primary school. Frontiers in Psychology, 
6(September), 1363. http://doi.org/10.3389/fpsyg.2015.01363 

Chen, Q., & Li, J. (2014). Association between individual 
differences in non-symbolic number acuity and math 
performance: A meta-analysis. Acta Psychologica, 148, 163–
172. http://doi.org/10.1016/j.actpsy.2014.01.016 

Clayton, S., & Gilmore, C. (2014). Inhibition in dot comparison 
tasks. Zdm, 1–12. http://doi.org/10.1007/s11858-014-0655-2 

Clayton, S., Gilmore, C., & Inglis, M. (2015). Dot comparison 
stimuli are not all alike: the effect of different visual controls 
on ANS measurement. Acta Psychologica, 161, 177–84. 
http://doi.org/10.1016/j.actpsy.2015.09.007 

Coch, D., & Ansari, D. (2009). Thinking about mechanisms is 
crucial to connecting neuroscience and education. Cortex, 
45(4), 546–547. http://doi.org/10.1016/j.cortex.2008.06.001 

Cohen, D. J., & Sarnecka, B. W. (2014). Children’s number-line 
estimation shows development of measurement skills (not 
number representations). Developmental Psychology, 50(6), 
1640–1652. http://doi.org/10.1037/a0035901 

Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). 
Variability signatures distinguish verbal from nonverbal 
counting for both large and small numbers. Psychonomic 
Bulletin {&} Review, 8(4), 698–707. 
http://doi.org/10.3758/BF03196206 

Coubart, A., Izard, V., Spelke, E. S., Marie, J., & Streri, A. (2014). 
Dissociation between small and large numerosities in newborn 
infants. Developmental Science, 17(1), 11–22. 
http://doi.org/10.1111/desc.12108 

Dadda, M., Piffer, L., Agrillo, C., & Bisazza, A. (2009). 
Spontaneous number representation in mosquitofish. 
Cognition, 112(2), 343–348. 
http://doi.org/10.1016/j.cognition.2009.05.009 

de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. 
(2014). Representations of space, time, and number in 
neonates. Proceedings of the National Academy of Sciences, 
111(13), 4809–4813. http://doi.org/10.1073/pnas.1323628111 

de Hevia, M. D., Vallar, G., & Girelli, L. (2008). Visualizing 
numbers in the mind’s eye: The role of visuo-spatial processes 
in numerical abilities. Neuroscience and Biobehavioral 
Reviews, 32(8), 1361–1372. 
http://doi.org/10.1016/j.neubiorev.2008.05.015 



 

 177 

De Smedt, B., & Boets, B. (2010). Phonological processing and 
arithmetic fact retrieval: Evidence from developmental 
dyslexia. Neuropsychologia, 48(14), 3973–3981. 
http://doi.org/10.1016/j.neuropsychologia.2010.10.018 

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 
44(1–2), 1–42. http://doi.org/10.1016/0010-0277(92)90049-N 

Dehaene, S. (1997). The number sense: How the mind creates 
mathematics. New York: Oxford University Press. 

Dehaene, S. (2001). Précis of The Number Sense. Mind & 
Language, 16(1), 16–36. http://doi.org/10.1111/1468-
0017.00154 

Dehaene, S. (2007). Symbols and quantities in parietal cortex: 
Elements of a mathematical theory of number representation 
and manipulation. In P. Haggard & Y. Rossetti (Eds.), 
Attention & Performance XXII. Sensori-motor foundations of 
higher cognition. (pp. 527–574). Cambridge, Mass.: Harvard 
Universitiy Press. 
http://doi.org/10.1093/acprof:oso/9780199231447.003.0024 

Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and 
levels of representation in number processing. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 
21(2), 314–326. http://doi.org/10.1037/0278-7393.21.2.314 

Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental 
representation of parity and number magnitude. Journal of 
Experimental Psychology: General, 122(3), 371–396. 
http://doi.org/10.1037/0096-3445.122.3.371 

Dehaene, S., & Cohen, L. (1991). Two mental calculation systems: 
a case study of severe acalculia with preseved approximation. 
Neuropsychologia, 29(11), 1045–1074. 
http://doi.org/10.1016/0028-3932(91)90076-K 

Dehaene, S., & Cohen, L. (1997). Cerebral Pathways for 
Calculation: Double Dissociation between Rote Verbal and 
Quantitative Knowledge of Arithmetic. Cortex, 33(2), 219–
250. http://doi.org/10.1016/S0010-9452(08)70002-9 

Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract 
representations of numbers in the animal and human brain. 
Trends in Neurosciences, 21(8), 355–361. 
http://doi.org/10.1016/S0166-2236(98)01263-6 

Dehaene, S., Dupoux, E., & Mehler, J. (1990). Is numerical 
comparison digital? Analogical and symbolic effects in two-
digit number comparison. Journal of Experimental 



 

 178 

Psychology: Human Perception and Performance, 16(3), 626–
641. http://doi.org/10.1037/0096-1523.16.3.626 

Dehaene, S., Izard, V., Spelke, E. S., & Pica, P. (2008). Log or 
Linear? Distinct Intuitions of the Number Scale in Western and 
Amazonian Indigene Cultures. Science, 320(5880), 1217–
1220. http://doi.org/10.1126/science.1156540 

Dehaene, S., & Mehler, J. (1992). Cross-linguistic regularities in the 
frequency of number words. Cognition, 43(1), 1–29. 
http://doi.org/10.1016/0010-0277(92)90030-L 

Dehaene, S., & Naccache, L. (2001). Towards a cognitive 
neuroscience of consciousness: Basic evidence and a 
workspace framework. Cognition, 79(1–2), 1–37. 
http://doi.org/10.1016/S0010-0277(00)00123-2 

Dehaene, S., Naccache, L., Le Clec’H, G., Koechlin, E., Mueller, 
M., Dehaene-Lambertz, G., … Le Bihan, D. (1998). Imaging 
unconscious semantic priming. Nature, 395(6702), 597–600. 
http://doi.org/10.1038/26967 

Demaray, M. K., & Elliot, S. N. (1998). Teachers’ judgments of 
students’ academic functioning: A comparison of actual and 
predicted performances. School Psychology Quarterly, 13(1), 
8–24. http://doi.org/10.1037/h0088969 

den Heyer, K., & Briand, K. (1986). Priming single digit numbers: 
Automatic spreading activation dissipates as a function of 
semantic distance. The American Journal of Psychology, 99(3), 
315–340. http://doi.org/10.2307/1422488 

Desimone, L., & Long, D. (2010). Teacher effects and the 
achievement gap: Do teacher and teaching quality influence 
the achievement gap between black and white and high-and 
low-SES. Teachers College Record. Retrieved from 
http://www.gse.upenn.edu/pdf/desimone/ECLS TCR.pdf 

Desoete, A., & Praet, M. (2013). Inclusive mathematics education: 
The value of a computerized look-ahead approach in 
kindergarten. A randomized controlled study. Special Issue: 
Psychological and Educational Aspects of Inclusion., Spec 
Issue, 103–119. Retrieved from 
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&
D=psyc10&NEWS=N&AN=2014-23573-006 

Dewind, N. K., & Brannon, E. M. (2012). Malleability of the 
approximate number system: effects of feedback and training. 
Frontiers in Human Neuroscience, 6, 68. 
http://doi.org/10.3389/fnhum.2012.00068 



 

 179 

Dyson, N., Jordan, N. C., Beliakoff, A., & Hassinger-Das, B. 
(2015). A Kindergarten Number-Sense Intervention With 
Contrasting Practice Conditions for Low-Achieving Children. 
Journal for Research in Mathematics Education, 46(3), 331. 
http://doi.org/10.5951/jresematheduc.46.3.0331 

Elena, M., Petrazzini, M., Agrillo, C., Izard, V., & Bisazza, A. 
(2016). Do humans ( Homo sapiens ) and fish ( Pterophyllum 
scalare ) make similar numerosity judgments ? Journal of 
Comparative Psychology, 130(4), 380–390. 
http://doi.org/10.1037/com0000045 

Emerson, R. W., & Cantlon, J. F. (2015). Continuity and change in 
children’s longitudinal neural responses to numbers. 
Developmental Science, 18(2), 314–26. 
http://doi.org/10.1111/desc.12215 

Evans, T. M., Flowers, D. L., Napoliello, E. M., Olulade, O. A., & 
Eden, G. F. (2014). The functional anatomy of single-digit 
arithmetic in children with developmental dyslexia. 
NeuroImage, 101, 644–652. 
http://doi.org/10.1016/j.neuroimage.2014.07.028 

Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of 
number. Trends in Cognitive Sciences, 8(7), 307–314. 
http://doi.org/10.1016/j.tics.2004.05.002 

Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links 
Between the Intuitive Sense of Number and Formal 
Mathematics Ability. Child Development Perspectives, 7(2), 
74–79. http://doi.org/10.1111/cdep.12019 

Ferres-Forga, N., Bonatti, L. L., & Halberda, J. (2017). One-Month 
of Approximate Number System Training Improves Symbolic 
Mathematics Performance, But Only In Low-Performing 
Children. Submitted. 

Ferres-Forga, N., Halberda, J., & Bonatti, L. L. (2017). Improving 
Mathematics Performance in 7-year-old children: training the 
Mapping from Quantity to Digit. Submitted. 

