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Chapter 1

Introduction and

preliminaries.

It is the nature of all greatness not to be exact.
Edmun Burke.

This dissertation deals with two key concepts: uncertainty and indistin-
guishability, and with their relationship with the concept of information.

We advocate that uncertainty and indistinguishability are, in fact, head
and tail of the same coin so that traditional and new approaches can be
developed from both perspectives, interchangeably.

This thesis is a contribution to the study of uncertainty from the point
of view of indistinguishability.

1.1 Historical perspective.

Traditionally, western culture has turned around the concept of wisdom
understood as the quest for perfect knowledge. Disciplines which could not
yield precise and certain knowledge about their matters of concern were left
aside as merely speculative, beyond the scope of "educated" inquiry.

Despite of this bias towards perfect knowledge, uncertainty happens to
be present at the real world, either at an empirical level as a consequence of
resolution limits or lack of reliability of measurement devices, at a cognitive
level caused by the vagueness and ambiguity inherent to natural languages,
or even at the physical level as the quantum theory has come to prove.

Uncertainty seems to be unavoidable and there is no point in obviating
or neglecting its existence. Research e�orts should therefore be focused in

1
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its understanding and management.
The emergence of probability theory around the mid-seventeenth century

could be considered as the �rst approach to the formal study of uncertainty.
For almost three hundred years, uncertainty was conceived solely in prob-

abilistic terms. It was around the second half of the twentieth century when
things started to change. The appearance of new theories like Fuzzy Set
Theory [186] , Evidence Theory [145] or Fuzzy Measure Theory [152] made
clear that probability theory could only capture a particular aspect of un-
certainty and it was inappropriate in order to conceptualize other facets.

According to Klir, the di�erent types of uncertainty can be classi�ed in
the following groups:

• Uncertainty derived from non speci�city. Is the kind of uncer-
tainty caused by the existence of several interpretations compatible
with the available information. The concept of speci�city was origi-
nally developed within the framework of classical set theory to capture
the uncertainty present in situations when it can not be pointed pre-
cisely which element, among a given set of elements, is referring the
available information.

• Uncertainty derived from con
ict. This type of uncertainty arises
when information is composed of possibly con
icting evidential claims
so that they may point in di�erent directions. Measures of con
ict
usually generalize the Shannon entropy measure [147] by quantifying
the expected value of the amount of con
ict between these evidential
claims.

• Uncertainty derived from fuzziness. When vague labels or prop-
erties are used (as, for instance, in natural languages), the lack of a
sharp boundary between elements ful�lling a given property and ele-
ments that do not, originates this new type of uncertainty.

Notwithstanding this classi�cation, the question of the existence of ad-
ditional types of uncertainty which might not be included in it is still con-
sidered an open issue.

1.2 Indistinguishability.

The concept of equality is a fundamental notion in any theory since it is
essential to the ability of discerning the objects to whom it concerns, ability
which in turn is a requirement for any classi�cation mechanism that might
be de�ned.

Classi�cation, as the process of grouping or clustering according to a
certain criterion of similarity, tends to be intimately related to traditional
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notions of identity, indiscernibility and indistinguishability. All these con-
cepts have a long tradition as subjects of discussion of �elds like philosophy,
psychology or even mathematics.

The standard way of approaching the concept of identity is linked to a
tradition that can be traced back in time. For instance, Leibniz's Law of
Identity is usually written in a second-order language as

x ≈ y ⇔ ∀P : P (x)⇔ P (y) (1.1)
where x and y denote individuals and P ranges over the set of properties.
Leibniz's Law, which is a conjunction of the principles of the Identity

of Indiscernible and Indiscernibility of Identical, is intended to express the
concept of identity as agreement with respect to all properties. The original
postulate may have evolved towards more elaborated formulations based on
the idea of the invariance of the set of all automorphisms de�nable over a
given structure, but the main idea behind remains the same.

When all the properties involved are entirely precise (lack of uncer-
tainty), what we obtain is the classical equality, where two individuals are
considered equal if and only if they share the same set of properties. What
happens, however, when imprecision arises as in the case of properties which
are ful�lled only up to a degree? Thus, because certain individuals will be
more similar than others, the need for a gradual notion of equality arises.

A further example is when limitations in perceiving and measuring these
properties imply the emergence of an approximate equality. Let us, for
instance, consider the case of a particular appliance providing measurements
on the real line with an error margin ε. It naturally de�nes the following
approximate equality relationship:

x ≈ y ⇔ |x− y| 6 ε (1.2)
by which two measurements will become distinguishable only if their

absolute di�erence is above the error threshold ε.
Relation ≈ is not transitive since we could have x ≈ y , y ≈ z and not

necessarily x ≈ z. In [132], Poincar�e was concerned with this apparent para-
dox. He pointed out that equality satis�es transitivity only in the context of
pure mathematics. In the real world, "equal" really means "indistinguish-
able".

Lack of transitivity also appears when dealing with properties that are
inherently vague. Indeed, since a chain of objects that are usually indistin-
guishable can lead from one which clearly seems to be compatible with a
given property to one which clearly does not, the sorites paradox and the
corresponding break in transitivity ensue.

It should be remarked the paradigm shift involved, since from Euclid
(2300 years ago) transitivity was usually linked to the concept of equality
as stated in his "Elements" in the very �rst "common notion" (self-evident
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truth): "Things which are equal to the same thing are also equal to one
another."

These considerations show that certain contexts that are pervaded with
uncertainty require a more 
exible concept of equality that goes beyond the
rigidity of the classic concept of equality. Furthermore, since the concept
of equivalence relation as the mathematical tool that is used to de�ne the
underlying structure is de�nitely lost, some work around should be provided.

We must deal now with a relation that is re
exive, symmetric and pos-
sibly not (in the usual terms) transitive. In this case, the current version
of the "triangle inequality" for the underlying metrics translates into a new
kind of transitivity property, in which transitivity is de�ned in terms of a
minimum threshold.

Trillas [154] de�ned an indistinguishability operator in the following
manner:
De�nition 1.2.1 An indistinguishability operator on a domain X is de�ned
as a function E : X ×X → L satisfying ∀x, y, z ∈ X

1. E(x, x) > λ

2. E(x, y) = E(y, x)
3. E(x, y) ∗ E(y, z) 6 E(x, z)
where (L,6) is a poset, (L, ∗) is a semigroup and λ is a distinguished

element belonging to L.

A special type of indistinguishability operators are obtained particular-
izing L to be the unit interval with the usual order, and operator ∗ belonging
to the class of t-norm functions (see de�nition (1.5.1))
De�nition 1.2.2 For a given t-norm T , a fuzzy relation E on a set X is a
T -indistinguishability operator if and only if for all x, y, z of X the following
properties are satis�ed:

1. E(x, x) = 1 (re
exivity)

2. E(x, y) = E(y, x) (symmetry)

3. E(x, z) > T (E(x, y), E(y, z)) (T -transitivity).
When the product t-norm is chosen, the resulting class of T -indistin-

guishability operators equals the class of probabilistic relations studied by
Menger [112]. If the Lukasiewicz t-norm is selected, likeness relations as
de�ned by Ruspini [141] are obtained. Finally, similarity relations as intro-
duced by Zadeh [188] are the result of the particularization of T -indistin-
guishability operators to the minimum t-norm .

T -indistinguishability operators seem to be good candidates for the more

exible and general version of the concept of equality that we are searching
for.
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1.3 Uncertainty and Information.

The connection between uncertainty and information, as suggested by Klir
[95], comes from the fact that uncertainty involved in any problem solving
situation is the result of some information de�ciency. Therefore, assuming
that we can measure the amount of uncertainty associated to a given process,
Klir proposes to quantify the information carried by the evidence as the
di�erence between the initial and the �nal amount of uncertainty, which is
measured against the same process when this evidence has been taken into
account. In other words, the amount of information can be measured in
terms of the reduction of uncertainty.

It should be noted that this characterization based on uncertainty re-
duction does not capture entirely the richness of the notion of information.
However, it has the appealing property of being useful to establish opera-
tional criteria to assist in modelling processes.

More precisely, in order to become operational, the following road map
is proposed to deal with problems involving some kind of uncertainty:

1.3.1 Modelling.

Dealing with some type of uncertainty requires the existence of a corre-
sponding formal theory that adequately conceptualizes its relevant proper-
ties providing, at the same time, a proper language of representation.

Each theory, in turn, implicitly de�nes a notion of indistinguishability.
For instance, the biconditional operator is used in Logic to de�ne equivalence
between logical predicates while in geometry, equivalence among �gures is
based on the notion of congruence, just to mention two examples [154].

Therefore, a �rst step should be providing a formal framework which
properly model the kind of uncertainty we are dealing with, and investigating
which notion of indistinguishability is implicitly conveyed by this theory.

1.3.2 Quanti�cation.

The process of building a model accounting for some phenomenon usually
involves a balance between accuracy and complexity. The goal is maximaz-
ing the accuracy while minimizing the complexity, although both concepts
are related in such a way that an increase of accuracy tends to bring about
an increase of complexity, and conversely.

Uncertainty also plays a signi�cant role in this trading since a slight
increase in the uncertainty associated to the model may often reduce signif-
icantly its complexity, at the cost of yielding less precise predictions.

The rules governing the in
uence of uncertainty in the process of mod-
elling are summarized by the following principles [96]:
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• Principle of minimum uncertainty. As Yager states, "the more
informative way of presenting the data is the data itself" [174]. Any
simpli�cation causes a loss of information which results in an increase
of uncertainty. This principle prescribes that in case of choosing the
model with minimal uncertainty from among a set of candidates, it can
be guaranteed the minimal loss of information, thereby maximazing
the informational content.

• Principle of maximum uncertainty. The principle of minimum
uncertainty was intended to govern situations where a simple model
compatible with available evidence (represented as a whole set of raw
data) is searched. In contrast, the principle of maximum uncertainty
is useful when only partial information is available as evidence. Then,
commitment to information not entailed by the evidence should be
avoided when formulating a model. The principle states that this can
be achieved selecting the model which is maximally uncertain with
respect to the information not explicitly contained or conveyed by the
evidence.1

Both principles of minimum and maximum uncertainty rely on the ability
of quantifying the amount of uncertainty in order to decide on objective
grounds which model has minimum and maximum uncertainty respectively,
and should consequently be selected.

1.4 Thesis structure.

The complete program for the study of uncertainty would imply analyzing to
which kind of uncertainty each theory is sensitive, and providing de�nitions
and e�ective procedures for its quanti�cation.

Nowadays, despite of the attainment of remarkable advances, we are still
far from the completion of such program. This dissertation should be taken
as a contribution towards this goal.

The structure of chapters is in accordance with the road map described
in the preceding section.

Chapter 2.

As it was stated previously, each theory implicitly de�nes its own concept
of indistinguishability. The Theory of Evidence arose as a generalization of
the theory of probability intended to represent the degree to which available

1The well known principle of maximum entropy is just a particularization of the abovegeneral principle in the context of classical information theory.
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evidence supports the claim that a particular element, whose characteriza-
tion in terms of the relevant attributes may be de�cient, belongs to a given
subset of the domain.

This interpretation suggests a notion of indistinguishability between the
elements of the domain, depending on their resemblance with that particular
element.

In chapter two we will explore further this idea by providing two possible
de�nitions for computing the T -indistinguishability operator associated to a
given body of evidence. We will also address the problem of approximating
an unrestricted belief measure by a simpler one. Constructive methods
for computing the probabilistic and possibilistic approximation will also be
introduced. In addition, we will study the dimension of the resulting T -
indistinguishability operator and the characterization of an special class of
evidences which we have called essentially one-dimensional. Finally, these
results will be applied to the �eld of Game Theory in order to compute the
indistinguishability degree between players in a cooperative game.

The main contributions of this chapter have been already published by
the author and the advisor of this thesis in the following list of references:
[61, 65, 63, 66, 67].

Chapter 3.

From a probabilistic perspective, entropy measures are expected to quan-
tify the uncertainty about the realization of a random variable. In the clas-
sical setting, each event is perfectly distinguishable from each other so that
each di�erent outcome of this random variable increases its unpredictability.

In chapter three we propose to study the situation in which an indistin-
guishability relation has been de�ned over the domain of discourse. Then,
the occurrence of two di�erent events but indistinguishable by this indis-
tinguishability relation should count as the occurrence of the same event.
Therefore, entropy should be measured with respect distinguishable realiza-
tions of this random variable.

We will introduce the observational paradigm and the concept of obser-
vational entropy. De�nitions of conditional and joint observational entropy
will also be provided. Finally, a theorem equivalent to the law of total
entropies in the classical setting will be proved.

The contents of this chapter have originated the following publications:
[62, 56, 57].

Chapter 4.

The advances in the development of methods for measuring uncertainty
have permitted their application in a wide range of areas.
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The �eld of inductive learning has also bene�ted from the ability of
managing uncertainty to extend the range of application domains with those
inherently pervaded with some kind of uncertainty, or even to enrich the
representation language in order to gain in compactness and expressiveness.

The paradigm of Computing with Words adheres to this approach sug-
gesting the use of words (linguistic labels whose meaning is de�ned in terms
of fuzzy sets) in contrast to the traditional numerical-based computation.
However, using linguistic labels require that existing methods should be
adapted to cope with them.

From among the family of inductive learning algorithms, decision trees
have become one of the most relevant exponents due mainly to their proven
applicability to real problems and the readability of the induced knowledge.
Generalizations of the basic approach (top-down induction based on infor-
mation gain heuristics) have also been proposed to deal with uncertainty.

In chapter four we will tackle the task of providing a general framework
for induction of decision trees in the presence of uncertainty.

In addition, we will study the application of the concept of observational
entropy to the process of building a new type of decision tree: observational
decision trees.

Another approach to the induction of rules from data is represented by
the family of sequential covering algorithms. The classical approach assumes
the use of just crisp information. In this chapter we propose a variant (FSQ)
of the general scheme in order to deal with uncertain attributes. Whether
the management of uncertainty signi�catively a�ects the resulting accuracy
will be elucidated by performing a formal comparison over standard data
sets.

Finally, we will address the question of how to generate an indistin-
guishability operator on a domain X which must be compatible with a given
indistinguishability operator on set of fuzzy sets (prototypes) over X.

The main contributions of this chapter have been published in the fol-
lowing list of references: [60, 64, 58, 55, 54, 59].

Chapter 5.

Finally, the main contributions of the thesis together with open issues and
future lines of research will be summarized in chapter �ve.

1.5 Preliminaries.

This section provides several de�nitions and propositions that will be used
throughout the dissertation. Some of these results are well known but they
are included in order to make this work as self-contained as possible.
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1.5.1 On t-norms and T -indistinguishability operators.

De�nition 1.5.1 A function T : [0, 1]× [0, 1] → [0, 1] is called a t-norm if
the following conditions hold:

1. T (x, T (y, z)) = T (T (x, y), z) (associativity)
2. T (x, y) = T (y, x) (commutativity)

3. x 6 x′ ⇒ T (x, y) 6 T (x′, y)
y 6 y′ ⇒ T (x, y) 6 T (x, y′)
(monotonicity)

4. T (x, 1) = T (1, x) = x and T (0, x) = 0 (contour conditions)

De�nition 1.5.2 A function S : [0, 1] × [0, 1] → [0, 1] is called a t-conorm
if the following conditions hold:

1. S(x, S(y, z)) = S(S(x, y), z) (associativity)
2. S(x, y) = S(y, x) (commutativity)

3. x 6 x′ ⇒ S(x, y) 6 S(x′, y)
y 6 y′ ⇒ S(x, y) 6 S(x, y′)
(monotonicity)

4. S(x, 1) = S(1, x) = 1 and S(0, x) = x (contour conditions)

Throughout this dissertation, T will denote a continuous t-norm, al-
though most results remain valid assuming only left continuity for T .
De�nition 1.5.3 A t-norm T is Archimedean if and only if the set {x ∈
[0, 1] : T (x, x) = x} equals {0, 1}.
Theorem 1.5.4 [103] A continuous t-norm T is Archimedean if and only
if a strictly decreasing continuous function t : [0, 1]→ [0,+∞] with t(1) = 0
exists, such that

T (x, y) = t[−1](t(x) + t(y)) (1.3)
where t[−1] is the pseudo-inverse of t de�ned as

t[−1](x) =
{
t−1(x) if x ∈ [0, t(0)]
0 otherwise.

(1.4)

Then function t is called an additive generator of the t-norm T .
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De�nition 1.5.5 A t-norm T is strict if the set de�ned as

NilT = {x ∈ (0, 1) : ∃m ∈ N such that Tm(x) = 0} (1.5)
equals ∅, and non-strict if NilT = (0, 1). 2

De�nition 1.5.6 Given a continuous t-norm T , its residuation T̂ is de�ned
as:

∀x, y ∈ [0, 1] : T̂ (x|y) = sup{α ∈ [0, 1] : T (α, x) 6 y}. (1.6)
Let us present the residuations for the three most commonly used t-

norms.

When T (x, y) = min(x, y) then

T̂ (x|y) =
{1 x 6 y

y otherwise. (1.7)

When T (x, y) = x · y then
T̂ (x|y) = min(1, y

x
). (1.8)

When T (x, y) = max(x+ y − 1, 0) then
T̂ (x|y) = min(1− x+ y, 1). (1.9)

De�nition 1.5.7 Given a continuous t-norm T , its biresiduation
↔
T is de-

�ned as:

↔
T (x, y) = min(T̂ (x|y), T̂ (y|x)). (1.10)

Indistinguishability operators extend the concept of equality to the fuzzy
framework and they are also called similarities, fuzzy equalities, fuzzy equiv-
alences, likeness and probabilistic relations depending on the authors and
the t-norm used to model transitivity. E(x, y) can be viewed as the degree
of similarity or indistinguishability between x and y.

Sometimes re
exivity is not required [72]. In non re
exive indistinguisha-
bility operators, E(x, x) is interpreted as the degree of existence of the ele-
ment x.

2T m is de�ned by recursion as T 1(x) = x and T m(x) = T (T m−1(x), x).
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De�nition 1.5.8 Given a T -indistinguishability operator E on a set X, a
fuzzy subset µ of X is called extensional or observable if and only if for all
x, y of X

T (E(x, y), µ(x)) ≤ µ(y). (1.11)
HE will denote the set of all observable fuzzy subsets with respect to E.

De�nition 1.5.9 Given a T -indistinguishability operator E on a set X and
a fuzzy subset µ of X, the fuzzy subset φE(µ) of X is de�ned by

∀x ∈ X : φE(µ)(x) = supy∈XT (E(x, y), µ(y)). (1.12)
Proposition 1.5.10 [79, 80] The set HE of observable fuzzy subsets of X
with respect to E coincides with the �xed points of φE (i.e.: µ ∈ HE i�
φE(µ) = µ).

In [12] the setHE has been interpreted as the power set of the equivalence
classes generated by E and φE as the natural projection in the sense that
any fuzzy subset is sent by φE to the smallest observable fuzzy subset that
contains it.

In fact, one of the most interesting aspects of constructing indistinguisha-
bility operators is the possibility of partitioning the universe of discourse X
into equivalence classes. At this point, two main directions have been taken
for deciding when a set of fuzzy subsets form a partition of X. The �rst one
follows the ideas of Zadeh [188] and de�nes an equivalence class as the col-
umn (also called singleton) of a given T -indistinguishability operator E (the
fuzzy subset hx0 de�ned by �xing an element x0 in E (hx0(x) = E(x0, x))
while the second one appears in the early works of Ruspini and Bezdek
[6, 142] and forces the elements of the partition (called then a hard-partition)
to have no intersection and covering the universe.
De�nition 1.5.11 A set P of fuzzy subsets of a set X is called a partition
or coverage of X if and only if there exists an indistinguishability operator
E on X such that P is the set of columns of E.

De�nition 1.5.12 Given a t-norm T and a t-conorm S, a �nite set P =
{µ1, µ2, ..., µn} of fuzzy subsets of X is a hard-partition of X if and only if

1. For all x of X and i, j = 1, 2, ...n, i 6= j, T (µi(x), µj(x)) = 0.
2. For all x of X, S(µ1(x), µ2(x), ..., µn(x)) = 1.
Both de�nitions generalize the concept of crisp partition in di�erent ways

and have their own range of applications. To point out only some of them,
de�nition(1.5.11) has been proved useful in order to give theoretical sound to
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the use of triangular and trapezoidal fuzzy numbers [78] while the concept of
hard-partition is widely used in fuzzy control [91] and is also the way fuzzy c-
means partitions a universe (where the t-norm and t-conorm of Lukasiewicz
are tacitly assumed [5]).

In this dissertation, T -indistinguishability operators will play a central
role.

One problem commonly faced when studying such relations is how to
e�ectively build them.

The traditional approach relies on computing the transitive closure from
a re
exive and symmetric relation. This method, however, has not proved to
be fully satisfactory because of the computational cost involved or problems
as the "chaining" e�ect.

These weaknesses were surmounted by the introduction of the Represen-
tation Theorem for T -indistinguishability operators .
Theorem 1.5.13 [158] Let E be a map from X ×X into [0, 1] and T be a
continuous t-norm . E is a T -indistinguishability operator if and only if a
family {hj}j∈J of fuzzy sets exists in X, such that

E(x, y) = inf
j∈J

↔
T

(
hj(x), hj(y)). (1.13)

Corollary 1.5.14 [158] Given a fuzzy set µ of X, the fuzzy relation E on
X de�ned for all x, y of X by

Eµ(x, y) =↔
T (µ(x), µ(y)) (1.14)

is a T -indistinguishability operator.

The preceding theorem also allows, in a natural way, the de�nition of
the dimension of a T -indistinguishability operator .
De�nition 1.5.15 A fuzzy set h on X is a generator of a T -indistinguis-
hability operator E if h is an element of any family {hj}j∈J that generates
E in the sense of theorem (1.5.13).
De�nition 1.5.16 Let E be a T -indistinguishability operator . The dimen-
sion of E is the minimum of the cardinalities of the generating families of
E.

In the same way, when we are concerned with the notion of order in
domains pervaded with uncertainty, a natural generalization of the usual
(crisp) preorder relation is given by the concept of T -preorder , which is
obtained by simply "dropping" the property of symmetry from the de�nition
of T -indistinguishability operator .
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De�nition 1.5.17 [158] A function P : X ×X → [0, 1] is a T -preorder if
∀x, y, z ∈ X

1. P (x, x) = 1
2. T (P (x, y), P (y, z)) 6 P (x, z)
We also have the corresponding representation theorem and notion of

dimension for T -preorder .
Theorem 1.5.18 [158] Let P be a map from X × X into [0, 1] and T be
a continuous t-norm . P is a T -preorder if and only if a family {hj}j∈J of
fuzzy sets exists in X, such that:

P (x, y) = inf
j∈J

T̂ (hj(x)|hj(y)) (1.15)

De�nition 1.5.19 A fuzzy set h in X is a generator of a T -preorder P if h
is an element of any family {hj}j∈J that generates P in the sense of theorem
(1.5.18).
De�nition 1.5.20 Let P be a T -preorder . The dimension of P is the
minimum of the cardinalities of the generating families of P in the sense of
the previous representation theorem.

1.5.2 On Possibility Theory.

De�nition 1.5.21 Given a �nite set of reference X, a possibility measure
Pos is a function ℘(X)→ [0, 1] that satis�es

1. Pos(∅) = 0
2. Pos(X) = 1
3. For any family {Ai|Ai ∈ ℘(X)} : Pos(⋃iAi

) = supi Pos(Ai).
De�nition 1.5.22 Given a �nite set of reference X, a necessity measure
Nec is a function ℘(X)→ [0, 1] that satis�es

1. Nec(∅) = 0
2. Nec(X) = 1
3. For any family {Ai|Ai ∈ ℘(X)} : Nec(⋂iAi

) = infiNec(Ai).
Given a possibility measure Pos and its dual necessity measure Nec, the

following properties hold:
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• Nec(A) = 1− Pos( �A)
• Nec(A) 6 Pos(A)
• Pos(A ∩B) 6 min[Pos(A), Pos(B)]
• Nec(A ∪B) > min[Nec(A), Nec(B)]
• Pos(A) + Pos( �A) > 1
• Nec(A) +Nec( �A) 6 1
• max[Pos(A), Pos( �A)] = 1
• min[Nec(A), Nec( �A)] = 0

1.5.3 On Demspter-Shafer Theory of Evidence.

The Theory of Evidence [145] arose as a generalization of the Bayesian ap-
proach to modeling subjective beliefs and overcame several of its drawbacks,
such as the lack of a proper representation of ignorance or the non-symmetric
property of the conditioning rule.
De�nition 1.5.23 [145] A function ℘(X) → [0, 1] is a belief function if
and only if it satis�es the following conditions:

1. Bel(∅) = 0.
2. Bel(X) = 1.
3. ∀A1, . . . , An ⊆ X : Bel(A1∪. . .∪An) >

∑
I⊆{1,...,n}

I 6=∅
(−1)|I|+1·Bel(⋂i∈I Ai)

where |I| is the cardinality of I.

De�nition 1.5.24 [145] For a given belief function Bel, its associated plau-
sibility measure Pl is de�ned as

∀A ⊆ X : Pl(A) = 1−Bel( �A) (1.16)
De�nition 1.5.25 [145] A function m : ℘(X) → [0, 1] is called a basic
probability assignment (bpa ) whenever

1. m(∅) = 0 (normalization is assumed).

2.
∑

A⊆℘(X)m(A) = 1.
(subsets A ⊆ X : m(A) > 0 are called focal elements)
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Basic probability assignments, and belief and plausibility measures are
related univocally to each other by the following expressions:

∀A ⊆ X : Bel(A) = ∑
B⊆X|B⊆A

m(B). (1.17)

∀A ⊆ X : Pl(A) = ∑
B⊆X|B∩A6=∅

m(B). (1.18)

∀A ⊆ X : m(A) = ∑
B|B⊆A

(−1)|A−B|Bel(B). (1.19)

Theorem 1.5.26 [145] Let m be a bpa on ℘(X) and Pl be its associated
plausibility measure. Then Pl is a possibility measure if and only if the
family of focal elements of ℘(X) is nested.
De�nition 1.5.27 [190] Every possibility measure Pos on ℘(X) can be
uniquely determined by a possibility distribution function h : X → [0, 1],
such that

∀A ∈ ℘(X) : Pos(A) = max
x∈A

h(x). (1.20)

De�nition 1.5.28 Let m ∈ M be a bpa on X. Then, m is consistent if
and only if ⋂

A⊆X:m(A)>0
A 6= ∅. (1.21)
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Chapter 2

Indistinguishability in the

framework of

Dempster-Shafer Theory of

Evidence

This isn't right. This isn't even wrong.
Wolfgang Pauli, on a paper submitted by a physicist colleague.

2.1 Introduction.

In this chapter, we aim at studying the concept of indistinguishability within
the framework of the Dempster-Shafer Theory.

The main contributions of this chapter are:
• De�nition of the T -indistinguishability operator E1 associated to a
given belief function, based on the concept of covering function.

• A new method for approximating an unrestricted belief function by
means of possibilistic (nested focal sets) and probabilistic (singleton
focal sets) belief functions. Existence and uniqueness of these approx-
imations are also studied.

• De�nition of the natural T -indistinguishability operator E2 associated
to any function F : ℘(X)→ [0, 1]. Study of properties and dimension-
ality of operator E2 for the particularization of function F to belief

17
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functions.
• Application of previous results to compute indistinguishability degrees
between players in a cooperative game.

As it was stated in the introductory chapter and according to Leibniz's
law (see expression (1.1)), equality can be conceived as agreement with
respect to all properties. This formalization implies the relative nature of
the concept of indistinguishability.

Indeed, since every theory de�nes its own set of relevant properties, the
application of Leibniz's law yields di�erent equality criteria depending on
the context of discourse so that two elements could be indistinguishable in
the framework of a given theory, and perfectly distinguishable in some other
theory. Every theory implicitly de�nes its own notion of equality.

Belief functions, as noted in [96], quantify the degree to which available
evidence supports the hypothesis that a particular element of a given do-
main X, whose characterization in terms of the relevant attributes may be
de�cient, belongs to a subset of X. This interpretation conveys the notion of
indistinguishability, which is de�nable in terms of the compatibility between
the elements of the domain and that particular element.

Moreover, from the representation of evidence by means of its basic
probability mass assignment on subsets of X (focal elements), it would be
reasonable to explain the distinguishability between two elements a, b by the
exclusive support given to any of the two (de�ning the exclusive support
for element a as a function of the masses assigned to the focal elements
containing a and not containing b, and analogously for b), while the inclusion
of a and b in the same focal element should contribute to an increase in the
indistinguishability between them, given that they are indistinguishable for
that "portion" of evidence at least.

2.2 A projection-based approximation to the def-

inition of indistinguishability.

In this section, we present a method to calculate the T -indistinguishability
operator associated with a given body of evidence based on a particular
restriction of the plausibility measure over the set of singletons.

2.2.1 Covering functions.

The general concept of the covering function comes from "projecting" a mea-
sure de�ned in ℘(X) over a subset S of ℘(X). We will have di�erent types
of covering functions depending on S and the de�nition of the projection
function.



