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Introducció

.	 1. Els grups Kähler

.	 1.1. Els grups fonamentals en Ia classificació de varietats.

.	 Quan horn estudia la classificació homotôpica, topolôgica o diferencia-

.	 ble de varietats PL, diferencials, complexes, . . . , apareix una dicotomia

.	 molt marcada en els resultats assolits fins el moment present entre el
S	 cas sirnplement connex i el no simplement connex.
S	 En el cas simplement connex s'han fet avanços notables fins el mo-
S	 ment present. Per exemple, podem destacar entre aquests Ia teoria
.	 de torres de Postnikov per CW—complexes, i els treballs recents sobre
.	 varietats C°° compactes de dimensió 4, culminant en els teoremes de
.	 Freedman I Donaldson que caracteritzen el tipus topolôgic d'aquestes
.	 varietats. Aquests teoremes de classificació tenen en comi que codi-
.	 fiquen Ia classe d'equivalència môdul isomorfisme d'un espai mitjançant
S	 uns invariants lineals, grups abelians, elements seus, morfismes entre
.	 ells, en nombre finit o numerable, i que poden ser relativament coneguts
.	 en molts casos: la torre de Postnikov môdul torsió es pot calcular
.	 via models minimals de Sullivan, el tipus topolôgic es pot deduir de
.	 l'àlgebra de cohomologia entera i certes classes caracteristiques de la
.	 varietat.
.	 En contrast, en el cas no simplement connex el nostre coneixernent
.	 es troba molt més endarrerit. Max Dehn va provar el 1912 que tot
.	 grup finit presentat és grup fonamental d'una varietat compacta llisa
.	 orientable de dimensió 4. Aixb fa que el problema de classificació fins
1•	 I tot homotbpica d'aquestes varietats contingui al problema de classifi-
S	 cació de grups finit presentats môdul isomorfisme. El problema essen-
.	 cial d'aquesta classificació ha estat resumit per Mikhail Gromov corn
S	 "Qualsevol afirmació sobre tots els grups és trivial o falsa"

I	 Fins i tot si ens restringim a la categoria de grups finit presentats,
S	 questions tan bàsiques corn ara decidir si dues presentacions defineixen
.	 grups isomorfs, si dues paraules defineixen elements conjugats o fins



I tot ci mateix en una presentació d'un grup son en general indecidi-
bles. Qualsevol sistema d'invariants lineals ofereix només una infor- 	 S

maciO grollera, i és trivial per àmplies families de grups.
Aixi la impossibilitat de classificació de grups és heretada per les

varietats ilises. Davant d'aquesta dificultat, la linea de recerca bàsica 	 S
ha estat estudiar les representacions lineals i en general les accions
dels grups fonamentals en espais distingits, amb les propietats d'origen
geometric que aquestes accions satisfan. En aquesta direcció s'emmarca	 S

la present membria. S
S

	

1.2. Uns grups molt especials. Quan horn restringeix el seu 	 S

estudi de grups fonarnentals a categories més I més restringides de

	

varietats, s'observa a partir de la dirnensió real 4 una divisió nitida: 	 S
qualsevol grup finit presentat és grup fonarnental d'una varietat C

compacta (Dehn, 1912, [30]), d'una varietat quasi—complexa de di-
mensió 4 (Kotschick, 1992 [62]), simplèctica de dirnensió 4 (Gompf,
1995 [39]), fins i tot cornplexa i simplèctica de dirnensió 6 (Taubes
[ 92],Gompf). Quan horn augmenta Ia dimensió no es perden en cap
cas grups fonamentals.

En canvi, hi ha una classe de varietats molt propera a les anteriors
citades de Ia que es coneix de fa anys que imposa restriccions als seus
grups fonamentals: es tracta de les varietats Kähler compactes. La
descomposició de Hodge de la cohomologia complexa de les varietats
compactes Kähler té corn a consequència elemental que els nombres
de Betti senars de tals varietats son parells. En particular, b1 (X) =

rang ir1 (X, *) parell, i els grups amb abelianitzat de rang senar,
corn ara Z, no poden ser grups fonamentals de varietats compactes
Kähler.

Si horn restringeix encara més la classe de varietats estudiades, no
s'apercebeix l'aparició gradual de més restriccions topolôgiques. Tot a!
contrari, horn es troba arnb que:
- no es coneix cap exemple de varietat Kähler compacta que no sigui
difeomorfa a una varietat projectiva sobre C,
- per Ia classificacicS de Kodaira, es sap que totes les superficies Kãhler
compactes son difeomorfes a superficies projectives ilises sobre C,
- totes les varietats projectives Ilises sobre C son difeornorfes a varietats
definides sobre Q.

Es a dir, dins de les principals classes de varietats compactes es-
tudiades actualrnent en Geometria, les varietats Kähler son la classe
més gran en la que horn observa restriccions en ci grup fonamental, i
aquestes restriccions semblen ser les mateixes que en el cas de varietats
projectives sobre un cos de nornbres! Aquest fet fa molt especials I



1. ELS GRUPS KAHLER	 7.
.	 interessants els grups fonamentals de les varietats Kãhler compactes,
S	 que reben el nom de grups Kähler (vegi's [3]).
I	 En el context de la Geometria Algebraica, és també interessant
I	 conéixer els grups fonamentals de varietats algebraiques obertes ilises
.	 0 singulars. En el cas obert, es sap que el grup fonamental d'una
S	 varietat quasi—projectiva ilisa satisfà també restriccions, corn ara les
.	 que provenen de l'estructura de Hodge mixta posada per Morgan i
.	 Ham a Ia seva completació unipotent ([70], [47]). En el cas singular,
.	 horn pot realitzar qualsevol grup fonamental finit presentat mitjançant
.	 Un poliedre afi complex, perè en canvi es sap molt poc sobre els grups
.	 fonamentals de varietats singulars irreductibles.

.	 1.3. L'estudi dels grups Kãhler. L'estudi dels grups Kãhler és

.	 un tema recent, que es troba en la confluència de la Teoria de Grups,
S	 la Geornetria Algebraica i Ia Topologia Diferencial.
S	 A continuació introduIm breument les principals linees d'investigació
.	 sobre el tema amb les que aquesta membria entronca:
.	 1 : La completació unipotent dels grups Kähler. Aquesta és la
S	 tra linea de treball fonamental. Sigui k un cos de caracteristica zero.
.	 La cornpletació k—unipotent d'un grup F, denotada 1' ® k, és el limit
.	 projectiu del sistema m yers de morfismes de grups
.
.
S	 on U es un grup k—algebraic unipotent. Per un grup F finit pre-
.	 sentat, la seva completació k—unipotent és un pro—grup k—algebraic

.	 unipotent, equivalent pels treballs de Malcev a Ia seva algebra de Lie

S	 pro—nilpotent, l'dlgebra de Malcev £(f, Ic). Aquesta completació clas-
.	 sifica les representacions unipotents del grup, o equivalentment els sis-

.	 temes locals/fibrats integrables unipotents sobre un espai X tal que

.	 711 (X)	 F. Debut a l'existència de reticles provinents del grup F en

.	 tota representació unipotent, el completat k—unipotent F ® k i Ia

.	 algebra de Malcev £(F, k) per k cos de caracteristica zero s'obtenen

.	 per extensió d'escalars del cas racional F ® Q £(F, Q).

.	 Un altre tret especial de Ia completació unipotent que simplifica el

I	 seu estudi és el fet de que si F ir i (X), amb X varietat diferenciable,
la completació F ® IR pot ser calculada a partir del complex de formes

:	 ciiferencials de de Rham de X. Aquest càlcul es pot fer via la teoria
de models 1—minimals de Sullivan, o mitjançant les integrals iteradesI	 de K.T. Chen. A més, en el cas de les varietats Kähler compactes

.	 Ia varietat, I traduir propietats de Ia cohomologia corn I'estructura i

.	 l'aparellament de Hodge, a propietats de la completació unipotent.

.
S
.	 S

I
S	 S

.

.

S

S	 el teorema de formalitat de Deligne—Griffiths—Morgan—Sullivan permet
.	 calcular el model 1—minimal directament a partir de la cohomologia de



	

Entre els resultats principals obtinguts per aquesta via destaquem 	 S
	la propietat de que els productes triples de Massey de grups Kähler 	 S

son zero, cas particular de 1—formalitat conegut ja per J.-P. Serre, i
l'isomorfisme de l'àlgebra de Malcev d'una varietat Kãhler compacta

	

amb la d'un model his de la seva imatge per l'aplicació d'Albanese, 	 S
resultat debut a Campana ([20]).
: La cohomologia L 2 dels grups Kähler. El càlcul de la cohomologia

L2 d'una varietat Kähler iniciat per M. Gromov i continuat per Ara-
pura, Bressler i Ramachandran dóna condicions suficients per a fibrar
varietats Kãhler simplement connexes sobre el disc de Poincaré. La

	

consequència al aplicar aquests resultats als recobridors universals de 	 S
varietats compactes és que l'extensió d'un grup amb infinits finals per
Un grup finit generat (1 en particular un producte lliure de grups) no
pot ser Kähler ([46],[5]).
3: Aplicacions harrnôniques sobre varietats Kähler. El punt de par-	 5
tida d'aquesta via d'estudi és el teorema de Siu i Sampson que diu que
tota aplicació harmonica d'una varietat compacta Kähler a una van-

	

etat riemanniana amb curvatura seccional Hermitica negativa és pluri- 	 5
harmènica. Siu, Sampson, Carison i Toledo parteixen d'aquesta propi-
etat per a estudiar les aplicacions harmbniques de varietats compactes
Kãhler a espais hermitics localment simètrics, obtenint teoremes de
factorització d'aquestes aplicacions a través de superficies que mostren
que els reticles co—compactes en SO(1, n) no son Kãhler per n ^ 2. Hi
ha una versió de Gromov i Schoen d'aquesta teoria per a aplicacions
harmèniques cap a arbres.
4: Teoria de Hodge no abeliana. Aquest camp constitueix una versió
equivariant de l'anterior. L'objectiu d'aquesta teoria és l'estudi d'espais
de moduli de representacions de grups fonamentals de varietats projec-
tives i quasi—projectives, I dels seus resultats se n'extreuen algunes
restriccions que aquests grups han de satisfer, corn ara el let de que
les singularitats en l'espai tangent de Zariski de l'espai de moduli
de representacions de dimensió n d'un grup Kähler son quadràtiques
( Goldman—Milison, [38]), o que la clausura Zariski real de la monodro-
mia d'una R—variació d'estructures de Hodge sobre una varietat Kähler
compacta ha de tenir un subgrup de Cartan compacte (Sirnpson, [85]).

1 .4. Varietats quasi—projectives i grups fonamentals relatius.
A rnés dels grups Kähler, en Geometria Algebraica apareixen de man-
era natural el grups fonamentals de varietats quasi—projectives Ilises.
Aquests grups també satisfan algunes de les propietats dels grups Kãhler
abans citades, corn ara l'existència d'una estructura de Hodge rnixta
en la seva cornpletació unipotent. En el cas de varietats algebraiques



S
S
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.	 ilises sobre un cos de nombres, aquests grups admeten diferents real-

.	 itzacions: Betti, Hodge, de Rham, étale, cristaLlina, construides per

.	 Deligne en [34] en el cas de varietats X tals que una completació ver-
I	 ifica H 1 (X, 0) = 0. En aquesta memèria estudiem les realitzacions
.	 de Betti, lodge i de Rham del grup fonamental sense aquesta condició
S	 cohomolôgica, manifestament molt forta. En particular, en el Capitol 5
.	 compararem en el casde corbes els resultats que s'obtenen per varietats
.	 que compleixen H' (X, 0) = 0 amb el d'algunes que no la compleixen.
.	 El fet de que el grup fonamental es un invariant dels espais puntejats
.	 obliga també a tractar el cas relatiu, ja que el que podem associar
.	 naturalment a una varietat algebraica X no és un grup fonamental, sinó

.	 Ia familia donada per Ia projecció en el primer factor X x X - X amb

.	 punt base diagonal, que dóna la variació del grup fonamental de X al

.	 variar el punt base. Horn considera aleshores el cas relatiu, de families

.	 de varietats algebraiques f : X -+ S on f és lIls i topolôgicament

.	 localment trivial, amb una secció punt base o : S -f X. En aquest cas

.	 els grups fonarnentals de les fibres formen un fibrat principal de grups

S	 discrets fri (X8 , a(s))}s, i les àlgebres de Malcev de les fibres formen

.	 sistemes locals d'àlgebres de Lie.

.	 Aquests sistemes locals d'àlgebres de Malcev que denotern £(XIS) =

S	 {L(ir,(X8, o(s)))}$ Es son equivalents a fibrats holornorfs sobre la base

.	 S amb una connexió integrable (L(XS) ® 0s, ds). Aquesta connexió

S	
es la connexió de Gauss-Manin en l'àlgebra de Malcev. La connexió de

S	 Gauss-Manin en l'àlgebra de Malcev és d'origen algebraic, i singular-

S	
regular (Navarro Aznar, [73]).

S

2. Continguts d'aquesta membria

S	 El propôsit d'aquesta rnemôria ha estat l'estudi del grup fonamental
S	 de les varietats algebraiques complexes, en les seves realitzacions Betti,
.	 Hodge i de Rham. L'estudi s'ha fet tant en el cas absolut, és a dir
S	 ;	 grups fonamentals de les varietats esmentades, corn en el cas relatiu,
.	 en el que s'estudia Ia monodromia en el grup fonarnental i la connexió
S	 de Gauss-Manin associada. Les tres pricipals direccions de treball han
S	 estat:

:	
(1) La cornpletació unipotent dels grups Kähler, mitjançant els models

.

	

	
1-minimals de Sullivan i el teorema de formalitat de Deligne-Griffiths-
Morgan-Sullivan.

. ordinaries.

.	 (ii) La monodromia en el grup fonamental en pinzells de Lefschetz
S	 de corbes, és a dir, families de corbes amb singularitats quadràtiques
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(iii) El model 1—minimal de la connexió de Gauss—Manin en la coho-
mologia de varietats algebraiques Ilises.

Fern a continuació una descripció més detallada dels continguts
d'aquesta membria:

El Capitol 1 és una introducció al grup fonamental de de Rham i
algunes de les seves propietats. Les completacions nilpotent, nilpotent

+1- VQ;1c 1 —iiiirufrif t1iin rriin T s/rn difinids e.tpr'iricamfnti:'.iw'. V'.JLLL'J, A IV	 LLV'&	 '..	 b 'J:-'	 "-'	 '--'
I caracteritzades a continuació en termes de la sèrie central descen-
dent del grup. En el cas d'un cos k de caracteristica zero, la corn-
pletació unipotent F 0 k és un grup pro—algebraic k—unipotent, equiv-
alent per tant a la seva algebra de Lie pro—nilpotent. Aquesta algebra
rep el nom d'àlgebra de Malcev de F sobre k, I es denota £(F, k).
Es descriu a continuació corn aquesta algebra de Malcev I la corn-
pletació unipotent per un cos Ic de caracteristica zero s'obtenen a par-	 S

tir dels homèlegs racionals per extensió d'escalars, aixi en particular 	 S

£(F, k) £(F, Q) ® ft. Aquesta propietat ens ha sigut molt conve-
nient, ja que perrnet utilitzar un cos ft particular, usualment Q o R, i
les propietats observades s'estenen a tots els cossos ft de caracteristica
zero. La relació d'aquesta completaciO k—unipotent amb la cornpletació
nilpotent sense torsió utilitzada per Campana és descrita en el Lema
1.18.

	

Una altra algebra de Lie pro—nilpotent naturalment associada a un 	 S
grup F es l'àlgebra graduada gr F =	 Aquesta algebra,	 S
definida ja sobre Z, és una forma entera de Ia graduada de l'àlgebra de 	 S
Malcev, ço és	 S

GrL(F,k) (grF)®zk.

Descrivirn a continuació algoritmes per a calcular els primers quocients
d'aquesta algebra graduada F/F 2 0 k, F2/F3 ® ft a partir d'una pre-
sentació del grup F, derivats de [88], [27]. L'üs de coeficients en un
cos de caracteristica zero permet fer aquest càlcul rnitjançant l'àlgebra
del grup ft F ([79]). Corn a pas previ a Ia presentació de l'algoritme,
estudiern aquestes àlgebres de Malcev i de grup en el cas d'un grup 111-
ure finit generat Fr; en aquest cas apareixen les corresponents algebres
de Lie nilpotents lliures.

L'avantatge principal de la completació unipotent i l'àlgebra de
Malcev respecte de cornpletacions cornparables és que pot ser calculada
explicitament, I relacionada directarnent amb l'àlgebra de cohomologia,
mitjançant els models 1—minirnals de Sullivan o alternativament via les
integrals iterades de Chen. Després d'una breu introducció als models
1—minimals i la seva dualitat amb l'àlgebra de Malcev, entrern en la dis-
cussió de la formalitat. La formalitat significa bàsicament que el model



.
S
.
S
S
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.	 minimal pot ser calculat a partir de Ia cohomologia. El tipus de for-
I	 malitat que requerim és Ia 1—formalitat; aquesta propietat dels espais
.	 es present en la literatura sota tres formes diferents: la 1—formalitat, la
I	 presentació quadràtica de l'àlgebra de Malcev, i l'annulació dels pro-
S	 ductes de Massey. Mostrem corn aquestes tres presentacions d'aquesta
.	 propietat son equivalents, per mitjà d'accions del grup Gm (k) j de la fil-
.	 tració pel pes en I'àlgebra de Malcev. Una altra consequència d'aquesta
I	 caracterització és que en el cas de grups 1—formals, I'àlgebra de Malcev
.	 es naturalment isomorfa a la seva graduada Gr £(I', k) gr F ® k, i

.	 per tant l'àlgebra graduada del grup és una forma entera per l'àlgebra

S	 de Malcev dels grups Kähler.

I	 Finalment, horn estudia la relació entre el grup d'automorfisrnes

S	 d'un grup F, dels seus quocients nilpotents F/F e de l'àlgebra de Mal-

.	 cev. Es demostra que el grup d'automorfisrnes de I'àlgebra de Mal-

.	 cev L F es una extensió pro—unipotent del grup d'automorfismes de

S	 l'abelianitzat GL (F/F 2 ® k), I en particular la restricció d'un autornor-

.	 fisme de L F als quocients de Ia sèrie central descendent F/F+i ® k

.	
es la imatge per un automorfisme algebraic de l'automorfisme indult

.	 en F/F2 0 k. Aquesta propietat servirà per a caracteritzar els grups de

S	
Galois diferencials de l'àlgebra de Malcev en families de varietats.

S	 El Capitol 2 estudia la completació unipotent dels grups Kähler,

S	 i en eli s'inclouen els resultats de l'autor ja publicats a [2] i [3].

S	
El coneixement dels grups Kähler ha progressat a grans passos en

.	
els darrers anys (veure [3]), perè resten obertes questions fonamentals,

S	
con ara

.	 - Es tot grup Kähler el grup fonamental d'una varietat projectiva Ilisa?

.	 i, completant a l'anterior,

.	 - E5 tot grup fonamental d'una varietat projectiva ilisa una extensió

.	 quasi—abeliana del d'una varietat de tipus general? (Kollár, [61])

.	 Donem una resposta afirmativa a totes dues questions per a les àlgebres

.	 de Malcev, és a dir, per a les representacions unipotents dels grups en

S	
Iloc dels grups mateixos. L'eina usada per a obtenir aquests resultats és

.	
l'aplicació d'Albanese cix : X -+ Alb(X). Demostrem que les àlgebres

S	
de Malcev de X i d'un model llis de la imatge d'Albanese de X son

S	
isomorfes. Per tant, n'hi ha prou amb exarninar les subvarietats dels

.	
tors complexes i els seus models llisos, tin tipus de varietats bastant

.

	

	
estudiat (cf. [97]). Es presenten a continuaciO algunes altres aplica-
cions d'aquestes idees, calculant l'àlgebra de Malcev de les varietats

.	 compactes Kãhler amb dimensiO de Kodaira 0 o I , i establint a nivell
S	 de representacions unipotents la predicciO de Kollár de que el prob-

:	
lema cle caracterització dels grups Kähler es troba fonarnentalment en

S

S
S
S
.
S
S
S
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les superficies de tipus general. També es mostra que els grups Kãhler 	 S
definits per una sola relació tenen algebra de Malcev zero o isomorfa a 	 S
la d'una corba.

Previament en aquest capitol mostrem que Ia 1—formalitat de les
varietats Kähler compactes implica que les seves àlgebres de Malcev
estan determinades pels seus quocients £2F F/F2 ® k r/F3 ® k	 S
que hem calculat en el capitol anterior, i que corn a consequència de 	 I
I'aparellament Q en cohomologia els grups tals que el quocient £T és	 5
iliure no poden ser Kähler. Entre els grups amb quocient de Malcev
£2 T Iliure destaquem els grups para—iliures de G. Baumsiag ([11]).

Finalment, recordem la dicotomia entre els grups Kãhler establerta
per Beauville i Siu: un grup Kãhler T = ir (X) és fibrat si admet	 I
Un morfisme exhaustiu F - I, -+ 1 amb I' el grup fonamental
d'una corba de gènere g ^ 2, i F és no fibrat si no existeix tal mor
fisme. Pels resultats de Beauville i Siu, que es remunten al teorema
de Castelnuovo—de Franchis, aquesta condició és equivalent a la de 	 S
l'existència de pinzells de gènere ^ 2 per la varietat X. Els inics ex-
emples de grups Kähler no fibrats coneguts son racionalment nilpotents,
i s'ignora encara si aquests son els ünics grups possibles. Donem una
cota superior pel rang del quocient F/t, o equivalentment una cota
inferior pel rang del segon nombre de Betti b2 (]) b2 (X) en el cas de
grups Kähler no fibrats F = ir (X). Els càlculs de l'àlgebra de Malcev
de classe 2 £2F del capitol anterior permeten obtenir a partir d'aquestes
cotes una cota inferior per la deflciència de F (diferència minima entre
el nombre de relacions i generadors entre totes les presentacions finites
de F), que depén linealment de Ia irregularitat q = b1 (X). Aquestes
cotes ens permeten donar uns quants exemples de grups que no poden
ser Kãhler no fibrats, ni tan sols Kähler en general.

El Capitol 3 estudia la monodromia geomètrica i en el grup fon-
amental de pinzells de Lefschetz de corbes, és a dir families de corbes
sobre ': amb singularitats quadràtiques ordinaries, tant projectives
corn quasi—projectives. Aquest estudi es basa en el lerna de Morse corn-
plex i els grups de trenes sobre les corbes, i és comparable al de [8] , on
s'estudien families versals de corbes projectives i quasi—projectives arnb
seccions holornorfes corn a complement. Tota superficie projectiva llisa 	 S

admet un pinzell de Lefschetz després d'un nombre finit d'explosions
en punts, i corn aquest procés no varia ël grup fonarnental, tot grup
fonamental de varietat projectiva ilisa és grup fonamental d'un pinzell
de Lefschetz de corbes projectives. Mostrem a continuació corn obtenir
una presentació del grup fonarnental de l'espai total d'un pinzell de
Lefschetz de corbes projectives a partir de la monodrornia del pinzell
en el grup fonamental. Aprofitem l'extensió de Ia descripció a pinzells 	 5
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.	 quasi—projectius per a calcular Ia monodromia en el grup fonamental de

.	 la familia de Legendre de cñbiques afins, aixi corn de families de corbes

.	 racionals punxades, de cara a la seva comparació amb els resultats dels
S	 capitols posteriors.
.	 La caracterització dels difeomorfismes de monodromia geomètrica
S	 en termes de trenes i twists de Dehn mostra que ténen entropia zero.
S	 Aquest fet, junt amb la quasi—isometria entre el recobriment universal
I	 d'una corba i el seu grup fonamental amb la mètrica de la longitud de les
.	 paraules (veure [37]) impliquen la quasi—unipotència de la monodromia
S	 en la cohomologia de les fibres per families de corbes ([67]). En aquesta
.	 rnemôria mostrem que la monodromia en el grup fonamental de families

.	 de varietats projectives satisfà una propietat de creixement lineal que

I	 implica la quasi—unipotència de la monodromia en el H' de les fibres,

.	 i la entropia zero en el cas de corbes. Horn ilustra amb un exemple

I	 el fet de que les propietats de creixement lineal i entropia zero son

S	 més restrictives que la de quasi—unipotència en cohomologia per un

.	 difeomorfisme de monodromia.

S	 Per a concloure ci capitol, s'estudien les propietats de formalitat de

S	 la monodromia en families de corbes. La monodromia d'una tal familia

S	 en cohomologia no determina la monodromia en el grup fonamental, ni

S	 tan sols Ia monodromia en l'àlgebra de Malcev (veure [73]). En con-

.	 trast, demostrem que Ia monodromia en el quocient nilpotent d'ordre

.	 3 del grup fonamental r/r' i determina la monodromia en el grup

.

	

	 fonamental i geomètrica d'una familia de corbes. Aquesta conclusiO
estén Un resultat comparable de [8] per a families de corbes estables,

.	 on Ia filtració per Ia sèrie central descendent és reemplaçada per una

.	 filtraciO pel pes similar. A més, és una versió topolOgica del teorema

.	 de Torelli puntejat de Pulte ([77], veure també [49]).

.	 Els capitols 4 i 5 estan dedicats a la realitzaciO de Hodge i de de

.	 Rham de l'àlgebra de Malcev I de la connexiO de Gauss—Manin sobre
S	 ella en una familia algebraica. El cas absolut i el relatiu estan lligats per

.	 Navarro Aznar construeix la versiO de de Rham en [73] , per families

.	 arbitràries de varietats algebraiques.
S	 El Capitol 4 està dedicat a! càlcul de la variació de cohomologia i
S	 estructures de Hodge. Aquest estudi es fa mitjançant la introducciO de
.	 complexes de Dolbeault analitics reals de diverses menes: logaritmics,

I
.

S

.
I
.

.	 la dependència respecte del punt base, que associa a cada varietat la
S	 familia sobre ella obtinguda pel punt base diagonal. Aquesta connexiO
.	 de Gauss—Manin en el grup fonamental ha estat construida per Deligne
S	 corn a sistema de realitzacions Betti, Hodge, de Rham, cristal.li en el
.	 cas de varietats X tals que una completació seva verifica H1 (X, 0) = 0.
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relatius, i logaritmics relatius horizontals. Es mostra corn aquests corn-
plexes calculen Ia variació de Ia cohomologia de les fibres per morfismes	 S
anailtics reals localment trivials, I corn dónen una resolució aciclica dels
complexes anàlegs holomorfs. Aquest complexes de Dolbeault calculen 	 S
els fibrats analitics reals indults pels sistemes locals de cohomologia
de les fibres, i corn els complexes holomorfs relatius calculen el fibrat 	 S
holomorf pla associat a aquest sistema local, ens ha calgut introduir 	 S
el concepte de variació d'estructura de Hodge analitica real i explicar	 S
la seva relació amb la variació cornplexa. Sembla prou clar que la
presentació de la connexió de Gauss—Manin en un complexe d'àlgebres
diferencials graduades commutatives acicliques ha de permetre el càlcul 	 I
de models 1—minimals en un futur immediat, i obtenir aixi la realització
de Hodge de la connexió en les àlgebres de Malcev de les fibres, tal corn
s'obté la realització de de Rham en el següent capitol.	 S

El Capitol 5 està dedicat a la realització de de Rham de l'àlgebra
de Malcev I la connexió de Gauss—Manin en ella. En primer hoc, horn
descriu el model 1—minimal de la connexió de Gauss—Manin de [73] per
a varietats quasi—projectives. Comparem aquest model 1—minimal en
el cas de families de corbes racionals punxades, cobert per Deligne en
[34], arnb el de la farnilia de Legendre de corbes el.liptiques afins

E = {(x,y,t) y2 = x(x - 1)(x —t)}.	
:

Els resuitats observats han estat molt diferents en un cas I en l'altre.	 5
Mentre en el cas de corbes racionals punxades el càlcul esdevé formal
després d'un parell de passos I està definit sobre Z invertint només un
nombre finit de primers, el càlcul del model 1—minimal de la connexió
de Gauss—Manin en la familia de Legendre requereix en tots els seus
infinits passos més informació provinent del complexe de formes rel-
atives de la familia, I comprovem que dernana la inversió de tots els
nombres primers, pel que la connexió de Gauss—Manin en la familia de
Legendre, a diferència de les families de corbes racionals de Deligne,
sembla tenir sentit només arnb coeficients en Q.

Finalment, per a concloure el capitol s'estudia el grup de Galois
diferencial de Ia connexió de Gauss—Manin en l'àlgebra de Malcev.
Aquest és el grup de Galois diferencial de I'equacicS satisfeta per les
seccions horizontals del sistema local d'àlgebres de Malcev, els pe-
nodes no abelians. Horn prova mitjançant la comparació de grups
d'automorfismes del capitol 1 entre grup, algebra de Malcev I abelian-
itzat, i el teorema de Schlesinger sobre grup de monodromia i grup de
Galois diferencial, que aquests darrers en les àlgebres de Malcev son
extensions unipotents dels grups de Galois diferencials de la connexió
de Gauss—Manin en el primer grup de cohomologia. Aixô significa que

S
.
I
S
S
.
S
S
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.

.	 els perlodes no abelians de I'àlgebra de Malcev poden ser obtinguts

.	 a partir dels abelians per un procés succesiu de calcular primitives.
S	 I1.lustrem aquests resultats generals amb càlculs sobre els grups de Ga-
I	 lois diferencials de l'àlgebra de Malcev de la familia afi de Legendre.
.
.	 3. Resultats assolits i conclusions

:	
En compliment de la normativa de Ia Universitat de Barcelona,

expliquem a continuació els principals resultats originals i conclusions

:	
d'aquesta

.	
Els resultats originals assolits per aquest treball son:

.	 - Per un grup finit presentat F i qualsevol cos de caracteristica zero, el

.	 grup d'automorfismes de l'àlgebra de Malcev £(F, k) és una extensiO

.	 pro—unipotent del grup d'automorfismes de l'abelianitzat GL (F/F 2 ®
S	 k).

.	 - Els grups finit presentats F tals que la seva algebra de Malcev 2-

.	 nilpotent C2F T/I'2 ® Q EB F2 /F3 ® Q és iliure no poden ser grups

.	 fonamentals de varietats compactes Kãhler. Entre els exemples donats

.

	

	
de grups amb £21' lliure, destaquem els grups para—Iliures de Baumsiag.
- Si F es un grup Kähler que admet una presentaciO amb una sola

.	 - L'àlgebra de Malcev d'una varietat compacta Kähler X amb dimensiO

:	
de Kodaira ic(X) = 1 és suma directa £F CF9 Q m amb F9 el
fonamental d'una superficie compacta llisa de gènere g, i 	 l'àlgebra

.	 de Lie abeliana de rang 2m.

.	 - Si F es un grup Kähler no fibrat amb irregularitat q = b1 (F), el sen

.	 segon nobre de Betti ha de verificar

.	 b2(F)^6q-7,

.	 i també b2 (X) ^ 6q - 7 per tot espai topolôgic X amb ir (X)	 F.

.	 A més, si F admet una presentaciO amb n generadors i s relacions,

.	 Si q ^ 2, s - n ^ —1 Si q = 1, i finalment s - ii > 0 si q = 0. Aquesta

.	 cota millora Ia cota previament coneguthi de [41] , que era s - ii > —3

.	 en tots els casos.0	 - Es calcnla la monodromia en el grup fonamental per Ia familia de

.	 cñbiques afins de Legendre i per altres families de corbes racionals

:	
relaciO, aleshores F	 Z/nZ o l'àlgebra de Malcev jç	 isomorfa a
l'àlgebra de Malcev del grup fonamental d'una superficie de gènere g.

:	
verifica la següent

.	 s—n4q-7,

.	 punxades. Aquests sOn els primers exemples coneguts per l'autor de

.	 càlculs de monodromia en grups fonamentals no abelians.
S
.

S
.
.
I
.



- La monodromia en el grup fonamental per families de varietats pro-
jectives té creixement lineal. Aquesta propietat implica en particular
les ja conegudes de que la monodromia geomètrica té entropia zero i la
quasi—unipotència de la monodromia en el primer grup de cohomologia.
- Tot grup finit presentat és grup fonamental d'un pinzell de Lefschetz
coo de corbes completes sobre C. Aquesta propietat contrasta amb les
fortes restriccions induIdes en F per I'existència d'un pinzell holomorf 	 S
de corbes amb iri (X) F.
- La monodromia en el quocient nilpotent d'ordre tres del grup fona-
mental d'una familia de corbes projectives determina la monodromia 	 5
en el grup fonamental i la monodromia geomètrica dè la familia.
- Per families Ilises de varietats compactes Kãhler o de varietats quasi-
projectives, es construeixen complexes de Dolbeault relatius AS, loga-
ritmics relatius A(log H) respectivament, es demostra que les imat-
ges directes fA(Iog H) d'aquests complexes resolen els feixos derivats
1ff* Cx , JR'f* Cx\H , que la connexió de Gauss—Manin de la familia ja 	 S
està definida sobre ells. Aquesta construcció dóna a la connexió de 	 5
Gauss—Manin una estructura real natural que no té en el cas holomorf
classic. Es demostra que les propietats de transversalitat de Griffiths i
de preservació del pes de la connexió de Gauss—Manin provenen de la 	 S
connexió definida en les formes, i s'introdueix el concepte de variació	 S
d'estructura de Hodge analitica real per a comparar la connexió de 	 S
Gauss—Manin en aquests feixos amb la versió holomorfa clàssica.
- Calculem la connexió de Gauss—Manin en l'àlgebra de Malcev per
a la familia de Legendre de corbes eLliptiques afins i per a algunes
families de corbes racionals punxades, via l'algoritme de [73] . El cas
de la connexió de Gauss—Manin en Ia familia de Legendre té unes propi-
etats molt diferents de les dels exemples de families de varietats amb	 •
H1 () 0) = 0 presentades aqul 0 calculades per Deligne en [34] .
- El grup de Galois diferencial de l'equació integrable dels periodes no
abelians, associada al sistema local d'àlgebres de Malcev en una familia 	 •
de varietats Ilises, fins i tot analitiques reals, és una extensió unipotent	 •
del grup de Galois diferencial dels periodes abelians de la cohomologia.	 S
- Es mostren algunes propietats de 1—connexió i sobre la classe de	 •
nilpotència dels grups de Galois diferencials de les àlgebres de Malcev 	 •
en el cas de Ia familia de Legendre.

Finalment, tot i no ser un resultat totalment original, mereix ser
destacat l'estudi de la relació entre l'aplicació d'Albanese I Ia corn-
pletació unipotent del grup fonamental en varietats compactes Kähler. 	 •
Aquesta relació va ser trobada abans per Campana ([22]), usant una 	 •
altra completació comparable del grup fonamental. Establim la relació 	 •
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S
.	 entre les dues completacions, i el canvi d'aquesta per Ia completació
S	 unipotent I l'àlgebra de Malcev £F, més l'i.is de models 1—minimals de
S	 Sullivan ha permés una notable simplificació de les proves originals de
S	 Campana, alhora que Ia demostració de resultats que estenen els d'ell.
S	 També volem consignar corn a resultat assolit, encara que no corn-
.	 pletament original, l'estudi de la monodromia de families de corbes
S	 projectives que es fa en el Capitol 3: ens basem en una prova clàssica
S	 de la formula de monodromia de Picard—Lefschetz en cohomologia, i a

S	 partir d'elIa donem una demostració completa de la formula de Picard

S	 Lefschetz en monodromia geomètrica I en el grup fonamental. Fórmules

S	 comparables ja apareixen a la literatura (en [8], per exemple), perô

.	 l'autor no coneix cap referència que contingui una demostració corn-

S	 pleta.

.
S
S
S
.





S	 CHAPTER 1

The de Rham fundamental group

.	 1. Nilpotent groups and completions

fLet F be a group. For any two elements a, b e F, their commutator
.	 is defined as [a, b] = a'b'ab (we follow [65] in this definition; the
!	 choice [a, b] = aba'b' is very usual in the literature). The commuta-
.	 tor of two subgroups C, H C F is defined to be the subgroup [G, H] of
I	 F generated by the commutators [a, b] with a E G, b H, and it is a
S	 normal subgroup so are G, H. The lower central series of a group F
,	 is defined recursively by

:	 F1 = F ,	 F1 = [Fe , F].

.	 A group F is nilpotent when F = {1} for some finite n, and in such

.	 case we define the nilpotency class of F as the last n such that F	 {1},

.	 and call F a step n nilpotent group. Nilpotent groups may be obtained
S	 from abelian groups by iterated central extensions, this feature allows
S	 its study by starting with commutative groups and continuing by in-
.	 duction up the nilpotency class studying central extensions (see [51]).
S	 The filtration of a group F given by the lower central series satisfies
,	 the condition that [F, F3] c	 (see [65], Thm. 5.3). This fact
.	 together with the Witt—Hall identities (see Thm. 5.1 in [65]) allow the
.	 definition of a graded Lie algebra naturally associated to the group:
.	 DEFINITION 1.1. The graded Lie algebra of a group F is the Z-
.	 module
.	 grF =
S	 with the bracket induced by the group bracket.
I	 Let R be a ring. The graded R—Lie algebra of a group F is the Lie

:	
algebragrF®R.

.	 The torsion elements in the graded Lie algebra of a group form an

.	 ideal Tor C gr F. This allows the definition of the torsion free graded

.	 Lie algebra of a group F as

.	 groF=grF/Tor.

.

	

	 For R = k a field of characteristic zero one has gr F ® Ic gr0 F ® k
naturally.



.
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Denote by n - gr the category of nilpotent groups, which is a full
subcategory of that of groups, gr. One may consider the projective
closure of n - r in gr, to be denoted pro - n - gr. Its objects are
pronilpotent groups, i.e. projective limits of nilpotent groups, and as
pro - n - gr projectively closed, the inclusion functor pro - n - cr
gr has a left adjoint

?'":gr-4n—gr

F

characterized by the natural bijections

Horn gr(T, N) = Hom pro_n_gr (Fn2 , N)	 (1)	 .

DEFINITION 1.2. The nilpotent completion of a group F is the
group morphism

	

where j is the morphism corresponding by the adjointness natural bi- 	 0

jection to Id e Hom pro_n_cr (F'',	 I

The nilpotent completion may also be characterized by the univer-
sality property that it satisfies: every group morphism from F to a
nilpotent group N factors uniquely through j : F —+ 

çnilP, J fact,
the nilpotent completion of a group F is the limit of the projective
system formed by morphisms from F to nilpotent groups. It may
be checked from its definition that the lower central series quotient
F —f F/F +1 has this universality property for morphisms into step n
nilpotent groups, and that the nilpotent completion of F is its natural
projection to the limit of the tower of quotients

	

. . . —+ F/F3 —4 F/F2	S

The following property of nilpotent groups may be seen to extend
from the abelian case:

	

LEMMA 1.3. Let N be a nilpotent group. The set of its torsion	 S

	

elements TorN forms a normal subgroup. Moreover, if N is finitely	 S
generated, TorN is finite. 	 5

A nilpotent group is torsion—free wheii Tor N = {1}. We will write
as n — Z - gr the category of torsion—free nilpotent groups. The torsion
subgroups Tor N are natural, so there is a modulo torsion functor

	

.0:n—gr--4n—Z—gr	 S

N—ilVo=N/TorN

I
S
S
S
S
.
S
.
.
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S	 One may proceed now as in the nilpotent case, considering the category
S	 pro - n - Z - gr of pro—torsion—free nilpotent groups, which is the full
S	 subcategory of gr obtained as the projective closure of n - Z - r. The
I	 inclusion functor pro - n - Z - gr	 r has a left adjoint, which gives
S	 rise to the torsion—free nilpotent completion o : r - i''. As in the
I	 nilpotent case, the torsion—free nilpotent completion of a group F is
.	 the tower of projections from F to its torsion—free nilpotent quotients

:	 . . .	 > (F/F3 ) 0	(F/f2)0

S
I	 Rational homotopy theory studies the unipotent representations of

I	 the fundamental group. These may be summed up, as in the nilpotent

I	 and torsion—free nilpotent cases, in the unipotent completion of a group

I	 F, which may be defined analogously:

S	 Let k be a field, and let U(k) be the category of k—unipotent alge-

S	 braic groups, with algebraic morphisms. Let pro— U(k) be the category

S

	

	 of pro—k—unipotent groups, which is the projective closure of U(k) in
gr. The inclusion functor pro - U(k) -+ gr has a left adjoint functor

S	 . 0 
k : -4 pro — U(k), satis ying natural bijections

:	
Hompro_u(k)(F ® k, U) _ Homgr (F, U) .	 (2)

.	 DEFINITION 1.4. The k—unipotent completion of a group IT is the

.	 morphism
S	 j®k:F—+1'®k,
S
S	 where j ® k is the morphism corresponding to Id E Hom gr(F , IT) fl
S	 the natural bijection (2).

:	 This is the abstract definition of the k—unipotent completion of a

.	 group F. It is equivalent to the universality property with respect to

.	 morphisms from F to a k—unipotent group, and not very helpful in

.	 computational terms. In the case of a field Ic of characteristic zero and

.	 a finitely presented group F there are alternative ways to construct and

.	 compute unipotent completions, which will be the subject of the next

.	 sections.

S	 Before that, we will give an equivalent presentation of unipotent

S	 completions. Malcev showed that over a field of characteristic zero,

.	 the addition laws defined by the Baker—Campbell—Hausdorff formula

S

	

	 induce an equivalence between nilpotent Lie algebras and unipotent
algebraic groups ([66]). The projectively completed version of the cor-

S	 respondence is:

S
.
.
.

I

I
S



22	 1. THE DE RHAM FUNDAMENTAL GROUP

THEOREM 1 . 5 (Malcev). Let k be a field of characteristic zero.
The correspondence between Lie groups and Lie algebras gives a cate-
gorical equivalence between the category of pro—k—unipotent Lie groups
and that of pro—nilpotent k—Lie algebras.	 S

	

DEFINITION 1.6. Let F be a group and k a field of characteristic	 :
zero. The Malcev algebra of F over k, denoted £(T, k), is the Lie
algebra of the pro—k—unipotent completion F ® k.

Finally, a first example is presented in order to justify the notation
for unipotent completions.

EXAMPLE 1.7. Let M be a finitely generated abelian group. Its
nilpotent completion is Id : M -+ M, as M is nilpotent and it fulfills
the unique factorization condition. Moreover, every morphism from M
to a torsion—free nilpotent group N sends torsion elements in M to the
identity, thus factors uniquely through the quotient M — M/Tor M.
This quotient is torsion—free nilpotent, so MO ZlP M/Tor M. The
same holds for any nilpotent group M.

Fix now a field k of characteristic zero, and consider the morphisms
M —* U to k—unipotent groups. Unipotent groups over a zero char-
acteristic field are torsion—free nilpotent, so the completion morphism
M —^ M ® k must factor through the torsion—free nilpotent completion 	 S

M —^ M/Tor M ZrankM . Given a morphism p : M/Tor M — U to a
unipotent group, a basis x 1 , . . . , Xm of M must be mapped to commut-
ing elements a 1 , . . . , a E U. The logarithm is well defined in U, so we
may take the ordinary tensor product and define a map

cp®k : (M/TorM)®zk —U

1 x1 + • + AmXm	 exp(Ai log(ai )) ..... exp(Am log(am))	 S

As a , . . . , am commute, so do the terms exp()j log(a)), thus 9 ® k
is a group morphism. This shows that every morphism M —+ U fac-
tors uniquely through the natural morphism M —+ M ® k, which is
therefore the k—unipotent completion of M.

2. The Malcev algebra and the de Rham fundamental group

In this section the unipotent completion of a group, which is called
the de Rham fundamental group in the case of F a fundamental group,
is constructed for fields of characteristic zero. This is done by means
of the group algebra. The equivalence of the pro—k—unipotent groups
with pro—k—nilpotent Lie algebras, the Malcev algebras, is also de-
scribed. Finally, the torsion—free nilpotent and k—unipotent comple-
tions are compared.
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.	 We will assume throughout this section that Ic is a field of charac-
S	 teristic zero and that F is a finitely generated group.
S	 Let kF be the group k—algebra of F. This is an augmented algebra,
I	 with augmentation

:
.	 i: Aigi	 i:S
S	 Its kernel J = ker admits a linear basis {g - 1 g F}. This ideal is
.	 closely related to the lower central series of F, as we proceed to explain.
.	 Let kF be the J—adic completion of kF, and J its augmentation
I	 ideal, which is the completion of J. This algebra is the complete aug-
.	 mented k—algebra generated by the group F. It contains a multiplica-

I	 tive group 1 + J, together with a morphism

.	 j:F—+1+J

S	 gi—+1+(g-1)
I	 .	 .	 .
0	 and a linear space J, with a k—Lie algebra structure given by the bracket

I	 [x, y] = xy - YX. There is a set bijection

:
S	 where q5 is any map such that çb(x) = 1 + x + o(x2 ). This bijection
S	 respects the filtration induced by the powers of J. Moreover, the group
.	 bracket in the group 1 + J verifies that [1 + Jm , 1 + J'] C 1 + J1Th+fl. This
.	 endows the graded k—linear space Gr (1 + J) = E?^(1 + J)/(1 + Jn+i)

S	 with a Lie algebra structure, and Gr q induces a graded Lie algebra

S	 An elementary recursive computation shows that if g F , then

.	 which induces an associative algebra morphism between the universalS	 enveloping algebra U(gr F ® k) and Jfl/Jn+I,

S	 THEOREM 1.8. (Quillen, [78]) Let k be a field of characteristic
S	 zero, and F a group. The morphism grj induces an isomorphism of
S	 complete associative algebras between U(grF ® k) and j>1Jfl/Jfl+l

Theorem 1 .8 may be reformulated as follows:

.	 isomorphism between Gr (1 + J) and Gr J = EB>1 Jfl/Jfl+l.