Fias, W., Reynvoet, B., & Brysbaert, M. (2001). Are Arabic 
numerals processed as pictures in a Stroop interference task? 
Psychological Research, 65(4), 242–249. 
http://doi.org/10.1007/s004260100064 

Fuhs, M. W., & McNeil, N. M. (2015). The Role of Non-Numerical 
Stimulus Features in Approximate Number System Training in 
Preschoolers from Low-Income Homes Mary. Statewide 
Agricultural Land Use Baseline 2015, 1(June), 1–58. 



 

 180 

http://doi.org/10.1017/CBO9781107415324.004 
Geary, D. C. (2013). Early Foundations for Mathematics Learning 

and Their Relations to Learning Disabilities. Curr Dir Psychol 
Sci., 22(1), 43–51. 
http://doi.org/10.1177/0963721412469398.Early 

Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2013). 
Adolescents’ Functional Numeracy Is Predicted by Their 
School Entry Number System Knowledge. PLoS ONE, 8(1). 
http://doi.org/10.1371/journal.pone.0054651 

Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of 
number. Cambridge, Mass.: Harvard Universitiy Press. 

Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental 
representation of ordinal sequence is spatially organized. 
Cognition, 87, B87–B95. http://doi.org/10.1016/S0010-
9452(08)70938-9 

Gevers, W., Reynvoet, B., & Fias, W. (2004). The Mental 
Representation of Ordinal Sequences is Spatially Organised: 
Evidence from Days of the Week. Cortex, 40(1), 171–172. 
http://doi.org/10.1016/S0010-9452(08)70938-9 

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-
symbolic arithmetic abilities and mathematics achievement in 
the first year of formal schooling. Cognition, 115(3), 394–406. 
http://doi.org/10.1016/j.cognition.2010.02.002 

Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The 
development of automaticity in accessing number magnitude. 
Journal of Experimental Child Psychology, 76(2), 104–122. 
http://doi.org/10.1006/jecp.2000.2564 

Goffin, C., & Ansari, D. (2016). Beyond magnitude: Judging 
ordinality of symbolic number is unrelated to magnitude 
comparison and independently relates to individual differences 
in arithmetic. Cognition, 150, 68–76. 
http://doi.org/10.1016/j.cognition.2016.01.018 

González, M., Kittredge, A., Sánchez, I., Fleischer, B., Spelke, E. 
S., & Maiche, A. (2015). A way to improve math skills 
through stimulating ANS. Retrieved December 7, 2015, from 
http://www.cognicionnumerica.psico.edu.uy/wp-
content/uploads/2015/06/articulo_neuroeducacao.pdf 

Gordon, P. (2004). Numerical Cognition Without Words: Evidence 
from Amazonia. Science, 306(5695), 496–499. 
http://doi.org/10.1126/science.1094492 

Gray, S. A., & Reeve, R. A. (2014). Preschoolers’ dot enumeration 



 

 181 

abilities are markers of their arithmetic competence. PLoS 
ONE, 9(4). http://doi.org/10.1371/journal.pone.0094428 

Guillaume, M., Gevers, W., & Content, A. (2016). Assessing the 
Approximate Number System: no relation between numerical 
comparison and estimation tasks. Psychological Research, 
80(2), 248–58. http://doi.org/10.1007/s00426-015-0657-x 

Halberda, J., & Feigenson, L. (2008). Developmental change in the 
acuity of the “Number Sense”: The Approximate Number 
System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental 
Psychology, 44(5), 1457–65. http://doi.org/10.1037/a0012682 

Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. 
(2012). Number sense across the lifespan as revealed by a 
massive Internet-based sample. Proceedings of the National 
Academy of Sciences of the United States of America, 109(28), 
11116–20. http://doi.org/10.1073/pnas.1200196109 

Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). 
Individual differences in non-verbal number acuity correlate 
with maths achievement. Nature, 455(7213), 665–8. 
http://doi.org/10.1038/nature07246 

Haworth, C. M. A., Kovas, Y., Petrill, S. A., & Plomin, R. (2007). 
Developmental origins of low mathematics performance and 
normal variation in twins from 7 to 9 years. Twin Research and 
Human Genetics : The Official Journal of the International 
Society for Twin Studies, 10(1), 106–117. 
http://doi.org/10.1375/twin.10.1.106 

He, L., Zhou, K., Zhou, T., He, S., & Chen, L. (2015). Topology-
defined units in numerosity perception. Proceedings of the 
National Academy of Sciences of the United States of America, 
112(41), E5647-55. http://doi.org/10.1073/pnas.1512408112 

He, Y., Zhou, X., Shi, D., Song, H., Zhang, H., & Shi, J. (2016). 
New Evidence on Causal Relationship between Approximate 
Number System (ANS) Acuity and Arithmetic Ability in 
Elementary-School Students: A Longitudinal Cross-Lagged 
Analysis. Frontiers in Psychology, 7(July), 1–8. 
http://doi.org/10.3389/fpsyg.2016.01052 

Henik, A., & Tzelgov, J. (1982). Is three greater than five: The 
relation between physical and semantic size in comparison 
tasks. Memory & Cognition, 10(4), 389–395. 
http://doi.org/10.3758/BF03202431 

Hermelin, B., & O’Connor, N. (1986). Spatial representations in 
mathematically and in artistically gifted children. British 



 

 182 

Journal of Educational Psychology, 56(2), 150–157. 
http://doi.org/10.1111/j.2044-8279.1986.tb02656.x 

Herrera, A., & Macizo, P. (2011). Naming digits in a semantic 
blocking paradigm. Quarterly Journal of Experimental 
Psychology, 64(2), 328–338. 
http://doi.org/10.1080/17470218.2010.508532 

Herrera, A., & Macizo, P. (2012). Semantic processing in the 
production of numerals across notations. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 
38(1), 40–51. http://doi.org/10.1037/a0024884 

Hinrichs, J. V, Yurko, D. S., & Hu, J. (1981). Two-digit number 
comparison: Use of place information. Journal of 
Experimental Psychology: Human Perception and 
Performance, 7(4), 890–901. http://doi.org/10.1037/0096-
1523.7.4.890 

Hollingsworth, W. H., Simmons, J. P., Coates, T. R., & Cross, H. 
A. (1991). Perceived numerosity as a function of array number, 
speed of array development, and density of array Items. 
Bulletin of the Psychonomic Society, 29(5), 448–450. 
http://doi.org/10.3758/BF03333967 

Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). 
Interactions between number and space in parietal cortex. 
Nature Reviews. Neuroscience, 6(6), 435—448. 
http://doi.org/10.1038/nrn1684 

Hyde, D. C. (2011). Two systems of non-symbolic numerical 
cognition. Frontiers in Human Neuroscience, 5, 150. 
http://doi.org/10.3389/fnhum.2011.00150 

Hyde, D. C., Khanum, S., & Spelke, E. S. (2014). Brief non-
symbolic, approximate number practice enhances subsequent 
exact symbolic arithmetic in children. Cognition, 131(1), 92–
107. http://doi.org/10.1016/j.cognition.2013.12.007 

Hyde, D. C., & Spelke, E. S. (2009). All Numbers Are Not Equal: 
An Electrophysiological Investigation of Small and Large 
Number Representations. Journal of Cognitive Neuroscience, 
21(6), 1039–1053. http://doi.org/10.1162/jocn.2009.21090 

Hyde, D. C., & Spelke, E. S. (2011). Neural signatures of number 
processing in human infants: evidence for two core systems 
underlying numerical cognition. Developmental Science, 14(2), 
360–71. http://doi.org/10.1111/j.1467-7687.2010.00987.x 

Hyde, J. S., & Mertz, J. E. (2009). Gender, culture, and 
mathematics performance. Proceedings of the National 



 

 183 

Academy of Sciences of the United States of America, 106(22), 
8801–7. http://doi.org/10.1073/pnas.0901265106 

Izard, V., Coralie, S., Elizabeth, S., Spelke, A., & Streri. (2009). 
Newborn Infants Perceive Abstract Numbers. Proceedings of 
the National Academy of Sciences, 106(25), 10382–10385. 
http://doi.org/10.1073/pnas.0812142106 

Izard, V., Dehaene-Lambertz, G., & Dehaene, S. (2008). Distinct 
cerebral pathways for object identity and number in human 
infants. PLoS Biology, 6(2), 0275–0285. 
http://doi.org/10.1371/journal.pbio.0060011 

Izard, V., & Dehaene, S. (2008). Calibrating the mental number 
line. Cognition, 106(3), 1221–47. 
http://doi.org/10.1016/j.cognition.2007.06.004 

Jansen, B. R. J., Louwerse, J., Straatemeier, M., Van der Ven, S. H. 
G., Klinkenberg, S., & Van der Maas, H. L. J. (2013). The 
influence of experiencing success in math on math anxiety, 
perceived math competence, and math performance. Learning 
and Individual Differences, 24, 190–197. 
http://doi.org/10.1016/j.lindif.2012.12.014 

Jones, S. M., & Brannon, E. M. (2012). Prosimian primates show 
ratio dependence in spontaneous quantity discriminations. 
Frontiers in Psychology, 3, 550. 
http://doi.org/10.3389/fpsyg.2012.00550 