19

In this chapter we will use the notion of the commonality number intro-
duced in reference [145] to de�ne a speci�c type of covering function.
De�nition 2.2.1 [145] Let m be a basic probability assignment in ℘(X).
The commonality number Q : ℘(X)→ [0, 1] associated with m is de�ned as:

∀A ∈ ℘(X) : Qm(A) =
∑

B∈℘(X)|A⊆B

m(B). (2.1)

Quoting Shafer: "Q(A) measures the total probability mass that can
move freely to every point of A". Using this de�nition and following Good-
man [46]:
De�nition 2.2.2 [46] Let ℘n(X) = {B : B ∈ ℘(X)∧|B| 6 n} , n > 1, and
m a bpa in ℘(X). Then, the n-point coverage function mn of m is de�ned
as:

∀A ∈ ℘n(X) : mn(A) = Qm(A). (2.2)
By varying 1 6 n 6 |X|, we obtain di�erent projections of the measure

Qm. The case n = 1 has received especial attention in the literature [46, 29,
86, 143].
De�nition 2.2.3 Let m be a bpa in ℘(X). Its one-point coverage function
µm : X → [0, 1]1 is de�ned as:

∀x ∈ X : µm(x) = Qm({x}) =
∑

B∈℘(X):x∈B

m(B). (2.3)

µm is the projection of Qm over the singleton set, that is, the amount of
mass that can be moved to every element x of X.

It is obvious that, because Pl is the plausibility measure associated with
m, then:

∀x ∈ X : µm(x) = Qm({x}) = Pl({x}). (2.4)
The equality above provides an interpretation of µm as a fuzzy set in

which the membership degree represents the compatibility between a par-
ticular element and the evidence, computed as the sum of the masses of the
focal elements that are compatible with the element in question.

1Also called "consonant projection", "falling shadow", "contour function" or "point-trace".
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2.2.2 T -indistinguishability operator E1.
The idea behind T -indistinguishability operator E1 is based on using the
previously introduced one-point coverage function as an approximation of
the original bpa in order to generate the intended indistinguishability.
De�nition 2.2.4 Let m be a bpa in X and µm its one-point coverage func-
tion. The T -indistinguishability operator E1 is de�ned as

∀x, y ∈ X : E1(x, y) = ↔
T (µm(x), µm(y)). (2.5)

(E1 is a T -indistinguishability operator as a trivial consequence of propo-
sition (1.5.14))
Example 2.2.5 Let m be the bpa in X = {a, b, c, d} de�ned by

m({a, c}) = 0.3
m({b, c}) = 0.3

m({a, b, c}) = 0.3
m({a, b, d}) = 0.1

Its one-point coverage function µm, de�ned as

∀x ∈ X : µm(x) =
∑

A⊆X:x∈A

m(A)

is

µm({a}) = 0.7
µm({b}) = 0.7
µm({c}) = 0.9
µm({d}) = 0.1

Finally, E1 (taking the Lukasiewicz t-norm ) is:



a b c d

a 1 1 0.8 0.4
b 1 1 0.8 0.4
c 0.8 0.8 1 0.2
d 0.4 0.4 0.2 1


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2.3 Equivalence criteria and the issue of belief func-

tion approximation.

This section is devoted to showing how the aforementioned procedure for
computing the T -indistinguishability operator E1 associated with a given
body of evidence may be used to introduce a new approach to the problem
of belief function approximation.

After a short presentation of several signi�cant references, we show how
the concept of T -preorder (generated, as is operator E1 , from the one-
point coverage function) is better suited than T -indistinguishability opera-
tors when dealing with the uniqueness of the procedure for computing the
approximation.

2.3.1 Previous work.

The issue of approximating a given belief measure has been addressed by
several authors. The need for such approximations comes from the high
computational cost required to manage such measures.

Indeed, given a frame of discernment X, a mass function can have up to
2|X|−1 focal elements all of which have to be represented explicitly in order
to properly capture and combine the evidence they encode.

The combination of two belief functions Bel1, Bel2 de�ned onX is known
to be performed in time proportional to

|FBel1 | · |FBel2 | · |X| (2.6)
where FBel1 and FBel2 are the set of focal elements of Bel1 and Bel2,

respectively. Moreover, the number of focal sets of the resulting belief func-
tion grows exponentially with respect to the number of focal elements of
Bel1 and Bel2.

An approximation of a given belief measure is expected to be simpler
and well-suited for computational and explanation purposes. A natural way
of simplifying a given measure is to reduce the number of focal elements
which can be accomplished in di�erent ways.

A �rst approach is removing and/or clustering similar or "unimportant"
focal elements in order to reduce its number. The summarization method
[106] leaves the best valued focal elements unchanged while the numerical
values (masses) of the remaining focal elements are accumulated and as-
signed to their union set.

A similar method called D1 approximation leaves also the highest focal
sets unchanged but the masses of the remaining focal sets are distributed in
a speci�c way among those "highest" sets.

k-l-x approximation method [153] operates in a similar way by incor-
porating just the highest focal elements, assigning mass zero to the rest of
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subsets and �nally normalizing the result in order to guarantee that the
total amount of mass adds up to 1.

Another approach is the use of clustering techniques for iteratively group-
ing "similar" focal elements [51, 26].

Other strategy for reducing the number of focal elements is constraining
the evidence to belong to a prede�ned class having a relatively simple form.
Two obvious distribution-based measures have been suggested as candidates
because of the limitation they impose on the maximum number of focal sets:
possibility and probability measures.

Indeed, on a set X whose cardinality is n we need 2n − 2 values to
de�ne a belief or a plausibility measure from a bpa while n − 1 (assuming
normalization) values su�ce for possibility and probability measures.

Concerning probabilistic approximations, the pignistic approximation of
a given basic probability assignmentm in the frame of discernmentX de�ned
by:

∀x ∈ X : p(x) = ∑
A⊆X:x∈A

m(A)
|A|

(2.7)

and the one proposed by Voorbraak [161]

∀x ∈ X : p(x) =
∑

A⊆X:x∈Am(A)∑
B⊆X m(B) · |B| (2.8)

are worthwhile to mention.
Consonant approximations have been studied in detail by Dubois and

Prade [33]. In their paper they provide e�ective procedures for computing
inner and outer consonant approximations based on the concepts of weak
and strong inclusion between random sets.

From expression (2.6) it can be inferred that not only the number of
focal elements but also the cardinality of the domain itself determines the
cost of computation. In this sense Denoeux and Yaghlane [27] suggest a
novel method based on a hierarchical clustering approach for reducing the
size of the frame of discernment in such a way that the loss of information
content is minimized.

Other original approach is the proposal by Haenni and Lehmann [50]
based on the new concept of incomplete belief functions 2 and allowing
resource-bounded computation in which the user determines in advance the
maximal time available to computation.

2Belief measures having an associate basic probability assignment that does not sumup to 1
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From the point of view of belief function combination, Dempster's rule is
known to be P-complete in the number of evidential sources [89]. An optimal
algorithm for computing Dempster's rule was introduced by Kennes [88].

In order to overcome this computational limitation, di�erent approxima-
tion methods have been proposed. Reference [146] tackled the problem of
combining bpa whose focal sets are either members or complement of mem-
bers of a hierarchical hypothesis space (for any two sets, their intersection is
either empty or one of the sets in it). E�cient exact combination procedures
are proposed for this restricted kind of evidences.

Another alternative are Monte Carlo techniques [165] which estimate
exact values of belief using outcomes of randomly generated samples.

It should be noted that approximating a general belief measure by means
of a simpler one is not for free: it implies a reduction or loss of information.
So, the question turns out to which properties should be preserved, ranging
from committing an approximation to preserve the amount of uncertainty
(based on the principle of uncertainty invariance stated by Klir [83]) to
methods which preserve some coherence principles as "only the probable is
possible" (for probability-possibility transformations [35]) or the concept of
weak and strong inclusion above mentioned.

We present an approximation method based on a novel concept: the
preservation of the T -preorder de�ned by the compatibility degree between
the evidence and the singletons set.

2.3.2 Tackling order and uniqueness concerns.

From the previous section, we may conclude that the problem of approximat-
ing a given belief function is reduced to providing a simpler approximation
whilst ensuring that certain restrictions are ful�lled like limiting the num-
ber of focal elements [153, 3], or more sophisticated methods such as the
ful�llment of Klir's uncertainty invariance principle [83], among others.

Selecting an approximation method becomes, in a sense, a case of decid-
ing which of the properties conveyed by the evidence should be maintained.

The approach followed to compute E1 allows us to de�ne a partition in
the set of all bpa where each class of equivalence contains all bpa generating
the same T -indistinguishability operator E1 , thereby preserving the prop-
erty of being equivalent with respect to their associated T -indistinguishabi-
lity operator when restricting evidence to the singleton set.

Therefore, given a bpa m, any other bpa belonging to its class of equiv-
alence could be considered a candidate for its approximation. Since we are
interested in "simple" approximations (simpler, at least, than the original
bpa), we should search among its class of equivalence for "good" candidates.
Distribution-based (possibilistic and probabilistic) representations of evi-
dence stand as the best choice. Besides, uniqueness is encouraged in order
to make the selection process deterministic.
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Unfortunately, it is not true to say that classes of the quotient set (for the
above equivalence relation) do have a unique possibilistic canonical element
as shown by the following counter-example:
Example 2.3.1 Let m be the following bpa :

m({b}) = 0.1
m({a, c}) = 0.6
m({a}) = 0.3

Note that m is neither nested nor even consistent. Let m′,m′′ be de�ned
as

m′({a}) = 0.3
m′({a, c}) = 0.5

m′({a, b, c}) = 0.2
and

m′′({b}) = 0.5
m′′({b, c}) = 0.3

m′′({a, b, c}) = 0.2
Since all m, m′ and m′′ generate the same T -indistinguishability operator

E1 (assuming the Lukasiewicz t-norm) given by:


a b c

a 1 0.2 0.7
b 0.2 1 0.5
c 0.7 0.5 1


and since m′ and m′′ are nested, clearly m, m′ and m′′ belong to the same

class of equivalence and both m′ and m′′ are possibilistic evidences related
to m.

Therefore, the uniqueness of the possibilistic canonical representative
must be discarded.

Moreover, certain areas of application require not just the relative no-
tion of indistinguishability but the concept of order to be preserved. For
instance, dealing with a decision-making problem usually involves ranking
the set of di�erent alternatives in order to choose the best one according to
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a prede�ned criterion. In other words, we are interested in obtaining the
order implicitly de�ned by the evidence.

All these reasons lead us to consider the notion of order as the key prop-
erty to be preserved by any approximation, and T -preorder as the appro-
priate mathematical instrument for dealing with it. The subsequent section
will develop this idea further.

2.3.3 Equivalence criteria.

As we have pointed out, any non-trivial approximation of a measure in-
volves a simpli�cation or loss of information and, at the same time, enables
equivalence criteria for di�erent bodies of evidence to be established.

In this section, we take a closer look at this idea and emphasize the fact
that approximations should be informative enough to provide an order on
the elements of the domain X, according to their compatibility with the
evidence.

The one-point coverage function seems adequate for this purpose. As
previously stated, this function measures the compatibility of each element
with the evidence by means of the de�nition of a fuzzy set; consequently,
its membership function (as any other membership function) enables the
de�nition of a natural preorder (6µm) between the elements of the domain.
This preorder can be de�ned in terms of the membership function and the
usual order in the unit interval (6[0,1]) as:

∀x, y ∈ X : x 6µm y ⇔ µm(x) 6[0,1] µm(y). (2.9)
Any equivalence criterion between bpa will be required to at least pre-

serve the preorder above between the elements of the domain, that is, any
two equivalent bpa m,m′ should de�ne the same preorder (6µm=6µm′ ).

Observing this precept, let us consider the following three criteria.
Let m,m′ be two bpa in ℘(X) and µm, µm′ their one-point coverage

functions respectively. Then:
1. m and m′ are equivalent if and only if their one-point coverage func-

tions are equal.
2. m and m′ are equivalent if and only if the T -preorders generated by
µm and µm′ are equal.

3. m and m′ are equivalent if and only if the natural preorders (crisp)
6µm and 6µm′ de�ned by µm and µm′ are equal.

In order to formalize these de�nitions, we introduce the following lemma:
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Lemma 2.3.2 [158] Any fuzzy set µ on X generates a T -preorder Pµ in X
in the following form:

Pµ(x, y) = T̂ (µ(x)|µ(y)) (2.10)
This lemma, together with the de�nitions regarding the concept of T -

preorder presented in the introduction, allow us to formally de�ne the equiv-
alence criteria that we stated previously.
De�nition 2.3.3 LetM be the set of all bpa on ℘(X); m ∈M and m′ ∈M
be two bpa ; µm and µm′ be their one-point coverage functions; (6µm) and(6µm′ ) the preorders (crisp) on X de�ned ∀x, y ∈ X by:

x 6µm y ⇔µm(x) 6[0,1] µm(y)
x 6µm′ y ⇔µm′(x) 6[0,1] µm′(y)

and Pµm and Pµm′ the (one-dimensional) T -preorders generated by µm

and µm′ respectively.
Then we de�ne R1, R2, R3 ⊆ M ×M as the following equivalence rela-

tions:

(m,m′) ∈ R1 ⇔∀x ∈ X : µm(x) = µm′(x) (2.11)
(m,m′) ∈ R2 ⇔∀x, y ∈ X : Pµm(x, y) = Pµm′ (x, y) (2.12)
(m,m′) ∈ R3 ⇔(6µm) = (6µm′ ) (2.13)

(It is trivial to check that R1 ⊂ R2 ⊂ R3)

Example 2.3.4 Let m,m′ be two bpa in X = {a, b, c} de�ned by:

m({a}) = 0.2
m({b, c}) = 0.2

m({a, b, c}) = 0.6
and

m′({a}) = 0.1
m′({b}) = 0.1
m′({c}) = 0.1

m′({a, b, c}) = 0.7



27

Their one-point coverage functions are µm(a) = µm(b) = µm(c) = 0.8
and µm′(a) = µm′(b) = µm′(c) = 0.8, respectively.

Therefore, it holds that

∀x ∈ X : µm(x) = µm′(x)⇒ (m,m′) ∈ R1
∀x, y ∈ X : Pµm(x, y) = Pµm′ (x, y) = 1⇒ (m,m′) ∈ R2

∀x ∈ X : µm(x) = µm′(x)⇒ (6µm) = (6µm′ )⇒ (m,m′) ∈ R3

Example 2.3.5 Let m,m′ two bpa in X = {a, b, c} de�ned by:

m({a, b}) = 0.5
m({a, c}) = 0.25

m({a, b, c}) = 0.25

and

m′({a}) = 0.7
m′({b}) = 0.2
m′({c}) = 0.1

Their one-point coverage functions are

µm(a) = 1
µm(b) = 0.75
µm(c) = 0.5

and

µm′(a) = 0.7
µm′(b) = 0.2
µm′(c) = 0.1

Therefore,

∀x ∈ X : µm(x) 6= µm′(x)⇒ (m,m′) /∈ R1
Pµm 6= Pµm′ ⇒ (m,m′) /∈ R2

(6µm) = (6µm′ )⇒ (m,m′) ∈ R3.
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Proposition 2.3.6 Let mign be the bpa on ℘(X) representing total igno-
rance (m(X) = 1), munif be the bpa whose associated belief measure equals
the measure of probability de�ned by the uniform probability distribution on
X. Then

(mign,munif ) ∈ R2, R3. (2.14)
Proof 2.3.7 Trivial. �

2.3.4 Canonical elements.

In this section we will focus on relation R2 which was de�ned as:

∀m,m′ ∈M : (m,m′) ∈ R2 ⇔ ∀x, y ∈ X : Pµm(x, y) = Pµm′ (x, y) (2.15)
where M is the set of bpa on ℘(X).
It should be noted that this criterion is useful only in situations in which

we are just interested in the order relation of a set of elements, which is
given by their compatibility with the evidence.

R2 is an equivalence relation so that each class of equivalence c of the
quotient set M/R2 contains all bpa evidentially equivalent.

For example, let X be a set of suspects who may have committed a
crime and M a set of bpa representing evidence of guilt or innocence. Then,
the classes of the quotient set would group evidences producing the same
verdict, based on the ranking of guilty of the set of suspects.

Now, the question of whether a possibilistic canonical element exists for
each equivalence class seems quite natural. Theorem (2.3.19) will provide
an a�rmative answer to this question.

Previous results are needed before a proof can be established.
De�nition 2.3.8 Let P be a T -preorder on a set X. For any x ∈ X, the
fuzzy subset hx de�ned by ∀y ∈ X : hx(y) = P (x, y) is called a column of P .

Lemma 2.3.9 If P is a one-dimensional T -preorder on a set X, then for
particular t-norms (archimedean and minimum), P can be generated by one
of its columns (which is clearly a normalized fuzzy set).

Theorem 2.3.10 Let T be a continuous archimedean t-norm , t be a gen-
erator of T and µ and ν be fuzzy subsets of X. Then, µ and ν generate the
same T -preorder if and only if ∀x ∈ X the following condition holds:

tµ(x) = tν(x) + k1 with k1 > sup
x∈X

{−tν(x)}. (2.16)

Moreover, if T is non-strict, then k1 6 infx∈X{t0− tν(x)}.
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Proof 2.3.11 ⇒ Given x, y ∈ X, we can suppose µ(x) > µ(y) (which im-
plies ν(x) > ν(y)).

Pµ(x, y) = T̂ (µ(x)|µ(y)) = t−1(tµ(y)− tµ(x)).
Pν(x, y) = t−1(tν(y)− tν(x)).

where t[−1] is replaced by t−1, because all the values in brackets are be-
tween 0 and t(0).

If Pµ = Pν , then

tµ(y)− tµ(x) =tν(y)− tν(x).
Therefore

tµ(x)− tµ(y) =tν(x)− tν(y).
Let us �x y0 ∈ X. Then tµ(x) = tν(x) + tµ(y0)− tν(y0) = tν(x) + k1.
⇐) Trivial. �

Corollary 2.3.12 Let T be the Lukasiewicz t-norm and µ and ν be fuzzy
subsets of X. Then, µ and ν generate the same T -preorder on X if and only
if ∀x ∈ X:

µ(x) = ν(x) + k with inf
x∈X

{1− ν(x)} > k > sup
x∈X

{−ν(x)}. (2.17)

Proof 2.3.13 With the same notations as those of the previous theorem
and taking t(x) = 1− x as a generator of the t-norm ,

1− µ(x) = 1− ν(x) + k1 with sup
x∈X

{−1 + ν(x)} 6 k1 6 inf
x∈X

{ν(x)}

and therefore

µ(x) = ν(x) + k with inf
x∈X

{1− ν(x)} > k > sup
x∈X

{−ν(x)}.
�

Corollary 2.3.14 Let T be the product t-norm , and µ and ν fuzzy subsets
on X. Then, µ and ν generate the same T -preorder on X if and only if
∀x ∈ X:

µ(x) = ν(x)
k

with k > sup
x∈X

{ν(x)}. (2.18)
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Proof 2.3.15 With the same notations as those of the previous theorem
and taking t(x) = − ln(x) as a generator of the t-norm

− ln(µ(x)) = − ln(ν(x)) + k1 with k1 > sup
x∈X

{ln(ν(x))}

and

µ(x) = ν(x)
k

with k > sup
x∈X

{ν(x)}.

�

Proposition 2.3.16 Let T be the minimum t-norm and let µ be a fuzzy
subset on X such that exists an element xM ∈ X holding ∀x ∈ X : µ(xM ) >
µ(x). Let Y ⊆ X be the set of elements x of X with µ(x) = µ(xM ) and
s = supx∈X−Y {µ(x)}. A fuzzy subset ν on X generates the same T -preorder
as µ in X if and only if ∀y ∈ Y :

∀x ∈ X − Y : µ(x) = ν(x) ∧ ν(y) = t with s < t 6 1. (2.19)
Proof 2.3.17 It follows trivially from the fact that

Pµ(x, y) =
{
µ(y) if µ(x) > µ(y)
1 if µ(x) 6 µ(y). �

Proposition 2.3.18 [33] Let m ∈ M be a bpa on X and µm its one-point
coverage function. Then µm is normalized if and only if m is consistent.

Now we can enunciate the following theorem:
Theorem 2.3.19 Let T be a continuous archimedean t-norm or the mini-
mum t-norm , and let M be the set of bpa on X. Then ∀m ∈ M a unique
m′ ∈M exists, such that m′ is nested and (m,m′) ∈ R2.

Proof 2.3.20 The proof has two parts. The �rst one proves, in a construc-
tive manner, the existence of m′, and the second part deals with uniqueness.

• Existence of m′.

Let µm be the one-point coverage function of m. From µm, we generate
the T -preorder Pµm following lemma (2.3.2). Pµm is a one-dimensional T -
preorder . We denote by hPµm

the fuzzy set which corresponds to a generating
column of Pµm.
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By lemma (2.3.9), hPµm
is normalized and, consequently, de�nes a possi-

bility measure Pos (see de�nition (1.5.27)). Let m′ be the bpa corresponding
to the measure Pos.

Theorem (1.5.26) ensures that m′ is nested, and it is trivial to check that
its one-point coverage function µm′ equals the possibility distribution of the
fuzzy set hPµm

.
Finally, since both hPµm

and µm generate the same T -preorder Pµm, we
have (m,m′) ∈ R2

• Uniqueness of m′.

Due to the fact that every continuous archimedean t-norm is isomorphic
to either the Lukasiewicz t-norm or to the product t-norm , we can restrict
ourselves to these two t-norms and the minimum to prove the uniqueness of
m′.

Let us suppose n ∈M be a nested bpa such that m′ 6= n and (m′, n) ∈ R2.
Nested bpa are a particular case of consistent bpa (since nested ⇒ consis-
tent). By proposition (2.3.18) µm′ and µn are both normalized. Besides, due
to (m′, n) ∈ R2, µm′ and µn generate the same T -preorder . Then:

1. Lukasiewicz t-norm :

If (m′, n) ∈ R2 then by theorem (2.3.12)

∀x ∈ X : µn(x) = µm′(x) + α

with

0 > α > supx∈X{−µm′(x)}
(a) case α = 0: then ∀x ∈ X : µn(x) = µ′m(x). Because µn and µm

are normalized, it follows that n = m′.

(b) case α < 0: then
∀x ∈ X : µn(x) = µm′(x) + α⇒

∀x ∈ X : µn(x) < µm′(x)⇒
µn non-normalized ⇒

Contradiction!

2. Product t-norm :

If (m′, n) ∈ R2, by theorem (2.3.14)

µn(x) = µm′(x)
k
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with

k > supx∈X{µm′(x)}
and

k > 1

then

(a) case k = 1: then ∀x ∈ X : µn(x) = µm′(x), and because both are
normalized, it follows that n = m′.

(b) case k > 1: then
∀x ∈ X : µn(x) < µm′(x)⇒

µnnon-normalized⇒
Contradiction!

3. Minimum t-norm :

If (m′, n) ∈ R2, by theorem (2.3.16)

∀x ∈ X : µn(x) =
{
µm′(x) if µm′(x) < 1
t if µm′(x) = 1

with

supx∈X:µm′ (x)<1({µm′(x)}) < t 6 1

Then:

(a) case t = 1: Then ∀x ∈ X : µn(x) = µm′(x) and, because both are
normalized, it follows that n = m′.

(b) case t < 1: Then
∀x ∈ X : µn(x) < 1⇒
µnnon-normalized⇒

Contradiction!

Note that whenm is not consistent, µm is not normalized (see proposition
(2.3.18)). In this case µm′ corresponds to the "normalized" version of µm

(the normalization strategy depending on the t-norm ).
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Taking the Lukasiewicz t-norm , µm′ equals the normal version of µm ob-
tained by the normalization procedure suggested by Klir [96], which consists
in incrementing, ∀x ∈ X, the value µm(x) by the amount 1− height(µm).

For the product t-norm , the resulting normalization method corresponds
to dividing by the maximum membership value.

Finally, when taking the minimum t-norm , the normalization method
reduces to "raise" the membership degrees of the elements that have maxi-
mum membership value (x ∈ X, such that ∀y ∈ X : µm(x) > µm(y)) up to
1.

These considerations should be taken as theoretical justi�cations for
choosing the appropriate normalization procedure for a given context.

This theorem shows that, for any measure of plausibility (belief), we can
�nd one (and just one) measure of possibility (necessity) which is eviden-
tially equivalent when restricting the impact of evidence to the singletons
set. Therefore, any evidence (represented by a bpa ) can be converted into
possibilistic evidence ensuring that their compatibility ordering with the sin-
gletons set remains unchanged. Its uniqueness allows us to take it as the
canonical element of its class of equivalence.

Once answered the question of the existence and uniqueness of the possi-
bilistic approximation, we proceed to study the probabilistic approximation.
For any bpa m, we look for a bpa p ∈ M evidentially equivalent to m and
assigning only mass to singletons.

In this case, we are able to build this (unique) bpa p for the product
t-norm . For the minimum and the Lukasiewicz t-norm , we must impose
additional conditions in order to ensure its existence.

Theorem 2.3.21 Let M be the set of bpa on ℘(X), m ∈ M and T be the
product t-norm. Then a unique p ∈ M exists, such that p is a probability
distribution and (m, p) ∈ R2.

Proof 2.3.22 Let m ∈ M be a bpa on X = {x1, . . . xn}. By theorem
(2.3.19) a unique nested m′ ∈M exists such that (m,m′) ∈ R2.

Denoting by µm′ the one-point coverage function of m′, we will build a
bpa p from µm′ which will only assign mass to singletons and (m′, p) ∈ R2
also.

Then, since R2 is an equivalence relation:

(m,m′) ∈ R2
(m′, p) ∈ R2

}
⇒ (m, p) ∈ R2.

Let us see how p is built from µm′. We must look for a fuzzy set µp such
that:
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∀x ∈ X : µp = µm′(x)
α

with α > 1

and ∑
x∈X

µp(x) = 1

These conditions de�ne the following restrictions:

µp(x1) = µm′(x1)
α

...

µp(xn) = µm′(xn)
α

µp(x1) + . . .+ µp(xn) = 1


with the following unique solution:

α = ∑
x∈X

µm′(x). (2.20)

Let p be the bpa such that:

{
p(A) = 0 ∀A ⊆ X : |A| > 1
p({x}) = µp(x) ∀x ∈ X.

Clearly, the one-point coverage of p equals µp and given that µp = µm′ (x)
α

with α > 1, corollary (2.3.14) allows us to conclude that (p,m′) ∈ R2. �

Theorem 2.3.23 Let M be the set of bpa on ℘(X), m ∈ M and T be the
Lukasiewicz t-norm. Then, a unique p ∈M exists such that p is a probability
distribution and (m, p) ∈ R2, if and only if:

∑
x∈X µm′(x)− 1

|X|
6 inf

x∈X
{µm′(x)} (2.21)

where µm′ is the one-point coverage function of the unique nestedm′ ∈M
such that (m,m′) ∈ R2.
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Proof 2.3.24 Following the same reasoning used in the proof of theorem
(2.3.21), we look for a fuzzy set µp such that:

∀x ∈ X : µp = µm′(x) + α with 0 > α > sup
x
{−µm′(x)}

and ∑
x∈X

µp(x) = 1.

These two conditions de�ne the following restrictions:

µp(x1) = µm′(x1) + α

...

µp(xn) = µm′(xn) + α

µp(x1) + . . .+ µp(xn) = 1


These restrictions have a (unique) solution if and only if:

∑
x∈X µm′(x)− 1

|X|
6 inf

x∈X
{µm′(x)} (2.22)

and the solution is

∀x ∈ X : µp(x) = µm′(x) + 1−∑
x∈X µm′(x)
|X|

. (2.23)
Let p be the bpa such that:

{
p(A) = 0 ∀A ⊆ X : |A| > 1
p({x}) = µp(x) ∀x ∈ X.

Given that µp = µm′(x)+α with 0 > α > supx∈X{−µm′(x)}, by corollary
(2.3.12) we can conclude that (p,m′) ∈ R2 �

Theorem 2.3.25 Let M be the set of bpa on ℘(X), m ∈ M and T be the
minimum t-norm. Then a unique p ∈M exists, such that p is a probability
distribution and (m, p) ∈ R2, if and only if:

1−∑
x∈X:µm′ (x)<1 µm′(x)

Card({x ∈ X : µm′(x) = 1}) > max
x∈X

({µm′(x) : µm′(x) < 1}) (2.24)
where µm′ is the one-point coverage function of the unique nestedm′ ∈M

such that (m,m′) ∈ R2.
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Proof 2.3.26 Following the argument of theorem (2.3.21) and (2.3.23), let
us de�ne µp as the following fuzzy set:

∀x ∈ X : µp(x) =
{
µm′(x) µm′(x) < 1
t µm′(x) = 1

with ∑
x∈X

µp(x) = 1

and

max
x∈X:µm′ (x)<1

(
µm′(x)) < t 6 1.

