Universitat Politecnica de Catalunya
Departament de Llenguatges 1 Sistemes Informatics
Programa de Doctorat de Software

Ph.D. Dissertation

COMPLEXITY MEASURES

FOR RESOLUTION

Juan Luis Esteban

Advisors:
Maria Luisa Bonet

Jacobo Toran

Pasmo sempre quando acabo qualquer coisa. Pasmo e desolo-me. O meu instinto de
perfeigao deveria inibir-me de acabar, deveria inibir-me até de dar comec¢o. Mas distraio-me
e faco. O que consigo € um produto, em mim, nao de uma aplicagio de vontade, mas de
uma cedéncia dela. Comego porque ndo tenho for¢a para pensar, acabo porque nao tenho

alma para suspender. LIVRO DO DESASSOSSEGO. Trecho 152

Contents

1 Introduction and definitions

1.1

1.2

1.3

1.4

1.5
1.6

2 Size

Proof systems
1.1.1 Resolution
1.1.2 Extensions of Resolution
1.1.3 Cutting Planeso
Complexity measureso
1.2.1 Sizeand length oL oo
1.22 Width o
1.2.3 Space
Formulas
1.3.1 Pigeonhole Principle oo
1.3.2 Tseitin Formulas L o0
1.3.3 Graph Tautologies
1.3.4 Pebbling Contradictions
1.3.5 Random Formulas L0000
Circuit Complexity
1.4.1 Momnotone circuits Lo
1.4.2 The feasible monotone interpolation property
Overview of results in thearea
Summary of results and organization of this work

© o ot W

10
10
10
11
11
15
15
15
17
17
18
19
19
20
21
26

29

2 CONTENTS
2.1 Size separation between CP* and R(1) 29
2.1.1 Real Communication Complexity 30
2.1.2 DART games and Structured Protocols 32
2.1.3 Lower bounds for Real Communication Complexity 34
2.1.4 Separation between CP* and R(1) 38
2.1.5 Separation of CP* from regular R(1) 41

2.2 R(2) has not the monotone interpolation property 43
2.3 R(2) and PHP™ 46
24 Sizeand R*(k) 49
2.4.1 Upper bounds for Generalized Pebbling Contradictions 49
2.4.2 Lower bounds for Generalized Pebbling Contradictions o1
243 R(1) dominates R*(k) 58

3 Space and width 61
31 Space for R(1) . - o o o o oo 62
3.2 Combinatorial characterization of R*(1) space 75
3.3 Separation between R(1) space and R*(1) space 79
3.4 Space separations for R*(k) oo oL 85
3.5 Space lower bounds for R(k) 86
3.5.1 Semiwide formulas oo 88

3.5.2 Random formulas oo 89
3.5.3 Tseitin Contradictions 0L 91

4 Recapitulation 95

Chapter 1

Introduction and definitions

The most important problem in Computational Complexity can be briefly stated as: P =
NP? The class P is formed by the problems that can be solved in deterministic polynomial
time and NP is the class of problems that can be solved in nondeterministic polynomial time.
Details and definitions can be found in [8, 51]. The problem is of the utmost importance
both theoretically and practically. Polynomial time deterministic algorithms are universally
considered as efficient algorithms, so a problem in P will have a fast algorithm, while a
problem not in P will not. Many natural and practically important problems are shown to
lay in NP but it is not known whether they belong to P or not, see [34]. The widely accepted
conjecture is that P # NP, but despite the tremendous amount of work done by many clever
minds the question is still unsettled.

In 1979, Cook and Reckhow proposed in [27] a plan to solve the P # NP question. They
proved a relationship between the complexity of propositional proof systems, that is, the
size, number of symbols, of proofs of propositional tautologies, and the question whether
NP = coNP or not. The class coNP is the set of problems whose complement lies in NP.
The main result in this paper was: if there is a propositional proof system such that for any
tautology T we can give a proof of T of polynomial size in the size of T, then NP = coNP.

They call such a desirable system super. Cook and Reckhow’s result can be restated as:
Theorem 1 [27] NP = coNP iff there exists a propositional proof system that is super.

As P = NP implies NP = coNP, to show P # NP is sufficient to prove that there is no

4 CHAPTER 1. INTRODUCTION AND DEFINITIONS

supersystem, that is, for all propositional proof systems there is a tautology T whose shortest
proof is at least superpolynomial in the size of T. This result is very difficult and they had
little hopes in proving it directly, therefore in [27] they proposed the following plan, known

as Cook’s program:

Try to find families of tautologies hard to prove for progressively more powerful

propositional proof systems until having sufficient knowledge to prove P # NP.

This program has created a new and fruitful branch of Complexity Theory, called Proof
Complexity. Since the work of Cook and Reckhow many important results have been ob-
tained following the the lines of their program. Nevertheless many problems remain open
and the fundamental question whether P # NP is still unsolved.

Proof complexity is also relevant to the study of efficiency issues for Automated Theorem
Proving. Proof Complexity has strong relations with other branches of Complexity Theory.
Results about Circuit Complexity have been successfully used to get results about Proof
Complexity, giving then a new impulse to the study of Circuit Complexity.

The aim of this dissertation is to make contributions to the study of the complexity of
a certain proof system by the name of Resolution and several other proof systems related
to it. Resolution was proven long ago not to be a super proof system [38], so any new
result about Resolution will hardly be of interest to the advancement of Cook’s program.
Nevertheless, we think that is very important to understand completely the power of any
proof system, especially one so widely used as Resolution. That means studying in depth
the complexity of Resolution. Although there is plenty of papers devoted to Resolution,
there are still interesting open problems that we believe that should be solved independently
of the existence of Cook’s program. For example, we can mention whether Resolution is
automatizable or not. So, 1s it possible to find an algorithm that produces Resolution proofs
not much longer than the shortest proofs? Sometime, the shortest proofs are extremely long,
but at least, can we find mechanically these proofs? This algorithm would be useful because
when there were short proofs it would find one very fast. Another interesting open problem
comes from the fact that currently we know that there formulas that require long Resolution

proofs and others do not, but we do not know exactly why this happen. It would be very

1.1. PROOF SYSTEMS 3

interesting to know why some formulas are hard for Resolution. So, in our opinion there are
still a lot of work, interesting and difficult, to be done about Resolution.

This introductory chapter is structured as follows. In Section 1.1 we define the proof
systems that are considered in this work. We define in Section 1.2 the complexity measures
that are studied in this work. In Section 1.3 we define some important formulas for Proof
Complexity. We do so because these formulas are used in several parts of this work. Besides
we believe that having defined proof systems, complexity measures and formulas; the discus-
sion of results about Proof Complexity in Section 1.5 makes more sense. In Section 1.4 we
explain some results about Circuit Complexity that will be used in this work, for example

the feasible monotone interpolation property which is defined in Section 1.4.2.

1.1 Proof systems

The central notion of Proof System Complexity is PROOF SYSTEM. The widely accepted

definition of what a proof system is was given by Cook and Reckhow in [27]:

Definition 2 Let TAUT be the set of propositional tautologies. A function f : {0,1}* —

TAUT ¢s a PROOF SYSTEM iff f ts a polynomial time computable surjective function.

So, if f(z) = T we say that z is an f-proof of the tautology T, that is, € {0,1}* encodes
the proof of the tautology T in the system f. It is important that any alleged f-proof can
be checked efficiently, that is, in polynomial time on the size of the proof. f is surjective
because f must be complete, any T € TAUT must have at least one f-proof.

To get NP # coNP following Cook’s program, it must be proved that for every proposi-
tional proof system f, there is a class of tautologies T such that any = which holds f(z) =T,
has exponential, or at least superpolynomial, size on the size of T.

In order to compare the efficiency of different proof systems, Cook and Reckhow proposed:

Definition 3 Let fi,f> : {0,1}* — TAUT be proof systems. Then fi POLYNOMIALLY

SIMULATES f, if there is a polynomial time computable function g : {0,1}* — {0,1}* such

that fi(g(z)) = fo(x) for all x.

6 CHAPTER 1. INTRODUCTION AND DEFINITIONS

So fi polynomially simulates f; iff there is an algorithm that translates proofs in f, into
proofs in f; which are at most polynomially longer than the original proofs in f,.

It can happen that two proof systems are not comparable, that means that one system is
faster, produces shorter proofs, for some tautologies and the other system is faster for some
other tautologies. It also is possible that one proof system is better than another, that is, it
is never slower and sometime or most of the time is faster. In this work we will show that

certain proof systems are much better than others. We define this in the following way:

Definition 4 Let fi, fo : {0,1}* — TAUT be proof systems. Then fi DOMINATES f, if
f1 polynomially simulates fy and fi is almost exponentially separated from f,. That last
means that there is a formula T on n variables with polynomial fi-proofs but requires almost
exponential fy-proofs. We say that a a proof R for a formula T on n variables is ALMOST

EXPONENTIAL if its size is at least 22"/ logn)

The complexity of a proof system can be measured in different ways. The most common
are SIZE and LENGTH. Size is the number of symbols in the proof, length is the number of
lines in the proof. In some proof systems both measures are polynomially related, in the
case that this does not hold the preferred measure is size.

The proofs produced by any proof system can be represented in several ways. We will
consider two ways: TREELIKE proofs and DAGLIKE proofs. In a treelike proof any line, that
is, any intermediate formula, can be used only once. If we need the same formula more than
once, 1t should be derived again. In a daglike proof, any line can be used as many times as
needed without having to rederive 1t. It 1s easier to get lower bounds for treelike proofs, so in
order to study a proof system it 1s a good 1dea sometimes to study first the treelike version
and then proceed with the daglike or unrestricted version. For some systems treelike size
and daglike size are polynomially related, on the other hand, for other systems the difference
is proved to be exponential, that is, for certain tautologies the system produces polynomial

size proofs but requires exponential size treelike proofs.

Definition 5 We group the definitions of several terms of common use in Proof Complexity.

1.1.

PROOF SYSTEMS 7

A BOOLEAN VARIABLE is a variable that can take only the values TRUE or FALSE. We
will usually refer to boolean wariables just by wvariables. We will denote variables as

roman lowkey letters as a, b, ¢, etc.

A LITERAL s a boolean variable or its negation. For a variable v the POSITIVE literal

will be denoted by v and the NEGATIVE literal by v.

A CLAUSE is a disjunction of literals. A clause is normally represented like [; V...V 1,
where [; for i € [n] are the literals occurring in the clause, but sometimes we will omit
the V symbols, in this case a clause looks like Iy .. .1,. We will denote clauses as roman

capital letters such as A, B, C, etc.
A k-TERM is a conjunction of up to k > 1 literals.
A k-CLAUSE s a disjunction of k-terms. A clause is then a 1-clause.

A CNF FORMULA is a conjunction of clauses. CNF stands for Conjunctive Normal
Form. A CNF formula looks like Cy A --- A C,, where C; for i € [n] are the clauses
in the formula. As we are always dealing with CNF formulas we may call them just
FORMULAS. Also we may represent formulas as a list of clauses Cy, ... ,C,. To denote

the names of the formulas we will use math capital letters such as F, PHP, etc.

An ASSIGNMENT to a formula F is a mapping from the variables in F to the values
TRUE and FALSE. When the assignment is not total we may call it @ PARTIAL ASSIGN-
MENT. We will denote assignments with short greek letters such as o, 3, etc. A set of

assignments will be denoted by greek capital letters, such as ', A, etc.

Given a formula F and a partial assignment o, the RESTRICTION of F to «, denoted
F, or also F|,, is the formula obtained after changing in F the variables mapped in o

by its values and simplifying the resulting formula.

A formula F is unsatisfiable iof no assignment to the variables in F satisfies F, that s,

no assignment makes ' TRUE.

The EMPTY CLAUSE, denoted by X, is the clause with no literals and is unsatisfiable.

8 CHAPTER 1. INTRODUCTION AND DEFINITIONS

¢ A REFUTATION for a formula T is a proof of the unsatisfiability of F. A refutation will

be denoted by R, a treelike refutation by T .

e A DERIVATION of a formula ' from a formula F is a proof of ' from F. A derivation

will be denoted by R, a treelike derivation by T .

e A REFUTATIONAL proof system is a proof system for refuting formulas.

Our results concern mainly to refutational proof systems such as Resolution and exten-
sions and restrictions of Resolution. Another refutational proof system studied in this work

is the Cutting Planes proof system, which is also related to Resolution.

1.1.1 Resolution

RESOLUTION is a refutation proof system for C N F formulas introduced by Robinson in [60].

The only inference rule is the Resolution rule:

CVa DV z
CvD

From clauses C'V x and D V z we get the clause C'V D which is called RESOLVENT. In this
example we say that variable z is CUT or ELIMINATED. A Resolution refutation of a CNF
formula F is a derivation of A from F using the resolution rule. Resolution is a sound and
complete refutation system: a set of clauses has a Resolution refutation if and only if it is
unsatisfiable.

A Resolution refutation of a C NF formula T is a list of clauses Cy, ... ,C,, such that C,
is A, and for all ¢ € [n], C; is either a clause in F or a resolvent from two clauses C; and Cj,
where 1 < j < k <1 < n. Any refutation in the form of a list of clauses can be transformed
into a daglike refutation. The graph will have n nodes, each labeled by a clause. For a node
C; we will draw edges from the parent clauses C; and Cy to C;. An initial clause will have
no incoming edges and the node A will have no outgoing edges. If the graph is a tree we will
have a treelike refutation.

Several restriction of Resolution have been proposed. These restrictions forbid to apply

the Resolution rule under certain conditions, but maintaining the completeness. The idea

1.1. PROOF SYSTEMS 9

behind the restriction is to help to find refutations by limiting the search space. Some of the

more studied restrictions are:

e REGULAR Resolution: Viewing the refutations as graph, in any path from A to any

initial clause, no variable is eliminated twice.

e ORDERED Resolution: There exists an arbitrary ordering of the variables in the formula,
such that if a variable x is eliminated before a variable y on any path from an initial
clause to A, then z 1s before y in the ordering. As no variable is eliminated twice on
any path, ordered Resolution is a restriction of regular Resolution. This system 1s also

known as DAvIS-PUuTNAM Resolution.

o NEGATIVE Resolution: To apply the Resolution rule, one of the two clauses should

consist only of negative literals.

1.1.2 Extensions of Resolution

Resolution was generalized by Krajicek in [48]. The new proof system R(k) allows disjunc-
tions of conjunctions of up to k literals and provides rules to work with them.

The inference rules are:

1. A-INTRODUCTION

AV Nierli BV Nigs b
AV BY /\ieIUJ l;

2. k-cur -
AV Nierli BV Vel
AV B
3. WEAKENING
A
AV Nierli

where A and B are k-clauses, I, J are sets of indices such that [T U .J| < k, where I; for
i € {T U J} ate literals. Notice that R(1) is Resolution with a Weakening rule.

We will follow the notation in [48], so Resolution will be denoted by R(1), treelike Reso-
lution by R*(1) and treelike R(k) by R*(k).

10 CHAPTER 1. INTRODUCTION AND DEFINITIONS

1.1.3 Cutting Planes

The CUTTING PLANES proof system, CP for short, is a refutational system for C N F formulas,
as Resolution is. It works with linear inequalities. The initial clauses are transformed into

linear inequalities in the following way:

J k
VevVe ~
=1 =1

We translate the boolean value TRUE into 1 and FALSE into 0. A CP refutation of a set

.

k
it) (1-u)=>1

& of inequalities is a derivation of 0 > 1 from the inequalities in € and the axioms z > 0 and
—x > —1 for every variable x, using the CP rules which are basic algebraic manipulations
as addition of two inequalities, multiplication of an inequality by a positive integer and the
following division rule:
Eie[a;x; > k
Dier §T 2 [ﬂ 7

where b is a positive integer that evenly divides all a;, 7 € I.

It can be shown that a set of inequalities has a CP refutation iff it has no {0, 1}-solution.
Any assignment satisfying the original clauses is actually a {0, 1}-solution. It is also well
known that CP polynomially simulates resolution [28], and this simulation preserves tree-

likeness. To unify the notation we will denote treelike CP by CP*.

1.2 Complexity measures

In this section we present in detail the complexity measures that will be used in this work.

We will use calligraphic letters to denote these measures.

1.2.1 Size and length

In R(1) and CP size and length are polynomially related which for us means that are equiv-
alent and we will use both words indistinctly.

The LENGTH of a R(k) or R*(k) refutation R is the number of k-clauses in R. The
length of refuting a formula F in R(k), denoted by £4(F), is the minimal length of all R(k)

1.2. COMPLEXITY MEASURES 11

refutations for F. The length of R*(k) refutations is denoted by L5 (TF). Similarly, the length
of refuting F in CP or CP* is denoted by Lcp(F) or LEp(F).

1.2.2 Width

WIDTH is a recent complexity measure defined by Ben-Sasson and Wigderson in [17]. The
width of a clause C', W(C) is the number of literals in C. The width of a set of clauses
C, W(C), is the maximum width of the clauses in C. Note that a set of clauses can be for
example a formula or a refutation. The width of refuting a formula F, W(F F)), is the
minimal width of all the refutations for F.

In [17] there were also proved interesting relations between size and width.

Theorem 6 For an unsatisfiable CNF formula F with n variables,
° ET(F) > 2W(FI—)\)—W(IE‘)
o Li(F) 2 exp(Q(W(F F X) — W(F))?/n))

Observe that we have not defined width for R(k) in general because as R(1) refutations
are R(k) refutations, the width for R(k) cannot be bigger that the width for R(1). On
the other hand is very easy to transform a R(k) refutation into a R(1) refutation without
increasing the width, but possibly increasing the size. That means that the width for R(k)

refutations cannot be smaller than the width for R(l) refutations.

1.2.3 Space

Another measure for the complexity of R(1) refutations is the amount of SPACE it needs.

This measure was defined in [44] in the following way:

Definition 7 [44] An unsatisfiable CNF formula F has R(1) refutation bounded by space k
if there is a series of CNFE formulas Ty, ... Fs, such that F =TFy, A € Fy, in any F; there
are at most k clauses, and for each 1 < s, F, 11 is obtained from F; by deleting, iof wished,

some of its clauses and adding the resolvent of two clauses of F;.

12 CHAPTER 1. INTRODUCTION AND DEFINITIONS

Intuitively this expresses the idea of keeping a set of active clauses in the refutation, and
producing from this set a new one by copying clauses from the previous set and resolving
one pair of clauses, until A is included in the set. Initially the set of active clauses consists
of all the clauses of F, and the space needed is the maximum number of clauses that are
simultaneously active in the refutation.

The above definition has the important drawback that the space needed in a refutation
can never be less than the number of clauses in the formula being refuted. This is so because
the formula is the first one in the sequence used to derive A. Making an analogy with a more
familiar computation model, like the Turing machine, this is the same as saying that the
space needed cannot be less than the size of the input being processed. To be able to study
problems in which the working space is smaller than the size of the input, the space needed
in the input tape is usually not taken into consideration. We do the same for the case of

R(1) and introduce the following alternative definition for the space needed in a refutation.

Definition 8 (/30]) An unsatisfiable CNF formula F has R(1) refutation bounded by space
k if there is a series of CNF formulas Fy, ... Fy, such that Fy CF, A € F,, in any F; there
are at most k clauses, and for each 1 < s, Fj11 is obtained from F; by deleting some of its

clauses, or adding the resolvent of two clauses of F;, or adding some of the clauses of F.

So we can give a definition of the space for refuting a formula.

Definition 9 The SPACE needed for refuting in R(1) an unsatisfiable formula is the mini-

mum k for which the formula has a refutation bounded by space k.

In the new definition it is allowed to add initial clauses to the set of active clauses at
any stage in the refutation. Therefore these clauses do not need to be stored and do not
consume much space since in any moment at most two of them are needed simultaneously.
The only clauses that consume space are the ones derived at intermediate stages. The space
for refuting a formula can now range from constant to lineal.

There is another natural way to look at this definition using pebble games on graphs, a

traditional model used for space measures in Complexity Theory and for register allocation

1.2. COMPLEXITY MEASURES 13

problems, see [62]. As said in Subsection 1.1.1, R(1) refutations can be represented as

directed acyclic graphs of indegree two, in which the nodes are labeled with the clauses.

Definition 10 In a directed acyclic graph G the SOURCE nodes are the nodes with no in-
coming edges, that is, with no predecessors and the TARGET nodes are the nodes with no

outgoing edges, that is, with no successors.

In a graph representing a R(1) refutation, the source nodes are the initial clauses, all the
other nodes have indegree two, and the only target node is A.

The space required for the R(1) refutation of a CNF formula F, as expressed in Defini-
tion 8, corresponds to the minimum number of pebbles needed in the following game played

on the graphs of refutations of F.

Definition 11 Given a connected directed acyclic graph with one target the aim of the PEB-

BLE GAME is to put a pebble on the target of the graph, following this set of rules:
1) A pebble can be placed in any source node.
2) Any pebble can be removed from any node at any time.
3) A node can be pebbled provided all its parent nodes are pebbled.

3’) If all the parent nodes of node are pebbled, instead of placing a new pebble on it, one

can shift a pebble from a parent node.
An important concept that will be used often in this work is:

Definition 12 The PEBBLING NUMBER of a directed acyclic graph G is the minimal number

of pebbles needed to put a pebble in a target node of G following the rules of the pebbling game.
The pebbling number of a G is denote by P(G).

There are several variations of this simple pebble game in the literature. In [68] it is
shown that the inclusion of rule 3’ in the game can at most decrease by one the number of
pebbles needed to pebble a graph, but in the worst case the saving is obtained at the price of

squaring the number of moves needed in the game. We include rule 3’ so that the number of

14 CHAPTER 1. INTRODUCTION AND DEFINITIONS

pebbles coincides exactly with the space in Definition 8. This fact is stated in the following

straightforward Lemima.

Lemma 13 Let F be an unsatisfiable CNF formula. The space needed in a R(1) refutation
R of F is P(R).

Definition 11 allows us to use techniques introduced for the estimation of the number
of pebbles required for pebbling certain graphs, for computing the space needed in R(1)
refutations. However the estimation of the number of pebbles needed in the refutation of a
formula is harder than the estimation of the number of pebbles needed for a graph, since in
the first case one has to consider all the possible refutation graphs for the formula.

We also give the formulation of space in [2] which is equivalent to ours, but some results

in this work are proved using the terminology in [2]. We start by defining a CONFIGURATION.
Definition 14 A CONFIGURATION is set of k-clauses.

We use calligraphic letters to denote configurations. We will use the word configuration
to denote the set of clauses pebbled in an stage of a pebbling strategy.

The formulation of [2] uses the concept of configuration.

Definition 15 A R(1) refutation of a formula F can be viewed as a list of configurations
C =Coy...,Cq such that Co = 0, C, = X and each C; for t € [s] is obtained by one of the

following rules:
e AXIOM DOWNLOAD: C; = Ci—y UC for some clause C € TF;
¢ MEMORY ERASING: C; = Ci_y — C for some C € Ci_q;

® INFERENCE ADDING: C; = C;_1UC, for some C obtained by the Resolution rule applied

to two clauses i Ci_q.
So, the definition of space of a refutation C is:

Definition 16 Given a refutation C as a list of configurations, the SPACE of C is the mazimal

length of a configuration in C.

1.3. FORMULAS 15

If we call C; to the set of pebbled clauses in the ith pebbling step, it is clear that both
Definition 11 and Definition 16 are equivalent.

We will denote the space for refuting F in R(k) as Si(F), and for R*(k), by S;(F).

1.3 Formulas

We present the main CNF formulas that are studied in this work. In Section 1.5 we will

state results concerning these formulas, so putting our own results in context.

