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Abstract
Facial analysis has attracted considerable research efforts over the
last decades, with a growing interest in improving the interaction
and cooperation between people and computers. This makes it
necessary that automatic systems are able to react to things such
as the head movements of a user or his/her emotions. Further, this
should be done accurately and in unconstrained environments, which
highlights the need for algorithms that can take full advantage of
3D data. These systems could be useful in multiple domains such
as human-computer interaction, tutoring, interviewing, health-care,
marketing etc. In this thesis, we focus on two aspects of facial
analysis: expression recognition and head pose estimation. In
both cases, we specifically target the use of 3D data and present
contributions that aim to identify meaningful representations of the
facial geometry based on spectral decomposition methods:

1. We propose a spectral representation framework for facial
expression recognition using exclusively 3D geometry, which
allows a complete description of the underlying surface that
can be further tuned to the desired level of detail. It is
based on the decomposition of local surface patches in their
spatial frequency components, much like a Fourier transform,
which are related to intrinsic characteristics of the surface.
We propose the use of Graph Laplacian Features (GLFs),
which result from the projection of local surface patches into a
common basis obtained from the Graph Laplacian eigenspace.
The proposed approach is tested in terms of expression and
Action Unit recognition and results confirm that the proposed
GLFs produce state-of-the-art recognition rates.

2. We propose an approach for head pose estimation that allows
modeling the underlying manifold that results from general
rotations in 3D. We start by building a fully-automatic
system based on the combination of landmark detection and
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dictionary-based features, which obtained the best results
in the FG2017 Head Pose Estimation Challenge. Then, we
use tensor representation and higher order singular value
decomposition to separate the subspaces that correspond to
each rotation factor and show that each of them has a clear
structure that can be modeled with trigonometric functions.
Such representation provides a deep understanding of data
behavior, and can be used to further improve the estimation of
the head pose angles.

viii



Resum
Al llarg de les últimes dècades, l’anàlisi facial ha atret un interès
creixent i considerable per part de la comunitat investigadora
amb l’objectiu de millorar la interacció i la cooperació entre les
persones i les màquines. Aquest interès ha propiciat la creació
de sistemes automàtics capaços de reaccionar a diversos est́ımuls
com ara els moviments del cap o les emocions d’una persona.
Més enllà, les tasques automatitzades s’han de poder realitzar
amb gran precisió dins d’entorns no controlats, fet que ressalta
la necessitat d’algoritmes que aprofitin al màxim els avantatges
que proporcionen les dades 3D. Aquests sistemes poden ser útils
en molts àmbits com ara la interacció home-màquina, tutories,
entrevistes, atenció sanitària, màrqueting, etc. En aquesta tesi,
ens centrem en dos aspectes de l’anàlisi facial: el reconeixement
d’expressions i l’estimació de l’orientació del cap. En ambdós casos,
ens enfoquem en l’ús de dades 3D i presentem contribucions que
tenen com a objectiu la identificació de representacions significatives
de la geometria facial mitjançant mètodes basats en la descomposició
espectral:

1. Proposem una tecnologia basada en la representació
espectral per al reconeixement d’expressions facials utilitzant
exclusivament la geometria 3D, la qual ens permet una
descripció completa de la superf́ıcie subjacent que pot ser
ajustada al nivell de detall desitjat. Dita tecnologia, es basa en
la descomposició de fragments locals de la superf́ıcie en les seves
components de freqüència espacial, d’una manera semblant
a la transformada de Fourier, que estan relacionades amb
caracteŕıstiques intŕınseques de la superf́ıcie. Concretament,
proposem la utilització de les Graph Laplacian Features
(GLFs) que resulten de la projecció dels fragments locals
de la superf́ıcie a una base comuna obtinguda a partir
del Graph Laplacian eigenspace. El mètode proposat s’ha
avaluat en termes de reconeixement d’expressions i Action
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Units (activacions musculars facials), i els resultats obtinguts
confirmen que els GLFs produeixen taxes de reconeixement
comparables a l’estat de l’art.

2. Proposem un mètode per a l’estimació de l’orientació del
cap que permet modelar el manifold subjacent que formen
les rotacions generals en 3D. En primer lloc, constrüım un
sistema completament automàtic que combina la detecció de
landmarks (punts facials rellevants) i caracteŕıstiques basades
en diccionari, el qual ha obtingut els millors resultats al FG2017
Head Pose Estimation Challenge. Posteriorment, utilitzem
una representació basada en tensors i la seva descomposició
en els valors singulars d’ordre més alt per tal de separar
els subespais de cada factor de rotació i mostrar que cada
un d’ells té una estructura clara que pot ser modelada amb
funcions trigonomètriques. Aquesta representació proporciona
un coneixement detallat del comportament de les dades i pot
ser utilitzada per millorar l’estimació de les orientacions dels
angles del cap.
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Chapter 1

INTRODUCTION

1.1 Facial analysis
The face provides a large amount of information. Human-human
interaction is accompanied not only by different gestures but also
by gazing and different facial expressions. Just by seeing the faces of
another person we can tell a lot about his or her feelings. On the other
hand, most of the human-computer interaction is still performed
using peripheral devices, like a keyboard, mouse, and/or a display.
while automatic facial analysis is a promising tool to be used for more
effective, versatile, and user-friendly human-computer interaction.

There are many aspects in which automatic face analysis can be
used, and it is fundamental in many applications. For instance, a
person can be identified from the face image and, further, facial
expressions can be analyzed so that the computer can adapt to the
user mood. Potential applications span a wide spectrum, ranging
from security to entertainment, but the common thing among them is
that they all try to equip computers with the ability to gain high-level
understanding of the user by means of digital images of the face.
There is currently intensive research on methods to extract high-level
information from faces, and two important branches from it are our
focus in this thesis – facial expression recognition (FER) and head
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pose estimation.

1.1.1 Facial expression recognition
The human face contains important and rich visual information
for expressing emotion. Facial analysis studies have been carried
out over the past few decades for different purposes. The growing
interest in improving the interaction and cooperation between people
and computers makes it necessary that automatic systems are able
to react to a user and his/her emotions, as it takes place in natural
human intercourse. Facial expressions provide the cues of non-verbal
communication by means of which we can interpret the mood,
meaning and emotions at the same time. Due to that, FER could
be applied to a wide range of situations. For example, automatic
detection of expressions is essential when the user’s attention is
highly required, such as in surveillance and vehicle driving [Vural
et al., 2007]. In marketing, facial analysis could be applied to analyze
the reaction of consumers [McDuff et al., 2013b]. It, also, could be
applied in tutoring system [Ammar et al., 2010]. For every distant
learning environment, detecting a learner’s emotional reaction could
be a fundamental element, which would show us if the students are
bored, interested or puzzled. In a clinical context, a doctor may
monitor patients and be alerted when the patients are suffering,
annoyed, depressed, or uncomfortable [Cohn et al., 2009, Lucey
et al., 2011]. Many other applications such as virtual reality [Riva,
2006, Parsons et al., 2017], video-conferencing [Li et al., 2015c, Shih
et al., 2017], user profiling [Arapakis et al., 2009] and customer
satisfaction studies for broadcast and web services [McDuff et al.,
2013a], require efficient FER in order to achieve the desired results
[Girard et al., 2013]. Therefore, it is important to have accurate and
robust expression classification to harness the information available
in human expression.

Facial expressions recognition is a challenging problem as the face
is capable of complex motions and the range of possible expressions
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is wide [Sandbach et al., 2012b]. The psychologist Paul Ekman
has made a lot of efforts to define facial expressions precisely. In
his early work [Ekman and Friesen, 1971], there a cross-cultural
study was performed on the existence of universal categories of
emotional expressions. Based on that he suggested that there exist
six basic human emotions: happiness, sadness, surprise, fear, anger
and disgust (Fig. 1.1). Another relevant work of Ekman [Ekman
et al., 1978] is that he developed the Facial Action Coding System
(FACS) that has become the most well known system for describing
facial expressions. It defines 46 facial action units (AUs) that are
based on facial muscle movements, and all facial expressions can be
defined using this system. Fig 1.2 illustrates some of the Action
Units described in FACS.

Currently, these the above studies are used as a guide the
research on facial expression recognition. People, in their works,
focused on the classification of the six basic emotions, which have
been assumed to be universal, or try to detect the facial muscle
movements corresponding to AUs.

A general review of FER (including also 2D) can be found in the
recent work by Corneanu et al. [Corneanu et al., 2016]. For surveys
of earlier approaches, we can refer to to [Sandbach et al., 2012c, Fang
et al., 2011a] for 3D and [Zeng et al., 2009, Pantic and Rothkrantz,
2000] for 2D domains.

We see that many researchers have been focused on the facial
expression recognition, but most of them have been working on the

Figure 1.1: The six universal facial expressions.
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Figure 1.2: Examples of Action Units described in FACS. The
samples are extracted from the Bosphorus 3D facial expression
database [Savran et al., 2008]

2D domain i.e. using texture information [Sandbach et al., 2012c].
Despite their achievements, facial analysis methods based on still
suffer from illumination and pose variations, which often occur in
real conditions. The illumination problem is basically the variability
of an object’s appearance from one image to the next with slight
changes in lighting conditions and viewpoints [Vishwakarma et al.,
2007]. Due to this problem, it is difficult to handle subtle facial
behavior in 2D domain.

With the rapid development of 3D imaging and scanning
technologies, 3D data has appeared as a promising solution in
face processing and analysis. The main reason for this is that 3D
face scans contain detailed geometric shape information, without
suffering from the problems of illumination and pose variations that
are inherent to the 2D faces. Another important reason to use 3D
data was presented by Savran et al. [Savran et al., 2012]. They
conducted a comparative evaluation of 3D and 2D face modalities,
and demonstrated that overall 3D data performs better, especially
for lower face AUs.

Thus, this explains the recent increase in the number of studies
dealing with 3D face information, and also attracted our interest to
this field.
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1.1.2 Head pose estimation

Another important branch in facial analysis for human-computer
interaction is head pose estimation. Based on the fundamental
assumption that head pose is highly correlated with the direction
of visual gaze [Stiefelhagen et al., 1999], this issue addresses
the following question – ”where does the person look?”. Despite, a
person’s gaze direction is strictly related to his/her eyes, physiological
investigations reveal that gaze direction is strongly correlated by the
orientation of a human head, i.e., head pose [Langton et al., 2004].

Based on the aforementioned findings, one of the applications
can be a hands-free interface. For instance, knowledge of a person’s
head pose may directly control a device designed for disabled
people, or act as a replacement of the mouse in human-computer
interaction [Mateo et al., 2008]. It can be applied in human behavior
understanding, such as analyzing inclination of passers-by to an
outdoor advertisement or monitoring drivers’ attention [Smith et al.,
2008, Murphy-Chutorian et al., 2007]. Also head pose can be used
to understand the real world in augmented reality [Wang and Yang,
2017]. Further, head pose could be useful together with facial
expression analysis is social behavior modeling. Apart from verbal
communication, analyzing head pose and facial expression of people
is a good way to understand the interaction between them [Ba and
Odobez, 2009]. In this case a head pose estimation system can
be used, also, as a pre-processing step for pose independent face
recognition [Blanz and Vetter, 2003], facial motion analysis [Wang
et al., 2018] or stress indication [Giannakakis et al., 2018].

The goal of head pose estimation is to predict the relative
orientation between the camera and a target head. This orientation
is usually represented by three angles: rotation around vertical
axis (yaw angle), around lateral axis (pitch angle), and around
longitudinal axis (roll angle) as illustrated in Fig. 1.3.

Traditionally, head pose estimation has been performed on 2D
images, but advances in 3D acquisition systems have led to a growing
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Figure 1.3: Orientation of the head in terms of pitch, roll, and yaw
angles.

interest in methods that operate on 3D data [Seemann et al., 2004].
As with 3D facial expression analysis, these methods are less sensitive
to changes in illumination which makes them more accurate and
robust.

1.2 Contribution
The work carried out during my PhD is focused on two facial research
areas: 3D facial expression recognition and 3D head pose estimation.
And in both of these works we have used approaches based on spectral
analysis.

Spectral analysis is one of several statistical techniques useful
for characterizing and analyzing data. This analysis refers to the
decomposition of data into oscillations of different lengths or scales.
By this process, the observations in what is called the data domain are
converted into the spectral domain [Smelser et al., 2001]. The reasons
for doing this are that: (a) some forms of manipulation are easier
in the spectral domain; and (b) the revealed scales are necessary
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statistical descriptors of the data and may suggest important factors
that affect or produce such data.

Spectral analysis or Spectrum analysis is the analysis in terms
of a spectrum of frequencies or related quantities such as energies,
eigenvalues, singular values etc. In mathematics, the spectrum of a
matrix is the set of its eigenvalues [Golub et al., 1996] or singular
values, which could be treated as the square roots of the eigenvalues.
Thus, roughly, we can say that our work is based on the analysis of
eigenvalues and singular values. In the next subsections, we briefly
explain why and how this was done.

1.2.1 3D facial expression recognition
As mentioned before, 3D shape analysis has attracted increasing
attention, although the availability of 3D information is not always
fully exploited, i.e. 3D/depth information is treated analogously to
a gray-scale image and the 3D information is simply extracted by
directly applying 2D techniques. In order to take full advantage of
depth information we need approaches that are truly 3D.

In this work, we investigate the problem of Facial Expression
Recognition (FER) using 3D data and present an approach for
automatic 3D facial expression recognition. Building from one of the
most successful frameworks for facial analysis using exclusively 3D
geometry, we extend the analysis from a curve-based representation
into a spectral representation, which allows a complete description of
the underlying surface that can be further tuned to the desired level
of detail. Spectral representations are based on the decomposition of
the geometry in its spatial frequency components, much like a Fourier
transform, which are related to intrinsic characteristics of the surface.
We propose the use of Graph Laplacian Features (GLFs), which
result from the projection of local surface patches into a common
basis obtained from the Graph Laplacian eigenspace. The proposed
approach is tested on the three most popular databases for 3D
FER (BU-3DFE, Bosphorus and BU-4DFE) in terms of expression
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and AU recognition. Our results show that the proposed GLFs
consistently outperform the curves-based approach as well as the
most popular alternative for spectral representation, Shape-DNA,
which is based on the Laplace Beltrami Operator and cannot
provide a stable basis to guarantee that the extracted signatures
for the different patches are directly comparable. Furthermore, we
demonstrate that the approach can work in a fully-automatic setting
by integrating a state-of-the-art 3D landmark detector to guide the
extraction of the features with no manual intervention, while still
maintaining high expression recognition rates.

1.2.2 3D head pose estimation
For 3D head pose estimation, we also use a kind of spectral analysis,
which is based on the analysis of elements obtained from tensor
decomposition. This decomposition splits a tensor into one small
core tensor and a set of matrices which consist of singular values.
Thus we can treat it as one of the areas of spectrum analysis.

The head pose orientation is usually represented following three
Euler angles:

• Yaw angle: rotation around the vertical (y) axis.

• Pitch angle: rotation around the horizontal side-to-side (x) axis.

• Roll angle: rotation around the horizontal back-to-front (z)
axis.

Despite the fact that standard features used to represent 3D
meshes lie in high-dimensional spaces, a key observation to solve this
problem is that the aforementioned angles define a lower-dimensional
manifold with only three degrees of freedom. This fact makes tensor
decomposition and manifold learning appealing frameworks for the
estimation of the orientation parameters. In particular, multi-linear
decomposition are able to separate the variations produced by the
different factors (i.e. angles) into separate subspaces, thus obtaining
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specific parametrizations for each of them. On the other hand,
manifold learning can be used to find the low-dimensional manifold
structure defined by the orientation angles.

Based on the aforementioned findings, we propose an approach to
learn the manifold, defined by 3D rotation, based on the coefficients
obtained from tensor decomposition. For this purpose, we use
multi-linear decomposition over 3D descriptors in order to split the
pose variation factors (i.e. yaw, pitch and roll) and obtain a set of
subspaces whose coefficients are governed by an unique parameter.
These coefficients define a continuous curve in each of the sub-spaces
that corresponds to the head pose variation along one of the rotation
angles. We further show that these curves can be modeled in terms
of trigonometric functions, which are indeed the bases to explain
rotation effects. We show that the proposed framework can achieve
state-of-the-art performance for head pose estimation.

1.3 Outline of the thesis
The thesis is organized into 4 chapters. Chapters 2-4 are
self-contained and each of them corresponds to a published or
under review paper, while Chapter 5 summarizes the conclusions
from this work.
Chapter 2. This chapter presents an approach for automatic 3D

facial expression recognition. This approach based on the
local shape spectrum representation, which allows a complete
description of the underlying surface. In this chapter, we
propose the use of Graph Laplacian Features (GLFs), which
result from the projection of local surface patches into a
common basis obtained from the Graph Laplacian eigenspace.
Experiments are carried out on three publicly available
databases in terms of expression and Action Unit recognition.

Chapter 3. In this chapter we present a system that is able
to estimate head pose using only depth information from
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consumer RGB-D cameras such as Kinect 2. In contrast to
most approaches addressing this problem, we do not rely on
tracking and produce pose estimation in terms of pitch, yaw
and roll angles using single depth frames as input. Our system
combines three different methods for pose estimation: two of
them are based on state-of-the-art landmark detection and
the third one is a dictionary-based approach that is able to
work in especially challenging scans where landmarks or mesh
correspondences are too difficult to obtain. We evaluated
our system on the SASE database, which consists of ∼30K
frames from 50 subjects. We obtained average pose estimation
errors between 5 and 8 degrees per angle, achieving the best
performance in the FG2017 Head Pose Estimation Challenge.

Chapter 4. In this chapter, we also present an algorithm for
3D head pose estimation using only depth information from
RGBD consumer cameras. We present an approach that
allows modeling the underlying 3D manifold that results from
rotation variations. To do so, we use tensor representation and
higher order singular value decomposition to generate separate
subspaces for each variation factor and show that each of them
has a clear structure that can be modeled with cosine functions
from a unique shared parameter per angle. Such representation
provides a deep understanding of data behavior and angle
estimations can be performed by optimizing combinations
of these cosine functions. We evaluate our approach on two
publicly available databases, and achieve top state-of-the-art
performance.

Chapter 5. Finally, in this chapter we summarize this thesis by
giving the most important ideas and contributions of the
work in both 3D facial expression recognition and head pose
estimation.
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1.4 Publications
The research developed during this thesis has resulted in the following
list of publications:

Journals

1. D. Derkach, A. Ruiz, F.M. Sukno, ”Tensor Decomposition and
Non-linear Manifold Modeling for 3D Head Pose Estimation”,
International Journal of Computer Vision, (Under Review)

2. D. Derkach, F.M. Sukno, ”Automatic Local Shape Spectrum
Analysis for 3D Facial Expression Recognition”, Image and Vision
Computing, special issue ”Best of FG2017” (Accepted), DOI:
10.1016/j.imavis.2018.09.007

International Conferences

1. D. Derkach, A. Ruiz, F.M. Sukno, ”3D Head Pose Estimation
Using Tensor Decomposition and Non-linear Manifold Modeling”,
International Conference on 3D Vision, 2018, pages 505-513, (Oral
Presentation), DOI: 10.1109/3DV.2018.00064

2. D. Derkach, F.M. Sukno, ”Local Shape Spectrum Analysis for
3D Facial Expression Recognition”, International Conference on
Automatic Face and Gesture Recognition (FG2017), 2017, pages
41-47, (Oral Presentation), DOI: 10.1109/FG.2017.143

3. D. Derkach, A. Ruiz, F.M. Sukno, ”Head Pose Estimation
Based on 3-D Facial Landmarks Localization and Regression”,
International Conference on Automatic Face and Gesture
Recognition (FG2017), 2017, pages 820-827, (Oral Presentation),
DOI: 10.1109/FG.2017.104, (Winner of the Head Pose Estimation
Challenge)
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Abstract
We investigate the problem of Facial Expression Recognition (FER) using 3D data. Building

from one of the most successful frameworks for facial analysis using exclusively 3D geometry,

we extend the analysis from a curve-based representation into a spectral representation, which

allows a complete description of the underlying surface that can be further tuned to the desired

level of detail. Spectral representations are based on the decomposition of the geometry in

its spatial frequency components, much like a Fourier transform, which are related to intrinsic

characteristics of the surface. In this Chapter, we propose the use of Graph Laplacian Features

(GLFs), which result from the projection of local surface patches into a common basis obtained

from the Graph Laplacian eigenspace. We extract patches around facial landmarks and include

a state-of-the-art localization algorithm to allow for fully-automatic operation. The proposed

approach is tested on the three most popular databases for 3D FER (BU-3DFE, Bosphorus

and BU-4DFE) in terms of expression and AU recognition. Our results show that the proposed

GLFs consistently outperform the curves-based approach as well as the most popular alternative

for spectral representation, Shape-DNA, which is based on the Laplace Beltrami Operator and

cannot provide a stable basis that guarantee that the extracted signatures for the different

patches are directly comparable. Interestingly, the accuracy improvement brought by GLFs

is obtained also at a lower computational cost. Considering the extraction of patches as a

common step between the three compared approaches, the curves-based framework requires a

costly elastic deformation between corresponding curves (e.g. based on splines) and Shape-DNA

requires computing an eigen-decomposition of every new patch to be analyzed. In contrast,

GLFs only require the projection of the patch geometry into the Graph Laplacian eigenspace,

which is common to all patches and can therefore be pre-computed off-line. We also show that

14 automatically detected landmarks are enough to achieve high FER and AU detection rates,

only slightly below those obtained when using sets of manually annotated landmarks.
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2.1 Introduction

The human face plays an important role in expressing emotions
such as happiness, satisfaction, surprise, fear, sadness or disgust.
While there is consensus about the need to integrate multi-modal
information for a complete understanding of human emotions, facial
expressions are considered one of the most relevant channels for
humans to regulate interactions both with the environment and with
other persons [Pantic, 2009].