Jones, S. M., Pearson, J., DeWind, N. K., Paulsen, D., 
Tenekedjieva, A.-M., & Brannon, E. M. (2014). Lemurs and 
macaques show similar numerical sensitivity. Animal 
Cognition, 17(3), 503–15. http://doi.org/10.1007/s10071-013-
0682-3 

Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). 
Early math matters: kindergarten number competence and later 
mathematics outcomes. Developmental Psychology, 45(3), 
850–67. http://doi.org/10.1037/a0014939 

Jou, J., & Aldridge, J. W. (1999). Memory representation of 
alphabetic position and interval information. Journal of 
Experimental Psychology Learning Memory and Cognition, 
25(3), 680–701. http://doi.org/10.1037//0278-7393.25.3.680 

Kemp, S. (1984). Estimating the Sizes of Sports Crowds. 
Perceptual and Motor Skills, 59(3), 723–729. 
http://doi.org/10.2466/pms.1984.59.3.723 

Knoll, L. J., Fuhrmann, D., Sakhardande, A. L., Stamp, F., 
Speekenbrink, M., & Blakemore, S.-J. (2016). A Window of 



 

 184 

Opportunity for Cognitive Training in Adolescence. 
Psychological Science, 956797616671327. 
http://doi.org/10.1177/0956797616671327 

Knops, A., Dehaene, S., Berteletti, I., & Zorzi, M. (2014). Can 
approximate mental calculation account for operational 
momentum in addition and subtraction? Quarterly Journal of 
Experimental Psychology (2006), 67(8), 1541–56. 
http://doi.org/10.1080/17470218.2014.890234 

Kroesbergen, E., Luit, J. Van, & Maas, C. (2004). Effectiveness of 
explicit and constructivist mathematics instruction for low-
achieving students in the Netherlands. The Elementary School. 
Retrieved from http://www.jstor.org/stable/3202951 

Kroll, J. F., & Stewart, E. (1994). Category Interference in 
Translation and Picture Naming: Evidence for Asymmetric 
Connections Between Bilingual Memory Representations. 
Journal of Memory and Language, 33(2), 149–174. 
http://doi.org/10.1006/jmla.1994.1008 

Krueger, L. E. (1982). Single judgments of numerosity. Perception 
{&} Psychophysics, 31(2), 175–182. 
http://doi.org/10.3758/BF03206218 

Krueger, L. E. (1989). Reconciling Fechner and Stevens: Toward a 
unified psychophysical law. Behavioral and Brain Sciences, 
12(2), 251–267. http://doi.org/10.1017/S0140525X0004855X 

Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? 
correlational and causal connections among numerical 
categorization, number line estimation, and numerical 
magnitude comparison. Child Development, 78(6), 1723–1743. 
http://doi.org/10.1111/j.1467-8624.2007.01087.x 

Le Corre, M. (2014). Children acquire the later-greater principle 
after the cardinal principle. British Journal of Developmental 
Psychology, 32(2), 163–177. http://doi.org/10.1111/bjdp.12029 

Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing 
more: An investigation of the conceptual sources of the verbal 
counting principles. Cognition, 105(2), 395–438. 
http://doi.org/10.1016/j.cognition.2006.10.005 

Leibovich, T., & Henik, A. (2013). Magnitude processing in non-
symbolic stimuli. Frontiers in Psychology, 4, 375. 
http://doi.org/10.3389/fpsyg.2013.00375 

Lemer, C., Dehaene, S., Spelke, E. S., & Cohen, L. (2003). 
Approximate quantities and exact number words: dissociable 
systems. Neuropsychologia, 41(14), 1942–58. Retrieved from 



 

 185 

http://www.ncbi.nlm.nih.gov/pubmed/14572527 
Libertus, M. E., & Brannon, E. M. (2009). Behavioral and Neural 

Basis of Number Sense in Infancy. Current Directions in 
Psychological Science, 18(6), 346–351. 
http://doi.org/10.1111/j.1467-8721.2009.01665.x 

Libertus, M. E., & Brannon, E. M. (2010). Stable individual 
differences in number discrimination in infancy. 
Developmental Science, 13(6), 900–6. 
http://doi.org/10.1111/j.1467-7687.2009.00948.x 

Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool 
acuity of the approximate number system correlates with 
school math ability. Developmental Science, 14, 1292–300. 
http://doi.org/10.1111/j.1467-7687.2011.01080.x 

Libertus, M. E., Feigenson, L., & Halberda, J. (2013a). Is 
Approximate Number Precision a Stable Predictor of Math 
Ability? Learning and Individual Differences, 25, 126–133. 
http://doi.org/10.1016/j.lindif.2013.02.001 

Libertus, M. E., Feigenson, L., & Halberda, J. (2013b). Numerical 
approximation abilities correlate with and predict informal but 
not formal mathematics abilities. Journal of Experimental 
Child Psychology, 116(4), 829–38. 
http://doi.org/10.1016/j.jecp.2013.08.003 

Libertus, M. E., Feigenson, L., Halberda, J., & Landau, B. (2014). 
Understanding the mapping between numerical approximation 
and number words: evidence from Williams syndrome and 
typical development. Developmental Science, 17(6), 905–919. 
http://doi.org/10.1111/desc.12154 

Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of 
number correlates with math scores on college-entrance 
examination. Acta Psychologica, 141(3), 373–9. 
http://doi.org/10.1016/j.actpsy.2012.09.009 

Lindskog, M., & Winman, A. (2016). No evidence of learning in 
non-symbolic numerical tasks - A comment on Park and 
Brannon (2014). Cognition, 150, 243–247. 
http://doi.org/10.1016/j.cognition.2016.01.005 

Linsen, S., Verschaffel, L., Reynvoet, B., & De Smedt, B. (2014). 
The association between children’s numerical magnitude 
processing and mental multi-digit subtraction. Acta 
Psychologica, 145(1), 75–83. 
http://doi.org/10.1016/j.actpsy.2013.10.008 

Lussier, C. A., & Cantlon, J. F. (2017). Developmental bias for 



 

 186 

number words in the intraparietal sulcus. Developmental 
Science, 20(3), e12385. http://doi.org/10.1111/desc.12385 

Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability 
mediates the relation between number-sense and arithmetic 
competence. Cognition, 121(2), 256–61. 
http://doi.org/10.1016/j.cognition.2011.07.009 

Lyons, I. M., & Beilock, S. L. (2013). Ordinality and the nature of 
symbolic numbers. The Journal of Neuroscience, 33(43), 
17052–61. http://doi.org/10.1523/JNEUROSCI.1775-13.2013 

Maloney, E. A., & Beilock, S. L. (2012). Math anxiety: Who has it, 
why it develops, and how to guard against it. Trends in 
Cognitive Sciences, 16(8), 404–406. 
http://doi.org/10.1016/j.tics.2012.06.008 

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011a). 
Impaired acuity of the approximate number system underlies 
mathematical learning disability (dyscalculia). Child 
Development, 82(4), 1224–1237. http://doi.org/10.1111/j.1467-
8624.2011.01608.x 

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011b). 
Preschoolers’ precision of the approximate number system 
predicts later school mathematics performance. PLoS ONE, 
6(9), 1–9. http://doi.org/10.1371/journal.pone.0023749 

McCrink, K., Spelke, E. S., Dehaene, S., & Pica, P. (2013). Non-
symbolic halving in an Amazonian indigene group. 
Developmental Science, 16(3), 451–62. 
http://doi.org/10.1111/desc.12037 

Miletto Petrazzini, M. E., Agrillo, C., Izard, V., & Bisazza, A. 
(2015). Relative versus absolute numerical representation in 
fish: Can guppies represent “fourness”? Animal Cognition, 
18(5), 1007–17. http://doi.org/10.1007/s10071-015-0868-y 

Moll, K., Snowling, M. J., Göbel, S. M., & Hulme, C. (2015). Early 
language and executive skills predict variations in number and 
arithmetic skills in children at family-risk of dyslexia and 
typically developing controls. Learning and Instruction, 38, 
53–62. http://doi.org/10.1016/j.learninstruc.2015.03.004 

Moore, A. M., vanMarle, K., & Geary, D. C. (2016). 
Kindergartners’ fluent processing of symbolic numerical 
magnitude is predicted by their cardinal knowledge and 
implicit understanding of arithmetic 2years earlier. Journal of 
Experimental Child Psychology, 150, 31–47. 
http://doi.org/10.1016/j.jecp.2016.05.003 



 

 187 

Morgan, P. L., Farkas, G., & Maczuga, S. (2015). Which 
Instructional Practices Most Help First Grade Students with 
and without Mathematics Difficulties? HHS Public Access, 
37(2), 184–205. http://doi.org/10.3102/0162373714536608 

Mou, Y., & VanMarle, K. (2014). Two core systems of numerical 
representation in infants. Developmental Review, 34(1), 1–25. 
http://doi.org/10.1016/j.dr.2013.11.001 

Moyer, R. S., & Landauer, T. K. (1967). Time required for 
Judgements of Numerical Inequality. Nature, 215(5109), 
1519–1520. http://doi.org/10.1038/2151519a0 

Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between 
symbolic and nonsymbolic representations of number. Journal 
of Experimental Child Psychology, 103(4), 490–502. 
http://doi.org/10.1016/j.jecp.2009.02.003 