.	 g - 1 E J. This allows the definition of a k—Lie algebra morphism
S
.	 grj : grF ® k -4
.	 by sending the homogeneous elements e F/F 1 to g - 1 e Jfl/Jfl+i,
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COROLLARY 1.9. The group morphism

verifies that j(g) e 1 + Jfl if and only if gm r for some nonzero
integer m.

In the case of free groups the identity j'(l + 
in ) = r i satisfied

(see [83]), but this is not the case in general. The equality for all
finitely presented F was known as the dimension subgroup conjecture
until it was disproved.	 S

Moreover, the algebras kT have a coalgebra structure, with coprod-
uct given by Lg = g ® g fog E F. This coproduct extends to the
J—adic completion, making kF a complete Hopf algebra. The coprod-
uct gives rise to two sets of distinguished elements in kT:

DEFINITION 1 . 10. (1) The group—like elements are the elements of
the set

	

	 S
(kF) = {x e 1+JIzx = x®x}.

(ii) The primitive elements are the elements of the set

P(I:i)={ E J I y = 1®y+y®l}.	 I

The image of F in Id' obviously lies in (kF). The theory of Hopf
algebras shows that these sets have additional structures and relations
(see [69]):	 :

- Group—like elements form a subgroup of 1 + 3.
- Primitive elements form a sub—Lie algebra of J.
- Consider the formal power series exp(y) =	 and log(1 + x) =

	

(_i)n+1ç, inverse to each other. These series induce filtered	 I
set bijections

P()c()	 S
log	 I

and produce k—Lie algebra isomorphisms between their gradu-
ates.	 S

	

The unipotent completion of finitely generated groups may be ob-	 5
tamed by means of the above constructions ([79], Appendix A).

THEOREM 1 . I 1 (Malcev) . Let F be a finitely generated group and
k a field of characteristic zero.
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I
.	 Some properties of the unipotent completion and its Malcev algebra
.	 relevant for our purposes (see [66], [79] Append. A, [80] Thm. 2.18)
S	 are:
I	 PRoPosITIoN 1.12. Let N be a finitely generated nilpotent group,
I	 and j : N -3 N ® k its k-unipotent completion.
I	 (i) The kernel ofj is the torsion subgroup TorN.
S	 (ii) For every element h E N ® Q there is an integer m and an element
.	 g E Imj such that h = gm.

:	
PROPOSITION 1.13. Let F be a finitely generated group and k

.	
field of characteristic zero.

I	 (i) The k-unipotent completion group F ® k is the projective limit of

S	 the tower of unipotent groups

I
.	 and the completion morphism is induced by the tower of natural mor-
I	 phisms F - F/Fe (F/Fe ) ® k.
I	 (ii) The Malcev algebra of F over k is the projective limit of the tower
I	 of nilpotent k-Lie algebras

:	 ... -^ 
£(F/F3 ,k) -f

I	 (iii) The filtrations by the corresponding lower central series induce

I	 isomorphisms of graded k-Lie algebras

S	 GrC(F,k)-+ Gr(F®k)-- (grF)®k.

:	
(iv) The k-Malcev algebra ofF is

.

.	 REMARK i . 14. It follows from Proposition 1.13 that for any field
I	 k of characteristic zero, the k-unipotent completion and its Malcev
.	 algebra are obtained from the corresponding rational completions F ®
I	 Q, £(F, Q) by extension of scalars. This is a consequence of the fact
.	 that every k-unipotent representation of a discrete group F factors
I	 through a rational unipotent representation, and contradicts the order-
.	 ing of k-unipotent completions that the lattice of subcategories U(k)I	 suggests.
.	 Due to this fact, the change from the rational to a k-unipotent
I	 completion of F may coarsen the isomorphism type of the completion.
S	 An example of this phenomenon is given in Remark 11.2.15 of [80].

Propositions 1.12 and 1.13 allow also the comparison between the
.	 torsion-free nilpotent and Q-unipotent completions of a group. First
.	 let us recall a fact about lattices in Q-unipotent groups ([80] , Thm.
S 2.12 and Rmk 2.16):
I
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.

,	 .	 .
Given a unipotent group U defined over Q, a lattice N C U is called

an integral form of U. Different commensurable lattices in a nilpotent
group need not be isomorphic:

	

EXAMPLE 1.16. The real Heisenberg group is the unipotent matrix 	 S
1( 1 x z'\	 '1	 S

	group n3OR) = I 0 1 y E GL (3, R) . Two examples of non— 	 S
1 oo1)	 J	 .

isomorphic lattices in fl 3 (R) are:
1(1 x z\	 'I	 .

(i) The integer Heisenberg group '1L 3 (Z) = f 0 1 y e GL (3, Z) .	 S
(. '% o 0 1)	 J	 .

1( 1 2x 2z'\	 )	 S
(ii) The congruence lattice N =	 0 1 2y	 y, z e Z .

RO 0 1)	 J
	There is an important difference between the abelian quotients of the	 S

two lattices: while 9i3 (Z)/fl3 (Z) 2	z2 is torsion—free, the abelian
quotient N/N2 is generated by the matrices 	 S

(1 2 o\ (1 0 o\ (1 0 2\
to i 0 1,1 0 1 2 1,1 0 1 01	 .
\\oo1)	 ooi)	 ooi)	

:
and is isomorphic to Z2 Z/2Z, with the torsion given by the last
generator. Using Prop. 2.17 of [80], one may check that any lattice in
9.1 3 (R) with a torsion—free abelianization is isomorphic to 9(3(Z).	 S

	

This behaviour of lattices in the Heisenberg group seems to be 	 S
generic among (pro—)unipotent groups known to the author, motivating
the following conjecture: S

S
S
S
S

such that N	 N/(NTh+i)+i,Gfl	 G/(G')+i and these

quotients are lattices in the unipotent groups U' for every n. Then

the two towers of lattices • • .	 N	 . . . and . . .	 G	 . . . are	 S

isomorphic.
.	 .	 .	 .	 S

If Conjecture 1.17 is true, the isomorphism type of the towers of 	 5
lattices would be the integral form of the tower of unipotent groups

.

LEMMA 1.15. A Q—unipotent group U contains discrete lattices.
Any two such lattices are commensurable.

CONJECTURE 1. 17. Let U = 	 U'(R) be a pro—IR—unipotent group,
where the groups U'(R) have nilpotency class n. Let N = 	 N, G

G be two projective systems of lattices in the tower of groups

. . . -+ Un+i _+ U -+ U 1 -3 ...
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.

.	 Un. In the case of the unipotent completion U = I' 0 1I of a

.	 finitely presented group F, we know after Malcev that such a pro-

.	 lattice always exists: it is the torsion—free nilpotent completion F"

.	 of I', and it would follow from Conjecture 1.17 that f ZIP	 n2lp if

.	 and only if F ® Q	 z ® Q, i.e. the Q—unipotent and the torsion-

.	 free nilpotent completions would determine each other. As this is only

.	 conjectural, we will prove a partial result that allows the extension of
S	 our results of Chapter II from unipotent completions/Malcev algebras
S	 to the torsion—free nilpotent completions used by Campana in [20],

.	 [22].

S	 LEMMA 1 . 18. Let f : F —+ L be a homomorphism between finitely
.	 presentable groups.
.	 (i) If Im(f) c has finite index, then f ® k is an isomorphism if
.	 and only if fflZlP is injective and has finite index image.

.	 jective limit	 which must therefore be finite.

S	 Conversely, assume that 	 is injective and almost surjective.
.	 This implies that all the finite steps of the projective system

S	 (fflilP) : (F/Ffl)/T,. _+ ('/Ln)/Tor
.	

must also be injective and almost surjective homomorphisms. Consider

:	
now the projective system of maps

.	 (f ® Q)n : (F/Fe ) 0 Q —* (/z) ® Q.

.	 By Proposition 1.12 (ii) every element of ker(f 0 Q) has a power in
S	 ker(f1")	 {1}. The groups (F/F) ® Q are torsion free, so the
.	 homomorphisms (f ® Q) must be injective. Moreover, every element

.	 (ii) If f is surjective, then f ® k is an isomorphism if and only if

.	 fflilP is.

.	 PROOF. By the extension of scalars property of Proposition 1.13

.	 (iv) it suffices to prove the case of k = Q.

.	 (i) Let f ® Q be an isomorphism. As	 —+ F ® Q is injective, the

.	 map fflZiP must also be injective. Moreover, the fact that Im(f) c ii
S	 has finite index implies that the induced homomorphisms

:	
(F/Ffl)/T. _4

.	 have images with finite index. Consequently, there is a tower of surjec-

.	 tive homomorphisms from the finite quotient L/Im(f) to the projective

.	 system of quotients

.	 . . . —f ((1/n)/Tor) /Im(f)	 > ...

.

.	 These homomorphisms extend to a surjection from L/Im(f) to its pro-
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of (i./z) ® Q has a power in (L\/z n)/m, thus also a possibly higher
power in Im(fc'")n C Im(f 0 Q) . As (f ® Q) is a homomorphism of
Q-unipotent groups, this means that it is onto. 	 S

The completion f ® Q is the projective limit of the isomorphisms
(F ® Q) , so it must also be an isomorphism.

(ii) can be proved analogously. 	 E

The tower in Proposition 1.13 (ii) motivates the following

DEFINITION 1. 19. The step n Malcev algebra of a group r over a
field k is the nilpotent Lie algebra

L(F, k) = £(r/r +1 , k)	
:

By Proposition 1.13 and Theorem 1.5, the step n Malcev algebra is
equivalent to the group (F/Ffl)/TSi Another immediate consequence
of Proposition 1.13 and the properties of the lower central series in
groups is that the tower of step n Malcev algebras either stations or is
strictly growing:

COROLLARY 1 .20. A finitely generated group F and its Malcev al-
gebra £(F, k) satisfy either of the mutually excluding properties:

( i) The abelian lower central series quotient F/F+1 is formed by tor-
sion elements for some n, and £(F, k) = £+ 1(F, k) = • • • = £(T, k)
for any field k of characteristic zero.

( ii) The lower central series quotients F,/F i have norttorsion ele-
ments for every n, and the step n Malcev algebras £(F, k) have nilpo-
tency class n.

This motivates the following

DEFINITION 1.21. A group F is rationally nilpotent if £F - LF
for some integer n. The first such integer is the rational nilpotency
class of n.

The concept of a rationally nilpotent group parallels that of almost
nilpotent group. Nevertheless there is no inclusion between the two
classes of groups. The Higman 4-group (see [84]) is rationally nilpo-
tent, indeed it has Malcev algebra 0, yet it is not almost nilpotent.
Likewise there exist almost nilpotent groups which are not rationally
nilpotent. All such examples in both cases known to the author are
not Kähler groups.

3. Malcev algebras of free groups

In this section we compute the Q-unipotent completion of free
groups, and then apply it to give an algorithm for the computation
of £21' from a finite presentation of the group.
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.	 When the group F is Fr , the free group generated by {a , a 2 , . • • , ar},

.	 its associated towers of groups Fr/(Fr)n ® Q and corresponding Lie al-

.	 gebras can be further identified.

.	 Let A0 (Q, r) be the free associative Q-algebra generated by r el-

.	 ements xi , . . . , xr. It has an augmentation e defined by E(1) = 1,

S	 E(x) = 0 for i = 1, . . . , r. Let A(Q, r) be the completion of A0 (Q, r)
.	 with respect to ker e: it is the associative free algebra of formal power

.	 series in the non-commuting variables x 1 , . . . , x . It is filtered by the
S	 powers of its maximal ideal, which we shall denote Jp. As in the alge-
.	 bra QI' described in the previous section, the set 1 + J forms a group
.	 with the algebra product and Jç has a Q-Lie algebra structure with
I	 linear addition and bracket [x, y] = xy - yx. There is good reason for
.	 this similarity:

.	 PROPOSITION 1.22.	 (i) The group morphism defined by

.

.	 v:F—+1+JQ

.	 a2—+1+x2

.	 [65], §5.5, Thm. 5.6. This inclusion gives A(Q,r) the same
I	 universal property for complete associative algebras as QFr , thus
S	 they are isomorphic.
S	 (ii) is Thm. 6.3 in [83], 1, 4.
S
I
.	 Due to the isomorphism QFr A(Q, r), the group 1 + J, the Lie
.	 algebra J and their graduated rings are isomorphic to the correspond-
.	 ing structures in QFr , and there are also set maps

:	 JQ1+JQ

S	 mutually inverse and commuting with t. Again, these maps restrict to

.	 phisms of gr (1 + JQ) with gr J. Another useful consequence of Prop.

.	 1.22 is the following:

.	 PROPOSITION 1.23.	 (i) The map ii above defined induces mor-

.	 phisms

S	 :Fr/(Fr)n	 (1+JQ)/(i+J)

S	 bijections between 1 + J, J and they induce Q-Lie algebra isomor-
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which are injective, and induce complete augmented filtered Q-
algebra isomorphisms I between QF,/(Fr ) n and A(Q, r)/J for
alln>2.

(ii) 1'' ((1 + 4)/(i + J)) = (Fr ) k/(Fr )n for Ic < n.

PROOF.	 (i) The group inclusions come straight from Prop. 1.22

	

( ii) . The algebra isomorphisms are a consequence of the same 	 S
universality property invoked in the proof of Prop. 1.22 (i), and
the isomorphisms (1 + JQ)/(1 + J) 1 + J/J C A(Q, r)/J,
which are easy to compute.	 S

(ii) comes also straight from Prop. 1.22 (ii). 	 S

	

E	 S
We will now study the graded Lie algebra JQ.
Let B be a ring which is an integral domain. We define L0 (R, r)

to be the free R-Lie algebra generated by elements , . . . , er , with

	

augmentation e sending scalars to themselves and the to zero. Let 	 S
L(R, r) the completion of L0 (R, r) with respect to e; L(R, r) is a profi-

	

nite Lie algebra and may be graded by the weight of the brackets; we 	 S
denote as M its maximal ideal.

We will use the Lie algebras L(Z, r), L(Q, r), which are directly
related to our group algebra constructions.	 5

PROPOSITION 1.24.	 (i) There is an isomorphism ofgraded Lie
algebras	 S

'/':L(Z,r)—+gr(F)

determined by	 5
Se —^	 S

.	 (cr, 3) -4((a), 	 3))	 S
(ii) The map /' also induces for all n	 1 isomorphisms of graded

Q-Lie algebras	 S

n : L(Q, r)/M Th -4 gr(Fr/(F) n 0 Q) £n(Fr, Q)
PROOF.	 (i) This is [83], I, 4 §6, Thm. 6.1, or [65], 5.7, Thm.

5.12.	 a
(ii) The 7L-Lie aibra gr (Fr /(Fr ) n) S	 j'(Fr)j/(Fr)i+i. As it pre-	 5

	serves degrees, applying the isomorphism of (i) tensored by Q	 5
yields another isomorphism

L(Q,r)/M' +- gr(F/(Fr)) ®Q
The isomorphism of Proposition 1.23 (ii) completes the proof.	 5

	

El	 S
S
S
S
S
S
S
S
.



4. MALCEV ALGEBRAS OF FINITELY PRESENTED GROUPS 	 31

.	 Proposition 1.24 implies that a Q-linear basis of the Lie brackets of

.	 weight m is mapped by b to a Q-linear basis of gr (Fr /(Fr ) n ® QY for

.	 m < n. This fact allows us to compute the dimension of each piece of

.	 the graduate of Fr/(Fr)n 0 Q with one of Witt's formulae ([65] ,[17]):

.	 1
S	 dim (gr (FrI(Fr )n ® Q)) = dim(1 m (Q, r)) = .- : (d)r
I	 d1n

.	 where is the Möbius function. Furthermore there are algorithms

.	 that produce an ordered homogeneous basis, called the Hall basis, of
I	 £(Q, r), thus of J. Its elements of degree < n are mapped by b on a
S	 basis of gr (Fr /(Fr ) n ® Q).
.	 To close this paragraph, we give the brackets in F2 with generators
.	 a,b that form a Hall basis up to weight 5. It is printed in [17], II §2.10
.	 and [83] ,I, 4 §5, with every word in the opposite order due to differing
.	 bracket conventions between them and [65] , which we follow. Bracket
.	 writing conventions also vary in literature, and after [65] we will hence-
.	 forth write bracket arrangements of the form [[. . . [a , a2 ] , a31 , . . . ] , a7]
I	 formed by nested brackets on the left as [a i , . . . , a} , thus we will denote
.	 [[[b, a], a], b] as [b, a, a, b], [[[b, a], a], [b, a]] as [[b, a, a], [b, a]] and so on, ex-
.	 cept in some explicit computations where the full bracket arrangements
S	 will be written to avoid causing doubts.

:	 Weighti	 a

I	 Weight 2	 [b, a]

.	 Weig t 3	 [b, a, a]	 [ a, b]

:	
Weight4	 [b,a,a,aJ	 [b,a,a,b]

:	
Weight5 [b,a,a,a,a] 	 [b,a,a,a,b]

[b, a, b, b, b]	 [[b, a, a], [b, a]]	 [[b, a, b], [b, a]]

.	 4. Malcev algebras of finitely presented groups

.	 The Malcev algebras of free groups have been studied in the previ-
I,	 ous section. We will continue this study with finitely presented groups.

.	 tion the following simplest algebra, £ 2F (F/F2) 0 Q (F2 /F3 ) 0 Q.S	 The algebra £2 F is the quotient of the Malcev algebra £F by its third

S
I
S
S
S

.	 When the group F is the fundamental group of a topological space X,

.	 the abelian algebra £ 1 F is just H1 (X; Q) . We will consider in this sec-



S
.
.
S
.
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commutator ideal £r 3 , and is also the quotient of the holonomy a!- 	 S
gebra of F gr (cf. [25},[60]) by its third commutator ideal. As will be 	 I
seen in Proposition 1.49 and Corollary 2.6, in the case of Kähler groups 	 S
and 1-formal groups in general, the finite-dimensional algebra £21' de-
termines the full Malcev algebra. Rational coefficients will be used
thoroughout the section, but the fact that the corresponding k-Malcev 	 S
algebras are obtained by extension of scalars from the Q-Malcev alge-
bra makes all the results in this section hold verbatim for any field k	 5
of characteristic zero.

The algorithmic constructions appearing in this section were de- 	 S
scribed to the author by Manfred Harti. 	 S

The groups F we will study will be given by finite presentations F = 	 I
( x , . . . , x ; r 1 , . . . , i's) . This means that F is defined by

1N-F----F--+1	 (1.3)

where F is the free group generated by the generator set {x 1 , . . . , x},
and N is the normal subgroup ofF spanned by the relation set {r i , . . . , r8 } C	 S
F.	 I

The above constructions in the case of free groups have been de-	 S
scribed in section 3:

.
EXAMPLE 1.25. Free groups.
Let IT' = F = Its Malcev completion and Lie algebras

£mFn has been computed by means of its group algebra in Proposition
1.24 (cf. also [65],[79],[83]). The conclusion is that, denoting by n(S)
the free Q-Lie algebra spanned by a set S, there are isomorphisms

£mFnL({Xi,,Xn})IL({Ki,,Xn})(m+	 S

In particular, F/F2F®Q Qx EJ• • QQx , F2 /F3F®Q Q(x , x2)EB
. . . Q(x_ 1 ,x), and the brackets in £2F are the group ones in
T/]T'2F and zero all others.

The Lie algebra £ 2F for a finitely presented F may be obtained
from its presentation and £2F. We will use an algorithm for computing	 S
them derived from [88] , where a spectral sequence that computes all	 I

Jf/JF 1 is described, and communicated to the author by Manfred
Hartl.

Consider a group presentation F = (x 1 , . . . , x ; r1 , . . . , i'3 ) , which	 I
induces the exact sequence given in (1.3). Let QF, QT be the Q-group	 I
algebras of F, F, and denote by JF, Jr their respective augmentation
ideals. The sequence (1.3) induces an exact sequence of Q-algebras 	 S

.

.

.
I
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.	 where K iS the two-sided ideal generated by the Q-vector space D =
.	 (r1 - 1, . . . , r8 - 1) C JF' This sequence restricts to exact sequences
.	 OKJ+K-_+J--+O	 (1.6)

.	 for all m ^ 1. We will compute Jr/J, Jr2/Jr3 from those sequences:

.	 PRoPoSITIoN 1.26. Consider the linear map f :	 Qr -f JF

I	 (ii) The map f induces a linear map

I	 dl:kerdo—^J/(4+JF.D+D.JF)

:	 :	 ^	 - 1)

.	 and cokerd 1 Jj/J.

:	 PROOF. (i) The exact sequences of (1.6) induce an isomorphism

I	 Jr/J1 JF/4 + K. As K is the two-sided ideal spanned by D and

I	 QF QEEJF, actually 4+K = 4+D, and thus Jr/J JF/4+D.
.	

By its construction, Tm d0 = D, and this proves (i).

S	 (ii) Again by (1.6) we have

.	 J1/J1 (4/(4flK))/(4/(4flK)) 4/(4+4nK)

:	 The last denominator is 4 + n K = + JF D + D . JF + D

S	 determined by r2 -* r - 1.

:	
(i) Let d0 :	 -+ JF/4 be the projection off. Then cokerd0

.	 Obviously f(ker d0 ) c 4 and thus d1 is well defined. Moreover, its

.	 image is precisely D fl JL and (ii) follows from this.	 E

.	 We now relate the computed modules J/J, J/J with the soughtS	 ones F/F2 , T2 /T3 F ® Q applying Quillen's Theorem 1.8 ([78]):

.	 Following the notation of [88], we will use the wedge product, or

.	 alternating product, of the associative algebra QF, which is

:SI 	 The wedge product of two linear subspaces A, B C QF is the linear
.	 subspace

:

S	 Quillen's theorem implies that the Lie algebra F/F i F 0 Q is con-
.	 tamed in the Jr-adic graduate of the group algebra, eJI! /JJ +'. This
.	 inclusion sends the brackets of the Lie algebra to wedge products in
.	 EBJf'/J1 . In the cases n = 1, 2 this means:

COROLLARY 1.27.	 (i) F/F2 ® Q J/J.
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(ii) Consider the inclusion Jr A J1 -+ J . Then

I'2/T3®Q(JrAJr+J)/4CJ/J	 :
Corollary 1.27 allows us to adapt the algorithm of Prop. 1.26 to

compute "/122 , F2 /F3F ® Q:	 S

LEMMA 1 . 28. The image of the restriction f : ker d0 -+ 4 lies in	 S

JFAJF+4C4.

PROOF. Denote F3 the free group generated by {y , . . . , ys}, and
the map r : F3 - F sending y2 to r. The map d0 : Qr —k JF/4

F/F2 ® Q is the map induced by r, r ® Q : F3 /(F3 ) 2 ® Q —* F/F2 ® Q.
Furthermore ker(r ® Q)	 ker(r) ® Q, as F3/(F3 ) 2 is a free abelian
group. Thus ker d0 admits a basis tD, . . . , Dk, with the w2 words in P'8
mapping to F2 by r.

Now, the map F2 -4 4 sends a bracket (a,b) to (a — 1)(b — 1) —
(b — 1)(a — 1) + terms in 4, and a product [T(a2, b2 ) to >(a — 1)(b 2 —
1) — (b, — 1)(a — 1) + terms in Jj. Therefore, all the w — fl(a3 , b31)

T	 I	 i3	 IImap OJF JF+JF.	 L-J	
I

Lemma 1.28 allows us to define a map d1 : ker d0 -+ A2 (F/r2 ® Q)
by composing	 .

2	 2	 1
kerd0 —4 (JF A JF + 4)/4 A(F/F2 ® Q) —^ A(T/F2 ® Q)	 S
PROPOSITION 1.29. cokerd1 r2 /r3 ® Q.	 S

PROOF. As we have previously explained, I'/1'2 0 Q Jr/J	 5
JF/(4 + K) JF/(4 + D). Thus	 .

A(F/F2®Q) (JF A JF + (J + JF D + D . JF)) /(4+JF.D+D•JF).

Also f(kerdo) = D fl 4 C JF A JF + 4 by Lemma 1.28, so

cokerd 1 (JFAJF+4+JF.D+D.JF+Dn4)I

(J+JF.D+D.JF+DnJ)

(JFAJF+4+Kn4)/(4+Kn4)
(JrAJr+Ji )/J F2/F3®Q

the last isomorphism being given by Cor. ' 1.27.

COROLLARY 1.30. dim r2 /F3 ® Q = 
(dimr/T2®Q) dim ker d0 +

dim ker d1

We are now able to determine the structure of the 2-step nilpotent
Lie algebra £21' of a finitely presented group r = Kx i , . . . ,	 ; r1 , . . . , r3):
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S
.	 PRoPoSITIoN 1.31. Let A 2 (F/F2 ®Q) be the free exterior algebra
S	 generated by F/F2 ® Q modulo the ideal A^ 3 (F/r2 ® Q) generated by
.	 wedges of length 3 or more. There is an isomorphism

S	 /<2

:	
£2F (A(F/T2®Q))

:

	

	
PROOF. There is an obvious map of exterior algebras, which is a

linear isomorphism in every degree by the above results.

.	 Thus £2 i' is the quotient of a free 2-step nilpotent Q-Lie algebra

.	 A2(Hi(F; Q)) by a subspace of 2-brackets ker d0 / ker d1 , which corre-
S	 sponds to the relations of the holonomy algebra. We have stated in
.	 Ex. 1.25 the case of free groups. Let us examine this structure in some
.	 other simple cases:

.	 COROLLARY I .32. Let F = (x1 , . . . , x ; r) be a group admitting a

.	 presentation with a single relation. Then:

.	 (i) If r F2 , there is an isomorphism r2r £2F_1 with F_ 1 a
S	 free group of rank n - 1.
S	 (ii) If r E F2 \ F3 , there is an isomorphism £2T £2F/di(r).
I	 (iii) If r E F3 , there is an isomorphism £21' £2F.
S
S	 PROOF. All cases are found by applying Prop. 1.31.

.	 (i) In this case r,r2 ® Q	 F_1 /(F_1 ) 2 ® Q, and as r	 F2,

.	 kerd0 = {O}.

.	 (ii) Ifl this case the map F - F induces an isomorphism F/F2 ®Q

.	 F/F2®Q, ker d0 = Qr, and as r 0 F3 , the coincidence of the lower

S	 central series and augmentation ideal power filtrations in free
.	 groups ([65] 5.12,[83]) shows that r - 1 4, hence di (r) 0.

.	 (iii) In this case, ker d0 = Qr and again by the above coincidence of

S	 filtrations, d i (r) = 0.
S	 LI
S
.	 COROLLARY 1.33. Let F = (x 1 , . . . , x ; r1 , . . . , r8 ) be a finitely

.	 presented group such that its defining relations may be divided in two

.	
sets: {r i , . . . , Tk} such that	 . . . , Tk are linearly independent in F/F2®

I	 Q and {rk+1, . . . , r3 } which belong to F3 . Then there is an isomorphism

.	
£2F £2F_k, where F_ k S a free group of rank n - k.

.	 PROOF. In this case F/F2 ®Q has rank n— k, ker d0 = Qrk+1 EB .

.	 Qr because those r3 are commutators and the other relations form a

.	 basis of Tm f, and ker d1 = ker d0 because Tk+1, • . . , r E F3F.	 LI
S
.

S
.
I
S
I
S
.
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REMARK 1.34. We will be interested in this note in which groups
F have a free 2-step nilpotent Lie algebra £2F, which by Prop. 1.31 is
equivalent to kerd0 = kerd1.

Generic presentations with less relations than generators produce a
free £2F. The reason is that given a group presentation F = (x 1 , . . . , x
ri ,...,r3 ) with a number ofrelations s < n, kerd0 = 0 and therefore
L:2F free, unless the classes , . . . , i F/(F)2 ® Q are linearly
dependent. But the sets of linearly dependent , . . . , form a codi-
mension n - s + 1 closed subset of (F/(F)2 ® Q).

The hypotheses of Corollary 1.33 may be weakened by requiring
only that {r 1 , . . . , rk} map on a basis of Im d0 , and the remaining rela-
tions {rk+1, . . . , r8 } belong to F3 ' Nk, where Nk is the normal closure
in F of {ri ,... ,

5. 1—minimal models and unipotent completions

As follows from Theorem 1.11, the de Rham fundamental group con-
tains the torsion—free nilpotent completion of the fundamental group
as a pro—cocompact lattice, and so both completions are very closely
related. The de Rham fundamental group owes its name to the fact
that when X is a smooth manifold, this group can be computed from
the de Rham complex. Sullivan's construction of 1—minimal models
gives us an algorithm for doing this. In order to describe it, we need
first to define a few concepts. We cite as generic references for the
contents of this section [45],[91],[18].

DEFINITION 1.35. (i) A commutative differentialgraded algebra (CDGA)
is a graded algebra A which is graded—commutative, i.e.

yAs = (-1)"xAy

for any two homogeneous elements x, y A of degree x, y respec-
tively; and has a differential operator, which is a map of degree one
d: A—+Asuchthatd2=Oand

d(x A y) = dx A y+ (1)Hx A dy .

Morphisms of CDGAs must respect the degree and the boundary op-
erator.
(ii) A quasi—isomorphism of CDGAs is a CDGA morphism inducing an
isomorphism in cohomology.

Quasi—isomorphisms do not necessarily have an inverse in the cat-
egory of CDGAs, the following definition is a remedy for this problem:

.

.

.

.

.

.
I
I
.
.
S
.
.
.
.
S

.
S
.

S
.
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.	 DEFINITIoN 1.36. Two CDGAs A, B are weakly equivalent if there

.	 is a finite diagramme of CDGAs

:
.	 such that all the morphisms are quasi—isomorphisms.
S	 The basic example of CDGA is the de Rham algebra (' (X) of

.

.	 DEFINITION 1.37. (i) A base point of a CDGA A is a CDGA mor-

.	 phism

.

.	 where IR is a CDGA with differential d = 0.

.	 (ii) A basepointed homotopy between two CDGA morphisms , pi

.	 A -+ B is a CDGA morphism

:
.	 where ]R(t, dt) is the CDGA determined by assigning degree 0 to t and
S	 setting the obvious differential, such that given the two base points of
I	 JR(t,dt),	 obtained by sending t to 0 and I respectively and dt to
.	 0, one has the identities

.	 coo = (e° ® Id ) o cJ	 Pi (e 1 ® Id ) 0

:	 Again, the motivating examples for these definitions are the notions

.	 of base point of a smooth manifold x e X, with the evaluation map

.	 of forms at x, and of the codifferential of a homotopy of smooth maps

S	 H:[0,1]xX—*Y.

.

	

	 Let X be a smooth manifold, and E its de Rham complex. The
theory of minimal models developed by Sullivan shows that the CDGA

.	 of global forms t (X) has a 1—minimal model. This is a certain free

S	 commutative differential graded algebra Mx(2, 0), or simply Mx, de-

.	 fined as the limit of an inductive system of CDGAs

.	 MX(1,1)c+M(l,2)c—M(l,3)c_+...

.	 together with a morphism p : Mx + t' (X) such that in cohomology p

.	 CDGA category are:

S	 smooth forms on a smooth manifold X. We will deal with R—CDGAs,
.	 unless something else is specified. Two other important notions in the

S	 induces isomorphisms in H° and H' and monomorphism H2 (Mx) --+
I	 H2(S*(X)).

:

	

	 We review the construction of the 1—minimal model up to the second
step M(1, 2), which will be used to relate ir,(X) to the cup products of.	 1—forms. For a more detailed discussion of 1—minimal models we refer

S	 the reader to [45].
S
.

.

S
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Define M(1, 1) as the free CDGA A(V,'), where IT,' is the R-vector
space H' (X, R) . Every element of V,' is defined to have degree one
and boundary zero, and the map p: M(1, 1) -^ *(X) sends every
2: E V = H'(X, IR) to its image in a fixed arbitrary linear section of
the modulo boundary map H'(X, IR) -+ Z'(E(X)).

The (1, 2)-minimal model is defined as an extension of M(1, 1): 	 S
S

.

.

.
S
S
.
S

I

.

.
S

I
S
S

I
.
I
S
I
I
S
SI
S

.
S
S

M(1, 2) = A(V11 EBV 1 ), where V' is the R-vector space ker(H2 M(1, 1) --+
H2 (X, 1i)). For any v V' we define its boundary dv as the element of
ker H2p C V11 A V' defining its cohomology class, and if dv = Xjj E
M(1, 1), p(v) is a linearly varying primitive of p(X j )p(yj ) in E(X).

REMARK 1.38. By definition, H2M(1, 1) H 1 (X, R) A H'(X, R),
hence there is an isomorphism V' ker(U : H' (X, R) A H' (X, R) -+
H2 (X, R)).

The subsequent steps M(1, n) are constructed similarly, defining
vr . as ker(H2M(1,n - 1) -+ H2e*(X)) and d, p as for ii = 2. The
inductive limit, M(2, 0) or Mx , is the 1-minimal model of E (X) . To
achieve functoriality, one must fix a base point for the de Rham algebra
and select p at every step so that the morphism p: M(1,n) -+
preserves the base point. Our subsequent use of the 1-minimal model
allows us to ignore this issue.

The 1-minimal model is the first step in an inductive system which
forms Sullivan's (full) minimal model of a CDGA A. This concept was
developed as the simplest CDGA which is weakly equivalent to the
original algebra A. Some relevant properties of the 1-minimal model

PROPOSITION 1.39. (Sullivan) (i) All connected CDGAS have a 1-
minimal model.
(ii) After fixing a basepoint, the 1-minimal model of a CDGA is well-
defined up to isomorphism.
(iii) The 1-minimal model is functorial i.e. any basepoint-preserving

CDGA morphism E*(Y) 4 £*(X) may be lifted to a morphism M

Mx.
(iv) Weakly equivalent CDGAs have isomorphic 1-minimal models.

By (iv) we may compute the 1-minimal model of a manifold X by
computing it for any CDGA linked by a chain of quasi-isomorphisms
to 6 (X) . Another interesting consequence of this proposition is:

COROLLARY 1.40. Let f : X -+ Y be a map between smooth man-
ifolds such that the induced map f* on real cohomology is an iso-
morphism on H° and H' and a monomorphism on H 2 . Then fK
py : M -4 E*(X) iS a 1-minimal modelfor E*(X).

___	 .
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S
I	 REMARK 1.41. For every CW-complex X there exists an aspher-
.	 ical space Y = K(iri (X), 1) and a map X -+ Y which satisfy the
.	 hypotheses of the Corollary. The space Y may be obtained by attach-
.	 ing to X cells of dimension 3 and more to kill the higher homotopy
I	 classes.
S	 We now recall the dualizing process between Lie algebras and free

S	 alternating map
.	 [.,.]:LALL.

I	 Dualizing on both sides, the bracket [., .] has an adjoint map

.

.	 .	 The map d may be extended as a graded derivation to the free graded
I	 algebra A L", defining the degree of elements in V = L" to be one.
S	 Then the Jacobi identity satisfied by [., .] dualizes as d2 — 0.
.	 Conversely, if M = A W is a free CDGA and deg W = 1, the
I	 differential restricts to a map d : W = M' -+ M2 = W A W, which
S	 dualizes to a map [., .] : WV A WV	WV , and the fact d2 = 0 in M
.	 translates as the Jacobi identity in WV.
I
.	 DEFINITIoN 1 .42. A Lie algebra L and a free CDGA generated by

.	 elements of degree one are dual when each one yields the other by the

.	 above processes.

THEOREM 1.43. (Sullivan (1977)) Let X be an arc-connected smooth
.	 manifold with a finitely presentable fundamental group ir (X, *) . The
S	 inductive system
I	 M(1,1)-+M(1,2)...
S	 formed by the (1, n)-minimal models of X and the projective system of

:	
real Malcev algebras of the fundamental group

S •
.	 are dual to each other.

I	 This theorem has important consequences for our purposes. Fore-

I	 most is the following duality between the linear spaces V and the

.	 quotients of the lower central series.

.	 COROLLARY 1.44.	 (i) V	 (ir1 (X)/r1 (X) 1 ® R)V.

.	 (ii) ker (H'(x;R) A H'(X;}R) - H2 (X;R)) v
S

.	 Let L be a finite-dimensional 1I-Lie algebra. Its bracket is a bilinear

I	 commutative differential graded algebras generated by elements of de-
S	 gree one.



40	 1. THE DE RHAM FUNDAMENTAL GROUP

Sullivan's theory of minimal models has two main geometric appli-
cations. It allows the computation of the Malcev algebra, and thus of
the de Rham fundamental group, of many smooth manifolds, and in
the case of simply connected manifolds there is a theorem of Sullivan's,
analogous to Theorem 1.43, stating that the (full) minimal model of
the manifold is equivalent to its real Postnikov tower, therefore yield-
ing its real homotopy type. For an introduction to minimal models of
simply connected spaces, we refer the reader to [45] , and for a unified
approach complete with proofs, to [18].

6. 1—formality and quadratic presentations

We shall describe the prime consequence of 1—formality for the de
Rham fundamental group. This is the existence of a quadratic presen-
tation of the Malcev algebra £ir (X), which is actually equivalent to
1—formality. It is easy to write down examples of groups that cannot
be Kähler because their Malcev algebras do not fulfill this property.

This section has been clarified through suggestions of D. Toledo.
The reader is referred to [23] for a broader discussion of the topic.

Recall the following concepts of Lie theory. Given a finite—dimensional
JR—vector space H, the free Lie algebra spanned by H, which we will
denote by L(H), is the sub—Lie algebra of the tensor algebra T(H) =

^o T (H) = ^o H® generated by H, with the bracket given by

[ U, v] = u ® v - v ® 'u.

The free Lie algebra L(H) may be alternatively characterised by a
universal property, as the functor H -+ L(H) is the left adjoint of the
inclusion of R—Lie algebras into R—vector spaces. Another alternative
presentation in terms of Malcev algebras is the isomorphism

rIrr\ t--i i'fr-'	 \
_141:1 ) = .lTdimH),

where Fdim H J.S the free group of rank dim H. Let us fix some notation:

- The lower central series of a Lie algebra will be denoted by C'L =
L,C2L = [L,L],.. .,CL = [C'L,L]......

- The quadratic elements of L(H) are the elements of the linear
subspace (L(H) fl T2 (H)) A2H.

- An ideal J C L(H) is quadraticallj' generated if it is generated
by quadratic elements.

- A quadratically presented Lie algebra is the quotient L(H)/J of
a free Lie algebra L(H) by a quadratically generated ideal J.

It is clear that the class of quadratically presented Lie algebras is
very narrow. However, it has been shown by Carison—Toledo and by
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I
.	 S. Chen in [28] that this class contains nilpotent algebras of arbitrarily
S	 large nilpotency class.
.	 All Lie algebras are quotients of free Lie algebras, but in the case of
.	 Malcev algebras such a quotient presentation can be given naturally:
0	 LEMMA 1.45. Let r be a finitely presentable group and CF its real

:	
Malcev algebra. There is an isomorphism of Lie algebras

.	 LI' L(H1(I',R))/J,

S	 where J C C2L(H), and is a finitely generated ideal.

.	 For the proof, the reader may consider a morphism from a free

.	 group F jH1	 F inducing an isomorphism on
Next, following Morgan, we shall give a cohomological characteri-

.	 sation of quadratically presented Malcev algebras. First, let us reca 1

S	 that the tower of n—step Malcev algebras

I
I	 or, equivalently, the dual inductive system of minimal ODGAs

:
S	 define an inductive system of cohomology maps
I	 u2(P r\	 11

.	
(1) its Malcev algebra £T admits a quadratic presentation,

:	
(ii) the map

.	 H2(L1T) -- H2(LT)

I	 is surjective,
S	 (iii) there is an action of the multiplicative group R* by automorphisms
S	 on LT so that ) e R* acts as multiplication by A on H' (LT) and as
.	 multiplication by ,2	 H2(LT).
S	 REMARK 1.47. The action in statement (iii) 15 necessarily by semiI	 simple automorphisms.

.	 PROOF. Consider the presentation LI'	 L(H)/J, where H =

.	 H,(F, R) and J is a finitely generated ideal in C2L(H). This presenta-
I	 tion arises from an exact sequence of L(H)—modules
S	 OJL(H)—_LF--_+O.	 (3)

.

.

.

I	 Al k L#n h ) = Ii 1V1Ti,fl) ---+ H2Mr(2,O) H2(LT)

.	 The following reformulation of the quadratic presentation property

.	 based on [91] was suggested to the author by D. Toledo.

:	
LEMMA 1.46. Let F be a finitely presentable group. Then the fol-

lowing are equivalent:



As L(H) is a free algebra, H2 (L(H)) = 0. Moreover, the fact that 	 S
J C C2 L(H) also means that the map H'(CIT) -+ H'(L(H)) is an
isomorphism. The action of L(H) on H' (J) yields an isomorphism	 S

H2 (LT) Hl (J)(H)	 (J/[J,L(H)])'' .	 (4)	
:

For every n—step Malcev algebra one may repeat this reasoning with
the presentation

0 - J + C'L(H) -+ L(H) -* LF -f 0 ,	 .

and thus obtain an isomorphism	 S

H2 (L1') H2Mr(1, n) (J/([J, L(H)] + C 2 L(H) n J)	 .

+ C'L(H)/([J, L(H)] n C'L(H) + C2L(H)))"	 S

The second term (C'L(H)/([J, L(H)] fl C'L(H) + C2L(H))v lies
in the kernel of the cohomology map H2 (M(1, n)) -+ H2 (M(1, n + 1)),
hence it has trivial image in H2 (LT) and the latter is the inductive
limit	 S

(J/[J, L(H)])v urn (J/([J, L(H)] + C 2 L(H) n j))V	 S
-4	 S

Thus the morphism H2 (C1 r) -Z H2 (LT) onto if and only if	 S

C3 L(H)nJ c [J,L(H)],	 :
and this inclusion is equivalent to J being generated by the finite—
dimensional linear space of quadratic elements J fl T2H. This proves
the equivalence between conditions (1) and (2).

To prove the equivalence between conditions (1) and (3), first ob-
serve that JR acts on LT, with the action on H' being multiplication
by A, if and only if J is a homogeneous ideal. Namely the R*_action
on H extends uniquely to the R*action on L(H), where the action
on homogeneous elements of degree k in L(H) is multiplication by .
This action is the only possible lifting of each automorphism in R*
from L(H)/J to L(H). Moreover, this action on L(H) descends to an
action on L(H)/J if and only if J is invariant under the action, which
is equivalent to the definition of a homogeneous ideal.

Note that this argument shows that any action on L(H)/J which
is multiplication by A on H must be by semi—simple automorphisms.
In particular, this justifies Remark 1.47.

.

.

.
S
S
S
S
S
.
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I

	

.	 Now equation (4) shows that the induced action on H2 (LT) is mu!-

	

.	 tiplication by ,2 f and on!y if

	

.	 [J,L(H)] = C3L(H),

	

:	
i.e., if and only if LT is quadratically presented. 	 E

	

S	 REMARK 1.48. One may check in the same way the following gen-

	

I	 eralisation of the first equivalence in Lemma 1.46: For any m ^ 2, £F

	

.	 admits a presentation L(H)/J where J has generators in T2H . . .

	

S	 TmH if and only if the morphism H 2 (Lm_ 1 F) _+ H2 (LT) jS onto.

	

.	 We are now ready to establish the equivalence of the two versions of

	

.	 1—formality present in the literature, which are quadratic presentation

	

.	 of the Malcev algebra and the rational homotopy definition given in

	

.	 our Definition 2.5.

	

.	 PROPOSITION 1.49 (Morgan). Let X be a topological space with a

	

.	 finitely presentable fundamental group. Then X is 1—formal if and only

	

I	 if its Malcev algebra Lir (X) is quadratically presented.

	

S	 PROOF. Due to Lemma 1.46 and the property ofthe Malcev algebra

	

.	 that the morphism

	

:	 H2(Lr1(X)) H2(Mx) 4

	

.	 is a monomorphism, it suffices to show that X is 1—formal if and only

	

.	 if Tm H2p = Tm H2p(1,1) , i.e., that the images in H2 (X) of

	

:	 P(i,n) M(1,n)

	

.	 which form an increasing chain of subspaces by the definition of the

	

.	 minimal CDGAS M(1, n), stabilise at the step n = 1.

	

I	 If X is 1—formal, then its 1—minimal model is isomorphic to that of

	

I	 the algebra H*(X) . Iii this case we can build a 1—minimal model for

	

I	 H*(X) such that, if M(1, n) = A(V' . . . V), then the morphism

	

.	 p : M(2, 0) -4 H*(X) verifies that Pv	 0 for m ^ 2. This may be

	

S	 done as follows:

	

.	 Let M(1, 1) = A(V') with P(i,i) : V' -- H 1 (X) be the first step

	

.	 of the minimal model. The following steps are defined by adjoining

	

S	 spaces

	

I	 i'; = ker (H2(M(1, n - 1)) LJ' H2(X))

	

I	 and we can define P(1,n) over 1/ as any linear map such that dp(i,) v =

	

!	 p(l,_I)dV = 0 H2 (X). Therefore we may set pi = 0, for all n > 1.

	

.	 The 1—minimal model of H*(X) that we have just described obvi-

	

I	 ously verifies that Tm H2 (M(1, 1)) = Tm H2 (M(2, 0)) C H2 (X) , there-

	

:	
fore the Malcev algebra	 (X) admits a quadratic presentation.

.

.

.