During the past two decades, the problem of facial expression
recognition (FER) has become very relevant. The growing interest
in improving the interaction and cooperation between people and
computers makes it necessary that automatic systems are able to
react to a user and his emotions, as it takes place in natural human
intercourse. Many applications such as virtual reality [Riva, 2006,
Parsons et al., 2017], video-conferencing [Eisert and Girod, 1998, Li
et al., 2015c, Shih et al., 2017], user profiling [Arapakis et al., 2009]
and customer satisfaction studies for broadcast and web services
[McDuff et al., 2013a], require efficient FER in order to achieve
the desired results [Girard et al., 2013]. Therefore, the impact of
facial expression analysis on the above-mentioned application areas
is constantly growing.

Early works on FER have focused primarily on the 2D domain
(texture information) [Sandbach et al., 2012c] due to the prevalence
of data. Despite their great achievements, facial analysis methods
based on still suffer from illumination and pose variations, which
often occur in real conditions.

With the rapid development of 3D imaging and scanning
technologies, it becomes more and more popular using 3D face scans.
Compared with 2D face images, 3D face scans contain detailed
geometric shape information of facial surfaces, which removes the
problems of illumination and pose variations that are inherent to
the 2D modality. Thus, 3D-shape analysis has attracted increasing
attention, although the availability of 3D information is not always
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fully exploited: in many cases, 3D information is analyzed by
directly applying 2D techniques to limited depth representations,
such as depth maps (2.5D), where the depth information is treated
analogously to a gray-scale image and the 3D information is simply
extracted by computing popular 2D texture descriptors like LBPs
[Guo et al., 2009, Wang and Meng, 2013, Wang et al., 2014b], SIFT
[Berretti et al., 2010] or Gabor filters [Yun and Guan, 2010, Xie
et al., 2010, D’Hose et al., 2007]. More recently, deep convolutional
neural networks have also been explored in order to generate deep
features [Li et al., 2015b] from this 2.5D representation.

In order to take full advantage of depth information we need
approaches that are truly 3D. A notable approach in this direction,
from Maalej et al., is based on the representation of surfaces with a
finite number of level curves [Maalej et al., 2011]. Based on this
curves, authors emphasized the importance of using local regions
instead of the entire face and proposed a local geometric analysis of
the surface. Further, they applied a Riemannian framework to derive
3D shape analysis and quantify similarity between corresponding
patches on different 3D facial scans.

Motivation and Contributions
Despite the success of the level-curves framework from [Maalej et al.,
2011], it could be argued that it is an incomplete representation of
the 3D data, since it only captures part of the underlying surface,
which is actually sampled by means of a finite number of curves. In
contrast, spectral representations are based on the decomposition of
the complete geometry in its (fundamental) frequency components,
which are related to intrinsic characteristics of the surface, and
correspond to the eigenvectors of the Laplace Beltrami Operator
(LBO). The spectrum of the LBO is an isometric invariant, and
it has been shown to be a powerful descriptor as a signature
for (non-rigid) 3D shape matching and classification [Karni and
Gotsman, 2000, Reuter et al., 2006]. The most popular of such
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descriptors, baptized as ”Shape-DNA”, was proposed by Reuter et
al. [Reuter et al., 2006], by taking the eigenvalues (i.e. spectrum)
of the LBO. Because such spectrum captures intrinsic shape
information, it was shown that it can be used like a DNA-test to
identify 3D objects or to detect similarities in practical applications.
Applications of Shape-DNA include object identification for the
purpose of copyright protection [Reuter et al., 2005], shape analysis
for medical applications [Niethammer et al., 2007] or smoothing
and partitioning of complex structures [Qiu et al., 2006, Qiu et al.,
2008]. Shape-DNA has also been used for statistical shape analysis
with different purposes [Reuter et al., 2009], but, to the best of our
knowledge, it has not been applied for facial expression analysis.

Based on the facts above, in this Chapter we explore the use of
spectral methods as local shape descriptors for 3D FER. We show
that the application of Shape-DNA is not the best way to deal
with local face patches and that a fixed-graph basis, which we refer
to as Graph Laplacian Features (GLFs), provides superior results.
This is theoretically sound given the impossibility to ensure a fixed
ordering of the spectral components under the Shape-DNA approach
[Jain et al., 2007]. Compared to the curves-based framework, the
proposed method constitutes a generalization to a full representation
of the surface patches resulting in higher accuracy and reduced
computational complexity. Preliminary results of this approach were
presented in [Derkach and Sukno, 2017].

We perform experiments over the three most widely used
databases for 3D facial expression analysis: Bosphorus [Savran et al.,
2008], BU-3DFE [Yin et al., 2006] and BU-4DFE [Yin et al., 2008]. In
all cases we show that the proposed GLFs approach still outperform
the curves-based and Shape-DNA alternatives. Furthermore, we
demonstrate that the approach can work in a fully-automatic setting
by integrating a state-of-the-art 3D landmark detector [Sukno et al.,
2015] to guide the extraction of GLFs with no manual intervention,
while still maintaining high expression recognition rates.

The remainder of this Chapter is organized as follows. Section
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2.2 introduces the existing approaches for 3D FER. In Section 2.3
we provide the required background on spectral mesh processing
and Section 2.4 details the proposed GLFs for 3D facial analysis.
Automatic landmarks detection is covered in Section 2.5 while
Sections 2.6 and 2.7 detail our experiments on FER and Action
Units detection, respectively. Section 2.8 concludes the chapter.

2.2 Related Work
The use of the 3D data for facial analysis is not so wide as the
use of 2D, but still, there are considerable efforts toward solving
the problem of 3D FER. In this section we will briefly review them,
highlighting those that are most related to our approach and focusing
only on approaches employing 3D features. A general review of FER
(including also 2D) can be found in the recent work by Corneanu et
al. [Corneanu et al., 2016]. For surveys of earlier approaches, the
reader is referred to [Sandbach et al., 2012c], [Fang et al., 2011a] for
3D and [Zeng et al., 2009, Pantic and Rothkrantz, 2000] for 2D.

One of the most popular feature to encode facial information in
3D is curvature. For example, in [Wang et al., 2013b], Wang et
al. described facial scans based on four curvature-based descriptors,
namely, the two principal curvatures, mean curvature and shape
index. This information was gathered on a regular grid (like a 2.5D
representation) and it was later encoded by Local Binary Patterns
(LBP). A similar strategy was followed by Zeng et al. [Zeng et al.,
2013] who conformally mapped the 3D facial surface onto a 2D unit
disk and then considered it as a 2D image for further processing.

Vretos et al [Vretos et al., 2011] were focused on the 3D FER using
Zenrike moments on depth images. It is a set of complex polynomials,
which form an orthogonal set over the interior of the unit circle. The
Zenrike moments were proposed, in [Khotanzad and Hong, 1990], in
order to tackle several problems arising from the use of raw moments
in image processing such as redundancy of the moments, as well as,
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difficulty in the recovery of the image from these moments, due to
high computational burden.

A group of works closely related to our approach are those that
represent the 3D geometry by means of sets of curves [Klassen and
Srivastava, 2006, Srivastava et al., 2011, Maalej et al., 2011, Samir
et al., 2009, Drira et al., 2013, Amor et al., 2014]. These start
with the seminal work presented by Klassen et al., based on the
representation of static 3D images with a finite number of level
curves [Klassen and Srivastava, 2006]. They showed that curves can
be used to represent surface regions, being able to capture quite
subtle deformations. Thus, 3D shape analysis can be performed
by comparisons of corresponding level curves. It should be noted,
however, that such comparison is not trivial, given that distances
between 3D level curves should be computed based on the geodesic
paths of their underlying manifold. An important step forward
in this direction was presented in [Srivastava et al., 2011, Maalej
et al., 2011], by introducing a square-root velocity representation for
analyzing curves in Euclidean spaces under a Riemannian metric.
In particular, they computed geodesic paths between curves under
this metric to obtain deformations between closed curves. Samir
et al. [Samir et al., 2009] applied a similar curves-based approach
for the analysis of facial surfaces. They represented a surface as an
indexed collection of closed curves. These curves were extracted
according to to their Euclidean distance from the tip of the nose,
which is sensitive to deformations and, thus, can better capture
differences related to variant expressions. Then, authors studied
curves’ differential geometry and endowed it with a Riemannian
metric. In order to quantify differences between any two facial
surfaces, the length of a geodesic was used. A similar framework was
used in [Drira et al., 2013, Amor et al., 2014] for analyzing 3D faces,
with the goal of comparing, matching and averaging faces, with the
difference that surfaces were represented by radial curves outflowing
from the nose tip.

Another popular strategy to work with 3D facial scans has been
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to exploit the availability of texture information. For example, Jan
et al. [Jan and Meng, 2015] explored different feature extraction
methods on both 2D texture images and 3D geometric data, and
further fused the two domains to increase performance. The explored
features include all pair-wise distances between landmarks (using the
83 manually provided points), Edge Oriented Histogram (EOH), LBP
and Local Phase Quantization (LPQ).

Advances in 3D imaging devices have made it possible the use
of 3D dynamic sequences (also known as 3D + time or 4D data).
Such 3D sequences make it possible to analyze the behaviour of
the facial geometry over time. Efforts in this direction have often
focused on the design of features that can adequately capture both
the spatial and temporal variations present in 4D data [Sandbach
et al., 2012b, Canavan et al., 2012, Reale et al., 2013]. For example,
Sandbach et al. [Sandbach et al., 2012b] proposed 3D motion-based
features (the Free-Form Deformation algorithm) between frames of
3D facial geometry sequences, Canavan et al. [Canavan et al., 2012]
presented a dynamic curvature descriptor (dynamic shape-index)
constructed from local regions as well as temporal domains and
Reale et al. [Reale et al., 2013] presented the 4D spatio-temporal
”Nebula” descriptor, which is a histogram of different facial regions
using geometric features (i.e. curvatures and polar angles), after
fitting the volume data to a cubic polynomial.

A shortage of some of the approaches mentioned above is their
need for manual intervention, most often in terms of landmark
position that need to be known before the method can be applied. In
contrast, there exist some methods that can work fully automatically
[Yang et al., 2015, Azazi et al., 2015, Li et al., 2015a, Li et al., 2012].
For example, Yang et al. [Yang et al., 2015] presented a method
that is able to work without the need for facial landmarks, as long
as the input data is aligned and cropped beforehand (e.g. as in the
BU-3DFE database). The method starts by extracting a set of maps
of shape features in terms of multiple order differential quantities
(e.g. Normal Maps and the Shape Index Maps) to describe geometry
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attributes of the facial surface. Then a scattering operator was
introduced to further highlight expression related cues on these
maps, thereby constructing geometric scattering representations of
3D faces for classification.

Full-automation has also been addressed by incorporating
landmark detection within FER systems. Azazi et al.[Azazi et al.,
2015] proposed a fully automatic system that starts by transforming
the 3D faces into the 2D plane using conformal mapping. Then
a Differential Evolution optimization algorithm was used to
simultaneously select the optimal facial feature set and the classifier
parameters. The optimal features were selected from a pool of
Speed Up Robust Features (SURF) descriptors of all the prospective
facial points, which were automatically detected using 2D texture
information. Li et al. [Li et al., 2015a] also used automatic 2D
landmark detection and project the located landmarks back to the
3D scan so that both 2D and 3D features can be extracted. Their
approach combines multi-order gradient-based local texture and
shape descriptors. A local image descriptor based on histogram
of second order gradients (HSOG) along with first order gradient
based SIFT descriptors were used to describe the local texture
around each 2D landmark. Similarly, the local geometry around
each 3D landmark was described by two local shape descriptors
constructed using first and second order surface differential geometry
quantities, i.e. meshHOG, meshHOS. Classification was based on
SVMs, reporting results of all 2D and 3D descriptors fused at both
feature-level and score-level to further improve the accuracy.

Fully-automatic systems have also been proposed in 4D [Zhen
et al., 2016, Xue et al., 2015, Berretti et al., 2013, Fang et al., 2011b].
Zhen et al. [Zhen et al., 2016] investigated 4D FER based on a
muscular movement model. They firstly segment each 3D frame in 11
muscular regions using the Iterative Closest Normal Point algorithm
and extract features that include coordinate, normal and shape index
values. Classification is performed both in 3D and 4D domains
by using SVMs and Hidden Markov Models (HMMs). A different
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strategy was followed by Xue et al. [Xue et al., 2015] who start by
detecting a large number of 2D landmarks that are then projected
into the 3D surface to extract Discrete Cosine Transform (DCT)
features. In order to model 3D dynamics, they upgrade these features
to the spatio-temporal domain by analyzing sequences of depth maps
arranged as volumes, where time is the 3rd dimension.

It is interesting to note that, except [Zeng et al., 2013] and [Zhen
et al., 2016], most efforts to develop fully-automatic FER systems in
3D have so far relied on the detection of landmarks in 2D. In contrast,
in this Chapter we present a system that works fully automatically
based solely on the 3D geometry of the face (e.g. without using any
texture information).

2.3 Spectral Shape Analysis
Spectral methods have been applied to solve a variety of
problems including mesh compression, correspondence, smoothing,
watermarking, segmentation, surface reconstruction etc. [Reuter,
2010, Nealen et al., 2006, Zhang et al., 2010].

Spectral shape analysis relies on the decomposition of the
surface geometry into its spatial frequency components (spectrum).
Such representation allows to analyze the surface by examining
the eigenvalues, eigenvectors or eigenspace projections of these
fundamental frequencies. One of the advantages of these methods is
that they are invariant with respect to isometric embeddings of the
shape and robust to pose variations such as translation and rotation.

In this chapter, we will use the spectrum of the Laplace operator
as local descriptors of the facial surface for expression recognition.
The Laplacians are the most commonly used operators for spectral
mesh processing. More rigorously, the Laplacian can be considered a
special case of the more general Laplace-Beltrami Operator (LBO),
which is defined on a manifold invariant to its parameterization,
taking into account only its Riemannian metric [Reuter et al., 2006,
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Bronstein and Bronstein, 2011]. The spectrum of the LBO is an
isometric invariant, and it has been shown to be strongly linked to
the geometry of the surface and its intrinsic structure [Qiu et al.,
2008]. Results from spectral theory suggest that LBO eigenvalues
are tightly related to almost all major invariants [Chung, 1997], and
it has also been observed that level sets of LBO eigenfunctions follow
geometric features [Lévy, 2006], highlight protrusions [Reuter, 2010]
and reveal (global) symmetry [Ovsjanikov et al., 2008].

Several Laplacian operators have been proposed in the literature
to compute the mesh spectrum. In this chapter we are especially
interested in the two most popular ones:

1. Graph Laplacian, related to operators that have been widely
studied in graph theory [Chung, 1997]. Despite this operator
is based solely upon topological information, its eigenfunctions
(i.e. eigenvectors) generally have a remarkable conformity to
the mesh geometry [Isenburg et al., 2001]. On the other hand,
the eigenfunctions of this operator are sensitive to aspects such
as mesh resolution or triangulation.

2. Discretizations of the LBO from Riemannian geometry
[Chavel, 1984, Rosenberg, 1997], which try to obtain a basis
that depends only on the underlying geometry and not on its
specific representation. This is the type of operator used in
the Shape-DNA approach (see Section 2.3.2).

In the next subsections we detail how the above operators are
computed and how they can be used to encode geometric information
of 3D meshes.

2.3.1 Graph Laplacian
Mesh (graph) Laplacian operators are linear operators that act on
functions defined on the mesh and depend purely on the mesh points
(vertices) and their connectivity (e.g. triangulation).
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Figure 2.1: Example of the first 12 spatial patterns of the Graph
laplacian eigenvectors of a disk mesh.

Figure 2.2: 1-ring neighbors (a) and angles opposite to an edge (b)

Given a mesh M with n vertices V and edges E, M = (V,E),
the Graph Laplacian LG(M) will be a n× n matrix defined as:

LG
ij =


−1 if (i, j) ∈ E
di if i = j
0 otherwise

where di is the degree or valence of vertex i (Fig. 2.2(a)).
Since this operator is determined purely by the connectivity

of the mesh, it does not explicitly encode geometric information.
However, as shown in the seminal work from Taubin [Taubin, 1995],
eigen-decomposition of the graph Laplacian produces an orthogonal
basis whose components relate to spatial frequencies (Fig. 2.1),
much like a Fourier Transform. Projections of a mesh into the
eigenspace of graph Laplacian have been proposed and used to
derive shape descriptors [Desbrun et al., 1999, Kim and Rossignac,
2005, Zahn and Roskies, 1972].
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2.3.2 Shape-DNA
In Riemannian geometry, the Laplace operator can be generalized
to operate on functions defined on a surface, resulting in the
Laplace-Beltrami Operator (LBO).

Ovsjanikov in [Ovsjanikov et al., 2008] showed that the LBO can
be defined entirely in terms of the metric tensor on the manifold,
independently of the parameterization. Compared to the graph
Laplacian, the LBO does not aim at operating on the mesh vertices,
but rather on the underlying manifold itself. It depends continuously
on the shape of the surface [Courant and Hilbert, 1965].

The Laplace operator based on the cotan formula represents the
most popular discrete approximation to the LBO currently used for
geometry processing [Meyer et al., 2003]. This operator can be
presented as a product of a diagonal and a symmetric matrix LB =
B−1S, where B−1 is a diagonal matrix whose entries are Voronoi
areas for all vertices and S is a symmetric matrix defined [Wang
et al., 2012a]:

LB
ij =


−wij if (i, j) ∈ E∑
k∈N(i) wik if i = j

0 otherwise

where wij = (cotαij + cot βij), αij and βij are the angles opposite if
the edge (i, j) (see Fig. 2.2(b)), and N(i) is a set of vertices that are
adjacent to vertex i.

A significant amount of geometric and topological information is
known to be contained in the spectrum. Since the spectrum (i.e. the
eigenvalues) of the LBO contains intrinsic shape information Reuter
et al proposed to use them as shape signature or ”Shape-DNA”
[Reuter et al., 2006]. Shape-DNA can be used to identify shapes
and detect similarities.

A disadvantage of the LB operator with respect to the LG is
that the former is not symmetric. In order to extract appropriate
eigenvalues, Laplacian matrices should be symmetric, so that they
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possess real eigenvalues whose eigenvectors form an orthogonal basis
[Bhatia, 2013]. However, although LB itself is not symmetric in
general, it is similar to the symmetric matrix O = B−1/2SB−1/2

since

LB = B−1S =
= B−1/2B−1/2SB−1/2B1/2 =
= B−1/2OB1/2 (2.1)

Thus, LB and O = B−1/2SB−1/2 have the same real eigenvalues,
which makes the mesh spectrum straight-forward to compute [Zhang
et al., 2010].

