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ABSTRACT

These essays propose different measures of economic uncertainty
and evaluate its impact at the microeconomic and macroeco-
nomic level. The first essay in Chapter 2 proposes a measure
of macroeconomic uncertainty that allows to distinguish its vari-
ous components. Metrics of Knightian uncertainty and risk are
proposed, and their respective impact on a number of economic
aggregates is evaluated. Chapter 3 extends the classical approach
to measuring uncertainty — a mean squared error-based quantity —
to entropy methods in econometrics. Several information-theoretic
measures of uncertainty are motivated, derived, and estimated
on two data sets: the Survey of Professional Forecasters used in
Chapter 2, to show that the conclusions hold with this different
approach; and the Survey of Economic Expectations, to show
how information theoretic measures of uncertainty can help study
different situations not afforded by the mean-squared error ap-
proach. Chapter 4 studies uncertainty from the point of view of
forecasting and propose a measure of forecasting uncertainty to
study how business cycles can affect this particular dimension of
Knightian uncertainty. Chapter 5 considers the question of the
efficacy of fiscal policy in periods of uncertainty, and does so in a
way that accounts for the comovements of economic uncertainty
with recessions through an conditional adjustment to the classical
smooth-transition state dependent models. Chapter 6 concludes.
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RESuUM

Aquesta tesi proposa diferents mesures d’incertesa economica i
avalua el seu impacte a nivell microeconomic i macroeconomic. El
primer assaig, al Capitol 2, proposa una mesura de la incertesa
macroeconomica que permet distingir entre les seves multiples
components. Es proposen metriques d’incertesa i risc de Knight, i
se n’avaluen els seus respectius impactes sobre diverses magnituds
economiques. En el Capitol 3 s’amplia 'enfocament classic per
la mesura de la incertesa — l’error quadratic mig — als metodes
d’entropia en econometria. Les diverses mesures d’incertesa que fan
servir la teoria la informacié estan motivades, derivades i estimades
en dos conjunts de dades: el Survey of Professional Forecasters,
que s’utilitza al Capitol 2 per demostrar que les conclusions es
mantenen amb aquest nou enfocament; i el Survey of Economic
Expectations, que es fa servir per mostrar com aquestes mesures
d’informacié poden ajudar a estudiar situacions diferents que els
metods classics amb error quadratic mig. El Capitol 4 estudia la
incertesa des del punt de vista de la prediccid i proposa una mesura
d’incertesa de previsio per estudiar com els cicles economics poden
afectar aquesta dimensié particular de la incertesa knightiana.
El Capitol 5 examina la qiiestié de l'eficacia de la politica fiscal
en periodes d’incertesa, i ho fa de manera que ajusta per als
moviments de la incertesa economica amb les recessions. També es
proposa una nova clase de models depenents de ’estat que inclou
condicionalitat. El Capitol 6 conté les conclusions.



RESUMEN

Esta tesis propone diferentes medidas de incertidumbre econdémica
y evaltia su impacto a nivel microeconémico y macroeconémico.
El primer ensayo en el Capitulo 2 propone una medida de la
incertidumbre macroeconémica que permite distinguir entre sus
diversos componentes. Se proponen métricas de incertidumbre
y riesgo de Knight, y se evaltian sus respectivos impactos sobre
diversas cantidades econémicas. El Capitulo 3 amplia el enfoque
clasico para medir la incertidumbre - del error cuadratico medio
-, a los métodos de entropia en econometria. Varias medidas
de incertidumbre que utilizan la teoria de la informacién estan
motivadas, derivadas y estimadas en dos conjuntos de datos: el
Survey of Professional Forecasters que se utiliza en el Capitulo 2
para demostrar que las conclusiones se mantienen con este nuevo
enfoque y el Survey of Economic Expectations, para mostrar como
estas medidas de informacién pueden ayudar a estudiar situaciones
diferentes de las que los métodos clasicos con error cuadratico
medio permiten. El Capitulo 4 estudia la incertidumbre desde el
punto de vista de la prediccién y propone una medida de incer-
tidumbre de previsién para estudiar cémo los ciclos econémicos
pueden afectar a esta dimensién particular de la incertidumbre
knightiana. El Capitulo 5 examina la cuestion de la eficacia de
la politica fiscal en periodos de incertidumbre, y lo hace de una
manera que tiene en cuenta los movimientos de la incertidumbre
econdémica con las recesiones. Ademds, se propone una nueva clase
de modelos dependientes del estado que incluye condicionalidad.
El Capitulo 6 concluye la tesis.
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INTRODUCTION

On the other hand, who would doubt that he lives, remembers,
understands, wills, thinks, knows, and judges? For even if he
doubts, he lives; if he doubts, he remembers why he doubts;
if he doubts, he understands that he doubts; if he doubts, he
wills to be certain; if he doubts, he thinks; if he doubts, he
knows that he does not know; if he doubts, he judges that
he ought not to consent rashly. Whoever then doubts about
anything else ought never to doubt about all of these; for if
they were not, he would be unable to doubt about anything at
all.

— Saint Augustine of Hippo, On The Trinity

1
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INTRODUCTION

Aristotle’s Metaphysics opened with the following: “All men by nature
desire to know” and for a long time knowledge was confined to pure
determinism. Although the concept of uncertainty stands at the crux of
epistemology, the science of knowledge, it has been given varying atten-
tion throughout the ages. Artistotle’s concept of truth was limited by the
sensible and measurable, and consequently by the mathematical systems
of his time. His epistemology accepted and left room for uncertainty but
saw it as belonging to the realm of divine action. Medieval knowledge
theory embraced the amount of determinism that escaped the cognitive
capacity of men until modern science emerged in the seventeenth century.
Perhaps Galileo and Newton’s most understated contribution was their
putting of Nature and its rules within mathematical law and above
simple categories of understanding that they belonged to in the past.
By doing so, scientific knowledge on the laws of Nature inherited the
strength of mathematical theorems. And it would not be long before the
scientific community started having similar demands for other domains
of knowledge. Past then, certainty progressively became a convenient
crutch to rely on in the quest to fulfill the “desire to know” of the
philosopher.

Fast forward to modern times, advances in probability and statistics
have given a seemingly very precise meaning to the concept of uncertainty.
In a desire to understand increasingly complex problems, the second half
of the twentieth century saw the development of advanced computational
methods applied to a variety of domains followed by an increase in
computing power. Together, they allow scientists to turn their efforts
to bigger, more complex models consisting of thousands of variables
and parameters under the idea that the greater number of parameters,
the closer to reality and the smaller the prediction error. But the sheer
complexity of these models comes with a greater need for data, a need
that is beyond what is available at the moment. Overidentified models’
parameters cannot be accurately estimated. Model simplification is
frowned upon. In economics and in macroeconomics in particular, the



inability to validate intricate theories via observations constitutes an
existential crisis for the dismal science. The symptom of this is a
profound epistemological uncertainty.

The idea that unequivocal knowledge need not be achievable is the
pet peeve of a great many scientists. It haunted Immanuel Kant until
he could carry epistemology through the Copernican revolution and
qualify the bounds of human knowledge — safe for metaphysics, there
is no such thing as certain a priori knowledge beyond a reasonable
doubt. Economics is not exempt for this caveat. While the discipline
has strayed through the unrealistic assumption that agents possess a
model of the economy that behaves according to their expectations (a
Kantian a priori judgment of sort), it has recently come back to the
more realistic observation that agents face a good degree of irreducible
uncertainty much like real-world scientists do.

This chapter shows how economics has worked with the concept of
uncertainty for the past few centuries. Because economics was born at
the crossroads of mathematics and philosophy, it is natural to study
how both influenced the frameworks retained to study uncertainty in
economics. From there, we will see how economics converged towards
certain definitions of uncertainty, and how these restrictions affected the
conclusions reached on its effects or its measurement. This in turn will
justify the approaches retained in this dissertation, which are presented

in the last section of this chapter.

A BRIEF HISTORY OF UNCERTAINTY

Uncertainty always was related to probability. The Christian concept
of providence left the undetectable divine actions appear random to
man; any apparent chaos was still a part of the divine purposeful “plan.”
The seeming of chance is simply a reflection of the complexity of the
system in which God acts. A reasonable explanation for putting all

chance to an external, supra-human entity, is that lack of a unified
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theory of uncertain outcomes at the time. The first probabilistic grasp
of uncertainty can be attributed to Gerolamo Cardano in his Liber de
ludo aleae (Book on Games of Chance) in 1563, which was essentially the
first version of uniform probability. It was, however, really formalized
in the works of Pascal and Fermat in the seventeenth century. A
devoted Christian, Pascal did not think that chance and the existence of
God conflicted. Through his theory of probability, he “put the certain
in the uncertain.” Christiaan Huygens in the seventeenth century,
Thomas Bayes and Leonhard Euler in the eighteenth century, and
Pierre-Simon Laplace in the nineteenth century, all pursued and built
on Pascal’s earlier breakthrough. In parallel, some progress was made
on trying to understand human behavior in front of uncertainty. The
first theory of behavior under uncertainty can be attributed to Nicolaus
Bernoulli in 1738, explaining the “Saint Petersburg Paradox” proposed
by his cousin Daniel, defining the concept of risk aversion for the first
time. This theory of expected values would later give birth to that of
expected utilities axiomatized by Von Neumann and Morgenstern in
1944 and, albeit very differently, by Savage in 1954. The seventeenth
century also saw the emergence of epistemology as it is known today
and the first attempts at understanding the limits of human reason.
David Hume would assert that the only thing we could have certain
knowledge about was the past. The only way to anticipate the future is
to evaluate and to interpret our knowledge about the past by assuming
the uniformity of the past and future — which is what econometrics
would later call “stationarity.” Kant would later reject such empiricism
and put man at the center of an achievable knowledge that he had so
clearly circumscribed. Great progress was made on understanding risks,
random events, and knowledge, but little was done, however, on the
actual definition of uncertainty. The concept started to be applied to a
wider array of sciences, such as physics and biology but was still confined
to “what is not known with certainty.” And whatever was not (yet)
understood under the laws of probability was considered an area that



science would later go on to unveil.
Laplace was first to recognize the uncertainty in making predictions
but like many he attributed such uncertainty to ignorance.

We ought then to regard the present state of the universe as
the effect of its anterior state and the cause of the one which
is to follow. Given for one instant an intelligence which could
comprehend all the forces by which nature is animated and
the respective situation of the beings who compose it — an
intelligence sufficiently vast to submit this data to analysis
— it would embrace in the same formula the movements of
the greatest bodies of the universe and those of the lightest
atom; for it, nothing would be uncertain and the future, as
the past, would be present in its eyes.

Laplace, 1814

Laplace speaks of an intelligence that can grasp the movements of all
bodies, but does not claim that such intelligence exists and leaves a
question mark on the possibility of human omniscience. It is to Frank
Knight that we owe the earliest distinction between uncertainty and
risk. Knight starts by pursuing Laplace’s idea that at least some of
the observable events unraveling around us do not seem to have easily
calculable odds. There exist even more “radical” situations of uncertainty
where the possible outcomes are unknown. In an oversimplification of
his concepts, risk meant to Knight situations in which one could assign
probabilities to outcomes and by uncertainty situations in which one
could not. Knight’s uncertainty is often thought to be something different
than it really is — a homothetic transformation of our ignorance. It
is important to note, however, that Knight maintained that (radical)
uncertainty was in essence a probabilistic phenomenon:

It is true, and the fact can hardly be over-emphasized, that
a judgment of probability is actually made in such cases.
Knight, 1921
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(Knight called these probabilities “estimates”.) Although they sharply
disagreed on political economy issues, Keynes did borrow a lot from
Knight’s theory of uncertainty. Keynes view the importance of probabil-
ities more for how decision makers could order them to form a decision,
even though the actual numbers may not be possible to figure out. Chap-
ter 12 of the General Theory of Employment, Interest and Money even
discusses the implication of radical uncertainty (without giving much
credit to Knight). Shackle offered a different take on “non-probabilistic
beliefs” by introducing the concept of “potential surprise”, echoing
Knight’s unknown outcomes and odds. Some decades later, Savage will
go on to build a theory around subjective probabilities to solve the yet
unanswered question of how probabilities come to agents — a stone which
Knight had left unturned. Some years later, Savage would build the
first alternative to expected utility with an axiomatic characterization of
expected subjective utility. Related to the subjectiveness of uncertainty,
Ellsberg introduces in 1961 the concept of “ambiguity” to describe a

particular type of uncertainty:

The nature of one’s information concerning the relative like-
lihood of events... a quality depending on the amount, type,
reliability and ‘unanimity’ information, and giving rise to
one’s degree of ‘confidence’ in an estimation of relative like-
lihoods.

Ellsberg, 1961

An important feature that subjective probability theory introduced is
that even though agents might not form actual probabilities in their
utility maximization, they behave as if they did. More and more,
models featuring uncertainty became the norm, culminating in macroe-
conomics with dynamic stochastic general equilibrium (DSGE) models
and bounded rationality in microeconomics. All it took was a down-
turn of the amplitude of the Great Recession to bring it back to the
center of the attention of (macro)economists. In a seminal 2009 paper,



Bloom analyzed the effects of uncertainty shocks. Back then, uncertainty
was defined in a purely probabilistic and aggregate sense, much like
macroeconomic volatility.

While I have directed the content of this historical review towards
economics, it should be noted that similar concerns emerged in other sci-
ences. Advances in “hard sciences” allowed refinements of the taxonomy
of uncertainty — parameter uncertainty, model uncertainty, experimental
uncertainty, etc. — all of which are fertile grounds for understanding the
uncertainty faced by the homo economicus. Perhaps the most famous
example is Heisenberg’s uncertainty principle in quantum mechanics in
1927 which some “heterodox” economists try to include in the discipline.
Overall, the second half of the twentieth century was marked by a
clear trend in trying to think deeper on the concept of uncertainty, but
not until very recently has uncertainty been paid more attention to in

economic modeling.

THE GROWING PLACE OF UNCERTAINTY IN MACROE-
CONOMICS

It is often forgotten that Adam Smith’s Wealth of Nations already
discussed the pernicious effects of “incertitude.” Smith pointed that a
lack of safety in society could result in money being diverted away from
its primary function of facilitating the exchange of present consumption
goods and capital, which were the prerequisite to an increase in the
wealth of nations. Lowering “incertitude” and increasing security was
the main mission of the regalian state. Taxation uncertainty would have
the same effect. Jean-Baptiste Say voices a very similar concern:

The greatest encouragement for circulation is the desire
everyone has, especially producers, to lose as little interest
as possible on the funds engaged in the exercise of their
industry. Circulation slows more due to the obstructions it
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faces than due to an absence of encouragements it might
have received. Wars, embargoes, onerous fees to discharge,
the danger or difficulty of communication obstruct it. It is
also slow in periods of fear and uncertainty, when public
order is threatened and all types of enterprise hazardous. It
is slow when one expects arbitrary taxation, and is forced
to hide his resources. It is slow in periods of speculation
when sudden variations caused by wagering on commodities
causes some people to hope for a sudden windfall caused
by a simple variation in prices. Consequently, merchandise
awaits a rise in price and money a fall; and both reflect idle
capital, useless to production.