Naccache, L., & Dehaene, S. (2001a). The Priming Method: 
Imaging Unconscious Repetition Priming Reveals an Abstract 
Representation of Number in the Parietal Lobes. Cerebral 
Cortex, 11(10), 966–974. 
http://doi.org/10.1093/cercor/11.10.966 

Naccache, L., & Dehaene, S. (2001b). Unconscious semantic 
priming extends to novel unseen stimuli. Cognition, 80(3), 
223–237. http://doi.org/10.1016/S0010-0277(00)00139-6 

Nieder, A., & Dehaene, S. (2009). Representation of Number in the 
Brain. Annual Review of Neuroscience, 32(1), 185–208. 
http://doi.org/10.1146/annurev.neuro.051508.135550 

Niederhauser, D. ., & Stoddart, T. (2001). Teachers’ instructional 
perspectives and use of educational software. Teaching and 
Teacher Education, 17(1), 15–31. 
http://doi.org/10.1016/S0742-051X(00)00036-6 

Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. 
(2013). A two-minute paper-and-pencil test of symbolic and 
nonsymbolic numerical magnitude processing explains 
variability in primary school children’s arithmetic competence. 
PloS One, 8(7), e67918. 
http://doi.org/10.1371/journal.pone.0067918 

Núñez-Peña, M. I., & Suárez-Pellicioni, M. (2014). Less precise 
representation of numerical magnitude in high math-anxious 
individuals: An ERP study of the size and distance effects. 
Biological Psychology, 103, 176–183. 
http://doi.org/10.1016/j.biopsycho.2014.09.004 

Núñez-Peña, M. I., Suárez-Pellicioni, M., & Bono, R. (2013). 



 

 188 

Effects of math anxiety on student success in higher education. 
International Journal of Educational Research, 58, 36–43. 
http://doi.org/10.1016/j.ijer.2012.12.004 

Obersteiner, A., Reiss, K., & Ufer, S. (2013). How training on exact 
or approximate mental representations of number can enhance 
first-grade students’ basic number processing and arithmetic 
skills. Learning and Instruction, 23(1), 125–135. 
http://doi.org/10.1016/j.learninstruc.2012.08.004 

Odic, D., Hock, H., & Halberda, J. (2012). Hysteresis affects 
approximate number discrimination in young children. Journal 
of Experimental Psychology. General, 142(1), 255–65. 
http://doi.org/10.1037/a0030825 

Odic, D., Im, H. Y., Eisinger, R., Ly, R., & Halberda, J. (2015). 
PsiMLE: A maximum-likelihood estimation approach to 
estimating psychophysical scaling and variability more 
reliably, efficiently, and flexibly. Behavior Research Methods. 
http://doi.org/10.3758/s13428-015-0600-5 

Odic, D., Le Corre, M., & Halberda, J. (2015). Children’s mappings 
between number words and the approximate number system. 
Cognition, 138, 102–21. 
http://doi.org/10.1016/j.cognition.2015.01.008 

Papay, J. P., Murnane, R. J., & Willett, J. B. (2014). High-School 
Exit Examinations and the Schooling Decisions of Teenagers: 
Evidence From Regression-Discontinuity Approaches. Journal 
of Research on Educational Effectiveness, 7(1), 1–27. 
http://doi.org/10.1080/19345747.2013.819398 

Park, J., Bermudez, V., Roberts, R. C., & Brannon, E. M. (2016). 
Non-symbolic approximate arithmetic training improves math 
performance in preschoolers. Journal of Experimental Child 
Psychology, 152, 278–293. 
http://doi.org/10.1016/j.jecp.2016.07.011 

Park, J., & Brannon, E. M. (2014). Improving arithmetic 
performance with number sense training: an investigation of 
underlying mechanism. Cognition, 133(1), 188–200. 
http://doi.org/10.1016/j.cognition.2014.06.011 

Park, J., & Brannon, E. M. (2016). How to interpret cognitive 
training studies: A reply to Lindskog & Winman. Cognition, 
150, 247–251. http://doi.org/10.1016/j.cognition.2016.02.012 

Park, J., & Starns, J. J. (2015). The approximate number system 
acuity redefined: A diffusion model approach. Frontiers in 
Psychology, 6(DEC), 1–10. 



 

 189 

http://doi.org/10.3389/fpsyg.2015.01955 
Parsons, S., & Bynner, J. (2005). Does numeracy matter more? 

London: National Research and Development Centre for Adult 
Literacy and Numeracy. Retrieved from 
http://dera.ioe.ac.uk/22317/1/doc_2979.pdf 

Patalano, A. L., Saltiel, J. R., Machlin, L., & Barth, H. (2015). The 
role of numeracy and approximate number system acuity in 
predicting value and probability distortion. Psychonomic 
Bulletin & Review, 22(6), 1820–9. 
http://doi.org/10.3758/s13423-015-0849-9 

Peters, E., Hart, P. S., Tusler, M., & Fraenkel, L. (2014). Numbers 
matter to informed patient choices: a randomized design across 
age and numeracy levels. Medical Decision Making : An 
International Journal of the Society for Medical Decision 
Making, 34(4), 430–42. 
http://doi.org/10.1177/0272989X13511705 

Piazza, M., Giacomini, E., Le Bihan, D., & Dehaene, S. (2003). 
Single-trial classification of parallel pre-attentive and serial 
attentive processes using functional magnetic resonance 
imaging. Proceedings of the Royal Society B: Biological 
Sciences, 270(1521), 1237–1245. 
http://doi.org/10.1098/rspb.2003.2356 

Piazza, M., & Izard, V. (2009). How humans count: numerosity and 
the parietal cortex. The Neuroscientist : A Review Journal 
Bringing Neurobiology, Neurology and Psychiatry, 15(3), 
261–73. http://doi.org/10.1177/1073858409333073 

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). 
Tuning curves for approximate numerosity in the human 
intraparietal sulcus. Neuron, 44(3), 547–555. 
http://doi.org/10.1016/j.neuron.2004.10.014 

Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). 
Education enhances the acuity of the nonverbal approximate 
number system. Psychological Science, 24(6), 1037–43. 
http://doi.org/10.1177/0956797612464057 

Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A 
Magnitude Code Common to Numerosities and Number 
Symbols in Human Intraparietal Cortex. Neuron, 53(2), 293–
305. http://doi.org/10.1016/j.neuron.2006.11.022 

Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and 
approximate arithmetic in an Amazonian indigene group. 
Science (New York, N.Y.), 306(5695), 499–503. 



 

 190 

http://doi.org/10.1126/science.1102085 
Pinel, P., & Dehaene, S. (2010). Beyond Hemispheric Dominance: 

Brain Regions Underlying the Joint Lateralization of Language 
and Arithmetic to the Left Hemisphere. Journal of Cognitive 
Neuroscience, 22(1), 48–66. 
http://doi.org/10.1162/jocn.2009.21184 

Pinel, P., Dehaene, S., Rivière, D., & LeBihan, D. (2001). 
Modulation of Parietal Activation by Semantic Distance in a 
Number Comparison Task. NeuroImage, 14(5), 1013–1026. 
http://doi.org/10.1006/nimg.2001.0913 

Pinheiro-Chagas, P., Wood, G., Knops, A., Krinzinger, H., 
Lonnemann, J., Starling-Alves, I., … Haase, V. G. (2014). In 
how many ways is the approximate number system associated 
with exact calculation? PloS One, 9(11), e111155. 
http://doi.org/10.1371/journal.pone.0111155 

Pletzer, B., Kronbichler, M., Nuerk, H. C., & Kerschbaum, H. H. 
(2015). Mathematics anxiety reduces default mode network 
deactivation in response to numerical tasks. Frontiers in 
Human Neuroscience, 9(April), 1–12. 
http://doi.org/10.3389/fnhum.2015.00202 

Prado, J., Mutreja, R., Zhang, H., Mehta, R., Desroches, A. S., 
Minas, J. E., & Booth, J. R. (2011). Distinct representations of 
subtraction and multiplication in the neural systems for 
numerosity and language. Human Brain Mapping, 32(11), 
1932–1947. http://doi.org/10.1002/hbm.21159 

Praet, M., & Desoete, A. (2014). Enhancing young children’s 
arithmetic skills through non-intensive, computerised 
kindergarten interventions: A randomised controlled study. 
Teaching and Teacher Education, 39, 56–65. 
http://doi.org/10.1016/j.tate.2013.12.003 

Purpura, D. J., & Logan, J. A. R. (2015). The nonlinear relations of 
the approximate number system and mathematical language to 
early mathematics development. Developmental Psychology, 
51(12), 1717–24. http://doi.org/10.1037/dev0000055 

Ramani, G. B., & Siegler, R. S. (2011). Reducing the gap in 
numerical knowledge between low- and middle-income 
preschoolers. Journal of Applied Developmental Psychology, 
32(3), 146–159. http://doi.org/10.1016/j.appdev.2011.02.005 

Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. 
(2008). Does Subitizing Reflect Numerical Estimation? 
Psychological Science, 19(6), 607–614. 



