UNIVERSITAT DE BARCELONA

EL GRUP FONAMENTAL

DE LES VARIETATS KAHLER

per

Jaume Amorés Torrent

Facultat de Matematiques
1996



EL GRUP FONAMENTAL

DE LES VARIETATS KAHLER

MEMORIA PRESENTADA PER JAUME AMOROS

PER ASPIRAR AL GRAU DE DOCTOR EN MATEMATIQUES.



Aupo2¥eiy %

Departament d’AIgebra i Geometria, Universitat de Barcelona.
Programa de Doctorat d’Algebra i Geometria 1991-93.
Doctorand: Jaume Amorés Torrent.

Tutor: Viceng Navarro Aznar.

Director de Tesi: Viceng Navarro Aznar.

Viceng Navarro Aznar
catedratic del Departament d’Algebra i Geometria
de la Universitat de Barcelona

CERTIFICA:

Que la present memoria ha estat realitzada sota la seva direccié per Jaume Amorés;
i que constitueix la tesi d’aquest per a aspirar al grau de Doctor en Matematiques.

Barcelona, Novembre de 1996.



Agraiments.

En primer lloc, desitjo agrair a Viceng Navarro la seva labor de direccio, que ha estat essencial per a la
completacié d’aquesta memoria, i també les nombroses i molt formatives discussions matematiques que hem
mantingut en aquests anys.

També vull agrair a Agusti Roig el haver-me ensenyat pacientment la major part de la Homotopia
Racional que sé.

En P’agraiment per informacions valuoses, observacions oportunes i converses interessants per a aquest
treball, he de destacar principalment a Norbert A’Campo, Sebastia del Bafio, Miguel Angel Barja, Marc
Burger, José Ignacio Burgos, Carles Casacuberta, Paco Guillén, Manfred Hartl, Janos Kollar, Dieter Kots-
chick, Pere Pascual, Francesc Planas, Fernando Serrano i Domingo Toledo. També estic agrait per aquestes
raons col.lectivament als participants en els seminaris de Geometria en la Universitat de Barcelona i Borel
1995 en la Universitat de Berna.

He passat el temps de I’elaboracié d’aquesta tesi en el Departament d’Algebra i Geometria de la U.B., el
Mathematisches Institut de la Universitat de Basilea, el Departament de Matematica Aplicada I dela U.P.C.
en la ETSEIB, i I'Institut de Ciéncies de Materials de Barcelona (CSIC). En tots aquests llocs de treball
he rebut un generés recolzament material i d’altres formes a la meva recerca, que ara els agraeixo. També
agraeixo els diferents ajuts economics que durant la realitzacié d’aquest projecte he rebut de la Generalitat
de Catalunya, la Direccién General de Ciencia y Tecnologia, i el Fons Nacional Suis de Recerca.

Finalment, vull agrair a la Cristina i als meus pares pel suport que m’han donat des del pricipi d’aquesta
tasca.



Contents

Introduccio
1. Els grups Kahler
2. Continguts d’aquesta memoria
3. Resultats assolits i conclusions

Chapter 1. The de Rham fundamental group
1. Nilpotent groups and completions
The Malcev algebra and the de Rham fundamental group
Malcev algebras of free groups
Malcev algebras of finitely presented groups
1-minimal models and unipotent completions
1-formality and quadratic presentations
Automorphisms of group origin

N ok

Chapter 2. Kahler groups
1. Formality of compact Kéahler manifolds
2. Examples and applications
3. The Albanese map and the de Rham fundamental group
4. Non-fibered Kahler groups

Chapter 3. Geometric monodromy
1. Geometric monodromy of pencils of curves
2. Monodromy in the fundamental group
3. Monodromy properties of pencils of projective curves
4. Fundamental groups of Lefschetz pencils
5. Monodromy in the Malcev algebras of the Legendre family

Chapter 4. Dolbeault realization
1. Acyclicity in the real analytic category
2. Dolbeault lemmas and variations of Hodge structure
3. Real analytic variations of Hodge structure

Chapter 5. de Rham realization
1. The Gauss-Manin connection in the Malcev algebra
2. Families of curves

15

19
19
22
28
31
36
40
45

51
51
53
55
61

69
69
90
101
119
126

131
131
133
153

161
162
166



4 CONTENTS
3. The differential Galois groups of Malcev algebras 178
Bibliography 185



Introduccio

1. Els grups Kahler

1.1. Els grups fonamentals en la classificaci6 de varietats.
Quan hom estudia la classificacié homotopica, topologica o diferencia-
ble de varietats PL, diferencials, complexes, ... , apareix una dicotomia
molt marcada en els resultats assolits fins el moment present entre el
cas simplement connex i el no simplement connex.

En el cas simplement connex s’han fet avancos notables fins el mo-
ment present. Per exemple, podem destacar entre aquests la teoria
de torres de Postnikov per CW-complexes, i els treballs recents sobre
varietats C* compactes de dimensié 4, culminant en els teoremes de
Freedman i Donaldson que caracteritzen el tipus topologic d’aquestes
varietats. Aquests teoremes de classificacié tenen en comi que codi-
fiquen la classe d’equivaléncia modul isomorfisme d’un espai mitjangant
uns invariants lineals, grups abelians, elements seus, morfismes entre
ells, en nombre finit o numerable, i que poden ser relativament coneguts
en molts casos: la torre de Postnikov modul torsié es pot calcular
via models minimals de Sullivan, el tipus topologic es pot deduir de
’algebra de cohomologia entera i certes classes caracteristiques de la
varietat.

En contrast, en el cas no simplement connex el nostre coneixement
es troba molt més endarrerit. Max Dehn va provar el 1912 que tot
grup finit presentat és grup fonamental d’una varietat compacta llisa
orientable de dimensié 4. Aix0 fa que el problema de classificacié fins
i tot homotopica d’aquestes varietats contingui al problema. de classifi-
cacié de grups finit presentats modul isomorfisme. El problema essen-
cial d’aquesta classificacié ha estat resumit per Mikhail Gromov com

”Qualsevol afirmacid sobre tots els grups és trivial o falsa”

Fins i tot si ens restringim a la categoria de grups finit presentats,
questions tan basiques com ara decidir si dues presentacions defineixen
grups isomorfs, si dues paraules defineixen elements conjugats o fins
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i tot el mateix en una presentacié d’'un grup sén en general indecidi-
bles. Qualsevol sistema d’invariants lineals ofereix només una infor-
maci6 grollera, i és trivial per amplies families de grups.

Aix{ la impossibilitat de classificacié de grups és heretada per les
varietats llises. Davant d’aquesta dificultat, la linea de recerca basica
ha estat estudiar les representacions lineals i en general les accions
dels grups fonamentals en espais distingits, amb les propietats d’origen
geometric que aquestes accions satisfan. En aquesta direccié s’emmarca
la present memoria.

1.2. Uns grups molt especials. Quan hom restringeix el seu
estudi de grups fonamentals a categories més i més restringides de
varietats, s'observa a partir de la dimensi6 real 4 una divisié nitida:
qualsevol grup finit presentat és grup fonamental d’una varietat C*
compacta (Dehn, 1912, [30]), d’una varietat quasi-complexa de di-
mensi6 4 (Kotschick, 1992 [62]), simplectica de dimensié 4 (Gompf,
1995 [39]), fins i tot complexa i simplectica de dimensié 6 (Taubes
[92],Gompf). Quan hom augmenta la dimensié no es perden en cap
cas grups fonamentals.

En canvi, hi ha una classe de varietats molt propera a les anteriors
citades de la que es coneix de fa anys que imposa restriccions als seus
grups fonamentals: es tracta de les varietats Kihler compactes. La
descomposicié de Hodge de la cohomologia complexa de les varietats
compactes Kahler té com a consequencia elemental que els nombres
de Betti senars de tals varietats son parells. En particular, b (X) =
rang 7y (X, )% és parell, i els grups amb abelianitzat de rang senar,
com ara Z, no poden ser grups fonamentals de varietats compactes
Kabhler.

Si hom restringeix encara més la classe de varietats estudiades, no
s'apercebeix ’aparici6 gradual de més restriccions topoldgiques. Tot al
contrari, hom es troba amb que:

- no es coneix cap exemple de varietat Kéhler compacta que no sigui
difeomorfa a una varietat projectiva sobre C,

- per la classificacié de Kodaira, es sap que totes les superficies Kéhler
compactes sén difeomorfes a superficies projectives llises sobre C,

- totes les varietats projectives llises sobre C s6n difeomorfes a varietats
definides sobre Q.

Es a dir, dins de les principals classes de varietats compactes es-
tudiades actualment en Geometria, les varietats Kahler son la classe
més gran en la que hom observa restriccions en el grup fonamental, i
aquestes restriccions semblen ser les mateixes que en el cas de varietats
projectives sobre un cos de nombres! Aquest fet fa molt especials i



1. ELS GRUPS KAHLER 7

interessants els grups fonamentals de les varietats Kihler compactes,
que reben el nom de grups Kahler (vegi’s [3]).

En el context de la Geometria Algebraica, és també interessant
conéixer els grups fonamentals de varietats algebraiques obertes llises
o singulars. En el cas obert, es sap que el grup fonamental d’una
varietat quasi-projectiva llisa satisfa també restriccions, com ara les
que provenen de I'estructura de Hodge mixta posada per Morgan i
Hain a la seva completaci6é unipotent ([70], [47]). En el cas singular,
hom pot realitzar qualsevol grup fonamental finit presentat mitjancant
un poliedre afi complex, perd en canvi es sap molt poc sobre els grups
fonamentals de varietats singulars irreductibles.

1.3. L’estudi dels grups Kihler. L’estudi dels grups Kahler és
un tema recent, que es troba en la confluéncia de la Teoria de Grups,
la Geometria Algebraica i la Topologia Diferencial.

A continuaci6 introduim breument les principals linees d’investigacié

sobre el tema amb les que aquesta memoria entronca:
1: La completacié unipotent dels grups Kdihler. Aquesta és la nos-
tra linea de treball fonamental. Sigui k un cos de caracteristica zero.
La completacié k-unipotent d'un grup I', denotada I' ® k, és el limit
projectiu del sistema invers de morfismes de grups

r —U,

on U és un grup k-algebraic unipotent. Per un grup I' finit pre-
sentat, la seva completacié k-unipotent és un pro-grup k-algebraic
unipotent, equivalent pels treballs de Malcev a la seva algebra de Lie
pro-nilpotent, I’dlgebra de Malcev L(I', k). Aquesta completacié clas-
sifica les representacions unipotents del grup, o equivalentment els sis-
temes locals/fibrats integrables unipotents sobre un espai X tal que
m1(X) 2 I'. Debut a D'existéncia de reticles provinents del grup I' en
tota representacié unipotent, el completat k—unipotent I' ® k i la seva
algebra de Malcev L(T', k) per k cos de caracteristica zero s’obtenen
per extensié d’escalars del cas racional I' ® Q, L(T', Q).

Un altre tret especial de la completacié unipotent que simplifica el
seu estudi és el fet de que si I' = 7, (X ), amb X varietat diferenciable,
la completacié I' ® R pot ser calculada a partir del complex de formes
diferencials de de Rham de X. Aquest calcul es pot fer via la teoria
de models 1-minimals de Sullivan, o mitjancant les integrals iterades
de K.T. Chen. A més, en el cas de les varietats Kihler compactes
el teorema de formalitat de Deligne-Griffiths—-Morgan—Sullivan permet
calcular el model 1-minimal directament a partir de la cohomologia de
la varietat, i traduir propietats de la cohomologia com D’estructura i
Paparellament de Hodge, a propietats de la completaci6 unipotent.
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Entre els resultats principals obtinguts per aquesta via destaquem
la propietat de que els productes triples de Massey de grups Kahler
sén zero, cas particular de 1-formalitat conegut ja per J.-P. Serre, i
I'isomorfisme de I’algebra de Malcev d’una varietat Kéhler compacta
amb la d’un model llis de la seva imatge per ’aplicacié d’Albanese,
resultat debut a Campana ([20]).

2: La cohomologia L? dels grups Kéhler. El calcul de la cohomologia
L? d’una varietat Kahler iniciat per M. Gromov i continuat per Ara-
pura, Bressler i Ramachandran déna condicions suficients per a fibrar
varietats Kahler simplement connexes sobre el disc de Poincaré. La
consequencia al aplicar aquests resultats als recobridors universals de
varietats compactes és que I’extensié d’un grup amb infinits finals per
un grup finit generat (i en particular un producte lliure de grups) no
pot ser Kahler ([46],5]).

39: Aplicacions harmoniques sobre varietats Kahler. El punt de par-
tida d’aquesta via d’estudi és el teorema de Siu i Sampson que diu que
tota aplicacié harmonica d’una varietat compacta Kahler a una vari-
etat riemanniana amb curvatura seccional Hermitica negativa és pluri-
harmonica. Siu, Sampson, Carlson i Toledo parteixen d’aquesta propi-
etat per a estudiar les aplicacions harmoniques de varietats compactes
Kihler a espais hermitics localment simetrics, obtenint teoremes de
factoritzacié d’aquestes aplicacions a través de superficies que mostren
que els reticles co-compactes en SO(1,n) no son Kahler per n > 2. Hi
ha una versié6 de Gromov i Schoen d’aquesta teoria per a aplicacions
harmoniques cap a arbres. '
4: Teoria de Hodge no abeliana. Aquest camp constitueix una versio
equivariant de ’anterior. L’objectiu d’aquesta teoria és I’estudi d’espais
de moduli de representacions de grups fonamentals de varietats projec-
tives i quasi—projectives, i dels seus resultats se n’extreuen algunes
restriccions que aquests grups han de satisfer, com ara el fet de que
les singularitats en l’espai tangent de Zariski de l’espai de moduli
de representacions de dimensi6 n d’un grup Kahler sén quadratiques
(Goldman-Millson, [38]), o que la clausura Zariski real de la monodro-
mia d’una R-variacié d’estructures de Hodge sobre una varietat Kahler
compacta ha de tenir un subgrup de Cartan compacte (Simpson, [85]).

1.4. Varietats quasi—projectives i grups fonamentals relatius.
A més dels grups Kahler, en Geometria Algebraica apareixen de man-
era natural el grups fonamentals de varietats quasi-projectives llises.
Aquests grups també satisfan algunes de les propietats dels grups Kahler
abans citades, com ara l’existéncia d’una estructura de Hodge mixta
en la seva completacié unipotent. En el cas de varietats algebraiques
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llises sobre un cos de nombres, aquests grups admeten diferents real-
itzacions: Betti, Hodge, de Rham, étale, cristal.lina, construides per
Deligne en [34] en el cas de varietats X tals que una completacié ver-
ifica H'(X,0) = 0. En aquesta memoria estudiem les realitzacions
de Betti, Hodge i de Rham del grup fonamental sense aquesta condicié
cohomologica, manifestament molt forta. En particular, en el Capitol 5
compararem en el cas de corbes els resultats que s’obtenen per varietats
que compleixen H*(X, ) = 0 amb el d’algunes que no la compleixen.

El fet de que el grup fonamental es un invariant dels espais puntejats
obliga també a tractar el cas relatiu, ja que el que podem associar
naturalment a una varietat algebraica X no és un grup fonamental, sin6
la familia donada per la projeccié en el primer factor X x X — X amb
punt base diagonal, que déna la variacié del grup fonamental de X al
variar el punt base. Hom considera aleshores el cas relatiu, de families
de varietats algebraiques f : X — S on f és llis i topologicament
localment trivial, amb una seccié punt base o : S — X. En aquest cas
els grups fonamentals de les fibres formen un fibrat principal de grups
discrets {m (X, 0(s))}ses, 1 les dlgebres de Malcev de les fibres formen
sistemes locals d’algebres de Lie.

Aquests sistemes locals d’algebres de Malcev que denotem £(X|S) =
{L(m1(Xs,0(5)))}ses s6n equivalents a fibrats holomorfs sobre la base
S amb una connexi6 integrable (L(X|S) ® Os,ds). Aquesta connexid
és la connezid de Gauss—Manin en l’algebra de Malcev. La connexid de
Gauss—Manin en l'algebra de Malcev és d’origen algebraic, i singular—
regular (Navarro Aznar, [73]).

2. Continguts d’aquesta memoria

El proposit d’aquesta memoria ha estat ’estudi del grup fonamental
de les varietats algebraiques complexes, en les seves realitzacions Betti,
Hodge i de Rham. L’estudi s’ha fet tant en el cas absolut, és a dir
grups fonamentals de les varietats esmentades, com en el cas relatiu,
en el que s’estudia la monodromia en el grup fonamental i la connexié
de Gauss-Manin associada. Les tres pricipals direccions de treball han
estat:

(i) La completaci6é unipotent dels grups Kahler, mitjangant els models
1-minimals de Sullivan i el teorema de formalitat de Deligne—Griffiths—
Morgan-Sullivan.

(ii) La monodromia en el grup fonamental en pinzells de Lefschetz
de corbes, és a dir, families de corbes amb singularitats quadratiques
ordinaries.
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(iii) El1 model 1-minimal de la connexié de Gauss—Manin en la coho-
mologia de varietats algebraiques llises.

Fem a continuacié una descripcié més detallada dels continguts
d’aquesta memoria:

El Capitol 1 és una introducci6 al grup fonamental de de Rham i
algunes de les seves propietats. Les completacions nilpotent, nilpotent
sense torsié, i k—unipotent d’un grup I' sén definides categoricament
i caracteritzades a continuacié en termes de la seérie central descen-
dent del grup. En el cas d’un cos k de caracteristica zero, la com-
pletacié unipotent I’ ® k és un grup pro-algebraic k-unipotent, equiv-
alent per tant a la seva algebra de Lie pro—nilpotent. Aquesta algebra
rep el nom d’algebra de Malcev de I' sobre k, i es denota L(T,k).
Es descriu a continuacié com aquesta algebra de Malcev i la com-
pletacié unipotent per un cos k de caracteristica zero s’obtenen a par-
tir dels homolegs racionals per extensié d’escalars, aixi en particular
L(T,k) = L(T',Q) ®g k. Aquesta propietat ens ha sigut molt conve-
nient, ja que permet utilitzar un cos k particular, usualment Q o R, i
les propietats observades s’estenen a tots els cossos k de caracteristica
zero. La relacié d’aquesta completacié k—unipotent amb la completacié
nilpotent sense torsié utilitzada per Campana és descrita en el Lema
1.18.

Una altra algebra de Lie pro—nilpotent naturalment associada a un
grup I' és l’algebra graduada grI' = @,>1'n/T'nt1. Aquesta algebra,
definida ja sobre Z, és una forma entera de la graduada de 1'algebra de
Malcev, co és

GrL(T k)= (grT) @z k.

Descrivim a continuacié algoritmes per a calcular els primers quocients
d’aquesta algebra graduada I'/T, ® k,I';/T's ® k a partir d’una pre-
sentacié del grup T, derivats de [88], [27]. L’is de coeficients en un
cos de caracteristica zero permet fer aquest calcul mitjancant 'algebra
del grup kT ([79]). Com a pas previ a la presentacié de l’algoritme,
estudiem aquestes algebres de Malcev i de grup en el cas d’un grup 1li-
ure finit generat F,; en aquest cas apareixen les corresponents algebres
de Lie nilpotents lliures.

L'avantatge principal de la completacié unipotent i l'algebra de
Malcev respecte de completacions comparables és que pot ser calculada
explicitament, i relacionada directament amb I'algebra de cohomologia,
mitjancant els models 1-minimals de Sullivan o alternativament via les
integrals iterades de Chen. Després d'una breu introducci6 als models
1-minimalsi la seva dualitat amb I’algebra de Malcev, entrem en la dis-
cussi6 de la formalitat. La formalitat significa basicament que el model
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minimal pot ser calculat a partir de la cohomologia. El tipus de for-
malitat que requerim és la 1-formalitat; aquesta propietat dels espais
és present en la literatura sota tres formes diferents: la 1-formalitat, la
presentacié quadratica de ’algebra de Malcev, i ’annulacié dels pro-
ductes de Massey. Mostrem com aquestes tres presentacions d’aquesta
propietat sén equivalents, per mitja d’accions del grup G,, (k) i de la fil-
tracié pel pes en ’algebra de Malcev. Una altra consequéncia d’aquesta
caracteritzacié és que en el cas de grups 1-formals, 1’algebra de Malcev
és naturalment isomorfa a la seva graduada Gr L(T',k) = grI' @z k, i
per tant ’algebra graduada del grup és una forma entera per l’algebra
de Malcev dels grups Kahler.

Finalment, hom estudia la relacié entre el grup d’automorfismes
d’un grup I, dels seus quocients nilpotents I'/T',, i de I’algebra de Mal-
cev. Es demostra que el grup d’automorfismes de 1’algebra de Mal-
cev LT és una extensié pro-unipotent del grup d’automorfismes de
Pabelianitzat GL (I'/T's ® k), i en particular la restriccié d’un automor-
fisme de LT als quocients de la seérie central descendent I';,/T'yi1 ® k
és la imatge per un automorfisme algebraic de I’automorfisme induit
en I'/T, ® k. Aquesta propietat servira per a caracteritzar els grups de
Galois diferencials de ’algebra de Malcev en families de varietats.

El Capitol 2 estudia la completacié unipotent dels grups Kéhler,
i en ell s’inclouen els resultats de 1'autor ja publicats a [2] i [3].

El coneixement dels grups Kéahler ha progressat a grans passos en
els darrers anys (veure [3]), pero resten obertes gliestions fonamentals,
com ara

- Es tot grup Kahler el grup fonamental d’una varietat projectiva llisa?
i, completant a l’anterior,

- Es tot grup fonamental d’una varietat projectiva llisa una extensié6
quasi-abeliana del d’una varietat de tipus general? (Kolldr, [61])

Donem una resposta afirmativa a totes dues qliestions per a les algebres
de Malcev, és a dir, per a les representacions unipotents dels grups en
lloc dels grups mateixos. L’eina usada per a obtenir aquests resultats és
laplicaci6 d’Albanese ax : X — Alb(X). Demostrem que les algebres
de Malcev de X i d’un model llis de la imatge d’Albanese de X sén
isomorfes. Per tant, n’hi ha prou amb examinar les subvarietats dels
tors complexes i els seus models llisos, un tipus de varietats bastant
estudiat (cf. [97]). Es presenten a continuaci6 algunes altres aplica-
cions d’aquestes idees, calculant I’algebra de Malcev de les varietats
compactes Kahler amb dimensié de Kodaira 0 o 1, i establint a nivell
de representacions unipotents la prediccié de Kollar de que el prob-
lema de caracteritzacié dels grups Kahler es troba fonamentalment en
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les superficies de tipus general. També es mostra que els grups Kahler
definits per una sola relacié tenen algebra de Malcev zero o isomorfa a
la d’una corba.

Previament en aquest capitol mostrem que la 1-formalitat de les
varietats Kdhler compactes implica que les seves algebres de Malcev
estan determinades pels seus quocients L,I' 2 T/, @ k® T /I3 ®k
que hem calculat en el capitol anterior, i que com a consequencia de
I’aparellament @ en cohomologia els grups tals que el quocient L,I' és
lliure no poden ser Kahler. Entre els grups amb quocient de Malcev
LT lliure destaquem els grups para—lliures de G. Baumslag ([11]).

Finalment, recordem la dicotomia entre els grups Kahler establerta
per Beauville i Siu: un grup Kahler I' = m(X) és fibrat si admet
un morfisme exhaustiu I' — Iy — 1 amb Iy el grup fonamental
d’una corba de génere g > 2, i I' és no fibrat si no existeix tal mor-
fisme. Pels resultats de Beauville i Siu, que es remunten al teorema
de Castelnuovo-de Franchis, aquesta condicié és equivalent a la de
’existéncia de pinzells de génere > 2 per la varietat X. Els tnics ex-
emples de grups Kéhler no fibrats coneguts sén racionalment nilpotents,
i s’ignora encara si aquests son els Unics grups possibles. Donem una
cota superior pel rang del quocient I'y/T's, o equivalentment una cota
inferior pel rang del segon nombre de Betti b2(I') < b2(X) en el cas de
grups Kahler no fibrats I' = 7;(X). Els calculs de I’algebra de Malcev
de classe 2 £,I" del capitol anterior permeten obtenir a partir d’aquestes
cotes una cota inferior per la deficiéncia de I' (diferéencia minima entre
el nombre de relacions i generadors entre totes les presentacions finites
de T'), que depén linealment de la irregularitat ¢ = 3b,(X). Aquestes
cotes ens permeten donar uns quants exemples de grups que no poden
ser Kahler no fibrats, ni tan sols Kéhler en general.

El Capitol 3 estudia la monodromia geometrica i en el grup fon-
amental de pinzells de Lefschetz de corbes, és a dir families de corbes
sobre PL amb singularitats quadratiques ordinaries, tant projectives
com quasi—projectives. Aquest estudi es basa en el lema de Morse com-
plex i els grups de trenes sobre les corbes, i és comparable al de (8], on
s’estudien families versals de corbes projectives i quasi-projectives amb
seccions holomorfes com a complement. Tota superficie projectiva llisa
admet un pinzell de Lefschetz després d’un nombre finit d’explosions
en punts, i com aquest procés no varia el grup fonamental, tot grup
fonamental de varietat projectiva llisa és grup fonamental d’un pinzell
de Lefschetz de corbes projectives. Mostrem a continuacié com obtenir
una presentacié del grup fonamental de 'espai total d’un pinzell de
Lefschetz de corbes projectives a partir de la monodromia del pinzell
en el grup fonamental. Aprofitem l’extensié de la descripcié a pinzells
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quasi—projectius per a calcular la monodromia en el grup fonamental de
la familia de Legendre de ciibiques afins, aixi com de families de corbes
racionals punxades, de cara a la seva comparacié amb els resultats dels
capitols posteriors.

La caracteritzacié dels difeomorfismes de monodromia geometrica
en termes de trenes i twists de Dehn mostra que ténen entropia zero.
Aquest fet, junt amb la quasi-isometria entre el recobriment universal
d’una corba i el seu grup fonamental amb la métrica de la longitud de les
paraules (veure [37]) impliquen la quasi—unipoténcia de la monodromia
en la cohomologia de les fibres per families de corbes ([67]). En aquesta
memoria mostrem que la monodromia en el grup fonamental de families
de varietats projectives satisfa una propietat de creixement lineal que
implica la quasi~unipoténcia de la monodromia en el H' de les fibres,
i la entropia zero en el cas de corbes. Hom ilustra amb un exemple
el fet de que les propietats de creixement lineal i entropia zero sén
més restrictives que la de quasi-unipoténcia en cohomologia per un
difeomorfisme de monodromia.

Per a concloure el capitol, s’estudien les propietats de formalitat de
la monodromia en families de corbes. La monodromia d’una tal familia
en cohomologia no determina la monodromia en el grup fonamental, ni
tan sols la monodromia en I’algebra de Malcev (veure [73]). En con-
trast, demostrem que la monodromia en el quocient nilpotent d’ordre
3 del grup fonamental I'/T'y; si determina la monodromia en el grup
fonamental i geometrica d’una familia de corbes. Aquesta conclusié
estén un resultat comparable de [8] per a families de corbes estables,
on la filtracié per la seérie central descendent és reemplacada per una
filtraci6 pel pes similar. A més, és una versié topologica del teorema
de Torelli puntejat de Pulte ([77], veure també [49]).

Els capitols 4 i 5 estan dedicats a la realitzacié de Hodge i de de
Rham de I'algebra de Malcev i de la connexié de Gauss—Manin sobre
ella en una familia algebraica. El cas absolut i el relatiu estan lligats per
la dependencia respecte del punt base, que associa a cada varietat la
familia sobre ella obtinguda pel punt base diagonal. Aquesta connexi6
de Gauss-Manin en el grup fonamental ha estat construida per Deligne
com a sistema de realitzacions Betti, Hodge, de Rham, cristal.li en el
cas de varietats X tals que una completacié seva verifica H(X, Q) = 0.
Navarro Aznar construeix la versié de de Rham en [73], per families
arbitraries de varietats algebraiques.

El Capitol 4 esta dedicat al calcul de la variacié de cohomologia i
estructures de Hodge. Aquest estudi es fa mitjancant la introduccié de
complexes de Dolbeault analitics reals de diverses menes: logaritmics,
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relatius, i logaritmics relatius horizontals. Es mostra com aquests com-
plexes calculen la variacié de la cohomologia de les fibres per morfismes
analitics reals localment trivials, i com dénen una resolucié aciclica dels
complexes analegs holomorfs. Aquest complexes de Dolbeault calculen
els fibrats analitics reals induits pels sistemes locals de cohomologia
de les fibres, i com els complexes holomorfs relatius calculen el fibrat
holomorf pla associat a aquest sistema local, ens ha calgut introduir
el concepte de variacié d’estructura de Hodge analitica real i explicar
la seva relaci6 amb la variacié complexa. Sembla prou clar que la
presentacié de la connexié de Gauss—Manin en un complexe d’algebres
diferencials graduades commutatives acicliques ha de permetre el calcul
de models 1-minimals en un futur immediat, i obtenir aixi la realitzaci6
de Hodge de la connexié en les algebres de Malcev de les fibres, tal com
s’obté la realitzacié de de Rham en el segiient capitol.

El Capitol 5 esta dedicat a la realitzacié de de Rham de 1’algebra
de Malcev i la connexié de Gauss-Manin en ella. En primer lloc, hom
descriu el model 1-minimal de la connexi6 de Gauss-Manin de [73] per
a varietats quasi—projectives. Comparem aquest model 1-minimal en
el cas de families de corbes racionals punxades, cobert per Deligne en
[34], amb el de la familia de Legendre de corbes el.liptiques afins

E = {(z,y,t)|¢* = 2(z - 1)(z - 1)} .

Els resultats observats han estat molt diferents en un cas i en 'altre.
Mentre en el cas de corbes racionals punxades el calcul esdevé formal
després d’un parell de passos i esta definit sobre Z invertint només un
nombre finit de primers, el calcul del model 1-minimal de la connexié
de Gauss—Manin en la familia de Legendre requereix en tots els seus
infinits passos més informacié provinent del complexe de formes rel-
atives de la familia, i comprovem que demana la inversié de tots els
nombres primers, pel que la connexié de Gauss—Manin en la familia de
Legendre, a diferéncia de les families de corbes racionals de Deligne,
sembla tenir sentit només amb coeficients en Q.

Finalment, per a concloure el capitol s’estudia el grup de Galois
diferencial de la connexié de Gauss-Manin en l’algebra de Malcev.
Aquest és el grup de Galois diferencial de ’equacié satisfeta per les
seccions horizontals del sistema local d’algebres de Malcev, els pe-
riodes mo abelians. Hom prova mitjancant la comparacié de grups
d’automorfismes del capitol 1 entre grup, algebra de Malcev i abelian-
itzat, i el teorema de Schlesinger sobre grup de monodromia i grup de
Galois diferencial, que aquests darrers en les algebres de Malcev sén
extensions unipotents dels grups de Galois diferencials de la connexié
de Gauss—Manin en el primer grup de cohomologia. Aixo significa que
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els periodes no abelians de l'algebra de Malcev poden ser obtinguts
a partir dels abelians per un procés succesiu de calcular primitives.
Il.lustrem aquests resultats generals amb calculs sobre els grups de Ga-
lois diferencials de 1’algebra de Malcev de la familia afi de Legendre.

3. Resultats assolits i conclusions

En compliment de la normativa de la Universitat de Barcelona,
expliquem a continuacié els principals resultats originals i conclusions
d’aquesta memoria.

Els resultats originals assolits per aquest treball son:

- Per un grup finit presentat I' i qualsevol cos de caracteristica zero, el
grup d’automorfismes de 1’algebra de Malcev L(T', k) és una extensié
pro—unipotent del grup d’automorfismes de 1’abelianitzat GL (I'/T, ®
k).

- Els grups finit presentats I' tals que la seva algebra de Malcev 2-
nilpotent £L,I' 2 I'/T, ® Q @ I'y/T'3 ® Q és lliure no poden ser grups
fonamentals de varietats compactes Kahler. Entre els exemples donats
de grups amb LI lliure, destaquem els grups para-lliures de Baumslag.
- Si T' és un grup Kahler que admet una presentacié amb una sola
relacié, aleshores I' & Z/nZ o P’algebra de Malcev LT és isomorfa a
I’algebra de Malcev del grup fonamental d’una superficie de génere g.
- L’algebra de Malcev d'una varietat compacta Kéhler X amb dimensié
de Kodaira x(X) = 1 és suma directa LI' 2 LT, @ Q?™, amb I', el grup
fonamental d’una superficie compacta llisa de genere g, i Q™ ’algebra
de Lie abeliana de rang 2m.

- 8i T és un grup Kéhler no fibrat amb irregularitat ¢ = 1b;(T), el seu
segon nobre de Betti ha de verificar

bZ(F) Z 6q - 7’

i també by(X) > 6g — 7 per tot espai topologic X amb m(X) = T.
A més, si I' admet una presentacié amb n generadors i s relacions, es
verifica la segiient desigualtat

s—n>4q—-7,

sig>2,s—n2>—-1sig=1,ifinalment s —n > 0si ¢ =0. Aquesta
cota millora la cota previament coneguda de [41], que era s — n > —3
en tots els casos.

- Bs calcula la monodromia en el grup fonamental per la familia de
cubiques afins de Legendre i per altres families de corbes racionals
punxades. Aquests son els primers exemples coneguts per ’autor de
calculs de monodromia en grups fonamentals no abelians.



16 INTRODUCCIO

- La monodromia en el grup fonamental per families de varietats pro-
jectives té creixement lineal. Aquesta propietat implica en particular
les ja conegudes de que la monodromia geometrica té entropia zero i la
quasi~unipoténcia de la monodromia en el primer grup de cohomologia.
- Tot grup finit presentat és grup fonamental d’un pinzell de Lefschetz
C® de corbes completes sobre C. Aquesta propietat contrasta amb les
fortes restriccions induides en I' per I’existéncia d’un pinzell holomorf
de corbes amb 7 (X) = T

- La monodromia en el quocient nilpotent d’ordre tres del grup fona-
mental d’una familia de corbes projectives determina la monodromia
en el grup fonamental i la monodromia geometrica de la familia.

- Per families llises de varietats compactes Kahler o de varietats quasi—
projectives, es construeixen complexes de Dolbeault relatius A}}TS, loga-
ritmics relatius A}Ts(log H) respectivament, es demostra que les imat-

ges directes f..A¥]|s(log H) d’aquests complexes resolen els feixos derivats
R? f.Cx,RP f.Cx\u, i que la connexié de Gauss-Manin de la familia ja
estd definida sobre ells. Aquesta construccié déna a la connexié de
Gauss—Manin una estructura real natural que no té en el cas holomorf
classic. Es demostra que les propietats de transversalitat de Griffiths i
de preservaci6 del pes de la connexié de Gauss—-Manin provenen de la
connexié definida en les formes, i s’introdueix el concepte de variacié
d’estructura de Hodge analitica real per a comparar la connexié de
Gauss—-Manin en aquests feixos amb la versié holomorfa classica.

- Calculem la connexié de Gauss—-Manin en l’algebra de Malcev per
a la familia de Legendre de corbes el.liptiques afins i per a algunes
families de corbes racionals punxades, via l'algoritme de [73]. El cas
de la connexié de Gauss—Manin en la familia de Legendre té unes propi-
etats molt diferents de les dels exemples de families de varietats amb
H'(X,0) = 0 presentades aqui o calculades per Deligne en [34].

- El grup de Galois diferencial de 1’equaci6 integrable dels periodes no
abelians, associada al sistema local d’algebres de Malcev en una familia
de varietats llises, fins i tot analitiques reals, és una extensié unipotent
del grup de Galois diferencial dels periodes abelians de la cohomologia.
- Es mostren algunes propietats de 1-connexié i sobre la classe de
nilpoténcia dels grups de Galois diferencials de les algebres de Malcev
en el cas de la familia de Legendre.

Finalment, tot i no ser un resultat totalment original, mereix ser
destacat 1’estudi de la relacié entre ’aplicacié d’Albanese i la com-
pletacié unipotent del grup fonamental en varietats compactes Kéhler.
Aquesta relaci6 va ser trobada abans per Campana ([22]), usant una
altra completacié comparable del grup fonamental. Establim la relacio
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entre les dues completacions, i el canvi d’aquesta per la completacié
unipotent i 'algebra de Malcev LI', més I’ds de models 1-minimals de
Sullivan ha permés una notable simplificacié de les proves originals de
Campana, alhora que la demostracié de resultats que estenen els d’ell.

També volem consignar com a resultat assolit, encara que no com-
pletament original, ’estudi de la monodromia de families de corbes
projectives que es fa en el Capitol 3: ens basem en una prova classica
de la formula de monodromia de Picard-Lefschetz en cohomologia, i a
partir d’ella donem una demostracié completa de la formula de Picard—
Lefschetz en monodromia geometrica i en el grup fonamental. Formules
comparables ja apareixen a la literatura (en [8], per exemple), perod
l’autor no coneix cap referéncia que contingui una demostracié com-
pleta.
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CHAPTER 1

The de Rham fundamental group

1. Nilpotent groups and completions

Let I' be a group. For any two elements a,b € T', their commutator
is defined as [a,b] = a~'b~'ab (we follow [65] in this definition; the
choice [a,b] = aba~'b7! is very usual in the literature). The commuta-
tor of two subgroups G, H C T’ is defined to be the subgroup [G, H] of
I' generated by the commutators [a,b] with a € G,b € H, and it is a
normal subgroup if so are G, H. The lower central series of a group I'
is defined recursively by

= P, I111-{—1 = [Fn, F] .

A group T is nilpotent when I, = {1} for some finite n, and in such
case we define the nilpotency class of I' as the last n such that T,, # {1},
and call T' a step n nilpotent group. Nilpotent groups may be obtained
from abelian groups by iterated central extensions, this feature allows
its study by starting with commutative groups and continuing by in-
duction up the nilpotency class studying central extensions (see [51]).
The filtration of a group T given by the lower central series satisfies
the condition that [I';,T';] C Ty;; (see [65], Thm. 5.3). This fact
together with the Witt-Hall identities (see Thm. 5.1 in [65]) allow the
definition of a graded Lie algebra naturally associated to the group:

DEFINITION 1.1. The graded Lie algebra of a group I' is the Z-
module
gr I'= @nZIFn/Fn+1
with the bracket induced by the group bracket.
Let R be a ring. The graded R-Lie algebra of a group I' is the Lie
algebra grI' ® R. '

The torsion elements in the graded Lie algebra of a group form an
ideal T'or C grI". This allows the definition of the torsion free graded
Lie algebra of a group I as

grol'=grI'/Tor.

For R = k a field of characteristic zero one has grT ® k = gro [ ® k
naturally.

19
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Denote by n — Gr the category of nilpotent groups, which is a full
subcategory of that of groups, Gr. One may consider the projective
closure of n — Gr in Gr, to be denoted pro — n — Gr. Its objects are
pronilpotent groups, i.e. projective limits of nilpotent groups, and as
pro—n—Gr is projectively closed, the inclusion functor pro—n—gr —
Gr has a left adjoint

il Gr —sn — Gr
I — i
characterized by the natural bijections
Hom g, (T', N) = Hom pro_p_g-(I"™, N) (1)

DEFINITION 1.2. The nilpotent completion of a group I' is the
group morphism
j: T — milp
where j is the morphism corresponding by the adjointness natural bi-
jection to Id € Hom ppoyg—gr (TP, L7P).

The nilpotent completion may also be characterized by the univer-
sality property that it satisfies: every group morphism from I' to a
nilpotent group N factors uniquely through j : I' — T™. In fact,
the nilpotent completion of a group I' is the limit of the projective
system formed by morphisms from I' to nilpotent groups. It may
be checked from its definition that the lower central series quotient
I’ = T'/Tp41 has this universality property for morphisms into step n
nilpotent groups, and that the nilpotent completion of T' is its natural
projection to the limit of the tower of quotients

voo — /T3 — T'/T,
The following property of nilpotent groups may be seen to extend

from the abelian case:

LEMMA 1.3. Let N be a nilpotent group. The set of its torsion
elements Tor N forms a normal subgroup. Moreover, if N is finitely
generated, Tor N is finite.

A nilpotent group is torsion—free when Tor N = {1}. We will write
as n— Z— Gr the category of torsion—free nilpotent groups. The torsion
subgroups Tor N are natural, so there is a modulo torsion functor

o0:n—Gr—on-7Z-gr
N +—Ny = N/Tor N
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One may proceed now as in the nilpotent case, considering the category
pro—n — Z — Gr of pro-torsion—free nilpotent groups, which is the full
subcategory of Gr obtained as the projective closure of n —Z — Gr. The
inclusion functor pro—n—Z — Gr — Gr has a left adjoint, which gives
rise to the torsion—free nilpotent completion j, : I' — '3, As in the
nilpotent case, the torsion—free nilpotent completion of a group T is
the tower of projections from I' to its torsion—free nilpotent quotients

R (F/Pg)o — (F/Fg)o

Rational homotopy theory studies the unipotent representations of
the fundamental group. These may be summed up, as in the nilpotent
and torsion—free nilpotent cases, in the unipotent completion of a group
I, which may be defined analogously:

Let k be a field, and let U(k) be the category of k—unipotent alge-
braic groups, with algebraic morphisms. Let pro—U(k) be the category
of pro—k-unipotent groups, which is the projective closure of U(k) in
Gr. The inclusion functor pro — U(k) < Gr has a left adjoint functor
.®k : G — pro— U(k), satisfying natural bijections

Hom p,o_y(1)(I' ® k,U) = Hom g, (T, U) . (2)

DEFINITION 1.4. The k-unipotent completion of a group I' is the
morphism

j®k:T —TQk,

where j ® k is the morphism corresponding to Id € Homg,(I',T) in
the natural bijection (2).

This is the abstract definition of the k—unipotent completion of a
group I'. It is equivalent to the universality property with respect to
morphisms from I' to a k-unipotent group, and not very helpful in
computational terms. In the case of a field k of characteristic zero and
a finitely presented group I' there are alternative ways to construct and
compute unipotent completions, which will be the subject of the next
sections.

Before that, we will give an equivalent presentation of unipotent
completions. Malcev showed that over a field of characteristic zero,
the addition laws defined by the Baker-Campbell-Hausdorff formula
induce an equivalence between nilpotent Lie algebras and unipotent
algebraic groups ([66]). The projectively completed version of the cor-
respondence is:
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THEOREM 1.5 (Malcev). Let k be a field of characteristic zero.
The correspondence between Lie groups and Lie algebras gives a cate-
gorical equivalence between the category of pro—k—unipotent Lie groups
and that of pro-nilpotent k—Lie algebras.

DEFINITION 1.6. Let I' be a group and k a field of characteristic
zero. The Malcev algebra of I over k, denoted L(I',k), is the Lie
algebra of the pro—k—unipotent completion I' ® k.

Finally, a first example is presented in order to justify the notation
for unipotent completions.