Say, 1803

Contrary to the presentation of early microeconomic theory that is made,
uncertainty was not put aside during the Marginal Revolution at the
end of the nineteenth century. Jevons considered that uncertainty was
the true reason for discounting future utility and not simply the time
difference. He even went as far as claiming that future outcomes known
with certainty should not be discounted. While he centered his analysis
around individual behavior, Jevons claimed that “ignorant” — from not
being able to reduce uncertainty — discounting was the root of a sub-
optimal savings rate and could explain differences in development and
poverty. It is clear, however, that while uncertainty was not forgotten it
didn’t have nearly the role that it has in modern economic theory. Léon
Walras’s general equilibrium is, for that matter, completely exempt of
such considerations.

It was not until after World War I and macroeconomics was born that
economists starting really theorizing on uncertainty. Keynes’s analyzes
uncertainty in chapters 6 and 26 of the Treatise on Probability in 1921.
For Keynes uncertainty is a decreasing function of the weight of evidence
rather than a properly defined probability distribution; his vision of



uncertainty is sometimes referred to as “distribution intervals.” In the
General Theory, Keynes actually had a grasp of uncertainty similar to
that of Smith:

By “uncertain” knowledge, let me explain, I do not mean
merely to distinguish what is known for certain from what
is only probable. The game of roulette is not subject, in
this sense, to uncertainty; nor is the prospect of a Victory
bond being drawn. Or, again, the expectation of life is only
slightly uncertain. Even the weather is only moderately
uncertain. The sense in which I am using the term is that in
which the prospect of a European war is uncertain, or the
price of copper and the rate of interest twenty years hence,
or the obsolescence of a new invention, or the position of
private wealth-owners in the social system in 1970. About
these matters there is no scientific basis on which to form
any calculable probability whatever. We simply do not
know. Nevertheless, the necessity for action and for decision
compels us as practical men to do our best to overlook this
awkward fact and to behave exactly as we should if we
had behind us a good Benthamite calculation of a series of
prospective advantages and disadvantages, each multiplied
by its appropriate probability, waiting to be summed.
Keynes, 1936

Keynes believed that removing all uncertainty was virtually impossible,
but additional information can tilt the scale of evidence and help rational
decision making. To discuss the impact of uncertainty in the economy,
Keynes brought about the concept of “animal spirits”: in the face of
deep uncertainty, only a manic strong-willed person would put capital at
risk. When animal spirits are strong, investment is sufficient to maintain
aggregate demand; when they lag, aggregate demand falls, and the
economy lapses into depression. It is because animal spirits may not be
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readily present that uncertainty may make the economy plunge into a
recession. It is often thought that “animal spirits” refer to factors that
may hinder agents from investing, whereas it is precisely the opposite.
Animal spirits described the psychological urge to invest in spite of
uncertainty; animal spirits for him were neither rational nor irrational.
However large the role of uncertainty in Keynesian economics, there
is absolutely nothing in the General Theory on how expectations are
formed.

The 1950s saw major advancements in mathematical economics and
consequently on the modeling of uncertainty. In 1954, Arrow and Debreu
proved the existence of competitive equilibria mathematically. Five years
later, Debreu extended the framework to uncertain states using what
would later be known as “Arrow-Debreu securities.” Only a couple of
months later John Muth would start what is known as the “Rational
Expectations Revolution” in macroeconomics. Not only did Muth make
uncertainty a sine qua non feature of any respectable macroeconomic
model, but it also dictated how agents should perceive and experience
uncertainty. Deirdre McCloskey writes about rational expectations:

Muth’s notion was that the professors [of economics|, even if
correct in their model of man, could do no better in predict-
ing than could the hog farmer or steelmaker or insurance
company. The notion is one of intellectual modesty... The
common sense is “rationality”: therefore Muth called the
argument “rational expectations”.

McCloskey, 1998

Furthermore, all agents form predictions such that they are never sur-
prised by outcomes. Lucas later worked on putting Muth’s ideas into
application in standardized macroeconomic models. Macroeconomics
worked under rational expectations for decades until some started ex-
pressing concerns on the veracity of such a framework. Gilboa and
Schmeidler in 1989 and several years later Chistopher Sims blew the



whistle on the representativeness of such perfect forecasters in economic
models. Since then, research on modeling uncertainty in macroeconomics
has been very active and the agenda is extremely wide.
Macroeconomics only recently touched the issue of the difficulty of
defining uncertainty. Representative agents models miss the mark by
making uncertainty a purely exogenous phenomenon that applies to
everyone in the same degree. Heterogeneous agents models, too, still
struggle to find a credible source of aggregate uncertainty that is not
the only the result of agents expectations. This central ambiguity is
why Ian Hacking called probability “Janus-faced” in 1984: Probability
has a (statistical) connection with the tendency of certain processes
to show stable long-run frequencies on repeated trials, and it is also
(epistemologically) concerned with how the human agent forms degrees
of belief or credence on the basis of knowledge of such frequencies
and other things, and hence how he or she decides to act. The same
naturally applies to uncertainty. At the same time, the macroeconomics
of uncertainty have eschewed the question of defining uncertainty at
aggregated and disaggregated levels of the economy. Is macroeconomic
uncertainty the uncertainty of a representative agent? Is it the sum
of individual uncertainties? Is it measured by how much expectations
diverge from one another? All these questions have not been really
addressed and in these four essays I try to bring some answers.

A ROADMAP

I summarized and at times bastardized theories that have been devel-
oped over the past centuries with the sole purpose of demonstrating
that in the study of economic uncertainty, a stance has to be taken.
Saint Augustine of Hippo had seen that doubt and uncertainty defined
existence. Instead of eschewing those, economics should embrace them
and make them the center of the behavior of the agents it studies. This

dissertation contributes to this goal by laying out elements of research
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on the modeling and measure of uncertainty in macroeconomics.

The second chapter represents a first attempt at distinguishing
unknown unknowns from predictable risk. The decomposition that is
presented relies on the use of density forecasts and their high information
content on agents’ beliefs. While the first person has been changed
for consistency of speech with the rest of this dissertation, all the
research presented in the second chapter is joint work with Barbara
Rossi and Tatevik Sekhposyan, to which I am immensely grateful for
including me in such an exciting project. The third chapter presents a
different approach that uses the tools from Claude Shannon’s theory of
information. Beyond tying the previous chapter’s results into perhaps
the most influential mathematical theory of uncertainty ever conceived,
this chapter generalizes measures of uncertainty to other situations than
simple forecast errors. The fourth chapter bounces on the concept of
“confidence” and Knightian “impossibility to formulate odds” to offer a
measure of forecasting model uncertainty. While a very specific part
of uncertainty, forecasting uncertainty has important implications from
the point of view of policy makers. The fifth chapter tries to pin down
how uncertainty affect economic policy; more specifically if uncertainty
warrants government intervention as advised by Keynes himself. The

sixth and last chapter concludes.



UNDERSTANDING THE SOURCES
OF MACROECONOMIC
UNCERTAINTY

My biggest concern is concern. The biggest risk we face is
uncertainty.

— Patrick T. Harker, 2017

2.1 INTRODUCTION

There are a lot of ways to understand the notion of uncertainty in
economics. Beyond the simple intellectual debate, however, it is crucial
to understand which type of uncertainty is dealt with because they
may very well have different macroeconomic impacts. An increase

13
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in predictable risk can be (optimally) insured against. A blurring
of the distribution of next period’s states cannot. Patrick Harker’s
paraphrasing of Franklin D. Roosevelt’s: “the only thing we have to fear
is fear itself” displays a confusing mix of concepts. Uncertainty and risk
are very different objects. And whether there is really one to be feared
above all others can’t be decided upon without a proper measurement
of each one’s effects.

In this chapter I' will adopt the simplifying distinction of Knightian
and “non-Knightian” uncertainty, also commonly coined “risk.” Risk
refers to situations where one can pin down the odds of the unknown with
near perfect accuracy,? that is, one knows the probability distribution of
the stochastic states of nature in the future. Knight, much like Keynes,
refers to “uncertainty” as the absence of such knowledge. This could
either happen because there is no sensible ways of forming odds on
future events, or because the range of possibles is unfathomable. In
probability theory terms, either the density or its support is unknown.
Another related concept that is often thought to be uncertainty is
disagreement, following the logic that if agents disagree on something —
e.g., a probability distribution — then they are facing uncertainty.

It should be clear by now that uncertainty is a fundamentally proba-
bilistic concept and that any attempt to measure it should rely on beliefs.
Note that while uncertainty appears to fall upon ex-ante predictions, the
unraveling of it makes it a phenomenon of ex-post nature all the same.
In spite of these well accepted qualifications of uncertainty, the literature
has made very sparse use of probability data thus far. Attempts at
quantifying uncertainty have been made using either point forecasts
(Jurado et al., 2015) or non-probabilistic data (Baker et al., 2015). Most

! This chapter is joint work with Barbara Rossi and Tatevik Sekhposyan, with can
be found on SSRN as “Understanding The Sources Of Macroeconomic Uncertainty.”

2Say, the odds of each face of a fair die.

3In fact, Knight explains the existence of profit even under near perfect competi-
tion by the unraveling of uncertainty. Knight’s theory discarded rational expectation
equilibria before they even existed.
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efforts have been directed at the measurement of economic uncertainty
together with quantities that are believed to share a relationship with
it, such as disagreement. Yet, none of the measures that were developed
depict more than one aspect of economic uncertainty, and it is not clear
how they relate to each other to start with. Nor is there a distinction
made between ex-ante and ex-post uncertainty.

In this chapter, I propose a decomposition of forecast errors to
distinguish between Knightian uncertainty (ambiguity) and risk using
survey forecast data from the Survey of Professional Forecasters. The
decomposition quantifies overall uncertainty as well as the evolution of
the different components of uncertainty over time and investigates their
importance for macroeconomic fluctuations. Furthermore, I investigate
how the different sources of uncertainty resolve over time as forecasters
get closer in time to the event. The behavior and evolution of the various
components of the decomposition matches that of a macroeconomic
model that features ambiguity and risk, comforting the observations
made in the data.

2.2 A NEW SYNTHETIC MEASURE OF UNCERTAINTY

The new uncertainty index measures the distance, on average across
forecasters, between the forecast distribution provided by an individual
forecaster and the perfect forecast corresponding to the realization, where
both are represented by cumulative distribution functions (CDFs).* The
perfect forecast is denoted by x;yp, which formally is a random variable
equal to one when the actual realization y;4, is below some threshold r
and it is zero otherwise: x4 (1) = 1 (y4n < 7).° Note that zyyp, (r) is
defined over the support r, r € R; by varying r, we can focus on different
parts of the predictive distribution. Let P, ;. 4;(7) be the probability

4As explained later, this measure of uncertainty is similar to a Continuous Rank
Probability Score (CRPS).
5This notation is consistent with Hersbach (2000).
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forecast of the outcome x;1,(r) being equal to one made by forecaster
s, s=1,...,N,ie. Ps,t+h|t(r) = P($t+h(7“) = 1|QS¢) = E(xt+h(r)|ﬂs,t)7
where €2, ; is the information set available at time ¢t. We measure the s-th
forecaster’s uncertainty as the Mean Squared Forecast Error (MSFE) of

their probabilistic forecast about a particular outcome, i.e.:

Uspnpt (1) = Eq [(mtJrh (r) = Pottnpe (7’))2}
N / (zen (r) — P iy n)e (7"))2 dQu+n, (2.1)

where (1, is the true probability distribution. The outcome is compared
to the forecaster’s probability density forecast for it.

Similarly to Jurado et al.’s measure, Equation (2.1) is an MSFE.
In sharp contrast to their forecast error, it is an MSFE applied to a
forecast distribution. As such, it measures the unpredictable component
associated with each possible value in the domain of the predictive dis-
tribution, or in simpler terms, the failure to predict odds with precision.
In fact, ug qpp (1) compares the probability that forecaster s assigns
to the different states of nature with the realization, while error-based
measures a la Jurado et al. (2015) compare the point forecast with the
realization.” The overall measure of uncertainty is then defined as the

average of the individual uncertainty across forecasters:

N
1
Ugypje (1) = N Z Ug 1t (1)

s=1
N

- % Z Eq [(xt+h (r) = Ps 4t (7“))2] . (2.2)
s=1

The full support of the predictive distribution is explored by letting r
vary. The overall measure of uncertainty (which I'll label “Uncertainty”)

5In the meteorological forecasting literature, this quantity is known as the Brier
score and is typically computed on binary forecasts.
"In fact, if one associates the value r € R with the corresponding quantile of
the distribution, the uncertainty index measures an average squared error for that
quantile.
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FIGURE 2.1: Brier Score Illustration

integrates the squared forecast errors over the whole domain of the
distribution, that is:8

—+00
Ut+h\t = / Ug+nt (r) dr. (2.3)

—00

A graphical interpretation is provided in Figure 2.1. In the figure, the
actual realization equals —2, denoted by a vertical bar on the left panel;
the predictive density is the Gaussian distribution. The panel on the
right shows the CDF of the Normal distribution, as well as that of the
perfect forecast, for a particular threshold, r = —1. Thus, the perfect
forecast assumes ones for values less than —1 (since the realization of —2
is indeed less than —1) and zero otherwise. For any given r, the distance
between the CDF of the forecast distribution and the perfect forecast,
($t+h(r) — Ps,t+h|t(r)), is depicted by a solid vertical line. The measure
of uncertainty in Equation (2.3) squares this measure and integrates it
over the various values of r.

As said in the introduction to this chapter, the existing literature

has focused mainly on quantifying and understanding uncertainty as-

8Note that Equation (2.3) is the negative of the CRPS, as defined in Gneiting
and Raftery (2007). In fact, the CRPS is the integral of Brier scores (Hersbach, 2000,
Equation (7)).
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sociated with point forecasts, for example by mapping uncertainty to
forecasters’ prediction errors. An issue that render probabilistic forecast
data would be that they are inconsistent with average (point) forecasts,
which many practitioners use in practice. Zarnowitz and Lambros (1987)
found that individual point forecasts were on average consistent with
the weighted mean of their predictive probability distributions, which
makes the use of density forecast compelling because of the undoubtedly
richer information they contain. The superior informational content
of probabilistic forecasts is precisely what allows to quantify Knight-
ian uncertainty and distinguish among various sources of uncertainty.
An important difference between this measure of uncertainty and the
existing literature is that it uses the probabilistic forecasts provided
by the U.S. Survey of Professional Forecasters (SPF) to measure and
decompose uncertainty.” The focus is on output growth forecasts, which
are indicative of business cycle fluctuations and therefore better match

what one would understand as “macroeconomic” uncertainty.

