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ABSTRACT

Thanks to rapid developments of nanofabrication techniques and numerical simula-
tion capabilities, the past decades have witnessed an explosive expansion of the field
of nanophotonics. The main aim in this area is to unveil novel phenomena involving
interactions between electromagnetic waves and material objects at the nanoscale.
The resulting discoveries are benefiting our society and believed to contribute to a
sustainable future. Surface plasmons, which are characteristic oscillations of induced
charges at metal surfaces that can interact strongly with light, are a key topic in
nanophotonics. Surface plasmons can tightly confine the optical electric energy in
the vicinity of metallic nanostructures, resulting in a largely enhanced field intensity.
These appealing properties have been exploited to break the diffraction limit, boost
optical nonlinear effects, and improve the performance of solar cells, among other
feats.

Plasmons can be engineered to interact strongly with external light, which
is oftentimes illustrated by a large absorption cross-section of the host structure
compared with its projected physical area. When such nanostructures are arranged
into a periodic array, it can even totally absorb the energy of an incident light wave,
a phenomenon that is known as perfect absorption. Controlling the full width at
half maximum (FWHM) of the spectrum, especially realizing perfect absorption
with ultranarrow bandwidth, is desirable for sensitive photodetection among other
appealing potential applications. In the first part of this thesis, we present a
grating-based absorber with FWHM smaller than 1 nm. This very small bandwidth
results from the low dissipation rate of the delocalized resonance supported by
the structure. Commonly, ultranarrow band absorbers rely on various delocalized
resonances, which require the absorber to have a relatively large spatial extension.

In this context, we further propose a general method to guide a rational design of
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ultranarrow band absorbers that are based instead on localized resonances, which
make it affordable to minimize the size of the absorbers. The basic idea is to utilize
some high-order localized mode rather than the customarily used fundamental mode
of a resonator to reduce the radiative decay rate. Additionally, we consider dielectric
elements doped with gain impurities to compensate for the inelastic decay rate. We
implemented this method in three kinds of absorbers that are based on different
absorption mechanisms. All absorbers display dramatically improved performances

compared with previous designs based on the use of fundamental modes.

Metallodielectric coreshell nanospheres constitute a classical and thoroughly
studied structure in the nanoplasmonic community. In the second part of this
thesis, we investigate the use of localized plasmon resonances supported by a
metal shell to enhance the emission intensity of an upconversion nanoparticle
embedded in the center of the dielectric core. To this end, a theoretical model
accounting for absorption and emission processes of the system is established.
Based on this theory, optimized coreshell structures are found under different pump
intensity regimes. In the same chapter, we extend the simple coreshell nanoparticle
structure to more complex multilayers, which consist of alternate metal/dielectric
shells. We reveal a cascade effect of the field enhancement in the structure. This
can lead to huge intensity in the core under moderate light illumination. We
further study its photothermal performance by computing the resulting temperature
distribution. It is interesting to find that the temperature increase can be very
spatially inhomogeneous with the highest temperature in the center. The reason
lies in the high inhomogeneity of the field enhancement and considerable thermal
boundary resistance provided by multiple metal/dielectric interfaces. Finally, the

thermally induced internal pressure lift is also calculated.

The interaction between light and particle arrays is a popular topic with great
potential for practical applications. The collective behavior of the particles can
be very different from the isolated ones. For example, a regular array of tiny
nanoparticles is able to totally reflect the impinging light. Recently, it has been
realized that a regular array of two-level atoms holds the same capability. In the
third part of this thesis, we take a step further to explore light scattering on three-
level atom arrays. Unlike the two-level atom, which elastically interacts with light,

the three-level atom can either dissipate, perfectly reflect, or amplify the probed
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light. Our investigations demonstrate these effects vividly, and how they can be

controlled through the pump light intensity.
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RESUMEN

Durante las tltimas décadas la comunidad cientifica ha sido testigo de un rapido
crecimiento del campo de la nano fotonica. Este avance ha sido principalmente
motivado tanto por el rapido desarrollo en las técnicas de fabricacion de dispositivos
en la escala del nanémetro como por el incremento de las capacidades de simulacion
numérica. El objetivo prioritario de la nano fotonica es iniciar la investigacion para el
estudio de nuevos fenémenos que tienen lugar en la interaccién de la luz con objetos
de tamafio nanométrico. Se espera que los resultados de la investigacion contribuyan
al beneficio de la sociedad, asi como para el desarrollo de un futuro sostenible. Uno
de los ingredientes méas importantes dentro del campo de la nano fotonica son los
plasmones de superficie, siendo éstos las oscilaciones de la nube electrénica que yacen
en la interfaz entre un material metalico y un dieléctrico. Los plasmones de superficie
son capaces de concentrar altas cantidades de energia eléctrica produciendo asi un
incremento del campo eléctrico respecto al inicialmente aplicado. Estas propiedades
han sido estudiadas y empleadas para sobrepasar la barrera de difraccién, impulsar
aplicaciones de 6ptica no lineal, mejorar el rendimiento de placas solaras, entre otras
aplicaciones.

Los plasmones pueden ser disefiados de tal manera que interaccionen fuertemente
con la luz incidente, donde habitualmente la seccion eficaz de la estructura, normal-
izada al area proyectada, presenta un maximo. Cuando estas estructuras se disponen
de forma adecuada en una red periddica puede ocurrir una absorciéon completa de
la energia electromagnética de la onda incidente, efecto que se conoce como absor-
cién total. El control del ancho de banda a media altura (por sus siglas en ingles
FWHM) del espectro es especialmente importante cuando se realiza la absorcién
total, donde se requiere un ancho de banda muy estrecho. Este tipo de montajes

son muy tutiles en foto-deteccion de alta precision, asi como para otras aplicaciones
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interesantes que empiezan a emerger. En la primera parte de la tesis presentamos
una red de absorcién con un FWHM menor de 1 nm. El pequeno ancho de banda
conseguido es debido al bajo ritmo de dispersion de las resonancias deslocalizadas
que son soportadas por la estructura. En general, para procesos de absorcion , los
anchos de banda extremadamente pequenos se basan en diversas resonancias deslo-
calizadas, lo que implica que las dimensiones de los objetos que absorben han de ser
grandes. Es por eso que proponemos un modelo racional para conseguir anchos de
banda muy pequenos basados en resonancias localizadas, permitiendo asi disminuir
el tamano de los objetos absorbentes. La principal idea para conseguirlo es crear
un diseno basado en la excitacién de modos localizados de orden elevado en lugar
de manipular la forma del objeto para excitar el modo fundamental, asi pues, se
consigue reducir la tasa de desintegracion radiativa. Ademads, consideramos objeti-
tos dieléctricos dopados con elementos activos para compensar por la desintegracién
radiativa inelastica. En esta tesis, aplicamos el método a tres tipos diferentes de
mecanismos de absorciéon. En cualquiera de los tres escenarios, los resultados mues-
tran una mejora notable comparada con el uso de métodos basados en la excitacion

del modo fundamental.

La comunidad de la nano plasmoénica ha estudiado en profundidad, y desde
ya hace afios, las esferas multicapa compuestas por la combinaciéon de materiales
metalicos y dieléctricos. En la segunda parte de la presente tesis, estudiamos el uso
de los plasmones creados en carcasas metalicas para incrementar la sefial emitida
por nano particulas de conversién ascendente colocadas en el centro dieléctrico
de la estructura. De esta forma, se presenta un formalismo tedérico que tiene en
cuenta la emision y la absorcién del sistema. Considerando este modelo tedrico, se
han encontrado disefios para la carcasa dieléctrica-metalica éptimos en funcion de
las intensidades aplicadas. Mas adelante, se extiende el modelo para multi-capas
considerando de forma alternativa materiales metalicos y dieléctricos. En este tipo
de estructuras observamos un efecto cascada en cuanto al incremento del campo se
refiere. Por este motivo, las estructuras en multi-carcasa pueden crear un campo
enrome en su interior con una iluminacién inicialmente tenue. Ademas, estudiamos
los efectos foto-térmicos determinando la distribucién resultante de temperaturas.
Es interesante mencionar que el incremento de la temperatura hacia el centro es

considerablemente homogéneo hasta alcanzar la temperatura mas alta en su interior.
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Esto es debido a la gran inhomogeneidad del incremento del campo y la considerable
resistencia térmica que hay en las uniones entre el metal y el dieléctrico. Finalmente,
se determina el incremento de la presién inducida en la estructura.

La interacciéon entre la luz y redes de nano particulas es de un gran interés
cientifico con un alto potencial en aplicaciones practicas. El comportamiento de la
disposicién en red de las particulas, puede ser completamente diferente al de una sola.
Por ejemplo, una red cuadrada compuesta de pequenas particulas nano métricas es
capaz de reflejar por completo la luz incidente. Recientemente, se ha conseguido el
mismo efecto con una red regular cuyos constituyentes son atomos de dos niveles. En
la tercera parte de esta tesis, damos un paso mas alla y estudiamos redes de atomos
de tres niveles. A diferencia de los &tomos de dos niveles, que interaccionan de forma
elastica con la luz, los a&tomos de tres niveles pueden disipar, reflejar perfectamente o
amplificar un haz de prueba. Nuestras investigaciones demuestran todos los efectos

mencionados y como pueden ser éstos controlados a través de la intensidad aplicada.
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CHAPTER 1

INTRODUCTION

Plasmonic nanostructures have attracted great interest in recent years since they
provide us with a tool to manipulate light at the nanometer scale. The process
is mediated by collective oscillations of free electrons known as surface plasmon
resonances (SPRs), which are able to interact strongly with external light and
largely concentrate electromagnetic intensity in the near-field [1]. They further
facilitate energy conversion at the microscale, such as in hot-carrier generation
[2, 3] and localized heating [4, 5]. These appealing features have led to intense
research activities exploiting various structures used for nonlinear optics [6, 7],
ultrasensitive molecular detection via surface-enhanced Raman scattering (SERS)
[8, 9], photochemistry [10, 11], nanofabrication [12, 13|, meta-holograms [14, 15],
and perfect light absorption [16, 17, 18], just to name a few.

It is well known that the geometrical morphology of the nanostructure, now can
be shaped at will using modern technologies (e.g., femtosecond laser direct writing
[19]), can dominate its interaction with light in many cases. In a different context,
gain materials play an increasingly important role in this field. This is not only
because they can compensate the intrinsic loss of metals, but also due to the fact
that they provide a degree of freedom to actively tune the optical functionality of the
structures. In this context, the aim of the works presented in this thesis is to study
some novel geometrical and gain effects with potential for practical applications. In
this introductory chapter, we discuss the basics of surface plasmons and then present

a background of several topics used along this thesis.
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CHAPTER 1. INTRODUCTION

1.1 FUNDAMENTALS OF SURFACE PLASMONS

Surface plasmons can be generally catagerized into two group. They are, respec-
tively, named surface plasmon polaritons (SPPs) that propagate on extended sur-

faces and localized surface plasmons (LSPs) that reside on isolated particles.

1.1.1 SURFACE PLASMON POLARITONS

In a classical picture, electromagnetic phenonmena can be describled using Maxwell’s

equations, whose form in the frequency doman is ! [20]

=0, (1.1)

where E is the electric field, H is the magnetic field, D is the electric displacemnt,
and B is the magnetic induction, which are all generally taking complex values. Also,
p and J are charge and current densities, respectively, while & = w/c is the light
wave vector. The Maxwell equations tell us how the electromagnetic source shape
the field. They should be complemented with the so-called constitutive relations,
which describe the material response to the electromagnetic wave. The constitutive

relations of most typical metals and dielectrics can be written as
D(r,w) = e(w)B(r,w), Br,w) = p(w)H(r,w), (1.2)

assuming the local approximation (i.e., D and B are related to E and H at the same
spatial location only), a relative permeability x4 = 1 for non-magnetic materials is
considered throughout this thesis, which is an excellent approximation at optical

frequencies. The relative permittivity € is usually dependent on frequency. For

!Gaussian electromagnetic units are used throughout this thesis
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CHAPTER 1. INTRODUCTION

metals, it can be approximated by the Drude model

w2

e(w)=e, — m, (1.3)
where w, is the plasmon frequency, 7 is the electron collision rate, and €, accounts
for the background dielectric response ( e.g., as produce by interband transitions in
noble metals).

When we are going to solve the Maxwell equations involving more than one
material domain, boundary conditions are needed. They bridge the electric and
magnetic fields on two sides of the interface that seperate them. These conditions

are

—0, (1.4)

where K is the surface current on the boundary, and the 7 is the surface charge
density. Based on the boundary conditions, we can derive the Fresnel equations to
compute the reflection and transmission coefficients for p— and s—polarized light

incident from medium 1 on a planar interface with medium 2 [21],
kil — ek 2e0k /
r, = €2R11L — €1 u’ t, = €2R11 27 (1.5)
€2k11 + €rkay €2k + €1kay | €

_ kip — Koy o 2k,
kiyp 4+ kot 0 ki + ke’

Ts

(1.6)

where k;; is the perpendicular component of the total wavevector k; = \/€;k in
medium 4. If we denote the common parallel component as kj, then they should
satisfy the relation &7 + kf = &7.

SPPs are evanescent waves bounded at metal-dielectric interfaces. They are

p—polarized and are identified from the zeros in the denominator of Eq. (1.5)
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Figure 1.1: Dispersion relation of SPPs at the interface between a lossless Drude
metal and air (red curve) or silica (blue curve).

(i.e., infinite reflection in the absence of external field, implying a self-sustained
resonance). Indeed, the dispersion relation can be worked out from the pole of the

corresponding Fresnel equations:

w €Em€d
oo = 1 . 1.7
Bov =\ e (1.7)

Figure 1.1 displays the dispersion relations at two interfaces. One is between a metal

and air (¢; = 1) as shown by the red curve, the other is between the same metal
and silica (e = 2.25) as shown by the blue curve. The metal is describled using
the Drude model of Eq. (1.3) with ¢, = 1 and v = 0 (i.e., lossless metal). The
dashed lines are the light lines, and the solid curves represent the real parts of the
wave vectors outside the light cones (i.e., confined modes). One can see that the
wave vectors of SPPs are always larger than that of light in free space with the
same frequency, which hinders SPPs at a flat interface to be directly excited by
external light. Decorating the interface with periodic structures can provide light

with additional parallel wave vectors, therefore sorting out this problem. This will
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CHAPTER 1. INTRODUCTION

be discussed in detail in chapter 2.1, where we periodically structure a gold film to
change it from a good reflector to a perfect absorber.

Any real metal is lossy, so it can dissipate the propagating wave by transforming
its electromagnetic energy into Joule heat in the metal. One can define a propagation
length of a SPP as L = 1/2Im{f,,}, which means that the intensity of the SPP
decays by a factor of 1/e after travelling such a distance. For a long time in the
past, it has been thought that the loss is an undesired effect. Then, gain material
can be introduced to compensate the loss and improve the performance of plasmonic

nanodevices. We discuss such an introduction of gain in a seperated section 1.5.

1.1.2 LOCALIZED SURFACE PLASMONS

The surface plasmons can also be supported by nanoparticles, which localize the
resonance in three dimensions. In contrast to the above-mentioned SPPs, the LSPs
can directly couple to the external light, which is characterized by an enlarged
extinction cross-section of the host structure on resonance. For the study of complex
particles (e.g., nanocubes [22], nanostars [23]), we usually need to rely on numerical
calculations using for example the boundary element method [24] or finite element
methods [25]. For the simple homogeneous nanosphere, we can analytically solve the
Maxwell equations using Mie theory, which was established by Gustav Mie in 1908.
The spirit of the theory is to decompose the incident field as well as the scatterred
field into an infinite series of vector harmonics, and compute the scattering coefficient
of each harmonic at the spherical interface according to the boundary conditions
1.4.

Specifically, we can obtain the extinction cross-section of a nanosphere with
radius a in air as [26]

ot = ; i(zz +1) [Im{tf} + Im{}"}] (1.8)
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where [ labels orbital angular momentum taking interger values from 1 to infinity.
The electric and magnetic scattering coefficients, respectively, read as
B eiji(kia)lji(ka) + kaji(ka)] — ji(ka)[ji(kia) + kiaji(kia)]

t = , 1.9
L i (ka)[i(kia) + kil (kia)] — €gi(kia)[in" (ka) + ikah{" (ka)] )

M kajy(ka)ji(ka) — kagi(ka)jj(kia)
ikiah\" (ka)jl(kia) — ikah(" (ka)ji(k;a)

, (1.10)

where ¢; is the relative permittivity of the particle. k; = \/€;k. j; and hl(l) are Bessel
and Hankel functions, respectively. The primes represent their derivatives with re-
spect to the arguments. This can be further generalized to deal with multilayer
nanospheres. The method is presented in Appendix A, which is used for the works
discussed in Chapter 3.

When the size of the nanoparticle is in the deep subwavelength scale, the so-
called electrostatic approximation becomes valid. Then, the light speed ¢ can be
regarded to be infinitly large in the Maxwell equations. Additionally, in the small
particle limit, the dipolar resonance with orbital angular momentom [ = 1 domi-
nates the optical response. The polarizability of the induced electric dipole of the
nanosphere is directly related to the lowest order of the electric scattering coeffi-
cients as o = 3t5/(2k%) (see Appendix A). Combined it with the expression of ¢},
one finds a® = a®(e; — 1)/(¢; + 2). It is important to recall that this polarizability
in electrostatic approximation does not include the self-interaction part, i.e., the
particle does not interact with the field radiated by itself. It can be amended via
incorporating the imaginary part of self interaction Green tensor [27], as discussed
in detail in Appendix E.

Compared with the simple nanospheres, the resonant frequency of dielec-
tric/metal coreshell nanoparticles can be tuned over a wider range and in a easier
way by changing the ratio of metal shell thickness to the dielectric core radius. As an
example, we present in Fig. 1.2 the normalized extinction cross-sections of coreshell
nanospheres with varying ratios. The core is silica (g = 2.25), the shell is gold de-
scribed using experimental data [28]. One can observe that the resonant frequency

is highly tunable from visible to near-infrared (NIR) range. The inset confirms that
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Figure 1.2: Normalized extinction cross-sections of silica/gold coreshell nanospheres
with the same total radius R = 60nm, but different gold shell thicknesses. The
corresponding thicknesses from left to right are 10nm, 8 nm, 6 nm, 4nm, 2nm,
respectively. Inset: Electric field intensity enhancement at resonance for one of the
structures.
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the resonance is dominated by a dipolar mode.

The confined near-field energy is partially emitted back to the far field, while
the remaining part is dissipated as Joule heat in the metal. It can locally increase
the temperature, causing a photothermal effect. An introduction of the effect is pre-
sented in section 1.3. A detailed study of the effect in complex structures is included
in Chapter 3. Besides, one can also note from Fig. 1.2 that the typical FWHM of
the spectra is dozens of nanometers in the investigated range, which leads to a rel-
atively low @ factor. This can be addressed by incorporating a gain medium into

the structures, as we discuss in section 2.2.

1.2 SELECTIVE LIGHT ABSORPTION

The reflection spectra of opaque flat metal films are totally determined by their
intrinsic material properties. The typical plasmonic metals (e.g., gold, silver, cop-
per) show high reflection in the visible and longer wavelength ranges. When prop-
erly structuring the metal or metallodielectric hybrid films at subwavelength scales,
transforming them into periodic arrays of optical antennas, the reflections can be
largely reduced even down to zero, leading to perfect absorption at desired frequen-
cies [29]. This phenomenon, in macroscopic electromagnetic theory, can be under-
stood in terms of impedance matching. The impendance of a material is defined
as z(w) = m Recent research into metamaterials has shown that the rela-
tive permittivity € and the relative permeability u, which characterize, respectively,
the electric and magnetic responses, can be tailored by engineering corresponding
electromagnetic resonances held by the antenna [30]. At some critical point, the
impedance of the structure surface can be tuned to be equal to that of free space,
which is unity. The perfect absorption effect can also be explained using coupled-
mode theory [31]. A absorber without diffractive orders can also be regarded as a
one-port resonator. The energy stored in the resonance mode is partially coupled to
far field described by a radiative decay rate v,,q. The remaining part is lost as heat
described by resistive decay rate 7. Complete absorption is achieved when they
are equal [32]. This will be further explained in Chapter 2.1.