These restrictions have a (unique) solution if and only if:

1−∑
x∈X:µm′ (x)<1 µm′(x)

Card({x ∈ X : µm′(x) = 1}) > max
x∈X

(
{µm′(x) : µm′(x) < 1}) (2.25)

and, in this case, the solution is:

∀x ∈ X : µp(x) =
{
µm′(x) µm′(x) < 1
1−∑

x∈X:µm′(x)<1 µm′ (x)
Card({x∈X:µm′ (x)=1}) µm′(x) = 1. (2.26)

Let p be the bpa such that

{
p(A) = 0 ∀A ⊆ X : |A| > 1
p({x}) = µp(x) ∀x ∈ X

Then, the one-point coverage function of p equals µp and by theorem
(2.3.16) (p,m′) ∈ R2.3

�

Theorem (2.3.23) has a nice geometric interpretation.
InX = {a1, a2, . . . , an}, every fuzzy subset µ and probability distribution

p can be identi�ed with the points (
µ(a1), µ(a2), ..., µ(an)) and (

p(a1), p(a2), ..., p(an))
of [0, 1]n respectively.

3For the current theorem, as for theorem (2.3.21) and (2.3.23) , uniqueness of thesolutions (when they do exist) results from the fact that a set of restrictions with a uniquesolution is solved.
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In theorem (2.3.23), a probability distribution p exists if and only if
∀i = 1, 2, . . . , n

µp(ai) > 0. (2.27)
and

µm′(ai) + α > 0 (2.28)
and the sum of all these numbers is equal to 1.
This geometric interpretation leads to the following result:

Theorem 2.3.27 Let m be a bpa on p(X) and µm the one-point coverage
function of m. A probabilistic distribution p on X with (m, p) ∈ R2 exists
with respect to the Lukasiewicz t-norm , if and only if µm belongs to the
polytope of [0, 1]n de�ned by:

∑
i6=j

xi + (1− n) · xj 6 1,∀j = 1, 2, . . . , n. (2.29)

Moreover, the probabilistic distributions p on X lie on the hyperplane

x1 + x2 + . . .+ xn = 1. (2.30)

For n = 2, all classes of R2 contain a probabilistic distribution p.
It is also worth pointing out that the probability distribution µp, which

we obtain (wherever possible) from the possibility distribution µm′ , ful�lls
the well-known consistency criterion

∀x ∈ X : µp(x) 6 µm′(x). (2.31)
in all cases.
When product t-norm is taken, an interesting link with Voorbraak's

probabilistic approximation can be proven:

Proposition 2.3.28 Let M be the set of bpa on ℘(X), and let m ∈ M .
Then for the product t-norm , the probabilistic approximation m computed
in theorem (2.3.21) equals Voorbraak's [161] approximation of m.
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Proof 2.3.29 It follows easily if we rewrite Voorbraak's Bayesian constant

∑
B⊆X

m(B) · |B|

in terms of an ordered possibility distribution.4

∑
B⊆X

m(B) · |B| =
n∑

i=1
(ri − ri+1) · i =

n∑
i=1

ri. (2.32)

�

2.3.5 An example.

Let X = {a, b, c, d} and m be the evidence represented by the following bpa :

m({a, b}) = 0.5
m({c, d}) = 0.2

m({a, b, c, d}) = 0.3
Taking the product t-norm , let us build the possibilistic and probabilistic

approximations of m.
The one-point coverage function µm associated to m is de�ned by the

following distribution:

µm(a) = µm(b) = 0.8
µm(c) = µm(d) = 0.5

which in turn generates the following one-dimensional T -preorder Pµm



a b c d
a 1 1 0.625 0.625
b 1 1 0.625 0.625
c 1 1 1 1
d 1 1 1 1


4If we assume the �nite universe X = {x1, x2, . . . , xn} and let A1 ⊆ A2 ⊆ . . . ⊆ An(where Ai = {x1, x2, . . . , xi}) be a complete sequence of nested subsets that contains allthe focal elements of a possibility measure, the ordered possibility distribution is de�nedas {r1, r2, . . . , rn} where ri = ∑n

k=i m(Ak). Nested structure implies that ri > ri+1. Inthis formulation, possibility distributions are always ordered and r1 = 1 and rn+1 = 0.
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Theorem (2.3.19) ensures that the possibility distribution hPµm
corre-

sponding to a generating column of Pµm de�nes an unique nested bpa m′

such that (m,m′) ∈ R2.
Let hPµm

be the possibility distribution given by:

hPµm
(a) = hPµm

(b) = 1
hPµm

(c) = hPµm
(d) = 0.625

Then, we compute its associated nested bpa m′:

m′({a, b}) = 0.375
m′({a, b, c, d}) = 0.625

which is the unique possibilistic approximation ofm, such that (m,m′) ∈
R2.

Theorem (2.3.21) provides us with a constructive method for computing
the probabilistic approximation of m from the previously computed possi-
bilistic approximation. Namely, let µm′ be the one-point coverage function
of m′ de�ned by:

µm′(a) = µm′(b) = 1
µm′(c) = µm′(d) = 0.625

and p the following probability distribution:

∀x ∈ X : p(x) = µm′(x)∑
y∈X µm′(y) (2.33)

given by

p(a) = p(b) = 0.3076
p(c) = p(d) = 0.1923

and de�ning the following bpa mp:

mp({a}) = mp({b}) = 0.3076
mp({c}) = mp({d}) = 0.1923.

Theorem (2.3.21) ensures that mp is the unique probabilistic approxi-
mation such that (m,mp) ∈ R2.
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2.4 T -indistinguishability operator E2 .

Returning to the problem of de�ning the T -indistinguishability operator
associated to a given bpa , we should point out some drawbacks of the pre-
viously de�ned operator E1 .

Although the operator E1 satis�es the intuitive requirements as posed in
the introduction, it should be noted that it is based on an approximation of
the original evidence, namely, the one-point coverage function. Despite the
fact that this approximation is the optimal consonant approximation under
the weak inclusion criterion for random sets (as shown in [33]), it has the
drawback consisting in the loss of information with respect to the original
evidence.

It thus makes sense to look for an alternative that preserves, as far as
is possible, the information conveyed by the evidence. The following results
will lead us to this goal.
Lemma 2.4.1 [158] For all continuous t-norm T and ∀x, y, z ∈ X it holds:

↔
T (x, z) > T

(↔
T (x, y), ↔T (y, z)). (2.34)

Theorem 2.4.2 Let F be a function ℘(X) → [0, 1]. Then ∀a, b ∈ X, the
relation

E(a, b) = min
A∈℘(X−{a,b})

↔
T

(
F ({a} ∪A), F ({b} ∪A)) (2.35)

is a T -indistinguishability operator .

Proof 2.4.3 Let us prove that E is re
exive, symmetric and T -transitive.
a) Re
exivity. ∀a ∈ X it holds that

E(a, a) = min
A∈℘(X−{a})

↔
T

(
F ({a} ∪A), F ({a} ∪A))

= 1.

b) Symmetry. Immediate from the symmetry of the operator
↔
T .

c) T-transitivity. If ∀a, b, c ∈ X and ∀Z ∈ ℘(X − {a, c}), it holds that

↔
T

(
F ({a} ∪ Z), F ({c} ∪ Z)) > T (E(a, b), E(b, c)) (2.36)

then
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E(a, c) = min
Z∈℘(X−{a,c})

↔
T

(
F ({a} ∪ Z), F ({c} ∪ Z))

> T (E(a, b), E(b, c))
and T-transitivity would be proved.
Let us show that the above inequality (2.36) is indeed satis�ed. Let Z ∈

℘(X − {a, c}). Then, we can consider two cases:

1. b /∈ Z.
Then

Z ∈ (℘(X − {a, c}) ∩ ℘(X − {b})) = ℘(X − {a, b, c})
and by lemma (2.4.1)

↔
T

(
F ({a} ∪ Z), F ({c} ∪ Z)) >

> T

(
↔
T

(
F ({a} ∪ Z), F ({b} ∪ Z)), ↔T (

F ({b} ∪ Z), F ({c} ∪ Z)))
and since

℘(X − {a, b, c}) ⊂ ℘(X − {a, b})
℘(X − {a, b, c}) ⊂ ℘(X − {b, c})

we have

> T

(
min

V ∈℘(X−{a,b,c})
↔
T

(
F ({a} ∪ V ), F ({b} ∪ V )),

min
W∈℘(X−{a,b,c})

↔
T

(
F ({b} ∪W ), F ({c} ∪W )))

> T

(
min

U∈℘(X−{a,b})
↔
T

(
F ({a} ∪ U), F ({b} ∪ U)),

min
Y ∈℘(X−{b,c})

↔
T

(
F ({b} ∪ Y ), F ({c} ∪ Y )))

= T (E(a, b), E(b, c)).
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2. b ∈ Z.
Then Z ∈ ℘(X−{a, c}) and besides Z /∈ ℘(X−{a, b, c}) which entails

{a} ∪ (Z − {b}) ∈ ℘(X − {b, c})
{c} ∪ (Z − {b}) ∈ ℘(X − {a, b}).

By lemma (2.4.1):

↔
T

(
F ({a} ∪ Z), F ({c} ∪ Z)) >

T

(
↔
T

(
F (({a} ∪ (Z − {b})) ∪ {b}), F (({a} ∪ (Z − {b})) ∪ {c})),

↔
T

(
F (({c} ∪ (Z − {b})) ∪ {a}), F (({c} ∪ (Z − {b})) ∪ {b}))) (2.37)

since trivially

{a} ∪ Z = {a} ∪ (Z − {b}) ∪ {b}
{c} ∪ Z = {c} ∪ (Z − {b}) ∪ {b}

{a} ∪ (Z − {b}) ∪ {c} = {c} ∪ (Z − {b}) ∪ {a}.

Moreover, as

({a} ∪ (Z − {b})) ∈ ℘(X − {b, c})
and

({c} ∪ (Z − {b})) ∈ ℘(X − {a, b})

the expression (2.37) holds

> T

(
min

U∈℘(X−{b,c})
↔
T

(
F (U ∪ {b}), F (U ∪ {c}))

min
Y ∈℘(X−{a,b})

↔
T

(
F (Y ∪ {a}), F (Y ∪ {b})))

= T (E(b, c), E(a, b)).
�
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Corollary 2.4.4 Let Bel be a belief function on X. Then, the relation

E2(a, b) = min
A⊂℘(X−{a,b})

↔
T

(
Bel({a} ∪A), Bel({b} ∪A)) (2.38)

is a T -indistinguishability operator .

Whilst the belief assigned to two equal subsets of X is obviously the
same, for A,B ⊆ X such that A 6= B (and assuming Bel(A) 6= Bel(B)), the
di�erence of belief could be "explained" by any of the di�erences (elements
or combinations of elements belonging to A and not belonging to B, and
reciprocally) between A and B.

However, if we make these two sets di�er exactly in just a pair of ele-
ments, that is, a, b ∈ X such that a ∈ A and a /∈ B, b ∈ B and b /∈ A, and
A − {a} = B − {b} = C, then the existing di�erence of belief between A
and B (when it does happen) can only be explained by di�erences involving
element {a} and {b}, since the rest of elements (C) are the same.

On the basis of this idea, we have de�ned the indistinguishability degree
for any pair a, b of elements as the minimum of the biresiduation (for a given
t-norm ) between their degrees of belief when both are accompanied by the
same set of elements.

2.5 Which fuzzy measure?

A few remarks should be made regarding the generality of theorem (2.4.2).
As it does not place any restrictions on the functions it applies to (any
function ℘(X)→ [0, 1] is allowed), it admits the particularization to a huge
range of functions.

Nevertheless, not all these functions will provide intuitive T -indistinguis-
hability operators since these functions are expected to previously convey a
proper semantics (in terms of uncertain characterization) which, in a certain
way, is transferred to their associated T -indistinguishability operator .

Fuzzy measures, as introduced by Sugeno [152], provide a general frame-
work for the representation of information about uncertain variables. For-
mally, a fuzzy measure µ on X is a mapping µ : ℘(X)→ [0, 1], such that:

1. µ(X) = 1
2. µ(∅) = 0
3. A ⊆ B ⇒ µ(A) 6 µ(B).
µ(E) (where E ∈ ℘(X)) is interpreted as a measure of the "available

con�dence" that the uncertain value attained by a variable V lies in the
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subset E. It seems pertinent, therefore, to restrict the kind of functions
accepted by theorem (2.4.2) to the more suitable class of fuzzy measures.

Dempster-Shafer Theory provides a framework within which informa-
tion about a variable whose value is unknown may be represented. Basic
probability assignments can also be viewed as structures providing partial
information on a family of fuzzy measures that are compatible with them.
Typically only two measures from this family are considered, namely the
measures of belief and plausibility.

Yager [180] provides a uniform method for characterizing a family of
fuzzy measures compatible with a given bpa . Let m be a bpa with focal
elements Bi , i = 1 . . . q. For each focal element Bi, let ωi be its "allocation
vector" of dimension |Bi| whose component ωi(j) satis�es the following two
conditions:

ωi(j) ∈ [0, 1] (2.39)

and
|Bi|∑
j=1

ωi(j) = 1. (2.40)

Then, a set function µ de�ned by

∀E ∈ ℘(X) : µ(E) =
q∑

j=1
m(Bj) ·

|Bj∩E|∑
i=1

ωj(i) (2.41)

is a fuzzy measure compatible with m.
As Yager notes, a few especial cases are worth pointing out. If ∀i :

ωi(1) = 1 then a plausibility measure is obtained; if ∀i : ωi(|Bi|) = 1, we
obtain a belief measure; and if ωi(j) = 1

|Bi| , the resulting fuzzy measure is
the one described in [150].

The considerations outlined above show that, even when we are restricted
to a Dempster-Shafer structure, a whole family of compatible fuzzy measures
can be de�ned. In addition, as previously stated, the generality of theorem
(2.4.2) trivially admits the particularization of any of these measures, as we
did with belief measures in corollary (2.4.4).

Why then should we favor belief measures over any other possible mea-
sures? Plausibility measures seem to be an obvious alternative, because they
are the counterparts of belief measures and are the other most common fuzzy
measures associated with a given bpa .
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De�nition 2.5.1 Let Pl be a plausibility measure on X. We de�ne the
T -indistinguishability operator E3 as

∀a, b ∈ X : E3(a, b) = min
A⊂℘(X−{a,b})

↔
T

(
Pl({a} ∪A), P l({b} ∪A)). (2.42)

(E3 is a T -indistinguishability operator as a trivial corollary of theorem
(2.4.2))

We conclude this section with a set of results which clarify the relation-
ships between T -indistinguishability operators E1 , E2 and E3 .
Proposition 2.5.2 Let m be a probabilistic bpa over X. It holds that

∀a, b ∈ X : E1(a, b) = E2(a, b) = E3(a, b). (2.43)
Proof 2.5.3 Trivial. �

The preceding proposition accounts for the probabilistic case. Let us
now analyze the case of possibilistic (nested) bpa .
Proposition 2.5.4 Let m be a possibilistic (nested) bpa on X and let µm

be its one-point coverage function as de�ned in (2.2.3). Then for all a, b ∈ X
it holds that

E2(a, b) = ↔
T

(1− µm(a), 1− µm(b)) (2.44)
E3(a, b) = ↔

T
(
µm(a), µm(b)) = E1(a, b). (2.45)

This proposition shows how, in the nested case, both E2 and E3 operators
can be de�ned in terms of the T -indistinguishability operator generated by
the one-point coverage fuzzy set (or its complement in the case of E2 ). This
result naturally matches our expectations provided that, when nested, the
possibility measure linked to the bpa relates biunivocally to a normal fuzzy
set (its associated possibility distribution), so that the resulting indistin-
guishability is expected to agree with the indistinguishability generated by
this fuzzy set.

If we take the Lukasiewicz t-norm we can "re�ne" the previous result,
although we need the following lemma before doing so:
Lemma 2.5.5 [81] Let T be the Lukasiewicz t-norm and µ and ν be fuzzy
sets on X. µ and ν generate the same T -indistinguishability operator if and
only if ∀x ∈ X
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µ(x) = ν(x) + k with inf
x∈X

{1− ν(x)} > k > sup
x∈X

{−ν(x)} (2.46)

or

µ(x) = −ν(x) + k with inf
x∈X

{1 + ν(x)} > k > sup
x∈X

{ν(x)}. (2.47)

Corollary 2.5.6 Let T be the Lukasiewicz t-norm and m be a bpa on X.
Then ∀a, b ∈ X, it holds that

E2(a, b) = E3(a, b) (2.48)
and by proposition (2.5.4) if m is nested it holds that

E2(a, b) = ↔
T (1− µm(a), 1− µm(b))

= ↔
T (µm(a), µm(b))

= E3(a, b)
= E1(a, b)

Finally, let us consider the case of ignorance. It is well known that a
disadvantage of probability theory is the lack of a proper representation of
ignorance, since its usual representation on the form of uniform distribution
entails the acceptance of additional and unjusti�ed assumptions. The The-
ory of Evidence overcomes this drawback by representing ignorance as the
vacuous bpa (m(X) = 1). It would seem desirable that given the fact that
both representations stand when we have no evidence at all that might lead
to one element being favored over another, this circumstance gives no clues
on how to distinguish between them based on our beliefs. The following
proposition formalizes this idea:
Proposition 2.5.7 Let m be the bpa given by m(X) = 1 and p the proba-
bilistic bpa given by the uniform distribution on X

∀x ∈ X : p({x}) = 1
|X|

. (2.49)

Then their associated E1 , E2 and E3 operators equal the trivial T -in-
distinguishability operator de�ned by

∀x, y ∈ X : E
−1(x, y) = 1. (2.50)
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2.6 Addressing dimensionality.

The representation theorem (1.5.13), in addition to the simplicity of the
computations involved (compared to the transitive closure approach), also
provides a useful interpretation. If the family of generators are viewed as
a set of features or prototypes, the theorem states that a fuzzy relation
E is a T -indistinguishability operator if a set of features (whose meaning
is formally de�ned as fuzzy sets on X) "explaining" the distinguishability
between the elements in terms of their discrepancy when matching these
features, exists. Conversely, from a set of features we can obtain a T -indis-
tinguishability operator that accounts for the degree of indistinguishability
between the elements when only these features are taken into account.

Therefore, if we de�ne the dimension as the minimum of the cardinalities
of the generating families, it makes sense to study low dimension T -indistin-
guishability operators since these would allow the necessary computations
to be simpli�ed and, what is more important, would a�ord more clarity to
the structure of the operator itself because less features or prototypes would
be needed to account for its indistinguishability degrees.

The simplest case occurs when the T -indistinguishability operator can
be generated by a single feature (fuzzy set) that conveys all the information
needed in such a way that, given any pair of elements, their indistinguisha-
bility degrees are de�ned in terms of their relative compatibility with the
generating feature.

A complete set of results of the characterization of one-dimensional T -
indistinguishability operators and e�ective procedures for computing the
dimension and minimal families of generators of a given T -indistinguishabi-
lity operator can be found in [80].

The purpose of this section is to perform a similar study for the T -in-
distinguishability operator E2 and provide the necessary and su�cient con-
ditions that a given bpa must satisfy in order to generate a one-dimensional
E2 .

Despite the generality of theorem (2.4.2), which allows a broad range
of T -indistinguishability operators to be de�ned on the basis of the t-norm
and fuzzy measure involved, from now on we will focus on the T -indistin-
guishability operator E2 , thereby assuming the particularization to belief
functions and the use of the Lukasiewicz t-norm .

2.6.1 On one-dimensional E2 operators.

Belief functions are complex mappings and are generally di�cult to approxi-
mate using simpler and more understandable structures without a signi�cant
loss of information.

Nevertheless, bpa whose associated E2 operator is one-dimensional can
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be approximated using a single feature that carries exactly the same in-
formation, from the point of view of indistinguishability, and summarizes
its contents in the form of a mathematical object (fuzzy set) which allows
the underlying meaning to be grasped in a more straightforward way. In
other words, this fuzzy set may be considered to be the prototype that our
distribution of belief is committed to.

Having discussed the motivation behind the study of one-dimensional
E2 operators, the �rst question that should be elucidated is whether there
exist bpa generating E2 operators of more than one dimension in order to
prevent their characterization to become a trivial issue. In the case of E1 T -
indistinguishability operators , this characterization makes no sense since
all E1 operators are one-dimensional by de�nition (they are generated from
one-point coverage functions and, consequently, have this function as a gen-
erator).

The following example proves the existence of E2 operators whose di-
mension are greater than one.

Example 2.6.1 Let m be the following bpa

m({a, b, d}) = 0.2
m({b, c, d}) = 0.4
m({c, d}) = 0.4

Its associated E2 operator is



a b c d

a 1 0.6 0.4 0.2
b 0.6 1 0.6 0.6
c 0.4 0.6 1 0.8
d 0.2 0.6 0.8 1


which is not one-dimensional [77].

Since the fact that nested bpa generate one-dimensional E2 operators is
a trivial corollary of proposition (2.5.4), a �rst attempt might involve char-
acterizing one-dimensional E2 as a certain class of bpa satisfying conditions
such as nesting or consistency. The following example, together with the
previous ones, will help us to discard such an approach.

Example 2.6.2 Let m be the bpa de�ned as
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m({a, b}) = 0.2
m({c, d}) = 0.3
m({d}) = 0.5

It generates the following one-dimensional E2 operator



a b c d

a 1 1 0.7 0.2
b 1 1 0.7 0.2
c 0.7 0.7 1 0.5
d 0.2 0.2 0.5 1


This example proves the existence of one-dimensional E2 operators whose

originating bpa is neither nested nor even consistent. This, together with
example (2.6.1), refutes the possibility of characterizing one-dimensionality
based on criteria like nesting or consistency.

Despite our best e�orts, tackling the raw problem of one-dimensionality
characterization directly has not proved fruitful. A more manageable ap-
proximation that might circumvent this di�culty involves restricting the
problem to the characterization of certain, well de�ned one-dimensional con-
�gurations, thereby introducing the concept of essentially one-dimensional
con�gurations (instead of speci�c bpa ) that are de�ned as subsets of the
power set of X.
De�nition 2.6.3 Let F be a subset of the power set of X. We consider F
to be essentially one-dimensional if and only if E2 is one-dimensional for
all mass assignments that have F as the set of focal sets.

Example 2.6.4 Let X = {a, b, c}. The set F = {{a}, {c}, {b, c}} is not
essentially one-dimensional. Consider, for example, the mass assignment

m({a}) = 0.3
m({c}) = 0.5

m({b, c}) = 0.2
which generates the following non-one-dimensional E2 operator


a b c

a 1 0.7 0.6
b 0.7 1 0.5
c 0.6 0.5 1


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Nevertheless, con�gurations that are not essentially one-dimensional can
generate a one-dimensional E2 for particular mass assignments. For in-
stance, in example (2.6.4), consider the mass assignment

m({a}) = 0.5
m({c}) = 0.3

m({b, c}) = 0.2
which generates the following one-dimensional E2 operator


a b c

a 1 0.5 0.8
b 0.5 1 0.7
c 0.8 0.7 1


Example 2.6.5 Let X = {a, b, c}. The set F = {{c}, {c, b}, {b, a}} is not
essentially one-dimensional. Consider, for example, the mass assignment

m({c}) = 0.4
m({c, b}) = 0.4
m({b, a}) = 0.2

which generates the following non one-dimensional E2 T -indistinguisha-
bility operator


a b c

a 1 0.6 0.4
b 0.6 1 0.6
c 0.4 0.6 1


Lemma 2.6.6 Let a, b ∈ X belong to exactly the same focal sets. Then
E2(a, b) = 1.

Lemma (2.6.8) will prove that, as expected, nested con�gurations are
essentially one-dimensional. First, we need the following lemma regarding
one-dimensional T -indistinguishability operators characterization.
Lemma 2.6.7 [77] A T -indistinguishability operator E is generated by a
single function h if and only if there is a total order in X(6∗) whose �rst
element is a and whose last element is b, such that for any x, y, z ∈ X with
a 6∗ x 6∗ y 6∗ z <∗ b

T (E(x, y), E(y, z)) = E(x, z) > 0. (2.51)
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Lemma 2.6.8 If F is nested, then F is essentially one-dimensional.

Proof 2.6.9 Let A1 ⊂ A2 ⊂ · · · ⊂ As be the focal sets andm(A1),m(A2), . . . ,m(As)
their respective masses.

Let x ∈ Ai −Ai−1, y ∈ Aj −Aj−1, z ∈ Ak −Ak−1 with i 6 j 6 k.

E2(x, y) = 1−
j−1∑
l=i

m(Al)

E2(y, z) = 1−
k−1∑
l=j

m(Al)

E2(x, z) = 1−
k−1∑
l=i

m(Al)

Therefore, for the Lukasiewicz t-norm
T (E2(x, y), E2(y, z)) = E2(x, z). �

Lemma 2.6.10 Let F = {A1, . . . , As} with Ai∩Aj = Ak∩Al for all i, j, k, l
with i 6= j, k 6= l. Then F is essentially one-dimensional.

Proof 2.6.11 Let B be the common intersection of the elements of F 5. If
xi ∈ Ai −B and xj ∈ Aj −B, then E2(xi, xj) = 1− |m(Ai)−m(Aj)|.

If xi ∈ Ai −B and x ∈ B, then E2(xi, x) = 1−∑
j 6=im(Aj).

Let us de�ne the following partial order in X:
If y ∈ B then y > x ∀x ∈ X
If x ∈ Ai −B, y ∈ Aj −B, then x 6 y if and only if m(Ai) 6 m(Aj)
If x /∈ Ai ∀i then y > x ∀y ∈ X.
Therefore, if x 6 y 6 z, then T (E2(x, y), E2(y, z)) = E2(x, z).

�

Lemma 2.6.12 Let F = {A1, . . . , As, B} with Ai ∩Aj = B for all i, j with
i 6= j. Then F is essentially one-dimensional.

Proof 2.6.13 Similar to Lemma (2.6.10). �

Lemma 2.6.14 Let F = {A1, . . . , As} with complementary sets of F that
satisfy the condition of Lemma (2.6.10). Then F is essentially one-dimensional.

Lemma 2.6.15 Let F = {A1, . . . , As, B} with the complementary sets of
F that satisfy the condition of Lemma (2.6.12). Then F is essentially one-
dimensional.

5If the intersection B is the empty set, then we are in the probabilistic case.
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Theorem 2.6.16 Let F be a subset of the power set of X. F is essentially
one-dimensional if and only if F can be split into F1, F2, . . . , Fs, the sets of
Fi are either nested or satisfy the conditions of one of the Lemmas (2.6.10),
(2.6.12), (2.6.14), (2.6.15) and the sets of Fi are contained in the sets of
Fi−1 ∀i = 2, . . . , s.
Proof 2.6.17 ⇐ ) Lemmas (2.6.10), (2.6.12), (2.6.14), (2.6.15)

⇒ ) (Contrareciprocal) If F cannot be split in the way required by the
theorem, then either

1. ∃a, c, b ∈ X with a ∈ A, c ∈ B, b ∈ C with A,B,C ∈ F and a /∈ B∪C,
c ∈ C −A and b /∈ A ∪B.

2. ∃c, b, a ∈ X with c ∈ A, c, b ∈ B, b, a ∈ C with A,B,C ∈ F and c /∈ C,
b /∈ A and a /∈ A.

In the �rst case, let |F | denote the cardinality of F . If |F | = 3, then
Example (2.6.5) shows that F is not essentially one-dimensional.

If |F | > 4, let us consider the following mass assignment: m(A) = 0.3,
m(B) = 0.39, m(C) = 0.3 and for any other set D of F , m(D) = 0,01

|F |−3 .
Then

0.6 6 E2(c, b) 6 0.61
0.69 6 E2(c, a) 6 0.7
0.6 6 E2(b, a) 6 0.61

and therefore E2 is not one-dimensional.
Second case can be studied in a similar way. �

Corollary 2.6.18 F is essentially one-dimensional if and only if we cannot
�nd cases (1) or (2) in F .

2.7 An application: indistinguishability in Coop-

erative Games.

The notion of game was introduced as a mathematical abstraction for mod-
elling decision problems in competitive and collaborative situations where
each participant has only partial in
uence over the set of variables governing
the �nal outcome.

The publication of "Game Theory and Economic Behavior" by Von Neu-
mann and Morgensten [160] represented the formal inception of Game The-
ory. Since then it has evolved considerably, allowing its application to a
wide set of areas such as economics, politics, psychology, . . .
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Games are usually divided in cooperative and non-cooperative. Non-
cooperative games deal with situations in which players select their optimal
strategy based on their guesses about which strategies their opponents are
more likely to choose. By contrast, cooperative games promote the bargain-
ing and the formation of coalitions in order to increase the amount of "gain"
to be redistributed among its components.

Assuming that there is a transferable gain or utility allowing side pay-
ments among the players, the problem is then to agree on how the total
amount should be split among them. Such divisions of the total return are
expected to be fair and rational, in the sense that the total amount received
by the players should equal the maximum amount that could be obtained
through collaboration, and no player should receive less than that player
could obtain acting alone.

The problem of gain redistribution can be included in the study of the
more general notion of interaction between members of a given subset of the
set of players.

Let us now recall some basic de�nitions.

De�nition 2.7.1 Let N , with |N | > 2, be the set of players. Any subset
S ⊆ N is called a coalition of players. Sets ∅ and N are called the empty
coalition and the grand coalition, respectively.

De�nition 2.7.2 A cooperative game is given by the pair (N, v) where N
is the set of players and v is the characteristic function of the game given
by

v : ℘(N) −→ R

where v(S) is interpreted as the value (also called worth or power) of
coalition S when its members act together as a unit.

