
UNIVERSITAT POLITECNICA DE CATALUNYA

Enhancing Timing Analysis for COTS

Multicores for Safety-Related Industry:

a Software Approach

by

Gabriel Alejandro Fernandez Diaz

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Informatics Faculty

Computer Architecture Department

September 2018

University Web Site URL Here (include http://)
gabriel.fernandez@bsc.es
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

UNIVERSITAT POLITECNICA DE CATALUNYA

Enhancing Timing Analysis for COTS

Multicores for Safety-Related Industry:

a Software Approach

by

Gabriel Alejandro Fernandez Diaz

September 2018

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Informatics Faculty

Computer Architecture Department

Advisor:....... Francisco J. Cazorla

........................ Barcelona Supercomputing Center and IIIA-CSIC

Co-Advisor: Jaume Abella

........................ Barcelona Supercomputing Center

University Web Site URL Here (include http://)
gabriel.fernandez@bsc.es
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

Declaration of Authorship

I, Gabriel Fernandez, declare that this thesis titled, ‘Enhancing Timing Analysis for

COTS Multicores for Safety-Related Industry: a Software Approach’ and the work pre-

sented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“I only know that I know nothing”

Socrates

Abstract

Artificial system interaction with the real environment is in general based on the deploy-

ment of properly coordinated sensors and actuators, establishing a “dynamic control-

loop” between them. The time to close this control-loop characterizes the functionality

and applicability to critical systems in response time. In the case of digital control, the

performance of the processor is directly related to response time. In this line computa-

tional demands in many Critical Embedded System industries such as avionics, space,

automotive and railway have experienced an unprecedented growth as a consequence

of the need to cope with more sophisticated software functionalities. The use of high-

performance hardware features in critical embedded systems, such as multicore archi-

tectures, to respond to those performance requirements, challenges the computation of

tight worst case execution time (WCET) estimates. The source of this complexity comes

from the interferences (contention) when accessing hardware resources shared across the

different tasks running simultaneously. Several proposals advocate for hardware support

to either eliminate or control inter-task conflicts on access to shared hardware resources

(e.g. Time Division Multiple Access (TDMA) in buses, partitioning for caches), to sim-

plify timing analysis via removing or controlling effect of contention. However, to the

best of our knowledge, no current Commercial Off-The-Shelf (COTS) multicore processor

provides complete isolation or full control of inter-task interference. As a consequence,

the execution time of a software program may be inordinately affected by the load that

its co-runners place on the hardware shared resources. This Thesis provides software

methodologies to characterize and control the contention on COTS multicore processors

so that they can be factored in measurement-based timing analysis. To that end, we

make the following contributions. First, we perform a study of the vast state of the art

on the topic and we propose a taxonomy to classify existing approaches with emphasis

on their goals and assumptions. This helps better understanding the symbiosis and over-

lapping elements of the state-of-the-art works. Second, we propose a measurement-based

methodology to derive the longest delay requests from a task can take accessing FIFO

and round-robin arbitrated resources, which is fundamental to derive tasks’ worst-case

contention effects. Third, with the goal of deriving time composable WCET estimates,

we introduce signatures and templates to abstract contention caused and incurred by

tasks in a multicore. Fourth, we present a methodology to derive WCET estimates

during early design stages, before tasks (software units) are integrated. And fifth, we

report our experience with timing analysis on two COTS ARM-based multicores.

Acknowledgements

The research leading to this thesis has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant agreement No 644080(SA-

FURE), the European Space Agency under Contract 789.2013 and NPI Contract 40001102880;

and COST Action IC1202, Timing Analysis On Code-Level (TACLe)., and the Spanish

Ministry of Science and Innovation under grant TIN2015-65316-P.

I would like to express my gratitude to my advisors Francisco J. Cazorla and Jaume

Abella for their support, guidance and help. I would also like to acknowledge to Ed-

uardo Quinones, Javier Jalle, Luca Fossati, Guillem Bernat, Marco Zulianello, Christine

Rochange, Tullio Vardanega and Sylvain Girbal for their contribution to this thesis.

Also I want to thanks to all my colleagues in the Barcelona Supercomputing Center,

especially in the CAOS group for all this past years shared together.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures ix

List of Tables xi

Abbreviations xii

1 Introduction 1

1.1 Requirements of Critical Embedded Systems 2

1.2 Challenges in Timing Analysis . 4

1.3 Contributions . 6

1.4 Structure of this Thesis . 9

1.5 List of Publications . 9

1.5.1 Related publications . 11

2 Experimental Framework 12

2.1 COTS Hardware Multicore Platforms . 12

2.1.1 The LEON processor . 13

2.1.2 The LEON platforms . 14

2.1.3 The ARM big.LITTLE architecture 15

2.1.4 The ARM platforms . 16

2.2 Simulation Insfrastructure . 17

2.3 Benchmark Suites . 18

2.3.1 EEMBC Autobench . 18

2.3.2 Mediabench . 19

2.4 Space Applications . 20

2.5 Resource Stressing Kernels . 20

3 A Taxonomy of the Works in the State of the Art 22

v

Contents vi

3.1 A possible taxonomy of state-of-the-art techniques to analyse the timing
impact of resource contention . 22

3.1.1 System-centric techniques . 23

3.1.1.1 Timing analysis frameworks 24

3.1.1.2 Task scheduling and allocation 25

3.1.2 WCET-centric techniques . 26

3.1.2.1 Joint analysis of concurrent tasks/threads 27

3.1.2.2 Independent analysis of tasks/threads 27

3.1.3 Architecture-centric techniques . 28

3.1.4 COTS-based techniques . 29

3.2 Other aspects of interest . 30

3.2.1 Parallel applications . 30

3.2.2 The probabilistic approach . 31

3.3 Critique . 31

3.4 Conclusions . 34

4 Increasing reliability on Measured UpperBound Delays(UBD) 35

4.1 Contention analysis for RoRo and FIFO 36

4.1.1 Studying the Bus and the Memory Controller 36

4.1.2 Difficulties in Determining the ubd 38

4.2 Elements of the Proposed Solution . 39

4.2.1 Resource Stressing Kernels . 39

4.3 The Synchrony Effect . 40

4.3.1 Synchrony Effect under FIFO . 41

4.3.2 Synchrony Effect under RoRo . 44

4.4 Deriving the UBD for the bus . 46

4.4.1 Nop-based Methodology . 46

4.4.2 bsk-nop for FIFO . 47

4.4.3 bsk-nop for RoRo . 48

4.4.4 Applying the rsk-nop method . 49

4.4.5 Deriving lmax
bus . 51

4.4.6 Multicycle nop operation . 51

4.4.7 Summary . 51

4.5 UBD for the memory controller . 52

4.5.1 msk-nop for FIFO . 52

4.5.2 msk-nop for RoRo . 53

4.5.3 Deriving lmax
mem . 53

4.5.4 Memory refresh . 54

4.6 Evaluation . 55

4.6.1 Experimental Setup . 55

4.6.2 Synchrony Effect on the Bus . 56

4.6.3 Using store operations instead of loads 58

4.6.4 Synchrony Effect on the Memory 59

4.6.5 Evaluation of bsk-nop methodology for the bus 60

4.6.6 Evaluation of msk-nop methodology for the memory 61

4.6.7 Summary . 63

4.7 Related Work . 64

Contents vii

4.8 Conclusions . 65

5 Abstracting Multicore Contention Interference: Templates and Signa-
tures 66

5.1 Formalization of RUs and RUl . 68

5.1.1 Resource Usage signature (RUs) 68

5.1.2 Resource Usage template (RUl) . 69

5.1.3 Illustration of RUs and RUl use through an example 70

5.2 RUs & RUl for Measurement-Based Timing Analysis 71

5.2.1 Methodology . 72

5.2.2 The case of a NGMP-like architecture 73

5.2.3 Bus . 74

5.2.4 Memory Controller . 76

5.2.5 Multi-resource signatures . 77

5.3 Evaluation . 78

5.3.1 Experimental results . 79

5.4 Related Work . 80

5.5 Conclusions . 81

6 Surrogate Applications Generation 82

6.1 Overall Approach and Target Platform . 83

6.2 Surrogate Applications . 85

6.2.1 Stack Distance as a Proxy for Multicore Contention 85

6.2.2 Stack Distance per Kilo Instruction (sdki) 86

6.3 Surrogate Application Generator . 87

6.4 Experimental Evaluation . 90

6.4.1 Experimental setup . 90

6.4.2 Experimental Results . 92

6.5 Related Works . 95

6.6 Conclusions . 95

7 The ARM big.LITTLE architecture: the Juno Board and DragonBoard 97

7.1 Goal and Scenario . 98

7.1.1 Tracing and Events . 99

7.1.2 The Platform . 99

7.2 Qualitative Analysis of the ARM big.LITTLE Architecture: Specifications 100

7.3 Quantitative Analysis of the SnapDragon 810 Processor 102

7.3.1 Microbenchmarks . 102

7.3.2 Disabling the Data Prefetcher . 103

7.3.3 Assessing Microbenchmark Results 104

7.4 Summary of Lessons Learned for the SnapDragon 810 Processor 105

7.5 Quantitative Analysis of the Juno SoC . 106

7.5.1 Experimental Setup . 107

7.5.2 Assessing Stressing Benchmark Results 108

7.6 Summary of Lessons Learned for the Juno SoC 111

7.7 ARM big.LITTLE Comparison . 111

7.8 Final Remarks on ARM big.LITTLE Architectures 113

Contents viii

8 Conclusions and Future Work 115

8.1 Summary of Contributions . 115

8.2 Future Work . 117

Bibliography 119

List of Figures

1.1 Challenges identified for future critical embedded systems and main pro-
posals of this Thesis . 9

2.1 Block diagram of the GR712RC implementation of the LEON3 architec-
ture used in this study. 13

2.2 Block diagram of the ML510 implementation of the LEON4 architecture
used in this study. 14

2.3 Schematic view of the elements of the SnapDragon 810 processor 16

2.4 Schematic view of the elements of the Juno SoC processor 17

4.1 Pseudo-code of rsk for the bus made with load operations(c©2016 IEEE) 39

4.2 Contention delay γ as a function of δ (FIFO) for δmin = 0 and δmin = 2,

respectively. In each cycle priorities are those at the start of the cycle, prior to

arbitration(c©2016 IEEE). 42

4.3 Example where contention delay γ is maximized for FIFO(c©2016 IEEE). 43

4.4 Contention delay γ as a function of δ (RoRo). In each cycle priorities are those

at the start of the cycle, prior to arbitration. Shaded cells in the priority rows

correspond to requests not in the queue(c©2016 IEEE). 44

4.5 Code of rsknop implementations: bsk-nop and msk-nop(c©2016 IEEE) 46

4.6 Saw-tooth behavior for FIFO with δmin = 1(c©2016 IEEE). 47

4.7 Timeline of the FIFO scenario for different k nop instructions: a) k = 0, b)

k = 1, c) k = 2(c©2016 IEEE). 48

4.8 Saw-tooth behavior for RoRo with δmin = 1(c©2016 IEEE). 49

4.9 Timeline of the RORO scenario for different k nop instructions: a) k = 0, b)

k = 2, c) k = 4, d) k = 6(c©2016 IEEE). 50

4.10 Results for the bus for FIFO(c©2016 IEEE) 57

4.11 Slowdown when executed rsk-nop as scua against 3 rsk co-runners. Re-
sults shown as a function of nop instructions(c©2016 IEEE). 58

4.12 Slowdown when executing bsk-nop as scua against 3 bsk co-runners with
FIFO(c©2016 IEEE). 59

4.13 Slowdown when executing bsk-nop as scua against 3 bsk co-runners with
RoRo(c©2016 IEEE). 60

4.14 msk-nop methodology for FIFO(c©2016 IEEE). 61

4.15 msk-nop inst.-cache aware methodology for FIFO(c©2016 IEEE). 62

4.16 msk-nop methodology for RoRo(c©2016 IEEE) 63

4.17 msk-nop inst.-cache aware methodology for RoRo(c©2016 IEEE) 63

5.1 Reference multicore architecture (a), and main steps in the RUs and RUl
methodology (b). 70

ix

List of Figures x

5.2 Impact from/to the different access types to the bus. 74

5.3 WCET bounds for different templates for 10 4-task workloads. Results
are normalized to the execution time in isolation. 78

5.4 Overestimation incurred by RUs/RUl . 80

6.1 Diagram of SurApp generation. 85

6.2 Simplified view of NGMP’s main shared resources. 85

6.3 cbi and bbi accuracy results . 92

6.4 mbi (blue columns) and correlation to mem. access count nrealmem (red line) 92

6.5 Multicore Execution Time Inaccuracy of the scua when executed in the
workloads shown in Table 6.1 (against real contenders and their SurApps) 93

6.6 Inaccuracy Results . 94

7.1 Avg. number of IL1 (L1I), DL1 (L1D), L2 (L2D) and memory (MEM)
accesses, and L2 refills per loop iteration for different data strides (c©2018
IEEE). 105

7.2 Experimental setup (a) in isolation and (b) with contention (c©2018 IEEE).108

7.3 Cycles per access for the two setups when varying vector size (c©2018
IEEE). 108

7.4 CPA with contention varying the number of NOPs between accesses
(c©2018 IEEE). 110

List of Tables

2.1 EEMBC names . 19

2.2 Mediabench names and descriptions . 20

4.1 Main terms used in this chapter . 41

4.2 Randomly-generated workloads used for evaluation 56

6.1 4-thread workloads used in this work (Benchmarks and Kernel full-names
are listed in Figure 6.3) . 90

6.2 scua slowdown when it is executed against other benchmarks and their
SurApp. Space kernels in italics. Programs sorted from lowest to highest
RealApp slowdown . 94

7.1 Juno Soc vs SnapDragon 810 comparison. 112

xi

Abbreviations

AMBA Advanced Microcontroller Bus Architecture

APKI Access per Kilo Instruction

BSK Bus Stressing Kernel

CABA Cycle Accurate /Bit Accurate

CLS Cache Lines

COTS Commercial Off-The-Shelf

DL1 First Level Data Cache

EEMBC Embedded Microprocessor Benchmark Consortium

FCFS First-Come First-Served

FIFO First-In First-Out

FR-FCFS First-Ready First-Come First-Served

IL1 First Level Instruction Cache

IMA Integrated Modular Avionics

IMA-SP IMA for Space

IP Intelectual Property

L2 Second Level Cache

LRU Least Recently Used

MBTA Measurement Base Time Analysis

MRU Most Recently Used

MSK Memory Stressing Kernel

NDA Non Disclosure Agreement

NoC Network-on-Chip

PMC Program Monitoring Counter

RoRo Round Robin

RSeK Resource Sensitive Kernel

xii

Abbreviations xiii

RSK Resource Stressing Kernel

RUl Resource Usage Template

RUs Resource Usage Signature

scua Software Component Under Analysis

sdki Stack Distance per Kilo Instruction

SDV Stack Distance Vector

SoC System on Chip

STA Static Time Analysis

SurApp Surrogative Application

TDMA Time Division Multiple Access

UBD Upper Bound Delay

WCET Worst-Case Execution Time

This Thesis is dedicated to Enrique Fernandez Garcia, my father

who nurtured my thirst for knowledge answering every scientific

question that a child can come with.

In memory of Aranzazu Diaz Urrestarazu, my mother who gave me
the wits to follow this path and I miss so much.

xiv

Chapter 1

Introduction

During the last decades our society has witnessed a steady growth of all kind of comput-

ers. With this increase in the availability of computational power, which has reached the

point where we can hold a gigantic amount of computation on the palm of our hands,

the demand for these products has followed suit. While most of this growth may pass

unnoticed by most of the common users, whom may picture only general purpose com-

puters as the only commercial use of this technology, in fact, computing devices have

been taking over several applications that traditionally were in the realm of mechanical

or simpler electronics. Such applications have come to be labeled as Embedded Compu-

tation, being distinguishable by how focused to a very specific functionality they are. In

other words, they correspond to computers embedded in vehicles, industrial equipment,

etc. As an illustrative example, let us take the computers that control any modern car,

where originally things regulated by mechanical or electrical appliances (e.g. fuel injec-

tion, ABS control, etc) now are done by a embedded computer with more efficiency. Far

from reaching a stalling point, the development of better embedded computing systems

has continued in line with the increasing demand of these kinds of devices, e.g. in the

smartphone market. The continued increase of the performance available, far from de-

ter or satiate the demand for these products, has kept growing reanimating even other

fields now in high demand like Machine Learning. So now we can see High Performance

processors with embedded applications becoming the new norm like using multicores

CPUs and GPUs in cellphones.

Even thought the most widely known application of embedded systems may be entertain-

ment and communication, they are used in domains where failures can have devastating

consequences. As such, embedded systems in those domains are referred to as critical

embedded systems, and can be broadly classified into several non exclusive categories

depending on how critical they are. A embedded system may take care of a critical

1

2

mission whose failure may generate economical or social harm for the company. These

systems may be classified as “mission critical”. Aside, a different or the same system

may take care of security functions, like cryptography, whose failure may involve se-

curity issues, so this system may be classified as “security critical”. And last but not

least, critical embedded system may be in charge of functionalities related to the safety

of human beings, so that a failure may cause fatalities, material loss or environmental

damage. Those systems can be classified as “safety critical”.

The market for critical embedded systems covers a significant share of the overall em-

bedded market [1] and it is in fact on the rise with further expectations of growth [2].

Evidence of the growth of critical embedded systems can be found in the increasing

attention that chip manufacturers have drawn to this market, with specific products

targeting them [3, 4].

1.1 Requirements of Critical Embedded Systems

Evidence of correct timing behavior. As for mainstream computing systems, the

correctness of critical embedded systems depends on their ability to provide correct func-

tional results. However, unlike regular embedded systems, critical embedded systems in-

volve non-functional results that are as important as the functional ones. Non-functional

metrics include, among others, timing (or guaranteed performance), security, and en-

ergy. In this Thesis we focus on timing behavior. The timing Validation and Verification

of Critical Embedded Systems focuses on providing evidence that system functions will

be performed timely. Timing Validation and Verification builds on two elements: First,

timing analysis methods that estimate bounds to the WCET of tasks [5]; and second,

task scheduling techniques that assess whether all application software implementing

system functions are actually executed timely [6]. Further, in many cases the behavior

of critical embedded systems is subject to legal directives. Critical embedded systems

providers must show adherence to those directives, before they are allowed to deploy a

critical embedded system device. Legal directives are “implemented” showing adherence

to safety standards, e.g. ISO26262 [7] in automotive. Those standards aim at reduc-

ing the risk of malfunction so that it is as low as reasonably practicable, either in the

functional or non-functional behavior of the critical embedded systems, so the system is

considered safe enough. The level of evidence to be provided depends on the criticality

of the system/subsystem under consideration.

Unprecedented performance requirements. Most new “smart” services in current

and future critical embedded systems, e.g. autonomous driving in cars, are software-

based. This makes software one of the central elements to increase critical embedded

3

systems’ competitive edge [8]. Smart software services translate into software managing

huge amounts of data (e.g. coming from camera and LIDAR in cars). Further, software is

instrumental for decision making implementing complex artificial intelligence algorithms.

As a result, software complexity and performance requirements raise to unprecedented

levels. For instance, in the automotive domain, performance is expected to increase by

100x by 2024 with respect to applications performance requirements in 2016 [9].

Increased integration and use of Commercial Off-The-Shelf multicores. Sev-

eral sources claim that, by the end of 2016, luxury cars embedded up to 150 Electronic

Control Units, in response to the need for high computer performance. This trend

towards high Electronic Control Units count faces the problem of limitations in the

physical space available in a car and also the cost, weight, and low-reliability of physical

components (the electronic control units and the wiring to connect them). To address

this problem, critical embedded systems industry has begun the process to adopt multi-

core processors (multicores in the following) as their baseline computing solution. This

situation extends across a variety of application domains, including automotive, avion-

ics and space. In this line, despite the interest of chip providers in the growing critical

embedded systems’ market, they are driven by the mainstream market (e.g. mobile

market). As a result, industrial developers of critical embedded systems have to turn

to Commercial Off-The-Shelf (COTS) processors to abate the procurement costs and

obtain the performance needed. However, mainstream COTS processors are equipped

with several features that complicate timing validation and verification.

Integrated Architectures, Mixed criticality and multi-provider critical em-

bedded systems. In the past, the design of critical embedded systems built on the

concept of federated architectures [10], under which critical embedded system consisted

of independent interconnected subsystems, each implementing one or few functionalities.

This physical separation allows incremental certification by construction. However, as

the number of functions to implement by software grows, it is infeasible to devote a

dedicated hardware (e.g. Line Replaceable Unit) to run it. Industry has addressed

this challenge by adopting integrated architectures, in which several applications, usu-

ally subject to different criticality characteristics, run concurrently on a single hard-

ware platform. Examples of integrated architectures are Integrated Modular Avionics

(IMA) [11] in avionics, Integrated Modular Avionics for space (IMA-SP) [12] for the

space domain, and AUTOMotive Open System ARchitecture (AUTOSAR) [13] for the

automotive domain.

In terms of software design, integrated approaches allow system integrators to subcon-

tract the development of different software elements to various software providers. Soft-

ware Providers are given a specification of the required functionality and time budgets

4

in which their application(s) must fit. Time budgets are defined according to a global

schedule designed by the integrator to run all software functionalities timely. In general,

a Software Provider carries out the implementation of its applications in increments,

checking in every release applications’ functional and non-functional behavior against

their specifications.

1.2 Challenges in Timing Analysis

The trends shown in the previous section on the design and use of critical embedded

systems have caused disruptive changes in current practice timing analysis.

Multicore Timing Analysis. In spite of the potential to improve performance, em-

bracing multicores for real-time systems industry is challenging as they bring their own

difficulties, especially for timing analysis. At a conceptual level, the intent of timing

analysis is to provide, at low-enough cost, a WCET bound for programs running on a

given processor, so that high guaranteed utilization of the computation resources can

be assured. In this formulation, “high” utilization implies tight bounds (hence with

as little pessimistic over-provisioning as possible) and “guaranteed” means truly upper

bounding (hence with no risk of incautious under-provisioning). In particular, research

on timing analysis for multicore processors is still in its infancy, particularly for COTS

hardware. Ideally, the transition to multicore processors should allow industrial users to

achieve higher levels of guaranteed utilization, together with attractive reduction in the

performance-per-watt ratio, design complexity, and procurement costs. Unfortunately,

however, the architecture of multicore processors poses hard challenges on (worst-case)

timing analysis. The interference effects arising from contention on access to processor-

level shared resources need far greater attention than in the single-core case, as much

greater is the arbitration delay and state perturbation that resource sharing may cause.

In consequence, the “padding” factor that needs to be captured in the computed bounds

to compensate for the relevant effects is much greater. The difficulty with the timing

analysis of software programs running on multicore processors is, thus, a serious im-

pediment to their adoption in real-time systems industry. Static or Measurement-Based

Timing Analysis (STA and MBTA respectively) [14] are affected by the disruption of

complex hardware and in particular multicores.

• Static Timing Analysis relies on an accurate timing model of the hardware

under test. Static timing analysis further creates a mathematical representation

of the application, which is combined with the timing model to derive bounds to the

applications’ timing behavior in that hardware. Static timing analysis focuses on

5

the soundness and safeness of its application, which allows theoretically, meeting

all safety standard requirements. However, the validity of the bounds depends

on the correctness of the hardware timing models, which are difficult to develop

and validate especially for complex hardware. This is compounded with the lack

of timing information of the processor implementation [15]. Even when hardware

manufacturers provide timing information (e.g. in the reference manuals), it can

be inaccurate or outdated with respect to the deployed chip implementation. As

illustrative example, the FreeScale e500mc core documentation comprises several

revisions already with non-negligible changes across them [16]. In the case of

multicores, this lack of information affects the impact of contention that tasks suffer

in the access to shared hardware resources. All these difficulties have made that

real-time industry and static timing analysis tool providers resort to measurement-

based approaches [17] to derive contention bounds, as done for the Freescale P4080

processor [18].

• Measurement Based Timing Analysis executes the program on the real-

platform under stressing conditions and collects measurements, This approach

also requires certain level of understanding of its behavior, in order to measure the

longest and more sensitive path in the code of the program. Those measures are

latter operated to derive a bound to the timing behavior of the application. For in-

stance, the longest-observed execution time, or high water-mark time, is recorded

and inflated with a safety margin (e.g. 20%). For multicores, the reliability of

measurement based timing analysis provided results depends on, among others,

ensuring that in the experiments performed the application suffers the maximum

contention in its access to the hardware shared resources, but also in the experience

of engineers [15]. Designing a proper set of experiments and analyze the measure-

ments taken requires knowledge and proper documentation about the hardware

shared resources and the available hardware tools to monitor the execution. Even

thought the amount of documentation available and its level of detail required for

this approach compared with a static timing analysis approach is lesser, it has a

direct impact on how tight the estimates can be.

Timing Analysis of Commercial Off-The-Shelf hardware. Current COTS mul-

ticores are designed to improve average performance rather than time predictability,

which is an essential ingredient to compute tight and sound WCET bounds for real-

time software programs. This kind of processors usually implements several hardware

resources and optimizations that are very disruptive for the timing analysis required for

critical embedded systems, some of them as common and widespread as shared caches

and out-of-order execution. Also, COTS hardware is aimed for a wide market that until

6

now does not demand the amount of documentation that would be helpful for timing

analysis. Sadly, at the present state of the art, analysis solutions capable of delivering

tight and sound worst case-execution bounds for COTS multicores are not fully mature.

Time Composable Worst-Case Execution Time estimates. Every new critical

embedded system generation sees an increase in the number and complexity of their

components. The timing analysis of each component, and also of the system as a whole, is

not an easy task, but it can be eased if the analysis of the components is time composable.

We use the term compositional to mean that some properties of an individual part of

the system can only be determined on (assumed) knowledge of the constituents of the

system. This is in contrast with the term composable, which regards those properties of

an individual part that can be determined considering that part in isolation and hold

true on composition into the system [19]. Applied to WCET and multicores, a WCET

estimate would be composable if it is not dependent on the load co-runner tasks put on

hardware shared resources.

Early Timing Estimates. While time composable WCET estimates are desirable,

they may account for over-pessimistic interference and lead to pessimistic WCET es-

timates w.r.t. real operation conditions. In this scenario, one may want to account

for some information on contender applications to tighten WCET estimates. However,

multicores challenge validating that the application fits its assigned timing budget since

the timing behavior of one Software Provider’s application depends on how other (con-

tender) applications – likely developed by other Software Providers – use multicore

shared resources. To make things worse, contender applications may not be shared

among Software Providers or with the integrator for Intellectual Property reasons. This

poses new challenges in deriving time estimates during early design phases, relegating

time budget testing to late design phases. Clearly, the cost of managing any violation of

the time budgets significantly increases during late design phase, potentially jeopardizing

the whole design and product’s time to market.

1.3 Contributions

While COTS multicores offer a number of advantages for critical embedded system

industry, their complexity challenges the overall timing validation and verification pro-

cess. This Thesis proposes several methodologies to i) increase the confidence on derived

WCET bounds; ii) increase the time composability of derived WCET bounds; and iii)

help deriving WCET estimates as early as possible during early development phase and

system integration. The main contributions of this work can be summarized as follows:

7

1. Taxonomy of existing approaches. Over the years, the critical embedded sys-

tem community has devoted considerable attention to the impact on execution

time that arises from contention on access to hardware shared resources. The

relevance of this problem has been accentuated with the arrival of multicore pro-

cessors. From the state of the art on the subject, there appears to be considerable

diversity in the understanding of the problem and in the approach to solve it. This

sparseness makes it difficult for any reader to form a coherent picture of the prob-

lem and solution space. As first contribution of this Thesis we provide a taxonomy

to categorize each known approach to the problem based on its specific goals and

assumptions. This piece of work aims at becoming a reference publication for

future works on this area.

2. Increasing the confidence on MBTA WCET estimates. For measurement

based timing analysis, the most used timing analysis technique in industry, one

of the main challenges when it comes to time analyze COTS multicores, is deriv-

ing the worst-case impact that contention can cause on the access to hardware

shared resources. This longest-possible delay, usually referred to as ubd (upper-

bound delay), is central to derive the worst-case contention that tasks can suffer.

State-of-the-art techniques used to compute ubd employ resource stressing kernels

(RSK) [20][21][22] that put high load on the shared resources. However, we show

that those techniques do not achieve the goal of exposing the highest contention.

With focus on two of the most used fair arbitration policies, round robin and first-

in first-out, we show that under heavy contention scenarios, a “synchrony effect”

arises that causes each request issued to suffer a contention delay that can be sys-

tematically inferior to ubd. This challenges the use of measurement based timing

analysis together with resources stressing kernels. We propose a measurement-

based methodology to accurately derive ubd without needing latency information

from the hardware provider. Experimental results, obtained on multiple processor

configurations, demonstrate the robustness of the proposed methodology.

3. Signatures and Templates to increase Time Composability. Contention

in the access to hardware shared resources causes that task’s timing behavior de-

pends on its co-runners, and in particular, on the the load they put on shared

resources. This dependence, negatively affects (reduces) time composability and

constrains incremental verification. To attack this problem, we introduce the con-

cepts of resource-usage signatures and templates, to abstract the potential con-

tention caused and incurred by tasks running on a multicore. Building on them,

we propose an approach that enables the analysis of individual tasks largely in iso-

lation, with low integration costs, producing execution time estimates per task that

are easily composable throughout the whole system integration process. Templates

8

and signatures make the WCET estimate derived for task τ , time composable with

respect to a particular usage u of the hardware shared resources made by the in-

terfering co-runner tasks. The WCET derived under u upper bounds τ ’s execution

time under any workload as long as the co-runners of τ can be proven to make

a resource usage smaller than u. As a result, the system integrator only needs

to characterize the the tasks’ access to hardware shared resources (a low-cost ab-

straction of the task execution time), ignoring any finer-grain detail of that access

behavior.

4. Surrogate Applications for Early Design Phase WCET estimation. Prop-

erly allocating time budgets to applications during system’s early design phase pre-

vents costly-to-handle time over-runs in late design phase. Applications running

on a multicore affect each others’ behavior, which complicates reaching this goal.

Further, in multi-provider software developments, software providers are reluctant

to share their applications for intellectual property reasons. Both factors prevent

deriving tight bounds until late design phase when applications are actually inte-

grated. We propose a modelling approach that simplifies time budgeting in early

design phase by developing surrogate applications (SurApps) and an automatic

framework to generate them. A SurApp copies the non-functional behavior of a

given target application automatically. Each software provider generates, for an

application AppA, a surrogate application SurAppA and gives it to other providers

without the risk of revealing any intellectual property. By running their applica-

tions against SurAppA, other providers obtain a tight estimate of the slowdown

their applications will suffer when run against AppA. This process is repeated for

all providers facilitating early time budgeting for multicores.

5. Assessment of a COTS architectures (ARM big.LITTLE) for critical

embedded systems. COTS processors pose a number of challenges for their

use in critical embedded systems. Amongst COTS architectures, we regard high-

performance ARM architectures as very popular in consumer electronics and in-

creasingly tested in critical embedded systems. However, time budgeting on those

architectures is an open problem. Thus, in this thesis we assess the suitability

of the ARM big.LITTLE architecture for real-time critical embedded systems by

attempting to measure the maximum contention that can be experienced in the

access to shared resources. We perform this task in two different incarnations of

this architecture: the Qualcomm SnapDragon 810 processor and the ARM Juno

System-on-Chip. Our qualitative and quantitative assessment of these boards pro-

vides indications of how they can be used for critical embedded systems.