In 2008, Padilla’s group reported a metamaterial absorber at GHz frequency
[33]. The right panel of Fig. 1.3(a) shows a unit cell and incident electromagnetic
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Figure 1.3: Three representive perfect absorbers. A perfect absorber operating in
the GHz region (a,b) [33]. An omnidirectional absorber based on void plasmons
(c,d) [34]. An absorber utilizing a typical metal-insulator-metal configuration (e,f)
[16]. (a) From left to right are an electric resonator, a cut wire, and an unit cell.
(b) Simulated (red curve) and experimental (blue curve) absorbance under normal
incidence. Inset: Dependence of simulated on-resonance absorbance on incident
angles. (¢) Measured absorption spectra of mesoporous gold surfaces with different
thicknesses under normal incidence. Inset: A sketch of the sample. (d) Absorbance
as a function of incidence angle and wavelength. (e) A sketch of a unit cell of the
absorber (upper panel) and magnetic field distribution at resonance (lower panel) (f)
Experimental (upper panel) and simulated (lower panel) absorption spectra under
normal incidence with different incident light polarizations.
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wave. The unit cell is composed of an electric ring resonator (ERR) (left panel) and a
cut wire (middle panel). The ERR supplies electric coupling, while the anti-parallel
current supported by the center wire of the ERR and the cut wire supplies magnetic
coupling. In this way, the authors were able to independently tune effective ¢ and
4 parameters by varying geometry of the two elements and the distance between
them. Figure 1.3(b) displays its nearly perfect absorption under normal incidence
in simulations. The inset shows the angular tolerance of the high absorption. In the
same year, Garcia de Abajo and colleagues realized omnidirectional light absorption
in vis-NIR regime using mesoporous gold surfaces [34]. The structure is depicted in
the inset of Fig. 1.3(c). Silica-filled inclusions are buried in gold films to hold void
plasmons [35], which can efficiently couple to external light with broad incidence an-
gle. Figure 1.3(c) and (d), respectively, demonstrate absorption spectra of various
geometries under normal incidence and absorption spectra of a certain geometry un-
der broad-angle incidence. A high-performance angle-robust aborption can be also
achieved in metal-insulator-metal (MIM) configurations. The upper panel of Fig.
1.3(e) is one of early MIM absorbers proposed by Qiu’s group [16]. The light ab-
sorption is mediated by a remarkable magnetic resonance, which is characterized by
a strongly localized magnetic field (color map) and circulating displacement current
(white arrows) in the lower panel. Compared with the spherical-voids structure, this
lithographically fabricated rectangular nanoparticles provides additional opportuni-
ties for manipulating absorption of orthogonal polarized light waves independently.
Figure 1.3(f) illustrates numerical and experimental studies of this effect.

Absorbers working in the middle infrared (MIR) range are of great interest, espe-
cially for applications in sensing of molecular vibrational bands [36]. In this context,
graphene plasmons have raised huge expectations owing to their outstanding optical
properties in this spectral range [37, 38]. Perfect absorption has been demonstrated
both theoretically [39] and experimentally [40]. Thanks to the unique linear dis-
persion around the Dirac point, graphene-based absorbers often owns an advantage
of electrical tunability, which constitutes an important asset of dynamic absorbers.
Apart from graphene, other active materials like phase-change media (e.g., GST)
[41] and gain media (e.g., dye molecules, quantum dots) [42] can also contribute to
the realization of dynamic absorbers. We discuss such cases in section 2.2.

The absorbers mentioned above are named narrow band absorbers. In the vis-
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NIR regime, the Q (= A\o/FWHM) factors of their absorption spectra are typically
on the order of ten. There are other two trends in absorber design: (i) Trying to
maximize the bandwidth to realize broadband absorption. Common strategies in-
clude combining multiple resonances into a single sub-wavelength unit cell [43, 44]
and adiabatically nanofocusing light by anisotropic metamaterials [45, 46]. The
broadband absorbers can benefit solar energy harvesting by improving the efficiency
of photovoltic cells [47]. (ii) Trying to minimize the bandwidth to realize ultranar-
row band absorption. Common strategies are utilizing lattice resonances [48, 49, 50]
or guided modes [18, 51]. Ultranarrow band absorbers find potential applications
in plasmon-based photodetection [52] and sensitive sensing [53]. We present several
novel ultranarrow band absorbers in Chapter 2 and expolit their application in sens-
ing.

Incidentally, as a consequence of Kirchhoft’s law, light absorbers can also be
regarded as selective thermal emitters [54]. A remarkable phenomenon is that the
thermal radiation can be tailored to become highly spatially and temporally coherent

[55]. We demonstrate it using an ultranarrow band absorber in section 2.1.

1.3 PHOTOTHERMAL EFFECTS

As illustrated in the previous section, properly designed metal nanostructures
display remarable selective light absorption mediated by plasmon resonances. The
energy of the absorbed photons is turned into Joule heat, which induces a local
temperature increase [56]. This photothermal effect has been generaly regarded as
a drawback of the plasmon resonance, especially in terms of applications to optical
signal processing [57]. In past decades, however, advantages of the effect in potenital
applications have been realized, such as for photothermal therapy [58, 59], nano-
surgery [60, 61], photothermal imaging [62, 63], plasmon-assisted nano-chemistry
[64, 65], plasmon-assisted, and optofluidics [66, 67|, just name a few. They mainly
benefit from two appealing features: (i) The optically generated thermal energy is
highly confined in the vicinity of structures, and therefore a moderate incidence
light power can induce considerable local temperature increase. (ii) Thanks to the
ultrafast response of plasmons to external light, as well as small thermal diffusion

distance involved, the heating process is also very fast.
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Figure 1.4: (a) A schematic view of energy flow in the photothermal effect of a
metal nanosphere. (b,c,d) Photothermal effect of a gold nanosphere with 50 nm
radius in water. The incident cw light wavelength is 530 nm, and the power intensity
is 1mW /pum?. (b) Normalized electric field intensity. (c) Heat power density. (d)
Temperature distribution. (e,f) Transient photothermal effect of a lithographic MIM
absorber. The pulse source has a repetition rate of 25kHz, and a pulse duration
of 2.6ns. (e) Geometric structure of a single absorber unit cell. (f) Temperature
distribution at 4 ns after irradiation. (b-f) are adapted from [68].

Figure 1.4(a) illustrates basic energy flow steps happening when external light
excites a nanostructure. Here, we take a gold nanosphere in water as an example.
When a pulse incidents on the structure, within the first approximately 100 fs, the
free electron gas partially absorbs light energy and quickly thermalizes to a Fermi-
Dirac distribution. The temperature is denoted as T°. The temperature of ion
lattice (T"), which has a larger heat capacity because it involves the motion of
heavier objects (the ions), remains unchanged. In the next step (100 fs to 10 ps), the
hot electrons thermize the ion lattice mediated by the volumetric transfer coefficient
g%, The transferred power is P = ¢V (T® — T"), where V = (4/3)7R? is the
particle volume. Finally, the thermal energy diffuses into surrounding medium,

heating the environment. However, this process is damped by the thermal boundary
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conductance (TBC) (also called Kapitza conductance) [69], denoted by G. The
TBC exists at a interface between two adjacent media, and causes a temperature
discontinuity (7" — T%) = P/(GS), where TV is temperature of the water at the
particle surface, and S = 47 R? is particle surface area. We investigate the effect
of the TBC in detail in section 3.2. Generally speaking, the value of the TBC
can be sensitive to the quality of the interface. It can become large if the liquid
does not wet the particle surface or when coating the surface with hydrophobic
molecules. Under excitation with cw light, these three steps occur as well, but
in a steady-state manner. In steady state, the electrons and the ion lattice are
usually regarded as in thermal equlibrium (i.e., 7' = T°) because of the large
electron-lattice coupling strength ¢¢. Additionally, because the thermal conductivity
of metal (i.e., Kgoq = 318 Wm™'K™') is much larger than that of liquid (i.e.,
Kwater = 0.6 Wm ™! K‘l), the temperature in the metal can be considered as uniform.

Figure 1.4(b-d) displays such an example [68] without including TBC. A gold
nanosphere in water is illuminated by cw light (see caption for details). Figure 1.4(b)
shows the normalized electric field intensity. In order to maximize light absorption,
the size of the particle needs to be engineered to make the frequency of dipolar
resonance match that of incident light. Figure 1.4(c) illustrates the heat power

density, which reads

Q(r) = o —Im {e(r,w)} [B(r)[*, (1.11)

Figure 1.4(d) shows the temperature distribution pattern, as obtained by solving

the thermal diffusion equation
—V - [5(r)VT(r)] = Q(r), (1.12)

The temperature increase in the nanoparticle is

Qtot

47'“QwaterR ’

ATxp = (1.13)

where (¢ is the volume integration of the heat power density in the metal
nanoparticle. It can be also expressed as Qiot = Tansl, Where g, is the absorption

cross-section of the particle, and [ is the incident light intensity. Outside the
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particle, AT decreases as AT(r) = (R/r)ATxp, where r is the distance to the
particle center. Although there are analytical solutions for spherical structures, we
have to rely on numerical simulations for other more complex ones. Rods, trangles,
disks, ellipsoids, rings, stars [70, 71] among other many various structures have
been studied. Actually, it has been found that the spherical structure is not the
most efficient heater. A general design rule is that structures should be made flat,
elongated, or sharp to let incoming light penetrate more easily into the structure,
making the whole material involved in heating [70].

Compared with cw light, pulsed light can confine the generated heat more
strongly in the near-field, therefore providing a larger temperature gradient [72].
Figure 1.4(e,f) shows such a study [68]. Figure 1.4(e) sketches a single unit cell of a
typical MIM absorber. A supercontinuum light with wavelength range from 500 to
2400 nm (see details in caption) normally illuminates on the structure. Figure 1.4(f)
is the simulated transient temperature distribution at 4 ns after pulse initiation. We
can observe that the temperature difference in the nanoscale can reach hundreds of
Kelvin (possibly leading to melting).

A high temperature can induce considerable local thermal stress, which has
been experimentally exploited to be utilized to make a nanobomb as an alternative
method to kill cancer cells [73, 74]. Then, a natural question arises: Can we design
some nanostructure that sustains large temperature inhomogeneity at the nanoscale
associated with an extreme hotspot under cw light excitation? We address this issue

by using an optimized multilayer nanosphere, which is presented in Chapter 3.

1.4 PARTICLE ARRAYS

Light scattering on a single spherical nanoparticle can be described using Mie
theory. Its basic optical and photothermal properties have been briefly introduced
in the above sections. Arraging particles into a regular array brings about novel
phenomena, which originate from coherent optical interaction among them [75]. The
basic physics is presented in the following [27]. For simplicity, we consider 2D square
arrays made of identical dielectric particles. The particles are small compared with
both the wavelength and the lattice constant. So, only dipole-dipole interaction is

involved. Calculations show that perfect reflection can be achieved for dilute arrays.
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Figure 1.5: (a) A sketch of an infinite 2D particle array illuminated by a plane
wave. k| is the wave-vector component parallel with the array. The plane wave
induces a dipole moment p,, of the particle at position R,,. The lattice constant and
particle radius are, respectively, denoted as a and b. (b) The real part of normalized
lattice sum Re{a*G,.(0)} as a function of normalized wavelength (solid black curve).
The real parts of normalized reciprocal value of polarizability Re{a®/ag} with
a = 5b (green horizontal dashed line) and a = 4b (blue horizontal dashed line).
(c) Reflectance of the two arrays. The curves use the same color code as the two
horizontal dashed lines in (b).

Figure 1.5(a) shows the configuration of the system under consideration. An
external plane wave is incident on the particle array. The optical response of a
particle can be represented by an induced electrical dipole p. The dipole feels the
electric field of the external light wave plus those coming from all the other dipoles.
For example, the dipole moment p, at the particle occupying the position R, is

written as

P = ap |[E™(R,) + Y G(Ry — Ru)pu | | (1.14)
n'#n
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where ag = 1/(1/(a§) — 2ik3/3) is the polarizability of the dielectric particle. o =
b*(e—1)/(e+2) is the electrostatic part. For simplicity and concreteness, we assume
e = 2. The first term inside the square bracket is the external field E**(R,,) =
E*‘exp(ik - R,). The second term captures the electromagnetic interactions
among the particles. G is the dipole-dipole interaction tensor, whose explicit form
is G(r)p = [exp(ikr)/r®] {[(kr)* + ikr — 1] p — [(kr)* + 3ikr — 3] (r - p)r/r?}. The
solution of Eq. (1.14) should have the form p, = p - exp(ik| - R,,) based on Bloch’s
theorem. Substituting this into Eq. (1.14), we have

1

p= 1/04E——G(lq|)EeXt’ (1.15)

where G(k)) = X, G(Ry)exp(—ik) - R,) is a so-called lattice sum. Then, the
reflected field is just the sum of the fields coming from all the dipoles. Here,
we assume the external light is normally incident on the array, so that all the
dipoles are oriented along the x axis. Besides, we focus on a wavelength range
such that A > a. So, only specular reflectance goes to far field. Thus, we reach
the reflection coefficient as r = (2wik/a?)/(1/ag — G.2(0)) (see section 4.2 for a
detailed derivation). The computation of the real part of the lattice sum has to rely
on numerical methods [76]. While the imaginary part has an analytical expression
as Im {G,,(0)} = 2rk/a* — 2k3/3 [27]. Finally, we get a straightforward formula of
r as
—1

"= 1+ (ia?/27k)Re{1/ar — G..(0)}’ (1.16)

and the transmission coefficient ¢ = 14 r [39], absorbance A =1 — [¢|* — |r|%.

One can observe from Fig. 1.5(b,c) that total reflection can be achieved when
Re {a®/ag} cancels Re {a®G,,(0)}. Because the value of the real part of the lattice
sum approaches infinitely large when the wavelength goes close to the period. So,
the perfect reflection can be always realized no matter how small the particle is.
The differene is the peak will become narrower and narrower.

Replacing the dielectric nanoparticles with metal ones might be more appealing
due to very fascinating features of plasmonic metal nanoparticle arrays in terms of

both far field and near-field optical responses. In terms of far field, the imaginary
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part of the lattice sum can become negative to partially cancel the single particle
natural width [77], which results to dramatically reduced bandwidths of spectra.
This can benefit refractive sensing [78]. In terms of near-field, plasmonic particle
arrays combine desirable attributes of both photonic and plasmonic systems, i.e.,
high near-field enhancements in large spatial extension with long lifetimes [79].
The highly enhanced fields are exploited for several applications, such as shape the
fluorescent emission [80], achieve strong coupling with molecules [81], enhance SERS
responses [82], improve light outcoupling in solid-state lighting [83], and plasmonic
laser realization [84]. Incidentally, we want to point out that as a consequence
of Babinet principle, reflection of a particle array is equal to transmission of its
complementary hole array with orthogonal polarization. So, the same coupled dipole
approximation theory also explains enhanced optical transmission of metal screens
with hole arrays [85], which triggered a boost of the field of surface plasmons twenty
years ago.

We have shown that properly designed dielectric nanoparticle arrays can totally
reflect incident light. The same phenomenon can also be realized using 2D atom
arrays with their seperations on the order of wavelength [86]. This interest in part
comes from a long-standing goal that people want to enhance interaction between
a flying photon and a localized quantum bit (e.g., an atom), which is vital for
quantum information processes. The intrinsic interaction is very small because of
a big mismatch between wavelength and atom size. To this end, various methods
have been developed including tightly focusing the light beam [87] and placing the
atom inside a high fitness cavity [88]. In very recent years, it is found that the
efficient coupling can also be reached by properly arranging atoms into regular 2D
arrays [89, 86]. The physics behind lies in cooperative resonances similar to those
in the nanoparticle case. Take a 2D square two-level atom array as an example.
The electrostatic polarizability of the atom is o (w) = (2d%wy/h) /(w2 — W? — iyw),
where d is dipole matrix element, wy is transition angular frequency of the two-level
atom, and v ~ 0 denotes nonradiative decay rate from excited state to ground state.
When the detuning 6 = w—wy is zero, we have Re {1/ag(wo)} = Re{1l/ag(wo)} = 0.
Combining it with Eq. (1.16), one obtain r = 1, when G,,(0) = 0. The condition
is satisfied when the ratio of lattice constant to wavelength is approximately 0.2

or 0.8. This is the key result in [86]. In Chapter 4, we present a study of light
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scattering of 2D three-level atom arrays, showing that both large light absorption

and amplification can occur and be manipulated.

1.5 GAIN MEDIA

Typical plasmonic materials (e.g., gold and silver) suffer from considerable dissi-
pative losses especially in optical wavelength regimes. Incorporating gain media
into the plasmonic structures constitutes a way to address the problem. The most
simple way to describe a gain medium is to use a negative value of the imaginary
part of its refractive index [90]. A more advanced approach, which includes dis-
persive effect, is to add an additional Lorentzian term to the dielectric response of
the doped elements [91] (see details in section 2.2). If we want to go down to a
microscopic picture of the gain medium, we need to describe active emitters (e.g.,
dye molecules, quantum dots) quantum-mechanically. For example, equations of
motions of polarization and population densities of the active emitter can be cou-
pled to Maxwell’s equations to form self-consistent equation systems and be solved
numerically using finite-difference time-domain algorithms. The method are exten-
sively used to study spatio-temporal resolved properties of amplification and laser
systems [92, 93, 94, 95, 96, 97, 98, 99, 100], while their derivations are typically not
presented in the publications. We show the detailed derivations in Appendix D,
which provides in-depth insights of the light-matter interaction processes and the
origin of gain. Wherein, we adopt 4-level system, in line with many aforementioned
publications. In the following, we introduce one example [95] of its amplications.
Figure 1.6(a) shows the studied configuration. Two perforated silver films are
embedded in a dielectric host material, which holds the four-level dye molecules
(Rhodamine 800 dye). In the numerical experiment, a single unit (indicated by the
white frame) of the periodic structure is firstly excited by a short and intense pump
pulse (red line) of duration 2ps. Then, after 7 ps short delay, a weak broadband
probe pulse (blue line) of duration 12fs is illuminated onto the structure. Standard
retrieval method [30] is used to compute its effective refractive indices n = n' + in”
for various peak pump-field amplitudes (Fig. 1.6(b)). Also calculated are the ab-
sorption and the FOM=—n'/n" (Fig. 1.6(c,d)). One can observe that when the

pump strength continues to grow up and exceeds a threshold, n” becomes negative
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Figure 1.6: (a) A sketch of the double-fishnet structure. Transparent grey part is
a dielectric containing dye molecules. Red and blue lines, respectively, represent
pump and probe light. (b,c,d) The imaginary part of the effective refractive index
(b), the absorption (c), and the FOM (d) for different peak pump-field amplitudes
as shown in (d). (e) A sketch of the configration for SPP-SPP modulation. The
inset is a diagram of optically active states of an Er** ion. The plots (a-d) are taken
from [95]. The plot (e) is taken from [101].

35



CHAPTER 1. INTRODUCTION

(Fig. 1.6(c)), when the system amplifies the probe light (Fig. 1.6(d)).

Apart from compensating the intrinsic losses to improve qualities of plasmonic
devices (e.g., see Fig. 1.6(c)), gain also introduces versatile functionalities in different
fields including nanolasing [102], slow light [103], optical switching [104], absorption
enhancement [105], and all-optical computing [106]. Especially, in the work dis-
cussed in Ref. [105], the authors investigated the absorption of metal nanoparticles
coated with gain dielectric shells. The theoretical results show that the absorption
can be largely enhanced when the gain strength is increased to partially compensate
the large intrinsic loss of metal core. In section 2.2, we step further to utilize gain
but combined with high-order optical modes to realize ultranarrow band absorption.