1.3.1 Pigeonhole Principle

The most studied C N F' formula is the PIGEONHOLE PRINCIPLE, usually shortened to PHP.
It expresses that it is not possible to have a one-to-one mapping from m objects to n places,
when m > n. Let the variable z; ; denote that the i¢th-object is placed in the jth-place. We

can write a C N F formula for the Pigeonhole Principle as follows:

Ti1Tig . Tin i € [mn] (1.1)

1

TikTjk 1<i<j<m,1<k<n (1.2)

Clauses 1.1 say that every object must be placed somewhere. Clauses 1.2 say that in every
place there is at most one object.

When m > 2n the formula is known as WEAK pigeonhole principle. Haken in [38] gave
the first exponential size lower bound for R(1). Recently Razborov has dedicated a survey
[59] to the Pigeonhole Principle collecting and commenting all the results concerning several

proof systems and variations of the standard Pigeonhole Principle.

1.3.2 Tseitin Formulas

These formulas where defined in [65]. Let G = (V, E) be a connected undirected graph with
n vertices, and let m : V' — {0,1} be a marking of the vertices of G satisfying the property

Zm(l‘) = 1(mod 2).

veV

16 CHAPTER 1. INTRODUCTION AND DEFINITIONS

For such a graph we can define an unsatisfiable C N F formula T (G, m) in the following way:
The formula has F as set of variables, and is the conjunction of the translation in CNF of

the formulas PAR, for v € V, where

e1(v) B - Pey(v) if mv)=1

b, | AW)E B i me)
(V)& Beq(v) if m(v)=0

Here €1(v),... ,eq4(v) are the edges, variables, incident with vertex v. If d is the maximum

degree of a node in G, T(G, m) contains at most n29~! many clauses, each one with at most

d many literals. The number of variables in the formula is bounded by %”.

T (G, m) captures the combinatorial principle that for all graphs the sum of the degrees
of the vertices is even. When the marking m is odd, T(G,m) is unsatisfiable. Suppose on
the contrary that there were a satisfying assignment o : E — {0,1}. For every vertex v, the
number of edges of v that have been assigned value 1 by « has the same parity as m(z), and

therefore

> Y al(v,w) =) m(v)=1(mod 2)

veV (v,w)eE veV

but in the left hand sum in the equality, every edge is counted twice and therefore this
sum must be even, which is a contradiction. Tseitin in [65] gave the first exponential size
lower bound for a nontrivial proof system, concretely regular R(1). Usually the marking
will be omitted and the formula will be denoted as T(G) in the understanding that we are
considering an odd marking. Note that applying an assignment to T(G,m) has curious
consequences with m. Let e be the edge joining nodes v and v, and let restrict T(G, m) with
e = 1, that is, T(G, m)e=1. The new formula is T(G', m’), where G' = (V, E — ¢€) and m/(u)
is m(u) toggled and m'(v) is m(v) toggled.

1.3. FORMULAS 17
1.3.3 Graph Tautologies

The Graph Tautologies, GT,, are unsatisfiable C N F formulas based on directed graphs with

n nodes. Let variable z; ; mean that there is an edge from node 7 to node j.

T 5T kT4 i, 5,k €n]i#j5#k (1.3)
T ;%5 1,5 € [n],i #J (1.4)
T15.-Tim15Tig14--- Ty 1 € [n] (15)

Clauses 1.3 say that when there is an edge from node 7 to node j and an edge to node j
to node k, then there is an edge from node 7 to node k. Clauses 1.4 say that there are no
cycles of size two. Graphs that satisfy these clauses must have a node with no incoming
edges. Clauses 1.5 force that all nodes have an incoming edge, thus getting an unsatisfiable
formula. This formula have short resolution proofs, see [64], nevertheless Bonet and Galesi
in [19] proved a width lower bound of n. This result is very important because it shows
that a width lower bound of the square root in the number of variables does not give a

superpolynomial size R(1) lower bound. The space for this formula is also n, see [2].

1.3.4 Pebbling Contradictions

The Pebbling Contradictions are formulas based in directed acyclic graphs of indegree 2 and
the Pebbling Game, recall Definitions 11 and 12. Let us call w to the variable representing
node w. The meaning of variable w is that the node can be pebbled. Remember that a
source node 1s a node with no predecessors and a target node is a node with no successors.

Let G = (V,E). A node w can be pebbled if all its parents nodes are pebbled. We can
represent 1t with the clause @vw where u and v are the parents of w in G. If w is a source
the clause becomes just w and we call it SOURCE CLAUSE, otherwise it is called a PEBBLING
CLAUSE. In order to obtain a contradiction we add for each target node ¢ € V' the TARGET
CLAUSE t. We denote this contradiction by PEB(G).

An interesting result about PEB(G) appeared in [14]. It is proven that PEB(G) cannot

have R(1) refutations with both constant space and constant width. It is easy to find R(1),

18 CHAPTER 1. INTRODUCTION AND DEFINITIONS

in fact R*(1), refutations with constant space but the width is ©(P(G)) and also R(1)
refutations with constant width, but then the space is O(P(G)).

These contradictions can be generalized in the following way. The contradiction PEB (G)
where [,k > 1 is obtained from PEB(G) by introducing k - [variables v; ;, ¢ € [I], j € [k] for
each variable v in PEB(G). Each variable v is replaced by

AV vis
i€l jE[k]
The resulting formula is then transformed into C NF using de Morgan’s laws, and distribu-

tivity. Hence, each source clause s in PEB(G) will correspond to the]P’E]BL(G) source clauses
Sia V- Vsik

for i € [I]. Each target clause in PEB(G) will correspond to the PEB}(G) target clauses.
tiy Voo Vi,

for ji,...,51 € [k]. And each pebbling clause @ V v V w in PEB(G) will correspond to the
]P’E]BL(G) pebbling clauses

Uty Vo VUL VOim Vo VO Vwa Ve - Vw; g

for ji,...,q,mi,...,my € [k], ¢ € []]. Clearly, IP’E]BQ(G) is a contradiction since PEB(G)
is. Moreover PEB}(G) has small R*(k) refutations. Ben-Sasson et al. considered in [17] the
formulas PEB,(G) to give a quasioptimal size separation between R(1) and R*(1). These
formulas have exponential R*(1) refutations but constant width polynomial size R(1) refu-

tations.

1.3.5 Random Formulas

Let F7 be the probability distribution obtained by selecting m clauses of size exactly 3
independently, uniformly at random from the set of all 2% - (Z) clauses of size 3 built on n

distinct variables. F ~ F” means that F is selected at random from this distribution. A

m)

random 3-CNF formula is a formula F ~ FJ .

1.4. CIRCUIT COMPLEXITY 19

1.4 Circuit Complexity

In this section we introduce concepts about Circuit Complexity that will be used in several
places of this work. As said in the Introduction, Circuit Complexity results are often used
in Proof Complexity. The reason is that under certain circumstances R(1) or CP refutations
can be transformed into circuit computing a function related to the formula being refuted.
The size of the circuit is similar to that of the original refutation, so size lower bounds for

circuits can be translated into size lower bounds for refutations, see for example [20, 39].

1.4.1 Monotone circuits

Definition 17 A BOOLEAN FUNCTION in the boolean variables x1,...,x, is a map f :

{0,1}* — {0,1}.

Definition 18 A MONOTONE BOOLEAN FUNCTION f is a boolean function such that for

any two inputs a and b, when a < b holds that f(a) < f(b).

Definition 19 A BOOLEAN CIRCUIT s a directed acyclic graph of indegree 2, where source
nodes are labeled by variables and boolean constants, and nonsource nodes are called gates

and are labeled with the boolean function computed at that gate.

Definition 20 A MONOTONE BOOLEAN CIRCUIT s a boolean circuit computing a monotone

boolean function using monotone gates.
Definition 21 A MONOTONE BOOLEAN FORMULA is a fanout 1 monotone boolean circuit.

The class of real circuits was introduced by Pudldk[54] and are a generalization of boolean

circuits.

Definition 22 A MONOTONE REAL CIRCUIT s a circuit of fanin 2 computing with real
numbers where every gate computes a nondecreasing real function. The circuits output 0
or 1 on every input of zeroes and ones only. A MONOTONE REAL FORMULA s a fanout 1

monotone real circuit.

20 CHAPTER 1. INTRODUCTION AND DEFINITIONS

We list the main complexity measures for circuits.

Definition 23 Complexity measures for circuits.
1. The SI1ZE of a circuit is the number of gates.

2. The SIZE of a function is the minimal size of its circuits. We will denote boolean

(monotone) circuit size by Sp (Swm), and real (monotone) circuit size by Sp (Svr).
3. The DEPTH of a circuit is the length of the longest path from the target to a source.

4. The DEPTH of a function is the minimal depth of its circuits. We will denote boolean

(monotone) circuit depth by Dy (Dyg), and real (monotone) circuit depth by Dg (Dyr).

5. A circuit is called FORMULA if every gate has fanout at most 1. The size of monotone

real formulas s denoted by Sy .

Lower bounds on the size of monotone real circuits were given by Pudldk [54], Cook
and Haken [39] and Fu [32]. Rosenbloom [61] shows that they are strictly more powerful
than monotone boolean circuits, since every slice function can be computed by a linear size,
logarithmic depth monotone real circuit, whereas most slice functions require exponential
size boolean circuits. On the other hand, Jukna [42] gives a general lower bound criterion
for monotone real circuits, and uses it to show that certain functions in P/poly require
exponential size monotone real circuits. Hence the computing power of monotone real circuits

and boolean circuits is incomparable.

1.4.2 The feasible monotone interpolation property

For the separations from CP* to CP and from R*(1) to R(1) in Section 2.1 we use the
following version of feasible monotone interpolation property. Theorem 24 relates the size of
CP refutations with the size of monotone real circuits and also the size of CP* refutations

with the size of monotone real formulas.

1.5. OVERVIEW OF RESULTS IN THE AREA 21

Theorem 24 ([54]) Let p,q, 1" be disjoint vectors of variables, and let A(p,q) and B(p,r)
be sets of inequalities in the indicated variables such that the variables p either have only
nonnegative coefficients in A(p, q) or have only nonpositive coefficients in B(p,r).

Suppose there is a CP refutation R of A(p,q) U B(p,r). Then there is a monotone real
circuit C(p), called the INTERPOLANT, of size O(|R|) such that for any vector @ € {0, 1}/7

Cld)=0 — A(d,q) is unsatisfiable

Cld)=1 — B(d,r) is unsatisfiable
Furthermore, if R is treelike, then C(p) is a monotone real formula.

Skipping the condition that the variables p either have only nonnegative coefficients in
A(p, ¢) or have only nonpositive coefficients in B(p, '), the interpolant is real circuit or a real
formula if R was a CP refutation or a CP* refutation.

For the case of R(1) or R*(1) refutations a simpler version of Theorem 24 suffices. The
interpolant will be a monotone boolean circuit instead a monotone real circuit. This version
of Theorem 24 will be also used in Section 2.2 to separate R(2) from R(1).

Also note that it is not stated in the original formulation of Theorem 24 in [54] that
treelike refutations produce formulas instead of circuits, but this can be checked easily in

the construction of the interpolant from the refutation.

1.5 Overview of results in the area

In this section we give an overview of results in Proof Complexity and put our results in
context, explaining its significance and the relations with previous and posterior works of
others.

Haken in [38] was the first in proving exponential R(1) size lower bounds. He showed that
PHP?*' requires exponential size R(1) refutations. The proof techniques of Haken where
extended in [25] to prove that IP’]H]]P’Z%G requires exponential size R(1) refutations. Only
recently it has been proved exponential lower bounds for PHP! where m > n? [56, 58].

Urquhart [66] proved exponential R(1) size lower bounds for T(G) for a suitable family

22 CHAPTER 1. INTRODUCTION AND DEFINITIONS

of graphs G. Chvatal and Szemerédi [26] showed that in some sense, almost all classes
of unsatisfiable C N F formulas require exponential size R(1) refutations. In [13, 17] there
are simplified proofs of these results. All these exponential lower bounds are bad news for
Automated Theorem Proving, since they mean that often the time used in finding refutations
will be exponentially long in the size of the formula, just because the shortest refutations are
also exponentially long in the size of the formula. Refinements of R(1) have been also studied.
It is important to know if these refinements produce longer refutations than R(1), because
these refinements are often used in Automated Theorem Proving. Goerdt in [35, 36, 37] gave
superpolynomial separations between R(1) and several refinements: for ordered, negative and
regular R(1) respectively. In [18] an exponential separation between ordered R(1) and R(1)
is proved, in fact between ordered and negative R(1). Recently exponential separations have
been proved between R(1) against regular and negative R(1), in [3, 22] respectively. It is
also important to study efficiency issues for R*(1) because it is widely used in Automatic
Theorem Proving. Its importance stems from the close relationship between the complexity
of R*(1) refutations and the runtime of a certain class of satisfiability testing algorithms, the
so-called DLL Algorithins, see [55, 12]. Superpolynomial separations between R*(1) and R(1)
can be found in [67]. In [18], see Section 2.1, this separation is proven to be exponential,
thus showing that finding R*(1) refutations is not an efficient strategy for finding R(1)
refutations. In [16] this result is improved by giving a nearly optimal separation between
R(1) and R*(1). All the separation results of [18] improve to exponential the previously
known superpolynomial ones, and these exponential separations harden the known results
showing inefficiency of several widely used strategies for finding proofs, especially for R(1).

There are also exponential size lower bounds for CP. Impagliazzo et al. [40] proved expo-
nential size lower bounds for CP*. Bonet et al. [20] proved an exponential size lower bound
for a subsystem of CP, where the coefficients appearing in the inequalities are polynomially
bounded in the size of the formula being refuted. This is an important result because all
known CP refutations fulfill this property. Finally, Pudldk [54] and Cook and Haken [39]
gave general circuit complexity results from which exponential lower bounds for CP follow.
To this day it is still unknown whether CP with bounded coefficients polynomially simulates

CP. Since there is an exponential speedup of CP over R(1), see [28], it would be nice to find

1.5. OVERVIEW OF RESULTS IN THE AREA 23

an efficient algorithm for finding CP refutations and a question to ask is whether trying to
find CP* refutations would be an efficient strategy for finding CP refutations. Johannsen [41]
gave a superpolynomial separation, with a lower bound of the form Q(n'°¢"), between CP*
and CP. This was previously known for CP* with bounded coefficients in [20]. In [18] this
separation is improved to exponential, this means that trying to find CP* refutations is not
a good strategy for finding CP refutations. The separations between R*(1) and CP* against
R(1) and CP respectively are obtained using the feasible monotone interpolation property
introduced by Krajicek [46]. Closely related ideas appeared previously in the mentioned
works that gave lower bounds for fragments of CP, see [40, 20]. The interpolation method
applied to CP, translates proofs of certain formulas to monotone real circuits, a class of
circuits which generalize boolean circuits. This transformation has two important features:
it preserves the size, that is, the size of the circuit is of the order of the size of the proof from
which it is built; and it preserves the structure, that is, treelike proofs give rise to treelike
circuits. So it gives a way to reduce the problem of proving size lower bounds for CP* to
that of giving lower bounds for the size of monotone real formulas. To use this method, in
[18], we extend to monotone real circuits a result from [57] for monotone boolean circuits.
In [6] we give results about R(2). R(k) can be viewed either as an extension of R(1) or as
a restriction of bounded-depth Frege. In [6, 4] it is proven that PHP;" requires exponential
size R(2) refutations. This is, to our knowledge, the first exponential lower bound for the
weak Pigeonhole Principle in a subsystem of bounded-depth Frege that extends R(1). We
state other results about PHP in several proof systems. For a complete treatment refer to
[59]. Beame et al. [10] proved that PHP"*" requires exponential size proofs in bounded-
depth Frege systems and it is open whether lower bounds can be proved when the number of
pigeons in greater than n+c. Regarding upper bounds, Buss [23] gave polynomial size proofs
of PHP"*" in unrestricted Frege systems. It is also known that PHP>" has quasipolynomial
size proofs in bounded-depth Frege [52, 49]. Also in [49] there is a quasipolynomial upper
bound for depth-0.5 LK, which is equivalent to R(logn), when we allow conjunctions of up
to polylog literals. As a consequence there is an exponential separation between R(2) and
R(logn). In [6, 4] using techniques from [11], it is also obtained an exponential R(2) size

lower bound for Random Formulas with a certain clause density. Again, this is the first

24 CHAPTER 1. INTRODUCTION AND DEFINITIONS

exponential lower for Random Formulas for a proof system stronger than R(1). This result
may be considered as a first step towards proving them hard for bounded-depth Frege.

Another important question to ask is whether R(2) is more powerful than R(1). In [6] we
prove that R(1) cannot polynomially simulate R(2), and therefore R(2) is superpolynomially
more efficient than R(1). As a corollary, we see that R(2) does not have the feasible mono-
tone interpolation property, solving this way a conjecture of Krajicek [48]. These results
are in Section 2.2. This separation between R(1) and R(2) has been improved to slightly
exponential in [5] using a different formula.

Another motivation for working with the system R(2) is to see how useful it can be for
Automated Theorem Proving. Given that it is more efficient than R(1), because at least
there is a superpolynomial separation, it might be a good idea to try to find good heuristics
to find proofs in R(2).

In [29] there are some results about R*(k). It is proven that R*(k) forms a hierarchy
regarding proof size, see Subsection 2.4.2. That means that there are formulas that require
exponential size R*(k) refutation whereas they have polynomial size R*(k + 1) refutations.
This separation holds also between R*(2) and R*(1). In [29] it is also proven that R(1)
dominates R*(k), see Subsection 2.4.3. This is a particular case of a simulation from [45],
but we show that an increment by factor 2, independent of &, suffices. In [63] it is proved that
R(k) forms a hierarchy regarding proof size, thus extending the result in [29], and that the
Pigeon Principle with certain parameters and Random Formulas with certain initial width
require exponential size R(k) refutations, thus extending the results in [6] which hold only
for R(2).

Width is a complexity measure introduced in [17]. Under certain circumstances width
lower bounds can provide exponential size R(1) lower bounds and proving a width lower
bound should be easier than proving a R(1) size lower bound directly. In [17], previously
known size R(1) lower bounds for formulas such as PHP and T(G) were proved in an unified
way using the concept of width. In [19] it was proved that a width lower bound of the square
root in the number of variables does not imply a superpolynomial R(1) size lower bounds,
solving an open problem in [17]. Another interesting result about width is the combinatorial

characterization of [7]. A Player-Adversary game over C N F formulas can be used to find

1.5. OVERVIEW OF RESULTS IN THE AREA 25

width bounds, this simplifies the task of proving width lower bounds and consequently the
task of proving size lower bounds. In [30] a relationship between R*(1) space and width was
proved and was later extended to R(1) space also in [7].

Space is also a recent complexity measure. It was introduced in [30] along with general
results about relationships between space and size and some space lower bounds for well
studied formulas as PHP and T(G). Independently in [2] appeared an equivalent definition
of space and the lower bounds in [30] were proved using this formulation along with a new
space lower bound for GT,. The authors of [2] made a difference between what they call
clause space, which is what we call just space, and variable space, in which it i1s taken into
account not the number of clauses but the minimal number of literals that must be kept
simultaneously in order to carry out the refutation. They also extended space to other proof
systems. In [15] it was proved a new space lower bound for Random Formulas. In [29] all the
previously known space lower bounds have been proved in an simpler and unified way using
the concept of dynamical satisfiability also introduced in [29]. Besides this concept allows to
extend all these lower bounds to R(k). This results appear in Section 3.5. The concept of
dynamical satisfiability is very similar to the combinatorial characterization of width in [7],
but it was found independently. As happened with respect to size, in [29] it is also shown
that R*(k) forms a hierarchy respect to space, see Section 3.4. So, there are formulas that
require nearly linear space for R*(k) whereas they have constant space R*(k+ 1) refutations.
In [31] a combinatorial characterization of R*(1) space is proved, see Section 3.2. As in the
case of the width characterization in [7] it is also via a Player-Adversary game over CNF
formulas. It would be interesting to find a combinatorial characterization for R(1) space.
An interesting open problem about R*(1) space is the space for PEB,(G) for a graph G with
a high pebbling number. In [16] is proved an exponential R*(1) size lower bound for these
formulas. That lower bound implies by a result in [30] nearly linear R*(1) space lower bounds
that can also be obtained via the combinatorial characterization in [31]. PEB)(G) has R(1)
refutations with both polynomial size and constant width, but not much is known about the
space. In [31] using this formula the first separation between R(1) space and R*(1) space
is given, see Section 3.3. This separation shows that the characterization of R*(1) space is

not valid for R(1) space. It would be interesting to prove a matching space lower bound

26 CHAPTER 1. INTRODUCTION AND DEFINITIONS

for PEB(G) or find an smaller space upper bound. As PEB,(G) has constant space R*(2)
refutations using the dynamical satisfiability concept only a constant space lower bound can
be proved, so if it happens that PEB}(G) requires nonconstant space R(1) refutations, the

dynamical satisfiability concept will not be a tight characterization of R(1) space.

1.6 Summary of results and organization of this work

After giving an overview of results in Proof Complexity we will comment our results sep-
arately to show clearly our contribution to the field of Proof Complexity. The rest of this
work is divided into three chapters. Chapter 2 is devoted to the results about size regarding
the Proof Systems presented in Section 1.1, which include size lower and upper bounds that
when they are related provide separations between different proof systems or the treelike and
the general version of the same proof system. In Chapter 3 we present results mainly about
space complexity, including also space lower and upper bounds and relationships between
space and other complexity measures. Chapter 4 shows a summary of the results in this
work compared to previous and posterior related results. We also list some open problems
related to our work.

Regarding size, in Section 2.1 we improve separations between treelike and general ver-
sions of R(1) and CP. To do so we extended a size lower bound from [57] for monotone
boolean circuits to monotone real circuits. The results appeared in [18]. This kind of sepa-
rations is interesting because some Automated Theorem Provers rely on the treelike version
of proof systems, so the separations show that is not always a good idea to restrict to the
treelike version. What we do is to prove CP* exponential lower bounds for certain formulas
via the feasible monotone interpolation property, see Theorem 24, which clearly are also
lower bounds for R*(1). To get the separation we show R(1) polynomial size upper bounds
for the same formulas, which clearly are also upper bounds for CP. In fact we can separate
not only R*(1) from R(1), also we can separate R*(1) from certain restrictions of R(1) like
regular R(1) and negative R(1). The separation result for R*(1) and R(1) was later improved
in [16].

The rest of Chapter 2 is devoted to R(k) and R*(k). After the apparition of R(k) which is

1.6. SUMMARY OF RESULTS AND ORGANIZATION OF THIS WORK 27

a system lying between R(1) and bounded-depth Frege it was important to study how pow-
erful it is and its relation both with R(1) and bounded-depth Frege. In Section 2.2 we show
that R(2) is strictly more powerful than R(1). We give a R(2) polynomial size upper bound
for a certain Clique-Coclique principle reducing it to a Pigeonhole Principle with parameters
that ensures polynomial size proofs. But as R(1) has the feasible monotone interpolation
property, and it is known that monotone circuits separating cliques from cocliques require
superpolynomial size, then R(1) refutations for this Clique-Coclique principle also require su-
perpolynomial size. This separation answers an open problem by Krajicek, namely we show
that R(2) does not have the feasible monotone interpolation property. This result appeared
in [6]. The separation between R(1) and R(2) was later improved in [5]. In Section 2.3 we
present an unpublished result that shows that R(2) lower bounds for IP’]H]]P’ZL5 provides R(1)
lower bounds for IP’IH]]P’T. This was a new attempt of solving a long standing open problem,
the R(1) size for IP’IH]]P’Zz. Of course we do not know whether this approach would have made
the proof easier, but as the problem was solved while we were working a it, see [56, 58],
we abandoned this approach. Section 2.4, deals with R*(k). It was known that R(2) was
more powerful that R(1) and R*(2) more powerful than R*(1), so a natural question was to
find out whether we can separate successive levels of R(k) or R*(k). The answer is yes. We
show exponential separations between successive levels of what we can call now the R*(k)
hierarchy and Segerlind et al. [63] showed separations for the R(%k) hierarchy. We also prove
that R(1) simulates R*(k) which is a particular case of a theorem by Krajicek [45], but we
can make the simulation shorter than the general simulation.