9

Figure 1.1: Challenges identified for future critical embedded systems and main pro-
posals of this Thesis

Overall, the ultimate goal of this Thesis is to provide software support, in the form of

concepts and specific methodologies, to improve the quality (i.e. tightness and reliabil-

ity) on WCET estimates that can be derived with measurement based timing analysis,

including early design stages of the software.

1.4 Structure of this Thesis

Each of the major technical contributions of this Thesis covers some of the main chal-

lenges identified for critical embedded systems, see Figure 1.1. Further, each such con-

tribution is mapped to a different chapter: Increasing accuracy deriving ubd is presented

in Chapter 4; Signatures and Templates in Chapter 5; and Surrogate Applications in

Chapter 6. In addition to those:

• Chapter 2 introduces our experimental methodology in terms of simulation plat-

forms and applications.

• Chapter 3 proposes a taxonomy of the works in the state of the art.

• Chapter 7 presents the results of our first-hand experience with timing analysis on

two different ARM big.LITTLE-based boards.

• Chapter 8 summarizes the main conclusions of this Thesis and presenting the main

future directions.

1.5 List of Publications

This Thesis has resulted in the following publications:

10

• Gabriel Fernandez, Jaume Abella, Eduardo Quiñones, Christine Rochange, Tullio

Vardanega and Francisco J. Cazorla.

“Contention in multicore hardware shared resources: Understanding of

the state of the art.”

In 14th International Workshop on Worst-Case Execution Time Analysis (WCET).

Madrid, Spain. July, 2014.

DOI: 10.4230/OASIcs.WCET.2014.31

• Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Quinones, Tullio Var-

danega, Francisco J. Cazorla

“Increasing Confidence on Measurement-Based Contention Bounds for

Real-Time Round-Robin Buses”

Design Automation Conference (DAC) San Francisco, CA. June, 2015.

https://doi.org/10.1145/2744769.2744858

• Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Quinones, Tullio Var-

danega, Francisco J. Cazorla

“Resource Usage Templates and Signatures for COTS Multicore Pro-

cessors”

In Design Automation Conference (DAC) San Francisco, CA. June, 2015.

https://doi.org/10.1145/2744769.2744901

• Gabriel Fernandez, Jaume Abella, Eduardo Quinones, Luca Fossati, Marco Zu-

lianello, Tullio Vardanega, Francisco J. Cazorla

“Computing Safe Contention Bounds for Multicore Resources with Round-

Robin and FIFO Arbitration” c©2016 IEEE

IEEE Transactions on Computers (Volume: 66, Issue: 4)

http://dx.doi.org/10.1109/TC.2016.2616307

• Gabriel Fernandez, Francisco J. Cazorla, Jaume Abella.

“Consumer Electronics Processors for Critical Real-Time Systems: a

(Failed) Practical Experience”

The ERTS2: Embedded Real Time Software and Systems, Toulouse, France. Jan-

uary, 2018.

https://hal.archives-ouvertes.fr/hal-01708723

11

• Gabriel Fernandez, Jaume Abella, Guillem Bernat, Francisco J. Cazorla

“Surrogate Applications for Early Design Stage Multicore Contention

Modeling”

IEEE Transactions on Emerging Topics in Computing 2018.

http://dx.doi.org/10.1109/TETC.2018.2852760

• Gabriel Fernandez, Francisco J Cazorla, Jaume Abella and Sylvain Girbal

“Assessing Time Predictability Features of ARM big.LITTLE Multi-

cores” c©2018 IEEE

In International Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD), Lyon, France, September 2018.

1.5.1 Related publications

The following publications were done as preamble to this thesis during my master studies.

• Gabriel Fernandez, Jaume Abella, Eduardo Quiñones, Luca Fossati, Marco Zu-

lianello, Tullio Vardanega, Francisco J. Cazorla

“Introduction to Partial Time Composability for COTS Multicores”.

In 23th ACM/SIGAPP Symposium On Applied Computing (SAC). Salamanca

(Spain), April 13-17 2015.

• Gabriel Fernandez, Jaume Abella, Eduardo Quiñones, Luca Fossati, Marco Zu-

lianello, Tullio Vardanega, Francisco J. Cazorla

“Seeking Time-Composable Partitions of Tasks for COTS Multicore

Processors”

In IEEE International Symposium On Real-Time Computing (ISORC) Auckland,

New Zealand. April, 2015.

Chapter 2

Experimental Framework

This Chapter introduces the experimental infrastructure used to quantitatively assess

the proposals made in this Thesis. It also provides a description of the benchmarks and

reference applications used to that end.

In terms of experimental infrastructure, we use the following:

1. COTS hardware multicore boards. These are specially used for the software-only

proposals.

2. Architectural simulators. The use of simulators is widespread in industry and

academia for low-level performance analysis and hardware design. In this line we

use simulators for our hardware proposals.

In terms of benchmarks we use:

1. Representative benchmark suites commonly used in research in the area of critical

embedded systems (MediaBench and EEMBC Autobench).

2. Space representative applications provided by the European Space Agency.

3. Synthetic applications aimed at capturing extreme (corner) behaviours.

2.1 COTS Hardware Multicore Platforms

In order to fulfil the experimental needs of this Thesis, we have used several hardware

platforms. In this section we describe the architecture of the platforms and the boards

where these architectures are implemented. We use two very different architectures:

LEON and ARM.

12

13

2.1.1 The LEON processor

LEON processors are provided by Cobham Gaisler AB as synthesizable VHDL models.

We use two versions of these processors: LEON3 and LEON4. Both of them are 32-

bit cores compliant with the SPARC V8 architecture, but they are highly configurable,

making them suitable for systems-on-chip (SoC) designs.

• LEON3 implements a 7-stage pipeline with hardware multiply, divide and MAC

units. The cache follows the Harvard architecture, separating instruction and

data cache, see Figure 2.1. Caches comprise ways whose size may range from 1

to 256 kilobytes. They implement least-recently used (LRU) replacement policy.

LEON3 uses an AMBA-2.0 AHB bus interface that is used to connect with external

components (e.g. memory controller). The core has also Advanced on-chip debug

support with instruction and data trace buffers. The source code is available

under GNU GPL license, free for research and educational purposes, but it is also

available under a low-cost license for commercial purposes.

Figure 2.1: Block diagram of the GR712RC implementation of the LEON3 architec-
ture used in this study.

• LEON4 implements a 7-stage pipeline with a branch predictor. Even though

the ISA is 32-bits, the core implements a 64-bit internal data path for loads and

stores. The AMBA-2.0 AHB interface can be configured to use either 64 or 128

bits. The cache follows the Harvard architecture, separating instruction and data

cache. First level caches also comprise 1 to 256 kilobytes per way, and implement

LRU replacement policy. The core has also Advanced on-chip debug support with

14

instruction and data trace buffers. The source code is only available under a

low-cost commercial license.

Figure 2.2: Block diagram of the ML510 implementation of the LEON4 architecture
used in this study.

2.1.2 The LEON platforms

We have used two platforms that implement the LEON3 and LEON4 multicore proces-

sors respectively: the GR712RC and the ML510 respectively.

• The GR712RC platform implements an ASIC with two LEON3 cores (see Fig-

ure 2.1). Each one comprises private first-level 16KB data and 16KB instruction

caches, both being 4-way and 32 bytes/line. The ASIC is connected to the on-chip

SRAM and the memory controller through an AMBA AHB bus [23]. The memory

controller connects both cores to the off-chip SDRAM and SRAM devices. In the

GR712RC there is no shared L2 cache, so the effect of the slowdown that a task

suffers is mainly due to inter-task interferences in accessing the on-chip bus to

reach main memory.

• The ML510 platform contains a Virtex 5 FPGA on which we use a preliminary

implementation of the Next Generation Multipurpose Processor (NGMP) [24, 25]

owing to FPGA space limitations, this platform does not have an on-core floating

point unit. The NGMP was developed by Cobham Gaisler and the European

Space Agency. This implementation comprises 4 LEON4 cores with always-taken

15

branch predictors and private data and instruction caches of 16KB each. Both the

instruction and the data caches have 32-byte lines and are 4-way associative. The

data cache employs a write-through with no-allocate miss policy. Each LEON4

core connects to a shared 256KB L2 cache through an AMBA AHB processor

bus with 128-bit data width and round-robin arbitration policy. The L2 cache

uses LRU replacement policy and implements a write-back, write-allocate policy.

The L2 cache connects to the memory controller through a single memory channel

shared by all cores (see Figure 2.2), but its space can be partitioned assigning ways

to specific cores. In the NGMP, the effect of the slowdown that a task (benchmark)

suffers is due to inter-task interference in accessing the on-chip bus, the on-chip

shared L2 cache and the memory bandwidth [26].

2.1.3 The ARM big.LITTLE architecture

The ARM big.LITTLE architecture is mostly intended for mobile applications, although

it is also used in other domains. It implements two clusters with different types of cores: a

high-performance cluster with Cortex-A72 or Cortex-A57 cores, and a low power cluster

with Cortex-A53 cores. The purpose of this design is enabling both, high-performance

operation despite relatively high energy consumption, and low-power operation despite

relatively low performance. This IP is highly configurable by the chip manufacturer.

Next, we provide some details of this architecture. However, a large fraction of details

are not provided in the documentation, and some others are specified as “implementation

dependent” in ARM documentation.

• Cortex-A72 and Cortex-A57: this IP provided by ARM uses the architecture

Armv8-A. It can work alone or in a cluster with up to 4 cores. The cluster can

be interconnected using AMBA 5 CHI or 4 ACE buses. These cores are 64-bit

supporting the AArch64 ISA and the AArch32 ISA for full backward compati-

bility with Armv7 code. These cores are designed for high performance so they

implement a triple-issue out-of-order pipeline and a branch predictor. Aside, all

the cores in the cluster share a L2 cache that can go from 512 KB to 4MB.

• Cortex-A53: as the A72 and A57 cores, the A53 may be deployed in clusters of

1 to 4 cores. They also uses the Armv8-A architecture, able to use the AArch32

and AArch64 ISAs. These cores are designed for power efficiency so the pipeline is

in-order and dual-issue. Still, it has a branch predictor. It includes several power

saving features like hierarchical clock gating. The cluster also shares a L2 cache,

but its size can only be in the range 128KB up to 2MB.

16

2.1.4 The ARM platforms

During the experiments we did for this Thesis, we used originally the platform Snap-

Dragon 810, but later on we switched to another platform the Juno Board. The design

of the processor is the roughly the same, but implemented by different manufacturers.

The reason behind using both boards is a technical issues in the SnapDragon 810, in

Chapter 7 we describe in detail this issues.

• The SnapDragon 810 processor is a Qualcomm implementation of the ARM

big.LITTLE architecture used by Sony in some of their Xperia devices during 2015.

It comprises abundant hardware events that can be tracked with Performance Mon-

itoring Counters (PMCs), so conclusions obtained on this specific processor apply

to several others in the consumer electronics market, especially those building upon

ARM big.LITTLE architecture and those implemented by Qualcomm.

Figure 2.3: Schematic view of the elements of the SnapDragon 810 processor

The architecture of the processor, shown in Figure 2.3, comprises 2 clusters (also

referred to as processors according to ARM’s nomenclature): an ARM Cortex-A57

cluster with 4 cores and an ARM Cortex-A53 cluster with 4 cores. Each core is

equipped with local first level instruction (IL1) and data (DL1) caches. Caches of

the cores in one cluster are connected to a shared L2 cache, local to the cluster.

An AMBA bus interface connects both clusters to two shared memory controllers

to access DRAM. Peripherals and accelerators, also present in this platform but

not shown in the figure, are connected to the AMBA bus too. In this Thesis we

discount their effect by keeping them either disabled or idle.

Both clusters (A57 and A53) and the AMBA bus have been developed by ARM,

the IP provider. Qualcomm, the chip manufacturer, integrates those components

along with some others, which may or may not be provided by ARM. Moreover, in

the integration process, Qualcomm may have introduced modifications in some IP

17

components and/or their interfaces w.r.t. what is described in the documentation

(not only those parameters regarded as implementation dependent).

• The Juno SoC is a Development Platform provided by ARM intended for software

development. As the previous platform, it implements a big.LITTLE configuration

with a Dual-core Cortex-A72 processor and a Quad-core Cortex-A53. The former

has 48KB IL1, a 32KB DL1 and a shared 2MB L2 cache. In the latter cluster, it

IL1 and DL1 caches of 32KB and a shared L2 of 1MB.

Figure 2.4: Schematic view of the elements of the Juno SoC processor

2.2 Simulation Insfrastructure

We use a modified version of the SystemC component library SoCLib [27] as baseline

platform in order to create a cycle accurate execution-driven simulator. SoCLib is an

open platform for virtual prototyping especially for multi-core systems. It is designed to

be programmed using Object-Oriented Coding, easing the creation of modular elements

and providing tools to connect and synchronize them. For this purpose it is build

upon the SystemC framework. Its modular organization helps the development and

maintenance of the system. In this way each component (e.g. cache, core, memory, etc.)

is coded individually and then easily connected to the rest of the system. Aside we can

divide the system in two entities: the emulator and the timing simulator. The former

handles the functional execution of the guest code and the latter uses the information

provided by the first in order to provide cycle accurate timing. SoCLib has two types

18

of models: Cycle Accurate/Bit Accurate (CABA) and Transaction Level Modeling with

Distributed Time. The implementation we use follows the former model.

We use an emulator that mimics a LEON4 processor core with the same configuration

as the ML510 platform, previously described. But this configuration may be modified in

some Chapters for experimental purposes. The main target of this modifications is the

memory hierarchy configuration. Each Chapter describes the specific cache configuration

used. The last level of the memory hierarchy is the memory controller which has been

simplified to always hit using the same timing parameters that the ML510 platform.

Moreover, the arbitration policy has been changed in Chapter 4. In a study with the

European Space Agency [27], the performance accuracy provided by the simulator was

assessed against a real NGMP implementation, the N2X [28] evaluation board. To that

end, a low-overhead operating-system (kernel) that allowed cycle-level validation was

deployed. Results for EEMBC benchmarks showed a deviation in terms of accuracy

of less than 3% on average. For the HAWAII benchmark [29], an algorithm used to

process raw frames coming from the sate-of-the-art near infrared (NIR) HAWAII-2RG

detector, the inaccuracy reduced to less than 1%. Following the modular philosophy of

SoCLib, we added new instrumentation inside the timing simulator in order to assess

our solutions in an agile manner.

2.3 Benchmark Suites

Interestingly so far multicores are mainly exploited in real-time systems by consolidating

independent applications on the same chip. Those applications either share no data or

the sharing is performed off-chip (e.g. on memory). This is made more evident as current

timing analyses rely on splitting the last-level cache, hence, preventing data sharing.

Hence, while it is clear that in the long-term parallel execution will be adopted, this is still

a recent (and very active) research area of research not yet ready for industrialization.

Overall, we build on the fact that applications do not share data and hence the coherence

mechanism does not disturb the execution time measurements.

2.3.1 EEMBC Autobench

The Embedded Microprocessor Benchmark Consortium (EEMBC) [30] has produced

several benchmark suites. Among them, we have chosen the Autobench set that is de-

signed for the automotive industry. All the benchmarks in the suite share a common

loop that executes several times an algorithm that changes across benchmarks. These

algorithms include bit manipulation, matrix mapping, a specific floating-point tester, a

19

cache buster, pointer chasing, pulse-width modulation, multiplication, and shift opera-

tions.

Table 2.1 lists all benchmarks providing their acronym and their description.

Table 2.1: EEMBC names

Name Description

a2time Angle to Time Conversion

basefp Basic Integer and Floating Point

bitmnp Bit Manipulation

cacheb Cache ‘Buster’

canrdr CAN Remote Data Request

aifft Fast Fourier Transform (FFT)

aifirf Finite Impulse Response (FIR) Filter

aiifft Inverse Fast Fourier Transform (iFFT)

aiirflt Infinite Impulse Response (IIR) Filter

matrix Matrix Arithmetic

pntrch Pointer Chasing

puwmod Pulse Width Modulation (PWM)

rspeed Road Speed Calculation

tblook Table Lookup and Interpolation

ttsprk Tooth to Spark

2.3.2 Mediabench

The Mediabench benchmark suite is composed of multimedia applications. Real-time

systems are used more and more for executing this kind of applications, which makes

this suite highly representative. Aside, the applications in this suite have a considerable

bigger memory footprint than EEMBC, which makes them more attractive for certain

parts of our research. Table 2.2 lists all the benchmarks and a simple description of

each one. Several of these benchmarks are multimedia compressors, so they provide a

encoder and decoder binary.

20

Table 2.2: Mediabench names and descriptions

Name Description

adpcm Simple and well known audio coder

epic Image compression application

g.721 Voice compression application

ghostscript PostScript interpreter

gsm Full-rate speech transcoding

jpeg JPEG standard compressor

Mesa 3D graphic library

mpeg MPEG2 standard compressor

pegwit Public key encryption

pgp “Message digests signature” generator

rasta Speech recognition application

2.4 Space Applications

In addition to the previous benchmark suites, we use some applications used by the

space industry.

• OBDP benchmark [29], is an algorithm used to process raw frames coming from

the state-of-the-art near infrared (NIR) HAWAII-2RG detector, already deployed

in space projects like the Hubble Space Telescope.

• DEBIE software controls an instrument, which was carried on PROBA-1 satellite,

to observe micrometeoroids and small space debris by detecting impacts on its

sensors, both mechanically and electrically.

2.5 Resource Stressing Kernels

During this Thesis we make use of micro-kernels [17, 26, 31], a set of single-phase user-

level programs with a single execution behavior designed so that all their operations

access a given shared resource, e.g. the bus. Due to their purpose these micro-kernels

are referred as Resource Stressing Kernels (RSK) These micro-kernels consist of a main

loop whose body includes a substantial number (e.g. 256) of instructions designed to

generate a steady stress load on target resources. The fact that the loop body executes

repeatedly the same instruction causes the target resource to be continuously accessed.

Moreover, placing a high number of identical instructions in the loop body drastically

reduces the impact of control instructions (down to 2-4%) [26]. The shape of a RSK

21

depends on the platform where is going to be executed and of its purpose. For this

reason, more details on the RSK are provided n those Chapters where they are used.

Chapter 3

A Taxonomy of the Works in the

State of the Art

This Chapter presents the first contribution of this Thesis, namely, a taxonomy of the

related works on the topic of multicore contention analysis. It also introduces some

basic concepts that are further used in the rest of this document. It is noted that, the

most specific related works to each proposal are presented in the corresponding Chapters

describing those proposals. From that point of view, this Chapter does not provide an

exhaustive list of all related works but a categorization of those.

Different angles have been considered to address the timing effects of contention for

shared resources, either on-chip or off-chip, leading to a number of families of tech-

niques. However, while many solutions are claimed to exist, there is evident lack of

common understanding of the problem space, in terms of processor features, and of

the assumptions made to solve it. We attempt to cure this problem with the following

taxonomy.

3.1 A possible taxonomy of state-of-the-art techniques to

analyse the timing impact of resource contention

Under the umbrella term of resource contention, we capture the various forms of timing

interference that software programs suffer owing to access to shared hardware resources.

Notably, our analysis does not cover the contention on access to software resources. Fur-

thermore, contentions arising from parallel execution of a software program fall outside

of our analysis and are recognized in Section 3.2 as an important emerging ramification

of the problem.

22

23

The challenge of contention in multicore processors has been addressed with various

approaches. In this chapter we classify them in four broad categories, dependent on

where they seem to direct their focus:

1. on system considerations, which address the contention problem top down, from

the software perspective;

2. on WCET considerations, which take the opposite view, studying how contention

phenomena affect the timing behaviour of the software;

3. on architecture considerations, which devise processor features and arbitration

policies that help achieve composable timing behavior; and

4. on Commercial Off-The-Shelf(COTS) considerations, which propose processor-

specific ways to deal with processor-specific contention and arbitration features.

We discuss the approaches in each category in isolation and we break them down into

subgroups where appropriate.

3.1.1 System-centric techniques

System-centric techniques take a top-down approach to the problem. The techniques

in this category take an off-chip, hence coarse-grained, perspective. Off-chip resources

have longer latency than on-chip resources, and also a higher degree of visibility from

the software standpoint than on-chip resources. For instance, at software level one can

easily tell where a set of addresses is mapped to memory, but it is (much) harder to

determine which data item is in cache at a given time and which is not. Similarly,

software ‘sees’ (hence can program or directly effect) higher-level resources such as the

Direct-Memory Access, but it is unaware of (and unable to directly control) low-level

resources like a bus for inter-core communication and, other than in very special cases,

the on-chip shared cache. In fact, the cache impact has characteristics that can be

captured, from different angles and with different precision, with techniques that we

classify in different categories of our taxonomy (system-centric and WCET-centric).

Besides this cross-boundary overlap, the techniques in this category predominantly focus

on off-chip resources.

We single out three angles worth of specific discussion: timing analysis frameworks;

access scheduling and allocation; and works on COTS architectures.

24

3.1.1.1 Timing analysis frameworks

Two main characteristics are predominant in the techniques in this sub-class that dif-

ferentiate them from similar techniques captured in our taxonomy. In general, these

techniques assume that on-chip shared resources (e.g. core-to-cache bus, caches, ...)

are replicated or partitioned across cores, so that software programs allocated to a core

suffer no contention on access to on-chip resources. Their analysis frameworks model

off-chip shared resources in isolation and provide worst-case access timing bounds for

them. The impact of contention is only considered for those resources and it is captured

compositionally, when the WCET of the software program, determined assuming no

contention, is increased by delay factors that consider the sources of off-chip contention

in the presence of co-runners.

The shared resources considered in this class of approaches are assumed to process one

request at a time. It is also assumed that the corresponding services cannot be pre-

empted (or split or segmented). It is further assumed that the requests are synchronous

so that the requesting task is stalled while the access request is served. The analysis

focuses on individual tasks, whose program units are logically divided into blocks for

which maximum and minimum access bounds and execution time bounds can be (more

easily) derived.

For approaches in this class, the access to the shared resource is assumed to be arbitrated

by either a TDMA bus [32] or a dynamic arbitration bus [33] or else an adaptive bus

arbiter [34]. For TDMA buses, focus is on determining the worst-case alignment of the

requests in the TDMA schedule. As the bus schedule is static, co-running tasks do not

affect one another execution time, which makes their execution time composable with

respect to the bus. The fact that service is assumed run-to-completion and that requests

do not overlap simplifies the problem.

For dynamic arbiters, the workload that a task places on the shared resource affects

the access time of the co-running tasks, which breaks time composability. This type of

arbiters has generated a research line of their own. Several authors [33, 35] have proposed

various approaches to derive bounds for the number of accesses per task in a given period

of time. The timing analysis for an individual task therefore depends on the request

workload generated by the co-runners in that time duration. Interestingly, while the

number of accesses that a task generates to the resource can be considered intrinsic to

the task (i.e independent of the co-runners) as long as caches are partitioned, the task’s

frequency of access depends on how often the co-runners delay the task’s requests. The

cited models capture that dependence.

25

Adaptive arbiters (as in, e.g., FlexRay) exhibit a window with per-requester slot schedul-

ing combined with a window in which requests are dynamically arbitrated; this trait

makes them show characteristics that we have seen above as distinctive for static and

dynamic arbiters.

The authors of [36] provide a useful survey of how time-deterministic approaches to bus

arbitration and scheduling for multicore processors can be captured, compositionally,

by timing analysis techniques. The cited work also presents benchmark-based empirical

evidence of the degradation that TDMA arbitration causes to average-case performance

in comparison to other techniques with acceptable characteristics in terms of time de-

terminism.

3.1.1.2 Task scheduling and allocation

The state-of-the-art approaches to multicore scheduling and schedulability analysis that

match the techniques which fall in this category can be grouped in two sets: those that

ignore contention issues at their level and leave it to WCET analysis; and those that

consider it as a factor of influence to task allocation, which is adjusted to attain increased

schedulable utilization.

There essentially exist three classes of scheduling algorithms, which differ in the way

they assign tasks to cores [6]. Partitioned and global scheduling place at the respective

extremes of the spectrum: the former statically maps tasks to core, so that a task

can only be scheduled on the core it has been assigned to; the latter allows tasks to

migrate jobs from one core to another. The latter are work conserving, at the expense

of possibly costly task (job) migrations. The former risks considerable under-utilization

of the processing resources, especially for tasks with medium to high loads. The middle

of the spectrum is occupied by clustered or semi-partitioned algorithms, which – with

various techniques and for different goals – only allow or cause statically-determined

groups of tasks to migrate within statically or dynamically determined subsets of cores.

Contention oblivious. The principal works on scheduling algorithms and associated

schedulability analysis for multicore processors assume that the WCET of all tasks is

given in input. They therefore assume that the WCET bounds may be determined

before decisions are made on task mapping to cores and on scheduling at run time.

This is tantamount to postulating that the WCET bounds are composable, that is

to say, free from variations determined by the presence of contenders in the system.

Ironically, the only plausible way in which WCET bounds can actually be made to be

composable for use in schedulability analysis for multicore processors is by increasing

them compositionally, by a factor determined by given patterns of conflicts that are

26

asserted to bound from above the actual contention delays suffered at run time. In

essence, the approaches of this kind escape the intrinsic (and painful) circularity between

the dependence on WCET analysis on knowledge of the contenders and the dependence

of schedulability on knowledge of the WCET of the tasks in the system, by inflating the

WCET budgets so that they can always be trusted to upper bound the actual costs.

Contention aware. Techniques such as [37, 38] focus on the shared last-level cache

as one of the main resources in which contention occurs. The cited works benefit from

hardware proposals that split the cache into different ways or allocate program data into

different pages (colours) so that each task is limited to use a subset of the sets in cache,

thereby reducing conflicts.

These works often assume partitioned scheduling for software programs, so that conflicts

can be determined in a less pessimistic way, and focus their attention on devising cache-

aware allocation algorithms that consider the mapping of tasks to cores determined by

partitioning. Some of the works focus on how to assign colours (i.e. set partitions) to the

tasks. It is also the case that works in this class do not address the contention occurring

in other shared resources like the memory.

Other works [39] build on hardware proposals that control the interaction in several

hardware resources (e.g. on-chip bus, cache and memory controller) in addition to the

cache. These proposals also consider task allocation and scheduling.

3.1.2 WCET-centric techniques

WCET-centric techniques determine the impact of contention in the access to shared

resources as part of WCET analysis. For multicore architectures, shared resources in-

clude cache memories, buses and memory controllers, but some approaches have also

been designed to support intra-core resource sharing (e.g., pipeline and functional units

in multi-thread cores [40]). The objective of WCET-centric techniques is to derive safe

stall times that can be accounted for at instruction-level timing analysis. We distinguish

between the approaches that consider all the competing threads/tasks together to ex-

hibit the possible interleaving of their respective accesses to the shared resource, from

those that exploit a static allocation of slots among cores. In the latter category, some

contributions include WCET-based strategies to optimize the mapping/scheduling of

threads/tasks to cores to optimize the global WCET and/or to enhance schedulability.

27

3.1.2.1 Joint analysis of concurrent tasks/threads

One way to identify how contention may impact the WCET of a task is to combine

the analysis of concurrent tasks to identify where they can interfere. Two kinds of

interferences are considered here: spatial (tasks share storage, e.g. a cache) and temporal

(tasks share bandwidth, e.g. a bus). Both incur additional delays.

Techniques that address spatial contention, first perform individual tasks analysis, then

determine how contention affects their results. More precisely, they determine which

cache lines used by one task might be replaced by another task in a shared L2 instruc-

tion [41][42] or data [43] cache. The analysis of contention does not account for the exact

respective timings of tasks (then could be valid for any schedule, provided all possible

concurrent tasks are known at analysis time). However, [42] improves the accuracy of

the analysis by considering constraints on task scheduling (non-preemptive, priority-

based, with task inter-dependencies), which allows bounding tasks lifetimes and limits

the opportunities for contention.

To account for temporal conflicts and derive instruction timings, possible interleavings of

(statically-scheduled) threads must be explored. Several approaches use timed automata

to represent both the tasks and the state-based behavior of hardware components. All

these automata are combined and model checking techniques are used to determine the

WCET though a binary search process. [44] focuses on the shared L2 cache with fixed

cache miss latencies. A shared bus with First-Come-First-Served (FCFS) or TDMA

arbitration is analysed in [45]. The weakness of these approaches is the vast number of

states to be handled.

3.1.2.2 Independent analysis of tasks/threads

Some techniques leverage deterministic guarantees offered by the underlying hardware

on access to a shared resource. Thanks to such guarantees, they can analyse the WCET

of one task/thread independently of the concurrent workload.

The impact of arbitration delays on a TDMA bus with uniform slot size is explored

in [46]. The cited work presents an approach to evaluate the misalignment of accesses

with TDMA slots (TDMA offsets). A TDMA-composable system is assumed: arbitra-

tion delays neither impact instructions that do not access the bus nor the bus access

time (except for the arbitration delay).

Some solutions that enforce access guarantees in hardware do not offer equal opportuni-

ties to all threads. Cache partitioning may use partitions with different sizes [39]. Bus

28

arbitration may grant cores different numbers of slots [47] or [48]. Those techniques use

mechanisms to increase the performance achievable by combined task-to-core allocation

and scheduling decisions, especially in the case of unbalanced workloads (with variable

demand levels to the shared resource). Performance benefits are obtained as a result of

reducing the WCET bound predictions for the affected tasks. As noted in Section 3.1.1,

our taxonomy is not clear-cut enough to place some of these techniques uniquely in one

class, as they might arguably also belong to the system-centric group.

3.1.3 Architecture-centric techniques

Several hardware design paradigms have been proposed to deal with the inter-task in-

terference caused by contention for shared hardware resources. Four topical approaches

can be singled out in this group: the time-triggered architecture [49]; PRET [50]; Comp-

SOC [51]; and MERASA [52].

One of the differentiating elements for these approaches is whether they achieve com-

posability at the level of the WCET bounds that they allow computing or at higher

levels of abstraction. The objective of the former solution is to support determining

WCET bounds for individual tasks in isolation, independently of the activity of their

co-runners. When that is guaranteed, the execution time of a task may well suffer vari-

ations caused by contention effects caused by some of its co-runners, but its WCET

estimate stays valid. With the latter type of solutions, composability is achieved by reg-

ulatory mechanisms operating at run time, and thus with effect on the task execution

time. Those regulatory mechanisms ensure that the activity of the co-runners cannot

affect the response time of the hardware shared resources. This form of composability

may place more requirements on the processor hardware than the former approach. In

general it requires that the access time to a hardware shared resource stays always the

same irrespective of the actual load of the system. To that end, a resource that might

respond ahead of time is stalled until the agreed latency for the request is reached.

From another angle, it is worth noting that a trade off arises as a consequence of the

observation that the pursuit of time composability always comes at the cost of some

(over-provisioning) pessimism. The effect of this (static) over-provisioning allows tight-

ening the WCET bounds, because they eradicate sources of variations, but at the cost

of renouncing the true meaning of time composability (as independence from the pres-

ence of contenders), which is central to the incremental verification needs of integrated

architectures such as Integrated Modular Avionics(IMA).

Somewhat orthogonal to the discussion above, the focus of several proposals is to upper

bound the access time to hardware shared resources, either indirectly, by guaranteeing

29

pre-determined bandwidth on access to the resource, or directly by ensuring bounds

on the access time (comprised of the wait time preceding access upon request, and the

actual service time).