Furthermore, a large number of uncertainty measures considered
in the literature are ex-post in that they depend only on realizations
(such as the uncertainty measures recently proposed by Jurado et al.,
2015; Rossi and Sekhposyan, 2015 and Rossi and Sekhposyan, 2016; and
Scotti, 2013. Such ex-post measures are arguably difficult to square
with the notion of economic agents’ forward looking decision making,
and as stressed in the introduction to this dissertation, they tell only
half of the story. Zarnowitz and Lambros (1987) define uncertainty as

9The analysis can be done with any predictive density. We choose to use predictive
densities from the SPF since they are produced by professional forecasters monitoring
a wider range of indicators rather than a specific parametric model. Furthermore, the
SPF is known for its superior forecasting performance from a point forecasting point
of view, as shown in Giannone et al. (2008) and McCracken et al. (2015), among
others.
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the “difuseness” of a forecaster’s predictive density as follows:

+oo 9

| B @) - Paand0)’1920] ar = (2.4)
+o0
[ Prne(8)(1 = Pypinye(t)) dr: (2.5)

and they emphasize how uncertainty differs from disagreement. They
do not, however, consider Knightian uncertainty. As I will show below,
this new framework is able to distinguish between ex-post measures of
uncertainty (for instance, realized risk or bias) and ex-ante risk (also
termed ambiguity). The capacity of this new measure of uncertainty to
distinguish between Knightian uncertainty (which is essentially ex-ante)
and risk (ex-post).

Forecast densities and their probabilistic dimension are the corner-
stone of that feature.'® This will become clearer with the decomposition
that I will now expose. One of the goals of this chapter is to link exist-
ing measures of uncertainty based on aggregate data with uncertainty
measures based on disagreement among forecasters. To do so, define
an aggregate probability density {Pt+h|t (r),r € R}, which is related to
the individual ones {(Ps,t+h|t (r)),1<s<N,r€R} by:

N
1
Pyyn)e (r) = N Z Py vn)e (r). (2.6)
s=1

The corresponding uncertainty measure for the aggregate predictive
density is:

uin (r) = Bq [(win (r) = Pryne ()]

10K nightian uncertainty is defined as the agents’ inability to correctly characterize
probability distributions or their disagreement on them. Clearly, it is impossible to
quantify uncertainty associated with the agents inability to characterize all possible
states of nature or situations where they have no opinions on the probability dis-
tributions associated with known states of the nature. Thus, one can think of this
Knightian uncertainty measure as a lower bound on the actual Knightian uncertainty
present in the economy.
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I show in the Appendix to this chapter that the overall uncertainty
measure can be broker down as follows:

ine (r) = Eq [ (e (1) = Prynp <r>)2] -

N
1 2
+ Eq N Z Piinje (1) = Poqnpe (7‘))
s=1
= u?+h|t (T’) + dt-‘rh't (7’) 5 (27)
where:
1 N 2
A (1) = N Z Eq [(PtJrh\t (r) = Py ippe (r)) ] (2.8)
s=1

measures the disagreement between individual forecast densities and the
aggregate forecast density, similar to the disagreement defined in Patton
and Timmermann (2010) for point forecasts. Lahiri and Sheng(2010, eq.
18) discuss a similar decomposition for point forecasts.

Note that the decomposition in Equation (2.7) holds for a particular
threshold r, thus it accounts for a forecast error associated with the bi-
nary outcome 1 (.4, < 7). The overall measure of uncertainty accounts
for uncertainty at all possible values of r by considering the integral of
the decomposition in Equation (2.7) over r. “Uncertainty” breaks down
into “Aggregate Uncertainty” and “Disagreement”:!!

+o0o +oo +o0o
Uttt :/ Upype (1) dr = / uf+h‘t (r) dr —I—/ dypppe (r) dr

— s oo
= Ut+h|t +  Dignp (2.9)
~—— ——
“Aggregate Uncertainty” “Disagreement”

A reason why the aggregate probability distribution, measured with a simple
average of the individual probability distributions, is a good measure of aggregate
uncertainty is that, as in the context of point forecasts, combinations constructed
by simple averages result in more accurately calibrated densities. Furthermore, the
average of probability distributions is a measure widely used in a variety of central
banks and policy institutions and a (surprisingly) well performing forecast.
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This decomposition represents a first step towards the separation between
ex-ante and ex-post uncertainty. While the aggregate uncertainty term
is by construction ex-post, disagreement is purely ex-ante and mirrors
the inability of forecasters to pin down the “correct” probabilities of
future states of the world.

A finer distinction between ex-post and ex-ante uncertainty can be
obtained by breaking down the aggregate uncertainty term. As shown
in the Appendix, the aggregate uncertainty, U tlihl ; (r) decomposes into
components that measure mean bias, dispersion of probability forecasts,
realized risk and a covariance term between the forecast and the ideal
distribution as follows:

o 5) = (1EQ (Puane (7))~ Fo aran ()]) .
Vo Prin (1) (2:10)
+ Vo (@pgn (1)) - ..
—2CovQ(ziyn (1) Py (1)),

where V(.) denotes the variance taken with respect to the probability
measure (1 p. Since the covariance term turns out to be rather small
empirically, we summarize aggregate uncertainty with the following
additive decomposition:

A
Ut—l—hlt% Biine + Vigne + Volipnp (2.11)

“Mean-Bias” “Dispersion” “(Realized) Risk”

where:

- By = [T Eq [(Pt+h|t (r) — Eq (x4 (r))?| dr is the mean
squared bias of the forecast distribution;

~ Vignpe = ffooo V@ (Pigpj (1)) dr is the uncertainty about the ex-ante
subjective probabilities in the aggregate distributional forecast
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= Vol = [70, Vi (@445 (r)) dr is the realized variance of the
binary outcome, x;yp (1) = 1 (yern < 1), and thus stands for the
inherent risk in the data.

The three component decomposition in Equation (2.11) has an in-
teresting interpretation. The realized volatility component Vol; s is a
measure of the underlying uncertainty in the data, and thus a measure
of realized risk. On the other end, the bias component By, measures
how far the predictive density is from the perfect prediction on average,
and the dispersion, Vi), gives an estimate of the variability in the
predictive density. As it will be shown later V;|; is empirically small,
so it can be ignored. Knightian uncertainty is proxied as the sum of bias,
dispersion and disagreement, as all these terms represent a different
“incapacity” to perfectly estimate odds. The realized variance or realized
volatility, instead, is a measure of risk. In short, we have the following
“Knightian uncertainty/(Realized) Risk” decomposition:

Uprnig= Volypne  + Biynpe + Dignpe
N—— —

“(Realized) Risk”  “Knightian Uncertainty”

2.3 EX-ANTE V. EX-POST UNCERTAINTY

It is important to note that the proposed measure of uncertainty, Uy ps,

as well as aggregate uncertainty U. t‘ih‘ 4

realizations of the data. Thus, it is interesting to refine our measure

are constructed using ex-post

by distinguishing between an ex-ante component (that does not include
the realizations) and an ex-post component (which does). Also, one
might wonder how the expected mean and the variance embedded in the
forecast distribution affect our measure of uncertainty. Let the aggregate
predictive distribution for the forecast of y;.,, made at time ¢t be Normal
with mean p;p; and variance atz bt
following “Ex-ante/Ex-post” decomposition:

and the data be i.i.d. We have the



2.3. Ex-ante V. Ex-post Uncertainty

A Yi+h — Hithlt
Ut+h‘t = EQ |:20—t+h|t¢ (0_ ):| ..
t+h|t

Yt+h — Hi+h
+ EQ [(yt+h - Mt+h|t) (2@ <t+|t> — 1)] -

Ot+hlt
Ti+hit

VT
where ¢ (.) and @ (.) denote the PDF and the CDF of the Normal
distribution, respectively. The first two terms (in square brackets) are

(2.12)

ex-post in that they depend on the realization of the forecast; the last
term is purely ex-ante. The proof is provided in the Appendix and
follows Gneiting and Raftery (2007).2

The rightmost component, o p¢ //, is the only component that
is not affected by the realization, hence its “ex-ante”denomination. In
fact, as the proof suggests, this is the component that arises from
the average distance of random draws from a given predictive distri-
bution. Moreover, it is a function of the standard deviation of the
forecaster’s density forecasts, and a common measure used in the un-
certainty literature as a measure of ex-ante uncertainty. Note that
the ex-ante measure of uncertainty is simply o,/ /7, which, under
normality, is a monotone function of the width of the predictive distri-
bution. Thus, the ex-ante measure is linked to the inter-quantile range
measure proposed by Zarnowitz and Lambros (1987), among others.!3
The ex-ante component might be viewed as a measure of ex-ante risk.
Note that, from Equations (2.11) and (2.12), we have that Exz-post
~ Biint + Vigne + Volgp)e + Ex-Ante. Thus, the ex-post measure of
aggregate uncertainty combines components of Knightian uncertainty,
By pjt + Vignpe, realized risk (measured by the volatility in the economy,
Vol;p¢) and ex-ante risk (measured by the variance of the predictive

2Note that even if Ut‘_‘F h|t 18 the difference of two components, it is always positive;
thus, the ex-post component is always bigger than the ex-ante one.
BFor a Gaussian distribution, the inter-quantile range is 1.34c.
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densities of the forecasters, Ex-Ante). Note the difference between
Vit and Ez-ante: the first measures the variability of the probability
distribution, while the second measures the width of the distribution at
a particular point in time. Thus, if the aggregate density forecast does
not changed over time, V; |, would be zero. However, Ez-Ante will not
be zero as long as the forecasters provide a distributional forecast.

There is a major difference between the two decompositions in that
the “Ex-ante”— “Ex-post” decomposition is written in terms of the
moments of the original predictive distribution, while the “Knightian
Uncertainty — (Realized) Risk” decomposition is in terms of distribu-
tional quantile outcomes summarized by x4, (r). As such, the latter
decomposition could be applied to general situations (general forms of
distribution and non-iid data), while the former one relies unequivocally
on the assumption of Gaussianity and independence in the underlying
predictive distribution. D’Amico and Orphanides (2014) and Giordani
and Soderlind (2003) provide empirical support in favor of Gaussianity
for the Survey of Professional Forecasters, and the iid assumption would
be satisfied for correctly calibrated density forecasts.

A general remark that applies to all proposed decompositions is
that the resulting components are a priori not orthogonal to each other.
This is in line with the rest of the empirical literature which typically
finds that a variety of uncertainty measures, constructed from different
sources and measuring different aspects of uncertainty, are correlated

with each other.

2.4 THE DATA

We use density forecasts from the Survey of Professional Forecasters
(SPF) to calculate our uncertainty measures. The Federal Reserve Bank
of Philadelphia provides the aggregate (mean probability distribution)
forecasts, as well as the underlying disaggregate density forecasts of a



2.4. The Data

panel of professional forecasters.!* I use the real GNP/GDP growth
density forecasts to extract measures of macroeconomic uncertainty, as
real GNP/GDP fluctuations are indicative of the state of the business
cycle, and are therefore reflective of macroeconomic uncertainty (Stock
and Watson, 1998).

SPF forecasters are asked to assign a probability value (over prede-
fined intervals) to inflation and output growth for the current and the
following (one-year-ahead) calendar years. The growth rate is defined
as the rate of change in the average GDP from one year to another.
The forecasters update the assigned probabilities for the current-year
and the one-year-ahead forecasts on a quarterly basis. Thus, by con-
struction, SPF forecasters provide four quarterly forecasts of the same
target variable each year; this type of forecasts are typically referred to
in the literature as “fixed-event ”or “moving-horizon” forecasts. Being
fixed-event forecasts, their horizon changes over the quarter. Dovern et
al. (2012) propose a method to transform SPF fixed-event forecasts into
fixed-horizon forecasts by constructing a weighted average of current-
year and next-year forecasts. More specifically, for each quarter the
survey contains a pair of “fixed-event” density forecasts for the current-
year, denoted by Eﬂ%l ;» and for the following year, labeled fzr% 4t The

four-quarter-ahead (fixed-horizon) forecast at time ¢ ijﬂ , is calculated
as the average of the two fixed event forecasts using weights that are
proportional to their share of the overlap with the forecast horizon. Let
k denote the number of quarters from time ¢ until the end of the year.
In quarter one, &k = 4, while in quarter four, & = 1. For instance, in
the third quarter of the year, the four-step-ahead fixed-horizon forecast
overlaps with the current year forecasts and next year forecasts 50%
of the time. A natural estimate for 4-quarter growth averages the two-
fixed event forecasts with weights equal to 2/4 and 2/4. In general, for

1 The composition of the forecasters can change over time.
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FIGURE 2.2: Brier Score Illustration

k=1,2,3,4:

- k ~ 4—Fk~

FH FE FE

v = gerne 1 Tk (2.13)

Panels A and B in Figure 2.2 show the evolution of the current

and next year densities over time. The figures plot the mean as well
as several quantiles of the distribution, together with the realization.
Panel C, on the other hand shows the fixed horizon forecast, Equation
(2.13). The fixed-horizon forecast is by construction less smooth than
the fixed-event forecasts. However, both share the same feature that

ex-ante uncertainty was higher earlier in the sample, in the sense that
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both density forecasts have a wider distribution prior to the mid-1980s
relative to the later part of the sample; this suggest that forecasters
noticed the Great Moderation starting mid-1980s. There appears to
be no dramatic shift in the densities forecast after the Great Recession.
Some descriptive statistics on the SPF distributions is provided in the
Appendix to this chapter.

The analysis of SPF probability distributions is complicated since
the SPF questionnaire has changed over time in various dimensions:
there have been changes in the definition of the variables, the intervals
over which probabilities have been assigned, as well as the time horizon
for which forecasts have been made. To mitigate the impact of these
problematic issues, I truncate the data set and consider only the period
1981:111-2014:11.1

As noted, our uncertainty measure depends on realizations. The real-
ized values of output growth are from the real-time data set for macroe-
conomists, also available from the Federal Reserve Bank of Philadelphia.
The four-quarter-ahead growth rates of output and prices are calculated
from the first release of the realization. For instance, in order to get
the 4-quarter-ahead realization at the start of our sample, 1981:111, the
growth rate between 1982:111 and 1981:11I is computed using the 1982:1V
vintage of the data.

2.5 CLASSIFYING UNCERTAINTY OVER TIME

Figure 3, Panel A, shows the evolution of the estimated measure of
uncertainty and its components, aggregate uncertainty and disagreement,
over time. The figure highlights two interesting facts: disagreement is, in

magnitude, only a small portion of the overall measure of uncertainty;'®

15See instead Ferrara and Guérin (2015) for a high-frequency analysis of uncertainty
shocks.

'The magnitudes of Uy p; and U}f_wt are reported on the y-axis on the left
while that of disagreement is reported on the y-axis on the right. The magnitude of
disagreement is small. This could be due to the fact that, unlike the existing measures

27



2.

UNDERSTANDING THE SOURCES OF MACROECONOMIC UNCERTAINTY

28

in addition, it is trending down until the financial crisis of 2007. This
is in sharp contrast with the overall measure of uncertainty, as well
as aggregate uncertainty, which have clear spikes in the early 1980s,
early 2000s and the financial crisis. Using disagreement as a measure
of uncertainty may result in underestimating both the overall level of
uncertainty in the economy as well as its fluctuations over time, as
currently the level of disagreement is similar to what it was in the
mid-1990s and lower than its value in the late 1980s. In addition, most
would agree that the early 2007-2008 were probably the most uncertain
times in the latest decades, and while disagreement increases during
that period, it peaks only much later — after the end of the recession, in
2009. Thus, disagreement (i.e., the component of Knightian uncertainty
due to disagreement among forecasters) may not be a timely measure
of macroeconomic uncertainty. Note that this result is not an artifact
of constructing disagreement measures based on density forecasts: Sill
(2014, Figure 1) shows a similar delay. In particular, Sill (2014) plots the
dispersion of the mean one-year-ahead real GDP growth rate forecasts
measured by the inter-quantile range: the first peak in the disagreement
does not appear until the middle of the recession.