In Chapter 3 we show our results concerning R(k) space. R(1) space was defined in [30]
improving a definition from [44]. Also in [2] there is an equivalent formulation of R(1) space.
In Section 3.1 we give general results for R(1) and R*(1) space that appeared mainly in [30].
In Section 3.2 a combinatorial characterization of R*(1) space is proved. This result appeared
in [31]. As in the case of the width characterization in [7] it is also via a Player-Adversary
game over C NF formulas. It would be interesting to find a combinatorial characterization
for R(1) space. In Section 3.3 we give another result from [31], namely the first space
separation from R(1) to R*(1). We show that PEB;(G) requires less space for R(1) than for

R*(1), at least one third less. In Section 3.4 we show a result from [29]. As happened with

28 CHAPTER 1. INTRODUCTION AND DEFINITIONS

respect to size, R*(k) forms a hierarchy respect to space. So, there are formulas that require
nearly linear space for R*(k) whereas they have constant space R*(k + 1) refutations. In
Section 3.5 we present another result from [29]. We extend all previously known R(1) space
lower bounds to R(k) in a simpler and unified way, that holds for R(1) as well, using the

concept of dynamical satisfiability presented also in [29].

Chapter 2

Size

In this chapter we present the results relative to proof size. In Section 2.1 we prove several
separations. The first, in Subsection 2.1.4, is an exponential separation between CP* and
R(1) which of course implies an exponential separation between R*(1) and R(1) and also
between CP* and CP. This separation was later improved in [16]. The second separation
in Subsection 2.1.5 is between CP* and regular R(1). In Section 2.2 we present a super-
polynomial separation between R(1) and R(2). We give a polynomial R(2) refutation of
PHP with certain parameters, whereas there are only superpolynomial R(1) refutations for
PHP with the same parameters. This solves an open question posed by Krajicek in [48],
namely that R(2) has not the feasible monotone interpolation property, see Theorem 24. In
Section 2.3 we prove that R(2) size lower bounds for IP’IH]]P’ZL5 can be translated into R(1)
size lower bounds for IP’]H]]P’Zz. This was a way of solving a longstanding open problem: the
size complexity of IP’]H]]P’Zz, but as it was solved in [58, 56| later, we abandoned this work. In
Section 2.4 we prove that R*(k) forms a hierarchy with respect to size and also we show that

R(1) dominates R*(k) only by doubling the size of the refutation.

2.1 Size separation between CP* and R(1)

The main result of this section is an exponential separation between CP* and CP and

also between R*(1) and R(1). The separations are obtained through the feasible monotone

29

30 CHAPTER 2. SIZE

interpolation property, see Section 1.4.2. To apply this property we had to extend the lower
bounds for monotone boolean circuits of [57] to monotone real circuits, see Section 1.4.1.
The results in this section are part of [18] and also have appeared in Galesi’s dissertation
[33]. T include in this work the results in which I had a significative part explaining also
some results in [18, 33] which are needed to understand this section.

Before discussing how the results are obtained we need to define some new concepts that

will be used only in this section.

2.1.1 Real Communication Complexity

Definition 25 A R C X XY X Z is a MULTIFUNCTION if for every pair (z,y) € X x Y,
there is a z € Z with (z,y,z) € R.

We view such a multifunction as a search problem, that is, given input (z,y) € X x Y,

the goal is to find a z € Z such that (z,y,z) € R.

Definition 26 A DETERMINISTIC COMMUNICATION PROTOCOL P over X XY X Z specifies
the exchange of information bits between two players, I and 11, that receive as inputs respec-

tively x € X andy € Y and finally agree on a value P(x,y) € Z such that (z,y, P(z,y)) € R.

Definition 27 The DETERMINISTIC COMMUNICATION COMPLEXITY of R, CC(R), is the

number of bits communicated between players I and I1 in the optimal protocol for R.

Definition 28 A REAL COMMUNICATION PROTOCOL over X XY X Z is executed by two
players I and II who exchange information by simultaneously playing real numbers and then

comparing them according to the natural order of R.

This generalizes ordinary deterministic communication protocols in the following way:
in order to communicate a bit, the sender plays this bit, while the receiver plays a constant
between 0 and 1, so that he can determine the value of the bit from the outcome of the
comparison.

Formally, such a protocol P is specified by a binary tree, where each internal node v is

labeled by two functions f! : X — R, giving player I’s move, and f!{: Y — R, giving player

2.1. SIZE SEPARATION BETWEEN CP* AND R(1) 31

II’s move, and each leaf is labeled by an element z € Z. On input (z,y) € X x Y, the

players construct a path through the tree according to the following rule:

At node v, if fl(z) > fl’(y), then the next node is the left son of v, otherwise

the right son of v.

The value P(z,y) computed by P on input (z,y) is the label of the leaf reached by this
path.

A real communication protocol P solves a search problem R C X x Y x Z if for every

(z,y) e X XY, (z,y, P(z,y)) € R holds.

Definition 29 The REAL COMMUNICATION COMPLEXITY CCg(R) of a search problem R

is the minimal depth of a real communication protocol that solves R.

Let f: {0,1}" — {0,1} be a monotone boolean function, let X := f~(1) and YV :=
£71(0), and let the multifunction Ry C X X Y x [r] be defined by
f

(r,y,1) € Ry iff z;=1andy; =0

Definition 30 The KARCHMER-WIGDERSON game for f is defined as follows: Player I
recewes an input * € X and Player II an input y € Y. They have to agree on a position
i € [n] such that (x,y,1) € Ry. We will call Ry is the Karchmer-Wigderson game for the
function f.

There is a relation between the real communication complexity of Ry and the depth of
a monotone real circuit or the size of a monotone real formula computing f, similar to the

boolean case:

Lemma 31 (Krajicek [47]) Let f be a monotone boolean function. Then
1. CCr(Ry) < Pur(f);
2. CCr(Ry) < logs;, Siw(f)-

For a proof see [47] or [41]. Notice that by (2) a linear lower bound for the real com-
munication complexity of R; gives an exponential lower bound for the size of the smallest

monotone real formula computing f.

32 CHAPTER 2. SIZE

2.1.2 DART games and Structured Protocols

Raz and McKenzie [57] introduced a special kind of communication games, called DART
games, and a special class of communication protocols, the structured protocols, for solving

them.

Definition 32 For m,k € N, DART(m, k) is the set of communication games specified by
a relation R C X XY X Z such that:

o X = [m]*. The inputs for Player I are k-tuples of elements z; € [m)].

o Y = ({0,1}™)%. The inputs for Player II are k-tuples of binary colorings y; of [m].

o Foralli=1,... k let ¢, = y;(z;) € {0,1}, that is, the x;-th bit in the m-bits string
y;. The relation R C X XY x Z defining the game only depends on ey, ... e, and z,
hence we can describe R(x,y,z) as R((e1,... ,ex),2).

e R((e1,...,¢er),z) can be expressed as a DNF Search Problem. There exists a DNF
tautology Fr defined over the variables ey, ... e, such that Z is the set of terms of
Fgr, and R((e1,... ,ex), z) holds if and only if the term z is satisfied by the assignment

(61,... ,€k>.

Definition 33 A STRUCTURED PROTOCOL for a DART game is a communication protocol
for solving the search problem R, where player I gets input x € X, player II gets input

y € Y, and in each round, player I reveals the value x; for some i, and II replies with

yi(;).

Definition 34 The STRUCTURED COMMUNICATION COMPLEXITY of R € DART(m,k),

denoted by SC(R), is the minimal number of rounds in a structured protocol solving R.

In [57] it is was proven that CC(R) < SC(R) - Q(logm). This is easy to generalize to

real communication complexity.

Lemma 35 For a DART game R, CCr(R) < SC(R) - Q(log m).

2.1. SIZE SEPARATION BETWEEN CP* AND R(1) 33

Proof. Observe that at each structured round the two players transmit [logm] + 1 bits.
The first player transmits a number in [m] and the second answers with a bit. Observe that
w.l.o.g. we can assume that both players know the structure of the protocol of the game.
Therefore at each round they both know what is the coordinate 7 of the inputs they have to
talk about and they have no need to transmit it, so the result follows. Q.E.D.

Theorem 36 is a generalization to real communication complexity of a result of [57]. It

is necessary to produce lower bounds for monotone real circuits. The proof of Theorem 36

can be found in [18, 33].
Theorem 36 Let m,k € N. For every relation R € DART(m, k), where m > k'*,
CCg(R) > SC(R) - Q(logm) .
From Lemma 35 and Theorem 36 follows:
Corollary 37 [18] CCr(R) = SC(R) - Q(logm).

Another corollary to Theorem 36, is that for DART games, real communication protocols

are no more powerful than deterministic communication protocols.
Corollary 38 Let m,k € N. For R € DART(m, k) with m > k', CCr(R) = O(CC(R)).

Proof. CC(R) > CCr(R) > SC(R) - Q(logm) > Q(CC(R)). Q.E.D.

At this point we must define the following concepts:

Definition 39 A MINTERM (respectively a MAXTERM) of a boolean function f : {0,1}" —
{0,1} is a set of inputs x € {0,1}" such that f(x) =1 (respectively f(z) = 0) and for each
y € {0,1}" obtained from x by changing a bit from 1 to 0 (respectively by changing a bit
from 0 to 1) it holds that f(y) =0 (respectively f(y) =1).

We will apply the feasible monotone interpolation property, see Subsection 1.4.2 on a
formula A(p, §) U B(p,) such that A(p,¢) will encode that p'is a minterm of f and B(p,r)
will encode that p'is maxterm of f. Given a CP* refutation of A(p, §)UB(p,), the interpolant

provided by Theorem 24 will be a monotone real formula C(p) which computes the function

34 CHAPTER 2. SIZE

f. The fact that C(p) is a monotone real treelike circuit if the refutation R is treelike is
not part of the original theorem, but can be directly obtained from the proof of the theorem
in [54]. The reason is that the underlying graphs of the refutation and the circuit are the
same. Therefore if we are able to prove exponential lower bound for the size of the treelike
monotone real circuits computing f we immediately obtain an exponential lower bound for
CP* and a fortiori for R(1) refutations for A(p,q) U B(p,r).

To get the separation we need a monotone boolean function such that:

e has exponential lower bounds for monotone real formulas computing it and

e the corresponding A(p, ¢)UB(p, r) have polynomial size R(1) refutations, and therefore

also polynomial size CP refutations.

For the monotone boolean function f we consider the monotone function GEN,, of n® inputs

tape, a,b, ¢ € [n] defined as follows:

Definition 40 GEN,(t) = 1 iff F n, where for ¢ € [n], F ¢ means ¢ is generated, which is
defined recurswely by & ¢ iff ¢=1 or there are a,b <n with Fa, Fbandtp.=1.

Sometimes we will write a,b - ¢ for ¢35, = 1.
We will prove exponential lower bounds for the size of treelike monotone real circuits
computing GEN, in Section 2.1.3. The formulas A(p, ¢) and B(p,) expressing respectively a

minterm and a maxterm of GEN,,, with short R(1) refutations are presented in Section 2.1.4.

2.1.3 Lower bounds for Real Communication Complexity

We want to prove a Q(n®) lower bound for the real communication complexity of the
Karchmer-Wigderson game associated to GEN,. We will consider a DART game related
to the GEN,, function. In this game the generation will proceed in a pyramidal way. We first

define a set that will ease the definition of the game.
Definition 41 Ford € N, let Py ={(i,7); 1 <j<i<d}.

Following [57], we define the DART game PYR(m, d), related to the GEN,,, with param-

eters m = d*® and n = (d-gl)m + 2, so that d ~ n'/3,

2.1. SIZE SEPARATION BETWEEN CP* AND R(1) 35

Definition 42 We regard the indices as elements of Py, so that the inputs for the two
players I and II in the PYR(m,d) game are respectively sequences of elements x;; € [m]
and y; ; € {0,1}™ with (i,7) € Py, and we picture these as laid out in a pyramidal form with
(1,1) at the top and (d,j), 1 < j < d and the bottom. The goal of the game is to find either
an element colored 0 at the top of the pyramid, or an element colored 1 at the bottom of the
pyramid, or an element colored 1 with the two elements below it colored 0. That is we have

to find indices (i,7) such that one of the following holds:
1.i=j=1and y11(x1,) =0, or
2. yig(wig) =1 and yirrj(wig15) = 0 and yipr jpa (Tigr 1) = 0, or

3. Z = d and yd,j(;vd’j) =1.

Observe that, setting ¢, ; = y; j(z; ;) for 1 < j < i < d, this search problem can be defined

as a DNF search problem given by the following DN F' tautology:

eV (e AamgAeng)V o\ ey
1<j<i<d-1 1<5<d

Therefore, PYR(m, d) is a game in DART(rmn, (d+1)).

2

Theorem 43 For some € > 0 and sufficiently large n CCgr(Rgpx,,) > Q(n°).

Proof. The theorem follows from the following results:

d < SC(PYR(m,d)) (Lemma 44)
Qlog m)SC(PYR(m,d)) < CCr(PYR(m,d)) (Theorem 36)
CCr(PYR(m,d)) < CCr(Rax,) (Lemma 45)

Q.E.D.

Lemma 44 is proved in [57]. In [18, 33], Theorem 36 is proven for every DART game R.
Lemma 45 is an adaptation of a proof in [57]. A lower bound on the structured communica-

tion complexity of PYR(m, d) was proved in [57]:

Lemma 44 ([57]) SC(PYR(m,d)) > d.

36 CHAPTER 2. SIZE

Lemma 45 shows that the real communication complexity of the game PYR(m,d) is
bounded by the real communication complexity of the Karchmer-Wigderson game for GEN,,

for a suitable n. The proof is adapted from [57].
Lemma 45 Let d,m € N and let n:=m - ("1') +2, then CCr(PYR(m, d)) < CCr(Rapn,.)-

Proof. We prove that any protocol P solving the Karchmer-Wigderson game for GEN,, can

be used to solve the PYR(m,d) game. Recall that PYR(m,d) is a DART (m, (d+1)) gaine,

2

so the two players I and I receive inputs respectively of the form (xy1,...,244) where
z;; € [m] for all (¢,5) € Py and (y11,.-. ,Yaa) where y; ; € {0,1}™ for all (7,7) € Py.
From their respective inputs for the PYR(m, d) game, Player I and II compute respec-

tively a minterm ¢7, . and a maxterm tY, | for GEN, and then they play the Karchmer-

a,b,c’
Wigderson game applying the protocol P.

As in [57] we consider fixed the element 1 as a bottom generator and the element n as

d+1

5)m elements between

the element we want to generate. We interpret the remaining n = (

2 and n — 1 as triples (1, j, k), where (i,7) € Py and k € [m)].

Now player I computes from his input (z1,1,...,%44) an input tape for GEN, such that
GEN,(t7,.) = 1 by setting the following (recall that a,bF ¢ means t4p. = 1):

1,1+ ga, for 1 <j5<d
d11,911 Fn
Git1,5> Git1,5+1 T Gij for (i,j) € Pi

where g; j := (1,j,2:;) € {2,... ,n — 1} and all the other bits ¢Z

2
a,b,c

= 0. This completely

determines ¢} , = and obviously GEN, (%,) = 1 since we have forced a generation of n (in a

ab,c
pyramidal form).

Likewise Player I computes from his input (yi,1,... ,yaq) a coloring col of the elements
from [n] by setting col(1) = 0, col(n) = 1 and col((z,7,k)) = yi;(k) (the k-th bit of y. ;).
From this coloring, he computes an input #; , . by setting ¢; , = 1 iff it is not the case that

a,b,c
col(¢) = 1 and col(a) = col(b) = 0. Obviously GEN,(tY,)= 0.

a,b,c

2.1. SIZE SEPARATION BETWEEN CP* AND R(1) 37

Playing the Karchmer-Wigderson game P for GEN,, now yields a triple (a,b, ¢) such that
tx

a,b,c

= land tg,b,c = 0. By definition of #¥, this means that col(a) = col(b) = 0 and col(c) = 1,

and by definition of t* one of the following cases must hold:
¢ a =b=1and ¢ = g4, for some j < d. By definition of col, yq(zq;) = 1.
¢ c=nand a =b=gi,;. In this case, y11(z1,1) = 0.

® 4 = git15, b= giz1j41 and ¢ = g; ;. Then we have y; j(z;;) = 1, and yiy1 j(wip1,;) =

Yir1,j+1(Tip1,j41) = 0.

In any case, the players have solved PYR(m, d) without additional communication. Q.E.D.

From Theorem 43 we obtain consequences for monotone real circuits analogous to those
obtained in [57] for monotone boolean circuits. An immediate consequences of Theorem 43
and Lemma 31 i1s that any treelike monotone real circuit computing the boolean function

GEN,, must have exponential size.
Theorem 46 S;y (GEN,) = 2% for some € > 0.
Consider now the following definition

Definition 47 Let t be an input to GEN,,. We say that n is generated in o DEPTH-d PYRA-
MIDAL FASHION by t if there is a mapping m : Py — [n] such that the following hold (recall

that a,bt ¢ means top. = 1):
1,1+ m(d,j) for every 7 < d

m(i+1,7),m@+1,7+1)F m(s,7) for every (i,7) € Pi_y
m(1,1),m(1,1) Fn

We need a function related to GEN,, in order to produce a unsatisfiable C N F' formula to

get the size separations.

Definition 48 Call PYR, the boolean function that outputs 1 on every input to GEN, for

which n is generated in a depth-d pyramidal fashion, and outputs 0 on all inputs where GEN,

1s 0.

38 CHAPTER 2. SIZE

We can obtain an analogous of Theorem 46 also for the simpler case in which the gener-

ation is restricted to be only in a pyramidal form.
Corollary 49 S; (PYR,) = 24" for some e > 0.

Proof. Observe that in Lemma 45 Player I from its input, builds an input for GEN,
which forces a depth-d pyramidal generation. So Lemma 36 can be easily adapted to PYR,
to prove that CCr(PYR(m,d)) < CCgr(Rpyr,). Lemma 44 and Theorem 36 imply that
CCr(Rpyr,) > Q(n), for some € > 0. Finally Lemma 31 gives the Theorem. Q.E.D.

The other consequences drawn from Theorem 36 and Lemma 44 in [57] apply to monotone

real circuits as well. We just state without proof the following result:

Theorem 50 There are constants 0 < e,7 < 1 such that for every function d(n) < n®, there
is a family of monotone functions f, : {0,1}" — {0,1} that can be computed by monotone

boolean circuits of size n®") and depth d(n), but cannot be computed by monotone real circuits

of depth less than v - d(n).

The method also gives a simpler proof of the lower bounds in [41], in the same way as

[57] simplifies the lower bound of [43].

2.1.4 Separation between CP* and R(1)

As observed in Subsection 1.4.2, Theorem 24 allows to reduce the task of proving lower
bounds for CP* to that of giving lower bounds for the size of treelike monotone real cir-
cuits. In this Section we build an unsatisfiable CNF' formula GEN(g, ¢) U COL(p,) and
we will obtain exponential lower bounds for CP* refutations using Corollary 49. That is,
we build GEN(p, ¢) U COL(p, 7) in such a way that the interpolant provided by Theorem 24
is a monotone real treelike circuit computing the function GEN,,, where n is generated in a
pyramidal form. After that we also show that GEN(p, ¢) U COL(p,) admits polynomially
size R(1) refutations.

Let n and d be natural numbers whose values will be fixed below. Recall that P; :=

{(2,7); 1 <7 <1 <d}. The clauses in GEN(p, ¢) will encode the property that the inputs

2.1. SIZE SEPARATION BETWEEN CP* AND R(1) 39

p define a pyramidal generation, and therefore GEN,,(p) = 1. The clauses in COL(p, 7) will
say that that the inputs p define a coloring, so that GEN,(p) = 0 follows.

More precisely: the variables p,p. for a,b,¢ € [n] represent the input to GEN,. The
variables ¢; j . for (1,7) € Py and a € [n] will encode a pyramidal structure for some mapping
m defining a pyramidal generation, see Definition 47. The meaning of ¢; ;. is that the
mapping m is assigning the element a € [n] to the position (7,j) of the pyramid. The
variables r, for a € [n] represent a coloring of the elements in [n] by 0,1 such that: 1 is
colored 0, n 1s colored 1 and the elements colored 0 are closed under generation, that 1s, if

in a triangle of the pyramid the two base elements are colored 0, then also the top must be

colored 0. The set GEN(p, ¢) is given by (2.1) - (2.4), and COL(p,r) by (2.5) - (2.7).

\/ Gia for (i,7) € Py (2.1)
1<a<n
ddj.aV D1 1.a for 1 <j <danda € [n (2.2)
G110V Paan for a € [n] (2.3)
Git1.4,aV Qi1 j+1,6V Gijie NV Dape for (1,7) € Pyrq—q and a,b, c € [n] (2.4)
Pi1aVTa for a € [n] (2.5)
PaanVTa for a € [n] (2.6)
TaVThV PapeVTe for a,b,c € [n] (2.7)

If GEN(Z,q) is satisfiable for a fixed vector ¢ € {0, 1}7°, then n is generated in a depth-
d pyramidal fashion, and if C@L(t_;) is satisfiable, then GEN(t_j = 0. Observe that the
variables § occur only positively in GEN(p,¢) and only negatively in COL(p, 7). Hence

from Theorem 24 and Corollary 49 we can prove size lower bounds for CP* refutations of

GEN(p, ¢) U COL(p, r):
Theorem 51 L} ,(GEN(p,q) U COL(p,7)) = 929(n¢)
On the other hand, there are polynomial size R(1) refutations of these clauses.

Theorem 52 £,(GEN(p,7) U COL(p,)) = n®0)

40 CHAPTER 2. SIZE

Proof. First we resolve clauses (2.2) and (2.5) to get

Qd,jc Ve (2.8)

forl1<j<dand1<c¢<n.
Now we want to derive g; ;. vr. for every (i,7) € Py and 1 < ¢ < n, by induction on ¢
downward from d to 1. The induction base is just (2.8).

Now by induction we have

Git1jaVTa and Giy1 416V 7T,

we resolve them against (2.7) to get git1jaV Git1,j+1,6V Pape Ve for 1 < a,b,¢ < n and then

resolve them against (2.4) and get

Fi+1,50 NV §i+1,541,6V Qi gcVTe

for every 1 < a,b < n. All of these are then resolved against two instances of (2.1), and we
get the desired ¢; ;. v 7. for every 1 < ¢ < n.

Finally, we have in particular g; 1 4v 7, for every 1 < ¢ < n. We resolve them with (2.6)
and get G114V Paan for every 1 < a < n. These are resolved with (2.3) to get g 1,4 for every
1 < a < n. Finally, this clause is resolved with another instance of (2.3) (the one with
i =j =1) to get the empty clause. Q.E.D.