2.4 Spectral Representation of Facial
Patches

In this section we present our method for 3D FER based on the
local representation of the facial surface by means of the Laplacian
spectrum. To this end, we extract local face patches and project them
into the spectrum of a fixed-graph basis, which we refer to as Graph
Laplacian Features (GLFs). The proposed method is formulated as a
generalization of the curves-based framework [Maalej et al., 2011] to
a full representation of the local surface patches, which shall improve
the descriptive power while keeping the advantages of being a fully-3D
framework.

We adopt the widely used approach of representing the facial
surface by means of a collection of local patches, centered at L
reference points (or landmarks). These landmarks, {x`}1≤`≤L, can
be placed either manually or automatically (as discussed in Section
2.5). Following [Maalej et al., 2011], we define the local patches as sets
of level curves, where each level curve consists of the surface points
that are equidistant to a given landmark. An illustrative example is
provided in Fig. 2.3.
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Figure 2.3: (a) 3D annotated facial shape model (68 landmarks); (b)
closed curves extracted around the landmarks; (c) example of 8 level
curves; (d) the mesh patch.

Formally, each curve c`δ is composed by the set of surface vertices
v ∈ M whose distance from the reference landmark x` equals the
specified radius δ. Thus, if we use the Euclidean distance to compute
the level curves, the `-th local patch p` is represented as the collection
of level curves whose radii vary from δmin to δmax. That is:

p` = {c`δ}δmin≤δ≤δmax (2.2)
c`δ = {v ∈M| ‖v− x`‖ = δ} (2.3)

Accordingly, each facial surface is represented by L patches that
consist of sets of level curves around landmarks (Fig. 2.3(c)).

Once the patches are extracted, we aim to study their shape.
Because we want to calculate the mesh spectra for the patches,
we need to convert level curves to surface patches. Notice that,
conceptually, we may directly extract the patches with no need
to first extract the curves, but proceeding this way facilitates
comparison to the curves framework from [Maalej et al., 2011] and,
as we explain below, allows for using directly the graph Laplacian
instead of the discretized LBO. To generate the mesh patches we
re-sample the curves uniformly (as done in [Maalej et al., 2011]) and
define a unique connectivity between them, which will be shared by
all patches (Fig. 2.3(d)).

After these pre-processing steps, we extract spectral features for
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facial expression analysis. We propose to do so using the Graph
Laplacian, since this is the more theoretically sound approach under
our settings. We also compare the results obtained by Shape-DNA,
arguably the most widespread method to extract spectral features
from 3D meshes. Specifically, spectral features are extracted as
follows:

• Graph Laplacian: Whereas Graph Laplacian depends only
on the connectivity between vertices, we calculate matrix LG

using formula (2.1) only once. Eigenvalues and eigenvectors
are obtained from this matrix. Because we generate all our
mesh patches with the same order of connectivity, the set
of eigenvectors constitutes a common basis to represent the
spatial spectrum of all patches. Therefore, we use these
eigenvectors to project the mesh coordinates of each patch
into the common eigenspace. These projections constitute our
feature vectors, which capture the geometry of our mesh and
are directly comparable between patches:

p`GLFs = LGp` (2.4)

• Shape-DNA: The second type of spectral features is obtained
using the discretized LBO (2.1). This operator must be
calculated separately on each mesh-patch, because it depends
not only on the connectivity but also on the location of the
vertices. Thus, the eigen-decomposition of each patch produces
a different eigenspace, which is tuned to the geometry of that
specific patch. Projections into the eigenspace are therefore
no longer comparable, but the eigenvalues resulting from
each decomposition have been proven discriminative [Reuter,
2010]. Hence we use the eigenvalues (which correspond to the
diagonal elements of matrix Λ) as feature vectors:

p`DNA = {Λ`
ii}∀i (2.5)

LB(p`)U` = Λ`U` (2.6)
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Recall that the eigen-decomposition in (2.6) serves to illustrate
the concept but it is not the actual way the spectrum is
computed (see Eq. 2.1) and the explanation in Section 2.3.2).

Once the spectral features are extracted, they can be directly fed
to the classifier for expression recognition. We fix the dimensionality
of both GLFs and Shape-DNA features to the first 50 components
of the eigenspace, as this setting was shown to perform well for
FER in [Derkach and Sukno, 2017]. For the experiments in this
chapter we used Support Vector Machines (SVM) invoking the
LIBSVM software [Chang and Lin, 2011]. A schematic diagram of
the proposed framework is presented in Fig. 2.4.

2.5 3D Landmark Detection
In order to make our system fully automatic, we use Shape
Regression with Incomplete Local Features (SRILF) [Sukno et al.,
2015] to locate the following 14 facial landmarks: inner and outer
eye corners, nose corners, mouth corners, nose root, nose tip, upper
and lower middle lip points and chin tip. The SRILF algorithm
combines the response from local feature detectors for each of the
targeted landmarks with statistical constraints that ensure the
plausibility of landmark positions on a global basis. The algorithm
has three components: 1) selection of candidates through local
feature detection; 2) partial set matching to infer possibly missing
landmarks; 3) combinatorial search, which integrates the other two
components.

2.5.1 Selection of candidates
The selection of candidates is performed independently for each
targeted landmark. Given a mesh M and a landmark x` to be
targeted, a similarity score s`(v) is computed for every vertex
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v ∈ M; the set of candidates Y` for landmark x` are the %` highest
scoring vertices:

Y` = {v ∈M|O(s`(v)) ≤ %`} (2.7)

where O() is the (descending) order function. The score s`(v) is
based on the similarity of local surface descriptors with respect
to a descriptor template derived at training time. The current
implementation of SRILF1 uses Asymmetry Pattern Shape Contexts
[Sukno et al., 2014] as local descriptors.

As in many other algorithms, it is expected that one of these
candidates will be close enough to the correct position of the
landmark. Nonetheless, the number of false positives (i.e. vertices
that produce high similarity scores even though they are far from
the correct landmark location) can change considerably for different
landmarks, as well as from one facial scan to another, making it
difficult to choose the number of candidates that should be retained.

While many approaches try to retain large numbers of candidates
to deal with this issue, SRILF uses an upper outlier threshold from
the distribution of false positives over a training set. This implies
that, in the vast majority of cases, a candidate that is close enough
to the target landmark will be detected, but a small proportion
will be missed. Hence, for each targeted landmark there will be
an initial set of candidates that may or may not contain a suitable
solution and we need to match our set of targeted landmarks to a
set of candidates that is potentially incomplete. This is analogous
to the point-matching problem found in algorithms that search for
correspondences. However, the human face is a non-rigid object
and these point-matching algorithms are typically restricted to rigid
transformations.

1A free implementation of the SRILF algorithm is available at
http://fsukno.atspace.eu/Data.htm#SRILF 3dFL
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2.5.2 Partial set matching
The second component of the algorithm aims at dealing with the
above problem. Based on the priors encoded in a statistical shape
model, it uses a subset of the landmarks (i.e. those with suitable
candidates) to infer the most likely position of the ones that are
missing.

Let x = (x1, y1, z1, x2, y2, z2, . . . , xL, yL, zL)T be a shape vector,
constructed by concatenating the coordinates of the L targeted
landmarks in 3D, and let x, Φ and Λ be the mean shape, eigenvector
and eigenvalue matrices, respectively. Given a shape for which we
only know part of its landmarks, we could split it in the known (or
fixed) part xf and the unknown (to infer or guess) part xg. Thus,
our objective is to infer the coordinates of landmarks xg so that the
probability that the resulting shape complies with the PCA model
is maximized, ideally without modifying the coordinates in xf .

Let Pr(x) be the probability that shape x complies with the
model. Assuming that Pr(x) follows a multi-variate Gaussian
distribution N (0,Λ) in PCA-space, this probability is proportional
to the negative exponential of the Mahalanobis distance and it can
be shown [Sukno et al., 2015] that maximization of Pr(x) with
respect to xg yields:

xg = xg − (Ψgg)−1Ψgf
(
xf − xf

)
(2.8)

where Ψgg = ΦgΛ−1(Φg)T , Ψgf = ΦgΛ−1(Φf )T and Φ is split in Φf

and Φg according to xf and xg (see [Sukno et al., 2015]).

2.5.3 Combinatorial search
The third component of the algorithm integrates the two previous
steps into a combinatorial search. It consists of analyzing subsets
of candidates and completing the missing information by inferring
the coordinates that maximize the probability of a deformable shape
model.
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Formally, let F and G be the sets of fixed and to-infer coordinates,
respectively, with F ∩ G = ∅ and F ∪ G = {1, 2, . . . , 3L}, where L is
the number of targeted landmarks. The goal of the combinatorial
search is to dynamically choose the splitting into F and G that
minimizes the localization error:

argmin
F
{‖x− x̂‖2} (2.9)

where x are the true landmark coordinates and x̂ is the algorithm’s
estimate. The key concept here is that only the coordinates in F will
be based on image evidence (e.g. the candidates) and the rest will be
treated as missing data. Thus, x̂g will be obtained by inference and
it can be expressed as a function of x̂f , making more apparent that
the minimization looks for the optimal subset F :

argmin
F
{‖xf − x̂f‖2 + ‖xg − f(x̂f )‖2} (2.10)

with f(x̂f ) as defined in Eq. 2.8. Because the true coordinates x are
unknown, we cannot explicitly compute the above errors and need
an indirect estimate instead. The SRILF algorithm does this by
minimizing (subject to statistical plausibility):

argmin
F

(
− |F| − exp

(
−
∑
`∈F

min
y∈Y`

‖x̂` − y‖2
))

(2.11)

where Y` is the set of candidates for the `-th landmark x̂`. Intuitively,
Eq. 2.11 can be understood by noticing that the main component of
the cost is the cardinality of F , i.e. the number of landmarks that can
be successfully included in x̂f while keeping the statistically plausible
of the shape. Upon equality of |F| the cost function increases with
the distance from x̂ to the nearest candidate per landmark. These
distances to the nearest candidates have a different meaning for fixed
and inferred landmarks and help understand the way the algorithm
works.
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Fixed landmarks {x̂`}`∈F are directly sampled from candidates
to guide the combinatorial search. Thus, their nearest candidates
are known beforehand and their distance to them is just the
reconstruction error of the statistical shape model. For the
remaining landmarks, {x̂`}`∈G, positions are statistically inferred
from Eq. 2.8 independently from their candidate sets. It would be
expected that better predictions generate inferred landmarks that
are closer to their corresponding candidates, resulting in lower cost
values.

An important aspect of the splitting between F and G is
that it inherently provides tolerance to distorted or missing data
(occlusions). Notice that there is no prior assumption regarding
what landmarks can be in F or G nor the cardinality of the two sets
and the splitting is performed dynamically on a case by case basis.

2.6 Facial Expression Recognition
Experiments

In order to evaluate the proposed spectral features for local shape
representation we conducted experiments on the three most widely
used databases for 3D FER. We start by briefly describing each
of these datasets and the corresponding experimental settings.
Expression recognition results are reported later in this section,
while Section 2.7 provides our results in Action Unit recognition.

2.6.1 BU-3DFE Database
The BU-3DFE database has been developed by Yin et al. [Yin et al.,
2006]. from Binghamton University. This database consists of 3D
face scans of 100 subjects with different facial expressions. There
are also variations in race, gender and age. Scans are annotated
according to the six prototypical facial expressions (anger, disgust,
fear, happiness, sadness and surprise) at four different intensity levels.
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For each model, the database provides a cropped image containing
just the face; a non-cropped image that contains both side views of
the face; 83 manually annotated landmarks of the main facial features
and a single 3D mesh containing the coordinates of the face with a
triangulation containing between 25 to 35 thousand polygons.

For our experiments, we used the 3D scans from all 100 subjects
at the two highest intensity levels, Thus, our dataset consists of 1200
3D face scans, namely two intensity levels for each of the six facial
expressions from 100 subjects.

Our first set of experiments were performed using the landmarks
provided the database. As mentioned above, accompanying each
facial scan there are 83 manually labeled landmarks. From these, 15
landmarks correspond to the silhouette contour and have arguably
little validity in a 3D setting, hence we considered only the subset
of L = 68 landmarks laying within the face area. Further, all facial
scans have been represented by 68 patches p`, where, each patch
consisted of 15 level curves {c`δ}δmin≤δ≤δmax with δmin = 5, δmax = 20
(Fig. 2.3(c)).

The second set of experiments were performed with automatically
detected landmarks (Section 2.5). In this case, we have L = 14
landmarks and, correspondingly, 14 local patches to represent each
facial scan.

All experiments were performed following a 10-fold cross-validation.
The dataset was arbitrarily divided into ten identity-disjoint sets;
each of these (composed by 120 samples) was tested with models
trained from the remaining nine sets (1080 samples). Recognition
rates are obtained by averaging the results over the 10 sets.

2.6.2 BU-4DFE Database
The BU-4DFE database is a dynamic 3-D facial expression database,
which has been created at Binghamton University [Yin et al., 2008].
This database contains a total of 101 subjects (58 female and 43 male,
with an age range of 18–45 years old). Each subject performs the six
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prototypical expressions (anger, disgust, fear, happiness, sadness and
surprise) resulting in 606 sequences of 3D meshes. Similar to The
BU-3DFE database, BU-4DFE provides 83 annotated landmarks.

Each facial expression sequence included in BU-4DFE database
normally contains about 100 frames, each of which is a 3D face
mesh. For our experiments, we have chosen two facial scans from
the central frames of each sequence for all 101 subjects. Hence, our
subdataset consists of 1212 3D face scans. Under these settings, the
resulting dataset is comparable to the one of BU-3DFE described in
the previous section, both in terms of number of scans, subjects and
intensity levels, since the central frames of each sequence in BU-4DFE
are expected to be near the expression apex.

Thus, in analogy to test in BU-3DFE, two experiments were
performed in BU-4DFE. Firstly based on the the 68 provided
landmarks silhouette contour, and secondly based on the 14
automatically detected landmarks. In both cases, experiments were
performed under 10-fold cross-validation.

2.6.3 Bosphorus Database
The Bosphorus database [Savran et al., 2008] contains images from
105 subjects labeled in terms the Facial Action Coding System
(FACS). There are up to 54 face images per subject and these images
involve both the six prototypical expressions and instances of Action
Units (AUs). For our FER experiments, we have chosen all 3D scans
showing any of the six prototypical expressions for all 105 subjects,
which amounts to 453 scans2. Each facial scan is provided with a
set of 24 manual landmarks, from which we exclude two in the ears
and the one in the chin for not being always visible, ending up with
L = 21 landmarks that were used for our first set of experiments.
As before, we also repeat our experiments with 14 automatically
located landmarks and perform 10-fold cross validation experiments.

2Notice that not all subjects performed all six expressions. We included all
subjects regardless of the number of expressions they performed.
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2.6.4 Results
Our facial expression recognition experiments consist on a direct
comparison of the proposed spectral features (GLFs) with respect
to the curves-framework from [Maalej et al., 2011] and Shape-DNA,
which constitute the straight-forward spectral alternative. This was
done by targeting the six basic expressions present in the selected
databases: anger (AN), disgust (DI), fear (FE), happiness (HA),
sadness (SA) and surprise (SU). Multi-class SVMs were used for
classification. Table 2.1, summarizes the average accuracy obtained
by each approach on over the three test databases. Notice that, in the
case of GLFs, we also report results under a fully-automatic setting.

Method BU-3DFE BU-4DFE Bosphorus
Curves 78.2% 66.94% 59.14%

Shape-DNA 73.62% 61.19% 56.67%
GLFs 81.5% 74.47% 77.33%

Automatic GLFs 76.5% 71.43% 71.11%

Table 2.1: Average accuracy of the three methods for facial expression
recognition on the three database. The first three rows correspond
to results using the manual landmarks provided for each database;
the last row corresponds to fully-automatic experiments using 14
landmarks detected by the SRILF algorithm (Section 2.5).

It can be seen that the average accuracy of the spectral features
based on the Graph Laplacian varies between approximately 75%
and 81%, depending on the database. When using automatic
landmarks, the accuracy drops only between 3% and 5%, even
though the number of landmarks is considerably reduced. The table
also shows that proposed method outperforms the curves-based
approach on all databases. This is consistent with the hypothesized
advantage of using GLFs, as these can capture a more complete
description the facial patches when compared to the level curves.
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It is also interesting to see that Shape-DNA features obtain the
lowest accuracy among the three methods, with even lower accuracy
than the fully-automatic GLFs. This confirms the theoretical
limitations already highlighted with respect to the direct application
of Shape-DNA to surface patches: given two shapes to compare
under a spectral representation, small differences between them can
modify the eigen-decomposition to the extent that the eigenvalues
change their relative order producing a swapping of the extracted
bases [Jain et al., 2007]. Such swaps make the direct comparison of
eigenvalues used in Shape-DNA conceptually incorrect (Fig. 2.5).
Fixing this would require matching algorithms to appropriately
re-order the resulting eigenvalues. Our GLFs do not suffer from this
issue as they result from a projection into a common basis, which
only depends on the connectivity and is therefore shared by all
patches.

To provide a more extensive review of our results, Fig. 2.6
shows the average accuracy per expression of each method on the
three different databases. It can be seen that, among the six basic
expressions, happiness, surprise and anger achieved the highest
accuracy in all datasets. In contrast, fear and disgust were the
most difficult expressions to predict. We also observe that GLFs
consistently outperform both the curve-based and Shape-DNA
approaches for most expressions. Moreover, even the results with
fully-automatic GLFs compare favorably to those from curves
and Shape-DNA with manual landmarks, performing similarly
on BU-3DFE and Bosphorus and outperforming the alternative
methods on the BU-4DFE database.

To put our results in a wider context, we also compare them
to other methods reporting FER rates on the three aforementioned
databases. Table 2.2 and Table 2.3 summarize the comparison to
earlier results. Expression recognition rates vary between 70.9% and
86.3% on the BU-3DFE database and between 60% and 79% on
Bosphorus, with our average recognition rates reaching 81.5% and
77.3% respectively. Notice that in our case we use a single type of
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Figure 2.6: Average accuracy per expression for each method on the
three database ((a) BU-3DFE database; (b) Bosphorus database; (c)
BU-4DFE dattabase).

feature (GLFs), while most other works achieving high recognition
rates use combinations of multiple features, sometimes including also
texture (2D) and often considering only part of the available data.

Indeed, the comparison of recognition rates must be done
carefully, as not all papers use the same number of subjects in
their experiments. For example, tests reported on the BU-3DFE
have followed two main strategies comprising 60 or 100 subjects,
respectively. Another relevant aspect to consider is whether the
results are reported under fully-automatic operation. With these
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considerations, we see that the proposed GLFs achieve the highest
FER rates reported to date on both BU-3DFE and Bosphorus
databases using all available subjects. This also holds under
fully-automatic operation.

As stated in [Zeng et al., 2013], experimental settings considering
the whole set of subjects facilitate fair comparison and should be
preferred. Nevertheless, to facilitate a wide comparison to previous
works we also report results using 60 subjects. Because in such case
the accuracy depends on the specific subjects that are selected, we do
not provide a single accuracy value but the range of recognition rates
obtained in 1,000 independent experiments. For each experiment, 60
randomly selected subjects were considered under a similar 10-fold
cross-validation strategy to the one followed for the 100 subject
experiment.

Additionally, Table 2.4 shows a comparison of our method to
previous works on the BU-4DFE database. Notice that all other
methods compared in the table use 4D data, i.e. they take advantage
of the temporal information available in this dataset, while our
method only considers static information and performs FER by
taking decisions on a per-frame basis. In spite of this, we see that
the accuracy of GLFs is only about 2% below the top-performing
method (∼ 4.5% in the case of methods under fully-automatic
operation).

