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In the beginning, there was nothing.
And God said «Let there be light».
And there was light.
There was still nothing,
but you could see it a lot better.

—Woody Allen.





Development and Application of a Computational Platform for
Complex Molecular Design

by Jaime Rodríguez-Guerra Pedregal

Abstract

In this dissertation, a series of novel computationalmodeling tools is reported. All of themhave beenwritten

inPython and include: (1)GaudiMM, (2)Tangram, and (3) a collection of command-line applications. This

Ph.D. demonstrates the power of this unique high-level language, particularly in software development for

molecular modeling.

1. GaudiMM allows to build and refine chemobiological structures through a multi-objective genetic

algorithm. It features a modular, extensible architecture that can be applied to diverse molecular

modeling exercises, depending on the modules chosen.

2. Tangram is a collection of graphical interfaces for UCSF Chimera. Some of these extensions provide

interactive methods for setting up calculations in external programs, like Quantum Mechanics in

Gaussian or Molecular Dynamics in OpenMM. Others rely on the interactive 3D viewer to depict

properties of molecular structures as calculated previously in other software, turningUCSFChimera

into an even more versatile analysis tool.

3. A variety of command-line tools has been also developed along GaudiMM and Tangram. They are

mainly concerned with optimizing common workflows in molecular modeling, like running GPU-

accelerated Molecular Dynamics simulations (OMMProtocol), extending the force fields used in

QM/MM approaches (Garleek), or automating the elaboration of Supporting Information docu-

ments for computational chemistry calculations (ESIgen).

To prove their usage and applicability inmolecular modeling, a series of illustrative cases will be described in

detail. These include toy examples that showcase the potentiality ofGaudiMM—someof themunreachable

with standard methodologies—, like siderophore chelation, standard and exotic docking protocols, ligand

design and metal binding site prediction.
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Preface

Scientific progress is tightly linked to human curiosity, a driving force that has brought us further

and further every decade. The same impulses that thrusted imagination into wondering what those

lights in the sky were, kept us on Earth trying to figure out how far we can get splitting matter into

pieces. A mountain can be reduced to rocks, stones, pebbles, sand, dust and… where do we stop? That

question gave birth to the atomism philosophy inAncientGreece, when the term for themodernword atom

was coined: ἄτοµον (atomon, indivisible). In atomism, all matter is composed of atoms and void. Those

philosophical atoms, in all shapes and sizes, could collide with each other or hook together to form clusters

resulting in their observable, macroscopic counterparts or substances.

Atomism was just a philosophical current trying to explain the world without any empirical observations

to prove those hypotheses. It can be considered the first atomic model; albeit a useless one. This does not

necessarily mean it is a bad model. Models are simplifications of reality that can provide explanations and

predictions of reproducible observations. In this case, atomism failed to explain actual phenomena, but did

satisfy the philosophical curiosity behind its inception. As a result, one can only assess the quality of amodel

in terms of its purpose: it will be valid as long as this is fulfilled (see fig. 1).
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Figure 1: In the pre-computer era, models were built physically. Here depicted, DorothyM. Crowfoot’s 1945 penicillin

model. Reproduced fromUK’s ScienceMuseum.1

Since the clusters described by atomism do not provide useful predictions on molecules, new models have

beendescribed over the past decades, each replacing the previous one to address new conflicting observations:

Dalton,Thomson,Rutherford, Bohr…During thepast century,wehave seen the atomacquiringunthought

complexity: nuclei, electrons, protons, neutrons, quarks… Harnessing this complexity in a new model does

notmean thatwe alwaysuse themost sophisticated theories. Sometimes, it is simply overkill andunnecessary.

The same way relativistic effects are not considered during the preparation of a cheesecake, quantum effects

can be ignored in some types of studies. Other times, they must be considered, though.

The complexity of the underlying theory of a model usually correlates with the mathematical principles be-

hind, so themore complex amodel becomes, the harder it is to apply it. Even if themodel itself it is notmath-

ematically complex, the accumulated steps to obtain a satisfactory answer can make it costly. Fortunately,

the uprising of computation in last decades has greatly eased the resolution of the equations proposed by

the advances in theoretical chemistry. In fact, the marriage of modeling and computation is so widespread

that when one saysmodeling, it is commonly understood as computational modeling.

When I first started this Ph.D., I did not know the grounds I was standing on. I was very interested in com-
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puters and technology, but I had reduced experience with programming. The fascinating field of molecular

modeling—and in particular its structural aspects— gave me something visual to work with and taught me

how little changes in an algorithm can have radical effects on the modeled structure. The following chapters

will tell the story of how I found passion in research.





1
Introduction

Since their inception, computers have been intimately connected to all areas of engineering and

science. In fields like molecular biology and chemistry, they can assist in problems such as optimiza-

tion of chemical reactions, drug discovery, material design, or structural characterization. The term

molecular modeling, defined as the use of computational methods to describe the behavior of matter at the

atomistic or molecular level,2 encompasses all these applications as part of a vast family of techniques and

tools.

The increasing presence inmolecular sciences (see appendix A)must be also attributed to the efforts that the

modeling community have been putting on two main fronts: user-friendliness and multiscale applicability.

The former is devoted to creating intuitive interfaces with smooth learning curves, so that users can easily set

up and analyze their calculations. This allows modelers to be more efficient and brings non-computational

scientists closer to the field. The latter is concerned with joining distinct methods in a single coherent pro-

tocol to reach higher accuracy across different molecular scales. With this kind of protocols, phenomena

ranging from recognition processes to catalysis can be accurately simulated. The success of these approaches

finally crystalized in the 2013 Nobel Prize, granted to Warshel, Levitt and Karplus.3

Building software that satisfies both requirements —user-friendliness and multiscale applicability—, is not

easy and requires an architecture that guarantees long-term development. A popular strategy consists of

writing a robust core platformwith a programmatic interface that supports the rest of features in the formof

plugins or extensions. The core logic is usuallywritten in a compiled language likeC++,which provides high

performance but slower development times. Once the heavy lifting is off-loaded to the core, the extensions

can be written in more agile languages, like Python, Tcl or Ruby.

Among all the possible choices, Python has been the most successful over the last years, growing faster than
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any other language.4 It has been chosen as one of themain development language in very popular companies

and software products,5–8 and, for the interest of this project,molecular sciences. Specifically, it can be found

as part of PyMol,9 UCSF Chimera, 10 OpenMM, 11 Amber, 12 or Vina, 13 to name a few.

Choosing Python is not a temporary trend, but a fully educated decision. It allows to abstract away technical

details like memory management, so the developer can focus on the features of the project. Its high-level

description and object-oriented architecture provides an intuitive mindset to create packages with a strong

modular component. This makes Python the perfect companion for developing new molecular modeling

strategies. For example, each method can be abstracted in a separate module, allowing to build multiscale

protocols by simply chaining the interfaced functions.

The premises of this Ph.D. stand precisely on these aspects, mainly focusing on: (1) developing and applying

a novel multiscale platform based on Python flexibility, and (2) generating a new paradigm in 3D sketching

for complex molecular design.

This introductory chapter will provide a brief overview on: (1) the major software categories in molecular

modeling, which will be further detailed in chapter 2; (2) how they can be used together in integrative ap-

proaches; and (3) the difficulties, caveats and pending challenges present in these approaches.

1.1 Molecular modeling: accuracy vs sampling

To understand the benefits of multiscale modeling, and why we need it, we must first review the available

molecularmodeling techniques: how they are used separately, and howwe can join them together in a single

protocol.

The most popular task performed in molecular modeling consists of describing the energetics of a system,

which can then be used as a proxy for structure optimization, reaction path guessing or studies on dynamic

behavior, among others. Depending on the method employed to obtain those energies, the results will re-

semble the experimental observations with higher or lower accuracy. In general, the higher the accuracy, the

narrower the accessible search space (be it conformational or chemobiological, see fig. 1.1).

Atop the accuracy curve we can find Quantum Mechanics (QM) methods, which are based on quantum

chemistry and the equations proposed by Schrödinger in 1925. This family of methods consider electrons

explicitly, which allows them to study chemical reactivity with the highest precision. However, given the

complexity of the calculations involved, even modern hardware cannot deal with more than a few hundred
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Figure 1.1:When considering amultiscale protocol, onemust face the compromise between the phenomena to ob-

serve and the reported accuracy on the results. Due to the limited availability of computational resources, onemust

face the compromise between large sampling capacities and accurate energies. Here depicted, a multiscale protocol

on the conformational space.
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atoms, resulting in limited sampling capacity.

The next major family, Molecular Mechanics (MM), discards explicit electronics for the sake of speed and

scale. Instead of applying Schrödinger’s theory, it considers molecules as a set of spheres connected by care-

fully calibrated springs, whose energy is given by Newton’s laws of motion. This results in much simpler

calculations which can deal with thousands of atoms almost instantaneously. In fact, their most popular

usage is its time-dependent implementation, Molecular Dynamics (MD), which analyzes the evolution of

a system over millions of timesteps to obtain an accurate representation on the molecular behavior along a

few nanoseconds.

QM and MM can be used simultaneously in the same system using an approach called QM/MM. This

hybrid method allows to consider larger structures by splitting the calculations in two regions modeled dif-

ferently. QM is applied to a reduced part of the system that requires an accurate electronic representation,

while the rest of the structure is processed with the simpler MM techniques. Both calculations are then

integrated by using hybrid schemes such as IMOMM, 14 IMOMO 15 or, most popularly, ONIOM. 16

Even though it can be argued that energy calculations are behind every molecular modeling study, not all

methods focus on obtaining an accurate value. Sometimes, a distantly close one is enough. For example,

protein-ligand docking studies are designed to obtain probable orientations in which a small molecule (lig-

and) can bind to a bigger one (protein). For this assessment, obtaining an accurate binding energy is not as

important as navigating the search space reliably: it is preferred to focus on the fast generation of reasonable

candidate poses instead of a locating a true global minimum. To do that in an affordable time, accurate en-

ergies are normally replaced by scoring functions that return pseudo-energies or even unitless scalars. These

functions can be based on simplified molecular mechanics, knowledge-based potentials, shape complemen-

tarity or even simple geometric measurements.

Drastic simplifications of energy are not uncommon in molecular modeling, especially if large search spaces

must be analyzed efficiently. Normal Mode Analysis (NMA) apply an even simpler ball-and-springs model

to obtain the principal vibration frequencies of a molecular structure. Under this approach, collective mo-

tions can be assessed inminutes without resorting to longmolecular dynamics, which can take days or weeks

to finish.
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1.2 Multiscale and integrative modeling

Few computational studies are composed of only one step that relies on a single program toobtain a one-shot

result after the first calculation. They usually comprisemultiple stages that combine several theory levels and

software packages to achieve the intended results. This is especially true inmultiscale approaches, as pointed

out by Grimme and Warshel (see Appendix A).

Multiscalemodeling is often necessary becausemanymolecular phenomena comprise awide range ofmagni-

tudes at different scales. For example, studying the entiremechanismof an enzymatic reactionwould require

the description of binding processes and catalytic mechanisms, leading to the need of both a wide confor-

mational sampling (docking, large scale or steered MD) and fine electronic treatment (QM or QM/MM),

respectively.

The consequences of having different methods for varying sizes and timescales is that those methods must

be combined in well-designed hybrid protocols. There is no clear strategy that dictates the proper sequence

of methods and levels of theory. Most common strategies start with less accurate methods like docking,

select some poses for further assessment using MD simulations, and pick some representative states to be

optimized in QM or QM/MM schemes (see fig. 1.2). 17 However, depending on the information available,

a study can begin with a DFT optimization of a reducedmodel and then progressively consider more atoms

by decreasing themethod accuracy: freezing some atoms in a clustermodel, using semi-empirical approaches

or hybrid methods and finally checking stability with a MD simulation. 18
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Figure 1.2: Example of amultiscale protocol applied for the identi cation of the catalytic mechanism of ametallic

cofactor inside ametalloenzyme. (Reproduced from Computational Methods in Enzyme Catalysis).19

Every study is different and presents unique scientific and technical challenges, which are almost always over-

come on an individual basis. Workarounds, patches and scripts are so commonly needed that it becomes an

art on its own. In the future, this will be less of an issue as hardware gets faster and software smarter, but in

themeantime standardizing some commonworkarounds can produce successful results. For this to happen,

one must first understand those challenges.

1.2.1 Dealing with software fragmentation

The vast landscape of molecular modeling comprises hundreds of programs that have been developed to

address different problems and, most of the time, with only that problem in mind. They were not designed

to be part of a bigger, integrated workflow. Subsequently, good integration is needed between the involved

software, which, unfortunately, it is not always the case.

Each of the steps will require different information depending on the supporting theory (in addition to

atoms and coordinates, some will need connectivity, residue grouping, charges, parameters) and each of the

involved programs might exhibit slight differences in how the exchanged files are parsed or exported. For

example, one particular tool handles element names as case-independent, while the next one would only

accept uppercased names. One tool might use different unit systems and a conversion is required (nanome-

ters and angstroms is a common one). As a result, even after managing to correctly thread the needed file
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formats as required, a robust behavior of the workflow is not guaranteed and ends up in fragile, unexpected

performance.

This is both cause and consequence to the absence of a standard file format to deal with biomolecules and

chemical compounds. On the contrary, first projects created custom file formats to deal with their own

necessities, which has led to several file formats coexistingwith an overlapping feature set. XYZ is the simplest,

with only providing a list of elements and their coordinates, line by line; crystallographers use PDB files to

handle big macromolecular structures such as proteins; MDL (now part of Dassault Systems) created MOL

and SDF files to deal with small compounds; Tripos’ Sybyl (now part of Certara) introduced MOL2 for their

docking studies… only to name a few.

After many years of battling the file format war, a true standard is yet to be defined. While there are ongoing

efforts trying to solve part of the issue (the crystallographic community is slowly replacing the troublesome

PDB file format with mmCIF20,21), new developments still have to deal with multiple input and output

files to be competitive (see fig. 1.3). Some projects exist to cover the compatibility issues, such as the popular

OpenBabel suite,22 but that constitutes only a band-aid and not a true solution.

Figure 1.3: How standards proliferate. Reproduced fromXKCD927 (http://www.xkcd.com).

The solution to this fragmentation is not an easy feat, and several strategies could be implemented to alleviate

the issue. The first milestone is, simply put, write good documentation: time-tested protocols, which detail

the software and versions used in each step are of utmost importance. If files need to be converted and/or

http://www.xkcd.com
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edited along the process, these modificationsmust be noted too. Of course, this is only a patch and does not

solve the background problem: format fragmentation. In this matter, several software-only attempts have

been made and will be further detailed in the next section.

1.2.2 The ecosystem of integrative platforms

Graphical user interfaces (GUIs) are designed to provide a common workspace in which all operations can

be carried out in a cohesive user experience. This avoids having to change contexts and learning new gestures

for different tasks.

For molecular modeling, the perfect GUI would consist of a robust software platform that could act as the

central hub for all molecular modeling programs, interfacing all of them seamlessly. In this sense, commer-

cial graphical suites are likely the best option, since they have the means to build optimized interfaces for

a broad range of computational workflows. Their main problem is, obviously, the licensing costs. Fortu-

nately, alternatives exist for the academic users, be it special discounts for universities or free, open-source

software developed by computational research groups. After all, a big part of the features present in com-

mercial suites comes from academic developments (see charmm vs CHARMM vs CHARMm (Biovia), or

AmberTools vsAmber).

1.2.2.1 Commercial suites

Molecular modeling companies build products to appeal all audiences, from novices to experts. While ad-

vanced and expert users have no problems in dealing with command line interfaces and text edition to man-

age programs, beginners usually tend to favor graphical interfaces. Dialogues, buttons anddropdownmenus

are way easier to handle than input files with arbitrary syntax. As a result, most commercial suites are graphi-

cal ones, creating themolecular design software concept: a graphical interface that provides a real-time visual-

ization of 3D structures with interactive building and conformationalmodification. On top of this interface

several functionalities can be added, such as assembling polymeric, periodic or solvated systems, guessing par-

tial charges, geometry optimization, force field parametrization andmuchmore. Depending on the tasks the

user is going to performmore often, some differences can be drawn, but overall the most popular suites will

offer the same feature set.

As of 2018, a handful of suites can fulfil the aforementioned requirements: Schrodinger’s Maestro,23 Das-

sault Systems’ Discovery Studio (formerly fromAccelrys, now part of Dassault as Biovia),24 Chemical Com-
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putingGroup’sMolecularOperating Environment (MOE)25 orOpenEye Lead suite.26 Obtaining access to

these suites is subject to a one-time or periodic license, which even with academic discounts, can sit up well

in the thousands. Even with those prices, it seems to be worthy: the sector is growing year after year and the

forecast for the next decade are very optimistic.*

Privative but free, SAMSON Connect (for Software for Adaptive modeling and Simulation Of Nanosys-

tems) seems like a modern alternative backed by Inria. It requires an account and accepting their terms of

use just to download the software, which includes a clause stating You must be at least 18 years old to use the

Service, restricting their use in the school. That said, it offers a good software development kit (SDK), backed

by good documentation on how towrite customElements or extensionswhich are distributed through their

online community. However, after further inspection, one quickly realizes that they are primarily focusing

on materials design and nanosystems, not macromolecules and small compounds.

All that glisters is not gold, said Shakespeare. All-in-one solutions, as provided by commercial suites, are very

appealing to novice users, but when the intended purposes of the tool must be pushed, the commodities of

the graphical become an impediment instead. This is crucial whenmodeling new areas of structural biology

or organometallics, such as artificial metalloenzymes or metal-organic frameworks. In these frontier-fields,

researchers cannot simply rely on existing protocols and tools, they create their ownby trial-and-error or even

code new algorithms to overcome the difficulties. In other words, the state of the art is not always available

within the licensed suite, whose update might come a year too late.

It is true that through extended configuration files, some hardcoded parameters can be modified and, if the

software features a decent Application Programming Interface (API), scripting languages can be applied to

implement new algorithms and techniques. Modifying the source code is normally not possible because,

being commercial, the source is not disclosed. If they do release it as open source, it is for an old version

that, while helpful, it is not ideal.9 In that matter, the academic and/or open source software have a clear

advantage.

*A study by Industry Arc Research projected that the Computational Medicine and Drug Discovery Software
would reach 6.78 billion USD by 2020,27 which agrees with GrandView Research studies: the structural biology and
molecular modelingmarket will be worth 13.1 billion by 2025.28 According to a study published byAccuray Research
in May, 2017,29 which cites companies such as Accelrys, Certara, CCG or Schrodinger, the global computational biol-
ogy market will reach a value of 11.25 billion USD by 2025. More studies on biosimulation, offer markets worth up
to 2.88 billion by 2022. 30 This has been known for investors, of course, as evidenced by the 10 million USD round
received by Schrodinger LLC from Bill Gates in 2010.
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1.2.2.2 Academic software

While there are software companies that do some research and develop newmethods, only a handful publish

their results, so it is fair to assume that most of the public knowledge comes from publications submitted

by academic research groups. After all, most of the commercial scientific software was, at some point, of

academic nature.31,32

The academic landscape is not only broad, but also disperse. Lots of small projects are released weekly and

it is very difficult to keep track of them all. A couple of web directories have emerged recently,33,34 giving

a small insight into the field. In OMICTools, only the proteomics category displays almost 9000 entries.

GitHub,35 the de-facto online repository for open-source software, shows more than 2000 repositories for

chemistry searches.

When it comes to integrative suites, the analysis is much simpler. Few groups can dedicate all their efforts

to building a wide-spectrum tool, especially when the commercial suites are well-established. If any, the one

weakness that can be easily exploited is price: releasing an open-source tool with a comparable feature set

would be very competitive.

One the best attempts to fill the gap is the UCSF Chimera project. First released in 200036 and published in

2004, 10 after 18 years of development UCSF Chimera shows its age: the graphical interface looks dated and,

with today’s standards, clunky. But that age is also a blessing: the software is stable, robust and mature, and

accumulates a lot of modules to perform all kinds of analysis: clashes detection, H-bond depiction, density

map fitting, peptide building… It comprises a huge number of small tools that, together, make for a good

modeling suite. However, the diverse origin of the tools (some are built by the Chimera developers, but

a good part comes from third-party collaborators), end up creating a feeling of unstructured workflow. It

also lacks key elements like Quantum Mechanics integration or a modern Molecular Dynamics program (it

does include MMTK, an abandoned project that cannot provide the performance expected with modern

architectures).

This is caused by threemain issues: (1)There is no developer documentation. The few resources are scattered

between the mailing list and the Python code itself. (2) 15 years of back-compatibility surely comes with a

price, which means shipping old projects with deprecated dependencies. (3) A deliberate isolation of the

platform to ensure consistent behavior in all platforms prevents the developer from writing software with

modern tools and libraries. Solving point (1) would be a huge effort that only the developers could satisfy

adequately, but points (2) and (3) can be addressed with patches and clever workarounds, which are the



Introduction 33

reasoningbehindoneof thedevelopments presented in this thesis (see chapter 5). Fortunately, the same team

behind UCSF Chimera is now working on ChimeraX, focused on the migration to modern standards and

providing a central repository for 3rd party extensions (the Toolshed). While the core code is now available

(andwith proper documentation), the extramodules would takemore time. This means that the feature set

is yet to be comparable.

Classic visualizing software like VMD or PyMol could also fill the gap: they have been developed for years

and now accumulate a good number of extra features thanks to the contributed extensions. The problem

is that they lack an attractive, intuitive interface to begin with and both feel like a modest 3D viewer with

extra modules bolted on: functional, but not ideal. The open-source project Avogadro does offer a tighter

interface, good documentation and interfaces to most QM and MM software, but its focus seems more

centered on small compounds rather than macromolecules. For example, by default it does not depict the

secondary structure of proteins like ribbons, and when selected the result is not as aesthetically pleasant as

Chimera, VMD or PyMol.

1.2.3 The role of scripting in the integration of software projects

Putting different tools to work together, even when they were not designed with that purpose in mind, is

one of the key skills that an advanced molecular modeler must master. Without programming knowledge,

the task becomes almost impossible: copy-pasting parts of a file only gets you so far and quickly become

tedious.

Writing little glue scripts to adapt the output and input files of several programs is relatively easy and only

involves knowledge in text manipulation. For this task, several languages are adequate, such as Bash, Tcl,

Lua, Perl or Python. Each has enjoyed a period of popularity, but nowadays Python is king both in scripting

and more advanced tasks.37 On top of being free, this is attributed to its easy-to-learn syntax, high readabil-

ity, dynamic typing, and its general-purpose, rich library of built-in packages (the batteries included motto)

which has allowed the development of a huge ecosystem of high-quality scientific packages (NumPy, SciPy,

Scikit, Pandas, SimPy, Matplotlib, Jupyter…).

Being interpreted, Python is not a particularly fast programming language and can fall behind the perfor-

mance of compiled languages (C, C++, Go, Rust) or even Java. However, putting different programs or

libraries to work together is not very computationally demanding and the easy syntax really pays off in devel-

oping times. Even if performance is an issue, it is often smarter to accelerate the critical parts (withNumPy,38

Numba,39 Cython,40 or C/Fortran extensions) and code the rest of the program logic in pure Python.
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The trend is obvious and most of the new advances in scientific programming are either built with Python

or provide a Python layer around the compiled core, as evidenced in all the machine learning/deep learn-

ing/neural networks/blockchain projects recently launched (i.e. TensorFlow,41 Theano42 or PyTorch43).

Instead of programming, the researcher can also devote to using a single modeling suite. The previous sec-

tions have tried to shed light on all the graphical suites, bothwith commercial and non-commercial products.

Here, the graphical canvas (or, more precisely, the programmatic objects thereby represented) acts like the

communicating thread across the involved steps. For example, the user builds a molecule in the 3D viewer,

and a plugin writes the input file to an external program to do additional operations. The results are then

imported back into the canvas and update the needed fields. Originally, the canvas and the external program

did not understand each other, but with a specifically crafted intermediate module, they can. It is up to each

of the extra modules to act as interpreters between the core platform and the external software.