It is easy to check that the above refutation is an negative R(1) refutation. The following

corollary is an easy consequence of the above theorems and known simulation results.

Corollary 53 The clauses GEN(p, §) U COL(p,) exponentially separate R*(1) from R(1)
and negative R(1) as well as CP* from CP.

The R(1) refutation of GEN(j, §) U COL(f,) that appears in the proof of Theorem 52
is not regular. We do not know whether GEN(7, ¢) U COL(, 7) has polynomial size regular
R(1) refutations. To obtain a separation between R*(1) and regular R(1) we will modify the
clauses COL(7, 7).

2.1. SIZE SEPARATION BETWEEN CP* AND R(1) 41

2.1.5 Separation of CP* from regular R(1)

The clauses COL(p, 7) are modified into clauses ROOL(p), '), so that GEN(p,) URCOL(p, 7))
allow small regular R(1) refutations, but in such a way that the lower bound proof still
applies. We replace the variables r, by rq;p for @ € [n], 1 <1 < d and D € {L, R},
giving the coloring of element a, with auxiliary indices ¢ being a row in the pyramid and
D distinguishing whether an element is used as a left or right predecessor in the generation

Process.

The set RCOL(p,) is defined as follows:

DiiaVTadD for a € [n] and D € {L, R} (2.9)
PaanVTa1,D for a € [n] and D € {L, R} (2.10)
Tai+1.LVThit1,RY PapeV TeiD fori < d, a,b,c € [n] and D € {L, R} (2.11)
Tai.DVTaiD for 1 <i<dand D € {L, R} (2.12)
TaiDVTajD for 1 <i,5 <dand D € {L, R} (2.13)

Due to the clauses (2.12) and (2.13), the variables r,; p are equivalent for all values of the
auxiliary indices ¢, D. Hence a satisfying assignment for ROOL(p,) still codes a coloring of
[n] such that elements a with 1,1 F a are colored 0, the elements b with b,b F n are colored
1, and the 0-colored elements are closed under generation. Hence if RUD)L(E: r) is satisfiable,
then GEN(f) = 0.

Hence any interpolant for the clauses GEN(p, ¢) U RCOL(p, 7) satisfies the assumptions

of Corollary 49, and we can conclude
Theorem 54 L} ,(GEN(7,7) URCOL(7, 7)) = 2%

On the other hand, we have the following upper bound on regular R(1) refutations of

these clauses:

Theorem 55 There are reqular R(1) refutations of the clauses GEN(p, §) U ROCOL(p,) of
size n@0),

Proof. First we resolve clauses (2.2) and (2.9) to get

dd,ja VN Tad,D (2.14)

42 CHAPTER 2. SIZE
for 1 <j<d,1<a<nand D € {L,R}. Next we resolve (2.3) and (2.10) to get

qi1,aVTal,D (2.15)

for 1 <a <nand D € {L, R}. Finally, from (2.4) and (2.11) we obtain

Git1,aV Git1,j+16V Gije ¥ Tai+1,L V Thit1,R Y TeiD (2.16)

for1<j<i<d,1<a,bc<nand D€ {L,R}.
Now we want to derive g jq v 7a,p for every (i,7) € Py, 1 < a <nand D € {L, R}, by
induction on ¢ downward from d to 1. The induction base is just (2.14).

For the inductive step, resolve (2.16) against the clauses

Gi+1jaVTaiv1, and Qg1 415V Thit1,R

which we have by induction, to give
Qit1,g,aV Qit1,5416V Gije V Tei,D

for every 1 < a,b < n. All of these are then resolved against two instances of (2.1), and we
get the desired g; j.viein.
Finally, we have in particular §i 1,4 v 71,1, which we resolve against (2.15) to get Gi,1,4 for
every a < n. From these and an instance of(2.1) we get A. Q.E.D.
Note that the refutation given in the proof of Theorem 55 is actually a ordered refutation:

It respects the following elimination order

P11 --. Pann

"dL TMdR -+ "ndL "ndR

d,d1 --- Q1dn -+ 4dd1 -+ Qd,dn

"d-1,I, -++ Tnd-1,R q1,d-1,1 -+ d—1,d—1,n
aL Ma,R 9111 --- Q1a,m -

Corollary 56 The clauses GEN(p,q) U ROOL(p,) ezponentially separate the following
proof systems: R*(1) from regular R(1) and ordered R(1).

2.2. R(2) HAS NOT THE MONOTONE INTERPOLATION PROPERTY 43

The separation between R*(1) and R(1) was later improved in [16]. Recall the definition
of the Pebbling Contradictions from Subsection 1.3.4. They show that for a certain graph
G, £i(PEBX(G)) = O(n), but £;(PEBX(G)) = exp(Q(n/logn)). They also prove that
this separation is nearly optimal, because if for a formula F, £;(F) = s then Li(F) =

exp(O(sloglog s/ log s)).

2.2 R(2) has not the monotone interpolation property

In this section we prove that R(1) cannot polynomially simulate R(2). More precisely, we
prove that a certain Clique-Coclique principle, as defined by Bonet, Pitassi and Raz in [20],
has polynomial size R(2) refutations, but every R(1) refutation requires quasipolynomial size.
The Clique-Coclique principle that we use, CLIQUE; ;. is the conjunction of the following

set of clauses:

2ia VoV, 1<I<k (2.17)
TV 1<I<k, 1<i,5<n, 1 #7 (2.18)
TV Ty, 1< <k, 1<i<n, [#1 (2.19)
Yii VoV oy 1<i<n (2.20)
Ui V g I<LU<KE, 1<i<n, I#£1 (2.21)
iV Ty Vi VU, 1< <k 1<t<K,1<i,5<n, £, i#y (2.22)

We start with a reduction from CLIQUE; . to PHP}, that can be carried over in R(2):

Theorem 57 Let k' < k < n. If PHP}, has R(1) refutations of size S, then CLIQUE; 4

has R(2) refutations of size Sn® for some constant ¢ > 0.

Proof. We use the following R(2) reduction to transform the formula CLIQUEy,, into
PHP},. The meaning of variable pi,; 1s that pigeon ¢ sits in hole 5. We perform the following

substitutions:
n n

pig = \[(@ia A i) pii= \| (i Aym)

I=1 I=14'#5

44 CHAPTER 2. SIZE

First we show how to get clauses (1.1) from clauses (2.17) and (2.20). If we expand clause

(1.1) for a certain ¢ we have:

(wia ANy11) vV (iz Ayra) V (zis Ayrs) Ve V(Tin Ayrn)V
(2in Ay2a) V(@i Ayaa) V (2iz Ayag) VooV (2in Ayan)V
(-%’,1 A y3,1) \% (-Tz',z A y3,2) \% (-%’,3 A y3,3) V-V (Tz,n A y3,n>\/ (2-23)

(ia Ay a) V(T2 Ay 2) V (Zis Ay s) VeV I(Zin AYrn)

We apply successively for 1 < 57 < k' the A-introduction rule to clauses y;1 V -+ -V ypry and

ziy V-V x;, along variables z;; and y;; and get:
(IZ‘J A y171) \% (.Iz',l N y271) VeV ($i71 N ykl71) \% X4,2 VeV Lin (224)

Observe that the conjunctions in (2.24) form the first column in (2.23). To add the
second column of (2.23) to (2.24) we apply successively for 1 < 7 < k' the A-rule to clauses
Y12V Vywo and (2.24) along variables z; 5 and y; and get:

(ig Ayia) V(xin Ayap) Voo V(i Ayw)V

(2.25)
(Tipg Ayi2) V (Zia Ayap) V-V (Zig Aypo) VEisVe-Va,

Now it is clear how to get (2.23).
Now we will show how to get the initial clauses (1.2). Let us consider the clause p;; V pj;.

We first generate p;1 V-V pir and pj1 V -+ V pjr. Let us rewrite them as:

(g Ayep) V (Zig Ayea) V(Zis Ayes) VeV (Zin Ayrn) VA (2.26)

(:ijl /\ ytvl) v ('rj72 /\ yt72) \/ ($j73 /\ yt73) \/ e \/ (xjvn /\ ytvn) v B (227)

where Aispi1 V- Vpir—a VPigg1 Voo -Vpiw and Bisp;i V- Vpji—a Vpjag1 VeV pjp.
For the sake of brevity we use p; ; as abbreviation of the 2-disjunction it denotes. It is clear

that p;; V p;. 1s AV B, that is:

Pia Ve VpiaaVpiga Vo VNP Vpin Ve Vpa Ve Ve Vpje

2.2. R(2) HAS NOT THE MONOTONE INTERPOLATION PROPERTY 45

Now we will get AV B from (2.26), (2.27) and (2.22). We apply the cut rule to (2.27)
and ;1 VZ;; Vg Vg for 1 <1< n,[#1, and get:

.7_31"1 vV gtJ vV (.73]"1 A yt71> vV B (228)
Solving it with Z;1 V Z,; we get Z;1 V 41 V B. Solving this clause with (2.26) we get
(.731"2 A yt72> AVARIRIEIY) (CEi’n A yt,n) vV A A B (229)

Now we can get rid successively of (2,2 A ye2), ..., (Tin Aysn) as we did with (2,1 Ayeq).
It remains to show how to simulate a normal R(1) step. We have p; ; V A and p; ; V B
and we want to get AV B. We expand both clauses:

(':Civl /\ yj71> \/ ("EZ',Z /\ yj72> \/ ($i73 /\ yj73> \/ e \/ (':szn /\ y]v”) v A (230>

(in Ayia) V(@i Ayra) V(Zis Ayrg) VeV (2in Ayra)V
(g Ay21) V(ziz Ayza) V(zisg Ayas) VeV (Tin Ayan)V

(zign Ayjm11) Vi (zizg Ayjmi2) V(zis Ayjmisz) Vo V(@in Ayjcin)V (2.31)

(@ig Ayjsr1) V(@ig Ayjr2) V(Tiz Ayizia) Voo V(@in A Yjrrn)V

(xia Aywa) V (zig Ay 2) V (2ig Ay z) VoV (i Aypn) V B

If we get clauses z;; V y,; V B for 1 <1 < n, we solve them all with (2.30) and get AV B
as desired. We will show how to get z;; V y;1 V B. We solve (2.31) with y;; V 411, [# j of
course. With these we get rid of the first column of (2.31) and we add a literal y;;. We can
get rid of the rest of columns by solving enough times with clauses z;; V z;;, [# 1, and we
get ;1 Vy;1V B. Q.E.D.

We will use the feasible monotone interpolation property for R(1), see Subsection 1.4.2,
together with the following result of Alon and Boppana [21] establishing a lower bound
to the size of monotone boolean circuits that separate large cliques from small cocliques.
In the following, F'(m,k, k') is the set of monotone functions that separate k-cliques from

k'-cocliques on m nodes.

46 CHAPTER 2. SIZE

Theorem 58 [21] If f € F(m,k, k') where 3 < k' < k and kvV/K' < m/(8logm), then

s (f) N 1 (m)(\/P+1)/2
M= 8 4k\E log m ’

Theorem 59 Let k = \/m and k' = (logm)?/8loglog m. Then,
1. CLIQUE,, has R(2) refutations of size polynomial in m, and
2. every R(1) refutation of CLIQUEY, has size at least exp(Q((logm)?/+/loglog m)).

Proof. Regarding 1, we have that k'logk’ < l(logm)?, and so 2VFeeF < 1/ = k.
On the other hand, Buss and Pitassi [24] proved that PHP}, has R(1) refutations of size
polynomial in k whenever k > 2VF106¥ Therefore, by Theorem 57, CLIQUE;;, has R(2)
refutations of size polynomial in m.

Regarding 2, we apply the feasible monotone interpolation theorem for R(1). We have

log m
3v/loglog m

Therefore, by Theorem 58, if f € F(m,k, k') is a monotone interpolant, then

< \/lyglogm.

__logm log m
1 m sVisTosm 1/ m \ vt
S 2 E ()T L it
e (f) 2 8 <4\/m(10g m)2> = 8 \m3/4

which is exp(Q((log m)?/+/Ioglog m)). Q.E.D.

As a corollary, we solve an open problem posed by Krajicek [48].

Corollary 60 R(2) does not have the feasible monotone interpolation property.

2.3 R(2) and PHP"

At the time of writing [6] the question about the size of R(1) refutations of PHP?", where
¢ > 2, was still not settled. Before [58, 56] appeared, R(2) could have been used to settle
this question, al least for IP’]H]]P’ZQ.

In [13] it was defined the monotone R(1) proof systems and shown that it was equivalent

to R(l) for PHP}'.

2.3. R(2) AND PHPY 47

A monotone clause contains only positive literals. Let R, S, T be subsets of {1,... ,m}.
Let Pgr; (resp. S,T) the disjunction of the variables p; ;, where 1 € R (resp. S§,T). Let
Cy = AV Pg;V Psjand Cy, = BV Pg;V Py j, where R, 5, T are disjoint sets. The monotone
inference rule with respect to hole j allows us to derive C3 = AV BV Pg ;. A monotone R(1)
refutation of PHP," is a sequence of monotone clauses, where the final clause is A and where
every clause is either an initial clause of the form p;; V ---V p;,, where 1 € {1,... ,m} or
follows from two previous clauses by the monotone R(1) rule.

Now we will show how to get a R(2) refutation of IP’IHﬂP’Z%from a monotone R(1) refutation

of IE"]HI]P’Z2 of similar size. The idea comes from [49].

Lemma 61 Let R a monotone R(1) refutation of IP’]H]]P’ZQ, then there are a R(2) refutation
3
R' of PHP® of similar size.

3
Proof. From the clauses in PHP"” we will show how to get the pigeon clauses in IP’]H]]P’f.
These are the only clauses needed for monotone R(1). Then we will show how to perform

the monotone R(1) rule. The pigeon clauses in IE”]H]]P’Z2 are:
PiyV---V P, 1<i<n? (2.32)

where P;; 1s not a variable, but a conjunction, that we define next. Let us divide the set
{1,...,n*} into nz sets of n? elements. Let the set 4; = {n%(z —1)+1,... ,n%i}. Let us
divide the set {1,... ,n%} into nz sets of n elements. Let the set B; = {n(i=1)+1,...,ni}.
Let 1 € Ay, let A(4) the rank of ¢ in the set Aj. Let B(I) the [-th element in By, then:

P ;= \/(pA(fx),z A PB(1),5)-
=1

For example, P, ; is (pn%1

AP)V Pty APt) VooV (B AP)
We will show a R(2) derivation of (2.32) for ¢ from IP’]H]IP’ZT The expansion of the clause

looks like this:

3 3
n2—-n+1,1 n2—n+2,1

(Pt A Pryt) V (Pry 2 A Phyr1,1) VooV (Pry 0 A Phygn—1,1)V
(pkl,l A pk2,2> Vv (pk1,2 A pk2+1,2) VeV (Pk1 n A pk2+n—1,2>v
(Pr i A Pky3) V (Pry 2 A Phyt13) VooV (Pry o A Phygn—1,3)V (2.33)

(pqul A pk27n) v (pk1,2 A pk2+17”> VeV (pk‘l n A pk2+n—1,n)

48 CHAPTER 2. SIZE

Conjuncting successively pg, 1V =+ V pg, n and pg, 1 V -+ V pg, » over variables pg, 1 and py, ;

for 1 <1 < n we get

(pk17] /\pk27]> \/ (Z")klv-l /\pk272> v (pk'h-l /\pk273> \/ \/ (pk17] Apk?v”) \/ (234>

Vpg, 2V Vpea (2.35)

This is the first column of the expansion plus the literals that will allow us to get the rest of
the colummns. To get the second column we conjunct successively (2.35) and pg,411 V --- V
Dko+1,n OVer variables pg, o and pr,41,; for 1 <@ < n, and so on.

Now we will show how to get rid of two R(2) clauses such as P, and Py ; with the
invaluable help of the hole clauses for the hole j in]P’]H]]P’Z%. This will be used extensively in
simulating the monotone R(1) rule.

Let P, ; be the R(2) clause (pk, 1 A Pryj) V (Pry 2 A Prst1) V-V (Phy o A Phytn—i,;) and
Py be (pry Ak)V (Prs 2 APkat1,5) VooV (Prgn A Prytn—t,j)- If ko # k4 then we can solve
(Prs 1 A Prs i)V (Prg 2 A Prat1,5) VooV (Prgn A Prgtn—1,;) With p,4i i V pr, j for 0 < i < n and
get P, ;. Solving it with (pr, 1 A Pky i)V (Pky 2 ADPkst1,) VooV (Pry 0 A Phiy+n—1,;) We get rid of
the first conjunctant. To eliminate the second conjunctant, that is, (pg, 2 A pr,+1,;) We solve
(Prat A Prag) V (Pro2 A Prat1i) VooV (Prgn A Pryn—t,5) With pr, i V Prysr,j to get pr 41,5
When &y = k4 we cannot do that. Let us show how to overcome the problem. To eliminate
the first conjunction of P, j, namely (pg, 1 A pr,,;) we solve (prg1 A Pryj) V (Prg2 A Prygs15) V
<V (Prgn A Prygtn—1,j) With pg,4i iV P, for 1 < i < n, and get (pry1 A prya) V Dryj- As in
fact ky = k4 we can rewrite it as (pry,1 APry,1) V Pky,;- But now we can solve it with pg, 1V pg, 1
getting pr, 1V Pr, ;. With this we can eliminate the first conjunction from (pg, 1 A pk, ;). The
rest of conjunction can be eliminated in a similar way.

The last part is to show how to simulate a monotone R(1) rule over a hole, say j. We
have clauses Cy = AV Pp;V Ps; and C; = BV Pp;V Pr;. Let us suppose that T = {1},
so Prj = Pi ;. Do not get confused with the notation. Pr;, with T a set, is a disjunction
of pigeons that share the same hole. P;; with 7 a number is pigeon in [r?], this pigeon is
in fact a R(2) clause and it is formed from literals in]P’]H]]P’:%, which are denoted with a p
instead of a P. In this case we can solve P; ; with all the pigeons in Ps; and get as desired

Cy = AV BV Pgrj. In general |T| < n®, because now we are working with IE”IH]]P’Zz. For

2.4. SIZE AND R*(K) 49

simplicity Cy = AV Psj and Cy = BV Py, we omit the common holes. Without loss of
generality let T'= {1,...i}. We make i copies of C; and solve the k-th with Py ;. Now we
will call Py ; just k because we know we are talking about a pigeon and we know the hole is

J. We get ¢ clauses like these.
AvBVA{23,4,...,1—1,i}
AvBvV{1,3,4,...,1—1,i}
AvBVA{l,2,4,...,1—2,i} (2.36)

AvBvV{1,2,3,...,0—2,0—1}
The j-th and the j 4+ 1-th clauses only differ in the j element. We solve this element for all
the pairs of consecutive clauses and get 7 — 1 clauses. Again the j-th and the j + 1-th clauses
only differ in the j element. We solve again pairs of consecutive clauses. At the end of this
process we get clauses AV BV P;; and AV BV P, ;. From these we get AV B as desired.

Q.E.D.

2.4 Size and R*(k)

In this Section we prove results concerning R*(k) size. The first one is an exponential
separation between successive levels of R*(k). We separate exponentially R*(k) from R*(k +
1). We first give in Subsection 2.4.1 polynomial size R*(k) refutations for PEB;(G), to do
so we prove a general proposition for Horn formulas. In Subsection 2.4.2 we give the R*(k)

lowers bounds needed to establish the separation. Last, in Subsection 2.4.3 we show that

R(l) dominates R*(k)

2.4.1 Upper bounds for Generalized Pebbling Contradictions

To give the upper bound we will transform PEB}(G) into a Horn formula using the R(k)

A-introduction rule and then apply the following proposition:

Proposition 62 Let F be an unsatisfiable Horn formula. Then there is a linear R*(1)

refutation of F that uses any input clause from F at most once.

30 CHAPTER 2. SIZE

Proof. We will show how to construct the treelike refutation for F. It is well known [44]

that the following method can be used to decide the unsatisfiability of a Horn formula F:

Let My = (). The set My, is obtained from My by adding some atom = ¢ M,
from F such that there is a clause Ay = -y, V---V—-yVzin F with z,,... .2 €
Mgy, 1 > 0. If no more atom can be added to My according to the above rule then F

is unsatisfiable iff there is a clause =z V- -V =z in F such that xy,... ,xr € M.

Actually when F is unsatisfiable, this method performs a unit R(1) refutation of F. The
treelike form of this refutation may however be of exponential size. Now using the sets M;
from the above construction (in order of decreasing i) the following algorithm produces a

linear R*(1) refutation of F.

Start with the clause Cy = —zy V --- V =z such that zy,... 2 € My, , where
dy is the final index. Now we will subsequently derive clauses C; and indices d;
for =1,2,... such that C; is a disjunction of some negated variables from My, .
Obtain d; and C; from d;_; and C;_; as follows: Let d; < d;_; be the minimal
index such that all variables in C;_; are fully contained in My, 4;. This means
that in order to construct My 4 from My, a variable z from C; had been added
such that there is a clause in F of the form Ay, = -y, V-V -y V. Ciyq is
obtained from C; by resolving with A4 on . Notice that all variables in C; are

contained in My,. Continue like this until C; is A.

Since My = §) and d;1; < d;, A will be derived in at most d; steps. Moreover since any
clause Ay, is different, any input clause is used at most once. Q.E.D.

With this we can give the desired upper bound.

Theorem 63 There is a R*(k) refutation ofIP’EBZ(G) that involves less than twice the num-
ber of clauses in PEB}(G).

Proof. For some node v and ¢ € [I] let v; denote the clause v; 1 V- -+ V v;x and let v; denote
the k-term ©; 1 A--- A0; k. Hence, each source clause s;1 V-V s, is denoted by s, for ¢ € [I].

From the target clauses

iilvjl \/ e \/ {lvjl

2.4. SIZE AND R*(K) 51

with ji,..., 51 € [k], we derive by solely using the A-introduction rule, and using each of

these clauses once, the k-clause
(Bia A Atig) VeV (A A Aig)

which is abbreviated by

In a similar way we derive from the pebbling clauses
Uty Voo o Vup Vo, Voo Vg Vw, V- Vw; g
for j1,...,J1,m1,... ,m € [k] the k-clause
Uy V---VuyVvVorVvV---Vo Vuw;.

Observe, that we arrive at the Horn formula IEDEBSII(G) if we consider the formulas v; and
v; as variables and their negations. Moreover any R*(1) refutation of this Horn formula is
essentially a R*(k) refutation, since a cut involving v; and o; corresponds to a cut in R*(k).
Proposition 62 yields a treelike refutation of this Horn formula of PEBII(G) that uses each
input clause at most once. Combining these refutations we obtain a R*(k) refutation of
PEB;(G) that uses each input clause at most once. Since we did not use weakening, the
number of nodes in the refutation tree is less then twice the number of leaves. Hence the
stated bound follows. Q.E.D.

Note that PEB)(G) are the Pebbling Contradictions in [16]. By Theorem 63 and the

lower bound of [16] we get an almost exponential separation between R*(1) and R*(2).

Corollary 64 R*(2) dominates R*(1).

2.4.2 Lower bounds for Generalized Pebbling Contradictions

In this section we show that any R*(k) refutation of PEB2+1(G) with [> k 1s of size at least
2(P(@)=3)/k Recall that P(G) is the pebbling number of G, see Definition 12. To obtain the
lower bound we generalize a game introduced in [55] to prove lower bounds for R*(1). It is

a 2-Player game where the two players build a partial assignment, one variable per round.

52 CHAPTER 2. SIZE

Here we extend the rules of this game such that at each round the two players can play with

up to k variables at once.