The techniques of interest from this angle vary for stateless and stateful resources. State-

less resources have an access time that is not or only very modestly dependent on execu-

tion history. A single-cycle latency bus is a typifying example of resources of this kind.

If the bus had a two-cycle latency, then the service time of a request might depend on

whether the preceding request was sent the cycle before the current one gets ready. In

that case, the current request waits one cycle to be granted access and two extra cycle

to effectively access the resource. Caches are a difficult example of stateful resources.

This is because the state-dependent effect builds up with history of execution, which

causes analysis to have to keep track of the full history of access. Truncated information

requires conservative assumptions to be made. This difficulty explains why the typical

solution proposed for caches consists in splitting its space in small areas assigned to

individual tasks, so that history becomes much smaller (and free of conflicts with co-

runners) and thus easier to trace. This can be done dividing the cache into different

banks or different ways [53].

The most prominent stateless resources on which the real-time community has focused

are network-on-chip (NoC) and memory controllers. For the interconnection network,

proposals exist which range from from simple buses [54] or rings [55] to more complex

solutions such as those described in [56]. All share the goal to provide some type of

bound to the longest time a request has to wait to get access to the resource. For

the memory controller, proposals with the same goal exist [57, 58], though the actual

solutions are more complex since the state retention is higher.

3.1.4 COTS-based techniques

The goal of several works focusing on real hardware is to analyse how amenable a given

multicore design is for real-time analysis. To that end authors analyse different shared

resources as well as their impact on execution time. It is the case that for those resources

the manuals of the processor under analysis do not provide all the required information

to analytically derive those bounds. As a result, the way in which the authors derive

bounds is by experimentation on the specific architectures under analysis [17, 26, 31].

These works include analysis of the FreeScale P4080 and some FPGA versions of the

Aeroflex Gaisler LEON4.

Another set of works is carried out at an analysis level providing understanding of the

timing behavior of hardware shared resources and the challenges they bring to timing

30

analysability [59–61]. Finally, some of the works on software-cache partitioning (page

colouring) have been done for processors like the ARM Cortex A9 [38].

3.2 Other aspects of interest

In this section we briefly touch upon two other aspects that, for different reasons, are

tangent to questions addressed in this thesis. One aspect, parallel programming, in-

trinsically enabled and called for by multicore processors, presents a novel, emerging

challenge to bounding contention effects. The other aspect, with interesting potential

and important ramifications, stems from shifting the angle of attack to the timing anal-

ysis problem, from finding a single value, the smallest possible computable upper bound,

for all possible executions of a software program, to determining a probability function

whose tail can be cut at the exceedance threshold of interest to the system.

3.2.1 Parallel applications

Parallel programming introduces software shared resources. Communication of data

in message-passing and synchronisations in shared-memory programming induce delays

that must be accounted for in execution times. The focus is on deriving the WCET

of the whole set of threads together (i.e. the WCET of the longest thread) instead of

individual WCETs.

Two kinds of synchronization exist. Mutual exclusion is very similar to accessing a

hardware shared resource that can serve a single thread at a time. Computing the worst-

case stall time of a thread at a critical section is analogous (when threads are served

in a FIFO order) to computing the worst-case delay to a round-robin bus [62]. Stall

times can then be integrated to instruction-level timing analysis. Another approach is

to use timed automata and a model checker, as in [44]. In [63], a shared-memory parallel

programming language is introduced and a fix-point analysis is able to identify all the

possible thread interleaving at critical sections.

Progress synchronisation includes barriers as well as condition signalling and blocking

message passing. Collective synchronisations (barriers), where all threads meet, are

easier to consider since the goal is to compute the WCET of the longest thread, i.e.

the last one to reach the barrier [62]. For point-to-point synchronisations (condition

signalling or message passing) however, stall times depend on the respective progress of

the threads. In [64], parallel applications where threads communicate through message

passing are considered. A joint analysis is proposed, where the analysis of worst-case

31

communication times is integrated into the analysis of the global WCET. The approach

consists in merging the control flow graphs of parallel threads, then adding edges to

model the synchronisations (dependencies) related to sending/receiving messages.

Some system-centric approaches have been extended to parallel fork-join applications

and decide altogether the allocation of threads’ memory in caches, the scheduling of

threads’ accesses to the shared bus and the scheduling of the threads themselves to the

cores [65].

3.2.2 The probabilistic approach

Timing analysis techniques can be broken down into deterministic, which produce a

single WCET estimate, and probabilistic that produce multiple WCET estimates with

associated exceedance probabilities. It is noted that our discussion above has focused

on standard (deterministic) timing analysis techniques. While both deterministic and

probabilistic approaches try to reach time predictability, the former do so by advocating

for hardware and software designs that are deterministic in their execution time, while

the latter advocates for hardware and software designs that have a randomized timing

behaviour, to produce WCET estimates that can be exceeded with a given probability .

The probabilistic approach offers ways to deal with contention that differ from those

deployed in the deterministic approach. On the one hand, in [66] several time-randomised

bus arbitration policies are proposed as an alternative to deterministic policies such as

round robin. In [67] it is proposed a time-randomised shared cache for which impact of

contention among co-running tasks can be determined. The main feature of this cache

is that it does not split the cache, either into ways or sets, to prevent the interaction

among co-running tasks. Instead, it controls how often tasks evict data from cache as a

way to bound the impact of contention on tasks’ WCET estimates.

3.3 Critique

This section reviews the techniques captured in the taxonomy presented in Section 3.1

against multiple criteria including: (1) the presence of overlaps between them; (2) the

presence of gaps among them; (3) the realism of the assumptions on which they base; (4)

the challenges in taking that technique to industrial use; and (5) the relation between the

confidence on the bounds determined by timing analysis and the assurance guarantees

proper of the application domain.

32

Much like the proposed taxonomy, the review discussed here is not meant to be ex-

haustive. It therefore does not cover all criteria for all techniques. Instead, it only

aims at singling out specific issues that we consider to need particular attention by the

prospective user and further study by the research community. Regarding criterion (3)

for example, it is interesting to observe that when time delays on access to a shared

resource are computed separately from the execution time (which is the case for the

system-centric approaches and also for some WCET-centric approaches), the important

assumption is made that the relevant factors (and the behaviours that originate them)

can be analysed compositionally in the time dimension [19].

System-centric techniques. The principal limitation with this class of techniques

stems from their resting on two strong assumptions: that programs can be statically

subdivided in blocks that can be studied in isolation; and that only one shared resource

needs attention, which also does not support split transactions. The former assumption

increases pessimism – hence decreases its attractiveness – because every single code

section captured in the static breakdown of the problem is attached a single worst-case

cost value, which may be considerably higher than the actual cost in the worst-case

traversal of that block as taken by the program. The latter assumption instead reduces

the applicability of the solution against increasingly common hardware.

For dynamic arbiters, the critical factor is in the dependence of their timing analysis

on the request workload generated by the co-runners of the program of interest in a

given time duration. On the one hand this trait reduces pessimism since the duration

in which conflicts on access may occur can be better determined. On the other hand,

it breaks time composability and resorts to compositionality. The latter defect may

be a serious impediment to incremental verification, which is a prerequisite to high-

criticality domains (e.g., avionics). Budgeting in advance for the co-runners is obviously

one countermeasure to that, but at the direct cost of over-provisioning.

WCET-centric techniques. The main challenge for this class of techniques arises

from having to find tractable ways to analyse increasingly complex hardware. The

abstract interpretation approach on which those techniques base is inherently exposed

to the state explosion problem, which is dramatically worsened by the way in which

the architecture of modern processors cause the timing behaviour of several resources

to exhibit possibly large jitter, extremely sensitive to the history of execution [61]. This

dependence obviously accumulates bottom-up and manifests in very complex ways at

software level.

As an example we consider a TDMA bus, whose timing behaviour is easy to model with

three main parameters: window size, number of contenders, and slot size per contender.

Interestingly, the state space for even such a simple model is already not negligible:

33

when the exact time of an access request cannot be determined in fact, a conservative

assumption must be made on when access will be granted (which inflates pessimism)

or multiple candidate access times are considered, which causes multiple states to be

contemplated upward in the analysis. As more complex NoC architectures are adopted

by modern multiprocessors, more parameters will be needed to model the sources of

contention, with inordinate increase in the complexity and cost of the analysis tools.

Architecture-centric techniques. A recurrent question on the viability of the tech-

niques in this class is whether the hardware design that they propose in the intent to

favour time analysability, will ever hit the market. This is a question of economics

that equally applies to all research domains that propose for hardware architectures.

However, it is especially important to the real-time systems domain, which holds a tiny

niche of the market size, in comparison to consumer products, without insufficient crit-

ical mass to swing the prevailing design criteria from optimized for the average case to

well-behaved in the worst case.

This is a long-known challenge for the real-time systems community. Fortunately, perse-

verance and authority have shown able to win some battles, so that some of the proposed

designs (e.g., cache partitioning) are indeed retained in real processors. Our view here is

that the changes proposed for the bus and the memory controller are simple enough so

that they can be implemented in production with moderate effort and cost, for tangible

benefits on timing analysability. Whether or not that will actually happen remains to

be seen.

In general all hardware approaches assume processor designs without timing anomalies.

It is interesting wondering, whether processor cores can be made simple enough to

assure freedom from timing anomalies, without this causing detriment to the attainable

performance. Architectural solutions will have to be devised that combine those two

objectives harmoniously, which is not the case yet with the dominant approaches to

multi- and manycore processor architectures.

COTS-based techniques. The techniques that belong in this class face the challenge

that the architectural properties needed to provide full time isolation or time predictable

interaction among processor cores cannot be had owing to the lack or inaccuracy of

specification information or IP restrictions. Various approaches have been proposed to

live the consequent uncertainty, which all require building confidence arguments that

accord with the requirements and practices of the application domain. The work in [68]

makes an interesting review of how safety assurance guarantees relate to stipulating

bounds on execution time.

34

3.4 Conclusions

A wealth of relevant literature addresses the problem of finding a bound to the timing

effect of contention on access to hardware shared resources in modern multicore pro-

cessors. The industrial practitioner, and the researcher alike, who approach that body

of knowledge without a preconceived solution in mind, may have serious difficulties in

seeing the ”big picture” of what options are possible and at what consequences. This

chapter sketches an initial taxonomy of the principal approaches that appear in the state

of the art, and discusses gaps and overlaps among them.

Chapter 4

Increasing reliability on Measured

UpperBound Delays(UBD)

One of the challenges of timing analysis for COTS multicores stems from the difficulty

of determining the worst-case impact of contention on the access to hardware shared

resources. In this Chapter, the term ubd, for upper bound delay, denotes that impact

factor. Studies exist that investigate the ubd arising on access to the on-chip bus [54]

and the memory controller [58, 69]. Those works however lead to a tight and sound

ubd estimation only when enough information about the timing behavior of the target

processor is available. Both Static Timing Analysis (STA) and Measurement-Based

Timing Analysis (MBTA) methods [14] need trustworthy ubd to compute reliable WCET

bounds. STA uses ubd to cost every request to a shared hardware resource issued by

a software program. MBTA, which still is the most used practice in industry, needs to

know ubd to gage the contention delay that may be suffered by application programs.

Unfortunately, as the complexity of multicores continues to grow and the information

about their internal functioning is increasingly restricted by intellectual property, the

static derivation of ubd becomes increasingly harder. As a testimony to that, the con-

tention behavior of the P4080 processor has been analysed by an avionics end-user and

a STA tool provider [18] using measurements, thereby obtaining a measured approxima-

tion of ubd [17], here denoted ubdm, instead of proper ubd. The net consequence of that

difficulty is that the confidence the user that can be placed on WCET bound rests on

the confidence that can be attached to ubdm, in particular, on how well it approximates

the actual ubd.

To the best of our knowledge, the techniques used to compute ubdm most frequently

employ specialized programs executing in the application space, often called resource

stressing kernels(see Chapter 2). The rsk approach computes the ubdm by running

35

36

the software component under analysis (scua) against a battery of rsk. In particular,

ubdm is derived by dividing the execution-time increment suffered by the scua, (∆ET),

owing to the contention generated by the rsk by the number nr of access requests made

by the scua: ubdm = ∆ET /nr. Interestingly, whereas rsk are expressly designed to

produce high contention on a given shared hardware resource (e.g., the bus) so that

the designated victim suffers high slowdown, insufficient attention has been devoted to

determining whether ubd is best approximated by using the scua or a rsk as victim.

We show in this chapter that the state-of-the-art rsk methodology may fail at producing

reliable ubdm values. In particular, we analyse the impact that round-robin (RoRo) and

fist-in-first-out (FIFO) arbitration policies, widely used in real-time systems due to their

time-predictable traits [54] [53] , have on the computation of the ubdm.

Overall, in the context of increasingly complex multicores where measurements are in-

creasingly used to derive the impact of contention bounds, our approach becomes a

fundamental step to attain trustworthy ubdm to the contention in the bus and the mem-

ory controller, thereby increasing the trustworthiness of the WCET bound computed

using that information.

4.1 Contention analysis for RoRo and FIFO

4.1.1 Studying the Bus and the Memory Controller

The interconnection network and the memory controller are two of the hardware re-

sources whose sharing in multicores causes most bottlenecks for contending tasks that

run in parallel. The determination of the ubd for those resources has already received

the attention of researchers, under the hypothesis that public documentation on the

internal functioning of the processor exists.

• Bus-based interconnection networks are known to require little energy as well as

to ease protocol design and verification, at the cost of modest performance degra-

dation [70, 71]. The Advanced Microcontroller Bus Architecture (AMBA) is a bus

exemplar that is widely used in microcontroller devices as well as in a range of

ASIC and SoC parts with real-time capabilities. The AMBA bus is in the focus

of our work here.

• The memory controller, which policies access to memory and thus is necessarily

shared across cores, causes considerable contention and exacts a high toll on the

WCET bound. Several memory controller designs have been proposed to contain

contention overhead [72][58][73][74], which we consider in this work.

37

We study how to derive ubd for those two hardware shared resources, assuming RoRo

and FIFO arbitration for them. While there are other arbitration policies focused on

improving average performance, they usually results in more pessimistic – or simply not

boundable – ubd. This is the case of some types of priority arbitration [53] and policies

like first-ready first come first serviced (FR-FCFS) [75].

We start by looking at each such policy in more depth in isolation.

RoRo. Consider a RoRo-arbitrated resource, with an access time smaller than or equal

to lmax
res cycles, accessed by Nc cores, where lmax

res is the maximum delay it can take a

request to be serviced by the resource. We will elaborate on this delay for the bus and

the memory, respectively called lmax
bus and lmax

mem.

When core ci, with i ∈ {1, .., Nc}, has the highest priority in a given round of arbitration,

the priority ordering for the subsequent round becomes: {ci+1, ci+2, ..., cNc, c1, c2, ..., ci},
where ci+1 becomes the core with the highest priority and ci gets the lowest. RoRo is

work conserving, or in other words a lower-priority requester can be granted access to

the resource when all higher-priority requesters do not require it.

When all cores continuously issue access requests, the theoretical worst case is that any

request ri issued from the scua always has the lowest priority. We therefore have:

ubdRoRo = (Nc − 1)× lmax
res (4.1)

Under a contention scheme of this type, both STA and MBTA can be applied to the

scua in isolation (hence with no parallel contention) and then the worst-case contention

overhead can be added compositionally by factoring in the above ubd to each access to

shared resource.

Obviously however, the particular time alignment between the scua’s access and the

circulation of the RoRo priority token across cores determines the contention delay

actually suffered, so that the ubdm may be significantly lower than the ubd. This is

further discussed in Section 4.4.

FIFO. Consider now the same resource, this time with FIFO arbitration, accessed by

Nc cores, where each core can have only up to one pending request in flight. FIFO

assigns access priority in order of arrival, so that the requests arriving earlier to the

arbiter get higher priority.

The theoretical worst case for the scua occurs when all cores have a pending request

and, a request ri from the scua becomes ready and it is preceded by Nc−1 older requests

from the other cores. This produces the same ubd as for RoRo:

38

ubdFIFO = (Nc − 1)× lmax
res = ubdRoRo (4.2)

However, by the time request ri is issued, the oldest request at the top of the FIFO queue

may have progressed to near completion, which – again – causes ubdm to be substantially

lower than ubd. We can thus observe that under both RoRo and FIFO, the worst case

occurs contingent on a particular alignment between the scua’s request(s) and those of

all other contending cores, and distinct for each arbitration policy.

4.1.2 Difficulties in Determining the ubd

When the internal workings of the processor cannot be known, the ubd cannot be de-

termined analytically, but only approximated via ubdm, as was the case in [18].

We noted earlier that designing observation experiments to maximize the impact that

the interfered scua’s requests suffer from other cores (which is required to “observe”

the ubd) is impaired by the need to control the alignment in time between the scua’s

requests and those of the contending cores.

Consider Nc arbitrary software components, SC = {sc1, sc2, ..., scNc}, one of which is

our scua, with each sci pinned to a distinct core, and all contending access to a RoRo-

arbitrated resource. It is evident that if we simply run all those programs together,

with no other precaution, it would be highly unlikely that each and every scua’s request

encountered worst-case contention. This is so because, when a request ri from the scua

is issued in the program run, its RoRo priority is not necessarily the lowest and therefore

its wait time is less than ubdRoRo. The case of FIFO arbitration is analogous, because

it is equally unlikely that every single scua request is issued when all other cores have

pending requests enqueued and none of them is already being served.

In principle, given a specific scua, one might possibly design matching contenders capable

of issuing their access requests with the frequency needed to cause the scua’s requests

to always be last in the queue and encounter ubd contention. However, it goes without

saying that this effort would be utterly disproportionate, owing to its extreme sensitivity

to the particular behavior of (the particular version of) the scua and, even worse, to

its critical dependence on detailed knowledge of the inner workings of the resources of

interest so that the desired timing of request generation can be well understood and

fully controlled.

We can therefore maintain that soundly approximating the ubd with observation mea-

surements that are sustainable for knowledge need and affordable for design and imple-

mentation costs is an open problem. Interestingly however, solving that problem would

39

be of great value to industrial users, as they would be provided with scua-independent

test sets capable of causing ubdm to be a sound approximation of ubd, which could thus

be used as an additive factor to the WCET bound determined for the scua in isolation,

with state-of-the-art single-core analysis techniques. This is the challenge we take in

this Chapter.

4.2 Elements of the Proposed Solution

In this chapter we use as our reference architecture LEON4-based NGMP, which we

described in section 2.1.1.

We also develop several resource stressing kernels, that were described in Chapter 2 but

further down this chapter we will detail the specifics of the RSK used:

4.2.1 Resource Stressing Kernels

We first discuss the specialization of rsk for the processor resources of interest, and

then we show that they fail to safely approximate the respective ubd. Subsequently we

present a new methodology to do that.

(a) bsk ... (b) msk

Figure 4.1: Pseudo-code of rsk for the bus made with load operations(c©2016 IEEE)

Bus. We call bus stressing kernel (bsk), the rsk dedicated to the bus. The bsk is

designed to cause every instruction to miss in DL1 and hit in L2. This structure ensures

a short turn-around time for memory requests, which keeps the bus busy as much as

possible.

Given that DL1 uses LRU replacement, the bsk comprises a loop with W + 1 load

instructions, where W is the number of DL1 cache ways (see Figure 4.1(a)). Those loads

have a predefined stride among them so that they access the same DL1 set, thereby

exceeding its capacity and systematically missing in DL1. Furthermore, the memory

40

addresses referenced by the bsk are designed to exactly fit in L2. In this way, all accesses

miss in DL1 and hit in L2.

To hit in L2 we use load operations, which produce the highest bus contention. In the

NGMP in fact, L2 hits hold the bus until the L2 serves the request, while L2 load misses

are split transactions, which release the bus until memory sends the missed data, and

store requests are immediately served, thus keeping the bus for a shorter duration.

Figure 4.1(a) presents the bsk for the NGMP: as the DL1 has 4 ways, the loop body of

the bsk includes a stride of five instructions that all map to the same set.

Had the DL1 replacement policy been unknown, we would have designed the loop body

to perform N �W + 1 distinct accesses to the same set, for an N that does not exceed

the L2 capacity in the corresponding L2 set, to make it highly unlikely for memory

operations to hit in DL1.

Memory controller. Analogously, we call msk the rsk dedicated to stress the memory

controller. The msk design follows the same principles as for the bsk, except that the

memory accesses in the msk have to yield L2 misses. The factors of influence to this

end are the size of the way for DL1 and L2 (to cause L2 misses and therefore access the

memory controller), and the size of the cache line (that determines the unit of transfer).

For the NGMP, we use a load stride of 64 KB, which is an integer multiple of the DL1

way size (4 KB). Hence, all memory accesses map to the same DL1 set. This is also

the way size of the L2, hence memory accesses also map onto one and the same set.

As L2 uses LRU replacement, every memory access made by the msk results in a miss.

Figure 4.1(b) presents the pseudo-code of the msk.

4.3 The Synchrony Effect

Intuitively, one would expect that assigning specialized rsk to all cores contending with

the scua should capture the worst-case contention scenario, and thus allow obtaining a

trustworthy approximation of the relevant ubd.

As we show next however, this intuition is wrong in practice, because – when subject

to heavy load conditions – both FIFO and RoRo incur a particular phenomenon that

we term synchrony effect. The essence of this phenomenon is that, when all cores issue

requests at a given constant rate to the resource of interest, their requests interleave

in a particular way systematically, so that their interleaving becomes synchronous. In

that situation, the resulting contention delay becomes constant and, more important,

unlikely to match ubd.

41

Table 4.1: Main terms used in this chapter

∆ET Exec. Time increment suffered by the SCUA
nr Number of accesses made by an SCUA
lmax
res Max response time of one resource
Nc Number of cores
ci Core i
Rx All request done by a task X
ri Request i
δi Injection time between ri and ri−1

γi Contention delay by request i
etrsk Exec. time versus a rsk
etisol Exec. time in isolation
dbus Exec. time increment due to interferences on the bus

We now discuss the synchrony effect for the bus, which we obtain by using Nc − 1 bsk

as the contenders to the scua, under both FIFO and RoRo. We use the main terms

presented in Table 4.1.

4.3.1 Synchrony Effect under FIFO

The synchrony-effect causes the shared resource to behave as if it was multiplexed across

all cores, with each core being assigned a time slot of duration equal to the service time

of an individual request. Interestingly, this applies to both FIFO and RoRo. Let us now

see that for FIFO.

The contention delay suffered by the scua for its request ri+1 depends on the time

elapsed since its preceding request ri and how ri+1 positions in the request queue.

Let us assume that the scua may issue multiple requests to the bus, which we denote

Rscua = {r0, r1, ..., rm}. Assume that those requests may be issued at arbitrary times,

so that some time span intervenes between any two subsequent requests from the scua.

Let us call injection time, denoted δi, the time span between the issue of requests ri−1

and ri for any R. Accordingly, for Rscua, we have {δscua1 , δscua2 , ..., δscuam }.

In our reference architecture, δi corresponds to the time elapsed since the data loaded

by ri−1 is sent back to DL1, until ri is ready to access the bus. A minimum injection

time δmin separates any two subsequent requests from R, equal to the time it takes for

DL1 and the core to process ri−1, once it is served, and execute the instruction that

generates ri until it gets ready to access the bus.

When a program runs in parallel with other contenders, each of its request ri may suffer

a contention delay γi. Accordingly, for Rscua, we have {γscua1 , γscua2 , ..., γscuam }.

42

Figure 4.2: Contention delay γ as a function of δ (FIFO) for δmin = 0 and δmin =
2, respectively. In each cycle priorities are those at the start of the cycle, prior to

arbitration(c©2016 IEEE).

Since the bsk are designed to access the bus with high frequency, their requests have low

injection time. In concept, the maximum contention scenario should occur for δmin = 0.

We now illustrate the synchrony effect under FIFO with an example where contenders

are bsk and the scua can be either another bsk or any other software component. We

explore two scenarios, with δmin = 0 and δmin > 0 respectively. The former, while

infeasible in reality, serves for illustration.

Scenario δmin = 0: Let us assume that request ri of the scua is just serviced and all

other cores have pending requests enqueued. Figure 4.2 (rows δmin = 0) illustrates how

γi+1 varies as a function of δi+1 (shown in the first row). For instance, if δi+1 = 1, then

γi+1 = 8 since ri+1 cannot be granted access to the bus until the ongoing request from

c0 is completed (which takes 2 more cycles) and requests from cores c1 and c2 are also

serviced (which takes another 3+3 = 6 cycles) since they are both already in the queue.

Assuming that each core can only have one pending request, the worst contention (ubd)

occurs when ri+1 is delayed by the full service of Nc− 1 requests coming from the other

Nc−1 cores. In this example in Figure 4.2, this means γi+1 = 9. When δmin = 0 and lbus

denotes the bus service time for an individual request, the synchrony effect manifests in

43

Figure 4.3: Example where contention delay γ is maximized for FIFO(c©2016 IEEE).

the fact that γi+1 has a periodic behavior that ranges from (Nc − 2) × lbus + 1 (when

one contending request is near completion) to (Nc−1)× lbus (when all other contending

requests are pending and none is being serviced). Thus, the particular value of δi+1

determines the value of γi+1.

If δscuai is arbitrary, it stands to reason that it is very unlikely that all requests rscuai ∈
Rscua experience γscuai = ubd. If for scua we use another bsk, which has δi = 0 for all

ri ∈ R, as shown in Figure 4.2, γ = ubd systematically.

Scenario δmin > 0: Owing to cache latency, the common case for the bus is δmin > 0.

(For other farther-away off-core resources, such as the memory controller, δmin � 0.)

The bottom rows in Figure 4.2 show the impact on γr+1 when δmin = 2. Right after

ri is serviced, γr+1 would be equal to ubd. However, for 2 cycles ri+1 cannot reach the

bus and thus δr+1 ≥ 2. In particular, if δr+1 = 2, then c0’s request is already being

processed at the time ri+1 is issued, hence γr+1 < ubd. If δ = 3, then c0’s request has

been processed and its subsequent request will take at least 2 cycles to be issued and

reach the queue. Thus, if δ = 3, then γr+1 = 6. Analogously, if δr+1 = 4, then γr+1 = 5.

If δr+1 = 5, then ri+1 finds the same scenario as for δr+1 = 2, with the only difference

that the particular requests in the queue have different core owners, but for the same

contention effect on ri+1. Thus, if the scua executes against bsk, it cannot experience

ubd contention regardless of whether the scua is a bsk or not.

In general, if the contending cores execute bsk, γscuai for request ri ∈ Rscua can be

described with the following equation, where δ ≥ δmin holds:

γFIFO(δ) = max (ubd− ((δ − δmin) mod lbus)− δmin, 0) (4.3)

44

Figure 4.4: Contention delay γ as a function of δ (RoRo). In each cycle priorities are
those at the start of the cycle, prior to arbitration. Shaded cells in the priority rows

correspond to requests not in the queue(c©2016 IEEE).

Note, however, that this does not mean that ubd cannot be experienced systematically.

For instance, assume that the scua is a bsk and the contending cores execute programs

that experience δ = 11 in c0, δ = 8 in c1 and δ = 5 in c2, as shown in Figure 4.3.

In this scenario, after ri is serviced, the queue is empty for 2 cycles, and when δ =

δmin = 2, then ri+1 is issued and contends with requests from all other cores, which

arrive simultaneously and are enqueued before it. All requests are processed in order

and ri+1 experiences γ = ubd. Then, the queue is empty again for δmin cycles until

the same scenario for δ = 2 repeats for δ = 16. However, while this scenario could

be hypothetically produced, it is very difficult – if at all possible – for a user to create

programs with given δ values, which align in time properly, while ensuring that when

requests arrive to the bus simultaneously, they are systematically enqueued in the desired

way.

4.3.2 Synchrony Effect under RoRo

Under RoRo, the incoming requests are not necessarily served in order of arrival, but in

the order determined by the round-robin assignment of access slots.

45

Again, we assume that bsk are run as contenders. If δmin = 0 , all contenders always

have a request pending in the queue. Thus, the only parameter that determines who

is granted access to the bus is the current priority order. This is better illustrated in

Figure 4.4 (see the δmin = 0 rows). As shown, c0, c1 and c2 always have requests in the

queue, either in service or still pending. Noticeably, ri+1 from c3 becomes the highest

priority request when δr+1 = ubd = 9. We also observe that γr+1 = ubd only when

δr+1 = 0. Otherwise, γr+1 traverses all values from ubd − 1 down to 0 consecutively in

a round-robin fashion as δr+1 increases.

Hence, if δmin = 0, running a bsk as scua would suffice to observe the highest contention

consistently for all of its requests. However, as we noted before, the general case is

δmin > 0, owing, for example, to the DL1 cache latency.

Figure 4.4 also shows the case for δmin = 2. In it, vacant positions in request the queue

are marked with shaded cells in the priority rows.

In general, assuming 0 < δmin ≤ ubd (as it is often the case in reality) so that 100%

bus utilization can be reached, then γ stays exactly the same as if δmin = 0. This is

so because δmin only effects the contents of the request queue. Hence, ri+1 can only

incur γr+1 < ubd. Moreover, if δ is constant for all of the scua’s requests, then γ is

also constant. This observation is of prominent importance in our methodology, as we

discuss in the next section.

In the scenario where all contenders are bsk, γ can be described with the following

equation:

γRoRo(δ) =

{
ubd if δ = 0

(ubd− (δ mod ubd)) mod ubd otherwise
(4.4)

In general, δ depends on δmin and the particular scua. An arbitrary scua may observe

different values of δ and so little can be concluded about the actual contention expe-

rienced. Alternatively, running a bsk as scua, we observe exactly γ = ubd − δmin for

all requests. In fact, it is hard to determine the actual value of δmin even when cache

latencies are known, since some pipeline stages may delay the access of DL1 misses to

the bus. Thus, nothing can be concluded for certain about whether the highest con-

tention has been observed or how far the observation is from the highest extreme. To

tackle this issue, in next sections we propose a systematic methodology to determine ubd

based on measurements. For that purpose we devise specific rsk that allow determining

accurately ubd for round-robin and FIFO arbitrated shared resources including a shared

bus and a shared memory controller.

46

4.4 Deriving the UBD for the bus

Taking stock of the synchrony effect discussed earlier, we now present a measurement-

based method which computes a ubdm that is guaranteed to be a safe approximation of

ubd for hardware shared resources in COTS multicores.

In this section, we first describe the strategy we follow. Then we show how it can be

implemented and applied in practice for the bus in our reference architecture, considering

both FIFO and RoRo arbitration. Finally, we summarize some architectural issues of

relevance.

4.4.1 Nop-based Methodology

As captured with Equations 4.3 and 4.4, when using bsk as contenders, the synchrony

effect causes the amount of contention suffered by any request to be a function of δ.

We use that notion to construct a new bsk, which we call bsk-nop and illustrate in

Figure 4.5 (a). In the bsk-nop we intersperse low-latency (nop) operations between the

(load) instructions that access the bus. The effect of those nops is to delay the injection

time of each request to the bus, which modifies the δ value accordingly. Hence, whereas

in the bsk, constituted of consecutive contending requests, we have δ = δmin, if we add

just one (for the sake of example) nop in between loads, we obtain δ = δmin + δnop,

where δnop is the delay added by one nop.

(a) bsk-nop ... (b) msk-nop

Figure 4.5: Code of rsknop implementations: bsk-nop and msk-nop(c©2016 IEEE)

By varying the number k of nop instructions inserted between load operations, each

resulting bus request experiences a different δk. Figure 4.6 shows this effect for FIFO

47

Figure 4.6: Saw-tooth behavior for FIFO with δmin = 1(c©2016 IEEE).

with δmin = 1, which manifests as a saw-tooth profile. An analogous phenomenon occurs

for RoRo, see Figure 4.8.