Panel B in Figure 2.3 depicts the decomposition of aggregate uncer-

tainty into Knightian uncertainty and realized risk. The figure suggests

that realized risk (measured by Vol, ;) was an important component of

uncertainty throughout the last three decades, as was Knightian uncer-

tainty, measured by the mean bias component. Some differences between
the two are important to note, however. The realized risk component
was high during the latest financial crisis, and sharply decreased as soon
as the recession was over; Knightian uncertainty (measured by the mean
bias component, B, ;) remained persistently high even after the end of

of disagreement on point forecasts, we measure disagreement in probabilities, not in
the mean forecast. Another possible explanation is that professional forecasters all
use similar models or have comparable information sets, making their forecasts agree

for the most part.
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the crisis. Overall uncertainty remained persistently high after the end
of the latest recession mostly because of forecasters’ errors as opposed to
risk being high. The role of dispersion in probability forecasts (Vi4p) as
well as the co-movement between prediction and realization (Covy, )¢

are negligible for the cyclical dynamics of aggregate uncertainty.

Turning to the ex-ante and ex-post components, depicted in Panel
C of Figure 3 together with the aggregate uncertainty measure (U, t{l&—h\ )
it is interesting to note that ex-ante uncertainty is quite constant in the
1980s and up to 2007. This provides support to the idea that movements
in uncertainty during that period cannot be attributed to changes in
ex-ante uncertainty. Ex-ante uncertainty does increase during the latest
recession, but only towards its end, and spikes much later than the
peak of the recession. This suggests that measures of volatility in the
forecasters’ predictive distributions are, themselves, not timely measures
of uncertainty, and reinforces the idea that risk (realized volatility) and

forecast uncertainty are different objects.

Finally, it is also of interest to investigate how the various components
of uncertainty evolve as the forecasters get closer in time to the realization
date, that is, as the forecast horizon becomes shorter. We separately
consider forecasts for h = 1,2, ...,7,8 and compare them with the fixed-
event realization. Both uncertainty as well as aggregate uncertainty
decrease as the forecast horizon increases (Panel A in Figure 2.4, top
left and right graphs). It may seem counter-intuitive that uncertainty
decreases at longer horizons. One would think that the longer the forecast
horizon, the harder it is to forecast and the higher the uncertainty. This
surprising finding, however, can be better understood by looking at the
types and sources of uncertainty. Clearly, disagreement decreases as
forecasters get closer to the realization: in fact, disagreement decreases
on average as the horizon decreases (cf. bottom graph in Figure 2.4,
Panel A). This finding is reassuring, as it is reminiscent of what Patton
and Timmermann (2010) discovered for point forecasts, and our results
show that similar results hold for disagreement calculated on density
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forecasts. The mean bias also decreases as the horizon decreases (Panel
B in Figure 2.4). On the other hand, the dispersion of the density
forecasts increases, thus increasing the aggregate uncertainty. The
realized variance and covariance are constant over the horizons, and the

latter hovers around zero.

The most striking patterns are displayed by ex-ante and ex-post
uncertainty, depicted in Figure 2.4, Panel C. Clearly, ex-ante uncertainty
decreases monotonically as the forecast horizon decreases; that is, fore-
casters’ predictive densities become more spread out when the forecast
horizon increases, thus reflecting more uncertainty in the economy when
looking at events that are further in the future. However, there is no
clear pattern in ex-post uncertainty. This means that, even though
the forecasters’ predictive densities become tighter as the realization
gets closer in time, the uncertainty in the actual realizations does not
diminish, as the size of the forecast errors does not diminish with the
horizon. The closer forecasters find themselves to the actual realization,
the more “clear-cut” their forecast, and the more potential error if one
considers the whole density forecast.

Comparing the evolution of the ex-ante uncertainty in Panel C and
the dispersion of the aggregate predictive density, Vi, in Panel B,
it can be noted that, although forecasters, on average, become less
confident about the future as the forecast horizon increases, their views
about uncertainty does not seem to be updated often for forecasts that
are further in the future, thus resulting in the low variability of the
predictive distribution over time. Moreover, as the distribution becomes
more spread out with the forecast horizon, it has a higher chance of
including the realization, thus resulting in a decline in the aggregate
and overall uncertainty.
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2.6 THE IMPACT OF KNIGHTIAN UNCERTAINTY AND
RISK

Let us now shift the analysis to of the effects of uncertainty “shocks.”
The decomposition allows to distinguish between disagreement and
aggregate uncertainty on the one hand,'” and between measures of
realized volatility, ex-ante uncertainty and bias on the other. These
various components have all been used in the literature as measures of
uncertainty, but only the decomposition presented in this chapter allows
distinctions to be drawn among them and understand their relationship.

How do the various components relate to existing measures of un-
certainty? The top panel in Figure 2.5 plots Jurado et al.’s (2015)
uncertainty measure together with Baker et al.’s (2015) index.'® Both
indices are standardized for comparison. The figure shows that the for-
mer is overall smaller than the latter until 1995, then it becomes overall
larger, and in particular spikes up earlier than the latter during the latest
financial crisis of 2007-2008. The lower panel plots the decomposition
of aggregate uncertainty index into ex-ante and ex-post components.
The ex-post component is lower than the ex-ante component up to
mid-1992, then it becomes systematically more prevalent, and spikes
up around 2007-2008, behaving similarly to how Jurado et al.’s (2015)
behaves relative to Baker et al.’s (2015). Thus, it seems that the Baker
et al. (2015) uncertainty measure is driven more by ex-ante uncertainty,
while the Jurado et al. (2015) uncertainty measure is clearly affected by
ex-post uncertainty, namely uncertainty due to misspecification in the
predictions.

To estimate the effects of the uncertainty and its components on
the economy, we estimate a Vector Autoregression (VAR) that includes

similar to that of Lahiri and Sheng (2010), who consider the relationship between
aggregate uncertainty and disagreement over the business cycle, yet measure it in
terms of uncertainty and disagreement about the mean of the distribution, as opposed
to the whole distribution.

8Using Jurado, Ludvigson and Ng’s (2015) one-year-ahead uncertainty index.
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FIGURE 2.5: Comparison of Uncertainty Measures

Notes: The figure compares the Jurado, Ludvigson and Ng (2015) and Baker, Bloom
and Davis (2016) uncertainty indices (top panel) with the ex-ante and ex-post
components of our uncertainty measure in the bottom panel.

(the log of) real GDP, (the log of) employment, the Federal Funds
rate, (the log of) stock prices and the specific uncertainty indices one
at a time. Identification is achieved via a classic Cholesky procedure,
which follows the order in which the variables are listed. The VAR
specification is the same as in Baker et al. (2015), although ours is at
the quarterly frequency, and accordingly we use GDP instead of real
industrial production. The variables are ordered as in Jurado et al.’s
(2015) benchmark specification, i.e. from slow to fast moving. For
completeness, the robustness of the results in a larger VAR are exposed
in the Appendix. To better interpret and compare the magnitude of the
effects of the uncertainty indices, the uncertainty indices are demeaned
and standardized.

Panel A in Figure 2.6 shows the effects of our uncertainty index

on the economy. Clearly, an increase in uncertainty has recessionary
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effects: both GDP and employment decrease, as well as the interest rate
and the S&P 500. Panels B and C describe the effects of each of the
components in the decomposition. Panel B shows the effects of a shock
to aggregate uncertainty, which is in line with that of uncertainty since
aggregate uncertainty is the main determinant of the total. Panel C
focuses on disagreement; it also decreases employment although by a
smaller magnitude; at the same time, it has no significant effects on the
remaining variables.

Figure 2.7 shows the effects of uncertainty measured by mean bias,
realized volatility and the dispersion in the probability forecasts. The
mean bias and realized volatility appear to have recessionary effects
(Panels A and C). Dispersion in the density forecasts (Panel B) drives
down employment, while it increases stock prices and output. It is
important to note that, in magnitude, the mean bias and realized
volatility have similar macroeconomic impact, though these effects are
statistically significant for the first but not for the second.

The effects of ex-ante and ex-post uncertainty on other macroeco-
nomic variables are depicted in Figure 2.8. They both lead to decreases
in employment, interest rates and stock prices of similar magnitude; an
increase in ex-ante uncertainty, however, has a small negative impact
effect on GDP, while the medium run effect is positive and small, and
the longer run effect is again negative; the effects of ex-post uncertainty
on GDP are, instead, negative and large.

Figure 2.9 compares the results with those in the existing literature;
the latter are also obtained by estimating VARs that include (the log of)
real GDP, (the log of) employment, the Federal Funds rate, (the log of)
stock prices, and the alternative uncertainty index, which is demeaned
and standardized as well. The alternative uncertainty indices include:
Bloom (2009), labeled “VXO”; Baker et al.’s (2015) policy uncertainty
index, labeled “BBD”; Jurado et al.. (2015), labeled “JLN”; and the
Scotti (2013) macroeconomic surprise-based uncertainty index.

Panel A in Figure 2.9 shows that the VXO and BBD indices have

35



2.

UNDERSTANDING THE SOURCES OF MACROECONOMIC UNCERTAINTY

36

rgdp

15 20
Horizon
rovnght

0 5 10 15 20
Horizon
stock

-15 -20
0 5 10 15 20 0 5 10 15 20
Horizon Horizon
Uncertainty
2
1
0
=l
0 5 10 15 20
Horizon
(a) Uncertainty
rgdp emp
2 1
.
0
i
-2 -2
0 5 10 15 20 0 5 10 15 20
Horizon Horizon
rovnght stock

15
5 10 15 20 o 5 10 15 20
rize Horizon
Aggregate Uncertainty
2
1
0
-
0 5 10 15 20
Horizon
(b) Agg. Uncertainty
rgdp emp
1 0.4
05 B R 02
05 T —02p
4 ol
0 5 10 15 20 5 10 15 20
Horizon Horizon
rovnght stock
0.4 5
02 i
TR IO 0
O S
—0.2f -
-04 -10
o 5 10 15 20 o 5 10 15 20
Horizon Horizon
Disagreement
15

Ficure 2.6: Effects Of Uncertainty On The Economy

5 10 15 20

Horizon

(c) Disagreement



2.6. The Impact of Knightian Uncertainty and Risk

Horizon Horizon
rovnght stock

5 10 15 20 0 5 10 15 20
Horizon Horizon
Mean-Bias

5 10 15 20
Horizon

(a) Mean-Bias

rgdp emp
1
“““““““ 0
T e -1
-2
5 10 15 20 0 5 10 15 20
Horizon Horizon
rovnght stock
10
5
0
-5
-10 —
5 10 15 20 0 5 10 15 20
Horizon Horizon

(Realized) Risk

5 10 15 20

Horizon
(b) Risk
rgdp emp

0.5

05 05
o 5 10 15 20 3 5 10 5 20
Horizon Horizon
rovnght stock
02 10
0
02 /_—\
04 e O
06 =5
o 5 10 15 20 3 5 10 15 20
Horizon Horizon
Dispersion
15

Ficure 2.7: Effects Of Uncertainty On The Economy, Continued

5 10 15 20

Horizon

(c) Dispersion

37



2. UNDERSTANDING THE SOURCES OF MACROECONOMIC UNCERTAINTY

rgdp emp
2 1
4
0
-1
-2
0 5 10 15 20 0 5 10 15 20
Horizon Horizon
rovnght stock
05 HO oo
15 o -20
5 10 15 20 0 5 10 15 20
Horizon Horizon
Ex-Post
2
1
0
-1
0 5 10 15 20
Horizon
(a) Ex-Post
rgdp emp
4 2 o
P SO SR R
““““ 0 -\/
o T N ——
2 -2 o
4 " LTIV
) 5 10 15 20 [} 5 10 15 20
Horizon Horizon
rovnght stock
1 20 -
0 KON
0 —\_/_
-20 e
-2
-3 -40
0 5 10 15 20 0 5 10 15 20
Horizon Horizon
Ex-Ante
2
1
0
» e
0 5 10 15 20
Horizon

(b) Ex-Ante

FiGure 2.8: Effects Of Uncertainty On The Economy, Continued

38



2.6. The Impact of Knightian Uncertainty and Risk

radp emp rgdp emp
05 02 1 05
. of y B . 05 iieeres
- e 06 El 0. :
(] 5 10 15 20 0 10 15 20 0 10 15 20 0 5 10 15 20
Horizon Horizon Horizon Horizon
rovnght stock rovnght stock
02 2 02 4
b :
ofr—
2| T i
-4
10 5 10 15 20
Horizon Horizon Horizon Horizon
X 88D
15 15
1y
051N
Y’} S S S S 05
(9 5 10 15 20 0 10 15 20
Horizon Horizon
(a) VXO (b) BBD
rqdp emp rgdp emp
1 S 1
1 ™
- . . -
= E -04 -0
0 5 10 15 20 (] 10 15 20 0 10 15 20 0 5 10 15 20
Horizon Horizon Horizon Horizon
rovnght stock rovnght stock
05 10 03 4
0 : : 0 \_/ 02 2f : i
-05 -10 0 e :
- . . . 3 —
-1 i -20 AR of- 7 R iR o [ PR S
1 - = JROpy — L=
0 5 10 15 20 (] 10 15 20 0 10 15 20 0 5 10 15 20
Horizon Horizon Horizon Horizon
JN Scotti
15 15
1
05 S
of A
s o5l
0 5 10 15 20 (4 5 10 15 20
Horizon Horizon

(c) JLN (d) Scotti

F1cUre 2.9: Effects Of Uncertainty On The Economy, Continued

similar effects on the economy, while an increase in uncertainty measured
by the Jurado, Ludvigson and Ng’s (2015) index are qualitatively similar
but much larger in magnitude, and, thus, are similar to the effects
uncovered ex-post uncertainty. The effects of Scotti’s index are again
recessionary for GDP, employment and stock markets, and lead to an
increase in the interest rate. The effects of this index are small and
overall insignificant. The effects of our realized volatility measure are
more similar to those of the VXO.

In sum, the decomposition of uncertainty puts several components
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into light that are related to uncertainty measures used in the literature.
This analysis helps understand why the various measures of uncertainty
differ from each other, which phenomenon they actually measure, and
which one is more appropriate to use depending on the goals of the
researcher. This represents the second contribution of this chapter to
the understanding of the effects of economic uncertainty.

2.7 KNIGHTIAN UNCERTAINTY AND RISK IN AN ECO-
NOMIC MODEL

Last, I now discuss the interpretation of the components of uncertainty
in the presence of time-varying macroeconomic risk and ambiguity using
a stylized model featuring these aspects. This allows the mapping of the
various components in the decompositions to the sources of uncertainty
that the model controls for, therefore giving support to the interpretation
of the different components of uncertainty that were estimated.

The model of ambiguity follows that of Ilut and Schneider (2014).
The model is built as follows. GDP growth, Z;,1, evolves according to

an autoregressive model with a time varying mean, puj:
Zit1 = p2Ze + g + s, (2.14)

where w41 isi.i.d. N(0,02) and j} is deterministic such that its empirical

sequence converges to an iid stochastic process N(O,ai), where o2 =

o
02 — 03. Consequently, the observed values of z; = Z;11 — p,Z; look

like realizations from an i.i.d. process with mean zero and variance

o2. For all practical purposes, we treat u; as a realization from a
stochastic process N(0,0‘Z). Moreover, p; and u; are assumed to be
independent. Thus, GDP growth is driven by two sources of uncertainty
in the economy: the first source is the unpredictable shocks, u;y1; the
second, u;, is a proxy for ambiguity, as we discuss below.