.
I
I
I
.
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Conversely, assume that £r (X) admits a quadratic presentation.
Lemma 1.46 implies that there is an action by Lie algebra automor-
phisms of R* on LIT, and consequently an action by CDGA automor- 	 S
phisms on M(2, 0). By Remark 1.47 these automorphisms are semi
simple. This action is equivalent to a grading of M(2, 0), namely	 S
M(2,O) =	 k>OM(2,O)('c), where M(2,O)(k) is the subspace of 	 S
M(2, 0) where all )	 R act as A c . This gives a weight filtration	 S
w. on M(2, 0), defined by	 S

wn =	 M(2,O)(k) .	 :
k<n	 .	 S

This filtration is determined by the facts that it is multiplicative and
that the homogeneous elements v e vç have weight n. It is strongly
graded as in §4,5 of [32] and has the property that H2 (M(2, 0)) is of
pure weight 2. This allows the definition of a CDGA morphism

S
Sdefined by setting

: V1' —-H'(X)	
S

colv : i'; --*o E H'(X)	 for n ^ 2 .	 S
This is well—defined because for v Vj, with m 3, d(v) = 0
and ço(dv) = 0 as, due to the weight filtration, the monomials in dv
contain a factor in 141 with k ^ 2 , while for v E V' , V' the identity
dço(v) = ço(dv) = 0 is a consequence of the defining properties of V , V' .

By construction, the morphism : Mx(2 , 0) -4 H*(X) induces an
isomorphism on H° and H' and an injection ofthe subspace Tm H2 (M(1, 1)) C
H2 (M(2, 0)). As this subspace is the full group H2 (M(2, 0)), we reach
the conclusion that H2 ço is a monomorphism, thus X must be 1
formal.	 E	 S

.
REMARK 1.50. In the case of compact Kãhler manifolds the filtra-

tion W. is indeed the weight filtration of a mixed Hodge structure in
the 1—minimal model ([47], [70]).

	

REMARK 1 . 5 1 . The property of a minimal model over a field of	 S
characteristic zero to have an action of the multiplicative group induc-	 S
ing given weights on cohomology is independent of the field. This is 	 S
how Sullivan deduces, in §12 of [91], that formality is independent of 	 S
the field.	 .

S

to be Kähler (cf. the next Chapter).
Proposition 1.49 implies a restrictive necessary condition for a group
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.	 EXAMPLE 1.52. The group F - (x, y, z, t [x, y}[z, t], {[[[y, x], x], xl, y}),

.	 all of whose Massey triple products are zero (cf. subsection 2.2 in the

.	 next chapter) , cannot be Kãhler, because its Malcev algebra does not
I	 admit a quadratic presentation.
I	 Another consequence of the quadratic presentation of the Malcev
.	 algebra, originally observed by Morgan in the case of Kähler groups,

.	 COROLLARY 1 . 53 . Let F be a finitely presentable group such that

.	 its Malcev algebra is quadratically presented. Its n—step Malcev algebras

.	 £(F, IR) are isomorphic to the graded Lie algebras induced by the group
S	 bracket grF ® R = EE l Fk/Fk+1 ® 1.

:

	

	
PROOF. The weight filtration W• and its associated R*action in-

duces a canonical splitting of the algebras £(F, R), which is respected
.	 by the Lie bracket. The filtration induced by weight coincides with that

.	 (see the Appendix to [79]).
I

I	 7. Automorphisms of group origin

I	 In this section we depart from the line of the previous ones, and
I	 study the relation between the automorphisms of free groups, of their
.	 Malcev algebras and nilpotent quotients. The properties of the action
I	 of Aut Fr on the Malcev algebra of Fr will be used in the final chapter
.	 to characterize the differential Galois groups of the Malcev algebra
.	 periods of algebraic families.
I	 Because of the functorial character of the F/F+1 ® Q, £F, the
I	 group Aut F acts on all those constructions. The automorphisms it in-
I	 duces may be called of group origin, and by a cumbersome use of stan-
S	 dard group action notation they will be designed as AUtAUt F/F 1 ®
S	 Q AUtAUt P £F ® Q, etcetera. We will also denote as

.	 pn : AutF —Aut (F/F1)

S	 Pin : Aut F —Aut £F
I	 the respective actions of Aut F, and thei extensions to the same con-I	 structions ®k, with k a field of characteristic zero.
.	 We will establish now relations between automorphisms of geomet-
.	 nc origin in the lower central series of F and in the Lie algebras £,.

I	 induced by the lower central series on £F, and the graded Lie algebra
I	 induced by the lower central series in £F is isomorphic to grF ® R

I	 The graded Z-Lie algebra gr F is generated by its component of
!	 degree one Gr 1 F	 F/F2 . The maps Pn factor through the functor



S
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gr : gr -4 Lie Aig; this means that all the p are determined by Pi , as	 I
we directly prove in the following lemma: 	 S

S
LEMMA 1.54. Let I' be a group. For all rt N t there are group

morphisms q5 : Imp1 —* Aut (F/F +1 ) such that p = çb o Pi •

PRooF. It suffices to check that kerp 1 C kerp. Let ço be an el-
ement of kerp 1 . This means that for all g e I' ço(g) = gw, with	 S
wg E r2 ' The subgroup I is generated by brackets of length n
(gi , m . . , ga), with gi , . . . , g E F. The map ( sends such elements to 	 S
the bracket (g i wj , g2 w2 , . . . , gnWn), with w	 f'2 This bracket equals 	 S
(gi, g2, • • • , g ) as a consequence of the Witt-Hall identities; more pre- 	 S
cisely as an iterated application of Theorem 5.3 of [65], Chap.5. 	 Li

REMARK 1.55. It is easily checked that Lemma 1.54 holds as well
with coefficients in k, either directly or using the observation preceding
the Lemma.	

S
	The study of the action of Aut F on the Lie algebras r(r) ® Q	 I

yields the dual of a result by Sullivan (cf. [91] , 6.1): There is a group
morphism given by restriction of this action to the degree one compo-
nent:	 S

, L,n : AUtAUt r rr ® Q —+ AutAut r (F/F 2 ® Q)	 S

PROPOSITION 1.56. There is an exact sequence

1 —*ker 'b —+AutAtr 4F ® Q - AutAtr (T/ 2 ® Q) —+1
I

with ker '/ a unipotent group.

	

PROOF. If j AutAut r (F/F2 ® Q) Imp1 , then = pi(ço) and	 S

n (Pin (ç0)) _ P1 @P) = 7]. Therefore '/ is exhaustive.

	

Let us fix a homogeneous Q-linear basis for £F. It will induce a	 I

	

block decomposition in the matrices M GL (LF ® Q) : The block 	 S

	

(i, i) of M, denoted M' will be the component in r/r +1 ® Q of	 S

	

M r/r1ØQ . Since Aut F respects the filtration by the lower central	 S

series of £F®Q, the matrices of	 r (rF ® Q) will be block lower	 S

triangular. Moreover, by the graded isomorphism of Proposition 1.13

the diagonal blocks p1 (o) express the action of Aut F on F/F +1 ®Q,

thatis	 ,	 I

p1(ç , ) ii = p
j (ço) = c5i(Pi()) ,	 I

the latter equality given by Lemma 1.54. 	
:

It is now obvious that if i E ker ij" = Id, and = çb") =

Id, both for all i. Thus i is the sum of the identity and a block strictly

lower triangular matrix, and this completes our proof.

I

S

S

I

I

I



.	 0	 (_1)r_1

.	 0	 0

.	 1	 0

	

(1	 1	 0

	

0	 1	 0
001

	

\o	 0	 0
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REMARK 1.57. As the filtration of U ® Q has length n - 1, the
nhlpotence class of the kernel of 'L satisfies the inequality nil (ker
n - 2.

REMARK 1.58. There is a linear group tower formed by the kernels
of the maps 'b

'•—+kerçb3—+ker'b2

Its projective limit is the kernel of the map

AutAut r CF -+ AutAt r gr F.

It is a pro-unipotent group.

When F is a free group Fr , our knowledge of its lower central series
enables us to further characterise these maps:

LEMMA 1.59. The mapp1 : AUtFr 4 AUt(Fr /(Fr ) 2) 8 exhaustive.

PROOF. IfFr is the free group spanned by a1 , ... , ar then Fr/(Fr)2
zr	 the free abelian group generated by a1 , ... ,ar and therefore
Aut (Fr /(Fr ) 2) GL (r, Z).

It is well known (see for instance [53] , sect. 14
GL(r, Z) is generated by the three matrices

These matrices, in the base a1 , . . . , ar correspond to the automorphisms
of Fr determined by

a1 -+. a1
a2 -+ a1a2

co2: a3 -4	 a3

a,.

a1 -4 aj'

. a2 -+ a2
(j93.

a -+ ar

therefore Pi is onto.
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A consequence of Lemma I .59 is that the maps q are defined over
all automorphisms of Fr/(Fr)2

'n : Aut (Fr /(Fr ) 2) GL (r, Z) —4 Aut ((Fr)n/(Fr)n+i) GL (Na , Z)

with N given by one of Witts formuli([65], §5.6). To describe more
explicitly we will consider its extension Aut (Fr /(Fr ) 2 0 C) 4
Aut ((Fr)n/(Fr)n+i ® C) through its image in 1 + Jc C A(C, r). We
may take the Hall basis of (Fr ) nI(Fr )n+i formed by brackets on the gen-
erators a 1 , . . . , ar; if	 Aut (FrI(Fr ) 2 ® C) , çp(tj) = > )a3 , then

n (ço) sends every bracket on the a to the same bracket on the (a)
and since we are computing modulo Fi and there is a Lie algebra
isomorphism between gr(1 + Jc) and gr(Jc), the latter with bracket
[x, y] = xy - yx we may thus expand the brackets on the ço(a 2 ) and
find their coefficients in the Hall basis.

EXAMPLE 1.60. We compute as an example çb 2 , c5 for F2 . The
computation of /2 will be explicitly used in Proposition 1.61 (i) to
determine its kernel, that of çb 3 is identical to the computation of
for n > 3 and sheds light on the method of proof followed in Prop. 1.61
(i),(ii) for n 3. The computation holds verbatim with coefficients in
z, Q or C. Denoting the two generators of F2 as a , a2 , we have seen
at the end of 2.3 that

F2 /(F2 ) 2 z2
	

with basis a1 , a2
(F2 ) 2 /(F2 ) 3	 z,	 with basis [a2 , a1]
(F2 ) 3 /(F2 ) 4	 z2, with basis [[a2,ai],ai] , [[a2,ai],a2]

If ço(a i ) = ) 11 a1 + ) 21 a2 , ço(a2 ) = )t 12a1 + ) 22a2 , then

çb 2 (ço)([a2 , a1 ]) = [Al2a1 + A22 a2 , Aa + A21a2]

: [Al2 A 11 [ai ,ai ] + ) i2 A21 [ai ,a2] + A22 ) i1 [a2 ,a1 ] + A22A21[a2,a2]

= CA11 A22 _

= (detço)[a2,ai]

ç53(p)([[a2, a 1 ], ai ]) = [[Al2a1 + A22 a2 , A 11 a1 + A21 a2], A 11 a1 + A21a2]

= [(A11 ) 22 - Al2 A21 )[a2 , ai ], A11 a1 + A21a2]

= AiiP iiA22 _ Al2 A21 )[[a2 ,ai],ai ] + )t 21 (A 11 A22 _

= (det ço)(Ai1 [[a2 , a1 ], ai] + A21 [[a2 , ai ], a2]

and in the same manner we obtain

çb3 ()[[a2 , ai ], a2] = A l2 (det p)[[a2 , ai ], ai ] + A22 (det )[[a2 , a 1 ], a2]



I

.
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0	 In this way the kernel of the q5, may be determined. We will find
0	 it in the most general case, i.e. with coefficients in C. The kernel for
.	 any ring R C C is then found by restriction.

92,0905 ^TION 1 . 61 . Let 0n : Aut |^/(8r ) z ^C) .t Aut (f^n /C8r )nt1 ®C)
bethemorphjsm deMel̂ nI,enzma1.54, anl^noteHnId= |^^ Idl O S k < .n}.

(i) 807'8z, ^eI0z = SL(2,Z), andkeI0n ZS HnId.
I	 (ii) For Fr with r > 2, ker qS, is ,uId.
S	

PROOF. (i) As we have already seen, (F2 ) 2 /(F2 ) 3 0 C C, with basis

:	
[a2, ai ]. The computation of Example i.& yields

.	 62((,O)[a2,al} = (detço)[a2,a1]

.	 from which the kernel of q52 is deduced.

.	 For n > 2, an element of the Hall basis for (F2)/(F2 ) 1 ® C is

.	 Wi2 = [a2 , a, a1 , . . . , au

I	 If p(aj) = >::	 then q5(p)w12 is

:	
[i2a1 + A22 a2 , 11a1 + A2u a2, . . . ,	 +

I	 We can expand it by linearity into a sum of 2 elementary bracket
.	 terms on a1,a2
I	 Ai2'[ai, a1, a1, . . . , ai]+A22'[a2, a1, a1, . . . , a1]+ . . +22'[a2, a2, a2, . . . , a2]

:	
and then compute all these brackets to find the expression of qfl()Wu2

I	
in J/J 1 . It turns out that the monomials of q5fl ()wu2 with n- 1 fac-

S

	

	 tors a2 and one factor a 1 are exactly those coming from the elementary
bracket terms

I	 Ai2)j'[ai, a2, a2, . . . , a2] + A22)ii\ 1 2 [a2, a1, a2, . . . , a2]

:	 = (A11 A22 - Ai22i ) A l 2 [a2 , a 1 , a2 , . . . , a2]

.	 because such monomials must come from elementary bracket terms
S	 with n- 1 a2 components and one a 1 component, and the a 1 component
I	 must be in the innermost bracket or else the whole elementary bracket
I	 term is zero. Since ) 22 A11 -Al2 A21 = det	 0, then q(ço) = Id implies
.	 \21	 0. An identical computation with w21	 [a2 , a1 , a2 , . . . , a2] yields
I	 Al2 0. Therefore if 'p E ker çb then cc' must be diagonal. In such case

.	 cp[a2, a1, . . . , ai] = Aj 1 )22[a2, a1, . . . , a1]

.	 ço[a2, a1, . . . , a1, a2] = Aj 2A 2 [a2, a1, . . . , a1, a2]

and since n > 2 [a2 , a1 , . . . , ai ], [a2 , a1 , . . . , a1 , a2 ] are two distinct ele-I	 ments of the Hall basis of length n. Now çb() = Id implies A 11 ) 22 =
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1, j 2 2 = 1, thus )¼ii A22 and A = 1. By linearity and length n
of the brackets, all such candidates belong to the kernel.
(ii) The Hall basis of (Fr ) 2 /(Fr ) 3 ® C is the set { [ak, a]}k>. Its images
by cb2() are:	 S

S

2(co)[ak,ai] = [ Ahkah,Aja]	 I

= ii: (Ahkjj - )thi Ajk) [ah, 12]

h>j

Therefore 2() = Id means that all 2 x 2 minors of the matrix (Ar)
of p in the basis a1 , . . . , ar which are centered on the diagonal have
determinant one, and the others zero. This implies that 'p = +Id.
Both choices clearly belong to the kernel.

In the case n > 2 we study as in the case of F2 Hall basis elements
of the form

Wik	 [ak, cii , a, . . . , a],	 k > i

/(ço)wjk	[	 )hkah,	 . . . , i: )ta]

Again, the monomials in q5n(ço)Wjk with exactly n - 1 factors a and
one factor ak come from

( A kk \jj - ) ki Aik) A2[ak, a, a, . . . , a2]

Therefore )'kk'>'ii - )tki )'ik, )tjj	 0.
The terms with n - I factors ak and one factor a2 come from

( Akkjj - )tki )tik) \T2[ak, a, ak, • . , ak]

Since there are no such terms in Wik and ) kk-ii - Akj Ajk 0 then it
must be that Akj = 0. This holds for all k > i, but if k < i the same
conclusion is reached evaluating q(ço)[a j , ak , ci2 , . . . , a} . Hence ço has a
diagonal matrix. As in the case of F2 , we examine the image by ço of
two distinct Hall basis elements for every pair k > i

ço[ak, ci . . . , a] =	 [ak , a, . . . , a]
I	 1	 n-22 r

(PVZk, a, . . . , a, ak]	 Akkak, a, . . . , cii , ak

So as in item (i) q(ço) = Id implies A = Akk and A = 1. The only
possibilities for p are again the matrices of , Id, which are in the
kernel by linearity and length of the brackets. 	 E
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I	 CHAPTER 2
I

Kãhler groups

S	 This chapter recalls the notion of formality in rational homotopy theory
.	 ([91], [35], [70]) and applies it to the study of the fundamental group
I	 of compact Kähler manifolds, i.e. Kähler groups. We retrieve in this
I	 way some known properties and restrictions verified by Kãhler groups
I	 and extend them. Basic results in Hodge theory, such as the Q pairing,
.	 the ddC lemma and the Hard Lefschetz theorem are used thoroughout
.	 this chapter, for a generic reference to them see [101].

:	
1. Formity of compact Kähler maifoIds

.	 In the previous chapter we described the construction of Sullivan's
I	 1—minimal model and its relation to the de Rham fundamental group
I	 in the case of arbitrary smooth manifolds. We shall now study a spe-
I	 cia! property of compact Kähler manifolds with respect to their real
I	 homotopy.

.	 DEFINITION 2.1. A smooth manifold X is formal if the CDGAsI	 e* (X) and H* (X, R) are weakly equivalent.
,	 This is equivalent to (x) and H*(X, ) having isomorphic minimal
.	 models. Thus by Sullivan's theory, the real homotopy type of X is

:	
determined by its real cohomology algebra.

I	 EXAMPLE 2.2. Formality is a common property among manifolds
I	 with a simple cohomology algebra. Some particular examples are:

I	 (i) spheres and wedges of spheres,
S	 (ii) compact connected Lie groups,
I	 (iii) Eilenberg—Mac Lane spaces K(r, n) for ii > 1,
.	 (iv) Riemannian symmetric spaces,
S	 (v) complements of hyperplane arrangements in C'.

I	 Another important class of formal spaces is that of compact Kãhler
I	 manifolds. These are formal as an immediate consequence of lodge
.	 theory, notably of the ddc_Lemma, and this is the basis for the results
.	 of this Chapter.
I	 THEOREM 2 . 3 (Deligne—Griffiths—Morgan—Sullivan [35]) . Compact
I	 Kiihlecr manifolds are formal.
S
.	 51
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I
S
I
I
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We shall concentrate on the implications of Theorem 2.3 for the
1—minimal model and the de Rham fundamental group.

COROLLARY 2.4. The de Rham fundamental group of a compact
Kähler manifold is determined by the cup product U : H'(X, R)®H' (X, IR) -+

H2 (X, ).

PROOF. By the categorical equivalence of Malcev's Theorem 1.5,
the de Rham fundamental group (X) 0 R is determined by the real
Malcev algebra £(ir i (X), R), which is dual to the 1—minimal model Mx
ofX.

In the case when X is a compact Kàhler manifold, by Theorem 2.3
the 1—minimal model Mx is also the 1—minimal model of the cohomol-
ogy algebra H*(X, )• As may be seen from its construction in the
previous Chapter, this 1—minimal model is determined by the coho-
mology group H' (X, IR) and the cup product H' (X, 1) ® H'(X, R) -+

H2 (X,R).	 D

Topological spaces X for which Corollary 2.4 holds are called 1—
formal spaces. An equivalent and more precise definition is:

DEFINITION 2.5. A topological space X is 1—formal if there exists
a CDGA morphism

p: Mx(2 , O) -+ H*(X)

such that H°(p) and H' (p) are isomorphisms and H2 (p) is a monomor-
phism.

It follows from the definitions that formal spaces are 1—formal.
Therefore:

COROLLARY 2.6. Compact Kähler manifolds are 1—formal.

According to Proposition 1.49 and Corollary 1.53 in the first chap-
ter, 1—formality of compact Kähler manifolds has the following conse-
quences for its Malcev algebras:YUCZZCCD ZV1 ZUD 1V2a2^vr mE,vwzww.

(,0I0112Iy 2.7 iII^Iies that the ^aIcev a4^bIa, thus aIso the uBipo-
teIzt c^^tiOIZ, O^a Kiih^eI ZIoup aIe oIiBina^IY deG^ed cNeI the iIIte-

8eIS, aIZd the COIN^tio^ oveI a Ge1d K ofcbaIacte^tic zeIo isjust aB 	 _

exteBsioB OfSCaIZIS OB thiS i^38I21 |^IID 8II = EBn>I In/Int1 .	'

Corollary 2.7 implies that the Malcev algebra, thus also the unipo-
tent completion, of a Kãhler group are originally defined over the inte-
gers, and the completion over a field k of characteristic zero is just an
extension of scalars on this integral form gr IT = EB>,r/r+,.

C,OEW^zARY 2.7. Let I be a Kci,hlergT^, cmd k a^:12 ofch,aTac-

te.rlist.i,c zero.
(i) Ih.e Malcew a1gebra L(I,k) js g .u.ad^jca^, presented.
(^) Ih.ere .is an jsomorphjsm ofpro—n^tent Lje alge^as

L: CI', k) ^ CgTI' ) (8 K .

,,-

.

.
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I	 2. Examples and applications
I	 2.1. Groups with free Malcev completions. As they always
.	 contain an odd rank free group with finite index, free groups may be
.	 seen not to be Kãhler by an immediate covering argument. More gen-
I	 erally, we can now show that groups with a free Malcev algebra, or
S	 even those "free up to order two brackets" , cannot be Kähler.
I	 We will use here the 2—step nilpotent de Rharn fundamental group
S	 (ir1(X)/r1(X)3) ® j , or equivalently the 2—step nilpotent Malcev alge-
S	 bra
I	 £2(n-i(X), R), which is isomorphic, though not canonically so, to Gr £2 (iri (X), IR) =
.	 (in (X)/iri (X) 2 0 1I) (7r1 (X)2/ri (X) 3 ® J). This is the simplest non-
.	 Abelian quotient after H1 (X, R).

I	 PROPOSITION 2.8. IfC2F £2F for some free group F, then I'

.	 cannot be a Kähler group.

,	 PROOF. If £2F £2F, then dim F/I' 2 ® R = n, and dim F 2 /F3 ®0	 R = dim(F) 2/(F) 3 0 R = (). Thus if F = ' (X) with X corn-

I
I	 dimH'(X,R) = dimV' = dimf/F 2 ®R =
.	 and0
I	 dim ker(H 1 (X, R)AH' (X, R) -* H2 (X, R)) = dim V = dim F2 /F3®R =
I
I	 But the first equality implies that dim H'(X, R) A H' (X, 1I) = () , so
.	

in fact, all exterior products of 1—forms on X would be exact. This
I	 is not possible for X compact Kähler, because of the Hard Lefschetz
.	 Theorem. Hence the statement.	 E

.	 EXAMPLE 2.9 (parafree groups (see [11])). A group F is parafree
S	 of rank r if for every n E N there are isomorphisms F/F 	 Fr/(Fr)n.
I	 Parafree groups were introduced by G. Baumsiag, who showed that

I	 there exist many nonfree examples. The isomorphism F/F 3 Fr/(Fr)3
S	 induces an isomorphism £ 2F £2Fr, thus F may not be Kähler.

0	 EXAMPLE 2 . i o (1—relator groups). If F is a Kãhler group admit-
I	 ting a presentation with only one relation, F = (x, , . . . , x, r) , then
.	 either n = 1 and F Z/mZ, or r must lie in F{x, , . . . , 	 otherwise
.	 by Corollary 1.32 £2F £2F_, or

I	 pact Kãhler, by the formality cf X and the duality of the de Rham0	 fundamental group with the 1—minimal model, we would have that

I	 For instance, the groups (x,y,zjxyxzxzxy), or (x,yj[[x,y],y]) can-
S	 not be Kãhler.
I
S

S

S
I
I
I

.
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EXAMPLE 2 . 1 1 . (Generic groups with few defining relations) Let 	 I
r be a group admitting a presentation with n generators x, . . . , x,
and s < n defining relations r1 , . . . , r , such that their images in the 	 S
Abelianised group Z i '	 Z are linearly independent. Then F 	 I
cannot be Kãhler, as c 2r £2F_3 . This is the generic case among	 S
presentations with fewer relations than generators. 	 I

For instance, the group I' = (x1 , . . . , x 5 xxx ,	 xxx) can-
not be Kähler.	 I

2.2. Massey products and Heisenberg groups. The conse-
quences of formality for the topology of compact Kähler manifolds were
first realized in terms of vanishing of Massey products. We will present 	 S

some well—known results in this subsection, in order to show how these
vanishings follow from formality, and give instances of its effect on
Kãhler groups.

We now define Massey triple products. These are cohomological op-
erations which, in the case of 1—forms or of spherical cohomology classes
in general, are dual to the group bracket, respectively the Whitehead 	 0
bracket, of representing homotopy classes of loops or spheres.

	

Let o, ,i3, 'y E H*(X , R), of degrees p, q, r respectively, such that 	 S
o U /3 = 0, f3 U 'y = 0. Choose corresponding cocycles a, b, c, and select	 I
primitive cochains f, g such that df = a U b, dg = b U c. We define
the Massey triple product (a, /3, 'y) as the class of f U c + (-1)'a U g 	 I
in HP++(X)/(a U H+r_l(X) + u HP+l(X)). One can check
that this is well—defined in the quotient, although it would not be well—	 S
defined as a cohomology class. This is the definition of the Massey 	 I
triple product in the singular cochain algebra of a topologic space.	 S
The definition actually extends to any CDGA as above, and its func-
tonality follows from the definition. A consequence of its naturality is
the following	 5

LEMMA 2 . 1 2 . Let A and B be weakly equivalent algebras. The iso-
morphism H*A H*B preserves Massey triple products.

In the case of compact Kähler manifolds, formality together with
the above Lemma allow us to compute Massey triple products rather
easily.

PRoPOsITIoN 2.13. All Massey triple products on a compact Kähler	 0
manifold are zero.	 S

PROOF. Let X be compact Kähler. By the formality of X, the
algebras *(X) and H*(X, j ) are weakly equivalent, so we can corn-
pute Massey triple products in H* (X, R) . The differential is zero by
definition, so all Massey products will be zero. 	 LI
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I	 From Proposition 2.13 we derive a restriction on Kähler groups,
.	 which we will state in terms of the algebra of singular cochains C (F, R).
0	 It can be seen directly as a consequence of the quadratic presentation
I	 of its Malcev algebra, which implies that all types of Massey products
I	 of 1—forms in a Kãhler group are zero:
0	 COROLLARY 2. 14. Let F be a Kdhler group. Then all Massey triple
0	 prodtwts of classes of H' (F, R) must be zero.

.	 PROOF. This follows from Proposition 2.13 and from the fact that
0	 if F = ri (X), there is a map C: X -+ K(F, 1) inducing an isomor-
.	 phism of fundamental groups, an isomorphism on H° and H', and a
0	 monomorphism H2 (F) -+ H 2 (X, R), cf. Remark 1.41. Therefore, for

0	 Massey products of 1—classes to be zero in a quotient of H2 (X, R) , they

.	 must be zero in the corresponding quotient of H2(F).

.	 EXAMPLE 2 . I 5 (Serre). The Heisenberg group 7 (Z) is the group
0	 of matrices
0	 111 x
0	 ?•13(Z) = ' 0 1 y	 GL(3,Z)
0	 1\O 0 1)

0	 This group is not Kähler, because its cohomology contains nontrivial
0	 Massey products.
.	 To check this, let us first observe that ? has a dimension 3 Malcev
.	 algebra (X, Y, Z [X, Y} = Z [X, Z] = 0, [Y, Z} = 0). Dualisation of
.	 this nilpotent Lie algebra yields the 1—minimal model of any topological
0	 space having ri (X) 1i3 which is
I	 M=A(x,y,z)	 degx,y,z=1	 dx=O,dy=O,dz=xy.

:	 The Massey triple product (, , 	 well—defined in H2 (j3) and it is

0	 xz, which is a non—zero cohomology class.

.

	

	 EXAMPLE 2.16. Consider the Heisenberg group of Gaussian inte-
gers

S	 ((1 x
0	 93(Z[i]) = ' I 0 1 y e GL(3,ZE1Zi)
0	 (\O 0 1)
S	 As in the case of the integral Heisenberg group 7 (Z) , we can check
0	 that there are nontrivial Massey triple products of 1—forms, and there-
0	 fore fl 3 (Z[i]) is not a Kähler group.

.	 3. The Albanese map and the de Rham fundamental group
0	 In this section we describe how the de Rham fundamental group of a
.	 compact Kãhler manifold is determined by that of its Albanese image.

S

.

.
0
0
0
S
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We then discuss some consequences that follow from this combined
with knowledge of the structure of the Albanese map. 	 I

	

Let X be a compact Kähler manifold, and ax : X —+ Alb(X) its	 I
Albanese map. Denote as Y = c (X) its image, which may be singu-	 I
lar. We consider a desingularisation e : V —* Y, and a desingularisation
x of the pullback of a :

£4

Ex 1 	 Ie	 I

X4Y

.-
It is clear that the manifold X is also compact Kähler and that the
map ex is a birational morphism and thus induces an isomorphism of
fundamental groups EX : r1 (X) —+ iri(X).

We will call the map x : X —+ V a smoothing of the Albanese
map of X. The properties of the original Albanese map cx relate X,
x and Y as follows:

PROPOSITION 2.17 (Campana). Let X be a compact Kähler man-
ifold and &x : X —f V a smoothing of its Albanese map. Then ex and
&x induce an isomorphism ir (X) 0 R —- ir (Y) ® R. 	 S

	PROOF. As ,y induces an isomorphism of fundamental groups, 	 I
E:; : H1 (X) — H 1 (X) is also an isomorphism. This implies that 	 I
Alb(X) is the Albanese torus of X and a ° ex = e o &x its Albanese 	 I
map. As a consequence, & : H'(Y) -+ H'(X) is surjective. As ox it- 	 S
self is also surjective, & is also injective for H* . Therefore ax induces	 I
an isomorphism H'(Y) H'(X) and an injection H2 (Y) '—* H2 (X).	 I
Thus, by the universality of the 1—minimal model, &x induces an iso-
morphism M,(2, 0)	 M(2, 0). Dualizing, we obtain our statement	 S
for the Malcev algebras L(iriX) and £(ir1 Y). The categorical equiva-	 I
lence between real Malcev algebras and de Rham fundamental groups,
and the fact that	 induces an isomorphism of fundamental groups
111 (.t)	 in (X), complete the proof. 	 .	 D S

II
S
S

I
I
S
S
SSS

Thus the study of de Rham fundamental groups, or equivalently
Malcev completions of fundamental groups, of compact Kähler mani-
folds may be reduced to the study of smoothings of its Albanese images.
This is particularly convenient in the following cases:



S

.
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.	 COROLLARY 2.18 (Campana). Let X be a compact Kähler mani-
S	 fold with surjective Albanese map ax: X —k Alb(X). Then the Al-
SI	 banese map induces an isomorphism of de Rham fundamental groups

:	
cEx : ir i (X) ®J	 iri(Alb(X)) ®	 jbi(x),

.	 PROOF. As ax is surjective, its image is smooth, and so Y =
0	 Alb(X).

S

	

	
EXAMPLE 2. 19. Some examples of Kähler manifolds with surjec-

tive Albanese map are: manifolds with Kodaira dimension k(X) = 0,

.	 manifolds with algebraic dimension a(X) = 0 and manifolds with first

.	 Betti number bi(X) = 0 or 2.

S	 The image of the Albanese maps of a compact Kãhler manifold X
.	 is a subvariety of the Albanese torus Alb(X). The following theorem
.	 on the structure of subvarieties of complex tori is very useful in the
S	 study of their de Rham fundamental groups.
.	

THEOREM 2.20 ([97], Theorem 10.9). Let Y be a subvariety of a

0	 complex torus T. Then there exists a complex subtorus A 1 C T such

S	 that A2 = T/A1 is an Abelian variety, and a projective subvariety W C

.	
A2 such that:

I	 (i) the natural projection 71 : T —+ A2 satisfies Y = ir_'(W), and
(ii) there is an equality of Kodaira dimensions

0	 ic(W) = dim(W) = k(Y).
.	 Kollár pointed out to the author that this can be reformulated in
S	 the following useful form:

.	 ..	 .	 .	 .	 ..-

.	 (ii) the subvarzety Y admits a desingularisation Y, together with a

,	 holororphic map Y —+ W to a projectivedesingularisation of W, such

.	 that Y is diffeomorphic to A 1 x W.

.	 PROOF. Real tori are semi—simple. Thus, considering the real torus

.	 underlying T and its subtorus A 1 in Theorem 2.20, there is a diffeo-

.	 morphism
S	 f:T---A1xA2
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with the inclusion A1 —+ T as a factor. Thus by Theorem 2.20 the map 	 I

f restricts to the desired diffeomorphism Y A1 x W.	 I
	Consider now a projective desingularisation W —+ W and the pull-	 I

back Y in the diagram of holomorphic maps 	 I

-T

The holomorphic map Y —* W is smooth by base change, and W is
smooth. Thus Y is a desingularisation of Y. Moreover, T is diffeomor-
phic over A2 to the trivial family A x A2 , and so V is diffeomorphic
over W to the trivial family A1 x W.	 0

REMARK 2.22. The varieties W, W of Theorem 2.20 and Corollary
2.21 are of general type.

Here is another application of Theorem 2.20 to de Rham groups of
Kähler manifolds, which had already been proved by Campana when
the image of the Albanese mapping is a divisor in Alb(X).

	COROLLARY 2.23. Let X be a compact Kähler manifold with Ko- 	 I
daira dimension ,c(X) = 1. Then there is a noncanonically split exact
sequence	 S

,	 S

where C9 is a compact curve ofgenus g 0.

	PROOF. The Kodaira dimension of the Albanese image Y of X	 I

satisfies the inequality 	 S
ic(Y) ; ,(X) .	 I

The fact that Y is contained in a complex torus rules out the possibility
that ic(Y) = —0°. Moreover, if ic(Y) — 0, the submanifold V must be a

	

translation of a complex subtorus of Alb(X) because of Theorem 2.20 	 1
	and must generate Alb(X) because it is the Albanese image of X. 	 S

Therefore Y = Alb(X) and iri (X) ® R Rb 1 .	 S

If ,c(Y) = 1, by Corollary 2.21 there is a diffeomorphism Y	 S

A1 x C9 for some smooth compact curve C, and thus the split exact 	 *

sequence follows from Proposition 2.17. 	 LI	 0
REMARK 2.24. Let us note in addition to the previous proof that

when the Albanese image has Kodaira dimension i'c(Y) = 1, then the	 5,
curve C has genus g > 2, and X is a fibered Kähler manifold.

Moreover, if the Albanese image Y has dimension one, then it must
be a smooth curve, the fibers of the Albanese map will be connected

I
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.	 ([97], Proposition 9.19), and the isomorphism of de Rham fundamental

.	 groups comes from an isornorphism of torsion—free nilpotent comple-

.	 tions ili (X)"	 . (C9)2. It 15 shown in [41] that this is the case

.	 for Kähler groups admitting a presentation with n generators and s

.	 relations where s < n - 2.
S	 An important open question is whether all Kãhler groups are funda-I	 mental groups of complex projective manifolds. The following Corol-
.	 lary, based on Theorem 2.20, clarifies the question at the de Rham
0	 level:

COROLLARY 2.25 (Campana). Every de Rham fundamental group

.	 of a compact Kähler manifold is the de Rham fundamental group of

.	
a complex projective manifold, and the direct product of the de Rham

.

	

	
fundamental group of a general type projective manifold and an abelian
group R2k

,	 PROOF. By Proposition 2.17, for every Kähler group F = iri(X),
.	 one has an isornorphism of de Rham fundamental groups ir (X) 0 R

S	 It1 (Y) , where Y is a smoothing of the Albanese image. Moreover,
.	 Corollary 2.21 shows that one may choose Y diffeomorphic to A1 x
.	 w, where A1 is a torus and W a projective manifold of general type.
.	 Therefore	 -
I	 111 (X) ® R	 A1 x ir1 (W) ® R.
.	 The latter group is the de Rham fundamental group of A x W, with A
0	 any Abelian variety of the same rank as A1 .	 U

:	 Corollary 2.25 solves the rational homotopy analogue of the follow-

a	
ing conjecture by J. Kollár:

.	 CONJECTURE 2.26 ([61]). The fundamental group of a compact
0	 Kähler manifold is commensurable to the direct product of Z 2' and
I	 the fundamental group of a general type projective manifold.

.	 REMARK 2.27. As we remarked at the beginning of this Chapter,
S	 all the results in this section are valid for rational coefficients in co-
.	 homology algebras, de Rham groups and Malcev algebras. Moreover,
.	 by taking the Stein factorisation of the Albanese map, one can extend
S	 Corollary 2.25 and show that all torsion—free nilpotent completions of
,	 Kähler groups are torsion—free nilpotent . completions of fundamental
S	 groups of projective manifolds.
S	 3.1. One- and two—relator Kähler groups. We will use Propo-

:

	

	
sition 2.17 now to relate the dimension of the Albanese image of a
compact Kähler manifold X and the rank of the second order brack-

.	 ets quotient iri (X) 2 /ir1 (X) 3 . As an application, we will determine the



.
0
S
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Malcev algebras of Kähler groups with one or two defining relations, 	 S
and the one relator- groups themselves. 	 S

S
S
SI
0
S
0
S
S
I
I
S
S
I
I
S
I
I

I
S
I
I
S
S
I
0
S
I
I
S
I
I
0
I
I
S
S

S

S
I
S
S
0
I
I

LEMMA 2.28. Let X be compact Kähler, Y the Albanese image of
x and m =: dimc Y . Then the graded algebra H t (X ; C) contains a

free graded exterior algebra A(V), where V is a complex vector space
of dimension m and degree 1 spanned by holomorphic forms.

PRooF. (cf. [12] V.18) Let y E Alb(X) be a regular point of the
Albanese image Y = ox(X) . As dim Y — m, there are local co-
ordinates u1 , . . . u, of Alb(X) in a neighbourhood U of y such that
V n U is defined as Um+1 0, . . . , Un 0. The holomorphic forms
du1 , • . . , dUm are defined on U and, as Alb(X) is parallelizable, the
forms in A(du i , . . . , dUm) extend to global holomorphic forms on Alb(X).
Its pull—back A(cdu i , . . . , adum) defines a subalgebra of holomor-
phic cohomology classes in H*(X) which is free on a neighbourhood of
y , hence is free.

The above Lemma together with the correspondence of Corollaries
1.30, 1.44 may be used to bound from below the number of defining
relations for Kähler groups, and to study those admitting a one- or
two-relation presentation.

PROPOSITION 2.29. Let F be a Kdhler group, X a compact Kähler
manifold such that ir1X F and Y its Albanese image. Then:

(1) If dim Y = 1, there is an isomorphism CF £iri C9 with C9 a
compact Riemann surface of genus g, induced by a group map
F —f 7riC9.

(ii) IfdimY = m > 1, dimker (d0 : Rr1 • . . Rr3 —+ F/F2 ® R) ^

2 () +1 . In particular, any presentation F = (xi , . . . , x ; r1 , . . . , r3)

must have defining relations r 1 , . . . , rk such that they form a basis

of Im f and at least another 2 () + I defining relations.

PROOF.	 (i) is just Prop. 2.17 with Y as C.
(ii) By Lemma 2.28, the algebra H* (X; C) contains a free alge-

bra A(V) generated by m linearly independent holomorphic 1—
forms. By the Hodge structure of H*(X) it contains an iso-
morphic algebra A(V) spanned by m independent antiholomor-
phic 1—forms. Both algebras being free, one obtains the lower
bound dim [Tm u : A2 H' (X) —+ H2(X)] ^ 2 () considering ei-
ther holomorphic or antiholomorphic products alone. Finally,
due to the properties of the Q pairing in H'(X) ({1O1} 5.6), the
product of a holomorphic 1—form with its conjugate cannot be
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zero, so dim(Im U) fl H"(X) ^ 1. By the correspondence of
Corollary I .44 this produces the sought bound.

.	 U

.	 REMARK 2.30. IfX is compact Kãhler and satisfies (i) in the above

.	 Proposition 2.29, it is not hard to check that the map ir 1 X = F —+ iriCg

.	 is onto. If the genus g is ^ 2, such groups F are examples of what we0	 will call fibered Kãhler groups, to be defined in 2.34.

.	 We are now able to characterize de Rham fundamental groups of

.	 compact Kãhler manifolds with one or two defining relations.

.	 THEOREM 2.31. Let F be a Kähler group admitting a presentation

.	 with only one or two defining relations. Then either F/F2 0 1I = 0 or

.	 LT £ii-1 C9 with C9 a compact Riemann surface.

.	 PROOF. If F/F2 ® R 0, then £2F 0, and by Prop. 2.29 any

.	 presentation of F must have at least 2 (c Y) + i defining relations,

.	 with Y = Alb(X). Thus the only possible case is dim Y = 1, and

.	 Proposition 2.29 (i) completes the proof. 	 LI

:	
REMARK 2.32.	 (i) The 1—relator groups F with F/F 2 ® R = 0

.	 are exactly the F Z/nZ.

I	 (ii) The 2-relator groups F with F/F2 ® R = 0 are those with a

S

	

	 presentation (x 1 , x2 ; ' 1 , r2) with j;1 , r2 linearly independent in
F{xi , x2 }/(F{xi , x2 }) 2 . This is immediately derived from the

.	
exact sequence (1.5).

.	 EXAMPLE 2.33. Denote C9 a compact Riemann surface of genus

.	 g.
0	 (1) The group F defined in Example 2.11 can also be seen not to be
.	 Kähler by Theorem 2.31, as F/F2 ®Il	 R2 but £2F £2r1(C1).
I	 (ii) The group F — (x 1 , x2 , x3 , x4 ; (x 1x2 ,x),(x 1x3x 1 ,x)) has a
.	 Malcev algebra which fulfills the quadratic presentation condi-
S	 tion imposed by Morgan (Prop. 1.49). Yet F cannot be Kãhler
.	 because F/F2 ®II	 R4 but dim F2 /F3 ®Il = 4 5 = dim ir1 (C2 ) 2 /ri (C2)3,
4	 contradicting Theorem 2.31.

0	 4. Non—fibered Kähler groups
.	 Here we establish a dicothomy between fibered and nonfibered Kähler

:

	

	
groups, arising from a result by A. Beauville and Y.T. Siu on the ex-
istence of irregular pencils on compact Kähler manifolds. We skipI	 the fibered case, and we give in Proposition 2.42 an upper bound for

.	 dim F2 /F3 ® I1 and a lower bound for the second Betti number b2 (F)



Let T = iri (X, *) be a fundamental group. By Corollary 1.44
dimT2 /I'3 ®1 = dim A2H'(X) - dimlm (u : A2H1(X)+H2(X)).
As we have used in Proposition 2.8, if X is compact Kähler, by the
properties of the Q pairing Tm U must be nonzero. Now we will estab-
lish a lower bound on its dimension in the case of nonfibered manifolds,
by recalling a result of Castelnuovo-De Franchis and its extension to
arbitrary dimension.

DEFINITION 2.34. Let I' be a Kãhler group.

(i) We call F a fibered Kähler group when F = (X, *) with X
compact Kähler admitting a nonconstant holomorphic map f
x - C9 , with C9 a compact Riemann surface of genus g 2.

(ii) We call F a nonfibered Kähler group when F = ir1 (X,*) with
x compact Kähler not admitting any nonconstant holomorphic
map to a compact Riemann surface of genus g 2.

.
S
S

..
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in the case of nonfibered groups. This translates as a lower bound for	 S
the number of relations that their presentations must have. 	 S

S
S
S
S
0
S
S
S
S
S
S
S
.
S
S

A. Beauville and Y.T. Siu independently proved that the above
definitions make sense:

PROPOSITION 2.35 ([13],[86]). Let X be a compact Kãhler mani-
fold, write F = in (X, *), and let g ^ 2 be an integer. Then X admits
a nonconstant holomorphic map to a compact Riemann surface of a
genus h ^ g if and only if there is an epimorphic group morphism
F -+ iri (Cg , *), with -1 (C9 , *) the fundamental group of a compact Rie-
mann surface of genus g.

Proposition 2.35 means that a Kähler group F is either fibered or
nonfibered, and that the former are characterised by admitting a ir (Cg)
as a quotient.

If we have an onto map F - H -+ 1, it induces onto maps
F/F +1 ® R -+ H/H+1 0 R -* 0 for all n. This together with the
fact that the lower central series quotients of the ir i C have all nonzero
rank shows that nilpotent or rationally nilpotent Kãhler groups must
be nonfibered. Campana gave recently examples of Kähler groups with
a Malcev algebra of nilpotency class 2, and Shirping Chen has found
quadratically presented Malcev algebras of arbitrary nilpotency class.
A question asked by D. Toledo to the author is:

QUESTION 2.36. Are there non-fibered Kähler groups which are
not rationally nilpotent?



I

I
I
I
.	 4. NON-FIBERED KAHLER GROUPS 	 63I
0	 We now study the cup products of 1-forms in the case of nonfibered
I	 compact Kãhler manifolds. We begin with an extension of a classical
I	 result (see [24}):

.	 PRoPosITIoN 2.37 (Castelnuovo-De Franchis). Let X be a corn-
0	 pact Kähler manifold. If there exist w , w 2 linearly independent holo-
.	 morphic 1—forms such that w A w2 = 0 then there is a holomorphic
0	 map f : X -+ C with C a curve of genus g(C) ^ 2, such that w, w2
S	 belong to Imf*.

:	
REMARK 2.38. The form equality w A w2 = 0 is equivalent to

.

	

	
Wi A w2 being exact. This is a result of Hodge theory, showing that a
nonzero holomorphic form over a compact Kähler manifold cannot be

.	 The Castelnuovo-De Franchis theorem together with the conic struc-

.	 ture of the set of products in H2'°(X) yield the following corollary (see
0	 {1O] IV, Prop. 4.2):

I	 COROLLARY 2.39. If X is a nonfibered compact Kähler manifold,
I	 then dim Im (U : A 2 H1 '°(X) -+ H2'°(X)) ^ 2 dim H"°(X) - 3.