4.4.2 bsk-nop for FIFO

Figure 4.6 uses Equation 4.3 to plot γ as a function of δmin = 1. We see there that

the values taken by γ = ubd − δmin periodically repeat every lbus cycles. This repeti-

tive behavior reflects the fact that the requests issued by bsk-nop over lbus cycles find

decreasing contention load in the queue until a contending request issued by one bsk

running in parallel on another core is queued again. The maximum contention delay

experienced is γ = ubd − δmin, hence systematically inferior to ubd, since once a con-

tending request is serviced, it takes δmin cycles for a new request to be enqueued. At

that time, contention is highest when the contenders are bsk, and amounts the theo-

retical worst case (ubd) minus the progress performed during δmin cycles. We observe

the saw-tooth shape in Figure 4.6, its period is equal to lbus and the maximum of the

function is (Nc − 1) ∗ lbus − δmin. In this case, ubd corresponds to Nc − 1 periods of

the function. For instance, if we consider the example in Section 4.3.1 where Nc = 4,

δmin = 2 and lbus = 3, the saw-tooth will range between 7 and 5 cycles, and it will

repeat every lbus = 3 cycles. Thus, ubd = lbus × (Nc − 1) = 9. As shown, although we

cannot observe the actual ubd, we can accurately infer it based on measurements with

our methodology.

48

Figure 4.7: Timeline of the FIFO scenario for different k nop instructions: a) k = 0,
b) k = 1, c) k = 2(c©2016 IEEE).

Figure 4.7 illustrates this phenomenon, for lbus = 2, δrsk = δmin = 1, and an increasing

number of inserted nops, with δnop = 1. We start from scenario a), where we assume

δrsk = δmin = 1 and we see that the request issued from core c3, where the scua runs,

suffers a contention of γ(δrsk) = 5 cycles. In scenarios b) and c), we show the effect

of increasing the number of nop instructions inserted between load operations in all

contenders. In scenario b), we see that γ(δrsk + δnop) = 4, whereas in scenario c), core

c3 loses its turn for access to the bus, which increases its γ to 5 cycles again and shows

the periodicity of γ as a function of lbus, where lbus = 2 × δnop in this case. For higher

nop counts, scenarios a), b) and c) repeat.

4.4.3 bsk-nop for RoRo

Figure 4.8 shows the variation in the contention delay incurred for RoRo as captured

with Equation 4.4. The contention value reaches ubd− 1 at most, which – for δmin > 0

– occurs periodically at every ubd cycles.

49

Figure 4.8: Saw-tooth behavior for RoRo with δmin = 1(c©2016 IEEE).

This phenomenon is better illustrated in Figure 4.9, again for lbus = 2, δrsk = δmin = 1,

and an increasing number of inserted nops, with δnop = 1. We start from scenario a),

where the request issued from core c3, where the scua runs, suffers a contention delay

of γ(δrsk) = 5 cycles. In scenarios b)-f), we show the effect of increasing the number

of nop instructions inserted between load operations in all contenders. In scenario b),

γ(δrsk +δnop) decreases down to 4. Through the scenarios c)-f), γ(δ) keeps decreasing as

the number of nop instructions inserted, k, increases from 1 to 5. In scenario g), when

k = 6, the situation becomes the same as in scenario a).

The following observations are now in order: (i) for ubd ≥ δmin > 0, we have γ ≤ ubd−1,

as per Equation 4.4; (ii) the variation of γ is periodic, with a period of ubd, independent of

δmin; and, more importantly, (iii) the exact value of ubd can be inferred from the period

of γ(δ), as seen to vary with k: this holds true for any δmin as long as δmin ≤ ubd.

4.4.4 Applying the rsk-nop method

Our method to determine ubd requires carrying out several experiments using rsk-nop

as scua and the normal rsk as contenders. rsk-nop(k) is parametrized by varying,

incrementally, the number k of nop instructions inserted between the operations that

access the bus.

We run rsk-nop(k) against Nc−1 instances of rsk, recording its observed execution time,

etscscua(k), and computing the increment from its execution in isolation, etisolrsk−nop.

50

Figure 4.9: Timeline of the RORO scenario for different k nop instructions: a) k = 0,
b) k = 2, c) k = 4, d) k = 6(c©2016 IEEE).

dbus(k) = etrskrsk−nop(k)− etisolrsk−nop (4.5)

Plotting the values of dbus(k) for a range of k, we see a saw-tooth behavior, with period

ubd. Assume now that the extremes of that period correspond to ki and kj respectively.

With that in mind, for FIFO we have:

ubdFIFO =(Nc − 1)× lreqFIFO where

lreqFIFO =|ki − kj | : (ki 6= kj) and (dbus(ki) = dbus(kj))
(4.6)

For RoRo, we have that ubd can be computed as the period of the resulting saw-tooth

shape of dbus.

51

ubdRoRo = |ki − kj | : (ki 6= kj) and (dbus(ki) = dbus(kj)) (4.7)

4.4.5 Deriving lmax
bus

UBD depends on the number of rounds to wait to get access to the shared resource (i.e.

Nc-1); and he maximum duration that a request to the resource can take (lmax
bus). In

the measurement based approach proposed in our work, RSKs have to be designed to

trigger lmax
bus . In our reference architecture, whether accesses to the bus are read/writes

and hit/miss in L2 cache determines their latencies. In [76] it is empirically assessed

that load hits to the L2 use the bus 9 cycles, load misses 7, while writes (whether or not

they miss in L2) take 1 cycle. Hence, we factor in lmax
bus in our methodology by making

that for the bus stressing kernel all memory operations are load hits to the L2.

4.4.6 Multicycle nop operation

So far we have assumed that δnop = 1. This is indeed the case in most architectures

since nop instructions do not have input/output dependencies and use the fast integer

pipeline, if present. In the unlikely case that δnop > 1, varying the number of nop

instructions in the scua will be equivalent to sampling the saw-tooth behavior shown

in Figures 4.6 and 4.8. If the value of δnop can be determined, then we can obtain the

saw-tooth period easily. Otherwise, we infer δnop as follows: we use a rsk whose loop

body solely includes k nops instructions, as many as possible without causing misses in

the instruction cache; at that point, by dividing the observed execution time of that rsk

by k, we derive δnop very accurately.

4.4.7 Summary

The method we have illustrated in this section empirically derives ubdm, requiring little

knowledge about the underlying architecture, which is often available in the correspond-

ing public documentation. First, Requirement : We tested our approach for the bus,

under FIFO and RoRo and we have shown it to work. Second, Inputs: Our approach

requires knowing the type of instructions that may generate requests to the bus, which

is typically documented in the processor’s manuals. And third, Confidence: Two ele-

ments are central to confidence on the obtained ubdm. On the one hand, Nc − 1 cores

running a rsk should suffice to increase the bus utilization to 100%, also considering

the handshaking overhead. In several processor architectures, performance monitoring

counter support exists to measure the bus utilization. For instance, the memory mapped

52

registers at the addresses 0x17 and 0x18 in the Cobham Gaisler NGMP provide per-core

and cumulative bus utilization counters [28]. On the other hand, we have provided a

method for the user to derive δnop, which is needed to determine the saw-tooth period.

The derived bound, ubdm, can be used by STA as ubd by adding it compositionally to the

access time to the bus without contention [18]. With MBTA, the user must determine

an upper bound nr to the number of bus requests that the scua issues to the bus. The

WCET bound of the scua is then padded with pad = nr × ubdm.

4.5 UBD for the memory controller

In this section we show how to empirically derive ubd for the memory controller. In our

reference architecture, the L2 forwards its misses to a request queue located in front of

the memory controller. Each core has one entry in that request queue, which therefore

has 4 positions. On an L2 miss, a split command is sent to the bus to stall the core

that caused the miss, until the corresponding memory request has been served. In the

meanwhile, the other cores can continue working. To determine which pending request

accesses memory, the memory controller implements two arbitration policies, FIFO and

RoRo, which we discuss below in isolation.

Before we do that, though, we must clarify an inner detail of consequence. Assume that,

at a given point in time, the request queue is full, so that it contains Nc requests. Once

one of those requests, ri, has been served, two actions occur. First, a new request rj

from another core is granted access to memory. Second, the core that issued ri (and

has now resumed working) may miss again in L2 and therefore cause a request r′i to be

stored in the request queue of the memory controller. As an L2 access is faster than a

memory access, it is fair to assume that, in general, r′i gets stored in the request queue

before rj is served.

As a building block to our measurement-based analysis, we use the msk concept outlined

in Figure 4.1(b). This kernel causes a continuous stream of misses in DL1 and in L2,

with each such request going to memory. Following the same methodology as for the

bus, we generate a variant of this kernel, called msk-nop, which inserts a variable number

of nop instructions in between cache accesses (cf. Figure 4.5(b)).

4.5.1 msk-nop for FIFO

Using a msk as scua, under FIFO arbitration, we must consider that the time to serve a

memory request is longer than the time it takes for a msk to reach memory with another

53

request ri+1 after its previous request has been served. When ri+1 reaches memory, it

is preceded by exactly Nc − 1 pending requests, one for every other core, which all run

msk. Nc − 2 of those requests are still to be enqueue awaiting service, whereas one of

them has begun to be serviced for a duration that corresponds to the δmin factor for

memory. We can therefore see that this scenario is analogous to the one we have seen

for the bus under FIFO, shown in Figure 4.2 for δmin > 0. The extent of contention

captured in that case is high, but not enough to observe ubd.

Using msk-nop as scua allows us to explore a range of γ whose period extends through

lmem. During that duration, the number of pending requests that precedes ri+1 is exactly

Nc − 1 for lmem − δmin cycles, and Nc − 2 for δmin cycles. Plotting the observed γ as a

function of the nop instructions inserted in the msk-nop used as scua, we would see the

exact same shape as shown in Figure 4.6, except with a different scale.

4.5.2 msk-nop for RoRo

Analogously to the case of FIFO arbitration, if we use a msk as scua, whenever a request

ri+1 reaches memory after its previous request has been served, it is preceded by exactly

Nc−1 requests. One of those pending requests has begun to be serviced for δmin cycles:

this means γ = ubd − δmin. We can therefore see that this scenario is analogous to

what we saw for the bus with RoRo, as shown in Figure 4.4 δmin > 0. Once again, ubd

contention is not empirically observed.

Using msk-nop as scua, we obtain the ”sawtooth plot” depicted in Figure 4.8, in which

γ ranges between ubd−1 and 0, which allows us to derive ubd for the memory controller

analogously to what we do for the bus under RoRo.

4.5.3 Deriving lmax
mem

As for the bus, the duration of each request to the main memory can vary, which requires

deriving lmax
mem. In general for DRAMs, the duration of a request depends on [73, 77]: i)

the memory mapping scheme – that defines the mapping of physical addresses from the

processors to the actual memory blocks in the memory devices; ii) the row-buffer policy;

the type of the request; and the type of its predecessor request. That is the latency of

a request is a combination of the type, DRAM page, bank and rank it accesses and the

same parameter for the previous request. For instance, a given request type (e.g. read)

take typically shorter when the previous requests is of the same type, i.e. Read-After-

Read (or Write-After-Write) than otherwise, which is also affected to whether accesses

54

go to the same bank and rank. As another example, access to open pages (i.e. hitting in

the row-buffer) take shorter than to close pages that have to be loaded in the row-buffer.

Those effects have been conveniently studied in the literature [73, 77] and are typically

well documented in DRAM specifications [78–80] as opposed to the timing information

of COTS processors. Based on this information memory-stressing kernels (msk) an be

designed to force request to take lmax
mem. The only change required is to design specific msk

that alternate different types of operations. The address of the accesses are to be properly

set so those operations are forced to access the desired bank and rank, depending on the

memory row-buffer managing policy and the memory mapping scheme.

4.5.4 Memory refresh

An intuitive solution consist in factoring refresh delay in the computation UBD. This

solution effectively considers that every single request is affected by a refresh operation.

However, this approach is too pessimistic. With measurement-based approaches the

execution time observations taken on the real platform already factor in the impact of

refreshes. Depending on how measurements are aligned with refresh periods, the number

of refreshes that can affect the execution time can be one more than those observed, so

it is enough to pad the observed execution time with tRFC .

It is also the case that a task execution time is increased by ∆cont to capture in the

impact of contention on the bus and the memory (excluding refreshes). The number

of refresh operations occurring during ∆cont can be easily computed by the following

recurring equation (fixed-point iteration): N
(k+1)
REF =

⌈
(∆cont +Nk

REF × tRFC)/tREFI

⌉
,

where ∆cont is the extra time the task execute due to contention, without considering

the impact of refreshes; tREFI the period at which refresh command (REF) are sent to

all banks, and tRFC the number of cycles a refresh command takes to be completed.

The recursion terminates for the value of k such that N
(k)
REF = N

(k+1)
REF .

Overall, the impact of refreshed can be easily factored in by padding the WCET, not

being required to capture it in the computation of UBD. The padding value is given by

(1 +Nkf
REF)× tRFC for the kf for which convergence is achieved.

Side effects of bus contention. When deriving ubd for memory, accesses may also

compete for the bus, thus creating some interference. In general however, bus contention

is generally much lower than memory contention, so that the former cannot mask the

latter. Moreover, owing to the synchrony effect, the set of msk issue requests with

a given (constant) frequency. Hence, if memory requests as served with TDMA with

full bandwidth utilization, the corresponding bus requests are served in the bus with

55

analogous frequency, but with lower occupancy. For instance, if lmem = 10 cycles and

lbus = 2 cycles, then we could have memory requests served in cycles 2-11 (core c0),

12-21 (c1), 22-31 (c2), and so on, and bus requests in cycles 0-1 (c0), 10-11 (c1), 20-21

(c2), and so on.

However, when using msk-nop as scua, the requests from c0 will get issued later pro-

gressively until they collide in the bus with requests from c1. Under RoRo arbitration,

this collision is not an issue since which request from them is granted access first in the

bus has no impact on memory contention as long as both of them reach memory before

the corresponding core becomes the highest priority contender in memory. Under FIFO

arbitration instead, if both requests are issued to the bus at exactly the same cycle,

whether one or the other gets granted first may invert the order of requests in memory

during one cycle with respect to the expected behavior. However, as long as hardware

is deterministic and always solves these cases in the same way (e.g., granting access to

c0), the shape of the plots will remain as in Figure 4.6, and our approach to derive ubd

will continue to work correctly.

4.6 Evaluation

We first present our experimental set-up. Then Section 4.6.2 (also Section 4.6.3 using

stores instead of loads) and 4.6.4 show how rsk-nop allows deriving ubd in the presence

of the synchrony effect. In that narration, we assume knowing the bus and memory

controller latency as well as the actual value of ubd. This information is instead assumed

unknown in Section 4.6.5, which demonstrates the applicability of our methodology to

a real COTS multicore.

4.6.1 Experimental Setup

We model a 4-core NGMP [81] running at 200 MHz comprising a bus that connects

cores to the L2 cache and an on-chip memory controller, see Figure 2.2. As explained

in Chapter 2, Each core has its own private instruction (IL1) and data (DL1) caches.

IL1 and DL1 are 16 KB, 4-way with 32-byte lines. The shared second level (L2) cache

is split among cores, with each core receiving one way of the 256 KB 4-way L2. Hence,

contention only happens on the bus and the memory controller. DL1 is write-through

and all caches use LRU replacement policy. We model the worst-behavior of a closed-

page 2-GB one-rank DDR2-667 [79] with 4 banks, burst of 4 transfers, and a 64-bit bus

that provides 32 bytes per access, i.e., a cache line. Its longest latency across requests

of any type is 27 cycles in our setup.

56

As illustrated in the Chapter 2, we use the EEMBC Autobench suite [30], which includes

some real-world automotive software functions. We also use the bsk, msk, bsk-nop and

msk-nop concepts presented earlier in this work, which use load operations to access the

bus.

4.6.2 Synchrony Effect on the Bus

In order to show the robustness of the proposed methodology we evaluate it in the

reference architecture as presented above, as well as a in variant architecture (labelled

as ref and var respectively in following figures). In the latter, we change DL1 and IL1

access latency to 4 cycles (instead of 1 cycle). This variation increases the minimum

injection time (δmin) of all bus-access instructions by 3 cycles.

For the purpose of showing how rsk-nop allows safely approximating ubd from ubdm,

we use the following timing information of both the ref and var architectures. A given

request suffers maximum contention latency of lbus = 9 cycles per contender: 6 cy-

cles corresponding to the L2 hit latency, and 3 cycles for bus transfer and arbitration

handover. As a result, we have ubd = 27 cycles for the bus, following Equation 4.1.

In a first experiment, we run eight randomly generated 4-task workloads with EEMBC

benchmarks under the ref architecture. The workloads are itemized in Table 4.2.

Table 4.2: Randomly-generated workloads used for evaluation

number benchmarks

1 cacheb, puwmod, canrdr, rspeed
2 iirflt, cacheb, puwmod, canrdr
3 ttsprk, iirflt, cacheb, puwmod
4 aifirf, ttsprk, iirflt, cacheb
5 tblook, aifirf, ttsprk, iirflt
6 a2time, tblook, aifirf, ttsprk
7 basefp, a2time, tblook, aifirf
8 pntrch, basefp, a2time, tblook

Figure 4.10(a) presents the histogram of the number of contenders ready to send a request

when the EEMBC benchmark in core c0 requests the bus to start a transaction under

FIFO (results for RoRo are analogous). Results for different workloads are quite similar.

Most of the times, the requests issued by the EEMBC benchmark in c0 find the bus empty

or with just one contender. Only occasionally, the EEMBC in c0 crosses ways with 2

or 3 contenders. This provides empirical evidence that with real application workloads

it is very difficult to incur scenarios in which the number of contending requests is the

highest possible value. As workloads or time-alignments results may vary, in fact, no

a-priori guarantees can be provided that requests align in the worst possible way.

57

(a) Histogram of contenders

(b) Histogram of access latency for bsk.

Figure 4.10: Results for the bus for FIFO(c©2016 IEEE)

Incidentally, while for FIFO all contenders will be served first at some point, in the

case of RoRo the particular state of the priority assignment determines whether those

contenders will be served before or after c0.

In a second experiment we run 4 bsk that constantly access the bus. In this case, (see the

pink (light grey) bars in Figure 4.10(a)), we observe that on almost every arbitration

round the number of contenders is Nc − 1 = 3. Hence, the bsk reach their goal of

causing maximum contention load on the bus. However, owing to the synchrony effect,

this ability is not sufficient to ensure that each scua’s request incurs a ubd. As we have

seen earlier, in fact, when δmin > 0 for both FIFO and RoRo, the actual contention is

always inferior to ubd.

This experiment, in which we run 4 bsk, allows us to analyze this phenomenon in more

detail, by measuring the actual contention delay γi that each individual request issued by

c0 suffers. Figure 4.10(b) shows the histogram of γ under the reference and the variant

architecture. Results for FIFO (shown in the figure) and RoRo (not shown in the figure)

are practically identical. We observe that the synchrony effect causes almost all requests

58

Figure 4.11: Slowdown when executed rsk-nop as scua against 3 rsk co-runners.
Results shown as a function of nop instructions(c©2016 IEEE).

in each case to incur the same latency, since the injection time among requests is the

same. Further, we observe that the distance among ubdm (observed) and the actual

ubd (27 cycles in this case) varies across the two architectures: ubdm is 23 for the var

architecture and 26 for the ref one. This shows that the approximation quality of ubdm

varies as a function of the δmin of the underlying architecture, which in turn does not

permit to use bsk to arrive at a safe approximation of ubd. As we saw earlier in fact,

ubdm = ubd− δmin when 0 < δmin < lbus.

The 2% requests with different ubdm correspond to the requests executed until all bsk

get synchronized and those requests at the beginning of the loop, due to the effect of

loop control instructions.

We may therefore conclude that, in the general case, when the details about the latency

of the bus are unknown, the use of bsk does not allow estimating ubd accurately enough.

4.6.3 Using store operations instead of loads

So far we have used load operations in the rsk and rsk-nop. We can also use stores, having

in mind that our reference architecture has a store buffer that keeps store requests and

allows instructions to proceed in the pipeline unless the buffer is full, i.e. a store request

is considered completed as soon as it is put in the buffer. The requests in the buffer

access the bus with an injection time δ = 0 since once the buffer is filled, requests can be

issued in consecutive cycles. In a high occupation scenario of the buffer, store requests

suffer ubd in our scenario, i.e., one entry of the buffer is freed every ubd cycles. As δ

59

Figure 4.12: Slowdown when executing bsk-nop as scua against 3 bsk co-runners with
FIFO(c©2016 IEEE).

increases (by inserting nop operations), the slowdown in the rsk-nop corresponds to the

difference between the latency of a new empty slot in the buffer, i.e. ubd, and δ. When

δ is higher than ubd the buffer is able to allocate an empty slot before a new request

comes, thus the slowdown suffered is always zero because the buffer is effectively hiding

the store latency. As it can be seen in Figure 4.11, this causes that for one entire period

the slowdown has a saw-tooth shape, while for following periods, the slowdown is zero.

We observe that the first period spans from k ∈ [1, .., 28], whose length matches the ubd.

The one cycle shift in k is caused by the number of entries in the store buffer and its

processing time.

4.6.4 Synchrony Effect on the Memory

The same conclusions presented in the previous section for the bus, also hold for the

memory controller: A request suffers a maximum contention of 23 cycles. Hence, ubd =

(Nc − 1)× 23 = 69 cycles.

Our results confirm that: i) using three msk, one per core, suffices to cause that more

than 98% of the times any request issued by the scua finds 3 pending contending re-

quests enqueued at the memory controller. ii) in spite of that, neither in the reference

architecture nor in the variant one, ubdm is smaller than 69 cycles.

60

Figure 4.13: Slowdown when executing bsk-nop as scua against 3 bsk co-runners with
RoRo(c©2016 IEEE).

4.6.5 Evaluation of bsk-nop methodology for the bus

For the evaluation of the bsk-nop methodology, for FIFO and RoRo, we assume that no

latency information is known.

FIFO: As shown in Section 4.4.1, to infer ubd, the injection time can be varied by

inserting nop instructions between consecutive accesses of the rsk used as scua.

The Y-axis in Figure 4.12 shows the slowdown (in millions of cycles) suffered by bsk-nop

with respect to its execution in isolation and the horizontal axis represents the variation

of γ as a function of the number of nop instructions inserted.

We observe that results match those in Figure 4.6: the period of each sawtooth is 9

cycles, which corresponds to lbus. As discussed in Section 4.4.1, however, we have to

take into account Nc − 1 periods. For instance, from the first peak (cycle 10) until

the forth one (cycle 37), the difference is exactly ubd = 37 − 10 = 27 cycles. Notably,

the results for the ref and var architectures are exactly the same, but the absolute

contention value decreases as δmin increases.

RoRo: Figure 4.13 shows the result of the same experiment when the bus uses RoRo. As

predicted in Figure 4.8, the slowdown is sawtooth-shaped, with period ubd = 51−24 = 27

cycles for var, and ubd = 54−27 = 27 cycles for ref. Hence, the period of the sawtooth is

the same for both architectures, which proves the robustness of our method in inferring

the ubd under different processor arrangements.

61

Figure 4.14: msk-nop methodology for FIFO(c©2016 IEEE).

4.6.6 Evaluation of msk-nop methodology for the memory

We now repeat the same experiment as for the bus, by injecting nop instructions in the

msk-nop used as scua. Since ref and var yield analogous results again, we only report

those we obtained for the ref architecture.

FIFO: The vertical axis in Figure 4.14 shows the slowdown in cycles, compared with

execution in isolation. The horizontal axis shows the number of nop operations inserted

between memory accesses as shown in Figure 4.5(b) for the msk. We can observe the

same sawtooth shape as in Figure 4.12, but with larger scale. The shape reaches its

maximum with a period of 23 cycles when 2, 25, 48 and 71, ... nop instructions inserted,

which means lmem = 25− 2 = 23, as expected.

After the 71th experiment, the results sop following the sawtooth shape. We studied

why that happens and concluded that at that point, the number of nop instructions in

the loop is large enough to exceed the IL1 capacity, so that IL1 misses occur at each

iteration. In order to confirm this observation, we repeat the experiment with a processor

set-up in our simulator that comprises a perfect IL1, i.e. an IL1 in which all accesses

are hits. This is shown as ”L1 perfect” in Figure 4.14: we observe that execution times

follow the sawtooth shape is confirming our hypothesis in the increase in the number of

conflicts in IL1. In order to solve this problem we propose the following approach.

Instruction cache-aware msk-nop methodology. The msk-nop methodology starts

by adding a given number of memory accessing operations (load operations) in the main

loop. This number is usually high to reduce the overhead (in relative terms) of the loop

control applications, see Figure 4.1. In the msk used for the experiments in previous

62

Figure 4.15: msk-nop inst.-cache aware methodology for FIFO(c©2016 IEEE).

section, 50 load operations were included in the loop body, whose size therefore is around

200 bytes. When we add one nop instruction in between successive loads, the loop body

doubles in size. When the number of nop instructions between loads reaches 80, the

size grows to (50 × 80) × 4 = 16, 000 bytes, which equals the IL1 size. As shown in

Figure 4.12, the results start degrading just past that number of nop instructions.

To test the impact of having more than 80 nop operations between load operations, we

simply reduce the number of load operations in the loop body such that its size, taking

into account the size of load operations and the nops between them, does not go beyond

the instruction cache size (16KB in this case). For instance, we put 50 loads in the loop

for all experiments below 80 nop instructions. Then, we reduce the load count until 40

for all experiment until 100 nop instructions, and so on and so forth not to exceed IL1

capacity.

With the new experiment we can corroborate that ubdm = (49− 26)× 3 = 69 cycles, so

ubdm = ubd.

RoRo: Figure 4.16 shows the results for RoRo with the original msk-nop that can

exceed IL1 cache size. As for FIFO the shape degrades beyond 80 nop instructions,

with the difference that in this case deriving ubd may not be possible if we do not fix our

msk-nop methodology. Again, when making IL1 perfect the sawtooth shape is obtained

as expected, so we apply exactly the same solution as for FIFO : keeping loop size below

IL1 cache size at all times. We do so with the experiment in Figure 4.17, where we

observe that the distance between two teeth of the plot is exactly udbm = 136− 67 = 69

cycles, so ubdm = ubd.

63

Figure 4.16: msk-nop methodology for RoRo(c©2016 IEEE)

Figure 4.17: msk-nop inst.-cache aware methodology for RoRo(c©2016 IEEE)

Overall, the proposed msk-nop instruction-cache aware methodology manages to derive

the actual ubd value for both FIFO and RoRo under FIFO and RoRo arbitration policies.

4.6.7 Summary

As shown, our methodology based on injecting nop operations in the corresponding rsk

allows deriving the sawtooth shapes needed to derive ubd for both FIFO and RoRo

arbitration policies. Differences in the shape across resources (bus and memory) only

affect the scale of the plots, but not their interpretation. Also, we have observed that

it is critically important keeping the size of the rsk small enough to fit in IL1 since,

otherwise, IL1 misses corrupt results and our methodology is no longer usable.

64

4.7 Related Work

Resource-stressing kernels [31] have been proposed to characterize the contention on cer-

tain resources of a multithreaded architecture. They are also used in [26] to characterize

the NGMP [81] or in [17] to characterize the Freescale P4080.

Authors in [82] analyze the impact of resource sharing in multicore and criticize the

confidence that one can obtain with rsk. We acknowledge the need to increase the

confidence on the results provided with rsk, which in fact is the focus of this chapter by

proposing rsk-nop-based methodology.

In [83] authors report a counter intuitive behavior with a RoRo based multicore: the

execution time of a task running against a given number of cores can be smaller than

its execution time when running against fewer number of cores. Our work identifies the

reasons behind this counter intuitive behavior, namely the synchrony effect behavior,

and takes advantage of it to derive the ubd.

Deriving WCET estimates for various arbitration policies has been analysed in the

past including RoRo [53], TDMA [84] a similar policy to RoRo with groups [53] called

MBBA [85], or even a comparison between arbitration policies [54]. In [86] authors pro-

pose a method based on Performance Monitoring Counters (PMC) to enable deriving

WCET estimates with Measurement-based timing analysis, when the ubd for a RoRo

bus is known. All these works assume knowledge about the bus timing: slot sizes or

maximum transfer times. Our work assumes no knowledge about the timing of the bus.

While the methodology proposed in this chapter is assessed against the NGMP processor,

we expect it to hold for other processors deploying fully non-blocking caches and out-

of-order execution like the ARM Cortex A9 and A15.

While in our reference architecture each core can have a single outstanding request to

the L2, hence exploiting memory-level parallelism among tasks, some architectures allow

several outstanding requests per core in the L2 that are properly stored while served. In

the latter case, rsk should be designed to ensure that the L2 request buffering capabilities

are saturated so that each request actually takes lmax
res .

Out of order execution, which is a challenge for itself for timing analysis, can be taken

into account in the rsk design so that it does not change its behavior. The fact that

rsks use only nop and memory operations should simplify this task.

65

4.8 Conclusions

The lack of information about internal processor timing behavior advocates for the use

of measurements to derive those unknown timing parameters. For the bus and the

memory, this parameter is the maximum contention delay a request can suffer when

accessing the bus: ubd. Trustworthiness on the derived WCET bound for COTS mul-

ticore processors depends on both the soundness of the timing-analysis tool/technique

and the input parameters given to the timing analysis tools, ubd in the case of buses

and memory. In this Chapter we propose a measurement-based methodology that needs

no information about the bus and memory controller timing parameters to successfully

derive ubd. Overall our methodology increases the reliability of the WCET bound for

COTS multicores deploying FIFO and RoRo buses and memory controllers.

Chapter 5

Abstracting Multicore Contention

Interference: Templates and

Signatures

As it has been made clear in previous Chapters, timing analysis of COTS multicores is

a complex challenge that needs to be solved before multicore adoption in safety-critical

real-time systems industry may become viable. Deriving an WCET bound for tasks

running on multicores is challenged by the contention, also known as inter-task inter-

ference, occurring on access to hardware shared resources. Unless otherwise restrained,

contention causes the execution time of any one task, hence its WCET bound, to de-

pend on its co-runners. This has disastrous impact on system design and validation, as

it conflicts with the incremental development and verification model that industry pur-

sues to contain qualification costs and development risks. This industrial goal is sought

by allowing individual subsystems to be developed in parallel against an agreed master

specification, then qualified in isolation and incrementally integrated, with virtually no

risk of functional regression at system level. In the time domain, incremental integra-

tion and qualification postulate composability in the timing behavior of individual parts,

whereby the WCET bound derived for a task determined in isolation, should not change

on composition with other tasks.

Several approaches have been proposed to deal with contention for multicore on-chip

resources. On the one end of the conceptual spectrum in the state of the art, some

authors propose computing WCET bounds so that they upper bound the effect of any

possible inter-task interference a task may suffer on access to hardware shared resources.

WCET bounds computed this way are fully time composable [87][88]. They therefore

enable incremental integration and qualification, but at the cost of pessimism that may

66

67

cause untenable over-provisioning, as the timing behavior actually occurring in operation

may fall much below the level determined considering the worst-case interference possible

in theory [17, 26, 31]. On the opposite end, other authors [89] propose – currently only

for research platforms – to determine WCET bounds simultaneously for multiple tasks

in specific configurations. Those WCET bounds are non-time composable, as they only

hold valid for the tasks being analysed and for their specific configuration. If any such

parameter changes, all WCET bounds become invalid and the entire analysis has to be

repeated.