EXAMPLE 1.7. Let M be a finitely generated abelian group. Its
nilpotent completion is Id : M — M, as M is nilpotent and it fulfills
the unique factorization condition. Moreover, every morphism from M
to a torsion—free nilpotent group N sends torsion elements in M to the
identity, thus factors uniquely through the quotient M — M/Tor M.
This quotient is torsion—free nilpotent, so MM = M/Tor M. The
same holds for any nilpotent group M.

Fix now a field k of characteristic zero, and consider the morphisms
M — U to k-unipotent groups. Unipotent groups over a zero char-
acteristic field are torsion—free nilpotent, so the completion morphism
M — M ®k must factor through the torsion—free nilpotent completion
M — M/Tor M = Z****M Given a morphism ¢ : M/TorM — U to a
unipotent group, a basis zi, . . ., Tm of M must be mapped to commut-
ing elements ay, . . .,am € U. The logarithm is well defined in U, so we
may take the ordinary tensor product and define a map

o ®k : (M/Tor M) ®; k —U
M1+ -+ Am@m — exp(Ar log(a1)) - -+ - exp(Am log(am))

As ay,...,an, commute, so do the terms exp();log(a;)), thus ¢ ® k
is a group morphism. This shows that every morphism M — U fac-
tors uniquely through the natural morphism M — M ®z k, which is
therefore the k—unipotent completion of M.

2. The Malcev algebra and the de Rham fundamental group

In this section the unipotent completion of a group, which is called
the de Rham fundamental group in the case of I' a fundamental group,
is constructed for fields of characteristic zero. This is done by means
of the group algebra. The equivalence of the pro-k—unipotent groups
with pro—k-nilpotent Lie algebras, the Malcev algebras, is also de-
scribed. Finally, the torsion—free nilpotent and k—unipotent comple-
tions are compared.
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We will assume throughout this section that & is a field of charac-
teristic zero and that I' is a finitely generated group.

Let kT be the group k-algebra of I'. This is an augmented algebra,
with augmentation

g: kI —k
Y oAigi — >N

Its kernel J = ker e admits a linear basis {g — 1 | g € T'}. This ideal is
closely related to the lower central series of T', as we proceed to explain.

Let k' be the J-adic completion of kI, and J its augmentation
ideal, which is the completion of J. This algebra is the complete aug-
mented k-algebra generated by the group I'. It contains a multiplica-
tive group 1 + J , together with a morphism

jiT—1+4J
g—1+(g—-1)

and a linear space J, with a k-Lie algebra structure given by the bracket
[z,y] = zy — yz. There is a set bijection

J147,
where ¢ is any map such that ¢(z) = 1 + z + o(x?). This bijection
respects the filtration induced by the powers of J. Moreover, the group
bracket in the group 1+ J verifies that [1+J™, 1+J% C 14 Jm™+" This
endows the graded k-linear space Gr (1+J) = @51 (14 J7)/(1+ J"t1)
with a Lie algebra structure, and Gr¢ induces a graded Lie algebra.
isomorphism between Gr (1 + J) and GrJ = ®,5;J"/J"*.

An elementary recursive computation shows that if g € T',,, then
g — 1 € J". This allows the definition of a k-Lie algebra morphism

grj:grIl'@k — @nzlJ"/J"’“

by sending the homogeneous elements § € ', /Ty to g — 1 € J*/J"H,
which induces an associative algebra morphism between the universal
enveloping algebra U(grI' ® k) and @J"/J™H.

THEOREM 1.8. (Quillen, [78]) Let k be a field of characteristic
zero, and I' a group. The morphism grj induces an isomorphism of
complete associative algebras between U(grT' @ k) and @p>,J"/J"H.

Theorem 1.8 may be reformulated as follows:
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COROLLARY 1.9. The group morphism

j:T—1+J
gl—}1+(g—l)

verifies that j(g9) € 1 + J* if and only if g™ € T, for some nonzero
integer m.

In the case of free groups the identity j7'(1 + J") =T, is satisfied
(see [83]), but this is not the case in general. The equality for all
finitely presented I' was known as the dimension subgroup conjecture
until it was disproved.

Moreover, the algebras kI" have a coalgebra structure, with coprod-
uct given by Ag = g ® g for g € T'. This coproduct extends to the
J-adic completion, making kT a complete Hopf algebra. The coprod-
uct gives rise to two sets of distinguished elements in kL:

DEFINITION 1.10. (i) The group-like elements are the elements of
the set
Gkl ={zel+J|Az=zQ®z}.

(ii) The primitive elements are the elements of the set
P(D) ={ye J|Ay=10y+y®1}.

The image of I in k' obviously lies in G (kT'). The theory of Hopf
algebras shows that these sets have additional structures and relations
(see [69]):

- Group-like elements form a subgroup of 1 + J.
- Primitive elements form a sub-Lie algebra of J.
- Consider the formal power series exp(y) = X y— and log(1+z) =
Y (=1)"*1Z inverse to each other. These series induce filtered
set bijections
’P(kl") - (kI‘)

and produce k-Lie algebra isomorphisms between their gradu-
ates.

The unipotent completion of finitely generated groups may be ob-
tained by means of the above constructions ([79], Appendix A).

THEOREM 1.11 (Malcev). Let T be a finitely generated group and
k a field of characteristic zero.
(i) The k—unipotent completion of T' is the morphism j : - g(k‘I‘)
(ii) The Malcev algebra of T' over k is P(kT).
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Some properties of the unipotent completion and its Malcev algebra
relevant for our purposes (see [66], [79] Append. A, [80] Thm. 2.18)
are:

PROPOSITION 1.12. Let N be a finitely generated nilpotent group,
and j : N = N ® k its k—unipotent completion.
(i) The kernel of j is the torsion subgroup Tor N.
(ii) For every element h € N @ Q there is an integer m and an element
g € Imj such that h = g™.

PROPOSITION 1.13. Let ' be a finitely genemted group and k a
field of characteristic zero.
(i) The k—unipotent completion group T' ® k is the projective limit of
the tower of unipotent groups

— (T/T3) ® k — (T/T) ® k,

and the completion morphism is induced by the tower of natural mor-
phisms ' - T/T, = (I'/T,) ® k

(ii) The Malcev algebra of T over k is the projective limit of the tower
of nilpotent k—Lie algebras

-+ — L(T/T3,k) — L(T/T4, k)

(iii) The filtrations by the corresponding lower central series induce
1somorphisms of graded k-Lie algebras

GrL(T,k) 25 Gr (P @ k) &= (9rT) @z k.
(iv) The k-Malcev algebra of T is
L(T,k) = L(T,Q) ®gk

REMARK 1.14. It follows from Proposition 1.13 that for any field
k of characteristic zero, the k—unipotent completion and its Malcev
algebra are obtained from the corresponding rational completions I’ ®
Q, L(T',Q) by extension of scalars. This is a consequence of the fact
that every k-unipotent representation of a discrete group I' factors
through a rational unipotent representation, and contradicts the order-
ing of k—unipotent completlons that the lattice of subcategories U(k)
suggests.

Due to this fact, the change from the rational to a k-unipotent
completion of I' may coarsen the isomorphism type of the completion.
An example of this phenomenon is given in Remark 11.2.15 of [80).

Propositions 1.12 and 1.13 allow also the comparison between the
torsion—free nilpotent and Q-unipotent completions of a group. First
let us recall a fact about lattices in Q-unipotent groups ([80], Thm.
2.12 and Rmk. 2.16):
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LEMMA 1.15. A Q-unipotent group U contains discrete lattices.
Any two such lattices are commensurable.

Given a unipotent group U defined over Q, a lattice N C U is called
an integral form of U. Different commensurable lattices in a nilpotent
group need not be isomorphic:

EXAMPLE 1.16. The real Heisenberg group is the unipotent matrix

1 z 2
group H3(R) = ({0 1 y| € GL(3,R);. Two examples of non-
0 01
isomorphic lattices in H3(R) are:
1 z 2
(i) The integer Heisenberg group H3(Z) =10 1 y| € GL(3,Z) .
0 01
1 2z 2z
(ii) The congruence lattice N=<10 1 2y| |z,y,2€Z .
0 0 1

There is an important difference between the abelian quotients of the
two lattices: while H3(Z)/H3(Z), = Z? is torsion—free, the abelian
quotient N/N, is generated by the matrices

120 100 1 2
010],]/]01 2,10 0
0 01 0 01 0 01

and is isomorphic to Z? @ Z/2Z, with the torsion given by the last

generator. Using Prop. 2.17 of [80], one may check that any lattice in
H3(R) with a torsion—free abelianization is isomorphic to H3(Z).

0
1

This behaviour of lattices in the Heisenberg group seems to be
generic among (pro-)unipotent groups known to the author, motivating
the following conjecture:

CONJECTURE 1.17. LetU =limU "(R) be a pro-R-unipotent group,
where the groups U™(R) have nilpotency class n. Let N =lim N", G =
@G" be two projective systems of lattices in the tower of groups

e UM Ut — UM —

such that N* & NnHL/(N™Y), ., G" = G"/(G™ )41 and these
quotients are lattices in the unipotent groups U™ for every n. Then
the two towers of lattices --- — N® — ... and --- = G" — ... are
isomorphic.

If Conjecture 1.17 is true, the isomorphism type of the towers of
lattices would be the integral form of the tower of unipotent groups
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FU”. In the case of the unipotent completion U = ' @ R of a
nitely presented group I', we know after Malcev that such a pro—
lattice always exists: it is the torsion—free nilpotent completion I'3*?
of T', and it would follow from Conjecture 1.17 that [ =~ AP jf
and only f T ® Q = A ® Q, i.e. the Q-unipotent and the torsion—
free nilpotent completions would determine each other. As this is only
conjectural, we will prove a partial result that allows the extension of
our results of Chapter II from unipotent completions/Malcev algebras

to the torsion—free nilpotent completions used by Campana in [20],
[22].

LEMMA 1.18. Let f:T' — A be a homomorphism between finitely
presentable groups.
(1) If Im(f) C A has finite index, then f ® k is an isomorphism if
and only if fg“" is injective and has finite index image.
'z(ii) If f s surjective, then f ® k is an isomorphism if and only if
fo¥® is.

PROOF. By the extension of scalars property of Proposition 1.13
(iv) it suffices to prove the case of k = Q.

(i) Let f ® Q be an isomorphism. As I'?*? — I'® Q is injective, the
map fo? must also be injective. Moreover, the fact that Im(f) c A
has finite index implies that the induced homomorphisms

(F/Fn)/Tor - (A/An)/Tor

have images with finite index. Consequently, there is a tower of surjec-
tive homomorphisms from the finite quotient A/Im(f) to the projective
system of quotients

== ((A/AR)/1or) /Im(f) — ...

These homomorphisms extend to a surjection from A/Im(f) to its pro-
jective limit AG*?/Im(f7'), which must therefore be finite.

Conversely, assume that fi is injective and almost surjective.

This implies that all the finite steps of the projective system
(f6")n = (T/T0)/1or — (D) An)/7or

must also be injective and almost surjective homomorphisms. Consider
now the projective system of maps '

(f®Qs: ([/Th)®Q — (A/A,) Q.
By Proposition 1.12 (i) every element of ker(f ® Q), has a power in

ker(fg™"), = {1}. The groups (I'/T,) ® Q are torsion free, so the
homomorphisms (f ® Q), must be injective. Moreover, every element
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of (A/A,) ® Q has a power in (A/Ay,)/Tor, thus also a possibly higher
power in Im(f3*"),, C Im(f ® Q). As (f ® Q), is a homomorphism of
Q-unipotent groups, this means that it is onto.

The completion f ® Q is the projective limit of the isomorphisms
(F ® Q),, so it must also be an isomorphism.

(ii) can be proved analogously. 0O
The tower in Proposition 1.13 (ii) motivates the following

DEFINITION 1.19. The step n Malcev algebra of a group I' over a
field k is the nilpotent Lie algebra

Lo(T,k) = L(T/Ts1, k)

By Proposition 1.13 and Theorem 1.5, the step n Malcev algebra is
equivalent to the group (I'/T'y)/Torsion Another immediate consequence
of Proposition 1.13 and the properties of the lower central series in
groups is that the tower of step n Malcev algebras either stations or is
strictly growing:

COROLLARY 1.20. A finitely generated group I' and its Malcev al-
gebra L(T', k) satisfy either of the mutually excluding properties:
(i) The abelian lower central series quotient 'y, /T4y is formed by tor-
sion elements for some n, and L,(T,k) = L,11(T, k) = --- = L(T',k)
for any field k of characteristic zero.
(i) The lower central series quotients I'y/T'ni1 have nontorsion ele-
ments for every n, and the step n Malcev algebras L, (T, k) have nilpo-
tency class n.

This motivates the following

DEFINITION 1.21. A group I is rationally nilpotent if L' = £L,I’
for some integer n. The first such integer is the rational nilpotency
class of n.

The concept of a rationally nilpotent group parallels that of almost
nilpotent group. Nevertheless there is no inclusion between the two
classes of groups. The Higman 4-group (see [84]) is rationally nilpo-
tent, indeed it has Malcev algebra 0, yet it is not almost nilpotent.
Likewise there exist almost nilpotent groups which are not rationally
nilpotent. All such examples in both cases known to the author are
not Kahler groups. '

3. Malcev algebras of free groups

In this section we compute the Q-unipotent completion of free
groups, and then apply it to give an algorithm for the computation
of L,I" from a finite presentation of the group.
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When the group I' is Fy, the free group generated by {a1,as, ... ,a,},
its associated towers of groups F,/(F,), ® Q and corresponding Lie al-
gebras can be further identified.

Let Ao(Q,7) be the free associative Q-algebra generated by r el-
ements ry,...,Z,. It has an augmentation ¢ defined by (1) = 1,
e(z;) =0fori=1,...,r. Let A(Q,7) be the completion of Ap(Q,7)
with respect to kere: it is the associative free algebra of formal power
series in the non-commuting variables z,, ... ,z,. It is filtered by the
powers of its maximal ideal, which we shall denote Jo- As in the alge-
bra @f described in the previous section, the set 1+ Jo forms a group
with the algebra product and Jg has a Q-Lie algebra structure with
linear addition and bracket [z,y] = zy — yz. There is good reason for
this similarity:

PROPOSITION 1.22. (i) The group morphism defined by

v:F, —1+ Jg
a; —)1+IL‘¢

18 injective, and it induces a complete filtered augmented Q-
algebra isomorphism i between QF, and A(Q,r).
(i) v 11+ Jg) =(F)n VneN

PROOF. (i) The injectivity of v is well known, see for instance
[65], §5.5, Thm. 5.6. This inclusion gives A(Q,7) the same

universal property for complete associative algebras as @F‘,, thus
they are isomorphic.
(ii) is Thm. 6.3 in [83], I, 4.
a

Due to the isomorphism QF, = A(Q, ), the group 1+ Jg, the Lie

algebra Jg and their graduated rings are isomorphic to the correspond-
ing structures in QF,, and there are also set maps

JQ — ei? =1+ JQ
log

mutually inverse and commuting with . Again, these maps restrict to
bijections between 1 + JZ2, o and they induce Q-Lie algebra isomor-
phisms of gr (1 + Jg) with gr Jo. Another useful consequence of Prop.
1.22 is the following:

PROPOSITION 1.23. (i) The map v above defined induces mor-
. phisms

Ut B [(Fp)n — (1+ Jg)/(1 + Jg)
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which are injective, and induce complete augmented filtered Q-

algebra isomorphisms v, between QF, /(F,), and A(Q,r)/Jg for
all n > 2.

(i) 7" (1 + J8)/(L+ J8)) = (F/(F)a for k <.

PROOF. (i) The group inclusions come straight from Prop. 1.22
(ii). The algebra isomorphisms are a consequence of the same
universality property invoked in the proof of Prop. 1.22 (i), and
the isomorphisms (1 + Jo)/(1+ J§) = 1+ Jo/Jg C A(Q,7)/Jg,
which are easy to compute.

(ii) comes also straight from Prop. 1.22 (ii).
O

We will now study the graded Lie algebra Jg.

Let R be a ring which is an integral domain. We define Ly(R, )
to be the free R-Lie algebra generated by elements &,...,&., with
augmentation ¢ sending scalars to themselves and the &; to zero. Let
L(R,r) the completion of Ly(R, ) with respect to &; L(R,r) is a profi-
nite Lie algebra and may be graded by the weight of the brackets; we
denote as M its maximal ideal.

We will use the Lie algebras L(Z,r), L(Q,r), which are directly
related to our group algebra constructions.

PROPOSITION 1.24. (i) There is an isomorphism of graded Lie
algebras
’d) : L(Z7T) — gT(FT)
determined by

& —x;
(o, B) —(¥(a), ¥(B))

(ii) The map ¢ also induces for all n > 1 isomorphisms of graded
Q-Lzie algebras

Un 2 L@, )/ M" — gr(F./(Fr)a ® Q) = La(F,, Q)

ProoF. (i) This is [83], I, 4 §6, Thm. 6.1, or [65], 5.7, Thm.
5.12.
(ii) The Z-Lie algebra gr (F,/(F,)s) is @2 (Fy)i/(Fr)it1. As it pre-
serves degrees, applying the isomorphism of (i) tensored by Q
yields another isomorphism

L(Q,r)/M" «— gr (F,/(F})n) ®Q

The isomorphism of Proposition 1.23 (ii) completes the proof.
O
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Proposition 1.24 implies that a Q-linear basis of the Lie brackets of
weight m is mapped by 9 to a Q-linear basis of gr (F,/(F,), ® Q™ for
m < n. This fact allows us to compute the dimension of each piece of
the graduate of F,/(F;), ® Q with one of Witt’s formulae ([65],[17]):

dim (gr (Ff/(Fr)n ® @)) = dim(Ly, Qv r) = Z p(d)r %

dIn

where p is the Mdbius function. Furthermore there are algorithms
that produce an ordered homogeneous basis, called the Hall basis, of
L(Q,r), thus of Jy. Its elements of degree < n are mapped by 1 on a
basis of gr (F,/(F,), ® Q).

To close this paragraph, we give the brackets in F, with generators
a,b that form a Hall basis up to weight 5. It is printed in [17], II §2.10
and [83],1, 4 §5, with every word in the opposite order due to differing
bracket conventions between them and [65], which we follow. Bracket
writing conventions also vary in literature, and after [65] we will hence-
forth write bracket arrangements of the form [[...[a1,as],a3],...], an)
formed by nested brackets on the left as [ay, . . ., a,], thus we will denote
[[[b, a], a], b] as [b, a, a, b], [[[b, al, a], [b, a]] as [[b, @, a], [b, a]] and so on, ex-
cept in some explicit computations where the full bracket arrangements
will be written to avoid causing doubts.

Weight 1 a b

Weight 2 b, a]

Weight 3 [b,a,a] b, a, b]

Weight 4 [b, a,q,q] [b,a,a,b] [b,a,b,b|
Weight 5 [b,a,a,a,a] [b,a,a,a,b [b,a,a,b,b]

[b,a,b,b,b] [b,a,a],[b,a]] [[b,a,b],[d,a]

4. Malcev algebras of finitely presented groups

The Malcev algebras of free groups have been studied in the previ-
ous section. We will continue this study with finitely presented groups.
When the group T' is the fundamental group of a topological space X,
the abelian algebra £,T" is just H(X;Q). We will consider in this sec-
tion the following simplest algebra, £,T' 2 (T'/T,) @ Q @ (I'2/T35) ® Q.
The algebra LoT is the quotient of the Malcev algebra LT by its third
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commutator ideal £LI'®), and is also the quotient of the holonomy al-
gebra of T gr (cf. [25],(60]) by its third commutator ideal. As will be
seen in Proposition 1.49 and Corollary 2.6, in the case of Kéhler groups
and 1-formal groups in general, the finite-dimensional algebra L.I" de-
termines the full Malcev algebra. Rational coefficients will be used
thoroughout the section, but the fact that the corresponding k~Malcev
algebras are obtained by extension of scalars from the Q-Malcev alge-
bra makes all the results in this section hold verbatim for any field k&
of characteristic zero.

The algorithmic constructions appearing in this section were de-
scribed to the author by Manfred Hartl. '

The groups I' we will study will be given by finite presentations I =
(Z1y-.+yZn; T1,y...,7s). This means that I' is defined by

1—-N—F—T—1 (13

where F is the free group generated by the generator set {z1,...,Zn},
and N is the normal subgroup of F spanned by the relation set {ry,...,r} C
F.

The above constructions in the case of free groups have been de-
scribed in section 3:

EXAMPLE 1.25. Free groups.

Let I' = F,, = Fyg,,..z,}- Its Malcev completion and Lie algebras
L. F, has been computed by means of its group algebra in Proposition
1.24 (cf. also [65],[79],[83]). The conclusion is that, denoting by L(S)
the free Q-Lie algebra spanned by a set S, there are isomorphisms

LnFy 2 LEXy, ..., Xn})/L{ X1, - - ., X))

In particular, I /T2 F,®Q & Qz; &- - -®Qzp, ['y/T3F,®Q = Q(z1, 22)®
o+ ® Q(zp_1,%y), and the brackets in LyF, are the group ones in
['/TyF, and zero all others.

The Lie algebra L£,I" for a finitely presented I' may be obtained

from its presentation and £, F. We will use an algorithm for computing
them derived from [88], where a spectral sequence that computes all
J@/J@L is described, and communicated to the author by Manfred
Hartl. :
Consider a group presentation I' = (z1,...,25 ; T1,...,7s), Which
induces the exact sequence given in (1.3). Let QF, QL' be the Q-group
algebras of F,T, and denote by Jr,Jr their respective augmentation
ideals. The sequence (1.3) induces an exact sequence of Q-algebras

0—K—QF —QI' —0 (1.5)
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where K is the two-sided ideal generated by the Q-vector space D =
(r1 —1,...,7s — 1) C Jp. This sequence restricts to exact sequences

0—K —Jg+K—J'—0 (1.6)
for all m > 1. We will compute Jr/JZ, J2/J from those sequences:
PROPOSITION 1.26. Consider the linear map f : @;_, Qr; — Jr

determined by v; — r; — 1.

(i) Let dy : ®Qr; — Jp/J% be the projection of f. Then cokerdy =
Jr/JE.
(ii) The map f induces a linear map

dy : kerdy —J2/(J3+ Jp-D + D - Jp)
Z’\iri — Z /\i(ri - 1)
and cokerd; = JE/J3.
PROOF. (i) The exact sequences of (1.6) induce an isomorphism
Jr/Jt = Jp/J} + K. As K is the two-sided ideal spanned by D and
QF = Q& Jr, actually J2+K = Jz+D, and thus Jp/JZ & Jp/J2+D.

By its construction, Imdy = D, and this proves (i).
(ii) Again by (1.6) we have

J)IR 2 (T3/ (TN K)) [ (J3/(JENK)) = J2/(J3 + T2 N K)

The last denominator is J3 + JENK = J3 +Jp-D+D-Jp+ DN J2.
Obviously f(kerdy) C JZ and thus d, is well defined. Moreover, its
image is precisely D N J2, and (ii) follows from this. O

We now relate the computed modules Jr/JZ, J2/JE with the sought
ones I'/T'5, T'/T3I" ® Q applying Quillen’s Theorem 1.8 ([78]):

Following the notation of [88], we will use the wedge product, or
alternating product, of the associative algebra QI', which is

TANY:=zy—yx

The wedge product of two linear subspaces A, B C QI is the linear
subspace

A/\B:{’M):Z/\iai/\biEQP}a.iEA,b,’EB, /\,GQ}

Quillen’s theorem implies that the Lie algebra &I, /Tnt1l' ® Q is con-
tained in the Jr-adic graduate of the group algebra, ®J2/Jr!. This
inclusion sends the brackets of the Lie algebra to wedge products in
@J2/JPtL. In the cases n = 1,2 this means:

COROLLARY 1.27. (i) I'/T, ® Q = Jp/J2.
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(ii) Consider the inclusion Jr A Jp — JZ. Then
T3/T3 ® Q= (Jp A Jp + )/ I3 C JE/J}
Corollary 1.27 allows us to adapt the algorithm of Prop. 1.26 to
compute I'/T'y, 'y /T3 @ Q
LEMMA 1.28. The image of the restriction f : kerdy — J2 lies in
JF/\JF-*-J%CJ%!.

PROOF. Denote F, the free group generated by {vi,...,ys}, and
the map 7 : F;, = F sending y; to r;. The map do : ®Qr; — Jp/J2
F/F>;®Q is the map induced by 7, r® Q : F,/(Fs):@Q = F/F, Q.
Furthermore ker(r ® Q) = ker(r) ® Q, as F,/(Fj), is a free abelian
group. Thus ker dy admits a basis @y, ..., W, with the w; words in Fj
mapping to F» by r.

Now, the map F, — J% sends a bracket (a,b) to (a — 1)(b—1) —
(b—1)(a—1) + terms in J3, and a product [I(a;, b;) to Y(a; — 1)(b; —
1) — (b; — 1)(a; — 1) + terms in J3. Therefore, all the w; = [1(a;;, b;,)
map to Jp A Jp + J3.

Lemma 1.28 allows us to define a map d; : kerdy — A*(T'/Ts ® Q)
by composing
2 2
PROPOSITION 1.29. cokerd; = T'y/T; ® Q.
PROOF. As we have previously explained, I'/T, ® Q & Jr/J% =
Jr/(JE + K) = Jp/(JE + D). Thus
2
AT/T28Q) = (Jp AJp + (J3 + Jp - D+ D - Jp)) /(J3+Jp-D+D-Jr).
Also f(kerdy) = DN JE C Jp A Jp + J3 by Lemma 1.28, so
cokerd; = (JFAJF+J;+JF-D+D.JF+DmJ§)/
(Jo+Jp-D+D-Jr+DNJ})
= (JF/\JF+J;+KnJ§)/(J§+KnJ;)
= (JpAJp+ )/ R 2T, /T30Q
the last isomorphism being given by Cor. 1.27. O

COROLLARY 1.30. dimI,/T3 ® Q = ("imffzm@) — dimkerdy +
dim ker d;

We are now able to determine the structure of the 2-step nilpotent
Lie algebra £, of a finitely presented group I' = (1, ..., Zn ; T1,..-,7s):
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PROPOSITION 1.31. Let AS*(I'/T2®Q) be the free exterior algebra
generated by I'/Ty ® Q modulo the ideal A>*(T'/Ty ® Q) generated by
wedges of length 3 or more. There is an isomorphism

Lol = (7\2(I‘/F2 ® Q)) /(ker dy/ ker d;)

PROOF. There is an obvious map of exterior algebras, which is a
linear isomorphism in every degree by the above results. O

Thus L,I" is the quotient of a free 2-step nilpotent @Q-Lie algebra
AS?(Hy(T;Q)) by a subspace of 2-brackets ker dy/ ker dy, which corre-
sponds to the relations of the holonomy algebra. We have stated in
Ex. 1.25 the case of free groups. Let us examine this structure in some
other simple cases:

COROLLARY 1.32. LetT' = (z;,...,z, ; r) be a group admitting a
presentation with a single relation. Then:
(i) If r € F,, there is an isomorphism LT = LoF, ; with F,_1 a
free group of rank n — 1.
(i) If r € Fy\ F3, there is an isomorphism LI = LoF/di (7).
(iii) If r € F3, there is an isomorphism LI = LoF.

PRroOF. All cases are found by applying Prop. 1.31.

(i) In this case I'/T; ® Q & F,_1/(Fn-1): ® Q, and as 7 ¢ F,
ker dp = {0}.

(ii) In this case the map F — I induces an isomorphism F/F, ®Q =
I'/T2®Q, kerdy = Qr, and as r € F3, the coincidence of the lower
central series and augmentation ideal power filtrations in free
groups ([65] 5.12,(83]) shows that r — 1 ¢ J3, hence d;(r) # 0.

(iii) In this case, kerdy = Qr and again by the above coincidence of
filtrations, d,(r) = 0.

O

COROLLARY 1.33. Let I' = (z1,...,Z, ; 71,...,7s) be a finitely
presented group such that its defining relations may be divided in two
sets: {ry,...,rx} such that 7, ..., 7 are linearly independent in F/F,®
Q and {rk41,...,7rs} which belong to F3. Then there is an isomorphism
Lol' = LoF, _«, where F,_y is a free group of rank n — k.

PROOF. In this case I'/T,®Q hasrank n—k, kerdy = Qre 11 ®---P
Qry, because those r; are commutators and the other relations form a
basis of Im f, and ker d; = ker dy because r4,1,...,7, € ['3F. O
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REMARK 1.34. We will be interested in this note in which groups
I" have a free 2-step nilpotent Lie algebra £,I', which by Prop. 1.31 is
equivalent to ker dy = ker d;.

Generic presentations with less relations than generators produce a
free LoI'. The reason is that given a group presentation I' = (z,, ..., z, |-
T1,...,Ts) With a number of relations s < n, kerdy = 0 and therefore
LoT' is free, unless the classes 7y,...,7; € F,/(F,)2 ® Q are linearly
dependent. But the sets of linearly dependent 7y,...,7, form a codi-
mension n — s + 1 closed subset of (F,/(F,), ® Q)*.

The hypotheses of Corollary 1.33 may be weakened by requiring
only that {ry,...,r;} map on a basis of Im dy, and the remaining rela-

tions {rg41,...,7s} belong to F3 - Ny, where Ny is the normal closure
in F of {ry,...,7%}.

5. 1-minimal models and unipotent completions

As follows from Theorem 1.11, the de Rham fundamental group con-
tains the torsion—free nilpotent completion of the fundamental group
as a pro-cocompact lattice, and so both completions are very closely
related. The de Rham fundamental group owes its name to the fact
that when X is a smooth manifold, this group can be computed from
the de Rham complex. Sullivan’s construction of 1-minimal models
gives us an algorithm for doing this. In order to describe it, we need
first to define a few concepts. We cite as generic references for the
contents of this section [45},(91],[18].

DEFINITION 1.35. (i) A commutative differential graded algebra (CDGA)
is a graded algebra A which is graded—-commutative, i.e.

for any two homogeneous elements z,y € A of degree |z|, |y| respec-
tively; and has a differential operator, which is a map of degree one
d: A — A such that d?> = 0 and

dzANy)=deAy+ (-1)lzAdy .

Morphisms of CDGAs must respect the degree and the boundary op-
erator.

(ii) A quasi-isomorphism of CDGAs is a CDGA morphism inducing an
isomorphism in cohomology.

Quasi—isomorphisms do not necessarily have an inverse in the cat-
egory of CDGAs, the following definition is a remedy for this problem:
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DEFINITION 1.36. Two CDGAs A, B are weakly equivalent if there
is a finite diagramme of CDGAs

A->C«Cy—---+—B

such that all the morphisms are quasi-isomorphisms.

The basic example of CDGA is the de Rham algebra £*(X) of
smooth forms on a smooth manifold X. We will deal with R-CDG As,
unless something else is specified. Two other important notions in the
CDGA category are:

DEFINITION 1.37. (i) A base point of a CDGA A'is a CDGA mor-
phism
e:A— R,

where R is a CDGA with differential d = 0.
(ii) A basepointed homotopy between two CDGA morphisms ¢y, ¢; :
A — B is a CDGA morphism

®:A—R(t,dt)®B,

where R(t, dt) is the CDGA determined by assigning degree 0 to ¢t and
setting the obvious differential, such that given the two base points of
R(t,dt), €9, €1, obtained by sending ¢ to 0 and 1 respectively and dt to
0, one has the identities

o= (e0®Id)o®, ¢ =(6,0Id)od®.

Again, the motivating examples for these definitions are the notions
of base point of a smooth manifold z € X, with the evaluation map
of forms at z, and of the codifferential of a homotopy of smooth maps
H:[0,1]x X —>Y.

Let X be a smooth manifold, and £% its de Rham complex. The
theory of minimal models developed by Sullivan shows that the CDGA
of global forms £*(X) has a 1-minimal model. This is a certain free
commutative differential graded algebra Mx(2,0), or simply My, de-
fined as the limit of an inductive system of CDGAs

Mx(l, 1) — Mx(l,z) — Mx(l,-?)) ...,
together with a morphism p: Mx — £*(X) such that in cohomology p*
induces isomorphisms in H° and H* and a monomorphism H?(My) £

H?(E*(X)).

We review the construction of the 1-minimal model up to the second
step M(1,2), which will be used to relate 7; (X) to the cup products of
1-forms. For a more detailed discussion of 1-minimal models we refer
the reader to [45].
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Define M(1,1) as the free CDGA A(V{), where Vi is the R-vector
space H'(X,R). Every element of V}! is defined to have degree one
and boundary zero, and the map p: M(1,1) — £*(X) sends every
r € V! = HY(X,R) to its image in a fixed arbitrary linear section of
the modulo boundary map H'(X,R) — Z}(£*(X)).

The (1,2)-minimal model is defined as an extension of M(1,1):
M(1,2) = A(V'®V;}), where V! is the R-vector space ker(H2M(1,1) LN
H?*(X,R)). For any v € V;} we define its boundary dv as the element of
ker H?p C Vi A V! defining its cohomology class, and if dv = ¥ z;y; €
M(1,1), p(v) is a linearly varying primitive of 3 p(z;)p(%:) in £*(X).

REMARK 1.38. By definition, H2M(1,1) & H}(X,R) A H(X,R),
hence there is an isomorphism V;! 2 ker(U : H}(X,R) A H*(X,R) —
H%(X,R)).

The subsequent steps M(1,n) are constructed similarly, defining
V! as ker(H2M(1,n — 1) — H?E*(X)) and d, p as for n = 2. The
inductive limit, M(2,0) or My, is the 1-minimal model of £*(X). To
achieve functoriality, one must fix a base point for the de Rham algebra
and select p at every step so that the morphism p: M(1,n) = £*(X)
preserves the base point. Our subsequent use of the 1-minimal model
allows us to ignore this issue.

The 1-minimal model is the first step in an inductive system which
forms Sullivan’s (full) minimal model of a CDGA A. This concept was
developed as the simplest CDGA which is weakly equivalent to the

original algebra A. Some relevant properties of the 1-minimal model
are:

PROPOSITION 1.39. (Sullivan) (i) All connected CDGAs have a 1-
minimal model.

(ii) After fizing a basepoint, the 1-minimal model of a CDGA s well-
defined up to isomorphism.

(iii) The I-minimal model is functorial i.e. any basepoini-preserving
CDGA morphism £*(Y) ENY *(X) may be lifted to a morphism My M),
My.

(iv) Weakly equivalent CDGAs have isomorphic 1-minimal models.

By (iv) we may compute the 1-minimal model of a manifold X by
computing it for any CDGA linked by a ‘chain of quasi-isomorphisms
to £*(X). Another interesting consequence of this proposition is:

COROLLARY 1.40. Let f: X — Y be a map between smooth man-
ifolds such that the induced map f* on real cohomology is an iso-
morphism on H® and H' and a monomorphism on H?. Then f*o
py: My — £*(X) is a 1-minimal model for £*(X).
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REMARK 1.41. For every CW-complex X there exists an aspher-
ical space Y = K(m(X),1) and a map X — Y which satisfy the
hypotheses of the Corollary. The space Y may be obtained by attach-
ing to X cells of dimension 3 and more to kill the higher homotopy
classes.

We now recall the dualizing process between Lie algebras and free
commutative differential graded algebras generated by elements of de-
gree one.

Let L be a finite-dimensional R-Lie algebra. Its bracket is a bilinear
alternating map

[,.]:LAL— L.

Dualizing on both sides, the bracket [.,.] has an adjoint map
d: LY — LY ALY
The map d may be extended as a graded derivation to the free graded
algebra A LV, defining the degree of elements in V = LV to be one.
Then the Jacobi identity satisfied by [.,.] dualizes as d*> = 0.
Conversely, if M = AW is a free CDGA and degW = 1, the
differential restricts to a map d: W = M! — M? = W AW, which

dualizes to a map [.,.]: WY AWY — WV, and the fact d* = 0 in M
translates as the Jacobi identity in WV.

DEFINITION 1.42. A Lie algebra L and a free CDGA generated by
elements of degree one are dual when each one yields the other by the
above processes.

THEOREM 1.43. (Sullivan (1977)) Let X be an arc—connected smooth
manifold with a finitely presentable fundamental group m(X,*). The
inductive system

M(1,1) < M(1,2) < ...
formed by the (1,n)-minimal models of X and the projective system of
real Malcev algebras of the fundamental group
e — Ez(ﬂl(X),R) — L:l(ﬂ'l(X),R)
are dual to each other.

This theorem has important consequences for our purposes. Fore-
most is the following duality between the linear spaces V,! and the
quotients of the lower central series.

 COROLLARY 1.44. (i) V! = (m(X)n/m1(X)np1 ® R)V.
(ii) ker (H'(X;R) A H'(X;R) H2(X;R)) 2 V3 2 (my(X)2/m(X)s®
R)V
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Sullivan’s theory of minimal models has two main geometric appli-
cations. It allows the computation of the Malcev algebra, and thus of
the de Rham fundamental group, of many smooth manifolds, and in
the case of simply connected manifolds there is a theorem of Sullivan’s,
analogous to Theorem 1.43, stating that the (full) minimal model of
the manifold is equivalent to its real Postnikov tower, therefore yield-
ing its real homotopy type. For an introduction to minimal models of
simply connected spaces, we refer the reader to [45], and for a unified
approach complete with proofs, to [18].

6. 1-formality and quadratic presentétions

We shall describe the prime consequence of 1-formality for the de
Rham fundamental group. This is the existence of a quadratic presen-
tation of the Malcev algebra Lm;(X), which is actually equivalent to
1-formality. It is easy to write down examples of groups that cannot
be Kihler because their Malcev algebras do not fulfill this property.

This section has been clarified through suggestions of D. Toledo.
The reader is referred to [23] for a broader discussion of the topic.

Recall the following concepts of Lie theory. Given a finite-dimensional
R-vector space H, the free Lie algebra spanned by H, which we will
denote by L(H), is the sub-Lie algebra of the tensor algebra T'(H) =
@50 T"(H) = @50 H®" generated by H, with the bracket given by

[u,v] =u®v-v®u.

The free Lie algebra L(H) may be alternatively characterised by a
universal property, as the functor H — L(H) is the left adjoint of the
inclusion of R-Lie algebras into R-vector spaces. Another alternative
presentation in terms of Malcev algebras is the isomorphism

L(H) = L(Fgmn)
where Fyip, i is the free group of rank dim H. Let us fix some notation:

- The lower central series of a Lie algebra will be denoted by C'L =
L,C’L=IL,L},...,C"L=[C"'L,L],....

- The quadratic elements of L(H) are the elements of the linear
subspace (L(H) NT?(H)) = A*H.

- An ideal J C L(H) is quadratically generated if it is generated
by quadratic elements.

- A quadratically presented Lie algebra is the quotient L(H)/J of
a free Lie algebra L(H) by a quadratically generated ideal J.

It is clear that the class of quadratically presented Lie algebras is
very narrow. However, it has been shown by Carlson-Toledo and by
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S. Chen in [28] that this class contains nilpotent algebras of arbitrarily
large nilpotency class.

All Lie algebras are quotients of free Lie algebras, but in the case of
Malcev algebras such a quotient presentation can be given naturally:

LEMMA 1.45. Let T’ be a finitely presentable group and LT its real
Malcev algebra. There is an isomorphism of Lie algebras
where J C C2L(H), and is a finitely generated ideal.

For the proof, the reader may consider a morphism from a free
group Fyim g,r — I inducing an isomorphism on H; /iorsion-

Next, following Morgan, we shall give a cohomological characteri-

sation of quadratically presented Malcev algebras. First, let us recall
that the tower of n—-step Malcev algebras

e = L — - LT
or, equivalently, the dual inductive system of minimal CDGAs
Mr(1,1) = -« — Mp(1,n) < ...

define an inductive system of cohomology maps
H*(L,T) = H>Myp(1,n) 22 H>Mp(2,0) = H(LT) .

The following reformulation of the quadratic presentation property
based on [91] was suggested to the author by D. Toledo.

LEMMA 1.46. Let I' be a finitely presentable group. Then the fol-
lowing are equivalent:
(i) its Malcev algebra LT admits a quadratic presentation,
(ii) the map
H*(L,T) =% H?(LT)
1§ surjective,
(iii) there is an action of the multiplicative group R* by automorphisms

on LT so that A € R* acts as multiplication by A on H*(LT) and as
maultiplication by A\* on H?(LT).

REMARK 1.47. The action in statement (iii) is necessarily by semi-
simple automorphisms. '

PROOF. Consider the presentation £I' = L(H)/J, where H =
H,(T',R) and J is a finitely generated ideal in C2L(H). This presenta-
tion arises from an exact sequence of L(H)-modules

0—J—L(H)— LI —0. (3)
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Taking cohomology with coefficients in the trivial module R, and the
action of L(H) on the cohomology groups, there is an exact sequence
of cohomology groups (see [99])

0 — HY(LT) — HY(L(H)) — H'(J)*™) — H*(LT) — H*(L(H)).

As L(H) is a free algebra, H*(L(H)) = 0. Moreover, the fact that
J C C2L(H) also means that the map H'(Ll') — H'(L(H)) is an
isomorphism. The action of L(H) on H(J) yields an isomorphism

H*(LT) = HY(J)X® = (J/[J, L(H)])" . (4)

For every n—step Malcev algebra one may repeat this reasoning with
the presentation

0— J+C""'L(H) — L(H) — L,T — 0,
and thus obtain an isomorphism
H*(L,T) = H*Mp(1,n) = (J/([J,L(H)] + C***L(H) N J)
+C"L(H)/([J, L(H)]NC*"'L(H) + C"2L(H)))" .

The second term (C***L(H)/([J, L(H)] N C***L(H) + C**2L(H))" lies
in the kernel of the cohomology map H%(M(1,n)) - H*(M(1,n+ 1)),
hence it has trivial image in H?(LT) and the latter is the inductive
limit

(J/19, L))" = tim (J/([9, L(ED) + ™ L(H) N J)) " .

Thus the morphism H?(L,T") g 2(LT) is onto if and only if
C}L(HYNnJ C [J,L(H)],

and this inclusion is equivalent to J being generated by the finite—
dimensional linear space of quadratic elements J N T2H. This proves
the equivalence between conditions (1) and (2).

To prove the equivalence between conditions (1) and (3), first ob-
serve that R* acts on LT, with the action on H* being multiplication
by ), if and only if J is a homogeneous ideal. Namely the R*-action
on H extends uniquely to the R*-action on L(H), where the action
on homogeneous elements of degree k in L(H) is multiplication by PLN
This action is the only possible lifting of each automorphism in R*
from L(H)/J to L(H). Moreover, this action on L(H) descends to an
action on L(H)/J if and only if J is invariant under the action, which
is equivalent to the definition of a homogeneous ideal.

Note that this argument shows that any action on L(H)/J which
is multiplication by A on H must be by semi-simple automorphisms.
In particular, this justifies Remark 1.47.
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Now equation (4) shows that the induced action on H2(LT) is mul-
tiplication by A? if and only if

[J,L(H)] = C°L(H),
i.e., if and only if LT is quadratically presented. O

REMARK 1.48. One may check in the same way the following gen-
eralisation of the first equivalence in Lemma 1.46: For any m > 2, LT
admits a presentation L(H)/J where J has generators in T’ H @ - -- &
T™H if and only if the morphism H?(L,,_1T') — H?(LT) is onto.