Gain media can also be used for optical signal modulations. Figure 1.6(e) show
such an example of SPP-SPP modulation [101]. A planar metal surface is covered
by a dielectric layer doped with Er3* ions, whose optically active states form a
three-level system (see inset). Two sets of gratings are etched at the two ends for in-
couplings and out-couplings of both pump (blue arrows) and signal (signal arrows)
SPPs. The population inversion between the states of 4I;5 /2 and 145 /2, therefore the
transmitted power of the signal SPPs; can be controlled through tuning the power
of the pump SPPs. In chapter 4, we arrange this kind of three-level atoms into
regular periodic arrays, and study optical modulation performance of these arrays

free standing in air.
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CHAPTER 2

ULTRANARROW BAND ABSORBERS

In this chapter, we present studies of two kinds of ultranarrow band absorbers and
exploit their applications in sensing and thermal emission. One relies on delocalized
resonances, while the other relies on localized resonances. In the first section,
lamellar gratings are investigated via temporal coupled-mode theory and numerical
simulations. Total absorption can be achieved by an optimized grating with shallow
grooves under normal incidence and the FWHM is only 0.4nm. For certain
wavelengths, the structure shows high absorption only within an ultra-narrow angle,
which suggests that it can be used as a highly directional thermal emitter according
to Kirchhoft’s law. Besides, the resonant wavelength is sensitive to the refractive
index of the environmental dielectric. The large sensitivity (S=1400nm/RIU) and
simultaneous small FWHM result in a huge figure-of-merit (FOM=S/FWHM) of
2300 /RIU, which enables the structure to have great potential in plasmonic sensing.
In the second section, We demonstrate the viability of using high-order modes in a
localized optical resonance combined with a gain medium to dramatically reduce the
linewidth of absorption spectra. Our theoretical study provides a rational design
route for small footprint absorption with high quality factor, which is typically
a tradeoff for plasmonic light absorbers. Specifically, we design and numerically
investigate a MIM absorber coupled to a graphene Salisbury screen. We also study
the potential application for sensing and achieve high performance compared with
conventional sensors based on the fundamental mode. Our approach, which can

readily operate in multiplex mode, has potential for sensing minute amounts of
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Figure 2.1: (a) Schematic of the 1D grating. The grey region is silver and the blue
region is the substrate. (b) Cross-section of a unit cell, s represents half of the
grating ridges, h denotes the depth of the grooves, r = h/2 is the radius of the
fillets, and a is the period. (c) 2D crossed-grating extended from the 1D grating.

analytes with a high FOM.

2.1 ABSORBERS RELYING ON DELOCALIZED
RESONANCES

In this section, we present a study that utilize guided modes supported by metal
gratings to achieve ultranarrow band absorptions. Although grating is an old
structure [107], it remains a hot topic even to date. Both broadband and narrowband
absorption can be realized by varying grating’s composites and geometrical profiles
[108, 109, 110, 111]. Sharon et al. [108] proposed a grating-waveguide structure. A
dielectric waveguide is superimposed on metal. Light confined in the waveguide is
diffracted by grating upon it. A bandwidth of 0.1 nm is reported. In Ref. [112], the
authors designed a tungsten grating with shallow grooves, which is demonstrated as
a highly directional thermal emitter. The similar structures can be also regarded as
light absorbers. Here, by directly constructing grating on a silver surface, a simpler
absorber is designed with a subnanometer bandwidth. The resonant wavelength is
easily tunable via geometrical scaling and ultrasensitive to the refractive index of
the environmental dielectric.

The grating is superimposed on a substrate as illustrated in Fig. 2.1(a). Figure
2.1(b) shows its cross-section of a unit cell, where s, h, and a represent half of
the grating ridges, the depth of the grooves, and the period, respectively. Note

that absorbers based on onedimensional (1D) gratings are polarization-sensitive.
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However, absorbers based on two-dimensional (2D) crossed-gratings, extended from
the 1D gratings as shown in Fig. 2.1(c), are polarization insensitive. Here, we focus
mainly on the 1D gratings as the results for the 2D crossed-gratings are qualitatively
similar. In the following numerical calculations using commercial software COMSOL
based on finite element methods, right angles are modified to fillets, whose radii are
r = h/2, to avoid singular points and to consider practical fabrication process. The
silver permittivity is taken from the experimental data by Johnson and Christy [28].
Only the TM wave (the magnetic field is parallel to the grooves) is considered here.
Under light illumination with proper wavelength, SPPs will be excited. The energy
of the excited surface wave is partially dissipated in metal as resistive heat described
by resistive damping rate .., and the other is coupled into free space in the form of
radiation denoted by the radiative damping rate 7,.q. Both of 7,5 and 7;.q can be
varied by adjusting the geometrical parameters of the grating. The radiation coupled
from SPPs will interact with light directly reflected from the metal surface, which
determines reflectance, therefore absorbance of the grating, since the transmittance
is zero. In the following, a time-saving approach based on temporal coupled-mode
theory is first introduced and utilized to optimize geometrical parameters of the
absorber. Then numerical simulations, which include incident light and require
frequency scanning, are used to investigate the optimized absorber.

The temporal coupled-mode theory [113, 114, 32| provides an insightful analysis
to the absorbance of nanostructure. In order to evaluate V;aq and .es, We use the
two-step method in [113, 114]. We start with the lossless case by assuming the
imaginary part of silver permittivity to be zero. Computed complex eigenfrequency
wo + iMaq contains two parts, where wy is the resonant angular frequency and 7;.q
is the radiative damping rate. We then introduce metal loss by describing the
silver with realistic permittivity. In this case, obtained complex eigenfrequency is
wo + iVot, Where 74o¢ is the total damping rate, which includes both the radiative
and the resistive damping rates. The resistive damping rate is then obtained from

Yres = Yiot — Yrad- Lhe absorbance at angular frequency w is given by [32]

47rad'7res
(W - w0)2 + 7t20t

A= (2.1)
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Figure 2.2: Radiative (7;aq) and resistive (7yes) damping rates of the eigenmodes as
functions of (a) half of the grating ridges s, and (b) the depth of the grooves h.
Insets: the resonant wavelength at each eigenmode. Peak absorbance and FWHMs
of the corresponding eigenmodes are presented in (c¢) and (d). If not particularly
specified, a=1400nm, s=92 nm, and h=50 nm.

Peak absorbance is 479aaVies/V2: at w = wp. Critical coupling occurs when
Yres = Vrad, l€ading to unity absorption (A = 1).

With grating period a=1400 nm fixed, as illustrated in Figs. 2.2(a, b), the other
geometrical parameters are varied around s=90nm and ~A=50nm, respectively, to
demonstrate how the radiative and resistive damping rates evolve under normal
incidence. Insets show the resonant wavelengths A = 27e¢/w, of each eigenmode.
The corresponding peak absorbance and FWHMSs are presented in Figs. 2.2(c) and
(d). The critical coupling condition at s=92nm and A=50nm can be obtained when
energy coupled to the eigenmode is totally dissipated in metal through resistive loss
without reflection. It is attributed to the complete destructive interference between
light coupled from SPPs and light directly reflected from a metal surface. The
resonant wavelength is 1402nm and the FWHM is only 0.4 nm. It can be observed
from Fig. 2.2 that the ultra-narrow band and high absorption are insensitive to

variation of geometrical profile. In the studied regimes, the peak absorbance remains
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Figure 2.3: (a) Computed absorption spectra of the optimized grating and the
crossed-grating using the numerical simulation and the temporal coupled-mode
theory. Blue-solid and blackdashed lines correspond to the 1D grating and the 2D
crossed-grating, respectively. (b) Electric and magnetic enhancements at resonant
wavelength (1402nm). Eq and Hyy are excitation fields, E and Hy are total fields.

higher than 80 %, while the FWHMs stay under a half nanometer. The resonant
wavelength is also stable, not exceeding 2 nm relative to 1402 nm. All these features
are of importance to practical fabrication and applications. The temporal coupled-
mode theory used here provides a time-saving method to optimize absorbers.

We proceed to use numerical simulations to validate the perfect absorption.
The solid-blue and dotted-red lines in Fig. 2.3(a) demonstrate that absorption
spectra calculated based on two methods agree well with each other. To excite
SPPs, the momentum provided by the grating (5 = ksinf + n2m/a) should match
the propagation constant of SPPs (kgpp), where 6 is the angle of incidence, n is an
integer, and a is the structure’s period. Since shallow grooves are small perturbations
to the flat interface, kg, of the grating should be approximately equal to that of a
flat interface between metal and dielectric. We found that for the normal incidence,
6 = 0° whenn = 1, § = 27/a agrees with the kg, of a flat metal-air interface, which
kspp = 1.0034 - (27/a) at 1402nm. Considering ¢ = 1400 nm and A\g = 1402 nm,
the wave vector component along normal direction k. = ,/k§ — k2, is almost zero.
Therefore, the excited SPP field illustrated in Fig. 2.3(b) does not exhibit field
confinement. The field is distributed above the grating with a very slow decay and
only a small proportion of electromagnetic field penetrates into the metal, which

implies a very small resistive rate. So the total damping rate under critical coupling
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Figure 2.4: (a) Absorption at oblique incidence. k, = (27/A)sinf, X is incident
wavelength and 6 is angle of incidence. k, is normalized with respect to 7 /a. Photon
energy E = he/A, h is the Planck constant, and c is the light speed in vacuum. (b)
Absorptivity angular patterns at 1900 nm and 1200 nm of the perfect absorber.

condition (twice the resistive damping rate) is ultra-small, resulting in ultra-narrow
band light dissipation of the perfect absorber.

The absorption spectrum of the crossed-grating at normal incidence is also
calculated and presented in Fig. 2.3(a). The geometrical parameters are the same as
those of the optimized grating. One can observe that it shows only a small redshift.
High absorption (93 %) and ultra-narrow band (0.4 nm) still remain.

Absorption at oblique incidence is also studied and the spectra show abnormal
characteristics. Figure 2.4(a) demonstrates absorptivity as functions of incident
wavelength and angle of incidence. Coordinates are transformed to photon energy
(unit: eV) and wavenumber along the z axis. The grating can be assumed to be a
form of 1D photonic crystal. Figure 2.4(a) displays a profile of its band diagram, and
two photonic bandgaps around 0.9 eV and 1.3 eV can be seen. To intuitively show the
absorptivity as a function of the angle of incidence, absorption spectra at two given
wavelengths are plotted in Fig. 2.4(b). At 1900 nm, it shows near unity absorbance
only within an ultra-narrow angle (0.4 mrad). As we know, absorption and emission
are two reciprocal processes. According to Kirchhoff’s law, the absorptivity and
the emissivity of a surface are equal for polarized directional light at the same
wavelength [115]. So the perfect absorber can be regarded as a thermal emitter.
The angular pattern of emissivity under the same condition is the same as that of
absorptivity as shown in Fig. 2.4(b). One can observe that for certain wavelengths
(1900 nm) the emissivity at a particular angle (= 20°) is extremely large compared

with that at other angles. Besides, the enhanced emissivity is only located within
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Figure 2.5: Absorption spectrum as a function of geometrical scaling factor F'.

an ultra-small angular width (0.4 mrad), so it is a highly directional thermal emitter
[112]. The narrow angular width is a signature of a large spatial coherence length
(I =X/ = 2500\ = 4.75mm) at the corresponding wavelength, which suggests high
monochromatic in the near-field. The effect originates from thermally excited surface
wave [55], which is in sharp contrast to the small spatial coherence length of the
near-field of blackbody [116]. Figure 2.4(b) shows another interesting phenomenon;
the emitter radiates light with different wavelengths at distinct angles, which has
potential application in wavelength division.

Until now we focused on the structure operating resonantly at approximately
1400 nm at normal incidence. Further simulations exhibit that it is geometrically
scalable. Every geometrical parameter (a, s, h, and r) is multiplied by scaling factor
F', which starts from 0.7 with a step of 0.1. The results are presented in Fig. 2.5.
The peak can be tuned at a range of hundreds of nanometers, while the maximum
absorbance remains above 97 %, and FWHMSs remain smaller than a half nanometer.

It is well known that for plasmonic nanometallic structures, resonant wavelength
depends on the refractive index of the environmental dielectric. The effect can
be utilized to construct different types of plasmonic sensors [117, 118], whose
performances are usually described by sensitivity (S = AA/An) and FOM. But the
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Figure 2.6: Dependence of (a) absorption spectra and (b) resonant wavelengths on
the refractive index of the environmental dielectric.

reported FOM are typically less than 1000 /RIU in near infrared regime. Improving
FOM by either increasing sensitivity or decreasing FWHM is still a challenge. In
our simulations, the whole space over the absorber is filled by a dielectric with a
refractive index n. Under normal illumination, dependence of absorption spectra
on n is presented in Fig. 2.6(a). As n varies, the maximum absorptions remain
near unity and FWHMs stay at 0.6 nm. The sensitivity is 1400 nm/RIU. Compared
with a conventional absorber-based sensor, whose bandwidths are usually tens of
nanometers, the bandwidth reported here is so small that the FOM can be as high
as 2300 /RIU, paving the way for a highly sensitive plasmonic sensor. The peak
wavelengths are extracted and plotted in Fig. 2.6(b), and good linearity is found.
That is to say, the value of the variation of the peak wavelength divided by the
variation of the refractive index is a constant.

It is worth noting that, in practice, it is inevitable that the incident light
beam is composed of a range of incident angles, which will reshape the absorption
spectra. Here the absorption spectrum with a Gaussian beam incidence is further
investigated. In the simulations, the divergence of the Gaussian beam is chosen
as 1°, and the waist of the beam is set at the very top of the structure. All other
parameters are the same as those corresponding to the studied grating in Fig. 2.3(a).
The result shows that although peak absorption drops from unity to about 55 %,
the FWHM remains only 0.4 nm, which will not degrade its performance in sensor

applications.
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2.2 ABSORBERS RELYING ON LOCALIZED

RESONANCES

Relying on delocalized resonances to achieve ultranarrow band absorption makes it
difficult to reduce the physical size of the structure in order to integrate multiple
micropixels onto a single chip for hyperspectral related applications [119]. A similar
tradeoff between the spatial extension of the structure and the spectral linewidth
also applies to plasmonic sensing. While localized-resonance-based sensing down
to a single nanofocus has been demonstrated [120, 121], the resulting spectra are
broad owing to typically large ohmic and radiative losses. This limits the FOM,
which is inversely proportional to the FWHM. When sensors with ultra-sensitivity
are considered, they usually rely on lattice resonances [122, 123, 124]. Because
their plasmonic-photonic hybrid-mode nature, they feature low dissipation rates,
and therefore narrow bandwidths [27]. However, they demand considerable spatial
extension of the sensor, as mentioned above for the absorber, which requires a rela-
tively large amount of analyte and hinders parallel sensitive detection on tiny chips
[125]. Consequently, high-performance light absorbers with a small footprint and
an ultranarrow band are highly desirable.

From a different perspective, gain media show versatile functionalities in
nanophotonics as discussed in section 1.5. Although it is well known that the band-
width of a plasmonic system becomes smaller when it goes into an over-compensation
regime, and even lasing action can occur with ultranarrow linewidth if the gain is
large enough, much less attention has been paid to engineer the bandwidth before
fully compensating the loss.

In this section, we propose to utilize high-order localized resonances combined
with gain to realize high quality-factor perfect absorption within structures having
small spatial extension. This strategy has two important benefits: (i) high-order
optical modes exhibit much smaller coupling strength with external light compared
with fundamental modes; and (ii) it is compatible with dielectric elements are doped
with gain molecules or quantum dots to partially compensate the large ohmic loss
associated with high-order modes, making resistive decay rate of the system similar

in magnitude to the small radiative decay rate, thus realizing the condition of critical
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Figure 2.7: (a) Normalized absorption cross-sections of coreshell cylinders support-
ing a dipolar mode (blue curve), a quadrupolar mode without gain (red-dashed
curve), or quadrupolar mode with gain (red-solid curve). The inset depicts the sil-
ica/gold coreshell structure. (b) Radiative and resistive decay rates of the quadrupo-
lar mode at different gain level. (c) On-resonance normalized magnetic fields for the
three different conditions considered in (a). The frames and the curves in (a) share
the same color and line type codes. The radii of the two cylinders are indicated
below the plots.

coupling needed for perfect absorption. In this way, the otherwise dark high-order
modes are brought to be bright with maximum absorption according to coupled-
mode theory. Specifically, we first demonstrate this idea in a simple nanocylinders
geometry, which are followed by two other widely studied absorbers: MIM absorbers
operating in the visible range; and a graphene Salisbury screen operating in the MIR
region. The potential application in small footprint improved sensing is further dis-
cussed. Although we focus on 2D structures in all three cases for simplicity, we note
that it is straightforward to extend our results to 3D geometries, which can be made
polarization-independent.

The inset of Fig. 2.7(a) shows the cylinder under consideration, encompassing a
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gold shell. Its relative permittivity is approximated using a Drude model based on
experimental data in the investigated spectral range [28], e = 1 — w2/(w* 4 iw,),
where Aw, = 6.98¢V, 7, = 0.11eV. The core is a dielectric, which can be further
doped with various gain materials. Then the total electric response is €4 = €p, + Egain
with a background term e, = 2.25 (i.e., silica) and a Lorentzian gain term [91, 126]
Egain = FY0/(w — wo +179). Here, wy and 7, are the gain frequency and bandwidth,
respectively. We focus on Rhodamine 800 to provide the gain effect, whose emission
wavelength Ao (= 27mc¢/wp) is 711nm, and 7y = 0.04wy [126]. Additionally, F' is a
factor that proportional to the population inversion of the gain material, therefore
reflecting the gain level. Incidentally, we set F' = 0 when we want to exclude gain.
Modes with different orders (e.g., dipolar, quadrupolar mode, and other higher-
order modes) can be excited by an external plane wave with its magnetic field
polarized along the cylinder axis. Each mode is associated with a radiative decay
rate (Vaq) and a resistive decay rate (7,5) that characterize the energy dissipation
rate through coupling to the far-field and transformation into Joule heat in metal,
respectively. The absorption can reach a maximum value when the two decay rates
are equal [34], a condition generally known as critical coupling. Specifically, for the

cylinder discussed here, we have the absorption cross-section of a single mode as
[127]

2\ rad )res
CYabs =2— ;/ 47 9
™ (w - wO) + (’yrad + P)/res)

(2.2)

where the pre-factor of 2 accounts for two degenerate sub-modes because of rota-
tional symmetry. One can find that the upper limit is Caps max = (2A/7)/2, which
can be achieved when both critical coupling and on-resonance conditions are sat-
isfied. Typically, the fundamental dipolar mode is preferred and no gain medium
is involved. Because the mode has large coupling strength with the external light,
it is therefore easily accessible. The blue curve in Fig. 2.7(a) and the left panel
of Fig. 2.7(c) illustrate such a case, with , = 34.9nm, r, = 44.3nm. Maximum
absorption is achieved at 711 nm. But the bandwidth is large with FWHM=85nm,
resulting in a low Q factor (~8). This limits its performance for sensing and photon
detection. In order to improve the Q factor, utilizing destructive interference in com-

plex structures to reduce radiative damping has been tried [128]. A straightforward
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Figure 2.8: (a) Normalized absorption cross-sections at different wavelengths and
gain levels. (b) Normalized absorption cross-section spectra when the gain band-
width of the gain medium takes different values.

way to suppress radiative damping consists in rely on high-order modes. Using the
eigenmode solver in COMSOL, we find that a coreshell cylinder with r; = 40.2 nm,
ro = 45.0nm holds quadrupolar mode at 711 nm. However, this mode is difficult to
excite from the far-field, as evidenced by the red dashed curve in Fig. 2.7(a) and
the middle panel of Fig. 2.7(c). The associated absorption is very low, and the
scattered field distribution is far from a well-defined quadrupolar mode. The reason
lies in a big mismatch between the energy decay rates of the two channels. Doping
the silica core with gain medium and finely tuning the gain level can address the
problem. Figure 2.7(b) displays the dependences of Jyaq and 7,5 for the quadrupolar
mode on F'. The detailed computation method of the decay rates is described in
the last section. One can see that the resistive decay rate decreases with increasing
gain. Critical coupling is realized when F' takes the value about 0.208, leading to
nearly perfect absorption (Caps/(2A/7) = 0.48) with a FWHM as small as 1 nm, as
shown by the red solid curve in Fig. 2.7(a). The reason why the peak absorption is
slightly below the upper limit (i.e., 0.5) is that absorption is dominant, but it does
not fully originate in the quadrupolar mode, as it is also influenced by the nearby
dipolar mode. The right panel of Fig. 2.7(c) confirms an efficient excitation of the
quadrupole mode assisted by gain. By comparing the field enhancements in the blue
and the red solid borders, it is interesting to note that apart from the appealing fea-
ture of ultranarrow band, the high-order mode provides a stronger near-field.

Additionally, we simulate spectra with a wider range of F', as shown in Fig.
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Figure 2.9: Absorption properties of infinite 1D arrays illuminated by plane waves
(a-c) and finite arrays illuminated by Gaussian beams (d). (a) Absorption spectra
of the absorbers supporting a fundamental mode (blue curve), a high-order mode
without gain (red-dashed curve), or a high-order mode with gain (red-solid curve).
The inset depicts the structure. (b) On-resonance normalized magnetic fields under
the two different conditions considered in (a). The frames and the curves in (a)
share the same color code. (¢) Absorption spectra at different incidence angles. (d)
Absorption spectra for finite arrays of different size (i.e., number of unit cells). Both
of (c¢) and (d) are for high-order mode structures.

