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Abstract

During the past decades, we have been the witnesses of unprecedented advancements in the
understanding of our universe dynamics and evolution. Indeed, together with the theory General
Relativity (GR) by Albert Einstein at the beginning of the 1900’s, the improvement of obser-
vational tools have led to the establishment of the standard model of cosmology the so-called
Λ-cold-Dark-Matter model (ΛCDM) that is so far the simplest model that describes best our
universe considering observations. However, this standard model suffers from caveats, more
specifically the presence in the theory of two dark components, Dark Energy and Dark Matter.
Understanding the mystery behind these two components have become the leading objective of
observational cosmology today, and of current experiments, as it is the case of the Dark Energy
Survey (DES), that will after 5 years of observations image about 300 million galaxies with an
unprecedented depth covering one eighth of the sky (5000 sq. deg.).

This thesis is based on the analysis of the first year of observation of DES (DESY1) and more in
particular on the use of cross-correlation techniques in cosmological analyses. Here, we expose
two of different possible use of cross-correlation. Namely, we first show how cross-correlation
techniques has been employed as a tool to infer redshift distribution of objects using the so-
called clustering-redshift methodologies. And moreover how for the first time this techniques
have entered in the cosmological analyses to correct the mean of the redshift distributions of the
DESY1 galaxy catalog with shapes (the weak lensing sample) inferred by typical photometric
techniques. We explain how using simulation we have evaluated systematics errors induced by
our overall methodology and present the full methodology employed for redshift distribution
determination of the DESY1 Weak lensing sample.

In a second time, we expose how we have been using cross-correlations as a probe of ΛCDM

cosmology using in one hand cross-correlation between cosmic voids identified in the DESY1
catalogs and the lensing map from the Planck satellite and on the other hand simulated ΛCDM

cosmology. More specifically, recent results have suggested an excess signal in the observed
void catalogs imprint in the Cosmic Microwave Background temperature maps with respect to
simulated ΛCDM cosmology, we reiterate the procedure using this time the lensing maps of
the CMB. After optimizing our void catalogs in simulation, looking for population of voids
responsible for the more significant detection,we could detect the imprint of DESY1 cosmic
voids with a significance of ∼ 7 − 12σ with a discrepancy of ∼ 3 − 9σ with respect to ΛCDM

simulations.



Pròleg

Durant les últimes dècades, hem estat testimonis d’avenços sense precedents en la comprensió
de la dinàmica i evolució de l’univers. Juntament amb la teoria de la Relativitat General (GR)
d’Albert Einstein a principis de la dècada de 1900, la millora de les eines d’observació ha conduït
a l’establiment del model estàndard de cosmologia anomenat Λ-cold-Dark- Model de matèria
(ΛCDM), que és fins ara el model més senzill que descriu millor el nostre univers tenint en
compte les observacions. No obstant això, aquest model estàndard pateix advertències, més
concretament la presència en la teoria de dos components foscos, Dark Energy and Dark Matter.
Entendre el misteri darrere d’aquests dues components s’ha convertit en el principal objectiu de
la cosmologia observacional actual, com és el cas del projecte Dark Energy Survey (DES), que
després de 5 anys d’observacions tindrà imatges de 300 milions de galàxies amb un profunditat
sense precedents, cobrint una vuitena del cel (5000 sq. deg.).

Aquesta tesi es basa en l’anàlisi del primer any d’observació de DES (DESY1) i més en particular
en l’ús de tècniques de correlació creuada en anàlisis cosmològiques. S’exposen dos possibles
usos de correlació creuada. En primer llocmostrem com s’han utilitzat les tècniques de correlació
creuada com una eina per inferir la distribució de redshift d’objectes mitjançant les anomenades
metodologies clustering-redshift. A més, per primera vegada, s’han introduït aquestes tècniques
en les anàlisis cosmològiques per corregir la mitjana de les distribucions de redshift del catàleg
de galàxies DESY1 amb formes (la mostra de weak lensing) inferida per tècniques fotomètriques
típiques. Expliquem com usant la simulació hem avaluat els errors sistemàtics induïts per la
nostra metodologia general i presentem la metodologia completa emprada per a la determinació
de la distribució del redshift de la mostra de weak lensing DESY1.

En segon lloc, exposem com hem estat utilitzant correlacions creuades per sondejar el model
ΛCDM utilitzant per una banda la correlació creuada entre els buits còsmics identificats en
els catàlegs DESY1 i el mapa de lents del satèl·lit Planck i d’altra banda cosmologiaλCDM

simulada . Més específicament, resultats recents suggereixen un excés de senyal en els catàlegs
de buits observats en els mapes de temperatura del fons de microones còsmiques respecte a la
cosmologia LambdaCDM simulada, de manera que reiterem el procediment utilitzant aquesta
vegada els mapes de lents del CMB. Després d’optimitzar els nostres catàlegs de buits utilitzant
la simulació buscant la població de buits responsables de la detecció més significativa, hem
pogut detectar l’empremta dels buits còsics DESY1 amb una importància de ∼ 7− 12σ amb una
discrepància de ∼ 3 − 9σ pel que fa a simulacions ΛCDM .
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Introduction

Cosmology is define as the science that aims to understand the history and dynamics of our
universe at large scales (scales larger than few Mpc). In the past decades, with the formulation
of General Relativity theory by Einstein (Einstein (1916)) and the development later on of big
experiments focused in observing the largest scales of our universe, our understanding of our
universe’s dynamic and origin has improved. Indeed, experiments such as Redshift Surveys (see
??York et al. (2000); The Dark Energy Survey Collaboration (2005); de Jong et al. (2015)) or
Cosmic Microwave Background (CMB) experiments (see Boggess et al. (1992); Bennett et al.
(2003); Ruhl et al. (2004); Tauber et al. (2010); Fowler et al. (2007)) have seemed to agree in one
concordance theory the so-calledΛ-Cold-Dark-Matter scenario that describes our universe as an
universe that startedwith an explosion (the Big Bang) and ismostlymade of two dark components
Dark Matter and Dark Energy whose later is responsible by the observed cosmic acceleration
and model by a cosmological constant Λ (Huterer & Turner (1999)). However, even though the
standard model of cosmology appears to describe the best our universe, unsatisfactory aspects
of this theory remain. Namely, the presence in this model of the two previously mentioned Dark
entities in our universe so far not directly observed and that dominates the energy budget of
the universe, the main discovery that happened in the last century and lead the community to
construct this concordance model will be present in Chapter 1.

The physics behind these two components remains mysterious and the objective of cosmological
experiments is to solve this enigma. For this purpose, cosmological efforts are observing
to different probes, and one popular cosmological target are the large scales objects, such as
galaxies, galaxy clusters, cosmic voids and filaments such are doing the Redshift Surveys that
map the large structures of our universe with an increasing accuracy and field of view, various
observing procedures, based on specific requirements for the probes they have been dedicated to
constrain. The Dark Energy Surveys (DES) has been build in this perspective and will provide
catalog of large structures up to redshift z = 1.2. DES is currently proceeding it last observations
and the observed catalogs from its first year of observation as well as the cosmological analysis
made by the collaboration came out recently (see Drlica-Wagner et al. (2018); Elvin-Poole et al.
(2017); Troxel et al. (2017); Prat et al. (2017); DES Collaboration et al. (2017)). After only one
year over five of observations, DES has shown to already be competitive to infer cosmological
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parameters from its galaxy catalogs. In Chapter 2 we will present in details the Dark Energy
Survey as well as the main cosmological results obtained with the datasets coming from the first
year of observation.

This thesis aims to present the work accomplished in the context of the Dark Energy Survey first
year of observation data analysis (DESY1), more in particular developing two different aspects
that exists in analyzing galaxy catalogs. The first one, is based on the fact that a challenging
aspect in fulfilling the requirements in term of precision in cosmological inference for DES
(or other photometric surveys) resides on the accurate estimation of redshift distribution of
galaxy catalogs. The bias induced by regular photometric redshift methods could become in the
forthcoming cosmological analyses with these type of surveys the dominant term in the error
budget and therefore one of the greatest challenge for future surveys such as Euclid (Laureijs
et al. (2011)) or the Large Synoptic Survey Telescope (LSST, LSST Science Collaboration
et al. (2009)). However, alternative method to photometric redshift have been proposed and in
this work we aimed to study in details one of these alternative, the so-called clustering redshift
methods (see for example Newman (2008);Ménard et al. (2013); Schmidt et al. (2013);Matthews
& Newman (2010)). This method is a relatively new method that allows to infer the redshift
distribution of a given sample using the cross-correlation signal it has with a reference sample
for which one has redshift information. In chapter 3, we will present the procedure followed
in the context of DESY1 to implement clustering-redshift methodology in the cosmological
analysis. This methods has enter for the first time in the whole cosmological analysis and this
required a detailed study of the systematic budget that the method induced. There we will
present in particular the methodology employed and how we caracterized using simulated galaxy
catalogs the error we are subject to applying our method as well as the final results obtain for the
reconstruction of the redshift distribution of the galaxy catalog with galaxy shape information
used in the main DESY1 cosmological analysis (see Hoyle et al. (2018); Gatti, Vielzeuf. et al.
(2018); Davis et al. (2017)).

The second main work developed here concern cosmic voids that one can identify in the DES
data sample and they imprint that could be detected in the lensing signal from the CMB. Indeed,
as it has been mentioned, different cosmological probe exists, and the one with so far the
most important constraining power comes from the radiation we observed remnant of the Big
Bang explosion. Although this radiation contains usefull information from the early universe,
by travelling towards us, the photons from the CMB, similarly to what happen to background
galaxy in cosmic shear analyses, will also suffer from deflection effect due to the large structures
it crosses, such as cosmic voids. The Planck collaboration have reconstructed a map of the
distortions of the CMB photon Planck Collaboration et al. (2016c), and the interest of this work
has been to develop an optimized methodology to detect the imprint of cosmic voids identified
in the DES catalogs in this map. Namely, using a stacking procedure, we have been comparing
the stacked lensing signal at the position of cosmic voids in both ΛCDM simulation and DESY1

2



LIST OF TABLES

void catalogs. This work is particularly insteresting in the sense that previous analysis, have
suggest discrepencies between ΛCDM predictions and observations (see Granett et al. (2008);
Cai et al. (2014a); Kovács (2018)) applying this void stacking procedure to the CMB temperature
anisotropy maps, measuring the so-called integrated Sachs-Wolfe effect (ISW, Sachs & Wolfe
(1967)). In chapter 4, after presenting how we have beentesting our methology and optimizing
it using simulations, we will expose the results obtain using DESY1 catalogs.
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Chapter 1

Cosmological background

Cosmology can be defined as the science of our universe at large scales, which means that it
aims to describe our universe as a whole in terms of its history and dynamics. While the whole
history of astronomical studies can be dated to antiquity, modern cosmology is only about a
hundred years old and for this reason the last century has been the spectator of great discoveries
and increasing understanding about our universe at the largest scales. Indeed, starting from
Einstein’s theory of General relativity (GR hereafter, Einstein (1916)) that allows us to describe
the universe as a whole, the community has built, with observations, models of evolution for our
universe.

The current preferred theory for our universe is the so-called standard model of cosmology. This
is the simplest theory so far in good agreement with observations. It describe a universe that
started from an initial explosion (the Big Bang) followed by a brief highly accelerated expansion
(inflation)after which an expansion era started and recently entered in an accelerated expansion.
Even-though this standard model for our universe seems, at the day of today, consistent with
various cosmological probes, it suffers from unanswered questions such as what is the nature of
the energy that causes the late cosmic acceleration.

This chapter aims to give a brief overview of, in one hand, the state-of-the-art of present day
cosmology by exposing the key discoveries and theoretical developmentsmade in the past century
to arrive there, and, on the other hand, the different observational tools and probes currently
used in cosmology and useful for the following chapters of this thesis. This chapter will be
organized as follows: at first, in section 1.1, the main historical key dates that yielded us the
present cosmological scenario will be developed in. Then, section 1.2 will be dedicated to the
different probes that are commonly used nowadays cosmological analysis and more specially
that will be useful as background in the context of this thesis.

7



History and Theory

1.1 History and Theory

1.1.1 General relativity (1915) : a theory to describe our universe

At the beginning of the twentieth century, special relativity (SR hereafter) had re-conciliated
electromagnetism fundamental laws (the so-called Maxwell laws) with mechanics. Indeed, in
Einstein (1905), Albert Einstein extended the principle according to which physical laws should
be equivalent from a reference frame to another to the laws of electromagnetism, introducing
the Lorentz invariance in the Minkowski metric ηµν = diag(1,−1,−1,−1), in which the line
element ds is expressed as :

ds2 = ηµνdxµdxν = c2dt2 − (dx2 + dy2 + dz2)

= c2dt2 − dr2 − r2dθ2 − r2sin2(θ)dΦ2
(1.1)

where (x, y, z) (and (r, θ, φ)) are the Cartesian (spherical) coordinates.

However, even though on one hand SR theory had shown to be consistent with electrodynamics,
on the other hand Newtons theory of gravity was not compatible with it. In this context, Einstein
spent the following years attempting to construct a new ’relativistic’ theory of gravitation, the
so-called General Relativity (GR here after) that he presented ten years latter in Einstein (1916)
and for which the first goal was to reconcile Newton gravitational theory to special relativity,
which imposes physical laws to be Lorentz invariant.

Einstein’s General Relativity is based on the equivalence principle that states that a gravitational
field is equivalent to the acceleration of an non-inertial referential with respect to the reference
one. Consequently, the free-fall of objects in similar initial conditions will follow the same
trajectories in a gravitational field, making these trajectory universal and intrinsic properties of
space time. From here, it is possible to describe gravitation as a deformation of space-time
induced by energy and mass, relating the energy-momentum tensor Tµν accounting for the
energy density distribution to the Einstein tensor Gµν describing the curvature of space time
and obtain the so-called Einstein equations:

Gµν =
8πG
c4 Tµν − Λgµν, (1.2)

where Λ is the cosmological constant1 and gµν the metric of our universe.

These equations appeared to be complicated to solve (if not making any particular assumptions)
and not having a single solution. However, in Einstein (1917) Einstein exposed a solution
to the universe field equation assuming our universe follows a cosmological principle. The

1Note that Einstein initially introduced the cosmological constant to allow static solutions to equation 1.2. However,
even though this constant disappeared after the discovery of the universe’s expansion (see 1.1.3), it has been recently
reintroduced to explain cosmic acceleration (see 1.1.6).
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cosmological principle is based on two hypothesis made on our universe at large scales, namely
this principle states that we are in a :

• Homogeneous universe: the observed universe at large scales does not depend on the
observer position.

• Isotropic universe: At large scales, the observed universe does not show any preference
from one direction to another.

In the largest scales, these properties have shown to be in agreement with observations. However,
the model presented by Einstein is instable, and assume a cosmological constant to ensure a static
universe, which was later discarded by observations (see 1.1.3).

1.1.2 The Friedmann equations (1922):

A few years later, A. Friedmann Friedmann (1922) and G. Lemaitre Lemaître (1927), proposed a
solution for Einstein’s field equations relaxing the assumption of a static universe. Allowing the
universe to expand (or contract) with time implies that the Minkowski metric and line element
of eq. (1.1) used in special relativity should be modified by introducing the scale factor of the
universe a(t) that parametrizes the expansion/contraction. Namely, if an object is at a distance
x0 from an observer today, at an earlier time t, the distance between the observer and the object
was a(t)x0. Thus, in an expanding universe, the metric will depend on this scale factor as
gµν = diag(1,−a2(t),−a2(t),−a2(t)), having then the line element :

ds2 = −c2dt2 + a(t)2
(

dr2

1 − kr2 + r2(dθ2 + sin2θdφ2)

)
(1.3)

this metric is known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, and k rep-
resents the universe’s curvature and can take the values :

k = −1 → open universe

k = 0 → flat universe

k = 1 → close universe

(1.4)

If one now inserts this metric in the Einstein field equations (1.2), with the energy-momentum
tensor of a perfect isotropic fluid, diagonal and only depending on the density ρ(t) and the
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pressure P(t), due to the cosmological principle assumption:

Tµν =

©«
ρ 0 0 0
0 −P 0 0
0 0 −P 0
0 0 0 −P

ª®®®®®®¬
, (1.5)

one can solve Einstein’s equations obtained a series of equations known as the Friedmann
equations that describe the evolution of the scale factor of the universe with respect to time as:

Ûa2

a2 =
8πG
3c2

∑
i

ρi −
k
a2 +

Λ

3
(1.6)

Üa
a
= −

4πG
3c2

∑
ρi + 3Pi, (1.7)

where the dot stands for the derivative with respect to time, and the sum is done for the different
components i of our universe. These two equations can also be combined and give a third one
comonly used in cosmology the so-called continuity equation :

Ûρ + 3
Ûa
a
(ρ + P) (1.8)

In general, it is common to parametrize the different components using the so-called equation
of state parameter P = wρ. We will then have w = 0 for the matter components, w = 1/3
for radiation, and finally w = −1 for the cosmological constant. Using the equation of state
parameter for each component together with its continuity equation (1.8), one can find its density
evolution with respect to the universe scale factor a(t) and then using the Friedmann equation
(1.6), find the relation between scale factor and time.

• radiation domination: P = ρ
3 , thus from the continuity equation (1.8), ρr ∝ a−4 and then

solving the Friedmann equation in an epoch t where the radiation dominates the energy
budget of our universe and obtain:

a(t) ∝ t1/2. (1.9)

• matter domination: pressure-less fluid (P = 0), so proceeding similarly to the previous
case but considering now an epoch where the matter is the dominant component of our
universe, from eq.(1.8) ρr ∝ a−3 and from eq.(1.6):

a(t) ∝ t2/3. (1.10)
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Fig. 1.1.1 – Hubble measurement of the radial velocity of extra-galactic objects with
respect to their distance to the observer.

• The cosmological constant domination: solving the first Friedmann equation, one has
( Ûa/a)2 = Λ/3 wich thus leads to :

a(t) ∝ e
√
Λ
3 t . (1.11)

1.1.3 Hubble and the expanding universe 1929

In parallel to the theoretical advancements presented above, using the relation betweenCepheid’s2
period and luminosity discovered by Henrietta Leavitt few years earlier Leavitt & Pickering
(1912), Edwin Hubble had been measuring the distance of extra-galactic objects and could
observe a proportionality relation between the distances and the radial velocities of the objects
(Hubble (1929)). Figure (1.1.1) is the original published result from Hubble showing the
measured radial velocities of ’nebulae’ with respect to the distance at which we are observing
them. As it can be seen in the figure, Hubble could observe in these measurements a linear
relation between the two quantities. In other words, on one hand, observed objects tend to recede
from us, and, on the other hand the further the object is located, the faster its recession velocity.
This has been reported as the first proof of the universe’s expansion.

2Cepheids are variable stars with a period of pulsation of about a day.
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From this work, Hubble estimated the relation between radial velocity and distance, the so-called
Hubble law, as:

v = H0d, (1.12)

v being the radial velocity of the observed object, d its distance to the observer and H0 the
proportionality factor now known as the Hubble parameter evaluated at H0 = 530kms−1Mpc−1

at the time. This parameter has remained a key parameter on the present standard model of
cosmology and since Hubble it has been re-estimated by various experiments obtaining values
approaching H0 ∼ 70kms−1Mpc−1.

An important aspect to mention here is that in fact Hubble was not directly measuring the radial
velocity, he measured the shift towards the red part of the spectra of the different objects. Indeed,
due to Doppler effect, if an object is receding (or approaching) to an observer, the emitted light
will be observed shifted in the spectra. Thus if one has information on the emitted light, by
comparing it to the observed one, one can extract information on the recession (or approaching)
velocity. A common indicator of such effect is the so-called redshift defined as:

1 + z =
λo
λe
, (1.13)

where z is the redshift of the observed object and λo,e reffer to an observed and emittedwavelength
respectively3.

Moreover, as developed previously, the scale factor of our universe a(t) is the parameter that
rules the change in the universe metric (1.3). Therefore, it can be related to the expansion rate
as follows :

H(t) =
Ûa
a
. (1.14)

On the other hand, it is also possible to relate the observed redshift of an object to the scale
factor a(t), namely considering two emitted wave-fronts λe, emitted times te and te + δte and
observed at times t0 and t0 + δt0. The distance travelled by the two wave-fronts will be similar
(in the case where the time between the two emissions is small enough that the scale factor can
be considered as constant between them), and one can then relate the two traveling distance as:∫ t0

te

dt
a(t)
=

∫ t0+λ0/c

te+λe/c

dt
a(t)
→

a(te)
λe
=

a(t0)
λ0

(1.15)

and from eq.(1.16), one can then infer the relation between redshift and scale factor as:

1 + z =
λo
λe
=

a(t0)
a(te)

. (1.16)

3Note that the redshift could be related to the radial velocity as z + 1 =
√

1+v/c
1−v/c .
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It is then possible to rewrite the Friedmann equation as a function of the Hubble parameter. The
first Friedmann equation is often rewritten in terms of the so called energy density parameters
Ωi:

H(a)2

H2
0
= Ω0,ra−4 +Ω0,ma−3 +Ω0,ka−2 +Ω0,Λ, (1.17)

where Ωi is defined for each component of our universe as Ω = ρ/ρcrit where the critical
density ρcrit is the density that make our universe flat today without cosmological constant:
ρcrit = 3H2

0/8πG (from eq. (1.6)).

1.1.4 CMB discovery : Big bang theory 1940-1965

1.1.4.1 Prediction and detection

On one hand, from the discovery of the expanding universe, one can easily deduce that in the
past the universe was smaller, and on the other hand, in the early 1940s, Gamow (1946), together
with his collaborators Alpher et al. (1953), looking for a model able to explain element formation
had proposed a theory in which the presence of these elements could have been created in a
warm primordial state of an expanding universe, and presented the well known Big Bang theory.
In this theory, the early universe, dominated by radiation, was in the form of a hot opaque
plasma (ionized) and they also predicted that today the universe should be filled with a thermal
electromagnetic radiation remnant of this early universe plasma that should have a black-body
spectrum, for which they estimate the temperature to be around ∼ 5K . Indeed, as we go back in
time, the universe was warmer. We can then go back to an epoch when the universe energy was
such that the photons and electrons were in thermal equilibrium following the photo-ionisation
equation :

e− + p
 H + γ. (1.18)

As time goes om, the temperature is cooling down (the universe expands), until it reaches a
temperature (T ∼ 3700K) where the thermal-equilibrium breaks and allows the electrons to
couple to baryons and form the first neutral atoms: the so-called recombination. The photons
acquire then a mean free path larger than the universe size and are able to propagate: the
decoupling. In principle, one should be able to observe this surface at the time where the
photons decoupled: the last scattering surface.

A few decades later, in 1965, while characterizing different sources of noise of an antenna,
Penzias and Wilson noticed an isotropic radio noise that didn’t seem to vary with the seasons
Penzias & Wilson (1965). This radiation, now known as the Cosmic Microwave Background
(CMB,hereafter), was identified as the remnant cosmological radiation predicted by Gamov and
Alpher. It appears in the microwave sector of the radio spectra at a redshift z ∼ 1100 (∼ 400, 000
years ago). Again, a few decades later, the Cosmic Background Explorerand (COBE) (Boggess
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Fig. 1.1.2 – Three different observations of the CMB temperature anisotropies : COBE
from 1992 (left), WMAP 2003 (middle) and Planck 2013 (right)

et al. (1992))mission confirmed the detection aswell as its black-body spectrum shape. Moreover,
the Far-InfraRed Absolute Spectrophotometer FIRAS instrument measured a temperature of the
CMB of 2.72548 ± 0.00057K (Fixsen (2009)).

On the other hand, it is also important to mention here, that beside being a good argument in
favor of the big bang theory, the CMB also appeared to be a new probe rich in information
about our universe, and it will be develop in section 1.2.4. Indeed, even-though the COBE
mission measured a particularly homogeneous radiation, while increasing the precision of the
observations we could detect small anisotropies (Smoot et al. (1992)), and since COBE additional
mission with better instrumentation have measured these anisotropies with increasing precision.
Figure (1.1.2) shows a comparison of the precision on the CMB radiation measurement.

1.1.4.2 Inflation

In the previous section we have developed how the Big-Bang theory had been accepted after the
discovery of the cosmic microwave background. However, even-though this theory appears to
be convincing after the discovery of the CMB, it is by itself suffering of unexplained problems.

• The flatness problem : The fact that observations seem to prefer a flat universe (Ωk = 0)
today appear to be unsatisfactory in the sense that it implies, from the Friedmann equations,
that the universe was even flatter before, and thus imposes really strict limits on the initial
conditions (a fine-tuning problem).

14



Chapter 1 Cosmological background

• The horizon problem : The smoothness of the CMB temperature is intriguing in the
sense that two points located at large distances (larger than the horizon size4) should not
in principle show any causality between them.

Nevertheless, in 1981, A. Guth presented a theory of an accelerated period in the early universe
that solves these two problems (Guth (1981)). Beside this, the early inflationary scenario also
gives a mechanism for the apparition of the structure we are observing today in the universe.
Indeed, the quantum fluctuations in the early universe grew exponentially during the inflation
era and are the seed of the anisotropies observed today (both in the CMB as developed in 1.2.4
and in the Large Scale Structure of our universe, as it will be developed in 1.2.2).

1.1.5 The presence of Cold Dark Matter: 1937 - today

An additional crucial discovery that occurred in the past century is the existence in our universe of
an ’invisible’ matter. Indeed, in the early 1930’s, Zwicky (Zwicky (1937)) measuring the radial
velocities of galaxies in the Coma cluster estimated a total mass ∼ 400 times larger than the mass
coming from ordinary (visible) matter5. After this, several other measurements also showed a
missing mass problem in galaxy clusters as well as galaxies themselves (see for example Smith
(1936); Babcock (1939); Kahn & Woltjer (1959)). Moreover, in Ostriker & Peebles (1973),
using numerical simulations, the stability of galaxy disks was shown to be maintained only in the
presence of a surrounding halo of invisible matter. More recently, even if already proposed by
Zwicky, gravitational lensing techniques (see 1.2.3) have been used to map the mass distribution
and have also found mass excess in galaxies. The presence of this invisible matter was therefore
been indirectly observed using different probes and targets. As a consequence, one can separate
the matter component in the Friedmann equation ( (1.17)) into two distinct terms:

Ωm = Ωdm +Ωb, (1.19)

where Ωb stands for the ordinary matter (the baryons) and Ωdm accounts for the dark matter.