To support the development of additional plugins, almost all modeling suites feature some kind of program-

matic interface (API) to extend their core features. That API exposes the functionality of the platform to

other developers, usually with a scripting language. In all the suites mentioned, Python is consistently cho-

sen as that language. One way or another, learning even some programming skills is highly beneficial to any

molecular modeler.

1.3 Modeling with scarce data: abusing modular approaches

All modeling approaches seem to follow a notion: accurate structural details are subordinated to fine energy

descriptions. While true, this mindset can be limiting when it comes to modeling systems with scarce exper-

imental information available. This is important because, regardless what methods are finally applied in a

multiscale protocol, any software will always need input information to work with. Depending on the tasks

to perform, the required data can range from simple geometry specifications, to connectivity, atom types,

charges, spin state, temperature, optimization steps or algorithmic treatment (see section 2.5).

For some modeling tasks, the hardest part is simply telling whether that exercise is feasible or not. In those

cases, an accurate energy description is not always initially needed, and the input requirements can be relaxed.

In those cases, one can focus on simply obtaining a good enough starting structure. Instead of committing to

strict parameterization, sometimes a reduced number of descriptors are enough for dealing with hypotheses-

drivenquestions. If all thatmatters is obtaining an answer, those descriptors canbe supportedby any existing

technique: simple geometricmeasurements, knowledge-based scoring functions, molecularmechanics force
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fields, or, if necessary, even energies provided by quantum mechanics methods.

If this type of exercise is performed regularly, molecular modelers would start accumulating experience and

recognizing patterns in the protocols applied. Ultimately, they would devise a platform where each descrip-

tor is encapsulated in a separate module and can be recruited on demand to compose solutions for arbitrary

molecular modeling tasks. If necessary, separate modules can deal with specific areas of the problem to by-

pass any potentially unmet requirements in other regions.

With a scripting language like Python, building such a platform is possible. Additionally, thanks to the great

number of existing libraries for scientific computing, the development efforts are greatly simplified and can

fit within the typical timescales of a Ph.D. scholarship.





2
Materials& Methods

Computational chemistry was first coined by FrankWestheimer at a conference in 1966 to refer

to Allinger’s work on molecular mechanics,44 separating it from other studies that would fall un-

der the theoretical chemistry category at that time. Nowadays, the term is broader and considers

far more techniques. In fact, under the modern definition earlier works would be considered computational

chemistry; albeit analog ones. In 1930, Kettering and more researchers in General Motors, built ball-and-

spring models for several molecules and correlated their vibration modes with their Raman spectra. This

work, titled A representation of the dynamic properties of molecules by mechanical models,45 could be con-

sidered one of the first molecular modeling studies.

2.1 Origins of molecular modeling

The birth of theoretical chemistry, from a quantum chemistry perspective, can be pinpointed with the de-

scription of the Schrödinger equations in 1925–1926.46 The first application of quantum mechanics came

a year later, in 1927, with the publication of Burrau’s studies47 on H+
2 and Heitler and London calcu-

lations48 on H2. The field began to grow rapidly (Teller,49 Mulliken,50 Born,51 Oppenheimer,52 Paul-

ing,53 Hückel,54 Hartree,55 Fock56…) and computational implementations of the new theoretical frame-

work started tobe feasible after the advances in computer technologyduring the late 40s.57 In the 50s and60s,

several milestone papers were published, making for the first documented computational chemistry calcu-

lations.58,59 Also, non-quantum, classical approaches stemming from theoretical physics started to emerge,

although not strictly dealing with chemistry problems.60–62

By the 70s, several journals had appeared to target computational chemistry and the first quantum chem-
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istry packages began to be distributed (including the first version of the now ubiquitous Gaussian31). The

available hardware back then only allowed for ab initio* calculations of molecules as big as naphthalene and

azulene (18 atoms). In those same years, molecular mechanics methods became more popular, especially

with the contributions by Lifson’s CFF,63–65 Allinger’s MM series,66,67 Scheraga’s ECEPP potentials,68,69

Karplus’ CHARMM,70 van Gunsteren’s GROMOS71 and others, proving the power of empirical parame-

terization. By the 80s, Computer AssistedMolecular Design (CAMD) was the new hype that would revolu-

tionize the pharmaceutical industry,72 and by the 90s it was clear that computational chemistry was broader

than quantum chemistry. In the preface of Reviews in Computational Chemistry Volume I,73 editors ac-

knowledge that:

”[...] we do not view the terms theoretical chemistry and computational chemistry as synony-
mous. Computational chemistry sometimes involves application of computerized algorithms
from quantum theory, but computational chemistry is certainly more than quantum chem-
istry [...]. Molecular mechanics, molecular dynamics, computer graphics, molecular model-
ing, and computer-assisted molecular design are other important aspects of computational
chemistry [...]”.

Nowadays, molecular modeling encompasses techniques and strategies beyond what is traditionally con-

sidered computational chemistry (this is, quantum and molecular mechanics, mainly). With the current

popularity of more expressive languages, it will be possible to devise new algorithms and protocols in less

time. Additionally, it can be argued that recent advances do not only come from developing new methods,

but also from reapplying the existing ones under new computational architectures, both in terms of hard-

ware and software. For example, parallelizable code and, in particular, GPU-acceleration, have taken the

performance of Molecular Mechanics methods to the next level.†

The following pages will introduce the major families of software approaches in computational chemistry

andmolecularmodeling. Theywill be listed in twomajor groups depending on the focus (energy description

or conformational sampling), and in descending order of level of theory,‡ which, in practice, means going

from high-accuracy to lower-accuracy methods. Finally, an overview on optimization methods will depict

the relationships between energy description and space sampling in the context of molecular modeling.

* Amodel is said to be ab initiowhen it only considers the resolution of the first principle equations (Schrödinger’s),
without support from experimental observations. Empirically derivedmodels do take these observations into account,
very often as a workaround to avoid solving the full equation system. When the two approaches are combined, those
are semi-empirical methods.

†Quantum Mechanics software is also starting to use GPU-accelerated code, but the support is still limited (see
appendix A).

‡An estimation of the complexity of the theory supporting the method, that while arbitrary, gives a quick under-
standing of the intricacies involved. Higher theory levels usually refer to highly accurate, computationally demanding
methods that rely on complex mathematical models. Lower theory levels, on the contrary, refer to less accurate and
computationally cheap methods relying on simpler models.
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2.2 Energy description

2.2.1 Quantum Mechanics (QM)

The main idea behind quantum chemistry is that molecules and, by extension, all ordinary matter, can be

viewed as composed only of positively charged nuclei and negatively charged electrons. Mathematically, this

can be expressed with the time-independent Schrödinger equation:

HΨ = EΨ = Tn + Te + Vne + Vee + Vnn (2.1)

(Time-independent Schrödinger’s equation)

, where H is the Hamiltonian operator, E is the total energy of the system, Tn and Te are the kinetic ener-

gies of nuclei and electrons, respectively, and Vne, Vee and Vnn are the potential energy between nuclei and

electrons, electrons against each other, and nuclei against each other, respectively. Solving this equation for

any system would mean seeking the eigenfunctions and eigenvalues of that Hamiltonian.

The details of such resolution are out of the scope of this thesis, but some comments can be made about its

practical effects. Since only one-particle and two-particle systems can be solved analytically, numerical meth-

ods are employed to approximate the solution for systems of 3 or more particles: the many-body problem.

While not analytical, the same methods can be applied iteratively to any given precision; the only restraints

are computational and time resources. As a result, some approximations have been developed over the years

to simplify the equation solving process without much accuracy loss.

The first approximation to appear was the Born-Oppenheimer approximation. It relies on the big mass dif-

ference between nuclei and electrons. In hydrogen, the monoprotonic nucleus is already 1800 times heavier

than the electron; for uranium, the nucleus/electron mass ratio goes up to 430,000. This leads to consider

that, given the enormous mass difference, electrons and nuclei move in different time-scales: if the nucleus

moves, the electronswould follow instantaneously. Thismeans that the nucleus can be considered stationary

for electronic timescales, and appear as parameters in the equation, greatly simplifying its solution.

Even with uncoupled motions, the dynamics of electrons are complex and require advanced computational

methods. A significant simplification would be to treat electrons as independent from each other by in-

troducing an independent-particlemodel, either by neglecting all interactions altogether, or, even better, by
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introducing an average interaction factor. These approximations are collected under theHartree-Fock (HF)

theory. In HF methods, electronic interactions are not explicitly described, but with a large basis set 99%

of the energy can be described by the HF wave function. The difference between the energy predicted by

(Restricted)HF calculations and the real energy is called electronic correlation, which in certain chemical phe-

nomena is key to obtaining accurate predictions. As a result, three main strategies have been developed to

calculate it explicitly: Configuration Interaction (CI), Many-Body Perturbation Theory (MBPT) and Cou-

pled Cluster (CC).

Evidently, these methods involve extra computational complexity, so in some cases, more aggressive approx-

imations have been applied. This is the case of semi-empirical methods, which instead of trying to resolve

some of the most complex integrals, resort to experimental parametrization of the results. While it is true

that this leads to less accurate results, they are way faster and, with sensible parameters, the difference can be

neglected depending on the study at hand.

HF theory is not the only applicable approximation to simplify the many-electron problem. In a way, Den-

sity Functional Theory (DFT) can be seen as a more efficient strategy to tackle the challenge. DFT is based

on the Hohenberg and Kohn proof, which suggests that the ground state electronic energy can be deter-

mined completely by the electron density. In practice, it offers a computational cost similar to HF theory,

but with the possibility of providing more accurate results§ and is widely used nowadays.

All these methods are applied to solve the time-independent Schrödinger equation; this is, to obtain the

energy of a system with given coordinates. If the dynamics of the system (i.e. evolution along time) must

be studied, the time-dependent equation must be solved, which involves highly complex calculations to

obtain reasonable accuracy. With current resources, only di- and triatomic species can be simulated using

this approach. Additional atoms would need to be frozen or treated classically.

A workaround would involve a semi-classical approach. In Ab Initio Molecular Dynamics (AIMD), elec-

trons are treated quantum-mechanically, and nuclei, classically (Born-Oppenheimer Molecular Dynamics,

BOMD). At each time step, a converged wave function is obtained and the corresponding nuclear gradients

are used to propagate the time-evolution. However, for accurate results, onemust resort to tightly converged

wave functions (in BOMD) or very small timesteps (in Car-Parrinello Molecular Dynamics, CPMD).

§They need a good exchange-correlation functional, though, which can only be obtained exactly for the free elec-
tron gas; for other cases, approximations must be employed, like local-density (LDA), local spin-density (LSDA) or
generalized gradient (GGA, meta-GGA) approaches.
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2.2.2 Forcefields: MolecularMechanics,MolecularDynamicsandMetadynam-

ics

Depending on the phenomena under study, explicit consideration of electrons is not always necessary. If

that’s the case, the Schrödinger equation can be bypassed and the electronic energy can be written as a para-

metric function of the nuclear coordinates. Those parameters are fitted to reproduce either experimental

measurements or results obtained with higher levels of theory (i.e. QM). The set of parameters needed to

write the set of equations is called force field, and the theory behind this strategy is calledMolecular Mechan-

ics (MM). Given the size of nuclei, these can be treated classically with Newton’s second law with sufficient

accuracy, resulting in equationsmuch simpler than their QM counterpart, which allow faster computations

and, as a result, dealing with larger systems (tens of thousands of atoms). Neglecting the existence of elec-

trons has some consequences, though: bonding information is lost and must be provided explicitly, rather

than being an inherent result of the equation.

In MM, molecules are described by a ball and spring model: atoms are abstracted as spheres of given radius

and softness, and bonds have length and stiffness. In such an ensemble, the potential energy of the system

can be described as the sum of several components: stretching, bending, torsions, non-bonding interactions

(usually, Van der Waals and Coulomb), and a cross-term of the first three.

EFF = Estretching + Ebending + Etorsional + Enon−bonding + Ecross (2.2)

(Force field energy)

If each of the terms can be expressed as a function of the coordinates for the involved atoms, the potential

energy can be obtained, and geometries and relative energies can be calculated by optimization. Thus, all

that remains is to obtain the parameters for each type of interaction involved in the system under study.

Fortunately,mostmolecules canbedescribed as a compositionof a small set of functional subunits or groups,

the properties of which rarely change. For example, all C=O bonds are around 1.22 Å long. Instead of having

to parameterize each type of atom and bond for each type of molecule, these similarities allow to construct

set of parameters with reasonable easiness, in principle.

As opposed toQM, these equations can be solved efficiently enough to consider time-dependent analysis. If

one takes the force field equations and calculates the resulting forces and velocities, the position of the atoms

can be figured out with high accuracy if the timestep is small enough (i.e. in the same order of magnitude as
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the smallest perturbation studied: hydrogen vibration, in the order of femtoseconds). This strategy gives rise

to a field called Molecular Dynamics, which allows to study the behavior of molecules along time. Modern

computer architectures allow to resolve each timestep around 108 times daily! Processes involving seconds

in real-life can be calculated within a month.

Gaining access to suchmagnitudes allows to calculate properties not available in other higher levels of theory:

conformational changes, binding pathways, or thermodynamic magnitudes such as free energy. However,

in those calculations the potential energy surface (PES) must be well-sampled. Several methods account for

this issue, such as metadynamics (MTD), umbrella sampling or adaptively-biasedMD. In the case ofMTD,

the system is assumed to be describable by a few collective variables or reaction coordinates, which are then

explored in such a way that revisiting sampled states is discouraged.

2.2.3 QM/MM

Dealing with big systems (more than 300-500 atoms) with QM techniques is not feasible due to computa-

tional restraints. In some cases, though, only a subset of the system actually needs explicit consideration of

the electrons. One strategy would consist of pruning the nonimportant parts, replacing them by smaller

functional units which would keep the system’s chemical identity.

In other studies, like enzyme reactivity, the nonreactive part of the enzyme is assumed to be important in

keeping the active site conformation, and as such, cannot be pruned out. While some authors do model en-

zyme reactivitywith a prune-and-freeze strategy (the quantum chemical cluster 74), a large part of the research

community prefers to consider thewhole protein in the calculation. This can be approachedwithQM/MM

methods, in which the reactive atoms and its immediate surroundings are studied with QM, while the rest

of the system is treated classically. The energy of the system is then calculated as a sum of the QM energy,

the MM energy and the interaction between both.

Etotal = EQM + EMM + EQM/MM (2.3)

(QM/MM energy)

The independent QM and MM terms can be calculated straightforwardly as explained before, but decid-

ing on how to calculate the interaction is not as intuitive. In general, three strategies can be applied: (1)

mechanical embedding, which only considers bonded and steric effects; (2) electrostatic embedding, which
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also considers the electric field of the MM part; and (3) polarizable embedding, which adds polarizabilities

between the QM and MM parts. Even in the simplest case, mechanical embedding, technical difficulties

may arise if a bond is cleaved by the QM/MM partitioning, which would require balancing the unpaired

electrons in the QM part by adding a link atom invisible to the MM part. Similarly, the dangling bond in

the MM part must be dealt somehow, normally adding the needed stretching, bending and torsional terms.

Mixingmethods of different level theories for a single system is generalized in theONIOMapproach, which

assumes additivity of the different layers. If two layers are considered, it classifies the system in model (the

subset of the systemwhich is dealt with a higher level of theory) and real (the fullmodel, including themodel

subset). Themodel layer is calculated both with the higher level of theory (usually QM) and the lower one

(usually a force field), while the real layer is only calculated with the lower level of theory. Then, the energy

is given as:

EONIOM = Ereal
high = Emodel

high − Emodel
low + Ereal

low (2.4)

(ONIOM energy)

Another intrinsic problem to QM/MM methods is the sampling. As the contribution of the MM part

to the QM/MM energy is larger than the QM due to the number of atoms involved (around 100 in QM

or 1,000-10,000 in MM), reported energy will be very sensitive to even small changes in the MM layer. As a

result, when an energy profilemust be calculated, theMMpart is kept rigid during thewhole process, which

requires a carefully chosen initial structure to begin with. This usually involves a protocol where a longMD

run is performed to obtain a representative snapshot of the simulation.

2.2.4 Coarse-grained modeling

Coarse-grainedmodels constitute an additional simplification level in the diverse representations of molecu-

lar models, including proteins,75,76 nucleic acids,77,78 or lipid membranes.79 Instead of individually describ-

ing each atom in the system, they group related atoms together in a single entity. These groups, sometimes

called pseudoatoms, can have several levels of granularity depending on the system scale. For example, simu-

lating the dynamics of a viral capsid might needmonomer-level granularity,80 while trying to simulate a full

cell might involve full organelles being represented individually.81
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2.3 Conformational sampling

Even with the latest advances in computer architecture and software improvements to make the most out

of it, some potential energy surfaces are too vast and complex to be explored efficiently with molecular dy-

namics, let alone quantum dynamics. While this might not apply in the next decade, techniques that take

educated shortcuts to traverse broad conformational spaces are still necessary. This is particularly true in

large molecules such as proteins, where structural fluctuations occur at very different time scales and ampli-

tudes: local motions take place are fast and short (10-15 to 10-1s, 0.01-5 Å), and collective motions are slow

and long (10-9 to 1s, 1-10 Å).

2.3.1 Normal Modes Analysis

In Normal Modes Analysis (NMA), slow, collective motions of a molecular structure can be approximated

through the compositionof its independent (normal) harmonic oscillations (modes). TheNMAapproach is

parallel toMM in its theoretical support, meaning that bonds are replaced by springs or harmonic oscillators.

As a result, the mathematical treatment consists of finding the eigenvalue of each coupled oscillator, which

is simple enough to be calculated efficiently for thousands of atoms. In fact, there is no obligation to treat

each atom and bond independently, as nearby atoms can be grouped together in a new body to reduce the

needed number of oscillators (coarse-grained NMA). All these approximations allow dynamic insights on

the movements of a macromolecule without the technical limitations of MD, which require long runs to

observe slow motions. Since NMA does not consider time at all and only requires an initial structure on

which to compute the normal modes, the vibrations obtained only apply to that particular conformation.

In other words, only the local potential energy wells are explored, which can provide a short-sighted analysis

if no other conformations are assessed.

2.3.2 Recognition processes

Recognition processes involve large conformational changes and are key in research areas such as drug de-

velopment or metabolic studies. Docking techniques were developed to describe feasible binding modes of

small molecules (ligands) within a bigger macromolecule (the host, which is normally a protein). To do that,

potential binding pockets in the host are explored explosively by placing the ligand in random orientations

and positions (rigid body transformations), contemplating some internal flexibility if necessary (through

torsions in the small molecule or rotamer exchange for the side chains in the protein), and finally assessing
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their non-bonding interactions. Since the spatial landscape needs to be explored efficiently, with thousands

of attempts before finding a good pose, the energy representation is often cruder than in higher levels of

theory in honor of speed and efficiency: the scoring function. While in principle it could use full molecular

dynamics simulations,82,83 most popular approaches resort to simplifications, like knowledge-based param-

eters obtained out of structural databases84 or empirical evidences.85–87 Other approaches resort to shape

complementarity between the Van der Waals surfaces of the involved molecules88–90 or, more recently, to

Artificial Intelligence (AI) deep learning techniques.91

Docking techniques can also involve other type of molecules, like protein-protein or protein-nucleic acid

studies. In this variant, more approximations are needed due to the broader conformational space involved,

like only considering rigid-body transformations.

2.4 Beyondcartesiancoordinates: navigatingthechemical space

Of all the techniques detailed until know, only QM studies allow topology changes like bond breaking or

creation. This is, when dealing with MM, NMA or docking, most approaches will assume that the starting

set of atoms and their connectivity will be the same during the whole simulation. As a result, to assess

different variants of the same compound one must run the same protocol separately for each variant.

Themost popular technique employing this strategy is virtual screening, which essentially performs docking

calculations for massive datasets of drug-like compounds. In most implementations, the database must be

built beforehand and the chemical space is only explored by trying different entries in the dataset. This

is, no algorithmic modification of the structure is done during the simulation. With big enough datasets,

sampling should not be a problem, but some studies point out that the chemical space explored this way is

very limited.92

Some software projects do attempt to explore the chemical space algorithmically,93–100 but they still struggle

to find mainstream usage in the pharma industry. The implemented approaches often resort to chemical

synthesis guidelines like CLICK chemistry 101 or graph abstractions. 102 This can be useful in docking calcula-

tions that wish to account for some chemical variability in the ligands assessed or rational design of potential

inhibitors.

Since protein-ligand docking studies involve at least two molecules, it makes sense to investigate chemical

variability in the host. While the theoretical chemical space available in proteins is huge due to the number

of atoms alone, fortunately ismore constrained: all proteins are chains of the same20 residues or amino acids.
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Hence, assessing possible variations only involve changing one particular residue for another of the remain-

ing nineteen. It seems simple at first, but the possible variations explode exponentially with chain length,

whichmeans that even for small peptides of around 30 residues it results in an unfathomable number: 3020

or around 3.5·1029 (see fig. 2.1). Subsequently, only a few positions are studied and the variations applied

are somehow rational and studied beforehand. Some tools exist to evaluate the potential consequences of a

mutation in a protein, 103–106 which can help discard destabilizing changes before doing more intense com-

putations. After all, a single change in a key residue can alter the final structure dramatically. 107

Figure 2.1: In any study on protein-ligand interactions, considering sequencemutation of protein scaffolds, each

with its possible sidechain orientations, already produces a combinatorial explosion. Taking different possible ligands

into account adds onemore dimension to the search space. (Reproduced from Arti cial Metalloenzymes andMetalloD-

NAzymes in Catalysis108).

2.4.0.1 Cheminformatics

There are molecular modeling techniques that do not need to rely on 3D coordinates that information to

produce useful results. Cheminformatics are mainly concerned with the creation and maintenance of small

compound databases with support for indexation and similarity searches. The main exponent of chemin-
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formatics approaches is probably QSAR techniques.

Quantitative Structure-Activity Relationship (QSAR) studies apply classification or regression statistical

techniques to predict experimental observables from basic molecular descriptors. The activity under study

can comprise different variables: biological activity of a drug-like compound, boiling point, potential re-

activity, toxicity… All QSAR methods are based on the structure-activity relationship (SAR) assumption:

similar compounds will have similar activities. The main issue is how to measure that similarity: number of

atoms, functional groups, connectivity… As in all statistics, large datasets are needed to obtain valid results.

The first step in QSAR studies is to train the statistical model with a huge library of compounds. Once the

model is trained, it can be used to predict the activity of a compound originally not present in the library.

QSAR input data donot provide 3D-structural data (with the exception of the 3D-QSARvariants), but 2D-

topological information. These are normally supplied with special character strings called SMILES (Simpli-

fiedMolecular Input Line Entry Specification), 109 which can describe compounds unambiguously without

resorting to explicit coordinates specification. SMILES strings work by enumerating the atoms involved in a

molecule with their element symbol, except hydrogen, which is usually implicitly considered. Simple bonds

are assumed between linearly adjacent elements. If a ramification occurs, it must be specified with parenthe-

sis. Numeric tags are used to signal the starting and ending atoms of cyclic substructures (see fig. 2.2). For

example, butane would be represented as CCCC, while D-glucose would be C(C1C(C(C(C(O1)O)O)O)O)O.
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Figure 2.2: SMILES notation can depict a substituted aromatic ring as linear chains with branches. In this case, 3-

cyanoanisole is being written as COc(c1)cccc1C#N.
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2.5 Building models from scratch

Up to this point, it has been assumed that the molecular modeler had all the needed input data ready for

analysis and simulation, but unfortunately that is not always the case.

In QM studies, when only small molecules are studied, manual building of the model can be contemplated

as a possibility using a graphical interface, 110,111 but when the model grows, the possible orientation of rotat-

able bonds or the configuration of the subunits can be a daunting task to solvemanually and even a stopping

barrier in the research. Additionally, in some cases, the initial structure is only conceived as a 2D depiction

with ChemDraw or similar software, which has to be transformed into a 3D model. This a fairly common

process, and as suchmost software suites include a 2D→3D converter. However, additional refinements are

normally required afterwards. If the system features many degrees of freedom, this can be tedious. A com-

mon alternative consists of performing high-temperature molecular dynamics simulations to navigate the

conformational landscape. Once the researcher is satisfied, the small compound can be directly minimized

with quantum mechanics algorithms, but if the size is too large a short MD simulation might be required

instead, in this case to relax the structure.