I	 Corollary 2.39 gives a bound for the products of holomorphic 1-

0	
forms, and by conjugation, of antiholomorphic 1-forms. The dimension

I	 of products of holomorphic-antiholomorphic 1-forms has been bounded

I

	

	 for compact complex surfaces in [10], IV, Prop. 4.3. We slightly al-
ter their proof to extend it to compact Kähler manifolds of arbitrary

.	 PROPOSITION 2.40. Let X be a nonfibered compact Kähler mani-
I	 fold. Then dim Im (U : H"°(X) ® H°"(X) -+ H"(X)) > 2 dim H"° (X)-
0	 1.

.	 PROOF. Denote n = dimX > 2, V = Tm U : H"°(X) 0 H°"(X) -+I	 H"(X) and fix w a fundamental Kãhler form on X. We begin by

.	 showing that the pairing U : H"°(X)®H°"(X) -+ V becomes injectiveS	 when we fix a nonzero 	 H"°(X) or	 H°"(X).I	 Suppose there are holomorphic 1-forms T, i such that A = da.I	 Then obviously A rj A A — d&, and
0	 I
I	 J eA1JAeAIAW =0
S	 By the properties of the pairing Q of compact Kähler manifolds (see
.	 [101] 5.6), this implies that A ii = 0, thus by the Castelnuovo-De
.	 Franchis theorem and ij are linearly dependent. Take = aij, withI	 a E C . Then 0 = A = ai A f. Again by the properties of theS	 pairing Q, this means that , i = 0.I
S
I
0
I
S
I
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Thus a map may be defined

P(H"°(X)) x P(H°"(X)) -^ P(V)

with injective restrictions fixing a point in either factor of the source.
We apply now the following result from [81]:

PROPOSITION 2.41. Let : P(C) x Pk(C)	 P1 (C) be a holo-	
S

morphic mapping, with 1 < m + k. Then factors through one of the
projections pm < pk	 1pm, irz > k

	 pk	

S
	In our case, U cannot factor through any of the projections be- 	 5

cause it is fiberwise injective in both cases, so it holds that dim V ^

2 dim H"°(X) - I as was wanted.	 E

We have now all the required pieces to study I'/I®R of nonfibered
groups. We return to the notations defined in the first chapter.

PROPOSITION 2.42. Let X be a nonfibered compact Kähler mani-
fold with q = dim H'(X) = dim ]T/I'2 ir1 (X, *)) 0 lii Then:	 5

(i) If q = 0, 1, dimiri (X, *) 2 /iri (X, *) 0 R = 0 and b2 (iri (X)) ^ 1.	 5
(ii) Ifq ? 2, dimiri (X,*)2 /iri (X,*)3®R c 2q2 -7q+7 andb2 (iri (X)) ^

6q-7.

PROOF. We have seen in Corollary 1.44 that dim ir i (X, *) 2 /iri (X, *)®	 5
	R = dim A2 H'(X) - dimlm (u : A2 H'(X) -4 H2 (X)) = 2q(2q-1 _	

S
dimimU.

Thus if q = 0, dimiri (X, *) 2 f7r1 (X, *) ® R = 0.
If q = 1, dim Tm U 1, so dim (X, *) 2 /ir1 (X, *) ® IR 1. Let a, b

be a basis ofiri (X, *)/ir i (X, *)®JR. The equality dim iri (X, *) 2 /iri (X, *)®
R = 1 would imply that (a, b) 0 in £2 iri (X, *) by Proposition 1.31.

	

Therefore there would be an isomorphism £2F2 - £27F1 (X, *) sending	 5
the generators X1 , X2 of £2F2 to a, b respectively. By Proposition 2.8
this would mean that ir i (X, *) is not Kähler, leading to a contradiction.
Hence our statement follows.

	

For q ^ 2, we break H' (X) into its Hodge components. By Cor.	 S
	2.39 dim (Tm A2 H"°(X) -+ H20(X)) ^ 2q - 3. The same holds by	 5

	conjugation for A2 H°"(X) -+ H°'2 (X). Prop. 2.40 gives the inequal- 	 0

	

ity dim (H"°(X) 0 H°'1 (X) -* H"(X)) ^ 2q - 1 and our statement	 S
follows from the addition of bounds. 	 E	 S

S
S
S
.
S

S
e
S
S

Proposition 2.42 roughly means that nonfibered Kähler groups need
many defining relations. M. Green and R. Lazarsfeld give a bound
([41],Thm. 5.4), establishing that given X nonfibered compact Kähler
in the sense of Def. 2.34, that is admitting no pencil of genus g ^ 2, and
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a presentation of its fundamental group (X) = (x , . . , x ; r1 , . . . ,
then

s^n-3

Proposition 2.42 above allows us to establish a more accurate bound:

COROLLARY 2.43. Let F = (x1 , . . . , x ; r1 , . . . , r3 ) be a finite
group presentation. If F = ir (X), with X nonfibered compact Kähler,
and writing q = b1 (X), the total number of relations must satisfy

(i) Ifq=O,s>n.
(ii) Ifq=1,s>n-1.

(iii) If q ^ 2, s ^ n + 4q - 7.

PROOF. The group presentation F = (x , . . . , x ; r1 , . . . , r 3) in-
duces an exact sequence 1 -* N -+ F -+ F -+ I described in (1.3). Let
d0 : Rr -k JF/4 F/F2 ®R be the map defined in Proposition 1.26.
We may suppose the relations r1 , . . . , r3 ordered so that the images of
r1 , . . . , Tk , with Ic < S form a basis of Tm d0 N/NflF2 ®R - F/F2 ®JR.

By Proposition 1.26 and Corollary 1.27 (i), dim F/F 2 ®R = dim F/F2®
JR - dim N/N fl F2 ® R, so there is an equality

n = k + 2q

Let us remark also that dimkerd0 = s - k.
Thus if q = 0 we have n = Ic s as was wanted.
If q = 1, by Corollary 1.30 and Proposition 2.42 (i) we have that

0 = dim F2 /F3 ® R 
= (:) - (s - k) + dim ker d1

=1—s+k+dimkerd 1 >1—s+k

As n = k + 2 in this case, this yields the sought bound.
If q ^ 2, again by Corollary 1.30 and Proposition 2.42,

dim F2 /F3 ® R = (2) 
(s - k) + ker d1 < 2q2 - 7q + 7

which implies
k+2q+dimkerd1 :c s-4q+7

EXAMPLE 2.44.	 (i) A group F = (xi , . . . , X2q W1, . . . , w3 ) with
Wi , . . . , W3 E F2 can be nonfibered Kähler only if s ^ 6q - 7 for
q> 2, and	 ifor q= 1.
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	(ii) Chain link groups (see [82], 3.G) The group G2q	 (Xl . . . , X2q I

	

( xi, x2 ), . . . , (X2q-1, X2q), (X2q, x1 )) is the fundamental group of a	 0
	link of 2q circumferences forming a circular chain, for q ^ 2. 	 S

This group verifies k = dim F/F2 0 1 - dim G2q/(G2q)2 ® ' 0,
and s = 2q < 6q - 7, and therefore G2q cannot be nonfibered
Kähler. Broadly speaking, if a link is not very intertwined, its

	

group is not going to be nonfibered Kähler. The group G 4 verifies	 S

	

that dim(G4 ) 2 /(G4 ) 3 ® R - 2, and therefore it cannot be fibered 	 S
	Kãhler either, as it cannot map onto ir1 (C9 , *) for any g ^ 2. The	 0
	groups G2q with q ^ 3 do admit onto mappings to iri (C2 , *), and	 S

the author does not know if they are fibered Kãhler.

	

( iii) Let F = K:i; i , . . . , 5 ; XXX (x 1 , x2 ), (x2 , x3 ), (xe, x4 ), (x, X5)).	 I
In this case n - 5, k = 1, q = 2 as Imd0 - (2 —2 2 +2 4), and

	

S = 5 < n+4q-7 = 6. Therefore r cannot be nonfibered Kähler.	 5
The group F cannot either map onto ir (C9 ) , with C9 a smooth
projective curve of genus g ^ 2 because dimF 2 /F3 ® R = 2,
dimir i (Cg ) 2 /irl (Cg ) 3 ® R = 2g(2g-1)	 5, so we reach the
conclusion that F cannot be Kãhler. 	 5

EXAMPLE 2.45. (Groups of planar hyperplane arrangements are
not non—fibered Kähler (cf.[75})) Let A = {H1 , . . . , H} be a planar
hyperplane arrangement, i.e., a finite set of hyperplanes in C 2 , and let

	

= 0 be a defining linear equation for every line H3 . The complement	 1
of the lines is a smooth complex manifold M(A) = C2 \(H1 U • • ' U Ha),
and its integral cohomology algebra was shown by Brieskorn to be 	 S

2irz ai	 2ri cE	 I
that is, the subalgebra of the complex—valued de Rham complex of M
generated by the forms w =

	The above inclusion induces a weak equivalence between the coho-	 5
mology algebra H*(M, J) and the de Rham complex of M. Therefore
the space M is formal, and all the Massey triple products of 1—forms
in its cohomology are zero.

Brieskorn's explicit computation of the cohomology of M allows us
to present bases for H'(M,R), H2 (M.R) (see [75], Example 7.4):

H'(M, T) = (wi , . . . , w)	 R

H2 (M, 1I) = Tm (u : H1 (M) A H'(M) -^ H2(M))	 S

	

= (w1 A Wn,W2 A w, . . . ,W-i A w)	 n-1 •	 S

fundamental group F = (M) cannot be non—fibered Kähler.

I

I
I
0
I
.

Therefore, if n > 3 then n - 1 3n - 7, and by Proposition 2.42 the	
S



S
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0	 On the other hand, in the case n = 2, the line arrangement {x =
S	 0, y = O} c C2 yields ir (M) Z2 , which is non—fibered Kähler.
.	 EXAMPLE 2.46. Fundamental groups of compact oriented 3—foldsS	 with first Betti number b1 (X) ^ 4 are not non—fibered Kähler. ThisS	 is due to the fact that every such 3—fold admits a Heegaard splitting,
.	 and a presentation with n generators and only ii defining relations (seeS	 [90]).
S
0

S
I
S

S
I
0
S
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S	 CHAPTER 3
.
.	 Geometric monodromy

:	 We will study the geometric monodromy of Lefschetz pencils of curves

I	 and some related families, and obtain formulae for the monodromy

.	 automorphisms of the fundamental group in the case of proper families.

.	 Our formulae parallel those of [8] , where a combinatoric and group
I,	 theoretic approach is followed. Properties of quasi—unipotence and

.	 formality of the family will arise from these formulae.

.	 1. Geometric monodromy of pencils of curves

.	 1.1. The projective case. We begin by fixing our notations.

0	 DEFINITION 3. 1 . A Lefschetz pencil of curves over a simply con-

.	 nected open domain B C P is a proper holomorphic map f : X -+ B,

.

	

	 where X is a smooth complex surface, such that it only has a finite
number of critical points Pi , . . , p,, and all of them are nondegenerate,

S	 that is, the matrices D2 f(p2 ) are invertible at every critical point. We

I	 do not suppose the critical values z2 = f) nonequal.

.	 We will denote the set of singular fibres as E = f'(zi ) U • . . U

.	
f1(z), and the set of regular values as S = B \ { z1 , . . . , z}.

I	 The following is a classical result, deduced from the theorem of
.	 Ehresmann and the Implicit Function Theorem.

.	 composition, and therefore, fixing a basépoint s0 e 8, we obtain the

.	 geometric monodromy map of this family

.	 p : ir1 (S, s0 ) -+ Aut (X30 )/diffeotopies = M(g, 0)
S	 where M(g, 0) is the mapping class group of the topological surface
.	 xso.

S	
69

.

I
I

.	 family X \ E - S is oriented. The liftings are compatible with path
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S
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The action of the fundamental group ir (5, s0 ) on the cohomology
	 S

groups of the fibre is described by the Picard-Lefschetz formula. A
standard proof of it is based on the computation of the geometric mon-

	
S

odromy of the pencil (see [7},vol. 2, Ch. 1,2 or [63]) . As this is not
	 S

very explicitly displayed in our sources, we provide a separate proof. 	 S
To study the local monodromy around critical values, we separately

	 I
study neighbourhoods of the critical points and the rest of the fibre. 	 0
The situation around the critical point has been thoroughly studied

S(see [68]):
S

LEMMA 3 . 3 (complex Morse lemma). Every nondegenerate critical
point p of f admits a coordinate neighbourhood 1 2 such that p2 has co-

	
0

ordinates (0, 0) and the function f is f(x, y) = ; + x2 + y2.	
S

LEMMA 3.4 (conic structure, Milnor). For every critical point p
	 .

there is a small enough ball B62 C Vj centered at p such that:
	 .

I(i) The point p2 is the only singular point of f1v1.
(ii) Its boundary 8B62 = S cuts transversally every fibre X fl V.	 I

(iii) The singular fibre X fl Bei iS homeomorphic to the cone of X fl
	 S

S
.The same holds for any radius r < e2.	

S
NOTATION 3.5. Fix now a ö > 0 such that B(z2 ,8) C f(B1.)

for every critical value z and critical point above p, , define loops

,8(t) = zi + 8e2nut , and open sets U, = B62. n f'(B(z, 8)).

	

	
S
S

We proceed to compute the monodromy in f'(B(z, 8)). Let p21 , . . . ,
be the singular points of f above the critical value z. We will first corn- 	

S
pute monodromies in the manifolds	 and

) = f'(B(z,8)) \ (Ui, u.UUj),	 I
Sand afterwards in the Morse balls U, , to glue all of them together in 	
I

Theorem 3.18.

PROPOSITION 3.6. The restricted maps
	

S

f : 9U, -* B(z,ö)

are C°° globally trivialfibrations over B(z,S).

PROOF. We have defined U as BE. fl f 1 (B(z2 , '5)) C X, with	 S

B6. a 4-ball such that its boundary S . cuts transversally every fibre

of f . Thus OU = S . fl f 1 (B(z, )) is a 3-manifold that also cuts
transversally every fibre. As the fibres X have codimension 2 in X,	 S

xnau also has codimension 2 in OU for every z E B(z, 5), and thus	
:
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.	 df(T1OU3) has rank 2 for every p EIU2 , and again by Ehresmann's

.	 theorem f : OU - B(z,8) is a C°° locally trivial fibration. As the
I	 base space is contractible, it is also globally trivial.

.	 Next we consider the manifolds with boundary Y2.

.	 is a C°° globally trivialfibration of manifolds with boundary over B(z 2 , 8).
S	 PROOF. The map f :	 -k B(z, 8) is proper, and its tangent
.	 0

.	
bundle maps df : T,,Y -+ Tf() B(z, 8) and dfq : TY2 - Tf(q) are onto

.	 for every p E Y, q E 8Y2 = llôU, by Prop. 3.2 and 3.6 respectively.

.	 Therefore, by the Ehresmann theorem for manifolds with boundary f

.	 is a C°° locally trivial fibration with fibre a manifold with boundary,

.	 and as the base space is contractible it must be globally trivial. 	 LI
S	

Finally, we must compute the geometric monodromy in the closed

:	
balls U around the critical points of the mapping. Each of these local
families is biholomorphic to a family

.	 f : B((O, 0), e) fl f 1 (B(O, 8)) -k B(O, 8)

:

.	 with f(x, y) =: 2 y2 , E small enough so that the conic structure

.	 Lemma 3.4 holds, and 8 such that B(O, 8) C f(B(O, 0), e). The fibration

.	 defined by f is trivial outside these balls and on its boundary, so we
S	 may assume by increasing its radius that every family f : U, -+ B(z2 , 8)
.	 is topologically trivial in a neighbourhood of its boundary.
S	 We will briefly recall the classical Picard—Lefschetz theory of the
.	 pencil of curves (5) after [7] , and show how the homological concepts
S	 are equivalent to their mapping class group counterparts.
.	 The fibers of the pencil (5) are topological cylinders with bound-
.	 ary, i.e., denoting by F the C°° regular fiber there is a diffeomorphism
.	 (F, F) (5' x [-1, 1], 8' x {-1} U S1 x {1}). The integral homology
.	 groups H1 (F, 5F)	 Z, H1 (F)	 Z admit as generators the classes
.	 of the paths V(t) = (1, 2t - 1), i(t) = (e2lrit, 0) respectively, and the
.	 complex orientation of the fiber defines an intersection pairing

:	
i : H1 (F,ÔF) H1 (F) -^ H0(F)

.	 (c,d)i—>cod

0	 which is nondegenerate, as V a L = —1.
I
I

I
S
I

S
I
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The geometric monodromy ço of the pencil along a ioop around its
critical value is defined up to isotopy, and may be chosen to be the
identity in a neighbourhood of the boundary 8F. This property allows
the definition, already at the cycle level, of a variation morphism

Var, : H1 (F, F) -+ H1(F)

C E-+ Var, (c) = c -

of the pencil. The variation morphism may be defined for Lefschetz
pencils of any dimension.

In the case of the pencil (5) , the intersection pairing and variation
morphism allow the definition of another homological invariant of the
monodromy diffeomorphism: Let p : (F, ElF) -+ (F, 5F) be a relative
oriented diffeomorphism, such that it is the identity in a neighbourhood
of i9F. We may define a quadratic form

qw : H1 (F,ÔF) -k H0 (F) Z

C I-+ C 0 Var,(c)

As H1 (F, OF) ZV, the quadratic form is determined by q,(V). This
motivates our next definition:

DEFINITION 3.8. Let (F, OF) be a cylinder with boundary as above,
and ( : (F, oF) -+ (F, oF) be a relative oriented diffeomorphism such
that its restriction to the boundary OF is the identity. The index k(ço)
of ço is the integer q(V).

The index of a diffeomorphism of the cylinder does not depend on
the generator that has been selected for H1 (F, ÔF) . Furthermore, it is
not hard to show that the index is invariant modulo relative diffeotopy.
Therefore the index induces a mapping

k : Diff(F,aF)/Diffo(F,aF) -+ Z,

where Diff (F, oF) is the group of orientation—preserving relative C°°
diffeomorphisms of the fiber (F, ÔF), such that they are the identity in
the boundary F, and Diffo(F, oF) is the group of relative C°° diffeo-
morphisms isotopic to the identity.

PROPOSITION 3.9. The map k is a group isomorphism.

PROOF. We must first check that k is indeed a group morphism.
This follows from the decomposition

.

0
.

S
0
.
0

0
S
0
.
.

I
.
.
I

S
S
S
.
I

.
0
S
S
S
0
.
I
0
.
.
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I	 and the fact that V - V is a cycle with support away from the
0	 boundary, so it is homologous to its image by . Moreover, if a dif-
.	 feomorphism belongs to Diffo(F, F) then its index is zero.
.	 It is harder to show that k(ço) = 0 only if ço is diffeotopic to the
0	 identity. Since this is a classical result, we will only sketch here a
.	 method of proof. Let p	 Diff (F, 9F) be a diffeomorphism such
I	 that it is the identity in a neighbourhood of OF. We claim that the
I	 diffeotopy class of p is determined by the isotopy class of the image
0	 (V) of the generating vertical path V(t) = (1, 2t - 1) E S x [-1, 1].
.	 This is the case because:
.	 - First, the boundary of the cylinder and the image path (V) form
I	 the boundary of a 2—disk. If q5(V) has the same image as (v), by
I	 our orientedness assumption the two parametrizations of the path are
.	 isotopic. We may extend the isotopy to a tubular neighbourhood of the
.	 path (V) and find after it that , çb are induced by identification on
I	 the boundary by two diffeomorphisms of the 2—disk çd , q5' such that they
.	 are the identity in a neighbourhood of the disk. These diffeomorphisms

0	 are diffeotopic, thus so are çb.

S
.
.	 IS	 I
I	 I
S
.
.

S	
1g. 3.1 Disk di eomorphisms.

- Second, denote y := o(V) the image of the vertical path V by a
S	 diffeomorphism ço e Diffo(F, F) . If we take any oriented vertical pathI	 vz = { z} x [-1, 1] and deform it in a very small neighbourhood soS	 as to make it transverse to 'y, the intersection of 'y and V is a set of
S	 2m points with total sum of intersection indices k() = 0. As y is aS	 simple path, there must be two intersection points consecutive both in
S	 7 and in V and with opposite intersection numbers. The pieces of
.	 7, Vz between these two points form a sirñple closed ioop enclosing a
S	 disk. We may use the tubular neighbourhood on the other side of 'y,
.	 and apply the following relative diffeotopy theorem (cf. Proposition
.	 4.15 of [103] for a proof in the PL category):
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THEOREM 3.10. Let D' be the closed unit disk in R' and 1W -# W
an embedded C°° closed disk, such that the intersection of boundaries
aD72 n 5D' is a (n - 1)-disk. Then there exists a diffeotopy F of R
such that F1 (11Y2 ) = 1D/ , and the diffeomorphisms F are the identity on
the common boundary 9D' fl ÔD' and outside a compact neighbourhood
ofthe disk 1IY.

By this theorem on the uniqueness of disk embeddings, we may send
the path "y by an isotopy to a path 'y' that has lost the two intersection
points and runs parallel to V (see the figure).

Fig. F3.2 Path straightening.
This disk retraction process may be iterated until the resulting path,
which we may denote again by 'y, and the fixed vertical path V,. are
disjoint.
- Third, by repeating this procedure for suitable vertical paths V
we may obtain a new path 5' which is isotopic to y, is contained in
a vertical strip as narrow as it may be wished. One may then apply
the above uniqueness of disk embeddings theorem to the path y' and
two embedded strips, as shown in the figure, and conclude that 'y' is
isotopic to the vertical path V.

Fig. F3.3 Final isotopy.
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0	 Proposition 3.9 shows that the relative isotopy class of a diffeo
0	 morphism 'p of (F, OF) is determined by its index k(ço), which may
.	 be interpreted as the number of twists that p induces on the cylinder.
.	 The mapping class group isomorphism Diff(F, ÔF)/Diffo(F, oF) Z
0	 has been obtained by means of an orientation of the cyclinder, induced
S	 by the complex orientation of the fiber in our case. The opposite on-
0	 entation would change the sign of the intersection product, thus of all
S	 indices. On the other hand, due to the quadratic nature of the index,
0
S	 (—V)o(—V—(—V))=Vo(V—V).
.
S	 Therefore, once an orientation of F has been fixed we may compute

0	 the index of a diffeomonphism using either of the generators V, —V of
.	 the relative homology group H1 (F, aF).

.	 We will give now a primary example of diffeomorphisms:

:

	

	
DEFINITION 3 . I 1. . Let C be an open set in an orientable topolog..

ical surface, and c C C a simple closed curve in C, such that it has
:	 a bicollar open neighbourhood c C N C C. Take a cylindrical chart
w	 in N S' x (-1, 1), with c corresponding to 8 1 x {O}. Then a Dehn

g(9,y) = (O+ir(y+ l),y)

in N, and extended by the identity map outside N.

Fig. F3.4 Dehn twist.
The choice of a chart S1 x (-1, 1) in the bicollar neighbourhood

N fixes an orientation for N. A parametrization of N with opposite
orientation would yield the inverse of this Dehn twist, i.e. a twist in
the other direction.

. twist about c is the map gc : C - C defined as

.
0
S
I
S
.
.

.

.	 ,c

.
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Fig. F3.5 The two inverse Dehn twists.
Other standard properties of Dehn twists that will be required are:

(i) Dehn twists about isotopic paths are isotopic.
(ii) Selection of different bicollar neighbourhoods produces different

Dehn twists about the same path c. Nevertheless, all Dehn twists
produced by bicollar parametrizations with the same orientation
are isotopic. Thus, by requiring that a Dehn twist be determined
up to isotopy, we may suppose it to be the identity outside an
arbitrarily small neighbourhood of the path c.

(iii) The mapping class groups M(g, 0) are generated by Dehn twists.

For proofs and more information about Dehn twists and mapping
class groups, see [15] . We will limit ourselves here to computing the
index of a Dehn twist, after precising our orientation conventions:

CONVENTION 3.12. We will refer to the orientation of S' x [-1, 1]
such that the paths L(t) = (e2t , 0) and V(t) = (1, 2t - 1) have inter-
section number L o V = - 1 as the orientation induced by the chart
S I x [-1,11.

LEMMA 3.13. Let (F, ElF) be a topological cylinder with a chart
SI x [- 1 , 1] . A Dehn twist along the simple closed loop L	 8' x {O}
with the bicollar orientation induced by that of the chart F 	 S x
[-1, 11 has index 1.

PROOF. We may take as a parametrized bicollar neighbourhood of
L the open set N = S' x (-1, 1) of the given chart of F. The image
of the vertical path V(t) = (1, 2t - 1), which generates H1 (F, OF), by
the Dehn twist g. is homologous to the cycle V + Z in N.



Fig. F3.6 Index of Dehn twist.
Thus the computation of the index yields

Vo(V_gV)=Vo(_)= 1.
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0
S
.
I
.
S
S

S

.

S	 We are able now to determine without ambiguity the local geometric

S	 monodromy around a critical point in a Lefschetz pencil of curves. We

.	 will associate first a path to every critical point:

.	 DEFINITION 3. 14. Let p be a nondegenerate critical point of a Lef-0	 shetz pencil of curves f : X - 8, U a coordinate neighbourhood of
S	 p satisfying the complex Morse lemma 3.3, and /3 a ioop around p in
S	 f(U) with origin s. A vanishing path associated to p is a C°° simple
S	 closed path d C X fl U, such that its homology class is the vanishing

S
.	 The conic structure lemma 3.4 shows that vanishing paths always
S	 exist. The vanishing cycle in homology is defined up to sign, i.e. on-
S	 entation, and likewise a vanishing path may be defined with any of
S	 the two possible orientations. Classical results in surface topology (see
S	 [901), or a direct proof along the lines of Proposition 3.9 show that
S
.	 LEMMA 3. 15. Two vanishing paths d,, d' associated to the critical

S	 point p in the same conic structure neighbourhood U and with the same

.	 homology class are isotopic.

:	 Given our complex Morse lemma coordinate neighbourhoods

.	
we may select as vanishing paths in X (o ) fl U 3 those with image d 3 =

0	 {(x,y) E X ( o ) lmx = Imy = O}.

S
S
S
S

S
S
.

S	 cycle L E H1 (X8 n U, Z).
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C
where p(x, y) = ( y , x2 + y2 ) and g(x, s) = s. The restriction of p to
a regular fiber X of f is a 2 to 1 covering map of the complex plane
Ys , with two branchpoints (±/, s), and the map p is a holomorphic
family of such double covers outside the critical fiber X0.

The map g : Y -+ C is a trivial fibration on C. We will use for this
family a geometric monodromy over the base loop o(t) = e2t . This
monodromy will be trivial only after isotopy, and will preserve the
branchpoint locus of the map p. The brânchpoints for XQ(t) - Y()

are 9it , e(irt+ir)i and we define after [7] a parallel transport over c by
a family of diffeomorphisms



S
S
.

S
S
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.
S	 where the function 4 : [0, oo) -+ [0, 11 is a C°° plateau function with
S	 value I on [0, eI and 0 on [2e, co) for e suitably small.
.
S	 --

:	
1

.	 (	 ti
S	 K	 ..:

.	 t	 c	 7
S	 /
.	 \

S	 -	 ::	 -'
S
S
S	 Fig. F3.8 Plane monodromy.	 .

I	 Our choice of h rather than the classical one (y, 1) 	 (e 2t y , e12t) makes

S	 the parallel transport and geometric monodromy the identity outside

0	 the balls B(O,2e) x {s} C Y.

S	 The diffeomorphisms h : Y1 -+ Y (t) preserve the branchpoint locus

.	 of the covers Xc(t)	 Yc( t) . Therefore they can be lifted to diffeomor-

S	 phisms Xi -4 Xa(t) . There are two possible lifts, but only one of them

S	 is the identity outside V = p' (B(O, 2e) x {o(t) }) , as the other possible

S	 lift interchanges the leaves of the cover. Making e small enough, and

.	 choosing the lifts h that are the identity outside the bounded regions

S	 vi we obtain a parallel transport and geometric monodromy for the

S	 family f : X = C2 -+ C over the loop a, such that they restrict to the

S	
family f : U -+ B(O, 8) and are the identity in a neighbourhood of its

S	 boundary.

.	 After computing a geometric monodromy for the family f : U -+

.	
B(O, 8), in order to complete the proof we must show that this mon-

S	
odromy is a Dehn twist of index 1 with the complex orientation. As

S	 the geometric monodromies over isotopic paths are isotopic, it suffices

.	
to check the index for the global family of conics

S

:
S	 (x,y)—+x2+y2

.

over the simple ioop c(t) = e . This will be done by using the above
::	 described monodromy diffeomorphisms and an explicit diffeomorphism

;	
between the topological cylinder S 1 x R and the fiber X1.

a
.
S

S
S
S
.
.



80	 3. GEOMETRIC MONODROMY

For the rest of this proof, we will parametrize the unit circumference
as S' = {(u 1 , u2 ) E R2 I u + u = 1}. We select the following diffeo-
morphism between the basepoint fiber X 1 and the cylinder 8 1 x R:

P:S'xR—+X1={(x,y)EC2x2+y2=1}	
S

(u1 , U2, t)	 > (1 + t2 Ui — j tu2 ,	 + t2 U2 + j tui)

.

.

.

I
I
I
I
I

I

poW:S' x1—+C

(u i ,u2 ,t) F- /1+t2 u2 +itu1

The ioop is folded by p o onto the interval {- 1 , 1, and the vertical
path V is sent diffeomorphically to the path {it t R}. We will
describe more closely this double cover in order to characterize the lifts
of paths in the complex plane.

The positive semi—cylinder {(u 1 , u, t) e S x [0, oo)} is mapped by

p 0 onto the complex plane. This mapping is one—to—one outside ,
and sends the loops z() = (cos(2ir9), sin(2ir), t), t 0 ) to parametrized
ellipses (s/i + t2 sin(2ir), t cos(2irO), the clockwise parametrization of
the loops L t being sent to a counter—clockwise parametrization in the
ellipses. The points (u 1 , u2 , t) with u 1 > 0 cover the upper half—plane
of C, while the points with u < 0 are sent to the lower half—plane.

If we fix the complex orientation on the fiber X and the orientation
defined in Convention 3.12 for the cylinder S' x 1, the diffeomorphism
'I:' preserves the orientation.

The closed curve = {(u 1 , u2 , 0) e S' x R} is mapped by onto
the vanishing path {(u 1 , u2) C u, u2 E R} associated to the critical
point (0, 0) . The vertical path V = {(1 , 0, t) E S' x 1I} is mapped to
the path {(/1 + t 2 u , i t) E X1 }.

The composition of the diffeomorphism W with the covering map
p : X1 —+ C, p(x, y) = y , is a topological double cover of the complex
plane with branchpoints ±1, and has equation

___	 I
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.

.	 Fig. F3.9 Upper cylinder.
S	 In the same manner, the negative semi—cylinder {(u1 , u2 , t)	 81 x

.	 (—oc, O]} is mapped by p o onto the complex plane, one—to—one out-

.	 side the boundary & The level loops	 9) = (cos(2ir9), sin(2ir9), —t)

.	 are mapped to ellipses (Vi + t2 u2 , —tu i ), and this time the clockwise

.	 parametrization is preserved. The points (u 1 , u2 , — t) with ui > 0 are

I	 sent to the lower half—plane, while the points with u1 < 0 cover the

S	 upper half—plane.

.
I	 (

Fig. F3.1O Lower cylinder.
Our study of the covering map p o I' enables us to present explic-

itly the cylinder S 1 x R as a double cover of the complex plane with
branchpoints ±1. This double cover has been classically described as
cutting the complex plane along the real Interval [- I , 1] and glueing
two copies, corresponding to the positive and negative semi—cylinders.
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Fig. F3.11 Glueing of two planes.
Consider now the vertical path V(t) = (1, 0, t) C S' x R, mapped

by po 'TI onto the path it. The points V(t) lie in the positive or negative
semi—cylinder leaf of the double cover according to the sign of t. We
will henceforth denote by V, V these two halves of the path.

Let us look now at the projection of V on the plane, and apply
the parallel transport diffeomorphisms h above defined to the paths
v+, v_ . The monodromy diffeomorphism h1 is a rotation of angle
71 ifl a disk B(O,r) centered in the origin and containing the interval
[— 1 , 1] , glued by rotations of decreasing positive argument to the iden-
tity outside a larger disk B(O, R). Thus the path p o 'I'(V) is mapped
to itself for t	 (—oo, —R). The final piece {p a 'I'(V(t)) — r <
t :c O} is rotated an angle r, i.e. multiplied by —1, and the piece
{p 0 P(V(t)) - R t r} is mapped to a simple path joining the
two points p 0 'I'(V(—R)) = —iR,p o P(V(—r)) = ii' and contained in
the half—plane {Re z O}. These facts determine the homotopy class,
in fact even the isotopy class, of the image h1 (p o '1'(V_)).

Fig. F3.12 The plane geometric monodromy.
The monodromy image of the half—path p o W(V + ) may be likewise

computed. The result is a rotation of angle it of hi (p o 'I'(V_)). As
the half—paths V+, V_ are contained in single leaves of the covering
p, their monodromy images are determined by their images by p just
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.	 computed and the fact that the monodromy is the identity outside
S	 a compact neighbourhood. Using the diffeomorphism 'I' and the fact
.	 that the paths hi (p o 'I'(V)[_ft,_r], resp. (V+){r , RJ may be isotoped to

.	 a straight line plus an arc of the above described ellipses p o W(L4, we

S	 reach the conclusion that the monodromy image of V is homologous

.	 toV+&

Iij
1g. 3.13	 e curve monodromy.

.

.

.
S
.
.
S
.
S
S

	

	 We are now ready to compute the geometric monodromy of the
Lefschetz pencil f : X —+ C. First we will fix a presentation for ir 1 (S, *):

!	 NOTATION 3.17. Select a basepoint s0 e S and smooth paths c

:

	

	
from s0 to /3 (0) for every distinct critical value z1 , . . . , Zm . The funda-
mental group ir 1 (S, SO) 'S then the free group spanned by the homotopy

S	 the singular points introduced in Notation 3.5 are sent to disjoint open
S	 sets of X 0 , and denote also as	 the transported vanishing paths on
S	 xSO•
.

.

S
S
S
S

This homology implies that the monodromy mapping on Xi has index
1 with the selected orientation, and thus it is by Proposition 3.13 the
Dehn twist defined by the complex orientation on the bicollar neigh-
bourhood of the vanishing path of the singularity.

S	 classes of the paths = a3a' for 1 j m. We will fix as well a
.	 parallel transport along the cxi , such that all the neighbourhoods U, of
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8i8 . 83.14 Base space Ioops.

I'HBORBB2 3.18. Let f : X ^ ^ be a Ldschetz pencjl of cumes.
Ih.e geometTjc monodrom map jn^ed by f : X\5Z —7 5 js

p : n.1(S,so)
7'' '

wheTe d . ,. . . ,di,^re the wanjshjn.g ^hs assocliated to the sjn,gulw
pojnts p . , . . . , pj^ ^zg over the a^iazl wa^e Zi.

PB.008. ^Ve wi11 coII^1te the I^^,dIo^ aIouBd a 1009 B..
Izet p. . . . , pi^ be the siBlzuIaI poiI^s d f abm tbe CIitical va1ue

z., V. . . . ,Vj z: the coIIespoBdID 8 B^4^^hoods d^iIJ.ed a^teI LeIDIDZ
3.4, aBd Yi = 5I(B(zi,8))\(Wi^ lJ ... UVj w ). By PIOP . 3.7, tbe faI^
f : Yi —7 B(zi,lf) is 81062I1Y tIivia1, so it adIBits the id^ity as the
IBOIIOdIOINY aIOB8 Bj. Ihe InO^OdIO^ aK^J Bi ^)I the ^^IiIies f :

B^. —7 B(zi,8) has bee^ COINputed ^B PIO P . 3.16, aBd ^28 bee^ sha^
to' be tbe ide

^
;y in z 

^^
bouIhood ol BVi.. It is theIeBIe possible

tO 814e the IDOBOdIOn^ ^^; on Yj, B^. and obtai^ Z I^) that wiII be
the 8IobaI ^^IdIOI^ ^I of f : ^ 1 (B(zi, 8) \ {zjH -t BCzj,8) \ {Zi}
by the u^iqueness up to di^eotopy ofthe IDOBOdIOINY.

'Ihis Iesu^tiB8 ^p consists of DehB t^i5t5 Td .^, . . . ,Tz. z WhiCh aIe

the ideStity outside the disjo^t opeB sets V^. NX B .co,, a^d h^:e coID-
I^te. 'IIZBSPOIt Z10B8 Ai C^B^tCS OUI PIOd. 	 D

BXAIWPLB 3.19. '^ze IzezeBdIe faB^:

'Ihisistheel1ipticsuIl^ce B = {(z, y ,t) E C^3 lyZ = Z(I-1)(I—t)},
with paIaBIetIizi^ ^p f(I,y,t) = t. NeitheI B is s^Joth noI f is
pIopeI. IheIefoIe, we beziB by C0ID91eti^z the GbeIs by coBsideIiB8
th.e pIojective ^2I^TB = {([X : Y : Z],t) E BDZ (^^) X^^ I YZZ = XIX—
Z)CX—t'Z)}. IhesuI^ceBhastwosi^8^2Ipo^tsPo = I[0 : 0 : 1],0)
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.	 and P1 - ( [ 1 : 0 : 1] , 1); its singular fibers E0 , E are nodal cubics. We

.	 blow up E at Fo, P1 and in this way obtain a smooth elliptic surface
S	 E, and a smooth proper map f : E -+ C. The fibers E0 , E1 consist

S	 each of two rational curves, one the strict transform of E0 resp. E1,

S	 and the other an exceptional smooth conic, both components meeting
S	 transversely at two points.
.

,'cT\	 5;T1::r T5

S	
E'c€PT1OLf\y

.	
c.oMpDNT 11	 1

.	 '5;*__,'	 i

S	 n.	
t I

.

.
S
S
S	 Fig. F3.15 Components of singular fiber E2.

Let Qij Q2i be the antiimages of every P2 , and the function f has a
critical point set {Qio, Q2o, Qu , Q21} and critical values {O, 1}. Thus
S = C\ {O, 1}, and fixing s0 = , there is a geometric monodromy map

p : ir1 (S,so) -4 M(1,O)

Fig. F3.16 Regular fiber near a singular fiber.
The vanishing paths associated to every critical point are two ioops

S	 over every critical value i, both isotopic to the path d of E80 =
.	 that collapses to the original node P . The collapsing paths in E80 are
.	 d0,d1 as shown in Fig. F3.17.
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0:7	 ' 0	 t-'
2''	 I	 .

--.------	 .
.	 I.

Fig. F3.17 Vanishing paths in torus and their projection to complex
plane.	 I
This is easily seen regarding the curves E as double covers of IF' (C)
ramified over the four points 0, 1, t, oo. The singular fibers are obtained 	 I
as t -* 0, 1 and observing the effect on the covering. 	 I

Denoting as 'ye, 71 the simple ioops around 0, 1 with positive on-
entation and also their homotopy classes, the geometric monodromy 	 S
is	 .

1	 5
p:ri (S,) —+M(1,O)	 I

'Yo

Yi

as every map p('yj) consists of two Dehn twists along paths isotopic to

For a direct computation of the geometric monodromy in this case,
carried out with great detail, see [19], 9.3 Example 2.

1.2. Pencils of quasi–projective curves. We will study now
the case of a pair f : (X, D) -+ P . This situation arises when consid-
ering base points, and when studying Lefschetz pencils of noncomplete
curves.

DEFINITION 3.20. Let B C P be a simply connected open do-
main. A relative Lefschetz pencil of curves over B is a map f
(X, D) -f B such that:

(i) f : X -* B is a Lefschetz pencil of curves.
(ii) D is a subvariety of X such that no singular point of f : X -k B	 I

lies in D.	 S
.
.
I

S
S

.

S
.
S

.
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.

.	
PROPOSITION 3.21. There iS a Zariski open subset S C B such

S	 that the restriction of f : (X, D) -+ C over S is a C°° locally trivial

S	 fibration, with fibre a pair (Xe , D fl X3 ), where the intersection is a set

S	
of 1 distinct points D fl X = {qi , . . . , qj}.

.	 PROOF. Let us decompose the curve D C X in its irreducible
S	 components D = D1 U • • • U Dm. Some of them may be fibres of f,
S	 D1 = Xri , • • . , Dh Xrh and the others Dh+l , • • Dm are horizontal
S	 irreducible subvarieties of X. Each horizontal D2 has a generic intersec-
.	 tion with fibres X consisting of a finite number of points { q21 , . . . , qZ }

S	 with multiplicity 1 for z E W, a Zariski open subset. Also, as the
.	 curves D2 are irreducible and different, given D2 D3 , X fl D and
S	 xz n D may only have common points for z in a proper closed set of
S	 C. Thus there is a Zariski open set S such that for s E S the fibres of
.	 f are pairs (X3 , {qi , . . . , q:} with 1 fixed and the points q all different.
.	 As q1 , . . . , q1 are points of X flD with multiplicity 1, D is transverse
.	 to X in them, and so over S fID is proper and smooth. Therefore, the
.	 relative Ehresmann theorem yields our statement.

:	
We will denote again i	 f-'(c \ S), and write JJ instead of

S	
D n (X \ E). The C°° relative fibration

.	 f:(X\E,D)-*S

:	
has an associated parallel transport, which assigns to every path

.	
I -4 S a relative diffeomorphism

.	 f*7 : (X(o),{qi,. . ., qi}(o)) -+ (X(1),{qi,.. .,qi}(i))

.	
well defined up to relative diffeotopy, and compatible with path prod-

S	
uct. Fixing a base point s E S, we thus obtain the geometric mon-

I	
odromy map of this relative fibration

.	 p : r 1 (S, S ) -* Aut (X 0 , D fl X80 )/rel. diffeotopies = M(g, 1)

:	
where M(g, 1) j the mapping class group of the fibre X 0 and the

.	
distinguished subset X50 fl D - {qi , . . . , qj}.

Before computing the monodromy of f : (X, D) -+ B, let us recallS	 an elementary description of the mapping class group M(g, I) after [15],
S	 chapters 1 and 4. Denote C9 the compact topological orientable surface

:	
ofgenusg.

.	 LEMMA 3.22. There is an onto group morphism

:
.	 given by forgetting the distinguised set {q i , . . . , q} C Cg.
.
S
S
.
S
S

S
.
.



.
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.

We will see in Theorem 3.25 that, given the monodromy p : (5', S ) ->	 5

	

M(g, 1) of the relative Lefschetz pencil f : (X, D) -+ C, its projection	 5
to M(g, 0) is the monodromy of the absolute pencil f : X - C.

To learn about the kernel of j : M(g, 1) -+ M(g, 0), we introduce
the braid groups of C9 :	 5

Consider C, and its generalized diagonal	 = {(x1 , . . . , x i ) E	 5
c	 i : j s.t. x = x}. The symmetric group S1 acts on C by

	

permuting coordinates, and this action restricts to the open set C \ ,	 S
where S1 acts freely.

	

DEFINITION 3.23. Let 1 E N. The I-braid group of Cg is the group	
:

Bi (Cg ) = 71i ((ci \ )/S1, )	 I

We condense the relations between braid groups and mapping class
groups that we will use in the following theorem (see [15] Ch. 4):

THEOREM 3.24. Fix a base point (qi , . . . , qj) E (C \ z)/Si. Con-
sider the set Aut (C9 ) of oriented seif-diffeomorphisms of C9 with the
compact-open topology. The map

Aut(C9 ) —*(C, \ ) / S1	
:

h—+(h(q1),...,h(qj))	 S

	

is a topological fibration. Its fibre is Aut (C 9 , { qi , . . . , qi}), and the 	 S
long exact sequence associated to this fibration	 S

...	 1((C\)/Sj,(qi,...,qj))	 oAut(C9,{qi,...,qi})

-+ 7roAut(C9 ) -4 7io(C \ ) /S1 *

jields a group exact sequence 	
:

Bi(Cg) _+ M(g,l) -- M(g,O) -+ I 	 (5)

The exact sequence (5) implies that to every i-braid b in Cg we can
associate a relative diffeomorphism (b) : (C 9 , {qi , . . . , qj}) -* (C9 , {qi , . . . , qi })
such that E(b) : C9 -+ C9 is diffeotopic to the identity map, and E(b)
is well determined up to relative diffeotopy. It may be obtained by

	

integrating a vector field v in C9 x I such that v is transverse to the 	 S

level surfaces C9 X {t} and tangent to the braid b.

	

Every braid induces a permutation of {qi , . . . , q1 } that may be ob-	 I

	

tamed by integrating the above cited vector field v. This induces an 	 S

onto group morphism Bj (Cg) 4 Si on the symmetric group. We will
denote also as b the permutation thus induced by every braid b.

We are now able to describe the geometric monodromy of 	 S

f:(X\,D)—SB\{zi,...,zm}
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.

.	 First of all, let us fix neighbourhoods U, , ir (S, S) and relative parallel

.	 transport over the c, as in Not. 3.5 and 3.17.

S	 THEOREM 3.25. Let f : (X, D) —+ B be a relative Lefschetz pencil
I	 of curves. The geometric monodromy map induced by f : (X \ E, D) —+
.	 Sis

p :	 S)	 Aut(X30 , D fl X30 ) = M(g,l)

.	 where the d, are the vanishing paths associated to the singular points

.	 Pu , . . . , Pi k lying over the critical value z, and b 2 is the braid described

.	 by {qi , . . . , qj} in its parallel transport along /3.

.	 PROOF. The proof is analogous to that of the absolute case (Thm.

S	
3.18).

.	
Let {p 1 , . . . , Pik } be the set of singular points above z, possibly

.	 empty. We may take their neighbourhoods U, small enough so that

.	 Uji n D = 0. Thus Prop. 3.16 tells us that the monodromy in U, along

.	 /3i IS the Dehn twist Td1 , and is the identity on OU fl X/3( o ) , by Prop.

.	 3.6 and also 3.16.