2.8(a). All the involved parameters, except those indicated in the figure, keep the
same. One can observe that at the resonant wavelength (i.e., 711 nm), the normal-
ized absorption cross-section first reaches an upper limit value of 0.5 with increasing
gain, and subsequently, when going over a critical value of F', the absorption be-
comes negative, which means light amplification. The negative part is saturated by
-0.5 for visual clarity. In some region, the amplification can be extremely large, as
pointed out by an arrow. The structure with different gain levels can find different
functions as indicated in the plot. Structures operating in under or over compensa-
tion regions can be both used for sensing. For the gain width, we adopt a practical
value of Rhodamine 800 7y = 0.04wy, as used in the literature [126]. Figure 2.8(b)
displays absorption spectra with artificially increased and decreased values. It is
clear that the ultranarrow band feature can be influenced, but not dominated, by
the gain width. The FWHM remains below 2 nm, even with a considerably large
Yo = 0.4wy rate is used. This reveals that the ultranarrow band is a unique advan-
tage, mainly resulting from the combination of a high-order mode and gain, rather
than from the small gain bandwidth.

Now, we apply the same idea to solid-state planar absorbers. As discussed in
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the last section, unity absorbance can be achieved on resonance under the critical-
coupling condition. Firstly, we focus on the popular MIM absorbers. The inset of
Fig. 2.9(a) shows the cross-section of a single period: a dielectric spacer (g}, = 1.75%,
i.e., AlyO3) with thickness ¢ is sandwiched between a continuous gold film and a
gold strip. The width and the height of the strip are w and d, respectively. Also, a
denotes the period. The upper and lower metal elements can interact strongly if the
dielectric layer is thin enough. When carefully designed, the impinging plane wave
with magnetic field along the strip can induce anti-parallel electrical currents in the
two metal elements, therefore generating a remarkable magnetic resonance in the
gap [129, 16]. Researchers normally use a fundamental mode as displayed by the
field profile in the upper panel of Fig. 2.9(b). Its absorbance is indicated by the blue
curve in Fig. 2.9(a), with complete absorption at 711 nm. The geometric parameters
are: w = 48nm, d = 30nm, £ = 12nm and a = 250 nm. We note that the large
FWHM (~70nm) leads to a fairly low @ factor (=10). In order to achieve high-Q
perfect absorption, we switch to a structure that holds a high-order resonance and is
doped with the same dye molecules (i.e., Rhodamine 800) as in its dielectric spacer.
Its geometric parameters are: w = 476 nm, d = 20nm, ¢ = 10nm and a = 520 nm.
Complete absorption with FWHM=2nm is achieved at 711 nm when F'is tuned to
0.171 (red solid curve in Fig. 2.9(a)), enhancing the Q factor by up to ~356. The
on-resonance field distribution is displayed in the lower panel of Fig. 2.9(b). If no
gain medium is involved (i.e., F = 0), the peak absorbance dramatically drops to
about 0.2, as shown by the red dashed curve in Fig. 2.9(a). Figure 2.9(c) shows the
angle-dependence absorption. The resonance blue-shifts and becomes much weaker
when the incidence angle is increased to 30° because of the spatially extended optical
resonance mode compared with the light wavelength.

We have so far investigated absorbers with an infinite period, in line with many
previously published numerical studies. Now, using high-Q localized resonance we
can also realize small footprint ultranarrow band absorbers. We simulate finite ar-
rays to demonstrate this concept. The inset of Fig. 2.9(d) presents the configuration
under study, in which a Gaussian beam is normally illuminating an absorber with its
beam waist placed at the dielectric layer. The waist radius is equal to the resonant
wavelength, 711 nm. All geometric and material parameters are the same as in the

previous infinite arrays. We can observe from the yellow curve that a small-area ab-
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Figure 2.10: (a) A schematic view of a nanodevice for gas sensing. The grooves are
filled with the targeted gas, featuring a refractive index n. (b) Absorption spectra
when the gas takes different indices. The solid (dashed) curves correspond to the
structure utilizing a high-order (fundamental) mode.

sorber, which is around 1.5 times the beam waist, can dissipate 80% of the incoming
light energy with a bandwidth less than 3 nm.

These properties are useful for sensing small volume analyte with higher FOM
compared with using the fundamental resonance. Figure 2.10(a) presents a sketch of
the designed sensor. The absorber, which consists of 8 unit cells, is integrated onto
the bottom of a gold groove. The depth of the groove is 1 um. The detected gas with
refractive index n is assumed to fill the groove spaces. The Gaussian beam is coming
from the air side. All involved parameters are maintained the same as above. The
solid curves in Fig. 2.10(b) illustrate the dependence of the absorption spectra on the
gas refractive index (see figure legend). For comparison, we show calculations for an
absorber based on the fundamental mode (dashed curves) as described in Fig. 2.9(a,
b) without changing other parameters (i.e., the depth and width of the groove). We
find that while the sensitivity of the high-order mode structure, which is 25 nm/RIU,
is smaller than the one based on the fundamental mode, which is 83 nm/RIU, its
FOM is one order of magnitude larger. The FOMs of the high-order-mode and the
fundamental-mode structures are 8.3 /RIU and 0.8 /RIU, respectively.

Apart from the visible range, absorbers working in MIR region are of great
interest as well, especially for applications in sensing of molecular vibrational bonds
and thermal imaging [130]. In this context, graphene plasmons have raised huge

expectations owing to their outstanding optical properties in this spectral range
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Figure 2.11: Absorption properties of infinite 1D arrays illuminated by plane waves
(a-c) and finite arrays illuminated by Gaussian beams (d). (a) Absorption spectra of
absorbers supporting a fundamental mode (blue curve), a high-order mode without
gain (red-dashed curve), or a high-order mode with gain (red-solid curve). The inset
depicts the structure under consideration. (b) On-resonance normalized magnetic
fields under the two different conditions examined in (a). The frames and the curves
in (a) share the same color code. (c¢) Absorbance as a function of incidence angle and
wavelength. (d) Absorption spectra for finite arrays of different size (i.e., number
of unit cells). Both of (c¢) and (d) are for high-order mode structures.

[37, 38]. Perfect absorption has been demonstrated both theoretically [39] and ex-
perimentally [40]. Here, we shift our focus from the conventionally used dipolar
resonance to higher-order resonances, showing that narrower linewidths are possi-
ble. A unit cell of the structure, which incorporates a Salisbury screen, is presented
in the inset of Fig. 2.11(a). A thick dielectric layer with thickness ¢ (¢, = 2, i.e.,
GaFy) separates a graphene nanoribbon and a gold film. The surface conductivity
of the graphene layer is described by a Drude model o = (e?/mh?)iEr(w + it 1),
where 7 = pEg/evd is the intrinsic inelastic lifetime. In the simulation, we assume
Er=08eV, p=25x10"cm?- V1.5 ! and vp = 10°m - s7!. Besides, we set the
filling fraction of the graphene ribbon area to be 0.5 (i.e., w = a/2). when w, a and
t take values of 16 nm, 32nm and 885 nm, respectively. a normally incoming plane
wave with its magnetic field along the ribbon excites the dipolar resonance as shown
in the upper panel of Fig. 2.11(b). The blue curve in Fig. 2.11(a) shows the ab-
sorbance. Perfect absorption is achieved at 2800 nm with a FWHM of 5 nm. Then,
we reconfigure the absorber with w = 214nm, a = 428 nm and ¢ = 481 nm, so that
it holds a high-order resonance at the same wavelength. Additionally, we introduce

a dielectric layer doped with Er’* ions, whose emission wavelength is Ao = 2800 nm
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Figure 2.12: (a) Schematic view of a nanodevice for thin molecular layer sensing.
The molecular layer with thickness of 10 nm is characterized by a refractive index
n. (b) Absorption spectra for different molecular layer indices. The solid (dashed)
curves correspond to the structure utilizing the high-order (fundamental) resonance.

and whose gain bandwidth is 79 = 0.03w [126]. When the gain level is tuned to
F = 0.0018, perfect absorption is recovered with a narrower linewidth of FWHM
equal to 0.8 nm. The lower panel of Fig. 2.11(b) represents its on-resonance field
distribution. If there is no gain involved, the peak absorbance drops to around 0.5
(red dashed curve). Figure 2.11(c) presents the dependence of the absorbance on
wavelength and incidence angle. One can observe that the ultranarrow band feature
is robust over a large angular range. The absorbance remains at a level close to 0.5
when the angle is increased to 80°. In the same way as for the configuration in Fig.
2.9(d) discussed in the last section, Figure 2.11(d) recovers explicitly the absorption
performance of a finite array. All the parameters are maintained the same as in the
infinitely extended structure. Here, the waist radius of the Gaussian beam is equal
to the resonant wavelength, 2800 nm. Thanks to the large optical cross-section and
wide-angle features of the graphene ribbon, 20 unit cells, which span about 1.53
times the beam waist, are enough to fully dissipate the incoming light.

The ultra-confinement of the near-field provided by the graphene plasmons ren-
ders this material particularly promising for molecular sensing [36, 131]. We show
that the structure supporting a high-order resonance improves the FOM compared
with its counterpart relying on a fundamental resonance. A schematic view of the
sensing device is illustrated in Fig. 2.12(a). For the high-order resonance sensor, the
structure consists of 8 unit cells. The cells are covered by a 10 nm-thick molecular

layer, which is simply described by a refractive index that increases with increas-
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Figure 2.13: (a) Absorption spectra of a graphene Salisbury screen consisting of
infinite arrays at various incidence angles. (b) Normalized electric fields of infinite
arrays, supporting a fundamental dipolar resonance (left panel) and a high-order
resonance (right panel) under normal incidence.

ing molecular density [132]. For comparison, we replace the high-order resonance
absorber with the fundamental resonance one, maintaining the width of the rib-
bon array, as well as that of the molecular layer, approximately the same. Figure
2.12(b) displays their absorption spectra with various layer indices in the 1 to 1.006
range. Although their sensitivities are almost the same, the high-order-resonance-
based sensor holds a large FOM (944 /RIU) compared with its fundamental-mode
counterpart, whose FOM is 131 /RIU.

Comparing the blue curve in Fig. 2.11(a) and the dashed lines in Fig. 2.12(b),
we find that the peak absorbance drops from unity for an infinite array to less than
0.5 for a finite array. We attribute this effect to the partial lattice resonance nature
in the absorber, supporting a dipolar resonance at 2.8 ym. Figure 2.13(a) shows the
dependence of the absorption spectra on the incidence angle for the infinite array,
which illustrates a large group velocity of the optical mode propagating along the x
direction, and therefore a large propagation length [119]. As a result, a very large
finite array should be required to approach the performance of an infinite array. The
left panel of Fig. 2.13(b) confirms the lattice resonance in the array based on strong
optical coupling between two adjacent ribbons. This is in sharp contrast to the high-
order resonance scenario discussed in Fig. 2.13(b). The well localized mode leads to
omnidirectional absorption of an infinite array (Fig. 2.11(c)) and unity absorbance
for a finite array (Fig. 2.11(d)). Incidentally, we also note that the strong coupling

between individual ribbons originally results from the short light wavelength that
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Figure 2.14: (a) Schematic view of an infinitely large graphene Salisbury screen
covered by a 10nm-thick molecular layer. (b) Absorption spectra with different
diffraction indices of the molecular layer. Solid (dashed) curves correspond to the
structure that holds high-order (fundamental) resonance. The relevant geometrical
parameters of the two structures are the same as in Fig. 2.11(a). (¢) On-resonance
field patterns of the high-order and fundamental resonances with n = 1. They are
copies of Fig. 2.11(b). The frames and the curves in (b) share the same color and
line type codes.

we are considering. The interaction can be made weaker if operating at longer wave-
lengths.

We carry out additional simulations using extended graphene Salisbury screens
for sensing. We conclude that the structure holding a high-order resonance oper-
ates much better than a structure operating based on its fundamental mode. Fig.
2.14(a) depicts the extended screens, which is covered by a 10 nm-thick molecular
layer (bright blue part). The solid (dashed) curves in Fig. 2.14(b) correspond to
structures with a high-order (fundamental) resonance with various layer indices in
the 1 to 1.006 range. All the needed geometrical parameters of the two structures
keep the same as in Fig. 2.11(a). The upper (lower) panel of Fig. 2.14(c) illustrates
the on-resonance field distribution of the fundamental (high-order) mode when the
layer index is assumed to be 1. We find the FOM associated with the high-order-
resonance structure to be 1083 /RIU, which is larger than that of the conventional

structure operating based on its fundamental mode (183 /RIU).

25



CHAPTER 2. ULTRANARROW BAND ABSORBERS

2.3 (CONCLUSIONS

In summary, in this chapter, we first design and investigate a lamellar grating with
shallow grooves, which shows perfect absorption and ultra-narrow band (0.4nm)
dissipation under normal incidence. High absorption (93 %) and ultra-narrow band
maintain when extending the optimized 1D grating to 2D crossed grating. According
to Kirchhoft’s law, the perfect absorber can be considered as a highly directional
thermal emitter with an angular width of 0.4mrad at 1900 nm. The absorption
spectra of the perfect absorber are highly sensitive to the refractive index of the
environmental dielectric. The sensitivity and FOM are as high as 1400 nm/RIU
and 2300 /RIU, respectively. The structure presented here has great potential as a
perfect absorber or high performance plasmonic sensor. Reported ultranarrow band
absorbers usually rely on delocalized resonances like in this case. Minimize the size
of the structure at the meantime maintain the high Q property is a desired goal. We
propose a general route in the second part of this chapter to address this issue. It is
realized through using high-order optical resonances combined with a proper gain,
pumped by either light or electrical means. We demonstrate this strategy through
numerically simulations for three different structures based on different absorption
mechanisms. The sizes of the absorbers can be made small, comparable with the
Gaussian beam waists. The absorption peaks are nearly perfect and the bandwidths
are much smaller than their counterparts. We further exploit these results to
achieve improved performance in refractive-index sensing. The present work will
stimulate further investigations for applying the method to customize absorption in
other plasmonic systems. Finally, we expect this idea can also benefit ultra-high-
quality-factor absorber/emitter designs in dielectric nanophotonics [133], where a
gain medium is perhaps not needed because of the low intrinsic loss, although it could
also be employed to compensate radiative losses. Nevertheless, plasmonic systems
have unique advantages for some applications such as hot-electron generation with

small-footprint structures, as well as switchable photodetectors.
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CHAPTER 3

LIGHT SCATTERING ON
CORESHELL / MULTILAYER
NANOSPHERES

In the preceding section 2.2, we have discussed how to add gain media into the 2D
coreshell nanocylinders to realize ultranarrow band absorption. In this chapter, we
study 3D metallodielectric coreshell and multilayer nanospheres. In the first section,
we explore how to use the coreshell nanoparticles to enhance emission intensities of
upconversion nanoparticles (UCNPs) located in the center. Simulations based on
Mie theory combined with a predictive theory based on rate equations point out
optimal structures under different pump conditions. In the remaining sections, we
investigate some unique properties of field enhancement, photothermal effect, and
internal pressure lift of multilayer nanoparticles. These kinds of nanoparticles are
capable of hosting collective plasmon oscillations distributed among different metal-
lic layers, which result in large near-field enhancement at specific regions of the
structure, where light absorption is maximized. In section 3.2, we exploit this capa-
bility of multishell nanoparticles, combined with thermal boundary resistances and
spatial tailoring of the optical near-fields, to design plasmonic nano-ovens capable of
achieving high temperatures at the core region using moderate illumination inten-
sities, as well as large optical intensity enhancement ~ 10* over a relatively broad

core region. This provides an unusual thermal environment, which together with the

57



CHAPTER 3. LIGHT SCATTERING ON CORESHELL/MULTILAYER
NANOSPHERES

high thermal induced pressures ~ 10° atm (see section 3.3), holds great potential for
exploring physical and chemical processes under extreme optical/thermal/pressure

conditions in confined nanoscale spaces.

3.1 CORESHELL NANOSPHERES FOR UPCONVERSION

PROCESSES

UCNP is a kind of nonlinear nanocrystal, which has capability for sequentially
absorbing two or more low energy photons and radiating high energy ones. They
are typically composed of lanthanide ions (e.g., Er*" and Yb3+) embedded within an
inorganic crystalline host matrix (e.g., NaYFy) [134]. Compared with conventional
luminescent nanomaterials (e.g., dye molecules and quantum dots), UCNPs have
remarkable advantages including superior photostability, long lifetimes, tunable
emission bands, and low cytotoxicity. Therefore, they have strong potential for
bioapplications, and have emerged as a hot topic in recent years [135, 136]. However,
the low emission intensity is a barrier on the road to large scale practical use. A
promising way to address this problem is to place the UCNPs in the vicinity of
plasmonic nanostructures, using either the enhanced fields at pump wavelengths
to increase the excitation rates of lanthanide ions or the increased local density of
optical states (LDOS) at the emission wavelengths to speed up their radiative decay
rates. Various structures based on them have been proposed [137, 138, 139, 140].
In this section, we are interested in UCNP@silica@gold nanospheres as shown in
Fig. 3.1(a). In the following, we firstly present a theory, which identifies dominant
factors of the gold shell to influence the emission intensities under different pump
strengths. Then, an accurate and fast analytical method is used to carry out
extensive simulations of the emission intensity enhancements over a wide range of
geometrical parameters. Combining theory and simulations, we predict optimal
structures under different pump conditions.
We start from a rate equation of the UCNP,
dp

%:IO-FE-U(l—p)—LDOS-go-p, (3.1)
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Figure 3.1: (a) Schematic view of a UCNPG@silica@gold nanosphere. (b) Product
of field enhancement at pump wavelength and yield at emission wavelength as a
function of gold shell thickness and silica radius. (c) Radiative part of the LDOS at
the emission wavelength as a function of gold shell thickness and silica radius.

where p describes the fraction of the UCNP ions that are excited by the pump light
at a given time and I is the pump intensity. FE denotes the average field intensity
enhancement over the UCNP volume and o is a coefficient proportional to the cross-
section for excitation of the UCNP complex without coating. In this section, the
LDOS (as well as LDOS,.q below) specifically refers to a volume-averaged values
in the UCNP normalized to that in air (see details in Appendix B). Also, go is
the intrinsic decay rate without coating. Under cw conditions (i.e., dp/dt = 0),
one has p = 1/(1 + LDOS - go/(Ip - FE - 0)). We use LDOS,.q to refer to the
radiative contribution of the LDOS. Because the emission intensity enhancement is

Iy = LDOS,.q - p, We finially have

fy

] pr—
" 1/LDOS + g0/ (Io - FE - o)’

(3.2)

where 7 = LDOS,,q/LDOS. When the pump intensity is in the saturation regime,
Iomy = LDOS,.q. In contrast, when the pump light is very weak, I, = C - FE - 7,
where C' = Iyo/go.

Here, we focus on these two limiting regimes. The nanoparticles are assumed
to be in air. The diameter of the UCNPs takes a constant value of 32nm. The
refractive indices of both the host lattice of the UCNP and the silica shell are set to
1.475. The dielectric permittivity of gold is taken from experimental data [28]. The
average field enhancements are computed at 980 nm. The average LDOS, LDOS, .4,
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and v are computed at 540 nm (see Appendix B for detailed methods). Figure 3.1(b)
and (c), respectively, display FE -y and LDOS,.q. The data are presented in log
scale. In Fig. 3.1(b), one can observe that there are two hot regions. The lower left
one is induced by dipolar resonances supported by the gold shells and the other one
corresponds to cavity resonances. So, we can conclude that if one can experimentally
synthesize small coreshell nanoparticles with good control on the shell thickness, it
is preferable to utilize the dipolar resonances, as they provide higher enhancement.
But, if one can only produce relatively large coreshell particles, it it better to adopt
the cavity resonances. Figure 3.1(c) shows a similar pattern. Properly designed
small coreshell nanoparticles (rs ~20nm, ¢ ~15nm) hold dipolar resonances, while
the larger ones can hold cavity resonances. A difference is that because 540 nm (Fig.
3.1(c)) is much shorter than 980 nm (Fig. 3.1(c)), apart from the fundamental mode,

there is a high-order mode appearing in the investigated parameter ranges.