We are now ready to establish the equivalence of the two versions of
1-formality present in the literature, which are quadratic presentation
of the Malcev algebra and the rational homotopy definition given in
our Definition 2.5.

PROPOSITION 1.49 (Morgan). Let X be a topological space with a
finitely presentable fundamental group. Then X is 1-formal if and only
if its Malcev algebra Lmy(X) is quadratically presented.

PROOF. Due to Lemma 1.46 and the property of the Malcev algebra
that the morphism

HY(Lm (X)) = HY(Mx) 28 H2(X)

is a monomorphism, it suffices to show that X is 1-formal if and only
if Im H2p = Im H2p(y 1), i.e., that the images in H?(X) of

pamy: M(1,n) — E*(X),
which form an increasing chain of subspaces by the definition of the
minimal CDGAs M(1,n), stabilise at the step n = 1.

If X is 1-formal, then its 1-minimal model is isomorphic to that of
the algebra H*(X). In this case we can build a 1-minimal model for
H*(X) such that, if M(1,n) = A(V! @ --- & V}), then the morphism
p: M(2,0) - H*(X) verifies that pjy; = 0 for m > 2. This may be
done as follows:

Let M(1,1) = A(V) with pgr,1) : V8 = H(X) be the first step
of the minimal model. The following steps are defined by adjoining
spaces

V! = ker (HZ(M(I, n — 1)) "ansy H2(X)) ,

and we can define p(; ) over V! as any linear map such that dpn)v =
Pn-1)dv = 0 € H?(X). Therefore we may set pva =0, foralln > 1.

The 1-minimal model of H*(X) that we have just described obvi-
ously verifies that Im H?(M(1,1)) = Im H*(M(2,0)) C H?(X), there-
fore the Malcev algebra £m;(X) admits a quadratic presentation.
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Conversely, assume that L£m(X) admits a quadratic presentation.
Lemma 1.46 implies that there is an action by Lie algebra automor-
phisms of R* on LT', and consequently an action by CDGA automor-
phisms on M(2,0). By Remark 1.47 these automorphisms are semi-
simple. This action is equivalent to a grading of M(2,0), namely
M(2,0) = @g>oM(2,0)(k), where M(2,0)(k) is the subspace of
M(2,0) where all A € R* act as A*. This gives a weight filtration
W, on M(2,0), defined by

Wa = @ M(2,0)(k) .
k<n .
This filtration is determined by the facts that it is multiplicative and
that the homogeneous elements v € V,! have weight n. It is strongly
graded as in §4,5 of [32] and has the property that H>(M(2,0)) is of
pure weight 2. This allows the definition of a CDGA morphism

@: Mx(2,0) — H*(X)
defined by setting

oy Vi S HY(X)
<P|V,3:V,,1 250 € HY(X) forn>2.

This is well-defined because for v € V., with m > 3, dp(v) = 0
and ¢(dv) = 0 as, due to the weight filtration, the monomials in dv
contain a factor in V}! with k > 2, while for v € V!, V;' the identity
dp(v) = @(dv) = 0 is a consequence of the defining properties of Vi, V3.

By construction, the morphism ¢: Mx(2,0) — H*(X) induces an
isomorphism on H° and H' and an injection of the subspace Im H*(M(1,1)) C
H?(M(2,0)). As this subspace is the full group H*(M(2,0)), we reach
the conclusion that H2%yp is a monomorphism, thus X must be 1-
formal. d

REMARK 1.50. In the case of compact Kéhler manifolds the filtra-

tion W, is indeed the weight filtration of a mixed Hodge structure in
the 1-minimal model ([47], [70}).

REMARK 1.51. The property of a minimal model over a field of
characteristic zero to have an action of the multiplicative group induc-
ing given weights on cohomology is independent of the field. This is
how Sullivan deduces, in §12 of [91], that formality is independent of
the field.

Proposition 1.49 implies a restrictive necessary condition for a group
to be Kahler (cf. the next Chapter).
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EXAMPLE 1.52. The groupI' = (z,y, 2, t |[z, ¥][2, ], [[[[v, z], =], =], ]),

all of whose Massey triple products are zero (cf. subsection 2.2 in the
next chapter), cannot be Kahler, because its Malcev algebra does not
admit a quadratic presentation.

Another consequence of the quadratic presentation of the Malcev
algebra, originally observed by Morgan in the case of Kéhler groups,
is:

COROLLARY 1.53. Let I' be a finitely presentable group such that
its Malcev algebra is quadratically presented. Its n—step Malcev algebras
L,(T,R) are isomorphic to the graded Lie algebras induced by the group
bracket gr,' @ R = ®}_;I'x/Tx41 ® R.

ProOF. The weight filtration W, and its associated R*-action in-
duces a canonical splitting of the algebras £,(T', R), which is respected
by the Lie bracket. The filtration induced by weight coincides with that
induced by the lower central series on £,I', and the graded Lie algebra
induced by the lower central series in £,I' is isomorphic to gr,I' ® R
(see the Appendix to [79]). O

7. Automorphisms of group origin

In this section we depart from the line of the previous ones, and
study the relation between the automorphisms of free groups, of their
Malcev algebras and nilpotent quotients. The properties of the action
of Aut F, on the Malcev algebra of F, will be used in the final chapter
to characterize the differential Galois groups of the Malcev algebra
periods of algebraic families.

Because of the functorial character of the I';/T;;; ® Q, L,T, the
group AutI' acts on all those constructions. The automorphisms it in-
duces may be called of group origin, and by a cumbersome use of stan-
dard group action notation they will be designed as Autay,r I'i/Tit1 ®
Q, Autpayr £, ® Q, etcetera. We will also denote as

Pnt AutT’ —Aut (T, /Thyps)
Pin s AutT' —Aut L,

the respective actions of AutT', and their extensions to the same con-
structions ®k, with k a field of characteristic zero.
We will establish now relations between automorphisms of geomet-
ric origin in the lower central series of I' and in the Lie algebras £,,.
The graded Z-Lie algebra grI’ is generated by its component of
degree one Gr'T' & T'/T';. The maps p, factor through the functor
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gr : Gr — Lie Alg; this means that all the p, are determined by p,, as
we directly prove in the following lemma:

LEMMA 1.54. Let I" be a group. For all n € N* there are group
morphisms ¢y, : Imp; — Aut(I'n/Tpy1) such that p, = ¢y 0 p1.

PRrOOF. It suffices to check that kerp; C kerp,. Let ¢ be an el-
ement of kerp;. This means that for all g € T' p(g) = gw,, with
wyg € I'y. The subgroup I'y, is generated by brackets of length n
(91,92, -+ 9n), With g1,... ,g, € I'. The map ¢ sends such elements to
the bracket (giwi, gaws, ..., gnwys), with w; € I';. This bracket equals
(91,92, ---,9n) as a consequence of the Witt-Hall identities; more pre-
cisely as an iterated application of Theorem 5.3 of [65], Chap.5. U

REMARK 1.55. It is easily checked that Lemma 1.54 holds as well
with coefficients in k, either directly or using the observation preceding
the Lemma.

The study of the action of AutT' on the Lie algebras £,(I') ® Q
yields the dual of a result by Sullivan (cf. [91], 6.1): There is a group
morphism given by restriction of this action to the degree one compo-
nent:

"pn : AUtAutP Lnr ® Q - Aut'AutI" (F/P2 ® Q)
PROPOSITION 1.56. There is an exact sequence

1 —ker ¢, — Autpgur L, @ Q Yo, Autpyr (T/T2® Q) —1

with ker v, a unipotent group.

PROOF. If n € Autayr (I'/T2 ® Q) = Imp;, then n = p1(p) and
Un(p1n(®)) = m1(p) = n. Therefore 1, is exhaustive.

Let us fix a homogeneous Q-linear basis for £,I". It will induce a
block decomposition in the matrices M € GL (£,I' ® Q): The block
(i,5) of M, denoted M* will be the component in T';/T;1; ® Q of
M Irj /T}4+18Q- Since AutT respects the filtration by the lower central
series of £,I'®Q, the matrices of Autpayr (£, ® Q) will be block lower
triangular. Moreover, by the graded isomorphism of Proposition 1.13
the diagonal blocks pi, ()" express the action of AutT' on I';/T'; 11 ®Q,
that is ‘

Pin(0)"" = pi(p) = di(p(¥)) ,
the latter equality given by Lemma 1.54.
It is now obvious that if 5 € ker 9, n>! = Id, and n** = ¢;(n**) =
Id, both for all 7. Thus 7 is the sum of the identity and a block strictly
lower triangular matrix, and this completes our proof. d
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REMARK 1.57. As the filtration of £,I' ® Q has length n — 1, the
nilpotence class of the kernel of 1, satisfies the inequality nil (ker Yn) <

n— 2.

REMARK 1.58. There is a linear group tower formed by the kernels

of the maps 1,

-+ — ker 3 — ker i,

Its projective limit is the kernel of the map

Autpyr LT — Autpur grl”.

It is a pro-unipotent group.

When T’ is a free group Fy, our knowledge of its lower central series
enables us to further characterise these maps:

LEMMA 1.59. The map p; : AutF, — Aut(F,/(F,)s) is exhaustive.

PROOF. If F; is the free group spanned by ay, ... ,a, then F, /(F,);
Z" is the free abelian group generated by a,,...,a, and therefore

Aut (F,/(F,)s) = GL (r, Z).

It is well known (see for instance [53], sect. 14.3, Thm. 3.2) that
GL(r,Z) is generated by the three matrices

0 0 - 0 (=1)1
1 0 --- 0 0
U1: .. )
0 O 1 0
-1
1
Us =

These matrices, in the base a;, .
of F, determined by '

a — Qa9
a,; — as
wl lllllllllllllll ’ ¢2
—1 r—1
a, — ai’V

therefore p, is onto.

Us

1

SO =

—

o o

S

.., a, correspond to the automorphisms

a
a2
as

Y
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A consequence of Lemma 1.59 is that the maps ¢, are defined over
all automorphisms of F,/(F,)s :

bn : Aut (F,/(F,);) = GL(r,Z) — Aut ((F.)a/(Fr)ns1) = GL (N, Z)

with N, given by one of Witts formule([65], §5.6). To describe more
explicitly ¢, we will consider its extension Aut(F,/(F,); ® C) —-
Aut ((Fy)n/(Fr)nt1 ® C) through its image in 1+ Je C A(C,r). We
may take the Hall basis of (F}),/(F})n+1 formed by brackets on the gen-
erators ay, ..., a,; if ¢ € Aut (F./(F,): ® C), p(a;) = ¥, Ajia;, then
¢n() sends every bracket on the a; to the same bracket on the ¢(a;)
and since we are computing modulo I',4; and there is a Lie algebra
isomorphism between gr (1 + Jc) and gr(Jc), the latter with bracket
[z,y] = zy — yo we may thus expand the brackets on the ¢(a;) and
find their coeflicients in the Hall basis.

EXAMPLE 1.60. We compute as an example ¢», ¢3 for F,. The
computation of ¢, will be explicitly used in Proposition 1.61 (i) to
determine its kernel, that of ¢; is identical to the computation of ¢,
for n > 3 and sheds light on the method of proof followed in Prop. 1.61
(1),(ii) for n > 3. The computation holds verbatim with coefficients in
Z, Q or C. Denoting the two generators of F» as a;, az, we have seen
at the end of 2.3 that

Fy/(Fy), 227, with basis a4, a
(Fz)z/(Fg):; =7 , with basis [CLz, a1]
(Fg)a/(F2)4 = Z2 y with basis [[(12, 01], al] y [[az, a1], ag] .

If (,0(&1) = Ana; + Az a9, <p(a2) = A12a1 + Ag2a9, then

$2(p)([az, a1]) = [M2a1 + Az2a2, Aura1 + Az102]
= [Ar2An1[a1, a1] + Az Azifar, 6] + A2 Aii (a2, a1] + A2a o [ag, az]
= ()\11/\22 - )\12/\21)[02, al]
= (det ¢)[az, a1]

63(0)([[az, a1], a1]) = [[M2a1 + Az2a2, Ar1a1 + Azraz), Annar + Ag1as]
= [(An1 22 — A12a1)[az, a1, Ad1a1 + A2102]
= /\11(/\11)\22 - )\12/\21)[[112, al], al] + )\21()\11)\22 - )\12)\21)[[02, a1], az]
= (det @) (M laz, a1, a1] + Aai[[az, a1}, a2]

and in the same manner we obtain

¢3()[[az, a1], az] = Aia(det p)[[az, a1], a1] + Aaa(det ¢)[[az, a1}, a2]
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In this way the kernel of the ¢, may be determined. We will find
it in the most general case, i.e. with coefficients in C. The kernel for
any ring R C C is then found by restriction.

PROPOSITION 1.61. Let ¢y, : Aut (F,/(F,)2 ® C) = Aut (F.)n/(Fp)ns1 ® C)

2nik

be the morphism defined in Lemma 1.5/, and denote p,Id = {e n Id|0<k< n}

(i) For F5, ker ¢ = SL(2,Z), and ker ¢,, is p,Id.
(ii) For F, with r > 2, ker ¢,, 15 pn1d.

PROOF. (i) As we have already seen, (F)s/(Fy); ® C = C, with basis
[az, a1]. The computation of Example 1.60 yields

¢2(p)laz, a1] = (det p)[az, a,]

from which the kernel of ¢, is deduced.
For n > 2, an element of the Hall basis for (F}),/(F3)ns1 ® C is

W12 = [02,01,01, . -~,al]
If p(a;) = ¥; Ajia; then ¢, (p)w;s is
[A12a1 + A2202, 1101 + Aziag, . . ., Ania; + Ag1as)

We can expand it by linearity into a sum of 2" elementary bracket
terms on a, ay

n—1 n—1 n-1
A12A11 [ala a,a1,-.., (11]+A22A11 [a27 Q1,01,..., 01]+‘ : '+)‘22A21 [a2) az,az, ...

and then compute all these brackets to find the expression of én(p)wis
in Jg/Jg". It turns out that the monomials of ¢y, ()w;2 with n—1 fac-
tors a; and one factor a; are exactly those coming from the elementary
bracket terms

n—1 n—2
2231 [an, 2,0z, . . ., 03] + A2 A1 Ajy 2[ag, a1, a9, . . . , 03]
— n—2
= (A2 — A2 Aa1) A5 *[az, a1, a2, . . ., ag)]

because such monomials must come from elementary bracket terms
with n—1 a; components and one a; component, and the a; component
must be in the innermost bracket or else the whole elementary bracket
term is zero. Since AyppA1; —A12A2; = det ¢ # 0, then ¢, (p) = Id implies
A21 = 0. An identical computation with wy; = [ag,a1,as,...,ay] yields
A1z = 0. Therefore if ¢ € ker ¢,, then ¢ must be diagonal. In such case

— yn—1
plag, a,...,a1] = Al Alas, a4, . . ., a4]
_ \n—242
90[02,01, .. ',alaa‘Z] - /\11 /\22[a2’a1) e ,a11a2]
and since n > 2 [ay,a4,...,a1], [az,a1,...,a;,a,] are two distinct ele-

ments of the Hall basis of length n. Now ¢,(y) = Id implies A% ' Agp =

) a2]
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1, \iT202, = 1, thus A\j; = A and A}, = 1. By linearity and length n
of the brackets, all such candidates belong to the kernel.

(ii) The Hall basis of (F,)2/(F,)s ® C is the set {[ak, a;]},-;. Its images
by ¢2(¢p) are:

d2(0)[ar, ai] = [D_ Ankan, ) Asiaj]

= Z (ArkAji = Anidix) [an, aj]

h>j
Therefore ¢3(¢) = Id means that all 2 X 2 minors of the matrix (\;;)
of ¢ in the basis ay,...,a, which are centered on the diagonal have

determinant one, and the others zero. This implies that ¢ = +Id.
Both choices clearly belong to the kernel.

In the case n > 2 we study as in the case of F> Hall basis elements
of the form

Wik = [ak,a,-,ai, . ,a,:], k>1

O)wie = [>_ Ankah, 3 XjiGjs -+, D Ajit;]
Again, the monomials in ¢,(¢)w;x with exactly n — 1 factors a; and
one factor a; come from
(MekAii — Aeidik) AL [0k, @iy Qi - - - 5 4]
Therefore /\kkAii - Aki ik /\ii # 0.
The terms with n — 1 factors a; and one factor a; come from
(AkkXii — Akidie) Api 2la, @iy i, - - -, 0]
Since there are no such terms in w;; and AgxAis — Aridix # 0 then it
must be that Ay; = 0. This holds for all k¥ > 4, but if £ < ¢ the same
conclusion is reached evaluating ¢,(¢)[a;, ax, a;, .. .,a;]. Hence ¢ has a
diagonal matrix. As in the case of F3, we examine the image by ¢ of
two distinct Hall basis elements for every pair k > i

Qo[aka Aiy - 70"] = )‘n_l[ak';a'i’ aai]
(p[ak7aia"'a_ai)ak] An 2A k[akya'u--'aai’ak]

So as in item (i) ¢,(¢) = Id implies A;; = Agx and A}, = 1. The only
possibilities for ¢ are again the matrices of p,Id, which are in the
kernel by linearity and length of the brackets. a




CHAPTER 2

Kahler groups

This chapter recalls the notion of formality in rational homotopy theory
([91], [35], [70}) and applies it to the study of the fundamental group
of compact Kahler manifolds, i.e. Kahler groups. We retrieve in this
way some known properties and restrictions verified by Kahler groups
and extend them. Basic results in Hodge theory, such as the @ pairing,
the dd° lemma and the Hard Lefschetz theorem are used thoroughout
this chapter, for a generic reference to them see [101].

1. Formality of compact Kahler manifolds

In the previous chapter we described the construction of Sullivan’s
1-minimal model and its relation to the de Rham fundamental group
in the case of arbitrary smooth manifolds. We shall now study a spe-
cial property of compact Kahler manifolds with respect to their real
homotopy.

DEFINITION 2.1. A smooth manifold X is formal if the CDGAs
&*(X) and H*(X,R) are weakly equivalent.

This is equivalent to £*(X) and H*(X,R) having isomorphic minimal
models. Thus by Sullivan’s theory, the real homotopy type of X is
determined by its real cohomology algebra.

EXAMPLE 2.2. Formality is a common property among manifolds
with a simple cohomology algebra. Some particular examples are:

(i) spheres and wedges of spheres,
(ii) compact connected Lie groups,
(iii) Eilenberg-Mac Lane spaces K (m,n) for n > 1,
(iv) Riemannian symmetric spaces,
(v) complements of hyperplane arrangements in C".

Another important class of formal spaces is that of compact K&hler
manifolds. These are formal as an immediate consequence of Hodge
theory, notably of the dd°~Lemma, and this is the basis for the results
of this Chapter.

THEOREM 2.3 (Deligne-Griffiths-Morgan—Sullivan [35]). Compact
Kahler manifolds are formal.

51
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We shall concentrate on the implications of Theorem 2.3 for the
1-minimal model and the de Rham fundamental group.

COROLLARY 2.4. The de Rham fundamental group of a compact
Kahler manifold is determined by the cup product U: H(X,R)@H' (X,R) —
H?(X,R).

PROOF. By the categorical equivalence of Malcev’s Theorem 1.5,
the de Rham fundamental group 7;(X) ® R is determined by the real
Malcev algebra £(m(X),R), which is dual to the 1-minimal model Mx
of X.

In the case when X is a compact Kahler manifold, by Theorem 2.3
the 1-minimal model My is also the 1-minimal model of the cohomol-
ogy algebra H*(X,R). As may be seen from its construction in the
previous Chapter, this 1-minimal model is determined by the coho-
mology group H!(X,R) and the cup product H(X,R) ® H'(X,R) —
H%*(X,R). O

Topological spaces X for which Corollary 2.4 holds are called 1-
formal spaces. An equivalent and more precise definition is:

DEFINITION 2.5. A topological space X is 1-formal if there exists
a CDGA morphism

p: Mx(2,0) — H*(X)

such that H°(p) and H*(p) are isomorphisms and H?(p) is a monomor-
phism.

It follows from the definitions that formal spaces are 1-formal.
Therefore:

COROLLARY 2.6. Compact Kihler manifolds are 1-formal.

According to Proposition 1.49 and Corollary 1.53 in the first chap-
ter, 1-formality of compact Kahler manifolds has the following conse-
quences for its Malcev algebras:

COROLLARY 2.7. Let T be a Kihler group and k a field of charac-
teristic zero.
(i) The Malcev algebra L(T, k) is quadratically presented.
(ii) There is an isomorphism of pro-nilpotent Lie algebras

LT, k)= (¢rT)Qk.

Corollary 2.7 implies that the Malcev algebra, thus also the unipo-
tent completion, of a Kéhler group are originally defined over the inte-
gers, and the completion over a field k of characteristic zero is just an
extension of scalars on this integral form grI' = @p>1Tn/Tn41-
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2. Examples and applications

2.1. Groups with free Malcev completions. As they always
contain an odd rank free group with finite index, free groups may be
seen not to be Kahler by an immediate covering argument. More gen-
erally, we can now show that groups with a free Malcev algebra, or
even those “free up to order two brackets”, cannot be Kahler.

We will use here the 2-step nilpotent de Rham fundamental group
(m(X)/m1(X)3) ®R, or equivalently the 2-step nilpotent Malcev alge-
bra
L2(m (X), R), which is isomorphic, though not canonically so, to Gr Ly(m (X),R) =
(m(X)/m(X)2 @R) @ (11 (X )2/m1(X)s ®R). This is the simplest non—
Abelian quotient after H(X,R).

PROPOSITION 2.8. If LoI' & L,F, for some free group F,, then T
cannot be a Kdhler group.

PROOF. If LoI' & L,F,, then dimI'/T; ® R = n, and dim /T3 ®
R = dim(F,)2/(F.)s @R = (3). Thus if I = m(X) with X com-
pact Kahler, by the formality of X and the duality of the de Rham

fundamental group with the 1-minimal model, we would have that
dim H'(X,R) = dim V! = dimT'/T, @ R=n

and

dimker(H'(X,R)AH' (X,R) = H*(X,R)) = dim V;} = dimI',/T;®R = (Z) .

But the first equality implies that dim H*(X,R) A H}(X,R) = (;), S0
in fact, all exterior products of 1-forms on X would be exact. This
is not possible for X compact Kihler, because of the Hard Lefschetz

Theorem. Hence the statement. O

EXAMPLE 2.9 (parafree groups (see [11])). A group T’ is parafree
of rank r if for every n € N there are isomorphisms I'/T,, = F./(F.),.
Parafree groups were introduced by G. Baumslag, who showed that
there exist many nonfree examples. The isomorphism I'/T's = F,/(F,);
induces an isomorphism £,I' 22 £, F,, thus I' may not be Kihler.

EXAMPLE 2.10 (1-relator groups). If ' is a Kéhler group admit-
ting a presentation with only one relation, I' = (z,,...,z, | r), then
either n = 1and I' ® Z/mZ, or r must lie in F{z,,...,2,},, otherwise
by Corollary 1.32 L,T' & L,F,_, or LyF,.

For instance, the groups (z,y, z|zyzzzzzy), or (z,y|[[z,y],y]) can-
not be Kahler.
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EXAMPLE 2.11. (Generic groups with few defining relations) Let
I' be a group admitting a presentation with n generators z;,...,z,
and s < n defining relations ry,...,7,, such that their images in the
Abelianised group Z%, @ --- = Z" are linearly independent. Then I'
cannot be Kahler, as £L,I' = LoF,_,. This is the generic case among
presentations with fewer relations than generators.

For instance, the group T = (z,, ..., zs|z222z?, 232222 x2x322) can-
not be Kabhler.

2.2. Massey products and Heisenberg groups. The conse-
quences of formality for the topology of compact Kahler manifolds were
first realized in terms of vanishing of Massey products. We will present
some well-known results in this subsection, in order to show how these
vanishings follow from formality, and give instances of its effect on
Kéhler groups.

We now define Massey triple products. These are cohomological op-
erations which, in the case of 1-forms or of spherical cohomology classes
in general, are dual to the group bracket, respectively the Whitehead
bracket, of representing homotopy classes of loops or spheres.

Let o, 8,7 € H*(X,R), of degrees p,q,r respectively, such that
aUpB =0, 83U~y =0. Choose corresponding cocycles a, b, c, and select
primitive cochains f,g such that df = aUb, dg = bU c. We define
the Massey triple product (o, 3,7) as the class of fUc+ (—1)*'aUg
in HPtet=1(X) /(e U H®*"}(X) + v U HP*471(X)). One can check
that this is well-defined in the quotient, although it would not be well-
defined as a cohomology class. This is the definition of the Massey
triple product in the singular cochain algebra of a topologic space.
The definition actually extends to any CDGA as above, and its func-
toriality follows from the definition. A consequence of its naturality is
the following

LEMMA 2.12. Let A and B be weakly equivalent algebras. The iso-
morphism H*A = H*B preserves Massey triple products.

In the case of compact Kéahler manifolds, formality together with
the above Lemma allow us to compute Massey triple products rather
easily.

PROPOSITION 2.13. All Massey triple products on a compact Kdhler
manifold are zero.

ProOOF. Let X be compact Kihler. By the formality of X, the
algebras £*(X) and H*(X,R) are weakly equivalent, so we can com-
pute Massey triple products in H*(X,R). The differential is zero by
definition, so all Massey products will be zero. (]
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From Proposition 2.13 we derive a restriction on Kéhler groups,
which we will state in terms of the algebra of singular cochains C* (T, R).
It can be seen directly as a consequence of the quadratic presentation
of its Malcev algebra, which implies that all types of Massey products
of 1-forms in a Kahler group are zero:

COROLLARY 2.14. LetT be a Kihler group. Then all Massey triple
products of classes of H*(T',R) must be zero.

ProoOF. This follows from Proposition 2.13 and from the fact that
if I' = m(X), there is a map ¢: X — K(I',1) inducing an isomor-
phism of fundamental groups, an isomorphism on HY and H!, and a
monomorphism H?(T') —» H?(X,R), cf. Remark 1.41. Therefore, for
Massey products of 1-classes to be zero in a quotient of H%(X, R), they
must be zero in the corresponding quotient of H%(T). O

EXAMPLE 2.15 (Serre). The Heisenberg group #H3(Z) is the group

of matrices
1 2 2
H3(Z) = 0 1 y|e€GL(3,Z); .
0 01

This group is not Kéahler, because its cohomology contains nontrivial
Massey products.

To check this, let us first observe that 3 has a dimension 3 Malcev
algebra (X,Y,Z | (X,Y] = Z,[X,Z] = 0,[Y, Z] = 0). Dualisation of
this nilpotent Lie algebra yields the 1-minimal model of any topological
space having m(X) = H3, which is

M = A(z,y,2) degz,y,z2=1 dr=0,dy=0,dz=1zy.

The Massey triple product (z, z,y) is well-defined in H%(#3), and it is
zz, which is a non-zero cohomology class.

EXAMPLE 2.16. Consider the Heisenberg group of Gaussian inte-

gers
1 =z =
H3(Z[3)) = {(0 1 y) €GL(3,Z& Zz)} .
0 01

As in the case of the integral Heisenberg group #H3(Z), we can check
that there are nontrivial Massey triple products of 1-forms, and there-
fore H3(Z[7]) is not a Kéhler group.

3. The Albanese map and the de Rham fundamental group

In this section we describe how the de Rham fundamental group of a
compact Kahler manifold is determined by that of its Albanese image.
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We then discuss some consequences that follow from this combined
with knowledge of the structure of the Albanese map.

Let X be a compact Kahler manifold, and ax: X — Alb(X) its
Albanese map. Denote as Y = ax(X) its image, which may be singu-
lar. We consider a desingularisation ¢: Y — Y, and a desingularisation
X of the pullback of ax:

X & vy
6xl lé‘
X v

It is clear that the manifold X is also compact Kahler and that the
map €x is a birational morphism and thus induces an isomorphism of

fundamental groups ex,: mi(X) — m(X).
We will call the map ax: X — Y a smoothing of the Albanese
map of X. The properties of the original Albanese map ax relate X,

X and Y as follows:

PROPOSITION 2.17 (Campana). Let X be a compact Kihler man-
ifold and ax: X — Y a smoothing of its Albanese map. Then ex and
x induce an isomorphism m (X) @ R — m(Y) @ R.

PROOF. As e€x induces an isomorphism of fundamental groups,
e%: H'(X) — HY(X) is also an isomorphism. This implies that
Alb(X) is the Albanese torus of X and ax oex = € 0 &x its Albanese
map. As a consequence, &% : H (Y) — H(X) is surjective. As ay it-
self is also surjective, &Y% is also injective for H*. Therefore &x induces
an isomorphism H'(Y) & H(X) and an injection H2(Y) — H*(X).
Thus, by the universality of the 1-minimal model, &x induces an iso-
morphism My(2,0) = M4(2,0). Dualizing, we obtain our statement
for the Malcev algebras £(m X) and L£(mY). The categorical equiva-
lence between real Malcev algebras and de Rham fundamental groups,
and the fact that ex induces an isomorphism of fundamental groups
m(X) 2 m (X), complete the proof. : O

Thus the study of de Rham fundamental groups, or equivalently
Malcev completions of fundamental groups, of compact Kéahler mani-
folds may be reduced to the study of smoothings of its Albanese images.
This is particularly convenient in the following cases:
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COROLLARY 2.18 (Campana). Let X be a compact Kéhler mani-
fold with surjective Albanese map ax: X — Alb(X). Then the Al-
banese map induces an isomorphism of de Rham fundamental groups

axe: T (X) ® R = m (Al(X)) @ R 2 R (¥) |

PROOF. As ax is surjective, its image is smooth, and so ¥ =
Alb(X). O

EXAMPLE 2.19. Some examples of Kéhler manifolds with surjec-
tive Albanese map are: manifolds with Kodaira dimension x(X) = 0,
manifolds with algebraic dimension a(X) = 0 and manifolds with first
Betti number b;(X) = 0 or 2.

The image of the Albanese maps of a compact Kahler manifold X
is a subvariety of the Albanese torus Alb(X). The following theorem
on the structure of subvarieties of complex tori is very useful in the
study of their de Rham fundamental groups.

THEOREM 2.20 ([97], Theorem 10.9). Let Y be a subvariety of a
complex torus T. Then there erists a complex subtorus Ay C T such
that Ay =T /A, is an Abelian variety, and a projective subvariety W C
A, such that:

(i) the natural projection m: T — A, satisfies Y = n=Y(W), and

(ii) there is an equality of Kodaira dimensions

k(W) = dim(W) = k(Y) .

Kolldr pointed out to the author that this can be reformulated in
the following useful form:

COROLLARY 2.21. Let Y be a subvariety of a complex torus T.
Then

(i) there are a projective variety W with dimension dim W = k(Y),
and a subtorus A, C T such that there is a holomorphic map Y — W
and a diffeomorphism over W

Y’——\-'A1XW;

(ii) the subvam’fty Y admits a desingularisation Y, together with a
holomorphic map Y — W to a projective desingularisation of W, such
that Y s diffeomorphic to A; x W.

PROOF. Real tori are semi-simple. Thus, considering the real torus
underlying T and its subtorus A4, in Theorem 2.20, there is a diffeo-
morphism

f:T =5 A x Ay
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with the inclusion 4; < T as a factor. Thus by Theorem 2.20 the map
f restricts to the desired diffeomorphism ¥ = A; x W.

Consider now a projective desingularisation W — W and the pull-
back Y in the diagram of holomorphic maps

Y — T
o
W — A2

The holomorphic map Y — W is smooth by base change, and W is
smooth. Thus Y is a desingularisation of Y. Moreover, T is diffeomor-
phic over A; to the trivial family A; x A, and so Y is diffeomorphic
over W to the trivial family 4; x W. O

REMARK 2.22. The varieties W, W of Theorem 2.20 and Corollary
2.21 are of general type.

Here is another application of Theorem 2.20 to de Rham groups of
Kihler manifolds, which had already been proved by Campana when
the image of the Albanese mapping is a divisor in Alb(X).

COROLLARY 2.23. Let X be a compact Kihler manifold with Ko-
daira dimension k(X) = 1. Then there is a noncanonically split ezact
sequence

1— Rbl(X)—-Zg — 7T1(X) QR — 7T1(Cg) QR—1,
where C, is a compact curve of genus g > 0.

PROOF. The Kodaira dimension of the Albanese image Y of X

satisfies the inequality
K(Y) < k(X) .

The fact that Y is contained in a complex torus rules out the possibility
that k(Y) = —oo. Moreover, if £(Y') = 0, the submanifold ¥ must be a
translation of a complex subtorus of Alb(X) because of Theorem 2.20
and must generate Alb(X) because it is the Albanese image of X.
Therefore Y = Alb(X) and m;(X) ® R 22 R (X),

If k(Y) = 1, by Corollary 2.21 there is a diffeomorphism Y =
A, x C, for some smooth compact curve Cg, and thus the split exact
sequence follows from Proposition 2.17. a

REMARK 2.24. Let us note in addition to the previous proof that
when the Albanese image has Kodaira dimension x(Y’) = 1, then the
curve C, has genus g > 2, and X is a fibered Kahler ma.mfold

Moreover if the Albanese image Y has dimension one, then it must
be a smooth curve, the fibers of the Albanese map will be connected
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([97], Proposition 9.19), and the isomorphism of de Rham fundamental
groups comes from an isomorphism of torsion—free nilpotent comple-
tions 1 (X)g™ = m;(C,)s". It is shown in [41] that this is the case
for Kahler groups admitting a presentation with n generators and s
relations where s < n — 2.

An important open question is whether all Kéhler groups are funda-
mental groups of complex projective manifolds. The following Corol-
lary, based on Theorem 2.20, clarifies the question at the de Rham
level:

COROLLARY 2.25 (Campana). Every de Rham fundamental group
of a compact Kdhler manifold is the de Rham fundamental group of
a complex projective manifold, and the direct product of the de Rham
fundamental group of a general type projective manifold and an abelian
group R?*

PROOF. By Proposition 2.17, for every Kahler group I' = m;(X),
one has an isomorphism of de Rham fundamental groups m;(X) ® R 2
m(Y), where Y is a smoothing of the Albanese image. Moreover,
Corollary 2.21 shows that one may choose Y diffeomorphic to A; x
W, where A, is a torus and W a projective manifold of general type.
Therefore

m(X)®R=R24EmA 7 (W)QR.

The latter group is the de Rham fundamental group of A x W, with A
any Abelian variety of the same rank as A;. (]

Corollary 2.25 solves the rational homotopy analogue of the follow-
ing conjecture by J. Kollar:

CONJECTURE 2.26 ([61]). The fundamental group of a compact
Kdhler manifold is commensurable to the direct product of Z** and
the fundamental group of a general type projective manifold.

REMARK 2.27. As we remarked at the beginning of this Chapter,
all the results in this section are valid for rational coefficients in co-
homology algebras, de Rham groups and Malcev algebras. Moreover,
by taking the Stein factorisation of the Albanese map, one can extend
Corollary 2.25 and show that all torsion—free nilpotent completions of
Kébhler groups are torsion—free nilpotent.completions of fundamental
groups of projective manifolds.

3.1. One- and two-relator Kahler groups. We will use Propo-
sition 2.17 now to relate the dimension of the Albanese image of a
compact Kéhler manifold X and the rank of the second order brack-
ets quotient m;(X)2/m(X);. As an application, we will determine the
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Malcev algebras of Kéhler groups with one or two defining relations,
and the one relator- groups themselves.

LEMMA 2.28. Let X be compact Kéhler, Y the Albanese image of
X and m = dimcY. Then the graded algebra H*(X;C) contains a
free graded exterior algebra A(V'), where V is a complex vector space
of dimension m and degree 1 spanned by holomorphic forms.

PROOF. (cf. [12] V.18) Let y € Alb(X) be a regular point of the
Albanese image Y = ax(X). As dimY = m, there are local co-
ordinates uy,...u, of Alb(X) in a neighbourhood U of y such that
Y NU is defined as upmyy = 0,...,u, = 0. The holomorphic forms
du,,...,du,, are defined on U and, as Alb(X) is parallelizable, the

forms in A(duy, . . ., du.,) extend to global holomorphic forms on Alb(X).

Its pull-back A(a%du,...,axduy,) defines a subalgebra of holomor-
phic cohomology classes in H*(X) which is free on a neighbourhood of
Yy, hence is free. O

The above Lemma together with the correspondence of Corollaries
1.30, 1.44 may be used to bound from below the number of defining
relations for Kahler groups, and to study those admitting a one- or
two-relation presentation.

PROPOSITION 2.29. LetI' be a Kdhler group, X a compact Kdhler
manifold such that ;X =T and Y its Albanese image. Then:

(i) If dimY = 1, there is an isomorphism LT = Lm Cy with Cy a
compact Riemann surface of genus g, induced by a group map
- 71'109.

(ii) IfdimY =m > 1, dimker (do : Rry & --- @ Rry — F/F, ®R) >
2(’;)4—1. In particular, any presentation' = (z1,...,Zn; T1,.. .,
must have defining relations 7y, . ..,y such that they form a basis
of Im f and at least another 2(';) + 1 defining relations.

PRrOOF. (i) is just Prop. 2.17 with ¥ as C,.

(ii) By Lemma 2.28, the algebra H*(X;C) contains a free alge-
bra A(V) generated by m linearly independent holomorphic 1-
forms. By the Hodge structure of H*(X) it contains an iso-
morphic algebra A(V) spanned by m independent antiholomor-
phic 1-forms. Both algebras being free, one obtains the lower
bound dim [ImU :N2HNX) - HY(X )] > 2(’;‘) considering ei-
ther holomorphic or antiholomorphic products alone. Finally,
due to the properties of the Q pairing in H*(X) ([101] 5.6), the
product of a holomorphic 1-form with its conjugate cannot be
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zero, so dim(ImU) N HM(X) > 1. By the correspondence of
Corollary 1.44 this produces the sought bound.
O

REMARK 2.30. If X is compact Kéhler and satisfies (i) in the above
Proposition 2.29, it is not hard to check that the map m X =T — m,C,
is onto. If the genus g is > 2, such groups I' are examples of what we
will call fibered Kahler groups, to be defined in 2.34.

We are now able to characterize de Rham fundamental groups of
compact Kahler manifolds with one or two defining relations.

THEOREM 2.31. LetT be a Kihler group admitting a presentation
with only one or two defining relations. Then either I'/To @ R =0 or
LT =2 Lm C, with Cy a compact Riemann surface.

Proor. If I'/T; ® R # 0, then L,I" # 0, and by Prop. 2.29 any
presentation of I' must have at least 2(‘1“’.;,l Y) + 1 defining relations,

with Y = Alb(X). Thus the only possible case is dimY = 1, and
Proposition 2.29 (i) completes the proof. (]

REMARK 2.32. (i) The 1-relator groups I’ with I'/T, @ R = 0
are exactly the I' = Z/nZ.

(ii) The 2-relator groups I' with I'/T; ® R = 0 are those with a
presentation (z1,z, ; 71,72) with 7,7, linearly independent in
F{zy,z5}/(F{z1,22})2. This is immediately derived from the
exact sequence (1.5).

EXAMPLE 2.33. Denote C, a compact Riemann surface of genus
g.
(i) The group I' defined in Example 2.11 can also be seen not to be
Kéhler by Theorem 2.31, as I'/T; ® R = R? but L,I" ¥ Lom; (Ch).
(ii) The group I' = (z1,22,23,24 ; (T122,22), (z12371,23)) has a
Malcev algebra which fulfills the quadratic presentation condi-
tion imposed by Morgan (Prop. 1.49). Yet I cannot be Kahler
because I'/T2®R = R* but dim ', /T3®R = 4 # 5 = dim 7,(C,)2/m1 (Cs)s,
contradicting Theorem 2.31.

4. Non—fibered Kihler groups

Here we establish a dicothomy between fibered and nonfibered Kihler
groups, arising from a result by A. Beauville and Y.T. Siu on the ex-
istence of irregular pencils on compact Kéhler manifolds. We skip
the fibered case, and we give in Proposition 2.42 an upper bound for
dimT3/T'; ® R and a lower bound for the second Betti number b,(T')
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in the case of nonfibered groups. This translates as a lower bound for
the number of relations that their presentations must have.

Let I' = m(X,*) be a fundamental group. By Corollary 1.44
dimT,/T5 ® R = dim A2 H(X) ~ dimIm (U: A H}(X) — H*(X)).
As we have used in Proposition 2.8, if X is compact Kéhler, by the
properties of the @ pairing Im U must be nonzero. Now we will estab-
lish a lower bound on its dimension in the case of nonfibered manifolds,

by recalling a result of Castelnuovo-De Franchis and its extension to
arbitrary dimension.

DEFINITION 2.34. Let I be a Kéahler group.

(i) We call T a fibered Kihler group when I' = m;(X,*) with X
compact Kihler admitting a nonconstant holomorphic map f :
X — C,, with Cy a compact Riemann surface of genus g > 2.

(ii) We call T' a nonfibered Kéhler group when I' = m;(X,*) with
X compact Kahler not admitting any nonconstant holomorphic
map to a compact Riemann surface of genus g > 2.

A. Beauville and Y.T. Siu independently proved that the above
definitions make sense:

PROPOSITION 2.35 ([13],(86]). Let X be a compact Kihler mani-
fold, write T' = m,(X, %), and let g > 2 be an integer. Then X admits
a nonconstant holomorphic map to a compact Riemann surface of a
genus h > g if and only if there is an epimorphic group morphism
T — m(Cy, *), with m1(Cy, *) the fundamental group of a compact Rie-
mann surface of genus g.

Proposition 2.35 means that a Kéhler group T' is either fibered or
nonfibered, and that the former are characterised by admitting a m (Cy)
as a quotient.

If we have an onto map I' - H — 1, it induces onto maps
I/Ths1 ®R — Hy/Hp i ® R — 0 for all n. This together with the
fact that the lower central series quotients of the 7, Cy have all nonzero
rank shows that nilpotent or rationally nilpotent Kahler groups must
be nonfibered. Campana gave recently examples of Kahler groups with
a Malcev algebra of nilpotency class 2, and Shirping Chen has found
quadratically presented Malcev algebras of arbitrary nilpotency class.
A question asked by D. Toledo to the author is:

QUESTION 2.36. Are there non-fibered Kdihler groups which are
not rationally nilpotent?
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We now study the cup products of 1-forms in the case of nonfibered
compact Kahler manifolds. We begin with an extension of a classical
result (see [24)): '

PROPOSITION 2.37 (Castelnuovo-De Franchis). Let X be a com-
pact Kdhler manifold. If there erist wy,w, linearly independent holo-
morphic 1-forms such that w; A wy = 0 then there is a holomorphic
map f : X — C with C a curve of genus g(C) > 2, such that w;,w,
belong to Im f*.

REMARK 2.38. The form equality w; A w; = 0 is equivalent to
w1 A w; being exact. This is a result of Hodge theory, showing that a
nonzero holomorphic form over a compact Kahler manifold cannot be
exact.