 

 191 

http://doi.org/10.1111/j.1467-9280.2008.02130.x 
Reynvoet, B., & Ratinckx, E. (2004). Hemispheric differences 

between left and right number representations: Effects of 
conscious and unconscious priming. Neuropsychologia, 42(6), 
713–726. 
http://doi.org/10.1016/j.neuropsychologia.2003.11.013 

Ritchie, S. J., & Bates, T. C. (2013). Enduring Links From 
Childhood Mathematics and Reading Achievement to Adult 
Socioeconomic Status. Psychological Science, 24(7), 1301–
1308. http://doi.org/10.1177/0956797612466268 

Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). 
Developmental changes in mental arithmetic: Evidence for 
increased functional specialization in the left inferior parietal 
cortex. Cerebral Cortex, 15(11), 1779–1790. 
http://doi.org/10.1093/cercor/bhi055 

Roelofs, A. (2006). Functional architecture of naming dice, digits, 
and number words. Language and Cognitive Processes, 21(1–
3), 78–111. http://doi.org/10.1080/01690960400001846 

Rouder, J. N., & Geary, D. C. (2014). Children’s cognitive 
representation of the mathematical number line. 
Developmental Science, 17(4), 525–36. 
http://doi.org/10.1111/desc.12166 

Rubinsten, O., Henik, A., Berger, A., & Shahar-Shalev, S. (2002). 
The development of internal representations of magnitude and 
their association with Arabic numerals. Journal of 
Experimental Child Psychology, 81(1), 74–92. 
http://doi.org/10.1006/jecp.2001.2645 

Rugani, R., & de Hevia, M.-D. (2017). Number-space associations 
without language: Evidence from preverbal human infants and 
non-human animal species. Psychonomic Bulletin & Review, 
24(2), 352–369. http://doi.org/10.3758/s13423-016-1126-2 

Sarnecka, B. W., & Carey, S. (2008). How counting represents 
number: What children must learn and when they learn it. 
Cognition, 108(3), 662–674. 
http://doi.org/10.1016/j.cognition.2008.05.007 

Sarnecka, B. W., & Lee, M. D. (2009). Levels of number 
knowledge during early childhood. Journal of Experimental 
Child Psychology, 103(3), 325–337. 
http://doi.org/10.1016/j.jecp.2009.02.007 

Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). 
Association between basic numerical abilities and mathematics 



 

 192 

achievement. British Journal of Developmental Psychology, 
30(2), 344–357. http://doi.org/10.1111/j.2044-
835X.2011.02048.x 

Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). 
The approximate number system is not predictive for symbolic 
number processing in kindergarteners. Quarterly Journal of 
Experimental Psychology (2006), 67(2), 271–80. 
http://doi.org/10.1080/17470218.2013.803581 

Shepard, R. N., Kilpatric, D. W., & Cunningham, J. P. (1975). The 
internal representation of numbers. Cognitive Psychology, 
7(1), 82–138. http://doi.org/10.1016/0010-0285(75)90006-7 

Shusterman, A., Slusser, E., Halberda, J., & Odic, D. (2016). 
Acquisition of the cardinal principle coincides with 
improvement in approximate number system acuity in 
preschoolers. PLoS One, 11(4), e0153072. 
http://doi.org/10.1371/journal.pone.0153072 

Siegler, R. S. (2003). Implications of cognitive science research for 
mathematics education. A Research Companion to Principles 
and Standards for School Mathematics, 219–233. 

Siegler, R. S., & Robinson, M. (1982). The Development of 
Numerical Understandings. Advances in Child Development 
and Behavior, 16(C), 241–312. http://doi.org/10.1016/S0065-
2407(08)60072-5 

Simzar, R. M., Domina, T., & Tran, C. (2016). Eighth Grade 
Algebra Course Placement and Student Motivation for 
Mathematics. HHS Public Access, 2(1), 1–26. 
http://doi.org/10.1177/2332858415625227 

Sokolowski, H. M., Fias, W., Mousa, A., & Ansari, D. (2017). 
Common and distinct brain regions in both parietal and frontal 
cortex support symbolic and nonsymbolic number processing 
in humans: A functional neuroimaging meta-analysis. 
NeuroImage, 146, 376–394. 
http://doi.org/10.1016/j.neuroimage.2016.10.028 

Spelke, E. S., & Tsivkin, S. (2001). Language and number: a 
bilingual training study. Cognition, 78(1), 45–88. 
http://doi.org/10.1016/S0010-0277(00)00108-6 

Starr, A. B., Libertus, M. E., & Brannon, E. M. (2013). Infants 
Show Ratio-dependent Number Discrimination Regardless of 
Set Size. Infancy : The Official Journal of the International 
Society on Infant Studies, 18(6). 
http://doi.org/10.1111/infa.12008 



 

 193 

Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense 
in infancy predicts mathematical abilities in childhood. 
Proceedings of the National Academy of Sciences of the United 
States of America, 110(45), 18116–20. 
http://doi.org/10.1073/pnas.1302751110 

Stoet, G., Bailey, D. H., Moore, A. M., & Geary, D. C. (2016). 
Countries with higher levels of gender equality show larger 
national sex differences in mathematics anxiety and relatively 
lower parental mathematics valuation for girls. Plos One, 11, 
e0153857. http://doi.org/10.1371/journal.pone.0153857 

Sullivan, J., & Barner, D. (2014). The development of structural 
analogy in number-line estimation. Journal of Experimental 
Child Psychology, 128, 171–89. 
http://doi.org/10.1016/j.jecp.2014.07.004 

Thien, L. M., & Ong, M. Y. (2015). Malaysian and Singaporean 
students’ affective characteristics and mathematics 
performance: evidence from PISA 2012. SpringerPlus, 4(1), 
563. http://doi.org/10.1186/s40064-015-1358-z 

Tournaki, N. (2003). Effect of Student Characteristics on Teachers’ 
Predictions of Student Success. The Journal of Educational 
Research, 96(5), 310–319. 
http://doi.org/10.1080/00220670309597643 

Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies 
can show us about spatial attention: Evidence for limited 
capacity preattentive processing. Journal of Experimental 
Psychology: Human Perception and Performance, 19(2), 331–
351. http://doi.org/10.1037/0096-1523.19.2.331 

Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large 
numbers enumerated differently? A limited-capacity 
preattentive stage in vision. Psychological Review, 101(1), 80–
102. http://doi.org/10.1037/0033-295X.101.1.80 

Turconi, E., Jemel, B., Rossion, B., & Seron, X. (2004). 
Electrophysiological evidence for differential processing of 
numerical quantity and order in humans. Cognitive Brain 
Research, 21(1), 22–38. 
http://doi.org/10.1016/j.cogbrainres.2004.05.003 

Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and 
intentional processing of numerical information. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 
18(1), 166–179. http://doi.org/10.1037/0278-7393.18.1.166 

van Oeffelen, M. P., & Vos, P. G. (1982). A probabilistic model for 



 

 194 

the discrimination of visual number. Perception & 
Psychophysics, 32(2), 163–170. 
http://doi.org/10.3758/BF03204275 

Van Rinsveld, A., Brunner, M., Landerl, K., Schiltz, C., & Ugen, S. 
(2015). The relation between language and arithmetic in 
bilinguals: insights from different stages of language 
acquisition. Frontiers in Psychology, 6, 265. 
http://doi.org/10.3389/fpsyg.2015.00265 

Vanbinst, K., Ansari, D., Ghesquière, P., & Smedt, B. De. (2016). 
Symbolic numerical magnitude proceing is as important to 
arithmetic as phonological awarene is to reading. PLoS ONE, 
11(3), 1–11. http://doi.org/10.1371/journal.pone.0151045 

Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., Newcombe, N. 
S., Filipowicz, A. T., & Chang, A. (2014). Deconstructing 
Building Blocks: Preschoolers’ Spatial Assembly Performance 
Relates to Early Mathematical Skills. Child Development, 
85(3), 1062–1076. http://doi.org/10.1111/cdev.12165 

Vogel, S. E., Goffin, C., & Ansari, D. (2015). Developmental 
specialization of the left parietal cortex for the semantic 
representation of Arabic numerals: An fMR-adaptation study. 
Developmental Cognitive Neuroscience, 12(1), 61–73. 
http://doi.org/10.1016/j.dcn.2014.12.001 

Vogel, S. E., Remark, A., & Ansari, D. (2014). Differential 
processing of symbolic numerical magnitude and order in first-
grade children. Journal of Experimental Child Psychology, 
129C, 26–39. http://doi.org/10.1016/j.jecp.2014.07.010 

Vuokko, E., Niemivirta, M., & Helenius, P. (2013). Cortical 
activation patterns during subitizing and counting. Brain 
Research, 1497, 40–52. 
http://doi.org/10.1016/j.brainres.2012.12.019 

Wagner, J. B., & Johnson, S. C. (2011). An association between 
understanding cardinality and analog magnitude 
representations in preschoolers. Cognition, 119(1), 10–22. 
http://doi.org/10.1016/j.cognition.2010.11.014 

Wang, J., Odic, D., Halberda, J., & Feigenson, L. (2016). Changing 
the precision of preschoolers’ approximate number system 
representations changes their symbolic math performance. 
Journal of Experimental Child Psychology, 147, 82–99. 
http://doi.org/10.1016/j.jecp.2016.03.002 