1.1.6 Accelerating expansion: 1998

Supernovae are events that happen at the death of a star. The explosion occurring liberates
a enormous quantity of energy and thus can be observed at high redshift. Moreover, Type 1a
supernovae (SN Ia hereafter), have the advantage of being ’standard candle objects’, whichmeans
that by observing the luminosity function of these events, one can infer the absolute magnitude

4The horizon size being the larger distance that light could have travel since the beginning of the universe.
5 Note that Zwicky had been using the value of the Hubble constant as measured by Hubble. By using the current

Hubble constant, the discrepancy between total and visible mass reduces from 400 to ∼ 50.
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Fig. 1.1.3 – Left panel: Results from the two Supernovae experiments showing the mag-
nitude distance relation Perlmutter (2003) Right panel: Best fit cosmological parameter
estimation results from the The Supernova Cosmology Project Perlmutter et al. (1999).

of the event and therefore its distance, and, as it will be developed more in detail in section
1.2.1, in an expanding universe, the distance evaluation will depends on the expansion rate of
our universe and thus on the different terms in the Friedmann equation.

Taking advantage of this property, in the late 1990’s, two different teams Riess et al. (1998)
and Perlmutter et al. (1999) had been measuring the distance of about ∼ 40 SN Ia and found
that the SN Ia observed should have been brighter if the universe expansion was slowing down.
In other terms, the universe expansion seems to accelerates. The left panel of Fig. (1.1.3)
shows the measurements of the magnitude with respect to redshift obtained by the two different
projects, as well as the theory prediction on this parameter plane for accelerating and decelerating
universes. As it can be seen, at redshift & 0.2, the measurements tend to be fainter (i.e with
higher magnitude) than expected if we were in a decelerating universe.

This tremendous unexpected discovery had as a consequence the return of the cosmological
constant in the Friedmann equation (1.6). Indeed this constant, introduced by Einstein to force
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a static solution to his equations, had disappeared after the universe expansion’s discovery, and
came back to parametrize this recent cosmic acceleration. In Huterer & Turner (1999), the
concept of Dark Energy has been introduced (in analogy to Dark Matter sec.(1.1.5) to name
whatever causes this acceleration. On the right panel of Fig.(1.1.3) the cosmological inference
for the amount of matter and dark energy today made by the SN Ia observations is shown. As
it can be seen, the SN Ia data strongly prefers a cosmological model dominated today by Dark
Energy. Namely from these analysis, the present universe seems to be constituted of ∼ 70% of
dark energy (ΩΛ ∼ 0.7) against ∼ 30% of mostly dark matter (Ωm ∼ 0.3).

1.1.7 Towards a concordance model: today’s state of the art

As it has been developed above, General Relativity theory together with observations lead to an
evolution scenario for our universe. Namely, our universe was born in an initial explosion the
Big Bang followed by a short period of accelerated expansion where the energy content was
dominated by relativistic particles until the electrons recombined with protons and a residual
radiation from this process is now observed in the microwave background signal in the sky: the
so-called cosmic microwave background. Recombination was followed by a matter dominated
era where the expansion got smoother and recently entered an accelerating expansion era caused
by an unknown entity that observations tends to prefer as a cosmological constant Λ.

Figure(1.1.4) is a representation of this universe scenario. This scenario can be modeled as
mentioned above as a Λ-Cold-Dark-Matter standard model with the Friedmann equation (1.6).
This concordance model, albeit consistent with current observation, presents two evident intrigu-
ing caveats, namely the unexplained nature of Dark Energy and Dark Matter, which together
represent about 95% of the present energy content of our universe. The current best fit value
from the Planck satellite Planck Collaboration et al. (2018) is:

Ωb = 0.048 ± 0.002

Ωdm = 0.2647 ± 0.015 (1.20)

ΩΛ = 0.6850+0.017
−0.016.

1.2 Observables

In the previous section we have presented the main framework that has built the state of the art
of the standard model of cosmology today. However, as it has been mentioned, this model is not
fully understood and the goal of cosmology today is to test this model with observational tools.
In this context, in the last decades a variety of experiments have been imagined using different
probes and tools in order to try to unveil the mysteries lying behind dark matter and dark energy.
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Pirsa: 17110049 Page 5/56

Fig. 1.1.4 – Overview of the different steps on our universe history as predicted by the
Big Bang scenario starting from an early-time primordial explosion on the left hand
side followed by a short but strong accelerated expansion period (inflation) until photon
decoupling and the emission of the cosmic microwave background radiation, a matter

dominated era and finally the recent Dark Energy dominated era.

In this section, we aim to present various observational tools that are used in current cosmology
and that have been useful in the context of this work. Namely, after exposing some basic
definition of distances in cosmology in (1.2.1), we will dedicate a section to the tools developed
to study the large structure of our universe and extract cosmological information from it using
both clustering information (sec. 1.2.2) and the gravitational lensing effect (sec. 1.2.3), and
afterwards, in sec.1.2.4, we will give an overview on how the Cosmic Microwave Background
can be used as a cosmological probe.

1.2.1 Cosmological distances

As it has been developed above, one pertinent aspect in cosmological studies resides in the
evaluation of distances to the different structures one observes. Indeed, collecting the line of
sight information of objects (the so-called redshift (1.16)) provides the cosmological time of
the observed objects and mapping these distributions gives us direct information about the time
evolution of our universe. However, in an expanding universe, the distance between two fixed
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objects is changing through time. Astrophysicists could thus define different estimator of the
distances that will present distinct dependencies on the underlying cosmology. Here we will
present typical distance definitions commonly used in cosmology.

1.2.1.1 Comoving Distance

The comoving distance reffers to the distance of an object in coordinates of an expanding universe.
That is to say, instead of giving the distance of an object at the time it is observed t, it gives the
distance of an object as it is now taking into account the universe expansion. In other words, if
an object emits a photon at time t = t(a) and we are observing it at time t = t0, the comoving
distance χ(a) between the observer and the object is given by :

χ(a) =
∫ t0

t(a)

cdt ′

a(t ′)
, (1.21)

where c is the speed of light. Using equation (1.16), it is also possible and common to define the
comoving distance as a function of the redshift of the object as :

χ(z) =
∫ z

0

cdz′

H(z′)
. (1.22)

Moreover, if one wishes to measure the distance between two objects at the same redshift with
an angular separation dθ, one will have to compute the transverse comoving distance DM (z).
This distance will differ from the previous one (1.22) if the curvature density parameter of our
universe differs from zero, namely one has :

DM (z) =


c

H0
√
Ωk

sinh
[
H0
√
Ωk

c χ(z)
]

if Ωk > 0

χ(z) if Ωk = 0
c

H0
√
−Ωk

sinh
[
H0
√
−Ωk

c χ(z)
]

if Ωk < 0

(1.23)

1.2.1.2 Angular Diameter Distance

The angular size of an object depends at which distance we are observing it, there is a linear
relation between the observed angular size α , its true size d of an object and the distance at
which we observe it :

d = αD (1.24)

However cosmic expansion make the observed object bigger than for a non-expanding universe,
and therefor the angular size of an object that have emitted light at the scale factor a, will evolves
as d/a, if one observe the object at the comoving distance χ, then α = (d/a)/χ inserting this
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relation in eq.(1.24), one gets:
DA(z) = χ(a)a =

χ(z)
1 + z

(1.25)

1.2.1.3 Luminosity Distance

The Luminosity distance DL correspond to the distance evaluated using the relation that exists
between the flux F of light observed to the intrinsic luminosity L and the distance D at which
we observe an object :

F =
L

4πD2 (1.26)

From here it is then possible if one knows the intrinsic luminosity emitted to evaluate the distance
of the object by measuring the incoming flux. However, similarly that for the angular diameter
distance, in an expanding universe, the observed flux will appear diluted due to the expansion,
in comoving coordinates, eq.(1.26) becomes :

F =
L(χ)
4πχ2 (1.27)

The luminosity of the source at the comoving distance χ, will decrease as the universe expands
by a factor of a2 giving then the luminosity distance:

DL(z) = (1 + z)χ(z) = (1 + z)2DA(z) (1.28)

1.2.2 Large Scales Structure og the universe

1.2.2.1 Structure observation and linear evolution

In section 1 we have been deriving the universe’s equations under the condition that we are living
in a homogeneous and isotropic universe, according to the cosmological principle. However,
the first observations of clusters and super-cluster of extra-galactic objects (Abell (1958, 1961))
brought the debate about the limits of the homogeneity of the galaxy distribution. And it was
only at the end of the 1970’s, by virtue of the development of large scale surveys and the access
to the 3D information of objects that allowed us to create 3D maps of galaxies and directly test
the departure from homogeneity as a function of scale. Figure 1.2.1 shows the first data from the
CfA-II Redshift Survey in 1985 de Lapparent et al. (1986), where we can observe the apparition
of structure in the position of galaxies.

These structures observed in the sky can be explained from the growth of primordial quantum
fluctuation in the early universe (see sec. 1.1.4.1). Indeed the exponential enlargement at early
time, made the primordial quantumfluctuations grow and became the observedCMBanisotropies
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Fig. 1.2.1 – Map of galaxy distribution from the CfA Redshift Survey de Lapparent et al.
(1986) showing the hierarchical organization of objects in the sky from galaxy clustering,

voids and filaments.

(see section 1.1.4) and later on the Large Scale Structure of the universe as filaments, galaxy
clusters, voids,...

The clustering of galaxies and clusters of galaxies can give us information on the initial conditions
of our universe and its evolution. Therefore, a variety of surveys are dedicated to probe this
structure (see for example The Dark Energy Survey Collaboration (2005); DESI Collaboration
et al. (2016); LSST Science Collaboration et al. (2009); York et al. (2000); de Jong et al. (2015)) .
The idea here is to compare a linear theory of structure growth to which one has to add non-linear
effects to the observed matter distribution. At the end of the 1980s, the increasing amount of
observed galaxies by large telescopes opened the path to a statistical analysis of galaxy catalogs.

To model these fluctuations at large enough scales in the matter field, one common way to
proceed is to apply linear perturbation theory. To start with, one can express the deviation from
homogeneity defining the density contrast δ as:

δ(x) =
ρ(x) − ρ̄

ρ̄
, (1.29)
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where ρ̄ is the mean universe density and ρ(x) is the density at the 3D location x. If one
considers scales smaller than the cosmic horizon, one can use a Newtonian approach to describe
the evolution of density perturbations (Peebles (1980)), in which the density contrast for a
perfect fluid with no pressure is linked to the gravitational potential through the Poisson equation
∇2Φ = 4πGa2 ρ̄δ. Combining now this equation to the Continuity and Euler equations yields to
a second order differential equation for the density contrast evolution :

Üδ + 2
Ûa
a
Ûδ −

3H2
0Ωm

2a3 δ = 0 (1.30)

Two different modes can be identified as solution of this equation, one growing and one decaying
mode for the evolution of the perturbation. In general, the growing mode is the one that
dominates. We thus write the solution as:

δ(x, t) =
D(t)
D(t0)

δ(x, t0) (1.31)

where D(t) represents the growth of the perturbation and is known as the growth factor of our
universe. This factor will depend on the underlying cosmology.

1.2.2.2 The two-point correlation function

The most common way to evaluate the amount of clustering of a given observable is with the
two-point correlation function (2PCF hereafter). The 2PCF is a tool that aims to characterize a
distribution is the sense that it quantifies the probability of an object A to be at a distance r from
a object B compared to a randomly distributed field. For instance, in the case of a homogeneous
distribution of objects, meaning a random distribution of objects without any correlation with a
mean density ρ0, the probability dN(®r) to find an object in the volume dV2 at the distance r of a
volume dV1 can be expressed as :

dN(®r) = ρ2
0dV1dV2. (1.32)

If we place us now in the scenario where the distribution of objects differs from a random field,
one can rewritte equation (1.32) as :

dN(®x, ®r) = ρ2
0(1 + ξ(®r))dV1dV2 (1.33)

where ξ(®r) is the two-point correlation function. In the case of a random distribution, this
function is zero; otherwise, it can take positive (or negative) values in the case that the objects
are more (or less) clustered. In this sense, the 2PCF is an estimation of the amount of clustering
of a given sample.

22



Chapter 1 Cosmological background

The 2PCF can be expressed as function of the density contrast (eq. 1.29) as :

ξ(®r) =< δ(®x)δ(®x + ®r) > . (1.34)

Several measurements of the correlation signal for either galaxy or clusters of galaxies were
shown in Totsuji & Kihara (1969),Peebles (1980) to be well approximated by a power-law at
small scales (r 6 150Mpc/h) :

ξ(®r) =
(

r
r0

)−γ
, (1.35)

where γ is the slope of the power-law and r0 corresponds to the correlation length. The correlation
length corresponds to the scale at which the probability to find an object (i.e. the correlation
function) equals unity ξ(r0) = 1. The larger it will be this value, the stronger will be the clustering
amplitude of a given sample.

If we are now placing ourselves in a large volume V, it is possible to compute the Fourier
transformed of this correlation function, defined as the power spectrum:

P(k) =
∫

ξ(x)e−ix.kd3x. (1.36)

1.2.2.3 The bias

It is important to note that the observable used to estimate the density contrast might be a biased
estimator of the underlying matter field. For instance, if one observes galaxies, one observes
light, and as it will be explain later, one cannot assume that light is an unbiased tracer of our
universe’s matter distribution (Kaiser (1984); Fry & Gaztanaga (1993)). Indeed, as it has been
seen in section (1.1), most of the matter in our universe is in the form of Dark Matter that we
are not able to observe directly. We therefore have to consider the difference between the spatial
distributions of luminous and dark matter, and this is done through the so-called tracer bias. In
the standard Halo model, galaxies form in collapsed matter over-densities known as Dark matter
halos, and there is a correlation between the mass of the host halo and the galaxy properties
such as color and luminosity. Therefore, the so called galaxy bias is highly dependent on the
considered galaxy sample, the redshift we are observing, as well as the scales we are looking at.
We thus define the relation between the tracer density contrast δi(®k, z) and the underlying matter
density contrast as:

δi(®k, z) = bi(z, ®k)δ(®k, z) (1.37)

where bi(z, ®k) is the bias of the considered tracer i. And consequently, if we aim to relate the
correlation function of a given sample i at redshift z to the underlying Dark Matter correlation
function one has:

ξi(®r, ®k) = b2
i (z, ®k)ξ(®r, ®k). (1.38)
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This formalism can also be extrapolated to the case of the cross-correlation signal between two
different tracers i and j as:

ξi, j(®r) = bi(z)bj(z)ξ(®r). (1.39)

1.2.2.4 The angular two-point correlation function and the Limber approximation

In practical terms, and as it will be explained later on (see chapters 2 and 3), getting redshift
information on every galaxy of our sample (and preserving the statistical power) is quite difficult.
A way to avoid this issue is work in two dimensions, using the so called 2-point angular
correlation function, which represents the probability for a galaxy to be positioned at an angle
θ in the sky from another object. It can be seen as the projection in 2D of the 3D correlation
function (eq. 1.34). Similarly to equation (1.33), the probability to observe two galaxies in the
solid angles dΩ1 and dΩ2 separated by an angle θ considering the surface galaxy density Σ can
be expressed as :

dN2D = Σ
2dΩAdΩB(1 + w(θ)). (1.40)

If we consider now the small angle approximation, the angular correlation function w(θ) can be
related to the spatial correlation function ξ(®r) with the Limber equation Limber (1954):

w(θ) =

∫ ∞

0
dχy4S2(y)

∫ ∞

−∞

dxξ(
√

x2 + y2θ2), (1.41)

where S(y) is the so-called survey selection function, defined as the probability for a galaxy at
comoving distance χ to be in the sample. And in Fourier space it will take the form:

w(θ) =

∫ ∞

0
Pg(k)g(kθ)kdk, (1.42)

where Pg is the galaxy power spectrum, and g(kθ) is the kernel expressed as :

g(kθ) =
1

2π

∫ ∞

0
dzJ0(kθ χ(z))

(
dN
dz

)2 dz
dχ
, (1.43)

where J0 is the zeroth-order Bessel function and dN/dz is the probility distribution in redshift
of the galaxy sample.

Moreover, considering scales small enough, as it is the case for equation (1.35), Peebles (1980)
showed that the angular correlation function could also be approximated as a power law :

w(θ) = Aθ1−γ, (1.44)

where A is the amplitude of the correlation signal.
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1.2.2.5 Estimators

In an observational context, the angular correlation signal is measured by counting the excess
pairs at a distance r of an object, compared to a random distributed catalog with the same
geometry. To do so, different estimators exist. Here we will give an overview of the most popular
estimators found in the literature. The simplest estimator known at the ’Natural estimator’ was
introduced by Peebles and Hauser Peebles & Hauser (1974) and has the form :

w(θ) =
[DD] − [RR]
[RR]

, (1.45)

where [DD] represents the number of pairs of galaxy-galaxy (Data-Data), [DR] are the pairs
galaxy-random (Data-Random) and finally [RR] the pairs random-random. However this esti-
mator has been shown to be biased when one gets to large scales (Kerscher et al. (2000)), and
thus it is not commonly used in current work. In today analyses, the most popular estimators
used are :

• Hewett (Hewett (1982)):
w(θ) =

[DD] − [DR]
[RR]

. (1.46)

• Davis and Peebles (DP hereafter, Davis & Peebles (1983)):

w(θ) =
[DD] − [DR]
[DR]

. (1.47)

• Hamilton (Hamilton (1993)) :

w(θ) =
[DD] × [RR] − [DR]2

[DR]2
(1.48)

• Landy and Szaley (LS hereafter, Landy & Szalay (1993)):

w(θ) =
[DD] − 2[DR] + [RR]

[RR]
(1.49)

At small scales, these different estimators have been shown to perform similarly, as tested in
Kerscher et al. (2000). However, in there, the authors have also shown that when one goes
to larger scales, the Hamilton and LS estimators were the ones managing to reconstruct better
the correlation. Figure (1.2.2) shows a comparison of these different estimators in simulated
catalogs from Vargas-Magaña et al. (2013) to recover the underlying correlation signal. In there,
the authors used simulated galaxy catalogs with the same geometry as the BOSS survey Dawson
et al. (2013) and compared the bias of each 2PCF estimator listed above in recovering the input
correlation. As can be seen in the figure, at small scales all estimator seems to work fine.
However if one goes to larger scales (& 100Mpc/h), all estimators become biased. The DP

25



Observables

M. Vargas-Magaña et al.: An optimized correlation function estimator for galaxy surveys
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Fig. 1. Input (dotted line) and reconstructed (various colours and linestyles, see legend) two-point correlation function obtained using the various
estimators available in the literature for a cubic geometry (left) or a realistic (BOSS DR9) survey volume (right). The bottom panels show the root
mean square of each estimator with corresponding colour and linestyle. In each case, the Hamilton and Landy-Szalay lines are exactly superposed
as well as the Davis-Peebles and Hewett lines. (Coloured version of the figure available online).

Fig. 2. rms of the Landy-Szalay estimator for lognormal simulations in a cubic geometry and for a zero two-point correlation function (left) and
for a ⇤CDM model (right). The upper, middle, and lower solid lines correspond to a random sample with 1, 3, and 30 times more galaxies,
respectively than the data sample. Dotted lines show the Poisson noise associated with each number of randoms (in the same order as solid lines).
The thick dashed line shows the limit corresponding to an infinite number of random galaxies. (Coloured version of the figure available online.)

2.3. Optimality of Landy-Szalay estimator

In the limit of an infinitely large random catalogue, for which
the volume is much larger than the observed scales, and of a
vanishing two-point correlation function (uniform galaxy distri-
bution), the Landy-Szalay estimator is known to have no bias or
have minimal variance. It is therefore used most widely in mo-
dern galaxy surveys (e.g., Eisenstein et al. 2005; Percival et al.
2007; Kazin et al. 2010; Blake et al. 2011; Anderson et al. 2012;
Sánchez et al. 2012). In practice the volume of modern surveys
is su�ciently large, and one can also produce a large enough
random catalogue, but the correlation function to be measured is
non-zero, so it is crucial to check residual bias and variance of
estimators in the case of realistic non-zero correlation functions.

Using additional lognormal simulations, we investigated the
rms of the Landy-Szalay estimator as a function of the size of
the random catalogue for both a zero correlation function and
the one expected from the Lambda cold dark matter (⇤CDM)

scenario. Fifty realizations were produced in both cases where a
cubic geometry was used in order to be insensitive to the degra-
dation due to the survey geometry. The resulting rms are shown
in Fig. 2, along with the expectations for an optimal estimator
(from Eq. (48) in Landy & Szalay 1993 ) accounting for the finite
size of the random catalogue. It appears that, when the correla-
tion function is not vanishing, the Landy-Szalay estimator does
not reach the Poisson noise limit. This suggests that a better es-
timator can be found in the case of a non-vanishing correlation
function and a more complicated survey geometry.

3. An optimized estimator

3.1. General form and optimization criterion

Our search for a better estimator started from the observa-
tion that the commonly used estimators are linear combina-
tions of ratios of pair counts, DD, DR, and RR (hereafter the

A131, page 3 of 12

Fig. 1.2.2 – Top panel: Comparison of different 2-point correlation functions ξ, as a
function of the comoving separation s, evaluated with the David-Peebles (blue solid line),
Hamilton (red dashed line), Hewett (yellow dashed line) and Landy-Szalay (purple dashed
line) estimators to the input signal in 120 mock catalogs with geometry similar to that of
the BOSS survey Vargas-Magaña et al. (2013). Bottom panel: root mean square (RMS) of

these different recovered 2PCFs, with the same color scheme.

and Hewett estimators behave similarly, as well as the Hamilton and the LS estimators, even if
these two seem to be the less biased, being consistent with the results obtained in Kerscher et al.
(2000). Nevertherless, in Kerscher et al. (2000), the LS estimator was shown to be less sensitive
to the number of randoms in the random catalog. This has made the LS estimator the most
popular estimator for correlation analyses in cosmology nowadays.

1.2.3 Gravitational Lensing

As mentioned above, in general relativity the photons follow the geodesics of a curved space-
time, where the deformations are made by the gravitational potential. In this context, the theory
predicts the deviation of photons travelling towards us when approaching massive objects. This
effect is known as Gravitational Lensing, and has been detected for the first time observing
the deflection of light rays from stars approaching the Sun during a solar eclipse on May, 29,
1919 (Dyson et al. (1920)). In principle, measuring this effect could give us information on the
underlying matter field that these photons are crossing. Indeed, studying the distortion of light
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coming from background sources when crossing a foreground gravitational field has become an
essential tool in modern cosmology, and a variety of experiments are now studying these effects
and constraint cosmology with it. (see for example sec.(2) and Prat et al. (2017); Troxel et al.
(2017); Hildebrandt et al. (2017); Kilbinger et al. (2013)). In this section, we will introduce the
basics of gravitational lensing in cosmological analyses.

1.2.3.1 Propagation and deflection in an inhomogeneous universe

In section 1.1.2, we have presented the General Relativity equations considering an isotropic and
homogeneous universe. In the case of gravitational lensing, however, one has to consider scales
where homogeneity cannot be assumed anymore. Applying first order perturbation theory, one
can reformulate equation (1.3) and obtain the line element equation for light propagation in an
inhomogeneous universe as :

ds2 =

(
1 +

2Ψ
c2

)
c2dt2 − a2(t)

(
1 −

2Φ
c2

)
dl2, (1.50)

where Φ and Ψ are the two Bardeen potentials that are considered to describe weak fields, in
GR, these two fields are equivalent, Φ = Ψ, and the potential of a lens with mass M and radius
R will be Φ,Ψ ∼ GM/R = (c2/2)(RS/R), G being Newton’s gravitational constant and RS the
Schwarzschild radius. One can solve eq.(1.50) in the context of null-geodesics travel (ds2 = 0)
and obtain the time of travelling of the photons:

t =
1
c

∫ r

0

(
1 −

2Φ(r ′)
c2

)
dr ′, (1.51)

where the integration has to be performed from 0 to the physical coordinate of the source r .
In order to derive the equations of light deflection when travelling through an inhomogenous
universe, one can use Fermat’s principle ofminimun travel time. Fromhere, solving the equations
for dt = 0, one can obtain the deflection angle α that corresponds to the difference between the
emitted photon and the observed one :

α̂ = −
2
c2

∫
∇⊥Φdr, (1.52)

where the gradient of the potential is perpendicular to the light path.

1.2.3.2 Estimating gravitational lensing effects

If one considers a source S that is emitting photons that will deviate an angle α̂ in their path
when approaching a lens L, an observer O will observe an image I in a different position than
the original one. The left panel of Figure(1.2.3) is a schematic representation of light deflection
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Fig. 1.2.3 – Left panel: Diagram representing a typical lens system. Right panel:
Schematic representation of the convergence (κ) and the two components of the shear

(γ) lensing effect on a circular source.

due to gravitational lensing effects. Using a notation similar to that in Figure(1.2.3), in the small
angle approximation, one can relate these different quantities as :

θI = θS +
DLS

DS
α̂. (1.53)

To simplify, it’s common to rewrite this equation in terms of the angular position difference.
In other words, the difference between the observed angular position (θI ) and the true angular
position (θS) can be related to the deflection angle induced by graviational lensing as :

θI − θS = α, (1.54)

where α = DLS

DS
α̂ is the reduced deflection angle. Note that for a fixed angular position of the

source θS , it is possible to obtain various solutions for θI . In this case, one will observe various
lensed images of the same source in the sky. This effect is called strong lensing.

Evaluating the effect of the presence of a gravitational field on the path of light-rays can be done
using the so-called Jacobian matrix. Indeed, if one now inserts equation (1.52) into equation
(1.53) and differentiates with respect to θI , one can define the Jacobian matrix as A = dθS/dθI :

A = ©«
1 − ∂2Φ

∂x2
1
− ∂2Φ
∂x1∂x2

− ∂2Φ
∂x1∂x2

1 − ∂2Φ
∂x2

2

ª®¬ (1.55)

The inverse of the Jacobianmatrix A−1 describes the localmapping of the source light distribution
to the image coordinates.

The consequences of gravitational lensing on an observed object can be described by two distinct
effects. The right panel of Figure(1.2.3) show the consequences on the deformation of a circular
object induced by these two effects:
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• The convergence κ(θ): Isotropic deformation induced by the amount of matter in the lens,

κ(θ) =
Σ(θDL)

Σcrit
. (1.56)

Here, Σ(θDL) is the surface mass density :

Σ(θDL) =

∫
ρ(θDL, z)dz, (1.57)

ρ(θDL, z) being the mass density, and the critical mass density is defined as :

Σ
−1
crit (zl, zs) =

4πG
c2

DlsDl

Ds
. (1.58)

Moreover, it is possible to relate the reduced deflection angle to the convergence field as:

α(θ) =
1
π

∫
d2θ ′κ(θ ′)

θ − θ ′

|θ − θ ′ |2
. (1.59)

• The shear γ(θ): Anisotropic deformation due to tidal effects from the graviational field
that will distort a circular object into an ellipse. The shear field is a two component field
γ = γ1 + iγ2.