In macromolecular studies where the conformational space is untreatable, experimental data is needed be-

forehand, like X-Ray Crystallography (XRC) or Nuclear Magnetic Resonance (NMR). These techniques

providedensitymaps towhich,with adequate refinement andpost-processingusing specialized software, 112,113

3D structures are fitted. After validating the quality of the resultingmodel with ERRAT 114 or similar proto-

cols, these are then usually submitted to specialized databases like Protein Data Bank (PDB), 115 fromwhich

the researchers can download the needed files formodeling the required system. Most of the time, files down-

loaded from PDB must be edited to remove experimental artefacts like duplicate positions of some atoms,

protonate the residues at the desired pH by inferring the pKa of each one, 116–118 or reproduce the biological

assembly of the structure. 119,120

While theProteinDataBankholds almost 140,000 structures readily available for everyone, not everyprotein

is there. Sometimes, the structure is partially missing due to experimental limitations or even totally absent.

In those cases, the model must be built from scratch. The folding problem is still unsolved and guessing the

tertiary structure out of the sequence of amino acids is very challenging, but workarounds exist toworkwith

available data. For example, if the protein that needs to be modeled has an already characterized homolog

in the database, their sequence alignment can be used as a template to reconstruct a good structure. This

technique is called homology modeling and its accuracy grows when multiple sequence alignment (MSA)

are available. Since the final model is only an interpolation of closely related structures, some external valida-
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tion is needed. InMODELLER, one of the most popular packages for homology modeling, several scoring

functions to assess the quality are available. Additionally, a series of web services can be found to help in the

task. 114,121,122

Even with a proper protein structure, if the study features custom ligands, obtaining a good candidate for

further steps in the protocol is not as simple as one might think. Assuming the required ligand structure is

available, a regular protein-ligand docking simulation can provide an initial guess of the complex, but this is

usually processed with longMD runs to assess the stability of the interactions. However, if the ligand is not

known andmust be designed from scratch, there is no consensus strategy. Two common approaches involve:

(1) creating a library out of ligands that exhibit the needed chemical features using a reverse pharmacophoric

approach, which then would be screened to assess their stability within the protein; (2) applying topology

operators during the docking simulation itself using topology operators to dynamically build the ligand out

of smaller fragments. The latter has been applied successfully in one the programs presented in this thesis

and will be discussed in chapter 6.

For larger scale systems like viral capsids or lipid bilayers, which can feature millions of atoms, building a

starting structure can be daunting at first, but fortunately they all exhibit some kind of symmetry that can

be used to assemble the full structure out of the involved subunits with specialized software. 119,120

2.6 Optimization methods

Most of the procedures used to identify physically soundmodels of a molecular system stand on finding the

way to ally the exploration of wide search spaces (like introducing sensible changes in the 3D coordinates

of a compound) and the adequate guiding variables (usually, the potential energy). In mathematics, this is

territory of optimization problems for non-smooth surfaces.

An optimization problem consists of, given a function f that connects a set A to IR finding an element

x0 in A such that f (x0) ≤ f (x) for all x in A (minimization), or such that f (x0) ≥ f (x) for all x in A

(maximization).
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Given f : A → R

Sought : x0 ∈ A such that f (x0) ≤ f (x) , x ∈ A (minimization)

or : x0 ∈ A such that f (x0) ≥ f (x) , x ∈ A (maximization) (2.5)

f (x) is normally called the objective function, loss function or cost function for minimization problems,

utility function or fitness function for maximization problems or, depending on the field, energy function

or functional. However, all optimization problems can be expressed as minimization problems, negating

f (x) if the problem is to be maximized.

The domainA of f is usually named the search space or the choice set, and each possible value ofA is called

a candidate or feasible solution. A is normally a subset of Rn , as defined by equality and/or inequality

constraints. The optimizationdefinition canbe extended tobe subject to inequality and equality constraints,

expressed as:

optimizex f (x)

subject to gi(x) ≤ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p (2.6)

, where gi(x) are the inequality constraints, hj(x) are the equality constraints, andm and p are greater than

0. Ifm and p are equal to zero, the definition falls back to the unconstrained optimization problem.

Depending on the form of the function being optimized and the specified constraints, several categories

emerge, like convex or nonlinear optimization problems. In convex optimization, f , g and h are either con-

vex (minimization) or concave (maximization). This includes linear functions, defining the field of linear

optimization. Nonlinear optimization deals with functions that cannot be written as linear expressions,

which usually makes the problem harder.

Solving this type of problems was initially studied by Fermat and Lagrange, who applied calculus-based for-

mulae to identify optimum solutions. However, not all optimization problems can be solved analytically

and, in fact, for some complex problems is usually easier (and faster) to compute numerical solutions iter-

atively until a convergence threshold is met. This approach was initiated by Newton and Gauss, and since
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thenmany applicable algorithms have been devised throughout the latest decades. A fewwill be highlighted

for illustrative purposes.

2.6.1 Steepest descent and conjugate gradient

To go down a smooth mountain, one simply takes steps in a direction towards the valley. There’s a lot of

possible directions, but skilled mountaineers usually take the fastest: the steepest side. Climbing down that

mountain can be expressed as finding theminimum of a convex three-dimensional function, so figuring out

which direction we should take in every step is a matter of finding the gradient of that function at that point.

A gradient is the n-dimensional generalization of a single-variable derivative, so instead of returning a scalar,

it returns a vector. If derivatives gave us the rate of change of a function, gradients will tell the direction

in which the function will experience the greatest change. In this three-dimensional problem, the gradient

vector will point to the next step. By taking little steps in the direction pointed by the gradient, we will

eventually get to the minimum.

This is what the steepest descent (SD) algorithm does, but it can progress very slowly in almost flat regions

of the function. A similar method named conjugate gradient (CJ) uses a similar approach, but the search

direction is computed in a smarter way, making sure that the direction is orthogonal to the previous step

gradient and the current one. It requires more operations, but the performance towards the optimum is

better and usually worthy.

Since these methods only compute f (x) and f ’(x) (first derivatives), they are called first-order methods.

2.6.2 The Newton and quasi-Newton algorithms

Newton numerical algorithms are similar to SD and CJmethods, but compute an additional differentiation

step to use the information provided by the curvature of the function. This makes each iteration more

expensive, but with certain functions fewer iterations might be needed (see fig. 2.3).

Secondderivatives can be generalized asHessianmatrices for problems of higher dimensions, but this can get

very expensive to compute. As a result, several derived methods, called quasi-Newton methods, include al-

ternative methods to compute it or supply equivalent information, like directly computing the inverse with

numerical methods, updating it with successive gradient vectors… Due to its performance, one of the most

popular quasi-Newton algorithms is the BFGS algorithm (for Broyden, 123 Fletcher, 124 Goldfarb 125 and
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Shanno 126) and its limited memory version L-BFGS, 127 widely used in energy minimization of molecules.

Figure 2.3: A comparison of gradient descent (green) andNewton’s method (red) for minimizing a function (with small

step sizes) starting withX0. Global minimum isX . Newton’s method uses curvature information to take amore direct

route.
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2.6.3 Heuristic and meta-heuristic methods

While all these numerical methods are very different in nature, they still perform the same kind of tasks:

exploration, evaluation and selection. This is, they generate a candidate solution (exploration), solve the

equations and assess how far they are from the exit condition (evaluation). Selection is often so trivial in

scalar functions that is not even considered as a separate step.

In a simplified example, where we must find f (x) = 0 with f (x) = ax + b, generating new candidate solu-

tions would simply consist of assigning new values to x. While this can be done randomly until the solution

is found, it is usually more interesting to use a smarter approach. This what the gradients and hessian ap-

proaches provide: educated guesses towards finding the optima. However, they still require an equation to

be available. When several variables are analyzed and the relationship between them is not differentiable or,

simply, unknown, other type of algorithmsmust be employed, like heuristic or meta-heuristic. This kind of

methods make very few assumptions about the problem being solved, making them suitable for a variety of

optimization areas.

2.6.3.1 Monte Carlo methods

MonteCarlomethods are useful for studying problems that are characterized by a huge number of degrees of

freedombut can be interpreted probabilistically. Since the expected value of an integral can be approximated

by the empirical mean of a random sample, these methods allow to obtain numerical results by randomly

sampling the search space. In theMetropolis variant, the sample is refined iteratively with randommodifica-

tions that are either accepted or rejected depending on the new value of the sample or a random acceptance

ratio.

For example, tominimize the potential energy of amolecule, random states can be generated by introducing

small perturbations to the atomic positions that follow a Boltzmann distribution. The energy of the new

states is evaluated and either accepted or rejected by comparing their energies with current mean of the sam-

ple. For example, those with smaller energies are usually included and accepted in the ensemble. For those

with higher energies, they can still be includedwith some probability that depends on the chosen acceptance

ratio. Being a Markov chain, the probability distribution for the next iteration will be reparametrized with

the state of the current sample and the process will continue iteratively until convergence.
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2.6.3.2 Evolutionary algorithms

Evolutionary algorithms (EA) can be explained as an extension to Monte Carlo’s: they also employ random

generation of solutions as starting points, but following iterations employ biology-inspired heuristics to

localize next candidate solutions. In each iteration, the population of feasible solutions (individuals) are eval-

uated in the optimization environment, and each one is assessed a fitness score. Like in the Evolution theory,

only the fittest will be allowed to survive (included in the sample for the next iteration).

Genetic algorithms (GA) are a special type of EA that implement evolutionary heuristics inspired on chro-

mosomic changes. By mimicking chromosomes during the meiosis, candidate solutions can exchange some

of their variables (mating or recombination), and some can experience a random change in one or more

variables (mutation). By iterating over this reproductive cycle, fitter and fitter solutions will be obtained.

Besides EA, newmetaphor-inspired algorithms are constantly developed. Starting in 1983withKirkpatrick’s

Simulated Annealing (SA), 128 it began to grow in the 90s with Ant Colony Optimization 129 and Particle

Swarm Optimization, 130 and exploded in the 2000s and 2010s. Last developments have been attracting

criticism because they seem to hide the lack of novelty behind an attractive metaphor. 131–134

2.6.4 Machine learning

Artificial Intelligence and Machine Learning are very popular computer science fields these days. Globally,

they are algorithms that can learn from their own experience by extracting patterns and relationships out of

the supplied data. They can be studied as non-linear statistical data modeling tools.

One of the hottest branches ofMachineLearning areArtificialNeuralNetworks and, especially,DeepLearn-

ing. The implemented algorithms in these categories mimic the way neurons work in the brain. Like all

mathematical functions, each neuron produces an output that depends on the input. Many neurons are

grouped together in layers and these layers are concatenated, having the output of one layer fed as the in-

put of the next one. Layers can back-propagate, and modify the input of previous layers, like the feedback

mechanism of the brain. Ultimately, this construction generates a huge set of self-adjusting equations that

can optimize wide ranges of observations. For example, they are actively used in speech recognition, com-

puter vision or artificial intelligence. The excitement produced by its success in other areas made it permeate

towards some areas of science where its application is controversial and less fancy algorithms like traditional

statistic methods are even better performers. 135
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2.7 Multi-objective optimization

Usually, ourminds arewired to think in scalar functions and values. This is, functions that return scalarmag-

nitudes or single values. If f (x)points to a scalar space, selecting f (x0) vs f (x1) is just amatter of seeingwhich

value is smaller (minimization) or greater (maximization). However, if the function returns n-dimensional

data, navigating towards the optimum is not so intuitive. Since there is more than one target value, conflict-

ing decisions might arise.

Say we need tominimize a function that takes a vector inR3 and returns another vector inR3. Reaching the

origin by minimization would mean obtaining a vector with all three values equal to zero. What if the first

element in the vector is smaller, but the second is greater? One possibility is to construct a general function

out of those functions, like the Euclidean distance until the origin. In more complex cases, simple weighted

linear summight work, but the weightsmust be carefully chosen for each case; otherwise, convergence prob-

lems might appear. 136

One alternative which does not involve a dimensionality reduction (R3 to R in the previous example) is the

Pareto optimality criterion, enunciated by Wilfried F. Pareto in his studies of income distribution in the

1900s. It is based on Pareto dominance: a solution a is set to dominate solution b if it solves at least one of

the objectives better than b, without losing to b in any of the remaining objectives. 137 By enumerating a high

number of solutions and comparing them in terms of Pareto-dominance, a reduced set of non-dominated

solutions can be found (see fig. 2.4). When no more non-dominated solutions can be found, that set is said

to be Pareto-optimal and constitutes the Pareto front: the solutions to the problem.¶

Under this scheme, finding the solutions to amulti-objective problem is only amatter of increasingly enrich-

ing the Pareto front with non-dominated solutions. Without defining the importance of each objective, all

of themwill be equally good solutions. In other words, multi-objective optimization algorithms do not pro-

pose a single optimum solution, but a set of good trade-offs between the variables under consideration. 138

¶Optimization processes like this are more common that they appear. At the supermarket, all clients decide on the
trade-off between price and quality every day. Normally, humans solve this by setting a cutoff on one of the variables.
For example, a maximum budget is set. However, if all possibilities are considered, the resulting solutions would
range from the cheapest possible product to the most expensive one, including all the good enough (non-dominated)
combinations in between. However, if a new product is added to the catalog and is cheaper than its competitors
without a decrease in quality, that new product will dominate all other products with the same quality but higher
price.
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Figure 2.4: For a two-dimensional problemwhere f1 and f2 must beminimized, the Pareto front can be identi ed with

a convex curve. In this example, p1 and p2 are non-dominated solutions that are part of the Pareto front (wide line). p3
is dominated by p1 and p2 because p1 has a lower value in the f2 axis without worsening the value in the f1 axis, and
p2 has lower values in both axes.





3
Objectives

Multiscale molecular modeling employs different modeling techniques and levels of theory,

per definition. However, resorting to such a vast variety of software tools means they do not

usually play well together. Being conceived by teams with different background and focus,

this end up resulting in three common symptoms:

• Most molecular modeling tools are designed as standalone pieces not meant to be part of broader,

multistage protocols.

• Theypresentunintentionally opinionated abstractions andproblem-solving strategies that forceusers

to recontextualize their problem for each tool.

• The files required are almost never compatible, which results in non-trivial format conversions or

manual input, especially if data exchange is needed.

Subsequently, when a researcher faces a multiscale protocol, a series of technical issues unrelated to the sci-

entific problem arise: files are not properly converted, software dependencies are not updated, the operating

system is not supported anymore… Molecular modeling is difficult enough by itself; there is no need to put

additional barriers in the way.

Themainmotivation behind this thesis is to provide new software solutions tomake technical and scientific

barriers easier to overcomewhen it comes tomolecularmodeling andmultiscale protocols. Several tools will

be presented in the next chapters, each focusing on a specific part of the multiscale funnel. Two of them

constitute the main projects of this thesis:

• GaudiMM, described in chapter 4, is a multi-objective optimization platform to provide reasonably
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soundmodels meant to be used as starting structures for subsequent stages down amultiscale proto-

col.

• Tangram suite, described in chapter 5, is a collection of graphical interfaces for UCSF Chimera to

bridge diverse molecular modeling tools in a single, intuitive user experience. This chapter also in-

cludes command-line utilities that were started as helper tools and ended up becoming independent

projects on their own.

Finally, in chapter 6, a collection of illustrative cases will be described in detail to prove their usage and ap-

plicability. These include toy examples that showcase the potentiality of GaudiMM, and a detailed compu-

tational insight on the counter-intuitive experimental observations found inmultivalent enzyme inhibition

studies.
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GaudiMM

There is an implicit restriction in multiscale approaches due to their own design. They are based

on a sequential series of steps, which are chained one after another to answer the initial ques-

tion. Each step must be resolved separately, which can potentially become a bottleneck or even a

blocking step if the results are not successfully obtained.

Instead of forcing a sequential protocol around a complexmolecular problem, an alternative approach could

be devised. If the panoply of existing modeling methods could be recruited on demand to work simultane-

ously on the same study, all of them could contribute to solve the problem, multiplying their strengths and

compensating their weaknesses. Building this feature set into a robust and flexible platform would be very

desirable for drafting molecular hypotheses and sketching proofs of concept.

GaudiMM is here presented to become such a platform. It takes the expressiveness and flexibility of Python

to create a molecular design platform with unprecedented versatility. The rationale behind its concept can

be summarized in three points:

1. Itsmodular implementation allows to encapsulate separatemethods in isolated entities that canwork

together through a well-defined programmatic interface, which also allows fast development of new

extensions.

2. It makes a clear distinction between the three main stages of any optimization process (exploration,

evaluation and selection), which suggests a flexible way of rationalizing molecular modeling prob-

lems.

3. It does not require prior knowledge of the importance of the variables that affect the system thanks

to its multi-objective optimization capabilities.
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As a result, solving a molecular modeling problem is only a matter of choosing the appropriate modules in

terms of which variables should be explored (cartesian coordinates, chemical spaces...) and which proper-

ties should be measured (geometries, energies...). In some cases, some rigor can be sacrificed in honor of

obtaining good enough results to start working with. In other cases, the combination of methods will work

synergistically towards the design of a novel methodology.

Following sections will describe: (1) the algorithmic and (2) implementation details of the platform, (3)

how different combinations of modules allow diverse molecular modeling tasks, and (4) how to analyze the

proposed results.

Table 4.1: GaudiMM: technical datasheet.

GaudiMM

Description A modular optimization platform for molecular design

Requirements Python, UCSF Chimera, OpenMM, IMP, DSX, ProDy...

License Apache 2

Download github.com/insilichem/gaudi

Documentation gaudi.readthedocs.io

Citation J. Comput. Chem. 2017, 38, pp 2118–2126. DOI: 10.1002/jcc.24847

4.1 Algorithmic details:

multi-objective optimization & NSGA-II

GaudiMMisbuilt on topof amulti-objective genetic algorithm(MOGA),NSGA-II, developedbyK.Deb. 139

It has been thoroughly tested and benchmarked in well-characterized multi-objective problems and is con-

sidered a prototypical MOGA.

As other optimizationmethods, this algorithm canbe described in threemain stages (exploration, evaluation

and selection) that are executed iteratively until an exit condition is met (usually, convergence or maximum

steps). Generating new candidate solutions or individuals is consideredwithin the exploration stage, and can

be achieved by random attribute assignation or combining previously existing individuals. In the evaluation

stage, the candidates are assessedwith different functions or objectives, each returning a scalar that represents

a fitness score for that objective. Finally, the selection stage collects all the individuals and compares their

vectorial scores to select the best individuals according to the Pareto dominance criterion (see chapter 2).

Inmoredetail,NSGA-II startswith the generationof a randomset of potential solutions (individuals)which

https://github.com/insilichem/gaudi
https://gaudi.readthedocs.io


GaudiMM 63

comprise the so-called initial population. This first set of individuals is then evaluated with one or more

objectives and each individual is assigned afitness score vector, the elements ofwhich are the result of those cost

functions. At this point, a small subset of the population is submitted to a round of randommodification of

parameters (mutation) or exchanging some of their attributes (recombination), and are then assessed by the

same cost functions. Being random, the results of these variations can be better orworse than their preceding

counterparts (parents). Finally, both the offspring and the parental generation (µ +λ strategy) compete in

the selection tournament, which will rule which ones will replace the initial population. After a number of

iterations, the initial populationwill have evolved and, eventually,will endupproviding reasonable solutions

to the problem that represent a compromise between the analyzed variables (see fig. 4.1).

4.2 Implementation

Theunderlying algorithm is verypresent inhowGaudiMMhasbeen implemented andhow it is used. Learn-

ing to model with GaudiMM means having a clear understanding on the different stages involved in the

algorithm, specially exploration and evaluation.

4.2.1 Of individuals and genes: the exploration stage

The initial step of all the iterations in the algorithm is the exploration, which is responsible for the generation

of new candidate solutions. A candidate solution is defined by a list of attributes, each representing the

state of a molecular property. Generating new solutions simply involves changing the value of one or more

attributes in that list.

Since GaudiMM is based on a genetic algorithm, the implementation follows the same biologicist terminol-

ogy. InGaudiMMany candidate solution is encoded in a special object calledIndividual. AllIndividual

objects in the simulation are defined by the same high-level attributes, which are called genes. In the same

fashion, the state of each gene is defined by its allele attribute. Depending on the gene, the allele can be a list

of numbers, a path to a file, a matrix…

For example, a typical optimization problem is finding the dihedral torsion that gives the minimum energy

in the ethane molecule. The Individuals featured in this example would only need exploring a single

variable, the torsion angle of the C-C bond, with values ranging from 0 to 360◦. In GaudiMM-speak, the

gene would be the bond rotator and the allele the different angles.
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Figure 4.1: Flowchart of themodular NSGA-II multi-objective genetic algorithm (MOGA) implemented in GaudiMM.

N is the number of individuals in the initial populationP . Valuesλ andµ are related to the number of children pro-

duced at each generation and the number of individuals selected for the next generation, respectively. Together they

control the offspring population size,P0. Constantsmut and cx are the probabilities associated tomutation and

crossover.
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The key part of genetic algorithms is the implementation of variation operators as part of the exploration

stage. Instead ofmerely trusting randomness, existing solutions are combined in hopes of obtaining a better

child solution. These two operations are calledmutation and crossover or mating, mimicking what happens

in the cell nucleus at the chromosomic level.

010110011110101011 110010101110011010

010110101110011010 110010011110001011

Parents

Children

crossover

mutation

Figure 4.2:Mutation and crossover operations introduce variability in the parental population.

Taking all these requirements into account, genes in GaudiMM are programmatically defined by four func-

tions (express, unexpress, mutate and mate) and an attribute (allele). Additional methods and at-

tributes can be defined to support these required elements, if needed. Since each gene is a clearly separate

entity, the Individual object can feature more than one gene, and one gene can be present more than once

with different parameters.

This adds anunprecedented versatilitywhen configuring aGaudiMMcalculation: the user can decidewhich

molecular features must be explored for every case. For conformational searches it might be enough with

the Torsion gene, but for protein-ligand docking the Search gene will be required too. Additionally, if

the built-in genes do not fulfill the requirements of the simulation, new ones can be written and added to

GaudiMM thanks to is modular architecture and well-defined programmatic interface.

This is, genes are more than simple allele attribute holders: they are high-level abstractions of operators that

canmake reversible changes in amolecule based on the value of its allele. Like in Biology, changes in the allele

are only visible if the corresponding gene is being expressed. In those terms, GaudiMM genes encompass

both the allele and the expression mechanism. In the previous example, when the allele changes the torsion

gene needs to update the coordinates of the atoms affected by the dihedral rotation, and only those. To

make changes consistent, it might also need to unexpress or undo those changes to the original state. These

changes can happen in the topology or coordinates of an associated molecule.
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4.2.1.1 Topology modifiers

Genes that fall in this category perform modifications on the atoms that conform the molecular structure

and/or their connectivity. For example, they could increase the length of a ligand linker, change the metal

element of a metallic cofactor or mutate some residues in a peptide sequence.

• Molecule. It is the main gene, as it will be used to load molecular structures from files (PDB, Mol2,

XYZ or any other input format supported by UCSF Chimera). All other genes depend on the initial

topology and coordinates provided by one or more Molecule genes. In addition to loading files, the

path parameter supports loading from a directory, whose contents determine the final behavior:

– If the directory contains molecule files, the allele will be set to one of them randomly for each

individual. This allows GaudiMM to deal test a library of compounds against certain criteria;

i.e. virtual screening.

– If the directory contains subdirectories which, in turn, contain molecules files, the gene will

sort those subdirectories by name and then pick one molecule from each, in that order. The

chosenmoleculeswill constitute the allele andwill be chained linearly as specified in the accom-

panying meta file, which lists the serial number of the potential donor and acceptor atoms.

• Mutamers. Given a residue position in a protein structure, it can replace its sidechain to any other

natural amino acid specified in the configuration. Useful to study site mutations.