The Castelnuovo-De Franchis theorem together with the conic struc-
ture of the set of products in H*°(X) yield the following corollary (see
[10] IV, Prop. 4.2):

COROLLARY 2.39. If X is a nonfibered compact Kihler manifold,
then dim Im (U : A2 HY(X) — H?(X)) > 2dim HY(X) - 3.

Corollary 2.39 gives a bound for the products of holomorphic 1-
forms, and by conjugation, of antiholomorphic 1-forms. The dimension
of products of holomorphic-antiholomorphic 1-forms has been bounded
for compact complex surfaces in [10], IV, Prop. 4.3. We slightly al-
ter their proof to extend it to compact Kihler manifolds of arbitrary
dimension:

PROPOSITION 2.40. Let X be a nonfibered compact Kihler mani-
fold. Thendim Im (U: HY(X) ® H*}(X) — H*(X)) > 2dim H“(X)—
1.

PROOF. Denote n =dimX > 2,V =ImU: HY(X)® H*(X) —
H'“(X) and fix w a fundamental Kahler form on X. We begin by
showing that the pairing U : H**(X)® H%}(X) — V becomes injective
when we fix a nonzero { € H*(X) or 7 € H*!(X).

Suppose there are holomorphic 1-forms ¢, 7 such that ¢ A 7 = da.
Then obviously £ An A€ AT =da, and

/XE/\n/\f/\r‘]/\w,"—zzo

By the properties of the pairing Q of compact Kahler manifolds (see
(101} 5.6), this implies that £ A = 0, thus by the Castelnuovo-De
Franchis theorem ¢ and 7 are linearly dependent. Take ¢ = a7, with
a € C*. Then 0 = { Af] = anp A 7. Again by the properties of the
pairing (), this means that &, = 0.
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Thus a map may be defined
P(H"(X)) x P(H*' (X)) — P(V)

with injective restrictions fixing a point in either factor of the source.
We apply now the following result from [81]:

PROPOSITION 2.41. Let ¢ : P™(C) x P¥(C) — P(C) be a holo-
morphic mapping, with | < m + k. Then ¢ factors through one of the
projections P™ x P* — P™ P™ x P¥ — P*,

In our case, U cannot factor through any of the projections be-
cause it is fiberwise injective in both cases, so it holds that dimV >
2dim H%9(X) — 1 as was wanted. O

We have now all the required pieces to study I's/T'3s®R of nonfibered
groups. We return to the notations defined in the first chapter.

PROPOSITION 2.42. Let X be a nonfibered compact Kahler mani-
fold with ¢ = 1 dim H'(X) = dim 3T/Tym (X, %)) ® R. Then:
(1) Ifq =0,1, dim7r1(X, *)2/771(X, *)3 @R =0 and bz(‘il'l(X)) > 1.
(ii) Ifq > 2, dimm (X, *)2/m (X, *)3®R < 2¢>—7¢+7 and by(m1 (X)) >
6qg — 7.

PRrOOF. We have seen in Corollary 1.44 that dim (X, *)2/m1 (X, %)3®
R = dim \? H'(X) — dimIm (U: A\ HY(X) = H*(X)) = 232 —
dimImU.

Thus if q= 0, dim7r1(X, *)2/71’1(X, *)3 ® R=0.

Ifg=1,dimImU < 1, so dimm; (X, %)2/m (X, *)s ®R < 1. Let a,b
be a basis of m, (X, ¥)/m1 (X, ¥)2®R. The equality dim (X, *)2/m1 (X, *)3®
R = 1 would imply that (a,b) # 0 in L,m (X, *) by Proposition 1.31.
Therefore there would be an isomorphism Ly F =Y Lom (X, *) sending
the generators X;, Xz of LoF; to a,b respectively. By Proposition 2.8
this would mean that m; (X, *) is not Kéhler, leading to a contradiction.
Hence our statement follows.

For ¢ > 2, we break H'(X) into its Hodge components. By Cor.
2.39 dim (Im A? HM(X) — HZ’O(X)) > 2¢ — 3. The same holds by
conjugation for A2 H*'(X) — H%*(X). Prop. 2.40 gives the inequal-
ity dim (H"*(X) ® H*' (X) — HY'(X)) > 29 — 1 and our statement
follows from the addition of bounds. [

Proposition 2.42 roughly means that nonfibered Kahler groups need
many defining relations. M. Green and R. Lazarsfeld give a bound
([41],Thm. 5.4), establishing that given X nonfibered compact Kahler
in the sense of Def. 2.34, that is admitting no pencil of genus g > 2, and
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a presentation of its fundamental group m(X) = (z1,...,2n ; 11,...,7),
then

s>n—3
Proposition 2.42 above allows us to establish a more accurate bound:

COROLLARY 2.43. Let ' = (z1,...,% ; T1,...,7,) be a finite
group presentation. If I’ = m(X), with X nonfibered compact Kahler,
and writing ¢ = 3b,(X), the total number of relations must satisfy

(i) If¢g=0, s > n.

(ii) Ifg=1,s>n—1.
(iii) fqg>2, s>n+4q—1.

PROOF. The group presentation I' = (zy,...,2, ; 1,...,7,) in-
duces an exact sequence 1 - N — F — T’ — 1 described in (1.3). Let
do : ®Rr; — Jp/J? = F/F,®R be the map defined in Proposition 1.26.
We may suppose the relations ry,...,r, ordered so that the images of
T1,. .-, Tk, With k < s form a basis of Indy = N/NNF,®QR — F/F,QR.

By Proposition 1.26 and Corollary 1.27 (i), dimI'/T,®R = dim F/F,®
R —dim N/N N F; ® R, so there is an equality

n=~k+2q

Let us remark also that dimkerd; = s — k.
Thus if ¢ = 0 we have n = k < s as was wanted.
If ¢ = 1, by Corollary 1.30 and Proposition 2.42 (i) we have that

2
2
=1—-—s+k+dimkerd, >1—-s+k

0 =dimI,/T;@R = ( ) — (s — k) + dimker d;

As n =k + 2 in this case, this yields the sought bound.
If ¢ > 2, again by Corollary 1.30 and Proposition 2.42,

dimI3 /T3 Q@R = (22q) ~(s—k)+kerd; <2¢°—Tqg+7

which implies
k+2q+dimkerd; <s—4q+7
and as n = k + 2gq,
s>n+49g-7
a
EXAMPLE 2.44. (i) AgroupT = (z1,...,Z9,; W1, ..., w,) with

Wy, ..., ws € Fy can be nonfibered Kihler only if s > 6¢ — 7 for
g>2,and s>1forqg=1.
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(ii) Chain link groups (see [82], 3.G) The group Goq = (Z1,...,T2q |
(Z1,22),- ..y (Tag—1,T2q), (T2g, 1)) is the fundamental group of a
link of 2q circumferences forming a circular chain, for ¢ > 2.
This group verifies k = dim F/F, @ R— dim G5,/(G2)2 @R = 0,
and s = 2¢ < 6¢ — 7, and therefore G5, cannot be nonfibered
Kahler. Broadly speaking, if a link is not very intertwined, its
group is not going to be nonfibered Kahler. The group G4 verifies
that dim(G4)2/(G4)s ® R = 2, and therefore it cannot be fibered
Kaéhler either, as it cannot map onto m;(Cy, *) for any g > 2. The
groups G, with ¢ > 3 do admit onto mappings to m;(Cy, *), and
the author does not know if they are fibered Kéhler.

(iii) Let T = (zy,...,2s5 ; 2275223, (€1, 22), (T2, T3), (T3, Ta), (%4, T5))-
In thiscase n =5,k = 1, ¢ = 2 as Im dy = (2% — 2%, +2%4), and
s = 5 < n+4qg—7 = 6. Therefore I cannot be nonfibered Kahler.
The group I' cannot either map onto m;(Cy), with Cy a smooth
projective curve of genus g > 2 because dimI'2/T's ® R = 2,
dim 7 (Cy)2/m1(Cy)s @ R = M?l — 1 > 5, so we reach the
conclusion that I' cannot be Kéhler.

ExAMPLE 2.45. (Groups of planar hyperplane arrangements are
not non-fibered Kahler (cf.[75])) Let A = {Hu,...,H,} be a planar
hyperplane arrangement, i.e., a finite set of hyperplanes in C?, and let
@; = 0 be a defining linear equation for every line H;. The complement
of the lines is a smooth complex manifold M(A) = C*\(H; U ---U Hy),
and its integral cohomology algebra was shown by Brieskorn to be

1 doy 1 day, .
omi oy ' 2mi an>cg‘C(M) ’
that is, the subalgebra of the complex-valued de Rham complex of M
generated by the forms w; = ﬁd—:-:l

The above inclusion induces a weak equivalence between the coho-
mology algebra H*(M,R) and the de Rham complex of M. Therefore
the space M is formal, and all the Massey triple products of 1-forms
in its cohomology are zero.

Brieskorn’s explicit computation of the cohomology of M allows us
to present bases for H'(M,R), H?(M.R) (see [75], Example 7.4):

HY(M,R) = (wy,...,wn) 2R
H*(M,R) =Im (U: H'(M) A H'(M) — H*(M))
= (W1 AWy Wa A Wn,y .-y Wno1 Awp) = R

Therefore, if n > 3 then n — 1 < 3n — 7, and by Proposition 2.42 the
fundamental group T’ = m (M) cannot be non-fibered Kahler.

H*(M;Z) = (
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On the other hand, in the case n = 2, the line arrangement {z =
0,y = 0} C C? yields m; (M) = Z2, which is non—fibered Kihler.

EXAMPLE 2.46. Fundamental groups of compact oriented 3-folds
with first Betti number b,(X) > 4 are not non-fibered Kéhler. This
is due to the fact that every such 3—fold admits a Heegaard splitting,
and a presentation with n generators and only n defining relations (see
(90]).
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CHAPTER 3
Geometric monodromy

We will study the geometric monodromy of Lefschetz pencils of curves
and some related families, and obtain formulae for the monodromy
automorphisms of the fundamental group in the case of proper families.
Our formulae parallel those of [8], where a combinatoric and group-
theoretic approach is followed. Properties of quasi-unipotence and
formality of the family will arise from these formulae.

1. Geometric monodromy of pencils of curves
1.1. The projective case. We begin by fixing our notations.

DEFINITION 3.1. A Lefschetz pencil of curves over a simply con-
nected open domain B C P} is a proper holomorphic map f : X — B,
where X is a smooth complex surface, such that it only has a finite
number of critical points py, ..., p,, and all of them are nondegenerate,
that is, the matrices D?f(p;) are invertible at every critical point. We
do not suppose the critical values z; = f(p;) nonequal.

We will denote the set of singular fibres as ¥ = f~!(z;)U---U
f7'(2a), and the set of regular values as S = B\ {z1,...,2,}.

The following is a classical result, deduced from the theorem of
Ehresmann and the Implicit Function Theorem.

PROPOSITION 3.2. The restricted map f : X\ ¥ — S is a C®
locally trivial fibration, and its fibres are compact Riemann surfaces.

Thus we may define a C* parallel transport: every path y:I — §
may be lifted to X \ ¥ and produces a diffeomorphism X5(0) = X5
which is well defined up to diffeotopy and orientation preserving as the
family X \ ¥ — S is oriented. The liftings are compatible with path
composition, and therefore, fixing a basépoint s, € S, we obtain the
geometric monodromy map of this family

p : (S, s0) — Aut *(X,,)/diffeotopies = M(g, 0)

where M(g,0) is the mapping class group of the topological surface
X,,.

69
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The action of the fundamental group (S, sp) on the cohomology
groups of the fibre is described by the Picard-Lefschetz formula. A
standard proof of it is based on the computation of the geometric mon-
odromy of the pencil (see [7],vol. 2, Ch. 1,2 or [63]). As this is not
very explicitly displayed in our sources, we provide a separate proof.

To study the local monodromy around critical values, we separately
study neighbourhoods of the critical points and the rest of the fibre.
The situation around the critical point has been thoroughly studied
(see [68]):

LEMMA 3.3 (complex Morse lemma). Every nondegenerate critical
point p; of f admits a coordinate neighbourhood V; such that p; has co-
ordinates (0,0) and the function f is f(z,y) = z + 2 + ¢*.

LEMMA 3.4 (conic structure, Milnor). For every critical point p;
there is a small enough ball B., C V; centered at p; such that:

(i) The point p; is the only singular point of fiv;.

(ii) Its boundary 0B, = S, cuts transversally every fibre X, NV;.

(iii) The singular fibre X,, N By, is homeomorphic to the cone of XN
S,

The same holds for any radius v < €;.

NOTATION 3.5. Fix now a § > 0 such that B(z,0) C f(B:,)
for every critical value z; and critical point above p;;, define loops
Bi(t) = zi + 36, and open sets U; = B, N f1(B(z;,0)).

We proceed to compute the monodromy in f~!(B(zi,6)). Let pi, ..., by
be the singular points of f above the critical value z;. We will first com-
pute monodromies in the manifolds dU;; and

Y, = f_l(B(zi’é)) \ (Uh U---uU Uik) )
and afterwards in the Morse balls U}j, to glue all of them together in
Theorem 3.18. :

PROPOSITION 3.6. The restricted maps
f: 8U;; — B(2,0)
are C*® globally trivial fibrations over B(z;, ).
PROOF. We have defined U;; as Be, N f1(B(z;,0)) ¢ X, with
Be;:j a 4-ball such that its boundary SE,.J_ cuts transversally every fibre
of f. Thus 9U;; = S¢,, N f~Y(B(2,0)) is a 3-manifold that also cuts

transversally every fibre. As the fibres X, have codimension 2 in X,
X,NOU;; also has codimension 2 in U, for every z € B(z;,0), and thus
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df (T,0U;,) has rank 2 for every p € dU;, and again by Ehresmann’s
theorem f : 8U;; — B(z;,0) is a C* locally trivial fibration. As the
base space is contractible, it is also globally trivial. O

Next we consider the manifolds with boundary Y;.

PROPOSITION 3.7. The restricted map
f:Y:— B(z,0)
is a C* globally trivial fibration of manifolds with boundary over B(z;, 6).

PRrROOF. The map f : Y; — B(z;,0) is proper, and its tangent
bundle maps dfp 1,Y: = Typ)B(zi, 0) and df, : T,0Y; — Ty, are onto

for every p € Y“ g € 9Y; = [10U;;, by Prop. 3.2 and 3.6 respectively.
Therefore, by the Ehresmann theorem for manifolds with boundary f
is a C* locally trivial fibration with fibre a manifold with boundary,
and as the base space is contractible it must be globally trivial. O

Finally, we must compute the geometric monodromy in the closed
balls U around the critical points of the mapping. Each of these local
families is biholomorphic to a family

f: B((0,0),e) N f71(B(0,8)) — B(0,)
(z,y) — z° + 3

with f(z,y) = 2? + y?, ¢ small enough so that the conic structure
Lemma 3.4 holds, and d such that B(0,8) C f(B(0,0),¢). The fibration
defined by f is trivial outside these balls and on its boundary, so we
may assume by increasing its radius that every family f : U — B(z;,0)
is topologically trivial in a neighbourhood of its boundary

We will briefly recall the classical Picard-Lefschetz theory of the
pencil of curves (5) after [7], and show how the homological concepts
are equivalent to their mapping class group counterparts.

The fibers of the pencil (5) are topological cylinders with bound-
ary, i.e., denoting by F the C* regular fiber there is a diffeomorphism
(F, 6F) (8* x[-1,1],8* x {-1} U S x {1}). The integral homology
groups H,(F,0F) = Z, H\(F) & Z admit as generators the classes
of the paths V(t) = (1,2t — 1), A(t) = (€*"*,0) respectively, and the
complex orientation of the fiber defines an intersection pairing

ZHl(F,aF) XHl(F) —)Hg(F)gZ
(¢,d) — cod

which is nondegenerate, as Vo A = —1.
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The geometric monodromy ¢ of the pencil along a loop around its
critical value is defined up to isotopy, and may be chosen to be the
identity in a neighbourhood of the boundary 0F. This property allows
the definition, already at the cycle level, of a variation morphism

Var,, : H,(F,0F) — H,(F)
¢ — Var, (c) = ¢ — ¢.(c)

of the pencil. The variation morphism may be defined for Lefschetz
pencils of any dimension.

In the case of the pencil (5), the intersection pairing and variation
morphism allow the definition of another homological invariant of the
monodromy diffeomorphism: Let ¢ : (F,0F) — (F,0F) be a relative
oriented diffeomorphism, such that it is the identity in a neighbourhood
of OF. We may define a quadratic form

gy : Hi(F,0F) — Ho(F) = Z
¢+ co Vary(c)

As Hy(F,8F) = ZV, the quadratic form is determined by g,(V). This
motivates our next definition:

DEFINITION 3.8. Let (F,8F) be a cylinder with boundary as above,
and ¢ : (F,0F) — (F,8F) be a relative oriented diffcomorphism such
that its restriction to the boundary OF is the identity. The index k()
of ¢ is the integer ¢,(V).

The index of a diffeomorphism of the cylinder does not depend on
the generator that has been selected for Hy(F,dF). Furthermore, it is
not hard to show that the index is invariant modulo relative diffeotopy.
Therefore the index induces a mapping

k : Diff* (F, 8F)/Diffy(F,0F) — Z,

where Difft(F, 8F) is the group of orientation—preserving relative C™®
diffeomorphisms of the fiber (F,dF'), such that they are the identity in
the boundary dF, and Diffy(F,0F) is the group of relative C* diffeo-
morphisms isotopic to the identity.

PROPOSITION 3.9. The map k is a group isomorphism.

PROOF. We must first check that k is indeed a group morphism.
This follows from the decomposition

V—¢*og0*v:V—¢*V+¢*(V—¢*V),
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and the fact that V — ¢,V is a cycle with support away from the
boundary, so it is homologous to its image by ¢,. Moreover, if a dif-
feomorphism belongs to Diffy(F, dF) then its index is zero.

It is harder to show that k() = 0 only if ¢ is diffeotopic to the

identity. Since this is a classical result, we will only sketch here a
method of proof. Let ¢ € Diff*(F,dF) be a diffeomorphism such
that it is the identity in a neighbourhood of F. We claim that the
diffeotopy class of ¢ is determined by the isotopy class of the image
¢(V) of the generating vertical path V(t) = (1,2t — 1) € S* x [-1,1].
This is the case because:
— First, the boundary of the cylinder and the image path ¢(V) form
the boundary of a 2-disk. If ¢(V) has the same image as ¢(V), by
our orientedness assumption the two parametrizations of the path are
isotopic. We may extend the isotopy to a tubular neighbourhood of the
path ¢(V) and find after it that ¢, ¢ are induced by identification on
the boundary by two diffeomorphisms of the 2—disk ¢', ¢’ such that they
are the identity in a neighbourhood of the disk. These diffeomorphisms
are diffeotopic, thus so are ¢, ¢.

Fig. F3.1 Disk diffeomorphisms.

— Second, denote v := ¢(V) the image of the vertical path V by a
diffeomorphism ¢ € Diffy(F, dF). If we take any oriented vertical path
V., = {2} x [~1,1] and deform it in a very small neighbourhood so
as to make it transverse to v, the intersection of v and V, is a set of
2m points with total sum of intersection indices k(p) = 0. As v is a
simple path, there must be two intersection points consecutive both in
7 and in V, and with opposite intersection numbers. The pieces of
7, V. between these two points form a simple closed loop enclosing a
disk. We may use the tubular neighbourhood on the other side of 7,
and apply the following relative diffeotopy theorem (cf. Proposition
4.15 of [103] for a proof in the PL category):
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THEOREM 3.10. Let D" be the closed unit disk in R* and ) — D"
an embedded C® closed disk, such that the intersection of boundaries
OD" N O is a (n — 1)-disk. Then there ezists a diffeotopy F; of R"
such that F1(D*) = IV, and the diffeomorphisms F; are the identity on

the common boundary D" NOD and outside a compact neighbourhood
of the disk D".

By this theorem on the uniqueness of disk embeddings, we may send

the path v by an isotopy to a path «' that has lost the two intersection
points and runs parallel to V, (see the figure).

Fig. F3.2 Path straightening.

This disk retraction process may be iterated until the resulting path,
which we may denote again by 7, and the fixed vertical path V, are
disjoint.

— Third, by repeating this procedure for suitable vertical paths V,
we may obtain a new path ¥ which is isotopic to 7, is contained in
a vertical strip as narrow as it may be wished. One may then apply
the above uniqueness of disk embeddings theorem to the path v' and
two embedded strips, as shown in the figure, and conclude that +' is
isotopic to the vertical path V.

Fig. F3.3 Final isotopy.
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Proposition 3.9 shows that the relative isotopy class of a diffeo-
morphism ¢ of (F,0F) is determined by its index k(y), which may
be interpreted as the number of twists that ¢ induces on the cylinder.
The mapping class group isomorphism Diff*(F,dF)/Diffy(F,0F) = Z
has been obtained by means of an orientation of the cyclinder, induced
by the complex orientation of the fiber in our case. The opposite ori-
entation would change the sign of the intersection product, thus of all
indices. On the other hand, due to the quadratic nature of the index,

(-V)o (=¥ = p.(=9)) = Vo (V = .9).

Therefore, once an orientation of F' has been fixed we may compute
the index of a diffeomorphism using either of the generators V,—V of
the relative homology group H,(F,dF).

We will give now a primary example of diffeomorphisms:

DEFINITION 3.11. Let C be an open set in an orientable topolog-
ical surface, and ¢ C C a simple closed curve in C, such that it has
a bicollar open neighbourhood ¢ C N C C. Take a cylindrical chart
in N 2 S! x (—1,1), with ¢ corresponding to S* x {0}. Then a Dehn
twist about c is the map g. : C — C defined as

9e(0,y) = (6 +7m(y +1),y)

in N, and extended by the identity map outside N.

Fig. F3.4 Dehn twist.
The choice of a chart S* x (—1,1) in the bicollar neighbourhood
N fixes an orientation for N. A parametrization of N with opposite

orientation would yield the inverse of this Dehn twist, i.e. a twist in
the other direction.
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Fig. F3.5 The two inverse Dehn twists.
Other standard properties of Dehn twists that will be required are:

(i) Dehn twists about isotopic paths are isotopic.

(ii) Selection of different bicollar neighbourhoods produces different
Dehn twists about the same path c. Nevertheless, all Dehn twists
produced by bicollar parametrizations with the same orientation
are isotopic. Thus, by requiring that a Dehn twist be determined
up to isotopy, we may suppose it to be the identity outside an
arbitrarily small neighbourhood of the path c.

(iii) The mapping class groups M(g,0) are generated by Dehn twists.

For proofs and more information about Dehn twists and mapping
class groups, see [15]. We will limit ourselves here to computing the
index of a Dehn twist, after precising our orientation conventions:

CONVENTION 3.12. We will refer to the orientation of S* x [—1,1]
such that the paths A(t) = (e2™*,0) and V(t) = (1,2t — 1) have inter-
section number A o V = —1 as the orientation induced by the chart
St x [-1,1].

LEMMA 3.13. Let (F,0F) be a topological cylinder with a chart
St x [-1,1]. A Dehn twist along the simple closed loop A = S* x {0}
with the bicollar orientation induced by that of the chart F = St x
[—1,1] has indez 1.

PROOF. We may take as a parametrized bicollar neighbourhood of
A the open set N = S! x (—1,1) of the given chart of F. The image
of the vertical path V(t) = (1,2t — 1), which generates Hy(F,0F), by
the Dehn twist ga is homologous to the cycle V + A in N.
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T

Fig. 3.6 Index of Dehn twist.
Thus the computation of the index yields

Vo(V-gaV)=Vo(-A)=1.
O

We are able now to determine without ambiguity the local geometric
monodromy around a critical point in a Lefschetz pencil of curves. We
will associate first a path to every critical point:

DEFINITION 3.14. Let p be a nondegenerate critical point of a Lef-
shetz pencil of curves f : X — S, U a coordinate neighbourhood of
p satisfying the complex Morse lemma 3.3, and 3 a loop around p in
f(U) with origin s. A vanishing path associated to p is a C*® simple
closed path d C X, N U, such that its homology class is the vanishing
cycle A € Hi(X,NU,Z).

The conic structure lemma 3.4 shows that vanishing paths always
exist. The vanishing cycle in homology is defined up to sign, i.e. ori-
entation, and likewise a vanishing path may be defined with any of
the two possible orientations. Classical results in surface topology (see
[90]), or a direct proof along the lines of Proposition 3.9 show that

LEMMA 3.15. Two vanishing paths d,d’ associated to the critical
point p in the same conic structure neighbourhood U and with the same
homology class are isotopic.

Given our complex Morse lemma coordinate neighbourhoods U;;,
we may select as vanishing paths in Xpg, ) NU;; those with image d;; =
{(z,y) € Xp(0) | Inz = Imy = 0}.
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Fig. F3.7 Regular fiber near singular fiber.

PROPOSITION 3.16. Let f : U — B(0,4) be a holomorphic pencil
of curves as defined in equation (5).
(i) The pencil f restricts to a C* locally trivial fibration of manifolds
with boundary over B(0,46) \ {0}.
(ii) The geometric monodromy along the loop B(t) = 26e*™* is a
Dehn twist along a bicollar neighbourhood with complex orienta-
tion of the vanishing path of the basepoint fiber and has indez 1,
also with the complex orientation of the fiber.

PROOF. The proof of (i) is wholly identical to that of Proposition
3.7. To prove (ii), let us observe that the map f(z,y) = z? +y* factors
as

X=C 5L y=0
FooN o
C
where p(z,y) = (y,z? + y?) and g(z,s) = s. The restriction of p to
a regular fiber X of f is a 2 to 1 covering map of the complex plane
Y,, with two branchpoints (&+/s, s), and the map p is a holomorphic
family of such double covers outside the critical fiber Xj.

The map g : Y — C is a trivial fibration on C. We will use for this
family a geometric monodromy over the base loop a(t) = e*™. This
monodromy will be trivial only after isotopy, and will preserve the
branchpoint locus of the map p. The branchpoints for X,u) — Yaq

are €™ (™7 and we define after [7] a parallel transport over o by
a family of diffeomorphisms

ht : Ya(O) _— Ya(t)
(,(0)) — (e7** @y, (1))
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where the function @ : [0,00) — [0,1] is a C*° plateau function with
value 1 on [0,¢] and 0 on [2¢, 00) for € suitably small.

—
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Fig. F3.8 Plane monodromy.

Our choice of h, rather than the classical one (y, 1) — (e™y, e™) makes
the parallel transport and geometric monodromy the identity outside
the balls B(0,2¢) x {s} C Y,.

The diffeomorphisms h; : Y; — Yy preserve the branchpoint locus
of the covers X,y = Y,(;). Therefore they can be lifted to diffeomor-
phisms X; — X,). There are two possible lifts, but only one of them
is the identity outside V; = p~*(B(0, 2¢) x {c(t)}), as the other possible
lift interchanges the leaves of the cover. Making ¢ small enough, and
choosing the lifts h, that are the identity outside the bounded regions
Vi we obtain a parallel transport and geometric monodromy for the
family f : X = C* — C over the loop ¢, such that they restrict to the
family f : U — B(0,6) and are the identity in a neighbourhood of its
boundary. B

After computing a geometric monodromy for the family f : U —
B(0,4), in order to complete the proof we must show that this mon-
odromy is a Dehn twist of index 1 with the complex orientation. As
the geometric monodromies over isotopic paths are isotopic, it suffices
to check the index for the global family of conics

f:X=C—C

(¢,y) — z* + 3

over the simple loop a(t) = €2*. This will be done by using the above
described monodromy diffeomorphisms and an explicit diffeomorphism
between the topological cylinder S* x R and the fiber X;.
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For the rest of this proof, we will parametrize the unit circumference
as S' = {(u1,uz) € R? |u? +u2 = 1}. We select the following diffeo-
morphism between the basepoint fiber X; and the cylinder S* x R:

U:S'xR— X, ={(z,y) € C|z? +y* =1}
(uy, ug, t) — (V1 +t2u; — ituy, V1+t2ug + ituy)

If we fix the complex orientation on the fiber X; and the orientation
defined in Convention 3.12 for the cylinder S* x R, the diffeomorphism
¥ preserves the orientation.

The closed curve A = {(u;,us,0) € S* x R} is mapped by ¥ onto
the vanishing path {(u;,us) € C? | u1, u € R} associated to the critical
point (0,0). The vertical path V = {(1,0,¢) € S* x R} is mapped to
the path {(v1 +t2uy,it) € X;}.

The composition of the diffeomorphism ¥ with the covering map
p: X1 = C, p(z,y) = y, is a topological double cover of the complex
plane with branchpoints +1, and has equation

po¥:S8'xR—C

(U1, ugyt) > V1+t2uy + ity

The loop A is folded by po ¥ onto the interval [—1, 1], and the vertical
path V is sent diffeomorphically to the path {it|t € R}. We will
describe more closely this double cover in order to characterize the lifts
of paths in the complex plane.

The positive semi-cylinder {(u1,us2,t) € S* x [0,00)} is mapped by
po ¥ onto the complex plane. This mapping is one-to—one outside A,
and sends the loops A4(6) = (cos(278),sin(278),t),to) to parametrized
ellipses (v/1 + 2 sin(276), t cos(276), the clockwise parametrization of
the loops A, being sent to a counter—clockwise parametrization in the
ellipses. The points (uy, u2,t) with u; > 0 cover the upper half-plane
of C, while the points with u; < 0 are sent to the lower half-plane.
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4
‘——e_

Fig. F3.9 Upper cylinder.

In the same manner, the negative semi~cylinder {(u;,us2,t) € S! x
(—00,0]} is mapped by po ¥ onto the complex plane, one-to—one out-
side the boundary A. The level loops A_;(6) = (cos(276), sin(276), —t)
are mapped to ellipses (/1 + t2 ug, —tu, ), and this time the clockwise
parametrization is preserved. The points (u,ug, —t) with u; > 0 are
sent to the lower half-plane, while the points with u; < 0 cover the
upper half-plane.

[~ -] pa¢

—>

£40,0) .w-[l,o,o)

Fig. F3.10 Lower cylinder.

Our study of the covering map p o ¥ enables us to present explic-
itly the cylinder S* x R as a double cover of the complex plane with
branchpoints +1. This double cover has been classically described as
cutting the complex plane along the real interval [—1,1] and glueing
two copies, corresponding to the positive and negative semi-cylinders.
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Fig. F3.11 Glueing of two planes.

Consider now the vertical path V(t) = (1,0,¢) C S* x R, mapped
by po ¥ onto the path it. The points V(¢) lie in the positive or negative
semi—cylinder leaf of the double cover according to the sign of t. We
will henceforth denote by V_, V_ these two halves of the path.

Let us look now at the projection of V on the plane, and apply
the parallel transport diffeomorphisms h, above defined to the paths
V.,V_. The monodromy diffeomorphism h; is a rotation of angle
7 in a disk B(0,r) centered in the origin and containing the interval
[—1,1], glued by rotations of decreasing positive argument to the iden-
tity outside a larger disk B(0, R). Thus the path po ¥(V_) is mapped
to itself for t € (—oo,—R). The final piece {p o ¥(V(t))| —r <
t < 0} is rotated an angle =, i.e. multiplied by —1, and the piece
{po¥(V(t))| — R <t < r} is mapped to a simple path joining the
two points p o ¥(V(—R)) = —iR,po ¥(V(-r)) = ir and contained in
the half-plane {Re z > 0}. These facts determine the homotopy class,
in fact even the isotopy class, of the image h;(p o ¥(V_)).

p

|

Fig. F3.12 The plane geometric monodromy.

The monodromy image of the half-path po ¥(V.) may be likewise
computed. The result is a rotation of angle m of hi(po ¥(V_)). As
the half-paths V., V_ are contained in single leaves of the covering
p, their monodromy images are determined by their images by p just
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computed and the fact that the monodromy is the identity outside
a compact neighbourhood. Using the diffeomorphism ¥ and the fact
that the paths hy(po ¥(V_)_g—, resp. (V. )[,r may be isotoped to
a straight line plus an arc of the above described ellipses po ¥(A;), we

reach the conclusion that the monodromy image of V is homologous
to V + A.

Fig. F3.13 The curve monodromy.
This homology implies that the monodromy mapping on X; has index
1 with the selected orientation, and thus it is by Proposition 3.13 the
Dehn twist defined by the complex orientation on the bicollar neigh-
bourhood of the vanishing path of the singularity. 0

We are now ready to compute the geometric monodromy of the
Lefschetz pencil f : X — C. First we will fix a presentation for (S, *):

NOTATION 3.17. Select a basepoint so € S and smooth paths «;
from sg to 8;(0) for every distinct critical value 2i,. .., zp,. The funda-
mental group 7 (S, sp) is then the free group spanned by the homotopy
classes of the paths v; = ajﬁjaj‘l for 1 < j < m. We will fix as well a
parallel transport along the a;, such that all the neighbourhoods U;; of
the singular points introduced in Notation 3.5 are sent to disjoint open
sets of X,, and denote also as d;; the transported vanishing paths on
X

S0°
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Fig. F3.14 Base space loops.

THEOREM 3.18. Let f : X — C be a Lefschetz pencil of curves.
The geometric monodromy map induced by f : X \ X — S is

p : (S, 50) — Aut T (X,,)/ diffeotopies = M(g,0)
Vi F—Tg;, © 00O T4y,

where d;,,...,d;, are the vanishing paths associated to the singular
points p;,, - . ., Py, lying over the critical value z;.

PROOF. We will compute the monodromy around a loop §;.

Let p;,,...,p;, be the singular points of f above the critical value
zi, Uiy, . - ., U;, the corresponding neighbourhoods defined after Lemma

3.4,and Y; = f1(B(2;,9))\ (U, U---UU;,). By Prop. 3.7, the family
f :Y; = B(z,6) is globally trivial, so it admits the identity as the
monodromy along B;. The monodromy along §; for the families f :
Uij — B(z,0) has been computed in Prop. 3.16, and has been shown
to be the identity in a neighbourhood of dU;;. It is therefore possible
to glue the monodromy maps on Y;, U’ij and obtain a map that will be
the global monodromy map of f : f~*(B(z;,6) \ {z:}) = B(2,0) \ {}
by the uniqueness up to diffeotopy of the monodromy.

This resulting map consists of Dehn twists 74, ,...,7a;, which are
the identity outside the disjoint open sets U;, N Xp,(0), and hence com-
mute. Transport along ¢; completes our proof. a

ExAMPLE 3.19. The Legendre family;

This is the elliptic surface E = {(z,v,t) € C® |y = z(z-1)(z 1)},
with parametrizing map f(z,y,t) = t. Neither E is smooth nor f is
proper. Therefore, we begin by completing the fibers by considering
the projective family E = {([X : Y : Z],t) e PX(C)xC|Y?Z = X(X -
Z)(X —tZ)}. The surface E has two singular points Py = ([0: 0:1},0)
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and P = ([1:0:1},1); its singular fibers Eo, E; are nodal cubics. We
blow up E at Py, P, and in this way obtain a smooth elliptic surface
E, and a smooth proper map f : E — C. The fibers EO,E1 consist
each of two rational curves, one the strict transform of E, resp. E,
and the other an exceptional smooth conic, both components meeting
transversely at two points.

G'.
‘ SsTRICT TRANVSFORM
EXCePTIONAL oF E; .
compONeNT
~ .
=/
E; 1=
/
Qi

Fig. F3.15 Components of singular fiber E;.
Let Qii, Q. be the antiimages of every P;, and the function f has a
critical point set {Q10, @20, @11, @21} and critical values {0,1}. Thus
S = C\{0,1}, and fixing sy = 3, there is a geometric monodromy map

p:m (S, s0) — M(1,0)

d;,
)

Fig. F3.16 Regular fiber near a singular fiber.
The vanishing paths associated to every critical point are two loops
over every critical value 7, both isotopic to the path d; of E,, = Ej,
that collapses to the orlgmal node P;. The collapsing paths in E,, are
do,d; as shown in Fig. F3.17.
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d; d,

Fig. F3.17 Vanishing paths in torus and their projection to complex
plane.
This is easily seen regarding the curves E; as double covers of P*(C)
ramified over the four points 0, 1,¢, co. The singular fibers are obtained
as t — 0,1 and observing the effect on the covering.

Denoting as 7p,v: the simple loops around 0,1 with positive ori-

entation and also their homotopy classes, the geometric monodromy
is

1
p:m(S, 5) —M(1,0)
Yo —m?o

2
Y1 Ty,

as every map p(7;) consists of two Dehn twists along paths isotopic to
d;.

For a direct computation of the geometric monodromy in this case,
carried out with great detail, see [19], 9.3 Example 2.

1.2. Pencils of quasi—projective curves. We will study now
the case of a pair f : (X, D) — PL. This situation arises when consid-
ering base points, and when studying Lefschetz pencils of noncomplete
curves.

DEFINITION 3.20. Let B C P: be a simply connected open do-

main. A relative Lefschetz pencil of curves over B is a map f :
(X, D) — B such that:

(i) f: X — B is a Lefschetz pencil of curves.
(ii) D is a subvariety of X such that no singular point of f : X — B
lies in D.
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PROPOSITION 3.21. There is a Zariski open subset S C B such
that the restriction of f : (X,D) — C over S is a C* locally trivial
fibration, with fibre a pair (X,, DN X,), where the intersection is a set
of l distinct points DN X, = {q1,...,q}.

PROOF. Let us decompose the curve D C X in its irreducible
components D = Dy U ---U D,,. Some of them may be fibres of f,
D, = X,,,...,Dy = X,,, and the others D;,,..., D, are horizontal
irreducible subvarieties of X. Each horizontal D; has a generic intersec-
tion with fibres X, consisting of a finite number of points {g;,, ..., g}
with multiplicity 1 for = € W;, a Zariski open subset. Also, as the
curves D; are irreducible and different, given D; #iDj, X, N D; and
XN D; may only have common points for z in a proper closed set of
C. Thus there is a Zariski open set S such that for s € S the fibres of
f are pairs (X, {q1,...,q} with [ fixed and the points g; all different.

As q,...,q are points of X,ND with multiplicity 1, D is transverse
to X; in them, and so over S fp is proper and smooth. Therefore, the
relative Ehresmann theorem yields our statement. t

We will denote again ¥ = f~}(C\ S), and write D instead of
DN (X \ X). The C* relative fibration

f:(X\ED)—S

has an associated parallel transport, which assigns to every path ~ :
I — S a relative diffeomorphism

[y (X'y(O)a {QI» <o aQI}’y(O)) — (X»,(n, {(Ih .- -,41}7(1))

well defined up to relative diffeotopy, and compatible with path prod-
uct. Fixing a base point so € S, we thus obtain the geometric mon-
odromy map of this relative fibration

p:mi(S,s0) — Aut *(X,,, DN X,,)/rel. diffeotopies = M(g,1)

where M(g,1) is the mapping class group of the fibre X,, and the
distinguished subset X,, N D = {qy,...,q}.

Before computing the monodromy of f : (X, D) — B, let us recall
an elementary description of the mapping class group M(g,!) after [15],

chapters 1 and 4. Denote C, the compact topological orientable surface
of genus g. '

LEMMA 3.22. There is an onto group morphism
M(g,1) L M(g,0) —s 0
given by forgetting the distinguised set {q,...,qi} C C,.
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We will see in Theorem 3.25 that, given the monodromy p : m1(S, so)
M(g,1) of the relative Lefschetz pencil f : (X, D) — C, its projection
to M(g,0) is the monodromy of the absolute pencil f: X — C.

To learn about the kernel of j, : M(g,l) = M(g,0), we introduce
the braid groups of C:

Consider C,, and its generalized diagonal A = {(z1,...,m) €
Cl | 3i # jst. z; = z;}. The symmetric group S acts on Cy by
permuting coordinates, and this action restricts to the open set C; \ 4,
where S; acts freely.

DEFINITION 3.23. Let [ € N. The I-braid group of Cy is the group
Bi(Cy) = m ((Cy \ 8)/S1,)

We condense the relations between braid groups and mapping class
groups that we will use in the following theorem (see [15] Ch. 4):

THEOREM 3.24. Fiz a base point (qu,...,q) € (C,\ A)/S;. Con-
sider the set Aut*(C,) of oriented self-diffeomorphisms of Cy with the
compact-open topology. The map

Aut*(Cy) —(CL\ A)/S,
h—(h(q1), - - -, h(a@))

is a topological fibration. Its fibre is Aut™(Cy,{q1,...,@}), and the
long exact sequence associated to this fibration

o — m((Co\ A)/ S (qu, -+ - @) — moAut™ (Cy, {ar, - - - ai})
S 7r0Aut+(Cg) — 71'0(0.([] \ A)/S{ = %
yields a group ezact sequence
Bi(Cy) = M(g,1) 2 M(g,0) — 1 (5)

The exact sequence (5) implies that to every l-braid b in Cy we can
associate a relative diffeomorphism e(b) : (Cy, {q1, - .- @}) = (Cg, {1, -
such that e(b) : C, — C, is diffeotopic to the identity map, and &(b)
is well determined up to relative diffeotopy. It may be obtained by
integrating a vector field v in C, x I such that v is transverse to the
level surfaces Cy x {t} and tangent to the braid b.

Every braid induces a permutation of {gi,...,q} that may be ob-
tained by integrating the above cited vector field v. This induces an
onto group morphism By(C,) — S; on the symmetric group. We will
denote also as b; the permutation thus induced by every braid b;.

We are now able to describe the geometric monodromy of

f:(X\Z,D)— S=B\{z,...,2m}

__)

.o ,ql})
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First of all, let us fix neighbourhoods U, 71 (S, so) and relative parallel
transport over the o;, as in Not. 3.5 and 3.17.

THEOREM 3.25. Let f : (X, D) — B be a relative Lefschetz pencil

of curves. The geometric monodromy map induced by f : (X \X,D) —
S s

p:m(S,s0) —Autt(X,,, DN X,,) = M(g,1)
Vi T4, 00 1q, oe(b;)

where the d;, are the vanishing paths associated to the singular points
Diys -+ -1 Dig lyzng over the critical value z;, and b; is the braid described
by {ql, ., qi} in its parallel transport along f;.

PROOF. The proof is analogous to that of the absolute case (Thm.
3.18).

Let {pi,,-..,pi,} be the set of singular points above z;, possibly
empty. We may take their neighbourhoods U;; small enough so that
f] ND = (. Thus Prop. 3.16 tells us that the monodromy in U,-j along
B, is the Dehn twist Td, » and is the identity on 0U;; N Xg,(0), by Prop.
3.6 and also 3.16.

Denote again Y; = f~}(B(z,6))\ (U;; U---U Uik). By Prop. 3.7,
the family f : Y; — B(z;,6) is trivial. Take a trivialization

Y; 2 Y;n Xﬁi(O) X B(Z,', (5)
fN + (6)
B(Zi,é)

As the set DN Xg,) = {q1,...,q} is preserved by relative parallel
transport, the points ¢;(D N Xg ) )ier describe a braid in Xp,0) N Vi,
thus a braid b; in Xpg,). The relative monodromy on Y; is thus the
diffeomorphism associated to the braid b;, which gives €(b;) when ex-
tended as the identity outside Y; N Xpg, ().