De�nition 2.7.3 A game (N, v) is superadditive if and only if for all coali-
tions S, T ⊆ N such that S ∩ T = ∅ it holds

v(S ∪ T ) > v(S) + v(T ). (2.52)
De�nition 2.7.4 A game (N, v) is monotone if and only if for all coalitions
S, T ⊆ N :

S ⊆ T =⇒ v(S) 6 v(T ). (2.53)
De�nition 2.7.5 A game (N, v) is simple if and only if for every coalition
S, T ⊆ N , either v(S) = 0 or v(S) = 1.
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In a simple game a coalition S is called a winning coalition if v(S) = 1
and a losing coalition in other case.

Typical examples of simple games are:
• Majority rule game, where v(S) = 1 if and only if |S| > n2 , and
v(S) = 0 otherwise.

• Unanimity game, where v(S) = 1 if and only if S = N , and v(S) = 0
otherwise.

• Dictator game, where given a distinguished player a, v(S) = 1 if and
only if a ∈ S , and v(S) = 0 otherwise.

De�nition 2.7.6 A game (N, v) is symmetric if and only if for all coalition
S, v(S) depends only on the number of elements of S, say v(S) = f(|S|) for
some function f .

De�nition 2.7.7 Given a game G = (N, v), we de�ne its associated normal
game G′ as the game (N, v′) with characteristic function v′ de�ned as

∀S ⊆ N : v′(S) = v(S)
maxT⊆N v(T )

As noted in [48], the fact that for a player a, the amount of gain or utility
received is not (in general) equal to the value v({a}) explains why players in
N have interest in forming coalitions. For instance, consider another player
b and assume that v({a}) and v({b}) are small whereas v({a, b}) is large.
Then, a and b have clearly a strong interest in their collaboration.

The concept of interaction tries to capture this idea by taking into ac-
count not just their synergic behavior when players a and b are considered
alone, but all the coe�cients involved when a and b form coalitions with the
whole set of players.

Let us present the de�nition of some interaction indices.
De�nition 2.7.8 The Shapley interaction index of a coalition S ⊆ N in a
game G = (N, v) is de�ned as:

SH(v, S) = ∑
T⊆N−S

(|N | − |T | − |S|)!|T |!
(|N | − |S|+ 1)! ·�Sv(T )

where ∀S ∈ N , �Sv(T ) is the discrete S-derivative of v at T which can
be de�ned as

�Sv(T ) =
∑
L⊆S

(−1)(|S|−|L|) · v(T ∪ L).
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Analogously, the Banzhaf interaction index and the chaining interaction
index are de�ned as

B(v, S) = ∑
T⊆N−S

1
2(|N |−|S|) ·�Sv(T )

and

CH(v, S) = ∑
T⊆N−S

s · (|N | − |S| − |T |)!(|S|+ |T | − 1)!
|N |! ·�Sv(T )

, respectively.
The Shapley, Banzhaf and Chaining interaction indices are instances of

the more general class of probabilistic interaction indices.

De�nition 2.7.9 A probabilistic interaction index of a coalition S ⊆ N in
a game G = (N, v) is of the form:

PI(v, S) = ∑
T⊆N−S

pS
T (N) ·�Sv(T )

where, for any coalition S ∈ N , the family of coe�cients pS
T (N)T⊆N−S

forms a probability distribution on 2N−S .
When we compute interaction for coalitions S composed by just one

player (one member coalitions), the indices above particularize to the well
known Shapley, Banzhaf and chaining values.

De�nition 2.7.10 Given a game G = (N, v), the Shapley value of player
a ∈ N is de�ned by:

SH(v, a) = ∑
T⊆N−{a}

(|N | − |T | − 1)!|T |!
|N |! ·�av(T ).

The Shapley value [148] is the sole value satisfying the linearity, sym-
metry, dummy player and e�ciency axioms, which makes it particularly
suitable to be de�ned as a fair method for utility redistribution.

The Banzhaf and Chaining values are de�ned similarly by particularizing
the proper de�nitions to one member coalitions.
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2.7.1 Players indistinguishability.

Theorem 2.7.11 Let G = (N, v) a normal cooperative game. Then for all
players a, b ∈ N , the relation

E(a, b) = min
A∈℘(N−{a,b})

↔
T

(
v({a} ∪A), v({b} ∪A)) (2.54)

is a T -indistinguishability operator .

The theorem above de�nes the indistinguishability degree for any pair of
players a, b as the minimum of the biresiduation between the values of their
respective coalitions when both are accompanied by the same set of players.

As an example, let G = ({a, b, c, d}, v) an instance of the dictator game
where v({a}) = v({a, b}) = v({a, c}) = v({a, d}) = v({a, b, c}) = v({a, b, d}) =
v({a, c, d}) = v({a, b, c, d}) = 1 and v({b}) = v({c}) = v({d}) = v({b, c}) =
v({b, d}) = v({c, d}) = v({b, c, d}) = 0. Then, the T -indistinguishability
operator E2 associated to G is



a b c d
a 1 0 0 0
b 0 1 1 1
c 0 1 1 1
d 0 1 1 1


which clearly partitions the set of players in two disjoint classes, namely

the dictator class ({a}) and the rest of players ({b, c, d}).
For symmetric games, given that the value of coalitions do not depend on

the particular members composing them but on the cardinal, the following
proposition holds:
Proposition 2.7.12 Let G = (N, v) be a symmetric game. Then its asso-
ciated operator E2 equals the indistinguishability operator de�ned by

∀x, y ∈ X : E
−1(x, y) = 1.

As a trivial corollary of this proposition, operator E2 associated to ma-
jority and unanimity games equals indistinguishability operator E−1 .

2.7.2 An example: shortest path game.

In this section we will illustrate the presented de�nitions with the introduc-
tion of the shortest path games for which some tra�c is supposed to be
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routed through a network where each link is owned by a player who incurs
some cost while transporting tra�c along his link.

The value of a coalition is the payo� paid by sender player (s) when the
tra�c can be transported (we �x this payo� in 100 units) minus the cost
derived from using the links. This cost is supposed to be the minimum,
thereby maximizing the net payo� so that if some coalition "opens" two
possible paths for routing the tra�c, only the cheapest path would be con-
sidered when computing the net payo� (i.e value ) received by the coalition.
Obviously, for coalitions in which sender player is not included, their value
is zero since without no sender, no tra�c and hence no payo�.

Therefore, the following network

a=10 b=20 c=30

--------> * --------> * ---------

| |

s ---| |-->

| |

--------> * --------> * ---------

d=20 e=20 f=50

de�nes the game G = ({s, a, b, c, d, e, f}, v) where ∀S :

v(S) =

40 if {s, a, b, c} ∈ S.
10 if {s, d, e, f} ∈ S and {a, b, c} /∈ S.
0 otherwise.

For game G and taking the Lukasiewicz t-norm, its associated operator
E2 is



a b c d e f s
a 1 1 1 0 0 0 0.75
b 1 1 1 0 0 0 0.75
c 1 1 1 0 0 0 0.75
d 0 0 0 1 1 1 0
e 0 0 0 1 1 1 0
f 0 0 0 1 1 1 0
s 0.75 0.75 0.75 0 0 0 1


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Note that two classes has naturally formed, namely {a, b, c} and {d, e, f},
corresponding to the two possible paths connecting the origin and destina-
tion.

Moreover, sender player s has greater indistinguishability degree with
players owning links belonging to the solution path (s −→ a −→ b −→ c)
than with the rest of players.

2.7.3 Another example: providers game.

In this game, some good is supposed to be produced requiring the integration
of several items which, in turn, are o�ered by their corresponding providers.

For this example, the good to be produced are houses and the set of
items assumed to be delivered by the providers a, b, c, d and e are bricks,
cement, furniture, paint and �shing equipments, respectively.

As seen at �rst sight, some items are more important for building houses
(brick, cement) than others (furniture, paint), while items such as �shing
equipments are completely irrelevant. In fact, without brick and cement
there is no house, while paint and furniture are more or less optional, so
that providers of basic goods are supposed to be in a better position in
eventual negotiations, as much as their expected bene�t.

Under this picture, some providers may choose to collaborate in order
to maximize their returns.

One possible con�guration is the game G = ({a, b, c, d, e}, v) where:

v({a, b}) = 8
v({a, b, c}) = 9
v({a, b, d}) = 9
v({a, b, e}) = 8

v({a, b, c, d}) = 10
v({a, b, c, e}) = 9
v({a, b, d, e}) = 9

v({a, b, c, d, e}) = 10
and for the rest of coalitions S ∈ N : v(S) = 0.
The above game exempli�es the fact that forming coalitions without

brick or cement providers are not pro�table, while adding optional items
like furniture and paint to an already rentable coalition increases in a small
degree the value of such coalitions.

Providers of �shing equipments play the role of dummy players since
there is no need of such material for building a house and consequently,
their joining to a given coalition does not a�ord additional value at all.
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For game G and taking the Lukasiewicz t-norm, its associated operator
E2 is



a b c d e
a 1.0 1.0 0.1 0.1 0.0
b 1.0 1.0 0.1 0.1 0.0
c 0.1 0.1 1.0 1.0 0.9
d 0.1 0.1 1.0 1.0 0.9
e 0.0 0.0 0.9 0.9 1.0


Two classes has naturally formed, namely {a, b} and {c, d}, correspond-

ing to the set of providers of basic goods (brick, cement) and the set of
providers of optional goods or accessories (furniture, paint).

It can be noted how �shing equipments are more optional than basic
in the sense that they are more similar to the class of optional goods than
to the class of basic goods. Nevertheless, �shing equipments can not even
be considered an optional good (meaning that it provides some additional,
although small, value) since they are not entirely indistinguishable from the
set of optional goods.

Is interesting to note also that the resulting operator E2 is one-dimensional.
Given a �xed element e, the "column" fuzzy set µe is de�ned in the

following way:

∀p ∈ N : µe(p) = E2(e, p).
It is trivial to check that the fuzzy set µa (column or row corresponding

to player a in the matrix representation of E2) de�ned by:

µa(a) = 1.0
µa(b) = 1.0
µa(c) = 0.1
µa(d) = 0.1
µa(e) = 0.0

generates the operator E2, and consequently E2 is a one-dimensional
indistinguishability operator.

µa could be interpreted as the fuzzy set representing the concept "house".
The membership degrees of the set of players to µa re
ect the fact that
brick or cement is more essential to the concept "house" than furniture and,
obviously, than �sh equipments.
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The Shapley and Banzhaf values for game G are:

SH(v, {a}) = 4.66
SH(v, {b}) = 4.66
SH(v, {c}) = 0.33
SH(v, {d}) = 0.33
SH(v, {e}) = 0.0

B(v, {a}) = 4.5
B(v, {b}) = 4.5
B(v, {c}) = 0.25
B(v, {d}) = 0.25
B(v, {e}) = 0.0

(For one member coalitions, their Chaining value equals the Shapley
value)

Note that values for elements of the same class (basic or optional) are
equal which suggests the following proposition:
Proposition 2.7.13 Given a game G = (v,N) and their associated oper-
ator EG2 , it holds that ∀a, b ∈ N and for any probabilistic interaction index
I:

EG2 (a, b) = 1⇒ I(v, {a}) = I(v, {b}).



Chapter 3

Observational Entropy.

Everything is vague to a degree you do not realize till you have tried to
make it precise.

Bertrand Russell, "The Philosophy of Logical Atomism".

3.1 Introduction.

Today it is widely assumed that the requirement for informational systems
of properly dealing with uncertainty has turned into a must. Hence the
necessity of developing methodologies for representing and dealing with un-
certainty.

Traditionally, classical set theory and probability theory have been the
paradigms of mathematical representations accounting with some aspect of
uncertainty. Lately we have witnessed the emergence of a plethora of new
theories which have made possible the study of uncertainty from very new
points of view.

In this chapter we will summarize signi�cant contributions that can be
found in the literature about the study and quanti�cation of uncertainty in
the context of di�erent theories.

We will also introduce a novel measure of entropy ("observational en-
tropy") suitable to operate on domains in which an indistinguishability op-
erator has been de�ned. Properties of this new measure will also be studied.

More speci�cally, the main contributions of this chapter are:
• Introduction of the "observer paradigm" in order to formalize situ-
ations where distinguishability abilities are taken into account when
quantifying the predictability of random sources.

61
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• De�nition of the concept of observational entropy as a new measure
when, besides the usual probabilistic uncertainty, we are dealing with
an indistinguishability relation de�ned over the elements of the domain
of discourse.

• De�nitions and properties of conditional and joint observational en-
tropy.

• Generalization of the classical law of total entropies to the context of
observational entropy.

3.2 Types of uncertainty.

Following the approach of [96] we will consider three types of uncertainty,
namely, the one derived from non speci�city, con
ict and fuzziness. Let us
examine them in more detail.

3.2.1 Non speci�city.

Non speci�city can be seen as the result of the imprecision present in the
information, caused by the existence of several interpretations compatible
with this information [45].

In other words, available information do not characterize precisely just
one designated element but many, thereby inducing more uncertainty as the
number of compatible interpretations increases.

The concept of speci�city was originally introduced within the framework
of classical set theory. As pointed out above, uncertainty derived from non
speci�city appears when some alternative of particular interest belongs to a
whole set of alternatives but we are unable to precise exactly which one of
them the available information is referring to.

This considerations led Hartley [52] to quantify the speci�city of a given
set A as a functional of its cardinal:

U(A) = log2|A|. (3.1)
Higashi and Klir [69] proposed the measure U -uncertainty as a natural

generalization of Hartley measure:

U(A) =
∫ 1
0
log2|Aα| · dα (3.2)

where Aα is the α-cut of A, de�ned as Aα = {x ∈ X|µA(x) > α}.
Yager [170] suggested to de�ne the concept of speci�city as a measure of

the degree to which a fuzzy set contains one and only one element:
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U(A) =
∫ αmax

0
1
|Aα|

· dα (3.3)

where αmax is the largest membership degree in A.
In [176] Yager introduced a family of measures of speci�city called linear

speci�city measures:

U(A) = ω1 · b1 −
n∑

j=2
ωj · bj (3.4)

with
ωj ∈ [0, 1]
ω1 = 1
ωi > ωj for i < j

n∑
j=2

ωj 6 1

ω2 6= 0.
In this case U(A) is a measure of the degree of satisfaction by a set A of

the proposition "A has at least one element and not much more than one"
[176]. The weights ωj are intended to capture the meaning in which the
concept "not much more than one" is de�ned.

A further step in generalization was achieved with the introduction of
T -speci�city measures [42]:

UT (A) = T1(a1, N(T ∗j=2,...,n{T3(aj , ωj)})) (3.5)
with

N = negation
T1, T3 = t-norms

T ∗ = t-conorm
{ωj} = weighting vector

and {aj} is the ordered vector of membership degrees such that a1 >
. . . > an.

Those measures represent the notion of "one element (a1) and no others".
In [42] it is proved that both Yager measure of speci�city (3.3) and linear
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measures of speci�city (3.5) are T -speci�city measures choosing suitable
operators and weights.

Speci�city measures based on distances:

U(A) = 1−min
i
(d(A,Ei)) (3.6)

where Ei = (0, . . . , 1(i), . . . , 0) and d is a distance, are also particular
cases of T -speci�city measures.

3.2.2 Con
ict.

Uncertainty derived from con
ict stems from the generalization of the type
of uncertainty measured by Shannon measure.

This statement is based in the fact that if we rewrite Shannon measure

U(p) = −
∑
x∈X

p(x) · log2 p(x) (3.7)

as

U(p) = −
∑
x∈X

p(x) · log2
(1− ∑

y∈X:y 6=x

p(y))
the term

∑
y∈X:y 6=x

p(y)

expresses the sum of all evidential claims that fully con
ict with the one
focusing on x.

The composite expression

− log2
(1− ∑

y∈X:y 6=x

p(y))
just extends the range of con
ict quanti�cation from [0, 1] to [0,∞) sup-
porting the interpretation of Shannon entropy as the expected value of the
amount of con
ict between evidential claims.

Since measures of con
ict have been widely investigated in the framework
of the Theory of Evidence, the reader is referred to section 3.3 for a more
extensive discussion on this issue.
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3.2.3 Fuzziness.

When available evidence is inherently pervaded with vagueness, another kind
of uncertainty emerges, namely the uncertainty derived from fuzziness.

In general, a measure of fuzziness is intended to quantify the degree to
which the boundary of some fuzzy set is not sharp.

One of the �rst approaches was introduced by De Luca and Termini [24]
who de�ned the entropy of a fuzzy set A as

U(A) = −
∑
x∈X

µA(x) · log2 µA(x) + (1− µA(x)) · log2(1− µA(x)). (3.8)

This measure could be conceived as the aggregation of Shannon entropy
of n random variables with just two possible values whose probabilities are
µA(x) and 1− µA(x), respectively.

Other approach is the one suggested by Kaufmann [87] consisting in
de�ning the fuzziness of a set A as the distance between its characteristic
function and the characteristic function of its "nearest" crisp set (Anear)
de�ned by

Anear =
{1 if µA(x) > 0.5
0 otherwise (3.9)

Then, the measure of fuzziness is de�ned as

U(A) = 2
|x|k

· d(A,Anear) (3.10)

where d is a metric distance in [0, 1]X × [0, 1]X , and k ∈ R+ (k depends
on d).

Another way of viewing fuzziness was de�ned by Yager [169] as the lack
of distinction between a set and its complementary: the less the distinction,
the fuzzier it is.

U(A) = d(C,C)− d(A, �A)
d(C,C) (3.11)

where C is an arbitrary crisp set with complement C. Consequently
d(C,C) is the maximum distance between any pair of sets in [0, 1]X .

Kosko [99] associated fuzziness with the ratio of the distances between
a given fuzzy set A and its nearest and furthest non fuzzy set:
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U(A) = d(A,Anear)
d(A,Afar) (3.12)

where Anear is the same set as de�ned in (3.9) and Afar its complemen-
tary set.

3.2.4 Combined measures.

So far the main concern was to review measures intended to quantify just
one kind of uncertainty. Nevertheless, many authors have been worried
about developing measures of uncertainty providing an overall aggregate
measurement for di�erent types of uncertainty.

One of the �rst attempts was to de�ne the entropy of a fuzzy set with
respect to a discrete probabilistic framework [187]:

U(A, p) = −
∑
x∈X

µA(x) · p(x) · log2 p(X) (3.13)

which clearly is the Shannon measure weighted by the degrees of mem-
bership.

Other line of research was based on the approach of simply trying to
aggregate, by means of any suitable algebraic operator, some well established
measures of uncertainty of a given kind.

Xie and Bedrosian [167] proposed the sum of Shannon entropy measure
(3.7) and De Luca and Termini measure of fuzziness (3.8) as a new combined
measure of probabilistic uncertainty and fuzziness:

U(A, p) =− ∑
x∈X

p(x) · log2 p(x)

−
∑
x∈X

µA(x) · log2 µA(x) + (1− µA(x)) · log2(1− µA(x)).
(3.14)

De Luca and Termini [24] modi�ed the de�nition above weighting the
second term by the appropriate probability measures:

U(A, p) =− ∑
x∈X

p(x) · log2 p(x)

−
∑
x∈X

p(x) ·
(
µA(x) · log2 µA(x) + (1− µA(x)) · log2(1− µA(x))).

(3.15)
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However, composite measures are meaningful only as long as the "ele-
mentary" measures aggregated are additive in nature. This is not always the
case since fuzziness is conceptually di�erent from probabilistic uncertainty,
making the algebraic combination of expressions (3.14) and (3.15) hard to
justify.

More examples of combined measures can be found in section 3.3.4.

3.3 Uncertainty measures in Dempster-Shafer The-

ory of Evidence.

Dempster-Shafer Theory of Evidence has proved to be a particular fruitful
area in the task of investigating uncertainty measures due mainly to its
ability to represent and deal with uncertainty of di�erent types.

Indeed, when there is at least one focal set containing more than one
element, uncertainty derived from non speci�city emerges. Also, if there is
more than one focal element, this introduces disagreement in the evidence
and, consequently, uncertainty derived from con
ict arises, being the con
ict
larger as the more mutually disagreeing pieces of evidence were.

In this section we will present a review of measures of uncertainty for
the Theory of Evidence.

3.3.1 Non speci�city measures in the Theory of Evidence.

In section 3.2.1 it was shown how Hartley measure of non speci�city was
generalized to fuzzy set theory by Higashi and Klir [69].

Dubois and Prade [31] further generalize it to measure non speci�city in
the Theory of Evidence as follows:

U(m) = ∑
A⊆X,A6=∅

m(A) · log2|A| (3.16)

where m is a basic probability assignment.
A modi�ed version was provided by Lamata and Moral [101]:

U(m) = log2
( ∑

A⊆X

m(A) · 1
|A|

)
. (3.17)

Yager measure of speci�city has also its counterpart in the Theory of
Evidence:

U(m) = ∑
A⊆X,A6=∅

m(A) · 1
|A|

. (3.18)
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It can be noted that all the presented de�nitions are a weighted average
of some classical measure over the focal elements.

3.3.2 Measures of con
ict in the Theory of Evidence.

Unlike non speci�city measures (where expression (3.16) is well established
as non speci�city measure in the Theory of Evidence since uniqueness has
been proved on axiomatic grounds), the search for a counterpart of Shannon-
like measure is still an open problem.

Although many de�nitions have been proposed, each has been found to
violate some essential requirement. In this section we will summarize some
of these de�nitions.

As shown in section 3.2.2, Shannon measure can be rewritten in terms
of averaging con
ict between evidential claims as follows:

U(m) = ∑
A⊆X

m(A) · log( amount of mass consistent with A). (3.19)

Di�erent measures can thus be de�ned depending on which consistency
criterion is considered.

The more restrictive consistency criterion is expressed by

∀A ⊆ X : B ⊆ X is consistent with A⇔ B ⊆ A

Adapting expression (3.19) to this de�nition of con
ict, H�ohle measure
of confusion [71] is obtained:

U(m) = −
∑
A⊆X

m(A) · logBel(A). (3.20)

A laxer de�nition of con
ict is expressed by

∀A ⊆ X : B ⊆ X is consistent with A⇔ A ∩B 6= ∅

This results in Yager measure of dissonance [171]:

U(m) = −
∑
A⊆X

m(A) · logPl(A). (3.21)

Some intermediate criteria have also been proposed de�ning consistency
between B and A as the degree of inclusion of B in A:
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Consistency(A,B) = |A ∩B|
|B|

. (3.22)
In this case, Klir and Ramer measure of discordance [94] is obtained :

U(m) = ∑
A⊆X

m(A) · log ∑
B⊆X

m(B) · |A ∩B|
|B|

. (3.23)

On the contrary, if consistency between A and B is de�ned as

Consistency(A,B) = |A ∩B|
|A|

(3.24)
then the measure of strife [97] is obtained:

U(m) = ∑
A⊆X

m(A) · log ∑
B⊆X

m(B) · |A ∩B|
|A|

. (3.25)

Some other measures are also worthwhile to mention like the measure
resulting of substituting probabilities by masses in Shannon measure [122,
127]:

U(m) = −
∑
A⊆X

m(A) · logm(A) (3.26)

or the measure proposed by Smets [149] based on the commonality num-
ber [145]:

U(m) = −
∑
A⊆X

logQ(A). (3.27)

3.3.3 Measures of fuzziness in the Theory of Evidence.

Strictly speaking, measures of fuzziness should only be de�ned for fuzzy
sets. Nevertheless, in this section we present a measure of fuzziness for the
Theory of Evidence proposed by Dubois and Prade [32] based on Yager's
view of fuzziness as lack of distinction between a set and its complementary.

Taking Shafer de�nitions of complement and con
ict between basic prob-
ability assignments [145] and de�ning fuzziness associated to a given bpa m
as the degree of con
ict between m and its complementary, Dubois and
Prade suggest the following de�nition:

U(m) = − ln( ∑
A,B⊆X:A⊆B

m(A) ·m(B)). (3.28)
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3.3.4 Combined measures in the Theory of Evidence.

As it was previously stated, some remarkable attempts have been carried
out to provide measures of uncertainty capturing in an uniform way di�erent
types of uncertainty. Those attempts range from straightforward algebraic
combinations of well de�ned measures of uncertainty to more elaborated
de�nition involving optimization problems.

Representative of the former approach is the proposal by Klir and Ramer
[97] consisting in the aggregation of Yager measure of speci�city (3.18) and
the measure of strife (3.25) which yields the following expression:

U(m) = ∑
A⊆X

m(A) · log |A|2∑
B⊆X m(B) · |A ∩B| . (3.29)

Lamata and Moral [101] propose the aggregation of Yager measure of
speci�city (3.18) and the measure of dissonance (3.21):

U(m) = −
∑
A⊆X

m(A) · log |A|
Pl(A) . (3.30)

Yet another example of algebraic combination is the aggregation of Pal
measure of entropy (3.26) and Yager measure of speci�city (3.18) proposed
by Hemasinha et al [127]:

U(m) = ∑
A⊆X

m(A) · log |A|
m(A) . (3.31)

These kind of measures usually exhibit unappealing features since they
aggregate measures which are not necessarily additive in nature.

A measure (AU) of total uncertainty 1 ,overcoming some de�ciencies
present in other candidates, was de�ned in terms of the solution to a non
linear optimization problem.

AU is de�ned for each belief function Bel as

AU(Bel) = max
PBel

[
−

∑
x∈X

p(x) · log p(x)
]

(3.32)

where PBel is the set of probability distributions satisfying the consis-
tency criterion expressed by

1The expression "total uncertainty" is used in the literature to designate measureswhich capture more than one type of uncertainty in spite of they may not be an indicatorof really the total uncertainty.
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∀A ⊆ X : Bel(A) 6
∑
x∈A

p(x) (3.33)

Among other advantages it satis�es the commonly required properties
(including subadditivity) for a measure of this type. In addition, the exis-
tence and correctness of an algorithmic procedure for its computation have
been also proved [96].

Although these desirable properties, measure AU has the shortcoming
of being highly insensitive to changes in the evidence as shown in [95].

In order to overcome this drawback, Smith [151] suggests three alter-
natives to measure total uncertainty. Let S and S be the maximum and
minimum Shannon measure within all probability distributions consistent
with the given evidence (assuming the consistence criterion expressed by
(3.33)) and N be Dubois and Prade measure of non speci�city (3.16).

The �rst measure U1 is a linear combination of S and N :

U1(m) = δ · Sm + (1− δ) ·N(m) (3.34)
where δ ∈ (0, 1).
U2 is de�ned as the pair

U2(m) = (
N(m), Sm −N(m)). (3.35)

U3 is the pair

U3(m) =
(
N(m), [Sm − Sm

]) (3.36)
where the second component is the whole range of values of m-consistent

Shannon measures.
Up to now all these measures still have aspects that need to be further

clari�ed in order to be meaningful. The quest of the search for a fully satis-
factory measure of total uncertainty for Dempster-Shafer Theory of Evidence
is rather far from being a closed problem.

3.3.5 Particularization to Possibility Theory.

The Theory of Evidence includes, as a particular case, the Possibility Theory.
It is also known that every possibility measure over a �nite domain X is
univocally determined by a possibility distribution.

In the following table we rewrite some previously presented measures
of uncertainty for the Theory of Evidence in terms of a normal possibility
distribution r represented by the ordered vector r = (r1, . . . , rn) such that
1 = r1 > . . . > rn.
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Measure Expression Type

U-uncertainty (3.16) ∑n
i=1(ri − ri+1) · log i non speci�city

Measure (3.18) ∑n
i=1(ri − ri+1) · 1i non speci�city

Confusion (3.20) −
∑n

i=1(ri − ri+1) · log(1− ri+1) con
ict

Dissonance (3.21) 0 (nesting bpa ) con
ict

Strife (3.25) −
∑n

i=2(ri − ri+1) · log i∑i
j=1 rj

con
ict

Discordance (3.23) ∑n−1
i=1 (ri − ri+1) · log

[
1− i ·

∑n
j=i+1 rj

j·(j−1)
]

con
ict

Measure (3.26) −
∑n

i=1(ri − ri+1) · log(ri − ri+1) con
ict

Measure (3.29) ∑n
i=2(ri − ri+1) · log i2∑i

j=1 rj
combined

Measure (3.31) ∑n
i=1(ri − ri+1) · log i(ri−ri+1) combined

3.3.6 Particularization to Probability Theory.

When focal elements are singletons, both measures Bel and Pl collapse in
the same probability measure.

Another consequence is the lack of uncertainty derived from non speci-
�city since all focal elements are singletons (maximally speci�c). Therefore
any consistence criterion between items of evidence make any singleton just
consistent with itself and inconsistent with all the rest so that all measures
of con
ict trivially particularize to the Shannon measure.
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3.3.7 Maximums and minimums.

The following table summarizes some results regarding maximums and min-
imums.