A game on contradictions

The game Gi(F) is a 2-Player game played on the unsatisfiable C NF formula F. The aim
of the first player, the Prover, 1s to build an assignment that falsifies an initial clause of F.
The aim of the second player, the Delayer, is to get the maximal number of points.

At each round the Prover asks for a set L of up to k yet unassigned literals in F. The
Delayer answers with a partial, possibly total, assignment p to the variables in L. If p
falsifies either the conjunction or the disjunction of the literals in L, then the round is over.
Otherwise the Prover extends p to a total assignment over the variables in L and the Delayer
scores one point.

We show that each R*(k) refutation yields a strategy for the Prover in which the Delayer
scores a number of points at most logarithmic in the size of the refutation. Actually already
a special type of decision tree, called k-decision tree, here, for F can be used by the Prover
to obtain a good strategy.

It is well known, see [16], that a R*(1) refutation of a C N F formula F can be transformed
into a binary decision tree T' of the same size such that for any assignment to F, T yields a
falsified clause of F. In T each inner node is labeled by a variable and the decision how to
continue the path at an inner node is determined by the assignment to its variable. So any
total assignment will lead to a leaf node of T associated to a clause that is falsified by that
assignment. Here we consider binary decision trees where each inner node is labeled by a
k-term. The decision how to continue a path at an inner node is determined by the value of
its k-term. We call such a tree a k-decision tree for F. Similar to the well known result for

k =1 one obtains the following result for any k > 1.
Proposition 65 If F has a R*(k) refutation of size S, then F has k-decision tree of size
<S.

Proof. We will describe a recursive procedure, called DT, that in top-down fashion maps

a proof tree T for F into a decision tree DT(T') for F that has not more nodes than T: If

2.4. SIZE AND R*(K) 53

T consists of one leaf node (labeled by an initial clause) then DT(T') = T. Otherwise let D

denote the clause labeling the root of T and consider three cases:

1. If D = AV B is obtained by a k-cut from the clauses AV A, ;[and BV \/;; —l
labeling the roots of the two direct subtrees T} and T (respectively) of T', then the
root of DT(T) is labeled by the k-term C' = A1 and DT(T) consists of the two
direct subtrees DT(T}), DT(T3), such that any assignment satisfying (falsifying) C is
led into DT(T3) (resp., DT(TY)).

2. If D is obtained by A-introduction, involving the k-terms Cy, Cy such that Cy A Cy is
in D, then label the root of DT(T') by C; and branch to DT(T}) (resp. DT(T3)) if Cy
is falsified (satisfied).

3. If D is obtained by weakening and T” is the direct subtree of T then let DT(T) =
DT(T").

The correctness of the transformation is proved by observing that the following invariant
is maintained: any complete assignment a that is led to DT(T) through the yet partially
constructed decision tree, 1s falsifying the clause D labeling the root of T'. Q.E.D.

For k = 1 also the reverse inequality holds, see [16]. Since for any contradiction F in
E-C'NF there is a trivial k-decision tree of linear size: just check for each clause whether it
is falsified; we obtain the following separation between the size of k-decision trees and the

size of R*(k) refutations.

Proposition 66 There is a family (F,) of contradictions such that F,, has a 3-decision tree
of size O(n) but any R*(k) refutation of F,, has size 28Un)

Proof. Since by Theorem 77 R*(k) is simulated by R(1), the lower bound is given by the

known lower bounds for 3-C N F' contradictions, see [17]. Q.E.D.

Proposition 67 If F has a k-decision tree of size S, then the Prover has a strategy for
Gi(F) such that the Delayer scores at most [log S| points.

54 CHAPTER 2. SIZE

Proof. Let T be a k-decision tree of size S. The Prover’s strategy will maintain the
following invariant: if the Delayer has scored p points, then the currently constructed partial
assignment « will lead to a node in T such that the subtree T, rooted at this node is of size
at most S/2P.

At the beginning the invariant holds since T is by assumption of size at most S. Now
assume that the partial assignment o constructed so far is such that T, is of size at most
S/2P. Let C be the k-term labeling the root of T,.

In the next round the Prover asks for the set of those literals L in C that are yet
unassigned by a. Now « is extended in this round to an assignment o' that will assign a
value to the conjunction of L and therefore also the same value to C. Hence, o' will lead to
a subtree T,/ of T,. If the delayer scores a point the Prover is able to guarantee that T, is of
at most half the size of T,: Since the assignments chosen by the Delayer left C' unassigned,
the Prover is able to choose o' such that it leads into the smaller one of the both direct
subtrees of T,. Hence T, has a size less than half of the size of T,, in this case. This shows
that the invariant can be maintained. Q.E.D.

As a consequence we obtain the following corollary.

Corollary 68 If the Delayer in Gp(F) has a strategy that yields at least p points, then any

k-decision tree for F, as well as any R*(k) refutation for F, is of size at least 2P.

Notice however that this method will not allow us to prove directly lower bounds for

R*(k‘) refutations of formulas in k-CNF.

The Delayer’s strategy

We show a strategy for the Delayer that gives a high score which will be translated into
R*(k) size lower bounds.

Let us in the following fix a dag G = (V, E) where each nonsource node has indegree 2,
fix further constants [,k with [> k£ > 1. We will describe a strategy for the delayer that
yields at least (P(G) — 3)/k points in the game Gi(PEB;, ,(G)).

For sets S, T C V let us denote by P(S, T) the pebbling number of the graph G' = (V, E')

2.4. SIZE AND R*(K) 55

where E' = E\ ((V x S)U (T x V)). In other words we obtain G’ from G by additionally
making each node in 5 to a source node, and each node in T' to a target node.
To describe the strategy of the Delayer we will need Lemma 70. It is a generalization of

the following lemma from [16].

Lemma 69 [16] For any node v in G and any subsets S, T CV
P(S,T) <max{P(S,TU{v}),P(SU{v},T)+ 1}.

Lemma 70 For any disjoint sets W, S, T C 'V, there exists a partition X,Y of W (XUY =
W oand XNY =0) such that: P(S,T) < |X|+P(SUX,TUY).

Proof. We proceed by induction on |W/|. If |IW| = 1, the claim follows by Lemma 69
For the inductive step consider a partition of W into two nonempty sets W’ and W”. By
applying the inductive hypothesis to W, there is a partition X', Y” of W’ such that P(5,T) <
X|+PSUX,TUY').

Let now §' = SU X" and T = T UY’'. By the inductive hypothesis applied to W",
there is a partition X", Y of W” such that P(S",T") < |Y'|+ P(S"UX",T"UY"). Define
X=X'UX"and Y =Y"UY". All together we have

P(S,T) < |X'

+PSUX T'UY")

< |_XI| _I_ X”

= |X|+P(SUX,TUY).

+PSUX' UX" TUY' UY")

Q.E.D.

Now we are ready to describe the strategy of the Delayer for the game Gi(PEB} ,(G)).
She keeps two sets of source and target nodes that she (eventually) modifies at each round.
At the beginning So = To = (). Let S, and T, be the sets built after round r. Assume that
at round r 4+ 1 the Prover asks for a term C of at most k literals. Let us denote by W the set
of nodes associated with the variables in C. W is divided into the four sets WNS,, WNT,,
W=, and Wy = W\ (S, UT, UW_), where W_ C W\ (S, UT,) is a maximal set with the
property that P(S,, T, UW.) = P(S,,T.). Now the Delayer assigns 1 to every unassigned

36 CHAPTER 2. SIZE

variable in C that is associated with a node in W N §,, and she assigns 0 to every unassigned
variable in C associated with a node in (W NT,)UW_. If now C is either satisfied or falsified
by the constructed assignment, the round is over, and the Delayer sets T, = T, UW_, and
Sy41 = Sy, in this case the pebbling number remains the same P(S,,T,) = P(S,+1,Tr41).
Otherwise the Prover assigns a value to the remaining unassigned variables in C, the Delayer
scores one point and defines S,,; and 7, as follows: by Lemma 70, she chooses a partition

X, Y of Wy s.t.
P(S,, T, UW-) <P(S,UX,T,UW-_UY) + | X|.

Now S,41 = S, UX, and T,y =T, UW_UY (in this case the pebbling number decreases
by at most |X| < k).

Assuming that the Delayer follows this strategy, she maintains the following invariants:
(I11) If a variable v;; is assigned a value in round r or before then the associated node v is
in S, UT,. (I2) If v € S, then there are at most k associated variables v, j that are assigned
to 0. (I3) If v € T, then there are at most k — 1 associated variables v; ; that are assigned
to 1. (I4) P(G) < P(S,,T:)+|S:|. (I5) At the end of round r the Delayer achieved at least
[15,1/k] points.

To see that (12) holds, notice that for any node v the Prover is allowed to assign at most
k of its associated variables. (I3) follows by a similar argument, by observing that if the
Prover was allowed to assign a variable in round r+ 1 then Wy was not empty in that round,
and therefore at least one node in Wy has been added to S, which follows by the maximality
of W-. To see Invariant (I4), observe that in each round r+1 the pebbling number decreases
at most by the number of nodes we add to S,. (I5) follows since in case the Delayer scores
no point in round r + 1 then S, 1, = S,, and otherwise if she scores a point, |Syi| < |5, |+ k.

Now observe that at the end of the game Gy (PEB},,(G)), say at round e, the pebbling

number is considerably reduced. Namely we have:
Lemma 71 P(S.,T.) <3.

Proof. Let G' = (V,E') where E' = E\ ((V x S.) U (T. x V)). Remember that P(S,,T.)
was defined to be the pebbling number of G'. The game ends when the constructed partial

2.4. SIZE AND R*(K) 57

assignment falsifies a clause of IEDE]BZH (G). If a source clause s; 1V -+ V s, 41 associated to
a source s in G is falsified then s € T, due to (I1) and (I2). Hence s is both a source and a
target node in G’, which shows that one pebble suffices for a pebbling of G'. Similarly, when
a target clause t; j, V --- V #;j, is falsified then ¢t € S, by (I1) and (I9) (since [> k) and the
pebbling number of G’ is one. Finally assume that a pebbling clause associated to a node w
with predecessors u and v is falsified. Similar to the previous considerations we obtain that
u,v € S, and w € T.. Hence, for a pebbling of G’ it suffices to use three pebbles. Q.E.D.
Due to Invariant (I4) this implies that |S.| > P(G) — 3. Moreover we have

Lemma 72 The Delayer scores at least |S.|/k points.

Proof. In any round at most k& nodes are added, and in case a node has been added to S,
in round r, the Delayer has scored a point in round r. Q.E.D.

Hence the Delayer will score at least (P(G) — 3)/k points.

Theorem 73 If G is a dag where any nonsource node has indegree 2, and [> k > 1, then
the Delayer can score at least (P(G) — 3)/k points in the game Gi(PEB},(G)).

Almost exponential separations for R*(k)

It is shown in [53] that there is an infinite family of graphs G, where each nonsource node
in G has indegree 2, such that P(G) = Q(n/logn), where n is the number of nodes in G.
Combining Theorem 73 with Corollary 68 this shows that for such a graph G, any R*(k)
refutation for PEB}_, (G) has size 24"/klegn) On the other hand PEB} () consists of at
most O(n) clauses. Hence, by Theorem 63 there is R*(k + 1) refutation of IP’EBQH(G) of size
O(n). This yields an almost exponential separation between R*(k) and R*(k + 1).

Corollary 74 There is a family of graphs G such that any R*(k) refutation for IP’IE]BS;CH(G)
has size 247/ 1987) whereas there is a R*(k + 1) refutation for PEB,, (G) of size O(n).

Corollary 75 Let k > 0. There is a family of CNF formulas F with a R*(k+ 1) refutation
of size s such that any R*(k) refutation has size 2°/1°8°.

38 CHAPTER 2. SIZE

Corollary 76 R*(k + 1) dominates R*(k).

Besides these separation between successive levels of the R*(k) hierarchy, there are a few
known separations between R(2) and R(1). We have shown a superpolynomial separation
in Section 2.2. Later this separation was improved in [5] to slightly exponential. In [63]
they proved a separation between successive levels of the R(k) hierarchy, and extended some

lower bounds of [6] that hold only for R(2) to R(k).

2.4.3 R(1) dominates R*(k)

Moreover, R(1) simulates R*(k), see [45, 5]. In fact we are able to improve the simulations

from [45, 5], by showing that an increment by factor 2, independent of k, suffices.
Theorem 77 IfF has a R*(k) refutation of size S then F has a R(1) refutation of size 2.5.

Proof. For a R*(k) derivation P let s(P) denote the number of k-clauses in P that are
not obtained by the weakening rule, and a(P) denote the number of k-clauses in P that are
obtained by A-introduction. Below we will prove the following statement by induction on
a(T): for all formulas F in CNF, and for all clauses C, if T is a R*(k) derivation of C from
F then there is a R(1) derivation P of C from F with s(P) = s(T') + a(T'). Since weakenings
can be removed in R(1) refutations the theorem follows.

If a(T) = 0 then T is already a R(1) derivation. Now assume a(T") > 0, and consider the

last k-cut in T' where a k-term A, ;[with [L] > 2 is involved, say

AV Nl BV Vel
AV B

Since this was a last cut, AV B, and BV V), —l are clauses. Let Ty, T, denote subtrees
deriving AV ., L and BV ., —l, respectively. Since Ti must contain some A-introduction
to produce the term A, ! we have that a(T:) < a(T) and we conclude by the inductive
hypotheses that there is a R(1) derivation P, of BV \/ ¢, =l from F of size s(Py) = s(T,) +
a(Ty). Counsider also the rest of the derivation 77 = T\ (TyUTy). T" derives C from FA(AV B).

2.4. SIZE AND R*(K) 59

By the inductive hypothesis we obtain a R(1) derivation P’ of C' from F A (A V B) with
S(P) = 5(T") £ alT") = S(T) + alT) = Siey 5 o(Ts) + a(Ty).

Now we add BVV/,.; =l to the initial clauses and show how to transform Ty to a derivation
tree T{ of AV B from FA(BV V¢, —l) with s(T}) = s(T1)+r, and a(T7) = a(T;) —r for some
r > 1. Note that A, ;[can arrive to AV A;.; [through several paths, say r. Now, trace
in 7Ty the occurrence of the term /\leLl towards the leaves until one encounters a k-clause in
which this term is introduced by A-introduction. Denote these k-clauses by C; V A;; 1 for
=1 ,7, and denote the clauses from which they’re derived by 4;V A;c;. [and B,-\//\leLé [

PCEEE

with L = L; U L, and C; = A; V B;. Now replace for : = 1,... ,r the A-introduction

AV /\leL,- -l BV /\leL;. !
C; Vv /\leLl

by two k-cuts (and eventually one weakening)

BV Ve, =l AV Nl
A;VBYV VleL\Li ml/
Ai\/BVVleLg -l Biv/\leLgl
C;vB

Further replace on the path towards the root of Ti the term A,., ! by B. To obtain the
derivation tree T} one may again need to add some weakenings on this path.
Applying the inductive hypothesis to 7| we obtain a R(1) derivation P; of AV B from
FA(BV Ve, 1) with s(Pr) = s(T7) + a(T7) = (s(T1) + 1) + (a(Th) = r) = s(T1) + a(Ty).
Now combine the R(1) derivations Py, P, and P; to obtain the R(1) derivation P =
P, Py, P' of C from F with size s(P) = S(P;) + s(P1) + s(P') = s(T) + a(T). Q.E.D.
An immediate corollary of previous Theorem and lower bounds for each level of the R*(k)

hierarchy is the following Theorem.

Corollary 78 R(1) dominates R*(k) for k > 1.

60

CHAPTER 2. SIZE

Chapter 3

Space and width

In this chapter we include the results concerning mainly to space. In Section 3.1 we deal with
R(1) and R*(1) space, the results come from [30, 9]. In Section 3.2 we show a combinatorial
characterization of R*(1) space. A very simple Player-Adversary game from [55] played
over any CNF formula F, can be used to find out S;(F). This characterization however
does not hold for R(1) space. In [7] there is a combinatorial characterization of width. In
Section 3.3 we show that for]PE]B;(TTL) where T, is the complete binary tree of n levels
requires less space in R(1) than in R*(1). This is the first separation between R*(1) space
and R(1) space. This leaves two interesting open problems about R(1) space. First, how
much is & (PEB,(G)) for any G or concretely for T,,. Second, is it possible to give an easy
combinatorial characterization of R(1) space? The results in Section 3.2 and Section 3.3
come from [31]. The rest of this chapter is devoted to results about R(k). In Section 3.4 it is
proven that R*(k) forms an strict hierarchy concerning space. Remember that in Section 2.4
it was proven that R*(k) formed also a strict hierarchy concerning size. Last, there has
been some work done for proving space lower bound for R(1). We can cite [65, 2, 15]. In

Section 3.5 give an unified way for proving all known space lower bounds which holds not

only for R(1), it also holds for R(k).

61

62 CHAPTER 3. SPACE AND WIDTH

3.1 Space for R(1)

In this section we give upper and lower bounds for R(1) space. After some general results,
we will show two examples of families of unsatisfiable formulas that can be refuted within
less space than its number of clauses. The first example are unsatisfiable 2-C N F' formulas,
Theorem 83. The second example are the formulas whose clauses are all possible combi-
nations of literals in such a way that every variable appears once in every clause. We will
see that the space needed to refute these formulas is bounded by the number of different
variables in it. In fact we will prove a more general result about the space needed in R*(1)

refutations.

Definition 79 We say that a graph G, is EMBEDDED in a graph Gy if a graph isomorphic

to Gy can be obtained from G, by adding nodes and edges or inserting nodes in the middle

of edges of G;.
The following claim is straightforward:

Claim 80 If GG, is embedded in G, then the number of pebbles needed to pebble G is less or
equal that the number of pebbles needed to pebble G.

This is so because any pebbling strategy for the G5 can be easily adapted to pebble Gj.

We restate here with more detail what a restriction is, recall Definition 5. Let F a CNF
formula, and « a (partial) truth assignment to the variables in F. F, is a modification of F
according to a. For every variable x in « if its truth value is 1, all the clauses in F containing
the positive literal = are deleted and all occurrences of z are deleted. If the truth value of
x is 0, then all clauses in F containing z are deleted and all occurrences of the literal = are
deleted.

The next lemma, an easy adaptation of [54, Theorem 1], states the well known fact that
for a R(1) refutation of a formula F, for any partial truth assignment « to the variables, we

can get a R(1) refutation of F,, the formula after applying the partial assignment, embedded
in the initial R(1).

3.1. SPACE FOR R(1) 63

Lemma 81 Let R be a R(1) refutation of the CNF formula F, let o be a partial truth
assignment and the F, formula after applying the partial assignment. There is a R(1) refu-
tation of F, whose R(1) graph is embedded in R.

Proof. We construct a new refutation R’ transforming the clauses of R. Every original
clause is either eliminated or transformed into a new one. The new graph of clauses, after
maybe contracting some adjacent nodes representing the same clause, is also a refutation
graph, and by construction, the new refutation graph is embedded in the original one.

To build the new refutation we start transforming the initial clauses going downward
following the original refutation. If an original clause contains a literal that has been assigned
value 1 by «, then the whole clause 1s deleted. If it contains a literal with value 0, then the
literal i1s deleted from the clause. Otherwise the clause remains unchanged.

If a clause in the original refutation is the resolvent of two previous ones, there are two
cases depending on whether the resolved variable has been given a value by « or not. Suppose

that clause C is the resolvent of AV x and B V 7.

e variable z has been assigned by a. If AV z (resp. BV z) has been replaced by A’
(resp. B') then C is replaced by A’ (resp. B') if a(z) = 0 (resp. a(z) = 1).

e variable z has not been assigned by a. If AV z (resp. BV z) has been replaced by A’
(resp. B') then C is replaced by the resolvent of A" and B’ if both contain variable z,

and otherwise C is replaced by any of A" or B’ that does not contain variable .

Consider the part of the new graph connected to A. Contracting nodes of indegree one,
we obtain a refutation graph that is embedded in the original one. Q.E.D.

We now give a relation between treelike size and treelike space.
Theorem 82 If Li(F) < s then S;(F) < [logs] + 1.

Proof. We will show that the refutation tree for F can be pebbled with d + 1 pebbles,
where d is the depth of the biggest complete binary tree embedded in the refutation graph.
As the biggest possible complete binary tree embedded in a tree of size s has depth [log s],
the theorem holds. It is a well known fact, see for example [62], that d + 1 pebbles suffice

64 CHAPTER 3. SPACE AND WIDTH

to pebble a complete binary tree of depth d with the directed edges pointing to the root. In
fact d+ 1 pebbles suffice to pebble any binary tree whose biggest embedded complete binary
tree has depth d. In order to see this we use induction on the size of the tree. The base case
is obvious. Let T be refutation tree, and 7; and 7, be the two subtrees from the root. Let
us call d.(7) the depth of the biggest embedded subtree in 7. So

max(de(T1),de(T2)) if de(Th) # de(T2)
de(Th) +1 if de(Th) = do(T2)

By induction hypothesis one can pebble 77 with d.(7;)+1 pebbles and 7, with do(75) + 1
pebbles. Let us suppose that d.(7;) < do(73), then do(T) = do(73) and one can pebble first
T> with d.(73)+1 pebbles, leave a pebble in the root of 7; and then pebble 7; with d.(7)+1.
For this second part of the pebbling one needs d,(77) + 2 < d.(T3) + 1. The other case is

4.(T) =

similar. Q.E.D.
As a first example, consider the class of unsatisfiable formulas in C N F with at most two

literals per clause.

Theorem 83 Any unsatisfiable CNF formula with at most two literals in each clause can

be refuted in R*(1) within constant space.

Proof. The first part of the proof is similar to the one for showing that the set of 2-CNF
unsatisfiable formulas can be recognized in nondeterministic logarithmic space. In fact it is
not hard to see that this result can also be derived from this Theorem. Given a 2-CNF
formula F one can construct a directed graph G related to it. This graph will be useful
to know whether the formula is unsatisfiable or not, and in the former case, will provide us
with a strategy to find a refutation that can be pebbled with constant space.

The set V' of vertices of Gy is the set of literals in F. For any clause (z; V z3), that can
be viewed as the implication 1 — x5 or also T3 — x1, we include in E a directed edge from
Ty to x9 and another one from Z; to x1. If the clause has only one literal x; we consider it
as (1 V x1) and include in E and edge from z; to ;. No other edge is included in E.

The formula is unsatisfiable if and only if there is a cycle in the graph that contains a

literal, say z1, and its negation. We can use this cycle to get a R(1) refutation. Starting from

3.1. SPACE FOR R(1) 65

node xy, let us call the clauses related to the edges in the cycle Cy, Cs, ..., Ck. All these are
initial clauses, and suppose that Cy,...C} are the clauses corresponding to the edges from
z1 to 1 1n the cycle, and Cjyq ... Cy correspond to the edges from 7 to ;. One can resolve
Cy with C; getting a new clause which will be resolved with C5 and so on. When resolving
with C) one gets the clause z;. For this only 2 pebbles are needed. Analogously, starting
from literal z; one can resolve Cjyy with Cjys and so on, until resolving with Cj and thus
getting the clause ;. Resolving finally both clauses z; and Z; X is obtained. This shows
that at most 3 pebbles are needed to pebble such a refutation. Q.E.D.

We can apply Theorem 82 to compute the space needed in the refutation of our second

example, the formula CT,, defined as follows.

Definition 84 The formula COMPLETE TREE, CT,, for short, on n variables, {z1,...,x,}
1s the set of clauses with all possible combinations of literals with the restriction that each

variable appears once in each clause.