.	 Denote again Y2 = f(B(z,8)) \ ( U21 U • ' U Uj k ) . By Prop. 3.7,

.	 the family f : Y2 —+ B(z2 , 8) is trivial. Take a trivialization

S	 1_7	 i	 1J	 V•Ii —4 i	-3(0) X
.	 f\	 1,	 (6)
I	 B(z,8)

.	 f(x, s) = 5. The fibers are X = C \ 0, s. The function f is smooth

.	 over X, and therefore the geometric monodromy will be produced by
S	 the braids in X8 described by D8 = {O, s} around the critical values of
IfID 0, 1. Choosing s0 — , and generators	 of	 5) positively

I
.	 As the set D n X( t) — {qi , . . . , qj} is preserved by relative parallel
.	 transport, the points p(D fl X,j1(j) ) tJ describe a braid in X ( o ) fl Y,

.	 thus a braid b2 in X ( o ) . The relative monodromy on 1 is thus the

.	 diffeomorphism associated to the braid b, which gives (b) when ex-

I	 tended as the identity outside V2 fl X(o).
.	 As in the absolute case, we may glue together the monodromy auto-
.	 morphisms on Y and the U23 by extending them as the identity outside
.	 their domain in X ( o) and so obtain the monodromy along	 Parallel

I	 transport along cx completes our proof.

.	 EXAMPLE 3.26. Let us consider the pair (X, D) where X = C2
I	 and D is the line arrangement D = {x = 0, x = s, s = 0, s = 1} and
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circling 0, 1, the monodromy maps p('yo), P( #yi ) turn out to be the self-
diffeomorphisms of C \ {O, } associated to the braids

Fig. F3.18 Braids in the punctured complex plane.

EXAMPLE 3.27. In Example 3.19 of the previous section we have
computed the monodromy of the Legendre family of complete cubics
E - {( {X : Y : Z], t) P x C 1 Y 2 Z = X(X - Z)(X - tZ)}. The added
points at infinity in the fibers E8 do not lie on the vanishing paths.
Therefore the family is globally trivial in the neighbourhood of the in-
finity. The isotopies between vanishing paths we have used are still
valid in the punctured curves E and therefore the geometric mon-
odromy we have computed restricts to the monodromy in .iVI(1, 1) of
the Legendre affine family of cubics

B = {(x,y,z) E C3 y2 = x(x - 1)(x - t)}

2. Monodromy in the fundamental group

2.1. The projective case. We will study now the monodromy
action in the fundamental group of the fibre of Lefschetz pencils of
curves. This monodromy is trivial when the fibres are simply connected
or its dimension is greater than one. The remaining cases are aspherical
spaces, so the geometric monodromy is equivalent to the monodromy
action on the in . Therefore, all that is required is to translate the
formulas given in Thm. 3.18 and 3.25 taking account of base points.

Let f : X -+ B be a Lefschetz pencil ofcurves, S = B\{zi , . . .
the set of regular values of f , and let a : S -+ X be a section off  over
S such that the singular points of f , Pi ..... p , do not lie in Tm a.

PROPOSITION 3.28. The fundamental groups {ir 1 (X, a(s)) s E S}

form a flat -ir i (X 0 ,cr(so))-principal bundle.



.	 2. MONODROMY IN THE FUNDAMENTAL GROUP 	 91

I
I	 PROOF. By Prop. 3.21, f : (X \ E,a(S)) —* S is a C locally

.	 trivial fibration, with fibre the pair (X 80 , a(so)), and there is a base

S	 point-preserving parallel transport Over S. As f is a topological fi-

I	 bration, the parallel transport along two homotopic paths 'yo, yi pro-

.	 duces homotopic diffeomorphisms between X ( o ) and X (i) . Therefore

S	 {r1(X8, cr(s)) s E S} has a homotopy-invariant parallel transport de-

.	 fined, or equivalently a flat bundle structure.

0
.
S
.

We will compute the monodromy action

I
.

:	

p : i (S,so)	 > Aut

.	 Let us make first some conventions:

0
I
:	 NOTATION 3.29.	 (i) Choose the neighbourhoods (Ii . defined in

.	
Not. 3.5 such that U.flO(S)=ø.

I	
(ii) Fix a generating system for ir 1 (S, S) = ( 'yr, . . . , 'Yin) as in Not.

I	
3.17 and basepoint preserving parallel transport along the c

I

	

	
such that a(s0 ) does not belong to the image of any U, fl Xfi(o).

(iii) Select vanishing paths d1 , . . . , d in X 0 corresponding to the

f	 (v) Single out over Yj — f'(B(z,8)) \ (U 1 U . . . U Uj k ) a global

:	
trivialization	 as in

S
0	 singular points of f and collar neighbourhoods of the d3 N C

f * o(U n X(o))..	 (iv) Pick a set of generators c1 , . . . , C2g for in (X80 , o(so)) such that
S	 all the c are C paths cutting transversally and only a finiteI	 number of times every vanishing pith d, and such that for ev-S ery intersection point R23 between a c and a d3 , the connected
. component of c2 fl N3 containing R23 is exactly the fibre over
.	 of N as a normal bundle over d3.
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Fig. F3.19 Generating loops in a quasi–projective fiber.

DEFINITION 3.30. Given a global trivialization ço as in Not. 3.29
( v), we define the basepoint loop around /3, cr2 in Y fl X (o ) as

cr2 (t) = p1p(o($(t)))

DEFINITIoN 3.31. Let 'y and d be C°° transverse loops, and R =
7(tR) '.y fl d. We define the Dehn twist ioop on d corresponding to R,

'YR, as the product of the paths

YR	 'Y[O,iRI d .	
tR]

where the path d is given the orientation of its monodromy Dehn twist.	 S

We will also need a classical result on the monodromy of the fun-
damental grupoid (for a proof see [74]):

PROPOSITION 3.32. Let X be an arc-connected, locally arc-connected	 0
topological space. Denote as EJx its continuous path space {'y : I -+ X},
endowed with the compact open topology, and let 11(X) be the funda-
mental grupoid of X with the induced topology. Then:

(i) The evaluation map

eo:H(X)—+X	 5



.
S
.
.
.
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.	 (ii) The evaluation map

S
S	 e1:fl(X)—X

I	 [71 I—^7(1)

PROOF. By our transversality assumption, there exists a collar
neighbourhood N of the ioop d such that y fl N = NR1 U . . U NRm
the fibres over the points R3 of N as a normal bundle. We may assume
the Dehn twist Td to be the identity outside N.

Parametrize by 9 e [0, 2r] the loop d, and write R3 = d(93 ). Then
the normal bundle N admits coordinates [- 1 , 1] x [0, 2ir]. The fibre
paths NR(t) = (t,9R) are sent by the Dehn twist Td to rd(NR)(t) =
(t, 0R + ir(t + 1)), as is seen in Figure F3.20.

Fig. F3.20 Dehn twist on NR.
.	 The path Td(NR) is homotopic to the path NR({- 1 , 01) d NR([O , 11)
.	 relatively leaving its extremes fixed. We may glue those homotopies for
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every R3 and thus obtain the homotopy between rd('y) and 'y 1 • YRm7

PeYk) : ir i (X30 ,o(so)) —+iri(X80,a(so))
ci 
-+ak 'CR l . . . CRCicrk .

where (R1 , . . . , R) is the ordered set of intersection points of c with
the union of the vanishing paths dk1 U . . . U dk,. of all singular points

over Zk , and ak S the basepoint loop around /3 described in Def. 9. 30.

PROOF. We will compute the monodromy action along I3 on iri (X ( o ) , o(f32(0))).	
:

As in the case of the geometric monodromy, decompose

f1(B(zj,S))=YjU(UjlU...UUjk)	

:

I

.

.

I

I

.

I

I

S

I

.

I

S

I

S

I

I

.

I

I

.

I

S

.

I

.

S

where the U have been selected small enough so the collar neighbour-
hoods	 - U fl X ( o) satisfy 3.29 (iv).

We may decompose every path Ch as Ch = Ch1 • • Chm ' where ev-
ery Chr = ChI[tr _ i ,ir l S a path contained either in Y or in a Ui,. We
apply Prop. 3.33 to the paths Chr C L1 . By our transversality as-
sumption 3.29 (iv), Chr fl d, = {R}, and the path Chr	 the fibre
NR	 { (t, 9R) t E [- 1 , 1] } with a suitably oriented parametrization,
and thus by Prop. 3.33 Chr S sent to ( Chr)R Chr

The geometric monodromy in Yj is trivial, but this is not the case
for the relative family (Y, Im a) over the punctured ball B(z, 5) \ {z}.
The parallel transport of the initial path Ch1 must have starting point
a• Ct3 (t)) , and the final path Chm must also have a parallel transport with
endpoint cr(3(t)) . As the family is geometrically trivial and only the
basepoint changes, we may apply Prop. 3.32 and conclude that Ch1 S

sent by monodromy to aj'ch 1 , and Chm to ChmUk

The paths Chr 11 with r 1,m have initial and end points in
ay . As the geometric monodromy of the family (Y, Tm a) may be
chosen to be the identity on a neighbourhood of OY , and the absolute
monodromy on Y is trivial, those Chr 7'	 1 m are sent to paths
homotopic to them.

The monodromy given in our statement is now obtained by glueing
the separate monodromy transformations on the C,, 1 we have deter-
mined and transporting it to s0 over a.
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.	 2.2. The quasiprojective case and the weight filtration. We

.	 will study as a final case families of affine curves.
S	 DEFINITION 3.35. Let f : (X, D) -+ B be a relative Lefschetz

:	
pencil of curves. An affine Lefschetz pencil of curves is the map

.	 f:X\D-B

S	 A relative affine Lefschetz pencil of curves is a map f : (X\D, C) -+
.	 B such that:
.	 (i) f : X \ D -.+ B is an affine Lefschetz pencil.
.	 (ii) C is an algebraic subvariety of X such that it does not containS	 any singular point of f and does not intersect D.

.	 From a geometric monodromy viewpoint, affine and relative Lef-

.	 schetz pencils are the same, as the following Proposition shows:
S	 PRoPosITIoN 3.36. Let C9 be a topological compact orientable sin'-
.	 face of genus g, and {qi , . . . , q} a distinguished subset of 1 distinct_	 . _	 _.	 .._,	 . ..,	 v	 ^

.	 pojnts. Ih,e .re js a gro .up jsomorphjsm jn the topologjcal category

Autt(^gl{91,...,91^) ^Autt(Cg,{g1,...,gl^)
_	 Iwhlich conserves zsotopzes, and jn^ces cm jsom,oTphzsm
^	

A'u,tt(^g\{q1, . . . , q,Hljsotopj^^ Aut t (Cg , {,z1, . . . q ql HITela^ve jsotopjes = N^(9,1)

PR.008. ^Let {Ki}j EI be a GBa1 diIected systeID O^ coI^,acts of
Cg l {9I,...,91}, with the 0^IiB8 8iveB by iBdusiOB. Ihe co^zcted
COIIIPOBCBtS O^theCoIn^I^ZBt OfK i iN Cg\{91, . . . ,91^ fOIj bi8E^30484
aIe disjoiBt Bei8hbOUI^OOds ofthe poiBts qI,... , q,. ABy ^O^IeOI^-
phisInhofCg \{91, . . . ,91} seBds {Ki} to {h(Ki)}, whicbisaBotheIGBaI
diIected systeIIZ 0^coIIzpact setsq aBd thUs h Se^dS ^^Na1I e^04 84 ^eilzh-
bOUIhoods ^ g 1 ,. . .,q, to nei8hbOUIhOOdS Of 90(1), . . . 990(I) ^0I 2 5xed
Pe^utation o E S,. ^e I^yextend h by de^BiB8 h(qi) = goci,, and the
^zap thus de^IIed is a IeIative selfhoIBe0^20I 9^i8^3 Of (Cg, ^ . . . ,91}).

As {91, . . . , g,} is a subset 0^ i501ated poiI^z in Cg, the above con-
StIuctioB I^T be exteBded to isotopies iB C g \ ^. .., 91 } aBd yieIds
IeIative isotopies iB ( Cg, {91, . . . ,91}).

RestIiction Of hOIIIeOINOIphiSInS aBd IeIative isotopies 8ives aB iI3-
veIse aIIOW, aNd COIIIPIeteS OUI 9I00^. 	 ,	 °

.	 Prop. 3.36 tells us that the geometric monodromy of an affine

.	 Lefschetz pencil of curves is that of the relative Lefschetz pencil of itsI	 completion, which has been computed in Thm. 3.25.

.	 We have introduced relative affine Lefschetz pencils because we will

.	 need basepoint sections for affine Lefschetz pencils. One may check by

.
0
S

S
S
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repeating the proof of Prop. 3.21 that a relative affine Lefschetz pencil
has a relative parallel transport well defined up to relative diffeotopy. 	 1

In the case of our concern, if f : X \ D —+ B is an affine Lefschetz
pencil of curves which is C°°locally trivial over S C B and a : S —+	 I
x \ D is a section such that Im a does not meet D, there are basepoint
preserving parallel transport and monodromy in the family f : (X \
D) \ E —* S. The missing points X fl D = {qi , . . . , qj} and the base
point cr(s) describe an (1 + 1)-braid around every point ; E B \ S. This	 I
braid satisfies the additional condition that the basepoint strand must
always return to itself, while the puncture strands may permute.

.
I

9-t	 ct-i	 cr(s)	 I

Fig. F3.21 Admisible braid
The fundamental group of a topological surface of genus g with

I ^ 1 punctures, Cg \ {qi , . . . , q}, is a free group of rank 2g + 1 — 1.
One may choose as a generating set for ir (C9 \ {qi , . . . , qj} , *) a set of
2g generators of ir (C9 , *) and 1 - 1 loops, each going around one and
only one distinct q . We will fix such a generating set in the case of
(X50 \ D80 , a(so)).

NOTATION 3.37.	 (i) Fix neighbourhoods Yj over the singular
points of f, a generating system for ir (8, S ) = K' yi , . . . ,
vanishing paths d1 , . . . , d and collar neighbourhoods N1 , . . . , N
in X 0 and a set of generators c1..... c29 for r1 (X30 , a(so)) as in
Not. 3.29.

( ii) Select simple closed C O loops u1, . . . , u1 C X 0 \ D50 , each of
them contained in a small enough neighbourhood W2 of the cor-
responding q3 and with the direct orientation. Select also simple
coo paths a1,...,aj from o(so) to u1(0),...,u(0) respectively.
Define ioops g = a1uaT1.
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Fig. F3.22 Generating loops on the fiber.
We must also fix a relative trivialization : ( , Dfl , a(B(z2 , ö)) -

(Y n X ( o ) , D n X (o) , a(3(0))) x B(z1 , ö) as in 3.29 (v). Such a triv-
ialization is equivalent to a relative parallel transport T2 = p , and

.	 we will select one that satisfies further conditions of transversality and

.	 of moving the strands of the braid b described by {qi , . . . , qj} over

.	 and the base point one at a time. That such a parallel transport exists

.	 may be seen by a simple local definition piecewise and a tedious glueing
process, we will only list its relevant properties:

.	 LEMMA 3.38. We may choose a parallel transport T2 such that its

.	 restriction over j3 verifies:

.	 (i)	 = 0 outside neighbourhoods ofthe paths T2(q3,3(t)), cr.
S	 (ii) The paths T(q3,i3(.)) cut each other transversally. The paths
S	 Ch, am are also transversally cut, and may only be cut outside the
.	 neighbourhoods W1 , . . . , W1 of 3.37 (ii).
.	 (iii) The intersection of a path T2(q, .) with the neighbourhoods TV1, . . . 	, W1

S	 has exactly two connected components T2 (q3 ,[O,to)) C W3 and

.	 T(q3, (t 1 , 1]) C Wb() corresponding to the two edges of the path.

0	 (iv) Forj = 1,...,l andt e [091),], 	 L	
o outside a neigh-

.	 bourhood ofq3 , and T2(q3, .) moves from q3 to Wb1(j).

.	 (v) FortE [0.9,0.95],	 outside TTT1ULJW1.

.	 (vi) For t	 [0.95, 1],	 = 0 outside a neighbourhood of cr, and

.
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The fundamental group (X 0 \D 0 , a(so)) is generated by c1 , . . . , C2g, .'1, ' • ' , 91,

and the only defining relation among the generators is 9i • 9i = Ui,

with w a word in c1 , . . . , c, . We will name the different paths according
to the properties of their images in H1(X30 \ D80).

REMARK 3.39. The ioops c1 , . . . , C2g are the weight minus one loops,
and g , • . . , g are the weight minus two loops, according to the weight
filtration in the fundamental group ir (X50 \ D80 , *) of [8].

DEFINITION 3.40. (Driving a strand across a path)
Let 'y be a C°° path in a smooth surface C, s a transverse C°°

path such that 'y fl s is the ordered set {R1 = 'y(t 1 ) = s(y), . . . , R =
#y(t) = 

S (yw)} and let u(s(1)) be a C°° simple loop around s(1) with
direct orientation and contained in a small enough neighbourhood. We
define the transported path of 'y by the strand s as:

TS'y=yR1 .....7RW'Y

E(R)	 -1	 -1
YR	 Y1[O ,tR] S 1[YR, l] • fl8(1)	 S ([yft l] 'YI[O,t}

and e(R) is the sign of the inner product K(yR), j(tR)).

Fig. F3.23 The braid loops

DEFINITION 3.41. We define the conjugation path of q3 over the
critical value z	 B \ S as the product

= a . T()(0) .	 ( i)

LEMMA 3.42. Let 'y be a C°° path on a smooth surface C. Let s

be another C°° path in C transversally cutting 'y along a finite number
of points. Then the parallel transport of 'y in C x I \ {(s(t), t)} is the
transported path of'y by the strand s as defined in Def. 8.40.



:	

Ic	

Weight minus two paths:

I	 p('yk)(gi) —

:	
where thepath is = T 1 . . . T31 (a 1 . . . a sm aj)Tsj . . .T3^1(T(u(0), .))a),

I	 with S1 , . . . , Sm the ordered set of intersection points of a3 with the van-

a	 ishing paths over Zk and a3 s is the corresponding Dehn twist loop (Def.

.	
8.31).

S	 EXAMPLE 3.44. On polylogarithms:
I	 Let us consider the family given by S = B \ {O, 1},
S
S	 f:X=SxS-S

:	
(x,$) —+5

.	 and diagonal basepoint a : S —+ S x 5, cr(s) = (s, s) . From the
S	 geometric viewpoint this is a trivial fibration with fiber X 8 = C\ {O, 1}
.	 and its monodromy is the identity. However, the monodromy in the
S	 principal F2-bundle {iri (X3 , a(s)) s e S} is not trivial, as the selected
.	 basepoint section is not constant. Fixing S = and go, g1 simple paths
I	 positively around 0, 1, the monodromy automorphisms Po Pi are
S	 —1

I	 p(a)=g agj

0	 For any topological space S, the monodromy group of this family is
.	 always the group of inner automorphisms of (8, *). In our case S
S	 C\{O, 1}, by the theory ofiterated integrals of Chen ([25]),nontriviality
S	 of the monodromy is equivalent to the fact that the polilogarithms on
.	 C \ {O, 1} are multivalued.

S
S
S
S
S
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I
.	 Everything has been prepared for our final result in this section:

S	 THEOREM 3.43. Let f : X \ D —+ B be an affine Lefschetz pencil
S	 of curves, and o : S —+ X \ D a section over the regular set of values.
I	 With the conventions of 3.9, 3.37, 3.39, and denoting s := T2 (q3 ,.),
S	 the monodromy action p : ir1 (S, S ) —+ Aut (iri (X80 \ D 0 , U(SO))) is
.	 determined by:
S	 (i) Weight minus one paths:

S	 P('k)(Ci) = cr; - 'T 1 . . . T81 (CR1 ' . . CR C)c7k

:	
where (R1 , . . . , R) is the ordered set of intersection points of c with

.	
the vanishing paths over Zk dk 1 U . . . U dkr ' CR denotes the Dehn twist

S

	

	 loop (Def. 3.31) corresponding to B3 if R3 E c fl d3 , and T3 (.) is the
transport over the strand T2 (q , .) , and ak is the base point path over
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EXAMPLE 3.45. The Legendre family revisited:
The example to be studied with more detail in this work is that

of the affine Legendre family of Ex. 3.19. There we have computed
its geometric monodromy over S = C \ {O, 1}, and here we extend the
computation to the fundamental group.

Fix a constant basepoint section P in a neighbourhood of infinity,
and a basis a, b of ir (E80 , P) as indicated in Figure F3.24.

Fig. F3.24 Basis of fundamental group in punctured torus and its
projection to the complex plane.

Figure F3.25 shows the effect of Td0 , 'rd 1 on the ioops a, b: The paths
cii of Def. 3.31 here are a = ab'a' , a = , b0 = , b 1 = bab'.
The monodromy representation is now immediate.

Fig. F3.25 Vanishing paths in the Legeiidre family.

PROPOSITION 3.46. The monodromy representation p : r i (C\{O, 1}, ) -
Aut (r 1 (E , P)) induced by the Legendre family of affine elliptic curves

.
S
S

S
S

.

.
S
S
S
S
S
.
S
S
.
.

S
S

S
S

S
S

S
0
S

S
S
S
.
S
S

.
S
S
S
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S	 is determined by:

p([7o])	 1 (E1 ,P)	 1(E1,P)

I	 a
0	 b—*b

P({'YiI) : 7r1(E1,P)

I	 a pencil of curves around a critical value is quasi—unipotent. A'Campo
S	 showed in [1] that the geometric monodromy of an affine family given
.	 by a holomorphic map F : C'	 -f B C C, which is well—defined
S	 up to diffeotopy, is realized by a distal map. This means that the
I	 dynamical system formed by the Milnor fiber F and the distal geo-
S	 metric monodromy diffeomorphism has zero entropy, and a theorem by
I	 A. Manning shows that a diffeomorphism with zero entropy induces a
.	 quasi—unipotent monodromy isomorphism in H' (F , 1) ([67]). Subse-
.	 quent independent work by Bowen, Gromov, Shub and others extended
I	 Manning's theorem to the fundamental group, showing how the topo-
S	 logical entropy of a map f : X -+ X bounds the growth rate of the
.	 endomorphism f : ir,(X) - ir,(X) (see [36] for a very complete dis-
0	 cussion of the topic).
.	 The author is grateful to N. A'Campo for originally bringing his
S	 attention to this field. This section contains an adaptation of these
.	 results to the case of Lefschetz pencils of curves. We work with the
.	 property of linear growth of group endomorphisms (see Definition 3.52
I	 below). This property implies rate of growth zero, and is actually
0	 slightly stronger than zero entropy in the case of curves. It is shown
.	 in Proposition 3.59 that the monodromy of a projective family around
.	 a critical value with reduced fiber has linear growth in the fundamen-
S	 tal group. Finally, Proposition 3.60 shows how linear growth in the
I	 fundamental group implies quasi—unipotence in the first cohomology
.	 group.

I	 b —ba2
.

.

I	 3. Monodromy properties of pencils of projective curves
.	 3.1. Quasi—unipotence and zero entropy. We will study now
.	 the monodromy of a pencil of projective curves around a critical value.
.	 By Grothendieck's theorem on the quasi—unipotence of the monodromy
S	 in algebraic families, the monodromy in the first cohomology group of
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We start with some generalities on metric spaces and dynamical
systems (see [37], [36]).

DEFINITION 3.47. Let X,Y be metric spaces.
A mapping f : X -+ Y is a quasi—isometry if there exist fixed

positive constants A, C verifying

d(x,y) - C ^ d(f(x),f(y))	 d(x,y) +C

for aIlx,y E X.
The metric spaces X, Y are quasi—isometric if there exist a pair of

mappings f : X -+ Y, g : Y -+ X and fixed positive constants ), C
verifying

d(f(x), f(y)) E; Ad(x, y) + C

d(g(x'), 9(y')) ; Ad(x', y') + C

	

d(g(f(x)),x)	 C

	

d(f(g(x')),x')	 C

fora11x,yX, x',y'EY.

The reader is remainded that a quasi—isometry needs not be contin-
uous according to our definition. Quasi—isometry defines an equivalence
relation among metric spaces.

EXAMPLE 3.48. A metric space X is quasi—isometric to a point if
and only if X has a bounded diameter. In particular, compact metric
spaces are quasi—isometric to points.

There is an equivariant version of Example 3.48; its description
requires some combinatorial group theory.

DEFINITION 3.49. Let F be a group.
(i) A finite symmetric generating set S C F is a finite generating

set for F such that 1 F, and if x S, also x E S.
(ii) The length of an element g € F with respect to S is the least

length of a word in the elements of S representing g. The length
of 1 is defined to be zero.

(iii) The word length distance defined by S in F is defined by setting
as d (gi , g2 ) the least length of a word on the generators of S
representing g1g2

This definition makes F a discrete metric space, whith a free iso-
metric F—action given by the group product. The word length distance



:	
choice of a finite,symmetric generating set s, but in a controlled way:

I	 LEMMA 3.50. Let F be a group, and S1 ,82 two finite symmetric

.	 generating sets. The metric spaces (F, ds1), (F, ds2) are quasi-isometric.

.	 PROOF. The generators of 82 have a bounded length in terms of

:	
Si , and vice versa. The identity mapping already induces the quasi-
isometry.	 E

.	 Thus the word length metric associates an equivalence class of

.	 quasi-isometric spaces to every finitely generated grOup F. This class

.	 gives rise to the equivariant version of Example 3.48, for its proof the

.	 reader is referred to [37], Ch. 3, Prop. 19.

.	 PRoPosITIoN 3.51 (Milnor). Let X be a compact Riernannian man-

.	 ifold, X -^ X a universal covering space, and ir1 (X) C X the iri (X)-

.	 orbit of a point, with the metric and distance induced by those of X.

:	
Then the metric spaces , - 1 (x) and ir1 (X) are quasi-isometric. In

.	
fact, the inclusion 71 (X) -+ )? and the orbit identification 'ri (X) 4
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.	 extends to a metric in the Cayley graph of I', S by isometrically iden-
tifying the edges to the unit interval. This distance ds depends on the

.	
ir1(X) induce the quasi-isometries.

I	 The case that will be discussed here is that of X = Cg a compact
.	 Riemann surface of positive genus. In this context the fundamental
.	 group and the topology of C9 are specially close: C, is an aspherical
.	 space and, moreover, it was shown by Dehn, Baer and others that
.	 homotopic homeomorphisms of Cg are isotopic, and thus the groups of
.	 homotopy and isotopy equivalence of Cg are isomorphic:

:	
OutiCg	 M(g,O).

.	 Let f : X -^ ID be a Lefschetz pencil of curves, as defined in Def.

.	 3.1, over a disk, and such that 0 is the only critical value. The geo-

.	 metric and fundamental group monodromy around the critical value

S	 have been discussed in Theorems 3.18, 3.34. Selection of a geometric

.	 monodromy homeomorphism h : X -+ X and of a basepoint section

I	 and presentation of the fundamental group of the fiber ir (X 3 ) gives rise

S	
to two topological dynamical systems (X 3 , h) and (it1 (Xe ), 'P) , where

.	
ir1(X) has a word length metric and is the monodromy automor-
phism. What follows may be seen as a discussion of the entropy of

;	
those dynamical systems, although we will stick to more elementary
concepts.

0	 DEFINITIoN 3.52. Let (F, 8) be a group with a finite symmetric
.	 set of generators and its word length metric. A morphism p : F -+ F

.
I
S
SI
S
.



.

.
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has linear growth if there exists a fixed constant A E JR such that for
any element g E I' and n E N, the length of the elements (g) satisfies
a bound	 .

1engths(p(g)) ; Alengths(g)n.

It is not hard to check that if a morphism has linear growth for
a finite symmetric set of generators S then the property holds for any
such set of generators, therefore we will often omit it. As first examples
of automorpisms with linear growth we may cite:

EXAMPLE 3.53.	 (i) The inner automorphisms of a group. 	 1
(ii) The composition of a linear growth automorphism with an inner

automorphism.

	

Example 3.53 shows that the linear growth property descends to 	 I
outer automorphisms of the group. We will see in Example 3.57 that
the composition of two linear growth automorphisms need not have
linear growth.

Another source of linear growth automorphisms that we will require
later is:

	

LEMMA 3.54. Let cp : F -* F be a group morphism such that its 	 I

power m has linear growth for some m. Then p has linear growth.

PROOF. Fix a finite symmetric generating system S to carry the
computations. By the definition of linear growth applied to ço tm , there
exists a fixed A E R such that for all g F one has

	

length(pm )'(g)	 Alength(g)n.

Moreover, denoting ço	 Id, there exists a fixed A 1 E R such that for
every g E F, and every k e {O, . . . , m - 1} one has	 I

lengthpk(g) ; A 1 length(g),	 I

one such constant is A 1 = max hES	 lengthpk(h).	 I
kE{O...m-1}	 .

	Now, for every N N and g F, let N = rnq + Ic be the euclidean	 I
division of N by m. By the above bounds we have	 S

IengthpN (g) =	 :; AA 1 length(g)q ; (AA1)length(g)N.

Hence our thesis.

	

Linear growth of an automorphism p implies that the rate of growth	 I

of p, defined as	 S

	

I	
0

sup lim sup - log 1engths(p'g)
gEr	 fl	 I

.
I
I
.
.
S
S
I
.
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0	 is zero. Given a self homeomorphism of a topological space, the rate of

.	 growth of the induced morphism in the fundamental group provides a

S	 bound for the entropy of the topological system. In the case of a closed

S	 orientable surface C9 linear growth also implies that the dynamical

0	 system (ri (C9 ), (,o) has zero entropy ([36]) . The geometric monodromy

S	 around the critical value 0 has been seen to be the composition of

I	 Dehn twists along vanishing paths associated to the critical points in

.	 the singular fiber. A Dehn twist is a fibered isometry and has zero

.	 entropy ([1]). The zero entropy properties for both dynamical systems

.	 indeed correspond.

.

.	 PROPOSITION 3.55. Let f : X -+ B be a family of compact Rie-

.	 mann surfaces with the single critical value 0. The associated mom-

.	 odromy automorphism ço : iri (X8 ) -+ iri (X3 ) has linear growth.

.

.	 PROOF. Assume first that the family f : X - D is a Lefschetz

.	 pencil, i.e. that the singular fiber is reduced and has only ordinary
I	 uadratic singularities.
.	 Let Pi . . . , Pk be the critical points in the singular fiber X 0 . By
.	 Theorem 3.18 the geometric monodromy around 0 is the composition
.	 of Dehn twists along the vanishing paths d1 , . . . , dk corresponding to the
.	 critical points. The vanishing paths are disjoint, and the Dehn twists
S	 may be assumed to be the identity outside arbitrarily small bicollar
.	 neighbourhoods Ui , . . . , Uk of the vanishing paths, also disjoint. We
.	 may choose a monodromy homeomorphism h and an adapted set of
.	 generators a 1 , . . . , a2g for ri (X8 ) as in Not. 3.29, cutting transversally
S	 the vanishing paths. In particular, every generator cz intersects a finite
.	 number of times every vanishing path d , and thus taking as A the
.	 maximal such number we have:
0
.	 LEMMA 3.56. There exists a constant A such that everj element
S	 9 E iri(X) admits a representing path 'y that intersects at most .Alength(g)
.	 times the vanishing paths, always transversally.
I
.	 Let now L be an upper bound for the length in X of the vanishing

.	 every intersection point. The resulting path h ('y) is isotopic to a path
0	 y1, which is a copy of the path y with the vanishing path inserted just
.	 outside the bicollar neighbourhood, as may be seen in Figure F3.26.
I

.
I
S
I
0
S
.
.

I	 paths. As has been seen in Theorems 3.18,3.34, the effect of the mon-
.	 odromy map on a path 'y cutting transversally all vanishing paths is
.	 homotopic to inserting a copy of the corresponding vanishing path in
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Our previous discussion has shown that	 has linear growth, so by
Lemma 3.54 ( has also linear growth, as was sought.

EXAMPLE 3.57. Take C2 a closed genus two surface, and a, b simple
loops generating the homology of one of the handles, as in Figure F3.27.

Fig. F3.27 Generators of the homology of a handle
Consider now the homeomorphism h = r o Ta, composition of Dehn

twists around the loops a first and b afterwards. By selecting a nearby
basepoint and a, b as two of the generators of ir (C9 ) we get an induced
monodromy automorphism of r1 (C2 , *) such that

co(a) = ab

ço(b) = ab2

.	 It may be checked by induction that the length of ço(a) is the term

.	 2n + 3 of the Fibonacci sequence, thus its growth is exponential.

.	 By Proposition 3.55 both a, Tb induce linear growth automorphisms
0	 of the fundamental group, so this example shows that the composition
.	 of linear growth automorphisms need not have also linear growth.
I	 .	 .
S	

The following result will be valuable for our applications:

I	 LEMMA 3.58. Let IT be a finitely generated group and z\ C F a
.	 normal subgroup. If a morphism p : F —+ F has linear growth and
S	 (z) C L.\, the induced morphism ç : 1/ —* F/Li also has linear

.	 growth.

I	 PROOF. Our statement is a consequence of the fact that if S
.	 {x1, . . . , x} is a finite symmetric generating set for F, its image in
I	 F/ becomes a finite symmetric generating set S after removing the
I	 xE&

.
I

.

.
0
S
S
.
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Take E T/& there exists an antiimage g F such that 1ength) ^	 1
alengths(g), as every element in S has a lift in S. As p has un-	 I

ear growth, there exists a fixed A	 R such that lengths(ço'(g)) <
Anlengths(g). As the generators of S descend to S it holds that 	 S

1ength(ç()) ^ iength(çor(g)). Our statement follows from the con-
catenation of all these inequalities.	 I

The first application of Lemma 3.58 is the study of higher dimen-
sional families when hyperplane sections are available.

.
PROOF. Let X C P x 1D be a projective embedding. By Bertini's

lemma we may choose a N - 2—dimensional linear subvariety H C TP

suchthatY=Xfl(HxD)isasmoothsurfaceandY3=X8fl(Hx{s}
are smooth curves for regular values s near zero. The fiber Y0 = Xo fl H	 I
is a possibly singular curve, and we have a commutative diagram

Y—x

I

By the Lefschetz hyperplane section theorem the regular fiber inclu-
sions Y8 C4 X induce epimorphisms ir (Y , *) -* ir (X , *).

Consider now the family of curves f : Y -* P . By Proposition
3.55, fixing any topological basepoint section a as we have done in the
previous sections the monodromy automorphism of the fundamental
groups ir i (Y, *) has linear growth.

The same topological section a serves as basepoint section for X.
By the relative Ehresmann theorem the triple (X, Y, Tm a) is a
locally trivial fibration over D, and we may select a parallel transport
and geometric monodromy diffeomorphism preserving Y, and a(s).
Consequently, the monodromy automorphism p of ir i (Y8 , o(s)) pre-
serves the kernel of the epimorphism ir (Y3 , a(s)) -+ iri (X3 , a(s)) , the
monodromy in 'r1 (X, a(s)) is the quotient of ço, and by Lemma 3.58
the latter also has linear growth.	 E

The second application of Lemma 3.58 is a linear growth version of
Manning's theorem on entropy and eigenvalues of the homology map-
ping:

	

PROPOSITION 3.59. Let X be a complex manifold, f : X -+ D a	
•

	

projective holomorphic mapping, and 0 E D be a critical value. The	
•monodromy automorphism around 0 ço E Out(ir1 (X , *)) has linear

growth.



.
S
.
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0

S
S	 PROOF. It suffices to show quasi—unipotence in H 1 (F, R) . If ço has
.	 linear growth, by Lemma 3.58 so has the induced automorphism of
S	 (T/T2)/Torsion. This quotient is a lattice in H1 (F, R), and ço is actually
.	 the monodromy automorphism of the first homology group.
S	 Let S be a symmetric generating set for F. It defines a word length
S	 metric on F, F/F2 . The image of the elements of S under the chain of
.	 morphisms F -+ F/F2 -+ H1 (F, R) contains a basis for the latter linear
.	 space. We may endow H1 (F, R) with an euclidean metric by setting
I	 one such basis as an orthonormal basis, and it may be immediately
.	 checked that the lattice inclusion (F/F 2 )/rrorsjon	 H1 (F, R) induces
S	 a quasi—isometry between both spaces. As 	 has linear growth in
.	 (F/F2)/Torsion, the norm of the images 2 (e) grows linearly on n for
0	 the vectors e2 belonging to the basis of H1 (F, 1I) induced by 8, thus
S	 there is a bound
.	 (v) < AIvIn

:	 with A fixed and determined by in F, and valid for any vector v

0	
H1(I',R).

.	
If the automorphism p of H1 (F, R) has a complex eigenvalue z =

.	 a + bi = re 0 , with r > 1, there exists either a real eigenvector v

.	
if z E R, such that 1I(v )M = r	 , or an invariant bidimensional
subspace in H1 (F, R) with a basis v1 , v2 such that the restriction to it of

.	 2 has matrix (	 . In the latter case it turns out that	 (v 1 )j =

.	 \ a,
S	

2r' cos(n9)1v1 k o(v2 )j = 2r' sin(rt9). As the eigenvalues of	 are

.	 algebraic the argument is = r, and the growth of these norms cannot

S	 be linear either.

.	 We conclude from the previous discussion that linear growth auto-

.	 morphisms cannot have eigenvalues with a norm greater than one. As

.	 their inverse automorphisms also have linear growth, we conclude that

I	 all eigenvalues must have norm one, and our statement follows now

.	 from the algebraicity of those eigenvalues. 	 E

.	 Thus linear growth of the monodrom in the fundamental group

:	
provides an alternative proof of some quasiunipotence results:

.	 COROLLARY 3.61.	 (i) Let f : X -+ ID be a holomorphic fam-
S	 ily of projective curves with a single critical value 0 E D. The
.	 monodromy automorphisms of H*(YS, Q) are quasi—unipotent.
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(ii) Let f : X —+ llJ a projective family of complex manifolds such that
0 is an isolated critical value. The monodromy automorphism of
H'(X3 , Q) around 0 is quasi-unipotent. 	 •

Finally, let us remark that linear growth of a group automorphism
is a more restrictive property than quasi-unipotence of the induced
morphism in the first cohomology group. We provide an example to
show this.	

:
EXAMPLE 3.62. Consider the fundamental group of a genus 2 sur-

face F = (cu , b1 , a2 , b2 I (ai , b1 )(a2 , b2 )), and the automorphism
.	 .

a1 —+ ai (bi , a i ) = a1bj'aj'b1a1

The automorphism p is the identity modulo F, thus it induces the
identity morphism in the first cohomology group. Yet a computation
by induction shows that, with the set of generators S formed by the
a, b3 and their inverses, 1engths((a)) ^ 3n, thus ço does not have
linear growth.

3.2. Topological formality. Compact Kãhler manifolds and smooth
algebraic varieties satisfy rigidity properties over its cohomology alge-
bra and the first nilpotent quotients of the fundamental group, as has
been explained in Chapter 2 ( [35] , [70] ) . Those rigidity properties, such
as formality, do not carry verbatim from the absolute to the relative
case; nevertheless, weaker versions still hold. The description of the
monodromy in the fundamental group of Lefschetz pencils of curves
in the previous sections may be applied to show that monodromy in
the fundamental group of families of curves satisfies one such rigidity
property: it was first established by M. Asada, M. Matsumoto and T.
Oda in [8] in the case of stable families, and it roughly means that its
order 3 nilpotent quotient determines monodromy in the fundamental
group. This is a topological analogue of the pointed Torelli theorem
by Ham and Pulte ([77]).

Let f : X —+ D be a Lefschetz pencil of projective curves over
a disk, such that 0 is the only critical value. As has been shown in
Theorem 3.18, the geometric monodromy around 0 is the isotopy class
of the homeomorphism Td1 ° ' ° Tdk where d1..... dk are the vanishing
paths associated to the critical points of the singular fiber Xo, and
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.	 Td are the corresponding Dehn twists. The vanishing paths d are

.	 determined up to isotopy, and by the complex Morse lemma they may

.	 be assumed to be C°° simple loops in X	 Cg . Those loops correspond

.	 to conjugation classes in ir (C9 , *) , and their characterization was a

.	 fundamental achievement in the classification theory of surfaces (cf.

.	 [90]). Indeed, we are able to present a short, complete proof by using

.	 the classification theorem and Alexander duality:

S	 PRoPosITIoN 3.63. Let Cg be a C°° closed surface of genus g, and
0	 d C Cg a C°° simple ioop. Then either of the following statements
.	 holds:
.	 (i) The loop d is contractible in Cg.
.	 (ii) There exists a basepointp E d C C9 and a presentation iri (Cg , p)
.	 (a1, . . . , a9 , b1 , . . . , b9 (a1 , b1 ) . . . (a9 , bg )) such that the homotopy
.	 class of d is the generator a1.
.	 (iii) There exists a basepointp E d C C9 and a presentation ir 1 (C9 , p)
.	 (a1, . . . , a9 , b1..... bg I (ai , b1 ) . . . (a9 , b9 )) such that the homotopy

:	
class ofd is the bracket product (a i b1 ) . . . (ak, bk) for some k <

.	 PROOF. The vanishing path d is actually a smooth proper embed-

.	 ding d : S1 c—+ Cg , although we will also denote by d its image. As d is

.	 smoothly embedded, the pair (C9 , d) is taut, and there is an Alexander

.	 duality isomorphism

S	 H0(C9 \d;7L) H2(Cg,d;ZL)
.	 The pair (Cg , d) has a cohomology exact sequence with coefficients in
.	 z

:	 0 H'(C9 ,d) 	 H'(Cg) H'(S')	 H2 (C9 , d)	 H2 (G9 )	 0

.	 The morphism d* : H 1 (C9 )	 H1(S')	 Z is given by cup

.	 product with the Poincaré dual of d. As H 2 (C9 , d) Ho(Cg \ d) S a

.	 free abelian group of rank at least one, there are only two possibilities

.	 ford*:

.	 (i) The morphism d* is onto, and C9 \ d is connected.
S	 (ii) The morphism d* jg the zero morphism, and C \ d has two
S	 connected components.
S	 In the first case, cutting C9 along d we obtain a compact sur-
.	 face S with a boundary consisting of two connected components. By
S	 the classification theory of surfaces with boundary, its fundamental
.	 group with basepoint p = d(0) on the boundary admits a presentation
.	 iri(S,p)	 (d, a2 , . . . , ag , b2 , . . . , bg , d' (a2 , b2 ) . . . (ag , bg )	 dd'), where
.	 d is the edge of the cut where we have placed our basepoint and d' is a
.	 loop formed by a path c joining the two copies of d(0) on the boundary,
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followed by the ioop around the other boundary component and finally
c-i.

Fig. F3.28 Connected surface with 2 boundary components.
Identification of the two connected components of the boundary of S
along d yields now the presentation of in (C9 , *) stated in the second
case of the proposition.

If d* is the zero morphism, then C9 \ d has two connected compo-
nents. These are surfaces S , S2 such that their boundary has one con-
nected component, and the ioop d is a parametrization of it for either
surface. Again the classification theory of surfaces shows that selecting
as a basepoint d(0) in both cases there exist presentations in ( Si , *) =
K a 1 , . . . , ak, b1 , . . . , bk, d I (ai , b1 ) . . . (ak, bk) = d) and iri (S2 , *) = Kak+i, . . .
a9 , bk+i, . . . , bg , d 1 (ak+i , bk+i) . . . (as , bg )	 d 1 ), with g - k	 k ç g.

Fig. F3.29 Two surfaces with connected boundary.
An immediate application of the Seifert-Van Kampen theorem shows

that either the first or the third option in our proposition holds, de-
pending on whether k = g or Ic < g.
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.	 Proposition 3.63 characterizes the homotopy class of every vanish-

.	 ing path in a presentation of the fundamental group depending on the

.	 path itself. Ifone fixes a presentation iri (Cg , *)	 (a 1 , . . . , b9 I (ai , b1 ) . . . (ag , bg))

.	 there does not exist such a simple classification of the conjugation

I	 classes of simple ioops on C9 . Nevertheless, the classification of Propo-

S	 sition 3.63 may be extended by the same methods to finite sets of

.	 disjoint simple loops. Such sets appear as sets of vanishing paths for

S	 the monodromy of a pencil of curves around a critical value with several

S	 critical points over it.

.	 PROPOSITION 3.64. Let C9 be a C closed orientable surface of
I	 genus g, and d1 , . . . , d C Gg be pairwise disjoint simple loops. There
.	 exists then a base point andpresentation ir i (Cg , *)	 (2i, . . . ag , b 1 , . . . , bg
.	 (a1,b1) . . . (ag ,bg )) such that the conjugation class of every ioop d 2 is
.	 either of the following:
.	 (i) Trivial.
.	 (ii) The class of fJ)EJ(a, b) 6i for some J C {1, . . . , g} and E = ± 1.
.	 (iii) The class offJEJ a flEJ(aJ, b) 6i for some disjoint subsets I, J c

:	
{1,...,g}

.	 PROOF. Let us examine first the homology classes of the loops. As

S	 d1 , . . . , d are pairwise disjoint, the subspace V C H1 (C9 , Z)

.	 spanned by their homology classes is isotropic. Therefore it has rank

S	 Okg.