2.7 Experiments on Action Unit
Estimation

Action Units (AUs) are designed to characterize the facial surface
under any anatomically feasible facial deformation [Ekman, 1994];
thereby combinations of AUs can be used to describe any of the
six basic expressions [Ruiz et al., 2015], as well as any other
anatomically feasible facial expression. Since our approach is based
on the aggregation of localized descriptors of the facial surface, it is
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reasonable to expect that it can also be applied to the estimation of
Action Units (AU).

In this section we address AU estimation with the proposed GLFs.
Most experimental settings are equivalent to those in the previous
section, although the classification strategy had to be modified given
the possibility of co-occurrence of AUs. In other words, while each
facial scan is labelled with a single expression, it can contain several
AUs. Thus, instead of a multi-class SVM classifier, we used multiple
binary SVMs (one per AU).

From the three databases used in this chapter, only Bosphorus
is provided with AU annotations. Thus, we have also manually
annotated AUs on the BU-3DFE database and used these two
databases to perform AU estimation experiments. These AU
annotations have been made publicly available on-line3.

2.7.1 BU-3DFE database
We used the same set of 1200 scans selected for our FER experiments
in the BU-3DFE database. Each of these scans, containing
expressions, was manually annotated with a corresponding set of
AUs by two coders. The resulting annotations are summarized in
Table 2.5, where we show the AU frequencies per expression (i.e.
the percentage of times that each AU was found present in a given
expression)4. The obtained AU frequencies per expression and
co-occurrences of AUs are consistent with previous studies reported
in the literature [Du et al., 2014, Wang et al., 2014a, Zhao et al.,
2015]. Using these annotations as ground truth, experiments on
AU recognition were performed under the same conditions as the
expressions recognition tests.

Table 2.6 shows the F1-score for each AU, together with a
weighted average (weighted proportionally to the number of samples

3http://fsukno.atspace.eu/Research.htm#FG2017a
4For clarity of the presentation we only indicate occurrence percentages if

these are above 5%.
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AU # smpl Curves Shape-DNA GLFs Auto GLFs
1 - Inner Brow Raiser 333 0.74 0.73 0.75 0.68
2 - Outer Brow Raiser 302 0.77 0.73 0.78 0.71
4 - Brow Lowerer 423 0.77 0.74 0.79 0.74
5 - Upper Lid Raiser 304 0.76 0.71 0.80 0.75
6 - Cheek Raiser 68 0.42 0.45 0.46 0.41
7 - Lid Tightener 370 0.69 0.63 0.73 0.68
9 - Nose Wrinkler 99 0.55 0.47 0.56 0.57
10 - Upper Lip Raiser 136 0.64 0.57 0.67 0.69
12 - Lip Corner Puller 177 0.74 0.70 0.76 0.73
15 - Lip Corner Depr 69 0.37 0.30 0.34 0.41
16 - Lower Lip Depr. 122 0.50 0.39 0.52 0.52
17 - Chin Raiser 130 0.48 0.42 0.50 0.45
20 - Lip Stretcher 84 0.28 0.25 0.3 0.21
23 - Lip Tightener 134 0.42 0.38 0.50 0.44
24 - Lip Presser 125 0.57 0.62 0.61 0.54
25 - Lips Part 709 0.94 0.92 0.94 0.94
26 - Jaw Drop 230 0.85 0.86 0.88 0.85
Avrg 3815 0.72 0.69 0.74 0.71

Table 2.6: Average F1-score results of AUs recognition on BU-3DFE
database

per AU) for the proposed GLFs as well as shape-DNA and curves.
One common characteristic of all three approaches is that they
recognized AU25 and AU26 better that any other AU. Also,
analyzing the table, we can see that detection of AU1, AU2, AU4,
AU5 and AU12 can be said reliable. The worst results correspond to
AU15.

When comparing among features, our results show the same
tendency observed in the expression recognition experiments. The
best performance was obtained by GLFs, which clearly outperformed
Shape-DNA and was also slightly better than the curves framework.
Regarding the latter, while the average recognition accuracy of
GLF and curves were rather similar, it should be noted that
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non-automatic GLFs consistently outperformed curves in 15 out of
the 17 tested AUs.

2.7.2 Bosphorus database

AU # smpl Curves Shape-DNA GLFs Auto GLFs
1 - Inner Brow Raiser 46 0.44 0.14 0.56 0.38
2 - Outer Brow Raiser 105 0.69 0.46 0.76 0.73
4 - Brow Lowerer 105 0.49 0.48 0.72 0.68
9 - Nose Wrinkler 99 0.62 0.62 0.78 0.79
10 - Upper Lip Raiser 71 0.69 0.49 0.65 0.68
12 - Lip Corner Puller 305 0.54 0.49 0.73 0.66
14 - Dimpler 73 0.33 0.32 0.46 0.36
15 - Lip Corner Depr. 55 0.26 0.17 0.38 0.46
16 - Lower Lip Depr. 70 0.47 0.33 0.53 0.52
17 - Chin Raiser 71 0.54 0.37 0.65 0.62
18 - Lip Puckerer 71 0.71 0.51 0.68 0.60
20 - Lip Stretcher 65 0.44 0.25 0.59 0.44
22 - Lip Funneler 70 0.69 0.47 0.71 0.68
23 - Lip Tightener 72 0.47 0.27 0.59 0.61
24 - Lip Presser 70 0.47 0.29 0.49 0.37
25 - Lips Part 70 0.49 0.39 0.62 0.46
26 - Jaw Drop 72 0.56 0.38 0.58 0.69
27 - Mouth Stretch 105 0.79 0.70 0.81 0.88
28 - Lip Suck 105 0.78 0.66 0.80 0.65
34- Cheek Puff 105 0.66 0.51 0.89 0.92
43 - Eyes Closed 105 0.80 0.47 0.86 0.75
44 - Squint 71 0.32 0.15 0.57 0.53
Avrg 1981 0.58 0.44 0.69 0.64

Table 2.7: Average F1-score results of AUs recognition on Bosphorus
database

As mentioned previously, the Bosphorus database is provided with
AU annotations following the FACS. The annotated images can be
divided in two categories: i) faces displaying a single AU; ii) faces
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AU GLFs Auto GLFs [Savran and Sankur, 2009] [Sandbach et al., 2012a]
1 - Inner Brow Raiser 93.6 89.4 95 91.1
2 - Outer Brow Raiser 98.2 96.8 98 98.4
4 - Brow Lowerer 97.4 96.8 97 96.9
9 - Nose Wrinkler 97.0 98.8 96 97.9
10 - Upper Lip Raiser 98.2 97.2 99 97.7
12 - Lip Corner Puller 94.8 94.6 98 95.9
14 - Dimpler 90.4 91.5 96 91.4
15 - Lip Corner Depr. 91.9 91.5 89 83.6
16 - Lower Lip Depr. 96.7 96.6 97 96.7
17 - Chin Raiser 96.6 94.2 94 94.7
18 - Lip Puckerer 97.9 98.1 97 97.2
20 - Lip Stretcher 93.4 91.6 95 92.5
22 - Lip Funneler 97.6 97.3 98 99.3
23 - Lip Tightener 93.0 96.8 92 95.1
24 - Lip Presser 90.1 89.5 88 89.6
25 - Lips Part 95.0 95.4 95 94.8
26 - Jaw Drop 96.0 96.7 97 95.1
27 - Mouth Stretch 98.8 96.8 98 99.4
28 - Lip Suck 99.3 97.1 96 97.9
34 - Cheek Puff 99.5 99.8 98 99.1
43 - Eyes Closed 99.5 98.0 98 99.7
44 - Squint 93.9 94.2 - 94.1
Avr. 95.85 95.40 95.76 95.37

Table 2.8: Comparison of AuC values achieved with GLFs and
previous works for 22 AUs on the Bosphorus database.

displaying combinations of AUs. To facilitate comparison to other
works, we follow the settings from [Savran and Sankur, 2009] and
[Sandbach et al., 2012a], and use only the scans containing a single
AU, which amount to 1981 samples. As in all previous experiments,
we followed a 10-fold cross-validation over the data set, ensuring that
the folds were identity-disjoint sets. This ensures that subjects in the
test set are unseen in the training set.

Table 2.7 shows the F1-scores for each AU and the weighted
average. It can be seen that, as in BU-3DFE, the proposed GLFs
outperform curves and Shape-DNA, consistently for most of the AUs.
Moreover, the results of GLFs under fully-automatic operation are
still better (on average) than both competing alternatives.

To put our results in a wider context, we provide in Table 2.8
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a comparison of our method to other works targeting AU detection
from 3D data on the Bosphorus database: the work by Savran et
al. [Savran and Sankur, 2009], based on surface curvature features,
and the work by Sandbach et al. [Sandbach et al., 2012a], based on
a variant of LBPs applied to surface normals. Notice that, because
the metric used by those works is not F1-score but Area under the
Curve (AuC), we also adopt this metric for the comparison table. The
AuC refers to the area under the Receiving Operating Characteristic
(ROC) curve and can be interpreted as an estimate of the probability
that a random positive is ranked higher than a random negative,
without the need to choose a particular decision threshold [Ferri et al.,
2011].

Table 2.8 shows the AuC values for each of the 22 AUs present in
the Bosphorus database, as well as the average AuC for each method.
We can see that, in terms of average results, GLFs are slightly better
than both [Savran and Sankur, 2009] and [Sandbach et al., 2012a],
but the differences between the three methods are very small. Indeed,
each of the three compared methods outperforms the rest for a set of
seven AUs, with a tie between GLFs and Savran’s method [Savran
and Sankur, 2009] for the remaining one (AU25) to complete the list
of 22 AUs.

Results under fully automatic operation are also provided for
GLFs (neither [Savran and Sankur, 2009] nor [Sandbach et al., 2012a]
fall in this category). We can see the AuC values are again similar to
those achieved by the non-automatic methods, even outperforming
these for some AUs.

The detection performance of our nethod is further illustrated in
Fig. 2.7 by means of ROC curves of some AUs. These AUs were
selected to show the highest and lowest AuC values obtained in our
experiments. In each curve, we have also indicated the operation
threshold, and the corresponding F1-score that is obtained with it.
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Figure 2.7: ROC curves of various AUs using GLFs on the Bosphorus
database. The solid blue curve shows the performance of GLFs using
manual landmarks while the dashed red line shows the performance
under fully-automatic operation. For each curve we provide the AuC
value and the operating point (marked with a dark dot), as well as
the resulting F1-score.
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2.8 Conclusions

In this chapter, we extend the analysis of 3D geometry from a
curve-based representation into a spectral representation. This
representation allows to build a complete description of the
underlying surface while maintaining a fully-3D framework. We
propose the use of Graph Laplacian Features (GLFs), which result
from the projection of local surface patches into a common basis
obtained from the Graph Laplacian eigenspace, much like a Fourier
transform into the spatial frequency bases of the surface patches.
Further, we compare our approach with two others approaches. The
first one is the curves-based framework and the second one is the
straight-forward alternative for spectral representation, Shape-DNA,
which is based on the Laplace Beltrami Operator. We show that the
straight-forward application of Shape-DNA is not the best way to
deal with local face patches, since it cannot provide a stable basis to
guarantee that the extracted signatures for the different patches are
directly comparable.

We tested the proposed approach in the three most popular
databases for 3D FER (BU-3DFE, Bosphorus and BU-4DFE) in
terms of FER rates and, additionally, in terms of AU recognition
when AU labels were available (BU-3DFE and Bosphorus). Our
results show that the proposed GLFs consistently outperform
the curves-based and Shape-DNA alternatives, both in terms of
expression recognition and AU recognition. Moreover, the recognition
rates of Shape-DNA are even lower than those in the curves-based
framework, as predicted by the theory: in spite of upgrading the
curves-based representation to a full-surface description, similarly to
GLFs, the instabilities of the bases extracted by Shape-DNA result
in a decreased performance.

Interestingly, the accuracy improvement brought by GLFs is
obtained also at a lower computational cost. Considering the
extraction of patches as a common step between the three compared
approaches, the curves-based framework requires a costly elastic
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deformation between corresponding curves (e.g. based on splines)
and Shape-DNA requires computing the eigen-decomposition of
each new patch to be analyzed. In contrast, GLFs only require
the projection of the patch geometry into the Graph Laplacian
eigenspace, which is common to all patches and can thus be
pre-computed off-line.

Comparison to other works reporting 3D FER and AU detection
results confirmed that the proposed method allows achieving top
performance by simply feeding GLFs to off-the-shelf SVM classifiers.
A state-of-the-art algorithm for 3D landmark localization was
also integrated, which enabled us to perform experiments under
fully-automatic operation. We showed that 14 automatically
detected landmarks were enough to achieve high FER and AU
detection rates, only slightly below those obtained when using sets
of manually provided landmarks.
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Chapter 3

HEAD POSE
ESTIMATION BASED ON
3-D FACIAL
LANDMARKS
LOCALIZATION AND
REGRESSION

Adapted from: D. Derkach, A. Ruiz F.M. Sukno. ”Head pose estimation based on
3-D facial landmarks localization and regression”. In Automatic Face & Gesture Recognition
(FG 2017), 2017 12th IEEE International Conference on (pp. 820-827). IEEE. DOI:
10.1109/FG.2017.104
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Abstract
In this Chapter we present an approach for accurate head pose estimation from a single depth

frame of consumer RGB-D cameras, such as Kinect 2. In contrast to most existing approaches,

we base our system in the detection of 3D facial landmarks, whose positions are later used to

derive geometry- and patch-based pose estimators. A key aspect of the proposed system is

the use of state of the art landmark localization with no need for initialization and tolerance

to occlusions or missing data. Our system is complemented with a secondary pose estimator

based purely on patches sampled randomly on the head region to account for potential failures

of the landmark-based estimation.

We evaluated our system on the SASE database, which consists of ∼ 30K frames from 50

subjects. We obtained average pose estimation errors between 5 and 8 degrees per angle,

achieving the best performance in the FG2017 Head Pose Estimation Challenge. Our

experiments also confirmed the initial hypothesis that the landmark-based estimates would

be more accurate than correspondence-free approaches, such as the dictionary-based one that

was adopted. Landmark-based estimates were successfully produced for ∼ 90% of cases and

the remaining ones were tackled by the dictionary-based approach. Our results compare well

with those reported in the related literature, especially considering the added difficulty of not

using tracking and RGB data to produce our estimates.
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3.1 Introduction

Human head-pose estimation has attracted a lot of interest because it
is usually the first step of many face analysis tasks. It is an important
aspect in facial motion capture, human-computer interaction and
video conferencing, as well as a prerequisite for face recognition or
facial expression analysis. Head pose estimation has traditionally
been performed on RGB images, but recent advances in 3D geometry
acquisition have led to a growing interest in methods that operate on
3D data. These methods are less sensitive to changes in illumination
and viewpoint than 2D image-based approaches, which makes them
more accurate and robust [Seemann et al., 2004].

The goal of head pose estimation is to predict the relative
orientation between the target head and the viewer or camera. It
is usually parametrized by the head’s pitch, yaw and roll angles.
An early attempt to classify head pose estimation methods from
a methodological perspective was presented by Murphy et al.
[Murphy-Chutorian and Trivedi, 2009], who proposed 8 categories
including appearance template methods, flexible models, non-linear
regression and tracking. While that classification included both 2D
and 3D methods, in this Chapter we focus on head estimation based
exclusively on depth information. This considerably reduces the
number of categories to: geometric methods [Sun and Yin, 2008, Li
and Pedrycz, 2014], appearance methods [Papazov et al., 2015],
[Breitenstein et al., 2008], [Tulyakov et al., 2014], regression methods
[Fanelli et al., 2011], flexible models [Meyer et al., 2015], [Baltrušaitis
et al., 2012] and tracking methods [Papazov et al., 2015].

An important aspect of 3D head pose estimation algorithms is
whether RGB data or temporal information are used. Firstly, RGB
data can provide complementary information to the one provided
by depth data, especially at the detection stage, but it is likely to
reduce the robustness to illumination that is inherent to 3D-only
data. It is also very popular to make use of dynamic information
to improve head pose orientation results. However, algorithms using
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tracking often benefit from the fact that test sequences usually start
with near-frontal head orientations and, therefore, it is not clear their
robustness to detect initial head poses other than frontal, which are
arguably more challenging.

In this Chapter, we present an approach for accurate static 3D
head pose estimation which is able to perform head-pose estimation
using only depth information from a single Kinect 2 frame of a
person sitting in front of a camera. This setup has been specified
in the FG2017 Head-Pose Estimation Challenge [Lüsi et al., 2017].
In contrast to most existing approaches, we base our system in
the detection of 3D facial landmarks, whose positions are later
used to derive geometry- and patch-based pose estimators. A
key aspect of the proposed system is the use of Shape Regression
with Incomplete Local Features (SRILF) [Sukno et al., 2015] for
landmark localization. This algorithm provides state of the art
landmark localization accuracy with no prior initialization and is
inherently tolerant to occlusions or missing data. The latter is very
important when capturing moderate or large head rotations with
a single-view depth sensor such as Kinect 2 since, in such cases,
large parts of the face become unavailable due to self-occlusions.
Our system is complemented with a secondary pose estimator based
purely on patches sampled randomly on the head region to account
for potential failures of the landmark-based estimation. Our tests
on the SASE database [Lüsi et al., 2016b] provided in the FG2017
Head-Pose Estimation challenge, showed average estimation errors of
7.82, 6.65 and 5.39 degree for pitch, yaw and roll angles, respectively.

3.2 Related Work

As aforementioned, an important aspect of 3D head pose estimation
algorithms is whether or not they use RGB data and tracking.
Only few of methods has addressed this problem without the use of
temporal information.
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For instance, Sun and Yin proposed a geometric feature based
pose estimation approach based on 3D facial models [Sun and
Yin, 2008]. The pose orientation was estimated using a symmetry
plane. Li and Pedrycz [Li and Pedrycz, 2014] developed a central
profile-based 3D face pose estimation algorithm. The central profile
is the intersection curve, that starts from forehead center, goes down
through nose ridge, nose tip, mouth center, and ends at a chin tip.
It is also called symmetry plane. They defined an objective function
for conducting the Hough transform in parameter space that maps
face profile to an accumulator cell. The face profile corresponding to
the maximum accumulator cell was regarded as the central profile.
Once the symmetry plane had been completed, two angles (roll and
yaw) were determined, since the objective function was based on
three parameters. Based on the detection of central profile, nose tip
was detected and pitch angle was estimated using the coordinates of
three points nose tip, nose ridge point and nose bottom point. Valle
et al. [Valle et al., 2016] also presented a free-tracking algorithm
that estimates the head pose, but they estimated only one yaw
angle from unrestricted 2D gray-scale images. In order to obtain a
discrete head-pose estimation, they proposed a classification scheme,
based on a random forest, where patches randomly extracted from
the image cast votes for the corresponding discrete head-pose angle.
Papazov et al. [Papazov et al., 2015] presented a real-time system
for 3D head pose estimation using a commodity depth sensor such
as Microsoft’s Kinect. The proposed method consists of an offline
training and an online testing phase. In both phases, 2D information
was used for face detection. After that, a triangular surface patch
(TSP) descriptor, which encodes the shape of the 3D face surface
within a triangular area, was employed for final angle estimation.
For testing, the authors utilized two approaches: tracking mode and
detection mode (static).

Another free-tracking approach was presented in [Breitenstein
et al., 2008]. Breitenstein et al. developed an error function that
compares the input range image to precomputed pose images of an
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average face model. In an offline step, range images of an average
face were rendered for many poses, and the resulting reference pose
range images were saved. For each pixel they computed signatures
that are distinct for regions with high curvature, such as the nose tip.
This yielded a set of candidate nose positions and orientations that
were used as head pose hypotheses. Then they computed the error
between the reference pose range images corresponding to the pose
hypotheses and the input range image using a novel error function.
The match with the lowest error yielded the final pose estimation
and a confidence value. In [Wang et al., 2013a], an approach was
presented to estimate the 3D position and orientation of head from
single RGB and depth images. 2D Scale-invariant feature transform
(SIFT) features were used together with 3D histogram of oriented
gradients (HOG) features, which were extracted in a pair of RGB and
depth images captured synchronously. Random forests approach were
then applied in order to formulate pose estimation as a regression
problem, due to their power for handling large training data and the
high mapping speed. Finaly, the mean-shift method was employed
to refine the result obtained by the random forests.