Measure Type

Maximum

Minimum

U(m) = ∑
A⊆X m(A) · 1

|A| non speci�city

maximum (= 1) ⇔ m is a probability distribution [171]
minimum (= 1

|X|)⇔ m(X) = 1 [171]

U(m) = ∑
A⊆X m(A) · log|A| non speci�city

maximum (= log|X|)⇔ m(X) = 1 [97]
minimum (= 1)⇔ m is a probability distribution [97]

U(m) = −
∑

A⊆X m(A) · logBel(A) con
ict
maximum ⇔ m contain as many focal elements as possible such
that none of them is included in any other and weights
are uniformly distributed among them [32].

minimum (= 0)⇔ m has only one focal element [32].

(to be continued)
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(continuation)

U(m) = −
∑

A⊆X m(A) · logPl(A) con
ict
maximum (= log|X|)⇔ m is the uniform probability distribution.
minimum (= 0)⇔ ⋂

A∈X:m(A)>0A 6= ∅ [171]

U(m) = ∑
A⊆X m(A) ·∑B⊆X log(m(B) · |A∩B|

|A| ) con
ict

maximum (= log|X|)⇔ ∀x ∈ X : m({x}) = 1
|X| [97]

minimum (= 0)⇒ ∃x ∈ X : m({x}) = 1 [97]

U(m) = ∑
A⊆X m(A) · log |A|2∑

B⊆X m(B)·|A∩B| combined

maximum (= log|X|)⇔ m(X) = 1 or ∀x ∈ X : m({x}) = 1
|X|

minimum (= 0)⇔ ∃x ∈ X : m({x}) = 1 [97]

U(m) = ∑
A⊆X m(A) · log |A|

m(A) combined

maximum ⇔ m(A) = |A|
k where k = n · 2n−1 [128]

3.4 Other theories.

The �eld of imprecise probabilities comprises, but in any case is limited to,
the Theory of Evidence. Many advances have been developed over the last
several decades leading to a whole set of theories for representing imprecise
probabilities of di�erent levels of generality.

This section summarizes de�nitions of measures of uncertainty for some
of these theories in order to illustrate this point.
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Within the theory of Fuzzy Measures, Yager [181] suggested an extension
of Shannon entropy based on the Shapley index [148] which he called Shapley
entropy.

Let µ be a fuzzy measure on X = {x1, . . . , xn}. Then for all xj ∈ X its
Shapley index Sj is de�ned by

Sj =
n−1∑
k=0

(
γk ·

∑
A⊆Fj :|A|=k

(
µ(A ∪ {xj})− µ(A))) (3.37)

where
Fj = X − {xj}

and
γk = (n− k − 1)! · k!

n! .

As Yager states, this index can be seen as the average increase in certi-
tude obtained by adding element xj to a set which does not contain it.

This index is used to de�ne the Shapley entropy of a fuzzy measure µ as

U(µ) = −
n∑

j=1
Sj · logSj . (3.38)

It can be shown that when µ is a probability measure, the Shapley
entropy reduces to the Shannon entropy.

Abellan and Moral [1] generalized the measure of non speci�city to closed
convex sets of probability distributions as follows: let D be a closed convex
set of probability distributions p on a domain X, gD be the lower probability
function de�ned by

∀A ⊆ X : gD(A) = inf
p∈D

∑
x∈A

p(x) (3.39)

and mD be the M�obius inverse of gD

mD = ∑
B⊆A

(−1)|A−B|gD(B). (3.40)

Then, the measure of non speci�city associated with D is:

U(D) = ∑
A⊆X

mD(A) · log|A|. (3.41)
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3.5 Summary of measures of uncertainty.

The measures of uncertainty presented are summarized in the table below.

Measure Type Theory

U(A) = log2|A| non speci�city classical set theory

U(m) = ∑
A⊆X,A6=∅m(A) · log2|A| non speci�city evidence theory

U(p) = −
∑

x∈X p(x) · log2 p(x) con
ict probability theory

U(m) = −
∑

A⊆X m(A) · logPl(A) con
ict evidence theory

U(m) = −
∑

A⊆X m(A) · logBel(A) con
ict evidence theory

U(m) = ∑
A⊆X m(A) · log∑

B⊆X m(B) · |A∩B|
|B| con
ict evidence theory

U(m) = ∑
A⊆X m(A) · log∑

B⊆X m(B) · |A∩B|
|A| con
ict evidence theory

AU(Bel) = maxPBel

[
−

∑
x∈X p(x) · log p(x)

]
combined evidence theory

U(m) = −
∑

A⊆X m(A) · logm(A) con
ict evidence theory

U(m) = −
∑

A⊆X logQ(A) con
ict evidence theory

U(A) = ∫ αmax0 1
|Aα| · dα non speci�city fuzzy set theory

(to be continued)
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(continuation)

U(A) = ω1 · b1 −
∑n

j=2 ωj · bj non speci�city fuzzy set theory

UT (A) = T1(a1, N(T ∗2j=2,...,n
{T3(aj , ωj)})) non speci�city fuzzy set theory

U(A) = ∫ 1
0 log2|Aα| · dα non speci�city fuzzy set theory

U(A) = 1−mini(d(A,Ei)) non speci�city fuzzy set theory

U(A) = −
∑

x∈X µA(x) · log2 µA(x)+ fuzziness fuzzy set theory(1− µA(x)) · log2(1− µA(x))
U(A) = 2

|x|k · d(A,Anear) fuzziness fuzzy set theory

U(A) = d(C,C)−d(A, �A)
d(C,C) fuzziness fuzzy set theory

U(A) = d(A,Anear)
d(A,Afar) fuzziness fuzzy set theory

U(A) = ⊗n
i=1αi ·N(µA(ai)) fuzziness fuzzy set theory

U(A) = k ·
∑

x∈X µA(x) · e1−µA(x)+ fuzziness fuzzy set theory
(1− µA(x)) · eµA(x)

U(m) = − ln(∑
A,B⊆X:A⊆B m(A) fuzziness evidence theory

(to be continued)
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(continuation)

U(A, p) = −
∑

x∈X µA(x) · p(x) · log2 p(X) combined probability theory
fuzzy set theory

U(m) = ∑
A⊆X m(A) · log |A|2∑

B⊆X m(B)·|A∩B| combined evidence theory

U(m) = −
∑

A⊆X m(A) · log |A|
Pl(A) combined evidence theory

U(m) = ∑
A⊆X m(A) · log |A|

m(A) combined evidence theory

∑n
i=1(ri − ri+1) · log i non speci�city possibility theory

∑n
i=1(ri − ri+1) · 1i non speci�city possibility theory

−
∑n

i=1(ri − ri+1) · log(1− ri+1) con
ict possibility theory

−
∑n

i=2(ri − ri+1) · log i∑i
j=1 rj

con
ict possibility theory

∑n−1
i=1 (ri − ri+1) · log

[
1− i ·

∑n
j=i+1 rj

j·(j−1)
]

con
ict possibility theory

−
∑n

i=1(ri − ri+1) · log(ri − ri+1) con
ict possibility theory

∑n
i=2(ri − ri+1) · log i2∑i

j=1 rj
combined possibility theory

(to be continued)
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(continuation)

∑n
i=1(ri − ri+1) · log i(ri−ri+1) combined possibility theory

3.6 Observational entropy.

The problem of measuring the uncertainty of a set of events is not new.
The �rst attempts tried to quantify the uncertainty associated to a random
experiment. So, Hartley captured the intuitive idea that the more possible
results for an experiment, the less it can be predicted. Anyway, his measure
had the drawback of ignoring the probability of the events. This di�culty
was overcome by Shannon [147] de�ning the entropy of a random variable
as:

H(X) = −
∑
x∈X

p(x) · log2 p(x). (3.42)

It is important to note that this measure was thought within the frame
of communication theory, speci�cally for facing issues concerning channel
reliability and reduction of transmission cost, but ignoring the semantic
content of the messages involved. What happens when events \carry" a
concrete meaning de�ned in terms of risk, utility or whatever? Providing
the set of events with a particular semantics requires a \further step", in the
sense that we need to adapt Shannon measure in order to express random
uncertainty in terms of this semantics.

In this section, this semantics will be established by de�ning an indis-
tinguishability relation between the elements of some domain, making some
elements indistinguishable from others. The main idea is that the occurrence
of two di�erent events but indistinguishable by the indistinguishability rela-
tion de�ned, will count as the occurrence of the same event when measuring
the \observational" entropy.
De�nition 3.6.1 Let E be a T -indistinguishability operator on a set X. The
observation degree of xj ∈ X is de�ned by:

π(xj) =
∑
x∈X

p(x) · E(x, xj). (3.43)

By the re
exivity of operator E, this expression can be rewritten as:
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π(xj) = p(xj) +
∑

x∈X|x 6=xj

p(x) · E(x, xj). (3.44)

This de�nition has a clear interpretation: the possibility of observing xj

is given by the probability that xj really happens (expressed by the �rst
term), plus the probability of occurrence of some element similar to xj ,
weighted by the similarity degree. In other words, the �rst term measures
the possibility of really observing xj , while the second term measures the
possibility of observing xj mistakenly (xj didn't really happen).
Proposition 3.6.2

∀x ∈ X : 0 6 π(x) 6 1. (3.45)
Proof 3.6.3 Trivial. �

Corollary 3.6.4

0 6
∑
x∈X

π(x) 6 |X|. (3.46)

It should be noted that π(X) is not a probability distribution since∑
x∈X π(x) 6= 1.

De�nition 3.6.5 The quantity of information received by observing xj is
de�ned by:

C(xj) = − log2 π(xj). (3.47)
De�nition 3.6.6 Given a T -indistinguishability operator E on X, and P
a probability distribution on X, the observational entropy (HO) of the pair
(E,P ) is de�ned by:

HO(E,P ) = ∑
x∈X

p(x) · C(x). (3.48)

Note that if we would have de�ned

C(xj) = π(xj)
then

HO(E,P ) = ∑
xi,xj

p(xi) · p(xj) · E(xi, xj).
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Assuming probabilistic independence we would have

HO(E,P ) = ∑
xi,xj

p(xi, xj) · E(xi, xj)

which could be considered the expected value of the T -indistinguishabi-
lity operator .

Let us suppose the following case: let X = {x1, x2} be the domain, P
be the probability distribution given by p(x1) = p(x2) = 0.5, and E be the
classical equality relation. It is trivial to check that HO(E,P ) = 1. This
result suggests the following de�nition:
De�nition 3.6.7 The information received by observing an event between
two equally probable and fully distinguishable, will de�ne the unit of measure
for the observational entropy: the observable bit.

Proposition 3.6.8 Let E,E′ be two T -indistinguishability operators on X
and P be a probability distribution on X.

E ⊆ E′ ⇒ HO(E,P ) > HO(E′, P ) (3.49)
where \⊆" is the usual containment relation between fuzzy relations as

de�ned by Zadeh [188]:

E ⊆ E′ ⇔ ∀x, y ∈ X : E(x, y) 6 E′(x, y). (3.50)
Proof 3.6.9 Trivial. �

Corollary 3.6.10 Let E be a T -indistinguishability operator on X, P be a
probability distribution on X and H(P ) be the Shannon entropy of P . Then

HO(E,P ) 6 H(P ) (3.51)
obtaining the equality when E is the classical equality relation.

Proposition 3.6.11 Let E be a T -indistinguishability operator on X, xi ∈
X and P be a probability distribution on X such that

P (x) =
{ 1 , x = xi

0 , x 6= xi

Then

HO(E,P ) = 0. (3.52)
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Proof 3.6.12 Trivial. �

Proposition 3.6.13 Let E be the T -indistinguishability operator such that
∀x, y ∈ X : E(x, y) = 1 and P be a probability distribution on X. Then

HO(E,P ) = 0. (3.53)
Proof 3.6.14 Trivial. �

Proposition 3.6.15 Let E be a (crisp) equivalence relation on X, P be a
probability distribution on X and denoting by H(P ) the Shannon entropy,
by X/E the quotient set and by P the induced probability distribution on
X/E:

P ([x]E ∈ X/E) = ∑
y∈[x]E

p(y). (3.54)

Then

HO(E,P ) = H(P ). (3.55)

3.6.1 Observation degree as expected value of a random vari-

able.

In this section a new interpretation of the observation degree is given. This
degree was de�ned as:

π(xj) =
∑
x∈X

p(x) · E(x, xj).

When working on �nite domains, T-indistinguishability operators can
be represented by a symmetric matrix M , where the (i, j) component takes
the value E(xi, xj) so that column (or row) i of matrix M contains the
indistinguishability degrees of all the elements with respect to the element
xi. Therefore, we can de�ne the fuzzy set \similarity with xi" (≈xi) on X,
also called singleton or simply column [188] on the literature, as:

∀xj ∈ X :≈xi (xj) = E(xi, xj). (3.56)
Fixing an element xi of X, we de�ne the random variable G≈xi

over the
interval [0,1] with the following probability distribution P≈xi

:
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∀r ∈ [0, 1] : P≈xi
(r) = ∑

x∈X|≈xi (x)=r

p(x). (3.57)

It is trivial to check that P≈xi
is a probability distribution over the set

of membership degrees ([0,1]), where each r ∈ [0, 1] takes as its probability
the sum of the probabilities of all the elements whose \similarity degree"
with xi is r. Finally, next equality holds:

∀x ∈ X : π(x) = ε(G≈x). (3.58)
The observation degree of an element x is the expected value of the

random variableG≈x . In other words, the observation degree is the expectedvalue for the \similarity degree with x".

3.6.2 Simultaneous observation degree.

In this section we will introduce the concept of simultaneous observation
degree. Given that an indistinguishability relation has been de�ned, it is
possible for two independent observers to disagree in the observation of an
event. For instance, observer A may have observed event xi while observer
B may have observed event xj , if xi and xj are similar. If events were fully
distinguishable, this \overlapping" or \simultaneous observation" could not
have been possible (assuming the absence of noise or error).

Before de�ning the simultaneous observational degree, we need to gen-
eralize de�nition (3.57).

De�nition 3.6.16 Let E be a T -indistinguishability operator on X, P be
a probability distribution on X. ∀A = {x1, . . . , xk} ⊆ X we can de�ne the
fuzzy set \similarity degree with x1 and . . . and xk" as:

∀x ∈ X :≈{x1,...,xk} (x) = T (≈x1 (x), . . . ,≈xk
(x)). (3.59)

Then, we de�ne the random variable G{≈x1 ,...,≈xk
} over the interval [0, 1]

with the following probability distribution

∀r ∈ [0, 1] : P{≈x1 ,...,≈xk
}(r) =

∑
x∈X|≈{x1,...,xk}(x)=r

p(x). (3.60)
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De�nition 3.6.17 Let E be a T -indistinguishability operator on X and P
be a probability distribution on X. The simultaneous observation degree of
the subset {x1, . . . xk} is de�ned by:

OE({x1, . . . , xk}) = ε(G{≈x1 ,...,≈xk
}). (3.61)

Proposition 3.6.18 Let E be a T -indistinguishability operator on X =
{x1, . . . , xn}. Then

OE({x1, . . . , xn}) = 1⇔ ∀xi, xj ∈ X : E(xi, xj) = 1. (3.62)

Proof 3.6.19

OE({x1, . . . , xn}) = 1
⇔ ε(G{≈x1 ,...,≈xn}) = 1
⇔

∑
x∈X|≈{x1,...,xn}(x)=1

p(x) = 1

⇔ ∃{x1, . . . , xk} ⊆ X : ∑
x∈{x1,...,xk}

p(x) = 1

such that

∀x ∈ {x1, . . . , xk} : T (≈x1 (x), . . . ,≈xn (x)) = 1
⇔ ∀xi ∈ X :≈xi (x) = 1
⇔ ∀xi ∈ X : E(xi, x) = 1
⇔ ∀xi, xj ∈ X : E(xi, xj) = 1

�

Proposition 3.6.20 Let E be a T -indistinguishability operator on X =
{x1, . . . , xn} and P be a probability distribution on X. Then

OE({x1, . . . , xn}) = 0⇔ ∀xi ∈ X | p(xi) > 0 : ∃xj | E(xi, xj) = 0
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Proof 3.6.21
OE({x1, . . . , xn}) = 0
⇔ ε(G{≈x1 ,...,≈xn}) = 0
⇔ ∀r ∈ [0, 1] : p(G{≈x1 ,...,≈xn} = r) = ∑

x∈X:≈{x1,...,xn}(x)=r

p(x) = 0

∀x ∈ X :
(
T (≈x1 (x), . . . ,≈xn (x)) = 0 ∨ p(x) = 0

)
⇔ ∀x ∈ X∃xi ∈ X :

(
E(xi, x) = 0 ∨ p(x) = 0

)
⇔ ∀x ∈ X such that p(x) > 0

it holds that

∃xi ∈ X : E(xi, x) = 0.
�

3.6.3 Conditional observation degree.

In the last section we dealt with the scene in which there was disagreement
between observers \equipped" with the same indistinguishability relation.
Now we will consider the case in which observers have di�erent indistin-
guishability abilities (each observer has his own T -indistinguishability op-
erator ). For instance, let us suppose that we know that observer A using
indistinguishability EA has observed event xi. This fact restricts the events
that really might have been happened to the set of events similar to xi with
respect to EA . This restriction in the set of possible events a�ects to the
observability of observer B.
De�nition 3.6.22 Let E be a T -indistinguishability operator on X, xj ∈ X
and P be a probability distribution on X. Then ∀x ∈ X we de�ne:

PE
xj
(x) = p(x) · E(x, xj)

πE(xj)
= p(x) · E(x, xj)∑

y∈X p(y) · E(y, xj) . (3.63)

PE
xj
(x) quanti�es the contribution of x to the observation degree of xj in

(E,P ).
Following [29] the expression above could also be justi�ed in probabilistic

terms as follows: let us suppose a set X and a fuzzy set A on X with
membership function µA.
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Taking

p(A) = ∑
x∈X

p(x) · µA(x) (3.64)

in accordance with the de�nition of the probability of a fuzzy event given
by Zadeh [187], then we could ask for the probability of the intersection of
a crisp event and a fuzzy event:

p(A ∩ {xi}), xi ∈ X. (3.65)
Recalling that we are under a probabilistic setting we write:

p(A ∩ {xi}) = p({xi}) · p(A|{xi}).
Leaving aside formal details (we are just providing an intuitive interpre-

tation) we could make the assumption:

p(A ∩ {xi}) = p({xi}) · µA(xi).
Let us now de�ne p({xi}|A) as the probability of a crisp event condi-

tioned to a fuzzy one as

p({xi}|A) = p(A ∩ {xi})
p(A) = p(xi) · µA(xi)∑

x p(x) · µA(x) . (3.66)
Translating this expression to our framework we obtain:

pE
xj
(xi) = p(xi) · E(xi, xj)∑

x p(x) · E(x, xi) = p({xi}|πE(xj)). (3.67)
The de�nition above could be interpreted as the probability of the crisp

event xi, conditioned to the fuzzy event of \having observed xj in (E,P)".
Another possible interpretation is given in [29] by noticing that the use

of Dempster rule to combine two belief functions, one of which being a
probability measure and the other being a possibility measure, leads to an
equivalent expression. Namely, let Bel1 be a possibility measure with asso-
ciated possibility distribution µ , and let Bel2 de�ne a probability measure
p. Then

∀xi ∈ X : (Bel1 ⊕Bel2)(xi) = µ(xi) · p(xi)∑
x∈X µ(x) · p(x) (3.68)

which is equivalent to our de�nition of PE
xj
(xi).
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Proposition 3.6.23 Let E be a T -indistinguishability operator on X and
P be a probability distribution on X. Then

∀xj ∈ X : ∑
x∈X

PE
xj
(x) = 1. (3.69)

Proof 3.6.24 Trivial. �

De�nition 3.6.25 Let E,E′ be two T -indistinguishability operators on X
and P be a probability distribution on X. We de�ne the conditioned obser-
vation degree of xi ∈ X having observed xj in (E′, P ) as

πE|E′
xj

(xi) =
∑
x∈X

PE′
xj
(x) · E(x, xi). (3.70)

In (3.61) we de�ned the simultaneous observation degree. It seems nat-
ural to extend the former de�nition in order to consider the observation
degree conditioned to a simultaneous observation of a subset of X.
As a previous step, we need to extend (3.63) in order to quantify the con-
tribution of an element x ∈ X to the simultaneous observation of a subset
{x1, . . . , xk} ⊆ X in (E,P ).

De�nition 3.6.26 Let E be a T -indistinguishability operator on X, P be
a probability distribution on X and {x1, . . . , xk} be a subset of X. Then
∀x ∈ X:

PE
{x1,...,xk}(x) =

p(x) · T (E(x1, x), . . . , E(xk, x))
OE({x1, . . . , xk})

= p(x) · T (E(x1, x), . . . , E(xk, x))∑
y∈X p(y) · T (E(x1, y), . . . , E(xk, y)) . (3.71)

Proposition 3.6.27 Let E be a T -indistinguishability operator on X and
P be a probability distribution on X, then

∀A ∈ ℘(X) : ∑
x∈X

PE
A (x) = 1. (3.72)

Proof 3.6.28 Trivial. �

Now, we can de�ne:
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De�nition 3.6.29 Let E,E′ be two T -indistinguishability operators on X
and P be a probability distribution on X. We de�ne the conditioned ob-
servation degree of xi ∈ X, having observed {x1, . . . , xk} simultaneously in
(E′, P ) as

π
E|E′

{x1,...,xk}(xi) =
∑
x∈X

PE′

{x1,...,xk}(x) · E(x, xi). (3.73)

De�nition 3.6.30 Let E,E′ be two T -indistinguishability operators on X
and P be a probability distribution on X. We de�ne the simultaneous con-
ditioned observation degree of A ∈ ℘(X) , having observed B ∈ ℘(X) simul-
taneously in (E′, P ) as

π
E|E′

B (A = {a1, . . . , ak}) =
∑
x∈X

PE′
B (x) · T (E(x, a1), . . . , E(x, ak)).

3.6.4 Conditioned observational entropy.

Informally, the conditioned observational entropy measures how do a�ect
the observations performed by an observer "using" a T -indistinguishability
operator E′ in the variability degree of the potential observations (observa-
tional entropy) of some other observer using another T -indistinguishability
operator E. Of course, this in
uence can exist because both observers share
the domain of observation.
De�nition 3.6.31 Let E,E′ be two T -indistinguishability operators on X
and P be a probability distribution on X. We de�ne the observational en-
tropy of the pair (E,P ) conditioned to the observation of xj ∈ X in (E′, P )
as follows:

HOxj (E | E′, P ) = −
∑

xi∈X

PE′
xj
(xi) · log2 πE|E′

xj
(xi). (3.74)

As we said, having observed xj in (E′, P ) restricts the events that really
may happened. HOxj (E | E′, P ) measures the observational entropy under
these new restrictions.
De�nition 3.6.32 Let E,E′ be two T -indistinguishability operators on X
and P be a probability distribution on X. We de�ne the observational en-
tropy of the pair (E,P ) conditioned by the pair (E′, P ) as

HO(E | E′, P ) = ∑
xj∈X

p(xj) ·HOxj (E | E′, P ). (3.75)
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In other words, the conditioned observational entropy of pair (E,P ) is
the expected value of the observational entropy of (E,P ) conditioned to the
observation of all xj ∈ X in (E′, P ).
Proposition 3.6.33 Let E′ be the classical equality on X. Then for all
probability distribution P on X, and for all T -indistinguishability operator
E on X we have

HO(E | E′, P ) = 0. (3.76)
Proof 3.6.34

If

∀xi, xj ∈ X : E′(xi, xj) =
{1 xi = xj

0 otherwise

then

πE|E′
xj

(xi) =
∑
x∈X

PE′
xj
(x) · E(x, xi)

= ∑
x∈X

p(x) · E′(x, xj)
p(xj) · E(x, xi)

= E(xi, xj).
Therefore

HOxj (E | E′, P ) = −
∑

xi∈X

PE′
xj
(xi) · log2 πE|E′

xj
(xi)

= −1 · log2 1 = 0
and

HO(E | E′, P ) = ∑
xj∈X

p(xj) ·HOxj (E | E′, P ) = 0.

�
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When the conditioning T -indistinguishability operator is the classical
equality relation, all observations performed on it restrict maximally the set
of events that may have happened to only one event. Namely, if we observe
xj ∈ X in the classical equality context, only xj could have happened.
Therefore, knowing which element has been observed in the pair (E′, P )
suppresses the variability in the restricted set of potential observations of
(E,P ). Consequently, the conditioned observational entropy equals zero.

Proposition 3.6.35 Let E′ be the T -indistinguishability operator such that
∀xi, xj ∈ X : E′(xi, xj) = 1, then for all T -indistinguishability operator E
on X and for all probability distribution P on X, it holds:

HO(E | E′, P ) = HO(E,P ). (3.77)

Proof 3.6.36

If

∀xi, xj ∈ X : E′(xi, xj) = 1

then

πE|E′
xj

(xi) =
∑
x∈X

PE′
xj
(x) · E(x, xi)

= ∑
x∈X

p(x) · E(x, xi)

= πE(xi).

Therefore

HOxj (E | E′, P ) = −
∑

xi∈X

PE′
xj
(xi) · log2 πE|E′

xj
(xi)

= ∑
xi∈X

p(xi) · log2 πE(xi)

= HO(E,P )
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and

HO(E | E′, P ) = ∑
xj∈X

p(xj) ·HOxj (E | E′, P )

= ∑
xj∈X

p(xj) ·HO(E,P )

= HO(E,P ).
�

Now we deal with the reverse case of the former proposition. Since
the conditioning T -indistinguishability operator is maximally uncertain, all
elements are fully indistinguishable. This fact causes that no restrictions on
the set of events that may have happened were induced by the observations
performed on (E′, P ). So, the only remaining restrictions are those imposed
by the T -indistinguishability operator E itself. Therefore the conditioned
observational entropy equals the non conditioned observational entropy.
Proposition 3.6.37 Let E be the T -indistinguishability operator such that
∀xi, xj ∈ X : E(xi, xj) = 1. Then, for all T -indistinguishability operator E′

and for all probability distribution P on X it holds:

HO(E | E′, P ) = 0. (3.78)
Proof 3.6.38

If

∀xi, xj ∈ X : E(xi, xj) = 1
then

πE|E′
xj

(xi) = 1
and therefore

∀xj ∈ X : HOxj (E | E′, P ) = 0⇒
HO(E | E′, P ) = 0.

�
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Any restriction induced by the observations performed in (E′, P ) doesn't
"improve" our distinguishability ability, since for all restricted set of events,
its members remain fully indistinguishable (due to the de�nition of E). So,
the \improving" by conditioning averages zero.
Proposition 3.6.39 Let E be the classical equality on X, E′ be a T -in-
distinguishability operator on X and P be a probability distribution on X.
We denote by H the Shannon entropy measure and by PE′

x the probability
distribution de�ned in (3.63). Then

HO(E | E′, P ) = ∑
xj∈X

p(xj) ·H(PE′
xj
). (3.79)

Proof 3.6.40

If

∀xi, xj ∈ X : E(xi, xj) =
{1 xi = xj

0 otherwise

then

πE|E′
xj

(xi) =
∑
x∈X

PE′
xj
(x) · E(x, xi)

= PE′
xj
(xi)

and

HOxj (E | E′, P ) = −
∑

xi∈X

PE′
xj
(xi) · log2 πE|E′

xj
(xi)

= −
∑

xi∈X

PE′
xj
(xi) · log2 PE′

xj
(xi)

= H(PE′
xj
)

and therefore

HO(E | E′, P ) = ∑
xj∈X

p(xj) ·H(PE′
xj
).

�
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Proposition 3.6.41 Let E,E′ be two (crisp) equivalence relations on X,
P be a probability distribution on X, X/E and X/E′ be the quotient set of
X by E and E′ respectively, and [x]E′ be the class of equivalence of x in
X/E′. Then

HOxj (E | E′, P ) = −
∑

c∈X/E

p(c ∩ [xj ]E′)
p([xj ]E′) · log2 p(c ∩ [xj ]E′)

p([xj ]E′) (3.80)

where ∀c ∈ ℘(X) : p(c) = ∑
x∈c p(x).

Proof 3.6.42

If both E and E′ are equivalence relations, then

∀x, xj ∈ X : PE′
xj
(x) =

{
p(x)

p([xj ]E′ ) x ∈ [xj ]E′

0 otherwise
.

Then

πE|E′
xj

(xi) =
∑
x∈X

PE′
xj
(x) · E(x, xi)

= ∑
x∈[xj ]E′

p(x)
p([xj ]E′) · E(x, xi).

Since when x /∈ [xi]E ⇒ E(x, xi) = 0 we have

∑
x∈[xj ]E′

p(x)
p([xj ]E′) · E(x, xi) =

∑
x∈([xj ]E′∩[xi]E)

p(x)
p([xj ]E′)

= p([xj ]E′ ∩ [xi]E)
p([xj ]E′)

= p([xi]E | [xj ]E′).
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Then

HOxj (E | E′, P ) = −
∑

xi∈X

PE′
xj
(xi) · log2 πE|E′

xj
(xi)

= ∑
xi∈[xj ]E′

p(x)
p([xj ]E′) · log2

p([xj ]E′ ∩ [xi]E)
p([xj ]E′)

= −
∑

c∈X/E

p(c ∩ [xj ]E′)
p([xj ]E′) · log2 p(c ∩ [xj ]E′)

p([xj ]E′) .