3.2 FIELD ENHANCEMENT AND TEMPERATURE
DISTRIBUTION IN MULTILAYER

NANOSPHERES

In this work, we combine optical Mie theory and a two-temperature model, including
the influence of the temperature-dependent thermal boundary conductance (TBC,
also known as Kapitza conductances [141, 142, 143, 144]), to efficiently design a
plasmonic nano-oven, in which we optimize both optical and thermal responses.
Especifically, we show that nanoscale thermal management can be achieved by
simultaneously engineering multiple thermal boundary barriers and plasmonic near-
field enhancement. Our nano-oven designs simultaneously feature three appealing
properties: (i) it efficiently concentrates the electric field into the core region as a
result of electrostatic cascading [145], reaching a relative intensity enhancement
> 10% (ii) the optical field enhancement at the core region, accompanied by
multiple thermal barriers originating in the TBC at the interfaces between metal and
dielectric [146], render high core temperatures with relatively moderate illumination
intensities.

Figure 3.2(a) presents a sketch of a metallodielectric multishell nanoparticle that
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Figure 3.2: (a) Schematic view of a multishell nanoparticle made of alternating
metallic and dielectric layers. The inset shows different heat transfer channels:
coupling between electrons (e) and lattice modes (1) inside a metal layer (mediated
by the volumetric transfer coefficient ¢®') and coupling between these degrees of
freedom and lattice modes in the surrounding dielectrics through thermal boundary
conductances (TBCs) G and G" (see Appendix C). (b-c) We illustrate the large
optical field enhancement (b), and efficient temperature increase (c) in a plasmonic
nano-oven composed of N = 3 gold layers intercalated with silica and immersed in
water under ambient conditions. The incident light has an intensity of 1 GW/m?
and a wavelength of 690 nm.
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acts as a nano-oven. It is formed by alternating gold and silica shells, embedded in
a water environment. We aim at simultaneously exciting plasmon dipolar modes of
several of the gold shells in a constructive manner, so that inner layers are exposed
to stronger optical fields and the core sees a large light intensity. This type of
geometry has been previously explored for near-field concentration in multishells
[147]. This is a cascading effect similar to the one previously studied for self-similar
particle chains [145]. The increase in field intensity is also accompanied by higher
absorption due to Joule losses, therefore resulting in an increase of temperature
at the core of the structure, which is the main task of the nano-oven. This heat
is eventually dissipated through the thermal conduction of the layers, until it is
eventually released to the surrounding water. We remark that there is a beneficial
effect arising from the presence of multiple metal/dielectric interfaces: each of them
presents some resistance to the passage of heat, thus resulting in an efficient barrier
that prevents heat at the core from rapidly escaping from the structure.

In order to simulate the optical and thermal responses of the nano-oven, we
construct semi-analytical models, as discussed in detail in the Appendix C. The
optical response is expressed as a generalization of Mie theory [148, 149] adapted
to multishell spheres. This approach is fast and accurate compared with alternative
numerical methods, thus allowing us to explore a large number of geometrical
configurations.

The thermal response is formulated as a set of analytical nonlinear equations (see
Appendix C) that describe heat exchange processes in a layer by layer fashion. We
consider a monochromatic cw external illumination, so that the structure operates
under steady-state conditions. We adopt the two-temperature model and define
electron and lattice temperatures at each of the metallic layers. For simplicity, and
because the thermal conductivity is large in gold compared with the surrounding
silica and water media, we assume these two temperatures to be uniform within
each layer. The temperatures are the unknowns of our set of nonlinear equations,
together with the dielectric and water temperatures right at their interfaces with
the metal.

Heat flow within the nano-oven is mediated by several key processes that are
sketched in the inset of Figure 3.2(a). First of all, light is absorbed at the metallic
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Figure 3.3: Thermal response of small metal nanoparticles. (a) Radial distribution
of the temperature for a gold nanosphere in water (5nm radius) normalized to the
optically absorbed power. The environment temperature 7y = 300 K. (b) Under the
same conditions as in (a), dependence of various temperatures on particle radius:
electron and lattice gold temperatures T7° and 7', and water temperature right
outside the particle TV.

layers, resulting in a position-dependent heat power density given by
abs w 2
p(r) = o Im {e(r,w)} [E(r), (3.3)

where €(r,w) is the position- and light-frequency-dependent permittivity, while E(r)
is the amplitude of the optical electric field (i.e., E(r)e™™! + E*(r)e“! gives the
full time-dependence of the electric field); Eq (3.3) reveals that only the gold can
directly couple optical energy into heat through its nonvanishing Im{e}, dominated
by electronic excitations. Coupling between electronic and lattice (phonons) degrees
of freedom at each gold layer is described through a coefficient ¢ [150]. Finally, the
noted thermal barriers at each metal/dielectric interface are described through the
TBCs G and G" associated with two different channels, involving the coupling of
electronic (G®) and lattice (G") heat in the metal to lattice heat in the dielectric.
All of these parameters are incorporated in our model, as discussed in detail in
Appendix C.

Before discussing the multishell nano-oven, it is instructive to examine the
steady-state thermal performance of a homogeneous gold sphere in water (Figure
3.3). We use a similar analysis as in Methods, which extends the results of previous
work [71] in order to incorporate thermal barriers [151, 72, 152]. Three combined

effects contribute to create a high temperature in both the lattice (7") and electrons
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(T°) subsystems of the gold: (i) the small surface area limits the rate of heat
evacuation, thus resulting in a jump of temperature TV in the water right outside

the particle relative to ambient temperature T given by [71]

Pabs

™ Ty = —————
0 47TRﬁwater ’

which scales linearly with the total absorbed power P> and is inversely proportional
to the particle radius R and the thermal water conductivity fyater = 0.6 Wm~1 K1,
(ii) additionally, the thermal barrier at the interface produces a jump in the gold
lattice temperature 7", expressed in terms of the gold/water TBC [153] Gygola Jwater =

105 MWm 2K ! as
Pabs

T —-T" = ;
47 R? Ggold/water ’

(iii) finally, the electron-lattice coupling, described through the coefficient [150]

Gooa = 3 x 10" Wm = K~ produces an additional jump

3 Pabs

B 47?RSQ§L1d .

T — T

Notice that under steady-state conditions the absorbed power is conserved in this
expressions during its flow from the light to the electrons, then to the lattice, and
finally to the water. The temperature jump can be significant even for a gold
nanoparticle of 5 nm radius (Figure 3.3(a)), while it is boosted as the radius becomes
smaller (Figure 3.3(b)). This is an effect that deserves further investigation from
the experimental viewpoint.

The temperature jumps in Figure 3.3 are normalized to the absorbed power,

which for a sufficiently small sphere is given by the electrostatic expression
P&bS = 247T2(R3//\)63V/a2ter ]0 Im {_1/(€g01d + 2€Water)}

in terms of the light intensity Iy and the permittivities of gold and water (e.g.,
PP ~ 1uW for R = 5nm, Iy = 4GW/m?, and a resonant light wavelength
A = 522nm). The same three mechanisms are at work in the nano-oven, oper-

ating in a contructive concatenation through the multiple shells, and supplemented
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Figure 3.4: Optimization of optical and thermal parameters in a gold/silica coreshell
structure. (a) Average electric field intensity enhancement and (b) temperature
increase at the core of a nanoparticle as a function of the silica core radius R; and
the gold shell thickness Ry — R;. The intensity of the external pump is 1 GW /m?.

by the noted optical cascading effect, which contributes to accumulate more light
absorption near the nano-oven core, as we show next.

We now return to the nano-oven structure and use the thicknesses of the differ-
ent gold and silica layers as geometrical parameters that allow us to optimize its
performance. Focusing on a nano-oven consisting of three gold layers intercalated
with silica, after a thorough examination of these parameters, with the additional
constraint that metal layers are at least 3nm in thickness, we obtain the optimized
structure considered in Fig. 3.2(b) and (c) (see radii below), operating at a light
wavelength of 690nm. Figure 3.2(b) illustrates that this structure is capable of
concentrating the optical field near the core region, where the field-intensity en-
hancement exceeds 10*. This is remarkable considering that light is impinging from
outside the structure, so that it has to cross several metal layers to reach the core re-
gion. Incidentally, the intensity profile suggests a dominant effect of dipolar modes.
As expected, this results in a substantial increase in temperature (Figure 3.2(c)),
despite the fact that we are considering a moderate pump intensity of 1 GW /m?.

We note that this is an optimum structure from the thermal viewpoint, but it is
not necessarily optimum from the optical view point. As an example, for the simple
gold /silica coreshell nanoparticle depicted in Fig. 3.5(a), the radii of the optically-
optimized structure are Ry=14nm and Ry=17nm, as shown in Fig. 3.4(a). However,
the thermally-optimized structure corresponds to radii R;=23nm and Ry=28 nm,

as shown in Fig. 3.4(b). As a further manifestation of the lack of direct connec-
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Figure 3.5: Optical and thermal properties of optimized nanoparticles with single
(a), double (b), and triple (c) gold shells. In each row, we show from left to right
a scheme of the nanoparticle, normalized extinction and absorption cross-section
spectra, the electric near-field intensity distribution under plane-wave illumination
at a wavelength of 690 nm, and the absorption power density p®"® generated at the
same wavelength with a pump intensity of 1 GW/m?2 The power color scale is
saturated at 1.6 nW /nm? for clarity.

tion between optimum heating and maximum field enhancement, we observe that
the inner gold layer is the hottest one in Figure 3.2, but this is not where the field
enhancement reaches its maximum.

Further insight into the effect of multiple layers can be gained by examining
the behavior of systems with an increasing number of shells. We consider particles
with N = 1 — 3 gold shells in Figure 3.5, optimized to operate at a fixed light
wavelength of 690 nm. The radial distances at the gold/silica interfaces correspond
to the numerical labels indicated in horizontal axes of Figure 3.7(a~c). The normal-
ized extinction and absorption cross-sections (curves in Fig. 3.5) show that all three

nanostructures present optical resonances around the targeted wavelength (vertical
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Figure 3.6: Optical field enhancement in silver/silica structures. We show the
electric near-field intensity distributions at a wavelength of 690 nm for two optimized
structures: a coreshell (a) and a multishell consisting of 3 silver layers (b).

dashed line). Inspection of the electric near-field distributions reveal that these are
dipolar modes. Due to the cascading effect mentioned above, the maximum field
enhancement increases with the number of gold shells, reaching a maximum > 10*
for N = 3.

Incidentally, similar results are obtained by replaying gold by silver, but with
much enhanced field enhancement. We show in Fig. 3.6 the electric near-field in-
tensity distributions for a silver/silica coreshell and a N = 3 multishell, optimized
to render maximum enhancement at a wavelength of 690nm. The silver/silica in-
terfaces are placed at radial distances of 29nm and 32nm in the coreshell, and
5nm, 8nm, 13nm, 16 nm, 42nm, and 45 nm in the multishell. Compared with the
gold/silica structures of Fig. 3.5, we observe larger intensity enhancement using sil-
ver, reaching a maximum > 105. This ~10-fold increase in intensity enhancement
when moving from gold to silver is consistent with the ~3-fold increase in Drude
lifetime 7, and the scaling of the resonance near-field peak intensity as oc 72.

From the near-field intensity distributions, we readily calculate the generated
heat power density using Eq (3.3). The results are shown in the rightmost plots
of Figure 3.5 for a pump intensity of 1GW/m? The maximum of p*" is ~1-7-
221nW /nm? for the N = 1 — 2 — 3 structures, demonstrating the expected cascading
increase in heat power density with increasing N. This high heat power density,

supplemented by the thermal barriers of the alternate metal/dielectric interfaces,
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Figure 3.7: Temperature profiles of optimized nanospheres with single (a,d), double
(b,e), and triple (c,f) metal shells under different external pump intensities. We
show results for multishells made of gold (a-c) and aluminum (d-f), illuminated at a
resonant light wavelegth of 690 nm and 300 nm, respectively. The electron (dashed
curves) and phonon (solid curves) temperatures are assumed to be uniform within
each metal shell (shadowed regions).

contributes to produce large temperature increase at the core.

In Fig. 3.7(a-c), we present calculated temperature profiles for the same three
gold/silica nanoparticles as in Figure 3.5. Under constant pump power, the maxi-
mum temperature increases with the number of metal layers, leading to ~ 600 °C at
the core of the N = 3 structure for a moderate pump intensity of 2 GW/m? (Figure
3.7(c), red curve). Additionally, we observe a clear difference (~ 80°C) between
electron and temperatures in the innermost gold shell.

Smaller nanoparticles typically produce larger field enhancement, and therefore,
also larger heat power generation; now, enlarging the size of the structure causes a
reduction in field enhancement, which is however compensated by the increase in
particle volume, leading to in some cases to higher total heat power. In order to
make clear of these two competitive factors, we study in Fig. 3.8 the influence of the
nano-oven geometrical parameters on its average field-intensity enhancement over

the volume of the central silica core. More specifically, all the geometrical param-
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Figure 3.8: Dependence of the optical and thermal performances on particle size. (a)
Electric-field-intensity enhancement averaged over the volume of the central silica
core for nano-ovens like the one shown in Fig. 3.7(c), with all radii multiplied by
a common scaling factor (vertical axis). (b) Temperature increase at the center
of the nano-oven as a function of the scaling factor under an external pump
intensity of 1 GW/m?, tuned to the scaling-factor-dependent wavelength for which
the enhancement is maximum.

eters of the nano-oven shown in Fig. 3.7(c) are scaled by a common factor ranging
from 1 to 1.8. As the scaling factor increases, the resonance wavelength redshifts
and the maximum value of the enhancement decreases. As a result, the temperature
in the center of the nano-oven also decreases, even though the wavelength is tuned
to the maximum value for each scaling factor.

Recently, aluminum has attracted much attention as a plasmonic material
[154, 155, 156, 157] because it is abundant, low-cost, CMOS compatible, and oper-
ating at shorter wavelengths that can reach the UV regime, which can be important
for photocatalytic processes [158, 159]. We present in Fig. 3.9 a similar study as
in Fig. 3.5, but replacing gold by aluminum, and considering a new resonant inci-
dent light wavelength of 300nm. We conclude that the field enhancements in the
aluminum multishells are much weaker than those of their gold counterparts. Ad-
ditionally, we find that both the central and outer aluminum shells operate more
actively on the quadrupole modes, rather than the dipole modes. Because the TBC
of aluminum/silica interfaces is much larger (~ 7-fold increase with respect to gold,
see details in Appendix C), the temperature variations at multiple interfaces play
a smaller role, so a bigger structure (no longer subwavelength) containing thicker

dielectric shells would be needed to optimize the thermal performance. We further
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examine in Figure 3.7(d-f) the performance of nano-ovens formed by aluminum/silica
structures. The obtained temperature increase is lower than for gold under constant
pump power, an effect that we attribute to both the weaker capability to of alu-
minum to confine the electric field and the large TBC. As shown in Figure 3.7(d-f),
the high efficiency of heat conduction across the aluminum /silica interfaces substan-
tially reduces the temperature jumps, and therefore, the temperature increase at the
core mainly originates in the poor thermal conductance of the silica shells. Although
the central temperature of the aluminum N = 3 nano-oven reaches 200 °C under a
pump power of 2GW /m?, which is only one third of that in the gold nano-oven, it is
still much higher than that in the aluminum coreshell structure, thus demonstrating
its advantage to enhance the photothermal effect in the UV regime.

We anticipate that comparison of model calculations and future experiments
could shed light into the different thermal parameters involved in the nano-oven,
including the effect of nanostructuration and the role played by the detailed phonon
dispersion relations [160]. Additionally, as shown in Fig. 3.10, we find our simula-
tions to be rather robust with respect to two details of the thermal dissipation model:
the assumption of two different temperatures in the electron and lattice systems of
the metal; and the temperature dependence of the electron-lattice TBCs in the
metal/dielectric interfaces. Figure 3.10(a) is copied from Fig. 3.7(c). In Fig. 3.10(b)
we present results from a one-temperature model, obtained by setting the electron
and lattice temperatures equal in the metal. The two- and one-temperature models
lead to similar temperature profiles, and in particular, they predict a similar increase
in temperature at the core region. Finally, because the experimental determination
of TBCs is sensitive to sample preparation [161] and interfacial imperfections [162],
possibly leading to smaller TBCs than those assumed in this work (see Appendix C
fow the details), we analyze in Fig. 3.10(c) the effect of eliminating the temperature
dependence in electron-lattice TBC by making these coefficients equal to a constant
value, so that the total TBCs are given by 187 MW m™2K™!, taken from Ref. [68].
Using this assumption together with the one-temperature model, a higher increase
in temperature is predicted at the core region, as shown in Fig. 3.10(c), although
the effect is not dramatic.

Beyond this work, we expect that there is plenty of room to further improve

the performance of nano-ovens in terms of thermal management. For example, by
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Figure 3.9: Optical and thermal properties of aluminum-based nano-ovens. We
show results for optimized nanoparticles with single (a), double (b), and triple (c)
aluminium shells for the same geometrical parameters as in Fig. 3.7(d-f). In each
row, we show from left to right a scheme of the nanoparticle, the electric near-field
intensity distribution under plane-wave illumination at a wavelength of 300 nm, and
the absorption power density pa.ns generated at the same wavelength with a pump
intensity of 1 GW/m?.
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Figure 3.10: Model dependence of the calculated temperature profiles. We show
calculated temperature profiles under different external pump intensities (see labels)
for a gold/silica nano-oven using different models: (a) two-temperature model with
temperature-dependent electron-lattice TBCs at the gold-silica interfaces (this panel
is the same as Fig. 3.7(c)); (b) one-temperature model (i.e., the electron and
lattice temperatures are set equal in the metal regions) with temperature-dependent
electron-lattice TBCs; (c¢) one-temperature model with a temperature-independent
total TBCs of 187TMWm 2K~

making rough interfaces [163] or by inserting organic molecules between otherwise
closely attached metal/dielectric layers [164], one can significantly reduce the TBC,
thus leading to higher temperature increases under constant light pumping intensity.
A similar effect could be exploited in the outermost metal/water interface, for ex-
ample by decorating it with hydrophobic groups [165, 166]. Additionally, the TBCs
of interfaces formed by plasmonic metals and other dielectric materials beyond silica
are only poorly known, thus demanding further exploration of their performance as
nano-oven dielectrics, which could contribute to elucidate their thermal properties

with application in the optimization of heat management in nanoscale devices.

3.3 ENHANCEMENT OF THE INTERNAL PRESSURE

Each curved interface introduces a pressure difference due to the surface tension.
For solid-liquid and liquid-liquid interfaces, this is the so-called Laplace pressure,
the increase of which at the interface between media 1 and 2 is given by 275/ R,
where Ry is the radius of curvature of the interface and -y, is the interfacial energy.
Instead, we are dealing with solid-solid interfaces, for which the expression above

needs to be changed to Apintrinsic = 2712/ R12 + C, where both C' and 15 can be
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Figure 3.11: (a) Schematic view of the plasmonic nano-oven. (b) Lifted internal
pressure. The incident light has an intensity of 1GW/m? and a wavelength of
690 nm.

expressed in terms of the shear modulus of the outer medium G, the bulk modulus
of the inner medium K, and the stress of the interface h, as discussed in the
literature [167, 168]. More precisely, 12 = mh, where m = 1/(1 + 4G /3K), while
C' = 4me( originates in the deformation of the interface, with a characteristic strain
that depends on actual size [168] (we take € ~ —0.0017 as an average value valid
for the nanometer-sized layers). Plugging values for gold [169] (Ggoa = 27 GPa,
Kyoa = 180GPa) and silica [170] (Gsiica = 31 GPa, Kgiica = 37 GPa), and using
a typical stress h ~ 1N/m [168], we find 72 = 0.8N/m and C = —0.2GPa
for a gold/silica (inner/outer) interface, and 712 = 0.5N/m and C' = —0.1 GPa
for a silica/gold one. Both the constant and the 1/R;y terms of this intrinsic
pressure contribute with values of the order of the GPa. Another major source
of pressure originates in thermal stress, which has been recently measured in core-
sell nanoparticles [171]. Because the linear thermal expansion coefficient 3 is about
25 times larger in gold than in silica, we can neglect the effect of the dielectric and
estimate this source of pressure increase as Apihermal = 38gold (Lgola — 10) K gola UsIng
Baw = 14.2x 1079 K1 [171] (e.g., we have Apipermal ~ 4 GPa for Tyo1a — 1o = 500 K).
The expression Apintrinsic +APihermal 18 Used in this work to estimate the concatenated
increases of pressure in Figure 3.11. Incidentally, Apipermar is dismissed for the
outermost layer because it can freely expand.