Wang, Z., Hart, S. A., Kovas, Y., Lukowski, S., Soden, B., 
Thompson, L. A., … Petrill, S. A. (2014). Who is afraid of 



 

 195 

math? Two sources of genetic variance for mathematical 
anxiety. Journal of Child Psychology and Psychiatry, and 
Allied Disciplines, 55(9), 1056–64. 
http://doi.org/10.1111/jcpp.12224 

Watts, T. W., Duncan, G. J., Siegler, R. S., & Davis-Kean, P. E. 
(2014). What’s Past is Prologue: Relations Between Early 
Mathematics Knowledge and High School Achievement. 
Educational Researcher (Washington, D.C. : 1972), 43(7), 
352–360. http://doi.org/10.3102/0013189X14553660 

Wong, T. T. Y., Ho, C. S. H., & Tang, J. (2016). The relation 
between ANS and symbolic arithmetic skills: The mediating 
role of number-numerosity mappings. Contemporary 
Educational Psychology, 46, 208–217. 
http://doi.org/10.1016/j.cedpsych.2016.06.003 

Wynn, K. (1990). Children’s understanding of counting. Cognition, 
36(2), 155–193. http://doi.org/10.1016/0010-0277(90)90003-3 

Wynn, K. (1992). Children’s acquisition of the number words and 
the counting system. Cognitive Psychology, 24(2), 220–251. 
http://doi.org/10.1016/0010-0285(92)90008-P 

Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-
month-old infants. Cognition, 74(1), B1–B11. 
http://doi.org/10.1016/S0010-0277(99)00066-9 

Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in 
human infants. Developmental Science, 8(1), 88–101. 
http://doi.org/10.1111/j.1467-7687.2005.00395.x 

Zebian, S. (2005). Linkages between Number Concepts, Spatial 
Thinking, and Directionality of Writing: The SNARC Effect 
and the REVERSE SNARC Effect in English and Arabic 
Monoliterates, Biliterates, and Illiterate Arabic Speakers. 
Journal of Cognition and Culture, 5(1), 165–190. 
http://doi.org/https://doi.org/10.1163/1568537054068660 

 
 
 
 

  



 

 196 

  



 

 197 

Appendix 1 
 For each grade participating to the study, we calculated 
values that quantify aspects of the grade distribution (i.e., skew and 
kurtosis) and compared the distribution of to a normal by using the 
Shapiro-Wilk test, W. Also, figures from 4.19 to 4.26 show math 
grade histograms from 3rd to 10th grade. 

a) Third Grade (8-9-year-old children) 

 At the 2nd evaluation, the average math mark was 6.92 (SE = 
0.15; range 5 to 9). School math marks were non-normally 
distributed, W = 0.86, p < .001; with skewness of 0.25 (skewness / 
2SE = 0.5; not significant) and Kurtosis of -1.36 (kurtosis / 2SE = -
1.37; significant at p < .01). The negative value of kurtosis indicated 
a flat and light-tailed distribution. 

 At 3rd evaluation, the average math mark was 7.36 (SE = 
0.15) and ranged from 5 to 10. School math marks at 3rd evaluation 
were non-normally distributed, W = 0.87, p <.001; with skewness of 
0.23 (skewness / 2SE = 0.45; not significant) and Kurtosis of -1.31 
(kurtosis / 2SE = -1.31; significant at p < .01). The negative value of 
kurtosis indicated a flat and light-tailed distribution. 

 
Figure 4.19. Histogram for School Math Marks at third grade (age= 8-9 
year olds; n = 92). 
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b) Fourth Grade (9-10-year-old children) 

 At 2nd evaluation, the average math mark was 8.22 (SE = 
0.11) and ranged from 5.1 to 9.9. School math marks at 2nd 
evaluation were non-normally distributed, W = 0.94, p <.001; with 
skewness of -0.86 (skewness / 2SE = -1.66; significance at p < .001) 
and Kurtosis of 0.91 (kurtosis / 2SE = 0.88; not significant). The 
negative skewness indicated that frequent scores were clustered at 
the higher end, on the right of the distribution and the tail pointed 
towards the lower scores. 

 At 3rd evaluation, the average math mark was 7.94 (SE = 
0.13) and ranged from 4.1 to 10. School math marks at 3rd 
evaluation were non-normally distributed, W = 0.96, p < .01; with 
skewness of -0.7 (skewness / 2SE = -1.34; significance at p < .001) 
and Kurtosis of 0.28 (kurtosis / 2SE = 0.27; not significant). The 
negative skewness indicated that frequent scores were clustered at 
the higher end, on the right of the distribution and the tail pointed 
towards the lower scores. 

 
Figure 4.20. Histogram for School Math Marks at fourth grade (age= 9-
10 year olds; n = 86). 
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c) Fifth Grade (10-11-year-old children) 

 At 2nd evaluation, the average math mark was 7.8 (SE = 0.2) 
and ranged from 4 to 10. School math marks at 2nd evaluation were 
non-normally distributed, W = 0.94, p <.01; with skewness of -0.52 
(skewness / 2SE = -0.84; not significant) and Kurtosis of -0.83 
(kurtosis / 2SE = -0.69; not significant).  

 At 3rd evaluation, the average math mark was 7.67 (SE = 
0.18) and ranged from 4.8 to 9.93. School math marks at 3rd 
evaluation were non-normally distributed, W = 0.95, p <.05; with 
skewness of -0.07 (skewness / 2SE = -0.12; not significant) and 
Kurtosis of -1.19 (kurtosis / 2SE = -0.99; not significant). 

 

 
Figure 4.21. Histogram for School Math Marks at fifth grade (age= 10-
11 year olds; n = 61). 

 
d) Sixth Grade (11-12-year-old students) 

 At 2nd evaluation, the average math mark was 7.6 (SE = 
0.16) and ranged from 2.3 to 9.8. School math marks at 2nd 
evaluation were non-normally distributed, W = 0.94, p <.001; with 
skewness of -0.99 (skewness / 2SE = -1.81; significance at p < .001) 
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and Kurtosis of 1.64 (kurtosis / 2SE = 1.52; significance at p < .01). 
The negative skewness indicated that frequent scores were clustered 
at the higher end, on the right of the distribution and the tail pointed 
towards the lower scores. The positive significant value of kurtosis 
indicated a pointy and heavy-tailed distribution. 

 At 3rd evaluation, the average math mark was 7.9 (SE = 
0.13) and ranged from 3.2 to 9.9. School math marks at 3rd 
evaluation were non-normally distributed, W = 0.94, p <.001; with 
skewness of -1.06 (skewness / 2SE = -1.95; significance at p < .001) 
and Kurtosis of 2.15 (kurtosis / 2SE = 2; significance at p < .001). 
The negative skewness indicated that frequent scores were clustered 
at the higher end, on the right of the distribution and the tail pointed 
towards the lower scores. The positive significant value of kurtosis 
indicated a pointy and heavy-tailed distribution. 

 

 
Figure 4.22. Histogram for School Math Marks at sixth grade (age= 11-
12 year olds; n = 78). 
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e) Seventh Grade (12-13-year-old students) 

 At 2nd evaluation, the average math mark was 7 (SE = 0.26) 
and ranged from 1 to 10. School math marks at 2nd evaluation were 
non-normally distributed, W = 0.93, p <.001; with skewness of -
0.75 (skewness / 2SE = -1.32; significance at p < .01) and Kurtosis 
of -0.08 (kurtosis / 2SE = -0.07; not significant). The negative 
skewness indicated that frequent scores were clustered at the higher 
end, on the right of the distribution and the tail pointed towards the 
lower scores. 

 At 3rd evaluation, the average math mark was 7.2 (SE = 
0.26) and ranged from 1.6 to 10. School math marks at 3rd 
evaluation were non-normally distributed, W = 0.92, p <.001; with 
skewness of -0.75 (skewness / 2SE = -1.32; significance at p < .01) 
and Kurtosis of -0.24 (kurtosis / 2SE = -0.21; not significant). The 
negative skewness indicated that frequent scores were clustered at 
the higher end, on the right of the distribution and the tail pointed 
towards the lower scores. 

 

 
Figure 4.23. Histogram for School Math Marks at seventh grade (age= 
12-13 year olds; n = 71). 
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f) Eighth Grade (13-14-year-old students) 

 At 2nd evaluation, the average math mark was 6.7 (SE = 
0.25) and ranged from 2.4 to 9.6. School math marks at 2nd 
evaluation were non-normally distributed, W = 0.95, p =.03; with 
skewness of -0.38 (skewness / 2SE = -0.6; not significant) and 
Kurtosis of -0.87 (kurtosis / 2SE = -0.7; not significant).  

 At 3rd evaluation, the average math mark was 7.1 (SE = 
0.25) and ranged from 1.5 to 9.6. School math marks at 3rd 
evaluation were non-normally distributed, W = 0.91, p <.001; with 
skewness of -1.07 (skewness / 2SE = -1.7; significance at p < .001) 
and Kurtosis of 0.9 (kurtosis / 2SE = 0.73; not significant). The 
negative skewness indicated that frequent scores were clustered at 
the higher end, on the right of the distribution and the tail pointed 
towards the lower scores. 