CTn = {.f].fg...ZUn,.f]ZUQ....fn,...,.’f].’iz...jn}.

Observe that this formula has 2™ clauses. It is not hard to see that CT,, can be refuted
using space n 4+ 1. This is so since a straightforward R*(1) refutation that resolves the
variables in different stages, has size 2"*! — 1. Theorem 82 assures that this refutation can
be pebbled with n + 1 pebbles. In Corollary 92 it is shown that this amount of space is also
necessary.

For some of the following results this concept will be very useful.

Definition 85 We say that a CNF unsatisfiable formula ts MINIMALLY UNSATISFIABLE if

remouving any clause the formula becomes satisfiable.

The following result attributed to M. Tarsi can be found in [1].

Lemma 86 Any minimally unsatisfiable CNF formula must have more clauses than vari-

ables.

66 CHAPTER 3. SPACE AND WIDTH

In [9] we give a new, simpler proof of the fact that any minimally unsatisfiable CNF

formula must have more clauses than variables. To prove this, we only use elementary
properties of regular R*(1).
Proof. (of Lemma 86) Let F be a minimally unsatisfiable formula over a set of variables
T1,...,T,. We consider a regular R*(1) refutation of the formula. This must exist since
regular R(1) is refutationally complete. Observe that since the formula is minimally unsat-
isfiable, every variable in [is resolved at least once in the refutation. Let T be the tree
associated to the R*(1) refutation of F and consider a postorder transversal of T, the root
comes after the nodes of its subtrees in the transversal. For every variable x; we mark with
v; the first node in the transversal of the tree that is a resolvent of variable z;. There are as
many such nodes as variables.

Let us call outer nodes of type 1 to the marked nodes of 7 that do not have any marked
nodes in one of the two subtrees hanging from them, and outer nodes of type 2 to those
marked nodes in 7 that do not have any marked nodes in neither one of the subtrees
hanging from them.

We claim that we can associate to each outer node z; one or two initial clauses (depending
on the type of the node) containing variable z; that are not associated to any other outer
node. For doing so, we order the outer nodes in the order given by the postorder transversal
of 7. Let v; be such an outer node. We consider first the case in which v; is of type 2. It
results from resolving variable z; and therefore it must have in its left and right subtrees two
initial clauses, one containing the literal x;, and the other one containing the negated literal.
Moreover, these clauses cannot be in the subtrees of any of the other previous outer nodes
in the postorder. To prove this, let us suppose that there is an outer node v; previous to v;
containing variable z; in one of the initial clauses in its subtrees, and let v be the deepest
common ancestor of v; and v; in 7. The occurrence of z; in the subtree of v; has to be
resolved at some point. If it is resolved in the subtree of v containing v; then we contradict
the fact that v; 1s the first place in the postorder traversal in which z; is resolved. Otherwise
the clause in node v must contain the variable x;, but this contradicts the fact that 7T is
a regular R*(1) refutation, since in the path from A to v; through v, variable z; is resolved

more than once. If v; is of type 1, then its subtree that does not contain any other outer

3.1. SPACE FOR R(1) 67

node must contain some initial clause with the variable z;. By the same argument as above
this clause cannot appear in the subtrees from any of the other previous outer nodes in the
postorder.

Starting from the last outer node in the postorder, we can then always associate to each
outer node v; one or two initial clauses, containing variable z; belonging to the subtree rooted
at v; and have not been associated yet.

We consider now a binary tree 7' embedded in 7 containing all the marked nodes in
T, each one corresponding to one of the variables. T’ can have some other inner nodes of
T that are not marked, but have two marked nodes as descendants. The leaves in T’ are
the initial clauses associated to the outer nodes in 7 as explained in the claim above. All
the leaves are different clauses. 7' is a binary tree with at least n inner nodes, one for each
variable, and therefore at least n + 1 leaves. From this follows that the number of clauses in
IF is at least n + 1. Q.E.D.

It is obvious that the result does not apply for non minimally unsatisfiable C N F' formulas
in general. As an easy counterexample just consider the formula {zy, 71, z1z223}. But the
result can be extended to some nonminimally unsatisfiable formulas provided that all the
variables are used in some R(1) refutation. Let us formalize the concept of used subset of

variables of a formula.

Definition 87 Let F an unsatisfiable CNF formula over the set of variables V. We say
that a subset of the variables V' C Vis USED in R(1) if there exists a R(1) refutation of T,
possibly deriving A more than once, in which all the variables in V' are resolved at least once,

that is there exists a R(1) refutation of F with associated dag G such that:
o The target (or targets) of G correspond to A,
o the leafs are labeled with clauses in F and
o cvery variable in V' is resolved at least once.

Lemma 86 can be generalized in the following way:

Theorem 88 IfF is an unsatisfiable formula with a R(1) refutation in which all its variables

are used, then F has more clauses than variables.

68 CHAPTER 3. SPACE AND WIDTH

Proof. In proof in fact a more general result from which the Theorem directly follows. We
consider a extension of R(1), that we call UNION R(1) in which besides the resolution rule
we allow to infer from two clauses C; and C; with the property that no literal in C appears
negated in Cy, the clause C V Cy. Clearly the new inference rule is sound. We define an
unsatisfiable set of clauses to be used in union R(1) in the same way as above but allowing

also the new rule in the refutation of the set of clauses.

We prove by induction of the number |V| of variables in F that if V' is used in union R(1)
then F has more clauses than variables. Observe that the result for R(1) follows directly

from this fact, since R(1) is a special case of union R(1).
The base case is straightforward, if V' has one just variable, then F must have two clauses.

Let us suppose now that V contains n clauses. If F is minimally unsatisfiable we are
done. Otherwise let us consider a minimally unsatisfiable subset of clauses F,, C F. Let
us call V; the variables in F,, and V; to the rest of variables in F. If V, = () then since the
number of clauses is [is greater than the number of clauses in F,,, and this number is greater

than V3] (S, is minimally unsatisfiable) the result is also proved.

If V5 # (), then we transform F into I by deleting from the clauses in T all the variables
in Vi. We claim that F is unsatisfiable and all its variables are used in union R(1). As
the variables in F are used, there is a union R(1) graph G that fulfills the conditions of
Definition 87. We remove from the refutation graph all the variables in Vj. The nodes
in G corresponding to clauses that only have variables from V] have no label. Also, if a
node in G resulted from the R(1) of a variable in V;, this node contains now the union of
the corresponding clauses, without the variables in Vj. All the nodes in G containing some
variable in V; appear also in G'. We obtain in this way a union refutation for I with a graph
G’ embedded in G. A might be derived in G’ more times than in G. All the variables in V5
appear in some leaf of G’ and all the leaves are used in the new union R(1). Because of this,
V2 is a set of variables used in union R(1) of cardinality smaller than n, and by the induction
hypothesis ' has more clauses than variables. The number of clauses in ' is greater than
|V3| and the number of clauses in F,, grater than |V;|. Putting both parts together, the total

number of clauses in [is greater than the number of its variables. Q.E.D.

3.1. SPACE FOR R(1) 69

The concept of a set of clauses used in a proof, can be defined in an analogous way as
that of used variable. In a used set of clauses, all the variables must be used. From this

observation and the above result we obtain the following consequence.

Corollary 89 Any subset of clauses S of an unsatisfiable CNF formula F used in a R(1)

refutation has more clauses than variables.

We may wonder whether it is of any use having nonminimally unsatisfiable formulas.

The answer is yes. Buss and Pitassi have proved in [24] that PHP™, where m = 2vrloen jg

faster to refute than its minimally unsatisfiable subformula, which is of course, PHP?!,

Now we give space bounds with respect to the number of variables.

Theorem 90 Every unsatisfiable formula with n variables can be resolved using R(1) in

space at most n + 1.

Proof. As mentioned in the proof of Theorem 82, for pebbling a tree of depth d, d 4+ 1
pebbles suffice. If we consider regular R*(1), which is complete, we have refutation trees
whose depth is at most the number of variables in the formula being refuted. Q.E.D.

There is a matching lower bound, since there are formulas of n variables whose refutation

graphs can only be pebbled with n+1 pebbles. This is a consequence of the following result:

Theorem 91 Let F an unsatisfiable CNF formula and k the smallest number of literals of
a clause of F. Any R(1) refutation of F needs at least space k + 1.

Proof. For any pebbling strategy, there is a first step, let us call it s, in which the set of
pebbled clauses becomes unsatisfiable. This step must exist because the first pebbling step
consists of pebbling an initial clause, which is always satisfiable, and the last step pebbles
A. In step s, an initial clause has to be pebbled since according to the pebbling rules the
only other possibility would be to pebble a clause with both parents pebbled, and this step
would not transform the set of pebbled clauses into an unsatisfiable set. Therefore the set
of pebbled clauses at step s contains at least k& variables,the ones of the initial clause.

Let us suppose than the set of pebbled clauses at step s is minimally unsatisfiable, then,

by Lemma 86, it has at least k& + 1 clauses because it has at least k variables. On the

70 CHAPTER 3. SPACE AND WIDTH

other hand, if this set is not minimally unsatisfiable, we can throw aside clauses until the
remaining set becomes minimally unsatisfiable. Notice that we cannot delete the initial
clause last added to the set, otherwise the set of clauses would be a subset of the clauses at
stage s — 1 and becomes therefore satisfiable. So, k + 1 clauses are still needed because the
initial clause is contained in the set and has at least k variables . Q.E.D.

Theorem 91 can be used to give a R(1) space lower bound for CT,,, Definition 84. All

the clauses of CT,, have exactly n variables, hence:
Corollary 92 §;(CT,,) >n + 1.

Theorem 91 can be strengthened to allow to prove lower bounds for the space needed in

the refutation of a more general class of formulas.

Theorem 93 Let F be a unsatisfiable CNF formula, and let k be the mazimum over all
partial assignments o of the minimum number of literals of a clause in F,. The space needed

in a R(1) refutation of F is at least k.

Proof. Let a be any partial assignment to the variables in F, and R a refutation of F that
needs the smallest amount of space. From Lemma 81 we know that there exists a refutation
R' for F, embedded in the structure of R. Theorem 91 guarantees that to pebble F, one
needs at least a number of pebbles equal to the length of the shortest clause in F,. But as R’
is embedded in R, one cannot pebble R with fewer pebbles than R'. To finish the proof we
just need to consider an assignment « which produces a shortest clause of maximal length.
Q.E.D.

We give an upper bound on the size of R(1) refutations of a formula in terms of the space
and the depth needed in a refutation. We say that the DEPTH of a R(1) refutation is the

size of the longest path from A to an initial clause in the graph of the refutation.

Theorem 94 If a R(1) refutation R of F has depth d, S;(R) = s, then L£1(F) < (d-l-s).

s

Proof. Let R be the R(1) refutation proof that can be pebbled with s pebbles. The depth
of a clause C in R is the length of the longest path from C' to A.

3.1. SPACE FOR R(1) 71

We associate a set A of at most s clauses in R with an array depth(A4) = a;...a;5 of s
numbers between 1 and d 4 1 in the following way: Sort the clauses in A by depth in R and
for 1 <y < s let a; be the depth of the clause of j-th smallest depth. If there are less than
J clauses in A then let a; = d + 1. In this way the array depth(A) has always s positions.
We can compare these arrays as base d + 1 numbers in the usual way.

R can be pebbled with s pebbles. W.l.o.g. we can suppose that in the pebbling strategy
pebbles are removed from clauses in the first moment they are not needed anymore, that is,
pebbles can only be removed from a clause only immediately after one of its successors has
been pebbled.

In the pebbling strategy pebbles are placed and removed. We consider the stages right
before the pebbles are placed. Let F; be the set of clauses containing pebbles at the stage
right before the -th time a pebble 1s set or shifted. Fy is the empty set. Observe that, by the
special form of pebbling strategy we are considering, F;;; 1s obtained from F; by pebbling
one clause, and eventually removing one or the two predecessors of this clause.

We claim that if F;;; and F; are two consecutive pebbling stages as described, then
depth(F;) > depth(F;4;). If in stage F;y; no clauses are deleted, then the result is clear,
since either one of the non-used pebbles at stage ¢ (with depth d + 1) is placed at depth
< d, or some pebble is shifted to a position with smaller depth. In the other case one or
two pebbles are deleted in stage ¢ + 1, but this can only happen if at stage ¢ + 1 a clause
C resolvent of the clauses with the removed pebbles is pebbled. F;;; differs from F; since it
contains C' and does not contain one or the two predecessors of C. Since the depth of C is
smaller than the depth of its predecessors the inequality holds.

In each stage ¢ in the pebbling strategy at most a new clause is considered and it holds
depth(F;) > depth(F;1;). Because of this the number of clauses in the refutation is bounded
by the set of possible values of the function depth(A) for sets A of size at most s. depth(A4)is

encoded by an ordered sequence of s numbers ranging from 1 to d + 1. Since there are (djs)

d+s))

possible values for these sequences, the size of the refutation is bounded by (i

Q.E.D.

We get several consequences from this result:

Corollary 95 Any family of unsatisfiable CNF formulas with R(1) refutations of polyno-

72 CHAPTER 3. SPACE AND WIDTH

mial depth and constant space, have R(1) refutations of polynomial size.

In some types of R(1), the depth of the proof is automatically bounded. An example
is regular R(1). For this type of R(1) it is required that in every path from X to an initial
clause in the refutation graph, every variable is solved at most once. Clearly in this case the

number of variables is a bound on the depth of the proof.

Corollary 96 If an unsatisfiable CNF formula on n variables has a reqular R(1) refutation

of space s, then the size of this refutation is bounded by ("js)

An interesting question is whether the depth of the refutation can be taken out of the
bound given by Theorem 94. A way to do this would be by showing that a refutation of a
formula can be transformed into another one that uses the same amount of space, but has
bounded depth. It is not clear that this result holds, but as we see in the next section, it
does hold for the case of R*(1).

We consider now the question of measuring the space for R*(1) refutations. Recall that
in this case all the nodes in the underlying graph have fanout one, and that the same clause
may appear more than once in this graph. Since in Definition 8 does not refer to the structure
of the underlying graph, we measure initially the treelike space needed for the refutation of
an unsatisfiable formula as the minimum number of pebbles needed to play the game on
a refutation tree of the formula. Later on we will show that it is also possible to give a
characterization of treelike space in terms of list of clauses kept in memory, in a similar way
as in Definition 8. We start showing that a R*(1) refutation can be made regular without
increasing the space. Tseitin [65] showed that the same result holds also if the size of the

R*(1) refutation, instead of the space, is considered.

Theorem 97 IfF is a CNF unsatisfiable formula, such that S;(F) < s then F has a regular
R*(1) refutation that can be pebbled with s pebbles.

Proof. Let F be any formula and 7 any R*(1) refutation of F and for any clause C let T¢
be the subtree in the refutation tree that derives C' from initial clauses. Suppose that the

last R*(1) step in the refutation, the one having A as resolvent, resolves the variable z, and

3.1. SPACE FOR R(1) 73

that this variable is resolved more than once in 7. Applying Lemma 81 to 7, (resp. 7z) with
the partial truth assignment a(z) = 0 (resp. a(z) = 1) and then adding again the literal =
(resp. 7) to the clauses that had it deleted, one derives z (resp. z) or directly A. Putting
both refutation trees together, the resulting R*(1) refutation is embedded in 7 and resolves
variable z at most once. One can continue in this way with the parent clauses of = and z
modifying the refutation until the initial clauses are reached. The way in which the new
refutation is constructed assures that on every path from A to an initial one, every variable
is resolved at most once, and moreover the new refutation in embedded in the former one,
and therefore it does not need more space. Q.E.D.

We can give now a definition of space in R*(1) considering list of clauses kept in memory,
with the particularity that when a clause is used to derive other clauses, it is removed from

the memory.

Definition 98 Let k € N, we say that an unsatisfiable CNF formula F has a R*(1) refu-
tation bounded by space k if there is a series of CNF formulas (without having repeated
clauses) Fy, ... Fy, such that Ty CF, X € F,, in any F; there are at most k clauses, and for

each 1 < s, F;4q is obtained from F; by
o deleting (if wished) some of its clauses,
e adding the resolvent of two clauses of F; and deleting the parent clauses.
o adding (if wished) some of the clauses of F (initial clauses).

We show the equivalence of this definition and Definition 11 applied to trees. Clearly if a
formula can be refuted in space & according to Definition 98, then there is a refutation tree
than can be pebbled with k pebbles.

For the other direction, the successive lists F; will be formed by the pebbled clauses in
the tree. A problem can happen in case there are repetitions in the set of pebbled clauses,
because 1n the list there can be only one copy of each clause. When deleting one instance of
this clause we are deleting the only occurrence of the clause in the list. We show that one
can always have a R*(1) refutation using the same space and in which two occurrences of

the same clause are never pebbled simultaneously.

74 CHAPTER 3. SPACE AND WIDTH

Lemma 99 Let s be the minimum number of pebbles needed in any R*(1) refutation of F.
There is a reqular R*(1) refutation of F that can be pebbled with s pebbles in such a way that

two nodes corresponding to the same clause are not pebbled simultaneously.

Proof. By Theorem 97 we can suppose that there is a regular R*(1) refutation of F using s
pebbles. Since every clause in the tree has at most one successor clause, when the successor
clause is pebbled, in any sensible strategy, the parent clause can be deleted immediately. In
Theorem 82 it is proved that the space needed to pebble a tree is the depth of its biggest
embedded subtree. An optimal strategy is then: starting from the root, pebble first the
subtree with the biggest embedded complete subtree and then the other subtree. Apply this
rule recursively to both subtrees. If we follow this strategy when a clause, A 1s pebbled then
we pebble the subtree that derives its mating clause A’. Since we are dealing with a regular
refutation, A cannot be in the tree deriving A’. Otherwise, there would a path going from
the copy of A deriving A’ to the resolvent of A and A’ and then to A, in which a variable has
to be resolved twice, contradicting the fact that we are dealing with regular R*(1). Q.E.D.

Using Theorem 97 and the fact that in the proof of Theorem 94, applies to any kind of
R(1), we get:

Lemma 100 If an unsatisfiable formula F with n variables has a R*(1) refutation of space

s, then it has a R*(1) refutation of size ("js)

In the case of R*(1) we can show a connection between the concepts of size and width. For
any unsatisfiable formula F, the difference between the width in a refutation of F minus the
initial width of the formula, is bounded by the space in any R*(1) refutation of the formula.

The proof of this fact relies on the following lemma from Ben-Sasson and Wigderson:

Lemma 101 [17] Let F be a CNF unsatisfiable formula, and for a literal a, let Ty and Ty
be the formulas resulting from assigning a the truth values 0 and 1 respectively. If for some

value k, W(Fo F X) <k —1 and W(Fy) < k then W(F F X\) < max{k, W(F)}

Theorem 102 S (F) — 1> W(FF X) - W(F).

3.2. COMBINATORIAL CHARACTERIZATION OF R*(1) SPACE 75

Proof. Let F be an unsatisfiable C NF formula, and s the minimum number of pebbles
needed in any R*(1) refutation of F, 7. We prove by induction on the depth of T, d, that
W(F F X) < W(F) + s — 1. For d = 0, we have that X is an initial clause, and the results
holds trivially. For d > 0, let 7 be a R*(1) refutation of F of depth d and let = be the last
variable being resolved. Let Ty and 7; be the subtrees in the refutation deriving the literals
x and Z from initial clauses, and let sy and s; be the number of pebbles needed to pebble
these subtrees reaching the literals = and 7.

Since we are dealing with a R*(1) refutation, by the proof of Theorem 82, either sy or s4
must be smaller than s. W.l.o.g. let us consider sy < s. Also, Ty and 7T; have depth smaller
than d.

Applying the partial assignment = 0 to all the clauses in 7y (respectively the partial
truth assignment z = 1 to the clauses in 7y), we obtain two refutation trees deriving A from
two sets of clauses Fy, Fy. By induction, W(Fy F X)) < W(Fy) + so — 1 < W(F) + s — 2,
and W(IF, F X)) < W(F)+s1 —1 < W(F) + s — 1. Applying Lemma 101 we obtain
s—=12>W(FF X —W(F) Q.E.D.

This result shows that width lower bounds can be used to obtain space lower bounds
for R*(1). Consider for example, for the case of a Tseitin formulas related to an undirected
graph G with odd marking. Ben-Sasson and Wigderson have proved a width lower bound of
the expansion of G [17]. By Corollary 102, this can be translated into a space lower bound
for R*(1) refutations of this formulas of at least the expansion of G minus the maximal
degree of the graph. In [7] it is proven that Theorem 102 also holds for R(1), solving an
open problem from [30].

3.2 Combinatorial characterization of R*(1) space

We show that the Player-Adversary game from [55] played over C N F' propositional formulas
gives an exact characterization R*(1) space. This characterization is purely combinatorial.
This game was used for proving size lower bounds for R*(1), see [55, 16]. Let us call F to
a generic CNF formula. A generalization of the game, Gi(F), was presented in Subsec-

tion 2.4.2. Here we recall the original game as in [55, 16] that here is called G;(F).

76 CHAPTER 3. SPACE AND WIDTH

The combinatorial game

The game is played in rounds on an unsatisfiable C N F' formula F by two players: Prover
and Delayer. Prover wants to falsify some initial clause and Delayer tries to retard this as
much as possible. In each round Prover chooses a variable in F and asks Delayer for a value
for this variable. Delayer can answer either 0,1 or *. In this last case Prover can choose the
truth value (0 or 1) for the variable and Delayer scores one point. The variable is set to the
selected value and the next round begins. The game ends when a clause in F is falsified (all
its literals are set to 0) by the partial assignment constructed this way. The goal of Delayer
is to score as many points as possible and Prover tries to prevent this. The outcome of the

game is the number of points scored by Delayer.

Definition 103 Let F be an unsatisfiable formula in CNF. We denote by g(F) the mazi-
mum number of points that Delayer can score while playing the game on F with an optimal

strateqy of Prover,

Our result shows that for an unsatisfiable CNF formula F, the space needed in R*(1)
refutation of F is exactly g(F) + 1. Observe that the outcome of the combinatorial game
depends only on the structure of F. This characterization of R*(1) space is therefore com-
pletely independent of the notion of R(1). We use the characterization and the relations
from space and size in R*(1) to slightly improve a lower bound for R*(1) size in terms of the
points scored in the combinatorial game from [55].

Atserias and Dalmau have given recently [7] a combinatorial characterization of R(1)
width that also depends only on the structure of the formula being considered. These two
results point out the naturalness of R(1) and its space and width complexity measures.

We show that for an unsatisfiable C NF formula F, the number of points that Delayer
can score while playing the game on F provides both an upper and a lower bound on the
R*(1) space of F.

We show first that g(F) + 1 is an upper bound for the R*(1) space.

Theorem 104 If for a CNF formula F, S;(F) = S, then Delayer has a strategy in which
she can score at least S — 1 points, that is, S — 1 < g(F).

3.2. COMBINATORIAL CHARACTERIZATION OF R*(1) SPACE 77

Proof. Let be S the minimum space needed in any R*(1) refutation of F. We give a strategy
for Delayer for playing the combinatorial game on F that scores at least S — 1 points with
any strategy of Prover. We prove the result by induction on S.

For the base case S = 2, Delayer just needs to answer % to the first variable asked by
Prover.

For § > 2, let « be the first variable asked by Prover and let F,—; and F,—¢ the CNF
formulas obtained after given value 1 and 0 respectively to variable z in F. Any R*(1)

refutation of F requires S pebbles and therefore either

1) the R*(1) space for refuting each of F,—; and F,—¢ is at least S — 1 or

ii) for one of the formulas, say F,—;, the R*(1) space is at least S.