- Asin the absolute case, we may glue together the monodromy auto-
morphisms on Y; and the U}j by extending them as the identity outside
their domain in Xg,(p) and so obtain the monodromy along ;. Parallel
transport along a; completes our proof. 0

EXAMPLE 3.26. Let us consider the pair (X, D) where X = C?
and D is the line arrangement D = {r = 0,z = s,s = 0,s = 1} and
f(z,s) = s. The fibers are X; = C\ 0,s. The function f is smooth
over X, and therefore the geometric monodromy will be produced by
the braids in X, described by D, = {0, s} around the critical values of
fip 0,1. Choosing sq = %, and generators 7y, y; of m;(S, sg) positively
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circling 0, 1, the monodromy maps p(7o), o(71) turn out to be the self-
diffeomorphisms of C \ {0, } associated to the braids

o 5

pl%o) /) @)

0
w

Fig. F3.18 Braids in the punctured complex plane.

ExaMpPLE 3.27. In Example 3.19 of the previous section we have
computed the monodromy of the Legendre family of complete cubics
E={([X:Y:2,,t)ePAxC|Y?’Z=X(X - Z)(X —tZ)}. Theadded
points at infinity in the fibers E, do not lie on the vanishing paths.
Therefore the family is globally trivial in the neighbourhood of the in-
finity. The isotopies between vanishing paths we have used are still
valid in the punctured curves E; and therefore the geometric mon-
odromy we have computed restricts to the monodromy in M(1,1) of
the Legendre affine family of cubics

E={(z,y,2) € C|y* = z(z - 1)(z - t)}

2. Monodromy in the fundamental group

2.1. The projective case. We will study now the monodromy
action in the fundamental group of the fibre of Lefschetz pencils of
curves. This monodromy is trivial when the fibres are simply connected
or its dimension is greater than one. The remaining cases are aspherical
spaces, so the geometric monodromy is equivalent to the monodromy
action on the m;. Therefore, all that is required is to translate the
formulas given in Thm. 3.18 and 3.25 taking account of base points.

Let f : X — B be a Lefschetz pencil of curves, S = B\{z1,...,2m}
the set of regular values of f, and let o : S — X be a section of f over
S such that the singular points of f, p;,...,Pn, do not lie in Imo.

PROPOSITION 3.28. The fundamental groups {m(X,,0(s)) | s € S}
form a flat my(X,, 0(s0))-principal bundle.
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PROOF. By Prop. 3.21, f : (X \ ,0(S)) — S is a C*™ locally
trivial fibration, with fibre the pair (X,,,0(so)), and there is a base
point-preserving parallel transport over S. As f is a topological fi-
bration, the parallel transport along two homotopic paths <y, y1 pro-
duces homotopic diffeomorphisms between X,y and X, ;). Therefore
{m(X;,0(s)) | s € S} has a homotopy-invariant parallel transport de-
fined, or equivalently a flat bundle structure. O

We will compute the monodromy action

p: m(S,50) — Aut (m1(Xse,0(50)))

Let us make first some conventions:

NotatiOoN 3.29. (i) Choose the neighbourhoods U;; defined in
Not. 3.5 such that T;, N o(S) = 0.

(i) Fix a generating system for m,(S,s9) = (7,---,7m) as in Not.
3.17 and basepoint preserving parallel transport along the o
such that o(sp) does not belong to the image of any Uij N X3,(0)-

(iii) Select vanishing paths dj,...,d, in X, corresponding to the
singular points of f, and collar neighbourhoods of the d; N; C
f*ei(U; N Xp,0))-

(iv) Pick a set of generators ci,...,czq for m (X, 0(s0)) such that
all the c; are C* paths cutting transversally and only a finite
number of times every vanishing path d;, and such that for ev-
ery intersection point R;; between a c¢; and a d;, the connected
component of ¢c; N N; containing R;; is exactly the fibre over R;;
of N; as a normal bundle over d;.

(v) Single out over Y; = f~}(B(z;,6)) \ (U, U---UU;,) a global
trivialization ¢; as in (6).



92 3. GEOME:I‘RIC MONODROMY

Nz

Fig. F3.19 Generating loops in a quasi-projective fiber.

DEFINITION 3.30. Given a global trivialization ¢; as in Not. 3.29
(v), we define the basepoint loop around f3;, o; in Y; N Xg,(0) as
oi(t) = prpi(a(Bi(t)))

DEFINITION 3.31. Let v and d be C*™ transverse loops, and R =
v(tr) € yNd. We define the Dehn twist loop on d corresponding to R,
vYr, as the product of the paths

TR = Youtal * 4 Vo tg]
where the path d is given the orientation of its monodromy Dehn twist.

We will also need a classical result on the monodromy of the fun-
damental grupoid (for a proof see [74]):

PROPOSITION 3.32. Let X be an arc-connected, locally arc-connected
topological space. Denote as © its continuous path space {y: I — X},
endowed with the compact open topology, and let II(X) be the funda-
mental grupoid of X with the induced topology. Then:

(i) The evaluation map
eo: TI(X) —X
[y} —(0)

gives TI(X) a local system structure over X , with structural group

m1(X,*). The parallel transport over a path o of TI(X) = X
sends v to o~ 1y.
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(i) The evaluation map

€ : H(X) —X
[v] =—(1)

gwes I1(X) a local system structure over X, with structural group
7 (X, *). The parallel transport over a path o of II(X) =% X
sends vy to yo.

We are now ready to compute the monodromy action in the funda-
mental group of fibres for Lefschetz pencils of curves. .-

PROPOSITION 3.33. Let v be a C® path on a surface C, such
that it cuts transversally a C*® simple closed loop d in points Ry =
Y(t1)y .-y Rm = Y(tm), with 0 < t; < --- < t,, < 1. Let 14, : II(C) =
II(C) be the fundamental groupoid morphism induced by a Dehn twist
above d.

Then, the class of the path v is sent by 74, to the class of yg, -+ -
YR, - ¥, where the vr; are the Dehn twist loops defined in Def. 3.31.

PROOF. By our transversality assumption, there exists a collar
neighbourhood N of the loop d such that YN N = Ng, U---U Ng,,,
the fibres over the points R; of N as a normal bundle. We may assume
the Dehn twist 74 to be the identity outside V.

Parametrize by 6 € [0, 27| the loop d, and write R; = d(6;). Then
the normal bundle N admits coordinates [—1,1] x [0,2n]. The fibre
paths Ng(t) = (t,0g) are sent by the Dehn twist 74 to 74(Ng)(t) =
(t,0r + m(t + 1)), as is seen in Figure F3.20.

Fig. F3.20 Dehn twist on Ng.
The path 74(Ng) is homotopic to the path Ng([—1,0])-d- Ng([0,1])
relatively leaving its extremes fixed. We may glue those homotopies for
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every R; and thus obtain the homotopy between 74, (v) and g, . .. Yr,.7-
O

THEOREM 3.34. Let f : X — B be a Lefschetz pencil of curves,
and 0 : S — X a section over the set of reqular values. With the nota-
tion of 3.29, the monodromy action p : m(S, so) — Aut (71(X,,,0(80)))
s determined by

p(7k) : m1(Xsq,0(80)) —>m1(Xso, 7(50))

-1
Ci —>0 CR, --- chciAak

where (Ry,...,Ry) is the ordered set of intersection points of ¢; with
the union of the vanishing paths di, U --- U di, of all singular points
over zi, and oy is the basepoint loop around (3; described in Def. 3.30.

PRrOOF. We will compute the monodromy action along §; on 71(Xg,(0), 7(5i(0)))-
As in the case of the geometric monodromy, decompose

f(B(2:,8) =Y U (U, U---UTy,)

where the U;; have been selected small enough so the collar neighbour-
hoods N;; = U;; N Xp; (o) satisfy 3.29 (iv).

We may decompose every path ¢ as ¢, = cp, ...ch,, Where ev-
ery Ch, = Cp|[t,_,,t,) 1S @ path contained either in Y; or in a U}j. We
apply Prop. 3.33 to the paths ¢;, C U,-J.. By our transversality as-
sumption 3.29 (iv), cx, Nd;; = {R}, and the path c;, is the fibre
Ngr = {(t,0r) | t € [-1,1]} with a suitably oriented parametrization,
and thus by Prop. 3.33 ¢y, is sent to (cp,)r - Ch,.

The geometric monodromy in Y; is trivial, but this is not the case
for the relative family (Y;,Im o) over the punctured ball B(z;, )\ {z:}-
The parallel transport of the initial path c,, must have starting point
o(0i(t)), and the final path ¢, must also have a parallel transport with
endpoint o(0;(t)). As the family is geometrically trivial and only the
basepoint changes, we may apply Prop. 3.32 and conclude that c, is
sent by monodromy to o} 'cs,, and cx,, to cp,,0%.

The paths ¢, in Y; with r # 1, m have initial and end points in
dY;. As the geometric monodromy of the family (Y;,Imo) may be
chosen to be the identity on a neighbourhood of 8Y;, and the absolute
monodromy on Y; is trivial, those ¢,., r # 1,m are sent to paths
homotopic to them.

The monodromy given in our statement is now obtained by glueing
the separate monodromy transformations on the c;, we have deter-
mined and transporting it to so over q;. d
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2.2. The quasiprojective case and the weight filtration. We
will study as a final case families of affine curves.

DEFINITION 3.35. Let f : (X,D) — B be a relative Lefschetz
pencil of curves. An affine Lefschetz pencil of curves is the map

f:X\D—B

A relative affine Lefschetz pencil of curves isamap f : (X\D,C) —
B such that:

(i) f: X\ D — B is an affine Lefschetz pencil.
(ii) C is an algebraic subvariety of X such that it does not contain
any singular point of f and does not intersect D.

From a geometric monodromy viewpoint, affine and relative Lef-
schetz pencils are the same, as the following Proposition shows:

PROPOSITION 3.36. Let C, be a topological compact orientable sur-
face of genus g, and {q,...,q} a distinguished subset of | distinct
points. There is a group isomorphism in the topological category

Aut™(Co\ {q1,...,q}) = Aut*(Cy, {q, ..., ai})

which conserves isotopies, and induces an isomorphism
Aut*(Co\{a, ..., a})/isotopies = Aut™(C,, {qu, ..., q})/ relative isotopies = M(g,!)

PROOF. Let {K;}ic; be a final directed system of compacts of
Cy \ {q1,...,q}, with the ordering given by inclusion. The connected
components of the complement of K; in Cy\{q1,. .., q} for i big enough
are disjoint neighbourhoods of the points ¢;,...,q. Any homeomor-
phism h of Co\{qi, ..., q} sends {K;} to {h(K;)}, which is another final
directed system of compact sets, and thus h sends small enough neigh-
bourhoods of gy, ..., q to neighbourhoods of gy, ..., g, for a fixed
permutation o € S;. We may extend h by defining h(g;) = o(s), and the
map thus defined is a relative self-homeomorphism of (Cy, {q1,...,@})

As {q1,...,q} is a subset of isolated points in C,, the above con-
struction may be extended to isotopies in Cy \ {¢1,...,q} and yields
relative isotopies in (Cy, {g1,...,q}).

Restriction of homeomorphisms and relative isotopies gives an in-
verse arrow, and completes our proof. . O

Prop. 3.36 tells us that the geometric monodromy of an affine
Lefschetz pencil of curves is that of the relative Lefschetz pencil of its
completion, which has been computed in Thm. 3.25.

We have introduced relative affine Lefschetz pencils because we will
need basepoint sections for affine Lefschetz pencils. One may check by
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repeating the proof of Prop. 3.21 that a relative affine Lefschetz pencil
has a relative parallel transport well defined up to relative diffeotopy.
In the case of our concern, if f : X \ D — B is an affine Lefschetz
pencil of curves which is C* locally trivial over S C Band o : S —
X\ D is a section such that Im o does not meet D, there are basepoint
preserving parallel transport and monodromy in the family f : (X \
D)\ T — S. The missing points X, N Ds; = {qi,...,q} and the base
point o(s) describe an (I +1)-braid around every point z; € B\ S. This
braid satisfies the additional condition that the basepoint strand must
always return to itself, while the puncture strands may permute.

%\ %2 a(s)
——

“J/\l’,

Fig. F3.21 Admisible braid

The fundamental group of a topological surface of genus g with
! > 1 punctures, Cy \ {q1,...,q}, is a free group of rank 2g +1{ — 1.
One may choose as a generating set for m1(Cy \ {g1,...,q},*) a set of
2g generators of m(Cy, x) and [ — 1 loops, each going around one and
only one distinct g;. We will fix such a generating set in the case of

(Xso \ Dsgs 0(s0))-

NoTATION 3.37. (i) Fix neighbourhoods Y; over the singular
points of f, a generating system for m;(S,s0) = (Y1, Ym);
vanishing paths dy, ..., d, and collar neighbourhoods Vi, ..., Ny,
in X,, and a set of generators cy, ..., ¢y for m (X, o(sp)) as in
Not. 3.29.

(ii) Select simple closed C™ loops u1,...,u; C Xs \ Ds,, each of
them contained in a small enough neighbourhood W; of the cor-
responding ¢; and with the direct orientation. Select also simple
C® paths ay,...,a; from o(sg) to uy(0),...,u(0) respectively.
Define loops ¢; = a;u;a; "
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)6

Fig. F3.22 Generating loops on the fiber. :

We must also fix a relative trivialization ¢ : (Y;, DNY;, 0(B(z2;,6)) —
(Y; N Xg,0), D N Xg,(0), 0(B:(0))) x B(2;,0) as in 3.29 (v). Such a triv-
ialization is equivalent to a relative parallel transport T; = ; ', and
we will select one that satisfies further conditions of transversality and
of moving the strands of the braid b; described by {qi,...,q} over S
and the base point one at a time. That such a parallel transport exists
may be seen by a simple local definition piecewise and a tedious glueing
process, we will only list its relevant properties:

LEMMA 3.38. We may choose a parallel transport T; such that its
restriction over 3; verifies:

(i) £%’}(.,t) = 0 outside neighbourhoods of the paths T;(q;, Bi(t)), ;.

(i) The paths Ti(gj,Bi(.)) cut each other transversally. The paths
Ch, Gm are also transversally cut, and may only be cut outside the
neighbourhoods W1, ..., Wy of 3.37 (ii).

(iii) The intersection of a path T;(g;, .) with the neighbourhoods W1, . ..
has ezactly two connected components T;(g;,[0,%0)) C W; and
Ti(gj, (t1,1]) C Wh,(j) corresponding to the two edges of the path.

(iv) Forj=1,...,l and t € [M{_—l),&lgi], %’;’L = 0 outside a neigh-
bourhood of q;, and T;(g;,.) moves from q; to Wy,(j).

(v) Forte[0.9,0.95], 2Lt = 0 outside W, U---UW,.

(vi) For t € [0.95,1], ag;i = 0 outside a neighbourhood of o;, and
Ti(0i(0),.) = 0;.

-
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The fundamental group 7 (X, \ Ds,, 0(80)) is generated by ¢y, ..., Cag, g1, - -

and the only defining relation among the generators is g;...g9; = w,
with w a word in ¢y, . .., c3g. We will name the different paths according
to the properties of their images in Hy(Xj, \ Ds,)-

REMARK 3.39. Theloopsc;, ..., cyq are the weight minus oneloops,
and g,..., g are the weight minus two loops, according to the weight
filtration in the fundamental group m (X, \ Ds,, *) of (8].

DEFINITION 3.40. (Driving a strand across a path)

Let v be a C*® path in a smooth surface C, s a transverse C*
path such that v N s is the ordered set {R; = v(t1) = s(¥1),..., Rw =
Y(tw) = s(yw)} and let u(s(1)) be a C* simple loop around s(1) with
direct orientation and contained in a small enough neighbourhood. We
define the transported path of vy by the strand s as:

Toy="p - TRy - Y
where
_ e(R) -1 -1
YR = V[0,tr) * Sllyr:1) “ Us(1) * S|iyg,1) ~ YI[0,tr]

and ¢(R) is the sign of the inner product (g—%(yg), %’tl(tR)).

Fig. F3.23 The braid loops

DEFINITION 3.41. We define the conjugation path of g; over the
critical value z; € B\ S as the product

¥ij = a; - Tiu((0) - a5

LEMMA 3.42. Let v be a C* path on a smooth surface C. Let s
be another C* path in C transversally cutting v along a finite number
of points. Then the parallel transport of v in C x I \ {(s(t),t)} is the
transported path of v by the strand s as defined in Def. 3.40.

- 91,
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Everything has been prepared for our final result in this section:

THEOREM 3.43. Let f : X \ D — B be an affine Lefschetz pencil
of curves, and 0 : S — X \ D a section over the regular set of values.
With the conventions of 3.29, 3.37, 3.39, and denoting s; = T;(g;,.),
the monodromy action p : m(S,s0) — Aut (m(Xso \ Dsor0(50))) 48
determined by:

(i) Weight minus one paths:

p(v)(ci) = o5 ' Ty, - .- Ts,(Cr, - - - CRL Ci) Tk

where (Ry, ..., Ry) is the ordered set of intersection points of ¢; with
the vanishing paths over zy dy, U --- U di,, cr; denotes the Dehn twist
loop (Def. 3.81) corresponding to R; if R; € ¢; Ndj, and T,(.) is the
transport over the strand Ti(g;,.), and oy is the base point path over
B

(ii) Weight minus two paths:

p(1)(9i) = 05 Ygu, ()% ok
where the path is =T, ... Ty, (a5 5, - - - aj 5,,a5) T, - - - T (T(u5(0), .))ab“_b),
with Sy, ..., Sy the ordered set of intersection points of a; with the van-
ishing paths over zy and a; s, is the corresponding Dehn twist loop (Def.
3.31).

ExAMPLE 3.44. On polylogarithms:
Let us consider the family given by S = B\ {0,1},

f: X=8x85—>0S

(z,s) —s

and diagonal basepoint ¢ : S — S x S, o(s) = (s,s). From the
geometric viewpoint this is a trivial fibration with fiber X; = C\ {0,1}
and its monodromy is the identity. However, the monodromy in the
principal Fy-bundle {m(X;,0(s))|s € S} is not trivial, as the selected
basepoint section is not constant. Fixing s = % and g, g1 simple paths
positively around 0, 1, the monodromy automorphisms pg, p1 are

pile) = g; " ag;
For any topological space S, the monodromy group of this family is
always the group of inner automorphisms of (5, *). In our case S =
C\{0, 1}, by the theory of iterated integrals of Chen ([25]),nontriviality

of the monodromy is equivalent to the fact that the polilogarithms on
C\ {0,1} are multivalued.
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EXAMPLE 3.45. The Legendre family revisited:

The example to be studied with more detail in this work is that
of the affine Legendre family of Ex. 3.19. There we have computed
its geometric monodromy over S = C\ {0,1}, and here we extend the
computation to the fundamental group.

Fix a constant basepoint section P in a neighbourhood of infinity,
and a basis a, b of m(E;,, P) as indicated in Figure F3.24.

Fig. F3.24 Basis of fundamental group in punctured torus and its
projection to the complex plane.

Figure F3.25 shows the effect of 74,, 74, on the loops a,b: The paths
c;; of Def. 3.31 here are ap = ab™'a™, a; = P, by = P, by = bab~".
The monodromy representation is now immediate.

Aa
Zdo* zo(‘,(q:q

24042':6' .

Fig. F3.25 Vanishing paths in the Legendre family.

PROPOSITION 3.46. The monodromy representation p : m(C\{0,1}, ) =
Aut(m(Ey, P)) induced by the Legendre family of affine elliptic curves
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15 determined by:

(o)) : m(By, P) —mi(By, P)
a —ab™?

b —b

P([’Yl}) :WI(Eévp) _>771(E%’P)
a —a

b —sba?

3. Monodromy properties of pencils of projective curves

3.1. Quasi—unipotence and zero entropy. We will study now
the monodromy of a pencil of projective curves around a critical value.
By Grothendieck’s theorem on the quasi-unipotence of the monodromy
in algebraic families, the monodromy in the first cohomology group of
a pencil of curves around a critical value is quasi-unipotent. A’Campo
showed in [1] that the geometric monodromy of an affine family given
by a holomorphic map F : C**! — D c C, which is well-defined
up to diffeotopy, is realized by a distal map. This means that the
dynamical system formed by the Milnor fiber F, and the distal geo-
metric monodromy diffeomorphism has zero entropy, and a theorem by
A. Manning shows that a diffeomorphism with zero entropy induces a
quasi-unipotent monodromy isomorphism in H'(F,,R) ([67]). Subse-
quent independent work by Bowen, Gromov, Shub and others extended
Manning’s theorem to the fundamental group, showing how the topo-
logical entropy of a map f : X — X bounds the growth rate of the
endomorphism f, : m(X) — m(X) (see [36] for a very complete dis-
cussion of the topic).

The author is grateful to N. A’Campo for originally bringing his
attention to this field. This section contains an adaptation of these
results to the case of Lefschetz pencils of curves. We work with the
property of linear growth of group endomorphisms (see Definition 3.52
below). This property implies rate of growth zero, and is actually
slightly stronger than zero entropy in the case of curves. It is shown
in Proposition 3.59 that the monodromy of a projective family around
a critical value with reduced fiber has linear growth in the fundamen-
tal group. Finally, Proposition 3.60 shows how linear growth in the
fundamental group implies quasi—unipotence in the first cohomology
group.
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We start with some generalities on metric spaces and dynamical
systems (see [37], [36]).

DEFINITION 3.47. Let X,Y be metric spaces.

A mapping f : X — Y is a quasi-isometry if there exist fixed
positive constants A, C' verifying

%d(m,y) - C < d(f(2), f(y)) < Ad(z,y) +C

for all z,y € X.
The metric spaces X,Y are quasi-isometric if there exist a pair of

mappings f : X — Y,g : Y — X and fixed positive constants A,C
verifying

d(f(z), f(y)) < Ad(z,y) +C
d(g(z"),9(y)) < Ad(z',y") + C
d(g(f(z)),z) < C
d(f(g(z")),2') < C

forallz,ye X, 2/,y/ €Y.

The reader is remainded that a quasi-isometry needs not be contin-
uous according to our definition. Quasi-isometry defines an equivalence
relation among metric spaces.

EXAMPLE 3.48. A metric space X is quasi-isometric to a point if
and only if X has a bounded diameter. In particular, compact metric
spaces are quasi-isometric to points.

There is an equivariant version of Example 3.48; its description
requires some combinatorial group theory.

DEFINITION 3.49. Let I' be a group.

(i) A finite symmetric generating set S C I is a finite generating
set for I' such that 1 ¢ T, and if z € S, also 27! € S.

(ii) The length of an element g € T' with respect to S is the least
length of a word in the elements of S representing g. The length
of 1 is defined to be zero. .

(iii) The word length distance defined by S in I' is defined by setting
as ds(g1,g2) the least length of a word on the generators of S
representing g; ' gs.

This definition makes I' a discrete metric space, whith a free iso-
metric ['-action given by the group product. The word length distance
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extends to a metric in the Cayley graph of I', S by isometrically iden-
tifying the edges to the unit interval. This distance dg depends on the
choice of a finite,symmetric generating set S, but in a controlled way:

LEMMA 3.50. Let T be a group, and S;,S; two finite symmetric
generating sets. The metric spaces (I',ds, ), (I',ds,) are quasi-isometric.

PROOF. The generators of S; have a bounded length in terms of
S1, and vice versa. The identity mapping already induces the quasi-
isometry. a

Thus the word length metric associates an equivalence class of
quasi-isometric spaces to every finitely generated group I'. This class
gives rise to the equivariant version of Example 3.48, for its proof the
reader is referred to [37], Ch. 3, Prop. 19.

ProprosITION 3.51 (Milnor). Let X be a compact Riemannian man-
ifold, X — X a universal covering space, and m1(X)Z C X the m (X)-
orbit of a point, with the metric and distance induced by those of X.
Then the metric spaces X, n;(X)E and m (X) are quasi—isometric. In

fact, the inclusion 7 (X)z — X and the orbit identification m (X) =\
71(X)Z induce the quasi-isometries.

The case that will be discussed here is that of X = Cy a compact
Riemann surface of positive genus. In this context the fundamental
group and the topology of C, are specially close: Cg is an aspherical
space and, moreover, it was shown by Dehn, Baer and others that
homotopic homeomorphisms of C, are isotopic, and thus the groups of
homotopy and isotopy equivalence of Cy are isomorphic:

Out m(C,) = M(g,0) .

Let f : X — D be a Lefschetz pencil of curves, as defined in Def.
3.1, over a disk, and such that 0 is the only critical value. The geo-
metric and fundamental group monodromy around the critical value
have been discussed in Theorems 3.18, 3.34. Selection of a geometric
monodromy homeomorphism h : X; — X, and of a basepoint section
and presentation of the fundamental group of the fiber m; (X;) gives rise
to two topological dynamical systems (X, h) and (m(X;), ), where
m1(X,) has a word length metric and ¢ is the monodromy automor-
phism. What follows may be seen as a discussion of the entropy of

those dynamical systems, although we will stick to more elementary
concepts.

DEFINITION 3.52. Let (T, S) be a group with a finite symmetric
set of generators and its word length metric. A morphism ¢ : ' —» T
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has linear growth if there exists a fixed constant A € R such that for

any element g € I and n € N, the length of the elements ¢"(g) satisfies
a bound

lengths(p"(g)) < Alengths(g)n.

It is not hard to check that if a morphism ¢ has linear growth for
a finite symmetric set of generators S then the property holds for any
such set of generators, therefore we will often omit it. As first examples
of automorpisms with linear growth we may cite:

ExaMPLE 3.53. (i) The inner automorphisms of a group.
(ii) The composition of a linear growth automorphism with an inner
automorphism.

Example 3.53 shows that the linear growth property descends to
outer automorphisms of the group. We will see in Example 3.57 that
the composition of two linear growth automorphisms need not have
linear growth.

Another source of linear growth automorphisms that we will require
later is:

LEMMA 3.54. Let ¢ : T' — T be a group morphism such that its
power ©™ has linear growth for some m. Then ¢ has linear growth.

PRrROOF. Fix a finite symmetric generating system S to carry the
computations. By the definition of linear growth applied to ¢™, there
exists a fixed A € R such that for all g € I" one has

length (¢™)"(g) < Alength (g)n.

Moreover, denoting ¢° = Id, there exists a fixed A; € R such that for
every g € I, and every k € {0,...,m — 1} one has

length ¢*(g) < Aqlength(g),
one such constant is A; = max res length@*(h).
ke{0,...,m—1}
Now, for every N € N and g € T, let N = mgq + k be the euclidean
division of N by m. By the above bounds we have

length ¢ (g) = length (¢™)(*(g)) < AAilength (g)g < (AAy)length (g)N .
Hence our thesis. O

Linear growth of an automorphism ¢ implies that the rate of growth
of ¢, defined as

1
sup limsup — loglengths(¢™g)
gel ™ n
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is zero. Given a self homeomorphism of a topological space, the rate of
growth of the induced morphism in the fundamental group provides a
bound for the entropy of the topological system. In the case of a closed
orientable surface C, linear growth also implies that the dynamical
system (m,(C,), ¢) has zero entropy ([36]). The geometric monodromy
around the critical value 0 has been seen to be the composition of
Dehn twists along vanishing paths associated to the critical points in
the singular fiber. A Dehn twist is a fibered isometry and has zero
entropy ([1]). The zero entropy properties for both dynamical systems
indeed correspond.

PROPOSITION 3.55. Let f : X — D be a family of compact Rie-
mann surfaces with the single critical value 0. The associated mon-
odromy automorphism ¢ : m1(X,) = m1(X;) has linear growth.

PROOF. Assume first that the family f : X — D is a Lefschetz
pencil, i.e. that the singular fiber is reduced and has only ordinary
uadratic singularities.

Let py,...,pr be the critical points in the singular fiber X,. By
Theorem 3.18 the geometric monodromy around 0 is the composition
of Dehn twists along the vanishing paths d;, ..., d; corresponding to the
critical points. The vanishing paths are disjoint, and the Dehn twists
may be assumed to be the identity outside arbitrarily small bicollar
neighbourhoods Uy, ...,U; of the vanishing paths, also disjoint. We
may choose a monodromy homeomorphism h and an adapted set of
generators ay, ..., ay, for m(X;) as in Not. 3.29, cutting transversally
the vanishing paths. In particular, every generator a; intersects a finite
number of times every vanishing path d;, and thus taking as A the
maximal such number we have:

LEMMA 3.56. There exists a constant A such that every element
g € m(X;) admits a representing path vy that intersects at most Alength (g)
times the vanishing paths, always transversally.

Let now L be an upper bound for the length in X of the vanishing
paths. As has been seen in Theorems 3.18,3.34, the effect of the mon-
odromy map on a path 7 cutting transversally all vanishing paths is
homotopic to inserting a copy of the corresponding vanishing path in
every intersection point. The resulting path h,(7) is isotopic to a path
Y1, which is a copy of the path v with the vanishing path inserted just
outside the bicollar neighbourhood, as may be seen in Figure F3.26.
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Fig. F3.26 Iteration of a Dehn twist.

If one iterates the monodromy homeomorphism h, one may re-
cursively choose as a representing path for h?(g) the path v,, ob-
tained from +,_, by isotopically moving outside the collar neighbour-
hoods U; the inserted copies of the vanishing path. The result is
that h?(g) admits a representing path v, which is the original path
v with n copies of the vanishing path d; inserted after every intersec-
tion point yNd;. Therefore, the length of v, in X is bounded above by
() + nLlength (g), where [(v) stands for the length of v in X. If C
is an upper bound for the length in X of the selected generating loops
a; of m1(X,), then I(y) < Clength(g), and thus

I(vn) < (C + nL)length(g)

Fix now a lift Z, of the basepoint of the fiber £ € X, to its universal
cover X,. The loops 7, may be lifted to paths ¥, starting in Zo. As the
metric in X is the lift of that of X, we have {(7,) < (C+nL)length(g).
Due to the quasi—isometry of Proposition 3.51, this implies that

length(¢™(g)) < A(C + nL)length(g) + C"

As the least length is one, the choice A = A(C + C' + L) completes our
proof in the case of a Lefschetz pencil of curves.

Let f : X — D be now an arbitrary family of compact Riemann
surfaces. By the Semistable Reduction Theorem (see Thm. 1.1 in [9]),
there is a Lefschetz pencil of curves X — D obtained by pulling back
the family f : X — D along the map z — 2" for an adequate n, and
blowing up the singular fiber a finite number of times. As the map
z — 2" induces multiplication by n in m(D*, *) = Z, and blow ups on
the singular fiber do not change the regular fibers, the relation between
the monodromy automorphisms in the fundamental group ¢ of X — D
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and ® of X - D is

="
Our previous discussion has shown that ® has linear growth, so by
Lemma 3.54 ¢ has also linear growth, as was sought. O

ExAMPLE 3.57. Take C, a closed genus two surface, and a, b simple
loops generating the homology of one of the handles, as in Figure F3.27.

Fig. F3.27 Generators of the homology of a handle

Consider now the homeomorphism h = 7,0 7,, composition of Dehn
twists around the loops a first and b afterwards. By selecting a nearby
basepoint and a, b as two of the generators of m;(C,) we get an induced
monodromy automorphism of m,(Csy, *) such that

¢(a) = ab
p(b) = ab?

It may be checked by induction that the length of ¢"(a) is the term
2n + 3 of the Fibonacci sequence, thus its growth is exponential.

By Proposition 3.55 both 7,, 7 induce linear growth automorphisms
of the fundamental group, so this example shows that the composition
of linear growth automorphisms need not have also linear growth.

The following result will be valuable for our applications:

LEMMA 3.58. Let I' be a finitely generated group and A C I' a
normal subgroup. If a morphism ¢ : I' — T has linear growth and

o(A) C A, the induced morphism ¢ : T/A — T'/A also has linear
growth.

PRrROOF. Our statement is a consequence of the fact that if S =
{z1,..., 2,4} is a finite symmetric generating set for T, its image in
I'/A becomes a finite symmetric generating set S after removing the
z; € A.
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Take g € I'/A, there exists an antiimage g € I such that lengthz(g) >
alengths(g), as every element in S has a lift in S. As ¢ has lin-
ear growth, there exists a fixed A € R such that lengths(¢"(g)) <
Anlengthg(g). As the generators of S descend to S it holds that

lengths(¢"(g)) < lengths(¢™(g)). Our statement follows from the con-
catenation of all these inequalities. O

The first application of Lemma 3.58 is the study of higher dimen-
sional families when hyperplane sections are available.

PROPOSITION 3.59. Let X be a complex manifold, f : X — D a
projective holomorphic mapping, and 0 € D be a critical value. The

monodromy automorphism around 0 ¢ € Out(m(Xs,*)) has linear
growth.

PROOF. Let X C PY x D be a projective embedding. By Bertini’s
lemma we may choose a N — 2-dimensional linear subvariety H C P¥
such that Y = X N(H x D) is a smooth surface and Y; = X;N(H x {s}
are smooth curves for regular values s near zero. The fiber Yy = XoNH
is a possibly singular curve, and we have a commutative diagram

Y - X

pN vd
D

By the Lefschetz hyperplane section theorem the regular fiber inclu-
sions Y; < X, induce epimorphisms 7 (Y5, *) — m (X, *).

Consider now the family of curves f : ¥ — P%. By Proposition
3.55, fixing any topological basepoint section o as we have done in the
previous sections the monodromy automorphism ¢ of the fundamental
groups (Y, *) has linear growth.

The same topological section o serves as basepoint section for X.
By the relative Ehresmann theorem the triple (X,Y,Imo) is a C*-
locally trivial fibration over D, and we may select a parallel transport
and geometric monodromy diffeomorphism preserving Y, and of(s).
Consequently, the monodromy automorphism ¢ of m(Y;,o(s)) pre-
serves the kernel of the epimorphism (Y5, o(s)) — m (X5, 0(s)), the
monodromy in 7 (X, 0(s)) is the quotient of ¢, and by Lemma 3.58
the latter also has linear growth. d

The second application of Lemma 3.58 is a linear growth version of
Manning’s theorem on entropy and eigenvalues of the homology map-
ping:
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PROPOSITION 3.60. Let I' be a finitely generated group, and ¢ :

I' = T a linear growth automorphism. The induced automorphism
¢*: HY(T,Q) —» HYT,Q) is quasi-unipotent.

ProoF. It suffices to show quasi—unipotence in H*(I', R). If ¢ has
linear growth, by Lemma 3.58 so has the induced automorphism ¢, of
(T'/T2)/Torsion- This quotient is a lattice in H; (T, R), and ¢, is actually
the monodromy automorphism of the first homology group.

Let S be a symmetric generating set for I'. It defines a word length
metric on I',I'/Ts. The image of the elements of S under the chain of
morphisms I' — I'/T', — H; (', R) contains a basis for the latter linear
space. We may endow H)(I',R) with an euclidean metric by setting
one such basis as an orthonormal basis, and it may be immediately
checked that the lattice inclusion (I'/T'2)/Torsion < H1(T',R) induces
a quasi-isometry between both spaces. As ¢, has linear growth in
(T'/T'2)/Torsion, the norm of the images ¢?(e;) grows linearly on n for
the vectors e; belonging to the basis of H{(I',R) induced by S, thus
there is a bound

leX (@)l < Allv]in

with A fixed and determined by S in I', and valid for any vector v €
H,(T,R).

If the automorphism ¢, of H;(I', R) has a complex eigenvalue z =
a+bi = re’, with r > 1, there exists either a real eigenvector v
if z € R, such that [[¢7?(v)|| = r*||v||, or an invariant bidimensional
subspace in H;(I', R) with a basis v;, v such that the restriction to it of

¢ has matrix (Z —ab>. In the latter case it turns out that ||¢?(v,)|| =

27" cos(nB)||v1 ||, ||¢?(v2)]| = 2r"sin(nh). As the eigenvalues of ¢, are
algebraic the argument is 8 = flzw, and the growth of these norms cannot
be linear either.

We conclude from the previous discussion that linear growth auto-
morphisms cannot have eigenvalues with a norm greater than one. As
their inverse automorphisms also have linear growth, we conclude that
all eigenvalues must have norm one, and our statement follows now
from the algebraicity of those eigenvalues. O

Thus linear growth of the monodromy in the fundamental group
provides an alternative proof of some quasi—unipotence results:

COROLLARY 3.61. (i) Let f : X — D be a holomorphic fam-
ily of projective curves with a single critical value 0 € D. The
monodromy automorphisms of H*(Y;, Q) are quasi-unipotent.
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(ii) Let f : X — D a projective family of complez manifolds such that
0 is an wsolated critical value. The monodromy automorphism of
HY(X,,Q) around 0 is quasi-unipotent.

Finally, let us remark that linear growth of a group automorphism
is a more restrictive property than quasi-unipotence of the induced

morphism in the first cohomology group. We provide an example to
show this.

ExAMPLE 3.62. Consider the fundamental group of a genus 2 sur-
face I' = (a1, b1, a2, b2 | (a1, b1)(a2, b2)), and the automorphism

p:I' —T
a — al(bl,al) = albl‘lal“lblal
b1 g b1
a9 — Q2
bg —> b2

The automorphism ¢ is the identity modulo I';, thus it induces the
identity morphism in the first cohomology group. Yet a computation
by induction shows that, with the set of generators S formed by the
ai,b; and their inverses, lengthg(¢™(a)) > 3", thus ¢ does not have
linear growth.

3.2. Topological formality. Compact Kahler manifolds and smooth
algebraic varieties satisfy rigidity properties over its cohomology alge-
bra and the first nilpotent quotients of the fundamental group, as has
been explained in Chapter 2 ([35],(70]). Those rigidity properties, such
as formality, do not carry verbatim from the absolute to the relative
case; nevertheless, weaker versions still hold. The description of the
monodromy in the fundamental group of Lefschetz pencils of curves
in the previous sections may be applied to show that monodromy in
the fundamental group of families of curves satisfies one such rigidity
property: it was first established by M. Asada, M. Matsumoto and T.
Oda in [8] in the case of stable families, and it roughly means that its
order 3 nilpotent quotient determines monodromy in the fundamental
group. This is a topological analogue of the pointed Torelli theorem
by Hain and Pulte ([77]). '

Let f : X — D be a Lefschetz pencil of projective curves over
a disk, such that 0 is the only critical value. As has been shown in
Theorem 3.18, the geometric monodromy around 0 is the isotopy class
of the homeomorphism 74, o---07y4, , where dy, ..., dj are the vanishing
paths associated to the critical points of the singular fiber X,, and
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74, are the corresponding Dehn twists. The vanishing paths d; are
determined up to isotopy, and by the complex Morse lemma they may
be assumed to be C* simple loops in X, = C,. Those loops correspond
to conjugation classes in m;(Cy, ), and their characterization was a
fundamental achievement in the classification theory of surfaces (cf.
[90]). Indeed, we are able to present a short, complete proof by using
the classification theorem and Alexander duality:

PROPOSITION 3.63. Let C, be a C* closed surface of genus g, and

d C Cy a C® sumple loop. Then either of the following statements
holds:

(i) The loop d is contractible in C,.

(i) There exists a basepointp € d C Cy and a presentation m;(Cy, p) =
(@1,...,ag,b1,...,bg](a1,b1)...(ag,by)) such that the homotopy
class of d is the generator a,.

(iii) There ezists a basepoint p € d C C, and a presentation m (Cy, p) =
(@1,...,89,b1,...,bg1(a1,b1)...(ag,by)) such that the homotopy
class of d is the bracket product (ay,by) . .. (ak, bg) for somek < g.

PRrOOF. The vanishing path d is actually a smooth proper embed-
ding d : S* — C,, although we will also denote by d its image. As d is
smoothly embedded, the pair (Cy, d) is taut, and there is an Alexander
duality isomorphism

Hy(Cy\ d;Z) = H*(Cy, d; Z)

The pair (Cy, d) has a cohomology exact sequence with coefficients in
Z

0 — H'(C,,d) = H'(C,) & H'(S') — H*(C,,d) — H*(C,) = 0

The morphism d* : H'(C,) = Z* — H'(S') = Z is given by cup
product with the Poincaré dual of d. As H?*(C,,d) = Hy(C, \ d) is a

free abelian group of rank at least one, there are only two possibilities
for d*:

(i) The morphism d* is onto, and Cy \ d is connected.
(ii) The morphism d* is the zero morphism, and C, \ d has two
connected components.

In the first case, cutting C, along d we obtain a compact sur-
face S with a boundary consisting of two connected components. By
the classification theory of surfaces with boundary, its fundamental
group with basepoint p = d(0) on the boundary admits a presentation
m(S,p) = (d,as,...,a4,b2,...,b5,d" | (az,bs) ... (ag,by) = dd'), where
d is the edge of the cut where we have placed our basepoint and d' is a
loop formed by a path c joining the two copies of d(0) on the boundary,
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followed by the loop around the other boundary component and finally
-1
c .

™ Q,

9 & i,

0 “ “
L, I

Fig. F3.28 Connected surface with 2 boundary components.
Identification of the two connected components of the boundary of S
along d yields now the presentation of m;(Cy, *) stated in the second
case of the proposition.

If d* is the zero morphism, then C, \ d has two connected compo-
nents. These are surfaces S;, S2 such that their boundary has one con-
nected component, and the loop d is a parametrization of it for either
surface. Again the classification theory of surfaces shows that selecting
as a basepoint d(0) in both cases there exist presentations m;(S1,*) =
(@, ..., 0k, b1, ... bk, d | (ay,b) ... (ak, bx) = d) and m1(S2, *) = (@k41s- - -
gy i1y« -y bgy d| (@kt1ybks1) - .- (Ggy bg) = d71), with g —k <k < g.

qQ
A A A
O ' s a5

Fig. F3.29 Two surfaces with connected boundary.

An immediate application of the Seifert-Van Kampen theorem shows
that either the first or the third option in our proposition holds, de-
pending on whether k = g or k < g. O
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Proposition 3.63 characterizes the homotopy class of every vanish-
ing path in a presentation of the fundamental group depending on the
path itself. If one fixes a presentation 7, (Cy, *) = (a1,...,by | (a1,b1) ... (ag, by))
there does not exist such a simple classification of the conjugation
classes of simple loops on C,. Nevertheless, the classification of Propo-
sition 3.63 may be extended by the same methods to finite sets of
disjoint simple loops. Such sets appear as sets of vanishing paths for
the monodromy of a pencil of curves around a critical value with several
critical points over it.

PROPOSITION 3.64. Let C, be a C* closed orientable surface of
genus g, and dy,...,d, C C, be pairwise disjoint simple loops. There
ezists then a base point and presentation m,(Cy, *) = (a1, ..., 0q,b1,..., by -
(a1,b1)...(ag,by)) such that the conjugation class of every loop d; is
either of the following:

(i) Trivial.

(ii) The class of [1;cs(aj,b;)% for some J C {1,...,g} ande; = £1.
(iii) The class of [T;cy af* T;es(aj,b;) for some disjoint subsets I, J C
{1,...,9} and p;,e; = £1.