 

 
Figure 4.24. Histogram for School Math Marks at eighth grade (age= 13-
14 year olds; n = 58). 
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g) Ninth Grade (14-15-year-old students) 

 At 2nd evaluation, the average math mark was 7.1 (SE = 
0.27) and ranged from 4 to 10. School math marks at 2nd evaluation 
were non-normally distributed, W = 0.92, p <.01; with skewness of -
0.49 (skewness / 2SE = -0.66; not significant) and Kurtosis of -0.74 
(kurtosis / 2SE = -0.51; not significant).  

 At 3rd evaluation, the average math mark was 7.4 (SE = 
0.29) and ranged from 3.5 to 9.9. School math marks at 3rd 
evaluation were non-normally distributed, W = 0.93, p <.05; with 
skewness of -0.31 (skewness / 2SE = -0.42; not significant) and 
Kurtosis of -1.22 (kurtosis / 2SE = -0.83; not significant). 

 
Figure 4.25. Histogram for School Math Marks at ninth grade (age= 14-
15 year olds; n = 40). 

 
h) Tenth Grade (15-16-year-old students) 

 At 2nd evaluation, the average math mark was 7.6 (SE = 
0.29) and ranged from 3 to 10. School math marks at 2nd evaluation 
were non-normally distributed, W = 0.94, p <.05; with skewness of -
0.63 (skewness / 2SE = -0.83; not significant) and Kurtosis of -0.34 
(kurtosis / 2SE = -0.23; not significant).  
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 At 3rd evaluation, the average math mark was 7.6 (SE = 
0.28) and ranged from 3.6 to 10. School math marks at 3rd 
evaluation were non-normally distributed, W = 0.94, p <.05; with 
skewness of -0.38 (skewness / 2SE = -0.50; not significant) and 
Kurtosis of -0.83 (kurtosis / 2SE = -0.56; not significant). 

 

 
Figure 4.26. Histogram for School Math Marks at tenth grade (age= 15-
16 year olds; n = 39). 

. 
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Appendix 2 
 Below, we report detailed analyses, at each age, of the 
correlations between our tests and school math performance, and of 
the correlations between the measures of the tests. We invite the 
reader to refer to section 4.3.3 in the main text for their discussion. 

a) Third Grade (8-9-year-old children) 

 At this age, a total of 92 children could perform the 
Numerical Estimation task. The percentage of correct answers was 
significantly related to school math marks at the 2nd and 3rd 
evaluations, (respectively, rs = .32, p = .002; and  rs = .30, p = .004). 
Response time was not related to school math marks.  

 By contrast, there was no correlation between performance 
in the Quantity Discrimination task (n= 71), both for PCs and RTs, 
and school math marks. 

 Because only 71 children of 3rd grade (n= 92) could perform 
the QD task, we wanted to be sure that the relation between school 
math performance and NE task that we found was not due to the 
sample size. Thus, we reduced the NE task sample to the same 
seventy-one children of the QD task, and we calculated again the 
correlation. The percentage of correct answers in NE task was still 
significantly related to school math marks at the 2nd and 3rd 
evaluations, (respectively, rs = .30, p < .05; and rs = .24, p < .05; 
Table 1). Response time was not related to school math marks. 

 Likewise, to analyze the correlations between the tasks, we 
proceeded to consider only those participants who performed both 
tasks (n=71; Table 1). 

 Concerning the relation between the two tasks, their 
response times were correlated (rs = .39, p < .001): the speed of 
responses improved with similar profiles across the tasks. However, 
there was no correlation in the percentage of correct answers of the 
two tasks. This suggests that the resources employed in one task are 
not necessarily the same in the other task.  
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 Considering both tasks separately, the correlation between 
the percentage correct and the response time was significant and 
positive in both tasks (NE task: rs = .37, p < .01; QD task: rs = .65, p 
< .0001); that is, the longer the time to respond was, the higher the 
percentage of correct answers was.  

 Also, the response time in the Numerical Estimation task 
was positive correlated with the percentage of correct responses for 
both tasks, NE and QD.  

Table 1 | Spearman’s correlation (rs) between School Math marks (at 2nd and 
3rd Evaluations) and PC (Percent Correct) and RT (Response Time) at NE 
(Numerical Estimation Task) and QD (Quantity Discrimination task), n=71 
 PC NE RT NE PC QD RT QD 2nd Ev 3rd Ev 
PC NE    1 .37** .19 .14 .30* .24* 
RT NE .37**    1 .29* .39*** .01 .11 
PC QD .19 .29*    1 .65**** -.06 .07 
RT QD .14 .39*** .65****    1 -.22 -.07 
2nd Ev .30* .01 -.06 -.22    1 .83**** 
3rd Ev .24* .11 .07 -.07 .83    1 

ns = not significant (p > .05), *p < .05, **p < .01, ***p < .001, ****p < .0001 

 

b) Fourth Grade (9-10-year-old children) 

 We restricted our analysis to those children that performed 
both tasks (n= 85), the Numerical Estimation (n=85) and the 
Quantity Discrimination task (n=86; Table 2).  

 The Percentage of Correct answers at Numerical Estimation 
task (PC NE), was correlated to school math marks, both at the 2nd 
and 3rd evaluations (respectively, rs = .25, p = .02; and, rs = .32, p = 
.003). By contrast, response time was not related to school math 
marks. 

 For the Quantity Discrimination task, the percentage of 
correct answers (PC QD) only correlated with school marks the 
period of the 3rd evaluation, (rs = .32, p = .003). No correlation 
occurred with response time. 

 Concerning the relation between the two tasks, response 
time correlated positively, (rs = .32, p < .01). In addition, also the 
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percentage of correct responses between the tasks correlated  (rs = 
.25, p < .05), unlike what we found at third grade. 

 Considering both tasks separately, PC and RT had a positive 
and highly significant correlation in QD task (rs = .6, p < .0001) and 
a significant correlation in NE task (rs = .34, p < .01). Thus, the 
longer the response time was, the higher the percentage of correct 
answers was in both tasks. 

Table 2 | Spearman’s correlation (rs) between School Math marks (at 2nd and 
3rd Evaluations) and PC (Percent Correct) and RT (Response Time) at NE 
(Numerical Estimation Task) and QD (Quantity Discrimination task), n=85 
 PC NE RT NE PC QD RT QD 2nd Ev 3rd Ev 
PC NE    1 .34** .25* .08 .25* .32** 
RT NE .34**    1 .12 .32** .11 .07 
PC QD .25* .12    1 .60**** .18 .31** 
RT QD .08 .32** .60****    1 .12 .12 
2nd Ev .25* .11 .18 .12    1 .70**** 
3rd Ev .32** .07 .31** .12 .70****    1 

ns = not significant (p > .05), *p < .05, **p < .01, ***p < .001, ****p < .0001 

 

c) Fifth Grade (10-11-year-old children) 

 All 61 participants performed both tasks. Thus the analysis 
of correlations could be calculated with all the cohort (Table 3). 

 The percentage of correct answers at the Numerical 
Estimation task (PC NE) strongly correlated with the school math 
marks at the 2nd and 3rd evaluations (rs = .53, p < .0001 and rs = .51, 
p < .0001, respectively). Response time at Numerical Estimation 
task (RT NE) tended to correlate with school math marks at the 2nd 
evaluation (rs = .25, p =.052) and was more clearly related to it at 
the 3rd evaluation (rs = .31, p < .05).  

 There was no correlation between the percentage of correct 
responses at the Quantity Discrimination task and school math 
marks. Response time RT QD negatively correlated with school 
math marks at the 2nd evaluation, (rs = -.29, p < .05) and tended to 
do so at the 3rd evaluation (rs = -.23, p =.07). 
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 Concerning the relation between tasks, the percentage of 
correct answers in one task correlated with that of the other task (rs 
= .35, p < .01). Also, there was a positive correlation between the 
response time of the two tasks (rs = .20, p < .05). These data suggest 
that the tasks could be related at this age. 

 Considering both tasks separately, the correlation between 
the percentage correct and the response time was significant and 
positive in both tasks (NE task: rs = .49, p < .0001; QD task: rs = 
.58, p < .0001). That is, the longer the time to respond was, the 
higher the percentage of correct answers was. 

Table 3 | Spearman’s correlation (rs) between School Math marks (at 2nd and 
3rd Evaluations) and PC (Percent Correct) and RT (Response Time) at NE 
(Numerical Estimation Task) and QD (Quantity Discrimination task), n=61 
 PC NE RT NE PC QD RT QD 2nd Ev 3rd Ev 
PC NE    1 .49**** .35** -.22 .53**** .51**** 
RT NE .49****    1 .43*** .28* .25 .31* 
PC QD .35** .43***    1 .58**** .12 .11 
RT QD -.22 .28* .58****    1 -.29* -.23 
2nd Ev .53**** .25 .12 -.29*    1 .79**** 
3rd Ev .51**** .31* .11 -.23 .79****    1 

ns = not significant (p > .05), *p < .05, **p < .01, ***p < .001, ****p < .0001 

  

d) Sixth Grade (11-12-year-old students) 

 We restricted our analysis to those children that performed 
both the Numerical Estimation (n=78), and the Quantity 
Discrimination task (n=77; Table 4).  

 The percentage of correct answers at Numerical Estimation 
task (PC NE), correlated with school math marks both at the 2nd and 
the 3rd evaluation (rs = .34, p = .002; and, rs = .44, p < .0001). 
Response time in this task (RT NE) did not correlate to school math 
marks. 