The large internal pressure combined with the high temperature can has
important potential applications. As a specific example, the polymerization of
cyanogen, which is a rather toxic substance in its standard phase, requires high

pressure (~GPa) and temperature (~ 400°C), which are typically achieved in a
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diamond anvil cell (DAC) [172, 173]. When using the nano-oven, the reaction of
cyanogen polymerization could take place inside the core region, which is isolated
from the environment. Importantly, this reaction could be triggered using a

moderate input light power, thus resulting in higher energy efficiency than with
DAC-based methods.

3.4 (CONCLUSIONS

In summary, in the first part of this chapter, we explore using dielectric@metal
coreshell nanoparticles to enhance the emission intensities of UCNPs located in the
center of dielectric cores. Optimal structures are found under different pump con-
ditions with realistic parameters. This study can guide the rational synthesis of
interested structures in experiments.

In the second part, we have designed an optimized plasmonic nano-oven based
upon gold/silica multishells driven by visible light. Compared with a conventional
coreshell nanoparticle, our proposed nano-oven is capable of simultaneously produc-
ing a huge electric field enhancement, a large temperature increase under moderate
pump intensities, and a large pressure in the core region. The extreme conditions
created at the core of nano-ovens provide a fantastic platform for the study of phys-
ical and chemical processes in which cooperative optical-field-, temperature-, and
pressure-driven effects can take place [174, 175, 176, 177]. For example, band gaps
and fluorescence intensities of organic and inorganic crystals can be tuned by ap-
plying different levels of pressure [174, 175, 176]. Also some phase transitions occur
under extreme pressure and temperature conditions [177]. These effects could have
potential application to optical memories, as already explored for homogeneous gal-
lium nanoparticles [178]. The study of these types of transitions taking place at the
core of nano-ovens could be facilitated by the availability of colloid methods for the
synthesis of the multishells under consideration [179]. As a related direction for ex-
ploration, phase transitions in the multishells themselves should result in even more
dramatic changes in pressure. Similar to what has been recently demonstrated for
larger multi-particle structures [73, 74], a single multishell could eventually explode
like a nanobomb, ignited for example by an intense pump laser pulse, which could

be used to kill cancer cells.
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CHAPTER 4

CONTROL OF LIGHT SCATTERING
USING ATOM ARRAYS

In this chapter, we explore the ability of two-dimensional periodic atom arrays to
control light scattering, and specifically produce light amplification. We develop an
analytical theory for three-level scatterers, which reveals a rich interplay between
lattice and atomic resonances. Our results provide a general background to
understand interaction between light and periodic atomic arrays, with promising
applications in the manipulation and control of coherent photon states at the
nanoscale. In the following, we first present an introduction that motivates this
study, which is followed by detailed computations of light reflection and transmission

of three-level atom arrays.

4.1 INTRODUCTION

As partially mentioned in the introduction of this thesis, section 1.4, periodic arrays
of light scatterers have the ability to enhance the optical near-field intensity due
to the accumulation of in-phase scattering wave components. This is neatly illus-
trated by an infinite linear array of point scatterers illuminated with a plane wave
of momentum and electric field both perpendicular to the array direction [180]: the
field induced on any given scatterer by the rest of the array diverges as the series
1+ 1/2+1/3+ ... when the wavelength is equal to the period; this divergence
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prevents the induction of polarization on the scatterers, thus rendering the array in-
visible under these conditions. Such types of lattice-sum divergences lead to Wood’s
anomalies [107, 181], extraordinary optical transmission [85], complete optical reflec-
tion, and large near-field enhancement, which are phenomena generally describable
in terms of lattice resonances [27]. Interestingly, complete reflection is observed even
in the limit of small scatterers at the cost of narrowing down the spectral features
and lowering their tolerance to structural defects [182, 183].

A good example of small scatterers is provided by lossless quantum emitters
incorporating two nondegenerate electronic levels, which are well-known to offer
an optical cross-section 3\%/2m for light of wavelength A. For a properly designed
focused light beam, an individual atom is predicted to produce complete reflection
[184], while an experimental realization of this idea has achieved > 10% extinction by
an individual 2-level molecule [185]. A similar effect takes place in one-dimensional
waveguides, where a single 2-level scatterer also leads to complete reflection [186].
Likewise, the ability of two-dimensional (2D) arrays of small scatterers to produce
complete reflection [182] has been theoretically illustrated by considering 2-level
quantum emitters [86], again relying on lattice resonances [27].

In a different context, optical gain, as introduced in section 1.5, has attracted
great interests in nanophotonic community. There are lots of works in studying
interactions between assembles of active quantum emitters and plasmonic nanos-
tructures in a macroscopic manner [92, 93, 94, 95, 96, 97, 98, 99, 100]. Arranging
these microscopic active emitters into regular arrays should produce interesting in-
terplay between lattice and atomic resonances with gain.

In the following, we investigate light scattering in 2D periodic arrays of
externally-pumped 3-level atoms. Specifically, we calculate light reflection and trans-
mission coefficients, revealing rich phenomena with various pump strengths and lat-
tice periods. We reach these results by formulating an analytical model in which
the atoms are described through their polarizability obtained from a density-matrix
formalism including gain, while the array periodicity enters through dipole-dipole

lattice sums.
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4.2 LIGHT REFLECTION/TRANSMISSION ON ATOM
ARRAYS

In this work, we consider 3-level identical atoms (electronic energies gy < higg < heg,
see Fig. 4.1(b)) arranged into a rangular 2D array (see Fig. 4.1(a)) under resonant
pump illumination at frequency w’ = €3 — ;. Following pumping from level 1 to 3,
we assume the system to rapidly decay nonradiatively from 3 to 2. We are interested
in the subsequent radiative decay from 2 to the ground state 1, which affects the
scattering of light near the resonance frequency wy = €5 — €.

A general quantum mechanical method to describle atoms interacting with
photons have been introduced in Appendix D. Here, for completeness, we will
recall it in a brief manner. Then, the lattice sum and a derivation of reflection
coefficient are presented. Combine these knowledges with polarizability of atoms as
well as electromagnetic Green tensor in Appendix E, we proceed to compute light
reflectance, transmittance, and absorbance of 2D atom arrays.

The internal temporal dynamics of the atoms in the array is governed by the
Hamiltonian H(t) = H* + H>d + H2t—rad 4 HE(}), where H* = By, &]li)(li] and
Hed = Y, whala, describe the free atoms (electronic states |li) with i = 1 — 3
for each of the atoms [ at positions r;) and radiation (photon modes n with
creation and annihilation operators af and a,), the term H*® 24 =" . (g% nal +
gnlii/an)(a;ii, + o) accounts for light-atom interaction (coupling coefficients gpi),
H(t) = — Y digr - B () (0., 4+ 04530 ) represents the interaction with the external
field EPXt(t) = EPUP(r;)e ! L EP™ e~ tc.c. [pump and local probe at frequencies
W' and w|, and we have defined atomic-transition operators oy = |l7)(li'| and their
corresponding dipole elements d;;; = —e(li|r — r;|li') (independent of 1).

We treat the external field semi-classically and assume that the emitted photons
are excited into coherent states [187, 188, 189] (see section 1.5 for more details). This
approximation allows us to factorize the density matrix of the entire system as the
product of radiation and atomic subsystems p = p™d @ II;p2, substitute the photon
operators by their complex-number expectation values, and write a self-contained
equation of motion for each atom [ as p* = (i/h)[p3*, H(t)] + L[p}*], where the
Lindblad term L[p3*] = > (7iir/2) (205i/ip?ta;i,i — 0ot — p?talz,iali/i) describes
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Figure 4.1: (a) Schematic view of a 2D square array (period a) of point scatterers
with gain, pumped and probed with light plane waves of field amplitudes EP*™ and
EProbe | respectively. (b) Energy diagram of a 3-level individual emitter defining the
optical transition of frequency wy and the nonradiative damping rates v, and y35. ¢
Population difference dn of the system in (b) as a function of normalized pump and
probe intensities. The inset is a zoom of the low-intensity region. d Dipole lattice

sum Re{a*Gy, (k),w) for polarization along y as a function of light wavelength A
and parallel wave vector k)| = kX along the x direction.
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nonradiative i — ¢’ transitions (in practice, we only include 3 — 2 and 2 — 1 at
rates ysp and a1, see Fig. 4.1(b)).

At this point, we assume a uniform pump acting with the same strength on
all atoms and an incident probe plane wave having a wave vector component k;,
parallel to the array . This wave vector is inherited by the linearly induced dipoles
pi, where the dependence on in-plane atom position r; = (z,y;,0) comes from
both the spatial variation of the external field and the relative atomic arrangement.
Following a well-established procedure [27, 39], the component of the induced dipoles

kyyri=iet 4 cc., where p = a(w) - EX°

at the probe frequency w reduces to p; = pe
is a position-independent dipole amplitude (evaluated from the local probe field
acting on the atom at position r,—y = 0) and «a(w) is the atomic polarizability
tensor. Additionally, E¢ is the sum of the incident probe EP™"¢(0) and the field
induced by the rest of the atoms, which admits the self-consistent form [27, 39] El*® =
[1 - G(ky,w)- a(w)}_l-Epmbe(O), where G(Kj|,w) = Y0[w? /24 Vy, @V, JeI™ ry s
a lattice sum that describes the electromagnetic dipole-dipole interactions, excluding
self interactions (I = 0 term).

The atomic polarizability is affected by the pump through changes in the
population difference dn = ps — p3t. (Note that under the assumed conditions
all atoms are equally pumped, so their populations are independent of [.) A
detailed nonperturbative solution of the equations of motion for the component
of frequency w under the rotating-wave approximation and neglecting higher-order
harmonics allows us to obtain the induced dipoles directly from the expectation
values p = ¥ disrtr{pt, (ol + 03)}, from which the atomic polarizability is found
to be (see Appendix D for a detailed derivation)

1) 2woon di, ®dyo 193
a Hw) = _
h (w4 iy21/2)? — Wi 3c3

where the last term originates in the imaginary part of the dipole self-interaction,
while the real part of this term is effectively absorbed as a vacuum resonance-
frequency shift [190]. The population difference admits an involved analytical

expression that is derived in the Appendix D. It is however illustrative to consider

"'We neglect interatomic interactions at the pump frequency because the corresponing atomic
polarizability issmall under the assumption of large v3o.
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the 32 > 91 limit near resonant probe illumination conditions (0 = w — wy < wy),

which permits us to write

B —14+7
1+ 8Z(1+ 3Ty01/2732)/ (1 + 462 /43) + T

on

2
are the pump and local

Here, ' = [EPuP/ERP® and T = |EProbe/ BRI
probe field intensities normalized to their respective threshold and saturation values
Efres = 2hy/Y21732/d13 and EPP — Bryy /dy, Tespectively. We plot én for w = wy
in Fig. 4.1(c), which shows that the full range dn € [—1,1] is reached. In what

follows, we use dn as an input parameter controlled by the combination of pump

and probe intensities.
For concreteness, we consider a planar atom array sitting in the z = 0 plane
and having specular symmetry relative to the x = 0 plane. For simplicity, we
assume that the atoms can only be polarized along y (i.e., all induced dipoles
p; = py are collinear and oriented along y). Under illumination by a plane wave,
we then need to consider the incident electric-field component in the z = 0 plane
EPrebe(z,y,0,t) = EProPeeliRIWl 4 ¢ ¢ where w is the frequency, k| = (kg ky) is
the parallel component of the wave vector, and we use the notation R = (z,y).
Using Eq. (E.17) and the methods described in more detail in Refs. [27, 39], the
ik),

induced dipole moment can be written as p; = pe'¥II'® with amplitude

Eprobe

p= 1 4.1
1/a(2) — Gy i) -y

where Gy, (k|,w) is the yy component of
Glkj,w) =D G(Ry) e ™I, (4.2)

1£0
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in which the sum runs over atomic lattice sites R;, omitting the atom at the origin

R,—o = 0. We now introduce the identities

ikr 2
e :i/C“QQeiQ-RJrikfz|’ (4.3a)
r 2rky

A 272
>R = 2m) A) > 5(Q—g), (4.3b)
I g

where Q = (Q,, Q) is a 2D wave vector, g runs over 2D reciprocal lattice vectors,

A is the unit-cell area,

K¢ = /K2 — Q2 +i0+,

and the square root is taken to yield a positive imaginary part. Making use of Egs.
(E.16) and 4.3 for the evaluation of Eq. (4.2), we find [27, 39]

ny(kn, w) = lim

z—0

g Ak} ok
(4.4)

Upon inspection of Eq. (4.4), we find that the imaginary part of Gy, (k,w) can be
obtained analytically [27, 39] as

Tm{G,, (k,w)} = 22 %Re { %} — 2k3/3, (4.5)

while the remaining real part needs to be calculated numerically. The convergence
of the series in Eq. (4.2) is however slow, so we use the dedicated methods developed
by Kambe [191] in the context of low-energy electron diffraction.

The reflectance of the array can be now obtained by noticing that the electric
field generated by an individual dipole p placed at the origin is given by

ikr

. e
E = [k’p+ (p- V)V] .

(4.6)

81

2mi . |k +gl [ d*Q e,
> — g e (Il ) [ = O+ )] -1 [ e 02 - Q2



CHAPTER 4. CONTROL OF LIGHT SCATTERING USING ATOM ARRAYS

(see Eq. (E.16)). Summing over all dipoles in the array and using Egs. (4.3), the
reflected field reduces to

?Q . : .
Ef — ip Z/ %elQ'(R7R1)+1k?|Z\e1kH.Ez {kzy ~Q, (Q + sign{z}k’fi)}
) 2k

=ip ) Sgexp [i(k| +g) R+ iklf'+g||zq ,
g

where

2m
Sg - Ak|f|\+g|

k*y — (ky + gy) (k +g+ sign{z}k!l_('Jrgi)] .
For specular reflection (g = 0), we have

SO ==
AR

2
T K25 — ky (k) + signzk)'2)]

Because the dipoles are all oriented along y regardless of the orientation of the
incidence field, the array will reflect cross-polarized beams in general, unless k| is
directed along a symmetry direction of the array. For in/out s-polarization, the
reflection coefficient reduces to

B is

- 1/a(w) - Gyy(kyjw)’

r (4.7)

where S = 2mk? /Akﬁ'. The transmission coefficient ¢ = 1 + r, and absorbance
A =1—|r|?>—|t|>. These coefficients are dominated by the w = wy pole of a(w) and
the lattice resonances of Gy, (kj,w), the real part of which is plotted in Fig. 4.1(d).

We plot in Fig. 4.2(a,b,c), respectively, reflectance (R = |r|?), transmittance
(T = |t|*), and absorbance under normal incidence as a function of én and a/\,.
We assume a small nonradiative decay rate v,; = 0.01 vy compared with the natural
radiative decay rate vy = 4wid,/3hc3. The shared colorbar is shown in Fig. 4.2(a).
It is saturated at -2 and 2 for visual convenience. Figure 4.2(d,e,f) show the values
at vertical cut lines in Fig. 4.2(a,b,c) with the same color codes. We can conclude
that by tuning the population inversion dn via the external pump light strength,

the scattering properties of probe light can be dynamically controlled. Specifically,
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Figure 4.2: (a-c) Reflectance, transmittance, and absorbance under normal-
incidence resonant-wavelength (A = Ay = 2mc/wy) probe illumination conditions
as a function of population difference dn and period-to-wavelength ratio a/Ag. (d-f)
Cuts through (a-c) along the indicated vertical dashed lines with the same color
code. We take the ratio between nonradiative and radiative scatterer decay rates to
be y21/70 = 0.01 in all plots.
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when the pump light is relatively samll (—1 < dn < 0), the system is dissipative for
probe light. Both the values of R and T are within [0,1], and the values of A are
within [0,0.5]. We emphasis that nearly perfect reflection is reached when én = —1,
i.e., no pump light. In this condition, the three-level atoms behave like two-level
atoms. Incidentally, complete reflection can be realized if v, is assumed to be zero,
which is the key result in Ref. [86]. Also, 0.5 is the upper limit of absorbance of a
free-standing optically thin material [39]. When the pump strength is enhanced to
make the system enter into gain region (see Fig. 4.2(f)), both the R and T can be
highly amplified, leading to a peak of negative absorbance. This is signalled by a

minimum of |1/a — Gy,| (i.e., a lattice resonance, see Eq. (4.7)).

4.3 (CONCLUSIONS

Our study demonstrates a vivid picture of interplay between lattice resonance
and externally pumped atoms. Interesting phenomena for probe light, such as
nearly total reflection, maximum absorption, complete transmission, and large
amplification can be realized in a single platform by tuning pump intensity. These
results have general applicability to 3-level ultracold atoms trapped in arrays, which
can now be configured on demand [192]. Also, they can be readily extended to
other atomic electronic structures, or even to particles containing a large number
N of optically pumped atoms, for which the effective atomic radiative decay rate
Yo is simply multiplied by a factor N. In a different context, atomically thin
transition metal dichalcogenides (TMDs) host strong localized quantum emitters
[193, 194] that could be eventually arranged in periodic arrays to provide a
robust implementation of these ideas. A different possibility could rely on the
strong scattering offered by single-layer TMD excitons [195, 196], in which periodic
modulation could be introduced through defects [197], electrical gating [198], or
structured optical pumping. Quantum dots offer yet another platform, which can
also be strain-induced periodically [199]. A more classical realization would consist
of macroscopic metamaterials operating at lower frequencies [200], which could

incorporate gain through active electronic circuits (meta-atoms).

84



CHAPTER 5

CONCLUSIONS

In this thesis, we have carried out several theoretical studies of geometrical and
gain effects in nanophotonics. We present an overall conclusion of these works and
discuss related perspective in this final chapter.

In Chapter 1, we start with theoretical descriptions of both SPPs and LSPs,
which are followed by introductions covering various topics (i.e., absorber, pho-
tothermal effect, particle array, and gain) on which this thesis focuses.

In the first part of Chapter 2, we design a grating with shallow grooves that
perfectly dissipates incoming light within an ultranarrow band. We further demon-
strate it as a coherent thermal emitter and recover its potential application for very
sensitive index sensing. This grating-based absorber as well as many other kinds of
ultra-narrow band absorbers rely on delocalized resonances, which limit minimiza-
tion of their spatial sizes. In order to address this problem, in the second part of
the chapter, we propose a general method to guide rational design of narrow band
absorbers but with small footprints. The method is assisted by incorporating gain
media to partially compensate the loss in metal constituents, which provide the pos-
sibility to dynamically tune the performance via pumping. We apply it in designing
three absorbers with different absorption mechanisms. The advantage of their ap-
plications for sensing compared with their fundamental-mode counterparts are also
discussed. Beyond the scope of this work, we anticipate that adopting pure dielectric
structures might eliminate the use of gain, which will make devices simpler.

In the first part of Chapter 3, we study the strategy of using metallodielectric
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coreshell nanospheres to enhance emission intensities of upconversion nanoparticles
embedded in the core. Optimized structures are identified under different excitation
power regimes using realistic material parameters. In the second part, we proceed to
investigate more complex multilayer nanospheres. Remarkable properties of field en-
hancements and internal temperature/pressure increases are revealed. Particularly,
we include thermal boundary conductance (TBC) in the study of photothermal ef-
fect, and point out its important role. But, the reliable data of TBC of different
materials in different temperature regimes is scarce. So, in the future, more accu-
rate measurements of TBC values of nanostructures that chemically synthesized are
highly needed. In addition, experimental implementations of the theoretical work
are desired to test some appealing predictions, such as nanobomb for cancer therapy.