PROOF. Let us examine first the homology classes of the loops. As
di,...,d, are pairwise disjoint, the subspace V C Hy(C,,Z) = Z*
spanned by their homology classes is isotropic. Therefore it has rank
0<k<g.

Pick a set of k loops, which we may assume to be dy,...,ds, such
that their homology classes form a basis for V ® Q. The cohomology

exact sequence for the pair (Cy,d; U---Udy) with rational coefficients
is

0 — HYC,) — H(dy U+~ Udy) —s HY(C,,dyU---Udy) — H'(C,)
—>H1(d1UUdk) —>H2(Cg,d1U...dk) — Hz(Cg) — 0.

The morphism H'(C,;) — H'(d; U---Udy) is onto because its dual
is one-to—one. Therefore H*(C,,d; U --- U dy) = Z. By Alexander
duality H*(Cy,d; U---Udy) 2 H(C, \ (d; U---Udy)). Therefore the
complementary surface Cy \ (d; U -+ - U dy) is connected.

Consider now the surface obtained by removing all the loops. The
cohomology exact sequence of the pair with rational coefficients is

0 — H%(Cy) — H(dyU---Ud,) — HYC,,dy U---Ud,) — HY(C,)
— HY(dy U---Ud,) — H*(Cy,dy U...dy) — H(Cy) — 0.

As the homology classes of di,...,dy span all the image of the mor-
phism H;(d; U---Udy, Q) — Hi(Cy, Q), its dual in the exact sequence
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has an image of dimension k and a kernel of dimension 29—k. The mor-
phism H°(C,) — H°(d,U---Ud,) = Q" is one-to-one, thus computing
the ranks and applying Alexander duality we have that

H(Cy\ (d1U---Udy)) 2 H*(Cyydy U+ Udy,) = QP k!
Hl(Cg \(dyU---Udy)) = Hl(Cg,d1 U---Udy) & QZg—k+n—1

Thus cutting the surface C, along all the loops di,...,d, produces
n—k+1 connected surfaces Sy, ..., S,_k4+1. If the surface S; has genus
g; and a boundary with n; connected components, its first homology
group is Hy(S;) = Q?*"i~1, The surfaces S, ...Sn_k4+1 have in total
2n circumferences as boundaries, thus the sum of their genuses is

it ot gnkr1=9-—k,

Le., every cut that is nonhomologically trivial lowers the genus by one
unit, while new cuts that are homologous to a combination of previus
ones split the surface but preserve the total sum of genuses.

By the classification theory of surfaces, there exist simple closed
loops ax41,...,0g,bk41,-..,by such that every pair a;,b; is contained
in S;\8S; for some 7, and for every connected surface S; its fundamental
group is freely generated by the loops a;,b; C S;\0S; and d;,,...,d; C
8S;, with the single defining relation [];, d;, - I14es, (a5, ;) = 1.

d

Fig. F3.30 A connected component of of the complement of a cut
system.

The cohomology exact sequence and Alexander duality show as be-

fore that the g loops dy, ..., dx, ax41,. . ., ay form a complete cut system
for C,. By surface classification theory we may choose a basepoint and
loops by,...,b, such that ay = di,...,ak = dg,ak41,.--8g,b01,..., 0

generate m, (Cy, ) with the single defining relation (ay,b1) ... (ag,by) =
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1. The loops ak41,...,a4,bk41,- . .,by do not intersect any of the origi-
nal loops dy,...,d,.

With the above presentation of the fundamental group of Cy, which
still allows any basepoint in Cy \ (d, U- - -Ud,), the conjugation classes
of dy,...,dy are ay,. .., a; respectively. We shall investigate the rest of
loops. For every d; with k£ + 1 < j < n, our standard argument of the
cohomology exact sequence plus Alexander duality shows that if we cut
C, along d,,...,dx,d; we obtain two connected surfaces S,S’. As the
cut along d,,...,d; produces only one connected component, each of
S, 5" has a copy of the extra loop d; in its boundary. Fix a base point
p € S, and a presentation of m;(Cy, p) by linking in Cy \ (d; U ...d,)
the base point to all the loops a, .. ., by previously determined. The
fundamental group of S is generated by the loops forming its boundary
and the paths a;,b; C S\ 8S. The paths b, ..., b; have been cut open
to produce S, so if aj,b; C S\ S then j > k. The boundary loops
are d; and up to two copies of some of the loops dy,...,d;. If a loop
d; with i < k appears twice, it does so because the two sides of the cut
lie in the same connected component, and an orientation of d; in C,
produces opposite orientations for the two bounding loops in 8S. The
single relation in this presentation of m;(S,p) is

d [T i II (aj05)"
d;CoS a;j,b;€S\8S
with €;, p; = £1. The ordering of the factors d; € S may be selected so
that if the two copies of the same d; with opposite orientations appear,
they appear together and cancel out. As dy,...,d; are ay,...,a; in
this presentation our statement is proved. O

By Proposition 3.63 the nontrivial vanishing paths do not corre-
spond to arbitrary conjugation classes in the fundamental group, but
to generators of the abelian quotient H,(C,,Z) or of the second quo-
tient of the lower central series 7, (Cy, x)2/m1(Cy, x)3. This fact, arising
from the classification of surfaces, makes the geometric monodromy of
families of curves rigid over the monodromy in the lower central series
quotients. The first such rigidity result is:

PROPOSITION 3.65. Let f : X — D be a Lefschetz pencil of pro-
jective curves over the disk D, such that 0 € D is the only critical
value. Let p € Out(m(X,,%)),p € Out(m(X,,*)/m(X,,%)s) be the
corresponding monodromy automorphisms modulo conjugation. Then
p = Id if and only if p = Id.

PROOF. We will assume that the fibers have genus g > 0, otherwise
our statement is empty. Let X, be a regular fiber of the pencil, and
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dy,...,dn C X, a set of vanishing paths corresponding to the critical

points of f. Fix a pesentation 7 (X, *) = (a1, ...,a4,b1,...,bg| (a1,b1) ..

1) adapted to the set of vanishing paths, as in Proposition 3.64. The co-
efficients of the homology classes of the vanishing paths [d;] = aii[a1] +
. Qiglag) + Bi[b] + - - - + Biglby] in the basis of Hy(X,,Z) induced by
the selected presentation of 7;(X,) form a matrix

a1y ... Oy Pu .- P
(A|B) = e e e
Qniy ... COng Br1 .- ,Bng
According to the Picard-Lefschetz formula (see [7] vol. 2), the mon-
odromy around 0 in the first homology group is

p(9) =g+ (9-di)dr +...(9-dn)dn,

where the products g - d; are the intersection products in homology.
Therefore, if we decompose the monodromy in Hq(X,,Z) as p, =1d +
Var, the variation morphism Var has matrix
B! B'A B'B
(A*) (4 B)= (A‘A A‘B)

in the basis [a;],[b;]. Thus p, = Id if and only if all the vanishing
paths are homologically trivial. Hence if there exists any homologi-
cally nontrivial vanishing path, the monodromy in GL (Hy(X,,Z)) =
Out (m;(X,)/m(X,)2), thus also in Out (m(X,)/m1(X;)s) is not the
identity.

Assume now that all vanishing paths are homologically trivial, and
some of them are homotopically nontrivial. The cohomology exact
sequence of the pair (X,,d; U---U d,) plus Alexander duality show,
as in Propositions 3.63, 3.64, that the complement X, \ (d; U---Udy)
has n + 1 connected components. At least two of these components
must have positive genus, or else all the vanishing paths would be
nullhomotopous, and the total sum of genuses is g. Since a change
of basepoint does not vary the monodromy outer automorphism, we
may assume that the base point p lies in a component S; of X, \
(dy U ---Ud,) with positive genus. The monodromy is the identity
on the loops in this component. Choose now a path 7 in X, from
the base point p to another conneced component of X, \ (dy U---U
d,) of positive genus, such that v is transversal to all vanishing paths
and intersects each of them at most once. Let 7' be a path along
~ that stops at the first connected component S’ of X, \ (dy U ---U
d,) encountered. Denote dy,...,d; the vanishing paths intersected by
~'. These vanishing paths are homotopic, or else a shorter path '
would reach a positive genus component. By Proposition 3.64 their

(ag,b,) =
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.conjugacy class is [];c(a;,b;)% for some J C {1,...,g}. Given our
choice of basepoint p, the action of the monodromy automorphism on
the loops in S joined to the basepoint p through +/,7 ~! is conjugation

by (Mjes(asb5)%)

d
B

Fig. F3.31 Monodromy around a second type vanishing path.

Thus the monodromy automorphism with the given base point p
is the identity on the loops of S; and conjugation by an element
of m(X,,p)2 \ m1(X,,p)s. Such an automorphism is trivial modulo
m1(X,,p)3, but it is neither trivial nor inner modulo m (X, p)a. O

Proposition 3.65 may be extended to a more general setting with
the help of the semistable reduction theorem and Nielsen realization:

THEOREM 3.66. Let f : X — D be a holomorphic family of projec-
tive curves over the disk D, such that Xo = f~*(0) is the only singular
fiber. Let p € Out(my(X..%)), ps € Out(my(Xa,)/ms(Xe,)s) be the
corresponding monodromy automorphisms modulo conjugation. Then
ps = Id if and only if p = Id.

Proor. The difference between the case of a Lefschetz pencil, set-
tled in Proposition 3.65, and an arbitrary family f : X — D is that in
the latter case the singular fiber may have non~quadratic singularities
and a multiplicity greater than one.

By the semistable reduction theorem (Thm. 1.1 in [9]), there exists
a Lefschetz pencil of curves X — D obtained by pulling back the
family X — D along the map z — 2" of D for an adequate integer n,
and afterwards blowing up the singular fiber a finite number of times.
The morphism z — 2™ induces multiplication by n in the fundamental
group m;(D*, x) = Z, and the blow ups on the singular fiber do not
alter the family over D*. Therefore, the monodromy automorphism in
the fundamental group of the fibers of X — D is the power p" of the
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monodromy automorphism of the original family f : X — D. Likewise,
the induced automorphism in (XTZ, *) /Wl(Xz, *)q is pf.

Let us show now the nontrivial implication in our statement. If
ps = Id, then p} = Id. As the family X — D is a Lefschetz pencil
of projective curves, by Proposition 3.65 p* = Id. This means that
the monodromy automorphism p of the family f : X — D generates
a finite cyclic subgroup {Id,p,...,p" '} of the mapping class group
M(g,0) of the smooth fiber X, = C,.

Nielsen showed that any finite cyclic subgroup of the mapping class
group M(g,0) is induced by a finite cyclic subgroup of the group of
homeomorphisms of the topological surface Cy. This result started a
deep study of the problem of realizing finite subgroups of M(g,0) by
finite groups of homeomorphisms, which culminated in the following
theorem by S. Kerckhoff:

THEOREM 3.67 ([59]). Every finite subgroup G of M(g,0) can be
realized as a group of isometries of a hyperbolic surface.

By Kerckhoff’s theorem there exists a hyperbolic structure, i.e.
a metric with constant Gaussian curvature -1, on the regular fiber
X, = Cy, and an isometry h of this metric surface, such that h induces
the automorphism p of the fundamental group. The hyperbolic struc-
ture is equivalent to a holomorphic structure on Cy, such that h is a
holomorphic automorphism with this structure. But any such holomor-
phic automorphism inducing the identity morphism in homology must
be the identity itself (see for instance Thm. 2.2.1 in [96]). Therefore
h =1d, and p = m;(h) = Id, which completes our proof. O

Proposition 3.65 and Theorem 3.66 parallel the results of [8], and
extend the rigidity property from stable to arbitrary holomorphic fam-
ilies of curves. In that paper Asada, Matsumoto and Oda study the
versal deformation of a n-pointed stable curve, which is a Lefschetz
pencil of curves over a polydisk D”. This study is performed by combi-
natoric and group-theoretic means, but its essentials translate to our
more geometric setting: the bridges in the curve graph correspond to
vanishing paths of the form [](a;, b;)®, and maximal cut systems to
sets of vanishing paths {dp,...,d,} such that they are homologically
nontrivial but yield the same homology class. The weight filtration of
[8] is the lower central series filtration in the case of projective curves,
and our methods allow us to retrieve the formulae in their Theorem
1.1 on the induced filtration in the monodromy group.
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4. Fundamental groups of Lefschetz pencils

The study in the previous sections of the monodromy in the funda-
mental group of families of projective curves may be applied to compute
the fundamental group of the source manifold. Here a major contrast
appears: while semistable families of projective manifolds of dimension
d > 2 have trivial monodromy in the 7y, for families of curves one has
the following situation (see [4]):

PROPOSITION 3.68. Every smooth projective surface X admits a
blow-up in a finite number of points € : X — X such that there ezists
a Lefschetz pencil of curves f : X — PL. ’

In terms of fundamental groups, this means:

COROLLARY 3.69. Let T' be the fundamental group of a smooth
projective manifold. Then I' & m (X, *) for some Lefschetz pencil of
projective curves f : X — P%.

PROOF. By the Lefschetz hyperplane section theorem, every pro-
jective manifold has the same fundamental group as some smooth pro-
Jective surface. The blow-up of points in a smooth surface does not
change the fundamental group. Therefore our statement is an immedi-
ate consequence of Proposition 3.68. O

Corollary 3.69 provides us with a motivation to study the funda-
mental group of a Lefschetz pencil of projective curves. With a view
towards Donaldson theory and its search of elementary building blocks

for smooth 4-folds, we will carry out this study in a slightly more
general context.

DEFINITION 3.70. A proper smooth map f : X — PL with X a
closed oriented 4-manifold is a smooth Lefschetz pencil of curves if it
has only a finite number of critical points py,...,pn, all of them are
nondegenerate, and for every critical point p; there are C* coordinate

charts of p; in C* and of f(p;) in C such that in the new coordinates f
has the form f(z1,2) = 22 + 22.

Smooth Lefschetz pencils of curves are thus an analogue of holo-
morphic Lefschetz pencils, and they still have the monodromic proper-
ties of the latter. Namely, Theorems 3.18, 3.34, Proposition 3.55 and
Proposition 3.65 hold for smooth Lefschetz pencils of curves, because
their proof only uses the C* structure of the fibration and singularities,
given by Lemma 3.70.

Our following goal will be to describe the fundamental group of the
total space X in a smooth Lefschetz pencil of curves f:X- IF’% in
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terms of the monodromy of the family. This may be done piecewise, by
examining the smooth part of the fibration first, neighbourhoods of the

singular fibers then, and glueing all the pieces applying the Seifert—Van
Kampen theorem.

LEMMA 3.71 (Le Dung Trang). Let f : X — PL be a smooth Lef-
schetz pencil of curves of genus g, S = Pi\{z1,..., zn} its set of reqular
values and U = f~1(S) the open subset formed by the regular fibers.
Assume that there exists a C*® basepoint section o : S — U, and select

a basepoint sy € S. Then the fundamental group 7r1(U o(sp)) admits
the following presentation:

(al,...,ag,bl,...,bg,Tl,...,T,, l (01,51)'“(ag,bg) =1,T---T, =1,
Tia; T = 0i(a;), T T = i(b;) 1<i<n, 1<j<g),

where (ai, ..., by | (a1,b1) - - (ag,by)) is a presentation of m (X, 7(s0))
and @1, ..., p, are the monodromy automorphisms of this presentation
around the critical values z,,.. ., 2z,.

PROOF. As the restriction f : U — S is a locally trivial fibration,
and o : S — U a section, there exists a semidirect product presentation

(U, 0(s0)) = m(Xsp, 0(50)) > m1(S, S0)

with the action of 7, (S, ) on m;(X,, *) given by the basepoint—preserving
parallel transport. The fundamental group 7 (S, so) admits a presen-
tation (Ty,...,T, | T} -+ - T,, = 1) with the generators T; corresponding
to loops around the cntlcal values z;. The parallel transport around z2;
induces the corresponding monodromy automorphism, as described in
Theorem 3.34, and sends a;,b; to p;(a;), pi(b;) respectively. d

As has been outlined in Theorems 3.18, 3.34, the vanishing paths in
a singular fiber determine the monodromy around it. The same holds,
in a direct way, for the fundamental group of the singular fiber.

LEMMA 3.72. Let z; € PL be a critical value of a smooth Lefschetz
pencil of curves, D; a disk centered on z; containing no other critical
value, U; = f~Y(D;), Fiz a basepoint z € D}, and let di,...,dy be the
vanishing paths in X, associated to the critical points over z;. There is
an isomorphism

1 (Us, *) = m (X, *)/(d1, - .., dk)

where we also denote by d; the conjugation classes of the vanishing
paths i X,.
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PROOF. The contraction of the disk I); to its center may be lifted
to a deformation retraction of the open set U; C X onto the singular
fiber X,,, therefore m (U;,*) = m(X,,,*). The singular fiber X, is
homotopy equivalent to the smooth fiber X, with disks attached along
every vanishing path, thus our statement. O

Fig. F3.32 Singular fiber vs regular fiber.

All that remains now is to assemble the different pieces of the Lef-
schetz pencil.

THEOREM 3.73. Let f : X — S be a smooth Lefschetz pencil of
curves of genus g over S = C or S = Pg, z € Pt a regular value, and
dy,...,dy the vanishing paths of all critical points of f transported to
X.. The fundamental group of X admits a presentation

(@ry---y8g9,b1,...,bg | (a1,01) -+ (ag, bg), d1s - - -, dn)

where dy, . ..,d, denote the conjugation classes of the vanishing paths
in m(Xe, %) = (a1,...,a9,b1,...,by | (@1,b1) - - (ag,by)).

PROOF. As has been discussed previously to Theorem 3.34, Lef-
schetz pencils of curves always admit C*® basepoint sections, hence we
may choose one such section ¢ : S — X, a set of loops T3,..., T},
around the critical values, and denote by ¢; the monodromy in the
fundamental group along every loop T;.

The departing point of the proof is Lemma 3.71, which computes
the fundamental group of the open set U C X formed by the regular
fibers of f. Then we must adjoin neighbourhoods U; of the singular
fibers one by one, using the Seifert-Van Kampen theorem. Let us
complete the first step in the process:
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By Lemma 3.71,

(U, %) = (a1, ..., bg, T1, .o Tin | (@1,01) -+ - (ag, bg), T - + - T,
Tia; T = ¢ilay), Tib T = piby)) -

By Lemma 3.72, m (Ui, *) = (aq,...,bg | (a1,b1) -+ - (ag,bq), d1, ..., di),
where dy, . . ., dj correspond to the vanishing paths of the critical points
over the critical value z;. ‘

Lemma, 3.71 actually holds for Lefschetz pencils of curves with basis
any domain in PL. Therefore, using the same basepoint section o, the
fundamental group of the intersection U N U; admits a presentation

Wl(UﬂUi, *) = <(11, ey bg,T l (al, bl) v (ag, bg),TajT_l = wi(aj),TbjT_l = (Pi(bj)> .

We must examine now the fibered product of 7, (U;, *) and m (U, %)
over m; (UNUj, ). The generators ay, . . ., b, correspond to generators of
the fundamental group of a smooth fiber X, containing the base point,
and may therefore be identified in the three groups. The generator
T € m(U N U, *) is a lift of the loop around the critical value 2; and
maps to T; in m, (U, ). On the other hand it maps to the trivial loop
in m;(U;, *). We can thus conclude that the group m (U UU;, *) admits
a presentation

(@1, .. 09,01, .., bg | (a1,b1) -~ (ag,bg), a5 = @i(a;), b5 = @i(b;),da, . . ., dk)

As has been seen in Theorem 3.34, the relations ¢;(a;)a; ', pi(b;)b; ' are
actually products of elements in the conjugation classes of dy, ..., dy.
Hence they are superfluous for the presentation of the group.

The proof of our statement may be completed in this manner by
induction on the number of critical values. For the final glueing, and in
order to avoid basepoint inconveniences, one may take U; = f~1(D;),
where the D; are domains containing each exactly one critical value z;,
and intersecting all in a common disk, in such a way that C retracts
over UU;.
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Fig F3.33 Neighbourhoods of critical values.

To complete the proof in the case of S = P§, choose as a point at
infinity a regular value of the pencil. The pencil will then be trivial
around oo, so glueing the pencil over a disk Dy around the infin-
ity point to the pencil over C, we have a trivializing diffeomorphism
f (Do) = Cy X Dinsyy defined already over Pt. The intersection
f1(Ds) N f~1(C) admits as a deformation retract a trivial family dif-
feomorphic to Cy x S'. Therefore, by Seifert—-Van Kampen'’s theorem,

glueing f7!(Dy ) does not add any new relation, and our statement
holds. O

Theorem 3.73 gives a monodromic presentation for fundamental
groups of smooth Lefschetz pencils of curves, in particular for funda-
mental groups of projective manifolds. They turn out to be quotients
of the fundamental group of the fibers, and the new defining relations
given by the vanishing paths are not arbitrary, but only those listed
in Proposition 3.63: for every vanishing path d, there exists a presen-
tation m (X;, *) = (a1,...,by | (@1,b1) - - (ag,bg)) such that d = a; or
d = (a1, b1)---(ak,br). This might seem at first sight related to the
quadratic presentation results of [70],[47] for the Malcev algebra of
Kihler groups, but the fact that the required presentation of 7, (X, *)
is specific to every critical value of the pencil allows the class of Lef-
schetz pencil groups to be larger. A first result in this direction is

PROPOSITION 3.74. Every finitely presented group is the funda-
mental group of a smooth Lefschetz pencil of curves over C.

Proor. Let ' = (zy,...,2, | 71,...,75) be a finite presentation
of a group. We seek another presentation of I' that complies with
Theorem 3.73 and Proposition 3.63.

The new presentation will have the following generators: First,
Zy,...,Tn as the given presentation of I'. Second, for every relation
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r; written in reduced form r; = z! ...z{* we will add as generators
Yjirs - - -+ Yji,- Lastly, the set of generators is completed by appending
a generator ¢; for every r; and a c;;, for every y;;,, thus doubling the
number of generators. The set of relations will be the following:

(i) For every generator y;;,, a relation Yji Ty,
(ii) For every relation r; = i’ ... z{* in the original presentation, a
relation Yiiy " Yjig- .
(iii) Every generator c;, ¢j;, appears as a relation.
(iv) The symplectic relation (z1,¢1) - -+ (Zn, ¢n) (Y14, C14, ) * * - (Ysix s Csiy,)-

The last relation is the symplectic relation of a curve group, and
the other relations belong to the second type in Proposition 3.63. It is
not hard to check that the morphism from I' to this new presentation
identifying the z; generators in both presentations is well defined and
an isomorphism.

Let now C, be a curve of genus half the number of generators in the
second presentation of I'. The conjugacy class of any defining relation
y,-,-,:l:{le', Yjiy - - - Yjix» Ci» Cji, is realized in m(Cy, *) by a simple closed
loop d in Cy, of second type in Proposition 3.63. We may assume this
loop to be C*.

Let U C Cy be a bicollar neighbourhood of the loop d, and Y =
C,\U. We will piecewise define a Lefschetz pencil over the disk D with a
single critical point and d as its vanishing path. The trivial component
is Y xD. This may be C* glued over D along its boundary with a small
neighbourhood of (0, 0), fibered over D by the map (z,y) — z°® + y°.

Fig.F3.34 Glueing process.

The result is a smooth Lefschetz pencil with a single critical value
and vanishing path d. In this way we may obtain a Lefschetz pencil
over a disk D; C C for every nonsymplectic relation in the second
presentation of I'. The disks I; may be chosen to be pairwise disjoint.
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Then we may join all those disks to a basepoint p € C by simple
nonintersecting paths v;. A trivial family of curves on the paths ; may
be glued to the families on the disks, and as the set formed by the disks
and the path system is a deformation retract of C, taking pullbacks we
obtain a family over C, which by Theorem 3.73 has fundamental group
T. O

We conclude from Proposition 3.74 that smooth Lefschetz pencils
of curves over C are relatively flexible. The question becomes harder
when we ask the same question for Lefschetz pencils over PL: choosing
a critical value to be he point at infinity, the monodromy around oo
must also be a product of Dehn twists along disjoint simple loops. Yet
this monodromy is the composition of all the monodromies around the
other critical values. The algorithm that we have used in the proof
of Proposition 3.74 might not meet that requirement, as the vanish-
ing paths corresponding to the relations y;z; “ and ¢; have nontrivial
homologic intersection.

It is also a harder problem to characterize which smooth Lefschetz
pencils admit a holomorphic structure, such that the pencil becomes
holomorphic; indeed solving such a problem would provide a list of
all fundamental groups of projective manifolds. As first steps in this
direction, one may study the following questions:

QUESTION 3.75. (i) Is it possible to realize every finitely pre-
sented group I' as the fundamental group of a Lefschetz pencil of
curves over Pg ?

(ii) Does the existence of a smooth Lefschetz pencil of curves with
fundamental group I' and a quasi—complez structure on the fibers
preserved by parallel transport place any restriction on T'?

(iii) Does the ezistence of a smooth Lefschetz pencil of curves with
fundamental group T' satisfying Deligne’s semisimplicity theorem

on the first cohomology group of the fibers place any restriction
onT?

It seems to the author that the answers to the questions may vary:
even in a pencil over C, semisimplicity of the monodromy action in
the first cohomology group of the fibers places strong restrictions on
I, that will be studied in the continuation of this work. On the other
hand, extension to P{ or existence of a quasi-complex pencil do not
seem to pose any restriction on I'.
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5. Monodromy in the Malcev algebras of the Legendre
family

In a previous section the monodromy of the Legendre affine family
in the fundamental groups of the fibres m; (E;, P;) = F; has been deter-
mined by geometric methods. In this paragraph we derive from it the
monodromy representation in the (F3);_1/(F3); and L(F2/(F2); @ Q)
up to ¢ = 4 by algebraic computation.

As it has been explained in Section 3 of the first chapter, the ele-
ments of the Hall basis for the free Lie algebra L(Q, 2) < grA(Q,2)
up to weight 3 are:

Weight 1 a b
Weight 2 [b,a]
Weight 3 [[b,a],a] [[b,a],d]

The monodromy representation p : m (P*(C)\{0, 1,00}, ) — Aut (7, (E, P,)) =
Aut F, established in Proposition 3.46 is determined by:

o) : {Z : abb_2
5

p(ml): {Z B

In the sequel, endangering clarity for the sake of convenience, we
will denote as py, p; the automorphisms induced by p([ve]), p([71])
respectively in the succesive algebras, Lie algebras and group quotients
to be obtained from 7, (E;, P;).

Our first goal is to determine pg, o in £L(F2/(F»)s) = P(A(Q,2)/Jg).
The graded Lie algebra isomorphisms

L(Q,2)/ D L(Q,2)' — Gr(F/(F): ® Q) = Gr(G(A(Q:2)/ o))

i>4

— Gr(P(A(Q,2)/Jg)) = Gr(L(F/(F3)4))

seen in Proposition 1.24, send the elements of the Hall basis of L(Q, 2)
up to weight 3 to the classes a, b, [b, a, [[b, a}, al, [[b, a], b] € Gr(P(A(Q,2)/Jg))-
The elements of P(A(Q,2)/J§) X = log(1+a), Y = log(1+b), [Y, X],
[[Y, X], X], [[Y,X],Y] are sent to those classes by the natural Q-Lie
algebra isomorphism P(A(Q, 2)/J¢) — Gr(P(A(Q,2)/J3)). Therefore
they form an homogeneous basis of L(F;/(F2)s). Their expressions in
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A(Q,2)/J§ are:

a> af
X—a—5+—3—
2 3

2 3

2 2 2 32
[Y,X]:—ab+ba+a7b+a—b——bi,_b_a

(1Y, X), X] =a®b — 2aba + ba®

[[Y, X],Y] = — ab® + 2bab — b%a

127

We may now determine po, p; in L(F3/(F3)s) = P(A(Q,2)/J§) because
we know their values for 1+ a,1+ b € 74(F3) and they commute with

the formal series log. We begin with the automorphism py:

po(1 + a) = po(P4(a))
= 174(ab_2)
=(1+a)(1+0b)2
=1+a— 2b— 2ab+ 3b* + 3ab® — 4b°

po(L +b) = po(Pa(b))

=1+b
Thus
po(X) = po(log(1 + a))
= log(po(1 + a))
=a-2b— %az — ab + ba + b —l—%a?’ + %azb + %aba + gab2
— %bcﬁ — ;bab — %b2a — §b3

= X = 2Y +[¥, X] - (1Y, X), X] - 3 [[¥, X],Y]
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and

po(Y) = po(log(1 + b))
= log(1 +b)
=Y

po([Y, X]) = [po(Y), po(X)]

= [V, X ~ 2V +[¥, X] - £[[¥, X], X] - (1Y, X], Y]
=Y, X] - [[Y, X],Y]

po([[Y; X1, X1) = [[poY, poX], poX]
= [[Ya X]’X] - 2[[Y’ X]’Y]

Po([[Ya X]’ Y)) = [[Y, X],Y]

The procedure for p; is wholly identical. The result is:

pX =X

pY =log ((1 +b)(1+ a)2)

—OX4Y +[V,X] + %[[Y, X], X] - %[[Y,X],Y]
pilY, X] = [Y, X] + [[Y, X], X]
p(lY, X], X] = [[Y, X], X]

allY, X1, Y] = 2([Y, X}, X] + [[Y, X],Y]

These results may be summed up in the following

PROPOSITION 3.76. The monodromy representation

p:m(F(C)\ {0,1,00),3) — Aut(Lem(Ey, P) ® Q) = GL(Q,5),
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with the latter isomorphism given by the above used basis, is determined
by

(100 00
-21 0 00
ple)=(1 0 1 0 0
-0 0 1 0
\-%0—1—21
/1 2 000
01 000
pm))=10 1 100
0 2 112
\0 -1 00 1

Two properties of the monodromy just computed in Prop. 3.76
should be observed:

First, both p([yo]),0([71]) are unipotent matrices.

Second, if we divide them in blocks according to the decomposition
of £4(7r1(E% ,P)) ® Q) by the length of the brackets of the Hall basis

we have used, the monodromy matrices p([yy]) and p([y1]) are simul-
taneously block lower triangular, with the diagonal blocks containing
representations of the H;(E;; Q)-monodromy.

We will show in Chapter 5 how these properties extend to all
L,m (E%, P)® Q).

REMARK 3.77. The monodromy representations of m, (P* (C)\{0, 1, 00}, 1)
in m (E%, P)i/(m(E%,P))iH ®Q, Eiwl(E%,P) ®Q) for i < 4 are easily
deduced from that in L47; (E;, *) ®Q computed in Prop. 3.76 using the
graded Lie algebra isomorphisms of Proposition 1.13. An immediate
consequence of them is that the monodromy in 7 (Ey, *); /(w1 (Ey, *))i;1®
Q is the projection to the component of weight i of the representation
p from Proposition 3.76, and the monodromy in the £;(m (E;, *)) is the
projection of p in the homogeneous subspace of weight lower than i.

Thus the po, p; for these representations are the minors of the p([o]),
p([v1]) of Proposition 3.76 indicated in Figure F3.35.
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Fig. F3.35 Graduate quotient minors of the monodromy matrix.

In the case of the abelianised m, (Ey, P;)/(m1(Ey, P;)).QQ = H (Ey; Q),
the monodromy just computed is the classical monodromy in H;(E)
of the projective Legendre family.

It may also be noted that the coefficients of the monodromy in
the m1(E;, x);/(m1(Ey, *))i41 are integers. This is due to the fact that
the monodromy in those Q-vector spaces comes from the free abelian
groups (F3);/(F2)it+1, and the Hall basis of (F3);/(F3)iz1 ® Q we have
used also come from (F3);/(F3)i+1.



CHAPTER 4

Dolbeault realization

Let X, S be complex analytic manifolds, f : X — S a smooth, proper
map and H C X a relative divisor with normal crossings. We will
describe a resolution of the local systems R? f,C x\#) by a complex of
real analytic forms f,,A;{I’S(log H) with a natural real structure. This
complex yields the variation of Hodge structures associated to the co-
homology of the fibers; more precisely, it yields real analytic variations
of Hodge structure, to be defined in Section 3, which carry also a nat-
ural real structure and are seen to be naturally equivalent to complex
variations.

The Gauss—Manin connection of these real analytic Dolbeault com-
plexes has a 1-minimal model, which may be computed using the tech-
niques of [73] that we apply in the next chapter to the relative holo-
morphic de Rham complexes. Such a construction should lead to the
same results of [48] on the variation of Malcev algebras in complex
algebraic families.

We describe first the absolute case S = {*} and that of H = {0},
as they will be of use in the case of our main concern, and we presume
that they are not devoid of interest.

REMARK 4.1. - We will only use manifolds with finite Betti numbers,
and we will omit to mention this condition for the sake of agility.

- The structural sheaves we will consider for real analytic manifolds are
the sheaves of complez-valued real analytic functions on them. These
sheaves arise from the sheaves of real-valued analytic functions and
forms by tensoring with C. Because of this, the complex-valued real
analytic sheaves are endowed with a natural real structure, which is
obtained by complex conjugation of the coefficients in the power series
defining every function.

1. Acyclicity in the real analytic category

We will work in this chapter with real analytic sheaves. These are
not fine as their C* analogues. Nevertheless, they are acyclic, and this
may be seen using results of Whitney, Bruhat and Grauert which we
sum up in the following

131
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THEOREM 4.2 ([102],[40]). Let Xg be a real analytic manifold of
real dimension n. There exists a complez analytic manifold X and a
real analytic embedding j : Xgr — X, such that

(i) There is a covering of X with coordinate neighbourhoods U =
{Ui, 21, ..., 2n} such that XgNU; has equations Imz, = 0,...,Imz, =
0.

(ii) The closed submanifold j(Xgr) C X admits a neighbourhood base
formed by Stein open sets.

COROLLARY 4.3. Let X be a real analytic manifold.

(i) The structural sheaf Ax is a Oka sheaf of rings.
(ii) Any coherent sheaf over X is acyclic.

PROOF. Let j : X — X be a closed imbedding of X in a complex
analytic manifold satisfying Theorem 4.2. The real analytic structural
sheaf Ay is the restriction to the closed submanifold X of the holomor-
phic structural sheaf O ;. Therefore, any Ax-linear map ¢ : Ay — A%
extends in some open neighbourhood of X, which we may assume by
restriction to be X itself, to a Oz-linear map ¢. Writing this down with
kernels and cokernels shows that the exact sequence of A x-sheaves

0—K—Ay LA —F—0 (7)

is the restriction to X of the exact sequence of O ;-sheaves
0—K— 05 0% —F—0 (8)

The structural sheaf Oy is a Oka sheaf of rings. Hence the kernel K
is finitely generated over it, and by restriction K is a finitely generated
Ax-module. This proves our assertion (i).

Any coherent sheaf F admits a cokernel presentation as (7). By
restricting our domain X, we may find an extension of this presentation
to X asin (8), and thus an isomorphism .7:'1 x = F. Consequently, for
any ¢ > 0,

H{(X,F)= H(X,Fix) = lim H(V,Fy) = lim, H(V,Fv) =0,

V open V Stein open

which proves statement (ii). O

The category of coherent sheaves will not suffice us in the sequel,
so we extend in part the previous results to quasi-coherent sheaves. Its
definition is the same in the real analytic case as in the holomorphic
setting.
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DEFINITION 4.4. A sheaf F of Ax-modules on a real analytic man-
ifold X is quasi-coherent if it is a strict inductive limit of coherent
sheaves.

PROPOSITION 4.5. Let X be a real analytic manifold. Any quasi-
coherent sheaf F on X 1is acyclic over the compact subspaces of X .

ProOF. Sheaf cohomology commutes with strict inductive limits
on compact spaces, so our statement is a consequence of Corollary 4.3
(i). 0

We finish this section by stating the relative versions of Corollary
4.3, Proposition 4.5, which follow immediately from them.

COROLLARY 4.6. Let f : X — S be a smooth locally trivial map
between real analytic manifolds.

(i) Any coherent sheaf on X is f,-acyclic.
(i1) If the map f is proper, any quasi-coherent sheaf on X is f,-
acyclic.

2. Dolbeault lemmas and variations of Hodge structure

2.1. The Dolbeault lemma for complex manifolds. We re-
state the classical Dolbeault Lemma substituting real analytic for C*
functions. Its proof is analogous to that of the C* case, and it is
included here for the reader’s convenience.

Let X be throughout this section a complex analytic manifold, with
dimc X = n. The sheaves of real analytic forms A% are acyclic by
Corollary 4.3.

PROPOSITION 4.7 (Real analytic Dolbeault lemma). The sequences
00— Qf — AR 25 ant
are ezact, and they define an acyclic resolution Q% — AY".

PRrROOF. The proof is analogous to that of the C*® case. As the
question is local, by restriction to coordinate open sets it suffices to
prove it for germs of forms on 0 € C".

Let w be a differential form of type p, ¢ in a neighbourhood 0 €
U C C" such that Ow = 0. We may assume U is small enough so that
all coefficients admit a global power series development on it.

Let m be the highest subindex such that dz,, appears in w. We will
prove our assertion by induction on m.

We can write our form in a unique way as

w=di, Na+
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with @ = 0 when m = 0. The forms «, 8 involve only the conjugate
differentials dz,...,dZ,_1. As

0= 0w =dz, A Oa+ 80

it is easily checked that the coefficients of «, 8 are holomorphic on the
variables zy;41,...,2,. If m = 0 this establishes our initial step.

If m # 0, denote a = Y ayydz;dZ;. As the coefficients a;; are
power series on U, there are real analytic functions g;; € Ay such

that %’:‘i = ay,. Define a form v = Y g1 ;dz;dZ;. We have now that
Oy=dip, Na+6

where the form ¢ does not involve any of the differentials dz,,, ..., dZz,.
The differential form

p=w—0y
is also closed, and involves only dzi,...,dZn1. By our induction hy-
pothesis ¢ = 84 for some ¢ € A%Y!, and thus w = d(y + ¥). O

We may define the Hodge filtration in A}" as FPAY" = @,5,A4%".
The Laplacian and Green operators may be defined on real analytic
forms as in the well-known C* case, and this fact allows a real analytic
construction of the Hodge theory of compact Kahler manifolds. The
basic step would be:

LEMMA 4.8 (Real analytic 80 lemma). Let X be a compact Kihler
manifold, and u € AP (X) be a form such that du = 0. Then the
following are equivalent:

(i) u is d-ezact.

(ii) w is O—ezact.
(iil) u is O-ezact.
(iv) u is 80-ezact.

_ PROOF. The proof of this statement is exactly the proof of the C*°
00 lemma, regarding all the intervening forms and operators as real
analytic. O

Proceeding further asin the C* case, we retrieve the sought Hodge
structure:

PROPOSITION 4.9. Let X be a compact Kahler manifold. The Hodge
filtration F* on the real analytic Dolbeault complez A" induces a pure
Hodge structure of weight n on the cohomology groups H"(X,C) for ev-
eryn. The inclusion in the C* Dolbeault complez Ay — €Y preserves

the Hodge filtration and induces an isomorphism of Hodge structures
on H*(X,C).
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2.2. The Dolbeault lemma in the logarithmic case. Let X
be a complex analytic manifold of dimension n and Y C X a normal
crossing divisor with smooth irreducible components. The real analytic
logarithmic Dolbeault complex of the pair (X,Y) has been studied by
Navarro Aznar in [72]. We sum up some of his results on it.

Denote U = X \ Y, and the inclusion as j : U — X. Consider
a coordinate cover {V'} of X such that for every z € Y there isa V
such that z = 0 and Y has equation 2;...2, = 0. The real analytic
logarithmic Dolbeault complex A" (logY) is defined on every V as the
sub-Ay algebra of j, A}y spanned by

B legll, 1<is<r Q
2 2
and
dz; ,dz; r+1<i<mn (10)

The weight filtration W on A%}*(logY) is defined by assigning weight
1 to the generators of (9), weight 0 to those of (10) and applying mul-
tiplicativity of weight. This filtration is actually an extension of a
weight filtration defined on the sheaf A% (logY’) of real valued loga-
rithmic forms.

The Hodge filtration is defined as

FPAY (logY) = @5 A% (logY)
With all these definitions, we have

THEOREM 4.10 ([72], 8.8). The natural map
15 a bifiltered quasi-isomorphism.

As in the complete case of the previous section, when X is com-
pact Kahler we retrieve the mixed Hodge structure defined by Deligne
on H*(X \'Y), induced now by weight and Hodge filtrations on the
differential form algebras.

2.3. Relative Dolbeault complexes. We will study now the rel-
ative version of the real analytic Poincaré and Dolbeault lemmas. The
comparison in this case between the holomorphic and real analytic
constructions is less direct than in the absolute case of 2.1, because
we must compare holomorphic vs. real analytic bundles. We will start
with the Poincaré lemma and Gauss—Manin connection in the real ana-
lytic category, and deal later with the specific case of complex analytic
manifolds and the relative Dolbeault lemma.
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Let f : X — S be a smooth locally trivial map between real analytic
manifolds, such that its fibers have finite Betti numbers.

The relative real analytic de Rham complex of forms over X, de-
noted A g, is defined as its C* analogue: one starts by defining the
degree one piece with the exact sequence

0 — f*As — Ax — Axs — 0,

and then sets A% s = A" Axs-
The relative sheaves A% s are coherent Ax-modules, therefore f.-

acyclic by Corollary 4.6. We proceed to check that they provide a
resolution of the constant sheaf Cx.

LEMMA 4.11. Let Y be a paracompact, locally contractible space,
with finite Betti numbers, and S a real analytic manifold. Denote as
m:Y xS — S the projection. The natural morphisms of sheaves of
As-modules

H?(Y,C) %) As — RPr,m 1t Ag
are isomorphisms for all p > 0.

PROOF. Take V C S a small disk. As H*(V, Ag) is free, the
Kiinneth exact sequence yields an isomorphism

P 5
(H*(Y, ) & H'(V, As)> =5 HY(Y x V,C@ 7 As)
The sheaf Ag is acyclic by Cor. 4.3, so this is actually an isomorphism
HP(Y,C) @ T'(V, As) — HP(Y x V,n" ' As)
O

LEMMA 4.12. Let X, S be real analytic manifolds, and f : X — S
a real analytic map such that it is smooth, locally trivial and its fibers
have finite Betti numbers. The natural morphisms of sheaves of Ag-
modules

(R? f.Cx) ® As — RPf, (f_l-As)
are isomorphisms for all p > 0.

PRrROOF. The isomorphism has to be verified locally over S. Take
V C S a trivializing open set for f. There is then an isomorphism of
fibrations
vy % X xv

AN T

<
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Therefore p,Cy-1(v) = Cx, v, and g, = Id. It holds over V as a
consequence that

(R £.Cx) ® As = (Rm.0.Cx) ® As = (Rm,Cx, xv) ® As
© oy
and

R f.(f 1 As) 2 R, 0,0 n tAg = RPr, i~  Ag (12)
The final expressions of 11 and 12 are isomorphic by Lemma 4.11. [

PROPOSITION 4.13 (relative Poincaré lemma). Let f : X — S be
a smooth locally trivial map between real analytic manifolds. The nat-
ural map

fAs — Ay

induces a quasi-isomorphism of sheaves.