Similarly, Fanelli et al. [Fanelli et al., 2011] used random forests
to handle large training datasets and formulated a real-time head
pose estimation as a regression problem for tracking purposes. In
[Tulyakov et al., 2014], authors proposed a fusion approach to address
real-time head pose estimation. They constructed a system able to
recover itself (in cases where the tracking was lost) by combining a
frame independent decision tree based estimator with a personalized
template tracker.

An alternate approach, using depth as well as intensity
information, was presented by Baltrusaitis et al. [Baltrušaitis et al.,
2012]. The authors presented 3D Constrained Local Model (CLM-Z)
for the facial feature tracking under varying pose. A two-step CLM
fitting strategy was employed: performing an exhaustive local search
around the current estimate of feature points leading to a response
map around every feature point, and then iteratively updating
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the model parameters to maximize a posterior probability until a
convergence metric is reached. For fitting, they used Regularised
Landmark Mean-Shift (RLMS). Another relevant paper, by Padeleris
et al. [Padeleris et al., 2012], estimated the pose of an input Kinect
sensor depth map by finding the 3D rotation of a template that
best matched the input. The proposed method searches for a view
at which the rendered image matches the reference depth image
obtained during an initialization phase. At run time, the method
searches the 6-dimensional pose space to find a pose from which
the head appears identical to the reference view. This registration
was treated as an optimization problem that was solved through
Particle Swarm Optimization (PSO). One more approache based
on PSO was presented by Meyer et al. [Meyer et al., 2015]. They
performed pose estimation by registering a morphable face model
to the measured depth data, using a combination of particle swarm
optimization (PSO) and the iterative closest point (ICP) algorithm.

Martin et al. [Martin et al., 2014] presented approach for head
pose estimation on consumer depth cameras that works without
prior knowledge of the tracked person and without prior training of
detector. To achieve this, they combined an algorithm to generate
and track a model of the head with feature based head pose
estimation. This algorithm was based on tracking a head model
using the iterative closest point algorithm.
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Figure 3.1: Block diagram of the proposed head pose estimation
method
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3.3 Proposed system
A block diagram of the proposed system is shown in Fig. 3.1. We
start by approximately isolating the head region using clustering
and use the obtained result to build a 3D mesh M that contains
the head and a variable part of the shoulders. Mesh M is fed to the
SRILF algorithm [Sukno et al., 2015] with the aim to automatically
detect 12 prominent facial landmarks. The SRILF algorithm
performs both detection of the visible landmarks and estimation of
potentially occluded landmarks. Thus, if successful, the algorithm
always returns an estimate of the coordinates for all 12 targeted
points. Landmark detection details are provided in Section 3.3.1.
Once facial landmarks are available, we use two complementary
approaches to estimate the head pose (Section 3.3.2). Firstly, we
perform a least-squares estimation of the eye-line and frontal-plane
of the face which provide straight-forward geometric estimates of
the head pose. The second estimate is based on regression over
local surface descriptors (appearance) centered at the landmark
points. While these two estimates are conceptually quite different,
in practice, we will see that in practice they produce similar results
(Section 3.4.1).

In a vast majority of cases (∼ 90%) the above steps are sufficient
to accurately estimate the head pose. The remaining 10% of cases are
especially challenging scans, typically due to i) very large rotations,
with self-occlusion of large portions of the face, and/or ii) low quality
scans due to imaging artifacts. In such cases, we use an alternative
estimate of the head pose based on dictionary learning (Section
3.3.3). It should be emphasized that the system automatically
chooses whether to use the landmark-based or dictionary-based
estimates on a case-by-case basis, with the following rationale:

• If landmarks are accurately detected, their estimate of the head
pose is more precise than the dictionary-based estimate.

• If the SRILF algorithm cannot produce a reliable estimate of
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landmark positions, the dictionary-based estimate is the only
one available.

• If both landmark-based estimates (geometric and local
descriptor regression) do not coincide, it is very likely
that landmarks have been incorrectly detected. Thus,
dictionary-based estimate should be used.

3.3.1 3D Landmark Detection
We use Shape Regression with Incomplete Local Features (SRILF)
[Sukno et al., 2015] to locate the following 12 facial landmarks: inner
and outer eye corners, nose corners, mouth corners, nose root, nose tip
and chin tip. The SRILF algorithm combines the response from local
feature detectors for each of the targeted landmarks with statistical
constraints that ensure the plausibility of landmark positions on a
global basis. The algorithm has three components: 1) selection of
candidates through local feature detection; 2) partial set matching
to infer possibly missing landmarks; 3) combinatorial search, which
integrates the other two components.

Selection of candidates

The selection of candidates is performed independently for each
targeted landmark. Given a mesh M and a landmark x` to be
targeted, a similarity score s`(v) is computed for every vertex
v ∈ M; the set of candidates C` for landmark x` are the %` highest
scoring vertices:

C` = {v ∈M|O(s`(v)) ≤ %`} (3.1)

where O() is the (descending) order function. The score s`(v) is
based on the similarity of local surface descriptors with respect
to a descriptor template derived at training time. The SRILF
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implementation currently available1 uses Asymmetry Pattern Shape
Contexts [Sukno et al., 2014] as local descriptors.

As in many other algorithms, it is expected that one of these
candidates will be close enough to the correct position of the
landmark. Nonetheless, the number of false positives (i.e. vertices
that produce high similarity scores even though they are far from
the correct landmark location) can change considerably for different
landmarks, as well as from one facial scan to another, making it
difficult to choose the number of candidates that should be retained.

While many approaches try to retain large numbers of candidates
to make sure that at least one will be reasonably close to the desired
landmark position, SRILF determines the number of candidates as
an upper outlier threshold from the distribution of false positives
over a training set. This implies that, in the vast majority of cases,
a candidate that is close enough to the target landmark will be
detected, but a small proportion will be missed. Hence, for each
targeted landmark there will be an initial set of candidates that may
or may not contain a suitable solution and we need to match our
set of target landmarks to a set of candidates that is potentially
incomplete. This is analogous to the point-matching problem found
in algorithms that search for correspondences. However, the human
face is a non-rigid object and these point-matching algorithms are
typically restricted to rigid transformations.

Partial set matching

The second component of the algorithm aims at dealing with the
above problem. Based on the priors encoded in a statistical shape
model, it uses a subset of the landmarks (i.e. those with suitable
candidates) to infer the most likely position of the ones that are
missing.

Let x = (x1, y1, z1, x2, y2, z2, . . . , xL, yL, zL)T be a shape vector,
constructed by concatenating the coordinates of the L targeted

1http://fsukno.atspace.eu/Data.htm#SRILF 3dFL
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landmarks in 3D, and let x, Φ and Λ be the mean shape, eigenvector
and eigenvalue matrices, respectively. Given a shape for which we
only know part of its landmarks, we could split it in the known (or
fixed) part xf and the unknown (to infer or guess) part xg. Thus,
our objective is to infer the coordinates of landmarks xg so that the
probability that the resulting shape complies with the PCA model
is maximized, ideally without modifying the coordinates in xf .

Let Pr(x) be the probability that shape x complies with the
model. Assuming that Pr(x) follows a multi-variate Gaussian
distribution N (0,Λ) in PCA-space, this probability is proportional
to the negative exponential of the Mahalanobis distance and it can
be shown [Sukno et al., 2015] that maximization of Pr(x) with
respect to xg yields:

xg = xg − (Ψgg)−1Ψgf
(
xf − xf

)
(3.2)

where Ψgg = ΦgΛ−1(Φg)T , Ψgf = ΦgΛ−1(Φf )T and Φ is split in Φf

and Φg according to xf and xg (see [Sukno et al., 2015]).

Combinatorial search

The third component of the algorithm integrates the two previous
steps into a combinatorial search. It consists of analyzing subsets
of candidates and completing the missing information by inferring
the coordinates that maximize the probability of a deformable shape
model.

Formally, let F and G be the sets of fixed and to-infer coordinates,
respectively, with F ∩G = ∅ and F ∪G = {1, 2, . . . , 3L}. The goal of
the combinatorial search is to dynamically choose the splitting into
F and G to minimize the localization error:

argmin
F
{‖x− x̂‖2} (3.3)

where x are the true landmark coordinates and x̂ is the algorithm’s
estimate. The key concept here is that only the coordinates in F will
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be based on image evidence (e.g. the candidates) and the rest will be
treated as missing data. Thus, x̂g will be obtained by inference and
it can be expressed as a function of x̂f , making more apparent that
the minimization looks for the optimal subset F :

argmin
F
{‖xf − x̂f‖2 + ‖xg − f(x̂f )‖2} (3.4)

with f(x̂f ) as defined in Eq. 3.2. Because the true coordinates x are
unknown, we cannot explicitly compute the above errors and need
an indirect estimate instead. The SRILF algorithm does this by
minimizing (subject to statistical plausibility):

argmin
F

(
− |F| − exp

(
−
∑
`∈F

min
c∈C`

‖x̂` − c‖2
))

(3.5)

where C` is the set of candidates for the `-th landmark x̂`. Intuitively,
Eq. 3.5 can be understood by noticing that the main component of
the cost is the cardinality of F , i.e. the number of landmarks that can
be successfully included in x̂f while keeping the shape statistically
plausible. Upon equality of |F| the cost function increases with
the distance from x̂ to the nearest candidate per landmark. These
distances to the nearest candidates have a different meaning for fixed
and inferred landmarks and help understand the way the algorithm
works.

Fixed landmarks {x̂`}`∈F are directly sampled from candidates
to guide the combinatorial search. Thus, their nearest candidates
are known beforehand and their distance to them is just the
reconstruction error of the statistical shape model. For the
remaining landmarks, {x̂`}`∈G, positions are statistically inferred
from Eq. 3.2 independently from their candidate sets (Fig. 3.3).
It would be expected that better predictions generate inferred
landmarks that are closer to their corresponding candidates,
resulting in lower cost values.

The minimization in Eq. 3.5 is addressed by testing all possible
combinations of 4 candidates, which constitute the initial x̂f . The
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shape is completed by inference of x̂g from Eq. 3.5 and is checked
against the statistical constraints of the shape model. As long as
the generated shape is statistically plausible, candidates are added
to x̂f from the remaining landmarks in a sequential forward selection
strategy looking for the maximum possible |F|.

An important aspect of the splitting between F and G is
that it inherently provides tolerance to distorted or missing data
(occlusions). Notice that there is no prior assumption regarding
what landmarks can be in F or G nor the cardinality of the two sets
and the splitting is performed dynamically on a case by case basis.
This is an advantage in applications such as head-pose estimation
with sensors like Kinect, which capture depth information from a
single view. Under large head rotations, the generated depth maps
will have large parts of the face missing due to self-occlusions and it
is crucial to be able to exploit partial information.

3.3.2 Landmark-based pose estimation
Once facial landmarks are extracted, we can estimate head pose,
represented by three Euler angles also called as yaw (φ), pitch (θ)
and roll (ψ) angles. Pitch (nodding) is the rotation around the
horizontal axis, which in our case is the X axis. Yaw (shaking) is the
rotation around the vertical axis of the body (Y axis). Roll (tilting)
is the rotation around the axis perpendicular to two previous axes.
In our case, this is the Z axis, which is perpendicular to the camera
(Fig. 3.2).

We derive two different landmark-based pose estimates, a
geometric estimate and an appearance estimate:

Geometric estimate

It is based on least-squares estimates of simple geometric entities that
can approximately describe the head pose. Specifically, we estimate
the eye-line to determine the roll angle and a frontal-face plane for
yaw and pitch.
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Figure 3.2: Orientation of the head in terms of pitch, roll, and yaw
angles

The four landmarks of inner and outer eye corners are used to
build the eye-line. Firstly, the eye-line is projected into the XY
plane, where it can be expressed as a linear equation of two variables
y = mx+ b. The roll angle is calculated as ψ = tan−1 (m).

The remaining landmarks, except the nose tip, are used
to estimate a plane that will be a good approximation of the
frontal-face region (see Fig. 3.1). Let the normal vector to this plane
be n = [xn, yn, zn]. Due to the fact that angles can be obtained
by rotations about its principal axes, we can compute the yaw and
pitch angles as: φ = tan−1

(
xn/zn

)
, θ = tan−1

(
yn/zn

)
.

Appearance estimate

It is based on regression over the local appearance around landmark
points. Specifically, for each detected landmark x̂` we compute a
local surface descriptor d(x̂`) that will be the input to a multi-linear
regressor A` yielding an estimate for φ, θ and ψ. Thus, differently
from the geometric estimate, the appearance estimate requires a
training set to derive the regressors.

We use 3D Shape Contexts (3DSC) [Frome et al., 2004] as
local descriptors, slightly modified to increase their sensitivity to
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viewpoint and robustness to noise. 3DSC are based on a spherical
histogram computed on a neighbourhood of the interest point (in
our case, landmark locations) and have been shown to perform well
as descriptors of the facial surface [Sukno et al., 2012]. Similarly
to other popular descriptors 3D geometry [Johnson and Hebert,
1999, Tombari et al., 2010, Rusu et al., 2009], 3DSC use the surface
normal at the interest point to appropriately orient the reference
system of the local neighbourhood, aiming for rotational invariance2.
Because our objective is to identify viewpoint, such normal-based
orientation is not convenient, hence we will orient the reference
systems of all local neighbourhoods based on the normal to the
camera sensor. This choice avoids also the computation of surface
normals, which are known to be especially sensitive to noise [Papazov
et al., 2015, Tombari et al., 2010].

Notice that, in principle, we will produce L different estimates
for each angle (i.e. one per landmark). However, because of
the potential presence of occlusions, it is not guaranteed that all
estimated landmarks will actually lie on the mesh surface.3 Indeed,
when parts of the facial surface are missing, it is possible that some
landmarks ` ∈ G are estimated relatively far from the mesh M, i.e.
they are inferred in the position where we would statistically expect
them to be, despite no surface has been captured there (Fig. 3.3).

Therefore, we use the indicator function 1(‖x̂`−M‖ < ε) to filter
out the estimates of landmarks that are estimated off the surface and
produce our final appearance estimate as the average of the remaining
ones:

(φ, θ, ψ)T =
∑
k 1

(
‖x̂` −M‖ < ε

)
A`d(x̂`)∑

k 1

(
‖x̂` −M‖ < ε

) (3.6)

where the distance from x̂(`k) to M is computed as the distance to
2Such invariance, however, is only partially achieved in 3DSC since the

orientation of the surface normal still leaves one degree of freedom undefined
(the sphere’s azimuth [Sukno et al., 2013])

3We consider that a landmark is on the surface when its distance to it is
relatively small as compared to the mesh resolution.
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Figure 3.3: Positions of the landmarks estimated automatically by
SRILF in a head scan showing large yaw rotation. Two views of the
same scan are provided: the original view (as seen from the camera)
is shown to the left and a rotated view (to simulate a frontal shot)
is shown to the right. Landmarks lying on the surface are indicated
in blue color, while those off-the-surface (estimated by inference) are
displayed in red.

the nearest mesh vertex:

‖x̂` −M‖ = min
vj∈M

‖x̂` − vj‖ (3.7)

3.3.3 Dictionary-based pose estimation
As mentioned before, for some small percentage of scans SRILF
has difficulties to correctly locate the facial landmarks and, thus,
the approaches described in Section 3.3.2 are not applicable to
estimate the corresponding head pose. Typically, these are especially
challenging scans, with big rotations, large parts of the head
self-occluded and/or very poor quality. These difficulties, together
with the failure of a state-of-the-art landmarker as SRILF, suggest
the need for a landmark-free approach to tackle these scans. Thus,
we employ an alternative dictionary-based strategy for the scenario
where no explicit vertex-landmarks correspondences are found.

Inspired by the success of Bag-of-Words approaches in 3D shape
retrieval [Wang et al., 2012b], we represent each scan as a set of
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descriptors D = {d(x1), d(x2), ..., d(xN)} extracted vertices xn =
{xn, yn, zn} randomly sampled on the mesh M. Concretely, we use
again 3DSC descriptors with fixed orientation coinciding with the
camera axis (Section 3.3.2) and a random sampling over the mesh
with density of 7mm−1.

Given the sets D obtained from all the training scans, we use
k-means clustering to learn a dictionary Z = {z1, z2, ..., zK} of 3D
descriptors, where each zk is a particular centroid and K is the
total number of clusters considered. Intuitively, these clusters will
represent different shapes typically appearing in face scans (e.g.
nose tip, cheeks, eyes corners, etc.). This dictionary Z is then
used to encode each 3D mesh as a vector h ∈ RK representing
the frequency of each cluster zk in the scan. For this purpose, we
employ a Soft-Assignment approach [Lian et al., 2013], where each
descriptor xn is encoded as:

hkn = exp(−||d(xn)− zk||2)∑K
j=1 exp(−||d(xn)− zj||2)

, (3.8)

and the final vector representation is computed using a sum-pooling
procedure as: h = ∑K

k=1 hk. Finally, vectors h for all the training
scans are used to train three different Least-Squares linear regressors
for yaw, pitch and roll angles.

3.4 Experiments
We used the recently published SASE 3D head-pose database [Lüsi
et al., 2016b], to assess the performance of our approach. The data in
SASE has been acquired with Microsoft Kinect 2 camera and contains
RGB and depth images in pairs. The entire database includes 50
subjects (32 male and 18 female) in the range of 7-35 years old, with
more than 600 frames per subject. For each person, a large sample
of head poses are included, with wide range of yaw, pitch and roll
variations.
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For the Head Pose Challenge [Lüsi et al., 2017] organized
at the International Conference on Automatic Face and Gesture
Recognition (FG 2017), the SASE data has been divided in three
sets: Training (comprising 28 subjects with a total of ∼ 17K
images), Validation (12 subjects, ∼ 7K images) and Test (10
subjects, ∼ 6K images). Only the Training data was made available
to challenge participants in order to investigate the performance of
their algorithms prior to the final evaluation phase. Therefore, we
first present detailed results of our system using only Training data
(Section 3.4.1) and use them to choose the parameters that will
be used for Validation and Test sets (Section 3.4.2). Notice that,
although the SASE data contains both RGB and depth images,
we only used depth data in order to comply with the participation
requirements of the Head Pose Challenge.

3.4.1 Training
We started by splitting the training data into two subsets:
Development and Pre-test. The Development set was composed
of 840 images, by randomly choosing 30 images from each of the
28 training subjects. This set was used to train the landmarking
algorithm and the dictionary-based estimate. The remaining images
(∼ 16K) were used as a preliminary test-set to asses system’s
performance and validate system parameters.

As explained in Section 3.3, our system combines three
different methods to estimate head pose: two of them are based on
landmarks (geometric and appearance estimates) and the third one is
dictionary-based. The three methods were developed independently
and each has its advantages and shortcomings. Table 3.1 shows
the results of each method applied separately on the entire Pre-test
set. We can see that, as anticipated, landmark-based estimates are
more accurate than dictionary-based estimates. On the other hand,
for about 9% of the scans it was not possible to detect landmarks
and only the dictionary-based estimates are available. Notice the

73



Approach Pitch (◦) Yaw (◦) Roll (◦) % scans
Scans with landmarks successfully detected
Landmark-based
geometric 6.34 6.42 7.33 90.8%

Landmark-based
appearance 6.17 6.04 5.57 90.8%

Landmark-based
combined 5.50 5.44 5.28 90.8%

Dictionary-based 8.74 8.06 5.89 90.8%
Scans with landmarks not detected
Dictionary-based 14.74 14.10 9.83 9.2%
All scans
Dictionary-based 9.29 8.61 6.25 100%
Combination 6.33 6.10 5.46 100%

Table 3.1: Average pose estimation errors on the Training part of the
SASE Database

comparatively large errors of the estimates in these scans, which
confirm that these are especially challenging cases.

Within landmark-based methods, estimates based on appearance
were slightly more accurate than geometric ones. However, we
note that i) the geometric-based estimate is training-free while the
appearance-based one requires a learning stage4; ii) combination of
both estimates (by averaging) produced better results than each of
them individually.

The dictionary-based approach was not as accurate as the
landmark-based ones, but it was able to produce estimates in all
cases. As explained in Section 3.3.3, this method also requires
learning, which was performed on our development set, fixing the
number of clusters to K = 500.