In this chapter, we tackle resource contention in multicores by proposing the new con-

cepts of resource usage signature (RUs or S) and template (RUl or L). RUs and RUl

aim at making the WCET bound derived for an interfered task τ , time composable with

respect to a particular usage u of the hardware shared resources made by the interfer-

ing co-runner tasks. The tasks’ WCET bounds are determined for a particular set of

utilizations U such that the WCET bound derived for any u ∈ U upper bounds τ ’s exe-

cution time under any workload so long as the co-runners of τ can be proven to make a

resource usage smaller than u. We explain later what “smaller” means and how this can

be determined. This abstraction allows deriving time-composable WCET bounds for

individual tasks in isolation for each u ∈ U , so that the system integrator can safely pull

those (interfering) tasks together as long as the resource usage made by their individual

set of co-runners is upper-bounded by some u. All that the system integrator has to

care in that regard is to characterize the tasks’ access to hardware shared resources (a

low-cost abstraction of the task execution time), ignoring any finer-grained detail of that

access behavior. In this chapter we present an approach to produce WCET bounds in

that manner, using measurement-based timing analysis techniques.

RUs and RUl are, on purpose, made to be agnostic to the particular timing distribution

of the resource access requests to be considered. Hence, two tasks generating the same

number of accesses to a resource, though with different patterns, have the same signature.

The challenge in the proposed method is in determining an effect on the interfered task

that upper bounds the interference caused by contending accesses, regardless of the time

distribution of those accesses as made by the interfered and the interfering tasks. In this

chapter we present the following main contributions:

1. We develop the novel concepts of RUs and RUl for the timing analysis of COTS

multicores and sketch an algebra of operators over RUs/RUl to enable their prac-

tical use.

2. We provide exemplary RUs and RUl for the cases when requests accessing shared

resources incur either fixed or variable response latency.

68

3. We present an implementation of RUs and RUl for a 4-core NGMP-like [25] ar-

chitecture, focusing on the bus and the memory controller as exemplars of on-chip

shared resources. In our experiments we assume that the L2 cache is partitioned,

as it is the case of the NGMP.

Our results show that when RUs and RUl are tailored to upper bound the access load

caused by a task’s co-runners, the WCET bound of that task is 1.36 times bigger than

its execution time in isolation. If templates upper bound the highest number of accesses

that any workload could produce, the (fully time composable) WCET bound would

instead be 2.57 times bigger. RUs and RUl thus provide an effective way of abstracting

resource usage in the quest for tight and trustworthy WCET bounds.

5.1 Formalization of RUs and RUl

RUs and RUl allow analysing, for the most part in isolation, the timing behavior of tasks,

by abstracting the perturbation that they may incur from the contention for hardware

shared resources occurring on a multicore caused by co-runner tasks.

5.1.1 Resource Usage signature (RUs)

A RUs abstracts the use of resources of a given interfered task, τA. Once computed, it

will be used for τA’s multicore timing analysis instead of τA itself.

We describe the use of a hardware shared resource through a set of features, which

correspond to quantitative values. A RUs for task τA, is a vector SA = (a1, a2, ..., an)

that contains the aggregate of relevant features that characterize all the hardware shared

resources, for the evaluation of contention effects. Since RUs are quantitative, the RUs

of distinct tasks are comparable and can also be combined together to form a joint RUs.

Consider the reference multicore architecture shown in Figure 5.1(a), where the bus and

the memory are shared. Further consider two types of accesses to those shared resources,

for read and write operations respectively. In this case, RUs have at most 4 features:

bus reads (nbusrd) and writes (nbuswr); memory reads (nmem
rd) and writes (nmem

wr). RUs are

thus defined as SA = (nbusrd , n
bus
wr , n

mem
rd , nmem

wr) = (a1, a2, a3, a4).

If the bus were the only shared resource, the RUs of a task τA would be abstracted

as a RUs with two features: nbusrd and nbuswr . If both types of requests hold the bus

for the same duration, the RUs would consist of a single feature corresponding to the

sum of nbusrd and nbuswr , i.e., SA = (nbusrd + nbuswr) = (a1 + a2). The addition of SB to SA

69

is given by SA + SB = (a1 + a2 + b1 + b2). For comparison, instead, we say that SA
dominates SB, SA % SB, if the interference by the former is greater than that by the

latter: a1 + a2 ≥ b1 + b2.

This reasoning easily extends to the more realistic scenario in which the bus holding times

are asymmetric; for example, with reads holding the bus longer than writes. In that case,

the RUs for τA could be either single-feature, considering all accesses as “long” accesses

(counting writes as reads in the example), or multi-feature (two, in the example), i.e.,

SA = (a1, a2) = (nbusrd , n
bus
wr). In the latter formulation, addition and comparison change

as follows: addition is defined as vector addition, i.e., SA + SB = (a1 + b1, a2 + b2); for

comparison, SA dominates SB, SA % SB if (a1 ≥ b1) ∧ (a2 ≥ b2).

5.1.2 Resource Usage template (RUl)

RUl have the same form as RUs, namely, a vector of features LK = (k1, k2, ...kn), but

with a different use. RUs abstract tasks according to their use of the shared resources

while RUl abstracts the use of the shared resources so that LK can be used as an

upper bound to the interference effects caused by any task τi whose RUs Si is such that

LK % Si (i.e. Si is dominated by LK).

Tasks are made time composable against some RUl LK so that the WCET bound

derived for a given task τA and for that RUl, denoted WCETboundKA , upper bounds

τA’s execution time inclusive of the interference that the contenders of τA, whose RUs

do not exceed LK , may cause.

Returning to the example in which the bus is the sole shared resource with all accesses to

it incurring the same contention effect: for a LK that captures a given number of accesses

to the shared bus, we want to determine the highest impact by LK on WCETboundA, so

that WCETboundKA can be regarded as a time-composable bound for τA in any workload

in which LK %
∑

i Si for all co-runner tasks τi of interest.

A maximally time-composable template LTC exists, which is an upper bound for any

workload. LTC corresponds to the case in which all accesses from the signature suffer

the highest contention from the Nc−1 contending cores. In that case, every access from

SA contends with Nc − 1 other accesses, i.e., LTC = (Nc − 1) × SA. Any LK % LTC

would produce exactly the same result as LTC , since τA cannot be interfered more than

the accesses in its signature SA.

70

(a) (b)

Figure 5.1: Reference multicore architecture (a), and main steps in the RUs and RUl
methodology (b).

5.1.3 Illustration of RUs and RUl use through an example

In this section we return to the case in which the bus is the sole shared resource and

all accesses to it incur the same contention effect. For now we limit our attention to

two cores. The task under analysis, τA, runs in one of the two cores. The contending

requests from the two cores are arbitrated with the round-robin policy.

Figure 5.1(b) depicts the process we follow when the proposed approach is applied to

this case. First, we obtain the RUs of τA, denoted SA. In the example architecture, the

RUs of tasks using the shared resource is the number of accesses they make, a for τA,

hence SA = (a). Our approach treats contention such that the WCET bound of τA can

be derived by upper bounding τA’s execution time considering the interfering effect that

it incurs when its co-runner task, whatever it is, makes up to k contending accesses to

the shared resource. To this end we define a RUl LK , which is the system integration

parameter that defines the inter-task interference to be considered in the determination

of τA’s WCET bound. The abstraction captured by LK with LK = (k) is a RUl.

Once the SA and LK are defined, we determine ∆K
A , the increment to be applied to

the execution time that τA may incur, to capture the contention effect from LK . This

corresponds to step 3 in Figure 5.1(b). More precisely, ∆K
A upper bounds the incre-

ment that the execution time of a task τA with at most a accesses to a shared resource

may suffer from k contending requests. WCETboundKA (i.e τA’s WCET bound deter-

mined under the RUl LK) is computed as the summation of ET isol
A , the execution time

of τA when running in isolation, without contention, and ∆K
A , the increment that up-

per bounds the contention effects from any k interfering accesses. This corresponds to

step 4 in Figure 5.1(b). Overall, WCETboundKA is time composable against any co-

runner task τB with signature SB = (b), as long as the RUs of the co-runner is lower

than LK , which means that τB makes b ≤ k contending accesses. We denote this as

tc(WCETboundKA , τB), which holds if b ≤ k.

71

RUs abstract the distribution of requests over time. Taking into account the exact dis-

tribution of requests over time, for instance in the form of requests arrival curves [90],

would potentially enable deriving tighter WCET bound. However, deriving such distri-

butions is complex, as programs normally have multiple paths of execution, each with

its own access pattern (distribution). And, paradoxically, considering these particular

distributions would decrease timing composability. Instead, our approach only requires

the tasks’ access count for every individual shared resource, as well as ET isol
i (execution

time in isolation) for each individual task τi. Notably, both are already had with high

accuracy by state-of-the-art technology, e.g., [91]. With our approach, the ability to

abstract away from the need to know the exact points in time at which requests would

be made to shared resources releases the system integrator from the obligation of adopt-

ing rigid and inflexible scheduling decisions (which fares poorly with the development

unknowns of novel systems) or from the labour-intensive cost of exact analysis.

Our approach requires the user to set the RUl to capture the potential co-runner tasks

precisely. The spectrum of this capture has two ends. On one extreme we find the time-

composable templates, LTC , which represent an upper bound for RUl. However, if RUl

is close to that template, the WCET bound of tasks might be unnecessarily increased.

On the opposite extreme, if RUl is too small, it constrains the choice of tasks that may

be allowed to run in parallel. A simple solution consists in deriving for each task an

WCET bound under different RUl, such that at integration time, the smallest RUl that

upper bounds the signature of the actual co-runner tasks is used. With this, the residual

part of the timing verification at system integration is small and simple. Selecting the

proper number of RUl represents a trade-off between effort and accuracy: the higher

the number of RUl the lower the over-estimation of WCET bound and the greater

the analysis time, and vice-versa. Finding appropriate RUl is a standard optimization

problem that is part of our future work.

In the example considered in this section we have made several simplifications to facilitate

understanding: two cores, one single type of access, synchronous accesses (i.e. the

core stalls when the access occurs until served) and a single shared resource. In real

processors we have different types of accesses to the shared resource (synchronous and

asynchronous), each with a distinct access latency. Hence, simply bounding the effect

of contention by adding access counts is not enough.

5.2 RUs & RUl for Measurement-Based Timing Analysis

Next we present one concrete realization of RUs and RUl for use with measurement-

based timing analysis (MBTA), specifically for a NGMP-like processor architecture [25].

72

5.2.1 Methodology

For this approach we make use of RSK(see Chapter 2) for our methodology, in this case

we design them for the architecture in Figure 5.1(a), which is a schematic view of that

in Figure 2.2. For this purpose the basic structure a loop body is mostly composed by

load instructions that hit in the L2 cache stresses the bus. For the sake of clarity in

this specific chapter we distinguish between two kinds of RSK by their purpose no their

composition:

Resource stressing kernels, RSK, place a configurable load on a given shared resource,

so that running a task against a RSK may represent contention scenarios of interest.

In theory, one could design a worst-contender kernel that generates the maximum con-

tention that a task τi can suffer. However, such kernel would be specific for the task to

be interfered and for the target processor [31]. Consider for example, a single shared

resource arbitrated by a least-recently-used policy, where the task that accessed the

resource last gets the least priority. In that case, the worst-contender kernel should

generate a request in exactly the same cycle as the task of interest, so that every request

from that task gets delayed by the contender, and for the next round of arbitration

the task has the lowest priority again. The level of control required on the application

behavior and the granularity of intervention are too fine-grained and laborious to be

used in practice [31].

Resource sensitive kernels, RSeK, are designed to upper bound the execution time in-

crease suffered by any other task, with a smaller or equal signature, owing to the in-

terference from a given template LK . Consider a scenario in which bus accesses hold

the bus for a constant duration. Further assume that we want to determine ∆K
A for

τA, i.e its WCET bound increment due to a template LK with k accesses. Intuitively,

one could get an estimate of it by running τA several times against a RSK that makes

k accesses. However, in order to gain confidence in the WCET bound obtained, the

experiment should be repeated with different alignments of the RSK, so that the inter-

leaving of accesses varies enough and the worst case can be observed in a measurement.

In practice, this may require excessive experimentation effort. The need for repeating

the experiments with different alignments stems from the uncertainty on the time dis-

tribution of accesses, which is hard, if at all possible, to measure and control by timing

analysis technology. We can therefore conclude that studying the task under analysis

against micro-kernels is not viable. Instead, we use micro-kernels to model both the in-

terfered and the (set of) interfering tasks: RSK and RSeK are designed to account for

bad alignments of requests: RSeK is made of instructions that cause accesses to the

shared resource and that continuously contend with RSK requests.

73

We define ∆RSK
RSeK = ETRSK

RSeK − ET isol
RSeK , where ETRSK

RSeK is the execution time when a

given RSeK with the same signature as task τA runs against a RSK implementing a

template LK with k accesses; and ET isol
RSeK the execution time when the RSeK runs in

isolation. For task τA, let ∆K
A = ETK

A −ET isol
A be the execution time increase τA suffers

when it runs against LK . RSeK and RSK are designed so that ∆RSK
RSeK ≥ ∆K

A holds

for any request alignment of τA under LK contention. To that end, we run the RSeK

in isolation and then against Nc − 1 copies of RSK so that all RSeK ’s accesses to the

shared resource suffer high contention, causing a measurable ∆RSK
RSeK to emerge. In the

next section we show how to derive the number of accesses of the RSeK and the RSK,

based on the number of accesses of the template and signature under consideration.

∆RSK
RSeK is used to compute the WCET bound estimate for τA as follows: WCETboundKA =

ET isol
A + ∆RSK

RSeK . WCETboundKA is composable with any set of interfering tasks against

which τA runs in parallel, if their total number of accesses is lower or equal to k.

That is, the addition of the signatures of the interfering tasks is dominated by LK :

(Si +Sj + ...+Sl) - LK . Interestingly, given a task τB whose signature is dominated by

τA, i.e. SB - SA, the obtained ∆RSK
RSeK for τA can be used to upper bound τB’s execution

time: WCETboundKB = ET isol
B + ∆RSK

RSeK .

Overall, RUs and RUl provide powerful abstractions for the interfered and the interfering

tasks, which simplify the integration of multiple tasks by combining their signatures.

5.2.2 The case of a NGMP-like architecture

Our reference multicore architecture [25] comprises Nc = 4 symmetric cores, see Fig-

ure 5.1(a) (a schematic of that in Figure 2.2), each equipped with private instruction

cache (IC) and data cache (DC). The cores have an in-order time-anomaly-free de-

sign [92]. Load operations are blocking, whereby the pipeline is stalled until the load

is resolved. Each core has one 2-entry write-buffer that holds store requests until they

are resolved, without stalling the processor. The processor is stalled solely to preserve

memory consistency, when a store finds the write-buffer full or a load operation finds

the write-buffer non-empty.

Bus. Our example processor implements round-robin bus arbitration so that if, in a

given round, core ci, i ∈ {1, .., Nc} is granted access to the bus, the priority ordering in

the next round is: ci+1, ci+2, ..., cNc , c1, c2, ..., ci. A lower priority core can use the bus

when all higher priority cores do not use it. The bus access jitter that a task incurs

on access to the bus, depends not only on the number of co-runners but also on the

way their requests interleave. The worst contention situation happens when a task τB

74

Figure 5.2: Impact from/to the different access types to the bus.

assigned to core ci requests the bus in a given round of arbitration, simultaneously with

tasks in all other cores and the previous round was assigned to ci.

L2 cache. The L2 cache processes up to one miss per core at a time and allows hit-

under-miss and miss-under-miss so that when a miss from a core is processed, hit/miss

requests from other cores can be served. The 4-way L2 is partitioned so that every core

is allowed to use 1 way1.

Memory controller. The L2 sends a request to the memory controller on every L2 miss.

Requests are stored in a FIFO request queue, with one entry per core. The memory

controller assumes a single DRAM device with close-page policy.

5.2.3 Bus

The bus handles three distinct request types, which differ in the contention they induce

and suffer. Stores (st) either hit or miss on the L2, which are served immediately by the

L2 and hold the bus for 2 cycles. L2 load hits (l2h) hold the bus for 7 cycles because they

are not split by the bus and insert wait states on the bus for the hit latency of the L2

(5 cycles). L2 load misses (l2m) that are split by the L2 and perform a new arbitration

whenever the L2 responds to the miss, holding the bus 2 cycles in each arbitration.

Figure 5.2 shows the contention suffered by a source (interfered) request by another

(interfering) request for all request types. l2h generate the highest contention and l2m

are the most affected since they suffer two rounds of arbitration: l2m can therefore be

interfered twice by two concurrent contending requests, one round of arbitration per

each such request.

Our approach based on RUs and RUl does not require knowing the exact time of request

issue, but whether they have asymmetric timing behavior in the impact they suffer and

they cause to other request types so that RSK and RSeK can be designed with the

appropriate request types. The RSK and RSeK for the bus are called BSK and BSeK :

BSeK (abstracting interfered task bus usage). The signature of a task τA running

in this architecture may take different forms, with different levels of tightness and exper-

imentation effort. The canonical signature for the bus contains the number of accesses

1The GR712RC and the NGMP do implement this feature.

75

of each type made by the task. That is: SbusA = (ast, al2h, al2m). This can be simplified

by realizing that l2h and st access the bus once whereas l2m do it twice with exactly

the same timing as l2h and st. Moreover, the delay suffered by an access does not vary

whether the access was generated by a l2h, st or l2m. Hence, signatures have the form:

SbusA = (ast + al2h + 2× al2m).

BSeK can be implemented with either l2h or st. l2m are not appropriate as it is not

possible to place high pressure on the bus with l2m since they miss in cache and take

long to be served from memory, leaving the bus idle in the meantime. l2h and st instead

can place very high pressure on the bus. Our approach considers BSeK to only have st

operations.

BSK (abstracting interfering task(s) bus usage). Templates can be mono- (L1D)

or bi-dimensional (L2D).

L2D. st and l2h generate different impact on the bus (recall that l2m are equated to

2 st). In particular, l2h produces the highest impact and st the lowest. This allows

generating bi-dimensional templates: L2D = (kl2h, k2×l2m+st), whereby BSK s comprises

load L2 hit accesses and store accesses to generate each respective type of interference.

L1D templates comprise only l2h, which generate the highest interference. A given

L1D = (kl2h) with k l2h accesses upper bounds the impact that one or several tasks,

whose bus access count is lesser or equal to k, can generate on any other interfered

task. L1D are easier to generate and simplify experimentation, but they increase the

pessimism of WCET bounds, since st are considered to generate the same impact as

l2h.

Putting it all together. Deriving the access count for BSeK and BSK varies for L1D
or L2D as we show next.

SA −L1D. Let a and k be the number of accesses in the signature SA and the template

LK respectively. Running BSeK and BSK concurrently, we derive an upper bound to

the increase in execution time (the delta) that k accesses of the template can have on

the a accesses of the signature. If k ≥ (Nc − 1)× a then each request of SA suffers the

impact of Nc − 1 contenting requests. If this is not the case, only dk/(Nc − 1)e requests

from SA suffer impact.

The number of request accesses generated by the BSeK is given by N = min(a, dk/(Nc−
1)e). By running this BSeK against Nc − 1 BSK copies, each having a number of

accesses largely above N , we derive an upper bound to the impact that LK has on SA.

The impact that a task can suffer due to a template LK with k l2h is upper bounded

76

as: ∆BSK
BSeK = ETBSK

BSeK − ET isol
BSeK . The WCET bound derived for a given task τA and

template LK is: WCETboundKA = ET isol
A + ∆BSK

BSeK .

SA − L2D. In this case we account for the fact that requests sent by the interfered

task, τA, suffer different interference by the l2h and l2m/st sent by the interfering tasks,

abstracted in L2D. In this approach we pair up every request in τA with Nc−1 requests

in L2D causing the highest interference (l2h) on the former. If the number of those

requests in L2D is exhausted, we pair up τA requests with those in L2D causing the

second worst interference (st).

We generate two BSeK and BSK pairs to capture the impact that accesses in SA suffer

from l2h and l2m/st in L2D so that:

∆BSK
BSeK =

(
∆BSKl

BSeK1
+ ∆BSKs

BSeK2

)
(5.1)

BSeK1/BSKl and BSeK2/BSKs capture the interference on τA’s accesses caused by

the l2h and l2m/st in L2D respectively. BSeK1 and BSeK2 have different number of

st operations, N1 and N2. BSKl comprises l2h operations whereas BSKs comprises st

operations.

Let us assume for example a = 30, kl2h = 60, and kst = 80. In this case, BSeK1 has

N1 = min(30, d60/3e) = 20 st, which we pair up with 20 accesses in SA; and BSeK2

has the rest of accesses in SA, N2 = 30 − 20 = 10 st, which we pair up with 3 × 10

requests out of the 80 accesses in kst. The remaining 50 st in kst are not paired since

they will not cause further impact on SA. Overall, an upper bound to the impact that

an application can suffer due to L2D is given by:

WCETboundKA = ET isol
A +

(
∆BSKl

BSeK1
+ ∆BSKs

BSeK2

)
(5.2)

5.2.4 Memory Controller

Memory uses a close-page round-robin memory controller. The request queue holds one

request per core. The memory has two characteristic latencies, the data latency and

the request latency. The data latency is the latency between the instant in which the

request is sent to the memory devices and the moment in which the data are already in

the processor so that the L2 can be given an answer. Data and request latency are not

the same, since the memory needs some time after providing the data (data latency) to

close the row accessed by the request. Read and write requests accesses have different

data latencies, but have the same request latency. The request latency is the one that

defines the interference that each request suffers and generates, this means that all types

77

of combinations between read and write memory accesses generate and suffer the same

interference, which is 23 cycles in our case although this information is not needed to

use RUs and RUl. This means that a core accessing memory will have to wait 23 cycles

for each other core in the queue.

We differentiate between three different types of interfering memory traffic: (1) read

requests generated by store misses on the L2 (stm); (2) write requests generated by

dirty misses on the L2 (dtm); and (3) read requests generated by load misses on the L2

(ldm). Read and write accesses have different data latencies, but have the same request

latency. The request latency is the one that defines the interference that each request

suffers and generates, this means that all types of combinations between read and write

accesses on the memory generate and suffer the same interference which is the request

latency (RL), times the number of contenders, i.e. cores, in the processor.

For the memory controller we follow the same principles as for the bus, with the par-

ticularity that the impact from/to the read/write request types is homogeneous. Hence

we only need L1D templates. Since the impact on the requests is homogeneous, we only

need L1D templates. The RSK and RSeK for the memory are called MSK and MSeK :

Smc
A = (amem), where amem is the number of accesses made by the task to the memory

controller, and the WCET bound derived for a given task τA and template Lmc
K is given

by: WCETboundKA = ET isol
A + ∆MSK

MSeK .

5.2.5 Multi-resource signatures

In the presence of multiple shared resources, the signatures and templates must cover

the hardware features so as to soundly upper bound contention in each of them. For the

reference architecture considered in this work, signatures and templates are as follows:

Sbus+mc
A = (ast + al2h + 2al2m, amem) and Lbus+mc

K = (kst + 2kl2m, kl2h, kmem).

It is possible that a task suffers contention in several shared resources simultaneously,

so that the impact of the contention does not accumulate but rather overlaps. However,

determining trustworthy bounds to the degree of overlap in the contention suffered on

requests to different resources is complex. Signatures and templates are intentionally

made agnostic to the distribution of requests over time. As we focus on the number of

requests to each resource rather than on their timing, it is difficult to determine how

contending requests overlap. Our current approach assumes no overlap in contention,

which in our time-anomaly free processor design is a safe assumption on the maximum

impact of contention. Overall, in the presence of a template for the bus Lbus and the

memory Lmc (a.k.a. Lbus+mc), a task is assumed to suffer the sum of the contention

generated by both templates:

78

Figure 5.3: WCET bounds for different templates for 10 4-task workloads. Results
are normalized to the execution time in isolation.

WCETbound
LbusK +Lmc

K
A = ET isol

A + ∆BSK
BSeK + ∆MSK

MSeK

5.3 Evaluation

For our evaluation, we model a 4-core NGMP-like symmetric multicore [25] comprising

a bus connecting cores to the L2 cache and an on-chip memory controller, analogous to

that used in Chapter 4. This processor model is relevant as it constitutes a potential

baseline for the space domain. As discussed in Chapter 2, the performance estimates

provided by our simulator against a real NGMP implementation, the N2X [28] evaluation

board, proved to be very precise.

Our RSeK /RSK approach works on the premise that the contention suffered by each

request of the RSeK upper bounds the contention suffered in any other scenario. The

authors of [86] show that round-robin arbitration can have anomalous cases when a

higher number of contenders introduces less contention on the bus. In fact, we show in

Chapter 4 that the RSK cannot necessarily generate the worst (maximum) contention

on RSeK, due to the alignment of requests. To solve this, we applied a solution based on

adding nop operations between RSeK requests to modify their alignment. For instance,

in the case of the bus, since we use store requests for the RSeK (see Section 5.2.3), we

prove that each RSeK ’s request suffers the maximum contention [21]. In our reference

architecture, if load operations were used in the RSeK, each request would suffer exactly

one cycle less than the maximum contention on each request as shown before, which can

be addressed with the solution presented in previous chapter.

79

5.3.1 Experimental results

Our evaluation was carried out along 2 axes. First, we compared the tightness of 1D

and 2D templates against fully-time composable WCET bound, that can be obtained

by software [26][31] or hardware [53] methods. Secondly, we compared 2D templates,

for which tighter results are obtained, to the case in which the task under analysis runs

against RSK.

1D vs 2D signatures. Figure 5.3 compares the scenario with a fully-time compos-

able template, LTC , valid for any workload (any workload template in the figure), with

1D (L1D) and 2D (L2D) templates fitting the potential interference in the correspond-

ing workload. We analyze 10 randomly generated workloads and show results for the

benchmark running on core 0. Similar results are obtained for the other cores.

For instance, for workload W8 <pntrch(PN), basefp(BA), a2time(A2), tblook(TB)>,

we consider PN as the task under analysis and a template that corresponds to the

aggregate of signatures of the three other benchmarks. This causes L1D to have 564, 227

bus accesses (as many as the addition of bus accesses of BA, A2 and TB). This is

abstracted by RUs/RUl so that only 564, 227/3 = 188, 076 bus accesses from PN suffer

high contention and the rest suffers no contention. To measure this effect, we run a BSeK

with 188,076 accesses against 3 BSK with a large number of accesses. The same process

is followed for the memory. L2D is generated analogously, but considering separately

l2h and st bus accesses.

Figure 5.3 shows the WCET bound for the first benchmark in the workload (under

anyworkload, L1D and L2D), normalized to its execution time in isolation. We observe

that fitting templates to actual contention (L1D and L2D) in the workload tightens

WCET bounds significantly. This effect is particularly noticeable for WL1 and WL4.

Also, in all cases L2D provides tighter WCET bounds than L1D. This is so because with

L1D all accesses to the bus are assumed to be l2h, which generate the highest contention,

while L2D better captures the fact that there are two type of requests generating different

contention (l2h and l2m-st). For instance, WL4 has a normalized WCET bound of 4.37

(more than 4x the execution time in isolation) when using a template valid for any

workload. If we use L2D for this workload, the WCET bound is only 1.53. Overall, our

approach allows reducing the WCET bound from 2.57 to 1.8 with L1D and 1.36 with

L2D templates on average for the 10 workloads.

Owing to strict page limits we are unable to report the contention impact generated by

the memory. Notably however, in our processor set-up the bus has higher impact than

the memory, as the L2 cache filters out most memory accesses. Of the contention impact

in L2D, 78% stems from the bus and only 22% from the memory.

80

Figure 5.4: Overestimation incurred by RUs/RUl

RUs/RUl vs. EEMBC/RUl. In order to assess the pessimism incurred in WCET

bound obtained with L2D we compared them with the execution time for the task (i.e

EEMBC), denoted ET , taken when the task run as part of a workload comprising

RSK [26][31]. This workload represent a pessimistic yet possible contention scenario

that the task can suffer. Figure 5.4 shows WCET bound obtained with L2D relative

to ET . Notably, the incurred pessimism was always below 45%, 20% on average. We

contend that the benefits provided by RUs/RUl in the simplification of timing analysis

upon system integration, pays off for the increase in WCET estimates.

5.4 Related Work

Contention on access to hardware shared resources has been thoroughly studied in the

state of the art. A taxonomic summary of the relevant works has been presented in Chap-

ter 3. Authors in [93] propose a methodology to obtain the signature of tasks and replace

them with kernels that mimic their shared resource usage pattern as a way to reduce the

variability in measurement-based analysis. Instead, we use signature and templates to

abstract the contention tasks cause and suffer, bounding contention effect [21]. Works

addressing off-chip contention assume no contention for on-chip resources, which are

assumed replicated. Off-chip contention for the bus is handled with TDMA buses [32]

whose analysis case is the worst possible alignment of the task requests to their TDMA

slots. Works assuming dynamic arbiters [33] consider the particular pattern of accesses

of each contender to the bus. For on-chip resources, two main approaches have been

followed, both requiring some hardware support: isolation or bounded interference. The

former uses TDMA arbitration and partitioned caches to prevent interaction among

81

tasks [84]. The latter bounds the maximum impact that one task may generate on co-

runners [53]. However, as far as we can tell, such specialized hardware support is not

fully or readily available to industry: while cache partitioning has been implemented

in hardware, e.g. in the Cobham Gaisler NGMP and the ARM A9, for the bus and

the memory controller instead such support is not provided. When the shared cache is

not partitioned, alternative solutions – around the concept of partial time composablity

– have been proposed to approximate the time composability properties provided by

templates and signatures [88].

In the absence of hardware support in COTS processors, contention effects can be anal-

ysed, bounding the memory latency (for instance for Intel Core-i7 [77]), or even deriving

WCET estimates (for Freescale P4080 [18]). In the latter research, authors use a static

timing analysis approach with run-time monitoring of the resource usage that benefits

from the knowledge of the workload to be able to derive tight WCET estimates. As a

consequence of the limitations in the state of the art for COTS, the execution time of a

task becomes dependent on its co-runners, which is a major impediment to incremental

development and qualification. This is the challenge we have tackled with our approach

based on resource signatures and templates.

5.5 Conclusions

We presented a novel approach to studying the contention on the bus and memory con-

troller, building on the concept of Resource Usage Template(RUs) and Resource Usage

Signature(RUl) that abstract the resource usage made by the task under analysis and by

its contenders. These notions help abstract the interference impact suffered by the task

under analysis and the interference effects generated by its contenders. The notions em-

bodied in our proposal provide a simple yet powerful mechanism to aid time-composable

integration of multiple tasks in a multicore. A wise selection of RUl allows obtaining

tight upper bounds to execution time, for modest cost and effort, thereby facilitating

incremental development and qualification for systems targeting COTS multicore pro-

cessors.

Chapter 6

Surrogate Applications

Generation

In integrated architectures, such as IMA or AUTOSAR, assessing during early design

phases whether applications fit their timing provide several benefits. In particular,

it allows each software provider to carry out the verification of its application on its

own, before applications are integrated. However, deriving contention bounds in multi-

cores require collecting measurements of the application under analysis running against

contender applications developed by other software provider, which may not exchange

applications due to IP confidentiality reasons.

We introduce the concept of Surrogate Applications (SurApp) as a means to attack this

challenge. A SurApp copies the activities generated by the real (target) application on

hardware shared resources, such as accesses to buses, memory, and caches. SurApps are

automatically generated from information (e.g. memory access counts) collected from

the execution in isolation of real applications.