PROOF. This is a local question on X, so we may assume f to be
a trivial fibration, f : X =Y x § — S with Y, S disks in R™, R¢
respectively. It is then immediate that f~'.Ag is the kernel of the map
d: .AX,S — A%(ls.

To complete our proof we produce a homotopy operator, which is
a real analytic version of those used in the C*® or holomorphic context.
For every multiindex I = {iy,...,4,}, denote dy; = dy;, A--- A dy;,
and define a form

P

wr = Z(‘l)k_lyikdyn A...dy, ... dy;,
k=0

As partial integration of a real analytic form over a compact domain

produces another real analytic form, we may define a relative version
of the classical homotopy operator

H: Aﬂ’qs ——>AX,S

a= Z fi(y, s)dy; — Z (/1 71 £ (ty, s)dt) wr

I

All that remains to be verified is that dH+ Hd =1d. This is a straight-
forward computation. O

COROLLARY 4.14. Let f : X — S be a smooth locally trivial map
between real analytic manifolds. The natural map of sheaves Cx —
A}l s nduces isomorphisms of Ag-modules

R? f,Cx %) Ag —> HP(f.Axs) fadx)s)
forallp > 0.
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PROOF. Let us observe first that HP(f, A% s, fud) = RP fLAYs, as
the sheaves A%{; are f.-acyclic. The local isomorphisms H P(f~Y(V),Cx)®

As = HP(f~1(V), Ak,s) are a consequence of the application of Lemma
4.12 and Prop. 4.13 to the restrictions of f. O

Thus we have obtained a f,-acyclic resolution of Cx with a natural
real structure. This resolution induces the Gauss—Manin connection in
the derived sheaves RP f, A% q:

DEFINITION 4.15. We define the Gauss—Manin connection V on
R? f, A%/s as the real analytic connection

VR fuAys — As O RP fuAyys
which has the local system RP f,Cx as horizontal sections.

The Gauss—Manin connection is basically parallel transport along
suitable vector fields, and due to the acyclicity of the structural sheaf
its computation in the real analytic case is somewhat simpler than that
of its holomorphic counterpart.

PROPOSITION 4.16. Let vy be a real analytic tangent field defined
on an open set V C S. Then:

(i) The field vy admits a real analytic lifting v defined over f~1(V') C
X.

(ii) The Lie derivative L, : A% — A% of a lift v of the vector field vy
induces a derwation L, : Ays — Axs, and if v,v" are two lifts
of vy, the induced derivations in Ay s are homotopic as mor-
phisms of sheaves.

(iii) The induced derivation V,, = RPf.L, on RPf, A% s depends
only on vy, and it is the Gauss-Manin connection along vg.

(iv) If ug,vo are vector fields on V. C S such that [ug,vo] = 0 and
u,v are lifts to f~1(V) C X, then the bracket [Ly, L, of induced
derivations in .Aj(l g 15 null-homotopic.

PROOF. (i) is due to the exact sequence of acyclic sheaves over X

0 — Txis — Tx jf—)»f*Ts —0

To show (ii) we begin by checking that the kernel 0 — K* — Ay —

%js — 0 is Ly-stable. This is a local question on X, so we may
restrict ourselves to the projection Y x V — V, where {Y, (v1,.-.,¥m)}
and {V, (sy,...,84)} are balls. The kernel K is in this case that of forms
with a ds; factor on every sumand.
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The Cartan homotopy formula L,w = di,w + i,dw shows that the
question is trivial for forms with a ds; A ds; factor, so we just have to
study the case

=03 Adsy +---+agANdsg

with o; € A% containing no factors ds;j. By linearity on v of the Lie

derivation, it is sufficient to compute the case v = 6%1. With this

assumption and the notational convention "’_(Z&J::;‘“”) =3 gﬁdmk ANdz;
we have :

L,p = diyp + t,dp

=d (1) + 1,3 (—1)P—— Ady; Ads; + 3 (=1)P—— A ds; A ds,
Oy; i=2 9s;

=1

d
p+1 aak

+

(=1)

A dsy A dsy + terms with no ds,)
k= 2 6 51

m
Z 1)2" B * A dy; + terms in K

n 0
Z 1P XA dy; + terms in K
=1 ayl

so L,y lies in K and L, induces a derivation in Axs- Again by the
Cartan homotopy formula we have that dL,w = di,dw = L,dw so L,
is a morphlsm of differential complexes and induces a derivation on
H *( X|S» d)

Let v,v' be two lifts of 3. The difference u = v' — v contains no
term —5 thus if w € K, we have that i,w € K, and hence L,w =

Lyw ~ Lyw = diyw + i,dw € K. Therefore, the contraction i, defines
a homotopy between Ly, Ly : (A%s,d) — (AX|5, d).

(iii) is a local matter on S, so we may assume still that f is a trivial
fibration Y x V' — V, where Y is now the fiber of the original map f.
Select coordinates (sl, ...,84) on V and local coordinates (y,...,Ym)
on an open set of Y. As has been shown in (ii), if vy is a vector field
on V and v, are lifts to Y x V, the derivations L, L, are homotopic
endomorphisms of the sheaf complex ( %|s» @)- Therefore, the induced
derivations on HP(AY,s,d) & RP f, A%, are the same. We will denote
it as V.
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For any w # 0 in A}(I s Wwe may select a representative 3 f;dy; in
A’ with no term ds;. Then

Therefore, the horizontal sections of the connection given by V, = L,
on HP(A%,s,d) are given locally on Y by the conditions

o _, o
0s; T Bsg

i.e., the coefficients f; must not depend on S. This holds under coor-
dinate changes in Y, so we conclude that the horizontal sections of L,,
are the cohomology classes in H*(Y,C), and this is the Gauss-Manin
connection.

(iv) may be also shown locally. Given a local trivialization Y x V' —
V as above, by linearity of the derivation we may assume that uy =
23U = 50, and select first as lifts to ¥ x V' the fields u = ¥ = e

=0

8s2°
A relative form w admits a representative ¥ f1(y1,- -, Ym, S1, - - - , Sa)dYr,
and by the Schwarz lemma one has
5

Lu(va) = Z 93,05, fIdyI = Lv(Luw) )

thus [L,, L,] = 0 with the selected liftings. To extend this case to arbi-
trary liftings it suffices to show that if we replace one of the derivations
with a homotopic derivation, the resulting bracket is homotopic to the
original one as a morphism of the complex (‘A3fl s:d). So let us choose
another lifting v' = v+w of the vector field vy and compute the bracket

[Lus Lyt]:
[Lu7 Lv'] = [Lua Lv] + [Lua Lw]
= [Ly, L,] + [diy + tyd, diy + 14d)
= [Ly, Ly + diudiy, + i,ddi, + diyind + iydiyd
— diydiy — diyiyd — iyddiy, — ty,di,d
= [Ly, Ly] + d(tudiy + tyinwd + diyly — fydiy)
+ (i + tyind + diyiy, — ty,diy)d.
The fact that v,v’ are both liftings of v, i.e. the vector field w lies
in Tx|s = ker(Tx — Ts, is essential so that the homotopy function

h = iydiy + tyipd + diyl, — iydi, descends from A% to the relative
complex A¥s. O
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Proposition 4.16 shows how the Gauss-Manin connection in the
cohomology sheaves R f..A%s arises from parallel transport on the
sheaves of forms qu s» which is well-defined only up to homotopy.
This indetermination can be overcome locally by choosing frames of
horizontal fields:

DEFINITION 4.17. Let V C S be an open subset, vy,...,vq vector
fields such that they form a basis of the tangent space T,S at every
point p € V, and 1, ..., 94 arbitrary lifts of v,...,v4 to f~1(V). The
connection defined by setting

v’viw = f*Lﬁiw

is a local Gauss-Manin connection on the complex of sheaves of forms
foA%,s restricted to V.

According to our definition, Gauss-Manin connections on the com-
plex of forms f*qu s are not unique, although homotopic, and defined
only locally. This set of data forms a sheaf of connections up to homo-
topy on S, a ho—connection in the words of 73], §4, where such sheaves
are introduced and studied. Although we will use only local Gauss-
Manin connections, we will require a homotopic property of them:

DEFINITION 4.18 ([73]). A connection V on a complex of sheaves
(A*,d) over a real analytic manifold S is homotopically integrable if for
every pair of vector fields u,v defined on S the sheaf endomorphism

[Vu, Vv] — V[u,,,] A — A
is null-homotopic.

LEMMA 4.19. Let f : X — S be a smooth locally trivial map be-
tween real analytic manifolds. Then every local Gauss-Manin connec-
tion defined on V C S is homotopically integrable.

PROOF. Our statement follows from Proposition 4.16 (iv). O

Lemma 4.19 shows how the integrability of the Gauss-Manin con-
nection is already present at the form level, the ultimate reason being
the local integrability of parallel transport.

We return now from the real analytic to the complex analytic case.
Let f : X — § be a smooth, topologically locally trivial map
between complex manifolds. We have just established the relative
Poincaré lemma and studied the Gauss-Manin connection for the un-
derlying real analytic family. The additional complex structure in the



142 4. DOLBEAULT REALIZATION

cotangent bundles appears in the real analytic relative complex as a
bigraduation, and the complex AY] is defined in this context as

0— frAY — A — A5 — 0 (13)
0— frA™ — A — ARy — 0 (14)

for the degree one pieces, and A%{s = (/\" AX| s) (/\ .Agg}s) in general.

Consequently, any connection on a sheaf A over S decomposes as V*+
V%, with

VA - AL R A,

VP iA— AT ®A.
We will refer to the above summands of V as its complex structure
components.

Another consequence of the complex structure on cotangent bundles
is the existence of a decreasing Hodge filtration F*, given by

PAxis = ®r>p X|S

This filtration is induced by its absolute counterpart in A%", and it is
likewise preserved by the relative differentials O0x,s, Oxs,dx|s = 0 + 0.
Because of this, it induces a Hodge filtration on the derived sheaves
R f.AY]g, and as the homogeneous sheaves F*A%,s are acyclic by
Corollary 4.6, there are isomorphisms

F*R? fLAY s = HP(fLFE AR, fudxis) -

In the case of local Gauss—Manin connections on forms, and of the
Gauss—Manin connection in cohomology, applying Corollary 4.6 to the
exact sequence

0— TX,S — T — T — 0

and to its conjugate, we find that any vector field vy of type (1,0),
resp. (0,1), defined over an open set V C S admits a lift v of the same
complex type to f~1(V).

CONVENTION 4.20. We will assume henceforth that every local
Gauss—Manin connection defined on f, A} Xl s has been defined by lifting
a basis vy, . ..., vg of Tg*(V') to fields #1,.. ., 7a € Ty (f71(V)), and lift-
ing the conjugate fields o; to the conjugates (;). Thanks to Corollary
4.6 we know that such a choice of liftings is always possible.

The behaviour of the (1,0) and (0,1) components of the Gauss-
Manin connection with respect to the Hodge filtration F* is not difficult
to observe:
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PROPOSITION 4.21. Let V be a local Gauss—-Manin connection on
X|s defined over V .C S. Its complex structure components V10, VO
verify that

Vl’of”f,...A}TS C AP @ FPUf, A X|S
VOLEP A X[S c A% @ FPf A" X[S
PROOF. This is a consequence of the Cartan homotopy formula
L,w = di,w + i,dw

The exterior differential d = 8+ 8 preserves the Hodge filtration, while
contraction along a vector field lowers it by one unit in the case of a
type (1,0) field, or also leaves it invariant if v has pure type (0,1). O

REMARK 4.22. Due to their homotopic uniqueness, Lemma 4.21 is
still true up to homotopy for local Gauss-Manin connections that do
not respect our complex structure convention 4.20.

The consequence of Lemma 4.21 for the variation of cohomology is
immediate and well-known:

COROLLARY 4.23 (Griffiths transversality). The Gauss-Manin con-
nection on R? f, Ay verifies that

VYOFPRP f, A%l C AS° ® FPIRP £, A X|s
VOLFPRP fL A5 C A ® FPR £, A

Given a smooth topologically locally trivial morphism f : X — S
between complex manifolds, we have developed so far a Gauss—Manin
connection of the underlying real analytic map, defined on the cohomol-
ogy real analytic bundles (R f,Cx) ® As, and defined already locally
on the complex of forms f*A;(’Ts’ and checked that it verifies Grif-
fiths transversality. The following natural step will be to compare this
connection with the holomorphic Gauss—Manin connection on the holo-
morphic bundles (R? f,Cx ) ® O (see [31], [48], [73]). The switch from
a holomorphic to a larger real analytic bundle requires the use of an
intermediate complex:

DEFINITION 4.24. The complex of fiberwise holomorphic forms (K%s)d)
is formed by the Ax-submodules

Kgfls = ker ( XIS —> Az))(,|5)

and the coboundary operator d of AX, P
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This definition is correct because, as d0 = 5d the coboundary op-

erator d of Ay preserves the kernel of .AX| RS AXl s- Note also that
its restriction to KXs equals 8. The complex of fiberwise holomor-
phic forms has a Hodge filtration F*, induced by that of the relative
Dolbeault complex.

The forms in the complex K% are indeed real analytic families
over S of holomorphic forms w, defined on the fibers X,. The com-
plex of fiberwise holomorphic forms takes the place of the complex of
holomorphic forms in the absolute case:

LEMMA 4.25. The natural inclusion (K¥5,0) — (A%, d) is a
filtered quasi—isomorphism of complexes of sheaves.

PRrROOF. Our statement is equivalent to the exactness of the se-
quences

0—->KX|S—>AXIS AX|S
for every p > 0. This is a local property on X, so we may assume
that S is a ball, with a single holomorphic chart (si,...,8q4), X =
Y x S, with Y another ball with coordinates (31,...,ym) and f the
natural projection. The exactness of the sequence is obtained now by
a verbatim repetition of the proof of the real analytic Dolbeault lemma,
our Proposition 4.7, with the variables sy, ..., sq as parameters which
are unaffected by differentiation. O

The next step is to examine the relation between the complexes
of holomorphic and fiberwise holomorphic relative forms. This will be
done by means of local Gauss-Manin connections, defined already over
the forms. As our Definition 4.17 shows, a local Gauss—Manin connec-
tion over V C S is equivalent to a trivialization f~1(V) 2 X, x V, in
the sense that both result from choosing a frame of horizontal vector
fields on f~1(V). Such a choice of a horizontal frame also corresponds
to determining a local Ax-linear section A%}s — AY" to the natural
projection morphism.

Thus the choice of a local Gauss—-Manin connection is not uniquely
determined. Even if it follows our convention 4.20, neither a local
Gauss—Manin connection nor its complex structure components V0, V%!
have to preserve the complex f.K¥,s- However it turns out that there
exists a unique complex arising from any choice of V.

PROPOSITION 4.26. Let V be a local Gauss—Manin connection de-
fined on V C S, and V®! its (0,1)-component. There is an ezact
sequence

0 — fulds — f*Kgqs T AV ® fu A X|S
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for every p > 0.

PROOF. Our statement is a local property, so we may assume as in
previous proofs that V is a ball and X =Y x V, with Y another ball.
Moreover, we may select our local trivialization by using the horizontal
frame of the local Gauss-Manin connection V. In this way, there are
complex coordinates (sy,...,54) in V and (yi,...,¥ns) in Y such that

*

the section A% < A¥" consists of the forms

W= fri(s1,-.-154,Y1, -, §m)dyr A dfis
and the local Gauss-Manin connection V is given by

Y ds Y 9 0
Vw = dsi a—fI’deI A ng + E dgj o
Let @ be the class of the above form w in ¥|s- The section X|s =

A" determined by our local Gauss—Manin connection and the holo-
morphic charts adapted to its horizontal frame sends 9w to

0
Y g, /17i N dyr A dgs .
j Yi

fradyr Adg; .

Consequently, the fact that & € K%s means that J = §) and the
functions f; are holomorphic in the variables 1, ..., y,. Likewise, the
vanishing of V%'w = ¥, d5; ©° 2 frdy; implies that the functions f;
are holomorphic also in the variajbles $1,...,8q thus are holomorphic
onY xV and w € 0%,d € Q. O

Finally, let us describe the relation between the real analytic and
holomorphic Gauss-Manin connections in cohomology.

PROPOSITION 4.27. Let f: X — S be a smooth topologically triv-
ial map between complex manifolds X, S, and let V = V10 + VO pe
the Gauss—Manin connection on the derived sheaves RP fs }TS There

is then a commutative diagram with ezact rows and isomorphisms in
the vertical arrows

0 — RPACx®0s — RACx®As 25 RPf.Cx ® AW

o j]’ﬁ o

0 — ROy — RLAY 75 LAY AY

and V'° induces the holomorphic Gauss—Manin connection on RP f*Q}| S-
PROOF. The isomorphism RP f,Cx 05 = RP f*Q}q s is the complex

Poincaré lemma, and the isomorphisms RPf,Cx ® As = RPf, ;f’TS’
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respectively ®Ag’1 are our Corollary 4.14. These isomorphisms arise
from a commutative diagram of inclusions

Cx — f10s — Qs

AV +

-1 *,%
f AS 7 X|S

and because of this the first square commutes.

The upper row is exact by the real analytic Dolbeault lemma, our
Proposition 4.7. We have defined the Gauss—Manin connection in coho-
mology as having as horizontal sections the local system R? f,Cx. This
property characterizes it uniquely, so Js is its (1,0) component, which
by restriction to RP f,Cx ® Og yields the holomorphic Gauss—Manin
connection, and Js is its (0,1)-component, so the second square is a
commutative diagram. This completes our proof. O

2.4. The horizontal relative logarithmic Dolbeault lemma.
Unless otherwise stated, we will work in this section under the following
assumptions:

CONVENTION 4.28. Let X,S be complex analytic manifolds, f :
X — S a smooth proper map between them, and H C X a relative
normal crossing divisor, i.e., H is a normal crossing divisor in X, it has
smooth irreducible components {H;}, and the restrictions fg, : H; —
S are smooth.

Denote U := X \ H and j : U < X. The restriction f : U = S is
smooth and topologically locally trivial. Thus there is a covering of X
by coordinate sets (V, zy,...,2,) such that f(z1,...,2,) = (21,...,24)
and H has a defining equation 2441 ...2, = 0.

We have defined in 2.2 the real analytic logarithmic Dolbeault com-
plex Ay (log H). A relative logarithmic Dolbeault complex may be
defined from the exact sequence

0 — f*A° — AP (log H) — A}?S(logH) — 0,

its analogue (0,1) and the corresponding wedge products for A’}("fs(log H).

There is a natural inclusion AYs(log H) < j.Ayjs, induced already
by the defining exact sequences, and it may be checked that, unlike
its C* analogue, in the above holomorphic coordinate sets V' the sheaf
}Ts(log H) is the free Ax-commutative graded algebra generated by

dz; dz; .

—z, Tz, log |zil, d+1<i<r

2i 2
and

dz,', dz,—, r+1§i§n
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and differential d = 8 + 8 induced by that of .A%*(log H).

We will call the complex AY|s(log H) the horizontal logarithmic
relative Dolbeault complez. This complex has a weight filtration and a
Hodge filtration induced by those of the absolute logarithmic Dolbeault
complex of subsection 2.2:

DEFINITION 4.29. The weight filtration W, on .AXI ‘s(log H) is the
increasing mult1p11cat1ve filtration defined by assigning weight one to
the generators % %i,log |z for d+1 < i < r, and zero to dz;,dz; for
r+1<j<n.

The Hodge filtration F* on ‘AXI 's(log H) is the decreasing filtration
defined by

FPAY s(log H) = P A¥|s(log H) .
§2p

We compare the complexes of sheaves X,S(log H), f.-acyclic by

Cor. 4.6, and A5, which has been studied in subsection 2.3:

PROPOSITION 4.30. The natural inclusion induces quasi-isomorphisms
X|S(10g H) = j, Z’TS

PRoOOF. This is a local question on X, so given a point z € X
we may assume by restriction that X is a polydisk with holomorphic
coordinates (21,...,24,...,2s), £ = (0,...,0), Y C X has as a defin-
ing equation zg11...2, = 0, with d < 7 < n, and f(21,...,2,) =
(215. -, 24)-

As the morphism f is now a trivial fibration with fiber (D*)"—¢ x
D"7", the integrable bundle formed by the cohomology classes of the
fibers is

A dz;
H UIS’ /\ AS
i=d+1
The forms €% are logarithmic, therefore the inclusion Ayis(log H) —
Ul 5 gives r1se to a commutative diagram

H*(AY)s(log H), d)

dz

S e
/\*( i=d+1 -AS ) = H*('AU|S’ )
Thus it suffices to check that '
dzz .
ANCD As) =5 1 (A (log 1), ) (15)
i=d+1 Zi

is an isomorphism to show our statement. The morphism is onto by
the previous commutative diagram, and it remains to check injectivity.
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Define an ad hoc increasing non—holomorphlc weight filtration on

S(log H) by setting weight one to the forms and functions log | ;]|
and weight zero to the forms %, dz;, dz; for d+1 < i<rr+l1<j<n
Extend the filtration multlphcatwely to the Ax-algebra Ay|s(log H).

We will show that every class @ € H*(AY)|s(log H),d) has a rep-
resenting cocycle with non-holomorphic weight zero, i.e. without any
factor %,log |2;| on its summands. This may be done by double in-
duction on ¢ € {d+1,...,r} and the non-holomorphic weight on every
i

Let w be a representing cocycle of the class w. If w has non-
holomorphic weight zero on every z; it is our sought cocycle. Otherwise,

let i € {d+1,...,7} be the highest coordinate with nonzero weight k.
We may write the cocycle as

dz;
w = log|z|*a + log |zi|"‘1—z;-’- ANB+r,
i
where -y has non-holomorphic weight < k in z; and zero in z;44, ..., 2.
The fact that w is a cocycle implies that

dz;
0 = dw = klog |z|*~ 14 = A a + log|z|*da — log |zi|k'1—5-'- AdB+7,
;

with 7' again with top nonzero weight in z; and lower than k. Grouping
terms in the last equality we have that da = 0,ka — dB = 0, thus
a = +dp, so the cocycle

dzi
W — d( log |i] B) =~ —log|z|*~ 17Aﬁ

has top nonzero weight in 2; and lower than k. Thus by induction
we can find a cocycle representing @ with no factors log |2;] in its
summands.

Let now w be an m—cocycle with non-holomorphic weight zero. It
has an expression of the form

dZ[
W= ar—,
2
where I ranges over the subsets of {d+1,...,r} with cardinal |I| < m,

and the forms a; contain only the differentials dz;,dz; with r +1 <
j < n. As w is a cocycle, there is an equality

dz

0=dw=73 do—.

By the freeness of the horizontal loganthmlc relative complex in our
local setting, this means that the forms «; are cocycles. Since they
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contain no differential %i, % nor factor log |z;|, the cocycles a; extend
to X and by the relatlve real analync Poincaré lemma, our Proposition
4.13 they are either exact or zero—cocycles.
By our previous induction computation, the cocycles ¢ € H( A} X! Ts(log H),d)
may not have any factor log |2;|. Such cocycles lie therefore in H°(.A4} X5 @) =
Ag, and the proof of our Proposition is now complete. O

The previous Proposition and Cor. 4.14 may be expressed as:

COROLLARY 4.31. The natural map of sheaves Cy — AX| s(log H)
induces isomorphisms

Rpf*(CU %As E ( X|S(logH) f*dX'S)
for allp > 0.

Therefore there is a Gauss-Manin connection on R? f, .AXI 1s(log H),
having the local systems { H*(X,\ H,, C) | s € S} as horizontal sections.
This connection is actually the Gauss—Manin connection developed in
the previous subsection, and it may also be locally defined over forms:

PROPOSITION 4.32. Let vy be a real analytic tangent field defined
on an open set V C S. Then:

(i) The field vy admits a real analytic lifting v defined over f~1(V) C
X such that v is tangent to H.

(ii) The Lie derivative j,L, : JeAgls = JeAys preserves the horizon-
tal logarithmic subcomplez A% (log H), and induces a derivation
in ‘AX| 's(log H) that depends only up to homotopy on the selected
lifting v.

(iii) The induced derivation V,, := RPf,L, on RPf, Ay s(log H) de-
pends only on vy, and is the Gauss—Manin connection along v.

(iv) If ug,vo are vector fields on V C S such that [ug, ve] = 0, and u, v
are relative tangent lifts to f~*(V) C X, then the bracket [L,, L,,]
of induced derivations in A}Ts(log H) is null-homotopic.

PROOF. (i) Let T(x,u) be the relative tangent sheaf, i.e. the sheaf
of tangent fields on X which are also tangent to H. This is a coherent
sheaf, and so is the relative tangent sheaf T(x,m)s, defined through the
exact sequence

0— T(X,H)]S — T(X,H) — f*Ts —0

As the sheaves in this sequence are acyclic, every vector field defined
on V C S lifts to (f~*(V),H N f~Y(V)).

(ii),(iii) Choose local coordinates (z;, ..., z,) as in the definition of the
relative logarithmic complex, with f(z1,...,2,) = (21,...,24) and H
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defined by the equation zgy; ...z, = 0. The relative tangent sheaf
T(x,m) is the locally free sheaf with basis

o 0 0 _ 0
ATy As 1 Rig k[T
sz 62j Bzi Bz,-
forie{d+1...,r},5 € {r+1,...,n}. An immediate computation
shows that derivation along these fields preserves the generators of the
logarithmic complex A" (log H).

As has been seen in Proposition 4.16 for the complex A, this
derivation depends on the lifting of vy only up to homotopy, and given
two lifts v,v' € T(x,n) the homotopy between L,, L, is the contraction
h = iy_,. This contraction along a vector field of the relative tangent
field also preserves logarithmic forms, so the homotopy A restricts to
the subcomplex AYy|s(log H) C Apyjs. The induced derivation V,, :
R f. AY|s(log H) — A¥|s(log H) is by Propositions 4.16 and 4.30 the
Gauss—Manin connection along vg.

(iv) One may check in the same way that if ug, vy are tangent vector
fields in V' C S with [ug,v] = 0 and u,v are relative tangent lifts,
the homotopy in A between the bracket [Ly, Ly] and the zero mor-
phism defined in the proof of Prop. 4.16 (iv) preserves the horizontal
logarithmic subcomplex. O

One may proceed now as in the relative case of subsection 2.3 to de-
fine local Gauss—Manin connections on forms and check the properties
of the local and cohomology logarithmic connections:

DEFINITION 4.33. Let V C S be an open subset, vy,...,v4 vector
fields such that they form a basis of the tangent sheaf Ts on V, and
B, ..,7q relative tangent lifts to (f~1(V'), HNf~*(V)). The connection
defined by setting

Vuiw = f *Lﬁ;w
is a local Gauss—Manin connection on the complex of forms f*.A}TS(log H)
restricted to f~1(V).

Proposition 4.32 shows that the Gauss—Manin connection and its lo-
cal analogues on forms for the relative logarithmic complex A}Ts(log H)
are induced by the local Gauss—Manin connections of the relative com-
plex f.Apjs. An immediate consequence of Proposition 4.32 (iv) is:

LEMMA 4.34. Every local Gauss—Manin connection defined on'V C
S is homotopically integrable.

Another relevant property that local Gauss-Manin connections in-
herit from the complex ABTS is Griffiths transversality:
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PROPOSITION 4.35. Let V be a local Gauss—-Manin connection on
Xls(log H) defined over V.C S. Its complex structure components

V0 VOl verify that
Vo FP f,,AX|S C A" ® FP7' f, A< (log H)
VO fLAYs C AST © FP LAY s (log H)

PROOF. By Proposition 4.32 a local Gauss—Manin connection in
AXl 's(log H) is a particular case of a local Gauss—-Manin connection in

UI 5, thus our statement follows from Proposition 4.21. O
At the cohomology level, one has: -

PROPOSITION 4.36. (i) The Gauss-Manin connection V on H?(j. Aps, j.d)
induces the relative logarithmic Gauss-Manin connection

V R f Ay s(log H) — Ag ® RP f, A% s (log H)

(ii) The Gauss-Manin connection V = V°+V%! on RP f, A%} (log H)
verifies the Griffiths transversality relations

VIOF'RP f, A s(log H) C Ag° ® F¥'RP £, A% < (log H)
VOLFFR? £, A%s(log H) C AY' ® F*RP £, Ay ¢(log H)
Another property specific to the logarithmic complex is:

PROPOSITION 4.37. There ezists a local Gauss—Manin connection
on f*A;{,’S(log H) defined over a neighbourhood s € V. C S such that it

preserves the weight filtration W, in a possibly smaller neighbourhood
peV' cV.

PROOF. Given s € V, we may take as V' a trivializing open subset
for f, such that f~'(V") is real analytically isomorphic to (X,, H,) x V"
over V'.

Take then a covering of (X, H,) by coordinate charts (1, ..., Ym,
U1,--.,Um). This induces a covering of (X,, H,) x V' by coordinate
charts (y1,...,%m,51,...,84,51, . . ., 54), where the variables s;, 3; come
from V' and are invariant under change of coordinates.

A local Gauss-Manin connection V' is given now on the absolute
logarithmic complex -AszV’ (log Hy x V') by covariant derivation along

the vector fields a— - a‘z‘, The coboundary operator d preserves
the weight ﬁltra,tlon on the absolute logarithmic complex, and con-
traction along a field 5- " a- does not affect the positive weight terms

log |yil, ¢ ” ', B Therefore the weight filtration is preserved in the ab-
solute complex, so also in its quotient A%, .\, (log H, x V). O
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The consequence of Proposition 4.37 at the derived level is

COROLLARY 4.38. The Gauss—Manin connection V on RP f*AX| s(log H)
preserves the weight filtration W,.

The comparison between the real analytic and the holomorphic
Gauss-Manin connection parallels that of the relative complexes A}TS
discussed in the previous subsection. We will write the analogous state-
ments and indicate the proof when it is not a consequence of its ana-
logue in subsection 2.3:

DEFINITION 4.39. The complex of logarithmic fiberwise holomor-
phic forms (K’,s(log H) is formed by the .Ax-submodules

K%, 5(log H) = ker (AXIS(log H) 2 A5)
and the coboundary operator d of Ay|(log H).

By the natural inclusion AYs(log H) < j. Ay, the complex K s(log H)
is a subcomplex of the fiberwise holomorphic complex J+Kpys previ-
ously described. Again, the Hodge filtration on A}|s(log H) induces a
Hodge filtration F* on K% s(log H). The relative Dolbeault lemma in
this context has the same statement, but a more involved proof:

LEMMA 4.40 (relative Dolbeault lemma, horizontal logarithmic version).
The natural inclusion (K s(log H),0) — (A¥|s(log H),d) is a bifil-
tered quasi—isomorphism of complezes of sheaves.

PRrROOF. Our statement is equivalent to the exactness of the se-
quences

0 — K% 5(log H) — As(log H) -2 A% (log H) -5

for every p > 0. As in the relative case, this is a local question on X, so
we may assume that X, S are polydisks, f has the form f(z,...,2,) =
(21,...,24) and H has a defining equation 2441 ...2, = 0.

The local question may now be proved following verbatim the proof
of Theorem 8.8 in [72], which is the analogous absolute logarithmic

case. The variables 2;,..., 24 from S appear as additional parameters,
but they do not show up in the exterior derivations because of our
relative setting. O

On the other hand, the relation between the fiberwise holomor-
phic and the holomorphic complex are a straightforward consequence
of Lemma 4.26:
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LEMMA 4.41. Let V be a local Gauss—Manin connection defined on
AXIS(log H) over an open set V - S, and V%! its (0,1)-component.
There is an ezact sequence

0— Q&IS(logH) — Kf(ls(log H) v A ® A’j}?s
for every p > 0.

PROOF. As K% s(log H) C K75, and the local Gauss-Manin con-
nectlon V is actually defined on AU| s, by Lemma 4.26 the kernel of
V

|5(l°gH) .
sz)ns N Kgqs(lOg H)= ngs(log H)
O

We conclude this section with the commutative diagram formed by
the holomorphic and real analytic cohomology connections. Its proof
consists in applying Proposition 4.27 to the family f : U — S and then
taking intersections with the logarithmic complexes A}Ts(log H), % s(log H)
as in the previous proof.

PROPOSITION 4.42. Let f : (X,H) — S be a smooth holomor-
phic mapping satisfying Convention 4.28, and let V = V0 + V0! pe
the Gauss—Manin connection on the derived sheaves RP f, A, X| ts(log H).
There is then a commutative diagram with exact rows and isomor-
phisms in the vertical arrows

0 — RfCROs — RAECAs 25 A% @ RP£,Cy

gl F J%’

0 — RLO5(logH) — RPfAYs(logH) T AY @RPf.Ayis(log H)

3. Real analytic variations of Hodge structure

When X is a compact Kahler manifold, the real analytic Dolbeault
complex AY" satisfies a 9-lemma, and the Hodge filtration F* of the
complex induces the pure Hodge structures of the cohomology groups
of X. Likewise, if Y C X is a normal crossing divisor, the real an-
alytic logarithmic Dolbeault complex induces Deligne’s mixed Hodge
structure on the cohomology groups H*(X \ Y) ([72]).

In the relative case, the cohomology of a holomorphic family of
compact Kéhler manifolds supports a variation of Hodge structures
(see [43]). We recall its definition in order to compare it with our
proposed definition for its real analytic analogue:
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DEFINITION 4.43. A wvariation of Hodge structure of pure weight
n over a complex manifold S consists of:

(i) alocal system of Z—free modules of finite rank V over S,
(ii) a holomorphic vector bundle V over S,
(iii) an integrable connection on V, V:V = Q. Q@ V,
(iv) a decreasing Hodge filtration of V by holomorphic subbundles

V=F'2F 2..-2 F* ={0},
such that

- the local system formed by the horizontal sections of (V, V) is
isomorphic to V& C,

- the fiber data (V,,V,, F;) defines a Hodge structure of pure
weight n for every s € S,

- (Griffiths transversality) the connection V and the filtration F
verify

V(FP) C Q5 @ FPL.

The corresponding concept that we have encountered using the real
analytic structural sheaf is:

DEFINITION 4.44. A real analytic variation of Hodge structure of
pure weight n over a complex manifold S consists of:

(i) a local system of Z—free modules of finite rank V over S,
(ii) a real analytic vector bundle W over S,
(iii) an integrable connection on W, V: W — AL ® W,
(iv) a decreasing Hodge filtration of W by real analytic subbundles

W=F 2 F D...0 F*l = {0},
such that

- the local system formed by the horizontal sections of (V, V) is
isomorphic to V® C,

- the fiber data (V,, W, F;) defines a Hodge structure of pure
weight n for every s € S,

- (Griffiths transversality) the complex structure components V¢, V%!
of the connection V and the filtration F verify

VH(F?) C As @ FP
VO (FP) C Ag' @ FP

The concepts of real analytic and (complex) variation of Hodge
structure are actually equivalent:
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LEMMA 4.45. Let VHS(S)(n) and A — VHS(S)(n) be the cate-
gories of variations of Hodge structure, resp. real analytic variations
of Hodge structure, of pure weight n over a complex manifold S. There
ezist functors

.®As : VHS(S)(n) — A—-VHS(S)(n)
(V, V,V,}—.) — (V,V oy As, Vo, F* ® As)

and

ker V' : A — VHS(S)(n) — VHS(S)(n)
(VW,V, F*) — (V,ker VO, V0 F* N ker VO)
which induce an equivalence of categories.

PROOF. Given the underlying local system of free Z-modules V, by
the correspondence between local systems and integrable bundles, the
holomorphic vector sheaf of a variation of Hodge structure is isomorphic
to V® Og, and the connection V in this presentation is

[d®d: VR 0s — QL V.

In the same way, the vector bundle of a real analytic variation of Hodge
structure is isomorphic to V ® Ag, and the connection V becomes

[ded: Ve ds — AL QV,

and the complex structure components of V are V10 = 9, V%! = 3.

Consequently, if (V,V,V,F*) is a variation of Hodge structure of
pure weight n, we extend to W = V ® Ag the connection V,, by
imposing that V*(w) = 0 for the holomorphic forms w € V plus the
Leibnitz rule, and the filtration F* by .Ag-linearity, the resulting data
verifies:

-WE2(VR0:)As 2V ® Ag.
- There is an equality of Hodge structures (V,, W;, ;) = (Vs, Vs, F)
for every s € S.

- Let w € FP(V) be a local section of V over an open set V C S.
By the Leibnitz rule, if ¢ € Ag, we have

B(pw) = (0p)w + p(dw) € AY® ® FP + AL ® FP1
d(pw) = (Op)w € AY' @ FP

Therefore the data (V,V ® Ag, Van, F* ® As) satisfies the real
analytic Griffiths transversality condition.
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Thus (V,V,V, F*)® Ags is a real analytic variation of Hodge structure.
Conversely, if (V,W,V,F*) is a real analytic variation of Hodge
structure, by the isomorphism W ® V ® Ag, sending V', V%! t0 9,0
we have:
-ker VO = ker(d : As @V — AY' Q@V) = V® O, by the
Dolbeault lemma.
- By the above isomorphism, there is an equality of Hodge struc-
tures (Vy, W;, F?) = (Vy, ker V&1, F2 Nker VO1) for every s € S.
- Ifw € ker VO'NFP(V) is a section defined on an openset V C S,
V(W) € AYQ(ker VO NFP! because V10, V*! commute and
real analytic Griffiths transversality. Moreover, as ker V%! =
V ® Og, and V¥ = 9, it turns out that w = ¢ ® w, with
w € V(V) a section of the underlying local system, and ¢ a
holomorphic function. Hence follows that dw = dp@w € QY
and holomorphic Griffiths transversality.

We conclude that the functors ®Ag, ker V%! are well defined. More-
over, they are inverse functors by the isomorphisms

ker(0: As®V = A ®@V) 2 VR O
As® (0s®@V) 2 As®V
O

REMARK 4.46. If we let V be a local system of Q-vector spaces in
our definitions of variation of Hodge structure, the functors ® Ag, ker V%
actually define an equivalence of tensor categories.

The equivalence between complex variations of Hodge structure and
real analytic variations also holds for variations with any coefficient
ring. For instance, a real variation of Hodge structure (R—V HS) over
a complex manifold S is defined in the same way as in Definition 4.43,
except that the underlying local system V is formed by R-vector spaces.
The same change in Definition 4.44 yields a real analytic R-variation of
Hodge structure (A—R—V HS), and the functors ® Ag, ker V%! extend
to real variations and induce an equivalence between the categories
R - VHS(S)(n) and A~ R — VHS(S)(n).

The relative Dolbeault complexes in this chapter provide a natural
example of real analytic variations of Hodge structure, and its relation
to the relative holomorphic de Rham complex may be explained by the
correspondence between real analytic and complex variations:

PROPOSITION 4.47. Let f : X — S be a smooth proper morphism
between complez manifolds X, S, such that the fibers X, form a family
of compact Kdhler manifolds, and let A}]’S be the relative Dolbeault
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complezx defined in the previous section, with its Hodge filtration F°
and its Gauss-Manin connection V on R f, Ay 5. The set of data

(RP £.Rx, R® fo A5, V, F*)

defines a real analytic R-variation of Hodge structure of pure weight p
over S. The complex R-variation ker VO (RP f,Rx, RP f, Xis: Vo F*)
is isomorphic to the variation induced by the relative holomorphic de
Rham complex

(R? £, Ry, R? £, (5, V, F*).

PrOOF. By our Corollary 4.14, RPf,Rx ® As = RP feA¥ls, and
(R? fu A%|s)s = HP(X,,C). Moreover (AY[s)x, = A%., so by the real
analytic §0-lemma the data (HP(X,,R), (R? f.AY]s)s, F;) is the pure
Hodge structure of the fiber X, (Lemma 4.8 and Proposition 4.9). Grif-
fiths transversality is established in Proposition 4.23.

The comparison with the complex variation (R? f,Rx , RP f, X|is» V,F*)
follows from Proposition 4.27. O

We have shown so far the equivalence between real analytic and
complex variations of pure Hodge structure, but the concepts and proof
techniques involved carry into variations of mixed Hodge structure.
The only new addition that is required is the fact that the Gauss—Manin
connection preserves the weight filtration, which is our Proposition
4.36 (ii) in the horizontal logarithmic setting. The definitions and
statements are:

DEFINITION 4.48. A real analytic variation of mized Hodge struc-
ture over a complex manifold S consists of:

(i) a local system of free Z-modules of finite rank V over S,
(ii) an increasing weight filtration W, on V® Q,
(iii) a real analytic vector bundle W over S,
(iv) an integrable connection on W, V: W — AL @ W,
(v) a decreasing Hodge filtration of W by real analytic subbundles
W=FDF 2...2FN = {0},

such that

- the local system formed by the horizontal sections of (W, V) is
isomorphic to V® C,

- the fiber data (V,, W;, (W,);, F?) defines a mixed Hodge struc-
ture for every s € S,
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- (Griffiths transversality) the complex structure components V1, V0!

of the connection V and the Hodge filtration F verify

VLO(FP) C AR @ FP
VOL(FP) C AY @ FP

- the quotients W;/W,_1(V, W, V, F*) are real analytic variations
of pure Hodge structure of weight .

REMARK 4.49. Given the isomorphism V®C = WV, the existence
of a weight filtration W, on V® C by sub-local systems is equivalent to
the existence of a weight filtration on the vector bundle W such that it
is preserved by the connection V, i.e. VWi (W) C At @ Wi(W). The
additional condition in the definition of a variation of mixed Hodge
structures is that this filtration W, on W must induce a filtration in
V ® C defined already over V® Q.

LEMMA 4.50. Let VMHS(S) and A—VMHS(S) be the categories
of variations of mized Hodge strucure, resp. real analytic variations of
mized Hodge structure over a complex manifold S. There are functors

®As: VMHS(S) — A— VMHS(S)
(V,V,V,W,, F*) — (V,V & As, Van, Wa, F* ® As)

where V,, is the connection obtained by letting Vll{,o =V, V?{,l =0 and
the filtration F* has been extended by Ag linearity, and

ker V' : A -~ VMHS(S) — VMHS(S)
(V,W,V,W,, F*) — (V,ker Vo', V2 W,, F* N (ker V1))

These two functors are inverse of each other, and they induce an equiv-
alence of abelian categories.

As in the pure case, one may repeat the definitions and categoric
equivalence functors for variations of mixed Hodge structure with co-
efficients, where V is a local system of R,C,...-linear spaces. The
functors ® Ag, ker V%! induce equivalences of tensor categories in these
cases. The final example is:

PROPOSITION 4.51. Let X, S be complex algebraic manifolds, f :
X — S a smooth, proper map, and H C X a relative normal crossing
divisor. Denote U = X \ H. Let Ay s(log H) be the relative horizontal
logarithmic Dolbeault complex introduced in the previous section, F* its
Hodge filtration, V its Gauss—Manin connection in the derived sheaves,
and W, its weight filtration.
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The weight filtration induced by W, in RP f, }Ts(log H)Y2RfRy®

As is actually defined in the local systems RP f,Ry, and the set of data
(R? f,Ry, R”f,,A}Ts(log H),V,W,, F*)

defines a real analytic R-variation of mized Hodge structure on S.
The image of this variation by the functor ker V%! is the complez R-
variation of mized Hodge structure

(R”f*RU,Rpf*Q}TS(log H),V,W,,F*).
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CHAPTER 5

de Rham realization

The Malcev algebra and rational homotopy groups of a suitable topo-
logical space may be studied by means of Sullivan’s 1-minimal mod-
els, as has been described in Section 5 of Chapter I and applied in
Chapter II, or equivalently through the iterated integrals developed by
K.T. Chen (see [26]). In the case of a complex algebraic manifold X,
both approaches may be applied to suitable holomorphic and Dolbeault
complexes yielding information on the Hodge structures of the Malcev
algebras Lm;(X,z), or of the homotopy algebras =,(X) ® Q if X is
simply connected ( [70],[47], see also [72]).