Agents in this model know that the data generating process for

GDP growth is autoregressive with persistence p,, and are subject to
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two sources of uncertainty. They do not observe, however, either p
or u;11, even though they know the probability distribution of wusyq.
They gather intangible information about p;, which sometimes makes
them relatively confident that the correct forecast of future GDP growth
is p,Zy, and sometimes less confident, i.e. the signal is can be more
or less ambiguous. One could think of a situation where the agents
acquire poor quality information or conflicting news from newspapers
or professional forecasters. The ambiguity is modeled by letting agents
form their beliefs about GDP growth dynamics based on the following

law of motion:
Zigt1 = p2Zit + Pig +uryr, 1=1,2,.., N (2.15)

where 1y € [—ais, —air+2]ai]], N is the total number of agents (equal
to 100), and u¢4q is i.i.d. N(0,02). The bounds on pf, formalize the idea
that sometimes agents are more ambiguous regarding the second source
of disturbance to output growth: those situations are associated, in the
model, with a larger value of a;;, which implies a larger set of beliefs
and more ambiguity perceived at time ¢ by agent 7. Thus, a;; is akin to
the ambiguous component of uncertainty, i.e. Knightian uncertainty.'®
Furthermore, agents receive signals about g, from the process:

Qi1 — Qi = Pa,i(@it — @) + O i€y 1 (2.16)

where ef ;| is iid N (0,1). One can view €} | as a signal that the agent
gets about the ambiguity component, whose volatility depends on o ;.
In some periods the signal results in a higher a;¢; in such cases, there
is more ambiguity and the set of beliefs is larger. In other periods,
depending on the information received, the set can be smaller, in which
case the agents are less ambiguous about the stochastic disturbances in
the data generating process. To ensure that the average ambiguity is

9This notion of Knightian uncertainty is similar to that of Ilut and Schneider
(2014). It should be noted, however, that they assume that the total factor productivity
shocks are ambiguous, while here the same is done for output growth.
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less than the total uncertainty about the process of Z;41, ambiguity is
restricted by the constraints that a; = n;o, and 0,; = 0,0, forn € (0, 1)
for every agent i, where n; and o, are parameters (one can think of a;
as the unconditional mean and O'gﬂ- as the unconditional variance of the
shock to perceived ambiguity). In particular, n; ~'9 N(n, 0721’ 7> where
0317 ; controls the cross sectional variability of N 20

Finally, when faced with ambiguity, modeled with Equation (2.16),

the agents choose:

D. (2.17)

prig = min([—air, —ais + 2ai;
The effective perceived law of motion for agent ¢ becomes:
Zit+1 = p2Zit + ,uf; + Upy1. (2.18)

Note that when a;; is bigger, ambiguity is higher, the set of beliefs is
bigger, and the wider interval implies a lower worst case mean that the
agents choose.

The model is a simplification of Ilut and Schneider (2014). To be sure,
they model ambiguity and risk about the technology process. However,
under the assumption of fixed inputs, this would directly translate into a
similar output growth dynamics. Thus, for simplicity, only the dynamics
of output growth are modeled and the parameters of the output growth
process, p, and o,, are calibrated using an AR(1) model estimated
on the quarterly growth rate for the U.S. GDP. On the other hand,
the ambiguity parameters, i.e. p,, n and o, are borrowed from their
posterior mode estimates with the caveat that their estimates apply to
the ambiguity in total factor productivity rather than output growth.
Table 1 summarizes the baseline parameter values. Since p; and ugyq
can not be identified separately, the values for their respective variances
are assigned arbitrarily. o, = 0.5 is set, while o, is assigned a value to

20 Alternatively, one could model the level of ambiguity to be uniformly distributed
across the forecasters. This would attenuate ambiguity.
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p- 0.625 Estimated from an AR(1) model fitted to GDP growth

pa  0.887 Tlut and Schneider’s (2014) mode

n  0.995 Ilut and Schneider’s (2014) mode

oy 0.780 Estimated from an AR(1) model fitted to GDP growth (o)
oup 0.500 Arbitrary, as the parameter is not separately identified

on  0.134 Tlut and Schneider (2014) mode

Table 2.1: Baseline Parameter Values

match the total conditional volatility in the output growth observed in
the data, o,.

Four scenarios are considered. In the first three scenarios, there is no
cross-sectional heterogeneity in ambiguity, i.e. 07217 ;= 0and n; =n for
every agent; in the fourth scenario we consider heterogeneity by letting
Scenario 1: Ambiguity. Only the level of ambiguity increases in the
model, i.e. the level of n. More specifically n shifts from 0.2 to 0.8.
While the data is generated by equation (2.14), the agents forecast
output growth using the law of motion in Equation 2.18. In this context
the set of possible values that p; can take changes: as n increases, both
the conditional and unconditional means of a;41 increase — see Equation
(2.14), and the signals the agents get about the additional source of
uncertainty, denoted by the set [—as, —a; + 2|a¢|]), become noisier.
Scenario 2: Risk and ambiguity. The level of risk by increases with the
value of o, going from 0.3 to 1. In this experiment the model is still
described by Equation (2.14), the perceived law of motion is described by
Equation (2.18), while learning under ambiguity occurs under Equation
(2.16). In this case, increasing the level of uncertainty increases both the
objective and perceived level of uncertainty. However, given that n;, = n,
a = no, and o, = 0,0, for n € (0,1), where 02 = Ui + o2, both the

level of ambiguity (@) and the uncertainty about ambiguity (o,) increase.
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An increase in ¢, increases both risk and Knightian uncertainty in the
model.

Scenario 3: Risk but no ambiguity. Similar to Scenario 2, the level of
risk increases, but agents are now forecasting based on the true model:
ui* = py, effectively turning down ambiguity. In other words, the true
model is still the one described by Equation (2.14), while the model used
for forecasting is not determined by Equation (2.18), but instead by
equation (2.14) itself. The design in this scenario intends to explore how
the ex-post and overall uncertainty evolve when there is no ambiguity.
Scenario 4: Disagreement. The variance of ambiguity across agents
in the model, i.e. o, , now increases, implying that agents are not
all equally ambiguous about the signal. o, ; goes from 0.5 to 1 and
Pa,i ~ N(pa,0.01) is left heterogeneous across agents. Agents differ both
in the volatility of the signal they receive and in its persistence. Note
that, in this case, agents disagree on the level of ambiguity, although
the aggregate level of ambiguity in the data is unchanged; that is, on

average, a equals no, which does not change as o, ; increases.

The model is simulated for 254 periods for each of these scenarios
(using an additional 100 periods as a burn-in sample). The components
of the proposed decompositions are then computed from the simulated
data and and plotted over time.

Panel A in Figure 2.10 depicts the results for Scenario 1. The increase
in ambiguity increases the Mean-Bias and the Ex-Post components of
uncertainty, as well as the overall uncertainty. On the other hand, there
is no change in either the perceived or the realized volatility, that is,
the Ex-ante and Realized Risk components, respectively. This follows
from the fact that: (i) the data generating process has not changed,
and, thus, the realized variance (¢2) has remained the same; and (ii) as
Equation (2.18) suggests, the overall level of the ex-ante variance (o2)
does not depend on n.

Panel B of Figure 2.10 shows the simulation results for the second
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scenario. Here the increase in o, increases the measures of ex-ante (o

itself) and ex-post risks. It is also important that there is feedback
from risk to ambiguity. As discussed in the description of Scenario 2,
both the mean (@) and the variance (02) of ambiguity are affected by
the increase in the overall risk. Consequently, the overall measure of
uncertainty increases due to both sources: increase in risk and increase
in ambiguity.

Panel A of Figure 2.11 shows the dynamics of uncertainty and its
components when there is an increase in risk in a model with no ambigu-
ity. In this setup it appears that both ex-ante and ex-post components
of uncertainty increase. However, this increase is proportional such that
the average level of overall uncertainty increases due to the upward shift
in ex-ante uncertainty and its volatility mimics that of ex-post uncer-
tainty (in the right panel). Thus, comparing Panels B and C suggests
that, in the presence of ambiguity, uncertainty increases proportionally
more than the increase of risk.

Finally, Panel B of Figure 2.11 shows the dynamics when there is an
increase in the cross-sectional dispersion of ambiguity while the overall
level of ambiguity remains unchanged. Note that the component that is
most largely affected by the increase in the cross-sectional dispersion in
ambiguity is disagreement, as we would expect.

To summarize, the simulations show that the increase in ambiguity
can increase the ex-post component, as well as the mean bias, thus
resulting in an overall increase in uncertainty. The increase in the true
volatility of the DGP increases both the realized volatility as well as
the ex-ante volatility measures. However, the increase in the overall
uncertainty affects the ex-post volatility and mean-bias as well. In
the absence of ambiguity, the impact on the bias is negligible (it is
more similar to noise), thus the increase in the aggregate uncertainty
reflects the increase in the ex-post volatility. On the other hand, the
increase in the ex-post uncertainty is twice as much the increase in
the ex-ante uncertainty, such that the resulting measure of aggregate
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uncertainty still reflects the increase in the ex-ante uncertainty. Now,
in the presence of ambiguity, on the other hand, the bias goes up and
the ex-post uncertainty goes up proportionally more, such that the
aggregate uncertainty reflects the increase in all sources of uncertainty.

These simulation results match the empirical findings. The model
has a potential to generate an ex-ante uncertainty measure that is
smoother than the realized variance and at the same time relatively
volatile measures of bias and ex-post uncertainty. The simulations also
suggest the existence of ambiguity in the empirical setup as the aggregate
uncertainty does not move proportionally with the variance. In fact,
the predominant sources of aggregate uncertainty are the Knightian

measures.21

2.8 INFLATION UNCERTAINTY

The indicator of macroeconomic uncertainty that I have exposed in the
previous section can be applied just as well to inflation forecasts, which
are also available from the U.S. Survey of Professional Forecasters. This
last section does precisely that.

Understanding inflation uncertainty is important for several reasons.
High uncertainty about future inflation, possibly spurred by high infla-
tion itself, may have effects on real variables (Ball, 1990). For example,
Girkaynak and Wright (2012) and Wright (2011) have argued that
inflation uncertainty matters because it might help explain the behavior
of bond risk premia, and therefore help economists understand why
monetary policy differently affects short term rates (the instrument of
monetary policy) and the long term rate (the rate that is of interest for
investors and consumers). In fact, Wright (2011) has found a positive

and strong relationship between long-term inflation uncertainty and

2INote that it is possible that the effect of the Knightian uncertainty is underesti-

mated, since it is possible that the data generating process, thus realized volatility,

can also change in response to ambiguity.
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bond term premia in a large cross-section of countries. The important
policy implication of Wright’s (2011) findings is the possibility that elim-
inating long-run inflation uncertainty might facilitate the transmission of
monetary policy to the economy. Also, D’Amico and Orphanides (2014)
consider ex-ante measures of risk for inflation forecasting and Caporale
et al. (2010) have shown that inflation uncertainty has decreased in the
Euro area, possibly due to the fact that inflation decreased steadily since
the beginning of the Euro.

Figure 2.12 depicts the measure of inflation uncertainty (Panel A)
and its components (Panels B,C). Inflation uncertainty was high in the
early 1980s, possibly due to oil price shocks, and decreased substantially
afterwards; typically, it tends to be high around recessions. The behavior
over time of uncertainty is very different from that of disagreement,
which instead does not necessarily peaks around recession times. While
the volatility component is pretty constant over time, the majority of
the fluctuations in aggregate inflation uncertainty are associated with
the bias component and the ex-post components; interestingly, ex-ante
inflation uncertainty seems to have decreased monotonically since the
early 1980s.

The empirical results suggest that the most effective policies to
decrease inflation uncertainty are those that influence ex-post uncertainty.
In other words, policies should aim at ensuring that ex-post realizations
of inflation are in line with the average expected inflation (for example,
by minimizing shocks to inflation), not those that decrease the agents’
ex-ante uncertainty (i.e. not those that affect the agents’ expectation
formation process), although the latter can also be effective.

2.9 CONCLUSION

After having insisted on the importance of probabilistic assessments in
the definition of economic uncertainty, I have exposed an alternative
measure of uncertainty based on survey density forecasts that provide
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such assessments. This new measure has the advantage that it can be
used to decompose uncertainty into components that can help researchers
understand what existing uncertainty indices relate to. In particular, this
measure of uncertainty can be decomposed into aggregate uncertainty
and disagreement, and aggregate uncertainty can itself be decomposed
into Knightian uncertainty and realized risk. The latter inherently
measure different phenomena, have specific business cycle dynamics and
different macroeconomic impact. These sources of uncertainty resolve
differently across prediction horizons, which is a new fact uncovered in
these data.

The proposed uncertainty index is an ex-post measure of uncertainty
— which is only half of the picture —, but it can be decomposed into a
component that only reflects ex-ante uncertainty, which can be related
to existing measures of uncertainty based on the inter-quantile spread
of the forecast distribution, and a component that measures ex-post
uncertainty. Some existing measures of uncertainty capture ex-ante
uncertainty (such as existing measures of uncertainty based on policy
uncertainty), while others capture ex-post uncertainty.

Finally, while an increase in overall uncertainty has recessionary
effects, the effects of the various components of uncertainty differ. For
example, disagreement is only a small portion of the overall uncertainty,
and may both underestimate and lag the actual degree of uncertainty
in the economy; thus it may not be a timely measure of uncertainty. In
addition, both realized risk and Knightian uncertainty were important
components of uncertainty over the last three decades, although the
former sharply decreased as soon as the financial recession of 2007-2008
ended while the latter remained high even after the end of the crisis.
This suggests that the high overall uncertainty that persisted after the
end of the latest recession was mostly due to agents’ being unable to
assign the correct probability to the economic outcomes and disagreeing
on them, rather than because risk was high. Simulation results from a
stylized macroeconomic model suggest that the behavior of uncertainty
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and its components is largely reconcilable with a macroeconomic model
with ambiguity. Ambiguity can be a source of its own in increasing the
overall level of uncertainty; alternatively, it can also act as an amplifying
mechanism for the increase in the level of risk.

The quantity of information that can be uncovered using density
forecast from forecasters surveys suggests that there is possibly even
more to discover by understanding how those forecasts were made to
begin with, which is the subject of Chapters 3 and 4.

52



2.10. Appendix

2.10 APPENDIX

Proofs of the Uncertainty Decompositions

The appendix provides the proofs for the results in this chapter. For
simplicity of notation, the proofs are written for the unconditional
expectation, but they all naturally hold in conditional form with the

information set.