4.2.1.2 Coordinates modifiers

Genes that fall in this category only alter the positions of the atoms involved in a molecular structure. They

can modify the full structure, like a rigid translation or rotation of the molecule, or only a part, like the

sidechain orientation of a protein residue.

• Torsion. It helps explore the flexibility of small molecules by performing bond rotations in the

selected Molecule objects, if they exhibit free bond rotations.

• Search. It performs rigid transformations on Molecules (translation and rotation). A radius pa-

rameter can be set to limit the search sphere range. If the radius is zero, the molecule will not be

translated but can freely rotate around the anchor atom, which is useful for covalent bond emula-

tion.
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• Rotamers. It allows to explore side-chain conformations in protein residues by applying Dun-

brack’s 140 or Dynameomics 141 rotamer libraries.

• NormalModes. Given a Molecule object, it calculates normal modes with elastic network meth-

ods and applies the resulting collective motions as possible variants of the initial coordinates set.

• Trajectory. Given a molecular dynamics trajectory file, it can retrieve random frames and apply

the resulting coordinates to any Molecule object.

Table 4.2: List of genes implemented in GaudiMM.

Name Description Depends on

Molecule Load and build structures UCSF Chimera
Rotamers Explore side chain flexibility UCSF Chimera
Mutamers Explore mutation of residues UCSF Chimera
NormalModes Explore collective motions ProDy 142

Search Translation and rotation of Molecules UCSF Chimera
Torsion Dihedral rotation of bonds UCSF Chimera
Trajectory Load frames from MD trajectories MDTraj 143

4.2.2 Of environments and objectives: the evaluation stage

After generating candidate solutions, these must be evaluated with the optimization criteria. In genetic al-

gorithms, this is usually called assessing the fitness of the individuals: fitter individuals are more qualified to

survive in the environment.

Mimicking these concepts, the GaudiMM implementation creates an Environment object that list the op-

timization criteria, each represented by an Objective entity. Objectives are also independent units that can

be instantiated multiple times in the same Environment, but the defined interface is simpler that in genes:

a weight attribute defines the optimization type (maximization or minimization), and a function named

evaluate that takes an Individual object and returns a numerical value as result. What the evaluate

function does behind the scenes does not actually matter as long as a number is produced: calculating a dis-

tance between two atoms, retrieving a parameter from a database, computing the potential energy with an

external MM library…

As a result, GaudiMM ships with a rather diverse set of objectives, combining 3rd party packages and cus-

tom developments in the same distribution. Together they cover all kinds of energetic, geometric and spatial

measurements, allowing to use different levels of theory at the same time in a seamless workflow. Any geo-

metric or energetic parameters that could describe a molecular system can be used as objectives to drive the

GA exploration. This allows us to turn the tables on routine protocols based on computing energetic opti-
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mizations and then analyzing the results in hopes of finding a suitablemodel that fits the intended restraints;

i.e. those same analysis tools can guide the optimization process from the beginning.

4.2.2.1 Geometry measurement

• Angle. Given three atoms, this objective calculates the angle between those. By minimizing the

difference between the measured angle and the target one, the final angle can be optimized. It will

calculate the dihedral if four atoms are specified.

• Distance. If two atoms are provided, this objective calculates the distance between. Byminimizing

the difference against a target value, the structure can be optimized to fulfill that requirement. It also

supports calculating distances to groups of atoms by taking the centroid of the group.

• Inertia. This objective calculates the inertia tensors of two structures and returns the sine of the

smallest angle formed between any of the possible pairings. It can be useful to align ligands along the

major axis of a protein.

4.2.2.2 Spatial measurement

• Solvation. Solvent-Accessible SurfaceArea (SASA) and Solvent-Excluded SurfaceArea (SESA) are

two common techniques to describe the solvation of a structure. It can be used to optimize structures

in terms of exposure of inside pockets or their folding. By maximizing SASA or SESA, the structure

will tend to open up; by minimizing those values, the trend will be towards a more compact confor-

mation.

• Volume. This objective calculates the volume occupied by a structure. It does so by computing the

solvent-exposed surface of the structure, which is then considered as a polyhedron of thousands of

triangular faces.

4.2.2.3 Energy calculation

• DSX.DrugScoreX is a knowledge-based docking scoring function developed byNeudert&Klebe.84

It is specially designed to compute interaction energies between protein structures and small com-

pounds. This objective is a Python wrapper around the DSX executables and input files.

• Energy. This objective allows to calculate the potential energy of a structure with the Molecular

Mechanics force fields implemented inOpenMM. Parameters must be provided for custom residues.
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• LigScore. Another docking scoring function developed by Sali 144 which allows to obtain protein-

ligand interaction energies. While the parent project, IMP, 145 is a C++project with Python bindings,

the LigScore function is only exposed through an executable. This objective can call that binary and

parse the resulting energies from the output.

• Vina. AutoDock Vina 13 is a popular open-source package to perform protein-ligand docking. This

objective calls the Vina executable in score-only mode to calculate the interaction energies between a

protein and a ligand.

• GOLD. This commercial software suite is one the most used solutions to calculate accurate docking

poses. With this objective, all the scoring functions exposed in GOLD 146 can be used as guiding

evaluators in GaudiMM: PLP, GoldScore, ChemScore… License is needed for this to work.

• NWChem. This objective provides a way to run quantum mechanics calculations in this popular

open-source software suite. 147 Provided a template input-file, this objectivewill insert the appropriate

coordinates, charge and multiplicity. While all methods implemented in NWChem are potentially

usable, only semi-empirical ones are recommended in terms of speed; specially for large structures.

4.2.2.4 High-level chemical descriptors

• Contacts. This objective can calculate two type of distance-based energy descriptors. When the

hydrophobicmode is chosen, this objective will maximize potentially attracting interactions between

close enough atoms by applying a Lennard-Jones-like scoring function. If the clashesmode is chosen,

it will minimize the steric hindrance of the structure by minimizing the volumetric overlap of the

Van der Waals spheres of atoms that are too close.

• HBonds. This objective uses geometrical criteria to calculate the number of hydrogen bonds be-

tween potential donors and acceptors.

• Coordination. By applying a type of computer vision algorithm called Point SetRegistration, this

objective can identify potential coordination geometries around ametal center. It returns theRMSD

similarity between the first coordination sphere and the ideal polyhedron: the lower the value, the

better the geometry.

4.2.3 Of tournaments and trade-offs: the selection stage

Once theIndividualshave been assigned a fitness score, these valuesmust be compared to assess howgood

of a solution they make. In multi-objective optimization problems there is no best solution in usual terms.
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Table 4.3: List of objectives implemented in GaudiMM.

Name Description Depends on

Angle Optimize angle of three atoms, or dihedral of four atoms UCSF Chimera
Contacts Minimize steric clashes, maximize hydrophobic interactions UCSF Chimera
Coordination Optimize coordination geometry of metal center In-house 148

Distance Optimize distance between two or more atoms UCSF Chimera
DSX Docking scoring function DrugScoreX 84

Energy Minimize molecular mechanics potential energy OpenMM 11

HBonds Detect hydrogen bonds UCSF Chimera
Inertia Align axes of inertia of two or more molecules In-house
LigScore Docking scoring function IMP 144

NWChem Launch NWChem QM calculations NWChem 147

Solvation Measure solvent accessible solvent area UCSF Chimera
Volume Measure volume occupied by molecule UCSF Chimera

Instead, a set of trade-offs between the involved (and usually conflicting) variables is required. NSGA-II

solves this by following the Pareto optimality criterion explained in chapter 2, which will iteratively enrich

thePareto optimal setwith the best candidates of the population. However, whenmore variables (objectives)

are added to the optimization, the Pareto front grows in dimensionality and enriching the Pareto optimal

set can get difficult. Deb et al. do not recommend more than three objectives for NSGA-II, but several ex-

tensions to the algorithm (MONSGA-II, NSGA-III) exist to improve this situation. Higher dimensionality

will also involve a larger number of possible solutions (even when Pareto-optimality is reached).

To ensure a rich Pareto front in constructed, NSGA-II includes a crowding parameter, and GaudiMM pro-

vides structural similarity comparisons when scores are very close to each other, resulting in a good compro-

mise between diversity and number of solutions proposed.

4.2.4 The code behind: Python as glue

GaudiMM started by hooking deap 149 evolutionary algorithms into UCSF Chimera. Using Python as the

main language allowed to design amodular architecture that conceptually emphasizes the different stages of

optimization, while focusing on the reutilization and addition of existing codebases. It is difficult to think

of a different language that could have provided a working proof-of-concept in that little time.

All the code is object-oriented and features a well-documented programmatic interface, alleviating the pro-

cess of writing new genes and objectives. The educational value of this technical decision was not obvious

until degree and master students began to collaborate in the project as part of their final dissertation (see

appendix B).
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After years of development, UCSF Chimera is still the main library behind the scenes. In fact, to our knowl-

edge, GaudiMM is one of the few projects that relies on it for calculation purposes and not strictly for vi-

sualization. This interactive 3D viewer offers lots of analysis tools and robust molecular abstractions that

allowed us to implement most of GaudiMM genes and objectives in few lines of code. However, everything

has a price and UCSF Chimera was not designed to be used as a library in other projects; instead it expects

external projects to be executed within UCSF Chimera interface. To overcome this limitation, a separate

package named PyChimera was developed. With PyChimera, other Python libraries can be used together

with UCSF Chimera, which allowed to reuse code from other projects in GaudiMM. That way, MM ener-

gies can be computed withOpenMM,NormalModes Analysis calculated with ProDy, andmore (see tables

4.2 and 4.3). Further examples of integration are given in chapter 5, where PyChimera has been instrumental

in the development and distribution of new graphical interfaces.

4.3 Usage: from recipes to molecular modeling tasks

GaudiMM does not make any assumptions on the molecular modeling task to be performed. Setting up a

calculation is amatter of choosing the appropriate genes and objectives (see tables 4.2 and 4.3). Like ordering

off a menu, each combination of those can be considered a recipe. Since each gene and objective is a separate

module that can be instantiated as many times as needed, this confers lots of flexibility.

All calculations normally start by configuring one or more Molecule genes to load the structures under

study. On top of the Molecule genes, the user can choose additional genes to introduce certain types of vari-

ability, like the internal flexibility of a small compound (Torsion gene) or 3D spatial exploration (Search

gene). Additional genes can target one or more Molecule genes, either partially or globally.

The set of genes will simply generate different variants of the starting model, which can potentially include

non-feasible structures. As a result, after choosing which genes to apply, the user must decide which vari-

ables will guide the optimization of the structure by choosing one ormore objectives. For example, it is com-

mon to request a Contacts gene to minimize the steric clashes that can arise frommoving a small molecule

around a bigger one. If more requirements are needed, like maximizing the number of hydrogen bonds, the

corresponding objectives can be added too.

It must be remembered that the objectives simply assign a score to a candidate solution. It is up to the

selection step to favor the promotion of candidates that satisfy the optimization criteria (i.e., low number

of clashes with good hydrogen bonds) and discard those that do not. As an example, a trivial molecular
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modeling task will be explained.

4.3.1 Tutorial: Obtaining a cyclic alkane

Building a cyclic alkane seems like a trivial task, but depending on the number of bonds involved, it can soon

become a tedious process. With GaudiMM, it can be done in a single calculation: only two genes and two

objectives are needed. The hypothesis is that there exists a set of dihedral torsions that can connect the ends

of a linear decane without steric clashes.

First, a starting 3Dstructure is needed. Forpractical purposes, a linear decane canbebuilt directlywithUCSF

Chimera by issuing the command `open smiles:CCCCCCCCCC` and saved as a Mol2 file with `write

decane.mol2`. This file can be loaded in GaudiMM with a Molecule gene by setting its location as the

value of the argument path.

The second gene is Torsion, which will detect rotatable bonds in the decane and apply the rotations in-

structed. However, the Torsion gene does not know nor care about steric clashes or minimum distances

needed for a covalent bond. It will simply generate arbitrary sets of rotations.

Detecting one that can provide a structure compatible with a cyclodecane is responsibility of the evalua-

tion stage. For example, to discard candidates with bad steric clashes, these should be minimized with the

Contacts objective. In order to locate a structure compatible with a cyclodecane, a second objective is

needed: a Distance minimization between the end carbon atoms of the decane. By setting the target dis-

tance as 1.5 Å, the linear decane will be forced to anneal itself.

This configuration is enough to run a simple multi-objective optimization process. Since the Contacts

objective only analyzes the volumetric overlap of the van derWaals spheres of the atoms andUCSFChimera

provides a basic library of van der Waals radii for all elements, no additional parameterization is needed.

After running the program over this input file (see fig. 4.3), GaudiMM will generate solutions compatible

with the satisfaction of both criteria, which can be assessed with the accompanying graphical interface (see

section 4.4).

However, after the first attempt, the user might realize that some results are indeed decane conformations

whose ends are 1.5 Å apart, but not in the expected orientation. In other words, they do not respect the sp3

tetrahedral geometry. To fix it, an additional Angle objective set to match 109.5◦ between the end atoms

and one of their neighbors would suffice. The final recipe can be consulted in table 4.4.
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# GaudiMM input files are formatted in YAML
# This is a comment
output:

path: ./results
name: cyclodecane-experiment

genes:
- name: Decane

module: gaudi.genes.molecule
path: decane.mol2

- name: Torsion
module: gaudi.genes.torsion
target: Decane
anchor: Decane/1

objectives:
- name: Clashes

module: gaudi.objectives.contacts
which: clashes
weight: -1.0 # minimize
probes: [Decane]
radius: 5.0

- name: Distance
module: gaudi.objectives.distance
weight: -1.0
probes: [Decane/1]
target: Decane/10
threshold: covalent # 1.5 A for C-C

- name: Angle
module: gaudi.objectives.angle
weight: -1.0
threshold: 109.5
probes: [Decane/1, Decane/10, Decane/9]

Figure 4.3:Minimal GaudiMM input le for the optimization of linear decane into a cyclodecane.

Table 4.4: Final recipe for the cyclodecane example.

Genes

Molecule Load the starting linear decane structure

Torsion Explore rotations in rotatable bonds

Objectives

Contacts Minimize steric clashes

Distance Bring terminal carbon atoms within 1.5 Å

Angle Force terminal carbon atoms to match a 109.5◦ angle
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Albeit useless, this toy example illustrates the flexibility of the paradigm proposed in GaudiMM. For more

practical use cases, please refer to models detailed in chapter 6.

4.4 Analyzing the results of multi-objective optimization

In multi-objective optimization (see section 2.7), ultimately choosing which solution is the best is up to the

decision maker: the researcher. Some strategies to make that decision involve reducing the fitness vector to

a scalar using an adequate function. However, since that function is usually not characterized in tentative

molecular modeling tasks, a UCSF Chimera extension has been developed GaudiView along GaudiMM to

aid in that decision in a more interactive manner.

GaudiViewwill list the proposed solutions along with the fitness of each objective in spreadsheet-like dialog.

Upon clicking each entry, the UCSF Chimera canvas will load and render a 3D interactive depiction of the

structure. The table can be sorted by columns and filtered by threshold criteria, which can reduce the com-

plex surface of the Pareto front to the interesting parts (according to the decision maker) dynamically. Since

the renderization of molecular structures is delayed until the corresponding rows are selected, the interface

can show thousands of results with low memory usage. Integrative analysis can be performed on the flow

with other tools included in UCSF Chimera thanks to the built-in command line widget, which is executed

on each selection change event. Appendix D contains more details on this tool.
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Figure 4.4: Analysis of a GaudiMMdual docking calculation with GaudiView. Each row of the table represents one

candidate solution that will be depicted in the 3D canvas upon selection.

4.5 Conclusions & Further work

ThedevelopmentofGaudiMMwasmotivatedby theneedof applying simpledescriptors in complexbiomolec-

ular systems featuring residues beyond thenatural amino acids: metallic cofactors, oligosugar-derivatives and

partially characterized organic molecules. The main idea was to at least have some results around a hard-to-

model structure, instead of saying that it could not be done. Even with low accuracy methods, GaudiMM

soon started toprove that the approach is good enough toprovide startingpoints valid for further refinement

and processing withmore accurate methods; in other words, GaudiMM is a good entry point for multiscale

protocols. This and other examples of its potential applications, including how it has been used in real cases

of research, will be detailed in chapter 6.

These observations havemade clear thatGaudiMMprovides amental framework suitable for implementing

proof-of-concept multiscale protocols and explaining basic concepts of molecular modeling to newcomers

in the field.

That said, there is room for improvement in the performance area. Genetic algorithms are easily paralleliz-
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able by design, but depending onUCSFChimera formost functionsmeans that communication across pro-

cesses could be expensive in terms of memory usage and synchronization overhead. Since the calculations

rarely involve more than a few hours, the focus shifted towards the implementation of new modules rather

than optimizing the speed of the new ones. However, it is one of themainmilestones of theGaudiMMv2.0

roadmap.
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molecular modeling workflows

Recruiting different techniques to compose a multistep protocol is the very essence of mul-

tiscale molecular modeling. In addition to the scientific challenge itself, a technical barrier can

arise: putting all the software to work together. To solve it, the researcher resorts to accumulated

expertise in combining different file formats or, in some fortunate cases, even automating the conversions

with scripting languages. Switching from program to program can be confusing and distracting, especially

if those programs were not meant to be used together —a common situation in advanced molecular mod-

eling. In those cases, some might prefer using a single cohesive user experience, normally in the form of a

graphical interface (see chapter 1 for more details). The first part of this chapter will present the Tangram

suite, a collection of graphical extensions for UCSF Chimera written in Python and Tk.

Of course, not all tasks benefit equally from a graphical interface. Some can be further improved by provid-

ing smart command-line tools. The remaining part of the present chapter will introduce complementary

developments designed to improve the workflow and daily routine of computational chemists and molecu-

lar modelers alike. Both graphical and command-line developments (including GaudiMM) are presented in

table 5.1.

5.1 Implementation of a common interactive canvas: Tangram

Stemming from the former Midas program, UCSF Chimera is presented as a highly extensible program

for interactive visualization and analysis of molecular structures and related data, including density maps,
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Table 5.1: The full InsiliChemMolecularModeling software suite.

Graphical interfaces

Tangram 150 A collection of more than 15 UCSF Chimera graphical extensions for integrative
molecular modeling

ESIgen webUI 151 Automated generation of Supporting Information HTML5 drag & drop interface

Command-line tools

GaudiMM 152 Modular multi-objective molecular optimization platform

PyChimera 153 Use UCSF Chimera modules in any Python 2.7 project

OMMProtocol 154 GPU-accelerated Molecular Dynamics protocols with OpenMM

Garleek 155 Gaussian’s ONIOM extended with Tinker MM force fields

ESIgen 151 Automated generation of Supporting Information documents from the
command-line (batch mode)

EasyMECP 156 A modern workflow for J. N. Harvey’s MECP program 157

supramolecular assemblies, sequence alignments, docking results, trajectories, and conformational ensembles.

It consists of an interactive 3D visualizer built on top of C++ core with Python bindings, which is respon-

sible of providing much of that promised extensibility. GaudiMM, commented in chapter 4, heavily uses

UCSFChimera as a backend library, but being a command-line tool, does not need any graphical interaction.

After developing GaudiView as the results viewer for GaudiMM (see section 4.4 and appendix D), the po-

tential of having simple but powerful graphical interfaces for common modeling tasks became evident. In

this section, we present Tangram, a set of extensions designed to add new pieces to the arsenal of molecular

modeling tools already present in UCSF Chimera (see fig. 5.1).

Table 5.2: Tangram Suite: Technical datasheet.

Tangram Suite

Description Graphical interfaces for UCSF Chimera

Requirements UCSF Chimera, Python, PyChimera

License MIT

Download github.com/insilichem/tangram

Documentation tangram-suite.readthedocs.io

Citation (Submitted)

Tangram is composed of independent UCSF Chimera extensions that can play together through the interac-

tive molecular canvas. This is, each extension can be used separately, but complex workflows can be imple-

mented by using them sequentially. This distantlymimics the principles described in theUNIXphilosophy:

each extension should only do one thing and do it well. 158 As a result, some extensions in this packagemight

look simple, but their true power arises when used together, like the pieces of a tangram puzzle. Hence the

https://github.com/insilichem/tangram
http://tangram-suite.readthedocs.io
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Figure 5.1:Molecular modelingmethods can be depicted in 3D funnel, where the width represents the sampling

capacity and accuracy is depicted with depth. Less accuratemethods with high sampling capacity would be depicted

at the top, while most accuratemethods would be at the bottom of the funnel. In this sense, GaudiMM can help access

the entry of the funnel, while the Tangram interfaces will connect further steps down the accuracy scale.

name.

Thedifferent tans or components ofTangramcanbe of very different nature. Someprovide interactivemeth-

ods for setting upheavy calculations in external programs, like quantummechanics inGaussian ormolecular

dynamics in OpenMM. Others rely on the 3D viewer to depict properties of molecular structures as calcu-

lated previously in other software, turning UCSF Chimera in an even more versatile analysis tool. Some

will wrap well-known executables meant for standalone usage and present the results in the UCSF Chimera

canvas interactively, reducing the entry-barrier substantially. The following subsections will describe the

Tangram components developed for multiscale modeling, listing the rationale and features implemented.

Examples of integrative protocols using some of them will be provided in chapter 6. Additional extensions

devoted to integrative analysis are collected in appendix D. The full list can be consulted in table 5.3.
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Table 5.3: Full list of Tangram extensions.

Calculation setup for multiscale modeling

QMSetup QM and QM/MM calculations setup, with Gaussian 31 and Garleek 155

MMSetup Setup MD calculations with OpenMM 11 and OMMProtocol 154

DummyMetal Parameterize metal ions for MM with the CaDAs 159 approach by placing dummy
atoms in the coordination vertices

NormalModes Perform interactive Normal Modes Analysis with ProDy 142

ReVina Resubmit failed AutoDock Vina 13 jobs without reconfiguring the GUI

Interaction analysis

GaudiView Lightweight visualization of results coming from GaudiMM 152 and GOLD 146

NCIPlotGUI Setup calculations for NCIPlot 160 and visualize them on-screen
PLIPGUI Depict protein-ligand interactions, as calculated with PLIP 161

Structural analysis

3D-SNFG Intuitive visualization of saccharydic residues with the Symbol Nomenclature For
Glycans 162,163

OrbiTraj Display temporal volumetric data along a molecular trajectory
PoPMuSiCGUI Depict potential site mutations in proteins as predicted by PoPMuSiC 106

PropKaGUI Analyze the expected pKa values of protein residues with PropKa 3.1 117

SubAlign Align potentially different molecules based on partial matches of substructures
with RDKit 164

5.1.1 Multiscale modeling with Tangram

5.1.1.1 QMSetup

QMSetup helps prepare Gaussian input files from UCSF Chimera for QM and ONIOM calculations (see

sections 2.2.1 and 2.2.3). In GaussView, 110 setting up even the most common tasks would require going

through scattered dialogs and tabs. QMSetup has been designed to provide a simplerworkflow from a single

dialog. Additionally, while UCSF Chimera is not as intuitive as GaussView for building small molecules,

with QMSetup it shows several usability advantages, especially when macromolecules are present. Some

highlights include:

• In UCSF Chimera, selection commands are hierarchical and can be extended from atoms to residues,

chains and subunits with a single key stroke. This is really useful for selecting layers in ONIOM jobs

or choosing which atoms should be frozen in an optimization, both options present in QMSetup.

• Some multiscale protocols involve setting up QM/MM jobs from different frames of a molecular

dynamics trajectories. The different frames are just different coordinates sets of the same topology,

so instead of creating separate input files one by one, a single one needs to be created. The remaining

ones can be created automatically by updating the first one with the adequate coordinates. This is
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Figure 5.2: TangramQMSetup interface allows to create QM andONIOM jobs for Gaussian.

possible with QMSetup Replica option.

• In organometallics, exotic elements are used frequently. For these species, special basis sets are usually

needed. Advanced users know about the Basis Set Exchange (BSE) 165 online platform and use it to

locate the needed basis sets. QMSetup provides an offline interface to this dataset and handles the

insertion in the input file automatically. This saves the hassle of copy-pasting the results andworrying

about the adequate number of blank lines.