This study of rational homotopy may be carried out in a relative
case as well as in the absolute context. In the case of a real or complex
analytic family of smooth manifolds f : X — S, with a basepoint sec-
tion o : S — X, there exist locally real analytic basepoint preserving
parallel transports on the total space (X,0(S)). These parallel trans-
ports, which we have studied in the previous chapter as local Gauss—
Manin connections on forms, define a principal bundle of fundamental
groups {m;(Xs,0(s)}ses, and associated local systems formed by the
homogeneous bracket spaces I';, /T, 1 ® Q, which may be defined even
without a basepoint section o, and of Malcev algebras £,(T).

In the case of smooth proper maps f : X — S between complex al-
gebraic manifolds these local systems with complex coefficients become
the horizontal sections of holomorphic flat bundles {£(m (X}, 0(s)), C) }ses;
they underlie variations of Hodge structure ([48]) and are endowed with
a Gauss—-Manin connection which is algebraic and singular-regular, as
its cohomological counterpart ([73]).

The purpose of this Chapter is to study the variation of Malcev
algebras in families of affine curves. We wish to compare the case
of rational curves, which is the case covered by Deligne in [34], with
the case of curves whose completion has a nonzero first Betti number.
In order to do this, we will explicitly compute these variations in the
case of the Legendre family of affine cubics, and also for families of
punctured rational curves over PL. The computation will be performed
by applying the techniques and results of [73], so we will begin in
Section 1 with a description of them in the case of Malcev algebras.

161
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The reader is referred to [73] for the analogous results on the rational
homotopy of simply connected and nilpotent manifolds.

The Gauss—Manin connection of the above holomorphic bundles is
determined by the algebraic differential equation satisfied by its hor-
izontal sections. The solutions are called the non-abelian periods of
the family, in analogy to the abelian periods determined by the local
systems of the cohomology of the fibers.

To every differential equation we can associate its differential Ga-
lois group (see [57] or [14]), which gives qualitative information on the
solutions of the equation (see [94]). We will study in the final section
of this chapter the differential Galois groups of the non-abelian peri-
ods of Malcev algebras in algebraic families. The basic tools that we
use for this purpose are the theorem by Schlesinger characterising the
differential Galois group of a Fuchsian equation as the Zariski closure
of its monodromy (see [95],[76]), and the group—theoretic relations be-
tween the first homology group, the brackect quotients I';,/T',,; and
the Malcev algebras described in Section 7 of Chapter I.

1. The Gauss—Manin connection in the Malcev algebra

Let £ — C be a subfield of the complex numbers, X, S smooth
k—schemes of finite type with S affine, f : X — S a smooth algebraic
morphism such that the underlying holomorphic morpism f* : X%* —
59" is topologically locally trivial, and ¢ : S — X a smooth section,
transversal to the fibers of f.

We have seen in Chapter 4 how the parallel transport in the under-
lying real analytic family f%* : X** — 5% is well-defined up to homo-
topy, and determines a real analytic Gauss—Manin connection, which
may be defined locally on the relative Dolbeault complex AYen gan-

Katz and Oda showed in [58] that the Gauss—-Manin connection is
of algebraic origin. The algebraic connection is not hard to define when
the basis scheme S is affine: every algebraic vector field v on S lifts to
a k-algebraic vector field ¥ on X, and the fiberwise transversality of
the base point section ¢(.S) C X assures the existence of lifts 7 tangent
to it. Consider the relative de Rham complex (% s over k. Given a
relative form w € %, and alift & € O, the Gauss-Manin connection
of w over v is the image in f.Q% g of the covariant derivative

VU(W) = Lﬁ(:) € Q;(IS .

Both selection of a different lift of the vector field v to X or of a
different section of Q% — x|s result in a homotopic endomorphism
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of the complex of Og—sheaves
V., : (£.0%.d) — (£ 92%s:d) -

Thus our V is so far a connection up to homotopy. If v1, v, are algebraic
vector fields on S and a parallel transport over them is chosen by fixing
liftings 9, 75 and a linear section %5 — (%, the morphisms [V,,, V,,]
and Vy,, ., are also homotopic endomorphisms of the complex of Og—
sheaves f,(Q%s.

Therefore, by choosing basepoint preserving lifts of a basis of the
tangent bundle ©g and a Og-linear section Q%s — %, the above

process yields a connection on the relative differential bundle (Q;(| S d).
This connection depends on the selected liftings and section only up to
homotopy, and is homotopically integrable (see our Definition 4.18).

We will describe now after [73] the 1-minimal model of the algebraic
Gauss-Manin connection over an affine base scheme S: Let 4* be a
sheaf of quasi—coherent Os—CDGAs such that its cohomology sheaves
are coherent, and set A* = 4*(S) the CDGA of global sections. As S
is affine, the complex of sheaves A* is the sheafification of A*.

We have described in Section 5 of Chapter I the construction of 1-
minimal models of CDGAs, and stated Sullivan’s theorem showing that
if A* has finite-dimensional cohomology and a basepoint morphism
A* — k, then it has a basepointed minimal model p : M (2,0)4- — A*,
obtained as an inductive limit of (1, g)-minimal models by succesive
Hirsch extensions

M(1,q) = M(1,¢ - 1) @ A*(V™)
VY = ker (pr, , : HY(M(1,q ~ 1)) — H*(4")) .

The 1-minimal model is functorial up to homotopy, i.e. given a mor-
phism f : A* — B* and a choice of 1-minimal models M (2, 0) 4., M (2, 0) -,
there exists a lift M(f) such that pgo M(f) and f o p4 are homotopic.

A connection may be seen as a linearly varying derivation, so we
will recall the definition of derivations in CDGAs: Let R be a k-algebra
with k& C C as before, A*, B* two R—-CDGAs, ¢ : A* — B* be a R-
CDGA morphism and v a derivation in R. A (v, p)—derivation from A*
to B* is a k-linear morphism 4 : A* — B* such that it has even degree
and satisfies the Leibnitz identities

§(rz) = v(r)p(z) + ré(z), r€ER,ze A"
Sz Ay) =6(z) Ne(y) +o(x) Ab(y), z,y€ A
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If A* = B* and ¢ = Id we call § a v—derivation. A (v, ¢)-antiderivation
A : A* — B* is defined in the same way as a derivation, except that A
has odd degree and the second Leibnitz relation is

Az Ay) = Az) A p(y) + (—1)* @ p(z) A A(y) .

The 1-minimal model of a v—derivation of degree 0 on a R-CDGA
A* may be built as an inductive system of (1, ¢)-minimal models for
every ¢ € N. The (1,0)-minimal model is the commutative square

R - R
1 {
AL oA

Commutativity of the square is usually possible only up to homotopy
after the (1,0)-step, therefore the (1,g)-minimal model for ¢ > 0 is
defined as a square

) 1,9
M(l,q9) =2 M(,q)
Pag ¥ MAag YAg
A* 5 A*

where 81 q) is a v—derivation in the minimal model M (1,9), and A(1,q)
is a (v, p(1,q))-antiderivation of degree -1 such that

6p,q) — PLa)0(La) = A1) T A d -

If A*, B* are augmented R—-CDGAs with augmentations €4-,€p-
respectively, a (v, p)—derivation § is augmented, or basepointed, when
ep+0 = veg-. A homotopy A between basepointed derivations is base-
pointed when ep. A = 0. Thus a basepointed (1, g)-minimal model of a
derivation is a (1, ¢)-minimal model with (1 4), A1,q) basepointed.

Assume now that the (basepointed) (1, — 1)-minimal model of a
derivation & : A* — A* is known. As M(1,q) = M(1,g—1) @ A*(V19),
in order to construct the (1, g)-minimal model of ¢ it suffices to extend
81,4-1, A1 4-1 to the space of indecomposables V¢ defining the Hirsch
extension, provided that this extension is compatible with p(4), the
boundary d of M(1,q) and the augmentation. The obstruction to the
existence of (8(1,4)(€), A(1,¢)(€)) for e € V14 is the relative cocycle ([73],
Lemma 3.6) '

o(e) = (5(1,,1_1)(de),6(p(1,q)(e) + A(l,q_l)(de)) € Z*(M(1,q), A").

Thus the (1, ¢— 1)-minimal model of a derivation § extends to a (1, ¢)-
minimal model if and only if the relative cocycles 6(e) are exact for
every e € V1. The derivations §(1,5), A1,g) may be defined on V*4
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by setting a primitive to 6(e) (01,q)(€), A(1,¢)(€)) such that it varies k-
linearly on e. A basepointed extension of the minimal model is achieved
by a suitable choice of the primitive to 6(e).

The obstruction to the existence of a (1,¢)-minimal model of a
(basepointed) derivation has been presented here because it provides
an effective algorithm to compute the 1-minimal model. On the other
hand, Navarro Aznar has shown that this obstruction is trivial in our
setting:

PROPOSITION 5.1. ([73}, 3.8 and 3.11) Let A* be an augmented R~
CDGA with finitely generated cohomology, § : A* — A* a basepointed
v-derwation, and M(2,0) = lim M(1, q) a basepointed 1-minimal model
of A*. The basepointed 1-minimal model of § exists and is unique as
the limit of an inductive system of (1,q)-minimal models &1,4), \(1,q) :
M(1,q) — A~

Proposition 5.1 may be applied to the k-algebra R = Og, the Os—
CDGA A* = Q%5(S) and the derivation V, induced on Q% s(S) by
the Gauss-Manin connection along some algebraic vector field v on
S. Due to the uniqueness of the basepointed (1,q)-minimal mod-
els of derivations, we may choose any basis vy,...,v; of algebraic
vector fields on S, and the (1,q)-minimal models of the derivations
Vi -+, Vy, fit together to define a connection V(1,9 on M(1,q), and
a homotopy between p(1,4)V(1,4) and Vp( 4. This is the minimal model
of the Gauss—-Manin connection. As S is affine, the sheafification
(M(l,q),V(l,q),)\(l,q)) of this 1-minimal model provides the unique
1-minimal model of the restriction to any open set U C S, and analo-
gously to the absolute case, this 1-minimal model computes the varia-
tion of the Malcev algebras:

THEOREM 5.2. (Navarro Aznar, (73] 6.11) Letk C C, f: X —» S
and 0 : § — X be as at the beginning of the section. Then for every
q>0:

(i) The algebraic Gauss-Manin connection V : Qs = Vx5 ® N

with the augmentation given by the section o has a basepointed
(1, 9)-minimal model (M(l, 2), Ve, /\(1,,,)), which is integrable
and unique up to isomorphism.

(ii) The homogeneous component of degree 1 M(1,q)! C M(1,q)
is a finitely generated locally free Og—module, and the holomor-
phic flat bundle (M(l,q)l, V(l,q))an is dual to the flat bundle of
Malcev algebras Lq(m1(X;,0(s)) ® Ogen.

Theorem 5.2 is proved in [73] without the affine base restriction,
taking a cover of S by affine open sets, but the glueing process for the



166 5. DE RHAM REALIZATION

Gauss—Manin connection and its minimal model is more delicate than
what has been sketched here.

2. Families of curves

The purpose of this section is to study the Gauss-Manin connec-
tion in the Malcev algebras of some families of affine curves over the
projective line, applying the algorithm of [73] described in the previous
section. The examples presented here are on one hand the Legendre
family of affine cubics, and on the other hand some families of punc-
tured rational curves. While the fundamental group and Malcev alge-
bra of an elliptic curve minus one point are isomorphic to those of a
rational curve minus three points, the relative Malcev algebras of the
examples presented here show a marked contrast. This contrast seems
to arise from the fact that the first comomology group of a Legendre
affine cubic E; is pure of weight one, while H'(P¢ \ {p1,p2,p3}) has
pure weight two.

We will study smooth algebraic families over field & C C of the form
f:X — 8, with § C P}, X a smooth surface, and f°" topologically
locally trivial. As S C P}, if we select a uniformizing parameter s, the
derivation (—% is a global generator of the algebraic tangent sheaf ©g,
and the Gauss—Manin connection on the sheaves of Malcev algebras is
determined by the parallel transport along -c% plus the Leibnitz identi-
ties. Hence the (1,¢)-minimal model of this derivation is actually the
(1, ¢)-minimal model of the Gauss-Manin connection.

The correspondence between holomorphic vector bundles over S C
PL with a flat connection and Fuchsian linear differential equations over
S, which is bijective up to isomorphism of bundles/equivalence of equa-
tions, allows us to present the holomorphic flat bundles {£,(m (X5, o(s)))®
C}ses ® Os as the bundles of solutions of the differential equation
satisfied by its horizontal sections. There exist a holomorphic and a
k-algebraic version of this correspondence (see [31] 1.2).

2.1. The Legendre family of affine cubics. The monodromy
of the Legendre family of affine cubics

f:E={(z,y,t) eCly*=z(z—1)(z—t)} — S=C\{0,1}
(z,y,t) —> t

in the fundamental group and in the Malcev algebras up to L3(m1(E, *))
has been computed in Propositions 3.46 and 3.76 respectively, using a
topologic basepoint section. This family has algebraic origin, it arises
from a morphism of Z-schemes, thus we will regard it as an algebraic
family of Q-schemes in order to compute its minimal model.
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Let us now compute the (1,3)-minimal model of the Gauss-Manin
connection (le 50 = %), which corresponds to the local system of
duals of the Malcev algebras £3m; ® C. For computational convenience
we will choose the section (0,0,t) as basepoint, instead of a section ap-
proaching the topologic basepoint section used in Chapter III. Thus the
augmentation ¢ of the dga () ¢ will be the evaluation in (z,y) = (0,0),
and in the computations that follow we will select our obstructions and

homotopies so that it is always verified that € o Aq,i) = 0.

We start by directly finding the (1,1)-minimal model of 8; (cf. [29]

2.10).

A (1,1)-minimal model of Q}, /s s given by

M(1,1) = A, B),

and

We have

Thus

P - M(l, 1) — Q*E/S

dr

o — W = —

Y
ﬁ —> Wy = @

Yy

dr 1 dz
Aw) =00 = 5y

1 dz
M) = 3 e =0

1
6tw2 - tatwl - iwl

z2dz

) — t0w, = W2

la|=18=1, da=dB=0

(16)

(17)

We now need an expresion of 292 in terms of the cohomology basis w;,
ws and coboundaries: The identity

y2

=z(z—1)(z—t)=2° - (t+ 1)z +1tz
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yields
2udy = (3z% — 2(t + 1)z + t)dz (18)
z2dz tder 2 zdr 2
—_— =4 —(t+1)— + =d
y 3y+3(+)y+3y (19)

Applying the connection to both sides we obtain

z’dz 1 ¢ 2 2 2
O ( ) = ——-w; — ;0w + zws + '?;atw?. + gdaty (20)

Y 3 3 3
Putting together (17) and (20) we arrive at
1 2
Oywy = —mwl + m?ﬂz + t—(t':'l—)d(aty) (21)
1 1 2
Opwa = =)™ + W—1)™ + 77— U0w) (22)

The above system (22) shows that a (1,1)-minimal model of J; may be
defined as

M(]-al) ”_(1_1)) E‘/S

0 1 0
M(1,1) — Qs

P(1,1)

where

a B
-1 T2 -1

a B
) = —

anh 26-1) 20—

and the pointed homotopy between p(; 1) o 6(1,1) and 0; o P, is

2
t(t — 1)aty

2
A(l,l)ﬁ = P 16“”

since the identities atp(]_,l) - p(1,1)5(1,1) = d)‘(l,l) + )\(1’1)d and E)\(l,l)
may be easily checked on the generators «, .

We shall now switch to the method described in [73] to compute
the (1,2)- and (1,3)-minimal models of ;.

A (1,2)-minimal model of % ¢ is the Hirsch extension

M(1,2)=MQ,1)®A(m), Inl=1 dn=oaAp
with the map induced by

dapa =

Aano =

pa2n =10
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The obstruction in (M (1,2) — QE/S) to the existence of the (1,2)-
minimal model of 0; is given by

o(m) = (8(,1)(dn), B:(p,2)n) + Aw1)(dm))
= (1,1 a/\ﬂ) (A B))
1 2 2
= ( 20 —1) alfB+ 3= 1)04/\ﬁ, m(aty)wz - m(aty)w1>
- (0’ t(t— 1 )
= (0 o= 1))
Thus setting
da2m =0
Awa) = 7

the induced d2) : M(1,2) — M(1,2), Aagz) @ M(L,2) — Qf6[-1]
constitute a basepointed (1,2)-minimal model of 8,.

The computation of the pointed (1,3)-minimal model of &; is wholly
identical. We begin with a (1,3)-minimal model of O}, /s given by the
Hirsch extension

M(la'?’) = M(].,Z) ®A(71’72)
vl =l =1
dyi=aAn, dyr=FAn

and the map determined by

P3N = Pa3) Y2 =0
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The obstructions to building & 3y and A 3) are

o(m) = (6,2 (dn), (pa,3ym1) + A2y (dm))
~ 1 1
’(‘2@—1)“”““%( A T )

1 1 1
=d (_Z(t R Ty S Tr. 1)‘”0)

) 1 1 1 2%dz
0(72) = (“maAn+2(t_1)ﬁAn’_t(t~1) Y )

1 1 1 2t +1) 2
—d|- -
( O D VR (I R NRET 1)y>
((19) should be used in the last step).

These computations show that the (1,3)-minimal model of 9; is induced
by setting

S oL g L 1
1 2t +1) 1 1
) = - -
W= 3T T w1 - n " T =) "

and

Aazm =0

Ny = 2

(1,3)72 = 3t(t — 1)3/

The differential equation of the horizontal sections of d(; 3) is

1
—~ = 00 0
t % \
a o 0 ol(5
IB 1 _—é 2 ,6
o|n|==5|0 0 o0 0 ofln
N 0 1 0 . 1im (23)
: 2 2
72 12y 101 72
\ 3 3t )

By the isomorphism of [73] Thm. 6.10 it is also the differential equation
that corresponds to the local system formed by the L3m E; ® C.
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REMARK 5.3. As in the case of their monodromy matrices ex-
plained in Section 5 of Chapter 3, we can obtain the differential equa-
tions corresponding to the local systems L3, I'; /Ty, I'y/T'3, '3 /T4®C by
restriction to the adequate minors of equation (23) as shown in Figure
F5.1.

Figure F5.1 Minors of A(n).
The equation obtained in the case of the abelianised of the fundamental
group, m E/(mE;) ® C = Hy(E;; C) is a linear system equivalent to
the Legendre hypergeometric equation, and it is the differential equa-
tion satisfied by the abelian periods of the matrix (see [29],(19]).

REMARK 5.4. The equations given by the minors corresponding to
I';/Tiy1mE; ® C are the equations satisfied by the non-abelian periods
of the affine Legendre family. These period maps may be realized as
iterated integrals

where f;;(t)dt = v*w;; and are dual to the I';/T;;; as the ordinary
periods to the H; (see [49] or [25]). They are often referred to as the
quadratic, cubic, quartic, ... periods.

REMARK 5.5. The differential equation for (m E;),/(m Ey)3 ® C is
zero. This means that the only quadratic period of the Legendre family
is constant. The quadratic period map sends s € S to

hwr [owr
wWwp =
-/[b,a] v hwa [yw2
where a,b are the paths used in Proposition 3.46. This determinant is
known to be 2mi by the Jacobi relation between elliptic integrals. The
affine Legendre family has infinitely many non-abelian periods algebraic
over C: they are just identities derived from the Jacobi relation.

Rather than carry on the full computation of the minimal model of
(Q%,s, ) and its associated differential equation, we will inquire about
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the format of the matrix A(n) of the differential equation associated
to the (1,n)-minimal model and the ring of coefficients over which it
is defined.

We will use some properties of 1-minimal models arising from the
lower central series filtration in the Malcev algebra, so we start by
showing them.

The Malcev algebra of a group admits a decreasing lower central
series filtration (LI'); = LT, (LT, = [(£LT)y-1, LT], whose relation to
the lower central series of the group I' has been explained in Section
2 of Chapter 1. Consider the (1,n)-minimal model of a manifold with
fundamental group I', we will denote it as M(1,n)r as'it depends solely
on I'. By Sullivan’s theory of 1-minimal models the CDGA M (1,n)r
is freely generated by a linear space of indecomposable elements V,, =
Vil V2@ ...@ V™ and the spaces V, form an inductive system.
The duality theorem 1.43 of Sullivan states that the inductive system
formed by the spaces V,, is dual to the projective system of Malcev
algebras £,I', and that the algebra brackets [.,.] : £, A £, = L, are
dual to the coboundary operators d : V,, — V,, AV,,. Therefore the lower
central series filtration of the Malcev algebras originates an increasing
filtration in the inductive system of spaces V,;:

Wz(Vn)=V1’1€9-~®V1",

and as the Malcev algebra bracket preserves the lower central series
filtration, the coboundary operator d : V,, — V, AV, also preserves
this filtration W,, multiplicatively extended to V,, A V;,. As the (1,n)-
minimal model is generated by V,,, the conclusion is:

LEMMA 5.6. Let M(1,n)r = A*(V,) be the (1,n)-minimal model
of a finitely presented group I'. There erists an increasing multiplica-
tive filtration in the inductive system of (1, n)-minimal models - -- —
M(1,n)r = M(1,n+ D < ... induced by the filtration of the spaces
of indecomposable generators Wi(V,) = V31 @-..@ V. This filtration
on M(1,n)r is preserved by the coboundary operator d and is dual to
the bracket of the Malcev algebras.

We will refer to the filtration W, that we have just introduced as
the weight filtration in the 1-minimal models. In the case of Kahler
groups T, this filtration is indeed the weight filtration of the MHS of
the 1-minimal models.

As the coboundary operator d preserves the weight filtration, its
restriction to the spaces of indecomposable generators has the form

d:vihn — eaiH:nV” AV
1<j
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We will require a further consequence of the inductive construction of
1-minimal models:

LEMMA 5.7. Let 7 : @it j=n VYAV — VIHIAVI™L be the natural
i<j

projection. The linear map 7r]o d:Vin 5 VB AVIR-1 i one-to-one.

PROOF. For any nonzero indecomposable element v € V17", its
boundary u = dv € VI A VIR g V12 AVIn-2 g s a cocycle
in a nontrivial cohomology class of ker(H%(M(1,n — 1)) — H?(T)). If
this boundary u had no component in V1! A V1»~1 then it belongs to
M(1,n—2), and as u € ker(H%(M(1,n—2)) — H%(T)), its cohomology
class is the boundary for some indecomposable z € V1"~! by the con-
struction process of 1-minimal models, hence the cohomology class of u
would be trivial in H%(M(1,n — 1)) contradicting our assumption. O

We are ready now to continue our study of the Legendre affine
family. Let us fix some notation first: the ring Z[X] is the subring
of Q obtained by inverting the elements 2,...,n. As the Legendre
family of affine curves is defined over Z, we " will denote by S|Z[L]
the scheme defined by the correspondmg restriction of scalars. The
1-minimal model constructions of [73] that we perform in this section
are algebraic; we have considered S, F as Q-schemes and computed
the Gauss-Manin connection on M (1, 3) with coefficients in OSIQ The
Gauss-Manin connection in the cohomology of the family is defined
over Z[3], i.e. the flat coherent sheaf {H"(E}, Q)}ics ® Ogo arises by
extension of scalars from its Z[}] analogue {H*(E}, Z[}]) }ies ® Osiz)-
Our goal in the sequel will be to determine whether all the sheaves of
Malcev algebras L, (Ey, (0,0,t)) are already defined over a scalar ring
Z[%] obtained by inverting finitely many primes. We start with some
computations:

LEMMA 5.8. Let £ dz € Qp/s, withn > 2. Then we have
(1) 5= = pa(t)% ¥ an(t)5F + d(ra(z,t)y) where pa(t),qn(t) €
Z Greiyllt] and ra(z,t) € (Z[(z,,1 Famt) 2.
(ii) pa(t) = g: f(l +t)pn—1( ) — 2n 1tpn 2(t).
(i) ga(t) = 323 (1 + t)gn-1(t) — 22=3tgn_s(t).
(iv) n(z,t) = 52522 + gz 2(1+ t)rp_i(z,t) — 22,:: 3trn—o(z,t).
(v) degpa(t) = n — 1, with leading coefficient ppp_; = 2a-(2n=2)

3:5--(2n-1)

(vi) deggn(t) = n — 1, with leading coefficient gnn_1 = —%%J(%

(vii) deg, rn(z,t) = n — 2, with leading coefficient rp,_o(t) =
Moreover, r,(0,t) = 0.

2n—1"
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PROOF. (i) is an immediate computation, and the other statements
are obtained from (i) by an easy induction computation. For starting
dz dz

values, use ¢ = <10 ”;ﬁ +d(0) and the analogous result for %. O

REMARK 5.9. Lemma 5.8 is just a step in the algorithm for the

reduction of arbitrary elliptic integrals to the canonical first and second
kind ones.

We are now ready to study the (1,n)-minimal model of (0%, 9,)
and the matrix A(n) of its differential equation.

PROPOSITION 5.10. (i) The ring spanned by the coefficients of
A(n) is OS/Z%].
(ii) V" C @ 1<j<cn VM.
j=n mod 2
(iii) AVE™ £ 0 for all n.

PROOF. The proof is a straightforward, if cumbersome, argument
on induction. We will prove a slightly more precise result implying our
statement.

The 1-minimal model of (%5, 0;) contains a sequence of indecom-
posables {1, € VI | n € N} defined as follows:

P =peVi
Yo =ne V2
Y3 =7, € V13 dys = B A

Yo € VI dipy = B APy € HA(M(1,n— 1))
What may be directly proved by induction is:
1. A(V'") is formed by polynomials p(z) € Og/y 15[z] if n is even, and
by p(z) - y if n is odd.
2. The polynomial with highest degree (hence nonzero) among the
X, v € VI is M. M1 = gigyse(@)y with si(z) € Z{gpylle]
of degree k — 2, and Aiby, = ﬁuk(:c) with ug(z) € Z[m—l;ﬁ][:c] of
degree k.
3. The leading coefficients of s (z),ux(z), skx—2,uxx respectively satisfy
the recurrence

1
= Sk k—
Uk k k_lka

2
Sk+1k-1 =muk k

For the last two steps of our induction hypothesis we use the method
of [73] to determine ), §(v) of v € V" as the primitive of 6(v) =
(6(dv), 8,(p(v)) + A(dv)) with the correct basepoint.
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4. d7Y(ddv) C B 2<j<n VI,
j=n+1 mod 2
5. If n is even, 6(V'") does not contain terms in V1. If n = 2k + 1,

then

t* t l
On = Prarktkig—qyor {“rmedione L
t* .
T ekt g0+ {“iemed e } B+ {patsomeinn |

The previous computation of the (1,3)-minimal model of the Le-
gendre affine family confirms hypothesis 1-5 and therefore (i)-(iii) up
to n = 3. Suppose them true up to n. Then, if vy,..., o8 = Ypp1
form a k-basis for V1", §, A\(v;) are obtained as the primitive of 5(v;)
with correct basepoint. Now, by Lemma 5.6 d respects the weights on

M(1,n+1) so dv; € @1<k<i<n VVF AV By induction hypothesis (ii)
k+l=n+1
we have then

é(dvi)e @ VMAVMC ) /4N

1<h,d<n 1<h<d<n (24)
h=k mod 2 h+d=n+1 mod 2
d=l mod 2

Again because d respects the weight graduation, d~2(6dv;) C @ 2<j<n V.
j=n+1 mod 2
Note that j > 2 because the elements of ddv; have weight at least two.

The rest of the proof is just a cumbersome verification that hypoth-
esis 1-5 up to n together with what we have just explained imply 1-5
for n + 1. O

The conclusion that may be drawn from Proposition 5.10 is that
using the algorithm of [73] and basepoint section (0,0,¢) the Gauss—
Manin connection in the Malcev algebras Lm;(Ex, (0,0,t)) cannot be
defined on a subring of Q.

2.2. Families of punctured rational curves. The Gauss-Manin
connection has a simpler 1-minimal model in the surveyed families of
rational curves, as the following computations in the case of the com-
plement of a plane curve in the projective plane illustrate.

Let us consider

p(z,t) = 2" + ap_12™ " + - -+ ao(t) € C(t)[z]
and let A(t) be its discriminant. Define S = {t € C | a;(t) #
ooV, A(t) # 0}, X = {(z,t) e C |t € S, p(z,t) # 0} and
the projection f : X — S sending (z,t) to t. This is an algebraic

family of rational curves with n punctures over an affine base. We will
consider two cases:
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CAsSE 1. : Line arrangements.
In this case p(z,t) = (z— f1(¢)) ... (z — fa(t)) with fi(t) € Os. The
global forms in Qs

o = dz oo = dz o = dz
V- h®) T R0 o R0
restrict to a basis of HLp(X;) for all t € S. The connection 8; in Q%
admits a lifting to X satisfying 0,z = 0. This lifting applied to the w;
yields

Ohwi = 0y (x —d;,-(t)) - <mff(2ff>>2 B (_fZ(i)x——_lf‘:(T))

Thus fixing a basepoint section ¢ : § — X a (1,1)-minimal model is
given by

dz
T — fi(t)

8(a) =0 Maog) = —f:(t)x _lfi(t) + o(t)ﬂ—(t}i(t)

M(l? 1) = /\(al) .- -aan) do; =0 p(ai) =w; =

Now, the (1,2)-minimal model of the fibre is given by
M(1,2) = M(1,1) ® A((mij, 1 <7 <j<n))

where pn;; = 0, dn;; = o; A aj. We determine X, §(;;):

o(mi;) = (6(dns;), Bep(mis) + A(dmij))
= (0, Mas) - p(ej) — ples) - Aej))

(B0 RO )
=d (( fit) = fi(t)  o(t) - fj(t)) '

BO-5O 50 .
* (fj(t) — fi(t) * o(t) - fi(t)) J’O)

Therefore A(V12?) = 0. A simple induction computation shows that, as
p(V1") =0, also A(VI") =0 for n > 2.

CASE 2. : Generic curves.

There is an algebraic field extension K(C)|KC(S) where p splits in
linear factors z — fi,...,z — fy, i.e., there is a curve C over S defined
by the multivalued algebraic functions on S given by the zeros of p.



2. FAMILIES OF CURVES 177

The pullback of X over C

gX — X
! Lf
has a cohomology basis for its fibres w; = ﬁ—”‘h, ...,wy as in Case 1,

and the computation performed there holds verbatim. An analogous
basis for the family ¢*X — C coming from X — S is given by the
forms

dz zdr " ldz
2[)1 pa"/JZ D a"',"pn D

The minimal model of (. x ¢, dg-x|c) computed with this basis is
the pushout of the minimal model of (%s,dxs), i.e., the Hirsch
extensions V1® and the maps 4, \ are the induced by the ring ex-
tension Og — O¢. The (1,1)-minimal model is given by M(1,1) =
/\(;61’ X ngn)a p(ﬂz) =, dB; = 0, and M(la 2) = M(lv 1)®/\(<on, 1<
1 < _7 S n)) with p(9¢-) = 0, d0,, = ,3,' /\,Bj. As ¢i = Zb,vjwj
for all 7, where b;; € O¢, we have that §; = Y bjje; and 6;; =
Yk<i(bikbji — bubjk)m. These linear relations allow us to compute §, A
for f: X — S. We just want to observe that as p(n;;) = 0 and A is an
antiderivation, it turns out that Ag;; = 0 for all ¢, j. Therefore, as in
Case 1, A\(V'™) =0 for all n > 2.

The fact that in both cases A(V!™) = 0 for n > 2 has important
consequences, contrasting with the case of the Legendre affine family:
- First, the computation of the 1-minimal model of (Q;q s1dx|s) be-
comes formal after the (1,1)-minimal model, i.e., we do not need the
original algebra and connection anymore.

- Second, it is easily seen studying the succesive obstructions

6(&) = (6(d€), 8i(p(£)) + A(d8)) = (6(d€),0)

that after the (1,1)-minimal model, no new primes appear in the de-
nominators of the coefficients of A(n). Thus the differential equation
is defined over Og 4 11, where N is the least common multiple of the
denominators in A(1). ‘

- Third, one may proof a simpler version of Proposition 5.10 in this
case. The result is that the matrices A(n) are block band matrices
of block width two, where the only nonnull blocks are those on the
diagonal and on the first subdiagonal (only in the first subdiagonal in
Case 1).
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3. The differential Galois groups of Malcev algebras

We have studied in the previous section the differential equation
satisfied by the variation of Malcev algebras in algebraic families of
curves. In order to do some qualitative analysis of these equations
and of their solutions, the non—abelian periods of the family, we will
study in this section the differential Galois groups of the Gauss—-Manin
connection in the rational homotopy of families of algebraic manifolds.
Basically, we compare these with the differential Galois groups of the
abelian periods of the cohomology of the family, and show that the Mal-
cev algebra Galois groups are unipotent extensions of the cohomology
Galois groups. This characterization is based on the group-theoretic
results of Section 7 in Chapter 1 and on Schlesinger’s theorem char-
acterizing differential Galois groups of the connection as the Zariski
closure of the monodromy of the local system (see [76]).

Finally, we go back to the specific case of the Legendre affine family,
and analyze in more detail its Malcev algebra differential Galois groups.

Let us start by fixing some notation first: for every n > 1, we will
denote by M,, the monodromy groups of the local systems formed by
the bracket spaces (w1 (X, 0(8))n/71(Xs,0(8))nt+1) ®k, and by M, the
monodromy groups of the local systems of k~Malcev algebras L(m (X, o(s)).
The coefficient field k will always be clear in every context. In the case
of k = C, the corresponding differential Galois groups will be denoted
Gn, G1n, respectively. The consequence of Lemma 1.54 in differential
Galois theory is:

THEOREM 5.11. Let f : X — S be an algebraic family as above
defined. Fiz a homogeneous basis for L,m Xo® k with chark = 0, and
let

Aut putry xoLam1 Xo @ k RLN Aut gutr, x,T1(Xo)/m1(Xo)2 ® k
be the natural map induced by projection on the first piece of the grad-
uate. Then:

(i) The monodromy representation py : 1S — Aut gutm, xo1(Xo)n /71 (Xo)n1®
k factors as ¢, o p, where ¢, is the map defined in Lemma 1.54.
(ii) When k = C, the differential Galois group M, corresponding to
the local system formed by the m1(X;)n/m1(Xs)nt1®C is ¢n(My).
(iii) There is an ezact sequence

1 — ker wn — AUtAutwlchn”rlXU@k _w_“> AUtAut‘lr1Xo7r1(X0)/7r1(X0)2®k — 1

with ker ¥, C Aut gyt x,Lnm1Xo ® k C GL(N, k) a unipotent
subgroup.
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(iv) For k = C, there is an exact sequence of differential Galois
groups

1—)Un'—)G1n£)G1—>1

with U, unipotent.

PROOF. (i) is an immediate consequence of Lemma 1.54.
(ii) comes from (i) and the fact that the ¢, are algebraic group mor-
phisms.

(iii) The map %, is onto by its definition, and sends every matrix A €
Aut gyt mxoLnm Xo @ k to AV, Therefore, A € kert, implies
AV = 1d. But by (i), A% = ¢;A' for all i. Therefore, the
A € ker 9, are block lower triangular matrices with the identity
in the diagonal blocks, and so ker ¢, is a unipotent group.

(iv) comes from taking Zariski closures in (iii): ¢, is onto because it
is an algebraic group morphism and G; = M, and ker 9, is still
unipotent because the relations A% = ¢;AM! are algebraic.

O

REMARK 5.12. Because of the block structure of the matrices, the
nilpotence class of the kernel is nil kery, < n — 2. Due to the iso-
morphisms of 2.2 the unipotent groups ker ¢, and U,, form towers, and
again Un+1/(Un+1)n—2 = Un-

REMARK 5.13. When f is a smooth proper morphism, by Deligne’s
Semisimplicity Theorem ([32]) the monodromy group M, or equiva-
lently G; = M, L(G;) are semisimple. Then by Levi’s theorem (see
(98] Thm. 3.14.1) £(G1,) is an extension of £(G;) by the nilpotent
algebra L(U,,).

In the remainder of this section we go back to the affine Legendre
family

f:E={(z,y,t) e C |y2:x(x—1)(x—t)} — C
(z,y,8) —> t

which is our primary example, and study its differential Galois groups
Gn, G1n, U, with more detail.

We begin by recalling the differential Galois group of its abelian
periods, which may be retrieved from the monodromy computations of
Section 5 in Chapter 3.

LEMMA 5.14. The Zariski closure G, of the monodromy group M,
in Hy(E;; C) of the Legendre family is G, = SL(2, C)
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PROOF. As has been explained in Remark 3.77, the group M, is

generated by
(1 0 (1 2
Po = -2 1) pL= 01

It is obvious that

W:{(i 2)|ueC}cG1,
W:{(é i)luec}cGl, _

and both are abelian. These subgroups are contained in GL (H; (Ey; C)),
therefore by functoriality of the exponential map the Lie algebra of G,
contains

0 0 0 2
10gp0:<_2 0):—2Y, logp1=<0 0)=2X

and [log p1,logpy] = —4H. Hence the algebra is si(2,C), and G; =
SL (2,C). O

The previous lemma and Theorem 5.11 allow us now to determine
the differential Galois groups associated to the Iy, /T'y11:

PROPOSITION 5.15. The differential Galois group of the Fuchsian
equation satisfied by the m (E;)n/m1(Et)n+1 ® C of the affine Legendre
family of cubics over C\ {0,1} is {Id } if n = 2 and PSL(2,C) if
n > 2.

PROOF. The result for n = 1 has been establised in Lemma 5.14.
For n > 1 we use the fact that the monodromy representation

p:mi(B,3) % By — Aut (F/(Fo)as)
factors by Theorem 5.11 through
p: m(B, %) > Fy — Aut (F/(Fy)s)
Thus M, = ¢,(M1) and M, = ¢n(M;) = ¢n(SL(2,C)). By Proposi-
‘:lio; 21.61 this image is {Id} if n = 2 and SL(2,C)/u,1d = PSL(2,C) g

It is worth remarking that all the differential Galois groups above
computed are irreducible.
We will also require the Lie algebra version of Proposition 5.15.
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COROLLARY 5.16. Let py,p; be the images of [yo], [11] in the mon-
odromy on w1 (Ey)n/71(Ey)py1 ® C wzth n # 2. There is a Lie algebra
monomorphism

¢+ 51(2,C) — gl(m1(Ey)n/m1(Ei)ns1 © C)
such that

exp ¢, (—2Y) = po
exp ¢, (2X) =

Its image is the Lie algebra of the differential Galois group of 71 (E;)n/T1(Et)ns1®
C.

PROOF. As we have seen in Prop. 5.15, the monodromy represen-
tation in 7y (Ey)n /71 (Ey)ny1 ® C factors as

(B, 2) 2 GL (my () /my(E)s®C) ¥ GL (my (B /1 (E)ner &C)

5)
and M,, = ¢,M; = ¢,SL m1(E;)/m1(E¢)2 ® C. The Lie algebras of

M, M,, satisfy the same relation LM, = LM, = ¢2sl(2, C), the
latter equality given by the isomorphism of Lemma 5.14

L(M;) —51(2,C)
logpg — — 2Y
log py —2X

As ¢y, is a finite map for n # 2 by Prop. 1.61, ¢, is injective. i
We are able now to study the unipotent extensions
1-U, =Gy =G, — 1

and the generators of the groups in our example. Let A(n) be the ma-
trix of the differential equation associated to the (1, 7)-minimal model.

PROPOSITION 5.17. The groups U, of the affine Legendre family
verify that

nilU, <n-3

PROOF. The monodromy of the affine Legendre family may be com-
puted from the differential equations extending the system of (23),
the maps pg, p1 being the matrices of resy A(n), res; A(n) respec-
tively. These matrices are block lower triangular with the first sub-
diagonal made of zero blocks, which assures that the (n — 2)-brackets
are zero. O
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REMARK 5.18. Looking at the second subdiagonal in the differ-
ential equation 23 of L3(m;(E;, *)) we find the block A(n)®! = A(3)*!
with nonzero residue matrices in 0,1. It seems likely that nilU,, =n—3
exactly.

Now we establish a property hinted at in Section 5 of Chapter III

PRoOPOSITION 5.19. The monodromy matrices py, p1 € Aut gutr, g, Lo EsQ
k are unipotent.

ProOOF. Equivalently, we will check that log po,log p; are nilpotent.

We know by Prop. 5.17 that both pg,p; are block lower trian-
gular, and so are log pg,log p;. It is easily checked that the diagonal
blocks (log pp)*,(log p1)™* are the logarithms of pg*,p" respectively,
which are the matrices of the monodromy automorphisms pg,p; in
{m1(By, %)i/m1 (B, *¥)i1 ® Ch s

By Corollary 5.16 there is a Lie algebra monomorphism ¢} : sl(2,C) —
GL (71'1 (Et)i/ﬂ-l (Et)i+1 ® C) such that

¢i(=2Y) = (log po)"™*
¢;(2X) = (log p1)"*
Since X,Y € si(2,C) are nilpotent, so must be (log po)**, (log p1)** for
all 1.

The only condition imposed by Prop. 5.17 on a basis {e;} of
L.m(E;) ® C to produce block lower triangular matrices for po,01
was that it should consist of homogeneous elements belonging to the
Fi/Fit! =, (Ey); /71 (Bt )i ® C. We can form one such basis with a
basis for every m,(E;)i/m1(Ey)iz1 ® C in which (log po)™* has its canon-
ical Jordan matrix, and in this basis the matrix log pp will be strictly
lower triangular. The union of the corresponding Jordan basis for
(log p1)* will also make log p; strictly lower triangular, and complete
our proof. O

Finally, we establish the triviality of mo, m1(G1n) for the affine Le-
gendre family.

PROPOSITION 5.20. Gy, is connected and simply connected for all
n.

PROOF. As we have seen in Thm. 5.11, there is an exact sequence
of algebraic groups
1— U, — G, —SL(2,C) — 1 (25)

using that G; = SL(2,C) in our case. The first term U, is unipotent,
hence connected and simply connected. So is SL (2,C). The maps of
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(25) define a topological fibration, and therefore the homotopy groups

of the spaces form a homotopy long exact sequence

s — 7T1(Un) — 7F1(G1n) — 7T1(SL (2, (C) — 71'0(Un) — 71'0(G1n) — 7(0(SL (2, C))
which establishes our assertion. O
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