 As for the Quantity Discrimination task, PC correlated to 
school math marks, both at the 2nd and the 3rd evaluation (rs = .37, p 
< .01; rs = .45, p < .0001) and so did the RT at both evaluations ((rs 
= .31, p < .01; rs = .36, p < .01). 
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 Concerning the relation between tasks, the percentage of 
correct answers correlated (rs = .36, p < .05). 

 Considering both tasks separately, PC and RT had a positive 
and highly significant correlation in both tasks (NE task: rs = .40, p 
< .001; QD task: rs = .59, p < .0001). That is, the longer the time to 
respond was, the higher the percentage of correct answers was, in 
either task. 

Table 4 | Spearman’s correlation (rs) between School Math marks (at 2nd and 
3rd Evaluations) and PC (Percent Correct) and RT (Response Time) at NE 
(Numerical Estimation Task) and QD (Quantity Discrimination task), n=77 
 PC NE RT NE PC QD RT QD 2nd Ev 3rd Ev 
PC NE    1 .40*** .36** .13 .34** .44**** 
RT NE .40***    1 .22 .16 .04 .15 
PC QD .36** .22    1 .59**** .37** .45**** 
RT QD .13 .16 .59****    1 .31** .36** 
2nd Ev .34** .04 .37** .31**    1 .78**** 
3rd Ev .44**** .15 .45**** .36** .78****    1 

ns = not significant (p > .05), *p < .05, **p < .01, ***p < .001, ****p < .0001 

 

e) Seventh Grade (12-13-year-old students) 

 All 71 participants performed both tasks. Thus, the analysis 
of correlations could be calculated with all the cohort (Table 5). 

 The percentage of correct answers in the Numerical 
Estimation task correlated to school math marks both at the 2nd and 
3rd evaluation, (rs = .31, p = .008; rs = .40, p = .0006). Response 
time was not related to school math marks. 

 The percentage of correct answers in the Quantity 
Discrimination task (PC QD) also correlated with school math 
marks in both test evaluations (rs = .37, p = .0014; and rs = .44, p = 
.0001). Response time (RT QD) positively correlated with school 
math marks in the 3rd evaluation (rs = .26, p < .05). 

 Concerning the relation between tasks, the percentage of 
correct answers (PC NE and PC QD) correlated (rs = .39, p < .001), 
as well as the response times (RT NE and RT DQ; rs = .37, p < .01).  
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These data suggest a strong relation between the two tasks at this 
age. 

 Considering both tasks separately, PC and RT highly 
correlated in both tasks (NE task: rs = .41, p < .001; QD task: rs = 
.62, p < .0001); that is, the greater the time to respond was, the 
higher the percentage of correct answers was. 

 

Table 5 | Spearman’s correlation (rs) between School Math marks (at 2nd and 
3rd Evaluations) and PC (Percent Correct) and RT (Response Time) at NE 
(Numerical Estimation Task) and QD (Quantity Discrimination task), n=71 
 PC NE RT NE PC QD RT QD 2nd Ev 3rd Ev 
PC NE    1 .41*** .39*** .22 .31** .40*** 
RT NE .41***    1 .29* .37** .10 .13 
PC QD .39*** .29*    1 .62**** .37** .44*** 
RT QD .22 .37** .62****    1 .21 .26* 
2nd Ev .31** .10 .37** .21    1 .86**** 
3rd Ev .40*** .13 .44*** .26* .86****    1 

ns = not significant (p > .05), *p < .05, **p < .01, ***p < .001, ****p < .0001 

 
f) Eighth Grade (13-14-year-old students) 

 All 58 participants performed both tasks. Thus, the analysis 
of correlations could be calculated with all the cohort (Table 6). 

 The performance in the Numerical Estimation task (PC and 
RT) was not related to the school math marks. 

 In the Quantity Discrimination task, the percentage of 
correct answers correlated with the school math marks of the 2nd 
evaluation (rs = .26, p < .05), but not the third evaluation. There was 
no correlation between response time and the school evaluations. 

 Concerning the relation between tasks, the percentage of 
correct answers in one task correlated with the percentage of correct 
answer in the other task (PC NE and PC QD; rs = .41, p < .01). 
Also, the response time in the two tasks positively correlated (rs = 
.48, p < .001). Overall, the data suggests that the tasks could be 
related at this age. 
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 Considering both tasks separately, in both cases PC and RT 
were positively and strongly correlated (NE task: rs = .59, p < 
.0001; QD task: rs = .56, p < .0001); again, the longer the response 
time was, the higher the percentage of correctness was, in both 
tasks. 

Table 6 | Spearman’s correlation (coefficient rs) between School Math marks 
(at 2nd and 3rd Evaluations) and PC (Percent Correct) and RT (Response 
Time) at NE (Numerical Estimation Task) and QD (Quantity Discrimination 
task), n=58 
 PC NE RT NE PC QD RT QD 2nd Ev 3rd Ev 
PC NE    1 .59**** .41** .20 .13 .17 
RT NE .59****    1 .34** .48*** .02 .05 
PC QD .41** .34**    1 .56**** .26* .18 
RT QD .20 .48*** .56****    1 -.02 -.08 
2nd Ev .13 .02 .26* -.02    1 .82**** 
3rd Ev .17 .05 .18 -.08 .82****    1 

ns = not significant (p > .05), *p < .05, **p < .01, ***p < .001, ****p < .0001 

 

f) Nineth Grade (14-15-year-old students) 

 All 40 participants performed both tasks. Thus, the analysis 
of correlations could be calculated with all the cohort (Table 7). 

 In this age group, we found no relation between either 
measure of performance in the Numerical Estimation task 
(percentage correct or speed of responses), and students’ school 
math marks. 

 For the Quantity Discrimination task, the percentage of 
correct answers did not correlate with school math marks. Response 
time positively correlated with school math marks in both 
evaluations (rs = .34, p < .05; rs = .42, p < .01), indicating that 
pupils who responded more slowly also had higher marks. 

 Concerning the relation between tasks, no relation was 
found in any of the two measures of performance, unlike what we 
found in the previous age groups. 
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 Considering both tasks separately, only for the QD task, the 
percentage of correct answers and response time were positively 
correlated (rs = .45, p < .01).  

Table 7 | Spearman’s correlation (coefficient rs) between School Math marks 
(at 2nd and 3rd Evaluations) and PC (Percent Correct) and RT (Response 
Time) at NE (Numerical Estimation Task) and QD (Quantity Discrimination 
task), n=40 
 PC NE RT NE PC QD RT QD 2nd Ev 3rd Ev 
PC NE    1 .21 .11 .02 .21 .24 
RT NE .21    1 -.01 .25 .09 .03 
PC QD .11 -.01    1 .45** .24 .20 
RT QD .02 .25 .45**    1 .34* .42** 
2nd Ev .21 .09 .24 .34*    1 .79**** 
3rd Ev .24 .03 .20 .42** .79****    1 

ns = not significant (p > .05), *p < .05, **p < .01, ***p < .001, ****p < .0001 

 

f) Tenth Grade (15-16-year-old students) 

 All 39 participants performed both tasks. Thus, the analysis 
of correlations could be calculated with all the cohort (Table 8). 

 In this age group, we found no relation between either 
measure of performance in the Numerical Estimation task 
(percentage correct or speed of responses), and students’ school 
math marks. 

 For the Quantity Discrimination task, the percentage of 
correct answers correlated to school math marks both for the 2nd and 
the 3rd evaluation (rs = .42, p <.01 and rs = .39, p <.05), but there 
was no correlation between speed of responses and school math 
marks. 

 Analyzing the relation between tasks, there was not any 
significant correlation, although the response times of the two tasks 
(RT NE and RT DQ), tend to be positively related (rs = .30, p = 
0.07). Thus, the lack of correlation between both tasks was similar 
to what we found in the previous age group, the 9th grade; and 
different to the rest of the grades. 
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 Considering both tasks separately, in both cases PC and RT 
were positively correlated (NE task: rs = .35, p < .05; QD task: rs = 
.51, p < .001); indicating that slower response time gave more 
correct responses, in both tasks.  

 For the Numerical Estimations task, response time was also 
positive correlated with the percentage correct of the Quantity 
Discriminations task (rs = .33, p < .5). Therefore, at 15-16 year olds, 
being quicker at responding did not mean doing it better, rather to 
the contrary.  

Table 8 | Spearman’s correlation (coefficient rs) between School Math marks 
(at 2nd and 3rd Evaluations) and PC (Percent Correct) and RT (Response 
Time) at NE (Numerical Estimation Task) and QD (Quantity Discrimination 
task), n=39 
 PC NE RT NE PC QD RT QD 2nd Ev 3rd Ev 
PC NE    1 .35* .07 -.24 -.08 -.08 
RT NE .35*    1 .33* .30 .07 .05 
PC QD .07 .33    1 .51*** .42** .39* 
RT QD -.24 .30 .51***    1 .17 .19 
2nd Ev -.08 .07 .42** .17    1 .92**** 
3rd Ev -.08 .05 .39* .19 .92****    1 

ns = not significant (p > .05), *p < .05, **p < .01, ***p < .001, ****p < .0001 
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