Given applications A and B, our goal is making that the slowdown that A suffers when it

runs against the SurApp of B (SurAppB) matches the slowdown A suffers when it runs

against B. Sharing SurApps during early design phase instead of applications, enables

software providers to run their applications against other software provider’s SurApps

in the multicore and derive the slowdown their applications suffer due to contention.

This approach incurs no violation of IP since SurApps only copy activities of the real

applications, rather than their functional behaviour or source code; and can be developed

during early design phase as soon as each software provider can generate a binary of its

applications.

82

83

We tailor SurApps to the Cobham Gaisler NGMP processor [81], considered for on-

board processing for future Space’s missions. We reproduce the contention created by

real applications in shared last level caches, bus and memory, whose impact in timing

behaviour has been shown to be high [26, 73]. In detail, the contributions of this Chapter

are:

1. We identify key performance indicators to be copied by SurApps to accurately

mimic cache, bus and memory contention. In particular, stack distance is the

main indicator of applications’ behaviour. We further elaborate on how stack

distances of the target application (running in isolation) can be obtained with the

tracing support in real NGMP boards.

2. We present SurAppGen, an automatic framework that generates SurApps that

copy the stack distances of the target application. We show the main elements of

SurAppGen design when copying the real application’s behaviour.

3. Our results show that SurApps mimic the stack distance behaviour of the real

applications resulting in similar shared cache, bus and memory behavior, and so

similar slowdowns on other contender applications on the NGMP processor.

6.1 Overall Approach and Target Platform

Time and space partitioning concepts from IMA-SP provide functional isolation, e.g. via

Virtual Machines [94] like ARINC653-based Fentiss’ XtratuM [95] or GMV’s AIR [96].

Applications are provided quotas (budgets) on CPU time and resource usage (e.g. mem-

ory). In terms of timing, under ARINC653, time is divided into major frames that

repeat over time. Each major frame contains several minor frames in which different

applications (functions) run. Each software provider derives WCET estimates for its

applications and determines whether each one (e.g. A) can finish in its assigned minor

frame. Yet, in multicores applications affect each other’s timing behavior due to sharing

of hardware resources (e.g. buses and caches), which hinders WCET estimation since

software providers have to derive an upperbound to the contention that other corunning

applications cause on A.

early design phase covers several stages prior to software integration. In a first stage,

before the application’s binary is produced, timing estimates are derived at a “coarse

grain” and do not consider elements like multicore contention [97][98]. In a second

phase, once the binary is generated (e.g. by properly stubbing the function), contention

can be factored in the timing estimates [99]. The function undergoes integration phases

84

where functions of the different software providers are consolidated into the final software

image.

SurApps are deployed when the binary is generated but not integrated with other func-

tions, which carries the difficulties described in the previous section. During early design

phase no strict guarantees are required – rather required in late design phase. In early

design phase the goal is to have good estimates of the WCET of the task with tendency

towards over-estimation to prevent costly late design phase timing violations [100]. No

particular figure is reported in the literature on the accuracy required during early design

phase. Yet several works show that the impact of contention in the NGMP can reach

20x for some kernels and 5.5x for some benchmarks [26]. Hence, we deem the accuracy

results obtained by our approach (13% on average) as high.

With SurApps, each software provider runs each application in isolation, see Figure 6.1.

The software provider leverages the tracing support in the underlying board to obtain

the key performance indicators used to copy his application behavior. In a second step,

the software provider executes the SurAppGen that builds on those key performance

indicators to create a SurApp that copies the behavior of the real application. software

providers exchange SurApps, so for a given application AppA, the corresponding software

provider can determine the slowdown it suffers due to hardware resource sharing with its

contenders by running it against their SurApps. If there is no violation of the budgets,

the scheduling plan is deemed as valid. Otherwise, the integrator may increase the

budget given to a software provider or change the scheduling. On its side, the software

provider can reduce the CPU requirements of its application.

Target Platform. We focus on a reference platform for on-board processing, the

NGMP [81], presented in Chapter 2, and whose schematic is shown in Figure 6.2. In

this work, in which we propose SurApps, we have applied them to the main memory

path: bus, cache, and memory. While we expect the applicability of SurApp to I/O

interfaces to be similar to that for memory, an analysis and evaluation of SurApps to

other I/O interfaces is left for future work.

Scope. The general concept of SurApps can be applied to any multicore architec-

ture. However, in this work we tailor SurApps to the NGMP. We do not foresee ma-

jor roadblocks for tailoring SurApps to other similar multicore processors (e.g. ARM

big.LITTLE architectures). We focus on the case in which only the LLC is shared. If

multiple cache levels were shared, accesses to LLC would depend on contention in lower

cache levels, so our approach would not be applicable directly. However, multicores

being considered for critical real-time systems have nowadays at most a single shared

cache level.

85

Figure 6.1: Diagram of
SurApp generation.

Figure 6.2: Simplified view of NGMP’s
main shared resources.

6.2 Surrogate Applications

When applications A and B execute concurrently in a processor with a shared L2 cache,

bus and memory controller, contention depends on several parameters: some can be

derived during early design phase while others depend on how applications interact, and

hence, can be derived only during late design phase.

As early design phase parameters we identify the L2 access frequency of the task, which

is determined by the miss rate in DL1 and IL1. Further, for write-through DL1, the

number of stores affects the access frequency to the L2. Since DL1 and IL1 are private

to each core and non-inclusive, their behavior is mostly unaffected by contenders.

As late design phase parameters we have the L2 cache miss frequency, which depends

on (i) the task’s own access pattern to L2 and (ii) contender tasks’ L2 access patterns.

achieves good accuracy results. Our initial experiments reveal small accuracy improve-

ments when SurApps copy the distribution of application accesses over time. This might

be related to the fact that in-isolation distributions change due to the contention with

other tasks.

6.2.1 Stack Distance as a Proxy for Multicore Contention

Eviction policies like LRU present the stack property [101]: each set in a cache can be

seen as a LRU stack, where lines are sorted by their last access cycle. The first line of

the LRU stack is the most recently used (MRU) line, whereas the last line is the LRU.

The position of a line in the LRU stack defines its stack distance. Further, those accesses

with a stack distance (sd) smaller than or equal to the number of cache ways (w) result

in a hit and vice versa: nhit =
∑w−1

i=0 sdi and nmiss =
∑+∞

i=w sdi. The stack distance of

an access @Ak is the number of unique, i.e. non-repeated, addresses mapped to different

cache lines to the same set where @Ak is and that are accessed between @Ak and the

86

previous access to it, @Ak−1. For instance, in the sequence @A1@B1@C1@B2@A2 of

cache line accesses to a given cache set, the stack distance of @A2 is 2, since repeated

accesses to @B are only counted once, regardless of how many accesses there are.

Since we focus on independent applications, L2 misses are not affected either by con-

tention: if an access of a given application results in a miss when the application runs

in isolation, it will also result in a miss in any workload in which the application runs.

Hence, only hits to the L2 can become misses due to evictions of contender tasks. With

stack distance we formulate the case where an access (e.g. @Ak) that hits in L2 when

the application runs in isolation becomes a miss when the application runs in multicore

mode. The in-isolation stack distance of @Ak is smaller than w, and, in multicore it be-

comes equal or larger than w, i.e. sdisol(@Ak) < w and sdmuc(@Ak) ≥ w. sdisol(@X)

defines the stack distance of an access @X when the application runs in isolation, and

sdmuc(@X) when the application runs in multicore under a given workload. The increase

in the stack distance occurs due to the accesses performed by contender tasks to the

same set where @Ak is mapped to. It follows that mimicking the stack distance of an

application’s accesses is critically important to accurately reproduce the impact it has

on other applications.

6.2.2 Stack Distance per Kilo Instruction (sdki)

In our approach, we define stack distance k per thousand (kilo) of instructions or sdkik

as the number of accesses with stack distance k every 1,000 executed instructions. The

normalization to thousands of accesses is done since stack distance values per instruc-

tion are naturally very low (below 1). For each application we collect the stack distance

vector (SDV) that has w+ 1 entries: SDV = [sdki0, sdki1, sdki2, ..., sdkiw], with sdkiw

counting all accessed with stack distance ≥ w, since all them result in misses. Inter-

estingly, with the sdki formulation we can derive other well-known cache parameters,

such as accesses per kilo instruction and misses per kilo instruction, apki =
∑w

i=0 sdkii

and mpki = sdkiw respectively. Note that we generate one SDV for loads and one for

stores referred to as ldSDV and stSDV respectively, with SDV = ldSDV +stSDV i.e.

sdkii = ld sdkii + st sdkii ∀i ∈ [1, .., w].

Bus access count can be expressed as nbus = (ld apki+st apki)×1000 =
∑w

i=0(ld sdkii+

st sdkii) × 1000. That is, all load and store accesses to the L2 cache are bus accesses,

regardless of their stack distance.

Memory access count: We derive access count to memory as misses per kilo instruc-

tion, and nmem = ld mpki+ st mpki = ld sdkiw + st sdkiw. That is, the number of L2

cache misses represent the number of memory accesses.

87

Overall, sdki provides a powerful abstraction of applications’ bus, cache and memory

usage that despite not copying late design phase-application information, provides tight

results.

Obtaining sdki. To derive sdkik from target applications when run in isolation, we

can make use of standard tracing facilities existing on many architectures. For instance,

the LEON processor family allows collecting instruction and data addresses, opcode

and timestamp of all instructions. GRMON is configured to dump this information via

the debug interface (DSU). Other processors provide similar support, e.g. the Nexus

Interface for NXP (formerly Freescale) or the Coresight for ARM.

Multiple execution paths. In this work we derive a single SurApp per application.

In general, SurApp will build on top of existing tools like RapiTime [91]. The latter will

derive the set of worst-case paths for the program on which SurApp will be generated.

This does not change SurApp application process, just requires selecting the input vec-

tor(s) that trigger the desired execution paths when running the application for trace

collection. We also focus on the main memory path (core-cache-memory) and leave as

future work I/O paths. We do not expect relevant changes in the SurApp application

other than taking care of the address ranges of every access to target the desired I/O

devices.

6.3 Surrogate Application Generator

The SurApp Generator (SurAppGen) produces the code of a SurApp as described in the

input parameters passed to it. These parameters are ldSDV and stSDV ; ld iter[] and

st iter[]; and icount. The latter is the instruction count of the real application. The

former two parameters are the load and store SDVs as described in the previous section.

Finally, ld iter[] and st iter[] describe the number of iterations to carry out the SurApp

to reach the desired accesses per stack distance as described in ldSDV and stSDV .

The main data structure of the SurApp is a vector (dvec[]) of size dvec size = (w+ 1)×
wsize, where w is the number of ways and wsize the size of a cache way. Hence dvec[]

can be seen as having w+1 chunks of wsize bytes, e.g., for a 32KB 4-way cache there are

5 chunks with dvec[] having a total size of dvec size = (4 + 1)× 8KB = 40KB. SurApp

accesses this vector appropriately so that those accesses match the sdki described in

ldSDV and stSDV . Note that we have a dvec[] vector for loads and another one for

stores.

88

SurApp generates activity in the L2 via data accesses, which are easier to control than

instruction accesses. On the other hand, its code is specifically designed to fit in the IL1

cache so that it does not create uncontrolled interferences.

Broadly speaking, a SurApp comprises a main loop that iterates w+ 1 times, traversing

totally or partially dvec[]. In each iteration i, all accesses, both loads and stores, occur

with a given stack distance – generated as respectively described by ldSDV and stSDV ,

see Alg. 1. To that end, the operation block() function is called, first to produce write

(store) operations and then reads (loads). Hence, different code is generated for each

stack distance.

Algorithm 1 Baseline structure of the generated SurApp.

1: procedure Execute
2: for (i = 0; i ≤ w; i+ +;) do
3: operation block(i, ld iter[i], load, nopcount);
4: operation block(i, st iter[i], store, nopcount);

As input parameter operation block() gets the stack distance of the accesses to be

generated, the number of iterations to perform to reach the desired sdki, whether the

type of operations to generate are loads or stores, and the number of nop operations to

generate (see Alg. 2).

Algorithm 2 Code executed for each stack distance

1: procedure operation block(sd,iter,type, ncount)
2: for (i = 0; i < iter; i+ +;) do
3: index = 0
4: for (j = 0; j ≤ sd; j + +;) do
5: for (k = 0; k < w size/cls; k + +;) do
6: if (type == store) then store ops(index);
7: else load ops(index);

8: nop ops(ncount);

In the inner loop of operation block(), we access a chunk (i.e. cache way) of dvec[].

In particular, we access each line of the chunk once. Hence, the two inner loops traverse

sd + 1 chunks of dvec[]. Since each chunk occupies a complete cache way, this results

in (sd + 1) × wsize/cls accesses with a stack distance sd, where cls stands for cache

line size. For instance, by continuously traversing the first 1 × wsize bytes of dvec[],

all accesses (except those of the first traversal) will have stack distance 0. Likewise if

we traverse several times the first 2×wsize of dvec[], accesses starting from the second

traversal have stack distance 1. And so on and so forth. Hence, by smartly selecting the

part of dvec[] accessed we force accesses to hit/miss in a desired cache level and have

specific stack distances in [0,w].

The outer loop iterates several times to match the desired sdki. For a given stack

distance k and operation type, e.g. load, the number of accesses to carry out is ld sdkik

89

so the number of iterations to carry out is iter = ld sdkik/(wsize ∗ (k + 1)). For each

stack distance this value is stored in the ld iter[] and sd iter[] vectors for load and

store operations respectively. In the outer loop the reset() function properly resets the

access pointer to dvec[].

The function operation block() also generates non-memory operations so that the

SurApp generates the same instruction count and apki as the real application. Note

that apki =
∑w

i=0(ld sdkii + st sdkii). The number of nop operations to generate is

given by 1000− apki. That is, every 1000 instructions, all the instructions that are not

memory operations are nops. In the inner loop, for each memory operation generated

the number of nops to generate is given by ncount = (1000− apki)/apki.

When the memory operations to be generated are loads, the body ofmemory operation(addr)

is as shown in Alg. 3. Basically, the content of the desired position of dvec[] is loaded

into a dummy variable. Then a simple control operation computes the next address to

access. We make that in every traversal and each access goes to a different cache line.

Hence, we set stride to the size of a cache line (cls) divided by the size (in bytes) of each

element of dvec[]. For stores the body of memory operation(addr) just requires that a

value is stored to the desired dvec[] position.

Algorithm 3 Algorithm for memory operations with loads

1: procedure LOAD OPS(index)
2: dummy = dvec[index];
3: index+ = stride;

Finally, the code of core-operation() is given in Alg. 4. It basically executes Nnops

nop operations to force a given instruction count and apki as described above.

Algorithm 4 Algorithm for core operations

1: procedure NOP OPS(Nnops)
2: for (i = 0; i < Nnops; i+ +;) do nop;

Other relevant aspects. For sake of clarity we have encapsulated all code in functions,

which can be however inlined to reduce the overhead of control operations (i.e. call

and return). Also loops can be simply removed unrolling the body as many times as

needed – keeping in mind the restriction that the SurApp code must fit in IL1. When

loops are used, the number of control (core) operations they generate is factored in by

the SurAppGen to achieve the desired sdki defined in ldSDV and stSDV .

We generate SurApps in C to improve portability, though it requires control on com-

piler flags so that the generated code has the desired behavior. SurApps could also be

generated directly in assembly code, which would need however the use of architecture-

dependent assembler instructions.

90

Table 6.1: 4-thread workloads used in this work (Benchmarks and Kernel full-names
are listed in Figure 6.3)

scua contenders scua contenders scua contenders
ep.e pe.d mp.d me.t gs.e g7.e g7.d pg.e g7.d pg.e gs.d me.t
me.m pe.e pg.e ad.e pe.e gs.d ep.e me.m pg.d me.o jp.d ep.d
ep.d me.o pe.d ad.e pg.e mp.d ep.e g7.e pe.d ra.t me.m pg.e
jp.d ep.d ad.d me.o g7.e g7.d mp.d pg.e ad.e pe.e ep.e me.o
ra.t me.m ep.e pe.e gs.d g7.d g7.e ra.t ad.d gs.d jp.e pe.d
me.o gs.e pe.d ra.t mp.d pe.d me.t gs.d ob ob de ob
jp.e pg.e ep.d me.o me.t gs.d ep.e pg.e de de de ob

We used as core (i.e. non-memory) operations only nop operations. Our results show

that copying the instruction mix of the target application provides no increased accu-

racy, so they are omitted. The instruction mix describes application’s percentage of

instructions of each type (e.g. INT, BR, FP, ...).

SurApps can be extended to copy the interaction (communication) patterns of the appli-

cation with the OS and other applications by tracing appropriate software components,

which allows capturing system-level effects during early design phases. Its assessment is

left as future work.

6.4 Experimental Evaluation

6.4.1 Experimental setup

We use our simulation framework for the NGMP as described in Chapter 2.

Benchmarks. We use the MediaBench benchmarks as well as the Space kernels pre-

sented in Chapter 2.

Workloads. We create 4-thread workloads with one task under analysis (scua) and

3 arbitrary contenders, see Table 6.1. As scua we use each of the 19 MediaBench

benchmarks. Contenders are those whose cache behavior we mimic with SurApps. The

scua runs against contender tasks and their SurApps in separate experiments, so that

we can compare scua’s performance in each case. A similar approach is followed for

Space kernels: in this case, we run each kernel against mixes with both kernels, also

shown in the bottom-right corner in Table 6.1. For these workloads we make a detailed

analysis (see metrics section). We also provide results for a set of experiments comprising

more than 17,000 randomly (non-repeated) generated workloads including all types of

benchmarks.

Metrics. We use different metrics to assess accuracy in the slowdown caused in other

tasks.

91

Bus and Memory inaccuracy (bbi and mbi) compare the number of bus and memory

accesses performed by the real application and its surrogate. They are respectively

computed as: bbi = |1− nsurbus/n
real
bus | and mbi = |1− nsurmem/n

real
mem|, where nsurbus and nsurmem

are the number of bus and memory accesses made by the SurApp, and nrealbus and nrealmem

the counterpart values for the real application. bbi and mbi are 0 when the SurApp

matches the access count of the real application. Both metrics can get arbitrarily large

as SurApp results differ from those of the real application.

Cache behavior inaccuracy (cbi) assesses the accuracy of the SurApp copying the behav-

ior of real applications. It compares the SDV of the real application and the SurApp as

shown in Eq. 6.1, where sdkireali and sdkisuri stand for the sdkii of the real application

and SurApp. Note that this is done for both loads and stores, e.g. ldSDV and stSDV .

cbi =

∑w
i=0 |sdkireali − sdkisuri |∑w

i=0 sdki
real
i

(6.1)

cbi accumulates the deviation of all stack distances between the application and its

surrogate. For instance, if ldSDV real = [20, 30, 50] and ldSDV sur = [25, 30, 60], and

stSDV real = [40, 40, 20] and stSDV sur = [35, 30, 20] then cbi = (5 + 0 + 10 + 5 +

10 + 0)/(200) = 0.15. cbi is zero when the SurApp matches the behavior of the real

application. It can be arbitrarily large as the accesses per stack distance of the SurApp

differ from those of the real application.

Multicore inaccuracy compares the execution time (ET) of the scua when it runs against

the real contender applications and when it runs against the contender’s SurApps. It

is computed as scuaiET = ET sur
scua/ET

real
scua where ET real

scua and ET sur
scua are the execution

time of the scua against the real contenders and their surrogates respectively. If both

execution times match, then scuaiET = 1 meaning that SurApps effectively copy the

behavior of contenders. If the execution time of the scua when running against the

SurApp is bigger than when it runs against the real application then scuaiET > 1, and

vice-versa.

bbi, cbi and mbi compare the behavior in isolation of the scua and its SurApp, whereas

scuaiET compares the impact of contender applications and their SurApps on the scua.

SurApp generation methodology. Address traces have been directly dumped from

the emulator part of SoCLib, although debug or pin tools can be used in most platforms

for that purpose. Traces were processed automatically with Python scripts produc-

ing stack distances. Finally, SurApps are generated automatically with Python scripts

building on the computed stack distances.

92

Figure 6.3: cbi and bbi accuracy results

6.4.2 Experimental Results

Behavior in isolation. In Figure 6.3 we observe that SurAppGen generates SurApps

that tightly copy the bus and cache behavior of the real application. Observed inaccuracy

values are extremely low (close to 0). Just pgp.d and debie have higher bbi, and cbi also

in the case of debie, but they are still very low. This is due to the fact that pgp.d and

debie space kernel sizes are smaller in cache usage and duration than the rest of the

benchmarks so relative errors are higher.

Figure 6.4: mbi (blue columns) and correlation to mem. access count nrealmem (red line)

In Figure 6.4 we observe this phenomenon at a higher scale for mbi. Benchmarks are

sorted based on their mbi. We observe that benchmarks with high mbi (blue columns)

often have low memory access counts (red line). These discrepancies relate to initializa-

tion effects of SurApps, which introduce few additional memory accesses. Those accesses

have negligible impact in absolute terms, but may have large impact in relative terms by

increasing mbi when the total number of memory accesses of the application is low. For

instance, mbi for adpcm.d is around 2, thus reflecting that its SurApp triples its num-

ber of memory accesses. However, this benchmark accesses memory once every 20,000

93

Figure 6.5: Multicore Execution Time Inaccuracy of the scua when executed in the
workloads shown in Table 6.1 (against real contenders and their SurApps)

instructions on average and its SurApp just 3 times every 20,000 instructions. Hence,

an additional memory access every 10,000 instructions has negligible impact in absolute

terms and mbi is irrelevant for low memory access counts.

Multicore behavior. Figure 6.5 shows that the slowdown the scua suffers when run

against 3 contenders is quite close to the one it suffers when run against the SurApps

of those contenders. On the one hand, during early design phase, no strict guarantees

on WCET estimate accuracy are required. Instead the aim is achieving good approxi-

mations to the real WCET. Since contention slowdown can be as high as 5.5x for some

real benchmarks [26], maximum inaccuracy of 30% and 13% on average are highly ac-

curate results. On the other hand, for almost all benchmarks predictions over-estimate

contention impact. Under-estimates are few and very limited (down to 0.96). Over-

estimation is preferred, since under-estimation could result in applications at late design

phase not fitting their predicted budget, causing significant costs: either the integra-

tor has to change the schedule granting more budget to tasks missing their deadlines,

or the software providers are required to change their applications to fit their assigned

budget. Still, results show that contention impact is under-estimated only occasion-

ally and slightly. This behavior is expected since SurApps cause slightly higher miss

counts with shorter survival times for data in cache than the original applications, thus

leading to higher contention. Also, the fact that most applications scheduled have over-

estimated time requirements allows compensating for those few cases where some slight

underestimation occurs.

Absolute Contention Slowdown. Table 6.2 shows the slowdown the scua suffers

when running with 3 other programs (either MediaBench or Space kernels), and the

slowdown it suffers when running against their SurApps. Benchmarks are sorted by the

actual slowdown suffered when run against other benchmarks. Slowdowns span from

94

Table 6.2: scua slowdown when it is executed against other benchmarks and their
SurApp. Space kernels in italics. Programs sorted from lowest to highest RealApp

slowdown

ep.e gs.d gs.e ob g7.e g7.d jp.d ep.d me.t mp.d pe.e
RealApp 1.02 1.03 1.04 1.05 1.08 1.08 1.09 1.09 1.11 1.11 1.14
SurApp 1.18 1.06 1.09 1.05 1.32 1.06 1.15 1.21 1.16 1.07 1.34

me.m ad.d me.o pg.e ra.t pg.d de pe.d jp.e ad.e
RealApp 1.18 1.19 1.20 1.20 1.21 1.23 1.23 1.25 1.26 1.29
SurApp 1.36 1.33 1.58 1.53 1.37 1.43 1.43 1.50 1.46 1.42

Figure 6.6: Inaccuracy Results

1.02 to 1.29, so SurApps tightly mimic real applications regardless of whether they are

insensitive or sensitive to contention.

Wide experiment set. Figure 6.6 shows the inaccuracy results we obtain over a wide

set of +17000 workloads, together with percentiles. We observe that for less than 1% of

the workloads the inaccuracy ranges from 0.82 to 0.95. Likewise, on the upperside of the

tail, for less than 3% of the workloads the accuracy is above 1.72. The latter occurs due

to the fact that stack distances in SurApps are traversed in blocks, being the first block

that for cache misses. Hence, whenever the scua has much lower execution time than

contenders, it is exposed to the part of the SurApp producing highest interference, thus

over-estimating impact of contention. Interleaving stack distance accesses in SurApps

to mitigate these corner cases is part of our future work. Still, the presented technique

shows to be very robust, with slight tendency towards over-estimation. When space

applications are used as scua, scuaiET is much lower, see last row in the top table in

Figure 6.6.

95

6.5 Related Works

In [99] authors focus on the case in which each supplier is not provided a board to develop

its applications but a virtualized environment (i.e. virtual machine). The latter, which

allows checking the functional behavior of applications, is extended to provide timing

estimates factoring in multicore contention. In particular, authors propose a trace-driven

model to predict the contention that tasks will produce.

For single-cores, other techniques are applied before the binary is written. Those works

pursue the goal of providing the developer knowledge of the worst-case “as the code is

written” [98]. Some works integrate timing in high level modelling environments such

as Matlab/Simulink [97]. Some authors [102] propose a C-source-level abstract machine

that is calibrated based on measurements to match a target real hardware. In this line,

[100] proposes the timing model code level that combines measurements and a regression

model to perform timing estimates of source code.

All previous approaches perform some type of modelling, either contention or per-

instruction. In this work instead of contention models, we design surrogate applications

that run on the target multicore to get a tight estimate of cache contention without the

need to share applications.

Traffic generators either software, e.g micro-benchmarks [26], or hardware, e.g. built in

the architecture as for the Zynq UltraScale +EG, usually aim at creating high stressful

scenarios, whereas SurApps aim at copying the load on the shared resources of a given

target application. Further, the particular pattern of accesses generated by those gen-

erators is arbitrary, whereas SurApps build on stack distances to mimic the pattern of

accesses of the application, thus creating necessarily different effects.

Several approaches profile application accesses to different resources to optimize metrics

such as performance or energy efficiency by, for instance, applying cache way locking

and page colouring [103] to ‘hot’ segments. Our technique shares the fact that we also

profile applications. However, the main novelty of our approach is that we automatically

generate an application that mimics the target ones.

6.6 Conclusions

We introduced the concept of Surrogate Applications (SurApp) to copy the timing be-

havior of a given real (target) application. SurApps can be shared during early de-

sign phase without IP constraints, enabling software providers to run their applications

against other software provider’s SurApps in the multicore and derive the slowdown

96

their applications suffer due to contention. We show how SurApps are automatically

generated from the stack distances of the target application on the NGMP processor,

which we identify as the most relevant parameter to mimic, which is obtained running

applications in isolation. Our results show that our automatic generator tightly copies

the contention behavior of real applications. The observed accuracy of our approach,

in terms of slowdown of the task under analysis, is high, providing evidence of the

effectiveness of the SurApp approach on the NGMP processor.

Chapter 7

The ARM big.LITTLE

architecture: the Juno Board and

DragonBoard

Recently, some COTS processors from the consumer electronics domain have been con-

sidered for the implementation of critical embedded systems. In particular, the ARM

big.LITTLE architecture, popular in many smartphones, has been considered for the

implementation of automotive systems, as it is the case of the Renesas R-Car H3 plat-

form [104]. However, evidence for certification on this platform has only reached a

modest ASIL-B1, thus lacking evidence of its readiness for the highest integrity levels

(ASIL-C and D).

In this Chapter we make a step towards obtaining evidence of the timing guarantees that

can be reached with ARM big.LITTLE architectures in critical embedded systems to

deliver high guaranteed performance for critical real-time functionalities. In particular,

we assess qualitatively and quantitatively to what extent these multicore platforms are

resilient to the integration of multiple functionalities running simultaneously in different

cores. We also identify the particular uses of this platform that may make timing

guarantees fragile, thus challenging their use for the most stringent safety integrity levels.

For that work, we build upon analysis of the specifications and empirical evidence with

stressing benchmarks (aka microbenchmarks) [22] on top of a Qualcomm DragonBoard

and an ARM Juno R2 board. The former is a commercial implementation of the ARM

big.LITTLE architecture used in smartphones, whereas the latter is a development board

implementing the same architecture.

1Safety-related systems in the automotive domain are described in ISO26262 [7], where safety-related
systems are classified into different Automotive Safety Integrity Levels (ASIL), from A to D, being
ASIL-D the most stringent category.

97

98

In particular, our assessment of the ARM big.LITTLE architecture on both implemen-

tations consists of the following steps:

1. We review the processor specifications and identify some key features for multicore

contention analysis. Our analysis identifies how some features need to be config-

ured, reveals missing detail information in the specification and provides hints on

what specific elements need to be assessed quantitatively.

2. We make an attempt to tailor the methodology based on signatures and templates

(see Chapter 5) to both ARM big.LITTLE processors. Concretely, we make an

attempt to estimate the contention that an access to a shared resource may expe-

rience, which is a mandatory input for applying signatures and templates.

3. Finally, we perform a quantitative assessment with appropriate microbenchmarks

with known expected behavior (see Chapter 4). Our results show that the be-

havior of several Performance Monitoring Counters (PMCs) is non-obvious and

hard to correlate with experiments for the SnapDragon 810 processor (the one in

the DragonBoard), thus defeating its use to model multicore contention tightly.

Moreover, our empirical analysis reveals that documentation is erroneous in some

critical elements. On the other hand, our analysis of the ARM Juno SoC (the one

in the Juno Board) provides more reliable information since hardware, at least,

behaves as expected according to the (scarce) documentation available.

Our analysis reveals that, while documentation and software support for commercial

implementations is too scarce for their practical use in critical embedded systems, the

architecture behind (ARM big.LITTLE) can be considered for critical embedded systems

if detailed information is made available. Our results offer valuable evidence on the

appropriate uses of the ARM big.LITTLE architecture in critical embedded systems. In

particular, our results show that the cache hierarchy is a troublesome component if not

used appropriately, thus making timing behavior highly volatile. Our analysis shows

that the shared second level (L2) cache is a key resource challenging WCET estimation

of critical real-time tasks due to the virtually uncontrollable interferences that tasks may

suffer in L2, thus calling for integrations where the L2 is not effectively used by critical

real-time tasks.

7.1 Goal and Scenario

The goal of this Chapter is assessing whether the ARM big.LITTLE architecture can be

used in the context of critical real-time applications. We use the term critical real-time

99

to refer to any hardware or software component with any time criticality need: either

mission, business or safety related.

7.1.1 Tracing and Events

We focus on measurement-based timing analysis (MBTA), widely used in most real-time

domains. For instance MBTA is used in avionics systems [17, 105], including those with

DAL-A safety requirements [106] (though on top of much simpler single-core processors).

In the context of MBTA, tracing events impacting shared resource contention, e.g. cache

misses, has been shown fundamental to derive bounds for a task not factoring in the

worst potential contention but a specific contention level [20]. It follows that MBTA

techniques demand more and more advanced hardware tracing mechanisms.

For that purpose we build upon the existence of PMCs to derive the type and number

of accesses each task does, since this is needed to account for the contention a task can

experience from (or produce on) others [20]. We also build upon microbenchmarks, i.e.

small user level applications, that are able to create very high contention with each access

type to the target shared resource [22]. Note, however, that the number of Performance

Monitoring Counters (PMCs) in the PMU is limited, so we cannot monitor all events

in a single run. Instead, each experiment needed to be repeated twice with different

event-to-PMC mappings to obtain all measurements. The experimental methodology

we use is described later in Section 7.5.1.