.	 Pick a set of k loops, which we may assume to be d 1 , . . . , dk, such

.	 that their homology classes form a basis for V ® Q . The cohomology

.	 exact sequence for the pair (C9 , d1 U . . . U dk) with rational coefficients

S	 is

S	 OH°(Cg)4H°(dlU*Udk)_+H'(Cg,dlUUdk)_+H'(Cg)

:
.	 The morphism H'(C9 ) -+ H 1 (d1 U . . . U dk) is onto because its dual
.	 is one—to—one. Therefore H 2 (Cg , d1 U . . U dk)	Z. By Alexander
.	 duality H2 (Cg , d 1 U . . . U dk) H0 (Cg \ (d1 U . . . U dk)) . Therefore the
.	 complementary surface C9 \ (d1 U . . . U dk) is connected.
.	 Consider now the surface obtained by removing all the loops. The
.	 cohomology exact sequence of the pair with rational coefficients is

:	 0	 > H°(C9 )	 > H°(d 1 U ... Ud)	 > H 1 (Cg ,di U ...Ud)

S	 *H1(diU••Udn)__+H2(Cg,d1U...d)_#H2(Cg)_+o.
.	 As the homology classes of d1 , . . . , dk span all the image of the mor-
.	 phism H1 (d1 U . . . U dk, Q) — Hi(Cg, Q), its dual in the exact sequence
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has an image of dimension k and a kernel of dimension 2g - k. The mor-
phism H°(C9 ) -4 H°(d1 U ' ' ud) Qfl is one—to—one, thus computing
the ranks and applying Alexander duality we have that

HO(Cg\(diU*Udn))H2(Cg,diUUdn)Qrl

H'(C9 \(d1 U .. .ud)) H'(C9 ,d1 U •• • ud) Q29k+n1

Thus cutting the surface Cg along all the ioops d 1 , . . . , d produces
n - k + 1 connected surfaces S , . . , S_k+1 If the surface S has genus
gj and a boundary with n2 connected components, its first homology
group is H1(S2) Q29i+ni—I The surfaces Si, . . . S_k+1 have in total
2n circumferences as boundaries, thus the sum of their genuses is

i.e., every cut that is nonhomologically trivial lowers the genus by one
unit, while new cuts that are homologous to a combination of previus
ones split the surface but preserve the total sum of genuses.

By the classification theory of surfaces, there exist simple closed
loops ak+1 , . . . , a9 , bk+1 , • . . , b9 such that every pair a3 , b, is contained
in S\E1S for some i, and for every connected surface S its fundamental
group is freely generated by the loops a 2 , b C 52 \ ôS and d21 , . . . , d 1 C
osi , with the single defining relation fl dj h IES (as, b,) = 1.

Fig. F3.30 A connected component of of the complement of a cut
system.

The cohomology exact sequence and Alexander duality show as be-
fore that the g loops d1 , . . . , dk, ak+1 , . . . , ag form a complete cut system
for C9 . By surface classification theory we may choose a basepoint and
loops bI,...,bk such that ai = dl,...,ak = dk,ak+l,...a9,bl,...,b9

generate 7ri (Cg , 'K) with the single defining relation (a i , b1 ) . . . (ag , bg)
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:	
1. The loops ak+1, . . . , ag , bk+1, . . . , b9 do not intersect any of the origi-

.	 nal loops d 1 , . . . , d.

S	 With the above presentation of the fundamental group of Cg , which

.	
still allows any basepoint in C9 \ (d1 U • ' U do ), the conjugation classes

.	
of d1 , . . . , dk are a , . . . , ak respectively. We shall investigate the rest of

.	
loops. For every d3 with k + 1 j n, our standard argument of the

.	 cohomology exact sequence plus Alexander duality shows that if we cut

S	
C9 along d1 , . . . , dk, d3 we obtain two connected surfaces 8, 5'. As the

S	
cut along d1 , . . . , dk produces only one connected component, each of

.	
s, S' has a copy of the extra ioop d3 in its boundary. Fix a base point

.	 p E 8, and a presentation of iri (Cg , p) by linking in. Cg \ (d1 U . . . d)
the base point to all the ioops a , . . . , b9 previously determined. The

.	 fundamental group of S is generated by the loops forming its boundary
S	 and the paths a 3 , b3 C S \ ÔS. The paths b1 , . . . , bk have been cut open
.	 to produce S, so if a 3 , b, C S \ ES then j > k. The boundary loops
.	 are d3 and up to two copies of some of the loops d1 , . . . , dk . If a ioop
.	 d with i < k appears twice, it does so because the two sides of the cut
.	 lie in the same connected component, and an orientation of d in Cg
I	 produces opposite orientations for the two bounding ioops in 88. The
S	 single relation in this presentation of ir (5, p) is

:	 d3 [J	 . p (a , b3

.	
d2côS	 a,,bj€S\OS

S	 with E , P3 = ± 1 . The ordering of the factors d2 e 98 may be selected so
I	 that if the two copies of the same d with opposite orientations appear,
.	 they appear together and cancel out. As d 1 , . . . , dk are a '. , . . . , ak in
.	 this presentation our statement is proved.
S	 By Proposition 3.63 the nontrivial vanishing paths do not corre-
.	 spond to arbitrary conjugation classes in the fundamental group, but
.	 to generators of the abelian quotient H1 (C9 , Z) or of the second quo-
.	 tient of the lower central series ir (C9 , *)2/711(Cg, *). This fact, arising
S	 from the classification of surfaces, makes the geometric monodromy of
.	 families of curves rigid over the monodromy in the lower central series
.	 quotients. The first such rigidity result is:

S	 PROPOSITION 3.65. Let f : X - ID be a Lefschetz pencil of pro-
.	 jective curves over the disk 1D such that 0 E 	 is the only critical

.	 value. Let p E Out(ir i (X,*)),3 E Out(iri(X,*)/i-i(X,*)4) be the

.	 corresponding monodromy automorphisms modulo conjugation. Then

.	 5=Id if and only ifp=Id.

.	 PROOF. We will assume that the fibers have genus g > 0, otherwise

.	 our statement is empty. Let X be a regular fiber of the pencil, and

.

.

.

.

.

.

.
S
S
.
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:

d1 , . . . , d C X a set of vanishing paths corresponding to the critical 	 I
points off. Fix a pesentation ir 1 (X, *)	 (ai , . . . , a, b 1 , . . . , b9 (ai , b1 ) . . . ( as , b9 ) =	 I
1) adapted to the set of vanishing paths, as in Proposition 3.64. The co- 	 I
efficients of the homology classes of the vanishing paths [di ] = c i [a i ] +	 I
. . . a 9 [ag] + /3ii [b1 ] + . . + /3 9 [b9] in the basis of H1 (X , Z) induced by	 I
the selected presentation of iri (X) form a matrix	 I

( a1	. .	 alg /11 • . . /3i\	 I

(AB)=I............. I
" ani . . . cr 9 /ni	 . . i3)	 I

According to the Picard—Lefschetz formula (see [7] vol. 2), the mon-
odromy around 0 in the first homology group is

p(g)=g+(g.di)di+...(g.d)d, 	 I
where the products g . d are the intersection products in homology.
Therefore, if we decompose the monodromy in H1 (X , Z) as p = Id +
Var, the variation morphism Var has matrix 	 I

(Bt\	 fBtA J3tB\	
I

I \ At) (A B) = AtA AtB)	
:

in the basis [a 1, [by]. Thus p. = Id if and only if all the vanishing 	 5
paths are homologically trivial. Hence if there exists any homologi- 	 5
cally nontrivial vanishing path, the monodromy in GL (H1 (X, Z))
Out(iri (X)/iri (X)2 ), thus also in Out(irl (X)/irl (X) 4) is not the
identity.	 I

Assume now that all vanishing paths are homologically trivial, and 	 5
some of them are homotopically nontrivial. The cohomology exact 	 5
sequence of the pair (Xe , d1 U . . U d) plus Alexander duality show,
as in Propositions 3.63, 3.64, that the complement X \ (d 1 U . . . U d)
has ri + 1 connected components. At least two of these components
must have positive genus, or else all the vanishing paths would be
nulihomotopous, and the total sum of genuses is g. Since a change
of basepoint does not vary the monodromy outer automorphism, we
may assume that the base point p lies in a component Si of X, \
(d1 U . . . U d) with positive genus. The monodromy is the identity
on the loops in this component. Choose now a path 'y in X from
the base point p to another conneced component of X \ (d 1 U . . . U	 5
d) of positive genus, such that 'y is transversal to all vanishing paths
and intersects each of them at most once. Let 'y' be a path along	 5
y that stops at the first connected component S' of X \ (d1 U . . . U
d) encountered. Denote d 1 , . . . , d 1 the vanishing paths intersected by
,.y ' . These vanishing paths are homotopic, or else a shorter path 'y'
would reach a positive genus component. By Proposition 3.64 their 	 I

I
I
I
.
I

I
.
S



Fig. F3.31 Monodromy around a second type vanishing path.
Thus the monodromy automorphism with the given base point p

is the identity on the loops of S1 and conjugation by an element
of iri(X, p) \ i'ri (X, O)3. Such an automorphism is trivial modulo
7r1 (X , p) , but it is neither trivial nor inner modulo ir (X , p) .

Proposition 3.65 may be extended to a more general setting with
the help of the semistable reduction theorem and Nielsen realization:

S
.

.

.

.

. conjugacy class is U J (a, b)i for some J C {1, . . . , g}. Given our

.	 choice of basepoint p, the action of the monodromy automorphism on

I	 the loops in S' joined to the basepoint p through 'y', my'' is conjugation

S
.
S
.

S
.
.
S
S
S
.

S
S
.
S
S
S

S
.	 THEOREM 3.66. Let f : X -+ B be a holomorphic family of projec-

.	 tive curves over the disk I1J, such that Xo = f' (0) is the only singular

.	 fiber. Let p E Out(ir1 (X,*)),p4	Out(iri (X,*)/iri (X,*)4) be the

S	 corresponding monodromy automorphisms modulo conjugation. Then

S	 p41d if and only ifpld.

S	 PROOF. The difference between the case of a Lefschetz pencil, set-
!	 tied in Proposition 3.65, and an arbitrary family f : X -+ D is that in
.	 the latter case the singular fiber may have non—quadratic singularities
,	 and a multiplicity greater than one.
.	 By the semistable reductiontheorem (Thm. 1.1 in [9]), there exists
fa Lefschetz pencil of curves X -+	 obtained by pulling back theS	 family X -+ 1D along the map z -+ z of I for an adequate integer n,
.	 and afterwards blowing up the singular fiber a finite number of times.
S	 The morphism z -+ z7 induces multiplication by n in the fundamentalS	 group r1 (D , *)	 Z, and the blow ups on the singular fiber do not
.	 alter the family over D . Therefore, the monodromy automorphism in
S	 the fundamental group of the fibers of X -+ D is the power pfl of the
S
S
I
.
S
S
.
I

.
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monodromy automorphism of the original family f : X -+ ID. Likewise,
the induced automorphism in iri (XZ , *)/ ri (X, *) is p.	 S

Let us show now the nontrivial implication in our statement. If
p4 = Id, then p 1t = Id. As the family X -+ D is a Lefschetz pencil	 I
of projective curves, by Proposition 3.65 pfl = Id. This means that
the monodromy automorphism p of the family f : X -f ID generates
a finite cyclic subgroup {Id, p, . . . , p' 1 } of the mapping class group	 S
M(g, 0) of the smooth fiber X C9.

Nielsen showed that any finite cyclic subgroup of the mapping class
group M(g, 0) is induced by a finite cyclic subgroup of the group of	 S
homeomorphisms of the topological surface Cg. This result started a	 S
deep study of the problem of realizing finite subgroups of M(g, 0) by
finite groups of homeomorphisms, which culminated in the following	 5
theorem by S. Kerckhoff:

.

	

THEOREM 3.67 ([59]). Every finite subgroup G of M(g, 0) can be	 S
realized as a group of isometries of a hyperbolic surface.	 I

5
	By Kerckhoff's theorem there exists a hyperbolic structure, i.e. 	 S

a metric with constant Gaussian curvature -1, on the regular fiber	 S
xz C9 , and an isometry h of this metric surface, such that h induces	 S
the automorphism p of the fundamental group. The hyperbolic struc- 	 S
ture is equivalent to a holomorphic structure on C9 , such that h is a	 S
holomorphic automorphism with this structure. But any such holomor-
phic automorphism inducing the identity morphism in homology must 	 I
be the identity itself (see for instance Thm. 2.2.1 in [96]). Therefore	 S
h = Id, and p = r 1 (h) = Id, which completes our proof. 	 E	 S

S

Proposition 3.65 and Theorem 3.66 parallel the results of [8], and
extend the rigidity property from stable to arbitrary holomorphic fam-
ilies of curves. In that paper Asada, Matsumoto and Oda study the
versa! deformation of a n—pointed stable curve, which is a Lefschetz 	 .
pencil of curves over a polydisk T1Y . This study is performed by combi-
natoric and group—theoretic means, but its essentials translate to our
more geometric setting: the bridges in the curve graph correspond to
vanishing paths of the form [I(a3 , b)5 ' , and maximal cut systems to
sets of vanishing paths {dm , . . . , d} such that they are homologically
nontrivial but yield the same homology class. The weight filtration of
[ 8] is the lower central series filtration in the case of projective curves,
and our methods allow us to retrieve the formulae in their Theorem
Li on the induced filtration in the monodromy group.

S
S
S
.
S
S
.
.
.
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.	 4. Fundamental groups of Lefschetz pencils

S	 The study in the previous sections of the monodromy in the funda-
.	 mental group of families of projective curves may be applied to compute
S	 the fundamental group of the source manifold. Here a major contrast
.	 appears: while semistable families of projective manifolds of dimension
.	 d ^ 2 have trivial monodromy in the ii , for families of curves one has
.	 the following situation (see [4]):

:	 PRoPoSITIoN 3.68. Every smooth projective surface X admits a

.	
blow-up in a finite number of points e : X -+ X such that there exists

.	 a Lefschetz pencil of curves f : X —+ P.

.	 In terms of fundamental groups, this means:

:	 COROLLARY 3.69. Let F be the fundamental group of a smooth

I	 projective manifold. Then F	 iri (X, *) for some Lefschetz pencil of

.	
projective curves f : X —+ P.

.	 PROOF. By the Lefschetz hyperplane section theorem, every pro-

.	 jective manifold has the same fundamental group as some smooth pro-

.	 jective surface. The blow-up of points in a smooth surface does not
S	 change the fundamental group. Therefore our statement is an immedi-
S	 ate consequence of Proposition 3.68.

:	
Corollary 3.69 provides us with a motivation to study the funda-

I

	

	 mental group of a Lefschetz pencil of projective curves. With a view
towards Donaldson theory and its search of elementary building blocksI	 for smooth 4-folds, we will carry out this study in a slightly more

.	 DEFINITION 3.70. A proper smooth map f : X -+ P with X a
S	 closed oriented 4-manifold is a smooth Lefschetz pencil of curves if it
.	 has only a finite number of critical points Pi, . . . ,p,-, all of them are
S	 nondegenerate, and for every critical point Pi there are C°° coordinate
S	 charts of p2 in C2 and of f(p2 ) in C such that in the new coordinates f
1,	 has the form f(zi , z2 ) = z + z.
I	 Smooth Lefschetz pencils of curves are thus an analogue of bob-
fmorphic Lefschetz pencils, and they still have the monodromic proper-I	 ties of the latter. Namely, Theorems 3.18, 3.34, Proposition 3.55 andI	 Proposition 3.65 hold for smooth Lefschetz pencils of curves, because
S	 their proof only uses the C°° structure of the fibration and singularities,S	 given by Lemma 3.70.
I	 Our following goal will be to describe the fundamental group of theS	 total space X in a smooth Lefschetz pencil of curves f : X -+ lF in

. general context.I
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terms of the monodromy of the family. This may be done piecewise, by
examining the smooth part of the fibration first, neighbourhoods of the
singular fibers then, and glueing all the pieces applying the Seifert-Van
Kampen theorem.

LEMMA 3.71 (Le Dung Trang). Let f : X —+ P be a smooth Lef-
schetz pencil of curves of genus g, S = P \{z1 , . . . , z} its set of regular
values and U = f'(S) the open subset formed by the regular fibers.
Assume that there exists a C°° basepoint section a : S —+ U, and select
a basepoint s E S. Then the fundamental group ir (U, a(s0 )) admits
the following presentation:

K ai,...,ag,bi,...,bg,Ti,...,T 	 (ai,bi)...(ag,bg)	 1,T1 T	 1,
'I'

. aj Ii'^ = 4,^Caj),Iib.j^^ = 4,i(bj) 1 < j 5 n, 1 < Z' 5 9l ,

wheTe (a1, . . . , bg l (A1,61) . . . (Ag,bg)| zs apTesentatjon o^'1(Xso,o(so))
andcp^,...,yIn we the 'm,onochom ^^morp^ms oft^p.rese.nta^n
around the cntzcaI waMes z 1 , . . . ,Zn.

PROOF. As the restriction f : U —+ S is a locally trivial fibration,
and a : S - U a section, there exists a semidirect product presentation

it-i (U, '7 ( S )) = ri(X 0 , cr(so)) rx ir1 (S, S)

with the action of ir1 (S, *) on iri (X50 , *) given by the basepoint-preserving
parallel transport. The fundamental group ir (S, S) admits a presen-	 I
tation (T1 , . . . , T I T1 . . . T = 1) with the generators T2 corresponding	 S
to loops around the critical values z2 . The parallel transport around z	 S
induces the corresponding monodromy automorphism, as described in
Theorem 3.34, and sends a3 , b3 to pj (aj ), p(b) respectively.	 E

.
As has been outlined in Theorems 3.18, 3.34, the vanishing paths in

a singular fiber determine the monodromy around it. The same holds,
in a direct way, for the fundamental group of the singular fiber.

LEMMA 3.72. Let ; E P be a critical value of a smooth Lefschetz
pencil of curves, 1D a disk centered on z containing no other critical
value, U = f-1 çllJ), Fix a basepoint z E D, and let d 1 , . . . , dk be the
vanishing paths in X associated to the critical points over z. There is

an isomorphism	 S
I

ir1 (U,*)	 rl(X,*)/(dl,...,dk)

where we also denote by d 3 the conjugation classes of the vanishing 	 I

paths in X.	
:
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PROOF. The contraction of the disk 1D to its center may be lifted
to a deformation retraction of the open set U2 C X onto the singular
fiber X , therefore 711 (U2 , *)	 iri (X 1 , *). The singular fiber X is

.	 homotopy equivalent to the smooth fiber X with disks attached along
S	 every vanishing path, thus our statement.
.
S
S
S
S
S
.
S
.
S
S
S
.
S	 Fig. F3.32 Singular fiber vs regular fiber.
.	 All that remains now is to assemble the different pieces of the Lef-
S	 schetz pencil.
S
.	 THEOREM 3.73. Let f : X -+ S be a smooth Lefschetz pencil of
I	 curves of genus g over S = C or S = 1P , z P a regular value, and
S	 d1 , . . . , d the vanishing paths of all critical points of f transported to
S	 xz . The fundamental group of X admits a presentation
.
S	 (a1, . . . , ag , b 1 , . . . , bg I (a 1 , b1 ) • ' ' (ag , b9 ), d 1 , . . . ,
S
S	 where d1 , . . . , d denote the conjugation classes of the vanishing paths
S	 in iri(X, *)	 (a 1 , . . . , ag , b1 , . . . , bg (a1 , b1 ) ' ' . (a9 , bg)).
S
S	 PROOF. As has been discussed previously to Theorem 3.34, Lef-
S	 schetz pencils of curves always admit C°° basepoint sections, hence we
S	 may choose one such section a : S -+ X, a set of ioops T1 , . . . , Tm
I	 around the critical values, and denote by ço the monodromy in the
.	 fundamental group along every loop T2 .
S	 The departing point of the proof is Lemma 3.71, which computes
S	 the fundamental group of the open set U C X formed by the regular
S	 fibers of f . Then we must adjoin neighbourhoods U of the singular
.	 fibers one by one, using the Seifert—Van Kampen theorem. Let us

S	 complete the first step in the process:



S
.
.
S
S
.
I
.
.
.
.
I
S
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7ni(U,*)(ai,...,bg,Ti,...,Tm(ai,bi)(ag,bg),Ti.*.Tm,

TaI 1 = (a),T' T 1 = (b)).jUj

ByLemma3.72,ir1 (U2 ,*) 	 (a i ,...,bg (al,bl)(a9,b9),dl,...,dk),
where d 1 , . . . , dk correspond to the vanishing paths of the critical points
over the critical value z2.

Lemma 3.71 actually holds for Lefschetz pencils of curves with basis
any domain in P. Therefore, using the same basepoint section a, the
fundamental group of the intersection U fl LI2 admits a presentation

ir1 (UflU, *)	 (a i , . . . , bg , T (a i , b1 ) ' • ' (as , b9), TaT' = ço(a), TbT' = p(b)) .	 S
.
I

We must examine now the fibered product of ir1 (U, *) and 7r1 (U, *)
over ir1 (Un U , *). The generators a , . . . , b9 correspond to generators of	 S

the fundamental group of a smooth fiber X containing the base point,
and may therefore be identified in the three groups. The generator
T e iri (U n U, *) is a lift of the loop around the critical value z and
maps to T in 7V (U, *) . On the other hand it maps to the trivial loop
in ir1 (U, *). We can thus conclude that the group ir 1 (U U U, *) admits
a presentation

.

Ka i,, % ,bi ,,bg (a1,b1)''(a9,b9),a =	 =

As has been seen in Theorem 3.34, the relations	 a)a 1 , (b)b 1 are	
:

actually products of elements in the conjugation classes of d1 , . . . , dk .
Hence they are superfluous for the presentation of the group.

The proof of our statement may be completed in this manner by
induction on the number of critical values. For the final glueing, and in
order to avoid basepoint inconveniences, one may take U = f'(D),
where the D are domains containing each exactly one critical value z ,
and intersecting all in a common disk, in such a way that C retracts 	 S

over UU.	
:
.

.
S
.
S
.
.
.
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I
.

!
S	 z:"':...	 hk::';;'	 - \ 

(1(3

.	 -.-'-,	 *Z31\

S	 1(;	 I
S	 t1:c;zc,

.	 Fig F3.33 Neighbourhoods of critical values.

S	 To complete the proof in the case of S = P, choose as a point at

S	 infinity a regular value of the pencil. The pencil will then be trivial

S	 around oc, so glueing the pencil over a disk 	 around the infin-

.	 ity point to the pencil over C, we have a trivializing diffeomorphism

S	 f-1(D00)	 C9 x 11infty defined already over IP. The intersection

.	 f-i (B00 ) n f-1 (C) admits as a deformation retract a trivial family dif-

.	 feomorphic to C9 x 51 Therefore, by Seifert-Van Kampen's theorem,

.	
glueing f- ' (D00 ) does not add any new relation, and our statement

S	
holds.

.	 Theorem 3.73 gives a monodromic presentation for fundamental

.	 groups of smooth Lefschetz pencils of curves, in particular for funda-

.	 mental groups of projective manifolds. They turn out to be quotients

.	 of the fundamental group of the fibers, and the new defining relations

.	 given by the vanishing paths are not arbitrary, but only those listed
S	 in Proposition 3.63: for every vanishing path d, there exists a presen-

.	 tation ri (X2 ,*) = (a i ,...,bg (a i ,bi)(ag ,bg )) such that d - ai or
S	 d - (ai , b1 ) . . . (ak , bk) . This might seem at first sight related to the

.	 quadratic presentation results of [70],[47] for the Malcev algebra of
S	 Kähler groups, but the fact that the required presentation of in (X ,

S	 is specific to every critical value of the pencil allows the class of Lef-

S	 schetz pencil groups to be larger. A first result in this direction is

I	 PRoPosITIoN 3.74. Every finitely presented group is the funda-
.	 mental group of a smooth Lefschetz pencil of curves over C.
I	 PROOF. Let i = x1,. . .,x	 r i ,. . . ,r) be a finite presentationS	 of a group. We seek another presentation of IT that complies with

Theorem 3.73 and Proposition 3.63.
The new presentation will have the following generators: First,

x1 , . . . , x as the given presentation of F. Second, for every relation



S
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r3 written in reduced form r3 = x . . . x7kk we will add as generators
Yji1 , . . . , Yjik Lastly, the set of generators is completed by appending
a generator c for every x 2 and a cj1 for every Yjij, thus doubling the
number of generators. The set of relations will be the following:

( i) For every generator Yji1, a relation YjijX.	 5
(ii) For every relation r3 = x . . . x in the original presentation, a

relation Yji i ' ' Yjik	 S
( iii) Every generator c, c appears as a relation.
( iv) The symplectic relation (x 1 , c1 ) . . . (x, Cn)(Yij i , c11 ) . . . (Y8ik csjk).

The last relation is the symplectic relation of a curve group, and
the other relations belong to the second type in Proposition 3.63. It is
not hard to check that the morphism from F to this new presentation
identifying the x2 generators in both presentations is well defined and
an isomorphism.	 S

Let now C9 be a curve of genus half the number of generators in the
second presentation of F. The conjugacy class of any defining relation

Yjii . . . Yjik C Cj iS realized in 7ri (Cg , *) by a simple closed
loop d in C9 , of second type in Proposition 3.63. We may assume this 	 I
looptobeC°°.

Let U C C9 be a bicollar neighbourhood of the ioop d, and Y =	 5
C9 \U. We will piecewise define a Lefschetz pencil over the disk TIJ with a 	 S
single critical point and d as its vanishing path. The trivial component 	 5
is V x ID. This may be C°° glued over D along its boundary with a small
neighbourhood of (0, 0), fibered over D by the map (x, y) -+ x2 + y2 .	 I

Fig.F3.34 Glueing process.
The result is a smooth Lefschetz pencil with a single critical value

and vanishing path d. In this way we may obtain a Lefschetz pencil
over a disk D C C for every nonsymplectic relation in the second
presentation of F. The disks IE may be chosen to be pairwise disjoint.
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I
.	 Then we may join all those disks to a basepoint p E C by simple
.	 nonintersecting paths 'y. A trivial family of curves on the paths 'y may
.	 be glued to the families on the disks, and as the set formed by the disks
S	 and the path system is a deformation retract of C, taking pulibacks we
.	 obtain a family over C, which by Theorem 3.73 has fundamental group

.	 F.

.
I
S	 We conclude from Proposition 3.74 that smooth Lefschetz pencils
.	 of curves over C are relatively flexible. The question becomes harder
I	 when we ask the same question for Lefschetz pencils over P : choosing
.	 a critical value to be he point at infinity, the monodromy around oc
.	 must also be a product of Dehn twists along disjoint simple loops. Yet
.	 this monodromy is the composition of all the monodromies around the
I	 other critical values. The algorithm that we have used in the proof
.	 of Proposition 3.74 might not meet that requirement, as the vanish-
.	 ing paths corresponding to the relations jX 1 and c 1 have nontrivial
.	 homologic intersection.
.	 It is also a harder problem to characterize which smooth Lefschetz
.	 pencils admit a holomorphic structure, such that the pencil becomes
.	 holomorphic; indeed solving such a problem would provide a list of
.	 all fundamental groups of projective manifolds. As first steps in this
.	 direction, one may study the following questions:

I
.	 QUESTION 3 . 75 .	 (i) Is it possible to realize every finitely pre-
.	 sented group F as the fundamental group of a Lefschetz pencil of
S	 curves over 1P?
.	 (ii) Does the existence of a smooth Lefschetz pencil of curves with
S	 fundamental group F and a quasi—complex structure on the fibers
.	 preserved by parallel transport place any restriction on F?
S	 (iii) Does the existence of a smooth Lefschetz pencil of curves with
S	 fundamental group F satisfying Deligne 's semisimplicity theorem
.	 on the first cohomology group of the fibers place any restriction
S	 onF?
I

I	 It seems to the author that the answers to the questions may vary:
S	 even in a pencil over C, semisimplicity of the monodromy action in
S	 the first cohomology group of the fibers places strong restrictions on
.	 F, that will be studied in the continuation of this work. On the other
.	 hand, extension to P or existence of a quasi—complex pencil do not
.	 seem to pose any restriction on F.
.
S
.
S
.
.

.
I
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5. Monodromy in the Malcev algebras of the Legendre 	 S

	

family	 I

In a previous section the monodromy of the Legendre affine family
in the fundamental groups of the fibres iri (Et , P) F2 has been deter-
mined by geometric methods. In this paragraph we derive from it the
monodromy representation in the (F2)_1/(F2)2 and £(F2/(F2) ® Q)
up to i = 4 by algebraic computation.

As it has been explained in Section 3 of the first chapter, the ele-
ments of the Hall basis for the free Lie algebra L(Q, 2) -+ gr A(Q, 2)
up to weight 3 are: 	 .

Weighti	 a	 b	 I
.

Weight 2	 [b,a]
S

Weight 3 [[b, a] , a] [[b, a] , b]	 S

The monodromy representation p : ir1(P'(C)\{O, 1, oo}, ) -+ Aut (iri (Ej , Pr))
Aut F2 established in Proposition 3.46 is determined by:	 I

Ia—*
p(['yo]) : 

lb -

P(Vyi]):{	 i:

In the sequel, endangering clarity for the sake of convenience, we
will denote as Po, P1 the automorphisms induced by p(fryo]), p(['yi])
respectively in the succesive algebras, Lie algebras and group quotients
to be obtained from r1(E,P).

Our first goal is to determine Po, Pi in £(F2/(F2)4) 'P(A(Q, 2)/J).
The graded Lie algebra isomorphisms

L(Q, 2)/	 L(Q, 2) -+ Gr(F2 /(F2 ) 4 ® Q) Gr(g(A(Q, 2)14))
-4 Gr(P(A(Q, 2)14)) Gr(L(F2/(F2)4))

seen in Proposition 1 .24, send the eIemens of the Hall basis of L(Q, 2)
up to weight 3 to the classes a, b, [b, a], [[b, a], a], [[b, a], b] E Gr(P(A(Q, 2)14)).

The elements of P(A(Q, 2)/4) X = log(1 + a), V = log(1 + b), [Y, X],

[[Y, X] , X] , [{Y, X} , Y1 are sent to those classes by the natural Q-Lie

algebra isomorphism P(A(Q, 2)14) -+ Gr(P(A(Q, 2)14)). Therefore

they form an homogeneous basis of £(F2/(F2)4). Their expressions in

.

.

S

S

.

I

I

S

S

S

S

S

S

S
S



;	 _ba2_bab_ b2a_b3

.	 1
S	 = x - 2Y + [Y, X] - [[Y, X], X] - [[Y, X], Y]

.

.

.
S
.
.

S
I

.
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po(Y) = po(Iog(1 + b))

=log(1+b)

po([[Y,X],X]) = [[poY,poX],poX]

= [[Y,X],X] - 2[[Y,X],Y]

po([[Y,X],Y]) = [[Y,X],Y]

The procedure for p is wholly identical. The result is:

p1Y=1og((1+b)(1+a)2)

= 2X + V + [Y, X] + [[Y, X], X] - [[Y, X], Y]

pi [Y,X] = [Y,X] + [[Y,X],X]

pi[[Y,X],X] = [[Y,X],X]

pi[[Y,X],Y} = 2[[Y,X],X] + [[Y,X],Y]

These results may be summed up in the following

PROPOSITION 3.76. The monodromy representation

p : 1 (P1 (C) \ {O,1,00},)	 ( Aut( 41 (E1 ,P) ®Q)	 GL(Q,5),
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.	 with the latter isomorphism given by the above used basis, is determined

.	 by

S
.
S	 10000
.	 —21 0 00
.	 p(['yo])	 1 0 1	 0 0
S	 —0 0 10
.	 - 0 —1 —2 1
S	 1 2 000
.	 01000
.	 p([py11)= 0 1 1 0 0
.	 0	 112
S	 0 - 0 0 1
S
.	 Two properties of the monodromy just computed in Prop. 3.76
S	 should be observed:
.	 First, both p(['yo]),p(['yi]) are unipotent matrices.
.	 Second, if we divide them in blocks according to the decomposition

S

S	 REMARK 3. 77. The monodromy representations of r ' (1P' (C)\{0, 1, oo}, )
.	 in iri (E1,P)/fr1 (E1 ,P))+1 ®Q, £iri (E1 ,P)®Q) for i < 4 are easily
I	 deduced from that in r4ir1 (Es, ) ® Q computed in Prop. 3.76 using the
.	 graded Lie algebra isomorphisms of Proposition 1.13. An immediate
S	 consequence of them is that the monodroiny in ir (Es, *) j /(ir 1 (E' , *))j+Ø
S	 Q is the projection to the component of weight i of the representation
.	 p from Proposition 3.76, and the monodromy in the Lj(r1 (E , *)) is the
.	 projection of p in the homogeneous subspace of weight lower than i.
S	 Thus the po , Pi for these representations are the minors of the P(VYo])
S	 pfty11) of Proposition 3.76 indicated in Figure F3.35.

S
.
S
S
S
S
S
.
S

.	 of £4 (iri (E , P)) 0 Q) by the length of the brackets of the Hall basis

.	 we have used, the monodromy matrices P([7o]) and P([7i]) are simul-.	 taneously block lower triangular, with the diagonal blocks containing

.	 representations of the H1 (Et ; Q)-monodromy.
S	 We will show in Chapter 5 how these properties extend to all
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Fig. F3.35 Graduate quotient minors of the monbdromy matrix.
In the case ofthe abelianised ir (Es, P)/(ir 1 (Es, Pg)) 2®Q Hi (E; Q),

the monodromy just computed is the classical monodromy in H1 (Es)
of the projective Legendre family.

It may also be noted that the coefficients of the monodromy in
the ir (Es, *) j /(r1 (Es, *))i+1 are integers. This is due to the fact that
the monodromy in those Q-vector spaces comes from the free abelian
groups (F2)/(F2)1, and the Hall basis of (F2 )/(F2 )21 ® Q we have
used also come from (F2)/(F2)+i.
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.	 CHAPTER 4
.
.	 Dolbeault realization
S

.	 Let X, S be complex analytic manifolds, f : X -+ S a smooth, proper

.	 map and H C X a relative divisor with normal crossings. We will

.	 describe a resolution of the local systems Rf*C(x\H) by a complex of

.	 real analytic forms fA(log H) with a natural real structure. This

.	 complex yields the variation of Hodge structures associated to the co-

S	 homology of the fibers; more precisely, it yields real analytic variations

S	 of Hodge structure, to be defined in Section 3, which carry also a nat-

I	 ural real structure and are seen to be naturally equivalent to complex

S	 variations.

a	 The Gauss—Manin connection of these real analytic Dolbeault corn-

S	 plexes has a 1—minimal model, which may be computed using the tech-

S	 niques of [73] that we apply in the next chapter to the relative holo-

.	 rnorphic de Rham complexes. Such a construction should lead to the

S	 same results of [48] on the variation of Malcev algebras in complex

.	
algebraic families.

S	
We describe first the absolute case S = {*} and that of H = {ø},

I	 as they will be of use in the case of our main concern, and we presume

.	
that they are not devoid of interest.

I	 REMARK 4. 1 . - We will only use manifolds with finite Betti numbers,
S	 and we will omit to mention this condition for the sake of agility.
.	 - The structural sheaves we will consider for real analytic manifolds are
S	 the sheaves of complex-valued real analytic functions on them. These
S	 sheaves arise from the sheaves of real—valued analytic functions and
S	 forms by tensoring with C. Because of this, the complex—valued real
.	 analytic sheaves are endowed with a natural real structure, which is
.	 obtained by complex conjugation of the coefficients in the power series
.	 defining every function.
I
S	 1. Acydlicity in the real analytic category
S	 We will work in this chapter with real analytic sheaves. These are
S	 not fine as their C°° analogues. Nevertheless, they are acyclic, and this
S	 may be seen using results of Whitney, Bruhat and Grauert which we
S	 sum up in the following

:	
131
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THEOREM 4.2 ([102],[40]). Let X be a real analytic manifold of
real dimension n. There exists a complex analytic manifold X and a
real analytic embedding j : X	 X, such that

.

PR008. Let j : X ct X be a cIosed i^beddiB8 ofX i^ a coIDpIex
,aIytic ^aBifoId satisfyiB8 I^eoIeIn 4.2. Ihe Iea^ aIIalytic stIuctuIal
eaf.Ax isthe IestIicti^I to the c^sed s^IDaBif^lX oftbe ho^^^
Iic stn^1IZ sbeZ10-..TheIeBIe, a^ M-Iin.ea^ziw p : A t Rx

teBds iII so^z open neI lJh^^Zood dX, whIch we IDay ass^^z by
stIictio^tobe X itse^, toa0--1iBeaII^^. YMitiBzthisd0^^ with
IBe18 aBd co^^ds shows that the exact seqlzeI^:e dAx -shems

PROOF. Let j : X -+ X be a closed imbedding of X in a complex
analytic manifold satisfying Theorem 4.2. The real analytic structural
sheaf A is the restriction to the closed submanifold X of the holomor-
phic structural sheaf O . Therefore, any Ax-linear map cc : A —*

extends in some open neighbourhood of X, which we may assume by
restriction to be X itself, to a O-1inear map . Writing this down with
kernels and cokernels shows that the exact sequence of Ax-sheaves

0

the IestIictioIz to X ofthe exact seque^:e of Oz-sheaves

O -7 K -t 09 ^ OP- -^ .F -7 0	 C8)

'].'he stIuctuIaI s^^3- is a. Olsasheaf0fIiI^ ^^: the I
^^ K

Gnite^y ge
^

3Ia
^
;ed cneI i

^^
1 by ^est^iction K is a l

^
;ely l^ZIzted

x_^JduIe. Ihis pIoves ouI asseItioB (i).
Any coheI^; sbeaf F a^zits a co^^eI pIese^tat ion zs (7) . By

StIicti^8 ouI do^IaiB X, AM ^Y GBd aB exteI^oB dthis pIese^Z,tioD
, X as iB (8), aI3d t^lIS 2^ iSOI^,IphiSI^ .Fjx ^ 5. ^OBseq11eI3t^y, fOI
zZTj>0,

	

.	 -	 .	 -.	 .	 ...
'^(X,^) = ^'2(X,.Fjx) = I^^ ^2,(V,Jjv) = IiBz B 2 (V,5,v) =0,

XCV	 XCVV open	 V Stein open	
.

	

0 — IC — A --+ A — 2 — 0	 (7)

is the restriction to X of the exact sequence of Q-sheaves

	

o_oot —--*o	 (8)
The structural sheaf Oj is a Oka sheaf of rings. Hence the kernel K

is finitely generated over it , and by restriction /C is a finitely generated
Ax-module. This proves our assertion (i)•

Any coherent sheaf admits a cokernel presentation as (7). By
restricting our domain X , we may find an extension of this presentation
to X as in (8), and thus an isomorphism 1x J. Consequently, for
any i > 0,

H(X,.P) = H(X,x) I Hz,(V,v) 	 i	 H(V,v) 0,

V open	 V Stein open

.I	 V	 ^

hicb pIoTMZs stateB^H; (ii).	 D

I.hE CiZte8OIY 0^ coheIeDt sheaves wi1I Bot suf^ce us iII the seque^

, we exteIzd iIz paIt the PIevious Iesu1ts to quasi-col^^t sbea^3. Its
ZGIZitioII is the saBze i^ the IeaI aBa1ytic case as iB the hO^^IIP^iC
:ttiI28.

which proves statement (ii). 	 0

The category of coherent sheaves will not suffice us in the sequel,
so we extend in part the previous results to quasi-coherent sheaves. Its
definition is the same in the real analytic case as in the holomorphic
setting.

C;O^LLARY 4.3. Let X be a real analyt lic nza^0ld.

(i) Ih,e stmc^al sheafAx js a Oka shec^Of^9S.
(ii) An,y coherent sh,eaf oweq'X js acydjc.

,
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0
.	 DEFINITIoN 4.4. A sheaf F of Ax-modules on a real analytic man-
.	 ifold X is quasi-coherent if it is a strict inductive limit of coherent

.	 sheaves.

!	 PRoPosITIoN 4.5. Let X be a real analytic manifold. Any quasi-
.	 coherent sheaf :	 is acyclic over the compact subspaces of X.

0	 PROOF. Sheaf cohomology commutes with strict inductive limits

I	 on compact spaces, so our statement is a consequence of Corollary 4.3

I	 (ii).	 E

.	 We finish this section by stating the relative versions of Corollary
S	 4.3, Proposition 4.5, which follow immediately from them.

:	 COROLLARY 4.6. Let f : X -+ S be a smooth locally trivial map

S	 between real analytic manifolds.

I	 (i) Any coherent sheaf on X is f-acyclic.

I	 (ii) If the map f is proper, any quasi-coherent sheaf on X is f -

0	 acyclic.

:	
2. Dolbeault lemmas and variations of Hodge structure

0	 2.1. The Dolbeault lemma for complex manifolds. We re-
I	 state the classical Dolbeault Lemma substituting real analytic for C
.	 functions. Its proof is analogous to that of the C°° case, and it is
S	 included here for the reader's convenience.
.	 Let X be throughout this section a complex analytic manifold, with
.	 dimc X = n. The sheaves of real analytic forms A* are acyclic by
.	 Corollary 4.3.

:	
PROPOSITION 4.7 (Real analytic Dolbeault lemma). The sequences

S	 0 -f 1 -+ A° --+ A' - ...

:	
are exact, and they define an acyclic resolution 11 -- A*.

.	 PROOF. The proof is analogous to that of the C°° case. As the

.	 question is local, by restriction to coordinate open sets it suffices to

.	 prove it for germs of forms on 0

.	 Let w be a differential form of type p, q in a neighbourhood 0 EI	 U C C such that Ow = 0. We may assume U is small enough so that
I	 all coefficients admit a global power series development on it.
S	 Let m be the highest subindex such that dm appears in w. We will
.	 prove our assertion by induction on m.

.	 We can write our form in a unique way as

.	 Wd2mAO+/3



.
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with a = 0 when m = 0. The forms a,3 involve only the conjugate
differentials d 1 , . . . , dim_ i As	 S-	 -	 -	 -	 .OôwdZmAOa+ô/3	 I
it is easily checked that the coefficients of c, ,i3 are holomorphic on the
variables Zm+1,	 , Z7 . If m = 0 this establishes our initial step.

If m 0, denote o = aj,jdZjd2. As the coefficients a ,j are
power series on U, there are real analytic functions g,j e A such
that : = aj ,j. Define a form #y = >: g1,jdz1d2j . We have now that

OdmAa+8	
:

where the form 8 does not involve any of the differentials d2m , . . . ,	 I
The differential form

	

(p=w-87	 I
is also closed, and involves only d 1 , . . . , dzmi ' By our induction hy-
pothesis p = b for some b Ar', and thus w = y + sb).	 U	 I

We may define the Hodge filtration in A* as FPA*	 s^pA*.	 I

The Laplacian and Green operators may be defined on real analytic
forms as in the well—known C°° case, and this fact allows a real analytic

I
LEMMA 4.8 (Real analytic 08 lemma). Let X be a compact Kähler

	

manifold, and u AP(X) be a form such that du = 0. Then the	 I
following are equivalent:

(1) u is d—exact.
(ii) u is 3—exact. 	 I

(iii) U 28 0—exact.	 I
(iv) u is 08—exact.	 0

	

PROOF. The proof of this statement is exactly the proof of the C°°	 I

	

aa lemma, regarding all the intervening forms and operators as real 	 I
analytic.

PROPOSITION 4.9. Let X be a compaét Kähler manifold. The Hodge

fi itration F on the real analytic Dolbeault complex A* induces a pure
Hodge structure of weight n on the cohomology groups H(X, C) for ev-
ery n. The inclusion in the C Dolbeault complex A* * preserves
the Hodge filtration and induces an isomorphism of Hodge structures
on H*(X,C).

construction of the Hodge theory of compact Kähler manifolds. The
basic step would be: 	 I

I
Proceeding further asin the C°° case, we retrieve the sought Hodge

structure:
I
I
I
I
I
I
.
.
I
I
I
I
I
.
.
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.	 2.2. The Dolbeault lemma in the logarithmic case. Let X

.	 be a complex analytic manifold of dimension n and Y C X a normal

S	 crossing divisor with smooth irreducible components. The real analytic

S	 logarithmic Dolbeault complex of the pair (X, Y) has been studied by

.	 Navarro Aznar in [72]. We sum up some of his results on it.

.	 Denote U = X \ Y, and the inclusion as j : U -+ X. Consider

S	 a coordinate cover {V} of X such that for every x E Y there is a V

S	 such that x = 0 and Y has equation z1 . . . Zr	 0. The real analytic

0	 logarithmic Dolbeault complex A*(log Y) is defined on every V as the

.	 sub-Av algebra of iAt spanned by

S	 dz2
-, -:--, logz,	 1z^r	 (9)w	 zi

0	 andS
S	 dz,d2,	 r+1^in	 (10)
.	 The weight filtration W on A* (log Y) is defined by assigning weight0	 1 to the generators of (9), weight 0 to those of (10) and applying mul-
S	 tiplicativity of weight. This filtration is actually an extension of a
I	 weight filtration defined on the sheaf A(log Y) of real valued loga-
0	 rithmic forms.
.	 The Hodge filtration is defined as

:	
F)A*(logY)

I	 With all these definitions, we have

:	
THEOREM 4.10 ([72], 8.8). The natural map

.	 (11(IogY),W,F) -+ (A*(logY),W,F)

.	 is a bifiltered quasi-isomorphism.

aAs in the complete case of the previous section, when X is corn-

.	 pact Kãhler we retrieve the mixed Hodge structure defined by Deligne

.	 on H* (X \ Y), induced now by weight and Hodge filtrations on the

.	 differential form algebras.

S	 2.3. Relative Dolbeault complexes. We will study now the rel-I	 ative version of the real analytic Poincaré and Dolbeault lemmas. TheS	 comparison in this case between the hôlomorphic and real analytic
S	 constructions is less direct than in the absolute case of 2.1, because
.	 we must compare holomorphic vs. real analytic bundles. We will start
.	 with the Poincaré lemma and Gauss—Manin connection in the real ana-
S	 lytic category, and deal later with the specific case of complex analytic
S	 manifolds and the relative Dolbeault lemma.
S
I

S
.
.
I
S
.
.
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Let f : X -4 S be a smooth locally trivial map between real analytic
manifolds, such that its fibers have finite Betti numbers.

The relative real analytic de Rham complex of forms over X, de-
noted is defined as its C°° analogue: one starts by defining the
degree one piece with the exact sequence

0 -k f*A _# 4 -k	 - 0 ,	
:

and then sets A1 - A 4s.
The relative sheaves A 1 are coherent Ax—modules, therefore f-

acyclic by Corollary 4.6. We proceed to check that they provide a	 S
resolution of the constant sheaf C .