Proof of Equation (2.7)

The proof is a mechanical consequence of adding and subtracting the
average forecast in the individual Brier scores averaged over the set of

forecasters. Namely:

1 N 2
U=F N Z [$t+h (7’) - Ps,t+h|t (T)]
s=1
1Y 2
= F N Z [Zin (1) = Prgnje (7) + Prgenje (1) = Py gnge (1))
s=1
Therefore:
1 N 2
U=FE N Z ($t+h (1) = Piyne (7")) ]
1 S_Al[
+ 2B | = > (@ren (1) = Prinje (1)) (Pesnte (1) = Poeine (7“))]
s=1
1 N 2
+E |5 D (Pronge (r) = Poyypye (1)
s=1
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The first term is the uncertainty of the average forecast. The other two
terms need a bit of rewriting;:

N
U=U"+2E (xt+h (r) — Pt—&-h\t ! Z Pt+h|t = Py pyne (1 (r ))]
N s—l
Z Pyiipje (1) = Pogqnpe (7 ))2]
=U"+2E (Ztn (1) = Prgnpe (1)) <Pt+h|t N Z s, t4+hlt (T )]
1 al 2
+F N Z (Prynje (1) = Pagynye (1)) ]
s=1
N
=L [(CUHh (r) = Pirne (7'))2} +0+ £ % Z (Pt+h|t (r) = Pygynye (7'))2] :
s=1
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Proof of Equation (2.10)

uky, () = B [(ween (r) = Prope ()]
— B (@141 () = B @en (1) + B @en (1) = Py (1)’
= B [@en (r) = B (e (0)?] + B [(B @ (1) = Prne ()]
E 2 (ze4n (1) — E (23 (r) (B (@440 (1)) = Py (1)) ]

+
= B ([P () = B (w0an (0)]7) + V (s (1)
— 2Cov(t4n (1) Prynje (r),

where the last line follows from the fact that:

E[2 (x4 (1) = B (@e1n (1) (B (244 (7)) = Prgppe (1)) ]
=2EK [($t+h (1) = E (40 (1) (B (@140 (1)) — Prynje (T))]

= 2B [Pypy (1) Exyyo, (1) — Zogn (1) Pt (1)]
= 2[EPy i (r) Expyn (r) = E(xegn (1) Poppe (7))]
= —2Cov(z444 (1) Pyype (r (r).

Furthermore, note that

E [Ppyppe (1) — E (T4 (7“))]2 = [E (Pignpe (1) = E (Tean (7'))}2) + V(Prypye (1))

This identity is found by adding and substracting E(P;;4¢) in the

squared term.
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Proof of Equation (2.12)

Our measure of uncertainty is the negative of the CRPS (Gneiting and
Raftery, 2007). Note that CRPS(F,yz4n) = — [T (F(r) — H{ypin <
r})?dr = —Ut‘ih, where F(r) is the aggregate predictive distribution.
Let G(r) denote the ideal — perfect forecast — distribution, i.e. G (r) =
H{yr4n < r}; then by Lemma 2.2 of Baringhaus and Franz (2004), we
have:

o0
wbn= [ FO) - Upn < rhy
—00
1 1
= E\Y14h — Y1440 — §E|Y1,t+h — Yo i4n| — iE‘yl,Hh — y2.4+h,
where Y7 145, and Ya 4, are i.i.d draws from F', while yq 445 and y2 145
are i.i.d. draws from G (r), and both of these variables have finite

expectations. Given Lemma 2.1 of Baringhaus and Franz (2004),

Elyisen — Yigen| = /_OO F(r)(1-G(r))dr+ /_00 G(r)(1 = F(r))dr.

Now for yq 14+ and y2 441, we have:
[o¢]
Elytirn — Yo,4n = 2/ G(r)(1 —G(r))dr
—00

= 2/00 Hyirn <7}l — Hyn <r})dr

—00

=0,

where the last equality follows from the fact that, for a particular value
of r, either 1{y;+n <7} or 1 — I{y;1p < r} will be zero, and, thus, the
product will always equal zero. Therefore,

oo
Uipn = / (F(r) = Hypyn <7})*dr (2.19)
—0o0
1
= E\Y1 140 — Y1,140] — §E’Y1,t+h — Yo, 14n/- (2.20)
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This means we can rewrite aggregate uncertainty as the sum of expected
absolute distance measures of random variables coming from the predic-
tive distribution, and that coming from the predictive distribution and
the true distribution which generates the realization. If F(r) is Gaussian,
ie. if Yo ~ N(popn, Ut2+h)’ then because the difference of iid normal
random variables is normally distributed (in this case centered around
zero with a variance of 202 " 1,); and the fact that the absolute value of a
mean zero normal random variable has a half-normal distribution with

204+h
mean =7, we have

Ot+h
VT

To obtain F|Y;1p, — yrin|, we use the properties of Dirac delta function.

1
§E’Y1,t+h — Yol = (2.21)

We denote the PDF of vy, by a Dirac delta function 6(r — y¢4p). From
the properties of the Dirac function, E(yi+n) = yern and V(yin) = 0.
Then, Y1 44n — Y1.04h ~ N(ftth — Yeth, af+h). By property of the folded

normal distribution, we have:

Ht+h — Yt+h
E|Yiin = Yern| = 014020 <—M>
Ot+h
Ht+h — Yt4h
+ (ftth — Yre4n) (1 - 29 <t+ L >) -
Ot+h

(2.22)

Substituting (2.22) and (2.21) into (2.20), and taking expectations with
respect to () we get the result:

U{l, = Eq(Ex-Post) + Eg(Ex-Ante) (2.23)

where:

Ex-Post = 20¢1,¢ <yt+h_'ut+h> + (Yern — pesn) (gq) <yt+h_ut+h> _ 1>

Ot4h Ot+h

Ot+h

NG

Ex-Ante = —
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Reliability and Resolution Analysis

Note that an additional, interesting decomposition for uf+h| ; (r) can be
obtained following Murphy (1973):

“24+h|t (r) ~ RELy b (r) — RES;  ps (r) +V (wgn (1) (2.24)

where:

~ RELip(r)=E ([Pt+h|t (r) = E (24n () [ Pegnpe (r))]Z) measures

the reliability of the forecast and scores the calibration of the fore-
cast. A forecast is said “reliable” when the observed frequency is
consistent with the probabilistic forecast made for a given event.
For instance, forecasts that predict a probability of recession of 30
percent will be reliable if the economy effectively enters a recession
30 percent of the time every time such a forecast is made. Hence,
reliability measures the unconditional (un)biasedness of the proba-
bilistic forecasts. Because the term is expressed as a squared error,
the smaller the calibration error, the better (i.e., the lower) the

Brier score.

RES, ()= E ([E (@ren (1) [Pran (1)) — E (2040 (r))]2> is the
resolution, i.e. the average squared differential of the conditional
and unconditional means of the observed outcomes. It captures the
“decisiveness” of forecasts by comparing the forecast probability
and the long-term average of the underlying process. The larger
the term, the lower the Brier score.

As we show below, Eq. (2.24) holds up to an approximation error
that involves within bin variation. The decomposition can be estimated
as follows. Reliability is estimated as follows. For each ¢, determine
which of the forecast bins P, () falls into. Let {P(k)

Ll (r)} be the

collection of probabilities in the k-th bin and let Pt€h| ; (r) denote the
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unconditional expected value over the bin. We estimate Pgh‘ , () using

a Uniform distribution over the bin, so that Pt]ih| ; () is the midpoint of
the bin.?? In addition, let the number of probabilities in each bin be ny,.
Let T be the average of the realizations conditional on the forecaster
having made the probability forecast associated with the collection of

probabilities in bin k, {P(k)

i hlt (7”)} Reliability is the average square

calibration error, that is,

K

REL() = 2> mic (PE (1) 7 () (2.25)

k=1

Thus, reliability measures the squared deviation of the predicted
probability from the observed outcome conditional probability of the
event. This effectively tells the user how often (as a percentage) a
forecast probability actually occurred. In theory, a perfect forecasting
model will result in forecasts with a probability of a% being consistent
with the eventual outcome a% of the time. Note that a forecast is
reliable if the average square calibration error (REL) is small. Figure
2.13 provides intuition to understand reliability. The z-axis reports
the forecast probability,?? while the y-axis reports the observed relative
frequency. A reliable forecast would be the 45-degree line, where the
observed frequency of realizations equals the forecast probability; the

data clearly show departures from reliability in our sample.
Resolution is the squared average difference between the conditional
mean (given the forecast) and the unconditional mean: RES(r) =

22T the 3-terms decomposition that we discuss here, we abstract from within
bin variance and within bin covariance; thus, the unconditional expected value over
the bin is indeed the midpoint of the bin and all forecasts in the bin are imposed
to be equal to the midpoint (so their average is also the midpoint). We derive a
5-term decomposition which includes within bin variance and within bin covariance
(Stephenson, Coelho and Joliffe, 2008). In that case, the reliability will be calculated
using the average forecast in the bin without imposing that all forecasts in the bin

are equal. That is, ;EETM , (1) (which is the average of the collection of probabilities in
the k-th bin, {P;ﬁ;lt (7“)})7 replaces Pf,_h‘t (r) in eq. (2.25).
23The forecast probability is the mid-point of the bin in the forecast distribution.
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Reliability Diagram for SPF Forecasts (CY GDP growth)
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FiGURE 2.13: Reliability Diagram

Notes. The figure plots the reliability diagram for SPF forecasts of current
year (CY) GDP growth.

+ Zszl ng (Tr (r) — Z (r))? . Note that good forecasts have high resolu-
tion.
Figure 2.14 shows the evolution of the components of the alternative

decomposition over time.?*

Proof of Equation (2.24)

In practice, the Murphy decomposition requires partitioning the range
of forecasts — essentially, the [0,1] line — into K sub-segments. Let r be
a number along the real line; let p*) denote the average probability in

segment k;%% and let ny, denote the number of forecast probabilities that

2Finally, note that the practical implementation of the Brier score involves
“binning”. Binning smooths the data and makes them less noisy, as larger bins

limit the “sparseness” problem (Stephenson et al., 2008). Some information is lost,
however, by approximating continuous probability densities with a discrete number

of bins.
25 Alternatively, one could consider ﬁ““) as the midpoint of the k-th segment
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Bias/Variance Decomposition
4.5 T T T

FIGURE 2.14: Aggregate Uncertainty, Reliability, Resolution and (Real-
ized) Risk

Notes. The figure displays Aggregate Uncertainty, Reliability, Resolution and
Realized Risk.

fall in the k-th sub-segment, for £ = 1,..., K. Given all forecasts in the

sample, the Brier score can be broken down as follows:

1 T K N () 9

Z 33t+h Pt+h|t Z Z [ t+h tih|t(7ﬂ)}

t:l k 1j=1

which further equals:
K ng
(k) —(k) —(k) (k) (4)

Z Z [ Tifp(r) = T (r) + T (r) _pt-‘rhlt( r) +pt+h\t( r)— Ptih\t
k 15=1

]
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K ng *) 1 K ng *) 9
Z [xt+h = Tyu(r } +TZ [xt+h ﬁt—&—h\t()
k:: k=1 j=1
K np 9
ZZ o (r) = P (0]
k:: j=1
B & k k k

+ 23 1) =380 [0 = 0]
r=ia
K Jnk ) N 3 )

T ZZ ycgi)h(r) —Tiﬁh(r)} |:Pt(+)h(/r) - Pt(i)h|t(r)}

k=1 j=1
K np )

F 230N (B ) =50, 0)] [75,60) = 50, 0)]
k 1j5=1
K ng *) K ng *) 9
ZZ{%M ) = Tpn(r } 7 Z [xt+h ﬁt+h\t( )}
k 15=1 k:l J=1
K ng 9

03 [ = P, 0]
r=a
K Jnk N 3 )

7 ZZ{ Ty n(r 7§+)h(7")} |:Pt(+;L(T) *Pt(-jk)hu(r) :
k 1j=1

We can already recognize the reliability (REL) in the second term of

this decomposition:

REL(r
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(k) 2
pt+h|t( >}

N \

EZ: [$t+h

(k)

oo 1850 -

- pt+h|t(r)} i :

]~ WMN

(2.26)

Nl
i
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The first term can be expressed as follows:

K ng

£33 [ -5t - 125 -

kljl
Knk

=703 [t

kljl
K ng

o 22[

T Z Z |:xt+h

k=1 j=1

T
1
Z $t+h )]2
t:l

K
1kZ o [r) - 0]

=V (zern () [Si_g) — RES(r).

’ﬂ

7(r) + () ~ 70, (]
)}2
7]

—a(n)] [#) ~ 7},

Note that because the outcome variable x is binary, the uncertainty term

can be expressed as V (x4, (1) [St_g) = Z(r)(1 — Z(r)). To summarize,

we have decomposed the Brier score in the following way:

T
= S (1)~ Peasge(P)P = V (w04 (r) IS1) + REL(r) — RES(r)

1 o s (k)
k
3> [P
k=1 j=1
9 K ng *)
L 25 [0 2,
k=1 j=1

() = Py 0]

(T)] [Pt(gl( ) — Pt(i)h|t( )} .

The last two terms measure the variance of forecasts within the sub-

segments and the co-movement between forecasts within a segment and
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their corresponding outcomes. The decomposition therefore writes:

T
! =) = Prap ) = V (w40 (r) IS + REL(r) ~ RES(r)
t:l
WSV (r) + WSC(r).