4For the experiments reported in Table 3.1, the appearance-based estimate
was tested in a 10-fold cross-validation setting.
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The last line of Table 3.1 shows the final results of the system,
obtained by combining the three methods. As indicated in Fig. 3.1,
landmark-based estimates were preferred over dictionary ones.
However, if no landmarks were available or if geometric and
appearance landmark-based estimates did not match, we used the
dictionary approach. The rationale behind checking landmark-based
estimates for agreement is that, if landmark are accurately located
then both geometric and appearance estimates should produce
similar results. On the other hand, if landmarks are located at
incorrect positions, the estimates will also be incorrect but are
unlikely to coincide among them, given the different nature of the
estimators.

Therefore, given a head scan with geometric estimates
(φG, θG, ψG) and appearance estimates (φA, θA, ψA), the system
will use these estimates if and only if:

|φG − φA|+ |θG − θA|+ |ψG − ψA| < τ (3.9)

Otherwise, the dictionary-based approach is used. Fig. 3.4 shows
the variation of the estimation errors of the landmark- and
dictionary-based approaches for different values of τ . The errors
are displayed for each angle taking into account only the scans for
which landmark-based estimates failed to comply with Eq. 3.9. It
can be seen that scans with larger differences between geometric
and appearance estimates have larger pose estimation errors. Errors
increase steadily ∀τ for landmark-based estimates and partially
for the dictionary-based approach (approximately up to τ ≤ 50).
The second observation from Fig. 3.4 is that, as expected, for
large differences between geometric and appearance estimates the
dictionary-based approach is more accurate. For the experiments
reported in this Chapter, we have adopted a conservative value of
τ = 50 where Fig. 3.4 shows lower errors of the dictionary-based
approach for all three estimated angles. As indicated by the black
line in the plot, this represents replacing the landmark-based
estimates by the dictionary ones in approximately 15% of the cases.
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Figure 3.4: Variation of estimation errors for landmark- and
dictionary-based estimates as a function of the difference between
geometric and appearance estimates. The black solid line shows the
percentage of scans for which the difference in Eq. 3.9 is above the
value indicated in the horizontal axis. For those scans, the blue, red
and green curves show the angle estimation errors based on landmarks
(solid lines) and dictionary (dashed lines).

3.4.2 Validation and Test

Once we trained the necessary models and set the system parameters
as described in the previous section, we submitted our estimates
of head poses in the Validation and Test sets to the Head Pose
Challenge. Table 3.2 summarizes our results, with which we obtained
the first place in the challenge. It can be seen that the results at
this stage were not too different from those obtained in training,
indicating that there was not much over-fitting. Notice that, for the
Test set, we can only provide the overall score (sum of average errors
for all angles) since the ground truth for this part of the database
was not made available by the challenge organizers.

Table 3.3 shows additional details about the performance
of the proposed system in the validation and test sets. The
average processing time reported correspond to tests on an Intel
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Subset Pitch Yaw Roll Sum
Training 6.33 6.10 5.46 17.89
Validation 7.82 6.65 5.39 19.86
Test n/a n/a n/a 19.02

Table 3.2: Average pose estimation errors on the SASE Database

Overall statistics
Total number of scans 13,885
Average processing time 8.42 s

Automatic landmarks
Successfully detected 91.1 %
Average detection time 5.77 s

Landmark-based pose estimates
Successfully computed 91.1 %
Agreement within τ = 50 86.8 %
Average processing time 6.08 s

Dictionary-based pose estimates
Computed for 13.2 %
Average processing time 3.29 s

Table 3.3: Detailed information about the performance of the
proposed system on the Validation and Test sets

i7-770 processor at 3.4 GHz with 16 Gb or RAM. Most of the
implementation was done in Matlab and it has not been optimized
for speed. Full code of the system used to produce the reported
results is publicly available.5

5https://github.com/DmytroDerkach/CMTech
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3.4.3 Comparison to other methods

Table 3.4 shows the results reported by most relevant previous
works addressing head pose estimation based on 3D data. Together
with the estimation errors for each angle, we indicate whether
the corresponding methods use tracking, RGB and/or depth data.
Moreover, we show the specific database(s) used for testing in each
case. As explained in Section 3.2, most methods use temporal
information to speed-up processing but also to avoid the need for
initialization at every frame. This can considerably simplify the
problem if sequences start from near-to-frontal shots, as is the case
in most datasets used for head pose evaluation. However, this
assumption do not need to be fulffiled in real-scenarios. Among the
four methods listed in Table 3.4 that do not rely on tracking, only
one exclusively uses depth information (as our system) and the other
three methods use both depth and RGB data.

Comparisons with our work using results depicted in Table 3.4
are difficult and rather indirect considering the diversity of datasets
and experimental setups that were used in the cited works. However,
our results compares favorably to the best performing methods in the
literature only relying on depth information. Moreover, performance
of the proposed system is comparable to some algorithms that also use
tracking for pose estimation. Finally, a detailed analysis of our results
reveals that our average estimation errors are strongly influenced
by the presence of outliers; e.g. our median absolute estimation
errors were approximately 3.5 degrees per angle, considerably lower
than the average absolute errors reported in Section 3.4. Analysis
of these outlier cases revealed that they were typically scans with
large rotation angles where the face was positioned quite oblique to
the camera axis and the sensor could not capture it with sufficient
quality.
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3.5 Conclusions
In this Chapter we present an approach for accurate head pose
estimation from a single depth frame of consumer RGB-D cameras,
such as Kinect 2. In contrast to most existing approaches, we
base our system in the detection of 3D facial landmarks, whose
positions are later used to derive geometry- and patch-based pose
estimators. A key aspect of the proposed system is the use of state
of the art landmark localization with no need for initialization and
tolerance to occlusions or missing data. Our system is complemented
with a secondary pose estimator based purely on patches sampled
randomly on the head region to account for potential failures of the
landmark-based estimation.

We evaluated our system on the SASE database, which consists
of ∼ 30K frames from 50 subjects. We obtained average pose
estimation errors between 5 and 8 degrees per angle, achieving
the best performance in the FG2017 Head Pose Estimation
Challenge. Our experiments also confirmed the initial hypothesis
that the landmark-based estimates would be more accurate than
correspondence-free approaches, such as the dictionary-based one
that was adopted. Landmark-based estimates were successfully
produced for ∼ 90% of cases and the remaining ones were tackled
by the dictionary-based approach. Our results compare well with
those reported in the related literature, especially considering the
added difficulty of not using tracking and RGB data to produce our
estimates.
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Chapter 4

TENSOR
DECOMPOSITION AND
NON-LINEAR MANIFOLD
MODELING FOR 3D
HEAD POSE
ESTIMATION

Adapted from: D. Derkach, F.M. Sukno, ”Tensor Decomposition and Non-linear Manifold
Modeling for 3D Head Pose Estimation”, International Journal of Computer Vision;

D. Derkach, A. Ruiz, F.M. Sukno, ”3D Head Pose Estimation Using Tensor Decomposition
and Non-linear Manifold Modeling”, International Conference on 3D Vision, 2018, pages
505-513, DOI: 10.1109/3DV.2018.00064
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Abstract
Head pose estimation is a challenging computer vision problem with important applications in

different scenarios such as human-computer interaction or face recognition. In this Chapter,

we present an algorithm for 3D head pose estimation using only depth information collected

from Kinect sensors. A key feature of the proposed approach is that it allows modeling the

underlying 3D manifold that results from the combination of pitch, yaw and roll rotations. To

do so, we use tensor decomposition to generate separate subspaces for each variation factor

and show that each of them has a clear structure that can be modeled with cosine functions

from a unique shared parameter per angle. Such representation provides a deep understanding

of data behavior and angle estimations can be performed by optimizing combination of these

cosine functions. We evaluate our approach on two publicly available databases, and achieve

top state-of-the-art performance.
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4.1 Introduction

Head pose estimation is a relevant problem for several computer
vision applications, including human-computer interaction, video
conferencing, face recognition and facial motion analysis [Wang
et al., 2018]. Head pose estimation has traditionally been performed
on 2D images, but advances in 3D acquisition systems have led to a
growing interest in methods that operate on 3D data [Seemann et al.,
2004]. These methods are less sensitive to changes in illumination
and viewpoint than 2D image-based approaches, which makes them
more accurate and robust. Therefore, in this Chapter we focus on
head pose estimation from 3D data.

The goal of head pose estimation is to predict the relative
orientation between the camera and a 3D mesh of the target
head. This orientation is usually represented by three angles:
rotation around vertical axis (yaw angle), around lateral axis
(pitch angle), and around longitudinal axis (roll angle). Despite
the fact that standard features used to represent 3D meshes lie in
high-dimensional spaces, a key observation to solve this problem is
that the aforementioned angles define a lower-dimensional manifold
with only 3 degrees of freedom. This fact makes tensor decomposition
and manifold learning appealing frameworks for the estimation of the
orientation parameters. In particular, factorization methods such as
multi-linear decomposition [De Lathauwer et al., 2000, Wang et al.,
2017b], are able to separate the variations produced by the different
factors (i.e. angles) into separate subspaces, thus obtaining specific
parametrizations for each of them. On the other hand, manifold
learning [Wang et al., 2017a] can be used to find the low-dimensional
manifold structure defined by the orientation angles.

In this context, previous works have attempted to use the
described frameworks for head pose estimation. Concretely,
methods such as Isomap [Raytchev et al., 2004] or Local Linear
Embedding [Fu and Huang, 2006] have been explored in order to
learn the underlying manifold structure defined by the orientation

83



parameters. Even though the cited methods are able to learn generic
low-dimensional data representations, the resulting manifold is only
defined implicitly and, therefore, it is difficult to introduce specific
constraints to model the inherent structure defined by rotation
variations.

In order to address this limitation, we propose a novel approach
to learn the manifold defined by 3D rotations. In particular, our
method is able to explicitly model its underlying structure with
an analytic form which takes into account the specific constraints
imposed by orientation variations. For this purpose, we use
multi-linear decomposition over 3D descriptors in order to split the
pose variation factors (i.e. yaw, pitch and roll) and obtain a set of
subspaces whose coefficients are governed by an unique parameter.
These coefficients define a continuous curve in each of the sub-spaces
that corresponds to the head pose variation along one of the rotation
angles. We further show that these curves can be modeled in terms
of trigonometric functions, which are indeed the bases to explain
rotation effects. Thus, we introduce a minimization framework
for pose estimation based on tensor decomposition constrained by
trigonometric functions so that the solutions obtained are always
compatible with the underlying rotation manifold.

We start by investigating the structure of the subspace obtained
by multi-linear decomposition when such subspace corresponds to
one rotation angle. It is performed by using 2D images that capture
rotations of simple objects along the vertical axis. We show that the
obtained coefficients, indeed, describe the rotation effects, thus they
can be modeled by a trigonometric function. Then, we generalize
it to 3D rotations in any of the three axes and demonstrate its
usefulness by applying it to head pose estimation. Preliminar results
of this approach were presented in [Derkach et al., 2018]. We
perform experiments over two large and publicly available 3D face
corpora: the SASE [Lüsi et al., 2016b] and BIWI databases [Fanelli
et al., 2013]. In contrast to previous work [Derkach et al., 2018],
we introduce additional feature type, and show that the proposed
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framework can achieve state-of-the-art performance for head-pose
estimation using different type of features.

The rest of the chapter is organized as follows. Section 4.2
introduces a brief review of the existing approaches for head pose
estimation. In Section 4.3 we provide the required background on
tensor theory and Section 4.4 details the general idea of the proposed
method using multi-linear decomposition and manifol modeling
framework. Then in Section 4.5 we show a simple example based on
the images with rotation about only one vertical axis. Further in
Section 4.6 we show how the presented framework can be applied for
3D head pose estimation. All experimental and features extraction
details with obtained results are presented in this section. Finally,
Section 4.7 concludes the chapter.

4.2 Related work

4.2.1 Manifold-based methods
Many methods have considered the model the underlying manifold
structure of head pose variations [Wang et al., 2017a]. The main
idea behind these methods is that, regardless of the dimensionality
of the input features representing the mesh, there should be at
most 3 degrees of freedom for head pose variation, thus defining
a 3D manifold [Raytchev et al., 2004]. However, in general, this
manifold is embedded non-linearly in the ambient space defined
by the features, which has led researchers to explore non-linear
manifold learning methods such as Locally Linear Embedding [Fu
and Huang, 2006], Isomap [Raytchev et al., 2004], Synchronized
Submanifold Embedding [Zhu et al., 2014], Homeomorphic Manifold
Analysis [Peng et al., 2014], Neighborhood Preserving Embedding
or Locality Preserving Projection [BenAbdelkader, 2010] for head
pose estimation from 2D images.

An interesting possibility to enhance the embedding results is
to adopt a supervised strategy and use head pose labels in order
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to learn the manifold structure. For example, in [Balasubramanian
et al., 2007], the authors presented a Biased Manifold Embedding
(BME) framework in which the distance metric between features is
modified so that heads under similar poses are brought closer to each
other than they would be under the unbiased (unsupervised) case.
Similarly, Wang et al. [Wang and Song, 2014] consider head-pose
information to constrain the distances between data points and
present a regression variant of Fisher Discriminant Analysis (FDA),
which they call supervised neighborhood-based FDA. An alternative
approach is followed by Benabdelkader [BenAbdelkader, 2010],
who firstly apply unsupervised manifold learning methods and then
employ the head pose information to train regressors in the resulting
low-dimensional manifolds.

Liu et al. [Liu et al., 2010] argue that a single manifold is not
enough for head pose estimation and that appearance variations
such as changes in identity, scale and illumination make it necessary
the use of multiple different manifolds to model pose parameters.
Thus, authors presented a clustering method to construct multiple
manifolds, each of which characterizes the underlying subspace of
some subjects. Peng et al. [Peng et al., 2014] also learn multiple
manifolds; they use Homeomorphic Manifold Analysis to build a
separate manifold for each subject and learn non-linear mappings to
relate each subject-manifold with a common pose-manifold whose
topology is predefined as a unit circle or sphere (for addressing
rotations about one or two axes, respectively).

The most similar work to ours is probably the one from [Takallou
and Kasaei, 2014], who learn a non-linear tensor model based on
multi-linear decomposition for head pose estimation from 2D images.
They build a three-way tensor to account for identity, pose and pixels
information, targeting only yaw rotations. During training, they find
individual-dependent mappings between each training pose and a
unified pose manifold based on tensor decomposition. At test time,
each query image is projected into pose and identity subspaces, which
results in as many pose coefficients as identities in the training set.

86



The final pose estimate is obtained by validating the available pose
coefficients in terms of compliance with the unified pose manifold
(e.g. inversely to the distance to training samples).

In contrast to our work, all of the above methods use 2D images
and most of them do not target rotations about the three spacial
axes, they consider rotations about only one or two axis. Moreover,
none of them provides an analytic formulation for the pose manifolds.

4.2.2 3D methods review
Head pose estimation has traditionally been performed on 2D images.
Cheng et al. [Chen et al., 2016], in their work, proposed a non-linear
regression method based on gradient-based features for the estimation
of head pose from extremely low resolution images. Also, Lee et al.
[Lee et al., 2015] showed a method based on the random projection
forests algorithm using only 2D images. Some of the approaches
have used neural networks for solving head pose estimation problem
[Venturelli et al., 2016, Lathuilière et al., 2017]. For example, Liu et
al. [Liu et al., 2016] presented a method for head pose estimation
using convolutional neutral network (CNN). As the input of the
network they use a head RGB image, and then CNN was trained
to learn head features and solve the regression problem. The work of
Ahn et al. [Ahn et al., 2014] used a CNN method to learn a mapping
function between visual appearance and head pose angles. A common
thing for all of the approaches based on the neural networks is that
they use only 2D images.

But recent advances in 3D acquisition systems have led to
a growing interest in methods that operate on 3D data. These
methods are less sensitive to changes in illumination and viewpoint
than 2D image-based approaches, which makes them more accurate
and robust.

An important distinction between different approaches is the
type of input data that is used. Firstly, very few methods use only
depth information, typically relying on curvatures, symmetry planes
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or most salient facial landmarks, such as the nose tip [Breitenstein
et al., 2008, Sun and Yin, 2008, Li and Pedrycz, 2014]. There are
also other head pose estimation algorithms that rely on 3D data.
Martin et al. [Martin et al., 2014], presented a method based on
building a 3D head model with the iterative closest point (ICP)
algorithm.

In contrast, a majority of head pose estimation algorithms
working in 3D, use also RGB data as additional source of information,
facilitating aspects such as face detection and estimation of fiducial
points. In this category we find approaches based on the fusion of
2D and 3D features (e.g. SIFT, HOG) to train regressors [Wang
et al., 2013a], template fitting, such as 3D Morphable Models [Ghiass
et al., 2015, Yu et al., 2017], or depth features initialized by 2D face
detection [Papazov et al., 2015].

Finally, it is also common to take advantage of temporal
information for tracking the head pose across sequences of frames
[Tulyakov et al., 2014, Barros et al., 2018, Tan et al., 2018],
which considerably improves performance. However, tracking-based
algorithms often benefit from the fact that test sequences usually
start with nearly frontal head poses and their accuracy to detect
initial head poses other than frontal is not clear. Thus, when
comparing our results, we will focus on methods that provide
estimation results on a per-frame bases, without tracking.

Interestingly, we see that previous methods targeting head pose
estimation from 3D data have not taken advantage of the underlying
manifold structure of 3D head rotations. In contrast, we take into
account the structure of the manifold, also we present a method that
is able to explicitly model its underlying structure with an analytic
form which takes into account the specific constraints imposed by
orientation variations.
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4.3 Technical background:
Tensor decomposition

In this section, we give a review of tensor decomposition methods,
especially focusing on the higher order SVD (HOSVD) [Bergqvist
and Larsson, 2010, Comon, 2014, Kolda and Bader, 2009]. In many
scenarios, data can be naturally represented as multidimensional
arrays and, therefore, it is beneficial to take into account its inherent
structure in order to analyze it. For this purpose, the use of tensors
is a natural solution. In particular, a tensor is also known as a n-way
array or a n-mode matrix. Vectors and matrices can be considered
as first and second order tensors, respectively. First of all, we will
start by reviewing the standard SVD decomposition for second order
tensors.

For matrix A ∈ Rm×n we recall the SVD as being:

A = UΣV T =
r∑

k=1
σkukv

T
k =

r∑
k=1

σkuk ⊗ vk (4.1)

and for the elements aij of A we have

aij =
r∑

k=1
uikσkkvik (4.2)

Here ⊗ denotes the tensor (or outer) product x ⊗ y =∆ xyT ; Σ
is a diagonal (r × r) matrix with nonzero singular values of A (the
square roots of the eigenvalues of ATA) on its diagonal; uk and vk
are the orthonormal columns of the matrix U (m× r) and V (n× r),
respectively, with vk being the eigenvectors of ATA and uk = Avk/σk
[Bergqvist and Larsson, 2010].

The SVD is useful whenever we have a two-dimensional data set
aij, which is naturally expressed in term of a matrix A (second order
tensor). In the application of this Chapter we will deal with cases
where the dimension is bigger than two, particularly is equal five
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(fifth order tensor). The SVD may be generalized to higher order
tensors (or multiway arrays).

Given T ∈ RI1×I2×...×I5 , the decomposition of the fifth order
tensor can be expressed as

T =
∑
J1

· · ·
∑
J5

gJ1J2...J5u
(1)
J1 ⊗ u

(2)
J2 ⊗ · · · ⊗ u

(5)
J5 (4.3)

or as a mode product [De Lathauwer et al., 2000]

T = G ×1 U
(1) ×2 U

(2) · · · ×5 U
(5) (4.4)

where G ∈ RJ1×J2×...×J5 is the core tensor and U (n) ∈ RIn×Jn – are
the factor matrices (which are orthogonal) and can be thought of as
the principal components in each mode. The graphic representation
of the Higher Order SVD (3D) is shown in Fig. 4.1(a);

The n-mode product of a tensor G ∈ RJ1×J2×...×JN by a matrix
U ∈ RIn×Jn denoted by G ×n U is an (J1 × J2 × · · · × Jn−1 × In ×
Jn+1 × · · · × JN)-tensor of which the entries are given by

(G ×n U)j1j2···jn−1injn+1···jN =
∑
jn

gj1j2···jn−1jnjn+1···jNuinjn (4.5)

In HOSVD, all matrices U (n) can be calculated by performing
a matrix SVD on the In × (I1I2 · · · In−1In+1 · · · IN) matrix
obtained by a flattering or unfolding of T [Bergqvist and Larsson,
2010, De Lathauwer et al., 2000].