In Chapter 4, we study probe light interacting with externally pumped regular
three-level atom arrays. We treat the electric field semi-classically and the atoms
quantum-mechanically. A rich interplay between lattice and atomic resonances is
predicted. It is found that for certain values of the lattice constant, an atom array
can dynamically display nearly perfect reflection, maximum absorption, complete
transmission, and large amplification of probe light, which is realized through tun-
ing the pump strength, and therefore through the population inversion. Now, re-
searchers are already able to manipulate atoms in vacuum and arrange them into
regular arrays, therefore suggesting a possible venue for the demonstration of our
ideas. In a different context, periodic quantum emitters in two-dimensional materi-
als and periodic meta-atoms with gain might provide another two simpler platforms

to test our theory and realize atomically-thin light amplifiers.
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APPENDIX A

(FENERALIZED MIE THEORY

A.1 INTERACTION BETWEEN MULTILAYER CYLINDERS

AND PLANE WAVES

In this section, we present an analytical method to study the interaction between
coreshell/multilayer cylinders and plane waves. This method is used in section
2.2 to fastly optimize absorption cross-sections of the coreshell cylinders. Here,
we are only interested in TM modes, i.e., the impinging light has its magnetic
field aligned with the cylinder axis. Figure A.1 is a sketch of a general cylindrical
interface with radius a. The inside/outside refractive index is denoted by n;/s.

Also, H/° is the inside/outside magnetic field, and E;/ ° is 6 component of the

Figure A.1: A sketch of electromagnetic fields at a cylindrical interface.
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electric field inside/outside. The magnetic field can be written as H/°(p,0) =
Stee  H™/°(p)exp(im#), where m takes integer values. Each order can be

expressed as a superposition of Bessel and first kind Hankel functions
H;mi/o(p) = aiéoc]m(ki/op) + biréOHfT})(ki/op)' (Al)

Because Ey = (1/iweeg)(0H,/dp), so, the corresponding electric field is

m,i/o k 1 i/o i/o ’
E@ i (p> =T |:an/1 J;z(ki/op) + br{L HT(T%) (ki/op)} . (AQ)

1WEQ Ni/o

By applying the continuity conditions of the electric and magnetic fields at the

interface (i.e., H™ = H™° and Ej"' = E}"°), one gets the scattering matrix as
a?n — (Dm>_1 . MH M{g aim
b Mg Mg ) \b.)

D™ = n;J! (koa)HW (koa) — nidp (koa) HY (koa),

where

M = noJ! (ka)HY (koa) — nyJp (kia) HY (koa),
My = noH( (ki )Hr(n (ko) — nH (k a)HT(;)/(/{:oa),
M = niJm(kia)J), (koa) — ned,, (kia) I (koa),

a

M3y = niH, 1)(k a)J! (koa) — noHﬁ),(kia)Jm(koa).

The prime denotes differentiation with respect to the argument.

A plane wave with unity amplitude in 2D can be written as exp(ik - r) =
St i), (kp)e™?. Combining the external source with the scattering matrix,
one can finally have the full field distributions in 2D space, as well as the absorption

cross-section of the cylindel [l 13]
Cabs - )\* g [|D |2 + Re {(—1) b }] (A3>
T m m )

where the superscript h of b, refers to the host medium.
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Figure A.2: Mie scattering coefficients at a spherical interface.

A.2 INTERACTION BETWEEN MULTILAYER SPHERES

AND PLANE WAVES

In this section, we present an analytical method to compute electric field distribu-
tions of multilayer nanospheres illuminated by external plane waves. The method
is used in section 3.1 and 3.2. We extend the Mie theory [148, 149] to rigorously
simulate the optical response of multishell nanoparticles. This analytical method
allows us to carry out fast calculations in order to search for optimized structures.
More precisely, we focus on monochromatic light of frequency w and consider the
spherical waves hosted by each homogeneous spherical layer n in the multishell. We

have outgoing spherical waves [201, 202],

Efia (1) = (LA () Vi (£), (A1)
J+1
Efyin(r) = ===V x LA (k) Yin (), (A.5)

and incident spherical waves,

B (r) = i i (ko) Yim (£), (A.6)
i il+1 . A
E,p(r) = _Tv X L ji(knr)Yim(F), (A7)
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which we label with orbital angular momentum numbers [ = 1,2,... and m =
—l,---,1, as well as with an index ¥ =E and M for transverse electric and magnetic
polarization, respectively. Here, L = —ir x V is the angular momentum operator,
hl(ﬂ = —y; + ij; and j; are spherical Hankel and Bessel functions [203], Y}, are
spherical harmonics, k, = (w/c)/€, is the light wave vector in the medium, and
€, is the permittivity. Scattering at a spherical interface (r = a) formed between
media n (for r < a) and n + 1 (for » > a) can be easily described in terms of Mie
scattering coefficients /5", ¢ FE and 70" implicitly defined through
the expressions for the electric field produced upon incidence from either the inner

or the outer side of the interface (see Figure A.2):

[Eno + Zjn+1Enl :|0(Cl—7“) _t?yn—i—lEn-l—loe( )7

Ilmv Ilm,v Ilmv
+1n n,i n+1,i ~n+1npn+l,0
Elml/0< ) [Elmu +r T Elmu } Q(T - a)‘

Notice that [, m, and v are conserved upon reflection or transmission at the interface.
Additionally, the scattering coefficients are independent of m. They are obtained
from the continuity of the parallel electric and magnetic field components at the
interface. Their detailed expressions for the r = a interface separating generic

media 1 (within r < a) and 2 (within r > a) are as follows:

iz = A {p2h{? (o) [nf" <p2>]’ — puh P (p2) [ (1))}
tig = Apr {hz(ﬂ (p1)31(p1) = Gi(p1)[h " (o) /}

i =B {ah” <m>[mh§”<m>] — e (p2)
tiz = Beipr {h(+)(P1)j/(Pl) Jilp )[ (Pl)
it = A {pagi(p1)7i(p2) = prin(p2)7i(p1) }

i = Aps {7 (p2)di(p2) = ip2) B (p2)]'}
i = B {enji(pr)[p2i(p2)) — ‘52]l(p2)[:01]l(:01)],}
i = Besps {hi7(p2)3i(p2) — i(po) [y P (o))}

i (o)}

[
I}
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where

(018 (02)t(p1) — o o)W ()]

A=
B = [exhi ™ (p2)[pri(p1)) — evju(p)[oahy ™ (p2)]]

p1 = (wa/c)\/e1, p2 = (wa/c)/€, and the prime denotes differentiation with respect
to p; and ps.

The electric field within each layer n is then expanded as a sum over the above
spherical waves. We use the convention E(r,t) = E(r)e ! + E*(r)e“!, with the

field amplitude written as

E(r) = Y |0 B (1) + b, B, ()]

Ilmv

'

We obtain the expansion coefficients aj},, and b, by solving the linear set of

Ilmv
equations
n _ .nntl n rn+lngn+l
vy = Tl Ay + tlu blml/?
n+l _ ygnntl n ~n+1lnint+l
Ay = tlzx Ay + T blmy?

resulting from expressing the components leaving the n/(n + 1) interface in terms
of the scattering of the waves coming into it. The source is provided by the external
illumination in the surrounding medium, for which we consider an incident plane
wave, whose spherical-wave decomposition is as follows [202].

We consider the electric field of the incident wave is written as [149]
Eext _ geiK-r, (AS)

where € is the polarization vector with |é] = 1, and K is the momentum of the
impinging light with |K;| = (w/c¢)\/Entin, where the subscript h refers to the host

medium. The multipole coefficients of the spherical waves decomposed from the
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plane wave are [201]

bimar = (47T 1)1+ 1)] - G () -
bimar = (47T /1/(1+1)] - (1, (Q) - (€ x K)/ (kopto),

where €2 denotes the polar angle of K,

Gim(£2) = LY (€2)
= [C1 Y1 41(2) /2 + C_Yiy1(2) /2, 101 Y41 (2) /2 + 1C-Yin-1(€2) /2, MY ()]

and Cy = \/(l +m + 1)({ Fm). Note that the plane wave is only the superposition

of different orders of spherical waves generated by the sperical Bessel function j;.
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INTERACTION BETWEEN MULTILAYER
SPHERES AND POINT ELECTRIC
DIPOLES

In this section, we describe a method to compute the interaction between a multilayer
nanosphere and a point electric dipole located in the core, which is used in section
3.1. Figure B.1 is a schematic view of the considered configuration. The dipole is
located at any position in the core with any orientation. The first step is to use
the multipole sperical waves to express the dipole fields in terms of them. Through

some algebra, we can find the expressions of three mutual-orthogonal unit dipoles,

5 ) 47
Edip<r) = _1k3\/ ?E?,O,E(r)a

2 P VY |
Ejy(r) = =ik 55 B! () — B g(0)],

- ) 47 1
Edp(r) = —ik® 34 [E?,fl,E(r) + E?lE(r)] ;

where the superscripts of the left sides 7 (i = x,y, z) denote unit dipoles along z, y, z
directions. The sperical waves have been defined in Eq. (A.5). In this section, the
superscripts o and i are replaced by h and j, respectively, to explicitly show that

they are generated by spherical Hankel or spherical Bessel functions.
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(a) < ? (b) 2nd step
i >
E y
1 0
- J} : J A\ o
= i n U 1st step

Figure B.1: (a) An electric dipole located in the dielectric core coated by an
additional dielectric layer and a metal shell. (b) Transformation from the lab
coordinates to the dipole coordinates.

The centers of the above harmonics are located at the dipole positions. So, the
second step is to decompose them into sums of a series of sperical waves, whose cen-
ters should be at the origin of the coordinate. We follow methods similar to those
of Ref. [202]. For simplicity, we will assume the dipoles are located at the negative
part of the z axis.
For Ef ., 5(r), in region i, we have Ef ,; p(r) = 2y {@?f,ﬂ,EE{',ﬂ,E(r) + 90{',1[1,ME{'¢1,M(1')]’
where go{,m’E M= 2 Y}I,ET{%LEGlmlm I’ takes integers counting from 1 to a maximum

value I . Also, [ takes values of I’ and "+ 1 (all other values lead to trivial results,

max*

see the expressions for 7" below). The Green function can be written as [204]

U4
Gy = Va3 V2T TG (kid) < U'm|"0|im >, (B.1)
l// ‘l l/|
where < I'm/|l"m/|lm >= [dQY} /()Y (W)Y, () is the so-called Gaunt
integral.

The translation operator is written as

TZ/EEL Im = = O + kdpym,
" mZm = kdqym~/€is
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where pum = 01110 Divion — 61-10Dim: Dim = (i/1)y/(12 —m?) /(412 — 1), and
Qurm = moy [1/(L+1).

In region ii, the field is decomposed as a series of spherical waves generated by
sperical Hankel functions. E]f,il,E(r) = v [wﬁ,il,EE?’,ﬂ:l,E(r) + Qol@,j:l,MEl@,jzl,M(r)L

h _ E/ME ~phh,
where ClmE/M = 21 Ty, Glim» and

U+l
Ghln = Var ST V214 T (kid) < Um|I"0)im > (B.2)

=11

For Ef (r), in region i, E} g x(r) = ¥ @{,OEE{,@,E(I'). In region ii, Ef j x(r) =
2 SO?OEE?,O,E@')'

After knowing the sperical waves, whose centers are at the origin, as sources
plus their scattering coefficients at the multiple spherical interfaces as presented in
section A.2, we can obtain the induced field E;,q. Then, we know coupling strength
between the electric dipole and the electromagnetic modes acting on it through
calculating the total decay rate [21, 205]

2
'=To+ ;Im{d" Ea}. (B.3)

where d is the transition dipole matrix element, 'y = 4k3|d|?/3/h is the decay rate
in free space. The normalized LDOS presented in section 3.1 is equal to I'/T'y. The
radiative part of the total decay rate I'gpission Can be computed by intergrating the
Poynting vector at a surface enclosing the whole structure. Also, the normalized
LDOS; a4 is equal to Iepmission/T0. When the dipole is oriented along the z axis, we

have
1
LDOSaq = 5 I+ 1)\@?0’E|2\/5_h. (B.4)
!
When the dipole is along the z or y directions, we find

1
LDOSyq = 3 211 +1) llaf 16 VEn + laf s v/ VER] (B.5)
l
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where ¢y, is relative permittivity of the host media.

For an electric dipole with any orientation (e.g., it is along the z/ axis in
Fig. B.1(b)), we just need to firstly project it onto axies as p, = p - sinf - singp,
py = P -sind - cosp, and p, = p - costl. Then, we calculate the induced fields of each
of these components, respectively, and sum them up at last.

So far, we always consider the dipole to be located in the negative part of z
axis. For a dipole with any position in 3D space, we just need to rotate the lab
coordinates to make the dipole sit on the z axis of the new coordinates, which are
named dipole coordinates (see Fig. B.1(b)). Then, we do all the computations in
the dipole coordinates. Finally, we transform the values of the electric fields back
to the lab coordinates. Specifically, as shown by Fig. B.1(b), the rotation consists
of two steps. First, we rotate around the = axis by 6. Second, we rotate around the
z axis by (. These rotations can be described by two 3 x 3 matrices R, and R, re-
spectively. So, the relation between dipole moment p’ in the dipole coordinates and
dipole moment p in the lab coordiantes is expressed as p’ = R.R,p. The relation
between electric fields in the two coordinates is E = (R.R,) 'E’. The expressions

of the two matrices are as follows:

1 0 0
R,=|0 cosf® —sind |,

0 sind cosd

CoSp —cosfsing —sinfsinp
R, = | cosfsing cosp + sin?0(1 — cosp)  —sinfcosh(1 — cosy)
sinfsing  —sinfcosf(1 — cosp)  cosp + cos*H(1 — cosy)
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HEAT TRANSFER SIMULATIONS IN
MULTISHELL SPHERES

In this section, we present the detailed heat transfer simulation methods used in
section 3.2. We evaluate the photothermal response of multishell nanostructures
immersed in water similar to the one depicted in Fig. 3.2(a) by adopting the two-
temperature model and incorporating temperature-dependent TBCs. We focus on
either gold or aluminum metal intercalated with silica layers. Under cw illumination
conditions, light energy is absorbed by the electrons in the metallic shells and then
partially transferred from those electrons to the atomic lattice (i.e., phonons) of
both the metal and the adjacent dielectric layers. Additionally, phonons of the metal
and dielectric regions exchange energy until a steady-state thermal distribution is
established. The parameters that control these processes are illustrated in Fig.
C.1(a) for a generic metallic shell j flanked by two dielectric layers. They are as

follows:

o Geometrical parameters. Each metal layer j has inner and outer radii R;; and
R;,, while the corresponding metal/dielectric interfaces have areas S;;/,, =
AT R%; ), and the metal layer volume is Vj = (47/3) (Rio - Rii).

e Temperatures. We consider the electron and lattice temperatures, 77 and T},
as well as the temperatures at the dielectrics right outside the inner and outer

interfaces with the metal, Tﬁi and Tﬁo, respectively. The temperatures are
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SPHERES
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Figure C.1: (a) Parameters used for the modeling of the thermal response of
multishells. We show one of the metal layers (j), along with its corresponding
radii, temperatures, and TBCs. (b, ¢) Temperature-dependence of the TBCs in
gold-silica (b) and aluminum-silica (c) interfaces. The temperature is taken as that
of the metal conduction electrons.

assumed to be uniform within each metal layer because of its high thermal
conductivity. In contrast, the temperature varies with radial distance in each

dielectric layer (see below).

e Thermal boundary conductances. When a temperature difference exists be-
tween both sides of an interface, heat flows through it with a power per unit
area that is proportional to that difference. The coefficient of proportion-
ality is the TBC, also known as Kapitza conductance [141, 142, 143, 144].
Two different channels of conductance are known to exist at metal/dielectric
interfaces[206]: metal electrons coupling to the dielectric lattice (el); and metal
lattice coupling to the dielectric lattice (1). We denote the corresponding
TBCs as G;}i /o and G;l,i Jo» Tespectively, where the i and o subscripts refer to
the inner and outer metal/dielectric interfaces. The Gai /o conductances for
the lattice-lattice channel are obtained by relying on the commonly used dif-
fuse mismatch model [160, 207], which results in a temperature-independent
value G/, = 141.5 MW m 2 K=" (750 MW m~? K~') for interfaces formed be-
tween gold (aluminum) and silica [206]. The lattice-lattice channel is usually
regarded to be dominant over the electron-lattice one [208]. Additionally, the
TBCs are sensitive to the synthesis procedure [209, 210], so that several pre-

vious works consider a temperature-independent total TBC as a simplifying
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assumption [160, 207, 209, 210, 211, 212, 213]. Only a few experimental works
isolate the effect of the electron-lattice channel [214, 215, 216], which combined
with additional theoretical works [206, 217], show that it plays an important
role in metal/dielectric systems such as the ones here considered. We thus use
an experimentally fitted function for the electron-lattice conductance of the
interface between silica and gold [206, 215]:

Go = (9612 4+ 0.18977) MWm > K (C.1)
(see Fig. C.1(b,c)). Due to the scarcity of data for aluminum, we use the
same expression for this material, which should provide a qualitative level of
description. Finally, considering a total of N metal layers, we assume the
outermost of them (5 = V) to be metallic and in contact with the surrounding
water environment. The corresponding TBC between the metal and water is

assumed to have a temperature-independent value Gy, =105 MWm 2K~
(753 MW m 2 K1) for gold[153] (aluminum|[218]).

Electron-lattice coupling inside the metal. We assume an electron-lattice cou-
pling at the bulk of the metal proportional to the difference between electron
and lattice temperatures, resulting in a power-density transfer gel(Tf — le),
with g® = 3x 10 Wm3 K™ (3x 10" Wm=3 K1) for gold (aluminum).[150]

Bulk thermal conductivity. We take the conductivities of silica and water as
Ksiica = L.OWmM ™ K™ and Ayater = 0.6 Wm =K~ The metal conductivity
is orders of magnitude larger (e.g., Kgoa = 318 Wm™'K™!), so we assume a

uniform temperature inside each homogeneous metal region.

With these parameters, we now write a self-consistent set of equations that

express the condition of steady-state temperature distribution. First of all, the

optical power P; absorbed by electrons in the metal layer 7,

Py = g"Vi(T} = Tj) + G53854(T5 — T53) + G5,0850(T5 — T), (C.2)

must be equal to the rate of heat transferred from the metal electrons to the lattices
of both the metal (first term in the right-hand side of Eq (C.2) and the adjacent
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dielectrics (rightmost two terms). The energy deposited by the electrons into the
lattice of layer 7,

g ViT} = Tj) = G};854(T5 — Tj3) + G Sj0(T; = Tj,), (C.3)

is now exchanged with the adjacent dielectrics through the lattice-lattice TBC
channel (right-hand side of eq (C.3)). A similar balance applies to each dielectric
layer, leading to

el e d 1 1 d
Sjo |G (T = T2,) + G (T) = T3]

= T+ {Gﬁlﬂ,i( T Tderl,i> + G;'lﬂ,i(T;H - ngﬂ,i)} ] (C4)

where each side of the equation describes the power transferred from each of the
two dielectric-metal interfaces. The condition of flux conservation across each
dielectric layer leads to yet another set of equations: under stationary conditions the
temperature obeys the Poisson equation [219], and thus, its radial dependence within
a homogeneous dielectric layer has the form A + B/r, resulting in a diffused heat
power 47 Brgica; the coefficients A and B are directly related to the temperatures at
the dielectric interfaces (i.e., at the radial distances R;, and R, ; for the dielectric
layer sandwiched in between metal layers j and j + 1; see Fig. C.1(a)), whereas
heat dissipation has to account for all of the light absorption in the metal layers

surrounded by the dielectric shell under consideration (Z§/:1 P;); we find

J 47T’fsilicaR '-‘rLiR j,0
> Py = SpRTET, < T ) (©5)
jl= )1 0

In the work presented in chapter 3.2, we consider multishells formed by N =1 — 3
metal layers, with a dielectric core and with an outermost metal layer directly
in contact with the surrounding water medium. We then have to find the 4N
temperatures 77, T;, Tf}i,
its surrounding dielectrics. These are the unknowns in the above equations. The

and 7}?}0 associated with each metal layer 7 = 1,..., N and

number of equations are N in each set of Egs (C.2) and (C.3) (one per metal layer)
and N —1 in each set of Egs (C.4) and (C.5) (one per dielectric layer flanked by two

metal layers), resulting in a total of 4N — 2 equations. The remaining two equations
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are provided by (i) heat balance of the entire particle, which determines the water

temperature Tj\iLO right at the interface with the multishell according to [219]

N
S P = 4mwaterRN,o(T&0 —Ty), (C.6)

J=1

where Ty = 300 K is the temperature of the environment; and (ii) the specialization
of Eq (C.4) to the dielectric core,

G?{i(Tle - Tld,i) + Glll,i(Tll - Tld,i) =0. (C-7)

Equations (C.2)-(C.7) thus form a nonlinear set of equations (notice the temperature
dependence of G;li /o through Eq (C.1) that we solve using the Newton-Raphson

iteration method.
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APPENDIX D

QUANTUM—MECHANICAL DESCRIPTION
OF FOUR-LEVEL ATOMS

We discuss, in this appendix, the general method to describe the interaction between
4-level optical emitters and pump/probe light waves. Also, we present the detailed
derivations of the motion equations of their polarization and population densities,
which are frequently used in many publications about the gain media as mentioned
in section 1.5.