5.1.1.2 MMSetup

MMSetup provides a graphical interface for setting up Molecular Dynamics simulations (see section 2.2.2)

in UCSF Chimera using OpenMM behind the scenes. It recognizes opened molecules and offers differ-

ent methods to prepare the final structure that will undergo the simulation (see fig. 5.3). For example,

OpenMM’s PDBFixer 166 can be used to add hydrogens and missing residues. Even missing loops can be

modeled with this integration. Once the structure is prepared, the simulation protocol must be configured

with its individual stages: minimization, equilibration andproduction by default. Then, the user can choose
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Figure 5.3: TangramMMSetup can con gureOpenMMcalculations in UCSF Chimera, which can be run directly on-

screen or in a separate job.

between running in situ and observing the evolution in real time (ideal for educational purposes) or creating

an input file that can be run separately in cluster computers for speed.

5.1.1.3 DummyMetal

In Molecular Mechanics, dealing with residues foreign to default force fields is one of the most difficult

tasks. They require custom parameterization that in some cases can involve more complex calculations than

the Molecular Dynamics simulation itself. When they are obtained, it is difficult to reuse them in other

structures that also feature that residue because the connectivity or oxidation statemight have changed. This

is particularly painful if the new residue contains a metallic species.

For non-metallic organic compounds, Antechamber 167 routines are usually enough. However, for metal

ions, the process is more intricate. Most methods proposed to generalize this process use high-level calcula-

tions in a reduced model, like Seminario’s method derived MCPB.py routines, 168 but there are alternatives

that skip those calculations by implementing virtual positions around the metal ion: the Cationic Dummy
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Figure 5.4:With TangramDummyMetal, metal centers can be easily modeled inMM force elds by following the

CaDAs approach.

Atoms (CaDAs) approach. 159

In the CaDAs approach, the metal ion is wrapped with positively-charged dummy atoms placed at the ver-

tices of its expected coordination geometry. While the main idea is simple, building these systems accu-

rately by hand is often disregarded for its difficulty. The DummyMetal extension can take a molecular struc-

ture, adapt the metal center with the CaDAsmethod (see fig. 5.4) and generate Amber-compatible PRMTOP,

INPCRD and FRCMOD files. Since OpenMM can load Amber files seamlessly, the resulting files can be loaded

in MMSetup to launch an MD simulation right away.

5.1.1.4 NormalModes

Normal Modes Analysis methods are routinely used to study structural dynamics of molecules. Structural

variability can be inferred from experimental data or computed MD simulations with principal compo-

nent analysis (PCA), but it can be also computed with elastic network models (ENM) like the Gaussian

or anisotropic network models (GNM and ANM, respectively).

This extension reuses part of the visualization functionality already implemented in UCSF Chimera exten-
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sionspreviouslydevelopedbyMuñozRobles, 169 butditchesMMTK 170 and calculates ENMswithProDy, 142

a more modern Python library specifically designed to compute protein dynamics. The resulting interface

will list the calculated frequency vectors and animate the corresponding collective movements.

Since the interface itself is decoupled from the code that calls ProDy routines in the background, the collec-

tive vectors can be obtained from Gaussian QM freq jobs as well, if desired.

5.2 Optimizing workflows from the command-line

While a graphic interface can help with interactive tasks, there are other parts of the workflow of amolecular

modeler that cannot benefit directly from a GUI. This type of software can be regarded as backend code

that provides new, unsupervised calculation methods or, in other cases, an improved workflow that allows

to perform the same calculation in an easier way.

Conceiving a project for command-line usage does not mean that a different interface can be built on top of

that backend. In fact,MMSetup is just an interface aroundOMMProtocol, which in turn it’s a user-friendly

application aroundOpenMM. InQMSetup, theQM/MMsupport for additional force fields is providedby

Garleek, which handles the Gaussian-Tinker programmatic interfacing. These two tools —OMMProtocol

and Garleek— do not rely on UCSF Chimera and can be used as standalone command-line applications.

However, since they are built with a decoupled architecture where the Python API is separate from the

command-line interface (see fig. 5.5), they can support the aforementioned graphical interfaces.

In this section, the motivation, features and implementation of five different packages will be discussed: (1)

PyChimera, (2) OMMProtocol, (3) Garleek, (4) ESIgen, and (5) EasyMECP. Unlike GaudiMM, discussed

in the previous chapter, they do not provide novel molecular modeling methods, but they do make them

easier to use by automating repetitive tasks or abstracting away the technical details. This, ultimately, ends

up saving the user some precious time.

5.2.1 PyChimera

Most of the extensions listed in the previous section relies on libraries developed by 3rd parties that are not

present in theUCSFChimeraPythondistribution. Installingnewpackages insideUCSFChimera is possible,

but not very straight-forward. Additionally, some packages required by Tangram need long compilation

times that would constitute a high entry barrier. To ease the process, the full Tangram suite can be installed
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Main logic of the program

$ > _

Command-line interface Graphical interface

X-

OK Cancel

Library
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Application
layer

Figure 5.5: By structuring code in separate responsibility layers, new interfaces can be added easily without modifying

the core logic.

with a single executable that is available in the central code repository.*

This is possible thanks to the conda package manager, 171 which allows to redistribute compiled libraries

and applications easily. However, since both conda and UCSF Chimera provide their own Python 2.7 dis-

tribution, they do not play well together. To solve this problem, the preloading code originally present in

GaudiMM, which was needed to call the gaudi executable directly from the command-line, was extracted

into a separate package and extended to connect UCSF Chimera Python distribution with any other one

––be it the system-provided one, or virtual environments like conda’s or pipenv’s.

This new package was called PyChimera. 153 It does not try to alter the original UCSF Chimera installation;

it only allows to load new packages from other locations outside the Chimera installation. For that reason,

most Tangram extensions (those with external dependencies) will only work if a patched UCSF Chimera

instance is loaded with the special tangram command.

PyChimera also includes some features particularly useful for developers, like exploring the UCSF Chimera

codebase from augmented Python interpreters (IPython, 172 Jupyter Notebooks 173) or providing autocom-

pletions and help messages in advanced text editors (Sublime Text, Visual Studio Code). PyChimera was

accepted for publication in Bioinformatics 153 and is the most popular package uploaded in the InsiliChem

*https://github.com/insilichem/tangram/releases

https://github.com/insilichem/tangram/releases
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Table 5.4: PyChimera: Technical datasheet.

PyChimera

Description Import UCSF Chimera modules in external Python projects

Requirements Python, UCSF Chimera

License LGPL

Download github.com/insilichem/pychimera

Documentation pychimera.readthedocs.io

Citation Bioinf. 2018, 34 (10), pp 1784–1785. DOI: 10.1093/bioinformatics/bty021 153

repositories (see fig. 5.6).
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Figure 5.6: Popularity of InsiliChem packages developed during this Ph.D. Thesis, measured as the sum of Code Impact

(registered visits and interactions in the source code repository), and Installations (downloads of compiled packages

and requests from command-line installers, such as conda or pip). For ESIgen, number of unique web app users is

also listed in Installations. PyChimera is a clear highlight above the rest.

5.2.2 GPU-accelerated Molecular Dynamics, the easy way: OMMProtocol

MolecularMechanics (MM) andMolecularDynamics (MD) (see section 2.2.2) are widely used in structural

biology since they allow observing evolution of large biomolecules along time with affordable timescales

and computational resources. This is particularly true after the popularization of General-Purpose Graphic

Processing Units (GPGPUs) and their usage for calculations beyond graphics renderization. While long-

https://github.com/insilichem/pychimera
http://pychimera.readthedocs.io
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established MM suites like Amber, 12 Gromacs 174 or CHARMM70 have been progressively implementing

GPU acceleration in their code for some years now, a relatively recent project caught the community atten-

tion with its performance, flexibility, open-design and availability: the free OpenMM library. 11

OpenMM presents a layered API designed for easy reutilization of its code in other projects. In fact, to use

OpenMM, one is expected to write Python scripts to configure the simulation. These scripts are not harder

to write that input files for other suites; they just happen to use that scripting language. That said, it could

be easier. Users should not need to care about missing parenthesis, import statements or ending quotes.

OMMProtocol was conceived to overcome this barrier by providing an easy to read and easy to write input

file that abstracts away all the key underlying configuration steps with the concept of protocol: each input file

contains all the stages involved in the simulation (like minimization, equilibration or production), avoiding

the hassle of chained restarts.

Table 5.5: OMMProtocol: Technical datasheet.

OMMProtocol

Description GPU-accelerated Molecular Dynamics simulations

Requirements Python, OpenMM, ParmEd, MDTraj, openmoltools, pandas, matplotlib, jinja2

License LGPL

Download github.com/insilichem/ommprotocol

Documentation ommprotocol.readthedocs.io

Citation (Submitted)

WithOMMProtocol, setting upGPU-acceleratedMDsimulations can be as easy as loading a PDB structure,

choosing one of the force fields provided and specifying the number of steps. Since default values have been

choosing sensibly for compatibility with most popular cases, there is no need for added complication. That

said, users are encouraged to review these parameters and adapt them to their specific needs by following

the accompanying documentation and input file examples (see fig. 5.7). More details can be found in the

submitted manuscript. 154

OpenMM default input format compatibility is extended with even more file types by integrating other

libraries together, likeMDTraj, 143 ParmEd 175 or openmoltools. 176 This means that existing structure prepa-

rationworkflows do not need to be disrupted: OMMProtocol will loadAmber’s PRMTOP, Charmm’s PSF

and Gromacs’ TOP files seamlessly.

https://github.com/insilichem/ommprotocol
http://ommprotocol.readthedocs.io
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topology: sys.prmtop
positions: sys.crd

project_name: sys
outputpath: output
report: True
report_every: 1000
trajectory: DCD
trajectory_every: 2000
trajectory_new_every: 1e6
restart: rs
restart_every: 1e6
save_state_at_end: True

platform: CUDA
platform_properties:

Precision: mixed

integrator: LangevinIntegrator
temperature: 300
friction: 0.1
timestep: 1.0
barostat: True
pressure: 1.01325
barostat_interval: 100
minimization_max_iterations: 1000

nonbondedMethod: PME
nonbondedCutoff: 1.0 # nm
ewaldErrorTolerance: 0.0005
constraints: HBonds
rigidWater: True

stages: 
- name: solvent_relaxation

temperature: 300
constrained_atoms: not solvent
minimization: True
steps: 100000
trajectory: DCD
trajectory_every: 1000

- name: production
temperature: 300
minimization: False
steps: 25e6
trajectory: DCD
trajectory_every: 2000

A

B

C

D

E

F

Figure 5.7: OMMProtocol les are formatted in YAML. Con guration keys can be speci ed in any order, but they have

been grouped in this gure for convenience. Section A contains the structural data of the system to be simulated: the

topology key is always required. Section B groups options related to le output. Section C controls the hardware to

be used. Section D and E specify the conditions of the simulation. Finally, section E lists all the stages to be simulated

in this protocol. Each entry, markedwith a starting dash, can override any of the global options speci ed in sections

B-E. Usually, only constraints, minimization, temperature and simulated steps will bemodi ed here, since every other

parameter is normally constant during the full protocol.

Finally, OMMProtocol is complemented by a second utility called ommanalyze, that drafts support for

trajectory analysis protocols following the same spirit as OMMProtocol. This part of the project is only a

stub so far, but it already provides automated, constant-memory RMSD analysis, and energy, temperature,

and volume plots (see fig. 5.8).
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Figure 5.8: OMMAnalyze can parse progress reports, written in the background as .log les, to plot the evolution

of the potential and kinetic energies, the system temperature and the volume occupied. Since this data is readily

available in the .log le, no expensive calculation of themagnitudes is needed. The opened dialog is interactive and can

be used to zoom in the data, slice interesting parts and save high-resolution screenshots.

5.2.3 Extended QM/MM for Gaussian: Garleek

Gaussian31 is one of themost popular QMpackages and is still actively developed since its first release in the

70s. After almost 50 years, this package has been accumulating more and more features over time, and all of

themare requested in the same counter-intuitive input file. While several alternatives existwith a comparable

feature set and an easier workflow, even for free, 147 Gaussian is still king on many research groups.

One of the features already included in Gaussian is the ONIOM method, 16 already described in chapter 2.

This hybrid method splits a system in layers seeking to combine high-level calculations for specific regions

that require very accurate modeling, with low-level theories that will deal with the remaining parts of the

system. Most common applications usually use a QM method like DFT for the high layer and an MM

method for the low layer. For this case, Gaussian provides a built-in MM engine suitable for calculations

with only three force fields: Amber, 177 UFF 178 andDreiding. 179 Fortunately, for those users that need other

force fields, a communication protocol with 3rd party software is provided through the external keyword.
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Table 5.6: Garleek: Technical datasheet.

Garleek

Description Additional MM support for Gaussian ONIOM jobs

Requirements Gaussian, TINKER, Python, NumPy

License MIT

Download github.com/insilichem/garleek

Documentation garleek.readthedocs.io

Citation Journal of Computational Chemistry, 2018. (In press)

Garleek is a Python package born after a collaboration with Dr. Ignacio Funes and Prof. Feliu Maseras.

Garleek is designed to use this protocol to delegate theMM calculations to any otherMM suite (see fig. 5.9).

In the present state, it has full compatibility with all TINKER-provided force fields, like Amber99SB, 180†

CHARMM, 181 AMOEBA, 182 MMFF 183 or MM3. 184 Since the underlying architecture implemented in

Garleek provides a straight set of guidelines, adding more MM packages is as easy as possible, thus avoiding

reinventing the wheel. Garleek has been described in Journal of Computational Chemistry’s Special Issue 155

dedicated to the memory of Prof. Dr. Keiji Morokuma.

†Gaussian does include the Amber forcefield, but an outdated version (94 and 98).

https://github.com/insilichem/garleek
http://garleek.readthedocs.io
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GaussView
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ONIOM job

garleek-prepare
Patches atom types 
and external calls

Gaussian
Runs ONIOM 
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name.garleek.log
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Figure 5.9: ONIOMwork owwith Garleek. Black-border boxes describe programs, yellow-border boxes describe

les. Dashed borders and lines describe temporary les created and removed on demand. The standard work ow in-

volves creating a standardONIOM input le (name.gjf) con guredwhich is then patched to be Garleek-compatible

with the garleek-prepare command, generating a copy (name.garleek.gjf). Gaussian runs this le and calls

garleek-backendwhen necessary, which handles the communication with Tinker binaries for theMM calculations.

The results are written to name.garleek.log.

5.2.4 Automated Electronic Supporting Information Generator: ESIgen

Any scientific text must convey well-written ideas that make no room for ambiguous interpretation, but

at the same time it should be easy to read. Handling such apparently conflicting ideas with ease is one of

the reasons why good scientific communication is considered a hard task. One of the approaches to keep-

ing the reader interested without losing correctness is to maintain a concise and direct style, which usually

means taking all the technical details off the main text and supplying them in an accompanying document.

Sometimes disregarded, Supporting Information (SI) and its electronic-only variant (ESI) are key to science

reproducibility.

Computational chemistry, as all fields related to structural studies of molecules, tends to generate huge
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amounts of data that should be inserted in the ESI: 3D depictions, coordinates, energies, and other char-

acteristics of the structures involved in the molecular process under study. While most experienced users

end up building scripts that dig throughout the output files searching for the relevant data, this is not the

case for users without programming experience or time. In this section, we present ESIgen, 151 a Python

project designed to automate the generation of technical reports suitable as ESI documents or internal com-

munication between researchers. Initially conceived as a simple command-line script, it soon grew into a

Python a library that supports two interfaces simultaneously: (1) a web application and (2) a command-line

executable.

Table 5.7: ESIgen: Technical datasheet.

ESIgen

Description Automated technical reports for computational chemistry calculations

Requirements Python, cclib, jinja2, flask

License LGPL

Download github.com/insilichem/esigen

Documentation esigen.readthedocs.io

Citation J. Chem. Inf. Model., 2018, 58 (3), pp 561–564. DOI: 10.1021/acs.jcim.7b00714 151

Thedrag-and-dropweb application ismeant for quickone-off usageswhere theuser can inspect the structure

interactively with the included 3D viewer 185 (see fig. 5.10). A public web app demo can be found at , which

demonstrates how theweb content can be seamlessly exported toDOI-citable repositories like Zenodo 186 or

FigShare 187 or downloaded to disk in several formats (PDF documents, plain text, or even JSON‡ program-

matic objects). The command-line executable esigen allows to process several computational chemistry

logfiles in batchwith a single action. It will generate only plain-text files meant for further typesetting in text

processors like Microsoft Word or LaTeX.

Both interfaces are based on the same usage principle: the user only needs to write a report template listing

the requested fields as placeholders. The supplied template is then filled in with the requested data. Behind

the scenes, ESIgen uses cclib 188 to parse the computational chemistry logfiles, whichmeans that it is compat-

ible with wide array of suites out of the box, like Gaussian,31 NWChem 147 or ORCA. 189 Several examples

are included within the package, covering most common cases.

‡JavaScript Object Notation

https://github.com/insilichem/esigen
http://esigen.readthedocs.io
http://esi.insilichem.com
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Figure 5.10: ESIgen can be used via a web interface and from the command line. When using the web interface (a

demo is available at http://esi.insilichem.com), the user only needs to upload the quantum chemistry calculation out-

put les to the server and select the data to report. After processing the le, an interactive HTML5 preview of the

3D structure can be displayed along the requested data so the user canmanually nd the best orientation for a static

depiction.

esi.insilichem.com
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5.2.5 Easy MECP calculations

MinimumEnergyCrossing Points (MECP) are defined as the consensus conformation of amolecular system

that can feature low-energyminima in different spin states. A strategy to calculate themcomputationallywas

proposed by J. N. Harvey in 1998, 157 using Gaussian, GAMESS and custom Fortran routines orchestrated

by shell scripts. The method and its related source code has been used widely across several research groups

since then. However, setting up the MECP procedure involves recompiling the Fortran binary for each

system, since it ismemory allocation requires themanual specification of the number of atoms. Convergence

thresholds and other hardcoded values are scattered all over the source code, which does not allow easy access

to these parameters. All these technical difficulties should not concern the user.

Table 5.8: EasyMECP: Technical datasheet.

EasyMECP

Description Simplified MECP calculations with Gaussian

Requirements Python, gfortran, Gaussian

License LGPL

Download github.com/jaimergp/easymecp

Documentation github.com/jaimergp/easymecp

Citation (In preparation)

Developed during the collaboration with Dr. Funes and Prof. Dr. Maseras, EasyMECP is a self-contained

Python script without added dependencies that takes care of all these steps automatically. The user only

needs to provide a slightly modified Gaussian input file that specifies both spin states. Under the hood,

EasyMECP still uses the original Fortran code, so convergence of results is guaranteed by design. Unit-tests

are provided to support this claim. Additional conveniences have been implemented such as the generation

of the optimization trajectory or the automated calculation of the often-needed thermochemistry of the

converged MECP structure.

5.3 Conclusions & Further work

TheUNIXphilosophy essentially restates that subdividing a problem in smaller chunks helps in solving that

problem. Simple units responsible of single tasks are easier to understand and compose together into some-

thing bigger. This approach helped devise Tangram as a cohesive suite instead of a convoluted collection

of dissimilar tools. By integrating tightly with the UCSF Chimera interactive canvas, all of them can work

collaboratively.

https://github.com/jaimergp/easymecp
https://github.com/jaimergp/easymecp
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However, UCSF Chimera starts to show its age and, while PyChimera allows to use it together with more

modern tools, it is only a patch and cannot be considered a definite solution. A simpler integration in the

vivid Python ecosystem would be desirable. This is being solved in the new, promising version of UCSF

Chimera, UCSF ChimeraX, 190 which provides an online repository of one-click installable extensions called

theToolshed. ChimeraX is built on top of the sameC++/Python premise, but uses the newPython 3 instead

of Python 2 (which will stop receiving updates in 2020) and a different GUI library, Qt, which is easier

to work with and its results are better-looking. ChimeraX is still very young and its feature set cannot be

compared to the classic Chimera, but in the future this will be no longer the case. When that time comes,

it will be possible to convert Tangram over to the new ChimeraX. Thanks to its modular design, the small

pieces of this big puzzle could be migrated one by one, little by little, as soon as ChimeraX offers the needed

features.

Developing new software is easier than changing how people work daily, though. Scientific community has

proved to be very conservative about how they work, which is very paradoxical taking into account that

science is all about progress. Some would argue that it is about progress, but in small steps. All the work

involved in providing command-line utilities that work smarter and faster can be useless if nobody is going

to use them.

For that reason, some of the tools presented in this chapter do not try to change things too much, too fast.

For example, several alternative, easier-to-useMECP implementations canbe foundonline, 191–193 butpeople

still use Harvey’s. EasyMECP is only a wrapper around the time-tested Harvey’s original code. It does not

try to change how it works; it just changes how you use it.

Another example can be found in the Supporting Information (SI) documents. In the future, SI will con-

sist of digital repositories that are constantly updated and discussed, as some services like Zenodo 186 or

Figshare 187 already provide. However, this complementary data is still being submitted as PDF documents,

which are good for paper printing but not so much for data sharing. ESIgen does allow to generate PDF

files from your data, but only after recommending the usage of data formats easier to share and reproduce.

That will not prevent people from doing what they have always done, but sometime in the future, slowly

but surely, we might get there.
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Benchmark& Application

Over the previous chapters, several software developments have been presented. They try to

fill different gaps in themultiscalemodeling toolbox, be it the entrypoint to the funnel (GaudiMM)

or to connect different stages down below (Tangram, OMMProtocol, Garleek…). In this chap-

ter, several case studies where these programs have been used will be presented. Potential scenarios where

they would be welcome will be also introduced as additional examples of applicability.

6.1 GaudiMM as a versatile molecular modeling tool

While GaudiMM’s approach to molecular modeling can be daunting at first, once the key concepts are set-

tled, configuring a calculation is straight-forward: it is a matter of which set genes and objectives to use. A

particular combination of genes and objectives can be considered a recipe that can be adjusted for one study

and reused in similar ones just by changing the involved structures. The following recipes will showcase

common uses of GaudiMM.

6.1.1 From standard to more exotic dockings

Classic protein-liganddocking studies devote to finding the correct orientation andpositionof a smallmolecule

(the ligand) within the cavity of a bigger one (normally, a protein). It usually cares about supramolecu-

lar recognition only, which means that analyzed interactions are mostly non-bonded. As a result, covalent

bonds and coordination geometries are usually left out. However, a lot of systems do exhibit this type of

recognition. In our group, we work with metallodrugs and artificial enzymes, two fields where these phe-

nomena play an important role. As a result, we had big interest in considering these aspects in our docking
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calculations.

In fact, GaudiMM was initially devised as an extensible protein-ligand tool, but later grew into a multi-

purpose molecular modeling platform. The transition was smooth because the idea of docking can be fur-

ther abstracted as simply finding structural geometries compatible with certain requirements, which is in turn

a very specific type of restrained optimization problems. In this section, we will present howGaudiMM can

perform several types of docking.

6.1.1.1 Flexible protein-ligand docking: a benchmark

GaudiMM capabilities for flexible protein-ligand docking were studied in its first publication, 152 where it

was benchmarked against three different datasets* using four genes and two objectives (see table 6.1 formore

details).

All the entries in each dataset were analyzedwith full torsion flexibility on the ligand, which couldmove and

rotate within 12 Å of the crystallographic position. The results were analyzed considering the best RMSD

of each calculation against the crystallographic reference structure. The correct binding pose was considered

successfully reproduced if theRMSDwasunder than3.0Å.Despite not being the target usage ofGaudiMM,

the recipe reported success rates of up to 57.6% (see table 6.2), a value comparable to several works in the

literature. 194 With more efforts directed at optimizing the exploration stage (especially the variation opera-

tors on torsion and orientation), the number of hits would highly increase and compete with other docking

software.

Table 6.1: Recipe applied in the docking benchmark.