7.1.2 The Platform

Next, we provide the most relevant details of the ARM big.LITTLE architecture imple-

mentations for this work. The Juno board includes the Juno SoC, whose general-purpose

components are depicted in Figure 2.4. This ARM big.LITTLE design includes two com-

puting clusters, being one of them equipped with 2 Cortex-A72 high-performance cores

and another with 4 Cortex-A53 low-power cores. We refer to those clusters as HPclus

and LPclus for short. Each cluster includes a local shared L2 cache and both clusters

are connected to a shared memory controller. The SnapDragon 810 processor, included

in the DragonBoard, has a similar design, with the following difference: instead of im-

plementing 2 Cortex-A72 cores in the HPclus, it implements 4 Cortex-A57 cores.

A72 and A57 cores feature out-of-order execution, whereas A53 ones offer low-power

in-order execution instead. For the sake of facilitating the interpretation of results,

the assessment in this work will focus on A53 cores, so the LPclus, to discount the

100

measurement noise that out-of-order execution could introduce instead. Yet, conclusions

reached in this work, as shown later, apply to both clusters.

As detailed in Chapter 2, each core includes a first level instruction (IL1) and data (DL1)

cache. Also, each cluster includes a shared L2 cache. In order to assess the impact of

shared resources on execution time we stress caches with increasing data sizes. The size

of IL1 caches do not impact results since benchmarks tested are designed to be tiny

(< 1KB) in comparison to the IL1 size (32KB for LPclus and 48KB for HPclus for the

Juno SoC). In the case of the Juno SoC, data cache sizes for the LPclus are 32KB 4-way

64B/line for DL1 and 1MB 16-way 64B/line for the L2, whereas for the HPclus sizes

are 32KB 2-way 32B/line and 2MB 16-way 64B/line respectively. The SnapDragon 810

processor has some differences in cache sizes. In particular, DL1 and L2 for the LPclus

are 64KB and 512KB instead of 32KB and 1MB.

The particular interconnect between cores and L2 caches is not described in the docu-

mentation. L2 caches are connected to the memory controller through an ARM AMBA

4 bus (ARM CoreLink CCI-400 Cache Coherent Interconnect). Other components, such

as accelerators and peripherals (not depicted in Figure 2.4), are also attached to this

bus. Since they are not used in our analysis, we omit details and keep them disabled or

idle during test campaigns.

7.2 Qualitative Analysis of the ARM big.LITTLE Archi-

tecture: Specifications

The main source of information for the analysis of the SnapDragon 810 processor and

the Juno SoC is the ARM Cortex-A53 processor technical reference manual [107]. As

detailed in the manual, a number of A53 features are regarded as ‘implementation de-

pendent’, thus meaning that the processor manufacturer has the flexibility to choose

among different options available. For instance, this is the case of the DL1, IL1 and L2

cache sizes. From the information available in the A53 manual, we regard as particularly

relevant for contention analysis the following:

• The arrangement of the main components in the A53 cluster, including DL1, IL1

and L2 caches, as well as data prefetching features in DL1 and coherence support

in L2.

• PMCs for events occurring in the cores (e.g. DL1 and IL1 caches) and in the L2

cache.

101

However, some parameters are not available in the A53 manual, including the following:

1. Timing characteristics of the interconnect between DL1/IL1 and L2 caches.

2. Specific characteristics of the different cache memories such as, for instance, their

sizes.

3. PMCs for events spanning beyond the A53 cluster such as accesses to the bus con-

necting A53 and A57 clusters with memory, and PMCs for the memory controllers.

From a detailed analysis of each of those missing parameters for real-time purposes in

the A53 manual, we reached the following conclusions:

• The interconnect between DL1/IL1 and L2 caches, as the remaining in-cluster

components, should be documented in ARM manuals. The lack of that information

in the manuals makes us resort to software testing (e.g. microbenchmarks) to bring

some light on the characteristics of this interconnect.

• Some instructions exist to read the particular characteristics of the cache hierarchy

so they can be directly retrieved from the platform itself.

• PMCs and events beyond the A53 cluster should be documented in the SnapDragon

810 manual, since the processor manufacturer integrates those components, and

so has access to the appropriate information for each component.

By the time we performed this work, ARM manuals were available, so we could retrieve

them2. However, SnapDragon 810 manuals are neither publicly available in Qualcomm’s

website, nor included in the documentation coming along with the DragonBoard (whose

processor is the SnapDragon 810), nor obtainable upon request. In particular, while we

requested appropriate manuals through Qualcomm public services as well as through

internal contacts, and NDAs are in place, we were unable to get access to them. We are

also aware of other companies in the critical real-time domain have experienced similar

issues. Therefore, to the best of our knowledge, no information has been obtained on

what PMCs/events exist beyond the A53 cluster and how they could be used. We

also tried to use information from the ARM Juno development board, which is an

ARM big.LITTLE implementation by ARM instead by Qualcomm that offers further

documentation but, as we suspected, ARM and Qualcomm implementations of this

architecture differ and so Juno documentation did not help on reaching conclusions that

apply to all ARM big.LITTLE implementations. From our analysis of the information

available, we have reached the following conclusions:

2They have later become unavailable online and can only be retrieved upon request to ARM.

102

• The interconnect between DL1/IL1 and L2 can only be analysed empirically with-

out specific guidance on its timing behavior. The confidence on those measure-

ments is limited due to the unknown specification of the interconnect.

• DL1, IL1 and L2 features can be directly obtained from the board via control

instructions.

• Specific instructions exist to disable the data prefetcher. This is particularly rele-

vant to discount uncontrolled (prefetcher) effects during operation.

• The L2 is inclusive with DL1 for coherence purposes. Thus, one core can create

interferences on the DL1 of other cores by evicting their data from the L2 cache.

• The L2 cache cannot be partitioned across cores. This feature, together with

L2 cache inclusivity, leads to potentially abundant inter-core interferences if not

controlled by software means.

• PMCs up to the L2 cache exist and are abundant, but no information is had about

PMCs beyond the L2 cache.

Overall, several cache features challenge the calculation of inter-core interference exe-

cution time bounds, and the lack of documentation for the DL1/IL1-L2 interconnect

and PMCs for events beyond L2 challenge the confidence that can be obtained on

measurement-based bounds. However, some information about contention can still be

retrieved empirically based on information available. In the next sections, we present

the results obtained.

7.3 Quantitative Analysis of the SnapDragon 810 Proces-

sor

The number of hardware events that can be monitored in the SnapDragon 810 processor

is limited according to ARM’s documentation. For instance, while cache and memory

accesses can be counted, it cannot derived whether DL1/IL1 and L2 cache accesses

turn out to be hits or misses. This complicates the development of our methodology to

measure the impact of contention in the access to shared resources.

7.3.1 Microbenchmarks

In order to access PMCs, we have developed a library with an interface to read/write

PMCs. The main functions of the library include resetting/setting PMCs, activat-

ing/stopping PMCs, read/write PMCs and start/stop the Performance Monitoring Unit.

103

Listing 7.1: Structure of a microbenchmark

R1 = 0 ;
f o r (i =0; i<N; i++) {

r e s e t PMCs;
f o r (j =0; j<M; j++) {

R2 = Load [@A+R1] ; R1 = R1+STRIDE;
R2 = Load [@A+R1] ; R1 = R1+STRIDE;
. . .
R2 = Load [@A+R1] ; R1 = R1+STRIDE;

}
read PMCs;

}

To quantify the impact of contention in the access to the different shared resources, we

have developed several microbenchmarks that stress each specific resource separately,

in line with the method exposed in Chapter 4. This allows estimating the maximum

delay that a request to a particular shared resource can suffer. Then this data is used to

upper-bound contention impact. As starting point, we have developed microbenchmarks

to account for contention in the access to the shared L2 cache and to the shared memory

controller, see their structure in Listing 7.1.

Since measurement can be polluted, e.g. by the Linux OS running below, we collect

several (N) measurements and remove outliers keeping only the mode. The iterator

M and the number of LOAD operations in the loop are set to values sufficiently high

so that the overhead of the loop (i.e. the control instruction) and the overhead to

fill the IL1 cache become negligible (e.g. M = 1000 and 16 LOAD operations). The

particular PMCs/events read and reset depend on the contention that is to be measured

in a particular experiment. Finally, STRIDE relates to the distance between memory

objects accessed so as to make sure that they either hit in L1, miss in L1 and hit in L2,

or miss in L1 and L2. Vector size is properly set also with the same goal.

7.3.2 Disabling the Data Prefetcher

We disabled the data prefetcher so that read and write operations occurring in the

different cache memories are only triggered explicitly by the instructions executed in

the microbenchmarks, rather than being automatically generated by hardware. For that

purpose, we have configured the CPUACTLR register as described in the A53 manual [107].

Unfortunately, the execution of these commands leads to a system crash.

In order to verify the source of the problem, we repeated the same experiment on a

PINE A64 [108] board. The PINE A64 platform is built with the aim of being a low-

cost open source platform. Its processor, Allwinner A64 chip, implements the same

Quad-Core A53 Processor as the low-power SnapDragon 810 cluster. Thus, its interface

is expected to be the same. In the PINE A64 platform, the commands to disable the

104

prefetcher worked properly and subsequent experiments revealed that the data prefetcher

was effectively disabled on that board. However, such board is a low-cost and low-power

general-purpose computer, so the board itself is not oriented to the industry in the

mobile market. Instead, it is an open platform. Thus, mobile industry will unlikely use

it since there is no a large enterprise that provides support in the long term.

Overall, we could not disable the prefetcher in the SnapDragon 810. This problem likely

relates to potential modifications introduced by the processor manufacturer, from which

we did not succeed in obtaining the information required about the SnapDragon 810.

As a confirmatory experiment, we run a microbenchmark accessing 88KB of data, thus

exceeding DL1 capacity (64KB) but fitting L2, with a 8B stride. Hence every 8 accesses

we have 1 DL1 miss and 7 DL1 hits due to spatial locality (DL1 line size is 64B). With

the prefetcher disabled, we would expect that the number of L2 accesses was 1/8 those in

DL1. We observed that the number of DL1 accesses matches quite well our expectations,

but the number of L2 accesses is roughly 0, revealing that the prefetcher is active and

fetches data into DL1 reducing L2 accesses (the PMC for prefetch requests confirms this

hypothesis).

7.3.3 Assessing Microbenchmark Results

In order to assess the behavior of the PMCs in the A53 cluster, we have run our mi-

crobenchmark, which performs 11,000 load operations with a specific stride. This code is

in a loop iterating 100 times, and we report average results across those 100 iterations to

minimize the impact of cold misses in the first iteration and noise in the measurements.

We explore strides ranging between one 64-bit element (8 bytes) and 512 elements. With

the smallest stride (8 bytes), we traverse a vector of ≈ 88KB (11,000 elements x 8 bytes),

which does not fit in DL1, but it does in L2. Thus, the number of DL1 accesses expected

is 11,000 approximately. Each load is expected to miss in DL1 when 64B boundaries

(DL1 cache line size) are crossed, and should hit in DL1 otherwise.

Overall, for a 1-element stride we expect 1,375 (11,000/8) L2 accesses per data vector

traversal. Then, since ≈ 88KB fit in L2, we expect roughly 0 memory accesses (13.75

in practice on average). When doubling the stride (so with a data vector of 176KB), we

expect L2 accesses to double until reaching value 11,000 (at stride 8), and then flatten.

Memory accesses should remain roughly 0 until L2 cache capacity (512KB) is exceeded,

at stride 8 (≈ 704KB), when all accesses become also L2 misses so we have 11,000 DL1,

L2 and memory accesses.

105

Figure 7.1: Avg. number of IL1 (L1I), DL1 (L1D), L2 (L2D) and memory (MEM)
accesses, and L2 refills per loop iteration for different data strides (c©2018 IEEE).

Figure 7.1 shows how DL1 accesses effectively match expectations while L2 accesses

(L2D in the plot) show much higher values. Interestingly, L2 refills (L2 REFIL), i.e. lines

brought explicitly on a DL1 miss, match our expectation for L2 accesses. This reveals

that, apart from the DL1 misses, we have another source of L2 accesses, which seems to

be the prefetcher. When looking at the number of memory accesses (MEM), we observe

that it matches quite accurately L2 accesses plus L2 refills, thus reflecting a number of

accesses largely above expectations. This reveals interferences from the prefetcher since,

even when data should fit in L2 (up to stride 8) and so memory accesses should be

negligible, we have plenty of them. Overall, this experiment reveals that the prefetcher

is active and produces severe interferences that defeat any intent to control contention

in shared resources in the A53 cluster.

7.4 Summary of Lessons Learned for the SnapDragon 810

Processor

In this chapter we analysed the difficulties entailed by using a popular microproces-

sor in consumer electronics, the SnapDragon 810, in the context of critical real-time

applications. This microprocessor provides the level of performance needed by many

critical real-time applications, but at the same time poses a number of challenges in its

utilization, which we summarize next.

106

Uncontrolled resource sharing. The use of a fully-shared L2 cache across several

cores poses some difficulties to control or tightly upper-bound inter-core interferences.

In particular, one task running in one core is allowed to evict any line in the L2 cache,

thus affecting the performance of other cores in non-obvious ways. This issue may be

exacerbated by the fact that the L2 cache of this processor is inclusive with DL1 caches.

Thus, a task may also get its data evicted from DL1 due to the inclusion property with

L2.

The most promising approach to overcome this challenge builds upon cache partitioning.

For instance, the Freescale P4080 processor, also representative of a high-performance

processor of interest for real-time applications, allows configuring its shared L3 cache so

that private regions are allocated to specific cores [109]. However, space partitioning may

not be enough if buffers and queues are shared, which may still allow high contention

across cores, thus leading to low performance guarantees [110]. However, as shown in

this Chapter, some popular processors do not provide such support yet.

Need for documentation. For enabling MBTA based on PMCs, at least some doc-

umentation about components interfaces is mandatory. The information on hardware-

to-hardware interfaces includes the way in which requests are managed (e.g. whether

shared queues are used, what policies are used to serve requests). This allows reasoning

about the theoretical worst-case scenarios so that microbenchmarks can be developed

to stress them and obtain timing information via measurements.

Regarding software-to-hardware interfaces, which include precise information on how

to enable/disable some features (e.g. prefetchers) or how to monitor hardware events

through PMCs available, information released is often limited. Again, this prevents

appropriate configuration and monitoring of the processor, thus defeating the intent of

obtaining tight WCET estimates on top of the SnapDragon 810. The unavailability of

this information often relates to IP protection and competition.

Both issues are exacerbated by the fact that many microprocessors incorporate IP from

different suppliers, as in the case of the SnapDragon 810 processor, which includes at

least IP from ARM and Qualcomm. In our view, detailed information will be made

progressively available as market pressure increases and releasing details becomes the

only way to make sales grow. Still, this shift towards openness will occur slowly.

7.5 Quantitative Analysis of the Juno SoC

We start presenting the experimental setup and then we provide results identifying pros

and cons of this implementation of the ARM big.LITTLE architecture for its use in

107

Algorithm 5 Structure of a stressing benchmark

1: procedure sb body
2: for (i = 0; i ≤ 1000; i+ +;) do
3: reset PMCs;
4: for (j = 0; j < 2N/16; j + +) do
5: R2 = Load [@A+R1]; R1 = R1+64B;
6: R2 = Load [@A+R1]; R1 = R1+64B;
7: ... (x 16 in total)
8: R2 = Load [@A+R1]; R1 = R1+64B;

9: read PMCs;

critical embedded systems.

7.5.1 Experimental Setup

To perform measurements, we use stressing benchmarks (SB), simple kernels that tra-

verse a data vector [22]. The size of the vector is set to be 2NKB and accesses to it are

performed with a stride of 64B, thus matching cache line size. PMCs are reset before

each traversal and read right after. Each experiment is performed twice reading different

events so that all events of interest can be monitored.

Collecting measurements on a real board poses some challenges such as the difficulties

brought by the monitoring software to interface the counters and the noise of the in-

terrupts, which may also interfere measurements. Hence, some measurements can be

abnormally high or low. To mitigate the impact of noise, traversals are repeated 1,000

times (per set of events read). The pseudo-code of the stressing benchmarks is shown in

Algorithm 5, where the main loop is unrolled 16 times to reduce the relative overhead of

the loop control instructions. Such an approach produces 1,000 measurements for each

event. The first one is intended to warm up caches. Hence, its results can be regarded

as irrelevant for our study. Then, to discount outliers we keep the median, which is

still subject to some noise. However, filtering outliers automatically with this approach

allows identifying trends as needed for this work.

We consider two experimental setups. The first one (see Figure 7.2 (a)) runs the mon-

itored SB (SBmon) in one of the cores of the LPclus. All the remaining cores remain

idle. The only exception is one core of the HPclus, which runs the Real-Time Operating

System (RTOS), marked with an asterisk. Such activity has been placed in a different

cluster to the one being monitored to minimize unwanted interference. The second setup

is identical to the first one, but all contender cores run SB also (see Figure 7.2 (b)).

Vector sizes per SB vary between 1KB and 2MB (so 10 ≤ N ≤ 21), hence the SBmon

may either fit in DL1, exceed DL1 and fit in L2, or exceed L2 cache space. To simplify

the discussion, we focus on the case in which N is identical across all SB in all cores.

108

Figure 7.2: Experimental setup (a) in isolation and (b) with contention (c©2018
IEEE).

Figure 7.3: Cycles per access for the two setups when varying vector size (c©2018
IEEE).

7.5.2 Assessing Stressing Benchmark Results

Figure 7.3 presents the results of the experiments in both setups in the form of cycles

per (memory) access, or CPA for short (straight lines). Such a metric allows comparing

all measurements regardless of the size of the vector. The plot also includes DL1 and

L2 misses divided by the total number of data accesses in the program for the setup in

isolation (dashed and dotted lines). Note that L2 misses are divided by the number

of data accesses in the program instead of the number of L2 accesses to better allow

reasoning about the impact of L2 misses in the execution time. Instead, L2 miss ratios

w.r.t. L2 accesses could hide whether the absolute number of L2 misses is high or low.

For instance, if there is only one L2 access, the impact on execution time is irrelevant,

but L2misses/L2accesses would be 0% (if hit) or 100% (if miss).

Results in isolation. The blue solid (dark) line shows that the CPA is slightly above

3 cycles when the vector size does not exceed 32KB. Such a vector size fits in DL1

and hence, vector accesses are expected to hit, as reflected in the low DL1 miss rate

(dotted line). Note that, since each memory access comes along with an arithmetic

operation to increase the index, 3 cycles is expected to be the latency to execute both,

109

the memory access and the arithmetic operation. We observe that the CPA slowly

decreases when moving from 1KB to 16KB. This occurs because the code inside the

loop has some prologue and epilogue to set up and read the PMCs. For a larger vector

size, the relative impact of such code decreases. We also note that the lowest CPA

value is 3.15 for a vector size of 16KB, still above 3 cycles. This occurs because every

16 memory accesses there are few arithmetic instructions to check the loop condition.

Also, whenever the vector matches DL1 size exactly (32KB), the CPA increases to 3.62.

This occurs because prologue and epilogue fetch few cache lines that cause some DL1

evictions in each iteration and hence, some additional L2 cache accesses. Hence, DL1

miss rate grows from <1% to 9%.

For vector sizes in the range 64KB-1MB, the CPA reaches values slightly above 9 cycles,

with the exception of the case for 64KB. In all these cases data does not fit in DL1, but

fits in L2, as reflected in DL1 and L2 miss rates (dashed line). As for the case when data

fit in DL1, we observe that larger vector sizes slightly decrease the CPA until we reach

the exact L2 size (1MB), when CPA slightly increases. The CPA for 64KB is abnormally

low. The source of this unexpected value is still under investigation, although it seems to

relate, to some extent, to the DL1 miss rate, which is around 73% when we would expect

it to be close to 100%. However, we are pessimistic on whether the cause can be identified

given the limited documentation available, which omits details on, for instance, whether

some form of buffering exists between DL1 and L2, or whether translation lookaside

buffers (TLBs) could create further delays.

Finally, for a 2MB vector size, L2 cache space is exceeded and virtually all vector accesses

reach memory, thus producing a CPA slightly above 20 cycles. This information is also

reflected in the L2 miss rate.

Results with contention. Under contention, setup (b) in Figure 7.2, results for vector

sizes between 1KB and 32KB match exactly those for setup (a) in isolation. This is

expected since all cores hit in their respective DL1 caches and hence, no contention

occurs in shared resources.

For vector sizes between 64KB and 256KB, the vectors of all cores in LPclus still fit in

L2 (i.e. 256KB × 4 ≤ 1MB). Hence, there is no significant contention for L2 space,

since only some residual contention due to loop prologue and epilogue code is expected

when vector sizes are 256KB. Therefore, the CPA increase w.r.t. the isolation setup can

be attributed to contention in the L1-L2 interconnect and serialization of the accesses

in L2. As the size of the vector increases, the number of consecutive memory accesses

increases and hence, there are fewer non-memory instructions per access (due to loop

condition check plus prologue/epilogue), and thus, the degree of contention per access

increases. Performing an exhaustive assessment of all potential conditions to discover

110

Figure 7.4: CPA with contention varying the number of NOPs between accesses
(c©2018 IEEE).

the maximum CPA is left for future evaluation, although the methodology needed to

discover such a value has already been described in [22]. Note, however, that the degree

of contention in the access to L2 is so high that, despite data fits in L2 for the 256KB

vector size, CPA is 20.9, slightly higher than the CPA of experiments in isolation when

L2 cache space is exceeded (20.7).

For vector sizes in the range 512KB-1MB, L2 cache space is exceeded in LPclus, so the

CPA becomes 23.1 cycles for 512KB and 23.8 for 1MB. This indicates that moving from

a scenario with high contention in the access to L2 to a scenario where L2 cache space

is exceeded can only cause a modest CPA increase.

Finally, for a vector size of 2MB, the SB in the HPclus also exceed their L2 cache

space, which is 2MB. Hence, the SBmon experiences additional contention in its memory

accesses, thus having a CPA slightly above 25 cycles. While such an increase can be

noticed, it is also rather modest since DRAM memory is very fast in comparison with

the Juno SoC, and contention in the access to L2 proves to be the main performance

bottleneck.

Increasing NOP count. For the sake of completeness, we have considered the setup

with contention, but placing an increasing number of no-operations (NOP) between

memory accesses. Results for NOP counts between 0 (the default case) and 16 are

depicted in Figure 7.4. As shown, as the number of NOPs raises, there is an increase

in the CPA when data fits in DL1, since NOP latency can be hardly overlapped with

DL1 access latency, thus impacting execution time. However, as soon as the vector

size exceeds DL1 size (from 64KB onwards), execution time is completely dominated

by the contention in the access to shared resources, so even 16 NOPs can be executed

between two consecutive memory accesses without further increasing execution time, so

111

that CPA remains constant. This is reflected in the fact that the CPA is roughly the

same regardless the number of NOPs for any vector size equal or higher than 64KB.

7.6 Summary of Lessons Learned for the Juno SoC

Our qualitative and quantitative assessment of the timing behavior of ARM big.LITTLE

architectures through the ARM Juno board provides some valuable lessons:

• The variation in terms of latency between L2 hits and L2 misses is large. In our

results in isolation they are 9 and 20 cycles respectively. Hence, a task hitting L2

cache often is highly vulnerable to L2 cache space interference, which may increase

execution time by a factor above 2x.

• Contention in the access to L2 due to access serialization can be as significant as

the impact of transforming L2 hits into L2 misses. In fact, L2 latency without and

with contention is also 9 and 20 cycles respectively, hence a factor above 2x.

• Contention accessing DRAM (≈ 25 cycles) is relatively low in comparison to that

accessing L2 (≈ 20 cycles), hence a factor around 1.25x.

• Tasks hitting in their local DL1 are quite insensitive to contention. Eventually they

might suffer some DL1 evictions due to inclusivity, which are only expected to be

significant when the degree of L2 thrashing caused by contenders is high. Unless

unfortunate cache placement occurs where the task analysed and its contenders

compete for very few L2 cache sets, one might expect that contenders need to

thrash the complete L2 cache to evict all DL1 data of the task under analysis.

Hence, the smaller the data set, the less frequently DL1 misses due to inclusivity

evictions will occur.

7.7 ARM big.LITTLE Comparison

In this section we compare two implementations of the ARM big.LITTLE architecture:

the Juno SoC and the SnapDragon 810 processor.

Several characteristics of these processors may enable their use in the context of critical

embedded system or simply defeat any meaningful effort. In particular, while our results

provide positive feedback on the use of Juno SoC for critical embedded system, our work

on the SnapDragon 810 offers opposite conclusions. Next, we review those characteristics

112

Table 7.1: Juno Soc vs SnapDragon 810 comparison.

Feature Juno SoC SnapDragon 810

Prefetcher can be dis-
abled

Yes No (system crashes)

Documentation is reli-
able

Yes (no flaw found) No (some items are
wrong, including
prefetcher info)

Details on PMCs for
activity beyond L2

No No

L2 cache partitioning No No

DL1-L2 inclusivity can
be disabled

No No

comparing both processors, also in Table 7.1 we summarize the main findings of our

comparison.

• Prefetcher. ARM big.LITTLE architectures have a prefetcher that brings data

from memory to L2 caches. We have successfully executed the command for dis-

abling such prefetcher in the Juno SoC. However, such command, which has been

shown to work also in other ARM platforms with a A53 quad-core cluster (e.g.

the PINE A64 [108]), leads to a system crash when used on the SnapDragon 810

processor. Hence, its prefetcher could not be disabled.

• Documentation. A number of parameters in the documentation are often de-

scribed as implementation dependent. Their characteristics can be generally re-

trieved by executing specific instructions that poll the hardware for those details.

However, other parameters are given in the documents such as, for instance, the

particular command to disable the prefetcher. In the case of the SnapDragon 810

processor, not only this command does not disable the prefetcher, but it also pro-

duces a system crash. The only conclusion we could get is that, as part of the

modifications introduced by Qualcomm to optimize power and performance, the

prefetcher interface was altered but documentation was not updated. While the

Juno SoC has been built completely by ARM, who also delivers the documentation,

the SnapDragon 810 combines IP from ARM and Qualcomm, and modifications

introduced by Qualcomm are neither available in ARM’s documentation nor re-

leased in any Qualcomm specification. Therefore, there is not practical view to

retrieve such information in the case of the SnapDragon 810 processor.

• Behavior beyond L2 caches. ARM’s documentation on the big.LITTLE archi-

tecture span up to L2 cache memories since they relate to each cluster. However,

no public information is provided on the PMCs related to the activity beyond

L2 caches. Hence, the timing characterization of the platform brings some un-

certainty on its behavior beyond L2 caches. This relates to the fact that bad

113

performance cases can be triggered, but it is unclear whether those cases are close

to the absolute worst-case behavior.

• L2 cache interference. ARM big.LITTLE processors do not implement L2

cache partitioning. This holds true for both, the Juno SoC and the SnapDragon

810 processor. Hence, L2 cache space is fully shared by all the cores in the cluster,

which can evict each other’s data.

• DL1 cache interference. While DL1 caches are private for each core, DL1

contents are inclusive with L2, thus meaning that, upon a L2 cache line eviction,

if such cache line is present in any DL1 cache of the cores in the cluster, it will be

also evicted to preserve inclusivity. This means that L2 cache interference across

cores may also cause DL1 cache interference indirectly through the eviction of L2

lines stored also in DL1 caches. This feature is common for both, the Juno SoC

and the SnapDragon 810 processor.

7.8 Final Remarks on ARM big.LITTLE Architectures

Based on the above observations, and on the comparison of the Juno SoC and the

SnapDragon 810 processor, we can raise the following recommendations for the use of

ARM big.LITTLE architectures in the context of critical embedded system:

• Critical real-time tasks must avoid hitting in L2. This implies either hitting in

DL1 (in the smallest number of lines possible) or largely exceeding L2 capabil-

ities. Examples of such tasks would be control tasks with limited working sets

and streaming tasks. In fact, these types of tasks could easily coexist without

jeopardizing their execution times due to contention.

• Exploiting L2 cache space must only be allowed for non-real-time tasks (or non-

critical real-time tasks) since they are highly vulnerable to interference due to L2

cache access serialization and L2 evictions caused due to contention.

• Platforms with publicly available and reliable documentation are needed to exercise

sufficient control on the platform. Otherwise, uncontrolled or unknown activity

can defeat any attempt to master those platforms, as needed for critical embedded

systems.

• Lack of documentation of some aspects (e.g. the behavior beyond L2 caches) in-

creases the uncertainty around the findings reached. This relates to the lack of

information on whether the scenarios triggered are sufficiently close to the worst-

case ones. Since such uncertainty may lead to silent systematic failures, safety

114

measures need to be put in place to account for the in critical embedded sys-

tems. In particular, given that systematic failures may be unrecoverable, the only

choice available to preserve safety consists of transitioning the system to a safe

state, where availability is jeopardized but safety is preserved. Hence, if further

documentation cannot be obtained, ARM big.LITTLE architectures may be re-

garded as amenable for some fail-safe systems, where a safe state exists, but not

for fail-operational systems unless sufficiently independent and diverse redundancy

is included.

Chapter 8

Conclusions and Future Work

Critical embedded systems industry is characterized for the need of evidence on appli-

cations’ correct timing behavior. Such requirement clashes with the increasing need for

computing performance to implement new software functionalities as a way to increase

the competitive edge of developed embedded products. This is so because covering

these performance needs necessarily builds on the use COTS multicores due to their

well-known efficiency, availability, and low procurement costs. And unfortunately, mul-

ticores pose several new challenges for their timing analysis. In particular, obtaining

reliable and tight WCET estimates, which is a must in critical embedded systems, be-

comes a complex process for COTS multicores. The objective of this Thesis is to ease

this transition from singlecore to multicore processors in terms of timing and verification

and validation. To that end we have proposed several methodologies to help deriving

WCET bounds with increased confidence and time composability, including early soft-

ware development phase.

8.1 Summary of Contributions

In order to take advantage of COTS multicores performance for their application in

critical embedded systems, it is necessary to palliate the extra complexity that they bring

to the timing validation and verification process. Next we summarize each contribution

we have done to seek that end:

• Our first contribution is a study of the state of the art techniques focusing on

multicore contention analysis and bound. We classify the existing approaches and

propose a taxonomy. Since the usage of multicores in critical embedded systems

115

116

is a problem that has been tackled from different angles, with a large number of

proposals, we analyze the assumptions made by each one the techniques.

• Our second contribution consists of a methodology to upper bound the maximum

delay in the access to hardware shared resources in COTS multicores. Contention

in the access to shared resources is the factor with highest impact on WCET es-

timate reliability and tightness. But this information is hardly available in the

documentation, so here lies the usefulness of our methodology. It relies on mea-

surements using resource stressing kernels so that reliable and tight contention

bounds can be estimated despite the limited information available in processor

technical specifications. We have tested the robustness of our methodology and

verified it with two different arbitration policies controlling the bus and memory

controller in a space platform.

• With our third contribution we enable the derivation of tight bounds for contention

in shared hardware resources by accounting for the actual contention that tasks will

suffer, but without deferring timing analysis to late design phases, when budget

overruns would be too costly to fix. To that end, we introduce the concept of

resource usage signature and template of a given task. These parametric constructs

abstract the potential contention caused and suffered by tasks on a multicore, and

allow obtaining WCET estimate.