Any other possibility would imply that F could be refuted in space less than S.

In the first case Delayer can answer * and scores one point. By induction hypothesis
Delayer can score S — 2 more points playing the game in any of the formulas F,—; or F,—¢.
In the second case Delayer answers the value leading to the formula that requires treelike
resolution space S (z = 1 in this case) and the game is played on F,—; in the next round.
Q.E.D.

On the other hand ¢(F) is also a lower bound for the R*(1) space. Let us consider a
R*(1) refutation of F, 7. Prover and Delayer play a modification of the game G;(F) over T
that is called G}(7). This new game can be seen as several G;(F) games played in parallel
where Prover chooses the variables to ask in an order induced by the refutation 7. Delayer
will still use the strategy that scores at least g(IF) points. Prover starts at the empty clause
in 7 and in general, when placed in a clause C, Prover chooses the resolved variable z from
the two parent clauses of C, and at the end of the round moves to one of the parent clauses
of C or both of them according to the answer of Delayer. In this later case the current game
forks into to games. If Prover is placed in a clause C is because the assignment built so
far falsifies all clauses in the path from C to A. If Delayer assigns to = a value 0 or 1 then
Prover moves to the parent clause that is falsified by the partial assignment and the new

round starts. If Delayer assigns x value % then Prover mark the clause with % and the game

78 CHAPTER 3. SPACE AND WIDTH

forks into two games. In one of them =z is set to 0 and Prover moves to the parent clause
falsified, in the other game z is set 1 and Prover moves to the other parent clause and a new
round start for each of the two new games. Each of the parallel games ends when Prover
can move to an initial clause. The game G(7) ends when all parallel games end.

For a refutation 7 let us denote by game(7") the subgraph of 7 formed by all the clauses
that are visited by Prover and the edges joining them, in the game G|(7), with a strategy
from Delayer scoring at least g(F) points. We show that the pebble game played on game(7)
needs at least g(F) 4+ 1 pebbles. Since game(7) is a subgraph of 7, by Claim 80 this implies
that R*(1) space for F is at least g(F) + 1.

Theorem 105 For any CNF F, S;(F) > ¢g(F) + 1.

Proof. Let 7 be a R*(1) refutation of F. game(7) is also a tree and in any path from A to
an initial clause in game(7) there are at least g(F) nodes marked with # (branching nodes).
We will show that game(7) requires at least g(7) + 1 pebbles. This implies the result since
game(7) is a subgraph of 7.

Counsider any strategy for pebbling the tree game(7), and consider the first moment s
in which all the paths going from an initial clause to the empty clause contain a pebble.
After moment s — 1 a pebble has to be placed on an initial clause C;, and before that, the
path going from C; to A is the only path without pebbles. This path contains at least g(F)
nodes marked with *. In each one of these nodes starts a path going to an initial clause. All
these paths are disjoint and they all contain a pebble at instant s —1 (otherwise there would
be at moment s a path from the empty clause to some initial clause without any pebble).
Together with the pebble at moment s, this makes at least g(F) + 1 pebbles. Q.E.D.

This combinatorial game was defined in [55] as a tool for proving lower bound for the

size of R*(1) refutations. Impagliazzo and Pudlédk proved the following result:
Theorem 106 [55] If Delayer has a strategy on a formula F which scores r points then
Lim) > 2

Based on the relations between size and space in R*(1) refutations and the above char-

acterization, we can slightly improve this result by a factor of two. For this we rephrase

Theorem 82:

3.3. SEPARATION BETWEEN R(1) SPACE AND R*(1) SPACE 79

Theorem 107 If for a CNF formula F S;(F) > s then L(F) > 2° — 1.
Together with the combinatorial characterization of R*(1) space this implies:

Corollary 108 For any unsatisfiable CNF formula F, if Delayer has a strategy on F which
scores 1 points then, Li(F) > 2"+ — 1.

We have given an exact characterization of the R*(1) space for refutations of a CNF
formula based on a purely combinatorial game and independent of the R(1) method. In
Section 3.3 we show that this characterization cannot be used for R(1) space. It would be
interesting to find a characterization for R(1) space. This could help to answer the question
of whether there are families of formulas that have R(1) refutations of small width but
require a large amount of space, a question proposed by Ben-Sasson in [15]. We conjecture
that the Pebbling Contradictions, PEB)(G) for a suitable G, defined in [17] are an example
of a family with this property. These formulas have R(1) refutations with small size and
width [17] and require a large amount of space in R*(1). This last result follows from our
characterization and the fact that Delayer has always a strategy scoring many points [16]

when playing the combinatorial game on these formulas.

3.3 Separation between R(1) space and R*(1) space

In this section we give a R(1) space upper bound that separates R(1) space from R*(1)
space. Recall the definition of the Pebbling Contradictions from Subsection 1.3.4. We are
using PEB,(G) for a suitable graph G. It is convenient here to write the formula PEB,(G).

Definition 109 For a dag G with indegree 2, the clauses of PEBY(G) are as follows.
1. The source clause for a source node s is s18,.
2. The target clauses for a target node t are t, and t,.

3. The pebbling clauses for any nonsource node w with parent nodes u and v are uy V1w w;,

71]6211]]71)2} ﬂ261w1w2 (J,TLd ﬂg'ﬁzw]wg.

80 CHAPTER 3. SPACE AND WIDTH

Let T,, be the complete tree with n levels and let F F* C mean that clause C can be

derived in space s from F or a subset of F.

Lemma 110 Forn > 5, if PEB%(Tn_g,) =2), PEB%(TH_Q) Fs=t' X and IP’IE]B%%(TH_l) F5 A
then PEB,(T,) F* .

Proof. We give a R(1) strategy for refuting PEB)(T,) measuring the space needed. The
variables names follows the representation of T,, in Figure 3.3. Since]PE]B%(Tn_l) F X1t
follows that PEB}(T,) +* b1by. This is because all the clauses in PEBy(T,_;) occurs in
PEB}(T,) except for clauses by and by. Similarly, since PEBS(T,—y) F*~ X it is also clear
that PEB}(T,,) F*=' didy. So we can derive the two clauses b1b, and d;d, using space s by
first deriving b1by 1n space s, keeping 1t, and then deriving d;d;. The maximum amount of
space used until this point is s.

From clauses a1, @z, the pebbling clauses for a (which are initial clauses) and clause bybs,
we can derive using constant space 3 ¢; and ¢z. This means that from the stage with the
clauses d;d; and b1bl we can derive dydy ¢ and ¢, using space 4, see Table 3.3.

Now from dyd,, ¢, é& and the pebbling clauses for ¢ we get in space 5 €, and €;. The
derivation is very similar to that in Table 3.3, but now clauses ¢ and ¢ must be kept in
memory as they are not initial clauses. The detailed derivation is in Table 3.3.

Since PEB)(T,—3) F*=2 X it follows that PEB)(T,) F*=? f,f,. During this derivation we
have to keep €, and é;, so the maximum amount of space used is s. From f; f,, €;, €; and the
pebbling clauses for e we get g; and g, in space 5 as in Table 3.3. Again as PEB,(T,,_3) F*=2 X
it follows clear that PEBy(T,) F°~% g1go. From g19,, g1 and g, we derive A in space 3. Q.E.D.

It is easy to check that PEB,(T,) can be pebbled with 3 pebbles, see Table 3.3. That
means that PEB}(Ts) needs at most 4 pebbles and PEB}(T,) 5 pebbles. Using Theorem 110,
PEB)(T5) can be pebbled also with 5 pebbles, thus saving one pebble. From this follows the

upper bound for the resolution space of PEB,(T},).
Corollary 111 For every n, Si(PEB,(T,)) < 2n/3 + 3.

Proof. The result follows from the fact that for n = 2 mod 3, PEB}(T,) has a R(1)

refutation with space at most 2(n + 1)/3 4+ 1. We prove this by induction on n. The base

3.3. SEPARATION BETWEEN R(1) SPACE AND R*(1) SPACE 81

Figure 3.1: Drawing of T,

case n = 2 is clear since in Table 3.3 there is a R(1) refutation of PEB(T,) with space
3. It also holds that for any n, PEB,(T,4,) requires space at most s + 1 if PEBy(T),) can
be refuted using space s. For the induction step, let us suppose that n = 2 mod 3. By
induction hypothesis the space needed for PEB,(T,_3) is at most 2(n — 2)/3 + 1. Using the
above property we get that the space needed for PEB)(T),_,) and for PEB)(T,,_,) respectively
at most 2(n —2)/3 + 2 and 2(n —2)/3 +3 = 2(n +1)/3 + 1. By Lemma 110 IP’EB%;(TH)
requires also at most space 2(n + 1)/3 + 1. Q.E.D.

On the other hand in the case of R*(1), the space needed in a refutation of PEB,(T,,)
is at least n — 2. This follows our characterization of R*(1) space together with the lower
bound obtained in [16] on the number on points obtained by Delayer’s when playing the
combinatorial game on PEB}(G). We just need the particular case of this result when G is

T,.

Theorem 112 [16] For every n Delayer has a strateqy in which at least n — 3 points can be
scored, when playing the combinatorial game on PEB,(T,).

Corollary 113 For every n, S;(PEB,(T,)) > n — 2.

82

CHAPTER 3. SPACE AND WIDTH

Table 3.1: R(1) derivation of ¢, and &

dyds
dyds
dyds
dyds
dydy
dydy
dydy
dydy
dydy
dydy
dydy
dydy
dydy
dydy
dydy
dydy
dydy

b1b,
b1b,
b1b,
b1b,

by b,

by b,

by b,

b b,

by b,

by b,
cabsaiag
Coboayag
Co10a3
Co10a3
oy
oy

Cy

Elglalag
EleCLlag
EleCLlag
Elalag
Elalag
Elaz

C1a3

cibyaras

Cabrajay

Cabayay

3.3. SEPARATION BETWEEN R(1) SPACE AND R*(1) SPACE

Table 3.2: R(1) derivation of €; and é;

) c1 d1 d2

52 51 d1d2 élcilclcQ

Cy C1 didy €dscicy

Cy C1 didy Eydycicy E1dacico
Cy €1 dyd, €1€1C2

¢, @ dyd, €1Cy

Ez El dl dz é1

9 ¢ d,d, €, €ydicicy
Cy ¢, eydycicy €1

52 51 ézd201C2 él észClcz
52 51 ég C1C9 él

52 éz Cy él

83

CHAPTER 3. SPACE AND WIDTH

Table 3.3: R(1) refutation of PEB(T)

aasy
aray arbicicy
a2b101c2

azbicicy azbicicy

5101C2

bycyey b, by

bycicy

bycicy a,asy

bycicy ayay 1bycicy

b20102 a2b2C1 Co

bacica azbecicy agzbacicy

b26162 520162
C1C2

C1C9 El
2

3 Cy

A

3.4. SPACE SEPARATIONS FOR R*(K) 85
3.4 Space separations for R*(k)

We proof that R*(k) forms a hierarchy with respect to space. Remember that in Section 2.4
a similar result was proven for size.

Counsider the following definition from [5]. Given a CNF F over variables in X, and
a k € N, define a new formula F; this way: for any set of literals [y,...,[; over X, with
s < k, consider a new literal z;, ., meaning Iy A ... Al,. Let E(X, k) be the set of clauses
=z, Vi for i € [s] and I3 V-V =l V =z, g, Then Fy is FUE(X, k).

The following two Lemmas were proved in [5].

Lemma 114 [5] For any CNF F and k € N, if F has R(k) (resp. R*(k)) refutations of size
S, then Fr has R(1) (resp. R*(1)) refutations of size O(kS).

Lemma 115 [5] For any CNF F and k € N, if F, has R(1) (resp. R*(1)) refutations of
size S, then F has R(k) (resp. R*(k)) refutations of size O(kS).
It is not difficult to see that similar relations holds for the space.

Lemma 116 For any CNF F and k € N, if there are R(k) (resp. R*(k)) refutations of F
using space S, then there are R(1) (resp. R*(1)) refutations of Fy using space at most S+ 2.

Lemma 117 For any CNF F and k € N, if there are R(1) (resp. R*(1)) refutation of Fy,

using space S, then there are R(k) (resp. R*(k)) refutations using space at most S + 2.
We will extend Lemma 100 in to give exponential lower bounds for R*(k) space.

Lemma 118 For any CNF F over n variables and k € N, if Li(F) > S, then S§(F) >
Q(log5>.

logn

Proof. Let F be a CNF contradiction over n variables such that £;(F) > S. Lemma 115
implies that £} (Fx) > % Since the space in R(1) is always upper bounded by the number
of variables, it is easy to see that Lemma 100 in turn implies that S7(Fy) > Q(log S/ logn),
which implies the claim by Lemma 116. Q.E.D.

As a corollary of the previous lemma and the size lower bound of Corollary 74, we obtain

a space lower bound for PEBZH (G) for any constant k.

86 CHAPTER 3. SPACE AND WIDTH

Corollary 119 S;(PEB;,,(G)) > Q(n/logn).
On the other hand we can obtain constant space R*(k + 1) refutations of PEB;_,(G).
Lemma 120 S; , (PEB}_,(G)) = O(1).

Proof. Notice that the refutation presented in Theorem 63 consists of an underlying linear
treelike refutation where the leaves are replaced by complete binary trees of constant size,
because the number of leaves in these binary trees is at most (2k)**!. Tt is obvious that only
a constant number of pebbles is needed to pebble such a proof. Q.E.D.

Therefore the R*(k) space hierarchy, for k& constant, is strict.

Corollary 121 Let k > 0. There is a family of CNFE formulas F over n variables such that
Sp i (F) = O(1), but SE(F) = Q(n/logn).

3.5 Space lower bounds for R(k)

We present the concept of p-dynamical satisfiability for a CNF formula F. This concept
provides an unified way for proving space lower bounds for R(k). There are similarities
between the concept of dynamical satisfiability and the combinatorial characterization of
width in [7], but our method was found independently as the result of a detailed inspection
of the common points to all space lower bounds proofs already known ([30, 2, 15]).

In [7] it is proved that S;(F) > W(F = X) — W(F), so width lower bounds for F can be
translated into space lower bounds for F when the width of F is small. In the case of PHP the
width characterization in [7] cannot be used to derive meaningful space lower bounds as PHP
has large width, whereas the concept of p-dynamical satisfiability can provide meaningful
lower bounds for PHP. Besides width lower bounds cannot be used effectively to derive size
lower bounds when the initial width is large. To overcome this difficulty also in [7] they
transform any formula F with large clauses into the standard non-deterministic extension of
F, called EF, see [2]. The formula EF has small initial width, so the width lower bounds

for this formula can be translated into width lower bounds for the original formula F and

3.5. SPACE LOWER BOUNDS FOR R(K) 87

consequently to space lower bounds. So this method from [7] can be used instead the pu-
dynamical satisfiability to get space lower bounds. Nevertheless neither the authors of [7]
nor the authors of [29] noticed this possibility and the concept of y-dynamical satisfiability

is simpler.

Definition 122 Let F be a CNF over n variables and let 1 < pp < n. F is y-dynamically

satisfiable if there is a class Ay of partial assignments such that the following properties hold:
1. CLOSURE wunder inclusion: if « € Ay and 3 C «, then 3 € Ap;

2. EXTENDIBILITY: if a € Ay and |a| < p and C is a clause in F, then there is a partial

assignment 3 € Ay such that § J o, (C) = 1.
We show that dynamical satisfiability implies space lower bounds for R(k).

Theorem 123 Let F be an unsatisfiable CNF formula, which is u-dynamaically satisfiable.

Then Si(F) > £.

Proof. Let Ay be the class of partial assignments that makes F y-dynamically satisfiable.
Let Co, ... ,Cs be a set of configurations expressing a refutation of F in R(k). Assuming by

contradiction that S(F) < £, we build a sequence of partial assignments to the variables of

I
F, o, where 1 = 0,... ,s. These assignments have the following three properties: «; € Ap,
Cila; = 1 and |o;| < E|C;|. The contradiction is reached since no partial assignment can
satisfy C; which includes the empty clause, so S(F) > £.

Since Cy = (), o can be set as the empty assignment. Given a;, we build o,y according

to the rule used to produce C;y from C;.

o Aziom Download: Let C be the downloaded clause of F. If a clause can be downloaded,
then |C;| < p/k —1, hence |oi| < p—k < p—1, since k > 1. Since F is g-dynamically
unsatisfiable and |a;| < p, by the extendibility of Ay, there is a 3 € Ay such that
Jd aand C|sz = 1. Notice that by the closure property of Ap and the fact that C is
a clause, we can assume that 3 is setting to 1 at most on literal in C. Setting ajt1 to

B it follows that a;11 € Ay and Ciyilay,, = 1. As |B] < |a| + 1 and [Cipa| = |Ci] + 1,

then |a;q1] < k|Cig1].

88 CHAPTER 3. SPACE AND WIDTH

o Inference Adding: Set a;11 = ;. The derived k-clause is satisfied from soundness of

R(k) and a;41 € Ay because o; € Ay.

o Memory Erasing: Let C be the k-clause deleted from C; to get C;11. Clearly C; 41

1. For every k-clause C; in C;yy let 5; T o; be minimal (with respect to C) such

that C’j|gj = 1. Define a;41 = |_|j Bj. As aip1 C o and o; € Ay then by the closure

property «;4+1 € Ap. By construction C;14 = 1. Finally, as at most k& variables are

Q41

needed to satisfy a k-clause, |a;11| < E|Cipq

Q.E.D.

It is easy to prove size lower bounds for R*(k) from Theorem 123 and Theorem 107.
Since S§;(F) > Sk (F), a space lower bound for R(1) also yields a size lower bound for R*(1).

Corollary 124 If T is u-dynamically unsatisfiable, then L} (F) > 28U u/k)
The rest of this section will be devoted to prove space lower bounds for R(k) using

p-dynamical satisfiability.

3.5.1 Semiwide formulas

We show that the concept of semiwideness, introduced in [2], implies dynamical satisfiability.

Definition 125 [2] A partial assignment « for a satisfiable CNF F is F-CONSISTENT if a

does not falsify F and can be extended to an assignment satisfying T.
The notion of consistency is used to define semiwideness for a CNF' T.

Definition 126 [2/ A CNF F is u-SEMIWIDE if and only if there exists a partition T F"
of F such that ¥ is satisfiable and for any clause C in T, any F -consistent assignment «,

with |a| < p, can be extended to an ¥ -consistent assignment satisfying C.
Now we prove that semiwideness is a particular case of dynamical satisfiability.

Lemma 127 Let F be an unsatisfiable CNF over n variables. If F is u-semiwide, then F

is p-dynamaically satisfiable.

3.5. SPACE LOWER BOUNDS FOR R(K) 89

Proof. Let F',F” be the partition of F guaranteed by p-semiwideness of F. Fix
Ar = {a | «a is F'-consistent}

If a is F'-consistent, any 3 such that 3 C « is '-consistent, so Ay has the closure property.
Finally to show that Ay preserves extendibility, we prove that for any clause C' in F and any
a € Ay, such that |a| < u, there is an extension 3 of a in Ay that satisfies C. If C € F, hy
F'-consistency of a, there is a 3 extending o satisfying o and F'-consitent. Hence 3 € Ap.

If C € F”, since |a| < p, then by semiwideness of F, there is a 3 extending « satisfying
C and F'-consistent. Hence 3 € Ap. Q.E.D.

We will consider now two semiwide formulas, namely Graph Tautologies and Pigeon-
hole Principle. [2] proved that the class of contradictions GT, is F-semiwide. Hence by
Lemma 127 and Theorem 123:

Corollary 128 GT,, is J-dynamically satisfiable and Si(GT,) > 7.

Besides, these formulas provide another example that separates R(1) from R*(k). In [64]
it is proved that GT,, has polynomial size R(1) refutations, hence also polynomial size R(k)
refutations. This along with Corollaries 128 and 124 gives another proof for Corollary 78.

Alekhnovich et al. prove in [2] that for m > n, PHP” is n-semiwide, we have by
Lemma 127 and Theorem 123:

Corollary 129 For any m > n, PHP}' is n-dynamically satisfiable and S, (PHP') > %.

3.5.2 Random formulas

Recall the definition of Random Formulas from Definition 1.3.5.. A random 3-C N F formula
Fis a formula F ~ F7, . In this subsection we prove that random 3-C N F with clause/variable
ratio A > 4.6 requires Q(n/k‘AH—_) space in R(k). Our result can be extended to any /-CNF.
We need some preliminary definitions from [15].
The MATCHING GAME is a two-player game defined on bipartite graphs G = (U, V, E).

For a node u € U, let N(u) = {v € V| (u,v) € E}.

90 CHAPTER 3. SPACE AND WIDTH

The first player, Pete, is looking for a subset U’ C U unmatchable into V', downloading
vertices of U into U’ or removing vertices from U’, one at time. The second Player, Dana,
tries to delay as long as she can Pete, forcing a matching of U’ into V. During the game the
players will build a set of edges m C E and the set U’ as follows:

Initially m =) = U’. At each round only one the following occurs:

1. Pete downloads a v € U into U’, and Dana, if possible, answers by v, € N(u) such

that v is not a vertex of any edge in . Then (u,v,) is added to m;

2. Pete removes a u from U’. Then (u,v,) is also removed form m, releasing v, for a

future use by Dana.

Pete wins when no answer is possible for Dana in case 1. Dana wins the game when she
can force a matching of the whole U into V. The set m defines a partial matching in G. The
complexity of the game, M(G), is the cardinality of the smallest U’ Pete has to produce in
any strategy to win. Notice that when |U| > |V| Pete can always win and M(G) < |V|+1.
Moreover, if M(G) > k, then there is strategy for Dana such that for any U’ C U, |U| <k,
and for any «w € U \ U’ she can always find a v, to match u.

Given a CNF F, the bipartite graph Gr = (U, V, E) associated to [is defined this way:
U is the set of clauses of F, V' is the set of variables of F and (C,z) € F iff the variable =
appears (negated or not) in C. It is the clear that any partial matching m in Gy, defines an

assignment a,, that satisfies all clauses mentioned in m and such that |a,| = |m|.

Lemma 130 Let F be a CNF. If M(Gr) > p, then F is p-dynamically satisfiable.

Proof. Let F be formed by the clauses C1,... ,C;. Since M(Gy) > p, there is a strategy
S for Dana such that as long as |U’| < &, she can always extends the matching m built so
far, to any other possible clause still not in U’.

Let I ={i1,... .4} C [t] be a set of indices. We need the order of the indices in I to be
meaningful. Therefore any set .J obtained permuting the elements of I will be considered
different from I. For I C [t], let P; = {J | J is a permutation of I}. Given an ordered set
I Ct],let F; = {C; € F | i € I}, where the order of [is inherited in F;. Let moreover m;

3.5. SPACE LOWER BOUNDS FOR R(K) 91

the matching built by Dana following the strategy & when the clauses in F; are put by Pete
into U’ in the order inherited from I. Let o be the assignment associated to the matching

my. We define Ag as follows:

r= U U

IC[t)[1|Su TePr
Ay is clearly closed under inclusion by definition. Let a@ € Ay, with |a| < p and let €
be a clause in F. There is a I C [t], and a J € Py, such that @ = ay. Since there is a 1-1
correspondence between mj and the domain of ay, then |I| < p. If I € I, then C is satisfied
by a; and we have nothing to prove. Otherwise let J' = J U {l} and [is the last element
in the order of J'. |J'| < p and hence ay € Ap. Moreover ay clearly satisfies Cy, ap J ay
since [is defined as last element in the order of J'. Hence Ay verifies extendibility. Q.E.D.