.
LEMMA 4 . I 1 . Let V be a paracompact, locally contractible space,

with finite Betti numbers, and S a real analytic manifold. Denote as
71 : Y x S -+ S the projection. The natural morphisms of sheaves of

As-modules

	

	 S
H"(Y,C) ®A - R'irr1As

are isomorphisms for all p ^ 0.

PROOF. Take V C S a small disk. As H* (V, As) is free, the
Künneth exact sequence yields an isomorphism

p	 S

	

( 
H*(Y,C) ® H*(V, A5)) -- HP (Y x V,C	 'As)	 S

The sheaf A5 is acyclic by Cor. 4.3, so this is actually an isomorphism

H'(Y, C) 0 I'(V, As) -- HP (Y x V, 'ir'As)
S

	

E	 S
LEMMA 4.12. Let X,S be real analytic manifolds, and f : X -+ S

a real analytic map such that it is smooth, locally trivial and its fibers 	 S
have finite Betti numbers. The natural morphisms of sheaves of A5 -
modules	 .

	(1f* Cx) ® A5 -f Rf (f'As)	 S
C	 S

are isomorphisms for all p ^ 0.

PROOF. The isomorphism has to be verified locally over S. Take
V C S a trivializing open set for f . There is then an isomorphism of	 S
fibrations

f1(V) _! X8xV	 S

f\ = /ir	 :
V	

S
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I
.	 Therefore çoCf-1( V)	 CX xV, and coco' = Id. It holds over V as a
I	 consequence that

S	 (Wf*Cx)®As (RPirçoC)ØA (RrCx3v)®A
S	

C	 C

I	
an

.	 R"f*(fAs)	 1Eirir'As	 (12)
S	 The final expressions of 11 and 12 are isomorphic by Lemma 4.11. D

.	 PROPOSITION 4.13 (relative Poincaré lemma). Let f : X -* S be

.	 a smooth locally trivial map between real analytic manifolds. The nat-

.	 ural map

I	 f1As—+A1

I	 induces a quasi-isomorphism of sheaves.
S	

PROOF. This is a local question on 4K, so we may assume f to be
I	 a trivial fibration, f : X = V x S —+ S with Y, S disks in Rm , Rd
.	 respectively. It is then immediate that f'As is the kernel of the map
!	 d:Axg-4is.
w	 To complete our proof we produce a homotopy operator, which is

I	 For every multiindex I = {i1 , . . . , i}, denote dyj = dy 1 A . . . A
.	 and define a form
.	 p	 _
.	 WI =	 ( 1) C_l yjk dyjl A . . . dyik . . dy
I
.	 As partial integration of a real analytic form over a compact domainS	 produces another real analytic form, we may define a relative versionI	 of the classical homotopy operator

:

:	 a = : ii( s)dyj F-	
(L' t'fi(ty, s)dt) WI

,	 All that remains to be verified is that dH+Hd = Id. This is a straight-

:	
forward computation.

S	 COROLLARY 4. 14. Let f : X -+ S be a smooth locally trivial map
I	 between real analytic manifolds. The natural map of sheaves C, —+
S	 A15 induces isomorphisms of As-modules

:	
Rf*Cx ® A5 -+ H"(fA15,

I	 for allp>O.

I	 a real analytic version of those used in the C°° or holomorphic context.
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PROOF. Let us observe first that H(fA1, fd)	 as

the sheaves A?S are f-acyc1ic. The local isomorphisms HP(f'(V), Cx )®
A	 H(f 1 (V), A1) are a consequence ofthe application of Lemma
4.12 and Prop. 4.13 to the restrictions of f .	El

Thus we have obtained a f-acyc1ic resolution of C with a natural
real structure. This resolution induces the Gauss—Manin connection in
the derived sheaves

DEFINITION 4.15. We define the Gauss—Manin connection V on
RPf*A;:is as the real analytic connection

V : Rf4 —4 A ® 1R"fA1

which has the local system Ttf * Cx as horizontal sections.

The Gauss—Manin connection is basically parallel transport along
suitable vector fields, and due to the acyclicity of the structural sheaf
its computation in the real analytic case is somewhat simpler than that
of its holomorphic counterpart.

PROPOSITION 4. 16. Let v0 be a real analytic tangent field defined
on an open set V C S. Then:

(i) The field v admits a real analytic lifting v defined over f 1 (V) C
x.

(ii) The Lie derivativeL : A —+ A ofa liftv ofthe vector fieldvo
induces a derivation L : A 1 —	 and if v, v' are two lifts

of v0 , the induced derivations in A 15 are homotopic as mor-
phisms of sheaves.

(iii) The induced derivation V := R f LV on R°fA15 depends

only on v0 , and it is the Gauss-Manin connection along v0.
( iv) If no, v0 are vector fields on V C S such that [no, vo] = 0 and

U, V are lifts to f'(V) C X, then the bracket [L a , L] of induced
derivations in A1 is null—homotopic.

PROOF. (i) is due to the exact sequence of acyclic sheaves over X

0	 T1s	 T	 +f*Ts	0

To show (ii) we begin by checking that the kernel 0 —* K* > A —+

A 1 —* 0 is Lu-stable. This is a local question on X, so we may
restrict ourselves to the projection Y x V —+ V, where {Y, (yi, . . . , Ym)}
and {V, ( Si , . . . , Sd)} are balls. The kernel K is in this case that of forms
with a ds3 factor on every sumand.
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.	 The Cartan homotopy formula Lw = diw + idw shows that the
S	 question is trivial for forms with a ds A ds3 factor, so we just have to
.	 study the case

.	 co=c1Ads1+'+adAdsd
I
I	 with a E A containing no factors ds3 . By linearity on v of the Lie
.	 derivation, it is sufficient to compute the case v = - . With this
0	 assumption and the notational convention 8(d1zj) :=

	 dxk A dx1
we have

I	 Lço=diço+ith,o
S
.	 +(-1)AdsAds1
.	 i=1	 0Yi	 j=2

S	
1 dS	 + (- i)P+ :
	 A dsk A ds1 + terms with no dsi)

k=2

I	 = (_ i)2P-! A dy2 + terms in K
0	 i=1
.	 m

S	 + ( i)2P+1	 A dy2 + terms in K
.	 i=1	 Yi

S
S	 so Lço lies in K and L induces a derivation in A 15 . Again by the
.	 Cartan homotopy formula we have that dLw - didw = Ldw so L
.	 is a morphism of differential complexes and induces a derivation on

I	 H*(A18,d).

S	 Let v,v' be two lifts of . The difference u = v' - v contains no
S	 term	 , thus if w E K, we have that i,w K, and hence Lw =
.	 L'w - Lw = diw + idw K. Therefore, the contraction i, defines
I	 a homotopy between L,L1 : (A 1 ,d) —+ (A15,d).
S	 (iii) is a local matter on 8, so we may assume still that f is a trivial
S	 fibration V x V —+ V, where Y is now the fiber of the original map f.
S	 Select coordinates (s , . . . , Sd) Ofl V and local coordinates (Yi , • , Ym)
.	 on an open set of Y. As has been shown in (ii), If v is a vector field
S	 on V and v, v' are lifts to V x V, the derivations L, L' are homotopic
.	 endomorphisms of the sheaf complex (A 1 , d). Therefore, the induced
S	 derivations on HP (A IS , d) R'fA 1 are the same. We will denote
S	 it as V0.
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For any w 0 in A1 we may select a representative fjdyj in
A with no term ds. Then

.
Lw = i(dw) + d(iiw)

c93i	 Oaj

of'
=>—dyj

Therefore, the horizontal sections of the connection given by V = L
on H(A 15 , d) are given locally on Y by the conditions

9f'_0	
''—	

S
as1	 ''t9Sd	 .

i.e., the coefficients fi must not depend on S. This holds under coor-
dinate changes in Y, so we conclude that the horizontal sections of L 0	 f
are the cohomology classes in H* (Y, C) , and this is the Gauss-Manin
connection.

(iv) may be also shown locally. Given a local trivialization Y x V -
V as above, by linearity of the derivation we may assume that u =

: ' o = ; , and select first as lifts to Y x V the fields u = - , v = - .
A relative form w admits a representative fi(i , . . . , Ym, Si , . . . , 8d)dyI,
and by the Schwarz lemma one has 	 S

a2	
S

L(Lw) = : 	 fjdyj = L(Lw) ,	 I
US1(182	 I

thus [L, , L} = 0 with the selected liftings. To extend this case to arbi- 	 S
trary liftings it suffices to show that if we replace one of the derivations
with a homotopic derivation, the resulting bracket is homotopic to the
original one as a morphism of the complex	 d). So let us choose	 I
another lifting v' = v + w of the vector field v and compute the bracket	 I
[L,L ' ]:	 S

[La , L'I = [La , LI + [La , LI
= [La , LI + [din + id, di + id]	 .

= [L , L] + didi + iddi + diid + idid	 I

- didi - diid — iddi - idid

= [La , LI + d(idi + iid + dii - idi)	 0
+ (idi + iid + dii - idi)d .

The fact that v,v' are both liftings of v, i.e. the vector field w lies
in T1s = ker(Tx Ts, i5 essential so that the homotopy function
h = idi + iid + dii - idi descends from A to the relative
comp1exA 1 .	 LI

S

I
S
0
S
.
S
.
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0
I	 Proposition 4.16 shows how the Gauss-Manin connection in the
I	 cohomology sheaves RPfAIS arises from parallel transport on the
.	 sheaves of forms A 15 , which is well-defined only up to homotopy.
S	 This indetermination can be overcome locally by choosing frames of
.	 horizontal fields:
I	 DEFINITION 4. 1 7. Let V C S be an open subset, vi , . . . , Vd vectorI	 fields such that they form a basis of the tangent space T,,S at everyS	

point p E V, and i3i , . • • Vd arbitrary lifts of vi , . . . , Vd to f'(V). The

S
S	 According to our definition, Gauss-Manin connections on the corn-
.	 plex of forms fA 15 are not unique, although homotopic, and defined
.	 only locally. This set of data forms a sheaf of connections up to homo-
.	 topy on S, a ho-connection in the words of [73] , 4, where such sheaves
.	 are introduced and studied. Although we will use only local Gauss-
S	 Manin connections, we will require a homotopic property of them:

!	 DEFINITION 4. 18 ([73]). A connection V on a complex of sheaves

.	 (A , d) over a real analytic manifold S is homotopically zntegrable if for

S	 every pair of vector fields n v defined on S the sheaf endornorphism

.	 {V, V] - V1,j : A*

:	 is

S	 LEMMA 4.19. Let f : X —+ S be a smooth locally trivial map be-
S	 tween real analytic manifolds. Then every local Gauss-Manin connec-
S	 tion defined on V C S is homotopically integrable.

I	 PROOF. Our statement follows from Proposition 4.16 (iv). 	 El
S	 Lemma 4.19 shows how the integrability of the Gauss-Manin con-
S	 nection is already present at the form level, the ultimate reason being

:	
the local integrability of parallel transport.

.	 We return now from the real analytic to the complex analytic case.
I	 Let f : X —+ S be a smooth, topologically locally trivial map
S	 between complex manifolds. We have just established the relative

.	 denying real analytic family. The additional complex structure in the

:	
connection defined by setting

.	 vviw = fLw

.	 is a local Gauss-Manin connection on the complex of sheaves of forms
0	 fA1 restricted to V.

I	 Poincaré lemma and studied the Gauss-Maniri connection for the un-
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cotangent bundles appears in the real analytic relative complex as a
bigraduation, and the complex AS defined in this context as

.
0 —+ f*Alo _+ A° — A ?S —	 (13)

0 — f*AOl	 41 > A S > 0	 (14)

for the degree one pieces, and A 1S = (w A?s) A (Ar' A 5) n general.

I

	

V1'°:A—A'°®A,	
:

V°":A-4'®A.

We will refer to the above summands of V as its complex structure
components.	 I

Another consequence of the complex structure on cotangent bundles
is the existence of a decreasing Hodge filtration F , given by 	 I

'rP	 _	 Ar,*
1 frtXIS 	 EDr^pttx i s .

This filtration is induced by its absolute counterpart in A* and it is	 I
likewise preserved by the relative differentials 8xs, 8xs, d 1 s 9 + 0.
Because of this, it induces a Hodge filtration on the derived sheaves
R f A 5 , and as the homogeneous sheaves	 are acyclic by	 I
Corollary 4.6, there are isomorphisms

I

complex type to f'(V).	 I

CONVENTION 4.20. We will assume henceforth that every local	 S
Gauss—Manin connection defined on fA 5 has been defined by lifting
a basis v, . . . , Vd ofT'°(V) to fields i, . . , Vd E TO(f_1(V)), and lift-
ing the conjugate fields to the conjugates (i). Thanks to Corollary 	 I
4.6 we know that such a choice of liftings is always possible. 	 I

The behaviour of the (1, 0) and (0, 1) components of the Gauss-
Manin connection with respect to the Hodge filtration F is not difficult
to observe:

Consequently, any connection on a sheaf A over S decomposes as

kRp	 HP(f*As f* dx 1 s) .	
.

In the case of local Gauss—Manin connections on forms, and of the
Gauss—Manin connection in cohomology, applying Corollary 4.6 to the
exact sequence	 I

	

0 — T — T° —f f*T O 0	 1

and to its conjugate, we find that any vector field vo of type (1, 0),	 I

resp. (0, 1), defined over an open set V C S admits a lift v of the same
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A*,* d ti
.	 XIS 

e, ned over V C S. Its complex structure components V 1 ' 0 , V01

.	 verify that

S	
V"°PfA c A° ®

.	 V°"Pf*Ais C A'1 ® PfA5

PROOF. This is a consequence of the Cartan homotopy formula
S
S	 Lwdiw+jdw

The exterior differential d = i+3 preserves the Hodge filtration, while.	 contraction along a vector field lowers it by one unit in the case of a
S	 type (1, 0) field, or also leaves it invariant if v has pure type (0, 1). fl

S	 REMARK 4.22. Due to their homotopic uniqueness, Lemma 4.21 is
.	 still true up to homotopy for local Gauss-Manin connections that do
S	 not respect our complex structure convention 4.20.
S	 The consequence of Lemma 4.21 for the variation of cohomology is

.	 COROLLARY 4.23 (Grifliths transversality). The Gauss-Manin con-
S	 nection on	 verifies that

:	 V"°PWfA c A'° ®
.	 V°'1PR	 c A" ® PR
S
.	 Given a smooth topologically locally trivial morphism f : X -+ S
S	 between complex manifolds, we have developed so far a Gauss-Manin
S	 connection of the underlying real analytic map, defined on the cohomol-
S	 ogy real analytic bundles (Rf* Cx ) ® A, and defined already locally
S	 on the complex of forms	 and checked that it verifies Grif-
0	 fiths transversality. The following natural step will be to compare this
I	 connection with the holomorphic Gauss-Manin connection on the holo-
.	 morphic bundles (RP f Cx ) ® 0s (see [3 1], [48] , [73]). The switch from
S	 a holomorphic to a larger real analytic bundle requires the use of an
.	 intermediate complex:
S	 DEFINITION 4.24. The complex offib'erwise holomorphicforms 	 d)

:	
is formed by the Axsubmodules

.	 i4P —1 (Ap,O a2	 - er	 - vLX S

.	 PROPOSITION 4.21. Let V be a local Gauss—Manin connection on

S immediate and well-known:
.

.

.	 and the coboundary operator d of A5.
S
.
S
S
S
.
S
S

.
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This definition is correct because, as d8 = d, the coboundary op-

erator d of A 5 preserves the kernel of A ?S - A S . Note also that
its restriction to K1 equals 3. The complex of fiberwise holomor-
phic forms has a lodge filtration F , induced by that of the relative
Dolbeault complex.

The forms in the complex K1 are indeed real analytic families
over S of holomorphic forms w defined on the fibers X8 . The com-
plex of fiberwise holomorphic forms takes the place of the complex of
holomorphic forms in the absolute case:

LEMMA 4.25. The natural inclusion (K 15 ,a) -+ (A 5 ,d) is a

fi itered quasi—isomorphism of complexes of sheaves.

PROOF. Our statement is equivalent to the exactness of the se-
quences

0 —+ K' —4 1I°	 IIP1
xs	 xIs 

-i LxIs 1

for every p ^ 0. This is a local property on X, so we may assume
that S is a ball, with a single holomorphic chart (s , . . . , Sd), X =
V x S, with Y another ball with coordinates (yi, . . . , Ym) and f the
natural projection. The exactness of the sequence is obtained now by
a verbatim repetition of the proof of the real analytic Dolbeault lemma,
our Proposition 4.7, with the variables s, . . . , 8d as parameters which
are unaffected by differentiation.	 El

The next step is to examine the relation between the complexes
of holomorphic and fiberwise holomorphic relative forms. This will be
done by means of local Gauss—Manin connections, defined already over
the forms. As our Definition 4.17 shows, a local Gauss—Manin connec-
tion over V C S is equivalent to a trivialization f' (V) X3 x V, in
the sense that both result from choosing a frame of horizontal vector
fields on f 1 (V) . Such a choice of a horizontal frame also corresponds
to determining a local Ax—linear section A S — A* to the natural

projection morphism.
Thus the choice of a local Gauss—Manin connection is not uniquely

determined. Even if it follows our convention 4.20, neither a local
Gauss—Manin connection nor its complex structure components V" 7O,1

have to preserve the complex fK 15 . However, it turns out that there
exists a unique complex arising from any choice of V.

PROPOSITION 4.26. Let V be a local Gauss—Manin connection de-

fi ned on V C S, and V°" its (0,1)—component. There is an exact

sequence

0 —+	 —f fK 1	 A1 ®



.
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0
.	 for everyp>O.

.	
a	 a.	 VLL)	 i: ds	 —f1,jdyj A	 +	 -fj,jdyj A

.	 i	 Si	
j	

83

.	 Let 2, be the class of the above form w in A45 . The section A —

.	 A* determined by our local Gauss-Manin connection and the holo-

.	 morphic charts adapted to its horizontal frame sends ai to

.
S	 j
.	 Consequently, the fact that Z' 	 14 means that J = 0 and the

functions f are holomorphic in the variables Yi . . , Ym' Likewise, the
.	 vanishing of V01w = >J d	 /fidyj implies that the functions f'S	 are holomorphic also in the variables Si , . . . , 8d thus are holomorphic.	 onYxVandwEQEi.S
.	 Finally, let us describe the relation between the real analytic and
.	 holomorphic Gauss-Manin connections in cohomology.
.	 PROPoSITIoN 4.27. Let f : X -+ S be a smooth topologically triv-
.	 ial map between complex manifolds X, 8, and let V = V' + V' be

.

.	 0 —f R f* Cx®Os —* R f* Cx®As -+ R"f*Cx®A'

.

.	 0 —+	 1I P fc1; 15 	_+	 1I p fA 5 	 ltp fA 8 ® A"

:	
and V10 induces the holomorphic Gauss-Manin connection on Rvf1I1.

.	 PROOF. The isomorphism R f* Cx ®0s JR'f* I vis S the complex

.	 Poincaré lemma, and the isomorphisms R f* Cx ® A

PROOF. Our statement is a local property, so we may assume as in
.	 previous proofs that V is a ball and X = Y x V, with Y another ball.
S	 Moreover, we may select our local trivialization by using the horizontal
.	 frame of the local Gauss-Manin connection V. In this way, there are
.	 complex coordinates (s , . . . , 3d) in V and (Yi • . . , Ym) hT1 Y such that
.	 the section A5 -+ A* consists of the forms

.	 w = i: fi ,j(si, . . . , 8d, Yi, . . . , m)dyi A dj

.	 and the local Gauss-Manin connection V is given by
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respectively ®AJ1 are our Corollary 4.14. These isomorphisms arise
from a commutative diagram of inclusions

fr-I	 4-1f,,
'L#X —4 J '-'S —+

N	 L	 .i	 :
f'As	 AS	

.

and because of this the first square commutes.
The upper row is exact by the real analytic Dolbeault lemma, our

Proposition 4.7. We have defined the Gauss—Manin connection in coho- 	 0
mology as having as horizontal sections the local system R" f * Cx . This
property characterizes it uniquely, so 9s is its (1, 0) component, which
by restriction to 1I'f*Cx ® 0s yields the holomorphic Gauss—Manin
connection, and a is its (0, 1)—component, so the second square is a
commutative diagram. This completes our proof. 	 11

2.4. The horizontal relative logarithmic Dolbeault lemma.
Unless otherwise stated, we will work in this section under the following 	 0
assumptions:

CONVENTION 4.28. Let X, S be complex analytic manifolds, f :
x - S a smooth proper map between them, and H C X a relative
normal crossing divisor, i.e., H is a normal crossing divisor in X, it has
smooth irreducible components {H}, and the restrictions fIH : H —+

S are smooth.

	Denote U : X \ H and j : U —+ X. The restriction f : U -4 S is	 0
smooth and topologically locally trivial. Thus there is a covering of X
by coordinate sets (V, z1, . . . , z) such that f(zi, . . . , z,) = (z1, . . . , Zd) 	 S
and H has a defining equation Zd+1 . . . Zr — 0,	 S

We have defined in 2.2 the real analytic logarithmic Dolbeault corn-
plex A* (log H). A relative logarithmic Dolbeault complex may be
defined from the exact sequence

0 -^ f*A O	A°(IogH) —+ A s (logH) —4 0 ,

its analogue (0,1) and the corresponding wedge products for A(log H).

There is a natural inclusion A(log H) -+ induced already
by the defining exact sequences, and it may be checked that, unlike
its C°° analogue, in the above holomorphic coordinate sets V the sheaf
A(log H) is the free Ax-commutative graded algebra generated by

dz
, -:-, Iogz,	 d+1<ir

zi

dz,	 r+1^in
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:	 and differential d =	 induced by that of A*(1og H).

S	 We will call the complex A(log H) the horizontal logarithmic

.	 relative Dolbeault complex. This complex has a weight filtration and a

.	 lodge filtration induced by those of the absolute logarithmic Dolbeault

.	 complex of subsection 2.2:

S	 DEFINITIoN 4.29. The weight filtration W. on A(1og H) is the
S	 increasing multiplicative filtration defined by assigning weight one to
S	 the generators	 for d+1 i r, and zero to dz3 ,d for
S	 r+1jn.	

2

I	 The Hodge filtration F on A(log H) is the decreasing filtration
S	 defined by
S	 PA(log H) _ A(Iog H).
S	 s^p

:	
We compare the complexes of sheaves A 5 (1og H), f-acyclic by

S	 Cor. 4.6, and AJjS, which has been studied in subsection 2.3:

S	 PRoPoSITIoN 4.30. The natural inclusion induces quasi-isomorphisms

:	 A(log H) --

S	 PROOF. This is a local question on X, so given a point x E X
.	 we may assume by restriction that X is a polydisk with holomorphic
I	 coordinates (z1 , . . . , Zd, . . . , zn ), x = (0, . . . , 0), Y C X has as a defin-
.	 ing equation Zd+1 • • . Zr - 0, with d < r < n, and f(zi , . . . , z) =
.	 (Zi,...,z4.

.	 As the morphism f is now a trivial fibration with fiber (D )rd><

.	 D-T , the integrable bundle formed by the cohomology classes of the

.	 fibersis	
r	 dS	 H*(A, d) A A-

.	 i=d+1

.	 The forms i are logarithmic, therefore the inclusion A 5 (log H) c—+

:	

A gives rise to a commutative diagram

.	 H*(A5(logH), d)

.	 /7	 N

.	 A*(d+lAS)	 c	 H*(A,d)

,	 Thus it suffices to check that

S	 A(	 As)-+H*(As(logH),d)	 (15)
.	 i=d+1

S	 is an isomorphism to show our statement. The morphism is onto by
.	 the previous commutative diagram, and it remains to check injectivity.

.
S
.
S
.
S
.
S
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	Define an ad hoc increasing non—holomorphic weight filtration on 	 I
A(log H) by setting weight one to the forms and functions log z	 I

and weight zero to the forms , dz,	 for d+1 < i < r, r+1 j n.

Extend the filtration multiplicatively to the Ax—algebra A(1og H).
	We will show that every class .D E H*(A(log H), d) has a rep-	

I
resenting cocycle with non—holomorphic weight zero, i.e. without any 	 Ifactor , log z on its summands. This may be done by double in- 	

I
duction on i E {d+ 1, . . . , r} and the non—holomorphic weight on every	 I
zi.	 S

k	 k 1d2
w=logz &+1ogz

where 'y has non—holomorphic weight < k in z and zero in z 1 . . . , Zr.

The fact that w is a cocycle implies that

	

kli	 kO=dw=klogz	 ---Ad/3+'y,

	

zi	 zi

with 'y' again with top nonzero weight in z and lower than Ic. Grouping
terms in the last equality we have that do = 0, ko - d/3 = 0, thus
a = d,6, so the cocycle

Let w be a representing cocycle of the class cD If w has non-
holomorphic weight zero on every z2 it is our sought cocycle. Otherwise,
let i E {d + 1, . . . , r} be the highest coordinate with nonzero weight k.
We may write the cocycle as

w - d ( log =	 A
zi

has top nonzero weight in z and lower than k. Thus by induction
we can find a cocycle representing D with no factors , log ; in its
summands.

Let now w be an m—cocycle with non—holomorphic weight zero. It
has an expression of the form

w=:c i fL ,	 .
ZI	 S

where I ranges over the subsets of {d+ 1, . . . , r} with cardinal If m,	 S
and the forms aj contain only the differentials dz3 ,	 with r + 1 <	 5
j c . As w is a cocycle, there is an equality 	 S

O=dw=da4.	 :

By the freeness of the horizontal logarithmic relative complex in our
local setting, this means that the forms aj are cocycles. Since they
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.
.	 PRoPosITIoN 4.32. Let v0 be a real analytic tangent field defined
S	 on an open set V C S. Then:	 -
S

	

	 (i) The field v0 admits a real analytic lifting v defined over f'(V) C
x such that v is tangent to H.

(ii) The Lie derivative jL : jAj — jA preserves the horizon-
tal logarithmic subcomplex A*(log H), and induces a derivation
in A 5 (log H) that depends only up to homotopy on the selected
lifting v.

(iii) The induced derivation V := R f L on 1IfA 5 (logH) de-
pends only on v0 , and is the Gauss-Manin connection along v0.

( iv) Ifuo, V0 are vector fields on V C S such that [uo, vol = 0, and u, V
are relative tangent lifts to f'(V) C X, then the bracket {L, L]
of induced derivations in A 5 (Iog H) is null-homotopic.

S	 PROOF. (i) Let T(XH) be the relative tangent sheaf, i.e. the sheaf

S	 of tangent fields on X which are also tangent to H. This is a coherent
S	 sheaf, and so is the relative tangent sheaf T(x,H)Is, defined through the

.	 exact sequence

S	 0 —4 T(x,H)Is —+ T(x,H) —+ f*Ts t 0
S	 As the sheaves in this sequence are acyclic, every vector field defined

I	 (ii),(iii) Choose local coordinates (z1 , . . . , z) as in the definition of theS	 relative logarithmic complex, with f(z1 , . . . , z) = (z1 , . . . , Zd) and H
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contain no differential , , , nor factor log 1z , the cocycles aj extend
to X and by the relative real analytic Poincaré lemma, our Proposition
4.13 they are either exact or zero-cocycles.

By our previous induction computation, the cocycles ço e H°(A 5 (Iog H), d)
may not have any factor log Iz1 . Such cocycles lie therefore in H°(A 5 , d)
A5 , and the proof of our Proposition is now complete. 	 U

The previous Proposition and Cor. 4.14 may be expressed as:

COROLLARY 4.31. The natural map of sheaves Cu 4 A(Iog H)
induces isomorphisms

JR f*Cu A5 -- (A 5 (log H), f*dx1s

for all p ^ 0.

Therefore there is a Gauss-Manin connection on R"fA 5 (log H),
having the local systems {H*(X8 \H3, C) s e S} as horizontal sections.
This connection is actually the Gauss-Manin connection developed in
the previous subsection, and it may also be locally defined over forms:

.	 on V C S lifts to (f'(V), H n f1(V)).
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defined by the equation Zd+1	 Zr	 0. The relative tangent sheaf
T(x,H) is the locally free sheaf with basis

	

a a	 a	 a
-;-- , -:;-::- , Zi ;:- , Zi -;::--

	

ozi ciz	 oz az

for i E {d + 1 . . . , r}, j e {r + 1, . . . , m}. An immediate computation
shows that derivation along these fields preserves the generators of the
logarithmic complex	 H).

As has been seen in Proposition 4.16 for the complex A, this
derivation depends on the lifting of v0 only up to homotopy, and given
two lifts v, v' E T(x,H) the homotopy between L,	 is the contraction
h = ii _ . This contraction along a vector field of the relative tangent
field also preserves logarithmic forms, so the homotopy h restricts to
the subcomplex A(log H) C AJjS. The induced derivation V
JPfA(Iog H) -4 A(log H) is by Propositions 4.16 and 4.30 the
Gauss-Manin connection along v.

( iv) One may check in the same way that if uo, v0 are tangent vector
fields in V C S with [u0 , vol 0 and u, v are relative tangent lifts,
the homotopy in A between the bracket [LU , LV I and the zero mor-
phism defined in the proof of Prop. 4.16 (iv) preserves the horizontal
logarithmic subcomplex.

One may proceed now as in the relative case of subsection 2.3 to de-
fine local Gauss-Manin connections on forms and check the properties
of the local and cohomology logarithmic connections:

DEFINITION 4.33. Let V C S be an open subset, v1 , . . . , Vd vector
fields such that they form a basis of the tangent sheaf Ts on V, and
'ii i , . . . , Vd relative tangent lifts to (f 1 (V), Hflf 1 (V)). The connection
defined by setting

vviw = fLw

is a local Gauss-Manin connection on the complex of forms	 (log H)

restricted to f1(V).

Proposition 4.32 shows that the Gauss-Manin connection and its lo-
cal analogues on forms for the relative logarithmic complex A(log H)
are induced by the local Gauss-Manin connections of the relative corn-
plex	 An immediate consequence f Proposition 4.32 (iv) is:

LEMMA 4.34. Every local Gauss-Manin connection defined on V C
S is homotopically integrable.	 I

	Another relevant property that local Gauss-Manin connections in- 	 :
herit from the complex ArS is Griffiths transversality:

S
S
S
S
S
S
S

.	 S
S
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.

S	 PROPOSITION 4.35. Let V be a local Gauss-Manin connection on
S	 A5(1ogH) defined over V C S. Its complex structure components
.	 v1,o, V0,1

:	 V"°PfA5 C A •9'° ® PfA(1og H)

.	 V°"PfA5 C A' ® PfA 5 (1og H)

:	
PROOF. By Proposition 4.32 a local Gauss-Manin connection in

.	 A(Iog H) a particular case of a local Gauss-Manin connection in

S	 A, thus our statement follows from Proposition 4.21.

S	 At the cohomology level, one has:

:	 PROPOSITION 4.36.	 (i) The Gauss-Manin connection V on HP(jAj, jd)

S	 induces the relative logarithmic Gauss-Manin connection

S	 V : R"	 (log H) -+ A' ® R' fA 5 (log H)
.	 (ii) The Gauss-Manin connection V = V"°+V°" on 1IfA 5 (log H)

:	
verifies the Griffiths transversality relations

.	 VF'R"fA5(log H) C ,4:0 ® k_lPfA*(log H)

:	
c Aj' ®

S	 Another property specific to the logarithmic complex is:
.	 PROPOSITION 4.37. There exists a local Gauss-Manin connection
.	 on fA 5 (logH) defined over a neighbourhood s V C S such that it
S	 preserves the weight filtration W. in a possibly smaller neighbourhood

.	 PROOF. Given s E V, we may take as V' a trivializing open subset
S	 for f, such that f 1 (V') is real analytically isomorphic to (X8 , H3 ) x V'
S	 over V'.
.	 Take then a covering of (X3 , H3 ) by coordinate charts ( yi, . . . , Ym,
S	 Vi . . . , Vm) . This induces a covering of (X8 , H8 ) x V' by coordinate
,	 charts ( yi, . . . , Ym, Si, . . . , 8d, S i, . . . , Sd), where the variables s,	 come
S	 from V' and are invariant under change of coordinates.

S	 A local Gauss-Manin connection V' is given now on the absolute

S	 logarithmic complex A, xV' (log H3 x V') by covariant derivation along

S	 the vector fields - , . . . , - . The coboundary operator d preserves

.	 the weight filtration on the absolute logarithmic complex, and con-
S	 traction along a field - , - does not affect the positive weight terms

.	 log y2 , ? - . Therefore the weight filtration is preserved in the ab-
S	 solute complex, so also in its quotient A * XV, IVI (log H x V').	 E
.	 3

.
S
S
S
.
.
.
S
.
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The consequence of Proposition 4.37 at the derived level is

COROLLARY 4.38. The Ga'uss-Manin connection V on RPfA(log H)
preserves the weight filtration W..

The comparison between the real analytic and the holomorphic
Gauss-Manin connection parallels that of the relative complexes AS
discussed in the previous subsection. We will write the analogous state-
ments and indicate the proof when it is not a consequence of its ana-
logue in subsection 2.3:

DEFINITION 4.39. The complex of logarithmic fiberwise holomor-
phic forms (K(log H) is formed by the Ax-submodules

I	 -	 \	 .

	K 1 (logH) = ker (As(logH) --+ A t5)	 S
S

and the coboundary operator d of A 5 (log H).

By the natural inclusion A(log H) c-+	 the complex K 15 (Iog H)
is a subcomplex of the fiberwise holomorphic complex previ-
ously described. Again, the Hodge filtration on A(1og H) induces a
Hodge filtration .P' on K 1 (Iog H). The relative Dolbeault lemma in
this context has the same statement, but a more involved proof:

LEMMA 4.40 (relative Dolbeault lemma, horizontal logarithmic version). 	 1
The natural inclusion (K 1 (1og H), 8) —+ (A(1og H), d) is a bifil-
tered quasi-isomorphism of complexes of sheaves.

PROOF. Our statement is equivalent to the exactness of the Se-
quences	 I

0 —+ K 15 (logH) —+ A g (logH)	 A(logH) --+ . . .

for every p ^ 0. As in the relative case, this is a local question on X, so
we may assume that X, S are polydisks, f has the form f(zi , . . . , z) =
( z1 , . . . , Zd) and H has a defining equation Zd+1 • . . Zr 0.

The local question may now be proved following verbatim the proof
of Theorem 8.8 in [72], which is the analogous absolute logarithmic
case. The variables zi , . . . , Zd from S appear as additional parameters,
but they do not show up in the exterior derivations because of our 	 5
relative setting.

S
On the other hand, the relation between the fiberwise holomor-

phic and the holomorphic complex are a straightforward consequence
ofLemma4.26:

S

.
I
.
.
I
.
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I

.	 LEMMA 4.41. Let V be a local Gauss-Manin connection defined on

I	 A(1ogH) over an open set V c 8, and V' its (0, 1)-component.

.	 There is an exact sequence

.

.

.	 for everyp>O.

:	
PROOF. As K 15 (1ogH) c K 15 , and the local Gauss-Manin con-

nection V is actually defined on A, by Lemma 4.26 the kernel of
7O,1

V K1(1ogH)

c,Js n K 1 (logH) = 1l1(logH)

I
.
I	 We conclude this section with the commutative diagram formed by

S	 the holomorphic and real analytic cohomology connections. Its proof

S	 consists in applying Proposition 4.27 to the family f : U -+ S and then

S	 taking intersections with the logarithmic complexes A(Iog H), 1(log H)

S	 as in the previous proof.

I	 PRoPosITIoN 4.42. Let f : (X, H) -+ S be a smooth holomor-
.	 phic mapping satisfying Convention 4.28, and let V = V + V' be
I	 the Gauss-Manin connection on the derived sheaves R)fA5(Iog H).
I	 There is then a commutative diagram with exact rows and isomor-
.	 phisms in the vertical arrows
.
I	 0 -+ R f*Cu® Os - R f*CuØAs --	 A'®Wf*Cu
I	 !
S	 L	 'I.

S	 0 -^ RPf1(log H) -f WfA 5 (logH) y__

S	 3. Real analytic variations of Hodge structure

:

	

	
When Xis a compact Kähler manifold, the real analytic IJolbeault

complex A satisfies a ôô-lemma, and the Hodge filtration P of the
S	 complex induces the pure lodge structures of the cohomology groups
!	 of X. Likewise, if Y C X is a normal crossing divisor, the real an-
I	 alytic logarithmic Dolbeault complex induces Deligne's mixed Hodge

fcompact Kãhler manifolds supports a variation of Hodge structures
'	 (see [43] ) . We recall its definition in order to compare it with our
.	 proposed definition for its real analytic analogue:

0 -+ 1 15 (logH) -+ K 1 (IogH)	 A" ® A?S

S	 structure on the cohomology groups H*(X \ Y) ([72]).
.	 In the relative case, the cohomology of a holomorphic family of



DEFINITIoN 4.44. A real analytic variation of Hodge structure of
pure weight n over a complex manifold S consists of:

.
S
.
.
S
.
I
.
I
I
S
S

S
.
I

I
I
I

( 1) a local system of Z-free modules of finite rank V over 8,

( ii) a real analytic vector bundle W over 8,
(iii) an integrable connection on W, V : W -+ A' ® W,
(iv) a decreasing Hodge filtration of 14' by real analytic subbundles

such that
- the local system formed by the horizontal sections of (V, V) is

isomorphic to V ® C,
- the fiber data (V , W8, ;r;) defines a Hodge structure of pure

weight n for every s E 5,
- (Griffiths transversality) the complex structure components V", 'O,1

of the connection V and the filtration J' verify

V"°(F) C A° ® :F-'

vo"(P) C A 1 ®

The concepts of real analytic and (complex) variation of Hodge
structure are actually equivalent:
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DEFINITION 4.43. A variation of Hodge structure of pure weight
n over a complex manifold S consists of:

( i) a local system of Z-free modules of finite rank V over 5,
(ii) a holomorphic vector bundle V over 5,

(iii) an integrable connection on V, V : V -+ 1 0 V,
(iv) a decreasing Hodge filtration of V by holomorphic subbundles

V = j:O	 = {O}

such that

- the local system formed by the horizontal sections of (V, V) is
isomorphic to V ® C,

- the fiber data (v3 ,V3 ,F;) defines a Hodge structure of pure
weight n for every s S,

- (Griffiths transversality) the connection V and the filtration J
verify

V() c

The corresponding concept that we have encountered using the real
analytic structural sheaf is:
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.

.	 LEMMA 4.45. Let VHS(S)(n) and A - VHS(S)(n) be the cate-

.	 gories of variations of Hodge structure, resp. real analytic variations

.	 of Hodge structure, ofpure weight ii over a complex manifold S. There

.	 exist functors

S	 By the Leibnitz rule, if	 A5 , we have

S

:	 (ç:'w) = ()	 A 1 ®

S	 Therefore the data (V, V ® A, V, J ® A5) satisfies the real
.	 analytic Griffiths transversality condition.
S
.
S
.
S
S
S
.

.
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Thus (V, V, V , .P) ® A is a real analytic variation of Hodge structure.
Conversely, if (V, W, V, J ) is a real analytic variation of Hodge

structure, by the isomorphism W ® V ® A, sending V"°, V' to 0, 0
we have:	 .

- kerV°' 1 	ker(a : A5 ® V -4 A'1 0 V) = V 0 0s, by the
Dolbeault lemma.

- By the above isomorphism, there is an equality of Hodge struc-
tures (V3 , W8 ,	 = (V3 , ker V", 2 n ker V") for every s e 8.

- If w e ker V7O,l n:FP (V) is a section defined on an open set V C 8,
V"0 (w) E A1 '°®(ker V' nYP-' because V"0 V0" commute and
real analytic Griffiths transversality. Moreover, as ker V'
V 0 (9, and V"°	 9, it turns out that w = cc ® w, with	 I
w E V(V) a section of the underlying local system, and 	 a
holomorphic function. Hence follows that Ow = ôço®w E 11®V,
and holomorphic Griffiths transversality.	 I

We conclude that the functors ®A, ker V are well defined. More-
over, they are inverse functors by the isomorphisms

I
ker(8:As®V—A"®V)V®Os

REMARK 4.46. If we let V be a local system of Q—vector spaces in
our definitions of variation of Hodge structure, the functors ®A, ker V
actually define an equivalence of tensor categories.

The equivalence between complex variations of Hodge structure and
real analytic variations also holds for variations with any coefficient
ring. For instance, a real variation of Hodge structure (R - VHS) over
a complex manifold S is defined in the same way as in Definition 4.43,
except that the underlying local system V is formed by R—vector spaces.

	

The same change in Definition 4.44 yields a real analytic R—variation of 	 I
Hodge structure (A—R—VHS), and the functors ®A, ker Vs" extend
to real variations and induce an equivalence between the categories
R - VHS(S)(n) and A - R - VHS(S)(n).

The relative Dolbeault complexes in this chapter provide a natural
example of real analytic variations of Hodge structure, and its relation

	

to the relative holomorphic de Rham complex may be explained by the 	 S
correspondence between real analytic and complex variations:

PROPOSITION 4.47. Let f : X -+ S be a smooth proper morphism
between complex manifolds X, 8, such that the fibers X form a family
of compact Kähler manifolds, and let AS be the relative Dolbeault
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.

.	 complex defined in the previous section, with its Hodge filtration 2'

.	 and its Gauss—Manin connection V on RfA 5 . The set of data

.
I	 (R7' f	 , R fA 5 , V, :F•)

S
S	 defines a real analytic R—variation of Hodge structure of pure weight p

S	 over S. The complex R—variation ker V°"(J1f* Rx , R"fA, V, F)
S	 is isomorphic to the variation induced by the relative holomorphic de

S	 Rham complex

S	 (R'f*Rx,11f*fç1s,V,P) .

S	 analytic 05-lemma the data (HP (X3 , R), (Wf A )3 , .T) is the pure

:	 Hodge structure of the fiber X (Lemma 4.8 and Proposition 4.9). Grif-

S	
fiths transversality is established in Proposition 4.23.

The comparison with the complex variation (R°f* lRx , R f 11 1, V, .F)

:	
follows from Proposition 4.27.

:	 We have shown so far the equivalence between real analytic and

S	 complex variations of pure Hodge structure, but the concepts and proof

I	
techniques involved carry into variations of mixed Hodge structure.
The only new addition that is required is the fact that the Gauss-Manin

S	 connection preserves the weight filtration, which is our Proposition
.	 4.36 (ii) in the horizontal logarithmic setting. The definitions and
.	 statements are:
.
S	 DEFINITION 4.48. A real analytic variation of mixed Hodge struc-
S	 ture over a complex manifold S consists of:

.	 (i) a local system of free Z-modules of finite rank V over 8,

S	 (ii) an increasing weight filtration W. on V ® Q,

S	 (iii) a real analytic vector bundle W over S

S	 (iv) an integrable connection on W V : W - As 0 W
(v) a decreasing Hodge filtration of W by real analytic subbundles

S
I	 such that
.	 - the local system formed by the horizontal sections of (W, V) is
S	 isomorphic to V ® C,
.	 - the fiber data (V3 , W, (W.) 3 , Fe') defines a mixed Hodge struc-
S	 ture for every S E 8,

S
S	 PROOF. By our Corollary 4.14, R f* Rx ® A	 Wf*Ais, and
.	 (RP	 H(X3 , C). Moreover (AXISIIXS A , so by the realI A*,* \
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- (Griffiths transversality) the complex structure components V' , 7O1	 •

of the connection V and the lodge filtration 1 verify	 I
.
.
.

- the quotients W1 /W1 _ 1 (V, )'V, V, J ) are real analytic variations
of pure Hodge structure of weight 1.

REMARK 4.49. Given the isomorphism V®C WV , the existence
of a weight filtration W. on V® C by sub—local systems is equivalent to
the existence of a weight filtration on the vector bundle 1/V such that it
is preserved by the connection V, i.e. VWk(W) C A' 0 WkftV) . The	 I
additional condition in the definition of a variation of mixed Hodge 	 I
structures is that this filtration W, on VV must induce a filtration in
V ® C defined already over V ® Q.

LEMMA 4.50. Let VMHS(S) and A—VMHS(S) be the categories
of variations of mixed Hodge strucure, resp. real analytic variations of
mixed Hodge structure over a complex manifold S. There are functors

®As : VMHS(S) -f A - VMHS(S)	 I

:

where Van S the connection obtained by letting V	 r7 V7,1 o and
the filtration :. has been extended by A linearity, and	 I

.

	

ker V7O1 : A - VMHS(S) -f VMHS(S)	 I

	

(V, 'V, V, W., J) F-* (V, ker Vs",	 w., F fl (ker V o"))	 •

These two functors are inverse of each other, and they induce an equiv- 	 :
alence of abelian categories.

As in the pure case, one may repeat the definitions and categoric
equivalence functors for variations of mixed Hodge structure with co- 	 I
efficients, where V is a local system of R, C, . . . —linear spaces. The 	 I
functors ®A5 , ker V01 induce equivalences of tensor categories in these
cases. The final example is:

.	 .
PROPOSITION 4.51. Let X,S be complex algebraic manifolds, f :

x - S a smooth, proper map, and H C X a relative normal crossing
divisor. Denote U = X \ H. Let A(log H) be the relative horizontal 	 I
logarithmic Dolbeault complex introduced in the previous section, J its
Hodge filtration, V its Gauss—Manin connection in the derived sheaves,
and W. its weight filtration.

.

.

.
I
.
I
I
I
.

v 1 ' o () C A'° ® F-1
vOl(P) C A" ® P
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S
S	 The weight filtration induced by W. in RPfA5(1og H) R' f1 0
.	 A is actually defined in the local systems 1I" fPu , and the set of data
.	 (R7)fRu,RPfA5(1ogH),,w.,r)

.	 The image of this variation by the functor kerV°' 1 is the complex R-

.	 variation of mixed Hodge structure

.
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.	 CHAPTER 5

.