�

When E and E′ are equivalence relations, the observational entropy of
(E,P ) conditioned to the observation of xj ∈ X in (E′, P ) measures how the
elements of the class of equivalence of xj in X/E′ \are distributed" between
the classes of X/E.

Corollary 3.6.43 Let E,E′ be two (crisp) equivalence relations on X, P be
a probability distribution on X, [xj ]E′ be the class of equivalence of xj in
X/E′, then ∀xj ∈ X it holds:

∃c ∈ X/E : [xj ]E′ ⊆ c⇒ HOxj (E | E′, P ) = 0. (3.81)

Corollary 3.6.44 Let E,E′ be two equivalence relations on X, P be a prob-
ability distribution on X and X/E′ be the quotient set of X by E′, then

HO(E | E′, P ) = ∑
c′∈X/E′

p(c′) ·HOxj∈c′(E | E′, P ) (3.82)

where ∀c′ ∈ X/E′ : p(c′) = ∑
x∈c′ p(x).

When E and E′ are equivalence relations, HO(E | E′, P ) is the ex-
pected value of the \distribution degree" (between the classes of X/E) for
all classes in X/E′. This expression equals the heuristic function used in
the construction of decision trees [133].

Corollary 3.6.45 Let E,E′ be two equivalence relations on X and P be a
probability distribution on X. Then

E′ ⊆ E ⇒ HO(E | E′, P ) = 0. (3.83)
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3.6.5 Joint observational degree.

In this section we will de�ne the joint observational degree.
De�nition 3.6.46 Let E,E′ be two T -indistinguishability operators on X
and P be a probability distribution on X. We de�ne the joint observational
degree of the pair (xi, xj) in (E × E′, P ) as

πE×E′(xi, xj) = πE′(xj) · πE|E′
xj

(xi). (3.84)
This de�nition has a clear interpretation. Expanding the former expres-

sion we obtain:

πE×E′(xi, xj) =
∑
x∈X

p(x) · E′(x, xj) · E(x, xi). (3.85)

For the product t-norm, this expression is equivalent to:
∑
x∈X

p(x) · T (E′(x, xj), E(x, xi)) (3.86)

which in turn can be interpreted as the expected value of the random
variable G[≈xi∧≈′

xj
], or more informally, the expected value of the similarity

degree with xi in (E,P ) and with xj in (E′, P ).
This interpretation suggests the next property:
Proposition 3.6.47 Let E be a T -indistinguishability operator on Xand
OE be the simultaneous observation degree de�ned in (3.61). Taking the
product t-norm, ∀xi, xj ∈ X it holds

πE×E(xi, xj) = OE({xi, xj}). (3.87)
Proof 3.6.48 Trivial. �

3.6.6 Joint observational entropy.

Once de�ned the joint observational degree, we will de�ne the joint obser-
vational entropy.
De�nition 3.6.49 Let E,E′ be two T -indistinguishability operators on X
and P be a probability distribution on X. ∀xi, xj ∈ X we de�ne:

PE×E′(xi, xj) = p(xj) · PE′
xj
(xi). (3.88)
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De�nition 3.6.50 Let E,E′ be two T -indistinguishability operators on X
and P be a probability distribution on X. We de�ne the joint observational
entropy of (E × E′, P ) as:

HO(E × E′, P ) = −
∑

xi,xj∈X

PE×E′(xi, xj) · log2 πE×E′(xi, xj). (3.89)

Proposition 3.6.51 Let P be a probability distribution on X, E be a T -in-
distinguishability operator on X and E′ be the T -indistinguishability operator
such that ∀xi, xj ∈ X : E′(xi, xj) = 1. Then

HO(E × E′, P ) = HO(E,P ). (3.90)

Proof 3.6.52

If

∀xi, xj ∈ X : E′(xi, xj) = 1

then

PE×E′(xi, xj) = p(xj) · PE′
xj
(xi)

= p(xj) · p(xi) · E′(xi, xj)∑
x∈X p(x) · E′(x, xj)

= p(xj) · p(xi)

and

πE×E′(xi, xj) =
∑
x∈X

p(x) · E′(x, xj) · E(x, xi)

= ∑
x∈X

p(x) · E(x, xi)

= πE(xi).
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Therefore

HO(E × E′, P ) = −
∑

xi,xj∈X

PE×E′(xi, xj) · log2 πE×E′(xi, xj)

= ∑
xj∈X

p(xj) ·
∑

xi∈X

p(xi) · log2 πE(xi)

= ∑
xj∈X

p(xj) ·HO(E,P )

= HO(E,P ). �

Proposition 3.6.53 Let P be a probability distribution on X, E be a T -in-
distinguishability operator on X, E′ be the classical equality on X and H(P )
be the Shannon entropy measure of P . Then

HO(E × E′, P ) = H(P ). (3.91)
Proof 3.6.54

If

∀xi, xj ∈ X : E′(xi, xj) =
{1 xi = xj

0 otherwise

then

PE×E′(xi, xj) = p(xj) · PE′
xj
(xi)

= p(xj) · p(xi) · E′(xi, xj)∑
x∈X p(x) · E′(x, xj)

=
{
p(xj) i = j

0 otherwise

and

πE×E′(xi, xj) =
∑
x∈X

p(x) · E′(x, xj) · E(x, xi)

= p(xj) · E(xj , xi).
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Therefore

HO(E × E′, P ) = −
∑

xi,xj∈X

PE×E′(xi, xj) · log2 πE×E′(xi, xj)

= ∑
x∈X

p(x) · log2 p(x)

= H(P ).
�

Finally, we provide a theorem equivalent to the law of total entropies,
but in the context of observational entropy.
Theorem 3.6.55 Let E,E′ be two T -indistinguishability operators on X
and P a probability distribution on X. It holds

HO(E × E′, P ) = HO(E′, P ) +HO(E | E′, P ). (3.92)
Proof 3.6.56 By (3.89) we have:

HO(E × E′, P ) = −
∑

xi,xj∈X

PE×E′(xi, xj) · log2 πE×E′(xi, xj)

= −
∑

xi,xj∈X

p(xj)PE′
xj
(xi) · log2 πE′(xj)πE|E′

xj
(xi)

= −
∑

xi,xj∈X

p(xj)PE′
xj
(xi) · log2 πE′(xj)

= −
∑

xi,xj∈X

p(xj)PE′
xj
(xi) · log2 πE|E′

xj
(xi).

The �rst term can be rewritten as:

−
∑

xj∈X

p(xj) log2 πE′(xj) ·
∑

xi∈X

PE′
xj
(xi).

By (3.69) , ∑
xi∈X PE′

xj
(xi) = 1. So we have:

HO(E × E′, P ) = −
∑

xj∈X

p(xj) log2 πE′(xj)−
∑

xi,xj∈X

p(xj)PE′
xj
(xi) · log2 πE|E′

xj
(xi).

The �rst term equals HO(E′, P ) and the second equals HO(E | E′, P ).
Therefore:

HO(E × E′, P ) = HO(E′, P ) +HO(E | E′, P ).
Note: (3.90) and (3.91) become obvious corollaries of this theorem.
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3.6.7 An example.

Given X = {x1, x2, x3}, let E be the following T -indistinguishability opera-
tor (assuming the Lukasiewicz t-norm ) :


x1 x2 x3

x1 1 0.6 0.8
x2 0.6 1 0.6
x3 0.8 0.6 1


and E′ be the T -indistinguishability operator de�ned as:


x1 x2 x3

x1 1 0 0.5
x2 0 1 0.2
x3 0.5 0.2 1


Let P be the next probability distribution on X:

p(x1) = 0.5
p(x2) = 0.3
p(x3) = 0.2.

Observational entropy of (E,P ) and (E′, P ):

HO(E,P ) = −
∑
x∈X

p(x) · log2 πE(x)

= 0.54

HO(E′, P ) = −
∑
x∈X

p(x) · log2 πE′(x)

= 1.03
Conditioned observational entropies:

HOx1(E | E′, P ) = −
∑
x∈X

PE′
x1 (x) · log2πE|E′

x1 (x)

= −
∑
x∈X

p(x)E′(x, x1)
πE′(x1) · log2

∑
y∈X

PE′
x1 (y)E(y, x1)

= 0.084
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HOx2(E | E′, P ) = −
∑
x∈X

PE′
x2 (x) · log2πE|E′

x2 (x)

= −
∑
x∈X

p(x)E′(x, x2)
πE′(x2) · log2

∑
y∈X

PE′
x2 (y)E(y, x2)

= 0.137

HOx3(E | E′, P ) = −
∑
x∈X

PE′
x3 (x) · log2πE|E′

x3 (x)

= −
∑
x∈X

p(x)E′(x, x3)
πE′(x3) · log2

∑
y∈X

PE′
x3 (y)E(y, x3)

= 0.257

HO(E | E′, P ) = ∑
x∈X

p(x) ·HOx(E | E′, P )

= 0.14
Joint observational entropy of (E × E′, P ):

HO(E × E′, P ) = −
∑

xi,xj∈X

PE×E′(xi, xj) · log2 πE×E′(xi, xj)

= −
∑

xi,xj∈X

p(xj)PE′
xj
(xi) · log2 πE′(xj)πE|E′

xj
(xi)

= 1.17
Finally, it holds:

HO(E × E′, P ) = HO(E′, P ) +HO(E | E′, P )
1.17 = 1.03 + 0.14



Chapter 4

Application to Modelling

with Words.

A little inaccuracy sometimes saves tons of explanation.
Hector Hugh Munro -Saki-, "The Square Egg".

4.1 Introduction.

The main contributions of this chapter are:
• A general framework for the induction of decision trees in the presence
of uncertainty.

• A new type of decision trees (observational decision trees) based on
the concept of observational entropy.

• A new algorithm (FSQ) belonging to the family of sequential covering
algorithms, intended to induce linguistic rules from data. A formal
comparison with existing methods is also provided.

• New techniques to de�ne the T -indistinguishability operator on a set
of fuzzy subsets over X (prototypes) compatible with a given T -indis-
tinguishability operator over the elements of X.

Recently, technological improvements and our growing ability in collect-
ing information have raised the emergence of a great number of data sets
about a very di�erent kind of topics. But all this information will become

101
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useless unless some e�cient mechanisms are developed in order to manage
this huge amount of data.

Moreover, available data sometimes happen to be pervaded with uncer-
tainty either due to their inherent qualitative origin, or to limitations in
measurement instruments. It also should be noted that lack of uncertainty
may not be always a desirable property since its management could help us
in obtaining simpler and more understandable representations by improv-
ing abstraction and generalization abilities. Therefore it seems reasonable
asking the available methods and techniques for an adequate treatment of
uncertainty.

Inductive learning has a very long tradition as a matter of concern of ar-
eas such as computer science, psychology, biology . . . .Nevertheless, the study
and development of arti�cial inductive systems have been mainly focused on
managing, at most, probabilistic uncertainty, neglecting other forms of un-
certainty which indeed are present in the real world. With the advent of
a growing interest in uncertainty beyond the probabilistic setting, a lot of
work has been carried out addressing the development of methods suited to
capture and manage other types of uncertainty.

As suggested in [114, 118, 139], inductive learning methods are often
described in terms of the paradigm of state space search by de�ning the set of
operators governing transitions between states, the searching procedure and
the description language. The choice of the representation language should
be determined in part by the task this particular method is expected to solve.
So, accuracy is a key property for prediction systems while comprehensibility
is agreed to be a must for knowledge extraction systems, for instance.

This chapter is intended to explore inductive methods accounting for
a proper management of uncertainty and whose generated descriptions are
expected to be easily interpretable.

Our proposal will follow the paradigm of "Computing with Words" which
is based on the use of linguistic rules as the description language. The ex-
pression "Computing with Words" (CW) was coined by Zadeh [193] in con-
trast to the traditional numerical-based computation methods. As its name
suggests, CW is a methodology in which words are used instead of numbers
in order to mimic the kind of qualitative reasoning performed by humans.
Fuzzy Set theory and Fuzzy Logic play a pivotal role since denotations for
words and linguistic quanti�ers are solidly rooted upon this theory through
the concept of linguistic variable.

Zadeh [189] de�ned a linguistic variable as a �vefold structure

(V, T (V ), U,G,M) (4.1)
where:
• V = name of the variable
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• T (V ) = set of atomic terms
• U = universe of discourse
• G = syntactic rules for generating valid terms
• M = semantic rules for associating the proper \meaning" (fuzzy set
on U) to each valid term.

For instance, we could de�ne the linguistic variable "Age" on the at-
tribute "Years" (with domain [0, 100]) as follows:

• V = Age
• T (V ) = young, middle-aged, old
• U = [0, 100]
• G = young | middle-aged | old
• M = fuzzy sets representing the meaning of \young", \middle-aged"
and \old"

Assuming this paradigm, we will present a novel method of induction
of decision trees based on the measure of observational entropy which was
introduced in chapter 3.

It will also be provided a method belonging to the sequential covering
family of algorithms, adapted to properly managing uncertainty derived
form vagueness.

Finally, some experimental results will be provided.

4.2 Previous work.

Regarding the extraction of linguistic rules from data several approaches
have been proposed in the literature. As illustrative (and by no means
exhaustive) examples the following may be worth mentioned.

4.2.1 Naive approximations.

A straightforward approach for the generation of linguistic rules is the
method described in [75]. Having de�ned a linguistic variable for each at-
tribute, every rule belonging to their cross product is generated. An obvious
drawback of this approach is the computational cost involved since the num-
ber of generated rules grows exponentially with the number of attributes.

In [162] the number of rules does not depend directly on the number
of attributes but on the training examples. Having also de�ned linguistic
variables over the set of available attributes , the authors propose to generate
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one rule by example, namely that having the maximum degree of truth for
this particular example.

So, for a given instance (xi1, · · · , xi
n, c

i) the following rule is generated
"If xi1 is Ai1 and . . . and xi

n is Ai
n then ci is Ai

c" , where Ai
j are the linguistic

labels having the maximum membership for the values xi
j of instance i.This procedure may lead to an inconsistent set of rules since letting each

example generate one rule, is probable the existence of con
icting rules (i.e,
rules having the same antecedent but di�erent consequent). In this case the
rule having maximum degree within a con
ict group is selected.

The output is the result of a defuzzi�cation process over the set of �ring
rules.

4.2.2 Linguistic summaries.

The concept of linguistic summary was introduced by Yager [183] in order
to obtain linguistic summarizations accounting for relevant features in the
set of instances.

Linguistic summaries are derived as linguistically quanti�ed propositions
with the theoretical support of works like [192].

The following patterns determine the syntax for linguistic summaries:

• "Q instances are S"
• "Q instances are S1 ∧ · · · ∧ Sk"
• "QR instances are S"
• "QR instances are S1 ∧ · · · ∧ Sk"

where Si and R are summarizers and Q is a linguistic quanti�er. Sum-
marizers are values taken by linguistic variables (i.e, "tall" , "young" . . . )
while the meaning of linguistic quanti�ers ("some" , "most" . . . ) is de�ned
as fuzzy sets on [0, 1] [192].

Linguistic summaries are validated by computing the degree of truth (ρ)
of its associated pattern:

• ρ (\Q instances are S") = µQ( 1
|X|

∑
x∈X µS(x))

• ρ (\Q instances are S1∧. . .∧Sk") = µQ( 1
|X|

∑
x∈X T (µS1(x), . . . , µSk

(x)))

• ρ (\Q R instances are S") = µQ(
∑

x∈X T (µR(x),µS(x))∑
x∈X µR(x) )

• ρ \Q R instances are S1∧ . . .∧Sk" = µQ(
∑

x∈X T (µR(x),µS1 (x),...,µSk
(x))∑

x∈X µR(x) )
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In addition, Yager also introduces the notion of informativeness for lin-
guistic summaries. Informativeness is estimated measuring the di�culty of
"reconstructing" the original data set from which the summary was derived.
Consequently, the informativeness of a given summary S is de�ned as the
speci�city of the set of data sets consistent with S (CON(S)) as:

Informativeness(S) = 1
|CON(S)| (4.2)

In [102] a partial order is de�ned for each attribute in the set of its
corresponding linguistic values. This order is intended to model the prior
knowledge about the structure of the domains.

Descriptions are represented as propositions in conjunctive form. A
breadth search is performed (from general to speci�c descriptions) prun-
ing the descriptions whose support is below a prede�ned threshold. The
correctness of this pruning strategy derives from the fact that if the support
of a given description D does not reach a given threshold, no specialization
of D will do.

Informativeness is de�ned based on Hartley measure, so that the infor-
mativeness of a given description S quanti�es the reduction of uncertainty
when characterizing a particular data set (the one from which D was gener-
ated) resulting from knowing that the set of data sets have to be consistent
with S.

Informativeness(S) = log |TOT |
|CON(S)| (4.3)

where TOT is the set of all possible data sets and CON(S) ⊆ TOT is
the set of data sets consistent with S.

4.2.3 Sequential covering.

The family of methods known as sequential covering algorithms [19, 113] are
intended to produce a disjunctive set of rules which "cover" a given subset of
instances (target concept) of the training set by following the next scheme:
�rst, a rule is generated covering a "portion" of the target concept. We
require this rule having high accuracy, but not necessarily high coverage.
By high accuracy we mean the predictions it makes should be correct. By
accepting low coverage, we mean it needs not make predictions for every
training example [113]. Then, instances covered by this rule are removed
from the training set. This procedure can be iterated as many times as
desired to learn a disjunctive set of rules that together cover any desired
fraction of the training set.
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4.2.4 Decision trees.

Decision trees, since their formal appearance within the context of inductive
learning [133] have become one of the most relevant paradigm of machine
learning methods. The main reason for this wide-spreading success lies in
their proved applicability to a broad range of problems, in addition to ap-
pealing features as the readability of the knowledge represented in the tree.
Therefore, a lot of work have been carried out from Quinlan's TDID3 algo-
rithm in order to extend the applicability to domains beyond the categorical
ones and achieve further improvements. In this line, many approaches deal-
ing with continuous-valued attributes have been proposed ([16, 135, 107]).
Also, alternative measures to the classical Shannon entropy measure [147]
for attribute selection have been devised, like Gini's test [16], Kolmogorov-
Smirno� distance [157], distance between partitions [108], contrast measures
[159], . . .

Another important point has been providing decision tree induction algo-
rithms with a more 
exible methodology in order to cope with other sources
of uncertainty beyond the probabilistic type. Indeed, when we face real prob-
lems we should overcome the limitations of the probabilistic framework by
furnishing existing methods, so that other well-known types of uncertainty
could be managed.

Some generalizations have been proposed to achieve this goal.

Probabilistic decision trees.
Coping with missing or uncertain attribute values where uncertainty is rep-
resented by probability distributions led Quinlan to develop probabilistic
decision trees [134].

Fuzzy decision trees.
Generalization and interpolation properties of fuzzy sets together with their
less sensitivity to small changes in input attribute values make them specially
suitable for classi�cation tasks. Fuzzy decision trees ( [82], [163], [185], [156],
[2]) bene�t from those aspects to provide a 
exible framework for inducing
linguistic rules.

In [185] the selection of the splitting attribute is based on computing the
speci�city of the fuzzy partition induced by the values of the corresponding
attribute.

For a given instance u, let E(u) be the accumulated evidence in node k
computed as the conjunction of membership degress for all linguistic labels
from k up to the root.

Then, for a given remaining (non used) attribute A, for all linguistic
value Ai of A and for all class Ci, the degree of possibility of class Ci given
the evidence E ∧Ai is de�ned as
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π(Ci|E ∧Ai) =
∑

u∈U µCi(u) ∧ µAi(u) ∧ E(u)∑j
k=1

∑
u∈U µAi(u) ∧ Ck(u) ∧ E(u) (4.4)

where U is the set of instances and j the number of classes. The main
di�erence with respect to other methods is taking the value π as a possibility
degree instead of the usual probabilistic interpretation.

Therefore for value Ai, the following possibility distribution is obtained:

πAi = ( π(C1|E ∧Ai)
max16k6j{π(Ck|E ∧Ai)} , . . . ,

π(Cj |E ∧Ai)
max16k≤j{π(Ck|E ∧Ai)}). (4.5)

U-uncertainty measure is then computed for the possibility distribution
above:

g(πAi) =
j∑

i=1
(πi − πi+1) · log i. (4.6)

Finally, g(πAi) values are averaged for linguistic values Ai of attribute
A, yielding:

g(A) = ∑
Ai∈A

∑
u∈U µAi(u) ∧ E(u)∑

Aj∈A

∑
u∈U µAj (u) ∧ E(u) · g(πAi). (4.7)

The attribute minimizing g(A) will be selected.
In [82] the traditional approach of minimizing the entropy is followed.

This method adapts the classical procedure in order to properly deal with
linguistic variables.

With the nomenclature introduced before, for all linguistic value Ai of
attribute A and for all class Ci, the probability of Ci conditioned to evidence
E ∧Ai is de�ned as:

p(Ci|E ∧Ai) =
∑

u∈U µCi(u) ∧ µAj (u) ∧ E(u)∑j
k=1

∑
u∈U µAi(u) ∧ µCk

(u) ∧ E(u) . (4.8)

For each value Ai, the entropy of the distribution of instances compatible
with E ∧ Ai with respect to their distribution among the set of classes is
computed by:

H(C|E ∧Ai) = −
j∑

k=1
p(Cj |E ∧Ai) · log p(Cj |E ∧Ai). (4.9)
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Finally, entropy for attribute A is computed averaging the entropy for
each linguistic value Ai of A as

H(A) = ∑
Ai∈A

∑
u∈U µAi(u) ∧ E(u)∑

Aj∈A

∑
u∈U µAj(u) ∧ E(u) ·H(C|E ∧Ai). (4.10)

The selected attribute will be the one minimizing H(A).

Belief decision trees.

Belief measures [145] provide a mechanism to express and deal with subjec-
tive judgments in a much more 
exible way than probability, o�ering tools
for properly handling ignorance and combining several pieces of evidence.
Hence it was advisable to integrate the advantages of belief functions and
decision trees, resulting in the belief decision trees approach [37, 7].

In [37] a procedure for inducing decision trees when evidences about the
class attribute C are represented as basic probability assignments over the
domain of C (set of possible classes, assuming that C is a symbolic attribute)
is introduced.

Two approaches are presented in order to select the best splitting at-
tribute.

Averaging approach.

The compatibility between a given class Ci and a given instance representing
evidence about its class membership in the form of a bpa m over the set of
classes is computed using the de�nition of the pignistic probability [150] as

π(Ci|m) = ∑
A⊆C:Ci∈A

1
|A|

· m(A)
1−m(∅) . (4.11)

Then, probability of class Ci in node n is de�ned as the average of values
π(Ci|m) over the set of instances (In) "arriving" to node n:

p(Ci) = 1
|In|

·
∑
i∈In

π(Ci|m). (4.12)

Once de�ned these probabilities, the attribute minimizing the entropy is
selected.
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Conjunctive approach.
In this case the selected attribute is that partitioning the set of instances in
such a way that evidence (bpa ) about class membership in each instance is
similar to those of instances belonging to the same partition group.

For this purpose an intra-group measure of distance is de�ned. The
attribute minimizing the averaged intra-group distance over its set of values,
is selected.

Stopping criteria.
Selection and splitting processes are iterated until one of the following stop-
ping criteria is ful�lled for any leaf node n:

• Only one instance reaches n.
• Instances reaching n represent all the same evidence (bpa ).
• The set of remaining splitting attributes is empty.
• There is no gain in partition the set of instances "arriving" to n.

4.2.5 Others.

Other group is composed by methods which make use of some biological
inspired mechanism (neural networks [100], genetic algorithms [68], ant
colonies [18], . . . ) in order to induce a set of linguistic rules.

Finally, there are some methods which do not �t in any of the previous
groups like the induction of linguistic functional dependencies which, based
on the concept of fuzzy graph [193], have the objective of grasping exist-
ing functional dependencies and expressing them in a qualitative manner.
References [162, 36] are examples of this approximation.

4.3 A general framework for induction of decision

trees under uncertainty.

A decision tree can be viewed as a representation of a procedure to determine
the classi�cation of an object. Any speci�c decision tree based technique
should deal basically with two main concerns, namely, how to build the tree
out of a set of examples, and how it is going to be used; corresponding to the
de�nition of a building procedure and an inference algorithm, respectively.

The building procedure usually follows the basic scheme by Quinlan [133]
based on a top down strategy (top down induction of decision tree (TDIDT))
which proceeds by successively partitioning the training set as detailed in
the procedure below:
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1. Place the initial data on the root.
2. Select the best attribute from the set of non used attributes and mark

it as used.
3. Create new child nodes according to the partition induced by the se-

lected attribute.
4. For each newly generated child node iterate step 2 unless any stopping

criterion holds. In this case mark current node as a leaf and compute
its associated label.

On the other hand, the inference process aims at classifying a new in-
stance by traversing down the proper branch of the tree until its corre-
sponding leaf has been reached. In order to cope with uncertainty within
this process some steps must be adapted. Indeed, since the partitioning
strategy does not already de�ne an equivalence relation, an instance can
follow several paths down in the tree to a certain degree and, consequently,
several leaves could be reached whose labels should be combined to produce
a classi�cation. Hence, the inference algorithm should involve the next two
steps:

• Computing the set of leaves reached by the instance to classify.
• Combining their associated labels to produce the output classi�cation.
Our claim is that any decision tree based method admits a decomposition

in terms of the points we are going to describe in the following subsections,
so that a given method should be describable by means of a concrete con-
�guration de�ned over them. Let us examine these points in more detail.

4.3.1 Structure of the training set.

One major requirement when de�ning a general framework for induction
of decision trees should be to integrate and manage di�erent types and
representations of uncertainty in an homogeneous way. So, the framework
should allow us to deal with attributes pervaded with di�erent kinds of
uncertainty described in terms of the following training set structure.

Let A be the set of attributes, let c ∈ A (class attribute) be a dis-
tinguished attribute providing information about the class to which each
instance belongs. Let E be the set of instances where, for all instance e ∈ E
and for all attribute a ∈ A, ea is the available evidence (possibly uncertain)
belonging to instance e about the value v ∈ domain(a) taken by attribute
a.

On the other hand, for each attribute a ∈ A a set of linguistic labels
La = {a1, . . . , a|La|} whose meaning are fuzzy sets in the corresponding
domain (domain(a)) is de�ned.
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These labels will \decorate" nodes and edges of the tree and shall make
up the representation language for expressing the linguistic classi�cation
rules derived from the tree.

Now the question turns into how to manage di�erent representations of
evidences in a consistent way. A solution to this problem could be per-
forming on the initial training set a transformation similar to the so called
\binning" [14] in the classical setting. This transformation expands each at-
tribute column of the initial training set in so many columns as the number
of linguistic labels (|La|) de�ned for the attribute.

The cell of the expanded training set corresponding to linguistic label
ai ∈ La and instance e will contain the compatibility degree between evi-
dence ea and linguistic label ai given by a proper compatibility measure in
such a way that these degrees could be interpreted as the approximation of
evidence ea in the linguistic label space of attribute a (La).

Those values are expected to quantify the degree of compatibility be-
tween evidences and labels, even when both of them may be expressed in
di�erent formal theories.

Despite the particular theory used to model a given piece of evidence
or label, sharing a common domain of discourse allows to de�ne the degree
of compatibility as the possibility degree of a given label conditioned to
the occurrence of a particular piece of evidence (or the expected value, for
situations when probabilistic uncertainty is involved in the representation
of evidence.)

Table 4.1 summarizes de�nitions of the compatibility degree for dif-
ferent types of evidences and labels. Since the use of linguistic values is
tacitly assumed for the set of labels, their meaning is de�ned by fuzzy sets
accordingly. On the other side, evidences may use di�erent representations,
ranging from singleton crisp sets to fuzzy basic probability assignments.

Let X = {x1, . . . , xn} be the domain of discourse.
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A few remarks are worth to be made. Let (i, j) be the coordinates of
cell in row i and column j in the table above. As stated previously, letting
L = {L1, . . . , Lp} be the set of labels and E be a given evidence, the following
fuzzy set:

ψ : Li −→ compatibility(Li, E) (4.13)
could be taken as the approximation of evidence E in the linguistic label

space L.
With this interpretation, the compatibility degree de�ned in cell (2, 2)

equals the upper approximation of crisp set E in L as de�ned in [129].
De�nitions in cells (3, 2) and (3, 3) correspond to rough fuzzy set and fuzzy
rough set upper approximations of evidence respectively, as described in
[34], and cell (4, 3) is equivalent to the de�nition of probability of a fuzzy
set introduced by Zadeh [187].

For the case at hand, evidences play the same role as generalized con-
straints do in the paradigm of Computing with Words [193]. Further ex-
tensions will not be addressed in this dissertation as, for instance, repre-
sentation and management of second type probabilistic information [191]
intended to model the situation in which available evidence only informs
about the probability of occurrence of a subset of the frame of discernment,
being this evidence compatible with many representations of "�rst order"
type (probability distributions, . . . ).

Another possibly extension could be allowing the compatibility degree
be fuzzy valued instead of scalar, as assumed in this section.

4.3.2 Node membership function.

As pointed out previously, TDIDT techniques rely on a \divide-and-conquer"
paradigm by continuously partitioning the remaining set of instances as an
e�ect of adding new constraints to be ful�lled. These new constraints come
from the set of linguistic labels of the attribute selected to partition the set
of instances.