Remark that the last two terms equal zero when all forecasts within the
same segment are assumed identical. Because WSV (r) and WSC(r)
are quantitatively very small in the data, we will work under the simpler
decomposition:

T

1
Z Tyyn(T Pt+h|t("")]2 =~V (wt+h (r) ‘%LR) + REL(r) — RES(r),
=

as per the definitions.
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Results For a Large Dimensional VAR

Variable Mnemonics Description
Real Gross Domestic Product, 3 Decimal (Billions
real GDP GDPCY6 of Chained 2009 Dollars)
Employment PAYEMS :;lrllslglmployees: Total nonfarm (Thousands of Per-
. Real Personal Consumption Expenditures (Billions
Real Consumption PCECC96 of Chained 2009 Dollars)
Personal Consumption Expenditures: Chain-type
PCE deflator PCECTPI Price Index (Index 2009=100)
Real Manufacturers’ New Orders: Durable Goods
real new order AMDMNOx (Millions of 2009 Dollars),
deflated by Core PCE
real wage AHETPILx Real Averfftge Hourly Earnings of Production and
Nonsupervisory Employees:
Total Private (2009 Dollars per Hour), deflated by
Core PCE
Nonfarm Business Sector: Hours of All Persons (In-
hours HOANBS dex 2009=100)
federal funds rate =~ FEDFUNDS Effective Federal Funds Rate (Percent)
S&P 500 Index S&P 500 S&P’s Common Stock Price Index: Composite
M2 M2REALX Real M2 Money Stock (Billions of 1982-84 Dollars)

Table 2.2: Description of Variables Included in the VAR
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FI1GURE 2.15: Results for the Large VAR

Alternative Ez-Ante Uncertainty Measure

The ex-ante uncertainty, oy p|¢ /7, can more generally estimated, for any
predictive distribution, as:

+oo 9

/ E [($t+h(7") — Py pp(t)) |Qs,t} dr =
+oo

Pyt )t (£) (1 — Py pqoppe(t)) drs

—0o0
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FIGURE 2.16: Results for the Large VAR

averaged across forecasters. Figure 2.17 shows indeed that they are the

same object and behave very similarly.
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0.1 J
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F1GURE 2.17: Alternative Uncertainty Measure
FEstimation

The decomposition is estimated with its sample counterparts:

Ut+h|t = / ut+h|t <7') dT’, t = R7 ,T

—00
where R is the size of the rolling window,

t

1 1
Uy (7 Z NZ sg+hlj (7)

j =t—R+1 s=1
t

% Z %Z [Tan (1) = Ds jn) (7")]2

j=t—R+1 s=1

=

=
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and
~ 4 +oo 2 +oo |
Ut+h\t /_ (?t+h|t (1) = Teyn (7’)> dr + - V(pt+h|t (r))dr
(2.27)
oo oo
+ Voly e (1) dr — 2/ Cov(zptn (1), pronye (1)) dr,

where the terms on the RHS of eq. (2.27) are as follows:

= Dugnft (1) s Teyn (r) are estimated by:

¢
Z p]+hlj
“R+

:U \

and
t

% > i (r);

j=t—R+1

- \//81t+h (x¢4h (7)) is an estimate of the variance of x4, (), which

is a binary variable, recursively over time:
Volyin (T4n (1) = Teqn (1 — Teqn) ;

- ‘A/Hh (th‘t (r)) is an estimate of the variance of p, |, (1) recur-

sively over time:

. 1t 2
Vien (Pegnpe (1) = = ':t_ZRH (pj+h|j (1) = Deyne (7")>

- 6(;/(.’1,}4,h (7) Pegnje (1)) is estimated as:

60\\’(5Ut+h (1) y Pt4ht (r) =
LS (o () = By () @5 (1) = T (7))
7 > )

j=t—R+1
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While we do not need the Normality assumption to calculate the
decomposition above, in practice we fit a Gaussian distribution to the
predictive density. The main reason is to guarantee that the “Knightian
uncertainty/(Realized) Risk” decomposition is consistent with the“Ex-
ante” / “Ex-post”, since the latter is valid only under Normality. Fur-
thermore, in the empirical implementation we let R = 4, which amounts
to calculating 4-quarter-moving average of the various components of
uncertainty, and we proxy the indefinite integrals with definite ones by
treating the extrema of either the realization or the bins as integral
bounds.
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Detailed Analysis of Uncertainty Across Forecast Horizons

Each plot in Figure 2.18 contains eight forecasts made in a given year:
1 quarter ahead, 2 quarters ahead, etc. Each density is then compared
to the corresponding realization of GDP growth, depicted as a vertical
line. Two things can be noted from those graphs. First, densities tend
to get narrower at shorter horizons. That {s what one would expect
based on our analysis: the shorter the horizon, the more concentrated
the forecast will be. This illustrates why ex-ante uncertainty is lower at
short horizons than at a longer horizons, which is what we found with
our uncertainty measure. Second, since densities at longer horizons are
less concentrated, the actual realizations may still end up well inside
the predictive distribution and hence the ex-post error (in terms of
likelihood) need not be greater than that of a concentrated, short-term
forecast. To see this in detail, consider the examples for the following
years:

— 1984: Long horizon forecasts were quite flat and in the end, the
realization fell quite close to the center of the curve. On the other
hand, the short term forecasts were concentrated and missed the
realization substantially. Ex-post error is higher for short term
horizons than for long term.

— 1995: This picture shows the opposite situation. Long-horizon
forecasts missed the realization, but short-term forecasts hit the
nail on the head. Ex-post error is lower at short horizons than at
long horizons.

— 1992: Both long and short term horizon failed in predicting. Ex-
post error should be about the same in both cases.

As one looks across diferent points in time, there are many more cases
where the pictures look like the situation in 1984 than in 1995, which
explains why, on average, the results show that ex-ante uncertainty
decreases as the horizon decreases, but ex-post uncertainty increases.
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FiGure 2.18: Examples of Predictive Densities and Realizations

72



2.10. Appendix

Number of Forecasters over Time
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FIGURE 2.19: Descriptive Statistics on the SPF
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INFORMATION AND UNCERTAINTY

My greatest concern was what to call it. I thought of calling
it “information”, but the word was overly used, so I decided
to call it “uncertainty.” When I discussed it with John von
Neumann, he had a better idea. Von Neumann told me, “You
should call it entropy, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics
under that name, so it already has a name. In the second
place, and more important, nobody knows what entropy really
18, so in a debate you will always have the advantage.”

— Claude Shannon, Scientific American, September 1971
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3.1 INTRODUCTION

Claude Shannon’s theory of information has had a tremendous impact
on economic theory, yet little on the study of economic uncertainty as
an object of its own. The rational inattention framework of Christo-
pher Sims and the robustness ideas of Thomas Sargent both read like
information theory between the lines. They inherently rely on the idea
that agents have limited information processing capabilities and are
therefore far from the perfect forecasters that the rational expectations
hypothesis thought they were. Agents are “rationally inattentive”; they
are aware of their limitations and optimize their decisions accordingly.
Neither Sims nor Sargent, however, try to quantify uncertainty. This
chapter does not discuss these ideas nor does it build on them; rather,
it provides a simple framework to estimate uncertainty using entropic
quantities on survey data.

Information theory was originally built with the purpose of better
understanding noisy data and soon became a solution to the classical
statistical dilemma. Statistical estimation always faces the choice of
either imposing a specific a priori structure — which introduces arbitrary
decisions in the estimation — or dealing with inherently under-determined
problems — which leads to infinitely many solutions and interpretations.
Under pre-imposed structures such as maximum likelihood estimation,
information measures are often used as measures of the discrepancy
between distributions, as goodness-of-fit measures and as other informa-
tive statistics for hypothesis testing, or for evaluating the informational
content of the data. Notable examples include information criteria in
econometrics, such as that of Akaike (1974) or Schwarz (1978) also
known as the AIC and BIC criteria. These are, however, “objective”
criteria used to skim through objective standardized econometric mod-
els. But they do not tell much about model uncertainty, nor about the
uncertainty that belies the underlying quantity measured. In contrast,
“maximum entropy” methods were developed as a decision tool to pick
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the most “informative” model, this time in the information theoretic
sense, without putting too much arbitrary structure on the model. The
principle of maximum entropy states that the probability distribution
which best represents the current state of knowledge is the one with
largest entropy. Even if information criteria and maximum entropy
methods proceed from a very different logic, information is defined in a
similar way through logarithms and plays a central role. For example,
the Fisher “information” represents a degree of uncertainty for maxi-
mum likelihood procedures around the true value of the parameter. The
Cramér-Rao bound gives an idea of the amount of incompressible risk
carried by a statistical model under maximum likelihood estimation, is
a direct function of the probabilistic “informativeness” of an estimator.!
Whether one adheres to maximum entropy or maximum likelihood,
distributions convey information that is tied to estimation uncertainty.

Knowing how much statistical theory used entropic measures as
metrics of uncertainty, entropy was surprisingly never used to assess
how much uncertainty probabilistic forecasts contained — in economics
or else. And despite the clear link between probabilistic forecasts and
information most forecast evaluation methods do not use entropy nor
related quantities. Currently used methods include the Brier score
(1950), ranked probability score (Epstein in 1969; Murphy in 1971),
relative operating characteristics (Swets in 1973), or rank histograms
(Anderson in 1996). Leung and North (1990) suggested that a relative
entropy-type measure might be used as the basis of a skill score for
deterministic forecasts. In rarer occasions entropy has been used in

'For an unbiased estimator, the Cramér-Rao (1946) states that:

R() > 1. (3.1)
1(0)
where 1(5) is the Fisher information of the estimator — i.e. the curvature of the
log-likelihood around the true parameter value. A high curvature means a more
efficient estimation. A result from Barron (1986) ties convergence in (relative) entropy
and Fisher information in the context of the central limit theorem.
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previous studies to quantify ensemble spread, for example by Stephenson
and Doblas-Reyes (2000). Entropy was then suggested as a predictor
of forecast skill, rather than as a measure of forecast skill. Rich and
Tracy (2010) use some information theoretic measures on the survey of
professional forecasters but their metrics are posited and not derived
from theory. Because of that last point, their measures aren’t related to
one another to any way and fail in explaining the different features of
commonly accepted proxies of uncertainty. Neither do they properly lay
out the benefits of applying entropic measures on survey data.

This chapter aims at filling this gap and showing some possible
applications in economics. With rationally inattentive agents or with
robust decision making the concept of information entropy plays a central
role but there is no measure of uncertainty per se. I start from forecasting
theory and define optimal density forecasts to show how they relate
to entropy and Shannon’s theory of information. I use my results to
develop a measure of uncertainty based on (survey) density forecasts, as
opposed to forecast errors like it has been done in most of the existing
literature. I then try to compare forecast-error type measures based on
entropic quantities to the measures presented in Chapter 2 and try to
uncover some principles linking economic uncertainty, forecast errors

and disagreement.

3.2 INFORMATION-THEORETIC MEASURES OF UNCER-
TAINTY

3.2.1 Information, Entropy, Uncertainty and Forecasting

Classical information science was founded by Claude Shannon with the
aim of giving a mathematical structure to the concept of information
transmission in the presence of noise. At the crux of information theory
stands the concept of entropy which is a measure of the uncertainty of a
random variable. More specifically, entropy is a measure of the amount
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of information required on the average to describe the random variable.?
Little after Shannon’s breakthroughs, Jaynes (1970) even went on to
claim that the traditional mechanical view of economic systems might
be inaccurate; he favors the thermodynamical view of the economy and

with it the entropy methods that thermodynamics employs.

Without veering into heterodox economics, it can be shown that
entropy and information actually lurk in the typical economic (density)
forecasting problem. This section retains a framework close to that of
Elliott and Timmermann (2016), but the problem is studied in much
greater detail. Assume that agents want to figure out the odds of the
states of nature in the next period, with their ultimate goal being to
provide a predictive density over the states of nature. Nature itself is
unknown to the forecaster, such that the probability density function
of the data generating process is itself picked from a set of densities
{fy :y € Y} which is equipped with a o-algebra and with a probability
measure Py for a well-defined statistical model.> Forecasters seek to

minimize the forecast error given a loss function £:

R(f,0) = BEv,z[£(f(Z,0),Y, Z)] (3-2)

// Y, 2) APy, (y) dPzpe(2)-

In the case of density forecasts, a common choice for the loss function is

2This is a consequence of what is known as the asymptotic equipartition property
that was described by Shannon in his original 1948 paper. Loosely, the theorem
establishes that nH (X) bits suffice on average to describe n independent and identi-
cally distributed random variables, or in other words, that a given distribution can
be properly understood with at least nH (X) bits of data.

3In a discrete case, one can think of nature picking a degenerate distribution
at random, where all the mass is put on a given outcome. The mixture of such
distributions produces a proper distribution whose probabilities are given by the
probabilities of selecting a given degenerate distribution.
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the Kullback-Leibler divergence:

K(fi, fy) = Efz[ (jf;)}
- [om (415 ) a

The Kullback-Leibler distance possesses almost all properties of a dis-

tance safe that of symmetry. The choice of this ordering between the two
distributions comes from the idea that forecasters will seek to minimize
the error according their own odds, since they are trying to guess those
of nature. Simplifying the writing by omitting the parameter vector
0 and other covariates Z, the forecasting problem takes the form of a

minimization of expected loss and essentially becomes:

mln/ /fl < g) dt dPy such that /fZ <1 (3.3)

This is generalized version of a simpler problem known as the minimal

cross entropy problem where the target distribution is known. This

problem solves into:*

fz(t) — e—1+)\+E(lnfy(t)) (34)

— o HRAH(Y).
where A is the Lagrangean multiplier tied to the constraint of the problem
and H;(Y') is the entropy of nature at event ¢ such that:

/ /m f,(t) At dPy (y /Ht (3.5)

Remark that with this solution H(f;) = H(Y)+C where C' is a constant,
meaning that the optimal forecast will be set in such a way that matches
the entropy of nature. These derivations serve to motivate the estimation
exercise that I conduct later in this chapter: Calculating the entropy of

4The proof can be found in the appendix.
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a (supposedly optimal) density forecast helps uncover the underlying
uncertainty of the process that is forecast.

An important point to make is that this problem is so far very loose.
In practice, forecaster ¢ may want to put some shape constraints on
their forecast, which can be summarized by the following set of moment

constraints:
Gi= {00 [runat=picnt 6o

where J; is finite. This will change the solution to the optimal forecasting

problem into:

fi(t) = o ITA e g, Xiivi () —He(Y) (3.7)

where the {);;} are the Lagrangean multipliers associated with the
shape constraints of forecaster i. Consequently, H(f;) = H(Y) + C;,
which allows for individual differences in uncertainty. When individ-
ual uncertainties are averaged out over the whole sample, this identity
provides a condition for the consensus to arrive at the exact entropy
of nature: All individual moment constraints “balance out”, such that
J C;dS(i) ~ 0, where S is a probability measure over the set of fore-
casters 8. It can be further be established that such a choice of density
maximizes entropy over the set of constraints, see for example Cover and
Thomas (2006) for a treatment in the context of the maximal entropy
problem. Finally, remark that the “true” density that is being forecast
may be the laws of nature that impose themselves to everyone or the
idiosyncratic probabilities for someone’s life events tomorrow.

Murphy (1993) argued that it is possible to distinguish three different
dimensions of forecast “goodness”: (i) Consistency — the correspondence
between forecasts and judgments; (ii) Quality — the correspondence
between forecasts and observations; and (iii) Value: incremental benefits
of forecasts to users. Forecast consistency is an assumption implicitly
made when using expectations conditional on the information set of the
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forecaster.?

Building from the forecasting problem presented in this
section, information theory can help us study forecast uncertainty from
the point of view of quality and value at the same time. How it can do

so is the object of the next section.

3.2.2  Information- Theoretic Measures of Uncertainty
3.2.2.1 Aggregate Entropy, Average Entropy, Disagreement

The Kullback-Leibler divergence used in the previous section showed
that optimal density forecasts achieve the minimum cross entropy in
such a way that matches the entropy of nature.® Using entropy isn’t
however, a new practice in the attempt to measure uncertainty. Rich
and Tracy (2010) postulate empirical measures of disagreement and
uncertainty using Shannon’s entropy and comparing their results to the
work of Wallis (2005). They do not show how uncertainty of the average
forecast relates to disagreement and the average uncertainty, which is
an important question when dealing with macroeconomic uncertainty.
In particular, uncertainty measures should be able to disentangle the
effects of individual divergences in guesses and the change in information
in the consensus, which is simply an “aggregate density”:

= /S £ dS(s); (3.8)

®Say that the forecast takes the form y;, = E(yi4+1|J:); Doob’s lemma in
probability theory tells us that y;,,, is a random variable that is o(J;)-measurable.