.	 de Rham realization

.	 The Malcev algebra and rational homotopy groups of a suitable topo-
S	 logical space may be studied by means of Sullivan's 1—minimal mod-
.	 els, as has been described in Section 5 of Chapter I and applied in
.	 Chapter II, or equivalently through the iterated integrals developed by
.	 K.T. Chen (see [26]). In the case of a complex algebraic manifold X,
S	 both approaches may be applied to suitable holomorphic and Dolbeault
.	 complexes yielding information on the Hodge structures of the Malcev
.	 algebras £ir (X, x), or of the homotopy algebras ir (X) ® Q if X is

.	 simply connected ( [70] [47] see also [72]).

.	 This study of rational homotopy may be carried out in a relative

.	 case as well as in the absolute context. In the case of a real or complex

S	 analytic family of smooth manifolds f : X -+ 8, with a basepoint sec-

.	 tion 0• : S - X, there exist locally real analytic basepoint preserving

.	 parallel transports on the total space (X, a(S)). These parallel trans-

.	 a Gauss—Manin connection which is algebraic and singular—regular, as
S	 its cohomological counterpart ([73]).
S	 The purpose of this Chapter is to study the variation of Malcev

.	 the case of curves whose completion has a nonzero first Betti number.

.	 In order to do this, we will explicitly compute these variations in the

.	 case of the Legendre family of affine cubics, and also for families of

.	 punctured rational curves over P . The computation will be performed

.	 by applying the techniques and results of [73], so we will begin in

.	 Section 1 with a description of them in the case of Malcev algebras.

.

.	 161

S

.

.

.

I

I	 algebras in families of affine curves. We wish to compare the case
.	 of rational curves, which is the case covered by Deligne in [34], with

I	 ports, which we have studied in the previous chapter as local Gauss-

.	 Manin connections on forms, define a principal bundle of fundamental

S	
groups {ir i (X5 , cr(s)} $Es, and associated local systems formed by the

I	 homogeneous bracket spaces F/F+1 ® Q, which may be defined even

.	 without a basepoint section a, and of Malcev algebras r(F).

.

	

	
In the case of smooth proper maps f : X -+ S between complex al-

gebraic manifolds these local systems with complex coefficients become
.	 the horizontal sections of holomorphic flat bundles {L(r i (X8 , a(s)), C)}SES;.	 they underlie variations of Hodge structure ([48}) and are endowed with
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The reader is referred to [73] for the analogous results on the rational
homotopy of simply connected and nilpotent manifolds.

The Gauss—Manin connection of the above holomorphic bundles is
determined by the algebraic differential equation satisfied by its hor-
izontal sections. The solutions are called the non-abelian periods of
the family, in analogy to the abelian periods determined by the local
systems of the cohomology of the fibers.

To every differential equation we can associate its differential Ga-
lois group (see [57] or [14]), which gives qualitative information on the
solutions of the equation (see [94]). We will study in the final section 	 S
of this chapter the differential Galois groups of the non—abelian pen-
ods of Malcev algebras in algebraic families. The basic tools that we
use for this purpose are the theorem by Schlesinger characterising the
differential Galois group of a Fuchsian equation as the Zariski closure 	 I
of its monodromy (see [95],[76]), and the group—theoretic relations be-
tween the first homology group, the brackect quotients T/T, 1 and
the Malcev algebras described in Section 7 of Chapter I.

.

.
1 . The Gauss—Manin connection in the Malcev algebra

Let k	 C be a subfield of the complex numbers, X, S smooth
k—schemes of finite type with S affine, f : X —+ S a smooth algebraic	 S
morphism such that the underlying holomorphic morpism fan : x

san is topologically locally trivial, and 0• : S —+ X a smooth section,	 S
transversal to the fibers of f.

We have seen in Chapter 4 how the parallel transport in the under-
lying real analytic family f' : x s' is well—defined up to homo-
topy, and determines a real analytic Gauss—Manin connection, which
may be defined locally on the relative Dolbeault complex An 1 an .	 S

Katz and Oda showed in [58] that the Gauss—Manin connection is
of algebraic origin. The algebraic connection is not hard to define when 	 S
the basis scheme S is affine: every algebraic vector field v on S lifts to	 S
a k—algebraic vector field i' on X, and the fiberwise transversality of 	 I
the base point section cr(S) C X assures the existence of lifts i3 tangent
to it. Consider the relative de Rham complex 1I 	 over k. Given a	 S
relative form w e	 and a lift D E	 , the Gauss—Manin connection
of w over v is the image in fJ	 of the covariant derivative

V(w)=L&Eis.

Both selection of a different lift of the vector field v to X or of a
different section of	 —+ IZxs result in a homotopic endomorphism



S
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.	 of the complex of 05—sheaves

:	 v : (f c 1, d) -^

.	 Thus our V is so far a connection up to homotopy. V1 , V2 are algebraicS	 vector fields on S and a parallel transport over them is chosen by fixingI	 liftings i , i: 2 and a linear section	 —f	 the morphisms [V ,

.	 and V{v i ,v2 1 are also homotopic endomorphisms of the complex of O-

:	
sheaves f*IIS.

.	
Therefore, by choosing basepoint preserving lifts of a basis of the

S	
tangent bundle 3s and a Os—linear section 11	 —f	 the above

.	 process yields a connection on the relative differential bundle (ci, d).

S	 This connection depends on the selected liftings and section only up to
.	 homotopy, and is homotopically integrable (see our Definition 4.18).
.	 We will describe now after [73] the 1—minimal model of the algebraic
S	 Gauss—Manin connection over an affine base scheme 8: Let A* be a
.	 sheaf of quasi—coherent 05—CDGAs such that its cohomology sheaves
.	 are coherent, and set A* A* (S) the CDGA of global sections. As S
.	 is affine, the complex of sheaves A* is the sheafification of A*.

.	 We have described in Section 5 of Chapter I the construction of 1-

.	 minimal models of CDGAs, and stated Sullivan's theorem showing that

S	
if A* has finite—dimensional cohomology and a basepoint morphism

.	
A*	 k, then it has a basepointed minimal model p : M(2, O)A*	 A*,

.

	

	 obtained as an inductive limit of (1, q)—minimal models by succesive
Hirsch extensions

:	 M(1,q) _ M(1,q - 1) ®

.	 ker (p ,q_i : H2 (M(1, q - 1)) —+ H2(A*))

.

S	 The 1—minimal model is functorial up to homotopy, i.e. given a mor-
.	 phism I : A* B* and a choice of 1—minimal models M(2, O)A * M(2, O)B*,
.	 there exists a lift M(f) such that PB ° M(f) and f o PA are homotopic.
S	 A connection may be seen as a linearly varying derivation, so we
S	 will recall the definition of derivations in CDGAs: Let R be a k—algebra0	 with k C C as before, A* , B* two R—CDGAs, ço : A*	 B* be a R-
,	 CDGA morphism and v a derivation in B. A (v, )—derivation from A*

.	 to B* is a k—linear morphism S : A*	 13* such that it has even degree
S	 and satisfies the Leibnitz identities

.	 8(rx) = v(r)ço(x) + rS(x) ,	 r R , x E A*

I	 8(x A y) = 8(x) A ço(y) + (x) A 8(y) ,	 x, y A*

.

S
.

.

.
S
.

I



.
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If A* = B* and (,o = Id we call a v—derivation. A (v, )—antiderivation
A : A*	 B* defined in the same way as a derivation, except that ) 	 S
has odd degree and the second Leibnitz relation is 	 S

(x A y) = (x) A (y
) + (1)de(x)() A A() .

	

The 1—minimal model of a v—derivation of degree 0 on a R—CDGA 	 S
A* may be built as an inductive system of (1, q)—minimal models for 	 0
every q E N. The (1, 0)—minimal model is the commutative square 	 S

R-4R	 :
•L	 •i

A*4A*	 S
Commutativity of the square is usually possible only up to homotopy	 S
after the (1,0)—step, therefore the (1,q)—minimal model for q > 0 is
defined as a square

S
M(1,q)	 M(1,q)	 S

P(1,q)	 \A(1,q) 1P(I,q)	 S
A*	 S	 A*	 S

where 8(1,q) a v—derivation in the minimal model M(1, q), and A(1,q)	 5
is a (v, p(1q) )—antiderivation of degree -1 such that

8P(1,q) - P(1,q)(5(1,q)	 dA(i,q) + )¼ (1,q) d .	 S
S

.

S
S
.
S
.
I
S
I
S
0
0

If A* , B* are augmented R—CDGAs with augmentations EA* ,

respectively, a (v, ço)—derivation ö is augmented, or basepointed, when
EB* 5 = veA* . A homotopy A between basepointed derivations is base-
pointed when EB*A = 0. Thus a basepointed (1, q)—minimal model of a
derivation is a (1, q)—minimal model with ö(1 ,q) , )t(1 ,q) basepointed.

Assume now that the (basepointed) (1, q - 1)—minimal model of a
derivation 8 : A* A* j known. As M(1, q) = M(1, q - 1) ® A*(Vl),
in order to construct the (1 , q)—minimal model of S it suffices to extend
81,q-1, '1,q-1 to the space of indecomposables V" defining the Hirsch
extension, provided that this extension is compatible with P(1,q) , the
boundary d of M(1, q) and the augmentation. The obstruction to the
existence of (ö(i,q)(e), )t(i,q)(e)) for e E V" is the relative cocycle ([73],
Lemma 3.6)

ö(e) = (ö(i,q_l)(de), S(P(i,q)(e) + \(i,q_i)()) E Z2 (M(1, q), A*).

Thus the (1, q - 1)—minimal model of a derivation S extends to a (1, q)—
minimal model if and only if the relative cocycles o(e) are exact for
every e E	 The derivations 5(1,q) , A(1,q) may be defined on



.	 setting:

I	 PROPOSITION 5.1. ([73], 3.8 and 3.11) Let A* be an augmented R-
.	 CDGA with finitely generated cohomology, 8 : A* 	 A* j basepointed
S	 v-derivation, and M(2, 0) = urn M(1, q) a basepointed 1-minimal model

.	 of A* . The basepointed 1-minimal model of 8 exists and is unique as

.	 the limit of an inductive system of (1, q)-minimal models 8(1,q) , ) ( i,q)
S	 M(1,q)+A*.

S	 Proposition 5.1 may be applied to the k-algebra B = O, the 0s-
S	 CDGA A* 1 15 (S) and the derivation V, induced on 1l(S) by
.	 the Gauss-Manin connection along some algebraic vector field v on
.	 S. Due to the uniqueness of the basepointed (1, q)-minimal mod-
S	 els of derivations, we may choose any basis v1 , . . . , Vk of algebraic
.	 vector fields on 8, and the (1, q)-minimal models of the derivations
.	 vv1 , . . . , VVk fit together to define a connection V(1,q) on M(1, q), and
.	 a homotopy between P(1,q)V(1,q) and VP(i,q) This is the minimal model
.	 of the Gauss-Manin connection. As S is affine, the sheafification

•1	 (M(i, q), V( 1,q) , A(1 ,q)) of this 1-minimal model provides the unique
.	 1-minimal model of the restriction to any open set U C 8, and analo-
.	 gously to the absolute case, this 1-minimal model computes the varia-
S	 tion of the Malcev algebras:
.	 THEOREM 5.2. (Navarro Aznar, [73] 6.11) Let k C C, f : X - S
.	 and 0• : S -4 X be as at the beginning of the section. Then for every
.	 q>O:

:	
(i) The algebraic Gauss-Manin connection : 	 s -+	 ®

with the augmentation given by the section ci has a basepointed

S	 (1, q)-mznzmal model (M(1, q), V (1,q) , '\(l ,q)) , which is integrable

S	 and unique up to isomorphism.

.	 (ii) The homogeneous component of degree 1 M(1,q) 1 C .M(1,q)

.	 is a finitely generated locally free Os-module, and the holomor-

.	 phic flat bundle (M(1, q)', V (i,q) ) i dual to the flat bundle of

.	 Malcev algebras £q(iri(Xs, a(s)) ® (.9san.

.	 Theorem 5.2 is proved in [73] without the affine base restriction,

.	 taking a cover of S by affine open sets, but the glueing process for the
I
S
S

S
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Gauss-Manin connection and its minimal model is more delicate than
what has been sketched here.

2. Families of curves

The purpose of this section is to study the Gauss-Manin connec-
tion in the Malcev algebras of some families of affine curves over the 	 S
projective line, applying the algorithm of [73] described in the previous
section. The examples presented here are on one hand the Legendre 	 S

family of affine cubics, and on the other hand some families of punc-
tured rational curves. While the fundamental group and Malcev alge-
bra of an elliptic curve minus one point are isomorphic to those of a
rational curve minus three points, the relative Malcev algebras of the
examples presented here show a marked contrast. This contrast seems
to arise from the fact that the first comomology group of a Legendre
affine cubic E is pure of weight one, while H'(P \ {pi, p, p}) has
pure weight two.

We will study smooth algebraic families over field k C C of the form
I : X -* 8, with S C TF , X a smooth surface, and f topologically
locally trivial. As S C 1Pj, if we select a uniformizing parameter s, the
derivation j is a global generator of the algebraic tangent sheaf Es, 	 S
and the Gauss-Manin connection on the sheaves of Malcev algebras is
determined by the parallel transport along plus the Leibnitz identi- 	 I
ties. Hence the (1, q)-minimal model of this derivation is actually the 	 S
( 1, q)-minimal model of the Gauss-Manin connection. 	 S

The correspondence between holomorphic vector bundles over S C

1P: with a flat connection and Fuchsian linear differential equations over 	 5
8, which is bijective up to isomorphism of bundles/equivalence of equa-
tions, allows us to present the holomorphic flat bundles {L(r1 (X8 , o(s)))®

C}3s ® 0s as the bundles of solutions of the differential equation
satisfied by its horizontal sections. There exist a holomorphic and a
k-algebraic version of this correspondence (see [31] 1.2).

2.1. The Legendre family of affine cubics. The monodromy	 S

of the Legendre family of affine cubics 	 1

f:E={(x,y,t)EC3Iy2=x(x-1)(x-t)}—+8C\{O,1}	 5
(x,y,t)i—+t

in the fundamental group and in the Malcev algebras up to £3 (ir1 (E , *))
has been computed in Propositions 3.46 and 3.76 respectively, using a
topologic basepoint section. This family has algebraic origin, it arises
from a morphism of Z-schemes, thus we will regard it as an algebraic
family of Q-schemes in order to compute its minimal model.
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S	 Let us now compute the (1,3)-minimal model of the Gauss—Manin
.	 connection (1l, Ot = ), which corresponds to the local system of
.	 duals of the Malcev algebras £3 r1 ® C. For computational convenience
S	 we will choose the section (0, 0, t) as basepoint, instead of a section ap-
S	 proaching the topologic basepoint section used in Chapter IlL Thus the

.	 augmentation e ofthe dga 11E, will be the evaluation in (x, y) = (0,0),

.	 and in the computations that follow we will select our obstructions and

.	 homotopies so that it is always verified that o A(1,j ) = 0.
S	 We start by directly finding the (1,1)-minimal model of 9t (cf. [29]
.	 2.10).

S	 A (1,1)-minimal model of	 is given by

S
I	 M(1,1)=A(a,3), k=	 1, da=dj3=0

S
andS

S
S	 P(i,i) : M(1, 1) —4

S	 dx
. y
.	 xdx
S

y

dx I  dx S	 a(W1) = —
aY = 2y(x - t)S	

1  dx S	
ôt(w2)=X(t).

S	 1
S	 a2 _ t3W1	 wi

.	 x2dx	 I
S	 5( , )—taw2=w2

S
.
I	 w2 and coboundaries: The identity
S
.	 y2 = x(x - 1)(x - t) _ x3 - (t + 1)x2 + tx
S
S
.

We now need an expresion of 	 in terms of the cohomology basis w,



I
.
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I
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I
S
I
S
I
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S
S
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I
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2ydy = (3x 2 - 2(t + 1)x + t)dx

x2 dx	 tdx 2	 xdx 2
= ---+—(t+1)+—dy

y	 3y 3	 y	 3
Applying the connection to both sides we obtain

at 
(x) = 

_wi - ôtwi + w2 + ôw2 +	 (20)

Putting together (17) and (20) we arrive at

	

a1 = 2(t _ 
1) Wl + 

2t(t— 
) W2 +_	 ) d(aY)	 (21)

otw2 = 2(t - 1)°' 2(t - 
1) W2 + 

_ 
1 d(ôy)	 (22)

The above system (22) shows that a (1,1)-minimal model of may be
defined as

P(1,i)
M(l,1) -f E/S

8..1	 1t
M(1,1) -+

P(ii)

where	 I
c	 3	 I

	

(l ,l)a 
= 2(t - 1)	 2t(t - 1)	 S

__ 3	 .

	

8(1,1) = 2(t 1)	 2(t - 1)	 :
and the pointed homotopy between P(i,i) ° 8(1,1) and 8 ° P(i,i) is

	

2	 5

	

)'(i,i) 0 = i	 EItY	 I
tt 1)	 S

A(i,i)$ = 
2  

8tY	 S
t-1	 I

since the identities ôtP(i,i) - P(i,i)6(i,i)	 dA(i,i) + A(i,i) d and E)t(1,1)

may be easily checked on the generators a, /3.	 S
We shall now switch to the method described in [73] to compute

the (1,2)- and (1,3)-minimal models of ô.
A (1,2)-minimal model of 	 is the Hirsch extension

	

M(1,2)= M(1,1)®A(i),	 = 1, dij= OA$	 S

with the map induced by

	

P(1,2)1	 0



	

2. FAMILIES OF CURVES	 169

The obstruction in (M(1, 2) -+ i) to the existence of the (1,2)-
minimal model of 9 is given by

S
.	 o(i) = (8(l,l)(d),Ot(p(l,2)r) + A(i,i)(dl)))
I
.	 = (8(l,l)(aAj3))(i,i)(aA$))

.	 (1 

_____	

2	
2l(atY)wi)I	 2(t— 1)	 2(t—	 l)aA(	 1)(ôtY)112 	=-	 cA

I	 I dx 
.	 = (Ot(t1))
S
S	 =d(O,t(txl))
.
S

S	 Thus setting
.
I
S	 8(1,2)11 = 0
S	 x 
.	 )t(1,2)71 = 

t(t - 1)
I
.
.	 the induced 8(1,2) : M(1,2) —* M(1,2), A (1,2) : M(1,2) -+

I	 identical. We begin with a (1,3)-minimal model of 	 given by the
.	 Hirsch extension
.

S	 M(1, 3) = M(1, 2) 0 A('y i , 'Y2)

I	 Vyd=h(2=1
I	 d71=aA?, d'y2=/3Ai
S
S
.	 and the map determined by

.
S	 P(i,3YY1 = P(1,3YY2 = 0
I
S
I

S	 constitute a basepointed (1,2)-minimal model of tit.
S	 The computation of the pointed (1,3)-minimal model of ô is wholly
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The obstructions to building 8(1,3) and A( i,3) are

o('-y1 ) = (ö(1,2)(d'yi), Ot(p(1,3)71) + )t(i,2)(d'Yi))

= (_2ti A+ 2t(l)$_t(tl)w2)	 :
.

= d (
-2(t - i)' 2t(t— 1) 72 _ t(t -	 l)0)	 I
____ _____ ____	 .

1 x2 dx I 1	 ___	 _____
\ 2(t-1)	 +2(t1)flt(tl) y )	

I	ö(72)=I- .
I,	 1	 1	 1	 2(t+1)	 2 

2(t - 1)71 + 2(t - 1)72 + 3(t - 1)	 3t(t - 1)' 3t(t - l)Y)
.

((19) should be used in the last step).
These computations show that the (1,3)-minimal model of Ot is induced

I
by setting .

I

S
and

.
=0	 I

\ (1,3)72 = 3t(t—	 1) Y 	 :

The differential equation of the horizontal sections of 5(1,3) is

'1	 1	
o	

I
0	

la
S

I	
0 0 o i(	 S

8 ij =	 lo	 0	 0 0	 oJIiiI	 I
71)

	

	 0	 --	 0	 I ' I	 (23)

t-1	

1

72	 t	 -	 '721	 II	 2(t+1) 
33t	 -	 ..

By the isomorphism of [73] Thm. 6.10 it is also the differential equation
that corresponds to the local system formed by the £ 3 'ir1E ® C.

t(t—i)	 2(t_1)1+ 2t(t1)2
I	 __________

8(1,3)Y1 - -_____	 ______	 ______

I	 2(t+l)	 1	 1 
ö(l,3)'Y2 = 	 c - __________	 _________	 _________

3(t— 1)	 3t(t— 1)	 2(t— 1)'	 2(t— 1)72

_	 I
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^ZBIWAR.K 5.3. ^s iB tbe ci

pIaiBed iB Sectio^ 5 O^ CZ^a^,teI
tiOBs COIIespoDdiB8 tOtbe 10caI
IestIictioII to the adequate ^Zi^l
85.1.

REMARK 5.3. As in the case of their monodromy matrices ex-
plained in Section 5 of Chapter 3, we can obtain the differential equa-
tions corresponding to the local systems £, I' 1 /F2 , I' 2 /r3 , r'3 /I'4 ®C by
restriction to the adequate minors of equation (23) as shown in Figure
F5.1.

.	 The equation obtained in the case of the abelianised of the fundamental

.	 group, iriEt/(,riEt)2 ® C Hi(Et; C) is a linear system equivalent to

.	 tion satisfied by the abelian periods of the matrix (see [29],[19]).

.	 REMARK 5.4. The equations given by the minors corresponding to

.	 r/r+11E ® C are the equations satisfied by the non-abelian periods

I	 of the affine Legendre family. These period maps may be realized as

S	 iterated integrals

.	 f Wi 1 . . . Wik _ f' ' f	 f1(t1) . . . fik ( tk) dt 1 . . . dtk

.	 y	 o;tl^t2^...5:tk^1

.	 where 4 (t) dt = y Kw and are dual to the F/Fj' as the ordinary

.	 periods to the H1 (see [49] or [25]). They are often referred to as the

.	 quadratic, cubic, quartic, . . . periods.

.	 REMARK 5.5. The differential equation for ( riE )2/(ir1 Et)3 0 C is

.	 zero. This means that the only quadratic period of the Legendre family
S	 is constant. The quadratic period map sends s e S to

. f
W1W2 

Ifb wl faWi
[b,aI fbw2 faW2J

.	 where a, b are the paths used in Proposition 3.46. This determinant is

.	 known to be 2iri by the Jacobi relation between elliptic integrals. The

.	 affine Legendre family has infinitely many non-abelian periods algebraic

.	 over C: they are just identities derived from the Jacobi relation.

.	 Rather than carry on the full computation of the minimal model of

.	 ô) and its associated differential equation, we will inquire about

.	 the Legendre hypergeometric equation, and it is the differential equa-
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S
S
S
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.I.

and as the Malcev algebra bracket preserves the lower central series 	 :
filtration, the coboundary operator d : V, -+ V A V also preserves
this filtration W. , multiplicatively extended to V, A V . As the ( 1 , ii)-
minimal model is generated by V,, the conclusion is:

LEMMA 5.6. Let M(1,n)r	 A*(V) be the (l,n)—minimal model
of a finitely presented group F. There exists an increasing multiplica- 	 I
tive filtration in the inductive system of (1 , n)—minimal models ' • -
M(1, n)r c-* M(1, n + i )r + . . . induced by the filtration of the spaces 	 I
of indecomposable generators W1 (V) = V" . . . V". This filtration	 I
on M(1, n)r is preserved by the coboundary operator d and is dual to	 S
the bracket of the Malcev algebras. 	 I

We will refer to the filtration W. that we have just introduced as
the weight filtration in the 1—minimal models. In the case of Kähler
groups F, this filtration is indeed the weight filtration of the MHS of
the 1—minimal models.

the format of the matrix A(n) of the differential equation associated
to the (1, n)—minimal model and the ring of coefficients over which it
is defined.

We will use some properties of 1—minimal models arising from the
lower central series filtration in the Malcev algebra, so we start by
showing them.

The Malcev algebra of a group admits a decreasing lower central
series filtration (ri') 1 = £F, (LF) = [(Cr')_ 1 , £f] , whose relation to
the lower central series of the group F has been explained in Section
2 of Chapter 1. Consider the (1, n)—minimal model of a manifold with
fundamental group F, we will denote it as M(1, n)r asit depends solely
on T. By Sullivan's theory of 1—minimal models the CDGA M(1, fl)r
is freely generated by a linear space of indecomposable elements V =
V1,1 e V1 '2 . . . V1 ', and the spaces V form an inductive system.
The duality theorem 1.43 of Sullivan states that the inductive system
formed by the spaces V is dual to the projective system of Malcev
algebras £F, and that the algebra brackets [., .] : £ A 4 - £ are
dual to the coboundary operators d : V, -f V, A V, . Therefore the lower
central series filtration of the Malcev algebras originates an increasing
filtration in the inductive system of spaces V:

W1(V)=V"...EV1",
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S	 We will require a further consequence of the inductive construction of
.	 1-minimal models:
.	 LEMMA 5.7. Let r :	 -+ V 1 "AV" 1 be the natural
.	 i<j

.	 projection. The linear map it o d : V"' —* V' s ' A V" 1 is one-to-one.

I	 PROOF. For any nonzero indecomposable element v E V1', its
.	 boundary u = dv E V' A V1 '	 V1'2 A V1 ' 2 . . . is a cocycle
.	 in a nontrivial cohomology class of ker(H2 (M(1, n — 1)) -+ H2 (F)). If

.	 class is the boundary for some indecomposable z E V1 ' 1 by the con-S	 struction process of 1-minimal models, hence the cohomology class of u

.	 would be trivial in H2 (M(1, n — 1)) contradicting our assumption.

.	 We are ready now to continue our study of the Legendre affine

.	 family. Let us fix some notation first: the ring Z{] is the subring

S	 of Q obtained by inverting the elements 2, . . . , n. As the Legendre

.	 family of affine curves is defined over Z, we will denote by SIZ[I
I	 the scheme defined by the corresponding restriction of scalars. The

.	 1-minimal model constructions of [73] that we perform in this section

.	 are algebraic; we have considered 8, E as Q-schemes and computed

.	 the Gauss-Manin connection on M(1, 3) with coefficients in O. The

I	 Gauss-Manin connection in the cohomology of the family is defined
over Z[], i.e. the flat coherent sheaf {H' (Es, Q)}tEs ®	 arises by

.	 extension of scalars from its Z[} analogue {H (Er, Z [})}ts ®

.	 Our goal in the sequel will be to determine whether all the sheaves of

.	 Malcev algebras £q 1 1 (Es, (0, 0, t)) are already defined over a scalar ring

.	 Z[;;1] obtained by inverting finitely many primes. We start with some

.	 computations:

.	 LEMMA 5.8. Let	 E	 with n ^ 2. Then we have

:	
(i) ? 

= p(t) + q(t)	 + d(r(x,t)y) where p(t),q(t)

S	 [(2n_i)!][ I an r(x,t) 
E ( [(2n-i)!I[ 1) [x].

S	 (..\	 (#\ — 2n-2f1 _L #\	 1#\	 2n-3#11) Pfl\ I — 2n-1Y	 Pn-i	 2fl_iPn_2
I	 f,•.\	 14' _ 2fl-2fi I .\	 (\	 2n-3 

'1I1) qnt) —	 1	 'gn-2	 • -

.	 this boundary u had no component in V" A V" 1 then it belongs to

.	 M(1, n-2), and as U E ker(H2 (M(1, n- 2)) -+ H2 (F)), its cohomology

— 2	 n-2	
--(i +t)r i (x,t) —(iv) r(x,t) _	 1x	 2ni' 2n-i

.	 (v) degp(t) = n — 1, with leading coefficient Pnn-i =	
.2n_2) 

.	 3.5...(2n1)
46•..(2n2) 

.	 (vi) deg q (t) = n — 1, with leading coefficient q 	 — — 35(2n1)

.	 (vii) deg r(x, t) = n — 2, with leading coefficient r 2 (t) _ 	

S	 Moreover, r(O,t) _ 0.
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PROOF. (1) is an immediate computation, and the other statements 	 S
are obtained from (i) by an easy induction computation. For starting
values, use	 = + 0	 + d(0) and the analogous result for 	 . U

REMARK 5.9. Lemma 5.8 is just a step in the algorithm for the
reduction of arbitrary elliptic integrals to the canonical first and second
kind ones.

.

.

.

.
jEfl mod2	 .

(iii) )tV" : 0 for all n.

PROOF. The proof is a straightforward, if cumbersome, argument
on induction. We will prove a slightly more precise result implying our
statement.	 .

The 1-minimal model of (fI , O ) contains a sequence of indecom-
posables {i7b E V" , n N} defined as follows:

1=/3EV"
'I'2=iiEV"2	 I

We are now ready to study the (1, n)-minimal model of ( 1 is, 5)
and the matrix A(n) of its differential equation.

	

PROPOSITION 5. 10.	 (i) The ring spanned by the coefficients of
A(n) is

(ii) 8V" c	 1<j<n

b3 ='y2 EV 1 '3 	 db3=f3Ab2
. . 
i:i;i:n;1b......

What may be directly proved by induction is:
1. \(V") is formed by polynomials p(x) Os/[1 J [x] if n is even, and
byp(x)'y ifn is odd.	 .
2. The polynomial with highest degree (hence nonzero) among the
)v, v E V 1' is	 A'/'2k1 = t(t—i) 9k(X )Y with Sk(X) E Z[(2kl)!1[x1
of degree k - 2, and )t'b2k = t(t_l)uk(x) with Uk(X) E Z[(2kl)!][x1 of 	 I
degree k.	 I
3. The leading coefficients of Sk(X),Uk(X), Sk k2,Uk k respectively satisfy
the recurrence

I
Ukk k	 18kk-2

-	 I
Sk+1k_12k+lUkk

For the last two steps of our induction hypothesis we use the method
of [73] to determine ), 8(v) of v e V1' as the primitive of ö(v) =
(ö(dv), E1(p(v)) + )t(dv)) with the correct basepoint.



r terms of lowert degreeint }+ I'	 terms in
1

8(dv2 ) E
1<h,d<ri

hk mod2
dEl mod 2

1<h<d<n
h+dh+l mod 2

2. FAMILIES OF CURVES	 175

4. d 1 (8dv) C	 2<j<n
jEn+1 mod 2

5. If n is even, 8(V1 ') does not contain terms in V1 ' 1 . If n = 2k + 1,
then

&b 
= Pk+lkukkt(t 

_ 1) a +

+ k+1kUkk ( _ 

1)

The previous computation of the (1, 3)—minimal model of the Le-
gendre affine family confirms hypothesis 1-5 and therefore (i)-(iii) up
to n = 3. Suppose them true up to n. Then, if v1 , . . . , 'UN =
form a k-basis for V1 ,n+ 1 , )() are obtained as the primitive of ö(v)
with correct basepoint. Now, by Lemma 5.6 d respects the weights on
M(1,ii + 1) so dv2	 1<k<l<n vljc A V'1 . By induction hypothesis (ii)

k+l=n+1
we have then

Again because d respects the weight graduation, d 1 (Sdv2 ) C	 2<j<n
jn+1 mod 2

Note that j ^ 2 because the elements of ödv have weight at least two.
The rest of the proof is just a cumbersome verification that hypoth-

esis 1-5 up to n together with what we have just explained imply 1-5
forn+1.

The conclusion that may be drawn from Proposition 5.10 is that
using the algorithm of [73] and basepoint section (0, 0, t) the Gauss-
Manin connection in the Malcev algebras £r (Es, (0, 0, t)) cannot be
defined on a subring of Q.

2.2. Families of punctured rational curves. The Gauss-Manin
connection has a simpler 1—minimal model in the surveyed families of
rational curves, as the following computations in the case of the com-
plement of a plane curve in the projective plane illustrate.

Let us consider

p(x, t) = xn + anlX	 + . . .,+ ao(t) C(t)[x]

and let (t) be its discriminant. Define S = {t E C I a(t)
oo'c/i,	 (t)	 O}, X = {(x,t)	 C2	t E 8, p(x,t)	 O} and
the projection f : X —+ S sending (x, t) to t. This is an algebraic
family of rational curves with ii punctures over an affine base. We will
consider two cases:
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^=^) = _z_f_iCH;^=d(—h^--_^

Thus fixing a basepoint section a : S - X a (1, 1)-minimal model is

Z:I;M(1 , 1) =I|Ca^,...,An)	 dai =O	 p(ai) =Wi = --^^
SCAi) = 0 1Cai) = -fiCt)--_

^
 t -07^^

j=1,...,n

Now, tbe (1,2)-IDiDiInal I^odel ofthe GbIe is 8i^I by

^1.,2) =^(1,1)63/l(M.j, 1 5 ^ < Z
' 
S nl)

^ivheIe m = 0, m = a^ l\ a j . We deteI^ziI^3 1,8(n.j):

5(n^j) = (5(M),^(ny) t 1(dnjj))
= CO,1(ai) . p(a.j) - p(aj) . 1(Aj))

=d((—^t7^7^—^^^^^)ai
+ ^''5^f^^^£j^|as,o|

'].'|zeIefoIe 1(V1'2) = 0. A siI^1e iBdu^oB coI^^^n 840^s that, as

CASE 2. : Generic curves.
There is an algebraic field extension K(C) 1K(S) where p splits in

linear factors x - fi , . . . , x - f, i.e., there is a curve C over S defined
by the multivalued algebraic functions on S given by the zeros of p.

P(V1'N) = 0, a1s0 1(V 1 'N ) = O G^: n > 2.0, also A(V") = 0 for n ^ 2.
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.	 The pullback of X over C

.	 g*X	 X

.	 9

.	 .	 .	 dx

.	
has a cohomology basis for its fibres wi =	 . . . , w as in Case 1,

S	 and the computation performed there holds verbatim. An analogous

.	 basis for the family gX —+ C coming from X —* S is given by the

.	 forms	
Idx	 xdx	 dxw	

i4'i = — , '/-'2	 , . . . ?/.)
.	 p	 p	 p

I	 The minimal model of 	 d9*x1c) computed with this basis is
.	 the pushout of the minimal model of 	 dx1s), i.e., the Hirsch
.	 extensions V" and the maps 8,A are the induced by the ring ex-
.	 tension 0s	 Oc . The (1, 1)-minimal model is given by M(1, 1) =
.	 A(/3i,...,L3),p(3) =,d/3 =O,andM(1,2) =M(1,1)®A((9, 1<
.	 i < j ^ ii)) with p(9) = 0, d9 = i3 A /3g. As	 =.	 for all i, where	 (9w, we have that f3 =	 b 3a and 9 =
.	 k<j(bikbjl — b l b k) r,kj . These linear relations allow us to compute 8, A
.	 for f : X - S. We just want to observe that as p(i j ,) = 0 and A is an
.	 antiderivation, it turns out that A9, = 0 for all i, j. Therefore, as in
.	 Case 1, A(V 1") = 0 for all n ^ 2.
.
.	 The fact that in both cases A(V) = 0 for n ^ 2 has important
.	 consequences, contrasting with the case of the Legendre affine family:
S	 - First, the computation of the 1-minimal model of	 dx1s) be-
.	 comes formal after the (1, 1)-minimal model, i.e., we do not need the
.	 original algebra and connection anymore.
.	 - Second, it is easily seen studying the succesive obstructions

:	 o() = ((de), o (P(e)) + A(d)) = ((d), 0)

.	 that after the (1, 1)-minimal model, no new primes appear in the de-
S	 nominators of the coefficients of A(n). Thus the differential equation
.	 is defined over 0S/{] where N is the least common multiple of the
.	 denominators in A(1).S	 - Third, one may proof a simpler version of Proposition 5.10 in this
.	 case. The result is that the matrices A(n) are block band matrices
.	 of block width two, where the only nonnull blocks are those on the
.	 diagonal and on the first subdiagonal (only in the first subdiagonal in
.	 Case 1).

.

.

.

.

.

.

.

S

.
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3. The differential Galois groups of Malcev algebras

We have studied in the previous section the differential equation
satisfied by the variation of Malcev algebras in algebraic families of
curves. In order to do some qualitative analysis of these equations
and of their solutions, the non—abelian periods of the family, we will
study in this section the differential Galois groups of the Gauss—Manin
connection in the rational homotopy of families of algebraic manifolds.
Basically, we compare these with the differential Galois groups of the
abelian periods of the cohomology of the family, and show that the Mal-
cev algebra Galois groups are unipotent extensions of the cohomology
Galois groups. This characterization is based on the group—theoretic
results of Section 7 in Chapter 1 and on Schlesinger's theorem char-
acterizing differential Galois groups of the connection as the Zariski
closure of the monodromy of the local system (see [76]).

Finally, we go back to the specific case of the Legendre affine family,
and analyze in more detail its Malcev algebra differential Galois groups.

Let us start by fixing some notation first: for every n ^ 1, we will
denote by M the monodromy groups of the local systems formed by
the bracket spaces (ir1(X8,a(s))/ir1(X8,o(s))+i)®k, and by M 1,, the
monodromy groups ofthe local systems of k—Malcev algebras £(ir1 (X, cr(s)).
The coefficient field k will always be clear in every context. In the case
of k = C, the corresponding differential Galois groups will be denoted
Gn , Gin respectively. The consequence of Lemma 1.54 in differential
Galois theory is:

THEOREM 5 . 1 1 . Let f : X -+ S be an algebraic family as above
defined. Fix a homogeneous basis for 4,ir1 Xo 0 k with chark = 0, and
let

ZsN^^n C AUtAutnzxo cn'7T1 Xo ^ K C GLCN, k) a u^potent
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.	 (iv) For Ic = C, there is an exact sequence of differential Galois

.	 groups	 -

S	 1 - U —4 G1 -- c1 —f 1
S	 with U unipotent.

S	 PRooF.	 (i)	 immediate consequence of Lemma 1.54.
!	 (ii) comes from (1) and the fact that the ç are algebraic group mor-S	 phisms.
.	 (iii) The map	 is onto by its definition, and sends every matrix A E
.	 Aut Aut ir ixo4z 1 iX ® k to A1" . Therefore, A e ker	 impliesI	 A1'1 = Id. But by (i), A' = q5A1" for all i. Therefore, theS	 A E ker	 are block lower triangular matrices with the identity
.	 in the diagonal blocks, and so ker 'b is a unipotent group.
.	 (iv) comes from taking Zariski closures in (iii): 	 is onto because itS	 is an algebraic group morphism and G1 = M 1 , and ker is stillS	 unipotent because the relations A' = A" are algebraic.S
S
.	 REMARK 5 . 1 2 . Because of the block structure of the matrices, the
.	 nilpotence class of the kernel is nil ker cb ^ n — 2. Due to the iso-
I	 morphisms of 2.2 the unipotent groups ker 'b and U, form towers, and
S	 again U+1/(U+1)_2 = Un.

.	 REMARK 5. 13. When f is a smooth proper morphism, by Deligne's

.	 Semisimplicity Theorem ([32]) the monodromy group M 1 or equiva-S	 lently G1 = M1 , £(G1 ) are semisimple. Then by Levi's theorem (see

.	 [98] Thm. 3.14.1) £(G1 ) is an extension of £(G1 ) by the nilpotentS	 algebra
S
.	 In the remainder of this section we go back to the affine Legendre
S	 family

:
S	 (x,y,t)—+t
.	

which is our primary example, and study its differential Galois groups.	
G, G1 , U with more detail..	

We begin by recalling the differential Galois group of its abelian.	
periods, which may be retrieved from the monodromy computations of

:	
Section 5 in Chapter 3.

.	 LEMMA 5.14. The Zariski closure G 1 of the monodromy group M1

.	 in Hi(Et; C) of the Legendre family is G 1 = SL(2, C)
S
.
S
S
..
.
S
.
S
S
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PROOF. As has been explained in Remark 3.77, the group M 1 is
generated by

.
S
I
S
S
I
I
S
S
S
I
I

logp0 = ( 2 ) = —2Y ,	
logp = ( ) = 2X

and [log Pi log PoI	 —4H. Hence the algebra is sl(2, C) , and C1 =
SL(2,C).	 D	 .

The previous lemma and Theorem 5.11 allow us now to determine
the differential Galois groups associated to the F/F1:

PROPOSITION 5. 15. The differential Galois group of the Fuchsian
equation satisfied by the ir 1 (E)/ir1 (E)+ i ® C of the affine Legendre 	 I

family of cubics over C \ {O, 1} is {Id } if n = 2 and PSL(2, C) if	 S
n>2.	 S

PROOF. The result for n = 1 has been establised in Lemma 5.14.
For n > 1 we use the fact that the monodromy representation

p : iri(B, ) F2 -* Aut ((F2)/(F2)+1)

factors by Theorem 5.11 through 	
:

p : ri (B, ) F2 -4 Aut (F2/(F2)2)
2	 .

Thus M = çb(M i ) and M = c5fl (M i ) '= ç5(SL(2, C)). By Proposi-	 S
tion 1.61 this image is {Id} if n = 2 and SL(2, C)/,aId = PSL(2, C) if
n>2.	 E	 .

It is worth remarking that all the differential Galois groups above
computed are irreducible.

We will also require the Lie algebra version of Proposition 5.15.

11 o\	 (1 2
Po2 i)'	 '=t%O I

It is obvious that

U E C } G1,

I U E C } G1,

and both are abelian. These subgroups are contained in GL (Hi (Et ; C)),
therefore by functoriality of the exponential map the Lie algebra of G1
contains
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.	 COROLLARY 5.16. Letp0 ,p1 be the images of[7o], ['y' ] in the mon-

.	 odromy on	 0 C with ri 2. There is a Lie algebra

.	 monomorphism

:	
cb; : sl(2,C)	 ® C)

.	 such that

S	 expç5(-2Y)=p0

S	 expç5(2X)p1.
S
S
S
.	 PROOF. As we have seen in Prop. 5.15, the monodromy represen-
S	 tation in	 0 C factors as

.	 r1(B,	 GL(ir1(E)/r1(E)2®C) --
S	 1

S	
and	 = q5M 1 = qSLir i (E)/ir1 (E)2 ® C. The Lie algebras ofS
M 1 , M satisfy the same relation £M - qLM1 = qsl(2, C), the.
latter equality given by the isomorphism of Lemma 5.14S

:	
L:(M1)

S	 logp0—+-2Y

S	 logpi —+2X

:	
As q5 is a finite map for n 2 by Prop. 1.61,	 is injective.

and the generators of the groups in our example. Let A(n) be the ma-
trix of the differential equation associated to the (1, n)—minimal model.

S	 PROPOSITION 5.17. The groups U, of the affine Legendre family

S	 verify that

S	 nilU<n-3

I	 PROOF. The monodromy of the affine'Legendre family may be com-
S	 puted from the differential equations extending the system of (23),
S	 the maps Po, Pi being the matrices of res 0 A(n), res 1 A(n) respec-

S	 We are able now to study the unipotent extensions

:
S
S
S

S	 tively. These matrices are block lower triangular with the first sub-
.	 diagonal made of zero blocks, which assures that the (n - 2)-brackets
S	 are zero.
S
S
S

Its image is the Lie algebra ofthe differential Galois group of iri(E)/iri(E)+1®
C.
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REMARK 5 . 1 8 . Looking at the second subdiagonal in the differ- 	 I
ential equation 23 of £3(ir1(E , *)) we find the block A(n) 3" = A(3)3"
with nonzero residue matrices in 0,1. It seems likely that nil U = n - 3	 1
exactly.	 .

Now we establish a property hinted at in Section 5 of Chapter IlL	 :
PROPOSITION 5.19. The monodromy matrices Po, Pi E

k are unipotent.	 I
I

PROOF. Equivalently, we will check that logp,logp are nilpotent.
We know by Prop. 5.17 that both Po,Pi are block lower trian-

gular, and so are log p0 ,log p. It is easily checked that the diagonal
blocks (log po)',(1og p1)ii are the logarithms of respectively,
which are the matrices of the monodromy automorphisms ,00,Pi in

{ n-i (E, *)/iri (Et , *)i+1 0 C}LES.
By Corollary 5.16 there is a Lie algebra monomorphism : sl(2, C) -+

GL (ii-1 (E)/ir1 (E)+ 1 ® C) such that

çb(-2Y) = (log p0Z
ç5(2X) _ (log

Since X,Y E sl(2,C) are nilpotent, so must be (logp 0)', (logpi )' for
all i.

The only condition imposed by Prop. 5.17 on a basis {e} of
£n7i (E') ® C to produce block lower triangular matrices for po ,Pi.
was that it should consist of homogeneous elements belonging to the
Fu /Fi	'iri(Et)j/'rci(Et)j+i ® C. We can form one such basis with a
basis for every •i (E1 )/ir1 (E) +1 ® C in which (log p0) has its canon-
ical Jordan matrix, and in this basis the matrix log P0 will be strictly
lower triangular. The union of the corresponding Jordan basis for
( log Pi ) will also make log Pi strictly lower triangular, and complete
our proof.	 El

Finally, we establish the triviality of	 ir (G 1 ) for the affine Le-
gendre family.

PROPOSITION 5.20. G 1 is connected and simply connected for all

PROOF. As we have seen in Thm. 5.11, there is an exact sequence
of algebraic groups

1 -+ U -+ G 1 -+ SL(2,C) -^ 1	 (25)

using that G 1 = SL (2, C) in our case. The first term U,. is unipotent,
hence connected and simply connected. So is SL (2, C). The maps of
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S
.	 (25) define a topological fibration, and therefore the homotopy groups
S	 of the spaces form a homotopy long exact sequence
.	 . . . -+ ir1 (U) -4 ir1 (Gi ) -+ iri (SL (2, C) -+ iro(U) -+ iro(Gi ) -+ iro(SL (2, C))

which establishes our assertion.	 LI
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