In the classical setting, each partition de�nes an equivalence relation and
the degree of membership of a given instance to each class of the quotient
set is de�ned by the boolean conjunction of the set of constraints appearing
when following the proper path up to the root.

When facing with uncertain evidences, \testing" by an attribute label
does not usually produce a boolean answer. Instead of this, a compatibility
degree between the evidence and the label should be managed.

Let N be the set of nodes, n ∈ N be a given node and R = {r1, . . . , rp}
be the set of constraints belonging to the path going from the root node to
n. The fuzzy set µn : E −→ [0, 1] is de�ned over the set of instances as
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∀e ∈ E : µn(e) = g(r1(e), . . . , rp(e)) (4.14)
where g is a conjunctive aggregation operator (usually a t-norm) and

ri(e) the compatibility degree between instance e and the linguistic label
corresponding to restriction ri.

4.3.3 Attribute selection.

All along this section we will assume the following nomenclature:
• E: set of instances and e ∈ E a particular instance.
• N : set of nodes and n ∈ N a particular node.
• A: set of attributes and a ∈ A a particular attribute.
• La: set of linguistic labels de�ned for attribute a and ai ∈ La a par-
ticular linguistic label of attribute a.

• Let ai ∈ La be a linguistic label of attribute a and n ∈ N , we note
by (n|ai) the node whose associated set of constraints1 is the result
of appending the constraints leading to node n with the constraint
a = ai.

• Let n ∈ N , we note by µn the node n membership function as de�ned
in (4.14).

• Let ci ∈ Lc be a linguistic label de�ned for the class attribute c, we
de�ne νci : E −→ [0, 1] as

∀e ∈ E : νci(e) = mc(ec, ci)
where mc is the compatibility measure between evidences and labels
for class attribute c.

• T : set of normalization functions (usually probabilistic or possibilistic
normalization) and t ∈ T a particular normalization function.

• F : set of uncertainty measures and f ∈ F a particular uncertainty
measure function.

• G: set of aggregation operators2 and g ∈ G a particular aggregation
operator. We will also use the notation gSET

NODE where SET is an
index set referencing the values to be aggregated, and NODE is the
referential set of instances.

1De�ned as the constraints belonging to the path going from node n up to the root.
2For an in-depth study of aggregation operators the reader is referred to [109, 17]
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In the classical picture we have several alternatives for quantifying the
uncertainty associated to a given node. When shifting to the non classical
picture, the repertory of measures goes even wider, re
ecting the broadly
accepted fact that there exist di�erent kinds of uncertainty beyond the prob-
abilistic one and consequently, some well-established measures have been
developed to cope with it.

Nevertheless, a concrete realization of the general framework is not only
particularized by the uncertainty measure but also by the selected aggrega-
tion operators and by the order in which they are applied. We have basically
two possibilities depending on whether we �rst apply the uncertainty mea-
sure (f) to each instance before the resulting values are aggregated at the
corresponding node (\horizontal folding"), or we perform it the opposite way
(\vertical folding"). Therefore, when considering attribute a as candidate
to become selected as the current branching attribute we have basically the
two schemes below as options for computing uncertainty in node n.

1. Horizontal folding:

UNC(n) = gai∈AL
n (ge∈E(n|ai)(f(t(νc1(e), . . . , νc|Lc|

(e)))))
2. Vertical folding:

UNC(n) = gai∈AL
n (f(t(ge∈E(n|ai)(µ(n|ai|c1)(e)), . . . , ge∈E(n|ai)(µ(n|ai|c|Lc|)(e)))))

4.3.4 Inference algorithm.

Coping with uncertainty makes that in contrast to the classical case, neither
a unique leaf is usually reached nor a single class label could be tagged on
a given leaf, making it necessary to de�ne a procedure for combining the
classi�cations associated to the set of reached leaves.

Therefore, and arguing in a similar way that of the previous subsection,
two basic schemes for combining these classi�cations are shown below, where
u is the instance to classify, h a particular leaf and s a \collapsing" function
(i.e, a function intended to provide a precise single value from an imprecise
classi�cation (majority policies, defuzzi�cation methods, . . . )).

1.
CLASIF (u) = s(gh∈H

u (ge∈E
h (µ(h|c1)(e))), . . . , gh∈H

u (ge∈E
h (µ(h|c|Lc )(e))))

2.
CLASIF (u) = gh∈H

u (s(ge∈E
h (µ(h|c1)(e)), . . . , ge∈E

h (µ(h|cLc )(e))))



116

4.3.5 Characterization of existing families of methods.

Tables 4.3 and 4.5 contain the characterization of representative methods
belonging to families of procedures for inducing decision trees in the presence
of uncertainty. These families can be grouped in three main categories:

1. Fuzzy probabilistic decision trees (represented by [82]): adaptation to
the fuzzy case of classical entropy-based induction algorithms.

2. Possibilistic decision trees (represented by [185, 140]: use of possibility
theory is extensively made in order to build the decision tree.

3. Belief decision trees (represented by [37]): exploit representational
power and evidence combination rules provided by belief functions
theory in order to model a subjective belief approach to the problem
of growing decision trees.
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Table 4.7: Original data set.
instance outlook temperature windy play
1 sunny hot false volley
2 sunny hot true swimming
3 overcast hot false tennis
4 rainy mild false football
5 rainy cool true football
6 overcast cool true football
7 sunny mild false tennis
8 sunny mild true swimming
9 overcast hot false tennis
10 rainy mild true football

4.4 Observational decision trees.

In this section we will introduce a new approach to building a decision tree
addressing the case when uncertainty arises as a consequence of having de-
�ned indistinguishability relations on the domains of the attributes used to
describe the set of instances. Existing methods make the assumption that
di�erent events are perfectly distinguishable from each other when measur-
ing, for instance, node's impurity (for entropy-based methods). In front of
this restrictive assumption we advocate for a more realistic setting in which
decision maker's discernment abilities should be taken into account, and
therefore, impurity should be measured accordingly to his frame of discern-
ment.

4.4.1 Induction algorithm.

We have already introduced the concept of observational entropy in chapter
3. Let us see how to use it for the task of building a decision tree from a set
of examples. The problem could be posed as follows: Let {A1, . . . , An, C} be
a set of nominal attributes (where the classes of C form the classi�cation we
want to learn), with domains Di = {vi1 , . . . vimi} and Dc = {vc1 , . . . , vcmc}.Let E ⊆ D1× . . .×Dn×Dc be the set of instances, and for each attribute Ai

we consider a T-indistinguishability operator EAi and a probability distribu-tion PAi de�ned on the domain of Ai. Let us illustrate the above de�nitions
with the example of tables 4.7 and 4.8.
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EOutlook =
sunny overcast rainy

sunny 1 0 0
overcast 0 1 0.5
rainy 0 0.5 1

ETemp =
hot mild cool

hot 1 0.5 0.5
mild 0.5 1 0.5
cool 0.5 0.5 1

EPlay =
swimming football tennis volley

swimming 1 0 0 0
football 0 1 0.25 0.25
tennis 0 0.25 1 1
volley 0 0.25 1 1

EWindy =
true false

true 1 0
false 0 1

Table 4.8: T-Indistinguishability operators.

DOutlook = {sunny, overcast, rainy}
DTemperature = {hot,mild, cool}

DWindy = {true, false}
DPlay = {swimming, tennis, football, volley}

In order to simplify, we assume that the probability distribution associ-
ated to each attribute of the example is de�ned as the uniform distribution
on the corresponding domain. Generalizing this assumption is straightfor-
ward.

Next we present an algorithm for building a decision tree based on the
observational entropy. The procedure could be summarized in the following
points:
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"Expanded" data set.
From the original data set we create its associated "expanded" data set.
For all instances, we compute the compatibility between each label and
the evidence (represented by the instance) by computing the conditioned
observational degree between the given label and the proper component of
the instance.

As an example, let us describe how to compute the compatibility between
the value overcast for attribute outlook and the label rainy. We want to
compute:

πovercast(rainy) =
∑

x∈{sunny,overcast,rainy}

Povercast(x) · EOutlook(x, rainy)

where

Povercast(sunny) = EOutlook(sunny, overcast)∑
x∈{sunny,overcast,rainy}EOutlook(x, overcast)

and

Povercast(overcast) = EOutlook(overcast, overcast)∑
x∈{sunny,overcast,rainy}EOutlook(x, overcast)

and

Povercast(rainy) = EOutlook(rainy, overcast)∑
x∈{sunny,overcast,rainy}EOutlook(x, overcast)

and therefore

πovercast(rainy) = 0 + 1
3 + 1

3
= 2

3 .
The resulting \expanded" data set is depicted in table 4.9.
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Computing probabilities of observing events in a node n.
Values contained in the expanded data set will be used to compute the
compatibility degree (COM) between a conjunction of restrictions and the
evidence represented by a given instance e:

COM(Ai = vij ∧ . . . ∧Ak = vkl
|e) = T (π(vij |eAi), . . . , π(vkl

|eAk
)).

Let n be a given node belonging to the current tree (the one which has
been grown up to now) and let R be the conjunction of the restrictions
found in the path going from the root of the tree to node n. We de�ne the
probability of observing label vij of attribute Ai in node n as:

PN (Ai = vij ) =
∑

e∈E COM((R ∧Ai = vij )|e)∑
vi∈Di

∑
e∈E COM((R ∧Ai = vi)|e) .

Selecting branching attribute.
In the previous point we have provided a method for computing the proba-
bilities of observing the labels for all the attributes in a given node n. These
values will allow us to select the best attribute to partition data \arriving"
at node n (ful�lling the restrictions leading to node n). Given a node n,
we compute (for all non previously selected attributes) the observational
entropy of class attribute (C) conditioned to a given remaining attribute Ai

in the following manner:

HO(C|Ai) =
∑

vi∈Di

Pn(Ai = vi) ·HO(C|Ai = vi)

where

HO(C|Ai = vi) =−
∑

vc∈DC

Pn∧(Ai=vi)(c = vc)

· log2
∑

wcinDC

Pn∧(Ai=vi)(C = wc) · EC(wc, vc)

where Pn∧(Ai=vi) are the probabilities measured in each one of child nodes
of n induced by partition data arriving at node n, in accordance with the
set of labels of attribute Ai.

We select, as current branching attribute, the one which minimizes the
conditioned observational entropy (which is equivalent to say that maximizes
the observational information gain), and mark it as already used attribute.

Finally, for each newly generated child node the overall process should
be iterated while all the following conditions hold:



124

1. There are remaining non used attributes.
2. The set of instances arriving to that node is not the empty set.
3. Observational entropy of current node is not below a prede�ned thresh-

old value.
This procedure for building observational decision trees can be described

according to the general framework detailed in section 4.3 as shown in Ob-
servational Id3 column in table 4.5.

For the data in table 4.7 the induced observational decision tree and
classical decision tree are depicted below:
| |

|__outlook=sunny |__outlook=sunny

| | | |

| |__windy=true | |__windy=true

| | | | | |

| | |__swimming | | |__swimming

| | | |

| |__windy=false | |__windy=false

| | | |

| |__volley,tennis | |__temperature=hot

| | | |

|__outlook=overcast | | |__volley

| | | |

| |__windy=true | |__temperature=mild

| | | | |

| | |__football | |__tennis

| | |

| |__windy=false |__outlook=overcast

| | | |

| |__tennis | |__temperature=hot

| | | |

|__outlook=rainy | | |__tennis

| | |

|__football | |__temperature=cool

| |

| |__football

|

|__outlook=rainy

|

|__football

Observational decision tree Classical decision tree
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4.5 A fuzzy sequential covering algorithm for the

generation of rules.

In this section we present an algorithm which can be included in the sequen-
tial covering family of algorithms but adapted to accept vague information.

It's worth to recall that this kind of methods are intended to produce a
disjunctive set of rules that describe a target concept by sequentially covering
the set of instances representing this concept.

The method we are going to present follows this scheme in order to
produce descriptions in terms of linguistic variables de�ned on the domains
of the attributes.

4.5.1 De�nition of the problem.

Let A = {A1, . . . , An} be the set of attributes. We shall distinguish two
relevant subsets: let Z ⊆ A be the set of \explicative" attributes, that
is, the attributes which will be used to generate the descriptions; and let
Y ⊆ A be the set of attributes which will provide intensional de�nitions for
the concepts which are going to be described. Z ∩Y = ∅ is required in order
to avoid tautological descriptions of concepts.3

Some attributes can be ignored in the process of generating descriptions
by letting Z ∪ Y 6= A.

Our approximation follows the one suggested by Yager [174] of parti-
tioning the domains of the attributes and associating a template (a covering
set of linguistic labels over a given domain) to each attribute in order to
simplify the search space. For each attribute Ai ∈ A we de�ne a linguistic
variable Vi.

We accept, as valid concepts, the elements of the boolean algebra gener-
ated by the terms of ⋃

Ai∈Y T (Vi).
Descriptions will be represented in disjunctive normal form, where lit-

erals will correspond to linguistic values of templates associated to the set
Z of "explicative" attributes. In other words, descriptions are produced by
the following grammar:

< description > = < conjunctive rule > ∨ . . .∨ < conjunctive rule >

< conjunctive rule > = < selector > ∧ . . .∧ < selector >

< selector > = < template > = < linguistic value >

Given that concepts and descriptions are described in terms of linguistic
values of templates, and given that each linguistic value has its \meaning"

3For example, if we want to explain the concept "Temperature:High" in terms ofattributes Temperature, Volume and Pressure, we want to avoid the rule: "Tempera-ture:High if Temperature:High".
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(fuzzy set) de�ned by the semantic rules of its associated linguistic variable,
let us see how to combine these meanings in order to produce the meaning
of descriptions and concepts.

We de�ne this meaning in a constructive manner. Let x =< a1, . . . , an >
be an instance belonging to the set of instances X, (where ai ∈ Domain(Ai)
is the value taken by x for attribute Ai), then:

1. Let S be the selector de�ned by the relationship Vi = v (where v is a
valid linguistic value of variable Vi). We de�ne the meaning of S as:

∀x ∈ X : µS(x) = µv(ai) (4.15)
where µv is the meaning of the linguistic value v.

2. Let S1, S2 be two selectors. Then ∀x ∈ X we de�ne:
• Meaning of \S1 ∧ S2":

µ(S1∧S2)(x) = T (µS1(x), µS2(x)) (4.16)
• Meaning of \S1 ∨ S2":

µ(S1∨S2)(x) = S(µS1(x), µS2(x)) (4.17)
where T is a t-norm and S a t-conorm.

Applying recursively these rules we should be able to construct the mean-
ing of any description D or concept C.

4.5.2 Algorithm.

With the previous de�nitions, the problem could be stated as follows: given
two concept de�nitions C+ and C−, �nd the description D which better
"explains" C+ and "excludes" C− (intensional representation of counter-
examples of the target concept C+). We do not demand C− be complemen-
tary of C+.

Next let us present an algorithm to solve this task.
Generate Description Algorithm

Input Parameters:

PosExpr: target concept

NegExpr: counter examples to exclude

MinAccuracyThreshold: minimum accuracy for complexes

MaxAccuracyThreshold: desired accuracy for complexes
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MinComplexCovering: minimum covering for complexes

MaxDescriptionCovering: desired covering for descriptions

BeamSize: size of the beam

Output Parameters:

Description: output description

/* Initialize description */

Description = FALSE

/* Disjunctive generalization */

do

{

/* Initialize new complex */

Complex = TRUE

ListOfComplexes.add(Complex);

BestComplex = Complex

/* Conjunctive specialization */

while (BestComplex.accuracy < MaxAccuracyThreshold &&

ListOfComplexes.size > 0)

{

/* Complexes specialization */

Specialize(ListOfComplexes, ListOfSelectors)

/* Updating BestComplex */

ScoreComplexes(ListofComplexes, PosExpr, NegExpr)

Purge(ListOfComplexes, MinComplexCovering, BeamSize)

BestComplex = FindBestComplex(ListOfComplexes)

}

/* Description Generalization */

if (BestComplex.accuracy >= MinAccuracyThreshold)

GeneralizeDescription(Description, BestComplex)

} while (Description.covering > PastIterationDescription.covering &&

Description.covering < MaxDescriptionCovering)

/* Output description */

return Description
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Conjunctive specialization.
In this point we will present the specialization process for building complexes
and the method for selecting the best complex according to a prede�ned
criterion.

Given a current description D and a current beam B of previously gener-
ated complexes, for each complex C belonging to B, for all attribute Ai ∈ Z
and for all linguistic value (selector) v of template Vi associated to Ai, the
following values are calculated (X being the set of instances):

• C+ instances covered by the specialization C ∩ (Vi = v) and not
already covered by description D:

δ(C ∩ (Vi = v), C+, D) = ∑
x∈X

T (µC(x), µv(x), µC+(x), N(µD(x)))

• C− instances covered by the specialization C ∩ (Vi = v) and not
already covered by description D:

δ(C ∩ (Vi = v), C−, D) = ∑
x∈X

T (µC(x), µv(x), µC−(x), N(µD(x)))

where µv, µC+ , µC− and µD are the meanings of v, C+, C− and D,
respectively (calculated by applying 4.15, 4.16 and 4.17).

These values are used to choose the next selector which will specialize
the current conjunctive rule C. The chosen linguistic value will be the one
that maximizes the next function:

σ(C, v, C+, C−, D) = δ(C ∩ (Vi = v), C+, D)
δ(C ∩ (Vi = v), C+, D) + δ(C ∩ (Vi = v), C−, D)

New generated complexes are then ranked by its value σ. Before, all
those complexes with covering degree below MinComplexCovering thresh-
old are purged.

Once ranked, only the �rst B (beam size) complexes are stored for it-
erating the specialization process. The rest are purged. The selection of
parameter B should be a trading between the cost involved in the explo-
ration of the search space and the risk inherent to greedy strategies.

The process of specialization �nishes when the accuracy of the best com-
plex C of the beam (computed as the degree of truth of the rule "If C then
C+) reaches a prede�ned threshold α. In other words, the next condition
holds:
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∑
x∈X T (µC(x), µC+(x))∑

x∈X µC(x) > α. (4.18)

Disjunctive generalization.
At this point, a new conjunctive rule which covers a new "portion" of the
set of instances representing the target concept is assumed to be generated.
This new rule has to be incorporated into the current description, and then
the process should be iterated.

Once a conjunctive rule C has been generated, the current description
D is generalized by adding C as a new disjunctive term.

This process of generation of conjunctive rules and generalization of the
current description iterates until the degree of covering of description D
(calculated as the degree of truth of the rule: \If C+ then D") reaches a
threshold β:

∑
x∈X T (µD(x), µC+(x))∑

x∈X µC+(x) > β. (4.19)

It should be noted the di�erence between covering and accuracy: the
former measures the necessary condition of the bi-equivalence D ⇔ C+,
while the latter deals with the su�cient condition.

Finally, when condition 4.19 holds, description D is returned as the
result.

4.5.3 Experimental results.

Introduction.
According to what was already stated, this chapter is mainly concerned to
devise learning methods whose induced descriptions are expected to be com-
prehensible. Henceforth, the use of linguistic values as the representation
language was entirely advisable.

Notwithstanding this emphasis on understandability, accuracy should
not be left aside. This section is devoted to present accuracy comparisons
between the fuzzy sequential covering algorithm (FSQ) introduced in the
previous section and a selected set of classical machine learning algorithms.
More precisely, algorithms will be compared according to their attained
results in supervised classi�cation problems.

FSQ induces a set of rules accounting for the description of a given
target. This behavior can easily be adapted to classi�cation problems in
which characterization rules intended to predict the proper class for unseen
instances are searched . To achieve this goal, FSQ is run as many times as
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classes de�ned for the class attribute. Let us suppose a class attribute C
with three possible classes {C1, C2, C3}. FSQ is run three times with the
following con�gurations:

1. C+ = C1 , C− = C2 ∨ C3
2. C+ = C2 , C− = C1 ∨ C3
3. C+ = C3 , C− = C1 ∨ C2
A set of rules Ri is induced for each class Ci. The procedure for clas-

sifying a new instance x consists of computing the degree of truth of the
proposition "x ∈ Ri" for each rule set Ri. Finally, the class whose asso-
ciated description has maximum degree of truth is selected as the output
class.

Methodology.
Experiments will be performed assuming a 10-fold cross validation scheme,
where data sets are randomly divided into ten disjoints subsets, each con-
taining approximately the same number of instances. Then, for each par-
tition, the remaining nine partitions are used as the training set to induce
a new classi�er while the current partition itself serves as test data. After
training and testing, an estimate of the classi�er error rate is obtained. The
ten cross validations estimates are then averaged to provide a global esti-
mate for accuracy. Finally, algorithms are compared determining the level
of signi�cance that one algorithm outperforms another. Classi�cation er-
ror rates and standard deviations are considered to di�er from one another
signi�catively if the level of a paired t-test is below 0,05.

Data sets.
Data sets from the public repository of the University of Irvine [121] have
become a standard benchmark for the machine learning community. The
UCI Irvine archive is a repository of data sets encompassing a wide variety
of data types, analysis tasks and application areas. The primary role of this
repository is to enable researchers to perform empirical analysis of machine
learning algorithms.

In order to cover the whole range, we have selected a subset of data
sets having the set of predictive attributes all nominal, all numeric, and
a mixture of numeric and nominal attributes. Since we are interested in
comparing the classi�cation accuracy of algorithm FSQ with respect to a
representative set of well known standard algorithms, data sets with non
nominal class attribute will not be considered.

The selected data sets are summarized in the table below:
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Dataset Predictive attributes Numeric Nominal

Breast Cancer (BCW) 9 9 0
Hepatitis (HP) 19 6 13
Iris (IR) 4 4 0
Lenses (LS) 4 0 4
Mushroom (MH) 22 0 22
Weather (WH) 4 0 4
Wine (WN) 13 13 0
Zoo (ZO) 17 1 16

Algorithms.
We have chosen a set of representative classi�ers as the bench mark for
performing the experiments. Their accuracies will be compared to that of
FSQ in order to draw conclusions regarding the classi�cation abilities of the
algorithms involved.

The set of selected algorithms is listed below.

• Conjunctive Rule (CR): single conjunctive rule learner. A rule consists
of a conjunction of antecedents and the consequent (class value). If the
test instance is not covered by the induced rule, then it is predicted
using the default class (majority class) of data not covered by the rule.

• Decision Table (DT): algorithm for building a simple decision table
majority classi�er [98].

• Nearest Neighbor (NN): nearest neighbor-like algorithm using non
nested generalized exemplars [111].

• One Rule (OR): simple classi�er using just the minimum error at-
tribute as predictor for class attribute. Numeric attributes are dis-
cretized [73].

• Part (PART): algorithm for generating a PART decision list by build-
ing a partial C4.5 decision tree in each iteration and making the best
leaf into a rule.

• Ripple-down Rule Learner (RDL): generates a default rule �rst, and
then the exceptions for the default rule with the least error rate. Then
it generates the "best" exceptions and iterates until pure. A tree-like
expansion of exceptions is performed where exceptions are a set of
rules that predict classes other than the default.
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• Majority (MA): classi�er predicting the mean or the mode, for numeric
and nominal classes respectively.

• Propositional Rules (PRL): algorithm implementing a propositional
rule learner as described in [23].

• Decision Stump (DS): algorithm for building and using a decision
stump.

• Decision Tree (J48): algorithm for generating C4.5 decision trees [135].
• Logistic Model Tree (LMT): procedure for building logistic model trees
which are classi�cation trees with logistic regression functions at the
leaves.

• Random Tree (RT): algorithm for constructing a tree that considers k
randomly chosen attributes at each node.

• Fast Decision Tree (FDT): Fast decision tree learner.
• Random Forest (RF): algorithm which builds a forest of random trees
[15].

• Prism (PRISM): algorithm for building and using a PRISM rule set
for classi�cation [19].

• Decision Tree (ID3): classical algorithm for induction of decision trees
[133].

Table 4.11 shows whether a given algorithm can handle only numerical,
only nominal or a mixture of numerical and nominal predictive attributes.

Results.
In this section we will summarize classi�cation accuracies for each data set,
and the result of their statistical comparison according to the methodology
already described.

Tables 4.13 and 4.12 show mean and standard deviation averaged over
10 cross validation runs, for each data set and algorithm considered.

Based on these results, a paired t-test is performed to determine whether
one algorithm signi�catively outperforms another.

Table 4.14 describes, for each data set, whether FSQ algorithm performs
better, worse or "equal" 4. When FSQ performs better than algorithm A,
the sign "-" is depicted. On the contrary, if FSQ performs worse, sign "+"
is represented. Sign "=" appears when no conclusions can be signi�catively
drawn.

4Term "equal" refers to the situation when no better or worse performance can beinferred, given a prede�ned con�dence degree.
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Algorithm Numerical attributes Nominal attributes

CR yes yes
DT yes yes
NN yes yes
OR yes yes

PART yes yes
RDL yes yes
MA yes yes
PRL yes yes
DS yes yes
J48 yes yes
LMT yes yes
RT yes yes
FDT yes yes
RF yes yes

PRISM no yes
ID3 no yes

Table 4.11: Algorithms and types of attributes.
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Table 4.12: Accuracies and standard deviations (I).

Set FSQ CR DT NN OR PART RDL PRL

BCW 93.54 91.35 95.9 96.49 91.79 95.45 95.75 96.49
(1.61) (3.36) (2.84) (1.85) (3.14) (3.14) (2.01) (1.85)

HP 83.19 83.75 86.25 87.5 77.5 83.75 85 83.75
(3.52) (6.04) (12.43) (8.33) (7.91) (15.65) (9.86) (10.29)

IR 96.84 66.67 93.33 96 94 94 94 94
(4.08) (0) (5.44) (4.66) (5.84) (5.84) (6.63 ) (5.84)

WN 89.04 63.5 91.63 97.75 76.41 92.71 93.86 91.57
(2.27) (6.48) (7.04) (2.91) (8.98) (5.33) (4.86) (9.27)

ZO 93.2 59.55 91.18 96.18 73.27 92.18 88.27 90.27
(6.55) (5.86) (7.09) (6.54) (10.54) (8.94) (8.62) (9.99)

LS 62.17 60.33 78.83 75.5 72.17 83.5 86.33 80
(30.42) (25.71) (24.83) (27.97) (27.12) (22.54) (21.89) (25.84)

MH 98.2 89.86 100 100 98.44 100 100 100
(0.96) (1.27) (0) (0) (0.61) (0) (0) (0)

WH 55 60 45 85 35 60 40 70
(43.78) (39.44) (43.78) (24.15) (41.16) (45.95) (45.95) (42.16)

Table 4.13: Accuracies and standard deviations (II).

Set MA DS J48 LMT RF RT FDT PR ID3

BCW 65.01 91.94 96.05 96.63 96.63 94.28 95.31 na na
(0.48) (3.62) (2.4) (2.3) (2.5) (3.21) (2.47) na na

HP 83.75 83.75 86.25 85 86.25 90 78.75 na na
(6.04) (6.04) (9.22) (14.19) (7.1) (9.86) (13.24) na na

IR 33.33 66.67 96 94 95.33 90.67 94.67 na na
(0) (0) (5.62) (4.92) (5.49) (10.52) (5.26) na na

WN 39.93 57.75 93.3 97.22 98.3 93.2 94.41 na na
(2.6) (6.51) (5.1) (5.4) (2.74) (6.48) (5.24) na na

ZO 40.64 60.45 92.18 95.18 96.09 89.27 90.27 na na
(3.48) (3.77) (8.94) (8.15) (5.05) (9.39) (9.99) na na

LS 64.33 72.17 83.5 na 76 61.33 72.5 65.17 73.17
(23.69) (27.12) (22.54) na (28.26) (32.21) (28.46) (28.34) (29.95)

MH 61.8 89.86 100 na 100 99.91 100 100 100
(0.07) (1.27) (0) na (0) (0.13) (0) (0) (0)

(to be continued)
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(continuation)

WH 70 30 55 na 70 75 70 85 85
(34.96) (34.96) (43.78) na (42.16) (35.36) (34.96) (33.75) (33.75)

Table 4.14: Algorithms comparison (I).

Set CR DT NN OR PART RDL PRL

BCW = = = = = = =
HP = = = = = = =
IR - = = = = = =
WN - = + = = = =
ZO - = = - = = =
LS = + = = + + +
MH - + + = + + +
WH = = = = = = =

Table 4.15: Algorithms comparison (II).

Set MA DS J48 LMT RF RT FDT PR ID3

BCW - = = = = = = na na
HP = = = = = = = na na
IR - - = = = = = na na
WN - - = = + = = na na
ZO - - = = = = = na na
LS = = + na = = = = =
MH - - + na + + + + +
WH = = = na = = = = =

Conclusions.

This chapter has been concerned to the study and development of methods
intended to produce comprehensible descriptions of the relationships existing
in the data, involving at the same time, a proper management of uncertainty.

Consequently, emphasis has not solely focused on achieving high accu-
racy. The question now is if this bias towards comprehensibility, together
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with the management of uncertainty through the use of linguistic labels, af-
fect signi�catively the resulting accuracy when compared to standard learn-
ing algorithms. The presented results show that performance of FSQ algo-
rithm is comparable with that of standard algorithms.