Considering these two effects, it is possible to rewrite the Jacobian matrix of equation (1.55) as :

A =

(
1 − κ − γ1 −γ2

−γ2 1 − κ + γ1

)
. (1.60)

defining thus the shear and the convergence as second order derivatives of the gravitational
potential. Nevertherless, when one is looking at the lensing effect induced by the large scale
structure of our universe, these effects are relatively weak (κ and γ are of order of few percent or
less).

The shear is the more important observable in weak gravitational lensing for galaxy cosmological
studies (see chapter 2) since it describes the distortion of images, and is by correlating these
distortions that we can detect graviatational lensing effects. Since, the effects of the convergence
will be only on the size of the observed object and not its shape, using the observed shape of the
galaxy one can introduce the reduced shear:

gi =
γi

1 − κ
(1.61)

where i = 1, 26. However, in weak lensing analysis we are looking at regimes where both
convergence and shear are small compared to unity (κ, γ << 1), which makes the shear itself a

6The reduced shear has the same spin-2 properties as the shear.
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good approximation to the reduced shear. Moreover, in this regime, the Jacobian matrix can be
inverted and each source will be observed as a single lensed image.

1.2.4 Cosmic Microwave Background

As mentioned above, the radiation coming from the early universe has become one of the pillar
of the big bang model. Moreover as it will be summarized here, this radiation has also become
one of the stronger probes to put constraints on this model. And different observational projects
have been carried out to study in detail this radiation, such as the COmic Background Explorer
(COBE, Boggess et al. (1992)) , the Wilkinson Microwave Anisotropy Probe (WMAP, Bennett
et al. (2003)) or, more recently, the Planck satellite (Tauber et al. (2010),Planck Collaboration
et al. (2011)), and the South Pole Telescope (SPT, Ruhl et al. (2004); Padin et al. (2008);
Carlstrom et al. (2011)).

The main feature used in the CMB observations is the temperature anisotropy. Indeed even
though at large enough scale the CMB temperature look homogeneous, if one looks at smaller
scales, one will observe small anisotropies, remnant of primordial quantum fluctuations that
grew during inflation (see 1.1.4.2). These fluctuations in the temperature field can be separated
in to two main types: the primordial anisotropies are temperature variations due to the physics
of the universe at recombination, the secondary anisotropies are induced by perturbations that
photons suffer along the path to us. Additionaly, a temperature dipole coming from the Doppler
effect on the CMB photons due to the observer movement also has to be taken into account.

1.2.4.1 Temperature anisotropies

As mentioned above, the primordial temperature fluctuations are the ones containing the infor-
mation of the physics of our universe at the time of recombination. Therefore, it will be possible
to infer cosmological information from the temperature anisotropy field :

Θ(θ,Φ) =
∆T(θ,Φ)

T0
, (1.62)

where θ and Φ are the equatorial coordinates. The amplitude of these fluctuations is of order
∆T/T0 ∼ 10−5, and thus high-precision surveys are required in order to be able to detect them.

Similarly to what is commonly done for Large Scale Structure analysis (1.2.2), it is possible to
describe these anisotropies in a statistical way using the angular power spectrum (in temperature)
CT
l
. To obtain this power spectrum, one can start by decomposing the temperature field of eq.
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(1.62) in spherical harmonics as :

Θ(θ,Φ) =

∞∑
l=0

l∑
m=−l

almYlm(θ,Φ) (1.63)

The amplitude alm associated to the spherical harmonicYlm, quantifies the temperature variations
in the angular scales ∆θ with :

∆θ ∼
π

θ
. (1.64)

It is then common the introduced the Cl coefficients as :

Cl =
〈
|alm |2

〉
m
, (1.65)

where the mean is evaluated over the (2l + 1) values of alm.

Figure (1.2.4) shows the Temperature power spectrum as observed by Planck with the best fit
ΛCDM model (from Planck Collaboration et al. (2018)). The different features observed in
this power spectrum are the reflection of the physical conditions at the time of decoupling. It is
possible to identify three main regions (marked in the figure):

• The Sachs-Wolfe Plateau: At the largest scales, namely scales larger than the horizon
(l . 30). At these scales, the information did not have time to travel from a point to
another (no causality), thus the fluctuations come from the initial photon fluctuations and
from the Sachs-Wolfe effect7 Sachs & Wolfe (1967).

• The acoustic peaks: For scales smaller than the horizon. Before recombination, fluctu-
ations in the plasma density (small overdense regions) tend to gravitationally attract the
matter from less dense region. This effect is opposed by the force induced by radiation
pressure that tends to repulse matter. These two opposite effects make oscillate the ionized
gas between phases denser and warmer and phases less dense and colder. These oscilla-
tions will appear on the temperature power spectrum as peaks (and troughs) known as the
acoustic peaks. And the position as well as the amplitude of these peaks will depend on
the detailed cosmology.

• The Silk damping (Silk (1968)): At the smallest scales. This damping effect is due to the
fact that recombination is not an instantaneous process, photons are still interacting from
time to time with the baryons, which induces a damping effect at the smallest scales.

7The Sachs-Wolfe effect is the fact that photons escaping from potential wells will lose energy while escaping and
thus appear colder than the emitted ones.
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Fig. 1.2.4 – Angular power spectrum (DTT
l
= l(l + 1)Cl/2π) from the last Planck analysis

Planck Collaboration et al. (2018). The blue error bars represent the measurement by
Planck and the red solid line the best fit ΛCDM .

1.2.4.2 Cosmic Microwave Background Lensing

Similarly to the distortions of galaxy shapes due to the underlying matter field used in weak
lensing analysis (see sec.1.2.3), the photons that we are observing from the cosmic microwave
background are also suffering deflection effects and will be observed lensed. Figure (1.2.5)
pictures the deflection of the CMB photons while they are crossing the large structures of our
universe (left panel) and the effects on the observed temperature anisotropies due to these lensing
effects (right panel).

CMB lensing cosmology is a quite new tool in cosmology that started with the recent publication
of reconstructed CMB convergence maps (Planck Collaboration et al. (2016c); Omori et al.
(2017)) and that will be used in section 4. The matter density field on the path of the photons
coming from the CMB will remap the emitted temperature field of equation (1.62) as:

Θ(n̂) = Θ̃(n̂ + d(n̂)), (1.66)

where the tildes represent the unlensed temperature field and d(n̂) is the deflection angle of the
CMB photons travelling toward us.

As presented in section 1.2.3, from the light deflection angle, it is possible to define a lensing
potential. In Lewis & Challinor (2006) the CMB lensing potential in a direction n̂ is defined as8:

Φ(n̂) = −2
∫ χCMB

0
dχ

χCMB − χ

χCMB χ
Ψ(χn̂; t) (1.67)

8Assuming a flat universe.
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2

Fig. 1.— An exaggerated example of the lensing effect on a 10◦ × 10◦ field. Top: (left-to-right) unlensed temperature field, unlensed
E-polarization field, spherically symmetric deflection field d(n). Bottom: (left-to-right) lensed temperature field, lensed E-polarization field,
lensed B-polarization field. The scale for the polarization and temperature fields differ by a factor of 10.

gravitational waves.

2. LENSING

Weak lensing by the large-scale structure of the Universe
remaps the primary temperature field Θ(n̂) = ∆T (n̂)/T
and dimensionless Stokes parameters Q(n̂) and U(n̂) as
(Blanchard & Schneider 1987; Bernardeau 1997; Zaldar-
riaga & Seljak 1998)

Θ(n̂) = Θ̃(n̂ + d(n̂)) , (1)

[Q ± iU ](n̂) = [Q̃ ± iŨ ](n̂ + d(n̂)) ,

where n̂ is the direction on the sky, tildes denote the un-
lensed field, and d(n̂) is the deflection angle. It is related
to the line of sight projection of the gravitational potential
Ψ(x, D) as d = ∇φ,

φ(n̂) = −2

∫
dD

(Ds − D)

D Ds
Ψ(Dn̂, D) , (2)

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the
rms deflection is 2.6′ but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order (l, m) may be replaced by plane
waves of wavevector l. The all-sky generalization will be

presented in a separate work (Okamoto & Hu, in prep).
In this case, the temperature, polarization, and potential
fields may be decomposed as

Θ(n̂) =

∫
d2l

(2π)2
Θ(l)eil·n̂ , (3)

[Q ± iU ](n̂) = −
∫

d2l

(2π)2
[E(l) ± iB(l)]e±2iϕleil·n̂ ,

φ(n̂) =

∫
d2L

(2π)2
φ(L)eiL·n̂ ,

where ϕl = cos−1(x̂ · l̂). Lensing changes the Fourier mo-
ments by (Hu 2000b)

δΘ(l) =

∫
d2l′

(2π)2
Θ̃(l′)W (l′,L) , (4)

δE(l) =

∫
d2l′

(2π)2

[
Ẽ(l′) cos 2ϕl′l − B̃(l′) sin 2ϕl′l

]
W (l′,L) ,

δB(l) =

∫
d2l′

(2π)2

[
B̃(l′) cos 2ϕl′l + Ẽ(l′) sin 2ϕl′l

]
W (l′,L) ,

where ϕl′l ≡ ϕl′ − ϕl, L = l − l′, and

W (l,L) = −[l · L]φ(L) . (5)

Here δΘ = Θ − Θ̃ for example. In Fig. 1, we show a toy
example of the effect of lensing on the temperature and po-
larization fields (see also Benabed et al. 2001). The effect

Fig. 1.2.5 – Amplified example of lensing effects on the temperature field of the cosmic
microwave background (from Hu & Okamoto (2002)).

where χ is the comoving distance, χCMB ∼ 14Gpc is the distance to the surface of last scattering,
and Ψ it the gravitational potential evaluated at a conformal time χ in the n̂ direction and at the
time (t = η0 − χ) where η0 is the conformal time today 9.

And the gravitational potential can be expressed as a function of the underlying dark matter
density (δ(χn̂; t)) field through the Poisson equation :

∇2
Ψ(χn̂; t) =

3H2
0Ωm

2a(z)
δ(χn̂; t), (1.68)

with H0 being the expansion rate today, Ωm the matter energy density, c the speed of light and
a(χ) the scale factor evaluated at the comoving distance χ.

1.3 Summary and discussion

Wehave developed in this chapter the historical framework that have yielded to the standardmodel
of cosmology: the Λ-Cold-Dark-Matter model. We have exposed the different key observational
discoveries, as well as the associated theoretical framework that have constructed a concordance
model starting with a Big Bang followed by an inflation epoch and recently experimenting an
accelerating period. This model is mainly composed today of two ’dark’ components, the cold
Dark Matter (∼ 25% of the universe energy budget) and the Dark Energy (∼ 70% of the energy
content of the universe today). Even though observations seems to suggest that Dark Energy is
another constant of nature, the so-called fundamental constant Λ, the community is not satisfied
with this solution and current cosmological experiments aim to unveil the mystery behind these
two dark components. This is the case of the Dark Energy Survey, a galaxy survey that will be
presented in chapter 2.

9The conformal time is defined as η(t) =
∫

dt
a .
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We have followed the discussion by presenting different tools currently used in cosmology (and
particularly in the context of this thesis). Namely, we have started by introducing the tools used in
cosmology in the context of Large Scale Structure analyses and, more in particular the statistics
of galaxy clustering that will be specially used in chapter 3, where we use clustering information
to infer redshift distributions. And afterwards we have presented the main concepts used in
gravitational lensing analyses and in the analysis of the cosmic microwave background radiation
(and its lensing) that will be used in chapter 4, where we detect the imprints of Large Scale
Structures observed by the Dark Energy Survey in the CMB lensing map provided by Planck
(Planck Collaboration et al. (2016c)).
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The Dark Energy Survey

2.1 History and goals

In the last decades, as it has been developed in the previous chapter, we have been the witness of
tremendous improvement in our understanding of the Universe history and dynamics. Despite
the fact that general relativity gave us a standard theory that allows us to describe our universe at
large scales, the so called ΛCDM scenario (see sec. 1.1.7), some aspects of the theory remain
to be understood, and in particular understanding the true nature of Dark Energy (whether it is
a cosmological constant or not) is one of the biggest challenges of current cosmology. In this
perspective, a variety of alternative theories have been proposed and one of the main goals is
thus in one hand to test these alternative theories and on the other hand to put stronger constraints
on the standard cosmological model.

In order to achieve this, it is possible to look at different probes, for example one can analyze the
information contained on the cosmic microwave background temperature anisotropies at high
redshift, z ∼ 1100 (see sec. 1.2.4) such it has been done recently with the Planck satellite
Tauber et al. (2010); Planck Collaboration et al. (2011), the South Pole Telescope (SPT) Ruhl
et al. (2004); Padin et al. (2008); Carlstrom et al. (2011) or the Atacama Cosmology Telescope
(ACT) Fowler et al. (2007), indeed looking at the positions and heights of the peaks in the power
spectrum of the CMB temperature allows us to estimate cosmological parameters (1.2.4).

On the other hand, at lower redshift (z . 2) it is also possible, as developed in 1.2.2, to test
cosmological models using the information one can extract from the large scale structure of
the universe, its gravitational history and dynamics (see section 1.2). In order to satisfy the
requirements in terms of precision to be competitive with CMB experiments, the community
will need to analyze more accurate and more complete catalogs of this large structure. To
collect such samples, two main categories of galaxy surveys have been (and will be) operating:
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• The Spectroscopic Surveys : They are pointing at specific objects and extracting a precise
spectral information for each of them. These types of surveys are providing us the most
accurate 3D information of the observed objects, which make them particularly suited to
extract the clustering information from galaxy samples. However, pointing to each object
is time consuming and this will affect the completeness and size of the observed sample.
A non exhaustive list of recent and future spectroscopic surveys is presented in Table 2.1.1.

• The Photometric Surveys : They are observing the sky through optical and NIR1 filters,
that is to say they are observing a field at a specific direction using a mechanism (the filters)
that only observes the average spectral density within a range of wavelengths and repeat
it for a variety of these broad-band filters. These classes of surveys have the advantage
of being more complete with respect to the previous one, since they are not requiring to
point at each object but will get information on all objects in the observed field (up to
a magnitude limit). However, they suffer from the lack of spectral information that will
affect their ability to determine the radial position of the objects. Another aspect that is
worth to mentioned here is that these surveys can also provide information about galaxy
shapes, which make them able to perform weak lensing analyses (see section 1.2.3). Table
2.1.2 is a summary of some recent or future photometric surveys.

This chapter will be dedicated to one of these new-generation galaxy surveys: the Dark Energy
Survey (DES, The Dark Energy Survey Collaboration (2005)), which belongs to the category of
photometric surveys. The chapter will start in section 2.2 by presenting the DES collaboration
and describing the DES camera (DECam) as well as its photometric properties, while 2.3 will
present the main galaxy catalogs used in the context of this thesis built from the observed samples
after one year of observation of DES (DESY1 hereafter). And then section 2.4 will be dedicated
to the main cosmological results recovered by the collaboration using DESY1 catalogs and more
in particular the results from the combined probe analysis from DES Collaboration et al. (2017).

2.2 The Dark Energy Camera & the Dark Energy Collaboration

2.2.1 Survey overview

The Dark Energy Survey collaboration is an international community gathering almost 400
scientists spread over 25 institutions in 7 countries (United States, Spain, United Kingdom,
Germany, Australia, Brazil and Switzerland). The common effort of this collaboration is to
study the nature of dark energy by observing our universe at large scales (The Dark Energy
Survey Collaboration (2005)). To do so, the collaboration has built a digital camera, the Dark

1NIR stands for Near Infrared.
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Energy Camera (DECam, Flaugher et al. (2015)) with a field of view of 2.2 degrees (which
makes it suited for wide field observations).

The Dark Energy camera is a high-sensitivity digital camera (570 Megapixels) made of 74
state-of-the-art CCDs about 10 times larger than traditional CCDs. Among these CCDs, 62 are
used for science imaging, 4 for guiding and 8 to focus, this allows it to detect long-wavelength
photons. Beside the CCDs, the camera has been equipped with additional items, and the left
panel of Fig.(2.2.1) is a schematic drawing of the different components of the camera, namely:

• A low noise readout system inside cooled crates, ((a) in the figure)

• 5 optical lenses: the largest optical corrector currently used in astronomy, (C1 to C5 in the
figure),

• 5 optical filters: covering wavelenghts from 400 nm to 1080 nm, ((c) in the figure),

• An hexapod : a positioning and alignement system, ((d) in the figure),

• A shutter : which blocks the light from entering the imager between exposures, ((d) in the
figure).

The camera has been built between 2008 and 2012 and installed at the prime focus of the Blanco
4-meter telescope at the Cerro Tololo Inter-America Observatory, Chile (CTIO) from February
2012 to September 2012 (see Soares-Santos et al. (2012)).

DECam official first light happened on September 12, 2012; Fig.(2.2.1) shows the 62 CCDs
image from DES first light. After this, from November 2012 until February 2013, a first period
of observations took place as proof of viability of the survey. The product of this observation
period is called the Science Verification (SV) Data, covering a patch of about 150deg2 of the sky
(which represent less than 3% of the total expected DES final coverage), which permitted the
collaboration to test the well functioning of the camera as well as making the first cosmological
inference with it (see Abbott et al. (2016)).

2.2.2 Survey plan

The Dark Energy Survey was originally funded for 5 years of observations with 105 nights of
observations per year (summing then 525 nights). As mentioned before, DECam is located in
Chile, therefore it is observing at the southern hemisphere, and the expected total area spanned
by the camera after the fifth year of observing represents about 5000deg2 of the sky with a
limiting depth of about iAB = 24 2. DES is expected after these five years of observations to

2Note that due to some extremely poor weather in Y3, an extra year of observation have been accepted for funding
and will start in september 2018
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Fig. 2.2.1 – Left panel: Schematic image of the Dark Energy Survey camera, where C1−5
are the 5 lenses, the readout system (a), the image focal plane (b), the photometric filters
(c), the hexapod positioning system (d), and the barrel (e); figure from (Soares-Santos
et al., 2012). Right panel: Image from the 62 science imaging CCDs from the first light

of DECam on September 12th, 2012

provide to the community information on about 300 Million galaxies up to redshift z = 1.2, as
well as 100, 000 galaxy clusters and thousands of supernovae.

The DES final footprint also presents the advantage of having overlapping regions with other
surveys that could be use either as a cross-check (or calibration) sample of our methodology (see
for example 3.5.3) or to combine different probes. Fig.(2.2.2) shows the observing area of DES
as well as the different overlaps it has with other galaxy surveys (spectroscopic and photometric).
In particular, one can see the large overlap with CMB observations by the South Pole Telescope
(SPT, with an overlapping area of ∼ 2500deg2) shown in the ’photometric surveys’ panel. This
has been particularly thought for DES to give SPT complementary information about the redshift
of the galaxy clusters SPT finds using the SZ effect.

2.2.3 DES, a photometric survey

2.2.3.1 Galaxy spectral information and spectroscopic redshifts

Before giving more details about the photometric properties of DES, it seems useful to first give
a brief overview of galaxy spectral properties that will enter the analysis procedure. Namely,
while observing an object, we are able to position it directly on the sky plane (right ascension
(RA) and declination (DEC)), in order to get its radial position, one has to measure it indirectly.
If one, for instance, had the full chemical composition, in principle one could infer the spectral
features that will be absorbed (or emitted) from the object, what is commonly called the spectral
energy distribution (SED). And from here it would be straightforward to infer its radial position
by estimating the shift between the emitted spectral line and the observed one 1 + z = λobs

λe
.
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Chapter 2 The Dark Energy Survey

Fig. 2.2.2 – Observation area of DES (top panel), overploted with other recent surveys,
photometric (middle panel) and spectroscopic (bottom panel), from Dark Energy Survey

Collaboration et al. (2016)
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By measuring these shifts on various spectral features, spectroscopic surveys manage to infer
precise redshifts ( σz

1+z ∼ 0.1%). However, as one can imagine, such measurements are time
consuming, and, eventhough there exist techniques to collect spectra of different objects at the
same time, the so called MOS (multi-object-spectrographs), some cosmological probes (such as
lensing) require redshift information of large number of objects to be competitive in cosmological
parameter inference that is not affordable with this type of instrument. However, in photometric
data, we are getting these spectral information averaged over the wavelength range covered by
each filter. In this sense, the key spectral features for this type of observations are no longer
resolved spectral lines but the changes in the overall shape of the SED. For instance, when
observing galaxies, two typical ’breaks’ in the spectral shape can be identified 3:

• Lymann break 912 Å: present in all galaxies, caused by hydrogen absorption.

• Balmer break ∼ 4000 Å: specially strong in old galaxies, which are typically redder and
more luminous.

In the observed data, these two typical breaks will appear more shifted with respect to their
initial positions as the redshift of the observed object is increasing. To illustrate this redshift
dependence of the spectral feature of a given object, the black line on Fig.(2.2.3) shows a model
of galaxy SED at different redshifts. In the figure, one can observe the shifts on the different
spectral features with redshift (from bottom to top on the figure). The colored lines in the figure
represent different photometric filters through which DES is observing. For this specific model,
one can see the Balmer break crossing the filters (g → r , r → i, and i → z) at different redshifts.4

2.2.3.2 Photometry

Photometric surveys take observations of specific fields in the sky through different filters, which
in a sense would be equivalent to low-resolution spectroscopy. Consequently, this would give the
advantage of beingmuch faster in observing than spectroscopic surveys. From these observations,
different methodologies exist to extract redshift information from the fluxes observed through the
different filters, the so-called photometric redshift (photo-z hereafter). These methods are based
on the idea that one can model a relation between the radial position of the observed objects and
their observed magnitudes (or colors). The width of the filters in wavelength space will affect
the redshift characterization; indeed if one observes through ’narrow-band’ filters, one will get
more precision on the overall shape of the SED.

3Here we have only highlighted as examples two spectral features that are typically entering in the optical filter
range.

4The galaxy modeled here is a red galaxy for which the Balmer break is pronounced.
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Galaxy sample for DES Y1 BAO measurements 7

Figure 5. Evolution of BPZ templates in color-color space. Each dot corresponds to a different redshift in steps of 0.1, ranging from z = 0.0 to z = 2.0. The
shadowed region in the central panel is excluded from the sample. The black dots indicate the position of z = 0.6 (triangles), and z = 1.0 (squares) for the
two reddest templates. Also shown, for reference, is the stellar locus as a purple dashed line.
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Figure 6. Elliptical model spectrum used in template-based fitting code
BPZ. Overplotted are the DES response filters g,r,i,z. The template has been
redshifted to z = 0.4, 0.8, 1.15, where the notable 4000 Å break crosses
from g ! r, r ! i and i ! z.

ics, use of the full covariance and optimized BAO extraction meth-
ods.

We note however that the forecasted error obtained in this sec-
tion is in fact quite close to the final BAO error obtained in DES-
BAO-MAIN. In the following sections we discuss the various com-
ponents that will enter the real data analysis, starting with the val-
idation of photometric redsfhit errors and the estimate of redshift
distributions.

4 PHOTOMETRIC REDSHIFTS

The photometric redshifts used for redshift binning and transverse
distance computations in our fiducial analyses are derived using the

Directional Neighborhood Fitting (DNF) algorithm (De Vicente,
Sánchez & Sevilla-Noarbe 2016), which is trained with public
spectroscopic samples as detailed in Hoyle et al. (2017). For com-
parison we also discuss below the Bayesian Photometric Redshift
(BPZ) (Benı́tez 2000) which we find slightly less performant in
terms of the error with respect to “true” redshift values (see below).
In both cases we use MOF photometry which provides ⇠ 10�20%
more accurate photo-z estimates with respect to the equivalent esti-
mates using SExtractor MAG AUTO quantities from coadd photom-
etry. In this section we summarise the steps taken to arrive at these
choices, based on a validation against data over the COSMOS field.

We recall that throughout this work we use the individual ob-
ject’s mean photo-z from BPZ (not to be confused with the mean
value z̄ =< z > of the sample) and the predicted value in the
fitted hyper-plane from the DNF code, as our point estimate for
galaxy redshifts. As for the estimates of the N(z) from the photo-z
codes, for comparison with our fiducial choice based on the COS-
MOS narrow band p(z), we will use the stacking of Monte Carlo
realisations of the posterior redshift distributions p(z) for the BPZ
estimates, or the stacking from the nearest neighbour redshifts from
the training sample, in the case of DNF (henceforth we’ll call these
stack N(z)). Figure 7 shows the stack N(z) (yellow histograms)
in all 4 redshift bins for our fiducial DNF photo-z analysis.

4.1 COSMOS Validation

As detailed in DES-BAO-PHOTOZ, we check the performance of
each code by using redshifts in the COSMOS field (which are not
part of the training set in the case of DNF), following the procedure
outlined in Hoyle et al. (2017). These redshifts are either spectro-
scopic or accurate (�68 < 0.01) 30-band photo-z estimates from
Laigle et al. (2016). Both validation samples give consistent results
in our case because the samples under study are relatively bright.

The COSMOS field is not part of the DES survey. However a
few select exposures were done by DECam which were processed
by DESDM using the main survey pipeline. We call this sample
DES-COSMOS. Because the COSMOS area is small (2 square de-
grees) and DECam COSMOS images were deeper and not taken
as part of the main DES-Y1 Survey, we need to first resample the
DES-COSMOS photometry to make it representative of the full
DES Y1 samples that we select in our BAO analysis. Hence we
add noise to the fluxes in the DES-COSMOS catalog to match the

MNRAS 000, 1–15 (2017)

Fig. 2.2.3 – Illustration of the photometric properties of the g, r, i, z filters of the Dark
Energy Survey camera DECam overplot with a model of spectral energy distribution of
an elliptical red galaxy at redshift z = 0.40 (bottom panel), z = 0.80 (middle panel) and

z = 1.15 (top panel); figure from Crocce et al. (2017)
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Measuring the overall shape of the spectral energy distribution should allow us to infer in one
hand the type of object being observed and on the other the distance at which we are observing
it and this is the reason why the two breaks presented in the previous paragraph are playing an
important role in photo-z measurements.