• Our fourth contribution is a methodology to create surrogate applications during

early design phase for WCET estimation. Those applications mimic the multicore

timing behavior of the applications modelled. Surrogate applications can be shared

during early design phase across software providers for tight WCET estimation

without revealing IP. In particular, our surrogate applications mimic the impact

on the hardware resources of the original applications, such as cache behavior

and access patterns to shared hardware resources, which are the most relevant

parameters for WCET estimation in multicore processors.

• Our final contribution consists of the application of our UBD estimation method-

ology on specific COTS multicore platforms. In particular, we target the ARM

big.LITTLE processor architecture. We have used two different boards imple-

menting this architecture: the DragonBoard and the Juno board. We shown that

our methodology can be applied with limited success due to the particular timing

characteristics of this architecture, which make it not particularly amenable for

critical embedded systems. We show that scarce documentation and specific de-

sign choices allow arbitrarily high inter-task interference. Thus, we provide specific

recommendations for the use of these hardware platforms so that contention can

be controlled. Further, we show that commercial platforms whose documentation

117

is not only scarce, but also imprecise, challenge completely their use for critical

embedded systems. This is the case of the SnapDragon 810 processor. While

the hardware platform per se could be used for critical embedded systems, it could

only be mastered if specific details (e.g. how to disable the prefetcher) are released,

which is not the case to date.

8.2 Future Work

The results of our research, globally, show evidence that measurement-based method-

ologies can be suited on top of COTS platforms to derive information needed for WCET

estimation. However, the incorporation of increasingly complex high-performance hard-

ware platforms in critical embedded systems opens the door to extending the research

in this thesis in a number of directions, which we detail next:

• Our proposals have been assessed on top of COTS multicores using some form

of buses or crossbars to communicate cores with shared hardware resources. The

increasing need for performance pushes for the adoption of higher performance

platforms such as manycores where cores may be connected with arbitrarily com-

plex (and distributed) networks-on-chip (NoCs) such as meshes and trees. Hence,

our rsk -based methodology needs to be extended to obtain reliable and tight con-

tention bounds on top of NoCs. We expect those approaches to follow the same

principles developed in this thesis, such as exploring different time alignments of

requests by injecting nops in between memory accesses, and building bounds on

pure measurement-based approaches. However, this methodology needs to be tai-

lored to specific NoC designs whose timing characteristics differ from those of a

bus, and where multiple requests may coexist in the NoC without experiencing

worst-case contention (if any).

• In this Thesis we have addressed the main hardware components in the access

to memory such as shared buses, caches and memory controllers. However, high-

performance processors incorporate an increasing number of accelerators such as

GPUs, FPGAs, cryptographic units, multimedia units, etc. Those shared resources

may have different timing characteristics related to their ability to process mul-

tiple requests simultaneously, their latency, and their interaction with memory

interfaces among others. Hence, our approach based on rsk as well as on signa-

tures and templates needs also to be tailored for these components. The principles

developed in this Thesis are expected to hold, but they need to be tailored to

specific architectures that may incorporate accelerators shared across cores.

118

• The research of this Thesis has been assessed on prototypes and benchmarks rep-

resentative of industrial environments. However, integrating those methods on

commercial tools, boards and use cases is key for the exploitation of this tech-

nology. While the road towards its adoption is long, due to the strict design

and verification processes for critical embedded systems, this process has already

started. In particular, the rsk methodology and an adaptation of templates and

signatures has been ported to the Infineon AURIX TC27x automotive architec-

ture very recently [111]. Such integration is currently undergoing an assessment

on an industrial use case of Magneti-Marelli – an Italian automotive Tier1 com-

pany – in their own premises. Preliminary results are already promising showing

that accurate contention models can be built on measurement-based methodolo-

gies delivering tight bounds. In particular, preliminary results for some functions

show that contention can be proven to increase the execution time in isolation by

less than 10%. Also, our methodology based on rsk is currently being integrated

in a commercial toolset for WCET estimation and timing verification of critical

embedded systems (RapiTime) together with Rapita Systems Ltd. – the owner of

the tool. Still, this process needs to continue to port our technology to boards and

tools relevant for as many critical domains as possible.

Bibliography

[1] Transparency Market Research. Embedded System Market - Global Industry

Analysis, Size, Share, Growth, Trends and Forecast 2015 - 2021, 2015. URL

http://www.transparencymarketresearch.com/embedded-system.html.

[2] Financial Times. Internet of things drives Intel revenues, 2015. URL http://on.

ft.com/1oH1QXI.

[3] Financial Times. Arm profits and sales up as shift away from mobile gains pace,

2016. URL http://on.ft.com/1T6I8Bi.

[4] Intel. Next-Generation Transportation, 2017. URL http://www.intel.com/

content/www/us/en/automotive/automotive-overview.html.

[5] Wilhelm Reinhard. et al. The worst-case execution-time problem overview of

methods and survey of tools. ACM Transactions on Embedded Computing Systems,

7:1–53, May 2008.

[6] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-

mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschu-

lat, and Per Stenström. A survey of hard real-time scheduling for multiprocessor

systems. ACM Comput. Surv., 43(4), 2011. ISSN 0360-0300.

[7] International Organization for Standardization. ISO/DIS 26262 Road Vehicles –

Functional Safety, 2009.

[8] Eric Heymann. The digital car: More revenue, more competition, more cooper-

ation. Technical report, Deutsche Bank Research, Frankfurt am Main Germany,

July 2017.

[9] ARM. ARM Expects Vehicle Compute Performance to Increase

100x in Next Decade, 2015. https://www.arm.com/about/newsroom/

arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.

php.

119

http://www.transparencymarketresearch.com/embedded-system.html
http://on.ft.com/1oH1QXI
http://on.ft.com/1oH1QXI
http://on.ft.com/1T6I8Bi
http://www.intel.com/content/www/us/en/automotive/automotive-overview.html
http://www.intel.com/content/www/us/en/automotive/automotive-overview.html
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php
https://www.arm.com/about/newsroom/arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.php

Bibliography 120

[10] Christopher B. Watkins and Randy Walter. Transitioning from federated avionics

architectures to integrated modular avionics. In 2007 IEEE/AIAA 26th Digital

Avionics Systems Conference(DASC), 2007.

[11] Guidelines and methods for conducting the safety assessment process on civil air-

borne systems and equipment. ARP4761, 2001.

[12] James Windsor, Marie-Helene Deredempt, and Regis De-Ferluc. Integrated mod-

ular avionics for spacecraft - user requirements, architecture and role definition.

In EEE/AIAA 30th Digital Avionics Systems Conference(DASC), 2011.

[13] Frank Kirschke-Biller. AUTOSAR - a global standard. 4th AUTOSAR Open

Conference, June 2012.

[14] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-

mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschu-

lat, and Per Stenström. The worst-case execution time problem: overview of meth-

ods and survey of tools. Transactions on Embedded Computing Systems (TECS),

7(3):1–53, 2008.

[15] Jaume Abella, Carles Hernandez, Eduardo Quiñones, Francisco J. Cazorla,

Philippa Ryan Conmy, Mikel Azkarate-askasua, Jon Perez, Enrico Mezzetti, and

Tullio Vardanega. WCET analysis methods: Pitfalls and challenges on their trust-

worthiness. In 10th IEEE International Symposium on Industrial Embedded Sys-

tems (SIES), pages 1–10, June 2015. doi: 10.1109/SIES.2015.7185039.

[16] FreeScale. e500mc Core Reference Manual. Rev 3, 2013.

[17] Jan Nowotsch and Michael Paulitsch. Leveraging multi-core computing architec-

tures in avionics. In Ninth European Dependable Computing Conference(EDCC),

2012.

[18] Jan Nowotsch, Michael Paulitsch, Daniel Bühler, Henrik Theiling, Simon Wegener,

and Michael Schmidt. Multi-core interference-sensitive WCET analysis leveraging

runtime resource capacity enforcement. In 26th Euromicro Conference on Real-

Time Systems(ECRTS), 2014.

[19] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards compositionality in

execution time analysis–definition and challenges. In Workshop on Compositional

Theory and Technology for Real-Time Embedded Systems, 2016.

[20] Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Quiñones, Tullio Var-

danega, and Francisco J. Cazorla. Resource usage templates and signatures for

Bibliography 121

COTS multicore processors. In 52Nd Annual Design Automation Conference

(DAC), 2015.

[21] Gabriel Fernandez, Javier Jalle, Jaume Abella, Eduardo Quiñones, Tullio Var-

danega, and Francisco J. Cazorla. Increasing confidence on measurement-based

contention bounds for real-time round-robin buses. In Proceedings of the 52Nd

Annual Design Automation Conference(DAC), 2015.

[22] Gabriel Fernandez, Jaume Jalle, Javier Abella, Eduardo Quiñones, Tullio Var-

danega, and Francisco J. Cazorla. Computing safe contention bounds for multicore

resources with round-robin and FIFO arbitration. IEEE Transactions on Comput-

ers, 66(4):586–600, April 2017. ISSN 0018-9340. doi: 10.1109/TC.2016.2616307.

[23] AMBA Bus Specification. http://www.arm.com/products-/system-ip/amba/amba-

open-specifications.php.

[24] Jan Andersson, Jiri Gaisler, and Roland Weigand. Next generation multipurpose

microprocessor. In DASIA, 2010.

[25] NGMP Preliminary Datasheet Version 2.1, May 2013.

[26] Mikel Fernández, Roberto Gioiosa, Eduardo Quiñones, Luca Fossati, Marco Zu-

lianello, and Francisco J. Cazorla. Assessing the suitability of the NGMP multi-

core processor in the space domain. In 12th International Conference on Embedded

Software (EMSOFT), 2012.

[27] Javier Jalle, Jaume Abella, Luca Fossati, Marco Zulianello, and Francisco Cazorla.

Validating a timing simulator for the NGMP multicore processor. In 21st DASiA,

2016.

[28] Cobham Gaisler. LEON4-N2X Data Sheet and User’s Manual, 2013.

[29] Andreas Jung et al. The H2RG infrared detector: introduction and re-

sults of data processing on different platforms. In ESA, 2012. URL

http://www.esa.int/Our_Activities/Space_Engineering/Onboard_Data_

Processing/General_Benchmarking_and_Specific_Algorithms.

[30] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. A Char-

acterization of the EEMBC Benchmark Suite. North Carolina State University,

2007.

[31] Petar Radojković, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami

Yehia, and Francisco J. Cazorla. On the evaluation of the impact of shared

resources in multithreaded cots processors in time-critical environments. ACM

http://www.esa.int/Our_Activities/Space_Engineering/Onboard_Data_Processing/General_Benchmarking_and_Specific_Algorithms
http://www.esa.int/Our_Activities/Space_Engineering/Onboard_Data_Processing/General_Benchmarking_and_Specific_Algorithms

Bibliography 122

Transactions on Architecture and Code Optimization (TACO) - Special Issue on

High-Performance Embedded Architectures and Compilers, 2012.

[32] Andreas Schranzhofer, Jian-Jia Chen, and Lothar Thiele. Timing analysis for

TDMA arbitration in resource sharing systems. In 16th IEEE Real-Time and

Embedded Technology and Applications Symposium(RTAS), 2010.

[33] Simon Schliecker, Mircea Negrean, and Rolf Ernst. Bounding the shared resource

load for the performance analysis of multiprocessor systems. In Proceedings of the

Conference on Design, Automation and Test in Europe(DATE), 2010.

[34] Andreas Schranzhofer, Rodolfo Pellizzoni, Jian-Jia Chen, Lothar Thiele, and

Marco Caccamo. Timing analysis for resource access interference on adaptive

resource arbiters. In 17th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS), 2011.

[35] Dakshina Dasari and Vincent Nelis. An analysis of the impact of bus contention on

the WCET in multicores. In IEEE 14th International Conference on High Perfor-

mance Computing and Communication & 2012 IEEE 9th International Conference

on Embedded Software and Systems (HPCC-ICESS), 2012.

[36] Timon Kelter, Tim Harde, Peter Marwedel, and Heiko Falk. Evaluation of resource

arbitration methods for multi-core real-time systems. In Workshop on WCET

Analysis, 2013.

[37] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page coloring-

based multicore cache management. In 4th ACM European Conference on Com-

puter Systems (EuroSys), 2009.

[38] Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. An-

derson. Making shared caches more predictable on multicore platforms. In 25th

Euromicro Conference on Real-Time Systems (ECRTS), 2013.

[39] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Robert I. Davis, and

Mateo Valero. IA3: An interference aware allocation algorithm for multicore hard

real-time systems. In 17th IEEE Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS), 2011.

[40] Patrick Crowley and Jean-Loup Baer. Worst-case execution time estimation for

hardware-assisted multithreaded processors. In HPCA-9 Workshop on Network

Processors, 2003.

[41] Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using bypass to tighten wcet

estimates for multi-core processors with shared instruction caches. In 30th IEEE

Real-Time Systems Symposium (RTSS), 2009.

Bibliography 123

[42] Yan Li, Vivy Suhendra, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Tim-

ing analysis of concurrent programs running on shared cache multi-cores. In 30th

IEEE Real-Time Systems Symposium (RTSS), 2009.

[43] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Shared data caches conflicts

reduction for wcet computation in multi-core architectures. In 18th International

Conference on Real-Time and Network Systems (RTNS), 2010.

[44] Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson. To-

wards WCET analysis of multicore architectures using UPPAAL. In Workshop on

WCET Analysis, 2010.

[45] Mingsong Lv, Wang Yi, Nan Guan, and Ge Yu. Combining abstract interpretation

with model checking for timing analysis of multicore software. In 31st IEEE Real-

Time Systems Symposium (RTSS), 2010.

[46] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik

Roychoudhury. Static analysis of multi-core TDMA resource arbitration delays.

Real-Time Systems, 2013.

[47] Man-Ki Yoon, Jung-Eun Kim, and Lui Sha. Optimizing tunable WCET with

shared resource allocation and arbitration in hard real-time multicore systems.

IEEE 32Nd Real-Time Systems Symposium (RTSS), 2011.

[48] Roman Bourgade, Christine Rochange, and Pascal Sainrat. Predictable two-level

bus arbitration for heterogeneous task sets. In 26th International Conference on

Architecture of Computing Systems (ARCS). 2013.

[49] H. Kopetz and G. Bauer. The time-triggered architecture. Proc. of the IEEE, 91

(1), Jan 2003.

[50] Precision Timed (PRET) Machines. http://chess.eecs.berkeley.edu/pret.

[51] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. CoMPSoC: A

template for composable and predictable multi-processor system on chips. ACM

Trans. Des. Autom. Electron. Syst.(TODAES), 2009.

[52] MERASA. EU-FP7 Project: www.merasa.org, 2007-2010.

[53] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Guillem Bernat, and

Mateo Valero. Hardware support for WCET analysis of hard real-time multi-

core systems. In 36th Annual International Symposium on Computer Architecture

(ISCA), 2009. ISBN 978-1-60558-526-0.

http://chess.eecs.berkeley.edu/pret

Bibliography 124

[54] Javier Jalle, Jaume Abella, Eduardo Quiõnes, L Fossati, Marco Zulianello, and

Francisco Cazorla. Deconstructing bus access control policies for real-time mul-

ticores. In 8th IEEE International Symposium on Industrial Embedded Systems

(SIES), 2013.

[55] Miloš Panić, German Rodriguez, Eduardo Quiñones, Jaume Abella, and Fran-

cisco J. Cazorla. On-chip ring network designs for hard-real time systems. In 21st

International Conference on Real-Time Networks and Systems (RTNS), 2013.

[56] Martin Schoeberl, Florian Brandner, Jens Sparsø, and Evangelia Kasapaki. A stat-

ically scheduled time-division-multiplexed network-on-chip for real-time systems.

In IEEE/ACM Sixth International Symposium on Networks-on-Chip (NoCS),

2012.

[57] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: a predictable

SDRAM memory controller. In CODES+ISSS, USA, 2007. ACM. ISBN 978-1-

59593-824-4. doi: http://doi.acm.org/10.1145/1289816.1289877.

[58] Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, and Mateo Valero. An

analyzable memory controller for hard real-time CMPs. In Embedded System Let-

ters (ESL), 2009.

[59] D. Dasari et al. Identifying the sources of unpredictability in COTS-based multi-

core systems. In SIES, 2013.

[60] Reinhard Wilhelm, Christian Ferdinand, Christoph Cullmann, Daniel Grund, Jan

Reineke, and Benoit Triquet. Designing predictable multicore architectures for

avionics and automotive systems. In Workshop on Reconciling Performance with

Predictability (RePP), 2009.

[61] Reinhard Wilhelm and Jan Reineke. Embedded systems: Many cores - many

problems. In IEEE International Symposium on Industrial Embedded Systems

(SIES), 2012.

[62] Haluk Ozaktas, Christine Rochange, and Pascal Sainrat. Automatic wcet analysis

of real-time parallel applications. In Workshop on WCET Analysis, 2013.

[63] Andreas Gustavsson, Jan Gustafsson, and Björn Lisper. Toward static timing

analysis of parallel software. In Workshop on WCET Analysis, 2012.

[64] Dumitru Potop-Butucaru and Isabelle Puaut. Integrated Worst-Case Execution

Time Estimation of Multicore Applications. In Claire Maiza, editor, 13th In-

ternational Workshop on Worst-Case Execution Time Analysis, volume 30 of

OpenAccess Series in Informatics (OASIcs), pages 21–31, Dagstuhl, Germany,

Bibliography 125

2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-

54-5. doi: 10.4230/OASIcs.WCET.2013.21. URL http://drops.dagstuhl.de/

opus/volltexte/2013/4119.

[65] Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of mul-

tithreaded applications on multicore systems. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2014.

[66] Javier Jalle, Leonidas Kosmidis, Jaume Abella, Eduardo Qui nones, and Fran-

cisco J. Cazorla. Bus designs for time-probabilistic multicore processors. In Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2014.

[67] Mladen Slijepcevic, Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and

Francisco J. Cazorla. Time-analysable non-partitioned shared caches for real-time

multicore systems. In 51st Annual Design Automation Conference (DAC), 2014.

[68] Patrick J. Graydon and Iain John Bate. Safety assurance driven problem formu-

lation for mixed-criticality scheduling. In MCS Workshop, 2013.

[69] Marco Paolieri, Eduardo Quiñones, and Francisco J. Cazorla. Timing effects of

DDR memory systems in hard real-time multicore architectures: Issues and solu-

tions. ACM Trans. Embed. Comput. Syst., 12(1s), 2013.

[70] Erno Salminen, Tero Kangas, Vesa Lahtinen, Jouni Riihimäki, Kimmo Kuusilinna,

and Timo D. Hämäläinen. Benchmarking mesh and hierarchical bus networks in

system-on-chip context. Journal of Systems Architecture, 2007.

[71] Aniruddha N. Udipi, Naveen Muralimanohar, and Rajeev Balasubramonian. To-

wards scalable, energy-efficient, bus-based on-chip networks. In Symposium on

High-Performance Computer Architecture (HPCA), 2010.

[72] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: A pre-

dictable SDRAM memory controller. In Proceedings of the 5th IEEE/ACM In-

ternational Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2007.

[73] Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni. Worst case analysis of DRAM

latency in multi-requestor systems. In IEEE 34th Real-Time Systems Symposium

(RTSS), 2013.

[74] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, and Edward A. Lee. PRET

DRAM controller: Bank privatization for predictability and temporal isolation. In

Seventh IEEE/ACM/IFIP International Conference on Hardware/Software Code-

sign and System Synthesis (CODES+ISSS), 2011.

http://drops.dagstuhl.de/opus/volltexte/2013/4119
http://drops.dagstuhl.de/opus/volltexte/2013/4119

Bibliography 126

[75] Javier Jalle, Eduardo Qui nones, Jaume Abella, Luca Fossati, Marco Zulianello,

and Francisco J. Cazorla. A dual-criticality memory controller (DCmc): Proposal

and evaluation of a space case study. In IEEE Real-Time Systems Symposium

(RTSS), 2014.

[76] Jalle Javier, Mikel Fernandez, Jaume Abella, Jan Andersson, Mathieu Patte, Luca

Fossati, Marco Zulianello, and Francisco J. Cazorla. Bounding Resource Con-

tention Interference in the Next-Generation Microprocessor (NGMP). In 8th Eu-

ropean Congress on Embedded Real Time Software and Systems (ERTS 2016),

TOULOUSE, France, 2016.

[77] Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu,

and Ragunathan Rajkumar. Bounding memory interference delay in COTS-based

multi-core systems. In RTAS, 2014.

[78] DDR2 SDRAM Specification JEDEC Standard No. JESD79-2E, 2008.

[79] Kingston. KVR667D2S5/2G Datasheet, 2011.

[80] Micron. DDR2 256 Mbit datasheet, 2006 .

[81] Cobham Gaisler. Quad Core LEON4 SPARC V8 Processor - Data Sheet and Users

Manual, 2011.

[82] Andreas Abel, Florian Benz, Johannes Doerfert, Barbara Dörr, Sebastian Hahn,

Florian Haupenthal, Michael Jacobs, Amir H. Moin, Jan Reineke, Bernhard

Schommer, and Reinhard Wilhelm. Impact of resource sharing on performance

and performance prediction: A survey. In Concurrency Theory (CONCUR), 2013.

[83] Hardik Shah, Kai Huang, and Alois Knoll. Timing anomalies in multi-core archi-

tectures due to the interference on the shared resources. In 19th Asia and South

Pacific Design Automation Conference (ASP-DAC), 2014.

[84] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Ab-

hik Roychoudhury. Bus-aware multicore WCET analysis through TDMA offset

bounds. 23rd Euromicro Conference on Real-Time Systems (ECRTS), 2011.

[85] Roman Bourgade, Christine Rochange, Marianne De Michiel, and Pascal Sain-

trat. MBBA: A multi-bandwidth bus arbiter for hard real-time. In Embedded and

Multimedia Computing (EMC), 2010.

[86] Hardik Shah, Andrew Coombes, Andreas Raabe, Kai Huang, and Alois Knoll.

Measurement based WCET analysis for multi-core architectures. 22Nd Interna-

tional Conference on Real-Time Networks and Systems (RTNS), 2014.

Bibliography 127

[87] Gabriel Fernandez, Jaume Abella, Eduardo Quiñones, Luca Fossati Tullio Var-

danega, Marco Zulianello, and Francisco J. Cazorla. Introduction to partial time

composability for COTS multicores. In Symposium On Applied Computing (SAC),

2015.

[88] Gabriel Fernandez, Jaume Abella, Eduardo Quiñones, Luca Fossati, Marco Zu-

lianello, and Francisco J. Cazorla. Seeking time-composable partitions of tasks for

COTS multicore processors. In IEEE 18th International Symposium on Real-Time

Distributed Computing (ISORC), 2015.

[89] Sudipta Chattopadhyay, Lee Kee Chong, Abhik Roychoudhury, Timon Kelter, Pe-

ter Marwedel, and Heiko Falk. A unified WCET analysis framework for multicore

platforms. ACM Trans. Embed. Comput. Syst., 13(4), April 2014.

[90] Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and

Lothar Thiele. Worst case delay analysis for memory interference in multicore

systems. In DATE, 2010.

[91] RapiTime. www.rapitasystems.com.

[92] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically scheduled

microprocessors. In Real-Time Systems Symposium, 1999.

[93] Sylvain Girbal, Jingyi Bin, Daniel Gracia Perez, and Alain Merigot. Using mon-

itors to predict co-running safety-critical har real-time benchmark behavior. In

International Conference on Information and Communication Technology for Em-

bedded Systems (ICITES), 2014.

[94] Mathieu Patte and Vincent Lefftz. System impact of distributed multi core sys-

tems. Technical Report ESTEC Contract 4200023100, European Space Agency,

2011.

[95] http://www.fentiss.com/en/products/xtratum.html, .

[96] http://www.gmv.com/en/Products/air/, .

[97] Raimund Kirner, Roland Lang, Gerald Freiberger, and Peter Puschner. Fully

automatic worst-case execution time analysis for matlab/simulink models. In 14th

Euromicro Conference on Real-Time Systems (ECRTS), 2002.

[98] Trevor Harmon, Martin Schoeberl, Raimund Kirner, Raymond Klefstad, Kwang H.

Kim, and Michael R. Lowry. Fast, interactive worst-case execution time analysis

with back-annotation. IEEE Trans. Industrial Informatics, 8(2), 2012.

Bibliography 128

[99] David Trilla, Javier Jalle, Mikel Fernandez, Jaume Abella, and Francisco J. Ca-

zorla. Improving early design stage timing modeling in multicore based real-time

systems. In IEEE Real-Time and Embedded Technology and Applications Sympo-

sium (RTAS), 2016.

[100] Jan Gustafsson, Peter Altenbernd, Andreas Ermedahl, and Björn Lisper. Ap-

proximate worst-case execution time analysis for early stage embedded systems

development. In 7th IFIP WG 10.2 International Workshop on Software Tech-

nologies for Embedded and Ubiquitous Systems (SEUS), 2009.

[101] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Evaluation techniques for

storage hierarchies. IBM Syst. J., 9(2), June 1970.

[102] R. Kirner and P. Puschner. A simple and efficient fully automatic worst-case

execution time analysis for model-based application development. In Workshop

on Intelligent Solutions in Embedded Systems, 2003.

[103] Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo,

and Rodolfo Pellizzoni. Real-time cache management framework for multi-core

architectures. In 19th IEEE Real-Time and Embedded Technology and Applications

Symposium, RTAS, 2013.

[104] Renesas. R-Car H3, 2017. https://www.renesas.com/en-

us/solutions/automotive/products/rcar-h3.html.

[105] Jingyi Bin, Sylvain Girbal, Daniel Gracia Perez, Arnaud Grasset, and Alain

Merigot. Studying co-running avionic real-time applications on multi-core COTS

architectures. In Conference: Embedded Real Time Software and Systems

(ERTS2), 2014.

[106] Stephen Law and Iain Bate. Achieving appropriate test coverage for reliable

measurement-based timing analysis. In 28th Euromicro Conference on Real-Time

Systems (ECRTS), 2016.

[107] ARM. ARM Cortex-A53 MPCore Processor. Revision: r0p4. Technical Ref. Man-

ual, 2013.

[108] Pine64. Pine64 website, 2016. URL https://www.pine64.org.

[109] E. Bost. Hardware Support for Robust Partitioning in Freescale QorIQ Multicore

SoCs (P4080 and derivatives), White Paper , 2013.

[110] Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking

caches to improve isolation in multicore real-time systems. In IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), 2016.

https://www.pine64.org

Bibliography 129

[111] Enrique Dı́az, Enrico Mezzetti, Leonidas Kosmidis, Jaume Abella, and Francisco J.

Cazorla. Modelling multicore contention on the AURIX TC27x. In 55th Annual

Design Automation Conference (DAC), 2018.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Requirements of Critical Embedded Systems
	1.2 Challenges in Timing Analysis
	1.3 Contributions
	1.4 Structure of this Thesis
	1.5 List of Publications
	1.5.1 Related publications

	2 Experimental Framework
	2.1 COTS Hardware Multicore Platforms
	2.1.1 The LEON processor
	2.1.2 The LEON platforms
	2.1.3 The ARM big.LITTLE architecture
	2.1.4 The ARM platforms

	2.2 Simulation Insfrastructure
	2.3 Benchmark Suites
	2.3.1 EEMBC Autobench
	2.3.2 Mediabench

	2.4 Space Applications
	2.5 Resource Stressing Kernels

	3 A Taxonomy of the Works in the State of the Art
	3.1 A possible taxonomy of state-of-the-art techniques to analyse the timing impact of resource contention
	3.1.1 System-centric techniques
	3.1.1.1 Timing analysis frameworks
	3.1.1.2 Task scheduling and allocation

	3.1.2 WCET-centric techniques
	3.1.2.1 Joint analysis of concurrent tasks/threads
	3.1.2.2 Independent analysis of tasks/threads

	3.1.3 Architecture-centric techniques
	3.1.4 COTS-based techniques

	3.2 Other aspects of interest
	3.2.1 Parallel applications
	3.2.2 The probabilistic approach

	3.3 Critique
	3.4 Conclusions

	4 Increasing reliability on Measured UpperBound Delays(UBD)
	4.1 Contention analysis for RoRo and FIFO
	4.1.1 Studying the Bus and the Memory Controller
	4.1.2 Difficulties in Determining the ubd

	4.2 Elements of the Proposed Solution
	4.2.1 Resource Stressing Kernels

	4.3 The Synchrony Effect
	4.3.1 Synchrony Effect under FIFO
	4.3.2 Synchrony Effect under RoRo

	4.4 Deriving the UBD for the bus
	4.4.1 Nop-based Methodology
	4.4.2 bsk-nop for FIFO
	4.4.3 bsk-nop for RoRo
	4.4.4 Applying the rsk-nop method
	4.4.5 Deriving lbusmax
	4.4.6 Multicycle nop operation
	4.4.7 Summary

	4.5 UBD for the memory controller
	4.5.1 msk-nop for FIFO
	4.5.2 msk-nop for RoRo
	4.5.3 Deriving lmemmax
	4.5.4 Memory refresh

	4.6 Evaluation
	4.6.1 Experimental Setup
	4.6.2 Synchrony Effect on the Bus
	4.6.3 Using store operations instead of loads
	4.6.4 Synchrony Effect on the Memory
	4.6.5 Evaluation of bsk-nop methodology for the bus
	4.6.6 Evaluation of msk-nop methodology for the memory
	4.6.7 Summary

	4.7 Related Work
	4.8 Conclusions

	5 Abstracting Multicore Contention Interference: Templates and Signatures
	5.1 Formalization of RUs and RUl
	5.1.1 Resource Usage signature (RUs)
	5.1.2 Resource Usage template (RUl)
	5.1.3 Illustration of RUs and RUl use through an example

	5.2 RUs & RUl for Measurement-Based Timing Analysis
	5.2.1 Methodology
	5.2.2 The case of a NGMP-like architecture
	5.2.3 Bus
	5.2.4 Memory Controller
	5.2.5 Multi-resource signatures

	5.3 Evaluation
	5.3.1 Experimental results

	5.4 Related Work
	5.5 Conclusions

	6 Surrogate Applications Generation
	6.1 Overall Approach and Target Platform
	6.2 Surrogate Applications
	6.2.1 Stack Distance as a Proxy for Multicore Contention
	6.2.2 Stack Distance per Kilo Instruction (sdki)

	6.3 Surrogate Application Generator
	6.4 Experimental Evaluation
	6.4.1 Experimental setup
	6.4.2 Experimental Results

	6.5 Related Works
	6.6 Conclusions

	7 The ARM big.LITTLE architecture: the Juno Board and DragonBoard
	7.1 Goal and Scenario
	7.1.1 Tracing and Events
	7.1.2 The Platform

	7.2 Qualitative Analysis of the ARM big.LITTLE Architecture: Specifications
	7.3 Quantitative Analysis of the SnapDragon 810 Processor
	7.3.1 Microbenchmarks
	7.3.2 Disabling the Data Prefetcher
	7.3.3 Assessing Microbenchmark Results

	7.4 Summary of Lessons Learned for the SnapDragon 810 Processor
	7.5 Quantitative Analysis of the Juno SoC
	7.5.1 Experimental Setup
	7.5.2 Assessing Stressing Benchmark Results

	7.6 Summary of Lessons Learned for the Juno SoC
	7.7 ARM big.LITTLE Comparison
	7.8 Final Remarks on ARM big.LITTLE Architectures

	8 Conclusions and Future Work
	8.1 Summary of Contributions
	8.2 Future Work

	Bibliography