Genes

Molecule Load the protein

Molecule Load the ligand

Torsion Explore internal flexibility of the ligand

Search Move the ligand within 12 Å of its starting point

Objectives

Contacts Minimize steric clashes

Contacts Maximize hydrophobic interactions (target distance thresholds adapted)

LigScore Minimize scoring function value

*GOLDdataset (100 entries), ChemScore dataset (166 entries) and theCCDCAstex dataset (305 entries). Available
at https://www.ccdc.cam.ac.uk/support-and-resources/downloads.

https://www.ccdc.cam.ac.uk/support-and-resources/downloads
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Table 6.2: Success rate† of a LigScore GaudiMM recipe against four benchmark datasets.

RMSDmax
Benchmarked dataset

CCDC Astexa GOLDb ChemScorec

2.5 Å 41.64% 45.45% 45.45%

3.0 Å 51.80% 57.58% 51.52%

†Success was considered if at least one solution with LigScore score < 0 had an RMSD against the XRD

structure within the given threshold. a305 entries. b100 entries. c166 entries.

6.1.1.2 Covalently restrained docking of several ligands at once

As explained, sometimes there is an interest beyond non-bonded recognition, like when the ligand is cova-

lently attached to some part of the protein. While there is no specific gene to implement a covalent bond, it

can bemimicked through a Search gene configured to perform only rotation (translation can be disabled if

search radius = 0). As this null Search gene will consider all possible rotations from that point, an Angle

objective between the involved atoms in the covalent bond is recommended so that the resulting rotation

matches the expected geometry of the new bond.† If more covalent interactions are needed, those can be

modeled with a Distance objective set to bring the involved atoms within their covalent range (automati-

cally calculated with the covalent keyword).

Additionally, taking advantage of the fact that genes and objectives can be instantiated multiple times,‡ two

ormore Molecule genes can be set to open one ligand each. The compounds will be loaded simultaneously

and they will compete to find their place in the protein(s). For this strategy to work, any related genes that

are acting on the ligands (i.e. Search or Torsion) must be replicated accordingly.

This strategy allows competitive multi-ligand docking, something which is directly not possible in most

docking software suites. It is true that it can be mimicked by performing sequential studies, in which the

first ligand is docked separately and then the resulting solutions (protein plus first ligand) are fed as the host

structure of the second ligand. However, in that context they would not be competing for the protein space

simultaneously, per se: one of them has priority access. The procedure should be repeated to consider all

possible orderings in order to be fair. With GaudiMM, this is not necessary since they are competing during

the whole simulation.
†For example, for a carbon atom: 109.5◦ for sp3, 120◦ for sp2, 180◦ for sp1
‡For example, in the previous sections, protein and ligand molecules were loaded with separate instances of the

Molecule gene
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Both concepts —covalent bond emulation and competitive docking— were tested during the design of an

artificial metalloenzyme featuring a copper-containing phenanthroline cofactor covalently attached at the

position M89C of the dimeric Lactococcal multidrug resistance Regulator (LmrR) protein. While the final

structures in that work (manuscript under preparation) propose a single cofactor, having two ligands simul-

taneously attached to both monomers was also considered at the beginning of the study. To assess that

possibility, a GaudiMM calculation was set up to see if two covalently attached ligands can fit within the

dimeric interface (see table 6.3 for details).

Table 6.3: Recipe applied for the LmrR competitive docking calculations.

Genes

Molecule Load the LmrR protein (dimer)

Molecule Load a copy of the Cu-Phn cofactor (ligand) and anchor it into position 89 of
monomer A

Molecule Load a copy of the Cu-Phn cofactor (ligand) and anchor it into position 89 of
monomer B

Torsion Explore internal flexibility of the ligand A

Torsion Explore internal flexibility of the ligand A

Search Allow free rotation of ligand A from its anchor, but no translation (radius = 0)

Search Allow free rotation of ligand B from its anchor, but no translation (radius = 0)

Objectives

Contacts Minimize steric clashes

Contacts Maximize hydrophobic interactions (target distance thresholds adapted)

Angle Force an angle of 109.5◦ in anchor point of ligand A

Angle Force an angle of 109.5◦ in anchor point of ligand B

DSX Maximize docking scoring function to select stabilizing interactions

Solvation Minimize solvent-accessible surface area (SASA) so the ligands are forced to
interact within the protein rift instead of avoiding clashes in the exterior area

Under this scheme, several satisfactory solutions were obtained (see fig. 6.1) and submitted to aMD simula-

tion to test their stability. Unfortunately, the trajectories did not report any long-lasting interaction between

the ligands inside the protein and this alternative model was discarded. It must be highlighted that no ex-

perimental information was available besides the protein structure. With GaudiMM, new models could be

obtained which, at least, suggested an idea on how these systems could be.
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Figure 6.1: One the candidate structures proposed by GaudiMM. The two Cu-containing phenanthroline cofactors

(in green) were covalently attached to position 89 in bothmonomers of the dimeric LmrR protein. While the results

were promising, the subsequentMD simulation proved that that particular conformation did not feature long-lasting

interactions.

6.1.1.3 Dynamic docking & linker-length optimization

The LmrR system is part of one of the most successful strategies to bring new stereoselective reactivities

into existing enzymes: introducing cofactors that can anchor to the host and expose the catalytic region in

a particular way. The anchoring can take place via a covalent bond (like in the previous case), but it can

also be established through non-bonded interactions. In the latter case, biotin-derived cofactors have been

particularly popular due to its high affinity to avidin and its bacterial counterpart, streptavidin, much easier

to produce.

Streptavidin is composedof fourmonomers arranged as adimerofdimers, each able tohost abiotinmolecule

(see fig. 6.2). One possible strategy to fix a catalytic cofactor within the protein is to build a dibiotin deriva-

tive that could anchor to both binding sites simultaneously, holding the catalytic cofactor in the dimeric

interface. This way, only one side of the cofactor is exposed to the medium, bringing higher enantioselectiv-

ity.

Ward and collaboratorswere trying to build this hypothetical ligand, but simply bonding the copper cofactor

to one biotin on each side would not result in a compound able to reach both sites: a linker or spacer was

needed to connect the biotins to the cofactor. The question is: which is the optimal length so the resulting

ligand reaches both sites? This is where GaudiMM could help.



102 Chapter 6

Figure 6.2: Streptavidin is composed of a dimer of dimers. Eachmonomer is capable of hosting one biotin molecule.

Given its high af nity for biotin, it is a popular system for arti cial enzyme design.

As briefly described in chapter 4, theMolecule gene can also be configured to build newmolecules by chain-

ing fragments found in a given directory structure. The subdirectories are sorted alphabetically and one

fragment is randomly picked from each. The chosen fragments are concatenated following the subdirectory

order, using the atoms configured as connectors (first and last atom in the file, by default).

In principle, the dibiotin ligand could be constructed out of five fragments: biotin A + linker A + cofactor

+ linker B + biotin B. However, since biotin exhibits a high affinity for streptavidin, it can be assumed that

it will stay in its crystallographic binding site. This allowed to simplify the calculations: instead of having

a 5-fragment construction, the biotins were fixed into their crystallographic binding site and a 3-fragment

linker + cofactor + linker dynamical ligand was used instead (see fig. 6.3). To assess if a candidate construct

was long-enough to reach both sites, one of the linkers was anchored to one of the biotins following the null-

sphere procedure described in section 6.1.1.2. Then, a distance minimization objective was applied to the
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other linker to push it into the second binding site, where a second biotin was placed to accept the simulated

covalent bond. All the bonds in the linkers were allowed to freely rotate with the Torsion gene; biotin and

cofactor bonds were considered frozen (see table 6.4).

Table 6.4: Recipe applied for the Streptavidin-dibiotin system.

Genes

Molecule Load the streptavidin dimer, with biotin ligands already frozen in their binding
sites

Molecule Load a 3-fragment directory to build different versions of the
linkerA-cofactor-linkerBconstruction. Linker library included linear alkanes
ranging from pentane up to dodecane. The cofactor was DFT-minimized

Torsion Explore the flexibility of the linkers (bonds of biotins and cofactor were considered
frozen)

Search Allow free rotation of the ligand from its anchor (end of biotin A), but no
translation (radius = 0)

Objectives

Contacts Minimize steric clashes between protein and ligand

Angle Force an angle of 109.5◦ in anchor point of linker A with biotin A

LigScore Maximize docking scoring function to select stabilizing interactions

Distance Minimize the distance between the end of linker B and the end of the biotin B, so
the two biotins are connected by the ligand

The results showed that a linker compatible with the length of a linear heptane would be enough to reach

both binding sites simultaneously. This helped guide the synthesis of the dibiotin ligand (an amide group

had to be introduced in the linker, but the suggested length was respected). The resulting ligand exhibits

micromolar affinity with streptavidin (manuscript in preparation). Finally, our proposed model also con-

tributed in the refinement process of the X-Ray structure. One of the most interesting parts is that the

copper cofactor did not need any type of parameterization for the simulation to work. Simple descriptors

like van der Waals overlap can be enough for complex modeling.

6.1.2 Metal ions: Organization & binding site prediction

In two of the previous examples, a metal ion was present in a nonstandard residue. GaudiMM was able to

deal with them because the recipes applied did not take any special considerations. All atoms were treated

as different-radius spheres connected to other spheres. In some cases, this strategy can be successful, but in

others special treatment might be necessary.

This section will present the applications of a novel strategy to deal with metal ions in molecular model-

ing. Instead of resorting to complex parameterization exercises (see appendix C for further details) like those
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Figure 6.3: To gure out the optimum linker length for desired dibiotin ligand, a 3-fragment construction was pre-

pared: linker+cofactor+linker. The rst linker fragment was anchored to the biotin xed in binding site A . The copper

cofactor and the second linker were appended to its tail. By analyzing the torsions in both the rst and second linkers,

the end atom in the second linker can reach the biotin already xed in binding site B. The solution (bottom) proposed a

linker compatible with 7-carbon linear alkane.
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expected in Molecular Mechanics, some properties of the metal ions can be described with geometry mea-

surements.

6.1.2.1 Restrained conformational analysis for Alzheimer’s β-amyloid peptide

Conformational analysis can be described as a range of techniques focused on taking an input molecular

structure and generating coordinates sets (conformers) compatible with a set of criteria, normally energetic

and geometric. This definition is broad enough to be used for other type of studies, such as the aforemen-

tioned docking variants, but is also a direct reflection on how GaudiMM impose a clear separation of con-

cerns when it comes to exploration and evaluation. Once again, generating those new coordinate sets is a

matter of choosing the right genes, and deciding if they are compatible with some criteria or not is up to the

objectives.

To perform conformational analysis only one operation is needed: modify the coordinates set sensibly. This

can be performed in a high-temperature molecular dynamics simulation, but parameters would be needed

beforehand. For simple cases, GaudiMM’s Torsion gene can be employed: all bonds lengths will be re-

strained to those in the input structure, but dihedral exploration will be performed on those bonds consid-

ered rotatable. Using the Contacts objective can help minimize the steric clashes and additional constraints

like distances and angles can be imposed so the proposed solutions are compatible with a given geometry.

The resulting calculation could be regarded as a restrained conformational analysis, very useful for finding

initial structures of unparametrized small molecules you want to study with higher levels of theory, such as

QM.

For some peptides, the same Torsion applied in small molecules can be applied to test the torsion angles

of the CO–NH peptide bonds. This would result in the exploration of the backbone flexibility. This idea

can be coupled with the Rotamers gene to assess the conformational variability of the sidechains. For the

evaluation, fullMMenergy can be calculatedwith theEnergyobjective. Additional restraints are supported

via the corresponding objectives: Angle, Distance, Surface, Volume…

In the GaudiMM manuscript, an unbound Alzheimer’s β-amyloid structure was processed following this

strategy in an attempt to reproduce experimental Zn-bounded NMR models (PDB ID 1ZE9 195).

Starting with the unfolded peptide (PDB ID 1ZE7 196), its backbone torsions were analyzed in hope of find-

ing a combination of rotations that could be compatible with those in the Zn-bounded form. The only

evaluators used were: (1) a Contacts minimization to rapidly discard structures with abundant steric clashes,
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(2) an Energy minimization with the Amber 99 SBILDN force field for more accurate values, and (3) a

Volume objective configured to match the average volume occupied by the 20 Zn-bound NMR structures

reported in PDB ID 1ZE9 (15854 Å3), intrinsically showing a possible pre-organization of the isolated pep-

tide. Even though the Zn ion was not explicitly considered, proposed structures were in agreement with the

experimental ones, with backbone RMS deviations in the range of 3.5 Å(see fig. 6.4).

6.1.2.2 Finding metal binding sites in biomolecules

Metal-protein and metal-peptide interactions are not unusual at all: around 30% of the human genome

encodes for metal-containing biomolecules. 197 As a result, having the ability to describe and predict these

interactions becomes an interesting exercise in molecular modeling.

GaudiMM features an objective specifically designed for that purpose: the Coordination objective. The

idea was initially described inMujika et al., 198 where a multi-objective docking procedure was used to locate

possible octahedral coordination sites of an aluminum ion within pre-optimized structures of Alzheimer’s

β-peptides. The octahedral geometry could be described by using several distances, angles and dihedral ob-

jectives§ set to match those in an ideal octahedron: coordination bonds of around 2 Å, 90◦ for the donor-

metal-donor angle, and a dihedral of 109.5◦ for compatible sp3 geometries (see table 6.5).

Table 6.5: Recipe applied for the Al(III)-amyloid complexes.

Genes

Molecule Load the preoptimized peptide, without the aluminium

Molecule Load the bare aluminium ion

Search Allow free translation of the aluminium ion within 5 Å

Objectives

Contacts Minimize steric clashes (stops the aluminium from getting too close)

Distance (x3) Optimize the distance from the aluminium ion to the (three) closest oxygen atoms

Dihedral (x3) Align the dihedral angles between the coordinating residues and the aluminium
position

After validating the utility of this proof-of-concept, a first generalization of themethod was implemented as

a separate objective inGaudiMM, and tested in some illustrative cases for its publication (see section 6.1.2.3).

In short, the Coordination objective scans the surroundings of the selected metal ion for suitable donor

atom types (like terminal sp3 oxygen atoms in aspartic acid). If sufficient donors are found within 3.0 Å,

§This was done with a very early version of GaudiMM, when the notion of objective was in development. As a
result, some of the modules here listed do not have an exact correspondence with the current ones.
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Figure 6.4: Unfolded peptides can adopt feasible folded structures under a given volume only by exploring backbone

torsion angles and force eld energyminimization objectives. Low-energy solutions were further aligned to their best

NMR conformationmatches (in green).
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their positions with respect to the metal center are compared to those of the vertices of the corresponding

ideal polyhedron. This comparison is performedwith a point-set registrationmethod called Coherent Point

Drift, 199 which admits missing points. This means that geometries with vacant vertices can be considered

seamlessly. If the comparison is successful, a RMSD value is returned and two additional checks are calcu-

lated: (1) the directionality of the hypothetical coordination bond is assessed through the absolute difference

of the sines of the angles and dihedrals of the involved atoms against the ideal ones, and (2) the ideal distance

is compared to the measured distance and the absolute difference is. All these terms are summed linearly,

which should result in a value of zero for perfect geometries. By minimizing this function over a few gener-

ations, coordination geometries can be identified.
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Figure 6.5: In the Coordination objective, a metal ionM queries its surroundings looking for potencial coordinat-

ing atoms (donors,D). If the number of donors is enough, a Coherent Point Drift registration is performed tomatch

the ideal polyhedron and the directionalities of the bonds are checked.

Aposterior refinement of this objective has been extensively reviewed recently, 148 where we discuss different

modifications of the initial score function. The most promising is benchmarked against a dataset of 106

high-quality X-ray metal-containing proteins representing diverse metallic species with octahedron-derived

geometries. The protocol considers a 20 Å radius for the search sphere and a rigid protein structure. With

these updates, the initial success rate increased from an initial 86% to a final 100%. If flexibility of sidechains

is considered with the Rotamers gene, the success rate retains a value of 87.5 %, even with the added search

dimensionality.
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6.1.2.3 Folding metal-bound siderophores

Siderophores are key compounds in the metabolic access to iron species, involved in oxygen transport and

other vital processes. Since Fe3+ has bad solubility in water, these are responsible for their chelation and

intake. Enterobactin is the strongest siderophore known (K = 1052M−1) and is primarily found in Gram-

negative bacteria. An iron-free 3D structure can be found in PubChem,200 which substantially differs from

its metal-bound form found in bacterial proteins, like E. coli’s FepB.201

Toassess the guiding capacities of theCoordinationobjective, an illustrative casewasproposed inGaudiMM’s

original publication. The task was to fold the iron-free form into its metal-bound form. A Torsion gene

was configured to explore rotatable bonds of the unfolded siderophore structure, and a Search gene was

instructed to move the iron ion within a radius of 5 Å.

The main driver of the optimization was the Coordination objective, which was set up to find octahedral

geometries by analyzing terminal oxygen atoms. This strategy successfully reproduced three of the four

structures found in E. coli’s FepB. RMSD values were under 1.0 Å in all cases (see table 6.6 and fig. 6.6).

Table 6.6: Recipe applied for the enterobactin exercise.

Genes

Molecule Load the unfolded enterobactin200

Molecule Load a bare iron ion

Torsion Explore the flexibility of the rotatable bonds in enterobactin

Search Move the iron within 2.5 Å

Objectives

Contacts Minimize steric clashes in the system

Coordination Match an octahedral geometry by querying the terminal oxygen atoms of the
enterobactin rings

Distance Since UCSF Chimera does not support dihedral torsions in closed rings, the central
ring of the enterobactin was deliberately opened so their torsion bonds could be
explored. This distance keeps the ring functionally closed while that happens
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Figure 6.6: GaudiMM can transform an unfolded apo-enterobactin siderophore into its metal-bound form as found in

E. coli FepB by exploring its free-torsion bonds to nd an octahedral coordination geometry around an iron ion.

6.2 Case study:

Multiscale modeling of multivalent enzyme inhibitors

GaudiMMwas conceived to be the entry door to themultiscale funnel, while the tools presented in chapter 5

fill in other gaps down the funnel. In this section, a real example on how all these developments work to-

gether and allow to create integrative workflows is presented. It is a deep computational insight on the work

described inPillar[5]arene glyco(mimetic)rotaxanes for the functional interrogation of multivalency responsive

glycosidases,202 a collaboration with the IIQ-CSIC in Seville, Spain.

6.2.1 Introduction to multivalent enzyme inhibition

Biological molecules are usually classified in four separate families: nucleic acids, lipids, saccharides and pro-

teins. Far from being separate entities, they can be found together in many processes. A particularly inter-

esting combination is when proteins and saccharides work together.

Glycoside hydrolases (or glycosidases) can specifically recognize glycosides and catalyze the hydrolysis of their

intermonomer bonds in complex sugars. They are key in the degradation of natural polymers like starch

(amylase) or cellulose (cellulase), pathogenesis, anti-bacterial activity (lysozyme) and normal cell function.

Other examples are lectins, which exhibit high affinity for specific saccharidic residues through non-bonded

interactions. They are involved in biofilm formation,203 immune response204 or even antineoplastic ac-

tivities,205 to name a few. Studying mechanisms of inhibition would allow to develop new antibacterial
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techniques or avoid biofilm formation, for example.

Most common strategies for enzyme inhibition involve designing amimetic ligand that canblock thebinding

site of the substrate through a key-and-lockmechanism preventing the enzyme fromperforming any further

action. For lectins and glycosidases, glycomimetic compounds like iminosugar-containing¶ ligands can be

employed. The first iminosugar characterized, 1-deoxynojirimycin (DNJ) was isolated from a natural source

and showed to be an α-glucosidase inhibitor with anti-diabetic and antiviral activities. Since then, more

iminosugars have been described in the literature.

Recently, the general intuition around the classical lock-and-key inhibition mechanism was questioned in a

study that described 2000-fold inhibition enhancement towards the Jack bean β-mannosidase (JbM) when

twelve copies of DNJ were displayed around a C60 fullerene.206 The strategy, termed Multivalent Enzyme

Inhibition (MEI), was then observed in other systems. Knowing that JbM has a very accessible binding

pocket and is multimeric in solution provides an understandable rationale behind this enhancement: a sin-

gleC60 construct can block several sites at once. However, this idea cannot explainwhymonomeric enzymes

with deep and narrow binding pockets are also inhibited by bulky multivalent conjugates. Additionally, it

has been observed that putative sugars also inhibit their corresponding catalytic enzymes if they are multiva-

lently displayed in a conjugate, defying the assumption of specificity and non-promiscuity glucosidases are

thought to exhibit.

6.2.2 Experimental results

Toshed light on these counterintuitive observations,García-Fernández et al. designed a series of two-component

pillar[5]arene rotaxane conjugates that exhibitedboth glycomimetic andnon-glycomimetic (putative) residues.

The first component is a H-shaped central axel, which exhibits four sp2-iminosugar-type[12] 6-oxa-5N,6O-

oxomethylidenenojirimycin (ONJ) residues, one on each on the stop caps. The second component is the

pillar[5]arene, which displays ten moieties of glucose, mannose or galactose, depending on the variant, one

on each of its ten rims (see fig. 6.7).

To test the contribution of the multivalent saccharides, two reduced models that did not include the pil-

lar[5]ene were also considered: 1) a monovalent ONJ compound only bearing the hexyltriazolyl aglycone

segment present in the rotaxane, and 2) a divalent ONJ compound, which emulates one of the stoppers

halves of the central axel of the rotaxane.
¶Iminosugarmoieties are standard saccharideswhose oxygen atom in the ring has been replacedby a nitrogen atom.



112 Chapter 6

NH

HN

O

O

O

OO

O

O

O

O
O

O

O

N
NN N

N N
N

N

N

N
N

N

N
N

N

N
N NN

N
N

N
N

N

N
N

N

N
N

N

N

N
N

N N

N

N

N
N

NN

N

O

N

HO

O O

HN

HO
HO

6

OH

5a 6a 7a

N

HO

O O

HN

HO
HO

6

N N

N

O

O

NH

O

O

N

N
N

NN

N

N

HO

O O

HN

HO
HO

6

2

3

3

O

O

HO
HO

HO OH

OHO
HO

HO

O

OH

O

HO
O

OH

HO OH

5b 6b 7b

N

HO

O O

HN

HO
HO

6
4

=

ONJ motif

Figure 6.7: Different inhibitors variants tested against themonomeric ScGH13 and dimeric TmGH1 proteins. In

the computational studies, only divalent model (number 3) and rotaxane variant 5a were tested. Reproduced from

Nierengarten, 2018.202

All these inhibitors and their controls were tested and measured on two glycosidases for which crystallo-

graphic data evidenced the existence of deep binding pockets: the monomeric GH13 α-glucosidase from

Saccharomyces cerevisiae (ScGH13, yeast maltase) and the dimeric GH1 β-glucosidase fromThermotoga mar-

itima (TmGH1). The inhibition power was measured experimentally and reported in µM units (see table

6.7). Further details are out of the scope of this dissertation but can be found in the manuscript.202
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Table 6.7:Ki (inM ) for the different inhibitors tested against themonomeric ScGH13 and dimeric TmGH1 proteins.

Reproduced fromNierengarten et al., 2018.202

Ki
a

ONJ Pillar-[5]-arene

Monovalent Divalent Regular d-manno d-gluco d-galacto

ScGH13b 4.3± 0.5 2.5± 0.3 2.3± 0.1 33± 2 16± 1 13± 1

TmGH1c 109± 5 3.0± 0.2 7.1± 0.3 6.3± 0.3 16± 2 27± 2

aMeasured in �µM . bMonomeric. cDimeric

For the monomeric ScGH13, results were not surprising: the monovalent ONJ is a strong inhibitor with

Ki = 4.3 ± 0.5µM , and the divalent ONJ shows a 1.7-fold enhancement explainable by statistics alone:

two iminosugarmoieties are available in eachmolecule. The pillar[5]ene variant, featuring four iminosugars,

should have increased that value again but stayed at 2.3 ± 0.1µM , maybe due to steric impediments. The

trend was not the same in the dimeric TmGH1, though. The monovalent ONJ model was a very weak

inhibitor (Ki = 109±5µM ), but the divalent variant showed a 36-fold enhancement (Ki = 3.0±0.2µM ).