In practice, two popular categories of methods to infer single object photometric redshift can be
distinguished:

• Template Based methods : For each galaxy, we observe a articular spectral energy
distribution, whose shape depends on the type, age and redshift of the object. The main
idea of this method is to use a set of templates of galaxy spectra (simulated or observed),
from which we compute the flux distribution at different redshift observed through the
same filters, and select the combination of parameters z,T, A that minimize a χ2:

χ2(z,T, A) =
N f∑
f=1

[
fobs − A ftemp(z)

σ
f
obs

]2

(2.1)

where Nf is the number of photometric filters, fobs,temp are the observed and template
fluxes, σobs are the uncertainties on the observed fluxes, A is a normalization parameter,
z is the redshift and T the galaxy type. Selecting the smaller χ2 will give us the most
probable redshift and type of the observed object. In this class of methods, it is also
possible to use a Bayesian approach, namely instead of minimizing the χ2 of eq.(2.1),
using it in a probabilistic reasoning, inferring the probability for an object to be at a
given redshift considering some measured values, and priors. This Bayesian method is
for instance the one used in the context of DESY1 photometric redshift evaluation (see
Chapter 3), inferred with the Bayesian Photometric Redshift (BPZ) algorithm (Benítez
(2000)).

• Training methods : Another popular method used to infer photometric redshift is using a
machine learning algorithm (ML) such as Neural Network. This is based on the idea that if
we have a sample for which we have information in both spectroscopy and photometry, we
can train our ML algorithm to find a relation between magnitude (or colors) and redshift.
Note that our sample should be first divided into two sub-samples, one training sample
(in which the neural network is being trained) and one calibration sample, used to test our
training.

We note here that both methods will suffer in case of incompleteness in the template in one
side or in the training set on the other. This will have serious consequences on the redshift
resolution and bias one can achieve using photometry, namely the typical photo-z resolution of
these methods is of the order σz

1+z ∼ 0.1 and it is becoming a challenge for the community to
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improve these techniques to achieve the requirements of the new-generation surveys in terms of
photo-z biases and resolution.

2.3 DESphotometry: the samples from the first year of observations

The Dark Energy Survey is providing photometry information observing through 5 different
optical filters, g (400 − 550 nm), r (560 − 710 nm), i (700 − 850 nm), z (830 − 1000 nm) and Y
(950 − 1065 nm). Fig.2.2.3 shows the efficiency of the different filters from DES used to infer
photometric redshift and galaxy shapes5.

In Year1 (Y1) DES observed through these filters on average three or four times with a typical
exposure time of 90 seconds. The DESY1 footprint is about 1800deg2, that is to say about 40%
of the final DES footprint. The area covered by this observation is represented by the dark blue
shaded region on the top panel of Fig.(2.2.2). The analysis presented here is based on this first
year of observations, between August 31st 2013 and February 9th 2014. From this observation,
the collaboration has extracted photometry and built a cleaned catalog of galaxies, these gold
catalogs of 137 million objects Drlica-Wagner et al. (2018).

In the context of this work, two samples issued from the gold sample will be used, a high-
precision photo-z sample used to extract information about the clustering of galaxies and a
sample of galaxies with measured shapes, for weak lensing analyses. The following paragraphs
will be devoted to describe these two science samples.

2.3.1 A high-precision redshift sample: redMaGiC

In order to mitigate the impact of redshift uncertainties in cosmological analyses, it is useful to
build a sample by selecting galaxies for which these uncertainties are lower. For instance, when
one wishes to extract clustering information, it is possible to define a sample that contains the
clustering information and is not as affected by redshift uncertainties as the full gold sample
of galaxies. One of the tools that have been used in DESY1 to achieve this is the redMaGiC
algorithm Rozo et al. (2016). This algorithm permitted to select from the DESY1 gold sample
luminous red galaxies (LRG hereafter) that have the advantage of allowing an accurate estimation
of their photometric redshift (σz/(1 + z) . 0.02) in the considered redshift ranges). This comes
from the fact that this type of objects have a pronounced Balmer break (4000 Å) that allows a
precise photometric redshift estimation. Moreover, LRG have shown to be really good candidates
to probe large scale structure, in the sense that they can be observed until relatively high redshift
with shallow exposures due to the fact that these objects have a high luminosity.

5Note that the Y band is not present here because it is mostly used for supernovae observations that will not be
treated in this thesis.
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The selection methodology followed by the redMaGiC algorithm can be described in three main
steps :

• Make a fit for all the galaxies of the sample to a red-sequence template and compute from
it the best redshift of the fit as well as the template goodness of fit χ2. The red-sequence
templates used in this fitting are typically generated by the redMaPPer cluster finder Rykoff
et al. (2014).

• Compute the galaxy luminosity using the inferred redshift.

• Select galaxies with a specific luminosity and goodness-of-fit threshold (L > Lmin and
χ2 < χ2

min).6

The idea being to select similar samples of galaxies at all redshifts, the value of χ2
min will depend

on the redshift range. This will produce a galaxy sample with constant comoving density.

In the context of DESY1 analysis, several redMaGiC samples have been built, varying the
luminosity limits (Lmin), and more in particular the sample used for cosmological analysis (see
2.4.2,2.4.4), is a combined version of various redMaGiC samples with different luminosity cuts
depending on the redshift. Moreover, a mask based on the maximal redshift zmax to which
LRG could be detected for each filter, and weights have also been assigned to each galaxy in the
redMaGiC science sample to mitigate systematic errors Elvin-Poole et al. (2017).

The final redMaGiC sample for Y1 contains about 660000 red galaxies (the different luminosity
cuts are in Appendix A) with measured redshift zredMaGiC with a typical error of σz/(1 + z) =

0.017. For the cosmological probes that will be presented hereafter, the redMaGiC sample has
been divided in five redshift bins ([0.15, 0.3], [0.3, 0.45], [0.45, 0.6], [0.6, 0.75], [0.75, 0.9]).

2.3.2 A sample for Weak lensing

The other galaxy catalogs that will be used in this thesis are the catalogs with shapes that entered
the cosmological analysis using lensing effects Prat et al. (2017); Troxel et al. (2017); DES
Collaboration et al. (2017). In these analysis, two catalogs have been created and used, the
METACALIBRATION (Huff & Mandelbaum (2017); Sheldon & Huff (2017)) and the IM3SHAPE
(Zuntz et al. (2013)) catalogs. These catalogs adopt different methodologies to infer the galaxies
two component of ellipticities e = (e1, e2) necessary for weak lensing analysis (see 1.2.3 for
terminology) and to calibrate the different shear measurements and estimate the biases we have
in these measurements. This bias will be estimated for each redshift bin i and is applied as a

6This limit can be tuned to the science application.
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multiplicative parameter mi with :

γ = (1 + mi)γtrue (2.2)

where γ and γtrue stand for the measured and true shear. This parameter will be considered as
a free parameter in the DESY1 analysis and will be marginalized over (see 2.4).

The METACALIBRATION catalog : This catalog has been producedmeasuring first the ellipticities
of the objects using the NGMIX pipeline7 in which the basic idea it to fit a 2D Gaussian model
to the pixel image to each object for all r, i, z band exposures convolved with the point-spread
function (PSF)8. And in a second phase, to calibrate the measurements of the mean galaxy shear,
the METACALIBRATION methodology has been applied. METACALIBRATION is a self-calibration
method that allows to estimate the shear response Rγ and selection response RS of the estimator,
using directly the observed images. Rγ corresponds to the bias of our estimator when infering
the correct ellipticity of an object. In order to evaluate this bias, the method applies an artificial
additional small (known) shear to each objects and re-evaluate the ellipticity of the artificially
sheared objects (evaluating thus the estimator response to shear). By expanding the estimate of
the ellipticity in a Taylor series, one gets :

e = e|γ=0 +
∂e
∂γ

����
γ=0

γ + ... (2.3)

where γ stands for the shear of the object, and from here one can then define the shear response
as Rγ = ∂e

∂γ

���
γ=0

and estimate it using the artificially sheared images as :

Rγ,i, j =
e+i − e−i
∆γj

, (2.4)

where the e+,−i stand for the artificially sheared measured ellipticity of the component i = 1, 2
of the shear, and ∆γ is the artificial shear applied. In the case of DESY1, ∆γ = 1% has been
chosen.

On the other hand, RS , the selection response, is the bias induced by the fact that we are selecting
galaxies (eg. S/N selection, redshift selection,...) and these different potential selections might
have an impact on the measured mean ellipticities, namely if the probability of selecting in our
sample a galaxy with an ellipticity e is higher than for another ellipticity, this will bias our mean
shear measurement. In METACALIBRATION, the estimation of this bias is done by estimating the
shear response when applying the selection to the artificially sheared sample and measuring the

7https://github.com/esheldon/ngmix.
8The PSF represents the projection of a point source in the observed field into the image.
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response to these selection effects in the original catalog :

< RS >=
< ei >S+ − < ei >S−

∆γj
(2.5)

Where < ei >S+,− are the mean measured ellipticity on the original images having performed
the selection on the artificially sheared sample.

The full response of the METACALIBRATION catalog is then given by the sum of these two
responses :

S =< Rγ > + < RS > (2.6)

Note that this methodology is measuring the weak lensing shear directly on observed images and
does not require any priors on galaxy properties from simulations. However, it has been tested
in simulated images and has been shown to be able to recover the shear with a precision better
than a part in a thousand Sheldon & Huff (2017). The final catalog contains 35 million objects
with shapes, and the shear calibration bias, evaluated over different systematic effects has been
estimated as m = 0.012 ± 0.013. This systematic is shown to be dominated by blending effects
in the catalog 9.

The IM3SHAPE catalog : The IM3SHAPE pipeline is fitting bulges or elliptical models of galaxies
to observed objects for all exposures and picking the best fit in the r-band. The code is based on
the fitting of six different components, the two ellipticity components e1,2, the half light radius r,
the centroid offset (x0, y0) and the amplitude A of the different observed objects. The calibration
of the IM3SHAPE catalog of Y1 has been done using simulated images built to mimic the data
sample (Zuntz et al. (2017); Samuroff et al. (2018)). From this study, the shear bias has been
evaluated as a two component bias (multiplicative m and additive ci) that should be applied to
each object as:

e0
i = (1 + m)eti + ci (2.7)

where e0
i stands for the observed component i of the ellipticity and eti its true one. These two

components have been estimated accounting for selection effects on the catalog, meaning that
they depend on any additional cuts that could be made in the catalog. The resulting catalog
after applying selection cuts includes 22 million objects, and a multiplicative bias for the shear
component of m = 0.0± 0.025, which is dominated this time by defects in the simulated images.
The final catalog of IM3SHAPE is slightly smaller than the METACALIBRATION one due to the
fact the pipeline has been applied only to the r-band images.

Note that these two catalog employ different shape inference methodology and there was no
attempt tomake them look alike, the objective being to enforce the robustness of our cosmological
measurements if the results obtained with both are consistent.

9 Blending effects effers to the effect of neighbouring objects on the shear measurements.
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Moreover, in the context of DESY1 analysis, additional cuts on the catalogs have been made10:

• Selecting galaxies having photo-z point estimate within the redshift range 0.2 < z < 1.3.

• Selecting galaxies that ie in the redMaGiCmask: in principle, this would not be necessary
for cosmic shear analysis (2.4.3), but it has been done in order to be consistent with the
two other 2-point statistics used in the combined analysis.

These additional cuts lead to final catalogs of 26 million galaxies with a galaxy density of 5.5
galaxies arcmin−2 for the METACALIBRATION catalog and 18 million galaxies with 3.4 galaxies
arcmin−2 for the IM3SHAPE catalog, for a final area for DESY1 analysis of 1321deg2. These
catalogs have been divided in four redshift bins ([0.2, 0.43], [0.43, 0.63], [0.63, 0.9], [0.9, 1.3]) and
the redshift distribution has been evaluated using a Bayesian template fitting code (BPZ Benítez
(2000)) calibrated with two additional techniques, clustering redshift and 30 band photometry.
This calibration process will be presented in chapter 3.

2.4 DES first year main results

2.4.1 Cosmological inference methodology

Using the catalogs presented above, various cosmological probes allowed the collaboration to
put new constraints on the cosmology of our universe. This section aims to give an overview of
the main results that came out from one of these combined probe analysis. More specifically,
after an introduction to the overall methodology applied for cosmological inference, we will
present the results obtain for the three probes that entered the combined cosmological analysis
for DESY1 (Elvin-Poole et al. (2017); Troxel et al. (2017); Prat et al. (2017); DES Collaboration
et al. (2017)): the galaxy clustering signal (2.4.2), the cosmic shear signal (2.4.3) and the
galaxy-galaxy lensing signal (2.4.4), as well as the results combining these three probes, the
3x2 point analysis (2.4.5).

These analyses have used the 2-point statistics presented in 1.2.2 computed in all possible pairs
of redshift bins of the sample presented in 2.3. The angular correlation functions have been
estimated in 20 log-spaced angular bins between 2.5′ < θ < 250′11, using the public code
tree-corr12 Jarvis et al. (2004) . It is also good to mention that all the analyses presented in the
following paragraphs have been at first realized in a "blind" context, meaning that the correlation

10Note that the selection response mentioned for METACALIBRATION and the two calibration components of the
IM3SHAPE catalog had to be estimated considering theses additional cuts.

11These scales have been selected in order to mitigate contributions due to baryonic interactions at small scales
and residual mean shear bias at large scales.

12https://github.com/rmjarvis/TreeCorr .

49



DES first year main results

functions have been at first plotted in different axes for the measured and theoretical signals to
avoid any confirmation bias. Furthermore, the values of the shear were scaled by an unknown
factor. The unblinding occurred in July 2017 and was followed by the DESY1 publications.

In order to estimate cosmological parameters, one should at first consider a model for the
measured signal and in then sample the differentmodel parameters on themeasurement, obtaining
then a set of best fit parameters. For each probe, one would then have to sample in the multi-
parameter space the likelihood function L assumed to be gaussian :

logL(p) = −
1
2

∑
i, j

(Di − Ti(p))C−1
i j

(
Dj − Tj(p)

)
(2.8)

where Ti is the theoretical model considered for the redshift bin i, Di is the measurement done
in this bin and Ci j is the covariance of the measurement in each angular and redshift bins. This
likelihood, is thus sampled over the set of parameters p. These parameters can be divided in two
main categories, the nuisance parameters, that account for the different uncertainties or artifacts
that enter the measurements (systematic or astrophysical), and the cosmological parameters that
are the parameterswewish to estimate. While the cosmological parameters are the ones ruling the
universe evolution and dynamics, the nuisance parameters are observational defects or spurious
correlation that will appear in our measurement and have to be estimated or marginalized over.
These nuisance parameters depends on the probe used, and in the combined DESY1 analysis a
total of 20 nuisance parameters had been considered. Beside these nuisance effects, two different
cosmological models have been probed, the standard ΛCDM model which can be describe with
six cosmological parameters, the three energy densities parameters (Ωm,Ωb,Ων)13, the value of
the Hubble expansion today H0, the amplitude of the primordial density fluctuations A as well
as its spectral index nS . The amplitude parameter is often convert to the σ8 parameter that
measures the amplitude of the matter power spectrum at 8Mpc/h. In this specific analysis, we
will be more sensitive to the S8 parameter which can be related to the clustering amplitude and
the matter energy density as :

S8 = σ8

(
Ωm

0.3

)0.5
. (2.9)

The other model sampled is the wCDM model in which the dark energy is allowed to vary
with redshift (not a cosmological constant anymore) adding one cosmological parameter to the
parameter budget, the equation of state of dark energy w14. The cosmological parameters have
been sampled in this analysis using flat priors covering ranges much wider that recent results
obtained by other observations.

13Note that here the sum of neutrino masses has been sampled, even though most other cosmological analyses are
commonly fixing it to the limit value of 0.06eV

14The prior used to sample this parameter is a flat prior excluding w > −1/3, which would make the model
inconsistent with late-time cosmic acceleration.
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The theoretical models have been computed using two different algorithms, CosmoLike (Eifler
et al. (2014)) that uses the CLASS (Lesgourgues (2011); Blas et al. (2011)) pipeline to compute
the matter power spectrum and CosmoSIS15 (Zuntz et al. (2015)) using CAMB (Lewis & Challinor
(2011)). And the parameter space has been sampled using both the MultiNest (Feroz et al.
(2009)) and the EMCEE (Foreman-Mackey et al. (2013)) samplers.

2.4.2 Clustering measurement for combined probes

The more straightforward analysis that can be done using these wide galaxy catalogs is to extract
information from the clustering of galaxies using the auto (or/and cross) angular correlation
signal of the galaxy positions. If one considers that galaxies are tracers of the underlying matter
density field, these correlation signals would give us direct information the on matter distribution
(baryonic and dark) in the considered bins. However, as it has been mentioned in section 1.2.2.3,
galaxies are biased tracers of the underlying matter density field (δm = bδg); therefore, the
measured correlation signals, besides depending directly on the clustering amplitude (σ8), will
also depend on the galaxy bias of the considered sample b, and the signal will scale as ∝ b2σ2

8 .
Moreover, this bias is highly dependent on the sample considered, for this reason in cosmological
analysis, it is often treated as a nuisance parameter and marginalized over. However, the galaxy-
galaxy signal (that will be presented in 2.4.4) presents a different dependence on the galaxy bias,
so it is possible to break this degeneracy using these two probes together.

The result of the galaxy clustering analysis for DESY1 is presented in Elvin-Poole et al. (2017).
In there the galaxy sample considered is the combined redMaGiC sample presented in 2.3,
divided in the five bins in redshift of width ∆z = 0.15 going from z = 0.15 to z = 0.9. The
2-point angular correlations have been estimated using the Landy-Szaley estimator (see 1.2.2.5),
taking previously into account additional correlations that could appear due to astrophysical and
noise effects, see Elvin-Poole et al. (2017).

The theoretical formula used to model this correlation signal is:

wi(θ) = (bi)2
∫

dl
l

2πJ0(lθ)
∫

dχ
[ni

lens
(z(χ))]2

χ2H(z)
PNL

(
l + 1/2
χ

, z(χ)
)
, (2.10)

where J0 is 0th order Bessel function, χ stands for the radial comoving distance, ni
lens

16 is the
redshift distributions of galaxies in the lens bin i, H(z) is the Hubble expansion rate at redshift z

and PNL is the 3D matter power spectrum evaluated at the wave number k = (l + 1/2)/χ and at
cosmic time z(χ).

15https://bitbucket.org/joezuntz/cosmosis/wiki/Home .
16Here we have called the galaxies lenses to be consistent with the galaxy-galaxy terminology where these same

galaxies have been used as lenses.
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Although one cannot estimate cosmological parameters without making assumption about the
bias of the sample used, it is possible by fixing the cosmological parameters (for instance to the
ones inferred in the combined cosmological analysis DES Collaboration et al. (2017)), to infer
the value of this bias at each redshift bin. This has been done and the results have shown to be
consistent with the biases inferred using galaxy-galaxy lensing (see section 2.4.4 and Fig.(2.4.1)).

2.4.3 Cosmic Shear

The deflection of light that travels from background galaxies to us due to the underlying matter
field it crosses makes the observed shapes and sizes different from the original ones due to
lensing effects, as presented in 1.2.3. In principle, if one knew the intrinsic shapes and sizes
of the background objects, one could have direct information on the matter between us and
the background objects by measuring the amount of distortions they suffer. This is, of course,
impossible. However, if one assumes the mean ellipticity of galaxies to be randomly oriented (<
e >∼ γ) 17, one can infer the two components of these distortions averaging over a large number
of sources, and the alignment of these distortions will be directly dependent on the foreground
matter field. It is then possible to use the 2-point statistics auto-correlating the measured
distortions to obtain information on the matter distribution. This analysis is called cosmic shear.
Note that this method has a strong advantage compared to the clustering measurement presented
in the last section, in the sense that it does not depend on the galaxy bias. The amplitude of
the cosmic shear signal is at first approximation sensitive to the matter fluctuation σ8 and the
matter densityΩm (at low redshift in the linear regime the scaling is about ∝ Ω2

mσ
2
8 ). The recent

cosmological inference from the KiDS survey (Hildebrandt et al. (2017); Köhlinger et al. (2017))
appeared to be in tension with the CMB high redshift results from the Planck satellite (Planck
Collaboration et al. (2016b)) at the level of 2 − 3σ disagreement.

In this paragraph we will present the results from the DESY1 cosmic shear analysis, with a
significance of 25.4σ (signal-to-noise) for the fiducial (METACALIBRATION) catalog of galaxy
shapes. This is the highest significance signal obtained in today cosmic shear analyses. Asmatter
of robustness, the analysis has been repeated for the two catalogs of galaxy shapes presented in
sec. 2.3.2, even-though the METACALIBRATION catalog has been taken as fidutial to provide to
the community the final DESY1 cosmological results.

As described before, the cosmic shear measurement is done by cross-correlating the two com-
ponents of the shear γt and γ× (see sec. 1.2.3). These correlation can thus be expressed
as:

ξ+/− =< γtγt > ± < γ×γ× > . (2.11)

17Ignoring shape correlations from galaxies evolving in the same environment, the so called Intrinsic Alignment
effects (IA) that have been treated as a nuisance parameter.
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Note that in theory, we should also consider the cross-correlation < γtγ× >, but in practice this
terms vanishes (Schneider et al. (2002)).

The estimator to measure the cosmic shear signal for a pair of galaxy bins i and j is :

ξ̂
i j

+/−
(θ) =

∑
ab WaWb

[
êia,t (®θ ê j

b,t
(®θ) ± êia,×(®θ ê j

b,×
(®θ)

]
ΣabWaWbSaSb

, (2.12)

where Wa,b are weights depending on the shape algorithm18, S is the shear response correction
mentioned in 2.3, defined as S = Rγ+RS for METACALIBRATION and S = 1+m for the IM3SHAPE
ones. There it has been assumed that the shear response does not depend on the environment
and thus the error to apply when one estimates the auto-correlation signal is the square of the
mean response S (see Sheldon & Huff (2017)).

Considering a flat universe, the correlation signal between bins i and j can be modeled using the
theoretical power spectrum as:

ξ̂
i j
± (θ) =

∫
dll
2π

j0/4(θl)
∫

dχ
qi
s(χ)q

j
s(χ)

χ2 PNL

(
l + 1/2
χ

, z(χ)
)
, (2.13)

here we kept the same notation than in 2.4.2 and :

qi
s(χ) =

3ΩmH2
0

2
χ

a(χ)

∫ χ0

χ
dχ′nis(z(χ

′))
dz
dχ′

χ′ − χ

χ′
(2.14)

where Ωm and H0 are the mater density and expansion rate (at z = 0) cosmological parameters,
and nis stands for the redshift distribution of the source sample in the redshift bin i.

Here we also have to take into account the shear calibration systematic presented in 2.3.2:

ξi j = (1 + mi)(1 + m j)ξ
i j
true . (2.15)

Sampling the likelihood of eq. (2.8), it is possible, using cosmic shear measurements, without
having to make any assumption on the galaxy bias, to estimate the cosmological parameters.
Cosmic shear being mostly sensitive to the clustering amplitude (S8 parameter) and the matter
parameter (Ωm), it is possible to make an estimation of these parameter marginalizing over
the other ones. The results obtained in Troxel et al. (2017) are, for ΛCDM , σ8(Ωm/0.3)0.5 =
0.782+0.027

−0.027 and Ωm = 0.260+0.065
−0.037. These values have improved by a factor of three the results

obtained in the cosmic shear measurement made with the science verification sample (Abbott
et al. (2016)). In the top panel of Fig.(2.4.1) is shown the parameter inference in the (S8 − Ωm)

plane for the different DES shape catalogs. As it can be seen in the figure, the two shape catalogs

18For the METACALIBRATION catalog, no galaxy weight has been used W=1, and for the IM3SHAPE catalog the
weights have been evaluated empirically
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give consistent results and the METACALIBRATION catalog obtains stronger constraints on the
considered parameters.

As mentioned before, this analysis has also been repeated for a model allowing variation of
Dark Energy with redshift (not anymore considering dark energy as a constant as in the standard
model), the so called wCDM model. Using the methodology and catalogs described above, the
constraints on cosmological parameters using cosmic shear are σ8(Ωm/0.3)0.5 = 0.777+0.036

−0.038 and
the equation of state w = −0.95+0.33

−0.39. The equation of state parameter remains thus consistent
with −1 within errors, not providing thus indication of varying Dark Energy.

2.4.4 Galaxy-galaxy lensing

The last probe used in this analysis is what is known as galaxy-galaxy lensing. The idea behind
this probe consists in getting information on the matter density field by cross-correlating the
shape of a sample of background galaxies (called the sources) with the position of a sample
of foreground galaxies (acting as lenses). In principle, the distortion of background galaxies
is related to the foreground galaxies mass and therefore one can relate this distortion to the
position of a sample of foreground galaxies19. The background galaxies will appear orientated
perpendicularly to the line connecting the lense to the source. So the tangential component of
the ellipticity will be sensitive to the foreground mass distribution.

However, as it was the case for the clustering measurement, because the analysis uses galaxies as
matter tracer, this signal will also depends on the bias of the lens sample used, and will then scale
as ∝ bσ2

8 . But if one uses the same galaxy samples (therefore the same galaxy bias parameter) to
measure both signals from clustering and galaxy-galaxy lensing, since both depend on the same
bias, it is possible to remove the bias dependency and get an estimation of σ8.

For this measurement one can model the tangential shear signal measured between the lens bin
i and the source bin j as :

γ
i, j
t (θ) = bi

∫
dll
2π

J2(lθ)
∫

dχnil(z(χ))
q j
s(χ)

H(z)χ2 PNL

(
l + 1/2
χ

, z(χ)
)

(2.16)

using the same notation than for the cosmic shear case, and considering the shear calibration
systematic, we have now :

γ
i j
t = (1 + m j)γ

i j
true . (2.17)

In Prat et al. (2017), the galaxy sample used for this analysis contains the same five redshift bins
of the redMaGiC sample used in 2.4.2 and presented in 2.3.1 as lenses, and the four redshift bins
of the shape catalogs used in 2.4.3 as sources.

19Considering scales larger than the size of galaxy haloes.
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TABLE IV. A comparison of the priors and posteriors of non-
cosmological parameters in the fiducial analysis.