Regarding the achievement of comprehensibility, for illustrative purposes
let us analyze the descriptions obtained by FSQ from the Monk's data.
These data sets have the particularity of having been generated according
to prede�ned and known rules. We can measure the quality and compactness
of the obtained descriptions by comparing them to the set of "seed" rules.

The three data sets composing the Monks problems are based on six
nominal attributes {a1, . . . , a6} which can take values over the set {1, 2, 3, 4},
and a binary class attribute.

Each problem involves learning a binary function de�ned over this do-
main. The target concepts associated to the Monks problems are:

• Monks �rst problem: (a1 = a2) or (a5 = 1).
• Monks second problem: exactly two of (a1 = 1, a2 = 1, a3 = 1, a4 =
1, a5 = 1, a6 = 1).

• Monks third problem: (a5 = 3 and a4 = 1) or (a5 6= 4 and a2 6= 3).
First problem is in standard disjunctive normal form and is supposed

to be easy learnable by algorithms capable of producing DNF descriptions.
Conversely, second problem is similar to parity problems where attributes
are combined in such a way that makes it complicated to describe in DNF
using the given attributes only. Third problem is again in DNF.

The descriptions obtained by FSQ for �rst and third problems are:
• Monks �rst problem:

a5:1

OR

a1:1 AND a2:1

OR

a1:2 AND a2:2

OR

a1:3 AND a2:3
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• Monks third problem:

a5:3 AND a4:1

OR

a2:1 AND a5:1

OR

a2:1 AND a5:2

OR

a2:1 AND a5:3

OR

a2:2 AND a5:1

OR

a2:2 AND a5:2

OR

a2:2 AND a5:3

OR

a2:4 AND a5:1

OR

a2:4 AND a5:2

OR

a2:4 AND a5:3

which clearly correspond to DNF expressions for the above seeding rules.
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As expected, the second monk's problem could not be learnable by FSQ
since it can not be represented in DNF form.

These results show that FSQ has captured quite well the set of "seed"
rules in any case with the exception of the second problem.

4.6 Generating indistinguishability operators from

prototypes.

In many situations, given an indistinguishability operator E on a universe
of discourse X, it is useful to de�ne an indistinguishability operator on a set
of fuzzy subsets of X compatible with E. This is the case in approximate
reasoning or in fuzzy control [43, 91] and there are some standard ways to
generate it [10]. Nevertheless, the opposite problem has not been studied
deeply since now, although it seems a very interesting one.

To focus on the problem, let us consider the following situation: let us
suppose the existence of some prototypes a1, a2, ..., an, an indistinguishabil-
ity operator �E between them and a set X of objects resembling the proto-
types to some extent. Then it seems reasonable to extend the relation �E to
the set X.

The preceding situation can be modelled in this way: there are n fuzzy
subsets of X denoting the resemblance of the elements of X to the proto-
types and an indistinguishability operator �E between these prototypes. The
question is how to de�ne an indistinguishability operator E onX compatible
with �E.

This section studies a couple of ways to generate such an indistinguisha-
bility operator related to the ones used in approximate reasoning and a third
one based on the duality principle [10, 124]. Two interesting cases are when
the fuzzy subsets of X de�ne a partition or a hard-partition on X.

4.6.1 An "optimistic" method.

Given an indistinguishability operator E on a universe of discourse X, there
are some standard ways to generate indistinguishability operators on some
fuzzy subsets of X compatible with E.
Proposition 4.6.1 Given a set P of fuzzy subsets of a set X, the fuzzy
relation E∗ on P de�ned ∀µ, ν ∈ P by:

E∗(µ, ν) = inf
x∈X

↔
T (µ(x), ν(x)) (4.20)

is a T -indistinguishability operator on P .

Proposition (4.6.1) allows us to generate an indistinguishability operator
on P when in the universe of discourse X the trivial equality relation is as-
sumed. If there is another indistinguishability operator E de�ned on X, the
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following proposition allows us to generate an indistinguishability operator
on P compatible with E.
Proposition 4.6.2 Given a set P of fuzzy subsets of a set X and a T -in-
distinguishability operator E on X, the fuzzy relation �E on P de�ned by

�E(µ, ν) = inf
x∈X

↔
T (φE(µ)(x), φE(ν)(x)) (4.21)

is a T -indistinguishability operator , where φE is the upper approximation
with respect to E (de�nition (1.5.9)).

Therefore, the degree of similarity between µ and ν via �E is the degree
of similarity between their upper approximations by observable sets with
respect to E.
Proposition 4.6.3 If P contains the set of columns of E, then there is an
isometric embedding of X into P :

E(x, y) = E∗(φE({x}), φE({y}))). (4.22)
Let us now focus to the problem of de�ning an indistinguishability oper-

ator E on a set X compatible with an indistinguishability operator de�ned
between some fuzzy subsets of X.

In order to clarify the problem, let us �rst consider the crisp case: Given
an equivalence relation ∼P de�ned on a subset P of the power set of a
universe X, an equivalence relation ∼ between the elements of X compatible
with ∼P is searched.

A �rst attempt is to de�ne ∼ by x ∼ y if and only if there exist A,B of
P such that x ∈ A ∧ y ∈ B ∧A ∼P B.

Nevertheless, this de�nition does not give in general an equivalence re-
lation. For instance, if X = {x, y, z, t}, P = {A,B,C,D} with A = {x},
B = {y}, C = {y, t}, D = {z} and ∼P is the equivalence relation on P that
partitions P in the two equivalence classes {A,B} and {C,D}, then x ∼ y,
y ∼ z but x is not related to z.

In order to obtain an equivalence relation we must add a compatibility
condition such as
De�nition 4.6.4 Crisp compatibility condition: If x ∈ A and x ∈ B and
A ∼P C, then B ∼P C.

The preceding study leads to the following de�nition and compatibility
relation in the fuzzy framework:
De�nition 4.6.5 Given a set P of fuzzy subsets of a set X and a T -in-
distinguishability operator �E on P , the fuzzy relation E4 on X is de�ned
by
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E4(x, y) = sup
µ,ν∈P

T (µ(x), ν(y), �E(µ, ν)) ∀x, y ∈ X. (4.23)

As in the crisp case, E4 is not a T -indistinguishability operator in general
and we need to add a compatibility condition:
De�nition 4.6.6 Compatibility condition: Given a set P of fuzzy subsets
of a set X and a T -indistinguishability operator �E on P , we say that �E
satis�es the compatibility condition if and only if ∀µ, ν, ρ ∈ P :

T (µ(x), ν(x), �E(µ, ρ)) 6 �E(ν, ρ) ∀x, y ∈ X. (4.24)
It is worth noticing that if P is a hard-partition of X, then this condition

is trivially satis�ed.
Proposition 4.6.7 Assuming the compatibility condition of de�nition (4.6.6),
the fuzzy relation E4 de�ned in (4.6.5) is symmetric, T -transitive but not
necessarily re
exive.

Proof 4.6.8

(∗)T (E4(x, y), E4(y, z)) =
T ( sup

µ,ν∈P
T (µ(x), ν(y), �E(µ, ν)), sup

ρ,τ∈P
T (ρ(y), τ(z), �E(ρ, τ))).

Fixing µ, ν, ρ, τ ∈ P and by condition (4.6.6)

(∗∗)T (µ(x), ν(y), �E(µ, ν), ρ(y), τ(z), �E(ρ, τ)) 6

by transitivity of �E

T (µ(x), τ(z), �E(µ, ρ), �E(ρ, τ)) 6

(∗ ∗ ∗)T (µ(x), τ(z), �E(µ, τ)) 6

sup
σ,π∈P

T (σ(x), π(z), �E(σ, π)) =
E4(x, z)

Since inequality (**) ≤ (***) holds ∀µ, ν, ρ, τ ∈ P , we get (*) ≤ (***).
�

Lemma 4.6.9 If ∀x ∈ X there exists µ ∈ P such that µ(x) = 1, then E4
is re
exive (and therefore a T -indistinguishability operator ).
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Proof 4.6.10 Trivial: Given x ∈ X, let µ ∈ P be such that µ(x) = 1. Then
E4(x, x) = T (µ(x), µ(x), �E(µ, µ)) = 1. �

Lemma 4.6.11 If P is a �nite set, then the reciprocal of the previous lemma
holds.

Proof 4.6.12 If P is �nite, then there exist µ, ν of P such that T (µ(x), ν(x), �E(µ, ν)) =
1 and therefore µ(x) = 1. �

An interesting question is whether the elements of P are observable with
respect to E. The following proposition gives a su�cient condition for this
property to be satis�ed:

The following result will be needed in proposition (4.6.14):
Proposition 4.6.13 [10] Given a set P of fuzzy subsets of a set X, a T -in-
distinguishability operator E on X and an element x of X, the fuzzy subset
x∗∗ of P de�ned by

x∗∗(µ) = µ(x) (4.25)
is extensional with respect to E∗.

Proposition 4.6.14 Assuming condition (4.6.6), if �E 6 E∗ then the ele-
ments of P are observable sets with respect to E4.

Proof 4.6.15 Given x, y of X,

T (E, x, y), µ(x)) = T ( sup
ν,ρ∈P

T (ν(x), ρ(y), �E(ν, ρ)), µ(x))
= sup

ν,ρ∈P
T (ν(x), ρ(y), µ(x), �E(ν, ρ))

6 sup
ρ∈P

T (ρ(y), �E(µ, ρ))
6 sup

ρ∈P
T (ρ(y), E∗(µ, ρ))

6 µ(y).
The last inequality follows from proposition (4.6.13) since y∗∗ is extensional
with respect to E∗. �

At this point, we have a way to de�ne an indistinguishability operator
E∗ (proposition (4.6.2)) on P starting on from an operator E de�ned on
X, and reciprocally. The following result shows that if from an E on X we
generate E∗ on P and then from this E∗ we generate E∗4 on X, then E∗4 = E
if P is the set of columns of E.
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Proposition 4.6.16 Let E be a T -indistinguishability operator on a set X
and P the set of columns of E. If from E∗ we de�ne a fuzzy relation E∗4 on
X as in de�nition (4.6.5), then E∗4 = E.

Proof 4.6.17 By proposition (4.6.3)

E∗(φE(x), φE(y)) = E(x, y)
E∗4(x, y) = sup

z,t∈X
T (E(x, z), E(y, t), E∗(φE(z), φE(t)))

= sup
z,t∈X

T (E(x, z), E(y, t), E(z, t))
6 E(x, y)

where last inequality follows from the transitivity of E.
Taking z = x and t = y equality follows. �

4.6.2 A "conservative" method.

De�nition (4.6.5) allows the generation of a (non necessarily re
exive) in-
distinguishability operator E on X when P is a hard-partition, since in this
case condition of de�nition (4.6.6) is ful�lled trivially. Since re
exivity is
not a very important condition in this context, this gives a good tool to
work with when starting on from a hard-partition.

In this Section, we give another way to generate an indistinguishability
operator E on X compatible with an indistinguishability operator de�ned
on a set P of fuzzy subsets of X that works when P is a partition.

De�nition 4.6.18 Given a set P of fuzzy subsets of a set X and a T -in-
distinguishability operator �E on P , the fuzzy relation E5 on X is de�ned
by

E5(x, y) = inf
µ,ν∈P

T̂ (T (µ(x), ν(y))| �E(µ, ν)) ∀x, y ∈ X. (4.26)

In the crisp case, this means that

x ∼ y if and only if ∀µ, ν ∈ P : (x ∈ µ ∧ y ∈ ν)⇒ µ ∼P ν (4.27)

Lemma 4.6.19 E5 is re
exive if and only if for all µ, ν of P

T (µ(x), ν(x)) 6 �E(µ, ν). (4.28)
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Proof 4.6.20

E5(x, x) = inf
µ,ν∈P

T̂ (T (µ(x), ν(x)| �E(µ, ν)) = 1

if and only if ∀µ, ν ∈ P :

T (µ(x), ν(x)) 6 �E(µ, ν).
The condition of the previous lemma is trivially satis�ed if P is a hard-

partition of X.
Lemma 4.6.21 E5 is symmetric.

In order to study the transitivity of E5 we need the following lemma:
Lemma 4.6.22 ∀x, y, z, t ∈ [0, 1] :

T (T̂ (x|y), T̂ (z|t)) 6 T̂ (T (x, z)|T (y, t)). (4.29)
Proof 4.6.23 Given

A = {α ∈ [0, 1]|T (α, x) 6 y}

and

B = {β ∈ [0, 1]|T (β, z) 6 t}

and given α ∈ A and β ∈ B,

T (α, x, β, z) 6 T (y, t).

Then

T̂ (T (x, z)|T (y, t)) = sup{γ ∈ [0, 1]|T (x, z, γ)
6 T (y, t)}.

Therefore ∀α ∈ A and ∀β ∈ B

T (α, x, β, z) 6 T (y, t)
and therefore

T (supA, supB) 6 T (y, t). �
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Proposition 4.6.24 If for all x of X there exists µ of P such that µ(x) = 1,
then E5 is T -transitive.5

Proof 4.6.25

T (E5(x, y), E5(y, z)) =
= T ( inf

µ,ν∈P
T̂ (T (µ(x), ν(y))| �E(µ, ν)), inf

ρ,τ∈P
T̂ (T (ρ(y), τ(z))| �E(ρ, τ)))

= inf
µ,ν,ρ,τ∈P

T (T̂ (T (µ(x), ν(y))| �E(µ, ν)), T̂ (T (ρ(y), τ(z))| �E(ρ, τ)))

taking ρ = ν

6 inf
µ,ν,τ∈P

T (T̂ (T (µ(x), ν(y))| �E(µ, ν)), T̂ (T (ν(y), τ(z))| �E(ν, τ)))

by lemma (4.6.22)
6 inf

µ,ν,τ∈P
T̂ (T (µ(x), ν(y), ν(y), τ(z))|T ( �E(µ, ν), �E(ν, τ)))

T̂ is non decreasing in the second variable and �E is transitive

6 inf
µ,ν,τ∈P

T̂ (T (µ(x), ν(y), ν(y), τ(z))| �E(µ, τ))

taking ν with ν(y) = 1
6 inf

µ,τ∈P
T̂ (T (µ(x), τ(z))| �E(µ, τ))

= E5(x, z). �

4.6.3 A method based on the duality principle.

The duality principle [10, 124] allow us to consider the elements of a universe
X as fuzzy subsets and gives a way to make operate these elements over fuzzy
subsets of X.

Following this idea, we will generate an indistinguishability operator on
X when such an operator is de�ned between some of their fuzzy subsets in
a very natural way.
De�nition 4.6.26 [10] Let X be a set and P a set of fuzzy subsets of X.
Given x ∈ X, the fuzzy subset x∗∗ of P de�ned ∀µ ∈ P as

x∗∗(µ) = µ(x) (4.30)
is called the dual of x.

5The condition of this proposition is satis�ed if P is a partition of X.
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De�nition 4.6.27 Let P be a set of fuzzy subsets of X. P is said to sepa-
rate points if and only if ∀x, y ∈ X ∃µ ∈ P such that µ(x) 6= µ(y).
Proposition 4.6.28 If P separates points, then the map that assigns to
every element x of X its dual x∗∗ is a bijection.

Proposition 4.6.29 Given a set P of fuzzy subsets of X and �E a T -indis-
tinguishability operator on P , the fuzzy relation �E∗ on the set X∗∗ of dual
elements of X de�ned for all x∗∗, y∗∗ ∈ X∗∗ by

�E∗(x∗∗, y∗∗) = inf
µ∈P

↔
T (φ �E(x∗∗)(µ), φ �E(y∗∗)(µ)) (4.31)

is a T -indistinguishability operator .

So the degree of similarity between x∗∗ and y∗∗ is the degree of similar-
ity between their respective upper approximations φ �E(x∗∗) and φ �E(y∗∗) byobservable sets with respect to �E.
De�nition 4.6.30 Let P be a set of fuzzy subsets of a set X and �E a T -
indistinguishability operator on P . The T -indistinguishability operator E6
on X is de�ned by

E6(x, y) = �E∗(x∗∗, y∗∗) ∀x, y ∈ X. (4.32)
Proposition 4.6.31 Let E be a T -indistinguishability operator on a set X,
P a set of fuzzy subsets of X and �E the T -indistinguishability operator on
P de�ned for all µ, ν ∈ P by

�E(µ, ν) = inf
x∈X

↔
T (φE(µ)(x), φE(ν)(x)). (4.33)

If E6 is the T -indistinguishability operator generated from �E using def-
inition (4.6.30), then E6 = E if and only if P is a generating family of
E.

Proof 4.6.32
E6(x, y) = inf

µ∈P

↔
T (φ �E(x∗∗)(µ), φ �E(y∗∗)(µ))

by proposition (4.6.13)
= inf

µ∈P

↔
T ((x∗∗)(µ), (y∗∗)(µ))

= inf
µ∈P

↔
T (µ(x), µ(y))

�

which is equal to E(x, y) if and only if P is a generating family of E.
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4.6.4 An example.

In the following example we will generate the T -indistinguishability opera-
tors E4, E5 and E6 from a given T -indistinguishability operator �E.

A video club has its videos classi�ed in labels; among them: 'Drama'
(D), 'Adventures' (A), 'Western' (W), 'Comedy' (Co) and 'Children' (Ch).
The owner would like to have some way to recommend a second �lm to a
client when he or she withdraws a video. For doing so, he passed a ques-
tionnaire to his clients asking them to tick the types of �lms they like and
realized that, for example, 85% of the clients that had ticked 'Western' or
'Adventures' also had ticked the other one , and obtaining the following ma-
trix �E (see [49]) that corresponds to a T -indistinguishability operator (being
T the Lukasiewicz t-norm).



D A W Co Ch

D 1 0.3 0.3 0.1 0
A 0.3 1 0.85 0.5 0.5
W 0.3 0.85 1 0.3 0.4
Co 0.1 0.5 0.3 1 0.5
Ch 0 0.5 0.4 0.5 1

 = �E

He also realized that many �lms could have more than one label, at least
at some extent. For example, 'Gone with the wind' is labelled as 'Drama' but
at some extent is also a Western. Assigning 0, 0.25, 0.5, 0.75 or 1 depending
on the degree in which he thinks a �lm could have the corresponding label
he obtains the following matrixM for the �lms 'Gone with the wind' (GW),
'Casablanca' (CB), 'The Rush of Gold' (RG), 'Indiana Jones' (I) and 'High
Noon' (H).



GW CB RG I H

D 1 1 0.25 0 0.25
A 0.25 0.25 0.25 1 0
W 0.5 0 0.25 0 1
Co 0 0 1 0 0
Ch 0 0 0.75 0.25 0

 =M

The �les of the matrix give the labels as fuzzy subsets of the set of videos
while the columns are the dual fuzzy subsets of the videos acting on the set
of labels.

From �E and M we obtain the T -indistinguishability operators E4, E5
and E6 with matrices:
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

GW CB RG I H

GW 1 1 0.1 0.3 0.3
CB 1 1 0.1 0.3 0.3
RG 0.1 0.1 1 0.5 0.4
I 0.3 0.3 0.5 1 0.85
H 0.3 0.3 0.4 0.85 1

 = E4



GW CB RG I H

GW 0.8 0.8 0.1 0.3 0.3
CB 0.8 1 0.1 0.3 0.3
RG 0.1 0.1 0.75 0.5 0.4
I 0.3 0.3 0.5 1 0.85
H 0.3 0.3 0.4 0.85 1

 = E5



GW CB RG I H

GW 1 0.8 0.1 0.3 0.3
CB 0.8 1 0.1 0.3 0.3
RG 0.1 0.1 1 0.5 0.4
I 0.3 0.3 0.5 1 0.85
H 0.3 0.3 0.4 0.85 1

 = E6

According to any of the three matrices he would suggest 'Casablanca' to
a client withdrawing 'Gone with the wind' and vice versa. The same occurs
with the couple 'Indiana' and 'High Noon', and to a client withdrawing 'The
Gold Rush' he would recommend 'Indiana' or 'High Noon'.
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Chapter 5

Summary of contributions

and future work.

This dissertation is a contribution to the study of uncertainty from the
notion of indistinguishability.

We have revisited topics such as information, uncertainty and their in-
trinsic relationships under a new point of view centered in the concept of
indistinguishability.

In accordance with the road map described in the introductory chapter,
emphasis has been put on providing applications for the theoretical contri-
butions.

Let us describe more precisely the main contributions achieved as well
as open issues and future lines of research.

Chapter 2.

Dempster-Shafer Theory of Evidence, as a framework for representing and
managing general evidences, implicitly conveys the notion of indistinguisha-
bility between the elements of the domain of discourse based on their relative
compatibility with the evidence at hand.

In chapter 2 we have mainly been concerned with providing de�nitions for
the T -indistinguishability operator associated to a given body of evidence.

A �rst approach was de�ning operator E1 as the T -indistinguishability
operator generated by the one-point coverage function.

∀x, y ∈ X : E1(x, y) = ↔
T (µm(x), µm(y)).

On the other hand, managing belief functions involve expensive compu-
tation both in terms of cost and storage. It thus makes sense to provide
simpler approximations that are better suited to computation and explana-
tion.
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Basically, there are two main approaches to simplify a given belief func-
tion: reducing the number of focal elements, and constraining the evidence
to belong to a prede�ned class having a relatively simple form. Two classes
of evidence stand as obvious "simple" candidates: possibility and probability
measures.

The following relation R over the set of bpa M

∀m,m′ ∈M : (m,m′) ∈ R⇐⇒ ∀x, y ∈ X : Em1 (x, y) = Em′
1 (x, y)

is an equivalence relation. We suggested a new approach to the problem
of belief function approximation based on the partition onM induced by R.

For a given a basic probability assignment m we have proposed selecting
another basic probability assignment from the same class of equivalence
of m, having the singletons set as the set of focal elements (probabilistic
approximation) or having nested focal sets (possibilistic approximation).

Unfortunately, as shown by example (2.3.1), uniqueness of the possibilis-
tic approximation must be discarded.

Moreover, certain areas of application (like decision-making problems)
require not just the relative concept of indistinguishability to be preserved
by candidate approximations. The notion of ordering, which allows ranking
the di�erent alternatives under consideration, is then a fundamental issue
so that substituting T -indistinguishability operators by T -preorders as the
appropriate mathematical instrument seemed to be in order.

More formally, we rewrote relation R as

∀m,m′ ∈M : (m,m′) ∈ R2 ⇐⇒ ∀x, y ∈ X : Pµm(x, y) = Pµm′ (x, y)

where Pµm and Pµm′ are the T -preorders generated by the one-point
coverage function of m and m′, respectively.

Theorem (2.3.19) proved that for any bpa m it exists a unique m′ with
nested focal sets, holding (m,m′) ∈ R2. In addition, it provides a construc-
tive method to compute the possibilistic approximation m′.

We would like to point out that unlike other methods which assume the
ful�llment of additional conditions (consistency, ...), our method does not
impose any restriction over the original bpa m.

Despite of the fact that operator E1 satis�es some intuitive requirements,
an inherent drawback, as in any approximation-based approach, is the pos-
sible loss of information with respect to the original evidence. Hence, we
introduced a general theorem providing in a constructive manner as well, the
T -indistinguishability operator associated to any function: F : ℘(X)→ [0, 1]
and preserving as much of the information content as possible.
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The generality of this theorem allows its specialization to a huge range
of functions, particularly belief functions. In this case, the resulting T -in-
distinguishability operator (E2) could be considered the natural T -indistin-
guishability operator providing the underlying indistinguishability relation
to which the distribution of belief is committed.

∀x, y ∈ X : E2(x, y) = min
A⊂℘(X−{x,y})

↔
T

(
Bel({x} ∪A), Bel({y} ∪A)).

In section 2.7 we have shown how theorem (2.4.2) could be applied to the
�eld of Game Theory in order to compute the degree of indistinguishability
among players in a cooperative game.

The characterization of one-dimensional E2 operators has also been ad-
dressed, since this class of operators, in addition to a�ording greater clarity
to the structure of the operator itself and signi�cantly reducing the cost
of computation, also enable their approximation by a single feature (gener-
ator) that carries exactly the same information from the point of view of
indistinguishability as the original evidence.

Future work.

• Complete the study of relations R1, R2 and R3 (see section 2.3.3) and
providing necessary and su�cient conditions which a given pair of
basic probability assignments must ful�ll in order to belong to R1, R2
and R3.

• Provide a full characterization of one-dimensional basic probability
assignments, extending the achieved results in characterizing essential
one-dimensionality.

• Extend the application of theorem (2.4.2) to the �eld of Game Theory
and provide new applications to novel areas.

Chapter 3.

The study of methods for the measurement of uncertainty has grown in
parallel with the acceptance that dealing with uncertainty has turned into
a must for informational systems.

After providing a comprehensive summary of the state of the art on
measures of uncertainty, we focused on tackling the problem of computing
entropy when an indistinguishability relation has been de�ned over the ele-
ments of the domain. Then, entropy should be measured not according to
the occurrence of di�erent events, but according to the variability perceived
by an observer equipped with indistinguishability abilities de�ned by the
indistinguishability relation considered.
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This interpretation introduced "the observer paradigm" which in turn
lead to formalize the possibility of observing an element xi (observation
degree) as the sum of the probability that xi really would have happened,
plus the probability of having observed xi mistakenly due to the occurrence
of some other element xj similar to xi.

π(xi) = p(xi) +
∑

xj∈X|xj 6=xi

p(xj) · E(xi, xj).

We de�ned the observational entropy as the expected value of the obser-
vation degrees when they are measured in observable bits.

After proving interesting properties of observational entropy we de�ned
the simultaneous observation degree, measuring the disagreement in the ob-
servations of an event by two di�erent observers equipped with the same
indistinguishability so that, for instance, observer A may claim having ob-
served xi while observer B has observed xj , if xi and xj are "enough" indis-
tinguishable.

A di�erent situation arises when we consider observers with di�erent
indistinguishability abilities (each observer has its own indistinguishability
operator). Then we de�ned the concept of conditional observation degree
and conditional observation entropy based on the fact that observations
performed by an observer A restrict the set of events that really might have
occurred, a�ecting as well the variability of the potential observations of
another observer B.

When both observers are equipped with indistinguishability operators
that are equivalence relations then the conditional observational entropy
particularizes to the classical heuristic function used by Quinlan in their
classical algorithm for building decision trees.

Finally, joint observational entropy is also de�ned, and the classical law
of total entropies is generalized to the observational paradigm as proved in
theorem (3.6.55).

Future work.

• Extend the results and de�nitions related to the concept of observation
entropy to continuous domains.

• Generalize the classical notion of independence to the observational
paradigm.

• Provide an axiomatic characterization for observational entropy.

Chapter 4.
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Real data is often pervaded with uncertainty so that devising techniques
intended to induce knowledge in the presence of uncertainty seems entirely
advisable.

The paradigm of computing with words follows this line in order to pro-
vide a computation formalism based on linguistic labels in contrast to tra-
ditional numerical-based methods. The use of linguistic labels enriches the
understandability of the representation language, although it also requires
adapting the classical inductive learning procedures to cope with such labels.

Among the existing methods, decision trees have become one of the most
relevant paradigm within the machine learning community, mainly because
of their proved applicability to a broad range of problems in addition to
features as the readability of the knowledge induced. Variants of the original
scheme proposed by Quinlan have been developed, providing decision trees
with a more 
exible methodology in order to cope with di�erent kind of
uncertainty.

Nevertheless, it is our opinion that these methods would bene�t from the
de�nition of an homogeneous framework since most of their particularities
could be easily described as particularizations of more general procedures.

Chapter 4 has been devoted to describe our proposal for such a com-
mon framework. Furthermore, characterizations (in terms of the proposed
framework) of relevant existing methods for inducing decision trees in the
presence of uncertainty have been also provided.

A novel approach to building decision trees was introduced, addressing
the case when uncertainty arises as a consequence of considering a more
realistic setting in which decision maker's discernment abilities are taken
into account when computing impurity measures. This novel paradigm re-
sulted in what have been called \observational decision trees" since the main
idea stems from the notion of observational entropy in order to incorporate
indistinguishability concerns.

Among the existing methods for inducing rules from data, the sequential
covering family of algorithms has a long tradition. In this chapter we have
presented an algorithm (FSQ) intended to induce linguistic rules from data
by properly managing the uncertainty present either in the set of describing
labels or in the data itself. A formal comparison with other methods showed
that the performance of FSQ is comparable with that of standard algorithms.

In the context of approximate reasoning or fuzzy control is usual to
infer indistinguishability degrees between the elements of a given domain
of discourse X, from indistinguishability operators de�ned on a set of fuzzy
subsets ofX. The opposite problem has not been paid the attention we think
it deserves. In chapter 4 we have provided several techniques addressing this
issue, related to the duality principle and the methods used in approximate
reasoning.
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Future work.

• Automatic "�tting" of labels (fuzzy templates) associated to the set
of attributes depending on data distribution.

• Extend the generalized framework for induction of decision trees by
dealing with fuzzy valued measures of compatibility.

• Post processing of syntactic simpli�cation of the resulting set of rules
induced by the algorithm FSQ.

• Application of techniques of pre-prunning and post-prunning in order
to improve the accuracy and simplicity of observational decision trees.

• Enrich the language of representation of rules allowing the use of lin-
guistic quanti�ers.
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