The 4-level optical emitters (labeled by 1) are coupled to a bath of photons

(boson modes labeled by n). The temporal dynamics of this system can be generally

({Eko-

Va1 0y,

Epump (f)

Figure D.1: Sketch of a 4-level system interacting with pump and probe light.
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described through the time-dependent Hamiltonian

H= h25i|li><li| + ﬁzwnaqﬂan + Z (QZWGL + gnlii’an) (0;1-1-/ + Uzu‘/)

li n nlii!
= > dig - B (1) (o + our) (D.1)
lid!
where the index i = 1 — 4 runs over the emitter levels of energies hg;; the operators
o = |li)(li'| describe ¢ — i atomic transitions of the emitter [ at the position ry;
the operators al and a, account for the creation and annihilation of photons with
energy hw,; the complex coupling coefficients g, connect photons in mode n and
the levels i and 4’ in emitter /; the compex vectors d;; are the corresponding emitter
dipole moments; and E{*t(t) = EPUP(r;))e™ "t + EPPe(r))e™ ! + c.c. is the time-
dependent external field at the position r; given by the superposition of pump and
probe fields with amplitudes EP"™P(r;) and EP™"¢(r;), oscillating with frequencies
w' and w, respectively. Incidentally, alfii, = 0oy, so in the double sums over i’
throughout this document we only consider terms i > ¢’ in order to avoid counting
these transitions twice. The temporal evolution of the total density matrix p(t) is
governed by the equation of motion
i

p=— 1), pl + Lpl, (D.2)

in which the commutator [#H(t), p| describes the coherent temporal evolution of the
system, complemented by nonradiative incoherent transitions introduced through
the Lindblad operator

’}/"/
£[p] = Z % (20lz‘i’PUsz - O-ZTii/O-lii’p — po-lt'i/o-lii’)
L/

L,
+ 225 (20upal, — alanp — pala). (D.3)

with inelastic rates v; for the atoms (see sketch in Fig. D.1) and I';, for the photon
mode n.

At this point, we approximate the density matrix by the tensor product p =
4@ pt, where p*t = I1;p3t, p™d = I1,,|a, ) (i |, and we assume each photon state n

to be in a coherent state |«,) with amplitude a,, = Tr {a,p}. Using {an, aH = Ot
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along with the property a,|a,) = a,|a,) of coherent states (leading to a,p = ay,p
and pal = o’ p), we find from Eq. (D.2) that the coherent-state amplitude satisfies
the equation [189, 220, 221]

) d _ _ T, .
a, = %Tr {anp} =Tr {anp} = i (wn — 12> Zgnln’Tr {(Ul“ oy ),0 t} '
lzz

(D.4)

Having assumed coherent states for the photons, the Hamiltonian of the system

reduces to
H:thn\&nF—i—ZHl, (D.5)
n !
where

thlﬂz (il + > (gh + quiv) (alt-i/ + Uu‘/) = dy - Ef(1) (Usz'i/ + gm/> :

! lit!
(D.6)
and we introduce the new coupling parameters

Qi = Y Gntii’ O (D.7)

We assume that every emitter can be described as the 4-level system sketched

in Fig. D.1. Then, the equation of motion of a single emitter is explicitly given by

o= —E[Hl,ﬂl]
+ 7 (20112/)10”2 — 0;12051201 010;12@12)
+ % (20534plal34 — 0;34013401 PlUlT34Ul34)
+ % (20l23plal23 — aszgcmel plalT230l23) J (D-8)

where we drop the at superscript from pi* for convenience. In what follows, we
also omit the index [, which is implicitly understood in the following expressions.

Note that we assume the damping rates 7,1, 732, and 743, the energy levels he;, and
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the transition dipoles di4 and da3 to be the same for all emitters (i.e., independent
of ). Damping rates and transition dipoles other than these ones are disregarded.
Additionally, radiative damping from level 4 and level 2 is ignored, so go3 is the only
nonzero radiative coupling coefficient. Now, we express the density matrix in the
state representation p = 3, psr|i) (7', from which the property p' = p is found to
lead to the condition p;y = pj;, so we only need to work out the elements with i <7’

Explicitly, the density-matrix equations of motion read

b i um

P11 = ﬁdm - EPYP (1) (pa1 — p1a) + Y2122, (D.9a)
. i rooe *

P2 = . {d23 o D (t) — (955 + 923)} (P32 — p23) — Y21p22 + V32033, (D.9b)

. 1 robe *
o = = [d23 CEPOPC(L) — (g + 923)} (P32 — pa3) + Yazpas — V32033, (D.9¢)

. j‘ um

Paa = _ﬁd14 -EP p(t) (1041 - p14) — Y4344, (ng)
. 1 pump Y43 .

pra=7dis- B () (paa — p11) — Ty PP, (D-9e)
. i robe * i

P23 =3 {dzz EP(1) — (g35 + 923)} (P33 — p22) — %ng + 12323, (D.9f)

where we have defined w4y = €4 — €1, and w93 = €3 — €9, and we have assumed
the optical pump to be nearly resonant with the 1 — 4 transition (v’ ~ wy4) and
the probe field to be nearly resonant with the 2 — 3 transition (w =~ ws3). In the
following, we define dgs-E'°¢(t) = daz-EP™P(t) — (g5 + g23) for simplicity. Separating

real and imaginary parts of the coherences p14 = pf, +1ip}, and pag = p5y +iphs, also
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noting ps1 — p14a = —21p114 and p3g — pa3 = —21p123, one finds

. 2 pump 1
P11 = ﬁdm - EPYP () p1y + 21022, (D.10a)
. 2 oC
P22 = ﬁd23 - EP(t) phy — Y21p22 + V32033, (D.10b)
. 2 oC
P33 = _ﬁd% - E(t)phs + 43014 — V32033, (D.10c)
b 2 um
Pas = —ﬁdm - EPUP () phy — Va3 paa, (D.10d)
. V43
pry = —wiaphy — 70?47 (D.10e)
. 1 um c
Ply = ﬁdM - EPYP (L) (paa — p11) — %PIM + wiaply, (D.10f)
) Y21 + V32
5= gy — B2 (D.10)
N 1 loc Y21 1 R
P23 = ﬁd23 - E°(t) (33 — p22) — o Pas + WasPas- (D.10h)

Take the time derivative of Eq. (D.10)(e) and combine it with Eq. (D.10)(f), we
obtain

2
. . w um
Py + Yasply + <W%4 + ’T’) Py = _77;4 dyy - EP"P(t) (pas — p11) - (D.11)

Because the electric dipole moment induced in the atom is given by p(t) =
Tr {dlz(aIQ + 0'12>p}, so, the equation of motion of p, (a stands for absorption)

1S

. . . 2w m
Da + Va3Pa + (szx + fyf> Pa = — hM dig- [d14 - EPY p(t)] (pas — p11) - (D.12)

We assume the atom density is IV, then the polarization density P, = p,/N. The
population density N; = p; N (i=1,2,3,4). If the dipole moments are assumed to be
parallel with the pump field, then

» - 2 ’733 2(&)14(1%4 um
Pa + 743Pa + Wiy + T Pa == —TEP p(t) (N4 — Nl) . (D13>
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Similarity, combining Eq. (D.10)(g) and Eq. (D.10)(h), we have

. SBERERS(D) (Ny — No)

Yo1 + 732)2] P _ _2w23d%3
¢ h

P+ (21 + 732) Pe + [Wgza + (
(D.14)
where the subscript e stands for emission.

Next, we derive equations of motion for the population densities. Pluging the

expression of p}, based on Eq. D.10(e) into Eq. (D.10)(a), we have

, 1 um .
P11 = "o EP"P (1) {2d14 R % <2d14 . piﬂ + Y2122 (D.15)

Recall that P, (t) = 2d4pT N and N; = p;; N, so we have

. 1 .
Nl = —7Epump(t) (Pa _'_ /743Pa) + 721N2' <D16)
h&)14 2

In a similar way, we can also get

. 1 . +
Ny = — B (1) <Pe L ’Y21Pe> — Y1 Ny + 39 N3, (D.17a)
Fuwos 2
. 1 . 4
Ny = ——E"°(t) <Pe + MPe) + 743Ny — v32V3, (D.17b)
hwgg 2
. 1 :
Ny = ——EPwR(y) (Pa + 7431%) — 7Ny, (D.17¢)
FL(,UM 2

Equation (D.13)-(D.17) resembles the Eq. (1,2) in [95], which are widely used
to characterize dynamics of gain. Based on this, we derive polarizability of 3-level

atoms in stationary state (see Appendix E).
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QUANTUM—MECHANICAL DESCRIPTION
OF THREE-LEVEL ATOMS

In the last appendix, we have introduced the method to derive time evolution
equations of four-level atoms. Based on it, we will derive polarizability of an
atom in stationary state but for three-level atoms, as well as the Green function
for description of interactions among them. These two parts are used in Chapter 4
to calculate light scattering on regular three-level atom arrays.

The derivation process of time evolution equations of three-level atoms is very

similar with that of four-level atoms. One can easily follow Eq. (D.1) to Eq. (D.10)

3
V3 \0-23
2
O
31
72 l P
1

Figure E.1: Sketch of the 3-level system considered in our calculations.
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to get rate equations of three-level atoms as

2
ﬁdl?’ - EPMP (4) pl g + Y122,

. 2 T *
P2 =~ [du CEPPe(t) — (g7, + 912)} Pla + V32033 — Y21p22,

. 2 robe *
P11 = ﬁ [d12 - EpreP (t) — (912 + 912)} PI12 +

. 2 uIm
p33 = ——diz - EP"P () ply — Y3233,

h
Plfz = _WOIOIH 7;1#1{27
Pha = wopta + 711 {dm -EP(t) — (g7, + 912)} (p22 — p11) — Vslplm,
Py = —Wopis — 7;2 Prs;
Prs = Woprs + ﬁdm - EPYP(t) (pss — pu) — 7;2 Prs-

A sketch of the studied three-level atom is shown in Fig. E.1. Eliminating pt, and

pis, we obtain

2 robe * . Y21
=g (dio - EP () — (g7, + g12)] (pij; T 2p{‘2)
2 um Y32
" ot dyz - EP"P (1) <P13 Ty P1R3> + Y21p22, (E.1a)
. _ 2 probe * 721 R
P22 = heso [d12 -E (t) = (912 + 912)} 1y + 5 P2 + V30033 — Y21P22, (E.1b)
- 2 um
psz = 7—dug - B (2) (P 13 1 mﬂ%) — V32033, (E.1c)
huw, 2
R ‘R 2 '7221 R “o probe %
P1a + V21P12 + | Wy + P _3(022 — p11) [dm -EP(t) — (975 + 912)] )
(E.1d)
Py + V32015 + (W ot '732> Py = —=2(pss — p11) diz - EPMP(¢), (E.1le)
1 721
Pra=—— ( R) (E.1f)
wo
1 . 732 R
PI13 = _;6 <1013 + 2013) . (E.1g)

It is straightforward to verify the condition }_; p;; = 0, confirming that the total

population Y7, p; = 1 is conserved.
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From here, we start to derive the steady-state operation conditions for continuous-
wave pump and probe at frequencies w’ and w, respectively. For the sake of com-
pactness, we introduce the new variables n and 7', accounting for the probe and

pump electric field amplitudes and implicitly defined by

1 1 )

ﬁ {d12 . Eprobe(t) o (gﬁ + 912)} — ﬁdl? . Eloc(t) — ne—lwt +c.c., (E.Qa)
1 -

ﬁdlg CEPYP(t) = ple ™ + coc., (E.2b)

where the g5 terms, representing the induced field (see below), have been absorbed
into the local field E!°¢. Inserting these expressions into the density-matrix equations

(E.1), anticipating the steady-state time dependences pj; = pas = p33 = 0,

R —iwt
Py = & 4 ce,

P =¢e ™t 4 e,
and adopting the rotating-wave approximation (RWA), we find

. (14954 (1+95'4) Eta
1= - - n 1 - ’ :
1429, A+ (7211 + 27321) A SCTReCEAVAY

Yo (A + A) + 751 75 AN

P22 = — — — — — s (E4b)
14295 A+ (7211 + 27321) A+ 375 3 AL
. Yo A (1+75'A) (B4
33 — — — — — — ) .
I+ 2721IA + (7211 + 27321) A"+ 372117321AA/
WoT
— — E.4d
5 ((,(} _|_ 1721/2)2 . wg (p22 pll) 9 ( )
!
w
§ = ol 2 (P33 — p11) (E.4e)

(W' +iy32/2)* — W'y

111



APPENDIX E. QUANTUM-MECHANICAL DESCRIPTION OF
THREE-LEVEL ATOMS

where we use

, -1 2yl (& + o +751/4)
A =4yl m (w+iv21/2) — w/(w + i721/2) T2 2 2 0\% 2,2
w + 1v91 Wy /W 1721 (w — Wy — 721/4) + Yo w
(E.5a)
112 12 12 2
, Ly —1 250 [* (' + wf” +13,/4)
A = 4|77| Im T 2 I = 9 2 2 2"
(W +1732/2) — w5/ (W + i732/2) (w’ — W'y — 7:‘32/4> + Yaou
(E.5Db)

Now, the electric dipole moment induced in the atom is given by p = >, d;iv Tt { (UITZ-Z-, + UW) p},

and in particular, the component oscillating at frequency w reduces to

p(t) =Tr {dlz(UIQ + 012),0} = 2d13 Re{p12} = 2dy <fe_m + ﬁ*ew) = pe_iwlt +c.c.,
(E.6)

from which we obtain

2dowon

P=2dud = 2 —

(P22 — p11) - (E.7)

In order to derive the response of the atomic ensemble to the probe field, we consider
the steady-state amplitude «, of each photon mode of electric field e, = e,(r;),
evaluated at the position of every atom [. The coupling coefficients are then
gni12 = —dy2 - €. By using Eq. (E.6) in Eq. (D.4), we find

a, = ﬁ;e—iwt 4 B:ei“’t

with coeflicients

. 1 .
On = h(w, —w —il',/2) Xl:enl P
o el b

e .
h(wn +w — iT,,/2) &= " Pr

B =
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where we reinsert the [ dependence in the sums over atoms. From here, using Eq.
(D.7), we find

gz + gho = Z(inuan + g00) = —dig - Gy - pre” " + c.c., (E.8)

n

where we define

1 e,y e, e, ey

G :%zn: wn—i.z—ill“n/2+wn+lw+ilin/2 (E-9)
as the electromagnetic Green tensor. As noted above [see Eq. (E.2a)], the total local
field at frequency w acting on emitter [ is given by the sum of the external field and
the induced field produced by the emitters, that is, El°¢ = EP°*® 4+ Ei"d where the
induced field can be expressed, according to Eq. (E.8), in terms of the Green tensor
as Eln4(t) = 3, G - pre ™! + c.c., so the total local field becomes

E}Oc(t) _ (E?robe + Zgll’ . pl’) efiwt +ecc.
ll

Finally, recalling that (1/h)d;s - EP°°(t) = me ! + c.c. [see Eq. (E.2a)] and using
Eq. (E.7), we obtain the coupled-dipole equations

p = a(w) [Efmbe +> G - Pl/] ; (E.10)
l/
where

&(w) _ 2(4.]0(571 d12 ® d12
h (w+i’}/21/2)2 —w%

is the electrostatic polarizability tensor at a frequency w near wy = €9 — €1, and [see
Egs. (E.4)]

(v =7 ) A — 1
L+ 295" A+ (3! + 2931 ) A + 37575 AN

on = P22 — P11 = (Ell)
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is the population difference of the emitter.
Now, it is useful to recast the expression of dn in terms of pump and local field
amplitudes. We first rewrite Eq. (E.5a) using Eq. (E.2a) as

2931 (W2 +wg + 731/4>
(W? — wf — 7%1/4)2 + ’7221‘«02’

A=T

where we have assumed E!°° to be oriented along djs, the [ dependence is again

implicitly understood, and we have defined

> Egtobe h’721/d12-

sat

T — ’EIOC/EprObe

Additionally, we approximate 32 < w’ and consider resonant pumping w’ = wy, so
that Eq. (E.5b) together with Eq. (E.2b) leads to

A/ = I/ Y21, <E12)
where

T — [ ERTP BN = (/) rmlds. (B13)

Incidentally, we note the relation I = c|E|*>/2m between the light intensity I and
electric field E in Gaussian units, which allows us to directly define a relation
between EPWP - FProbe and the corresponding pump and probe intensities.

We conclude by expressing some of the above quantities in terms of on. In

particular, we find

(1-R)T —1—[(1+2R)T +1] on

1
A=3 E.14
2 1+ (3/2)RT ’ (E.14)
which in turns allows us to rewrite Egs. (E.4a)-(E.4c) as
pi1 = [(1+RI) /(24 3RZ)] (1 —dn), (E.15a)
pa2 = [(1+RI') + (14 2RZ) én] /(2 + 3RT), (E.15b)
pss = [RT /(2 + 3RT) (1 - on), (E.150
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where

R = 721/732.

Incidentally, in the 5 << 732 limit, assuming 0 = w — wy K wy and y9; <K wy, the

population difference reduces to

—14+7

on = .
T T 8T(1+ 3T 2vym) /(1 + 462)3) + T/

Now, we prove that the quantum-mechnically derived electromagnetic Green
tensor (E.9) can go back to its classical form. The atoms we consider are in vacuum.
The electromagnetic Green tensor can then be worked out by using plane waves
for the photon states, e,(r;) = —iy/2whqc/V €97é, with w, = gc, in which the
mode index n is multiplexed as n — {q,o}, where q is the light wave vector,
o =s,p is the polarization state corresponding to the unit vector £,, and V is
the normalization volume. Additionally, the sum over photon modes becomes an
integral using the substitution 3, — V'3, [d3q/(27)%. Also, we find the Green
tensor Gy (w) = G(r; — rp,w) to only depend on the relative coordinate vector

r = r; — ry. Putting these ingredients together, we find from Eq. (E.9)

d3q 47rq elqr
R

where k& = w/c and we have replaced T',/2 — 07, as appropriate for photons
in free space. Now, the sum over ¢ can be transformed using the expression

Yoo bo ®E, = I3 — qQ® q, where Z3 is the 3 x 3 identity matrix, while q is the
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unit vector along q. Additionally, q can be replaced by —iV. This leads to

4 elaT
— (k +107)2
d3q 47 elaT
(2m)3 ¢* — (k +i07)?

G(r,w) = / (;i;)lg (Z3¢* —a®q) 7

- (—v213+V®V)/

ikr
= (KT +V® v>er
eik‘?” r ® r
=5 {(k%? ik = 1T = (K + 3ikr - 3)7 7 (E.16)

which is the well-known dipole-dipole interaction tensor in free space. Incidentally,
we have replaced V2 — —k? in the third line of the above derivation because
(V2 + k%)el* /r = §(r) and we only need to evaluate the Green tensor for r # 0.
We emphasis that the Eq. (E.11) is the electrostatic polarizability tensor of an
atom. The self-interaction term I’ = [ in Eq. (E.10) involves G;. The real part
of this term exhibits a divergence originating in the electrostatic interaction of two
point dipoles at vanishing separation. This divergence can be effectively absorbed
as an atomic resonance frequency shift. A detailed treatment of this effect requires
a rather involved analysis [190] that goes beyond the scope of the present work, so
we just ignore it and assume it to be correctly incorporated in the atomic resonance
frequency. However, the remaining imaginary part remains finite. In the limit of

small mode decay rates I',,, we obtain from Eq. (E.16)
Im{h- Gy n}=2w’/3c

Self-interaction can be understood as a radiative-reaction contribution to the re-
sponse of the atom. Assuming an isotropic environment, one can conveniently ab-

sorb it in a corrected polarizability

1

alw) = 1/a(w) — 2iw3/3¢3”
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while the coupled-dipole equations are modified as

p = a(w)

EP + 3" G - pz/] : (E.17)
VAl

so that the I’ = term is excluded from the sum.
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