Parameter Prior Posterior
Systematic
m1 ⇥ 102 1.2+2.3

�2.3 1.3+1.8
�1.8

m2 ⇥ 102 1.2+2.3
�2.3 1.1+2.1

�2.0

m3 ⇥ 102 1.2+2.3
�2.3 0.4+1.9

�1.8

m4 ⇥ 102 1.2+2.3
�2.3 1.4+2.1

�1.5

�z1 ⇥ 102 0.1+1.6
�1.6 0.1+1.3

�1.3

�z2 ⇥ 102 �1.9+1.3
�1.3 �2.0+1.1

�0.9

�z3 ⇥ 102 0.9+1.1
�1.1 0.9+0.8

�0.9

�z4 ⇥ 102 �1.8+2.2
�2.2 �1.6+1.6

�2.0

Astrophysical
A 0.0+5.0

�5.0 1.0+0.4
�0.7

⌘ 0.0+5.0
�5.0 2.8+1.7

�2.0

ments on simulated data by both shape measurement methods,
which gave us an estimate of the relative selection bias, and
resulted in choices that made the catalogs more similar. Resid-
ual differences ultimately provided the basis for the final prior
for m. This is even more complicated to do with METACALI-
BRATION and IM3SHAPE due to the very different ways each
are calibrated. Instead, [39] perform detailed independent, ab
initio estimations of uncertainty in m for each pipeline.

The paper [39] also demonstrates that there is no significant
B-mode signal in our shear data. The (null) B-mode measure-
ment is performed in harmonic space, where the E-mode and
B-mode signals can be naturally separated. We note that this
null result does not formally guarantee that the real-space cor-
relation functions used in this work are B-mode-free. For ex-
ample, B-mode power above ` = 1000 (the maximum ` used
in [39]) could in principle contribute to the real-space statistics
used here. However, [145] (Fig. 2) demonstrate that although
⇠+ has sensitivity up to ` ⇠ 104 for a minimum angular scale
of 1 arcmin (the minimum scale used for ⇠+ in this work is 3.6
arcmin), the contribution from ` > 1000 is small, so B-mode
power at ` > 1000 would have to be extreme to significantly
affect our measurements.

To confirm that the two shear measurements from META-
CALIBRATION and IM3SHAPE agree, we have relied on a
quantitative comparison of their agreement only at the level
of cosmological parameter constraints, where the differing se-
lection of objects in each catalog is naturally accounted for.
This comparison was performed only once the two shape cat-
alogs were finalized based on results of tests in [39], and is
shown in Fig. 12 for ⇤CDM. The resulting contours in the
S8 – ⌦m plane are entirely consistent, though the mean of the
IM3SHAPE constraint in S8 is shifted to slightly higher values.
The weaker constraint for IM3SHAPE is due primarily to using
only the r band for shape measurement, relative to riz bands
for METACALIBRATION, and additional necessary catalog se-
lections to remove objects that cannot be calibrated accurately
due to limitations of galaxy morphology in the input COS-
MOS catalog. These contribute to a significantly smaller ne↵

for IM3SHAPE. This agreement, reached through two very

0.2 0.3 0.4 0.5
�m

0.6

0.7

0.8

0.9

1.0

S
8

DES Y1 (METACALIBRATION)
IM3SHAPE

DES SV

FIG. 12. A comparison of ⇤CDM constraints in the S8 – ⌦m plane
from the two shape measurement pipelines, METACALIBRATION
(gray filled contours) and IM3SHAPE (blue contours). This is a strong
test of robustness to assumptions and differences in measurement and
calibration methodology. Each pipeline utilizes very different and in-
dependent methods of shape measurement and shear calibration. We
also compare the DES SV results (from NGMIX) in green. Both 68%
and 95% confidence levels are shown.

different and independent shape measurement and calibration
strategies, is thus a very strong test of robustness to shape
measurement errors in the final cosmological constraints.

C. Photometric Redshift Comparison

As discussed in Sec. II B, we rely on a combination of 1)
comparisons to redshift distributions of resampled COSMOS
objects and 2) constraints due to clustering cross-correlations
between source galaxies and REDMAGIC galaxies with very
good photometric redshifts. We parameterize corrections to
the n(z) as a shift in the mean redshift of the distribution
of galaxies. As an independent test of whether shifting the
mean of the redshift distribution captures the full effect of
photo-z bias uncertainty, we show cosmological constraints
directly using the resampled COSMOS ni(z) redshift distri-
butions measured from COSMOS (see Fig. 2). The resulting
constraints are shown in Fig. 13, illustrating that differences
in the shape of the redshift distribution are sub-dominant for
cosmic shear when matching the mean at the current statis-
tical precision (see also [146]). The independent constraint
from clustering cross-correlations is unavailable in the fourth
redshift bin, because the REDMAGIC sample ends at redshift
z = 0.9. Thus, we also tested removing the fourth bin from
our analysis and confirmed in Fig. 13 that it does not pro-
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FIG. 8. Constraints on the ratio, r, of galaxy bias measured on w(✓) and measured from the galaxy-galaxy lensing signal (see
[30] denoted Y1GGL in the text) in each redshift bin (first five panels from left to right, top to bottom). The bottom-right
panel then displays the individual measurements for each bin (purple for our w(✓) measurements and orange for those obtained
in Y1GGL). All cosmological parameters were fixed at the DES Y1COSMO posterior mean values, using �zi priors from [29].
The constraints were calculated using the full Y1COSMO covariance matrix, so the covariance between the two probes has
been taken into account. We see no significant evidence for r 6= 1 within the errors.

are sensitive to both multiplicative and additive shifts
in the amplitude of w(✓) and we therefore believe they
should encapsulate any potential systematic bias that
could a↵ect the cosmological analysis of Y1COSMO. We
thus perform joint fits to the data in each redshift bin to
obtain constraints on the five bi and ⌦m. For these fits,
we marginalize over an additive redshift bias uncertainty
described in Table II. All other cosmological parameters
are fixed at the Y1COSMO cosmology and as such, this
should not be interpreted as a true measurement of ⌦m.
Results are obtained using the analysis pipeline described
in [20]. We describe how w(✓) is altered to perform each
test throughout the rest of this section.

A. Selection of threshold

We test two thresholds used to determine deter-
mine when to apply weights based on a given SP
map: 3��2(68) and a more restrictive (i.e., more maps
weighted for) 2��2(68). After reaching a certain thresh-

old, we expect that the only e↵ect from adding extra
weights would be to bias the measurements (from over-
correction) and add greater uncertainty. We test for
those e↵ects in the following subsections. Here, in or-
der to demonstrate that our results are insensitive to the
choice in threshold, the change in the measured bi and
⌦m must be negligible compared to its uncertainty.

Figure 9 shows the di↵erence between the 3��2(68)
and 2��2(68) SP weights. Because the weights correc-
tion can only decrease the w(✓) signal, applying a stricter
threshold significance is expected to move the contours
towards smaller values of bi. Figure 9 shows that this
impact is very small compared to the overall Y1 un-
certainty and we can conclude that the choice between
3��2(68) and 2��2(68) weights will have negligible im-
pact on the Y1COSMO parameter constraints (The final
weights used in Y1COSMO are the 2��2(68) weights).

Figure 9 also shows the impact of not including SP
weights on the parameter constraints. Ignoring the SP
correlations would have resulted in significantly bias con-
straints on bi and ⌦m. In every redshift bin, the shift is

Fig. 2.4.1 – Top panel: Cosmological constraints on the S8 and σ8 parameters from cosmic
shear measurement only comparing the three currently existing galaxy catalogs with shape
of DES, the Science Verification catalog, the DESY1 METACALIBRATION catalog and the
DESY1 IM3SHAPE catalog, figure from Troxel et al. (2017). Bottom panel: comparison
of the galaxy bias estimation for the five redMaGiC lens bins using both the clustering
(pink) and galaxy-galaxy lensing measurements (orange), figure from Elvin-Poole et al.

(2017).
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The estimator for tangential shear γt depends on the catalog used, since different corrections
should be applied (Zuntz et al. (2017)). For the METACALIBRATION catalog, the estimators is :

< γt >=
1
S

∑
j wl, jet, j∑
j wl, j

(2.18)

and for the IM3SHAPE catalog :

< γt >=
1
S

∑
j wl, jws, jet, j∑

j wl, jws, j(1 + mj)
, (2.19)

where the wl, j and ws, j correspond to weights associated to each pair source-lens.

As mentionned before, using galaxy-galaxy lensing also allows to estimate the bias of the sample
in question for each of the redshift bin (fixing cosmological parameters). This bias measurement
is shown to be in agreement with galaxy clustering and a comparison of these measurements is
shown in the bottom panel of Fig.(2.4.1) for each of the five lens bins. As one can see in the
figure, both bias estimations (using clustering and galaxy-galaxy lensing measurements) agree
within errors.

2.4.5 Combined cosmological analysis

Now that the three probes have been measured, it is also possible to obtain constraints on
cosmology by combining these three two-point statistics (3 × 2 point). Combining probes has
shown in past analysis to improve cosmological parameter estimation, see for instance van Uitert
et al. (2018) and Joudaki et al. (2018), where the data from the Kilo Degree Survey has been
combined to two different spectroscopic external datasets as lens samples. This has been done
in DES Collaboration et al. (2017), where the cosmic shear measurements together with the
clustering and galaxy-galaxy lensing measurements have shown to give strong constraints on
cosmological parameters. In there, the likelihood of eq. (2.8) has been sampled over twenty
nuisance parameters plus six (or seven for wCDM models) cosmological parameters. And the
covariance matrix used for this estimation is a halo model theoretical covariance of dimension
457 × 457 (457 being the size of the final DESY1 data vector) generated by the CosmoLike

pipeline Krause et al. (2017) 20.

On the top panel of Fig.(2.4.2) we can see the comparison of the results obtained whether one
combines the different probes or not. These results have been obtained after marginalizing over
the additional parameters. As it can be seen in the figure, the results here are showing a good
agreement between clustering statistics and lensing statistics in cosmological parameter infer-
ence. Moreover, the combination of the three different probes shows to improve our constraints

20The analysis has been reproduced using the CosmoSIS pipeline and no discrepancy has been found.
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on cosmological parameters. The main constraints obtained by combining the three two-point
statistics are for ΛCDM: σ8(Ωm/0.3)0.5 = 0.783+0.021

−0.025 and Ωm = 0.264+0.032
−0.019. Moreover, simi-

larly to the cosmic shear analysis, the parameter estimation has also been repeated for the wCDM

model, and this time the best fit parameters are σ8(Ωm/0.3)0.5 = 0.794+0.029
−0.027, Ωm = 0.279+0.043

−0.022

and the equation of state w = −0.80+0.20
−0.22. Once again, no evidence for varying dark energy has

been found.

Another important results from DES Collaboration et al. (2017) is the comparison of the DESY1
cosmological inference to the one announced by other surveys and probes. In particular, while
the KiDSweak lensing analyses (Hildebrandt et al. (2017); Köhlinger et al. (2017)) were showing
discrepancy in the S8 inference with the Planck cosmic microwave background results (Planck
Collaboration et al. (2016b)), this discrepancy is not so clear in the DESY1 results. In particular,
the bottom panel of Fig.(2.4.2) shows the 68% confidence levels of S8 and Ωm in the ΛCDM

parametrization forDESY1 alone and combined to external datasets. Thus the blind cosmological
analysis made by DESY1 studying large scale structures at low redshift are in fair agreement
with the CMB measurements at z ∼ 1100.

The analysis can also be followed combining the DESY1 3×2 point analysis to the Planck results
Planck Collaboration et al. (2016b) as well as the Baryon acoustic oscillation measurements from
Beutler et al. (2011); Ross et al. (2015); Alam et al. (2017), and Supernovae luminosity distance
from the Joint LightcurveAnalysis (JLA) fromBetoule et al. (2014), the differentways to combine
these probes and the parameter constraints obtained are represented in Fig.(2.4.2). Namely,
for ΛCDM scenario, combining all probes named here, we have obtained σ8(Ωm/0.3)0.5 =
0.799+0.014

−0.009 and Ωm = 0.301+0.006
−0.008 which are the tightest constraints made on these parameters

up do date. And similarly, the wCDM model results have not shown any indication of varying
Dark Energy (w = −1.00+0.04

−0.05).

2.5 Discussion

In this chapter, we have been presenting the Dark Energy Survey together with the results it
obtained using three different 2-point statistics probes after one year of observations. The Dark
Energy survey is entering now in its last observation period and has already shown, after this
first observation year, to be competitive in cosmological inference. More in particular, with
its photometric camera observing through its five optical filters, the Dark energy survey has
been able to constrain cosmological parameters by probing large scale structure at low redshift
at similar statistical level (for the first time) to the one made using the high redshift Cosmic
Microwave Background information and has obtained constitent results with this last one.
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ample of such a hypothesis is that dataset ~D can be described
by a model M , in which case the Bayesian evidence is

P ( ~D|H) =

Z
dN✓P ( ~D|~✓,M)P (~✓|M) (V.1)

where ~✓ are the N parameters of model M .
For two hypotheses H0 and H1, the Bayes factor is given

by

R =
P ( ~D|H0)

P ( ~D|H1)
=

P (H0| ~D)P (H1)

P (H1| ~D)P (H0)
(V.2)

where the second equality follows from Bayes’ theorem and
clarifies the meaning of the Bayes factor: if we have equal a
priori belief in H0 and H1 (i.e., P (H0) = P (H1)), the Bayes
factor is the ratio of the posterior probability of H0 to the pos-
terior probability of H1. The Bayes factor can be interpreted
in terms of odds, i.e., it implies H0 is favored over H1 with
R : 1 odds (or disfavoured if R < 1). We will adopt the
widely used Jeffreys scale [127] for interpreting Bayes fac-
tors: 3.2 < R < 10 and R > 10 are respectively considered
substantial and strong evidence for H0 over H1. Conversely,
H1 is strongly favored over H0 if R < 0.1, and there is sub-
stantial evidence for H1 if 0.1 < R < 0.31.

We follow [128] by applying this formalism as a test for
consistency between cosmological probes. In this case, the
null hypothesis, H0, is that the two datasets were measured
from the same universe and therefore share the same model
parameters. Two probes would be judged discrepant if they
strongly favour the alternative hypothesis, H1, that they are
measured from two different universes with different model
parameters. So the appropriate Bayes factor for judging con-
sistency of two datasets, D1 and D2, is

R =
P
⇣
~D1, ~D2|M

⌘

P
⇣
~D1|M

⌘
P
⇣
~D2|M

⌘ (V.3)

where M is the model, e.g., ⇤CDM or wCDM. The numerator
is the evidence for both datasets when model M is fit to both
datasets simultaneously. The denominator is the evidence for
both datasets when model M is fit to both datasets individu-
ally, and therefore each dataset determines its own parameter
posteriors.

Before the data were unblinded, we decided that we would
combine results from these two sets of two-point functions if
the Bayes factor defined in Eq. (V.3) did not suggest strong
evidence for inconsistency. According to the Jeffreys scale,
our condition to combine is therefore that R > 0.1 (since
R < 0.1 would imply strong evidence for inconsistency). We
find a Bayes factor of R = 2.8, an indication that DES Y1
cosmic shear and galaxy clustering plus galaxy–galaxy lens-
ing are consistent with one another in the context of ⇤CDM.

The DES Y1 data were thus validated as internally con-
sistent and robust to our assumptions before we gained any
knowledge of the cosmological parameter values that they im-
ply. Any comparisons to external data were, of course, made
after the data were unblinded.

VI. DES Y1 RESULTS: PARAMETER CONSTRAINTS

A. ⇤CDM

We first consider the ⇤CDM model with six cosmological
parameters. The DES data are most sensitive to two cosmo-
logical parameters, ⌦m and S8 as defined in Eq. (IV.5), so for
the most part we focus on constraints on these parameters.
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FIG. 5. ⇤CDM constraints from DES Y1 on ⌦m,�8, and S8

from cosmic shear (green), redMaGiC galaxy clustering plus galaxy–
galaxy lensing (red), and their combination (blue). Here, and in all
such 2D plots below, the two sets of contours depict the 68% and
95% confidence levels.

Given the demonstrated consistency of cosmic shear with
clustering plus galaxy–galaxy lensing in the context of ⇤CDM
as noted above, we proceed to combine the constraints from
all three probes. Figure 5 shows the constraints on ⌦m and
�8 (bottom panel), and on ⌦m and the less degenerate param-
eter S8 (top panel). Constraints from cosmic shear, galaxy
clustering + galaxy–galaxy lensing, and their combination are
shown in these two-dimensional subspaces after marginaliz-
ing over the 24 other parameters. The combined results lead
to constraints

⌦m = 0.264+0.032
�0.019

S8 = 0.783+0.021
�0.025

�8 = 0.807+0.062
�0.041. (VI.1)

The value of ⌦m is slightly lower than that inferred from
either cosmic shear or clustering plus galaxy–galaxy lensing
separately. In general, when projecting down onto a small
subspace, this can occur. In this particular case, we get a
glimpse of why by noting from the bottom panel of Figure 5
that the degeneracy directions of shear differ slightly in the

18

FIG. 6. 68% confidence levels for ⇤CDM on S8 and ⌦m from DES Y1 (different subsets considered in the top group, black); DES Y1 with all
three probes combined with other experiments (middle group, green); and results from previous experiments (bottom group, purple). Note that
neutrino mass has been varied so, e.g., results shown for KiDS-450 were obtained by re-analyzing their data with the neutrino mass left free.
The table includes only data sets that are publicly available so that we could re-analyze those using the same assumptions (e.g., free neutrino
mass) as are used in our analysis of DES Y1 data.

FIG. 7. The bias of the redMaGiC galaxy samples in the five lens
bins from three separate DES Y1 analyses. The two labelled “fixed
cosmology” use the galaxy angular correlation function w(✓) and
galaxy–galaxy lensing �t respectively, with cosmological parameters
fixed at best-fit values from the 3x2 analysis, as described in [88] and
[89]. The results labelled “DES Y1 - all” vary all 26 parameters while
fitting to all three two-point functions.

A. High redshift vs. low redshift in ⇤CDM

The CMB measures the state of the Universe when it was
380,000 years old, while DES measures the matter distribu-
tion in the Universe roughly ten billion years later. Therefore,
one obvious question that we can address is: Is the ⇤CDM
prediction for clustering today, with all cosmological param-
eters determined by Planck, consistent with what DES ob-
serves? This question, which has of course been addressed
by previous surveys (e.g., [31, 34, 62, 63]), is so compelling
because (i) of the vast differences in the epochs and condi-
tions measured; (ii) the predictions for the DES Y1 values
of S8 and ⌦m have no free parameters in ⇤CDM once the
recombination-era parameters are fixed; and (iii) those pre-
dictions for what DES should observe are very precise, with
S8 and ⌦m determined by the CMB to within a few percent.
We saw above that S8 and ⌦m are constrained by DES Y1 at
the few-percent level, so the stage is set for the most stringent
test yet of ⇤CDM growth predictions. Tension between these
two sets of constraints might imply the breakdown of ⇤CDM.

Figure 10 compares the low-z constraints for ⇤CDM from
all three DES Y1 probes with the z = 1100 constraints from
the Planck anisotropy data. Note that the Planck contours are
shifted slightly and widened significantly from those in Fig-
ure 18 of [51], because we are marginalizing over the un-
known sum of the neutrino masses. We have verified that
when the sum of the neutrino masses is fixed as [51] assumed
in their fiducial analysis, we recover the constraints shown in

Fig. 2.4.2 – Main results from the DESY1 3 × 2 point combined constraints on ΛCDM
models DES Collaboration et al. (2017), Top panel : constraints obtained on the σ8 −Ωm,
S8 −Ωm and σ8 − S8 parameter planes using DESY1 cosmic shear measurements (green),
combining clustering and galaxy-galaxy lensing measurements (red) and all three probe
combined (blue), the contour representing the 68% and 95% confidence levels. Bottom
panel: Constraints obtained at the 68% confidence level on the S8 and Ωm parameters

using various cosmological probes and experiments.
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Chapter 2 The Dark Energy Survey

To obtain such results, the collaboration had to make a big effort in processing the data. This
effort has been done all in a blind context probing various set of catalogs, sampler algorithms,
photometric redshift algorithms. Beside highlighting the robustness of the results showing the
consistency of them on the different catalogs or pipelines used, the fidutial METACALIBRATION
catalog has been able to provide first the bigger detection of cosmic shear signal ever made and
combined with other probes and external experiments data the tightest constraints on the S8−Ωm

cosmological parameters.

Moreover, the analysis has also been repeated for alternative model to the ΛCDM namely the
wCDM type of model, in which Dark Energy is not a cosmological constant anymore but can
vary with redshift, and the results have shown no evidence for such variations (equation of state
of Dark energy consistent with −1). This analysis also has open the road to further alternative
model testing, indeed considering the large variety of alternative model existing in the literature,
it would be also useful to implement such models in the analysis pipeline.

In the future months, the Dark Energy Survey will present the analysis coming from the second
and third year of observation, during this period DES has already covered the full expected final
area (up to a given magnitude). The analysis will thus be realized in an area more than three
times larger than the DESY1.

59





Part II

Redshift Estimation in DESY1

61





Chapter 3

Clustering redshift

3.1 Motivations

As mentioned in the previous chapters, one of the most challenging aspects of imaging galaxy
surveys, in order to achieve accuracy requirements in cosmological parameter estimation, resides
in the determination of redshift distributions of galaxy samples. Indeed, getting spectroscopic
redshift for each object restricts us in sample size, and on the other hand getting precise enough
photometric redshift becomes challenging as explained in section 2.2.3.2. However, while these
two methods make an estimation of the redshift for each objects, it has been mentioned in
section 2.4.3 that some cosmological probes, such as weak lensing measurements, do not require
individual redshifts but redshift distributions of the sources.

In this context, a new type of methods have emerged, the so called clustering-redshift methods,
which instead of relying on spectral information of objects, are based on the clustering properties
of a given sample. Since it was presented and tested for the first time in Seldner & Peebles
(1979), where the authors used the angular cross-correlation of a catalog of galaxies with
spectral information with a catalog of quasars to infer its redshift distribution, these techniques
seem to offer us today a good alternative to photo-zs.

More recently, in Newman (2008), the authors probed and showed using simulated catalogs
that inferring redshift distributions using clustering information was actually feasible. Since
then, these new methods has been tested in simulations in various works: Matthews & Newman
(2010); Ménard et al. (2013); Schmidt et al. (2013); McQuinn & White (2013),and applied to
observed data in Rahman et al. (2015, 2016a,b); Choi et al. (2016); Scottez et al. (2016), and
recently Johnson et al. (2017); Hildebrandt et al. (2017); Morrison et al. (2017) used clustering
redshift methods in the KIDS (Kilo-Degree Surveys de Jong et al. (2015)) data analysis, as a
cross-check of photo-z posterior, and have shown the potential that this new types of methods
have for future redshift surveys.
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In the case of the Dark Energy Survey first year of observation (DESY1) cosmological analysis,
clustering-redshifts have also been used, and for the first time the reconstructed distribution from
clustering-redshifts was involved in the analysis not only as a cross-check of posterior distribution
given by photometric redshift codes (as it has been done for KIDS) but to directly calibrate the
redshift posteriors, obtained by photo-z codes, that were then used for the cosmological analysis
(see Hoyle et al. (2018); Elvin-Poole et al. (2017); Troxel et al. (2017)). In Gatti, Vielzeuf.
et al. (2018) we used cosmological simulations to determine a fiducial methodology and evaluate
the systematic errors that it implies and in Davis et al. (2017) we exposed the results of our
methology applied to the weak lensing sample (WL) of DESY1. This chapter aims to explain
the methodology followed and present the results obtained in this context.

This chapter is organized as follows: First an introduction to the different clustering-redshift
main idea and methods probed in this work will be presented (section 3.2), then a section will be
dedicated to present the way these techniques have been included to the DESY1 data analysis,
together with a presentation of the different galaxy catalogs involved in this study (section 3.3).
Section (3.4) will explain how the systematics of the method were estimated, and finally section
3.5 will discuss the main results obtained for the calibration of the DESY1 WL sample.

3.2 Clustering-redshift methodology

3.2.1 Basic theory

In the literature a variety of methods to recover redshift distributions based on cross-correlation
have been discussed (Newman, 2008; Ménard et al., 2013; Schmidt et al., 2013; McQuinn &
White, 2013). The underlying idea shared by all thesemethods is that the spatial cross-correlation
between two samples of objects is non-zero only in case of 3D overlap between them. In other
terms, if one estimates the cross-correlation signal of two samples in the same footprint, one
will get a signal in case of redshift overlap. In principle, the method could be applied to any
galaxy sample, nevertheless applying it to a sample of galaxies optimally selected in photometric
could also mitigate systematic effects Ménard et al. (2013); Schmidt et al. (2013); Rahman et al.
(2016b).

More specifically, one considers two galaxy samples:

1. An unknown sample, whose redshift distribution nu(z) has to be recovered.

2. A reference sample, whose redshift distribution nr(z) is known (either from spectroscopic
redshifts or from high-precision photometric redshifts).
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In order to recover the redshift distribution of the unknown sample, we have to start by binning
the reference sample in sufficiently narrow redshift bins and compute the cross-correlation signal
between the ’unknown sample’ and each narrow reference bin.

Similarly to section 1.2.2.4, one can express the mean surface density of the unknown sample
Σu(θ, z) at an angle θ of each object of the reference sample at redshift z as :

< Σu(θ, z) >r= Σu(1 + wur (θ, z)) (3.1)

and from here, using a specific estimator as explained in 1.2.2.4 evaluate the cross-correlation
signal between each reference sample narrow bin and the unknown sample.

In this specific analysis, to evaluate the correlation signal of our two samples, we have made the
choice to use the Davis & Peebles estimator Davis & Peebles (1983), which for cross-correlations
could be written as:

wur (θ) =
DuDr − DuRr

DuRr
(3.2)

where DuDr ,and DuRr represent the pair count between ’Data-Data’ and ’Data-Random’ re-
spectively, and ’u’ and ’r’ represent the unknown and reference samples. This estimator has
been selected because it presents the advantage of not requiring a random catalog for the un-
known sample, saving us from generating these random catalogs, which, in our case, could have
introduced an additional source of errors due to the complicated spatial selection function of
the sample (see Zuntz et al. (2017) and section 3.3.2.2). Instead of that, we only need random
catalogs for the reference sample for which we have a good knowledge of masking effects and
selection function (see Elvin-Poole et al. (2017)).