The n-mode matricization (or unfolding) of a tensor
T ∈ RI1×I2×...×IN is denoted by T(n) and arranges the n-mode
fibers to be columns of the resulting matrix. Tensor element
(i1, i2, . . . , iN) maps to matrix element (in, j), where

j = 1 +
N∑
k=1
k 6=n

(ik − 1)Jk; Jk =
k−1∏
m=1
m 6=n

Im (4.6)
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Figure 4.1: (a) Illustration of a 3D tensor decomposition. (b)
Unfolding of the (I × J ×K)-tensor T to the (I × JK)-matrix, the
(J ×KI)-matrix and the (K × IJ)-matrix

An example of unfolding of the third order tensor T is shown in
Fig. 4.1(b)

Since U (n) matrices are orthogonal, G from equation (4.4) is easily
calculated from (4.7) and it is called the core tensor which shows the
interactions of U (n) matrices – factor matrices [De Lathauwer et al.,
2000].

G = T ×1 U
(1)T ×2 U

(2)T · · · ×5 U
(5)T (4.7)
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4.4 Proposed method

4.4.1 Multilinear decomposition and estimation
of 3D rotations

In the following, we explain how the tensor decomposition framework
described in Sec. 4.3 can be used to model data variations caused by
rotations. Consider a training set composed by N samples xn ∈ RDf .
For instance, in head pose estimation, xn refers to a Df -dimensional
vector representing a 3D-descriptor extracted from a mesh. Moreover,
we assume that each xn is labelled according to its identity plus
3 values defining its corresponding rotation angles (i.e yaw, pitch
and roll). By discretizing these values into Dy, Dp and Dr bins
respectively, we can represent the whole dataset as a 5-way tensor
T ∈ RN×Dy×Dp×Dr×Df .

By using Eq. 4.3, we can decompose T as:

T = G × U (id) × U (y) × U (p) × U (r) × U (f) (4.8)

where G is the core tensor that governs the interaction between
the five different factors defining the dataset: identity, rotation
in the three angles and the appearance (or features) of a sample.
Specifically, note that each U (∗) is a matrix spanning a subspace
for a given factor. Therefore, its rows u(∗) can be seen as vectors
representing the data behavior for each parameter of the factor
subspace. For example, the rows of matrix U (id) encode the
distinctive characteristics that define the shape of the object
xn ∈ RDf . At the same time, each row in the matrices U (y), U (p)

and U (r) provides coefficients that define the rotation of the object
by a particular angle about each axis. And finally, the product by G
and U (f) can be interpreted as a mapping of the shaped and rotated
object into feature space.

Thus, from our 5-way tensor, we have 4 modes that correspond
to factor subspaces plus another one that corresponds to our input
features and is usually combined with the core in the auxiliary
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variable W = G × U (f). This variable can be understood as a basis
that represents the principal axes of variation in feature space across
the various factors (the other tensor modes) and how they interact
with each other to reconstruct the input features [Vasilescu and
Terzopoulos, 2002].

After obtaining the decomposition of the tensor T , a sample x
can be reconstructed as:

x =W × u(id) × u(y) × u(p) × u(r), (4.9)

where W = G × U (f) and {u(y), u(p),u(r)} are row vectors from
matrices {U (y), U (p), U (r)}. Therefore, it is also theoretically possible
to estimate the rotation angles for a given test sample x ∈ RDf

by minimizing the reconstruction error: [Tenenbaum and Freeman,
2000, Zhang et al., 2015]:

argmin
u(y),u(p),u(r),u(id)

‖x−W × u(y) × u(p) × u(r) × u(id)‖ (4.10)

Unfortunately, this becomes a minimization problem in which
we need to simultaneously solve for 3 viewpoint parameterizations
vectors (yaw u(y), pitch u(p) and roll u(r)), and the identity vector
u(id). There exist approaches to solve the above minimization,
e.g. iterative estimates of one factor at a time or gradient-based
optimization [Bakry and Elgammal, 2014]. However, they cannot
guarantee accurate estimates and the resulting solutions are often
not compliant with the manifold structure of the different subspaces.
Thus, the final estimates are typically obtained by applying some
correction to the results from the minimization of Eq. 4.10 (e.g.
nearest neighbor search [Takallou and Kasaei, 2014]) so that they
become compatible with the manifold structure implicitly defined by
the training examples.
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4.4.2 Introducing rotation manifold constraints

In Sec. 4.4.1, we have described the use of tensor decomposition to
model the effect of 3D rotations much like any other factor; e.g.
notice how rotation factors and identity are treated in an equivalent
manner. However, such general treatment does not take advantage
of the special structure that can be expected for rotation subspaces
leading to the generic formulation in Eq. 4.10, whose practical use is
limited.

Indeed, notice that regardless of the resulting dimensionality of
the yaw, pitch and roll vectors (u(y), u(p) and u(r)), each of them
shall theoretically encode only the rotation about a specific axis.
Hence, the coefficients of each of these vectors are expected to be
governed by a single parameter (their corresponding rotation angle),
thus describing a one-dimensional manifold embedded in the higher
dimensional ambient space obtained by the tensor decomposition.

To illustrate the above, consider a simple example with a
dataset composed of 2D images of different objects rotating with
respect to a single axis (e.g, yaw angle). In this scenario, the data
depends on three factors: yaw angle, object identity, and features
(for which we can directly use the pixels). Using this dataset,
we can build a tensor and decompose it analogously to Eq. 4.8.
By following this procedure, we obtain three different matrices:
U (f), U (y) and U (id), spanning the sub-spaces corresponding to
features, rotation and identity, respectively. In Fig. 4.2 we show
the values of the first three columns of matrix U (y), corresponding
to different images of a ”duck” object. We can see that the values
displayed in Fig. 4.2 approximately describe a spiral curve, making
apparent that the coefficients of the rotation subspace follow a
uni-dimensional manifold structure. This is consistent with the fact
that the variations captured by this subspace correspond to a single
parameter: the rotation angle about the vertical axis. As we will
show later in the experiments, this behaviour is not specific for
rotations about a single axis but holds for general 3D-rotations and
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also for different types of features.
Based on this observation, we propose to introduce explicit

constraints over the rotation coefficients {u(y), u(p),u(r)} so that we
can carry out their joint estimation directly over the underlying
rotation manifold. For this purpose, we re-write Eq. 4.9 as follows:

x =W × u(id) × u(y) × u(p) × u(r)

=W × u(id) × f (y)(ω(y))× f (p)(ω(p))× f (r)(ω(r)) (4.11)

where f (∗) : R → RD∗ are parametric functions taking as input an
angle ω(∗) and giving as output a vector of coefficients u(∗). In this
way, we explicitly force the rotation subspaces to be one-dimensional
manifolds governed by ω(∗).

By considering the reparametrization defined in Eq. 4.11, the
estimation of the rotation angles given a test sample x can be
obtained by minimizing the following reconstruction error:

argmin
ω(y),ω(p),ω(r),u(id)

‖x− x̂‖ (4.12)

x̂ =W × u(id) × f (y)(ω(y))× f (p)(ω(p))× f (r)(ω(r))

where W = G × U (f) and the optimized variables are the angles ω∗
and the vector u(id).

This re-formulation of Eq. 4.10 allows to minimize the
reconstruction error directly fulfilling the manifold structure of
the rotation subspaces and reducing the number of coefficients to
optimize from (N + Dy + Dp + Dr) to (N + 3). As we will show in
the experimental results, this offers a crucial advantage with respect
to the one described in Sec. 4.4.1.
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4.4.3 Constraints definition using trigonometric
functions

In the previous section, we have discussed the advantages of
incorporating specific constraints into the rotation coefficients u(∗)

(see Eq. 4.9) in order to explicitly model the pose changes of samples
x. For this purpose, we have parametrized each u(∗) by using a
function f (∗) with a single angle ω(∗) as input. However, we have not
discussed yet the specific definition of f (∗) used in this work.

To do so it is important to remember that we are looking for
functions that transform a rotation angle into a set of coefficients that
produce the desired rotation effect (once appropriately combined by
means of W). In this sense we may draw an analogy between the
vectors u(∗) = f (∗)(ω(∗)) and 3D rotation matrices, which also have
multiple coefficients that in reality depend on a single parameter.1
Therefore, it is reasonable to hypothesize that the relation between
the coefficients of the rotation subspaces and their corresponding
rotation angles can be modeled by means of trigonometric functions
[Brannon, 2018].

Going back to the example from Fig. 4.2, we can see that
the displayed rotation parameters describe an elliptical trajectory,
compatible with the above hypothesis. This becomes more evident
in Fig. 4.3, where we show the values of these coefficients separately
against the rotation angle. It can be seen that the resulting
wave-forms strongly resemble those from the cosine functions. It
should be mentioned that, while we only display the first three
dimensions of the rotation subspace (corresponding to the first three
columns of matrix), the remaining columns follow a similar pattern.
Therefore, we will model f (∗) as vectors of real functions based on
cosines parameterized as follows:

1Of course this applies to rotations about a single axis; the general 3D-rotation
case, depending on 3 parameters, could be anyway decomposed in the product
of 3 such rotation matrices, analogous to the product of f (y)(ω(y))× f (p)(ω(p))×
f (r)(ω(r)) in Eq. 4.11.
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f (∗)(ω(∗)) =
(
f1(ω(∗)), f2(ω(∗)), . . . fD∗(ω(∗))

)
(4.13)

fj(ω(∗)) = α
(∗)
j cos(β(∗)

j ω(∗) + γ
(∗)
j ) + ϕ

(∗)
j (4.14)

1 ≤ j < D∗

where α
(∗)
j , β

(∗)
j , γ

(∗)
j and ϕ

(∗)
j are parameters defining each specific

cosine function. Note that, given a rotation subspace, there will
be a different set of parameters for each dimension of the subspace,
thus defining a spiral-like structure that analytically represents the
underlying manifold.

To obtain the values of the parameters α(∗)
j , β

(∗)
j , γ

(∗)
j and ϕ(∗)

j that
define the analytic curves for each dimension of the rotation subspaces
we solve the following minimization:

argmin
α

(∗)
j ,β

(∗)
j ,γ

(∗)
j ,ϕ

(∗)
j

‖u(∗)
ij − fj(ω

(∗)
i )‖ (4.15)

where u
(∗)
ij are the elements of matrices U (y), U (p), U (r) obtained

from the decomposition of the training tensor and ω
(∗)
i is the value

corresponding to the i-th bin of the discretized rotation angles used
to construct the tensor. For example, given a rotation range of
[−Θ,Θ] and a uniform discretization:

ω
(∗)
i = 2 i−D∗ − 1

D∗ − 1 Θ 1 ≤ i ≤ D∗ (4.16)

4.4.4 Implementation
The central elements of our formulation are the minimizations defined
in Eq. 4.12 and 4.15. In both cases, we note that the function to
minimize is differentiable with respect to the target parameters.
Therefore, we chose to solve these optimization problems by using
a gradient descent procedure. Specifically we use the L-BFGS
method [Byrd et al., 1994], which is formally a Quasi-Newton
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method. L-BFGS applies an iterative gradient-descent procedure
to minimize the objective function but, differently from other
Quasi-Newton methods, it approximates the inverse Hessian matrix
with a low-rank compact form that results in important savings in
terms of memory and computational cost [Ruiz Ovejero et al., 2017].
For completeness, the required derivatives to use L-BFGS for the
minimization of Eq. 4.12 and 4.15 are provided in the Appendix.

The different steps involved to train the proposed 3D pose
estimation framework are summarized in Algorithm 1. We start
from a set of feature vectors {X}, each labeled with an identity
its yaw, pitch and roll angles. Depending on the input data, these
angles may need to be discretized so that we obtain angular bins
that are consistent across all identities. This allows to organize the
input data into the 5D tensor T , which is decomposed to obtain
the core tensor G and the subspace matrices U (∗) for each of the 5
factors in the tensor.

The feature-subspace matrix U (f), representing the input
space, is combined with the core to form the auxiliary tensor W ;
the identity-subspace matrix U (id) is kept unchanged2 and the
rotation-subspace matrices U (y), U (p) and U (r) are reparameterized
in terms of cosine functions. Note that, for each rotation angle, there
are as many cosine functions as dimensions in the yaw, pitch and
roll subspaces, but all the functions in a given subspace are governed
by the same unique free variable, respectively ω(y), ω(p), ω(r).

During testing, the unknown identity and rotation angles of a
feature vector x are estimated (Algorithm 2). This is done by solving
the minimization in Eq. 4.12 using the auxiliary tensor W and the
parameters learned during training for each function f (∗). Note that,
because the factor subspaces are obtained by means of HOSVD, their
parameters are sorted in terms of their eigenvalue. Therefore, even
though each angular subspace results in D∗ − 1 cosine functions,
those with the smallest eigenvalues are typically discarded due to

2Actually, because in this Chapter we do not address identity recognition, the
values in this matrix are not used during testing.
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Algorithm 1: Training Phase
Input : {X} – set of feature vectors for each of the subjects

and each of the rotation angle labeled with
ω(y), ω(p), ω(r);
D(∗) – number of the bins to discretize rotation;

Output: W and set of parameters α(∗), β(∗), γ(∗), ϕ(∗) for each
of the rotation;

1 Build 5D tensor T ∈ RI1×I2×...×I5

2 Decompose T using HOSVD (Eq. 4.8)
3 T = G ×1 U

(id) ×2 U
(y) ×3 U

(p) ×4 U
(r) ×5 U

(f)

4 Compute W :
5 W = G ×5 U

(f)

6 foreach ω(∗) ∈ {ω(y), ω(p), ω(r)} do
7 foreach j-th column in matrix U (∗); (1 ≤ j < D∗) do
8 foreach i-th bin of the discretized rotation angles

(1 ≤ i ≤ D∗) do
9 argmin

α
(∗)
j ,β

(∗)
j ,γ

(∗)
j ,ϕ

(∗)
j
‖u(∗)

ij − fj(ω
(∗)
i )‖ ;

10 where fj(ω(∗)
i ) is from Eq. 4.13;

11 end
12 end
13 end

their sensitivity to noise.

4.5 Experiments
In order to show that the proposed framework can be applied to a
wide variety of input features, we perform several experiments. The
first experiment is performed on the COIL-20 database [Nene et al.,
1996], where we simply use the pixels of 2D images as features and
use our framework to impose analytic constraints to out-of/-plane
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Algorithm 2: Test Phase
Input : x – feature vector of unknown subject
Output: estimated angles – ω(y), ω(p), ω(r)

1 Initialize :
2 ω(y) = 0;ω(p) = 0;ω(r) = 0;
3 u(id) as vector with zeros;
4 Define functions using Eq. 4.13:
5 foreach j-th column in matrix U (∗); (1 ≤ j < D∗) do
6 f

(y)
j (ω(y)) = α

(y)
j cos(β(y)

j ω(y) + γ
(y)
j ) + ϕ

(y)
j

7 f
(p)
j (ω(p)) = α

(p)
j cos(β(p)

j ω(p) + γ
(p)
j ) + ϕ

(p)
j

8 f
(r)
j (ω(r)) = α

(r)
j cos(β(r)

j ω(r) + γ
(r)
j ) + ϕ

(r)
j

9 end
10 Estimate angles ω(y), ω(p), ω(r) :
11 argminω(y),ω(p),ω(r) ‖x− x̂‖
12 where x̂ =W × f (y)(ω(y))× f (p)(ω(p))× f (r)(ω(r))× u(id)

rotations of a variety of objects. Further, in Section 4.6, we perform
3D head pose estimation experiments using other two types of
features: automatic landmarks and histogram-based 3D descriptors.

4.5.1 Image rotation manifold
We start our experiments using 2D images that capture rotations of
simple objects along only one axis: the vertical axis (yaw angle). We
consider the Columbia University Image Library (COIL-20) data-set
[Nene et al., 1996]. The COIL-20 is an often-used dataset that
contains a total of 1440 grayscale images from 20 different objects.
Each image, of size 128 × 128 pixels, shows one of the objects at
a particular rotation angle over a black background. There are 72
images for each object, taken at intervals of approximately 5◦, thus
covering the full range of rotations between 0 and 360 degrees. As
the only pre-processing step, each image was downsampled to 32 ×
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Figure 4.4: The sample images for 20 subjects in COIL-20 dataset

32 pixels and these were concatenated in row vectors of 1024 values
which constituted our input features. Fig. 4.4 shows some sample
images of this dataset.

Following Algorithm 1, the input data was arranged in a tensor.
Due to the fact that images have only rotation about one axis (yaw),
we built a 3-D tensor of size 20 × 72 × 1024 (T ∈ R20×72×1024).
Then we applied tensor decomposition to obtain the core tensor and
coefficients for each of the data factors subspaces. We can consider
this a special case of Eq. 4.8 that reduces to:

T = G × U (id) × U (y) × U (f) (4.17)

where U (id), U (y) and U (f) span the identity, rotation and feature
subspaces, respectively. In particular, we are interested in U (y) ∈
R72×72; each element u(y)

ij contains the coefficient of the j-th subspace
dimension for the i-th rotation angle. Thus, each column U (y) shows
the behaviour of a particular dimension of the rotation subspace when
the yaw angle varies and, as hypothesized in Section 4.4.3, it should
approximately generate the waveform of a trigonometric function.
Fig. 4.6 shows the coefficients of a few columns of matrix U (y) (in
blue color) together with their cosine-based approximations (in red).
The latter were computed by minimizing Eq. 4.13 for each column
of matrix U (y), yielding an analytic representation f (y)(ω(y)) of the
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underlying manifold structure of the rotation subspace, as defined in
Eq. 4.13.

We can observe in Fig. 4.6 that the curves described by the
coefficients of U (y) are indeed quite similar to cosine functions. On
the other hand, we also see that the cosine-based approximations do
not produce a perfect fit of the curves. This fact that is reasonably
explained by the fact that, apart from rotations, the COIL-20
dataset includes also rather important variations in size, which for
our settings can be considered spurious effect. Nevertheless, taking
into account that we are trying to model out-of-plane rotations with
2D pictures using directly their pixels as input features, the curves
in Fig. 4.6 comply strikingly well with the hypothesized behavior.

After rotation coefficients have been modeled, another way
to assess the behavior of the proposed framework is by trying to
synthesize rotated versions from an object from which we see only
one image at a specific angle.3 Specifically, given an input image
(represented by feature vector x) of an object whose rotation is
ω

(y)
0 we can obtain its identity vector u(id) and combine it with

f (y) to synthesize images of the same object at other rotation
angles ω(y) 6= ω

(y)
0 using Eq. 4.11. Fig. 4.5 illustrates the images

obtained by means of this procedure for a few objects, as well as the
corresponding actual images from the database. We can see, again,
that the quality of the synthesized images is not perfect and we
can identify some minor artifacts not present in the original images;
yet, in all cases we can clearly identify the object as well as the
specific rotation angle that was synthesized, indicating that f (y) has
successfully modeled the effect of the rotation angle in this dataset.

3This process is coined translation in the seminal work by [Tenenbaum and
Freeman, 2000].
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Figure 4.5: The images obtained by means of the synthesis procedure
(Eq. 4.11) for a few objects, as well as the corresponding actual
images from the database. In the very first line illustrated the
sample images for several objects from COIL-20 database which
representing training set. The two next blocks depict the process
of obtaining identity vectors u(id) for each object and combination it
with trigonometric function f (y) in order to synthesize images. In the
following blocks, we can see the results of synthesized images (top
line) and the corresponding original images (bottom line) for each
object.
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Figure 4.6: The first, third, fifth and eighth set of coefficients of
the viewpoint subspace for entire range of angles. On the top
of figure illustrated the sample images for several subject with
different point of view. On the bottom, the set of coefficients, that
corresponds to each of the presented point view, obtained from the
tensor decomposition. The blue curves show the actual values of
the first three columns of matrix U (y) and the red curves show their
least-squares approximation with cosine functions.
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4.6 3D head pose estimation
experiments

In this section we demonstrate the application of the proposed
framework to the problem of 3D head pose estimation from depth
data. In contrast to the tests from Section 4.5.1, experiments of the
present section imply full deployment of our framework, given that
we address datasets where head rotations are not constrained to a
single axis and contain combinations of yaw, pitch and roll rotations
at the same time.