The pillar[5]ene variants did not improve thisKi but did not cancel it either.

This surprising enhancement in the inhibition power of the divalent ONJ compound towards the dimeric

TmGH1 could not be explained by stoichiometry alone. One hypothesis was to consider that the dimeric

conformation observed in the X-Ray data was not the only one present in solution, leaving room to the idea

that the divalent ONJ compound was able to reach the binding sites of two hypothetical monomers at the

same time and force a blocked dimerization. However, for that to be possible the di-ONJ ligand must be

long enough, something that was not entirely safe to assure. If a single di-ONJ ligandwas not enough, could

two di-ONJ molecules occupy a binding site each and then stabilize each other via the free ONJ end? What

about the hydrophobic tail? Is the same interaction profile feasible for the pillar[5]arene variants? At this

point, computational insights were requested in hopes of finding structural models that could help explain

the experimental observations. The questions posed are summarized now:

• Can a single di-ONJ ligand reach both sites? If not, how long should it be?

• Can two di-ONJ ligands occupy both sites simultaneously? Do they interact?

• Does the pillar[5]ene compound fit in the dimer? Can it occupy both sites comfortably? If so, in

which conformation?
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6.2.3 Computational approaches towards an explanation

Aproject like this, inwhich computational insights are needed to clarify experimental observations, is perfect

to prove howGaudiMMallows to formulate (bio)chemical hypothesis as optimization problems solvable by

a multi-objective genetic algorithm. Each questionmight need a slightly different resolution strategy, which

will be described in the corresponding subsections, but the main protocol remains the same:

1. The problem is formulated as a GaudiMM recipe and run.

2. All the candidate structures are analyzed interactively with GaudiView and any needed Tangram

extensions. Interaction profilers (see appendix D) are particularly useful at this stage.

3. The best candidates are checked for stability with long molecular dynamics trajectories (more than

100 ns). The protocol involves using explicit solvent and full-atom treatment using the GPU acceler-

ation provided by OMMProtocol.

6.2.3.1 Can a single divalent ligand reach both sites?

If not, how long should it be?

TheKi of the divalent ligand and the rotaxane against TmGH1 cannot be explained by stoichiometry alone

and it was suggested that both binding sites are reached simultaneously. However, it was not entirely clear

if the di-ONJ ligand was long enough to reach them both. When the iminosugar residues are set to be as

far as possible from each other, they can get 30 Å apart. In the crystallographic structure of TmGH1,207

the crystalized ligands are 40 Å apart in a straight line. Additionally, it must be considered that the dimer

interface is curved and a greater lengthmust be covered in order to reach both sites in an energetically feasible

manner. Alternatively, another dimerization structure could happen in solution and that could be analyzed

with a combination of protein-protein docking and solvated molecular dynamics.

To assess the first possibility, aGaudiMMcalculationwas set up following this strategy: one of the iminosug-

ars was fixed to the crystallographic site of one dimer, and the other iminosugar was instructed to reach the

binding site in the opposite dimer by exploring the dihedral torsions of its rotatable bonds (see fig. 6.8).

To discard steric impediments, unfavorable clashes were minimized. This can be achieved with the recipe

detailed in table 6.8.
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Table 6.8: Recipe used in the evaluation of a single di-ONJ ligand. The ligandwas positioned in such a way that one of

the terminal iminosugars matched the crystallographic structure of the ligand in the original 2WBG protein structure.

Genes

Molecule Load the protein model obtained after cleaning the PDB structure 2WBG (waters
and ligands removed)

Molecule Load the divalent ligand using a Mol2 file obtained with ChemCraft

Torsion Explore the free rotations of the ligand molecule

Objectives

Contacts Minimize steric clashes

Distance Bring the free iminosugar end of the ligand as close as possible to the center of mass
of the original crystallographic ligand in the X-ray structure207

↓ dist

Binding site A Binding site B

Iminosugar

Figure 6.8: To assess if a single divalent ONJ ligand can reach both binding sites of TmGH1 simultaneously, one imi-

nosugar endwas xed in the binding site of onemonomer (left) and the other endwas instructed tominimize its dis-

tance to the other binding site (right) by exploring the free-torsion bonds rotation.

The results of this preliminary calculation confirmed that the synthesizeddivalent ligandwasnot long enough

to reach the both sites. If one site was forced to be occupied by one of the iminosugars, the other end will

stay at a distance of 12 Å, even considering severe steric impediments. Seeing that a single divalent ligand

cannot occupy both sites simultaneously, an inhibition mechanism by sliding is proposed: a single divalent

molecule must be able to switch from one site to the other, taking advantage of having an iminosugar on

both ends.

This observation makes the next question obvious: how long should it be then? The ligand is, simply put,

two iminosugars connectedby two chains of 10 atoms each. Ifwe consider longer linkers, itmight bepossible

to reach both. To assess that possibility, a library of linkers ranging from 13 to 16-carbon linear alkanes was
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constructed and the same protocol was applied, but changing the Molecule gene to consider a dynamic

construction of molecules as explained in section 6.1.1.3 (see fig. 6.9 and table 6.9). The fragments can be

chained as iminosugar + linker + hydrophobic connector + linker + iminosugar.

↓ dist

Binding site A Binding site B

Iminosugar

Connector Linker

Figure 6.9: To guess the optimum length of the divalent linker, GaudiMMwas instructed to build ligands with linkers

ranging from 13 to 16 carbon atoms, explore their free-torsion bonds rotations andminimize the distance to binding

site B.

The evaluation part is the same: the non-frozen iminosugar will be forced to reach the other dimer, but only

long enough ligands will be able to do so. The results show that linkers longer than 13 carbons are able to

reach both sites comfortably without the need to slide from one to the other.

6.2.3.2 Can two divalent ligands occupy both sites simultaneously?

Do they interact?

A second hypothesis would consist of considering that two di-ONJ ligands can occupy both sites of the

same dimer simultaneously. If that is the case, they could even stabilize each other by interacting at the

dimer interface via their free iminosugar moieties (which can form hydrogen bonds through their hydroxyl

groups) or the coupling of their hydrophobic tails.

To assess that possibility, two molecules were superposed against the crystallographic binding sites of the
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Table 6.9: Recipe used in the evaluation of a stretchable di-ONJ ligand. The ligandwas positioned in such a way that

one of the terminal iminosugars matched the crystallographic structure of the ligand in the original protein struc-

ture.207

Genes

Molecule Load the protein model obtained after cleaning the PDB structure 2WBG (waters
and ligands removed)

Molecule Construct variants of the di-ONJ ligand using five fragments: ONJ + linker +
hydrophobic tail + linker + ONJ

Torsion Explore the free rotations of the resulting ligand construction

Objectives

Contacts Minimize steric clashes

Distance Bring the other iminosugar end of the ligand as close as possible to the center of
mass of the original crystallographic ligand in the X-ray structure207

dimer structure,207 which features an analog inhibitor compound suitable for structural alignment. Then,

dihedral torsions of the rotatable bonds of the ligand were analyzed looking for a combination that could

have them interact at the interface. This interaction was implemented as a distance minimization between a

carboxylic oxygen of one ligand and a carboxylic hydrogen of the other (see table 6.10 and fig. 6.10).

Table 6.10: Recipe used in the evaluation of a two di-ONJ ligands. The ligandwass positioned in such a way that one of

the terminal iminosugars matched the crystallographic structures of the ligand in the original X-ray protein structure.

Genes

Molecule Load the protein model obtained after cleaning the PDB structure 2WBG (waters
and ligands removed)

Molecule Load one copy of the di-ONJ ligand using a Mol2 file obtained with ChemCraft,
positioned in the binding site of monomer A

Molecule Load another di-ONJ molecule, but positioned in the binding site of monomer B

Torsion Explore the free rotations of the di-ONJ copy in monomer A

Torsion Explore the free rotations of the di-ONJ copy in monomer B

Objectives

Contacts Minimize steric clashes

Distance Bring the free iminosugar ends of both ligand copies close together so they are able
to form a H-bond

The analysis showed that this interaction is structurally feasible, which was further confirmed by an explic-

itly solvated, full-atom molecular dynamics trajectory: the interaction remained stable for more than 100

nanoseconds. Simulating this system (100,000+ atoms) for such a long period can take months with ordi-

nary CPUs, but thanks to the GPU acceleration implemented in OpenMM and OMMProtocol (see sec-

tion 5.2.2), these trajectories could be obtained within a week.‖

‖An equivalent protocol in the commercial, GPU-accelerated version of Amber installed in our facilities would
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Figure 6.10: Two divalent ONJmodels were anchored to their respective binding sites, and their free-torsion bonds

were explored to nd a pose were the two free iminosugar ends could interact at the interface via a H-bond.

While the computational model offers an answer to whether this structure is possible of not, this specific

protocol cannot answer whether this interaction is favored. To assess that possibility, broader sampling

would be needed (likemetadynamics), which demandedmore computational time than the available within

the submission deadline. Additionally, there is no experimental information to support this hypothetic

interaction: the stoichiometry suggested leans towards 1:1, and not 2:1.

6.2.3.3 Does the rotaxane compound fit? Can it occupy both sites? How?

The pillar[5]ene variants exhibit a slightly worse Ki but still comparable to the di-ONJ compound, so one

would expect a similar interaction profile. The divalent ligand has been shown that it cannot reach both

sites of a dimer, suggesting that its inhibition mechanism might be based on a sliding motion between the

binding sites. However, the divalent ligand only represents half of theH-shaped component of the rotaxane

compound. This has two conflicting consequences: (1) theH-shaped component is larger and could use the

iminosugars of opposed axels to reach both binding sites, and (2) the volumeof the crown componentmight

work against this interaction through steric impediment. This raises two possibilities:

have taken two weeks.



Benchmark & Application 119

1. The rotaxane interacts with the protein via iminosugars on the same axel.

(a) This interaction strategydoesnot offer any advantageover thedivalentbinding (its iminosugar-

iminosugar range distance is the same).

(b) The steric impediments of the crown component are easier to solve, since rest of the structure

would remain facing the outside part of the structure.

2. The rotaxane interacts with the protein via iminosugars on different axels.

(a) The iminosugar-iminosugar range distance is far greater and could enable accessing both sites

simultaneously.

(b) The steric impediments of the crown are far greater, since the structure would be now in a less

ideal orientation.

To assess both possibilities, the protein-rotaxane structure was analysed with GaudiMM following the same

recipe as the single divalent molecule docking in section 6.2.3.1: one iminosugar was fixed in one binding

site and the second one was instructed to get close to the second binding site with a distance minimization

objective by exploring the free torsion of rotatable bonds. Steric clashes wereminimized through a Contacts

objective. See table 6.11 for more details.

In the bindingmodeA (same axel), the structure did not reach the second binding site, as expected; not even

tolerating severe clashes. In binding mode B (different axels), the H-shaped component could reach both

sites comfortably. There were clashes, but not as bad as expected: they weremainly due to internal clashes of

the rotaxane. Given the unusually high number of freely rotatable bonds (176 in this case), more iterations

would have been needed to optimize them out. However, that was not necessary, since the purpose of these

GaudiMM calculations was to obtain a good enough structure to use as the starting point of the next step in

the multiscale protocol.

Once parameterized with Antechamber, 167 two candidate structures of each binding mode were submitted

to amolecular dynamics analysis withOMMProtocol. Both revealed stable bindings to their respective sites,

with additional stabilization of the structure via internal cross-interactions.

The unsurprising results observed for binding mode A (same axel) agree with the experimental evidences.

It exhibits the same binding profile as a single divalent molecule, compatible with the sliding mechanism,

hence the comparable Ki values. The slight difference might be due to the entropic stabilization of the

crown-component via secondary binding sites.

Unfortunately, while the binding mode B (different axels) showed a promising interaction profile, there is
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Table 6.11: Recipe used in the evaluation of the pillar[5]ene ligand. The ligandwass positioned in such a way that

one of the terminal iminosugars matched the crystallographic structure of the ligand in one of themonomers of the

original 2WBG protein structure.

Genes

Molecule Load the protein model obtained after cleaning the PDB structure207 (waters and
ligands removed)

Molecule Load the structure of the pillar[5]ene as obtained through a preliminary 3D model
in ChemCraft

Torsion Explore the free rotations of the pillar[5]ene

Objectives

Contacts Minimize steric clashes

Distance Bring one of the free iminosugar ends (depending on the case studied, from the
same axel or from the one across) closer to the binding site in monomer B

no experimental evidence to back it up. If this binding mode was feasible, a higher Ki should be observed,

but that is not the case.

6.2.4 Discussion & Further work

This joint studywas an excellent opportunity to show howGaudiMMcan be a valuable asset for both exper-

imental and computational communities. The computational feedback has provided illustrative models on

what can be happening at the molecular level and even proposed alternative explanations to be confirmed

experimentally. This can be argued in three points.

First, GaudiMM can provide results directly applicable to the wet-lab. The different di-ONJ variants tested

opened doors to synthesizing ligands of optimum length that would explain how the di-ONJ ligand exhibits

that excellent inhibition powerwithout incurring in additional costs. Doing this experimentally would have

involved more steps of synthesis and tests, only to discard most of the candidate ligands. With this compu-

tational framework, this can be obtained within a day. Of course, this does not replace the experimental

data; it just reflects that computational assessment can at least provide a way to save material and human

resources.

Second, it allows to create new types of computational studies in a simpler, consistent way. Testing if the di-

ONJ compound or the rotaxane can reach both binding sites of a dimeric protein would be normally done

with a steered molecular dynamics simulation. However, parameterization would be needed first. For the

rotaxane alone, this would take more than a day. The actual simulation would take around a week. With

GaudiMM, this can be obtained in hours. Then, if the results are positive, a MD simulation would be in
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order. However, if the results did not show anything promising, those expensive computational and time

resources could be invested in testing a different hypothesis. In the same fashion, testing if two divalent

ONJ ligands can interact at the interface would usually be studied with molecular docking, but there is no

software suite that can perform a multi-ligand, restrained study like the one herein presented.

Third, even if the researchers prefer to go straight to the MD stage without confirming the feasibility of the

hypothesis first, they would still need to build the initial structure. The researcher usually constructs those

manually, with the aid of an interactive 3D viewer and related tools. This is normally doable with small

ligands, but it starts getting disturbingly complex when bigger structures are involved. Setting up a rotaxane

model suitable for MD assessment would have involved hours of finetuning and trial-and-error attempts.

With GaudiMM, these can be obtained automatically when the correct recipe is used.

Of course, GaudiMM is not the answer to every question. It only helps guide the creation of newhypothesis

at the initial steps of the brainstorming. For more accurate results, higher levels of theory must be applied

through more advanced protocols. Even molecular dynamics might not be enough if quantitative magni-

tudes are demanded, such as binding energy or free energy. To obtain those, one would have to employ

broad sampling methods like metadynamics or free energy perturbation, hybrid schemes like QM/MM, or

even QM calculations of reduced cluster models. Those are out the scope of this dissertation and could not

be performed within the available timeframe.

6.3 Final conclusions

Throughout this chapter, it has been shown that, while computational studies can be strictly theoretical,

there is no point in denying that molecular modeling is a helpful tool for experimental works. In silico can

go hand in hand with in vitro, and some research groups would argue that they must. It is common to

see how experimental groups maintain strong alliances with theoretical groups. Fruitful joint efforts like

this bring different points of view and ways of thinking to the discussion table, which can only enhance the

brainstorming sessions, especially when counterintuitive phenomena like the aforementioned happen.
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General conclusions

In this dissertation several computational tools have been presented and several applications have been

benchmarked and showcased. Globally, the list of achievements could be summarized in six points:

1. GaudiMM has been presented as a versatile molecular optimization framework with high modu-

larity. Its uncoupled plurigenetic, multi-objective implementation provides researchers an unprece-

dented flexibility in molecular modeling. Instead of conforming to the requirements of a sequential

multistep protocol, the same methods can work synergistically in the same modeling exercise. The

concept of recipe paves the way towards performing hypothesis-drivenmodeling as well as other sim-

ulations like dockings or restrained conformational exploration.

2. Tangram is a collection ofmore than 15 tools for UCSF Chimera that will help in the generation of

input files for 3rd party software and diverse interactive structural analysis within a single graphical

interface and user experience.

3. OMMProtocol provides a user-friendly, single-file interface to the powerful, GPU-accelerated

OpenMM molecular dynamics libraries. These tools have brought a 20-fold speed increase to the

previously followed MD protocols in our group.

4. Garleek has been designed to help in those QM/MM studies that require extended molecular me-

chanics force fields. By seamlessly interfacing Gaussian with modern MM suites, more accurate cal-

culations can be obtained.

5. ESIgen can save hours of manual text manipulation in computational chemistry. Its ability to auto-

matically generate technical reports suitable for attachment as supporting information documents or

internal communication with colleagues will be hopefully appreciated by this community. Compu-

tational chemists will also welcome EasyMECP, designed to facilitate the calculation of minimum

energy crossing points (MECP) with Gaussian.
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These ongoing efforts have been the first steps towards developing a suite able to compete, feature-wise, with

available commercial suites —which can be particularly expensive in some cases— at no cost for academics.

On GaudiMM

In addition to reproducing and benchmarking known problems, this platform has been able to model or-

phan systems where currently available information is scarce. This is thanks to a versatile approach: creating

optimization synergies between deliberate simplistic chemical and geometric descriptors. Some tasks that

have benefitted from this idea are:

• Exotic docking prediction. GaudiMM expands the possibilities of docking calculations be-

yond the traditional flexible protein-ligand dockings, enabling unconventional docking studies like

competitivedockingormulticovalent restraints (see section6.1.1 for abenchmarkon standardprotein-

ligand docking and the take on more exotic cases).

• Complexmolecular design. Predicting possible structures of partially characterized systems by

performing hypothesis-driven modeling (see section 6.2 on multivalent enzyme inhibition). This

includes designing complex ligands where only some experimental information is available, if any

(see section 6.1.1.3 for the optimization of a dibiotin ligand).

• Finding metal binding sites in proteins. Modeling organic systems where metal-residue in-

teractions can be expressed with coordination geometries (see section 6.1.2 for this and other cases of

coordination-driven folding).

Additionally, the conceptual separation of exploration and evaluation as implemented in GaudiMM gives a

clear understanding of the different variables involved in an optimization process. This has proved to be a

very valuable as a teaching tool in lower degrees of education. Students involved inGaudiMMdevelopment

have contributed new modules even with a non-chemical background. Some highlights include a gene to

navigate the chemical space or a coupled gene/objective pair to assess ligand binding pathways, detailed in

appendix B.

Of course, there is further work to do. GaudiMM’s approach has amodestly steep learning curve and config-

uring an input file is mostly done on the text editor. A general-purpose graphic interface would be desirable

and is something to consider. In the short term, the concept of application-specific interfaces is very attrac-

tive (e.g. searching metal binding sites or optimizing the length of linkers).
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Analyzing results from a multi-objective process can be daunting at first because considering the optimality

of two ormore criteria simultaneously is not intuitive. While GaudiView is available to perform sorting and

filtering on the candidate solutions, certain applications could benefit from aunified scoring term. However,

this would require constructing a weighted linear sum of the objectives by benchmarking big datasets. In

that matter, machine learning approaches could be very helpful.

On Python

Without Python and its great ecosystem (UCSF Chimera, the SciPy stack and the Omnia project have been

particularly important) this dissertation would not have been possible. All the developments carried out

during this Ph.D. are the consequences of its unique vision.

The de facto Python installation already provides a library for high-level operations, freeing the developer

from dealing with technical nuances. Beyond the official distribution, the catalog of ready-to-use packages is

excellent, allowing to prototype projects in very little time just by importing the needed requirements. This

is particularly true in scientific software, where it shines as the perfect glue language to stick different projects

together.

Moreover, the emphasis on readability and self-documented code contributes tomaintaining good practices

along the full development cycle, even when different people are involved. This is particularly important for

long-lasting efforts in research and fruitful investment in research.

This Ph.D. hopefully illustrates how Python and its exceptional ecosystem offer molecular modelers with a

versatile canvas for innovative science.





Epilog

During the development of new software, difficulties can arise anytime, for any reason. Dependencies, in-

stallation and distribution are inherent problems to the complex landscape of libraries, operating systems

and hardware architectures. Solving them efficiently requires using developer-specific tools, usually disre-

garded by end-users. I began my Ph.D. studies as a user and ended up as some sort of developer, and to my

surprise, my most popular project is not GaudiMM itself, but a tool created as a helper for its development:

PyChimera. The need for interconnected software is patent, and a big part of this dissertation has been

devoted to bringing new free alternatives to the table. The Tangram suite is only an attempt at providing

molecular modeling tools accessible for users that do not want to mess up with complex installations and

input files: the workflow has been designed to be intuitive and consistent.

Still, most complex tasks would require some sort of scripting for an efficient solution. Programming skills

are essential in all fields of science that canbe enhancedby computational support. Learninghow toprogram

can have a huge impact on the researcher workflow. Three main advantages can be identified:

• It can accelerate repetitive tasks, freeing time for other problems.

• It gives access to understanding existing code. This way, unexpected errors can be investigated thor-

oughly before having to ask for external help. It also allows to extend the original code with new

functionality, if desired.

• It enables new problem-solving strategies and can help plan studies in a different way.

In other words, programming skills streamline creative thinking.

Initially, the novel software platform in the title of this dissertation only referred toGaudiMM, but during its

development some aspects of the workflow of lab-mates and colleagues caught my attention. What started
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as innocent efforts to help automate somemanual steps or provide easier access to new technology ended up

as big projects on their own. These opportunities were not anticipated, but perfectly fitted the intentions of

this thesis.

Yetwe are failing to convince studentswhy coding is important. Most still prefer to gomanually tomake sure

results will be correct, and not a false positive product of a non-obvious bug. Is this due to the uninformative

error messages, or does it go deeper in our educational system roots? Students are still taught memorization

andmechanization, but that should not be the point in this era. Computers are much better at that than us,

andwill surpass us in other areas too. Solving problems is not copying algorithms and following instructions.

It should be more about the reasons behind each of those steps. Designing algorithms, protocols, tools and

frameworks: that should be the goal. Otherwise, the inability to write code will become the illiteracy of the

XXIst century.



A
Perspectives for molecular modeling

In an ideal future, there would be no need for multiscale protocols because accuracy compromises will

not be needed in exchange for performance. However, to get there a large series of milestones must be

conquered first. That path can only be pursued if there is a global interest.

A.1 The impact of molecular modeling

Such a vast array of tools and resources can only be product of thousands of researchers, both in the public

and private sector, and such devotion can only come if the field is attractive enough. Computational model-

ing is widely regarded as one of the fastest growing sectors in science, as perceived by researches and engineers

themselves. According to a recent survey from the European FP7 project MULT-EU-SIM22, which mea-

sures the impact of general modeling in science and engineering, 75 % of researchers see a high impact of

modeling and simulation in their fields, and 70 % foresee a strong growth of these methods, with an impact

far beyond the one currently achieved.208 International institutions also believe in the trend and, in fact,

there are several ongoing projects working on standardizing basic concepts such as the terminology to be

employed.209 The very existence of reports covering the topic210–212 also serves as support for this general

idea.

More concrete examples of this perception include the aerospace industry, which uses computational chem-

istry to better understand the effect of high temperatures and combustion on the stability of the coating

present in the materials employed, thus increasing flight safety. Additionally, the longevity of nuclear re-

actors is affected by the impact of neutrons on the walls, which result in atomic displacement evaluable

with computational chemistry. Better determining the life expectancy of the reactor and can potentially
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save millions by preventing an early shutdown of the plant.213 In pharma, measuring the heat of formation

experimentally is 50 times more expensive than a comparable DFT study.2

These anecdotical examples can be quantified by analyzing some metrics on each of the three levels of the

knowledge transmission model:214 (1) Authors, (2) Users, (3) Society. The authors of theories and models

(1), usually belonging to the academia, publish their findings to scientific journals, which end up in software

products that can be used by professional modelers (2), leading to process improvements. This directly

benefits society with lower prices in value products (3).