On the other hand from Limber equation (??) and assuming a linear bias model (1.39), one can
rewrite the angular cross-correlation of the two considered samples as :

wur(θ) =

∫
dz′nu(θ, z′)nr (θ, z′)bu(θ, z′)br (θ, z′)wDM (θ, z′), (3.3)

where u and r are the unknown and reference redshift distributions (normalized to unity over the
full redshift interval), bu and br are the biases of the two samples, and wDM is the dark matter
2-point correlation function. If one assumes that the redshift distribution of the two samples as
well as their biases do not depend on the angular scales, this equation becomes :

w̄ur =

∫
dz′nu(z′)nr (z′)b̄u(z′)b̄r (z′)w̄DM (z′), (3.4)

where the barred quantities refers to the averaging over angular scales.

Starting from here, various way to estimate this signal have been proposed. In this analysis,
we have tried three different clustering-redshift based methods, the ’Schmidt/Ménard’ method
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from Schmidt et al. (2013); Ménard et al. (2013) that will be explained in 3.2.1.1 , a ’Weighted’
method detailed in 3.2.1.2 and the ’Newman’s’ method from (Matthews & Newman (2010))
presented in 3.2.1.3.

3.2.1.1 Schmidt/Ménard

This method has been introduced in Schmidt et al. (2013). The main underlying idea there (as
well as for the method presented in 3.2.1.2) is to assume that the reference sample is divided in
bins as narrow as one can, to approximate its redshift distribution in each narrow bin as :

nr (z) ∝ NrδD(z − z′) (3.5)

where Nr is the number of reference objects in the considered bin and δD is Dirac’s delta
distribution. Hence, eq.(3.4) can be inverted and one can express the redshift distribution of the
unknown sample as :

nu(z) ∝ w̄ur (z)
1

b̄u(z)
1

b̄r (z)
1

w̄DM (z)
(3.6)

In Schmidt et al. (2013), the authors measured the cross-correlation signal within ’1-angular
bin’. That is to say, instead of measuring the cross-correlation signal in several angular bins and
fitting a power law as it’s been usually done for angular correlation analyses (see paragraphs
?? and 1.2.3), one evaluates the mean density of the unknown sample objects around each
reference sample object within a single physical anulus going from rmin to rmax the minimum
and maximum comoving distances. In Schmidt et al. (2013), the authors showed that applying
a weight proportional to the inverse distance to the reference object improves the signal to noise
ratio of the reconstruction (giving more statistical power to closer objects).

In this context, one can estimate the cross-correlation signal between the two samples using the
Davis & Peebles estimator as :

w̄ur =
NRr

NDr

∫ rmax

rmin
dr ′W(r ′)[DuDr (r ′)]∫ rmax

rmin
dr ′W(r ′)[DuRr (r ′)]

− 1 (3.7)

where W(r ′) is a weighting function that is proportional to the inverse radius (1/r).

This approach is one of the most popular in clustering-based redshift analyses and has shown to
give consistent results in both observed data and simulations (Schneider et al. (2006); Ménard
et al. (2013, 2010); Schmidt et al. (2013); Rahman et al. (2015, 2016a,b); Scottez et al. (2016,
2018)).

66



Chapter 3 Clustering redshift

3.2.1.2 Weighted method

Another method presented in Ménard et al. (2013) is similar than the previous one (3.2.1.1),
in the sense that it only differs in the weighting procedure: whereas before the weights were
applied to every pair to compute the cross-correlation signal, here the cross-correlation signal is
first computed as a function of angular separation θ and afterwards the weights are applied to
the signal. In this sense, eq.(3.7) can be rewritten as:

w̄ur =

∫ θmax

θmin

dθW(θ)wur (θ, z) (3.8)

where W(θ) ∝ θ−γ is the weight function where we assumed γ = 1 giving more statistical power
for the pairs with small angular separation increasing thus our signal to noise ratio.

3.2.1.3 Newman

The last approach that has been tested is presented in Newman (2008); Matthews & Newman
(2010). In there, the authors adopted a different procedure from the two previous ones. Indeed
they start from the assumption that the cross-correlation signal could be described by a power
law ξ = (r/r0)

−γ. And then assuming linear biases, it is possible to relate the computed
cross-correlation signal to a specific cosmological model as :

wur (θ, z) =
nu(z)H(γur )r

γur
0,urD1−γur

A

dχ/dz
, (3.9)

where γur is the power law slope of the cross-correlation signal, H(γur ) = Γ(1/2)Γ((γur −
1)/2)/Γ(γur ) (Peebles (1980)), and DA(z) and (z) are respectively the angular size distance and
comoving distance at redshift z. From here, we fitted the angular cross-correlation signal as :

wur (θ, z) = Aur (z)θ1−γur − Cur (3.10)

Equalizing now eq.(3.9) and (3.10) we get the redshift distribution for the unknown sample as :

nu(z) =
dχ/dz

D1−γur
A

H(γur )r
γur
0,ur

∗ (Aur (z)θ1−γur − Cur ) (3.11)

Comparing to the two other methods probed in this work, we can see that this approach carries
additional degrees of freedom:
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• γur (as well as the correlation length r0,ur ) that could be estimated (under the assumption
of linear biases) from the auto-correlation signal of both samples γur = (γuu +γrr )/2 (and
rγur0,ur =

√
(rγuu0,uurγr r0,rr ))

• Cur (and Aur (z)) obtained using chi-square minimization using the covariance of a jack-
knife resampling (see section 3.3.1.3)

Here the only parameter that cannot be directly measured is r0,uu but adopting an iterative
approach, one can insert a first guess of r0,uu in eq.(3.11), that will then be inserted in the
cross-correlation signal of eq.(3.9) to refine the value of r0,uu, and we iterate this process until
convergence. Following what has been done in Matthews & Newman (2010) where the authors
assumed r0,uu ∝ r0,rr , one can start the iterative procedure with r0,uu = r0,rr . However, one can
note that this approach could breack down if the bias evolution of the two samples don’t follow
a proportionality relation; this will be commented in section 3.4.2.5.

3.2.1.4 Bias correction

As mentioned before, the Newman method assumes a linear modeling for the biases, whereas in
both Schmidt/Ménard and Weighted methods, the effects of the redshift evolution of the biases
was neglected. In principle, one could correct for the redshift evolution of the biases and the
dark-matter 2-point correlation function using the 1-bin estimate of the auto-correlation signal
of both samples. Indeed, if one divides both the reference and unknown sample in bins narrow
enough, the auto-correlations w̄uu(z) or w̄rr (z) could be related to the redshift distributions of
the corresponding samples in the considered bin nu,z(z) or nr,z(z) as :

w̄rr,z =

∫
dz′[br (z′)nr,z(z′)]2w̄DM (z′) (3.12)

w̄uu,z =

∫
dz′[bu(z′)nu,z(z′)]2w̄DM (z′) (3.13)

and from here correct the reconstructed redshift distribution of eq.(3.6) as :

nu(z) ∝
w̄ur (z)√

w̄uu(z)w̄rr (z)
. (3.14)

The limit of this methodology comes from the fact that, to apply this correction, one needs a
good knowledge of the distributions of objects within the narrow bins (which we don’t have for
the unknown sample), and in the case of the reference sample the auto-correlation estimate could
be really noisy depending on the size of the sample. However, in simulated catalogs, one has the
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true redshift information, so that would be then feasible in simulations to estimate the impact of
neglecting these effects, (see section 3.4.2.1).

3.3 The Dark Energy Survey first year fiducial methodology

As mentioned previously, in the context of the Dark Energy survey first year of observations
cosmological analysis, the reconstructed redshift distributions provided by clustering-redshift
based methods have not been used directly but as a tool to correct the posterior produced by
photo-z code. Indeed, mainly due to the fact that the higher redshift bin of the sample we aimed
to reconstruct was not covered by our reference sample (see hereafter, paragraphs 3.3.2.2 and
3.3.2.3), we have been using our reconstructed distribution to correct the bias in the mean of the
redshift distribution from photo-z codes. The framework could therefore be separated in two
steps :

• step 1 : reconstruct the redshift distribution of your unknown sample using clustering
based methods;

• step 2 : correct the mean of the photo-z posterior of your unknown sample using your
reconstructed method

One could imagine different manners to correct the photo-z posterior. In this work, we have been
testing two different approaches, and the first part of this section will be dedicated to present
these specific methodologies.

Then in a second part, the different samples that have been used for this analysis will be
introduced.

3.3.1 Matching procedures

As specified before, the goal was to calibrate the posterior of the redshift distribution obtained
using a given photo-z code using the distribution obtained using clustering-redshift based tech-
niques. Two different calibration approaches based on the matching of the two distributions
using likelihood functions were used to solve for the shift to be applied to the photo-z posterior
coming from the photo-z code.In the context of this work, we have been using the affine-invariant
Markov Chain Monte Carlo ensemble sampler emcee Foreman-Mackey et al. (2013)1 to sample
the likelihood.

1http://dan.iel.fm/emcee
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3.3.1.1 Shape matching

The goal here would be to correct the distribution obtained with the photo-zcode (npz(z)) by
matching it to the one reconstructed with our methology (nwz(z)) within the redshift interval of
the considered photometric bin. The corrected distribution is considered to be n∆ = npz(z−∆z),
allowing then a shift of the uncorrected distribution along the z-direction. We find ∆z by
minimizing

logL = −
1
2
χ2

(
ekn∆; nWZ ; Σ̂−1

WZ

)
+ Prior(k,∆z), (3.15)

where ek is a normalizing factor that allows us to rescale the corrected distribution to unity over
the full redshift-bin interval considered. Σ̂−1

WZ represents the covariance matrix of the clustering
redshift proceedure (see 3.3.1.3). In this approach (as well as the one presented in section
3.3.1.2), we have been using flat priors for both k and ∆z

3.3.1.2 Mean matching

In a similar way, if we want now to match directly the mean of the photo-z distribution < z >pz to
the mean of the clustering redshift distribution < z >WZ and don’t take into account the shapes
of the distributions anymore, the likelihood function in this specific case can now be define as:

logL = −
1
2
χ2

(
< z >∆;< z >WZ ; Σ̂−1

<z>WZ

)
+ Prior(∆z), (3.16)

where Σ̂−1
<z>WZ

is the covariance matrix of the matching process.

Moreover, for this approach, as it will be detailled in section 3.4.2.6, we saw that matching the
means computed in a specific redshift interval around the mean of our reconstructed distribution
nwz(z), instead of computing it in the full redshift interval, was helping to remove the noise that
can appear in the tails of the distribution (as well as additional systematics that could be dominant
in this low density regions, see C). A comparison of different interval size is presented in section
3.4.2.6, and in there we find that the optimal interval to match the means of our distributions is
±2σWZ around the mean of the reconstructed clustering-redshift distribution.

3.3.1.3 Error estimation

To estimate the covariance in our procedure (the Σ̂ terms in the likelihoods mentioned before),
we have been using a jackknife re-sampling approach Norberg et al. (2009). To do so, we divided
our sample (∼ 1100deg2, see section 3.3.2.1) in 1000 sub-regions of equal area (∼ 1deg2 each),
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which are larger than the maximum integration scale that we will use in this analysis (fiducial
scales used presented in section 3.4.1), and we compute the covariance matrix of these different
Jackknife areas as :

Σ̂(xi, xj) =
(NJK − 1)

NJK

NJK∑
k=1
(xki − x̄i)(xkj − x̄j) (3.17)

where NJK is the number of jackknife regions, xi is the statistic of interest of the i-th bin in the
k-th jackknife area. At the moment of inverting the Jackknife covariance matrix, we un-biased it
by multiplying it by the Anderson-Hartlap factor α = (NJK −Nbins −2)/(NJK −1) (Hartlap et al.
(2007)), with Nbins the number of redshift bins considered in the reconstruction. Moreover,
in our procedure, as it will be presented in next sections, we had to reconstruct the redshift
distributions of different tomographic bins separately. In principle, we should have considered
correlations between different bins and compute the fit for all three bin simultaneously. However,
by doing this we have found that systematic errors got propagated from one bin to the other due
to off-diagonal terms in the Jackknife covariance having for consequence a wrong estimation of
the best fit model for all bins.

Nevertheless, since the effect of correlations between bin is a negligible increase of statistical
errors and as it will be shown in the next sections, our methodology is dominated by systematic
errors such correlation have been neglected.

3.3.2 The samples used

3.3.2.1 The Buzzard simulations

To test our methodology and evaluate its possible systematic errors, we first used the Buzzard
simulations. The Buzzard simulation is a mock DESY1 survey created from a set of dark-
matter-only simulations. The simulation and creation of the mock survey data is detailed in
DeRose et al. (2017); Wechsler et al. (2017); MacCrann et al. (2018), here we provide only
a brief summary. Buzzard-v1.1 is constructed from a set of 3 N-body simulations run using
L-GADGET2, a version of GADGET2 (Springel, 2005) modified for memory efficiency. The
simulation boxes ranged from 1 to 4 Gpc/h. Light-cones from each box were constructed on the
fly. Halos were identified using ROCKSTAR (Behroozi et al., 2013), and galaxies were added
to the simulations using the Adding Density Dependent GAlaxies to Light-cone Simulations
algorithm (ADDGALS, Wechsler et al. 2017). ADDGALS uses the large scale dark matter
density field to place galaxies in the simulation based on the probabilistic relation between
density and galaxy magnitude. The latter is calibrated from sub-halo abundance matching in
high-resolution N-body simulations. Spectral energy distributions (SEDs) are assigned to the
galaxies from a training set of spectroscopic data from SDSS DR7 (Cooper et al., 2011) based
on local environmental density. The SEDs are integrated in the DES pass bands to generate griz
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magnitudes. Galaxy sizes and ellipticities are drawn from distributions fit to deep SuprimeCam
i
′-band data. Galaxies are added to the simulation to the projected apparent magnitude limit of
DES Y5 data out to redshift z = 2. The galaxy positions, shapes and magnitudes are then lensed
using the multiple-plane ray-tracing code Curved-sky grAvitational Lensing for Cosmological
Light conE simulatioNS (CALCLENS, Becker 2013). Finally, the catalog is cut to the DES Y1
footprint with RA > 0 using the footprint and bad region masking including bright stars, regions
of high extinction, etc., used in the actual Y1 data, and photometric errors are added using the
DES Y1 depth map (Rykoff et al., 2015). This yields a total masked area of 1108.13 square
degrees, 12 million weak lensing source galaxies, and 102120 galaxies in the higher luminosity
redMaGiC sample used in this analysis, as will be discussed in 3.3.2.2 and 3.3.2.3 respectively.

3.3.2.2 The ’unknown sample’

For DESY1 data analysis, clustering-redshift based methods have been used to calibrate the
redshift distributions that entered in the cosmological analysis using cosmic shear (Troxel et al.
(2017) and section 2.4.3), hence the sample that had to be corrected using the present methodol-
ogy is the weak lensing (WL hereafter) source galaxies presented in Zuntz et al. (2017). Due to a
lack of reference sample coverage in the higher redshift bin (see 3.3.2.3), we restricted ourselves
to the first three bins z = [(0.2 − 0.43), (0.43 − 0.63), (0.63 − 0.9)] used in the cosmological
analysis. We also use our method with two different photo-z codes in both observed data and
simulations, the Bayesian Photometric Redshift (BPZ, (Benítez, 2000; Coe et al., 2006) ), and the
Directional Neighborhood Fitting (DNF, (De Vicente et al., 2016))(as presented in Hoyle et al.
(2018)). The following paragraphs aim to give a brief description of these two codes.

• The Bayesian Photometric Redshift (BPZ) (Benítez, 2000; Coe et al., 2006) BPZ is a
template-based method (see section 2.2.3.2). It returns the full probability distribution
p(z) for each galaxy given its magnitudes and template libraries. Templates and priors
used here are described in more detail in Hoyle et al. (2018), as BPZ has been run on
simulations with the same setup used on data. Briefly, templates are generated based
on low-redshift models from Coleman et al. (1980) and Kinney et al. (1996), while the
redshift evolution and calibration corrections to template fluxes have been computed by
matching PRIMUS DR1 Coil et al. (2011) spectroscopic redshifts to DES photometry.
The calibration sample comprises 72,176 galaxies. The luminosity prior used in BPZ
takes the form of smooth exponential functions, which have been fitted using COSMOS
galaxies with accurate photometric redshifts (Laigle et al., 2016).

• Directional Neighborhood Fitting (DNF) (De Vicente et al., 2016). DNF is a machine
learning algorithm for galaxy photometric redshift estimation. Based on a training sample,
DNF constructs the prediction hyperplane that best fits the neighborhood of each target
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Fig. 3.3.1 –Redshift distribution of the 3WL tomographic bins from the posteriors obtained
running the BPZ (blue) and DNF (dark red) photo-z code on the Buzzard simulation (see

3.3.2.2). All distributions has been normalized over the full redshift interval

galaxy in multiband flux space. It then uses this hyperplane to predict the redshift of the
target galaxy. This redshift is used to divide theWL sample into tomographic bins. The key
feature of DNF is the definition of a new neighborhood, the Directional Neighborhood.
Under this definition two galaxies are neighbors not only when they are close in the
Euclidean multiband flux space, but also when they have similar relative flux in different
bands, i.e. colors.

Figure 3.3.1 shows the redshift distributions obtained from the two photo-z codes (ran on the
Buzzard simulations) for the three tomographic bins of interest. As it can be seen in this figure, the
two codes gives similar distributions, except for the second tomographic bin where a secondary
’bump’ appear on the BPZ true distribution at z ∼ 0.3 (BPZ includes there a population of blue
galaxies). And Fig.(3.3.2) shows the scatter and bias of BPZ redshift in the simulated Weak
Lensing sample.

3.3.2.3 The reference sample

As reference sample, we made the choice to use, instead of a spectroscopic catalog as done in
previous works, a high-qualitiy photo-z catalog, the redMaGiC higher-luminosity sample (see
appendix A for more details on such a choice), created in both simulated and observed data using
the red-sequence Matched-filter Galaxy Catalog (redMaGiC) algorithm. redMaGiC (Rozo et al.
(2016)) is an algorithm that aims to select Luminous Red Galaxies (LRG) above a luminosity
threshold. redMaGiC is doing a fit to red-sequence templates that had been trained using the
redMaPPer algorithm presented in Rykoff et al. (2014). This selection of objects manage to
minimize the redshift uncertainties down to σz/(1 + z) < 0.02. The higher-luminosity catalog
used in this work is a selection of galaxies with a luminosity cut at L > 1.5L∗ and span a
redshift range of 0.15 < z < 0.85. The algorithm has been run both in the Buzzard simulated
catalog (see sec. 3.3.2.1) and in the DESY1 gold catalog (Drlica-Wagner et al. (2018)). Figure
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Fig. 3.3.2 – Scatter (top) and bias (bottom) of the WL sample BPZ redshift in Buzzard
simulation (cannot be estimate for observed sample due to lack of complete spectroscopic

sample)

3.3.3 shows a comparison of the true and photometric redshift distribution of higher-luminosity
sample obtained by running the redMaGiC algorithm on the Buzzard simulation.

The resulting simulated catalog appears to have ∼ 30% less galaxies than the observed catalog.
This is mainly due to the fact that the simulated red-sequence selected by redMaPPer seems to be
redder in simulations, implying that the simulated catalog doesn’t reach a maximum redshift as
high as the observed redMaGiC catalog (z 6 0.85 vs. z 6 0.9). Nevertheless, the consequences
of such a difference will appear as an overestimation of the statistical error, which will be
inconsequential as our methodology is systematics dominated (see section 3.4). Additionally,
in order to be consistent with the systematic error estimated in simulation, we made the choice
when it came to apply our methodology to data to use the redMaGiC DESY1 reference sample
up to z = 0.85 only (see section 3.5) to cover the same redshift range in both data and simulation.
Figure 3.3.4 shows the differences between observed and simulated redMaGiC catalogs of the
scatter (top panel) and redshift bias (bottom panel), and as the figure shows, simulations and
observations are consistent. This estimation is straightforward in the simulated catalog, since
we have the true redshift for each object. In real data we had to compute this estimation using a
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training set of galaxies (and not the full sample). In Cawthon et al. (2017) more details on the
robustness of this estimation are given.

It’s also interesting to comment that several redMaGiC catalogs have been produced in the
context of DESY1, we have made the choice of using this specific one because it appears to
give us better results in simulations (optimal balance between galaxy density and photometric
accuracy), although in appendix A we report the results obtained using as reference sample the
’combined’ redMaGiC sample presented in Elvin-Poole et al. (2017).

Additionally, to compute the cross-correlation signal using redMaGiC as reference, it was
necessary to produce a random catalog for this sample. For the simulated sample it has been
done uniformly over the survey footprint since in simulated catalog does not contain observational
systematics. However, in the observed data analysis, these observational features had to be taken
in account by generating the appropriate random catalog (see Elvin-Poole et al. (2017)).

3.4 Systematic evaluation and model parameters optimization

Before applying to our DESY1 WL samples the procedure presented before, we studied the
method limits and optimized its underlying parameters using the Buzzard simulation from
section 3.3.2.1. In this section, we will present the procedure applied to identify the different
systematics that suffers our methodology.

3.4.1 Fiducial methodology

As mentioned before, to proceed with our reconstruction procedure, it is necessary to fix a
number of parameters. These parameters that will be presented in this paragraph have been
tested in simulations in order to minimize systematic effects. In this paragraph, we set the
fidutial methodology that has been employed along our analysis. We found that the optimal
combination to obtain the better S/N ratio is the following :

• Clustering redshift method : Schmidt/Ménard (see 3.2.1.1)

• Reference sample : redMaGiC Higher-Luminosity sample binned in 25 uniform redshift
bins in the range 0.15 < z < 0.85 , (bin size ∆zr ∼ 0.03)

• Integration scale : 0.5 − 1.5Mpc

• Matching methodology : matching the mean within window function ±2σWZ around the
clustering-redshift recovered distribution

• Bias correction : no bias correction applied
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For more details on these choices, I refer you to sections 3.4.2.5, 3.4.2.6, and Appendices A, B
where comparison of integration scales, methodologies and reference samples are made. The
following subsection will present the results obtained and the framework followed to identify
systematic effects of our technique using the above fiducial settings (although the results for the
shape systematic will also be exposed to justify the choice made on the matching technique).

3.4.2 Characterization of the method systematics

Using the simulated samples presented in the previous section, we aimed to estimate the systemat-
ics errors that our methodology suffers correcting the photometric redshift posterior distribution.
To do so, we quantify systematic errors using as metric the difference between the mean of the
true distribution < z >true to the one recovered after applying our procedure < z >∆ :

∆z =< z >true − < z >∆ (3.18)

In this work, we could identify three distinct systematics :

• The Bias systematic: caused by the evolution of the biases of the two samples and of
the dark matter density field that we decided to neglect it and include it in the systematic
budget (see eq.(3.4) and section 3.2.1.4)

• The redMaGiC photo-z systematic : Induced by the photo-z errors of the redMaGiC
galaxies.

• The Shape systematic : depending on thematching procedure, this systematic could come
from different aspects. For the ’shape-matching’ case, the difference on the shapes of the
two distributions has an effect on the recovered photo-z bias. In the ’mean-matching’ case,
since we are matching within a specific interval of ±2σWZ around the clustering-redshift
distribution, if the shapes of the two distribution differ outside this interval, it will add an
additional systematic.

The estimates of these systematics for each photo-z code and each tomographic bin are shown in
Tables 3.4.2 and 3.4.3, and the method used to distinguish and evaluate them is detail hereafter.

3.4.2.1 The bias evolution systematic

In our redshift reconstruction, we chose to neglect the effect of the evolution of the bias of our
two samples (and the evolution of the Dark matter density field) which should be sub-dominant
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Fig. 3.4.1 – In three different tomographic bins from left to right, True redshift distribution
of the buzzard weak lensing sample (orange filled histogram), recovered clustering redshift
distribution (purple error bars), photo-z posterior corrected with the shift infered unsing

the mean-matching technique within the ±2σWZ interval (pink histogram)

effects if these quantities don’t evolve too much with redshift (see Ménard et al. (2013)). Also, in
principle, if these quantities evolve at scales larger than the ones used in our analysis, the impact
of neglecting these evolution should be small. In this sense, binning the sample in narrow bins
or selecting the sample in color should decrease the evolution (Ménard et al. (2013); Schmidt
et al. (2013); Rahman et al. (2015)).

However, we need to estimate the inaccuracy that this will induce in our fiducial calibration, and
to do so we proceed to perform the following test:

1. bin the simulated sample using the mean of the photo-z posterior ;

2. reconstruct the distribution using for each bin the True redshift for the redMaGiC sample
as well as the True shape of the posterior for the W L sample.

Figure 3.4.1 shows the different redshift distributions (true, clustering-redshift and corrected
photo-z posterior) for this specific scenario. In this framework, we eliminate the two additional
systematics. The results are summarized in the first row of Table 3.4.2 for BPZ and 3.4.3 for DNF
and labeled ∆zA. In the applied procedure, one would expect (without any systematic effect) to
recover a shift value consistent with zero, since we are in the case where the photo-z posterior
is assumed to be the true one. Instead of that, in Tables 3.4.2 and 3.4.3 we found shifts up to
∆zA ∼ 0.02 in some bins. As it’s shown as well in these tables, the level that our methodology is
affected by this systematic depends on the considered bin, the matching procedure applied and
the photo-z code used.
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presented in 3.2.1.4 (pink histogram). Middle and bottom panel: Redshift evolution of the
one-bin estimate of the auto-correlation function for the simulated weak-lensing sample
(middle) and the simulated higher-luminosity redMaGiC sample (bottom) for the three

first tomographic bins used in the DESY1 cosmological analysis from left to right.

Additionally, since we are using simulated data, we have the true redshift information for each
object, and consequently, this allows us to perform the bias correction presented in section 3.2.1.4
verifying in this sense that the shift observed in Tables 3.4.2 and 3.4.3 is indeed coming from
the evolution of the galaxy biases of our two samples and the dark matter 2-point correlation
function, neglected in our fiducial methodology. Both samples had been binned in 25 equally-
spaced redshift bins, from z = 0.15 to z = 0.85 and the auto-correlation signal has been computed
for each sample in every narrow bin. If the size of the considered bin is narrow enough, then
from eq.(3.12) we have wrr ∝ b2

rwDM , and wuu ∝ b2
uwDM and we can use eq.(3.14) to compute

the corrected distribution.