When F is a random k-CNF, Ben-Sasson and Galesi in [15] proved the following result

Lemma 131 [15] Let F ~ F},, A > 4.6. For any e <1, M(Gr) > x5
which, by Lemma 130, implies
Corollary 132 IfF ~F3,, A > 4.6, then F is 115-dynamically satisfiable.

Which by Theorem 123 and Corollary 124 in turns implies:

Corollary 133 IfF ~ F% ., A > 4.6, then for each k > 1, S§(F) > Q(n/k - Alu—-_) and
Li(F) > 9Qn/k-ATEE)

3.5.3 Tseitin Contradictions

Recall the definition of Tseitin Contradictions from Section 1.3.2. To prove the R(k) space

lower bound we follow [2].

Definition 134 Let G be a connected graph over n nodes. The CONNECTIVITY EXPANSION
c(G) of a connected graph G is the the minimal number of edges to remove from G to obtain

a graph in which the largest connected component is of size at most n/2.

92 CHAPTER 3. SPACE AND WIDTH

Let G = (V, E) be a constant degree connected graph and consider the CNF T(G). Let
a be a partial assignment on variables of T(G). Let E(a) be the subset of E corresponding to

the variables assigned by «, and let Gz (@) = (Vinar(@), Emaz(a)) be the maximal connected
component in (V, E — E(a)).

Definition 135 We say that an assignment o with |o| < ¢(G) is ADMISSIBLE for T(G) if
there ezists an assignment o such that (1) o C o/, and (2) for all v € Viau(er), o satisfies
PAR,.

Note that in order admissible assignments to exist it must happen that all remaining
connected components outside V,,,, must have even weight, otherwise one small connected
component could not be satisfied.

The following lemma was proved in [2].

Lemma 136 Assume that a is admissible for T(G). Then for any vy € Vipaz () there exists

an assignment o' such that o C o' and for each vertex v # vo, o satisfies PAR,.

We will prove that Tseitin Contradictions associated to a graph G of bounded degree d
are (¢(G) — d)-dynamically satisfiable.

Theorem 137 Let G be a connected graph, then T(G) is (¢(G) — d(G))-dynamically satis-
fiable.

Proof. We define the class of partial assignments Ar(g) as:

At = {a | |a| < ¢(G) — d(G) and a is admissible}

We need to show that Ar g fulfills the properties of closure and extendibility.

For closure, if o € Ay(g), any 3 C o is also admissible. For extendibility, let o € Apg)
such that |a| < ¢(G) — d(G). Now consider any clause C from T(G). Let v be such that
C € PAR,. We will build a 3 that preserves extendibility for C. Now we split the proof in

to cases:

o v & Viar: As a is admissible we can satisfy C by setting one free variable of C. Let 3
be a plus the set variable. Clearly |3| < ¢(G)—d(G) and 3 is admissible, so 8 € Aqg).

3.5. SPACE LOWER BOUNDS FOR R(K) 93

o v € Viar: Our goal is to set a variable in C in such a way that the new biggest
connected component has odd weight and all the remaining connected components
have even weight. Let eq,...,¢; all the edges incident to v, clearly i < d(G). Let
V7 be the biggest connected component after assigning truth values to the variables

max

e1,...,€j. Any e; can be always assigned is such a way that VJ _ has odd weight. It

can happen than a new connected component is detached from VJ because it was

linked to V¥

7 . only by edge e; through v. This new connected component must have

even weight. We will set edges until one of them, say e, satisfies C. This must always
happen. Let us suppose that none of the variables e, ..., ¢,_; satisfies C. Then PAR,
after applying the assignment is either €; or €; depending on the actual weight of v.

We can set variable e; to satisfy C and V!

max

must have odd weight, otherwise we
can satisfy T(V) and so T(G) which is unsatisfiable. Note that |V: | > n/2. The
assignment 3 will be « plus e and its truth value. (is admissible because all connected

components outside V4, have even weight and as we are adding only one variable to

a clearly 8 < ¢(G) — d(G).

Q.E.D.
Linear lower bounds for Tseitin contradictions are a consequence of the following Lemma

which uses expander graphs.

Lemma 138 [66, 2] There exists a family of constant degree connected graphs G = (V, E)

with connectivity expansion Q(|V]).

Theorem 139 Let G be connected graph over n vertices provided by Lemma 138. Then for
any k > 1, Sp(T(G)) > Q(n).

94

CHAPTER 3. SPACE AND WIDTH

Chapter 4

Recapitulation

This work has dealed mainly with Proof Complexity. Our aim was to prove lower and upper
bounds for complexity measures such as size and space, related to refutational Proof Systems
as R(1), R(k) and CP.

In order to prove some of the results, for example the separation between R*(1) and R(1)
and CP* and CP, Section 2.1, or the separation between R(1) and R(2), Section 2.2, we
needed to use results from Circuit Complexity, see Theorem 24, or extend a result from [57]

for monotone boolean functions to monotone real function as we did in Section 2.1.

Separation of Proof Systems regarding different complexity measures is one of the main
aims of Proof Complexity. Section 2.1 is an intermediate step in separating treelike version
of proof systems from the daglike version. Our separation of CP* from CP, in fact from
regular R(1), represents an improvement of previous results, see [41]. Later our separation
of R(1) from R(1), was improved in [16].

We were among the first researchers interested in a recent Proof System, R(k), proposed
by Krajicek in [48]. We gave some of the first results about the size and space complexity
of this Proof System.

In Section 2.2 we solve an open problem posed by Krajicek also in [48]. We show that
R(2) does not have the feasible monotone interpolation property. That means that R(2)
refutations of certain C' N F' formulas cannot be transformed into monotone boolean circuits

of similar size, computing a function related to the CNF formula. To do so, we proved a

95

96 CHAPTER 4. RECAPITULATION

polynomial size upper bound for R(2) refutations of the C N F formula based on a Clique-
Coclique principle. As it is known that the monotone boolean circuit computing a related
function need superpolynomial size we conclude that R(2) does not have the Interpolation
property. Besides, as R(1) has this property we get a superpolynomial separation between
R(1) and R(2), which was the first separation between both systems.

In Section 2.3 we present an unpublished result that shows that R(2) lower bounds for
]P’]I-]]]P’Zl'5 provides R(1) lower bounds for IE”]I-]]]P’Zz. This was a new attempt of solving a long
standing open problem, the R(1) size for IP’]I-]]]P’Zz. Of course we do not know whether this
approach would have made the proof easier, but as the problem was solved while we were
working a it, see [56, 58], we abandoned this approach.

In Section 2.4, we study the size complexity of R*(k) It was known that R(2) was more
powerful that R(1) and R*(2) more powerful than R*(1), so a natural question was to find out
whether we can separate succesive levels of R(k) or R*(k). We show exponential separations
between successive levels of what we can call now the R*(k) hierarchy and Segerlind et al.
[63] showed separations for the R(k) hierarchy. We also prove that R(1) simulates R*(k)
which is a particular case of a theorem by Krajicek, but we can make the simulation shorter
than the general simulation.

In [30] we introduced the space complexity measure for R(1). This new measure has
been studied in several papers as for example. [2, 15, 29, 31]. In Section 3.1 we give
general results for R(1) and R*(1) space that appeared mainly in [30]. In Section 3.2 a
combinatorial characterization of R*(1) space is proved. This characterization makes easier
the task of proving bounds for R*(1) space. As in the case of the width characterization in
[7] it is also via a Player-Adversary game over CNF formulas. It would be interesting to
find a combinatorial characterization for R(1) space.

In Section 3.3 we give the first space separation from R(1) to R*(1). We show that
PEB,(G) requires less space for R(1) than for R*(1), at least one third less. In Section 3.4
we show that, as happened with respect to size, R*(k) forms a hierachy respect to space.
So, there are formulas that require nearly linear space for R*(k) whereas they have constant
space R*(k+1) refutations. In Section 3.5 all known R(1) space lower bounds from [30, 2, 15]

have been extended to R(k) in an simpler and unified way, that also holds for R(1), using

97

the concept of dynamical satisfiability from [29].

In the next table we list the bounds we have proved in this work among several related
bounds. Note that this list is not intended to be complete, for example only R(k) and CP
is mentioned. Its only purpose is to help to put in context this work. Citations in boldface
appear in this work. To interpret the table note that not all bounds follows the O and ()
notation. For the bounds not following this notation, if nothing is said in the corresponding
cell, we understand that we are referring to a lower bound. For example, the R(1) size bound
for PHP”*' is a lower bound and appeared in [38].

Last, we must recall some open problems related to this work. An interesting open prob-
lem for us, and also for Ben-Sasson [14] is the exact R(1) space complexity of PEB)(G). We
gave a nontrivial space upper bound [31] but we could not find a matching lower bound or
prove a lower upper bound matching trivial space lower bounds for PEB,(G). Our upper
bound is the first space separation between R(1) and R*(1). In [31] a combinatorial char-
acterization of R*(1) space is proved, similar to the width characterization in [7]. It will
interesting to find a combinatorial characterization for R(1) space, which may help to solve
the space complexity of PEB)(G). The space separation in [31] shows that the character-
ization of R*(1) space is not valid for R(1) space. As PEB}(G) has constant space R*(2)
refutations using the dynamical satisfiability concept only a constant space lower bound can
be proved, so if it happens that PEB}(G) requires nonconstant space R(1) refutations, the

dynamical satisfiability concept will not be a tight characterization of R(1) space.

98

CHAPTER 4. RECAPITULATION

Formulas Proof System Size Space
GEN(p, §) U COL(p,) CP~ 29U%) 18]
R(1) nO") [18]
GEN(p, §) URCOL(p, r) CP~ 29U°) 18]
Regular R(1) n%) [18]
PHP PHP"* R(1) (1.49%01)" [38]
CP n®0) [28]
PHP" R(1) 5(3)"7% 23]
R(2) e/ 1og" (6]
R(\/ tgioen) 2" [63]
PHP” R(1) 2" [56, 58] n+1[30,2, 50] V)
R(k) n/k [29]
CLIQUE,, R(1) eSllog” m/loglogm) [g]
R(2) m?() 6]
GT,, R(1) n%M) [64] n/2 [2]
R(k) n/2k [29]
PEB(G) | PEBL(G) R*(1) 20(n/logn) [16],[31] | n/logn — 2 [31]
R(1) O(n) [16]
PEB,(T,) R*(k) n — 2 [16], [31]
R(k) 2n/3 + 3 [31] ¥
PEB;, ,(G) R*(k) 2%(n/logn) [29] n/log?n [29]
R*(k+1) O(n) [29] 0(1) [29]
T(G) R(1) 2UIED [66] |G| [30, 2]
R(k) |G|/k [29]
Random Fin R(1) (1+ €)™ [26] n - AT [15]
Formulas Fi" R(2) 29(n'/*/log” n) [6]
Fi" R(k) n/k - AT [29]

1) Exact bound 2) Upper bound

Bibliography

1]

2]

R. Aharoni and N. Linial. Minimal unsatisfiable formulas and minimal non two-colorable

hypergraphs. Journal of Combinatorial Theory, Series A, 43:196-204, 1986.

M. Alekhnovich, E. Ben-Sasson, A.A. Razborov, and A. Wigderson. Space complexity
in propositional calculus. SIAM Journal on Computing, 31(4):1184-1211, 2002.

M. Alekhnovich, J. Johannsen, T. Pitassi, and A. Urquhart. An Exponential Separation
between Regular and General Resolution. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC-02), pages 448-456, New York, May 19-21
2002. ACM Press.

A. Atserias. The Complexity of Resource-Bounded Propositional Proofs. PhD thesis, De-
partament de Llenguatges 1 Sistemes Informatics. Universitat Politecnica de Catalunya,

2002. Advisors: J.L Balcdzar and M.L. Bonet.

A. Atserias and M.L. Bonet. On the Automatizability of Resolution and Related Propo-
sitional Proof Systems. In Computer Scince Logic, CSL 2002, volume 2471 of Lecture
Notes in Computer Science, pages 569-583, 2002.

A. Atserias, M.L. Bonet, and J.L. Esteban. Lower Bounds for the Weak Pigeonhole
Principle and Random Formulas beyond Resolution. Information and Computation,

176(2):136-152, 2002.

A. Atserias and V. Dalmau. A Combinatorial Characterization of Resolution Width. In
Proceedings of the 18th Annual IEEE Conference on Computational Complezity (CCC-
03), pages 239-247. IEEE Computer Society, 2003.

99

100

8]

[11]

[12]

[13]

[14]

[15]

BIBLIOGRAPHY

J.L. Balcazar, J. Diaz, and J. Gabarrd. Structural Complezity I. Springer-Verlag, New
York, N.Y., 1988.

S. Baumer, J.L. Esteban, and J. Toran. Minimally Unsatisfiable CNF Formulas. Bulletin
of the European Association for Theoretical Computer Science, 74:190—, June 2001.

Technical Contributions.

P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, P. Pudlak, and A. Woods. Ex-
ponential lower bounds for the Pigeonhole Principle. In ACM, editor, Proceedings of
the twenty-fourth annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 4-6, 1992, pages 200-220, New York, NY, USA, 1992. ACM

Press.

P. Beame, R. Karp, T. Pitassi, and M. Saks. On the complexity of unsatisfiability proofs
for random k-CNF formulas. In ACM, editor, Proceedings of the thirtieth annual ACM
Symposium on Theory of Computing: Dallas, Texas, May 25-26, 1998, pages 561-571,
New York, NY, USA, 1998. ACM Press.

P. Beame, R. Karp, T. Pitassi, and M. Saks. The efficiency of Resolution and Davis-
Putnam procedures. SICOMP: SIAM Journal on Computing, 31(4):1048-1075, 2002.

P. Beame and T. Pitassi. Simplified and Improved Resolution Lower Bounds. In 37th
Annual Symposium on Foundations of Computer Science, pages 274-282, Burlington,
Vermont, 14-16 October 1996. IEEE.

E. Ben-Sasson. Size Space Tradeoffs for Resolution. In Proceedings of the 34th An-
nual ACM Symposium on Theory of Computing (STOC-02), pages 457-464, New York,
May 19-21 2002. ACM Press.

E. Ben-Sasson and N. Galesi. Space Complexity of Random Formulae in Resolution.
In Frances M. Titsworth, editor, Proceedings of the Sithteenth Annual Conference on
Computational Complexity (CCC-01), pages 42-51, Los Alamitos, CA, June 18-21
2000. IEEE Computer Society. To appear in Random Structures and Algorithms.

BIBLIOGRAPHY 101

[16]

[19]

[20]

[21]

23]

[24]

E. Ben-Sasson, R. Impagliazzo, and A. Wigderson. Near-Optimal Separation of Treelike
and General Resolution. In Electronic Colloguium on Computational Complezity, Report

TR02-005, 2000. To appear in Combinatorica.

E. Ben-Sasson and A. Wigderson. Short proofs are narrow — Resolution made simple.

Journal of the ACM, 48(2):149-169, 2001.

M.L. Bounet, J.L. Esteban, N. Galesi, and J. Johannsen. On the Relative Complex-
ity of Resolution Refinements and Cutting Planes Proof Systems. SIAM Journal on
Computing, 30(5):1462-1484, October 2001.

M.L. Bonet and N. Galesi. Optimality of Size-Width Tradeoffs for Resolution. Compu-
tational Complexity, 10(4):261-276, 2001.

M.L. Bonet, T. Pitassi, and R. Raz. Lower Bounds for Cutting Planes Proofs with
Small Coeflicients. The Journal of Symbolic Logic, 62(3):708-728, September 1997.

R.B. Boppana and N. Alon. The monotone Circuit Complexity of Boolean Functions.
Combinatorica, 7(1):1-22, 1987.

J. Buresh-Oppenheim, D. Mitchell, and T. Pitassi. Linear and Negative Resolution are
Weaker than Resolution. Electronic Colloquium on Computational Complexity, Report

TRO1-074, 2001.

S.R. Buss. Polynomial sized proofs of the Pigeonhole Principle. Journal of Symbolic
Logic, 52(4):916-927, 1987.

S.R. Buss and T. Pitassi. Resolution and the Weak Pigeonhole Principle. In Computer
Science Logic, 11th International Workshop, CSL’97, volume 1414 of Lecture Notes in

Computer Science, pages 149-156. Springer Verlag, Berlin, Heidelberg, New York., 1998.

S.R. Buss and G. Turan. Resolution Proofs of Generalized Pigeonhole Principles. The-
oretical Computer Science, 62(3):311-317, December 1988.

V. Chvétal and E. Szemerédi. Many hard examples for Resolution. Journal of the ACM,
35(4):759-768, October 1988.

102

[27]

28]

[31]

[32]

[34]

[35]

BIBLIOGRAPHY

S.A. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44:361f, 1979.

W. Cook, C.R. Coullard, and G. Turan. On the complexity of Cutting Planes proofs.
Discrete Applied Mathematics, 18:25-38, 1987.

J.L. Esteban, N. Galesi, and J. Messner. On the Complexity of Resolution with Bounded
Conjunctions. In 29th International Colloquium, ICALP 2002, volume 2380 of Lecture
Notes in Computer Science, pages 220-231, 2002.

J.L. Esteban and J. Toran. Space Bounds for Resolution. Information and Computation,

171(1):84-97, 2001.

J.L. Esteban and J. Toran. Combinatorial characterization of treelike Resolution space.

Information Processing Letters, 87(6):295-300, 2003.

X. Fu. Lower bounds on sizes of cutting planes proofs for modular coloring principles. In
P. Beame and S.R. Buss, editors, Proof Complexity and Feasible Arithmetics, DIMACS
Ser. Discrete Math. Theoret. Comput. Sc., pages 135-148. AMS, 99.

N. Galesi. On the Complezity of Propositional Proof Systems. PhD thesis, Departa-
ment de Llenguatges 1 Sistemes Informatics. Universitat Politecnica de Catalunya, 2000.

Advisor M.L. Bonet.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to NP-

Completeness. W.H. Freeman and Company, San Francisco, California, 1979.

A. Goerdt. Davis-Putnam Resolution versus unrestricted Resolution. Annals of Math-

ematics and Artificial Intelligence, 6:169-184, 1992.

A. Goerdt. Unrestricted Resolution versus N-resolution. Theoretical Computer Science,

93(1):159-167, February 1992.

A. Goerdt. Regular Resolution versus Unrestricted Resolution. SIAM Journal on Com-
puting, 22(4):661-683, August 1993.

BIBLIOGRAPHY 103

[38]

[39]

[41]

[42]

[43]

[48]

A. Haken. The intractability of Resolution. Theoretical Computer Science, 39(2-3):297-
308, August 1985.

A. Haken and S.A. Cook. An Exponential Lower Bound for the Size of Monotone Real
Circuits. JCSS: Journal of Computer and System Sciences, 58, 1999.

R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and Lower Bounds for Tree-
Like Cutting Planes Proofs. In Proceedings, Ninth Annual IEEE Symposium on Logic
in. Computer Science, pages 220-228, Paris, France, 4-7 July 1994. IEEE Computer

Society Press.

J. Johannsen. Lower bounds for monotone real circuit depth and formula size and

tree-like Cutting Planes. Information Processing Letters, 67(1):37-41, 16 July 1998.
S. Jukna. Combinatorics of monotone computations. Combinatorica, 19(1):65-85, 1999.

M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-

logarithmic depth. SIAM Journal on Discrete Mathematics, 3(2):255-265, May 1990.

H. Kleine-Bining and Th. Lettmann. Aussagenlogik: Deduktion und Algorithmen. B.G.
Teubner, Stuttgart, 1994.

J. Krajicek. Lower Bounds to the Size of Constant-Depth Propositional Proofs. The
Journal of Symbolic Logic, 59(1):73-86, March 1994.

J. Krajicek. Interpolation Theorems, Lower Bounds for Proof Systems, and Indepen-
dence Results for Bounded Arithmetic. The Journal of Symbolic Logic, 62(2):457-486,
1997.

J. Krajicek. Interpolation by a Game. Mathematical Logic Quarterly (formerly
Zeitschrift fir Mathematische Logik und Grundlagen der Mathematik), 44:450-458,
1998.

J. Krajicek. On the Weak Pigeonhole Principle. Fundamenta Mathematicae, 170(1-
3):123-140, 2001.

104

[49]

[53]

[54]

[56]

[58]

[59]

BIBLIOGRAPHY

A. Maciel, T. Pitassi, and A.R. Woods. A new proof of the Weak Pigeonhole Principle.
In ACM, editor, Proceedings of the thirty second annual ACM Symposium on Theory
of Computing: Portland, Oregon, May 21-23, [2000], pages 368-377, New York, NY,
USA, 2000. ACM Press.

J. Messner. Space upper bound for the Pigeonhole Principle. Unpublished, 1999.
C.H. Papadimitriou. Computational Complexity. Addison-Wesley, New York, 1994.

J.B Paris, A.J. Wilkie, and A.R. Woods. Provability of the Pigeonhole Principle and
the Existence of Infinitely Many Primes. JSL: Journal of Symbolic Logic, 53, 1988.

W.J. Paul, R.E. Tarjan, and J.R. Celoni. Space Bounds for a Game on Graphs. Math-
ematical Systems Theory, 10:239-251, 1977.

P. Pudlak. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone
Computations. The Journal of Symbolic Logic, 62(3):981-998, September 1997.

P. Pudlak and R. Impagliazzo. A lower bound for DLL algorithms for k-SAT. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 128-136, N.Y., January 9-11 2000. ACM Press.

R. Raz. Resolution Lower Bounds for the Weak Pigeonhole Principle. In Proceedings of
the 34th Annual ACM Symposium on Theory of Computing (STOC-02), pages 553-562,
New York, May 19-21 2002. ACM Press.

R. Raz and P. McKenzie. Separation of the Monotone NC Hierarchy. Combinatorica,
19(3):403-435, 1999.

A A. Razborov. Improved Resolution Lower Bounds for the Weak Pigeonhole Principle.
In Electronic Colloguium on Computational Complexity, TR01-055, 2001.

A A. Razborov. Proof Complexity of Pigeonhole Principles. In 5th International Con-

ference on Developments in Language Theory, 2001.

BIBLIOGRAPHY 105

[60]

[61]

[62]

[63]

[66]

[67]

[68]

J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Journal
of the ACM, 12(1):23-41, January 1965.

A. Rosenbloom. Monotone real circuits are more powerful than monotone Boolean

circuits. Information Processing Letters, 61(3):161-164, March 1997.
J. Savage. Models of Computation. Addison-Wesley, 1998.

N. Segerlind, S. Buss, and R. Impagliazzo. A Switching Lemma for Small Restric-
tions and Lower Bounds for k-DNF Resolution (extended abstract). In FOCS: IEEE
Symposium on Foundations of Computer Science (FOCS), 2002.

G. Stalmarck. Short Resolution Proofs for a Sequence of Tricky Formulas. Acta Infor-
matica, 33(3):277-280, 1996.

G.S. Tseitin. On the complexity of derivation in propositional calculus. In Studies in
Constructive Mathematics and Mathematical Logic, Part 2., pages 115-125. Consultants
Bureau, 1968.

A. Urquhart. Hard Examples for Resolution. Journal of the ACM, 34(1):209-219,
January 1987.

A. Urquhart. The Complexity of Propositional Proofs. Bulletin of Symbolic Logic,
1(4):425-467, 1995.

P. van Emde-Boas and J. van Leeuwen. Move rules and trade-offs in the pebble game.

Lecture Notes in Computer Science, 67:101-112, 1979.