The increased popularity in basic research can be measured by the number of published manuscripts men-

tioning the topic, aswell as their specific proportionwithin the field and impact factor. Observing the increas-

ing presence of techniques such as DFT or molecular dynamics is a good proxy to the trend.2 An updated

example can be seen in fig. A.1.
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Figure A.1: Publication trends of manuscripts in molecular modeling in the title or abstract against all publications

in chemistry related elds. Values are normalized against records in 2009. While publications in all chemistry failed

exhibit a slower growth, articles in the eld of molecular modeling (as representedwith two popular methods, MD and

DFT) have grown faster in the past decade. (Data obtained through https://app.dimensions.ai).

https://app.dimensions.ai
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The direct application of methods is measurable by looking at the number of patents on the topic,* the

return rate in the corresponding industries (between 3:1 and 10:1 in pharma215), or the specific job postings

demanding such experience.†

In addition to the jobs themselves, which can be regarded as direct benefit for society, some other numbers

could be thrown, such as the estimated contribution to the GDP by chemistry research (1.4% in UK as of

2010213), or the attributed spending on high performance computing by the modeling sectors, featuring

bio-sciences, chemical engineering or computer-aided engineering as top contributors.216

A.2 What the next generation will bring to the table

Published almost twenty years ago, the chapterVision 2020: Computational Needs of the Chemical Industry

in Impact of Advances in Computing and Communications Technologies on Chemical Science and Technol-

ogy: Report of a Workshop217 cited five main computational challenges for the chemical industry: Predicting

(1) biological activity and (2) toxicity of a chemical structure, and designing (3) catalysts, (4) chemical pro-

cesses and (5) materials. This englobes two intertwined areas: prediction and design. For this to happen,

the report points that intense research must be carried out in, amongst others, the potential functions of

MM-based methods, long MD simulations for large ensembles (in the millisecond scale), quantum effects,

solvent effects, solid state structure, multiscale protocols (atomistic, micro-, meso-, and macroscopic). Most

of the challenges are accuracy or scale related, so huge efforts must be invested to reach errors within 0.1-0.2

kcal/mol in thermochemistry or to design universal and polarizable force fields, to cite two examples. This

is not only a matter of scientific software development, but also responsibility of computer architecture, op-

erating systems and networks. Since a single processor can only go so fast, tera-, peta- and exascales can only

be achieved with parallel scaling, both within the processor itself (multicore architectures) and across sym-

metric machines (nodes within a cluster). For this to work reliably, operating systems and networks must be

designed with fault tolerance in mind: if a core or node fails, the whole ensemble might fail as well.

We are almost in 2020 now, and part of the predictions and demands have been fulfilled. Massively parallel

architectures are now inevitably present and software has been slowly adapting to the new design paradigms.

Any research group or company can get access to these resources thanks to the ubiquitous cloud, which offer

hardware solutions on demand. The so-called as a Service products (Software as a Service, Platform as a

Service…) allow per-usage payments without having to worry about maintenance or resource constraints.

*For example, at http://www.wipo.int/patentscope.
†Custom searches can be performed in websites such as http://chemjobber.blogspot.com/, http://www.

linkedin.com, http://glassdoor.com or http://www.stackoverflow.com.

http://www.wipo.int/patentscope
http://chemjobber.blogspot.com/
http://www.linkedin.com
http://www.linkedin.com
http://glassdoor.com
http://www.stackoverflow.com
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If a given simulation needs more storage, memory or calculation speed, more nodes can be added to the

ensemble with a click. Platforms such as Amazon’s AWS, Google’s Cloud or Microsoft’s Azure‡ provide

the raw infrastructure, which can be configured by the researchers or employees themselves, but is more

commonly setup by specialized companies devoted to this newly found market niche.

What this report did not anticipate was the advent of GPGPU (General Purpose Graphical Processor Unit)

computing: the advances in 3D acceleration and desktop graphics cards proved to be a massively parallel ar-

chitecture that could be exploited by software not related to games and visualization. Molecular Dynamics

simulationhave seen a drastic performance increase thanks to this newparadigm, implemented inmajorMD

software (Amber, Charmm,Gromacs,NAMD,HTMD,AceMD,OpenMM…) and is nowpossible to simu-

late hundreds of nanoseconds a daywith a sub-1000$personal desktop, thus getting closer to themillisecond-

scale proposed that, while not routinely common, is starting to hit journals more often.218,219 Quantum

Mechanics could certainly benefit from GPU acceleration, but the offer is still reduced (BigDFT,220 Ter-

aChem221). The following years would certainly see a mainstream presence of GPU-implemented QM

methods.

This would be in agreement with the 2017 Grimme’s computational chemistry wish list for the upcoming

25 years: (1) Development of robust and fast electronic structure methods with chemical accuracy for all

conceivable chemical processes, all states (gas, liquid, solid), and all (even exotic) types of spectroscopies, (2)

Seamless and automated multilevel modeling, including error estimates, (3) Routine treatments for many

nuclear degrees of freedom and entropy, (4) Inclusion of solvation effects, (5) Prediction of molecular as

well as macroscopic (bulk) properties, and (6) Automated approaches for finding new reactions. Warshel, in

his 2014 Nobel Lecture, pointed to broader future directions, like using molecular modeling to fight drug

resistance, grasp a deeper understanding of protein-protein interactions, truly rational enzyme design or

developing molecular machines; for all of them, multiscale strategies will be necessary, he concluded.222

These predictions can be further extended with more specific wishes, like universal reactive force fields or

cheap, large-scale QM methods, two trends that will inevitably close the gap between these traditionally di-

vergent approaches. Faster architecture and software will possibly allow for more robust ab initio protein

structure and folding studies,223 and cheminformatics tools like (3D)QSARwill also see advances.224 Also,

thanks again to hardware advances originally intended for gaming, Virtual andAugmentedRealities will be-

come mainstream and that should also influence molecular modeling software, whose graphical interfaces,

built around an interactive 3D viewer, will be certainly enriched. As amatter of fact, several suites already in-

clude preliminary support. 190 Together with mobile and web platforms, desktop software will surely evolve

‡https://aws.amazon.com, https://cloud.google.com, https://azure.microsoft.com, respectively

https://aws.amazon.com
https://cloud.google.com
https://azure.microsoft.com
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to new interface paradigms.

Finally, a very hyped topic lately is the incursion of machine learning and neural networks in scientific soft-

ware. After gaining a huge popularity for successfully solving problems traditionally understood as easy for

humans but hard for computers (i.e. facial recognition, natural language interfaces, speech synthesis), it is

now overflowing to fields like computational chemistry. Being such a hot topic, a lot of publications have

arisen in the last years (see fig. A.2). While some see these proposals as the definite solution to some chem-

istry problems like QSAR225–231 or even DFT-trained electronic predictions,232 a certain skepticism is also

held by others,233,234 especially when it comes to the pharma industry and drug design.
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Figure A.2: Number of publications containingmachine learning in title or abstract, per year. Data is normalized

against the values recorded for 2009. Physical and theoretical chemistry exhibit a steeper growth in the recent years.

Besides traditional computers, nascent quantum computing will be able to implement some algorithms

with unprecedented efficiency. Computational chemistry will be one of the most benefitted fields in that

regard,235–237 as prototyped in several recent attempts.238–241





B
GaudiMM as an educational tool: undergoing

developments

B.1 Navigating the chemical space

GaudiMMalready allowed tonavigate the chemical space via thedynamicbuilding capabilities of theMolecule

gene, but it presented two limitations: (1) it is restricted to the provided fragments library, and (2) it only

allows to construct linear concatenations of those fragments (i.e. no ramifications or rings).

A new approach based on graph theory and pharmacophore matching is being developed in our group as

part of the Ph.D. thesis of J. E. Sánchez-Aparicio. This method, which interprets molecules as non-directed

graphs that can grow and shrink arbitrarily, does not require any preexisting libraries and naturally considers

ramifications. It has been successfully applied to propose designs of small molecule inhibitors forK. pulmo-

niaeNDM-1 β -lactamase.

B.2 Finding ligand binding pathways

Docking studies provides insight on how a small molecule can interact with a bigger host molecule by assess-

ing feasible binding poses. However, those are just static snapshots of a dynamic behavior. To study how

the ligand reaches its binding sites, longMolecular Dynamics with steering restraints are needed and do not

always guarantee a successful ligand pathway.

An alternative approach was considered for one of the MSc dissertations supervised during this Ph.D. The
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protein space was floodedwith small probes placed in a tight grid and queried for steric impediments, result-

ing in points with higher or lower pseudo-energy scores. Then, lower-energy points were traversed from the

outer regions of the protein in hopes of finding a continuous path that reached the ligand binding site. To

consider the ligand size, shape or volume, a second step was proposed. The calculated paths were segmented

in 5Åpieces and each of the resulting pieces was then submitted to a docking simulationwith reduced search

radius. The resulting structures were low-energy conformations of the ligand along the proposed pathway.

All these poses were finally concatenated together to emulate a smooth trajectory ideal for depiction pur-

poses.

This proof of concept proves how the versatility present inGaudiMMcanbe used as part of bigger protocols,

and is being reimplemented as a gene able to guide the exploration of docking studies along feasible pathways

in the Ph.D. studies of J. E. Sánchez-Aparicio.



C
Living with metal ions

in molecular modeling

One of the most exciting areas of molecular modeling sits at the frontier between organometallics and bio-

chemistry, two fields that have been studied separately in computational chemistry for decades now. Glob-

ally, chemists exploit their features differently and, as such, present different computational challenges. Tra-

ditionally, organometallic systems feature a reduced number of atoms and accommodate transition metal

centers within their structure, whose exotic electronic behavior can only be accurately computed with quan-

tum chemistry approaches. Studies on biological problems such as the early work on folding of peptides

and proteins had to face a larger number of atoms (hundreds or thousands) from the beginning, forcing the

authors to use classical mechanics approaches to deal with the added dimensionality after realizing that the

electronics of the system were not very important in that process.

However, metals do take part in biological processes as mainstream as oxygen transportation and muscle

contraction. As such, the existenceofmetalloproteins cannotbeneglectedby themodeling community,who

should bring these two areas together in amore seamless experience. Given the diverging efforts accumulated

for decades, the gap is not easily overcome, but some solutions exist. Depending on the properties to study,

one can resort to different approaches, as detailed below.

C.1 Quantum Mechanics

Since quantum mechanics deal explicitly with the electronic shells of atoms, the immense diversity of elec-

tronic configurations of metal ions does not represent a problem. If such, the only challenge this might
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present is choosing the adequate functionals, basis sets or starting-point structures.

The challenge is more technical than scientific. While advances in DFT theories and hardware architectures

allow us to deal with up to 500-atom systems in feasible timescales, this is still far from the number of atoms

usually present in protein structures. For this, hybridQM/MM studies are more adequate: the QM layer is

responsible for dealing with themetal and its surroundings (at least, the first coordination sphere), while the

comparatively cheap MM layer governs the rest of the structure. Even with this approach, time-dependent

schemes still represent a huge computational effort, not to mention the difficulties in setting up the system

adequately. One must still deal with layer boundaries effects or the parameterization needed for the MM

calculations.

C.2 Molecular Mechanics

Sometimes, QM is not necessary for a modeling study, since the metal might only play a structural role

without exhibiting reactivity. In these cases, it is more interesting to gather an insight into the structural be-

havior of the system along time. Nowadays, formacromolecular systems, this is only feasible withmolecular

dynamics approaches, which require accurately parameterized force fields. Traditionally, force fields were de-

veloped to solve problems existingwith proteins, nucleic acids and organic compounds,63,66,68 so historically

transition metals have not been considered in force field development. Additionally, they present complex-

ities not present in the reduced set of organic elements: several coordination geometries, different charge

states, exotic polarizable behavior... As a result, dealing with metals in molecular mechanics is usually chal-

lenging. Onemust choose between (1) not considering them at all, (2) using a low-accuracy general-purpose

force field, or (3) facing the tedious process of parameterization.

Ignoring or removing themetal ions can be acceptable in certain cases where they do not play a crucial role in

the structure or dynamics of the system, but that is rarely the case. While general purpose force fields are nu-

merous and heavily used, they mostly target organic compounds (such as CGenFF,242 GAFF,243 Tripos 5.2

force field244). Only some include parameters for metal ions: UFF (for Universal Force Field, 178 MMFF245)

covers the full periodic table, but Dreiding 179 only contains parameters for Na, Ca, Zn and Fe. While useful

for organic chemistry, they are not as used in simulations including biological systems, since they tend to rely

on the Lennard-Jones based nonbonded model.

A feasible alternative for bio-containing systems is the so-called bonded model, which treats metal ion inter-

actions with both bonded and non-bonded parameters; i.e. the metal is assumed to bond to some residues.
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Someprotein-oriented force fields likeAMBER 12 orCHARMM70 distribute force field extensions for some

of themost commonmetal ions in proteins, such as hemo-coordinated iron, butmainly as examples on how

custom parameters can be added in the software. These types of force field extensions are only valid for the

contextwhere the parameterswere obtained; i.e. the iron parameters for the heme groupswill not reproduce

the behavior of iron in other organic contexts such as ferrocenes. While the file format is easily understood,

the values of the parameters are not easy to obtain: one has to resort to experimental data or ab initio calcula-

tions to get adequate constants for bonded (distances, angles, dihedrals) and nonbonded (electrostatic, Van

der Waals) interactions. While an expert user can decide to obtain those values manually, the process is not

trivial and someprotocols and tools have appeared to assis. They aremostly basedon the Seminario’smethod

and his FUERZA software,246 such as MCPB, MCPB.py,247 VFDFT.248 Recently, alternative approaches

based onmachine and statistical learning,249,250 and non-Seminario strategies251,252 have also appeared, but

the principle remains the same: extract the information from ab initio calculations. Given the complexity

of the task, some specific force fields have arisen lately to provide parameters for certain metals.253–259

A radically different strategy consists of mimicking the interactions of the metal site with positively-charged

pseudoatoms strategically placed at around 0.9 Åfrom the metal nucleus following the vertices of the ad-

equate coordination geometry. The Cationic Dummy Atom Model (CDAM) was introduced for Mn2+

ions byAaqvist &Warshel in 1990260 and has been successfully implemented in further studies fore Zn,Mg,

Ca, Fe, Co, Ni, Cu and more. 159,261–266 Among its advantages, once parameterized the CDAM approach is

context-independent, but it forces a fixed coordination number and geometry on the modeled metal site.

The application of polarizable force fields (Fluctuating Charge methods, ABEEM, Drude oscillators and

rods, induced dipoles, AMOEBA, PFF) ormore exoticmodels based onAngularOverlap andValence Bond

Theory are also promising approaches, but the additional calculations incur in a big performance penalty

when compared to other strategies and still require additional parameterization. Further details on the topic

can be found in the extensive review published by Li and Merz Jr. in 2017.267

C.3 Lower levels of theory

If the study at hand does not require a molecular mechanics treatment, such as docking studies of virtual

screening approaches, the parameterization problem is usually not present or, at least, not that complicated.

Docking studies, which try to accommodate small compoundswithinmacromolecules, have not considered

metals for years, since they were originally designed to find drug-like, organic compounds suitable for the

pharmaceutical industry. Fortunately, over time some of the most popular docking packages have included
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strategies to deal with metals,268 albeit sometimes they could only be part of the host (usually a protein),

and not part of the probe (the ligand).269 To overcome the problem, approaches inspired in the Cationic

Dummy Atom Model implemented in MM studies have been designed (H-bond trick): in this case, the

dummy atoms are hydrogen atoms that behave as a hydrogen bond donor, a chemical feature commonly

implemented in docking software.

Other approaches involve considering the metal problem as a geometric optimization problem, restraining

their position with distances, angles and dihedrals measurements. This strategy is partially implemented in

homology modeling software like MODELLER,270 and is one of the main features of the developments

presented in this thesis (detailed in chapter 3).

In cheminformatics, explicit considerationof atoms is not as important and strategies like thepharmacophoric

studies only have to consider metals as a custom type of interaction hotspot.271–274 In QSAR, a catalogue

of metal empirical properties is enough to build the dataset.275



D
Tangram extensions for analysis

D.1 Interaction analysis

D.1.1 GaudiView

GaudiMM, described in chapter 4, can generate tens of solutions including several good-enough answers to

the problem posed due to its multi-objective nature. Seeing them all in UCSF often meant waiting for all

the files to load beforehand, even the ones you might not be interested in seeing. Additionally, hiding the

current one to show the following one requiredmore than one action. As a result, the GaudiView graphical

interface was designed to overcome those difficulties by providing the following features:

• Provide a tabular view of the results listing all the solutions in rows, and objective scores in columns.

Rows can be sorted by one or more columns and filtered out by providing one or more cutoffs de-

pending on the value of one column.

• Since the result index (∗ .gaudi-output file) already contains the list of filenames and their scores,

this is enough to display the initial table. Actual molecule objects are only loaded when its row is

selected. This allows for fast browsing of only the requested solutions, without initial loading times.

• Every time one or more new rows are selected (with a mouse click or with keyboard arrows), the

previously selected rows are hidden and the new ones are displayed.

• New selections can run any Chimera command specified in the command-line field below the table.

This can be really useful to update the displayed residues around a ligand in protein-ligand docking,

for example.

• Some clustering and rescoring utilities are also included for deeper analysis.
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The architecture behind GaudiView does not depend on the initial data structure: a preprocessing step is

performed to build the tabular data view, that ultimately servers molecules to the interactive canvas. Thanks

to that, it’s easy to integrate other file formats that can benefit from this interface. Currently, GaudiView

accepts solutions fromGOLD and arbitrary lists ofMol2 files. In the future, more docking programs could

be integrated, like AutoDock Vina or DOCK.

D.1.2 NCIPlotGUI

NCIPlot is a widely used visualization method 160 that uses non-covalent interaction indices derived from

electronic density and its derivatives to help distinguish attractive interactions like Van der Waals, London

dispersion forces or hydrogen bonds from repulsive ones like bad steric impediments. The original imple-

mentation is a FORTRAN program that requires specific input file with atomic coordinates and special

keywords. While not difficult to write, it is still a small entry barrier.

With NCIPlotGUI, the input file is automatically generated from any opened molecule in UCSF Chimera

and the calculation is run in the background. When the program is done, the results are loaded in the same

UCSF Chimera instance and plotted as colored volume maps (see fig. D.1). For large numbers of atoms, an

alternative, 40-times faster CUDA implementation of the NCIPlot method276 is also supported and recom-

mended for GPU-enabled computers.

D.1.3 PLIPGUI

Protein-Ligand Interaction Profiler (PLIP) 161 is a Python utility to identify, list and represent non-covalent

interactions between protein-ligand complexes. It depends on OpenBabel and VMD to work, but some

UCSF Chimera integration is available. PLIPGUI is a Chimera extension that wraps PLIP in a graphical

interface so all the tasks can be performed in a single program. The resulting will list all the identified inter-

actions with a dynamic table that is updated depending on the binding site selected (if multiple are present).

This can be coupled with docking studies to identify additional features implicitly described in the docking

score.*

*For example, in GaudiView, the included plip command can be run for each solution, illustrating the possible
cooperative tasks enabled with Tangram.
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Figure D.1: Non-Covalent Interaction analysis of the partial structure of KUJLIKCSD structure,277 with 70 atoms.

The interface shows the input and con guration forms, as well as the ReducedDensity Gradient (RDG) versus Density

plot.
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Figure D.2: 3D-SNFG representation of glycoside exohydrolase fromHordeum vulgare.278

D.2 Structure analysis

D.2.1 3D-SNFG

Glycoproteins are proteins that feature oligosaccharidic cofactors and are actively researched for its involve-

ment in recognition processes, metabolism and allergies. However, since oligosaccharides are usually chains

of different variations of 6 or 5-member carbon heterocycles with hydroxyl-containing substitutions, it is

difficult to differentiate them visually when using classic 2D or 3D depictions. For that reason, the GLY-

CAM committee decided on a standardized 2D representation using colored geometric shapes called Sym-

bolNomenclature forGlycans (SNFG). 162 A3D implementation for VMDwas developed byThieker 163 in

TCL language, and is the original 3D-SNFG project. This is a reimplementation of the same idea, but using

Python and UCSF Chimera. It provides three alternative depictions, and the possibility to customize sizes

and scales without modifying the source code (as it was expected in the original TCL implementation). The

representation (see fig. D.2) can be switched on with the snfg command and switched off with∼ snfg.
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D.2.2 BondOrder

UCSF Chimera does not consider bond orders in the connectivity information it stores or represents. An

approximate calculation is done during the parsing stage of molecule files to compute some internal atom

types, but then that data is discarded. For some jobs, this information is important, though.

This extension provides a way to define an order parameters manually in chimera.Bond objects, so it can

be used by other extensions that could rely on it. For example, QMSetup could use it to write the connec-

tivity matrix using proper bond orders instead of the default 1.0. When the order attribute is present, this

extension enables alternative representations of the bond with additional decorations in the cylinder.

Additionally, the bond order information can be automatically computedwith external libraries likeRDKit,

OpenBabel or AmberTools. The algorithms employed in that case are only applicable for small molecules

though, so some work is needed when dealing with macromolecules. In those cases, template structures for

common residues could be applied.

D.2.3 OrbiTraj

OrbiTraj patches the Molecular Dynamics trajectory viewer already present in Chimera and adds support

for loading volume files for each frame. For example, this can be useful for QM optimization calculations

where orbitals data have been generated for each frame. By using theOrbiTraj patch, the XYZ trajectory can

display the orbitals volumetric isosurfaces along the way, thus representing electronic density transfer. The

package also ships some independent Python scripts that can be used to convert WFN files as provided by

Gaussian to CUBE files compatible with UCSF Chimera loaders.

D.2.4 PoPMuSiCGUI

PoPMuSiC 106 is a web service that can calculate potentially stabilizingmutation sites in protein and peptide

structures. Users need to register an account before submitting their files, and once the results are computed,

they canbe download from theuserwebpanel. The results are plain-text files that list the differentmutations

associated to each residue position and their calculated score. PoPMuSiCGUI can open these files alongwith

the submitted protein structure and depict those scores in a dynamic, two-panel tabular view. Residues can

be colored according to ismutability score: positions that would stabilize under certain mutations will have

a positive score and colored in a shade of green proportional to that score, while non-stabilizable positions
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Figure D.3: PoPMuSiC results for the trimeric Foldon of the T4 phagehead britin.279 One of themonomers has been

colored according to the stabilizing potential of a mutation in that position (red being destabilizing, green neutral, and

blue stabilizing).

would have a negative score and a red shade. Additionally, residue positions can be mutated to one of the

proposed substitutions by using the Dunbrack’s 140 and Dynameomics 141 rotamer libraries implemented in

UCSF Chimera, which will have the changes immediately applied in the interactive 3D canvas.

D.2.5 PropKaGUI

PropKa is a Python library developed by Jensen 117 that calculates pKa values of protein residues under dif-

ferent environment pH values. PropKaGUI wraps this package to make it usable in UCSF Chimera with a

simple graphical interface. After selecting the openedmolecule to be analyzed and the pH value, the PropKa

routines are run and the results are shown in a new dialog listing the calculated pKa value for each residue.

Adequate hydrogens can be added in situ by taking that information into account with the addh command

in UCSF Chimera.
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D.2.6 SubAlign

UCSF Chimera provides several utilities for molecular superposition. Thematchmaker command allows to

efficiently superpose protein structures using sequence alignment and homology score matrices as guiding

criteria. For non-protein structures, the simple match command is able to obtain the optimal superposi-

tion of two molecules, but only if atom pairs correspondences are manually provided. Several algorithms

exist to identify the best atoms correspondences automatically,280,281 but none of them are implemented

in Chimera. The SubAlign extension provides a command (no graphical interface currently) to superpose

small molecules by applying several alignment protocols implemented in RDKit. 164 The root-mean-square

deviation (RMSD) of the superposedmolecules is also provided as a result of the alignment, so it can be used

for that kind of analysis as well. If more than twomolecules are provided, all of them are aligned against the

first, and the average RMSD is reported. In the future, more algorithms can be implemented, with a par-

ticular focus on those coming from the Computer Vision field, where Point Set Registration problems are

common.
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