Figure B.0.1 shows the results obtained after bias correction (top panel) using the auto-correlation
eq.(3.12) as a function of redshift of the WL sample (middle panel) and redMaGiC sample
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Table 3.4.1 – Recovered shift to apply to the mean of our distribution after applying the
bias correction presented in section 3.4.2.1.
Bin 1 Bin 2 Bin 3

mean match shape match mean match shape match mean match shape match
bias evolution

systematic (BPZ): −0.004 ± 0.013 0.001 ± 0.007 −0.007 ± 0.007 0.004 ± 0.003 0.002 ± 0.003 0.001 ± 0.002

bias evolution
systematic (DNF): 0.000 ± 0.009 −0.001 ± 0.006 −0.002 ± 0.005 0.002 ± 0.004 0.004 ± 0.003 0.002 ± 0.003

(bottom panel). And Table 3.4.1 shows the recovered shift obtained after correcting for the
bias and Dark Matter density field evolutions as described here. As one can see in the table, the
recovered shifts are now consistent with zero, hence confirming that the first identified systematic
is due to the evolution of the biases and dark matter density field.

It’s important to note that this correction is possible only in simulations, where we have the true
redshift information of the sample. Even-though a correction for the bias of the reference sample
is feasible, as presented in Appendix B, it hasn’t been applied since the effect is small and the
auto-correlation signal of redMaGiC is noisy due to the small number of objects in each narrow
bin. The effect of the biases and dark matter density field evolution has been thus considered as
a systematic effect in this analysis.

Moreover, as Figure B.0.1 is showing the bias evolution of the WL sample is relatively complex,
and therefor correcting from it becomes complicated and hence not appropriate for parametric
approaches such it as been done in Matthews & Newman (2010); Schmidt et al. (2013); Davis
et al. (2018)

3.4.2.2 The redMaGiC photo-z systematic

Previous clustering redshift analysis have been using spectroscopic samples as reference sample.
In our case, we made the choice to use a ’high-resolution’ photometric sample (the redMaGiC
higher-luminosity sample presented in section 3.3.2.3), and for a comparison of different red-
MaGiC samples as reference see appendix A. Even though the redMaGiC photo-z error is small
compared to standard photo-z, we want to estimate the consequence of such a choice. We
proceeded as following:

1. bin the simulated sample using the mean of the photo-z posterior;

2. reconstruct the distribution using for each bin the photo-z redshift for the redMaGiC
sample as well as the True shape of the posterior for the W L sample.

The results are shown in Fig.(3.4.3), and summarized in Table 3.4.2 for BPZ and 3.4.3 for DNF.
Note that Tables 3.4.2 and 3.4.3 present the redMaGiC systematic (∆z redMaGiC) as the difference
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Fig. 3.4.3 – In three different tomographic bins from left to right, True redshift distribution
of the buzzard weak lensing sample (orange filled histogram), recovered clustering redshift
distribution (purple error bars), photo-z posterior corrected with the shift inferred using

the mean-matching technique within the ±2σWZ interval (pink histogram)

between the shift obtained in this test (∆zB) and the one obtained for the bias evolution systematic
(∆zA) :

∆zredMaGiC = ∆zB − ∆zA (3.19)

As one can see, the effect of redMaGiC photo-z is sub-dominant compared to the bias systematic
(∼ 1 order ofmagnitude lower). There we are not showing the statistical errors for this systematic,
because the statistical error from ∆zB and ∆zA are correlated (we are using the similar data
covariances to estimate them) thus the difference between them is close to zero.

3.4.2.3 The shape systematic

Now we want to place ourselves in the more realistic case, by following the steps :

1. bin the simulated sample using the mean of the photo-z posterior;

2. reconstruct the distribution using for each bin the photo-z redshift for redMaGiC sample
as well as the shape of the photo-z posterior for the W L sample.

We are thus in a similar case that we will be when we will apply the methodology to the DES
data catalogs. By subtracting the effect of the two previous systematics presented from the shift
obtained in this case, we can evaluate the effect of the remaining systematic, namely the shape
systematic, defined as ∆zC − ∆zB.
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The results are shown in Fig.(3.4.4), and summarized in Table 3.4.2 for BPZ and Table 3.4.3 for
DNF. From these two tables, one can note that this systematic is more important for the shape
matching than for the mean matching, in particular when the differences in the shape of the two
redshift distributions (true and photo-z) is bigger such as in the second tomographic bin, where
a second peak appears in the true distribution.

For the same reason than in 3.4.2.2, we are not showing in Table(3.4.2) and (3.4.3).

3.4.2.4 Total systematic budget

In order to get a estimation of the total systematic effect to take into consideration when we will
apply this procedure to data, we decided to add each of the identified systematics in quadrature
avoiding therefore any fortunate cancellation between them. This also implied that we ignored
any correlation that could exist between different systematics, although one would expect the
redMaGiC systematic to be uncorrelated to the two others. However, we could expect correlations
(or anti-correlations) between the bias systematic and the shape systematic. The total systematic
errors provided for the cosmological analysis are shown in the fourth row of Table 3.4.2 for BPZ
and Table 3.4.3 for DNF for each tomographic bin and both matching methods applied, although
at the end the mean matching procedure was taken as fiducial.
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Systematic evaluation and model parameters optimization

Table
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Fig. 3.4.5 – Difference of the value of the bias evolution systematic (3.4.2.1) for the
different methodologies presented in 3.2, the three different tomographic bins (left to

right) and different integration scales (top to bottom)

3.4.2.5 On the choice of the integration scales and the clustering-redshift method

An important parameter that should be set in clustering-redshift methods is the range of scales
in which we will integrate our cross-correlation signal. Indeed, intuitively the largest scales will
tend to be noisier, and the smaller scale might suffer from non-linear effects (although Schmidt
et al. (2013) showed that non-linearities do not have a large impact in the reconstruction). In order
to optimize our methodology, before deciding on the scale that will be later on used as fiducial,
we have computed the variation in our dominant systematic (the bias evolution systematic)
integrating over different ranges of scales for each of the clustering methods presented in section
3.2. In Fig.(3.4.5), the value of this systematic is showed for a small-scale integration range
(0.2 − 1.25 Mpc), a large-scale integration range (1.25 − 8.0 Mpc), a wide interval integration
range (0.2 − 0.8 Mpc), and finally our fiducial range of integration (0.5 − 1.5 Mpc).

In this figure, one can see that the Schmidt/Ménard method of section 3.2.1.1 and the weighted
method of section 3.2.1.2 give similar results, and we observe small differences in the averaging
over scales. On the other hand, the Newman method shows bigger differences caused by the
fact that in the Newman methodology, one assumes a proportionality relation between the bias
evolution of the two samples (bu(z) ∝ br (z)) which is not a good approximation for the considered
samples (see the two bottom panels of Fig. (B.0.1)).
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3.4.2.6 On the choice of the window function

In section 3.3.1.2, it has been explained that in order to increase the S/N we were matching
the mean within a ±2σWZ interval around the clustering-redshift distribution mean (avoiding in
this sense the noise that could appear in the tails, or additional systematic effect due to lensing
magnification, see appendix C). The choice of this interval had also to be tested, since depending
on the shape of the true distribution, we want to cut a maximum of the tails, but a too small
interval could be too restrictive and we would lose information specially in broad or bi-modal
distributions. To decide on this interval, we re-evaluate each of the systematic errors exposed
before using the mean matching criteria with different number N of intervals ±N ∗ σWZ around
the clustering-redshift mean < z >WZ . Since the true distribution is differently broad for the
three tomographic bins, we probed different values of N for each of them and the results are
shown in Fig.(3.4.6). From the figure, one can see that the difference in the systematic values
does not vary much with respect to the window size (order of ∼ 0.005 variation), yet we can
observe differences in the first bin, if the window is too large (N ∼ 3.5). This is due to the
fact that there it includes the positive tail at high-redshift of the reconstructed distribution (see
Fig.(3.4.4)) and affect the bias systematic. On the other hand, if the true distribution is broader
than the window size, a non-negligible part of the true distribution won’t be taken into account
and this will increase the shape systematic, as it is the case for the second bin: when N ∼ 1.5, the
second peak of the BPZ true distribution is cut and we observe a change in the shape systematic
with N . In order to account for these effects, we decide for each bin to take as systematic the
larger value obtained between mean matched in the ±2σWZ and ±2.5σWZ windows.

3.5 Dark Energy Survey results

In the previous sections, we have presented our fiducial methodology for clustering-redshift
calibration and how we have been using simulated galaxy catalogs to evaluate the different
systematic errors that we are subject to. Here, we will now expose the results obtained in
observed galaxy catalogs using our scheme.

In the context of the cosmological analysis using weak lensing (Troxel et al. (2017); DES
Collaboration et al. (2017)), several weak lensing catalogs have been created, and they will be
described in section 3.5.1, then the results of the clustering-redshift calibration for these samples
will be shown in section 3.5.2, followed by a comparison of results on observed catalogs to those
obtained in simulations, and finally we will present two additional tests, performed to validate
our methodology using observed data, namely the shear-ratio test from Prat et al. (2017) and the
COSMOS 30 band test from Hoyle et al. (2018) in section 3.5.3.
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3.5.1 Shape Catalogs

In section 2.4.3, we have mentioned that the catalog of galaxy shapes that enters the cosmological
analysis is the METACALIBRATION (Huff&Mandelbaum (2017); Sheldon&Huff (2017)) catalog.
Beside this, in order to test the robustness of the cosmological results, the DES collaboration
produced an additional shape catalog, the IM3SHAPE (Zuntz et al. (2013)) catalog. To estimate
the photometric redshift of each galaxy in these two catalogs, two distinct ways to measure galaxy
fluxes have also been probed, the MOF (multi-object-fit) fluxes produced by the NGMIX 2 algorithm
(see Drlica-Wagner et al. (2018)) and the METACAL fluxes obtained with the METACALIBRATION
pipeline.

2https://github.com/esheldon/ngmix
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From here, it is possible to build different samples varying the measurements and catalogs. In
particular, after choosing a catalog of galaxy shapes, the process to build the different catalogs
with photometric redshifts can be divided into two steps :

(i) select a flux estimation and a photo-z code to bin the sample in tomographic bins;

(ii) select a flux estimation and a photo-z code to reconstruct the photo-z posterior in each bin.

Once these two steps have been completed, the photometric distributions are inferred by stacking
the probability distributions of galaxies as :

niPZ (z) =

∑
j∈i wjPj(z)∑

j∈i wj
, (3.20)

where i represents the tomographic bin, j the galaxies assigned to bin i, wj are weights given by
the shape algorithms and Pj(z) is the probability of galaxy j (in i) to have a redshift z. Table
3.5.1 describes the different catalog used in the context of the DESY1 cosmological analyses.

Note that in Hoyle et al. (2018); Troxel et al. (2017); DES Collaboration et al. (2017), the
two fiducial catalogs used for cosmological inference or to probe the robustness of parameter
estimation are, respectively, the two catalogs presented in the third column of Table 3.5.1,
namely one METACALIBRATION catalog where BPZwas run on METACAL fluxes to assign galaxies
to tomographic bins and on MOF fluxes to infer the redshift distribution of each bin, and an
IM3SHAPE catalog using MOF fluxes for both bin assignment and posterior reconstruction as input
for BPZ. Moreover, in Hoyle et al. (2018) a sample running DNF on METACAL fluxes for both bin
assignment and posterior estimation on the METACALIBRATION shape catalog has been used to
verify the impact of the photo-z code in the reconstruction.

By combining the different criteria presented here, it is possible to build a larger variety of
catalogs than the ones presented in Table 3.5.1, and these possible catalogs have been in a second
step calibrated using the clustering-redshift based methodology. The results of these calibrations
are presented in Davis et al. (2018). In the following sections, we will focus on the three samples
presented in Table 3.5.1,which are the catalogs entering the cosmological analysis (or used as
cross-check to emphasize the robustness of our cosmological inference), and will show the main
results applying our calibration as well as the COSMOS calibration that will be summarized in
section 3.5.3.
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Shear catalog process BPZ DNF

METACALIBRATION
bining with

stacking with
METACAL

MOF

METACAL

METACAL

IM3SHAPE
bining with

stacking with
MOF

MOF

-
-

Table 3.5.1 – Overview of the different processes to estimate the photo-z posterior of
the two different shape catalogs (METACALIBRATION and IM3SHAPE) giving a set of three
different WL samples that have been calibrated using clustering-redshift methodology

3.5.2 Clustering-redshift methodology applied to DESY1 WL samples

3.5.2.1 Results

In this section, we present the results obtained applying our fiducial scheme to the weak lensing
samples described in Table 3.5.1 using as reference sample the observed redMaGiC higher-
luminosity sample until redshift 0.85 (to be coherent with the simulations, see section 3.3.2.3)3
. The fifth column of Table 3.5.2 summarizes the different correction shifts recovered for these
samples (the errors in the table include both systematic and statistical errors) and Fig. 3.5.1 shows
the redshift distributions for the various samples. In the figures, the three tomographic bins are
pictured with different colors, the points with error bars correspond to the clustering-redshift
reconstruction, where the empty squares represent the points excluded in our matching procedure
by the window cut ±2σWZ (see section 3.3.1.2), and the lines represent the photo-z posterior
(dashed) and the final redshift distribution of our sample after calibration (solid). As it can be
seen in the figure as well as in the table, the photo-z codes and clustering-redshift reconstruction
agree quite well for the first and third bins (shifts consistent with zero in the table). This is not
the case for the second bin, where the shift becomes more important due to the difference in
shape of the two distributions (clustering-redshift and photo-z). There we obtained shifts as big
as −0.023 ± 0.026, −0.031 ± 0.017 and −0.037 ± 0.014 for the different catalogs.

3.5.2.2 Comparison with results in simulated catalogs

In section 3.2, we have presented how the method systematic errors as well as the method
parameters were determined using cosmological simulations. It has also been mentioned in
section 3.3.2 that even though both simulated and observed catalogs look alike in most aspects
(such as redMaGiC redshift bias and scatter), there exist differences between them (eg. density of
objects and redshift coverage). However, it is also possible, using the observed sample, to verify

3Wealso have beenweighting our observed redMaGiC galaxies using theweights taking into account observational
systematics and their correlation derived in Elvin-Poole et al. (2017), but it has been verified that more weights have
minor consequences in the final result.
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Fig. 3.5.1 – Redshift distributions of the three first tomographic bins (color) of the DESY1
WL samples presented in Table 3.5.1. The error bars correspond to the redshift distribution
inferred with the clustering-redshift technique, the empty squares representing the points
not taken into account in the mean-matching process (outside the ±2σWZ window), the
dashed lines are the initial photo-z posteriors and the solid lines the calibrated redshift

distribution (figures from Davis et al. (2018))
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the results obtained in simulations and cross-check the choices made on the model parameters.
To do so, the idea is to vary the method parameters that have shown to have an impact on the
recovered correction shift in simulations, and compare the impact of such variations on the
correction shifts in both observed and simulated catalogs.

Firstly, similarly to what has been done in section 3.4.2.5, one can re-compute the correction to
apply in the observed sample varying the range of integration scales. Thus, the correction shifts
have been re-estimated integrating over different scale ranges (200−1250Mpc, 1250−8000Mpc,
200 − 8000 Mpc). Note that, here it wouldn’t be correct to compare the value of the correction
shift ∆z obtained in simulated and observed samples, because we do not expect them to be
the same due to difference in the spectral energy distributions used to generate the simulation
and the observed one, but we want to compare the changes in this shift with respect to the
integration scales between observed and simulated sample for each bin. The main differences
found appeared when we are integrating over large scales (1250−8000Mpc) where we observed
a variation in the recovered shift of ∼ 0.03 and ∼ 0.02 for the two first bins. When integrating
over this range of scales we obtain a clustering-redshift reconstruction noisier and with more
correlation between tomographic bins. This test is emphasizing our fiducial choice of scales
(500 − 1500Mpc)

Furthermore, it is also possible to evaluate the influence of the window function size for the
mean matching procedure in the observed samples as it has been done for the simulated ones
in section 3.4.2.6, there, we shown that the size of the matching window has an impact on the
reconstructed mean and we identified this effect as a systematic effect (see section 3.4.2.3). The
same comparison could be repeated using observed data and compare the value of the calibration
shift for different window sizes. By doing this, we have found that the trend on the change on the
shift value recovered is equivalent of the one obtained in simulation, however the difference are
stronger, due to the fact that the distribution in the observed sample appear to be much broader
than the simulated ones (see figure 3.3.2 and 3.5.1), in particular for the second tomographic bin
where the difference on the shift between a mean matching within a 2σWZ window and 2.5σWZ

doubles from simulation to observed catalogs. However, we could note that this variation depends
on the shape of the distribution, and the simulated distributions shapes are much narrower than
the one recovered in observed catalogs having as consequence a stronger dependence on this cut.
Also because of this broad shape, the 2.5σWZ window in the second bin is enclosing already all
the clustering-redshift reconstructed points (thus the points on the tails of the distribution that
suffer more from noise and systematic effect due to lensing magnification see appendix C), we
therefor decided to match the two sample means within a window of 2σWZ .
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3.5.3 Additional independant tests

Finally, the methodology presented in this chapter, has also been verified using two other
independent tests, the COSMOS-30 bands photometry test Hoyle et al. (2018) and the shear-ratio
test Prat et al. (2017). This paragraph will give an overview of these to extra tests as well as a
comparison with the results obtained with clustering redshift calibration.

• The COSMOS redshift distribution calibration : COSMOS2015 (Laigle et al. (2016)), is
a catalog of more than half a million galaxies in a ∼ 2deg2 patch of the sky, where
the redshift probability distributions were defined using LePhare template-fitting code
(Arnouts et al., 1999; Ilbert et al., 2006) on the 30 observed photometric bands with an
high accuracy redshift estimation with σ/(1+z)∼0.014 for the galaxy that will be use in this
test. To calibrate our sample redshift distributions, a sub-sample (of 200, 000 objects) of
the DESY1WL samples galaxies have been matched in color and size (and not in position)
to the COSMOS objects. The redshift of these COSMOS matched object has been in a second
step re-computed using the DESY1 redshift estimation framework of Hoyle et al. (2018),
and compared to the one provide by the 30-band photometry. The difference between the
means of the two distributions corresponds to the photo-z bias.

• The shear-ratio test : first suggested as a cosmological probe in Jain & Taylor (2003),
is based on the fact that the ratio between two tangential shear signals of two different
source bins around the same lensed objects only depends on the angular diameter distance
and redshift distribution of the concern samples (see section 2.4.4). Nonetheless this ratio
appeared to be more sensitive to errors made in estimating the redshift distributions of the
concerned samples and in the shear calibration errors than in cosmological parameters.
In Prat et al. (2017) it has been shown that the dependence on the redshift distributions
could be use as a tool to estimate the photo-z bias of the source sample. Indeed it is
possible assuming a cosmology and using the photo-z estimate of the redshift distributions
(there the bias in the redMaGiC lenses was not considered) to estimate this ratio and
match it to one measured allowing a shift on the means distributions of the source samples
(marginalizing over shear calibration errors). Using there the different redMaGiC lens
bins as for the tangential shear measurements (see 2.4.4) one can measure the photo-z bias
of the WL sample sources bins.

In principle the recovered shift obtained using these two supplementary tests should be consistent
with the one obtained using our clustering-redshift calibration. Figure 3.5.2 resumes the different
corrections recovered for each of the tomographic bin using the three calibration tests. Note that
in the case of the shear-ratio test, the precision tends to decrease quickly as one goes to higher

4this errors concern the galaxies that will be use for this test
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bin, this is due to the fact that the relative distance between the lenses and the observer is getting
smaller and thus the lensing efficiency is decreasing for these bins, because of this, the higher
tomographic bin has not been considered, the only constraint we have on this last bin is then
coming from the COSMOS-30 bands calibration.

Nevertheless, in the calibration procedure (Hoyle et al. (2018)), only clustering-based and COS-
MOS-30 bands corrections have been used, mostly due to the fact that the shear-ratio test depends
in a first time in the shear calibration errors (has to be marginalized over) and secondly is co-
variant with the clustering-redshift techniques since it includes correlation signals of the same
galaxy bins and samples.

Assuming the statistical and systematic errors in the COSMOS and clustering-redshift calibration
are uncorrelated (Hoyle et al. (2018)), the constraints coming from the two tests have been
combined multiplying their Gaussian distributions, and the final result is shown in the last
column of table 3.5.2, the red cells in the table correspond to the final correction applied to the
fiducial sample entering in the DESY1 cosmological analysis.

3.6 Summary and Conclusions

In this chapter, we started by presenting the overall clustering-redshift based methodology that
have been applied in the context of the Dark Energy Survey first year of observation cosmological
analysis. In there, clustering-redshift reconstructed distribution has been used to calibrate the
bias on the mean of the photo-z posterior of the three lower tomographic bins of the DESY1WL
sample, allowing for a shift of in the z-direction.

We identified the ’Schmidt/Ménard’ method integrated over scale in the range of 500−1800Mpc

using the redMaGiC higher-luminosity sample for reference sample as our fiducial framework
to reconstruct the redshift distribution of the DESY1 Weak Lensing sample. Then we opted to
calibrate the photo-z posterior distribution matching the means of the two distribution within a
window of 2 standard deviations around the clustering-redshift distribution mean (±2σWZ ).

To select this fiducial framework we developed a methodology in simulated catalogs to identify
the different systematic errors that our methodology is subject to, and the underlying framework
parameter have been choose in order to minimize these systematic. More specifically, we
have been able to distinguish between three different sources of systematic errors: the bias
evolution systematic, the redMaGiC systematic and the shape systematic. We concluded that
the dominant source of error in our methodology came from the evolution in redshift of the bias
of our different samples, and more in particular if this evolution has a non-trivial behaviour, as it
is the case for our simulated WL sample, this systematic error can be in some tomographic bin
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Fig. 3.5.2 –Comparison of the recovered photo-z posterior bias using the three independent
tests (different colors) for the different WL sample tomographic bins (figure from Hoyle

et al. (2018))

95



Summary and Conclusions

large as ∼ 0.02. We have also shown that the systematic errors induced by the redMaGiC photo-
z was sub-dominant in the total systematic budget, emphasizing here that using good-quality
photometric redshift sample as reference could be a good alternative to spectroscopic samples
that often give noisy recontruction due to the low number of objects.

After having studying the overall methodology in simulated catalogs and provide its systematic
budget, we applied our fiducial scheme to the different observed catalogs created by the DES
collaboration. We recover the different correction shifts to apply to the photo-z posteriors for the
three tomographic bins considered and combined this correction to an additional independent
measurement of these shift using COSMOS-30 bands galaxies. These efforts, lead us to a measure-
ment of the mean redshift with a precision of ∼ ±0.015, which a significant but sub-dominant
uncertainties in the total error budget of the DESY1 cosmological analysis.

As exposed here, redshift distributions inferred by clustering-redshift methodology has played
for the first time a role in cosmological parameter inference. However future observations of DES
(the third year being currently analyzed) as well as future galaxy surveys, the enlargement of the
observed areas together with the observed depth improvements will reduce the statistical errors
such that the uncertainties in redshift distributions could become the dominant source of errors
in the cosmological analysis. Therefore, inferring all more precise redshift distributions will be a
challenging aspect of future broad-band photometry surveys, (such as Euclid Laureijs et al. (2011)
or LSST Science Collaboration et al. (2009)). And clustering-redshift based methodology could
become an important tool for these analysis. In this perspective, improving the methodology to
reduce the systematic effects could be useful (if not necessary), and different approaches to do it
have been mentioned here (correcting from the bias of the reference sample, taking into account
lensing magnification effects,...).
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Cosmic voids vs CMB
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Chapter 4

CMB lensing around voids

4.1 Definition and interest

In chapter 1, we have exposed the different tools and probes currently used to attempt to
understand what belong behind the mysterious Dark matter and Dark Energy. In there, we have
seen that two of the most popular probes for this purpose are in one hand the large structure (see
sec. 1.2.2) and on the other hand, the cosmic microwave background (see sec.1.2.4). In this
chapter we will present a work where we aim to combine this two probes measuring the lensing
imprint of large structures, namely cosmic voids in the cosmic microwave background radiation.

Cosmic voids are define as under-dense extended regions in the cosmic web. These regions,
are in fact occupying most of the space of our close universe, they are surrounded by the large
structures mentioned before (filaments, galaxy clusters, walls) and have typical size of tens
of Mega-parsecs. The fact that these regions are low-density environments, raised a recent
cosmological interest in the sense that they are lowly subjects to non-linear effects that high-
density regions suffer, and containing low amount of matter, and also represent zones of space
where dark energy dominates.

As mentioned above, such as galaxies, galaxy clusters or other large structure observed in our
universe, cosmic voids are good candidates for constraining cosmology. However the analysis
of these structure had to wait the era of large galaxy surveys to reach the statistical power that
allow them to become a cosmological probe.

Similarly to what has been presented in chapter 2, one can also use 2-point correlation statistics
to compute the correlation signal between galaxy shape and void position. This is similar to
what as been done in 2.4.4 but by substituting the galaxy lens catalog by cosmic void catalog.
However, the void-lensing signal are difficult to detect for individual voids (see e.g. Amendola
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Cosmic Voids and Void Lensing in the DES-SV data 9
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and (�⌃i)
SN�k denotes the measurement from the k-th shape

noise (SN) realization and the i-th spatial bin.
Figure 10 shows a comparison of the measurement vari-

ance estimated from jackknife and shape noise, following the
techniques described above. The errors coming from the two
approaches agree well on the smallest scales, as expected since
the small-scale regime is dominated by shape noise. However,
at mid to large scales (R ⇠ 0.28Rv and above) the JK er-
rors get bigger than SN only, as they can trace other effects
such as systematics in the data or sample variance. The shape
noise calculation is, on the other hand, more adequate for off-
diagonal elements of the covariance since it avoids the intrinsic
noise limitation of the JK technique. Hence, in order to have a
smooth covariance matrix with variance accurately estimated
from JK, we follow the approach of fixing the shape of the
covariance as given by the shape noise calculation, and renor-
malize it to the JK estimates of the variance:

Cov[�⌃i,�⌃j ] = CorrSN[�⌃i,�⌃j ]�JK(�⌃i)�JK(�⌃j) (9)

where CorrSN[�⌃i,�⌃j ] is the shape noise correlation matrix
(or reduced covariance) given by:

CorrSN[�⌃i,�⌃j ] =
CovSN[�⌃i,�⌃j ]

�SN(�⌃i)�SN(�⌃j)
(10)

The approach of renormalizing a smooth covariance to a
JK estimated variance has been used before in the literature,
for example by Crocce et al. (2016).