Tt can be shown that maximal entropy (i.e. maximal uncertainty) is reached
for a uniform distribution in a discrete world (and for the Gaussian distribution in
the continuous one). This is consistent with what is often called the Principle of
insufficient reason, corresponding to highest “uncertainty.” Keynes (1921) strongly
rejected the principle of insufficient reason as he argued that probabilities need not be
“numerical” and judgments of uncertainty even less so; he very much agreed Knight
(1921) in that sense. Until neuroscience takes a great leap, however, the data will
always be numerical and the principle of insufficient reason is a good approximation
for the highest uncertainty.
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where the fs stand for individual density forecasts, and forecasters are
distributed over a set 8.7 It can be easily checked that f4 is indeed a
probability density function as long as the set of forecasters is normalized
to have mass 1. Consider disagreement to be the average divergence of

individual forecasts to the consensus:
D= /ﬂ((fs,fA)dS(s) (3.9)
5
- [ [ romnorio)atase)

//fs t)In(fs(t)) dtdS(s //f ) In(f(t)) dt dS(s)
= —/SH(S) dS(s)—/ln(fA(t))/st(t) dS(s)dt

- / H(s)dS(s) + HA (3.10)
8

where H(s) = — [ fs(t) In(fs(¢)) dt is the individual entropy (which
measures uncertamty) for forecaster s, and HA = [ fA(t) In(fA(t)) dt
denote aggregate entropy (uncertainty). In essence, we have just shown
that, with density forecasts:

Aggregate Uncertainty = Uncertainty + Disagreement. (3.11)

Note that this decomposition echoes what we had found with the CRPS
in Chapter 2. Uncertainty can be high either when forecasters disagree
a lot (but they are not individually uncertain), or when they are indi-
vidually uncertain and don’t disagree much about it (that is, when no
one knows what happens next).

While the decomposition on its own does not uncover anything that
wasn’t known in Chapter 2, it presents several practical advantages.

"In the case of binned forecasts as in the Survey of Professional Forecasters, the
aggregate forecast would be:

A= (o ik} where pft = N D Pek and Zpk =1L

963
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First, these quantities are completely agnostic. They do not rely on
any model nor econometric estimation method; they merely need survey
forecasts to be estimated and simply assume their consistency with
the information set available to forecasters. Moreover, these measures
tie into the limited information macroeconomic literature and can be
very simply implemented in a macroeconomic model in which agents
form density forecasts over the possible states of the world. Finally
and most importantly, the decomposition is purely based on beliefs.
Unlike the CRPS or most measures of uncertainty developed until now,
the uncertainty does not take the form of a forecast error.8. In that
sense, these quantities are all ex-ante. An alternative version of ex-post
information theoretic measures is presented in the following section,
while a simple example of these quantities in the case of Gaussian
forecasts is presented in the Appendix.

3.2.2.2 Forecast Errors, Knightian Uncertainty and Relative Entropy

A common vision of uncertainty that, in a sense, also matches Knight’s
view, is that of a forecast mismatch. In probabilistic language, distri-
bution languages do not match the distribution that nature seems to
be working with, and agents are as uncertain as they are far from the
“true distribution.” With the same Kullback-Leibler distance as we used

before:

EGuess In (f G“ess> (3.12)

fTrue

This is essentially the forecast error as in the forecasting problem solved
at the beginning of this chapter, and this has been the approach retained
by most of the uncertainty measurement literature so far. Let fs denote
the (observed) density forecast of forecaster s, and define the uncertainty

8Baker et al. (2015) is another such measure, but much more costly in terms of
estimation.
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as a forecast error: Us = K(fs, £74¢); then:

.= [ 501 <ﬁm@)“
= [ s (430
/fs (Jmui())) dt (3.13)

Integrating over the set of forecasters to get the total uncertainty for

the panel:

U= /UC (fs £4) dS(s /fA <ftm£())> dt (3.14)

This last decomposition echoes Equation (3.11): Uncertainty = Ag-

gregate Uncertainty + Disagreement. Also, note that for the average
forecast uncertainty breaks down as such:

/f (ftmg )dt /f (t)In fA(t) /f (t) In foU(¢) dt;

(3.15)

which says mathematically that uncertainty decomposes into an ex-ante
component — the entropy of f4 — and an ex-post term — the cross entropy
between 4 and f"©. This is the exact same finding as in Chapter
2. In a perfect world where the randomness of nature is known with
decent precision, this measure can be immediately estimated from survey
forecasts. Finally, remark that such a measure makes sense only in the
situation where the “true” density that is predicted is the same for
everyone. Adrian and coauthors’ (2016) entropies follow a similar logic
but assume that the true distribution is the unconditional distribution
of GDP growth estimated from the data. While this is not inherently a
misguided approach, it comes with a number of drawbacks.

The issue is that the randomness of nature isn’t known and such
estimated densities are still very much window-dependent. Add the
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consideration that the underlying process may be non-stationary and
one may really want to stray away from any assumption that estimated
densities faithfully represent the true data generating process. Fortu-
nately, forecasting practitioners have reverted to some simplifications to
circumvent that issue. Brier (1950) used 0-1 forecast outcomes, that is,
the true density puts all the weight on the event that actually occurred.
Hersbach (2000) turns density forecasts into binary forecasts before
integrating them over the whole support of the distribution to arrive
to the continuous-rank probability score.” Either of these options is
not feasible in this case because neither is well defined for the Kullback-
Leibler distance. One possible solution is to use the Jensen-Shannon
divergence, which unlike the Kullback-Leibler divergence, is symmetric,
always well defined and bounded. The Jensen-Shannon divergence was
introduced by Amari et al. (1987) and is defined, for two densities f*
and f2, as follows:

H = (G4 5P ) G () 43 () (G0

where H denotes the Shannon entropy attached to the respective dis-
tributions. It can readily be seen that this divergence is symmetric — a
property that had been forgone with the Kullback-Leibler divergence —,
continuous and always properly defined, even for binary distributions.
The assumption made here is that the “true” distribution of nature
puts all the mass on one particular event, similar to that of Hersbach
(2000).'° With such definitions, the following decomposition holds:

[ rmerases) + 5 [ H)as) = a7+ gHA

A

(3.17)

9This is what is done in Chapter 2.
10The entropy of a distribution that puts all weight on one outcome is zero.
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which, once the following substitution is made:

HA—/H )dS(s /JC (fs, fA) dS(s); (3.18)

results in the following;:

rue rue 1
[t gy asts) = at e+ [ K(n £ dS6)  (319)
All in all, that is tantamount to saying the same as before:
Uncertainty = Aggregate Uncertainty + Disagreement.

The last “noise” term (the difference in entropy) is bounded as follows:*!

[ I3e3r) o i) o

<385 (1= Pl gLlf = ) G20

where k is defined as:

_ fA
K= e%(1+1n2”52); for some 7> > sup/t2 (W) dt (3.21)
s€S ||fs - f Hl

Because it is independent of the “true” density and involves only a
comparison of the individual forecast against the aggregate, this bound
justifies considering the “difference in entropy” term a “noise” of dis-
agreement; it rewrites as a direct expected value of (a function of)
the L! distance between the individual and consensus forecasts.!? In
particular, as Es||fs — f4|l1 — 0, that is, all individuals converge to a

"Under some regularity conditions detailed in the appendix together with the
proof.

12 Alternatively, one could also consider that the term in question is “the other half”
of disagreement that is missing in the equation, since the average of Kullback-Leibler
is affected with a factor of exactly 0.5.

87



3.

INFORMATION AND UNCERTAINTY

88

consensus, the disagreement “noise” term disappears as well.'> While
the Jensen-Shannon doesn’t have the same theoretical foundation and
is not immediately apparent from the forecasting problem presented
in the first section of this chapter,!* the decomposition still mirrors
the properties of aggregate uncertainty that were obtained in other
approaches. More importantly, the Jensen-Shannon approach allows to
extend information-theoretic measures to a feasible forecast-error based
approach.

3.2.2.3 State-Dependent Uncertainty and Total Uncertainty

An important question when trying to capture the underlying uncertainty
of density forecast is that of the extent to which it captures moments
of the distribution. I have shown that the solution to the forecasting
problem indeed factors in moment conditions through their associated
multipliers. Large deviation theorists Donsker and Varadhan linked the
relative entropy to (cumulant) moment generating functionals, but the
intuition of how the overall entropy is linked to the conditional distribu-
tions implied by the division of the support. This sections presents a
simple decomposition to break down the entropy of a distribution over
its support.

To lighten the notation I will assume that the density forecast made
since the beginning of this chapter represents the density of a random
variable of interest X with density f with respect to the Lebesgue
measure A over R. The forecast is made conditional to the information

13 Jensen’s inequality applied to ¢ — —tInt (which is concave) allows to rewrite
the bound as:

1 1 true 1 1 true
‘/ {H (51‘5 Y ) —H (if*‘ o )} ds(s)

< =385 (1o = 141 ) w5 Bs (15, = £41) = 0;

as Es||fs — f*|l1 = 0 — forecasters all converge to the same consensus.
141t nevertheless easy to check that the minimum “loss” is attained at the true
density.



3.2. Information-Theoretic Measures of Uncertainty

available at the beginning of the period, which I omit from the notation
for simplicity. T show in the Appendix of this chapter that:

H(X)=P(X € AH(X|X € A)+ [l — P(X € AJH(X|X ¢ A)...
+[P(X € A)], (3.22)

where [P(X € A] denotes the binary entropy of the event (X €
A) = {w € O X(w) € A}. In common terms, the uncertainty of a
given variable of interest can be decomposed into a weighted sum of
the uncertainty of the variable in a given state and outside of it, to
which the uncertainty around that state is added. One advantage of
such a decomposition is to emphasize asymmetries in different areas
(or “states” of the distribution forecast being made. A simple example
will make this idea clearer. Imagine that GDP growth X can take
4 different values — x1 and xo denote recessionary states, sz and x4
denote expansionary states. Consider Situation 1 where the forecast
predicts Px(x1) = 0.2; Px(x2) = 0.2; Px(x3) = 0.3 and Px(z4) = 0.3;
and Situation 2 where Px(z1) = 0.2; Px(xz2) = 0.3; Px(xz3) = 0.3
and Px(z4) = 0.2. Both distribution forecasts have the same entropy
since one is simply a rearrangement of the other. Note, however, that
in the second case there is more uncertainty in either state (recession
or expansion) than in the first case. Looking solely at entropy would
not have been able to uncover this fact. More generally, as long as all
quantities have been properly normalized!®, this decomposition helps
understand where uncertainty changed along the distribution and where
it did not. To be sure, such a decomposition makes sense only when
the underlying density forecast is not perfectly symmetric around the

states, say for example, with the normal distribution around its mean.
It allows me to escape some simplifying assumption made in Chapter 2.

15See the estimation sections below for a proper explanation of the normalization
of entropy when working in a discrete setting.
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Finally, note that for a joint process (X,Y") the following is true:

H(X,Y)=P(Y € AH(X,Y|Y € A) +[1 — P(Y € A)H(X,Y|Y ¢ A)
+y[P(Y € A)], (3.23)

which could be useful in looking at the regimes of growth in different
states of, say, inflation. Obviously this can be estimated provided that
one has joint predictive densities to feed in. While I restrict my esti-
mation to the marginal densities provided in the Survey of Professional
Forecasters, some ways of generating joint predictive densities from this
survey exist, see for instance Odendahl (2017).

This decomposition is a generalization of what is commonly known as
the “recursiveness” of the Shannon differential entropy. Such a decompo-
sition has not been exposed nor used in the entropy literature and much
less so in the economic uncertainty literature. The closest concept to
this decomposition would be Adrian and coauthors’ (2016) “downward”
and “upward” entropy concepts, but they use estimated densities and
focus about the distance between conditional and unconditional densities
under and above the median. For the sake of comparison, let m denote
the median of the distribution of X, that is, Px{(—oco,m)} = 0.5. My
decomposition would read as follows:

1 1
H(X):§H(X|X>m)+§H(X|X<m)+ln2. (3.24)

In fact, the upside and downside entropies are related to the total
(Kullback-Leibler) divergence as follows:

~ R 1 1
X(fyt|$t+h7gyt) = 51:’1(%] + iL? +1In2, (3'25)

although Adrian et al.” (2016) upward and downward measures are not
linked to one another as such in the current version of the paper. For a
density forecast conditional on the information available in the previous
period, this decomposition highlights how total uncertainty related to
uncertainty under and above the median. A direct application to survey
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forecasts will be conducted later in this chapter for introduction. Finally,
note that the breakdown of entropy can be extended to any quantile,
or more generally, to any partition of the support of X. In the case of
growth, this means that distribution forecasts can be studied in and out

of recessions, as opposed to simple quantiles.

3.3 ESTIMATING ENTROPY-BASED UNCERTAINTY MEA-

SURES

3.3.1 Job Market Uncertainty in the Survey of Economic Fxpectations

I begin this illustrative section using data that is not purely macroeco-
nomic nor comes from professional forecasters, and more importantly,
with which typical mean-squared error based measures of uncertainty
would be impossible to estimate. The Survey of Economic Expectations
(SEE) was run between 1992 and 2002 (over 12 waves) by the Univer-
sity of Wisconsin Survey Center (UWSC). The goal of the SEE was
to elicit probabilistic expectations of significant personal events, such
as personal security, unemployment, insurance and income. While the
methodology can be applied to all questions in the survey, I choose to
focus on employment outcomes. Participants were asked the following

questions:

— On job loss (All waves): “I would like you to think about your
employment prospects over the next 12 months. What do you
think is the percent change that you will lose your job during the
next 12 months?”

— On finding as good a job (All waves): “If you were to lose your job
during the next 12 months... What do you think is the percent
chance (or chances out of 100) that the job you eventually find
and accept would be at least as good as your current job, in terms

of wages and benefits?
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— On leaving job voluntarily (All waves): “What do you think is the
percent change that you will leave your job voluntarily during the
next 12 months?”

Note that these questions constitute a complete probability distribution
over the following events: Losing one’s job and not finding as good a job
in the following 12 months, losing one’s job and finding as good a job
in the following 12 months, leaving one’s job voluntarily, and leaving
things as they are.' However, the outcomes are individual and because
the support is discrete only the “ex-ante” entropy measures presented
in Section 3.2.2.1 are really relevant in this case.!”

The entropy measure is estimated directly on the probabilities given
in the survey. The entropy is normalized by In(n), where n is the
number of events considered, to make it a index bounded between zero
and one.!® The estimated job market uncertainty is presented in Figure
3.1. Uncertainty remained quite low over the 1992-2002 decade and
seems to vary little except from a clear ”down then up” period towards
the end of the sample period. In the latter, uncertainty remained
stable while aggregate uncertainty went up together with disagreement.
These data provide support to the idea that disagreement is a non-
negligible part of uncertainty. The continuous line in the graph depicts
the evolution of the importance of disagreement in overall uncertainty.
In the case of job market uncertainty, disagreement represents between
20 and 25 percent of overall uncertainty. In Chapter 2, I had found that
disagreement was a very small fraction of overall uncertainty; the finding
that disagreement is high in the case of job market uncertainty begs

6The conditional probabilities are inferred from the survey data. Note that in
a minority of cases people give a set of probabilities that sum to slightly over 1. I
exclude these cases from the estimation.

YThe state dependent entropy decomposition gives better insights on various
quantiles of a continuous distribution than on a discrete distribution with only four
outcomes.

8 This is for consistency with the following sections where the number of bins
changes and needs to be accounted for in the normalization.
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the question of what drives disagreement in the Survey of Economic
Expectations. A possible explanation for disagreement being such an
important part of uncertainty is that agents are forecasting “individual”
events, in the sense that individuals in the survey may have different
underlying conditions that will shift their beliefs toward one direction
or another. In what follows, I confirm that the level of studies may be

an explanation for the uneven levels of uncertainty in the survey.

Uncertainty
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FiGURE 3.1: Job Mark