Given that our framework focuses on analytically modeling
the underlying structure of the rotation manifold in general, it
can be applied to a wide variety of input features. Nevertheless,
the appropriate selection of input features is important to achieve
quantitative results that demonstrate the relevance and applicability
of the proposed method. Thus, we have selected the two main
features from the system presented in Chapter 3, which obtained the
first place in the recent Head Pose Estimation Challenge organized
on the SASE database [Lüsi et al., 2017]. These features are
composed by: 1) automatically detected landmarks (Section 3.3.1)
and 2) histogram-based descriptors extracted around the landmarks
(Section 3.3.3). We perform experiments over two large and publicly
available 3D face corpora: the SASE [Lüsi et al., 2016b] and BIWI
databases [Fanelli et al., 2013].

4.6.1 3D head pose estimation using SASE
database

The data in SASE has been acquired with Microsoft Kinect 2 camera
and contains RGB and depth images in pairs. The entire database
includes 50 subjects (32 male and 18 female) in the range of 7-35
years old, with more than 600 frames per subject. For each person, a
wide range of yaw, pitch and roll variations are included. Specifically,
yaw and pitch angles vary within ±75 ◦, while roll angles vary within
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Figure 4.7: The example of the 3D mesh of the face with obtained
landmarks

±45 ◦ [Lüsi et al., 2016a].
As aforementioned in Chapter 3, the SASE database is distributed

divided in two sets: Training (comprising 28 subjects with a total of
∼ 17K images) and Validation (12 subjects, ∼ 7K images) [Derkach
et al., 2017]. Thereby, we have used each of these sets for training
and testing, respectively. As mentioned before, we base our tests on
the system described in Chapter 3, which is used as baseline, thus
we use two type of features: automatically detected landmarks and
local appearance around landmark points.

Following Chapter 3, we start by isolating the head region using
clustering and use the obtained result to build a 3D mesh M that
contains the head and a variable part of the shoulders. Then,
mesh M is fed to the SRILF algorithm (Section 3.3.1) with the
aim to automatically detect 12 prominent facial landmarks. An
example of the 3D mesh of the face with the obtained landmarks
is illustrated in Fig. 4.7. Once the facial landmarks are available,
we use their coordinates as input features to train and test our
approach as described in Section 4.4. It is worth to mention that the
use of SRILF to extract the input features provides robustness to
both expression changes and missing parts. The latter is especially
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important in databases such as SASE and BIWI, because large
pose variations induce self-occlusions that are likely to affect the
visibility of some landmarks. SRILF deals with this problem by
statistically inferring missing landmarks, thus providing a complete
set of coordinates even under occlusions.

Pose estimation from landmarks

During the training phase, following Algorithm 1, we build a 5D
tensor T ∈ R28×40×40×30×36, that is: 28 subjects, 40 bins to discretize
yaw and pitch angles in the range of [−75◦..75◦], 30 bins for roll in
the range of [−55◦..55◦], and 36-dimensional features (12 landmarks
× 3 coordinates). In order to fill all cells in this 5D tensor we need
around 1.3 million samples, and it is obvious that the SASE database
does not have this amount; it provides only about 5% of them. Thus,
∼ 95% of the data had to be generated synthetically. Specifically, if
there is not a sample with i-th identity and target angles yaw ω(y),
pitch ω(p) and roll ω(r), we look for the closest sample with the same
identity i from the training set and rotate it to the target angles (the
amount of rotation is easily computed as the difference between the
target angles and the ground-truth angles from the selected sample).

After the tensor is built, we decompose it using Eq. 4.8, obtaining
the core tensor G ∈ R28×3×3×3×10, matrix U (id) ∈ R28×28 for the
identity subspace matrices U (y) ∈ R40×3, U (p) ∈ R40×3 and U (r) ∈
R30×3 for yaw, pitch and roll subspaces, and matrix U (F ) ∈ R36×10

for the features subspace.
Next, we fit cosine functions to the pose coefficients (Eq. 4.13)

and obtain four parameters(α(∗)
j , β

(∗)
j , γ

(∗)
j and ϕ

(∗)
j ) for each of the

j-th coefficient of the three rotation subspaces (yaw, pitch and roll),
thus achieving an analytic representation of the structure of the
rotation manifolds. The results of the approximated coefficients
for 3D pose variations are illustrated in Fig. 4.8. For each of the
rotation subspaces (yaw, pitch and roll), the first, second and third
coefficients of all angle variations are plotted with two colors. The
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blue curves are the original values from the first three columns of the
matrices U (y), U (p) and U (r) and the red curves are the approximated
values obtained with cosine functions. It can be observed that the
trigonometric approximation provides an excellent fit for the three
rotation angles, with only minor deviations that could be easily
attributed to noise in the data or in the extracted features.

Based on the obtained coefficients, similarly to the case with 2D
images, we can synthetically generate sets of landmarks by sampling
our analytic manifold. For example, given a particular subject and
target angles ω(y), ω(p) and ω(r), we can synthesize the corresponding
set of landmarks using Eq. 4.11. If this procedure is repeated while
varying one of the angles, we can get a graphical illustration of how
the effect of this angle has been captured by our framework. Fig. 4.9
shows an example in which identity, pitch and roll angles are fixed,
while yaw varies from −75◦ to 75◦.

After all function parameters were obtained, we used the
estimation approach based on the minimization of the reconstruction
error (Eq. 4.12). For the test stage, ∼ 7K facial images from the
Validation subset of SASE were used. We compared the obtained
results of the proposed framework with respect to the approach
based on minimizing the reconstruction error without constraints 4.
Table 4.1 summarizes the average pose estimation errors obtained
by each approach. It can be seen that the approach based
on the minimization without constraints obtained considerably
higher estimation errors, confirming the usefulness of imposing
manifold-compliant constraints.

4Note that, while the minimization does not include constraints, the obtained
results are forced to comply with the manifold after each iteration using
nearest-neighbour search. Results without such correction would be worse than
those reported and not meaningful for comparison, since this is a widespread
practice.
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Figure 4.9: The example of generated landmarks using trigonometric
function (Eq. 4.11). Landmarks coordinates change with rotation
about vertical axis (yaw angle), i.e. during each step of the iteration,
pitch and roll angles are fixed as frontal, and yaw angle varies from
−75◦ to 75◦. thus, according to the position of the landmarks, we
can see how face moving from left (−75◦, the first blue dot) to right
(75◦, the last orange dot)

Pose estimation from local surface appearance

In this section we perform experiments with the local surface
descriptors presented in Chapter 3 Section 3.3.3. An interesting
aspect of using these descriptors is that, because they are based on
spatial histograms of local patches from the surface, rotations will
have a non-linear effect on the descriptor values. An illustration
of a 3D mesh of the face with the local descriptors is provided in
Fig. 4.10.

Similarly to the experiment with landmarks from the
previous section, for the training phase we build a 5D tensor
T ∈ R28×40×40×30×512, i.e. now the features dimension is 512.
Then we decompose it using Eq. 4.8, obtain coefficients for each
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Yaw Pitch Roll
Without
constraint 12.18 13.51 10.38

With constraint
(proposed) 6.50 7.07 6.06

Table 4.1: Average pose estimation errors tested on the SASE
database using coordinates of landmarks

Figure 4.10: Illustration of a 3D mesh of the face with the
neighbourhoods used to compute local descriptors.

of the factor subspaces and achieve an analytic representation of
the structure of the rotation manifolds by fitting cosine functions
(Eq. 4.13). The results of the approximated coefficients for 3D pose
variations are illustrated in Fig. 4.11. Finally, we use the modeled
coefficients to estimate the 3D head pose based on the minimization
of the reconstruction error (Eq. 4.12).

Note that, following Chapter 3 Section 3.3.3, we build 12 different
tensors and produce different estimates for each angle (i.e. one per
landmark descriptor). However, because of the potential presence
of occlusions, it is not guaranteed that all estimated landmarks will
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Yaw Pitch Roll
[Lüsi et al., 2016a] 22 19 18
[Derkach et al., 2017] 6.51 7.49 6.52
Proposed LMK 6.50 7.07 6.06
Proposed DESC 6.21 6.64 4.6

Table 4.2: Average pose estimation errors of the proposed framework
and previous works on the SASE database

actually lie on the mesh surface 5. Indeed, when parts of the facial
surface are missing, it is possible that some landmarks are estimated
relatively far from the meshM, i.e. they are inferred in the position
where we would statistically expect them to be, despite no surface
has been captured there (Fig. 3.3).

Therefore, we use the indicator function 1(‖x̂`−M‖ < ε) to filter
out the estimates from landmarks x̂` that are estimated off the surface
and produce our final appearance-based estimate as the average of
the remaining ones:

ω(∗) =
∑
` 1

(
‖x̂` −M‖ < ε

)
ω

(∗)
`∑

` 1

(
‖x̂` −M‖ < ε

) (4.18)

where ω(∗)
` is the estimated angles from `-th landmark; the distance

from x̂` toM is computed as the distance to the nearest mesh vertex:

‖x̂` −M‖ = min
vj∈M

‖x̂` − vj‖ (4.19)

Table 4.2 summarizes the average pose estimation errors of the
proposed framework using both landmarks and appearance features
on the SASE database. In this table, we also compare our results

5We consider that a landmark is on the surface when its distance to it is
relatively small as compared to the mesh resolution.
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to other methods reporting head pose estimation error on the SASE
database. Since this database is rather new, only a few papers have
reported results on it. We can see that the proposed method performs
well compared with state-of-the-art methods on the same dataset.
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Figure 4.11: Curves defined by the coefficients in each of the
subspaces corresponding to the head pose variation along one of the
rotation axes using local descriptors as features. The first column
corresponds to yaw rotation and shows the curves built from the
coefficients of the first five columns of matrix U (y) (dashed blue lines)
and their approximation with a cosine function (red solid lines).
The second and third columns correspond to pitch and roll angles,
respectively.

116



4.6.2 3D head pose estimation using BIWI
database

The BIWI Database [Fanelli et al., 2013], acquired with a Kinect 1
sensor, contains 24 sequences of RGB-D images of subjects moving
their heads over a range of roughly ±75◦ for yaw, ±60◦ for pitch and
±50◦ for roll. In total this database consists of around 17K images.
Because there is no standard experimental protocol for this database,
we perform our experiments under a leave-one-sequence-out strategy,
so that no sequence is used for training and test at the same time.
All other settings were kept as described in the previous section for
the SASE database.

Table 4.3 summarizes our results, as well as those presented by
previous works reporting pose estimation errors on this database.
For each method, we show the average absolute error per angle
together with the respective standard deviations (when provided by
the authors). We also indicate the type of input data that is used
(depth, RGB or both) and if pose estimations are done per-frame or
using tracking.

The first thing we notice is that, despite our approach is the
only one using just depth information without tracking, our results
are quite competitive. Indeed, we clearly outperform other methods
not doing tracking (except [Papazov et al., 2015] who report smaller
averages but considerably higher standard deviations). Additionally,
we achieve results that are comparable or better than four out the
the seven tracking-based methods listed in Table 4.3, even though
tracking-based algorithms benefit from the fact that test sequences
start with nearly frontal head poses; thus, the accuracy of these
algorithms to detect initial head poses other than frontal is not clear.

Another interesting aspect is that, among methods reporting
standard deviations, our approach obtains the second-best results,
only behind those from [Padeleris et al., 2012], who use tracking.
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4.7 Conclusions
In this Chapter we address 3D head pose estimation from depth
data by proposing a novel approach to learn the manifold defined
by 3D rotations. In particular, our method is able to explicitly
model the underlying structure of the rotation manifold with an
analytic form that takes into account the specific constraints imposed
by orientation variations. For this purpose, we use multi-linear
decomposition to split the pose variation factors into separate
sub-spaces accounting for yaw, pitch and roll effects. We show that
the coefficients within each of these subspaces define a continuous
curve that can be modeled in terms of trigonometric functions, which
are indeed the bases to explain rotation effects. We exploit this fact
to introduce a minimization framework for pose estimation based on
tensor decomposition constrained by trigonometric functions so that
the obtained solutions are always compliant with the underlying
manifold structure.

We show that the proposed modeling based on trigonometric
functions can accurately capture the behaviour observed in the
coefficients from the pose subspaces, by means of qualitative
examples on 2D and 3D datasets. We also provide quantitative
results of head pose estimation in two public database, which
demonstrate the advantages introduced by the proposed constraints.
Firstly, on the challenging SASE database, we show that directly
applying existing multi-linear decomposition approaches yields
poor pose estimation errors, which dramatically improve when
introducing the proposed trigonometric constraints, reaching top
state-of-the-art estimates. Later, we also report results on the widely
used BIWI database, showing that the proposed framework is not
only of theoretical interest but it can be translated into a practical
system to produce competitive pose estimation results.
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Chapter 5

CONCLUSIONS

5.1 Research summary
In Chapter 2 we have been focused on 3D facial expression
recognition. We have extended the analysis of 3D geometry
from one of the promising methods – curve-based representation,
into a spectral representation. Based on this representation, a
complete description of the underlying surface was built with
maintaining a fully-3D framework. We have proposed the use of
Graph Laplacian Features (GLFs), which result from the projection
of local surface patches into a common basis obtained from the
Graph Laplacian eigenspace, much like a Fourier transform into
the spatial frequency bases of the surface patches. The proposed
approach was compared with two others approaches. The first
one was the curves-based framework and the second one was the
straight-forward alternative for spectral representation, Shape-DNA,
which is based on the Laplace Beltrami Operator. We have shown
that the straight-forward application of Shape-DNA is not the best
way to deal with local face patches, since it cannot provide a stable
basis to guarantee that the extracted signatures for the different
patches are directly comparable.

Further, a state-of-the-art algorithm for 3D landmark localization
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was also integrated, which enabled us to perform experiments under
fully-automatic operation. The three most popular databases for
3D FER (BU-3DFE, Bosphorus and BU-4DFE) have been used for
testing the proposed approach. It was performed in terms of FER
rates and, additionally, in terms of AU recognition when AU labels
were available (BU-3DFE and Bosphorus). Our results have shown
that the proposed GLFs consistently outperform the curves-based
and Shape-DNA alternatives under any of the experimental setings
(non-automatic and fully-automatic), both in terms of expression
recognition and AU recognition. Moreover, the recognition rates
of Shape-DNA were even lower than those in the curves-based
framework, as predicted by the theory.

Interestingly, the accuracy improvement brought by GLFs was
obtained also at a lower computational cost. Considering the
extraction of patches as a common step between the three compared
approaches, the curves-based framework requires a costly elastic
deformation between corresponding curves (e.g. based on splines)
and Shape-DNA requires computing the eigen-decomposition of
each new patch to be analyzed. In contrast, GLFs only require
the projection of the patch geometry into the Graph Laplacian
eigenspace, which is common to all patches and can thus be
pre-computed off-line.

Comparison to other works reporting 3D FER and AU detection
results confirmed that the proposed method allows achieving top
performance by simply feeding GLFs to off-the-shelf SVM classifiers.
Also, we showed that 14 automatically detected landmarks were
enough to achieve high FER and AU detection rates, only slightly
below those obtained when using sets of manually provided
landmarks.

In Chapter 3 we have presented a head pose estimation system
which is able to obtain an accurate head pose estimation from a
single depth frame of consumer RGB-D cameras, such as Kinect 2.
We have based our system on the detection of 3D facial landmarks,
whose positions are later used to derive geometry- and patch-based
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pose estimators. A state-of-the-art landmark localization has
provided us an accurate landmark coordinates with no need for
initialization and tolerance to occlusions or missing data. Our
system combines three different methods for pose estimation: two of
them are based on state-of-the-art landmark detection and the third
one is a dictionary-based approach that is able to work in especially
challenging scans where landmarks or mesh correspondences are
too difficult to obtain. It was evaluated on the SASE database,
which consists of ∼ 30K frames from 50 subjects and obtained
average pose estimation errors between 5 and 8 degrees per angle,
achieving the best performance in the FG2017 Head Pose Estimation
Challenge. Our experiments also confirmed the initial hypothesis
that the landmark-based estimates would be more accurate than
correspondence-free approaches, such as the dictionary-based one
that was adopted. Landmark-based estimates were successfully
produced for ∼ 90% of cases and the remaining ones were tackled
by the dictionary-based approach. Our results compare well with
those reported in the related literature, especially considering the
added difficulty of not using tracking and RGB data to produce our
estimates.

Based on the success obtained in Chapter 3, we have addressed
3D head pose estimation from depth data by proposing a novel
approach to learn the manifold defined by 3D rotations. In
particular, in Chapter 4, we have presented a method that is able
to explicitly model the underlying structure of the rotation manifold
with an analytic form that takes into account the specific constraints
imposed by orientation variations. For this purpose, we have used
multi-linear decomposition to split the pose variation factors into
separate sub-spaces accounting for yaw, pitch and roll effects. We
have shown that the coefficients within each of these subspaces define
a continuous curve that can be modeled in terms of trigonometric
functions, which are indeed the bases to explain rotation effects.
We have exploited this fact to introduce a minimization framework
for pose estimation based on tensor decomposition constrained by
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trigonometric functions so that the obtained solutions are always
compliant with the underlying manifold structure.

We have shown that the proposed modeling based on
trigonometric functions can accurately capture the behaviour
observed in the coefficients from the pose subspaces, by means of
qualitative examples on 2D and 3D datasets, and using different
types of features. We also provided quantitative results of head
pose estimation in two public databases, which demonstrate the
advantages introduced by the proposed constraints. Firstly, on the
challenging SASE database (used in Chapter 3), we have shown that
directly applying existing multi-linear decomposition approaches
yields poor pose estimation errors, which dramatically improve when
introducing the proposed trigonometric constraints, reaching top
state-of-the-art estimates. Later, we also reported results on the
widely used BIWI database, showing that the proposed framework
is not only of theoretical interest but it can be translated into a
practical system to produce competitive pose estimation results.
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Appendix A

TECHNICAL DETAILS

For completeness of Section 4.4.4 in Chapter 4, the required derivatives
to use L-BFGS for the minimization of Eq. 4.12 and 4.15 are provided in
this Appendix.

For the objective function Eq. 4.15, partial derivatives should be
computed with respect to variables α(∗)

j , β
(∗)
j , γ

(∗)
j , ϕ

(∗)
j . Let’s rewrite this

equation as:

argmin
α

(∗)
j ,β

(∗)
j ,γ

(∗)
j ,ϕ

(∗)
j

‖u(∗)
ij − fj(ω

(∗)
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j ,β

(∗)
j ,γ

(∗)
j ,ϕ
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j

E(α(∗)
j , β
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j , γ

(∗)
j , ϕ

(∗)
j )

Where error function E can be written in element form as:

E(α(∗)
j , β

(∗)
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(∗)
j , ϕ
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j ) = 1

2
∑
i

(
u

(∗)
ij − (α(∗)

j cos (β(∗)
j ω

(∗)
i + γ

(∗)
j ) + ϕ

(∗)
j )
)2

Thus, partial derivatives of the function E looks as:
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j ω
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Similarly to previous case, error function in Eq. 4.12 can be written

as:

E(ω(y), ω(p), ω(r),u(id)) = 1
2
∑
n

(
xn − x̂n

)2
where xn using Eq. 4.13 looks as:

xn =
∑
i

∑
j

∑
k

∑
l

(
Wijkln · f

(y)
i (ω(y)) · f (p)

j (ω(p)) · f (r)
k (ω(r)) · u(id)

l

)
Now we can compute partial derivatives with respect to variables

ω(y), ω(p), ω(r) and each l-th element in vector u(id):
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