5.3 Null tests: Cross-component and randomized
voids

The cross-component of the measurement described in
Sect. 5.1 is not produced by gravitational lensing and there-
fore is expected to vanish at first order. Similarly, the tangen-
tial component of the same measurement around randomized
voids, which follow the size and redshift distribution of true
voids but are randomly distributed in the survey area (Ap-
pendix C), is also expected to vanish. Figure 11 shows the
cross-component of the stacked lensing measurement for true
voids and the tangential component for randomized voids.

With dof = Nbin as the number of R/Rv bins in the mea-
surement and no model parameters, the null hypothesis �2 can
be computed as

�2
null =

X

i,j

�⌃iCov�1
ij �⌃j (11)

where i, j correspond to radial bins in �⌃ and Cov is the
covariance matrix.

The cross-component of the measurement yields a
�2

null/dof = 8.2/16, and the tangential measurement around

Figure 11. Cross-component of the DES-SV data stacked lensing
measurement for true voids and tangential component for the lens-
ing around randomized voids, in bins of R/Rv . Both measurements
are compatible with the null hyposthesis with �2

null/dof = 8.2/16

and �2
null/dof = 18.7/16, respectively. The error using randomized

voids is smaller since the measurement involves ⇠ 10 times more
randomized voids.
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Figure 12. Stacked tangential shear profile around voids in DES-
SV data (black points) and simulations (red points) in bins of
R/Rv . The black solid line shows the best-fit model (see Sect. 5.5)
to the data shear signal. The �2 for the null hypothesis in the
data measurement is �2

null/dof = 35.5/16, yielding an estimated
S/N = 4.4, while the theory model provides a good fit to the data
with �2/dof= 13.2/14. The measurement in the simulations shows
consistent with the data best-fit model, yielding �2/dof= 10.1/14.

randomized voids, which are 10 times more numerous than
true voids and whose production is described in greater detail
in Appendix C, yields a �2

null/dof = 18.7/16, both showing
consistency with the null hypothesis.

c� 0000 RAS, MNRAS 000, 1–15

Fig. 4.1.1 – Lensing signal detetected at void location in both simulated catalog (red) and
observed DES-SV galaxies (black), from Sánchez et al. (2017)

et al., 1999), but recent work has shown that a stacking methodology could help to increase the
signal-to-noise ratio and make the detection possible (Krause et al., 2013; Davies et al., 2018).

The first detected signal of lensing effect due to cosmic voids has been realized Melchior et al.
(2014) using ∼ 900 cosmic voids identified in the SDSS photometric catalog with the algorithm.
More recently, Sánchez et al. (2017) have used theDES science verification data using a 2.5D void
finder. Figure (4.1.1) shows the void-lensing signal measured in both DES science verification
data and simulated galaxy catalogs.

It has been exposed in chapter 1, one unsatisfying aspect of the nowadays standard model of
cosmology resides on the apparition of Dark Energy and the cosmological constant Λ in the
energy budget of our universe after the discovery of cosmic acceleration. Therefore, in the
past decades, theorists have imagine alternative cosmological models able to be consistent with
cosmic acceleration. One type of these models, is based on the fact that general relativity is
not a correct theory in some specific regime the so-called modified gravity models. From
here, considering that general relativity has been tested with good accuracy in small scales and
dense regions such is the solar system, it becomes natural to think as cosmic voids as probe
of general relativity since there are define as large-scale under dense regions, and indeed a
variety of general relativity models predict different behaviours (than the standard models) in
low-density/large-scale regimes.
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This chapter will be organized as follows, we will start in section ?? we will describe void
properties and introduce void identification giving a spetial attention to the void finding procedure
employed in this specific work in 4.2.2.2, then in section 4.3 we will present how combining
voids with CMB maps has also been use as an additional probe and the interest of void imprints
in the CMB lensing maps. The dataset used in this work as well as the different void catalogs
probed will be presented in section 4.4 followed by the methodology applyied in section 4.5.
And finally section 4.6 will present the results obtained in this work combining voids detected
in the DESY1 catalogs with the CMB convergence map from Planck.

4.2 Void definition

4.2.1 Void properties

As mentioned above, a key aspect in cosmic void analysis resides on the fact that voids are in
average spherical, from this, it is possible to look at different features that present these averaged
void with respect to redshift or void population. For instance, as exposed in Bertschinger (1985),
according to the evolution of perturbations in a Einstein-de Sitter universe, negative perturbations
will grow creating a thin overdense region at its surrounding, a compensation wall. The density
profile of voids of the averaged void can thus be measure, and Hamaus et al. (2014) has proposed
an empirical parametrization of this profile as :

ρv(r)
ρ̄
− 1 = δc

1 − (r/rs)α

1 + (r/rv)β
(4.1)

Figure(4.2.1) shows the density profile of different size voids in simulation with respect to the
distance from the void center.

4.2.2 Void Finding

4.2.2.1 Finding void in galaxy catalogs

The identification of voids in the cosmic web is an intricate process that is affected by specific
survey properties such as tracer quality, tracer density, or masking effects. The void properties
also depend meaningfully on the methodology to define the voids (for a review see Nadathur &
Hotchkiss, 2015).

In the literature various void-finder have been have been built and run in different void tracers
(Dark matter halos, galaxies, cluster of galaxies). In Colberg et al. (2008), the authors are
comparing 13 different void finder algorithms using a variety of tracers. In there, the authors had
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FIG. 1. Stacked density (left) and velocity (right) profiles of voids at redshift zero in eight contiguous bins in void radius with
mean values and void counts indicated in the inset. Shaded regions depict the standard deviation � within each of the stacks
(scaled down by 20 for visibility), while error bars show standard errors on the mean profile �/

p
Nv. Solid lines represent our

best-fit solutions from Eq. (2) for density and from Eqs. (4) and (6) for velocity profiles. Dashed lines show the linear theory
predictions obtained from evaluating the velocity profile equation at the best-fit parameters obtained from the density stacks.

radial bin. In our simulations we use dark matter par-
ticles of equal mass and calculate the density profile of
every void out to three times its e↵ective radius rv. In
order to avoid contamination from resolution e↵ects, we
include only voids with radii larger than twice the mean
particle separation, rv > 2r̄p, and discard density esti-
mates from Eq. (1) at r < r̄p. We then average (stack)
all void profiles within eight contiguous logarithmic bins
in void radius, to account for the poor statistics of the
largest voids. The resulting stacks are shown with dif-
ferent symbols in the left-hand panel of Fig. 1, where
shaded regions depict the standard deviation � among
all Nv voids within each stack, scaled down by a factor
of 20 for visibility. Error bars show �/

p
Nv, the standard

error on the mean profile.

As expected, stacked voids are deeply underdense in-
side, with their central density increasing with void size.
In addition, the variance of underdense regions is sup-
pressed compared to overdense ones [38], yielding the
smallest error bars in the centers of the emptiest voids.
However, note that the void-to-void scatter in the pro-
file decreases towards the largest voids, as can be seen
from the shaded regions in Fig. 1. The profiles all ex-
hibit overdense compensation walls [39, 40] with a max-
imum located slightly outside their e↵ective void radius,
shifting outwards for larger voids. The height of the com-
pensation wall decreases with void size, causing the inner
profile slope to become shallower and the wall to widen.
This trend divides all voids into being either overcompen-
sated or undercompensated, depending on whether the
total mass within their compensation wall exceeds or falls
behind their missing mass in the center, respectively [41].
Ultimately, at su�ciently large distances to the void cen-
ter, all profiles approach the mean background density.

We propose a simple empirical formula that accurately

captures the properties described above:

⇢v(r)

⇢̄
� 1 = �c

1 � (r/rs)
↵

1 + (r/rv)�
, (2)

where �c is the central density contrast, rs a scale radius
at which ⇢v = ⇢̄, and ↵ and � determine the inner and
outer slope of the void’s compensation wall, respectively.
The best fits of this four-parameter model to the void
density stacks are shown as solid lines in the left-hand
panel of Fig. 1. The concordance with the numerical
data is exquisite everywhere.

Velocity profile.—We estimate the velocity profile of
tracer particles around void centers by calculating

vv(r) =
1

N(r)

X

i

vi(ri) · ri

ri
Vc(ri)⇥(ri) (3)

for every void and then averaging over all void radii in a
given bin. Here, vi is the particle velocity vector, Vc(ri)
the Voronoi cell volume of a particle located at ri, and
N(r) ⌘ P

i Vc(ri)⇥(ri). Using the Voronoi volumes Vc

as weights ensures a volumetric representation of the ve-
locity field [42].

The right-hand panel of Fig. 1 depicts the resulting
velocity stacks using the same void radius bins as for
the density stacks. Note that a positive velocity implies
outflow of tracer particles from the void center, while a
negative one denotes infall. As the largest voids are un-
dercompensated (void in void [43]), i.e. the total mass in
their surrounding does not make up for the missing mass
in their interior, they are characterized by outflow in the
entire distance range. Tracer velocities increase almost
linearly from the void center until they reach a maxi-
mum located slightly below the e↵ective void radius of
each sample, which indicates the increasing influence of

Fig. 4.2.1 – from Hamaus et al. (2014)

Void Finder Comparison Project 7

Figure 1. A slice of thickness 5 h−1 Mpc through the centre of the region extracted from the Millennium simulation. The image shows
the dark matter distribution in the central 40 h−1 Mpc region. Void galaxies (within any void, not just the largest one) are superimposed
on the dark matter distribution as blue circles. The top left and top centre panels show only the dark matter distribution and dark
matter plus all galaxies in the slice, respectively. The other panels show the locations of the largest void (with dark matter particles inside
the void marked green), its centre (red circle), and all void galaxies found by Brunino (top right), Colberg (second row, left column),
Fairall (second row, centre), Foster (second row, right column), Gottlöber (third row, left column), Hahn/Porciani (third row, centre),
Hoyle/Vogeley (third row, right column), Müller (bottom, left column), Neyrinck (bottom, centre), Pearce (bottom, right column).

c⃝ 200? RAS, MNRAS 000, 1–13

Fig. 4.2.2 – Example of a cosmic void identified by three different void finder algorithms
Muller (left panel), Neyrinck (middle panel) and Pearce (right panel) on a 40Mpc/h patch

of the Millennium simulation, from Colberg et al. (2008)

compared the different void populations characteristics identified running the different algorithms
on the Millennium simulation (Springel et al. (2005)). Figure (4.2.2) is an example of a void
find by three different algorithms probed by Colberg et al. (2008).

More recently, Cautun et al. (2018) studied how modified gravity models can be tested with
different void definitions. They concluded that void lensing observables are better indicators for
tests of gravity if defined in 2D projection such as “tunnels" or “troughs". Such scenarios are in
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fact the only viable void definitions in photo-z surveys like DES given the significant smearing
effect of redshift uncertainties.

4.2.2.2 The 2.5 void finder

In the context of this thesis, similarly to the previous chapter, we have been analysing the Dark
Energy Survey observed catalogs and more in particular, we identified voids in the DES first
year of observation galaxy catalog, thus treating object with redshift estimate with photometry.
Therefore, to create the void catalog, we have been using a modified version of 2.5D void
finder presented in Sánchez et al. (2017). This void finder is in a sense a tuned void finder for
photometric datas. Indeed, the idea behing the finder is to spot underdensed regions in redshift
slices. Due to photometric uncertainties, define the position of cosmic void becomes more
complicated. However, finding underdense regions in relatively thin slice of size comparable
to photo-z errors allows us to find elongated voids. Namely, Sánchez et al. (2017) showed that
significant real underdensities can be identified even using photo-z data in tomographic slices of
width roughly twice the typical photo-z uncertainty (see also Pollina et al., 2018, for DES tests
and results using other void definitions).

The code works as following :

• divide the sample in redshift slices, 100Mpc/h slices as shown to be a good compromise
considering redMaGiC redshift accuracy (see Sánchez et al. (2017))

• Compute the density field for each slice by counting the galaxy number in each pixel and
smoothing the field with a Gaussian pixel with a predefined smoothing scale.

• select the most underdone pixel and grow around it the void until it reach the mean density

• save the void and erase it from the density map and reiterate the process with the following
underdensed pixel

A free parameter in the method is the scale of the initial Gaussian smoothing applied to the
projected galaxy density field. For instance, Kovács et al. (2017) found that σ = 20 h−1Mpc is a
preferable choice for ISW measurements using the whole void sample in the stacking procedure.
For weak galaxy lensing measurements with DES voids, however, Sánchez et al. (2017) reported
that the smaller σ = 10 h−1Mpc smoothing is preferable.

Figure(4.2.3) shows an example of cosmic voids identified using this void finder in on redshift
slices of simulated galaxy catalog.

We have also applied the random point methodology of ? to eliminate voids in the edges with
a potential risk of mask effects. This method evaluates the density of random points that have
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MICE redMaGiC 0. 348<z< 0. 387 slice. zphot voids

-0.749 1.28

Fig. 4.2.3 – Cosmic voids (red circles) identified in one redshift slice (0.348 < z < 0.387)
of simulated galaxy catalog, the background color being the smoothed galaxy density field.

been drawn within the mask inside each void. Then, voids with a significant part of their volume
laying outside the mask will have a lower random point density and therefore can be identified
and excluded. In the final catalog, we have also excluded voids of radius Rv < 20Mpc/h that
are expected to be spurious given the photometric redshift uncertainties.

We determine the radii of the voids as well as their redshift (defined as the mean redshift of the
slice in which it has been identified). The void finder also provides two additional characteristic
quantities related to the under-density of voids:
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• the mean density contrast: δ̄ = ρ/ρ̄ − 1 where ρ is the mean density inside the void and ρ̄
is the mean density of the corresponding redshift slice;

• the central density contrast: The density contrast evaluated at one quarter of the void
radius δ1/4 = δ(r = 0.25Rv).

4.3 Cosmic voids and the CMB

Beside the hereabove exposed different tools to use cosmic voids as cosmological probes, it is
also possible to combine the cosmic void found at low redshift to high redshift observation such
are the cosmic microwave background radiation observations. In the 80’s it has been proposed
in Blanchard & Schneider (1987) that similarly to the deflection effects induced by the large
structures that we observed on the sky on the photons coming from background galaxies, we
should have a lensing effect on the photons that come from the CMB (see section 1.2.4.2). And
in principle as is has been presented for cosmic shear cosmology and galaxy-galaxy lensing (see
2.4.3 and 2.4.4), one can infer cosmological informations by measuring the lensing effects of
Large Scale Structures on the incoming CMB photons.

Relatedly, the CMB lensing imprint of other elements of the cosmic web have also beenmeasured
recently. He et al. (2017) reconstructed the correlation of filamentary structures in the Sloan
Digital Sky Survey (SDSS) data and CMB lensing convergence (κ, herafter), as seen by Planck.
Then, Baxter et al. (2018) stacked the κ maps of the South Pole Telescope (SPT) on locations of
galaxy clusters in the Dark Energy Survey first year data set (DES Y1 The Dark Energy Survey
Collaboration, 2005), finding good consistency between simulated and observed results.

The prospects of cosmological parameter constraints from CMB lensing probed using cosmic
voids are discussed by Chantavat et al. (2016), but, more importantly, the role of void definition,
environment, and type have also been studied in simulations. Nadathur et al. (2017) found the
parameters of voids, such as their radius (Rv) or their mean under-density (δ̄), are imperfect
indicators of the peak positions of the gravitational potential, but their combination is helpful to
define meaningful subgroups of voids with different lensing capabilities. Averaging together the
contributions from all voids with different type produce an average convergence that is closer
to zero and thus potentially harder to measure. This suggests that the sensitivity of detection
of void lensing effects could be significantly improved by consideration of sub-populations but
the details remain to be explored for such measurements. Figure(4.3.1) shows the CMB lensing
profile at void position recovered by Nadathur et al. (2017) for different void populations1. As

1In Nadathur et al. (2017), the authors identify void populations using both their size and density with the parameter
λv = δ̄g

(
Rv

Mpc/h

)
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Figure 8. The yellow (solid) line shows the average CMB lensing

convergence profile (✓) for all voids with 40 h�1Mpc < Rv <

60 h�1Mpc in the CMASS mock catalogue. Angular units are

scaled in terms of the average angular size of these voids, assuming

they are centred at redshift z = 0.52. The blue (dashed) and

red (dot-dashed) lines show (✓) for two subsets of this sample,

with �v < �20 and �v > 20 respectively but with the same

average void size. For typical numbers of voids in survey data,

statistical uncertainties in these predictions will be much smaller

than observational errors, so are omitted here.

size Rv. However, as the lensing potential is sourced by the
gravitational potential �, and the void parameter �v is a
useful proxy for �, it follows that �v should also provide a
useful discriminant between populations of voids that have
the same size Rv yet produce very di↵erent lensing e↵ects.
To illustrate this, we used the stacked average DM density
profile �(r) for voids, determined as in Section 3.5, to calcu-
late the CMB lensing convergence signal,

(✓) =
3⌦mH2

0

2c2

Z
� (�s � �)

�s

�(✓,�)

a
d�, (15)

where � is the comoving radial coordinate and �s is the
comoving distance to the last scattering surface. Figure 8
shows the resultant average (✓) signal for all voids in the
CMASS mock void catalogue in the size range 40 h�1Mpc <
Rv < 60 h�1Mpc as the yellow solid line. Also shown are
the (✓) profiles for two additional subsets of voids, which
both satisfy exactly the same size cuts, but have �v < �20
(blue dashed) and �v > 20 (red dot-dashed) respectively.

It is clear that voids of very similar size Rv but di↵er-
ent mean galaxy density �g and thus �v can produce very
di↵erent lensing convergence signals. Equally, as the appar-
ent size Rv is only loosely related to the true extent of the
void DM underdensity (Section 3.5), voids with very di↵er-
ent Rv could contribute similar convergence profiles (✓). In
addition, Figure 8 shows that averaging together the contri-
butions from voids with di↵erent values of �v will in general
produce an average convergence that is closer to zero and
thus potentially harder to measure. This suggests that the
sensitivity of detection of void lensing e↵ects could be signifi-
cantly improved by consideration of sub-populations defined
by the variable �v.

Although we have only discussed the convergence  in

the example above, the same argument can equally be ap-
plied to the contribution of voids to the lensing shear �. We
leave further exploration of these e↵ects and applications to
data to future work.

4.3 Voids in redshift space

Voids in galaxy surveys are observed in redshift space. Under
the assumption of an isotropic Universe the stacked galaxy
distribution around void centres should average to spherical
symmetry in real space, but will in general appear distorted
due to the Alcock-Paczynski (AP) e↵ect (Alcock & Paczyn-
ski 1979). This has been proposed as a potentially power-
ful test of cosmology (Lavaux & Wandelt 2012), which has
recently been applied to galaxy survey data (Sutter et al.
2012a; Sutter et al. 2014; Mao et al. 2016; Hamaus et al.
2016).

The use of voids for the AP test is complicated by
redshift-space distortions due to peculiar velocities. Naively,
one would expect velocity outflows around voids, leading to
a stretching of their shapes along the line of sight when seen
in redshift space. However, several authors (Lavaux & Wan-
delt 2012; Sutter et al. 2014; Mao et al. 2016) have found
the opposite: seen in redshift space, voids identified using
watershed void-finders such as ZOBOV instead appear to be
squashed along the line of sight. This phenomenon has been
noted both in simulations and for voids in real galaxy data.
Mao et al. (2016) describe it as a failure of linear theory and
show that it degrades the sensitivity of the AP test. How-
ever, Cai et al. (2016) argue that a squashing e↵ect can be
consistent with linear theory.

Our results provide another perspective: voids reside
in a variety of di↵erent large-scale environments, so not all
voids are associated with velocity outflows. As noted in Sec-
tion 3.1, a significant fraction of voids that are identified by
the watershed algorithm correspond to local density min-
ima within regions that are overcompensated on large scales
and thus form potential wells rather than maxima. In linear
theory, such regions will not correspond to velocity outflows
(at least on scales of observational interest). Another way
to illustrate the same problem is to note that a dynamical
method of classification of the cosmic web based on eigen-
values of the tidal tensor T↵� = @↵@�� (Hahn et al. 2007)
shows that only a small fraction of the volume of the Uni-
verse should lie in regions that are simultaneously expand-
ing along all three directions, whereas watershed void-finders
such as ZOBOV are by nature space-filling. Only a fraction
of ZOBOV voids can correspond to local maxima of � and
thus to truly expanding regions.

In addition, on the basis of our results we can make
a few qualitative predictions. Firstly, the minority of voids
with large negative values of �v should correspond to strong
velocity outflows. Secondly, the magnitude of the velocity
outflow and thus the details of the induced redshift-space
distortion should vary with the values of �v, as should the
length scale over which the e↵ect is observable. Thirdly, as
discussed in Appendix A, the void centre Xv used in this
work traces maxima of � better than the void barycentre
Xb used in many previous analyses, and therefore a shift
from use of Xb to Xv in void catalogues will enhance the
velocity outflow seen. Detailed exploration of these topics

c� 0000 RAS, MNRAS 000, 1–14

Fig. 4.3.1 – from Nadathur et al. (2017)

it can be see in the figure, smaller λv (meaning smaller and deeper voids) induces a stronger
negative signal in the CMB lensing profile.

Following their own stacking measurement strategy, Cai et al. (2017) have, for the first time,
detected a CMB lensing signal using cosmic voids (catalogue created by Mao et al., 2017)
identified in the CMASS galaxy tracer catalogue of the Baryon Oscillation Spectroscopic Survey
Data Release 12 (BOSSDR12). They identified voids using the void finder algorithm (Neyrinck,
2008).

Cai et al. (2017) did not optimize the detection of the CMB lensing measurement in their paper
because the main point was to complement the stacking measurements of the integrated Sachs-
Wolfe effect (ISW) (Sachs & Wolfe, 1967). An evidence for ISW and CMB lensing imprints of
the same cosmic voids helps to confirm the reality of each effect. They discuss that an ISW-
lensing dual probe is valuable from the point of view of modified gravity, since the two effects are
closely related: lensing depends on the sum of metric potentials, whereas ISW depends on their
time derivative. Hints of the general coexistence of both the ISW and CMB lensing signatures
have been found by the Planck team (Planck 2015 results. XXI., 2016).
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More importantly, the amplitude of the CMB κ imprint of voids is expected to shed new
light on the problem of excess ISW signals coming from the largest voids. In the strength
of the signal, typical cosmic voids have shown good consistency with expectations, given the
substantial cosmic variance (see Nadathur & Crittenden, 2016, for a comprehensive summary).
Discordantly, large-scale hills in the gravitational potential, or supervoids, have shown excess
signals (see e.g. Granett et al., 2008; Cai et al., 2014b; Kovács, 2018). It is typically assumed that
neither modifications of the concordance model, given other precise constraints, nor e.g. simple
modified gravity scenarios seem to alleviate the ISW tension (e.g. Cai et al., 2014a). If confirmed
elsewhere in the Universe, or detected in other void observables, such as CMB lensing imprints,
these excess signals pose an important challenge for the ΛCDM model (Nadathur et al., 2012).

Cai et al. (2017) reported a CMB lensing signal of BOSS voids that is compatible with simulated
imprints, with somewhat higher-than-expected signal in the center of the voids. They did not
perform a comprehensive stacking analysis of void sub-groups. They argued, however, that their
sample is dominated by rather small voids surrounded by over-densities (voids-in-clouds) which
presumably are suboptimal to detect CMB κ imprints (see again Nadathur et al., 2017). The
conclusion was that the puzzling excess ISW signal was seen in the BOSS DR12 data, especially
for the most significant big and deep voids, but the lensing counterpart seemed inconclusively
noisy with hints of an excess imprint.

In Kovács et al. (2017), we have recently attempted to probe these claims in the the first year
footprint of the Dark Energy Survey and identified 52 voids and 102 superclusters at redshifts
0.2 < z < 0.65 using the void finder tool described in Sánchez et al. (2017). The heart of that
method is a restriction to 2D slices of galaxy data, and measurements of the projected density
field around centers defined by minima in the corresponding smoothed density field. Similarly to
the Granett et al. (2015) analysis of SDSS super-structures, our tests revealed a significant mean
line-of-sight elongation for the super-structures that is caused by the photo-z uncertainties. All in
all, we found a ∆T ≈ −10 µK cold imprint of voids, formally with AISW ≈ 8±6 ISW amplitude2,
that is 1.2σ higher than the imprint of such super-structures in the simulated ΛCDM universe.
We also found AISW ≈ 8 ± 5 for superclusters and in combination we constrained AISW ≈ 8 ± 4
with DES Y1 super-structures, i.e. a 2σ discrepancy. These measurements, although hinting
again at a large ISW amplitude, were indecisive because of the significant noise level.

4.4 Data sets

In the context of this thesis, we aimed to measure the lensing signal on the CMB lensing map
produced using the Planck satellite observations (Planck Collaboration et al. (2016c)) at the
location of voids found in the DESY1 galaxy catalog. And more in particular, since an important

2In a ΛCDM cosmology, by definition AISW = 1.
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source of error that affects our void finding procedure is photo-z uncertainty; photometric DES
data does not provide a precise redshift estimate for the galaxy tracers of voids as spectroscopic
survey does, we have chose to use LRG identified by the redMaGiC algorithm similarly to what
has been presented in 2.3.1. This analyses, as it will be developed bellow, has been at first tested
and optimized using the simulated galaxy catalog namely the MICE-GC catalog, on which the
redMaGiC algorithm has been ran and a CMB lensing map is available.

4.4.1 Simulations - the MICE galaxy mock and κ map

The MICE simulated sample is a N-body light-cone from the MICE Grand Challenge (MICE-
GC), that contains about 70 billion dark-matter particles in a (3h−1Gpc)2 comoving volume.
The details on the creation of this simulation can be found in Fosalba et al. (2015a); Crocce
et al. (2015); Fosalba et al. (2015b), here we will give a brief overview. MICE has been
developed at the Marenostrum supercomputer at BSC3 running the GADGET2 (Springel, 2005)
code. The simulation assumed a flat standard ΛCDM model with input fidutial parameters
Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.044, nS = 0.95, σ8 = 0.8 and h = 0.7 from the Five-Year
Wilkinson Microwave Anisotropy Probe (WMAP) best fit results (?). Moreover, the catalog has
been created and validated to follow local observation constraints such as luminosity functions,
galaxy clustering (with respect to different galaxy populations) and color-magnitude diagrams.

The redMaGiC algorithm has been run in the MICE mock galaxy catalogue with the same
algorithms applied to the observed DES Y1 observed catalog. We utilize this MICE-redMaGiC
mock galaxy catalogue to trace the large-scale galaxy distribution and to identify cosmic voids.

The lensing maps (Fosalba et al., 2015b) corresponding to the MICE simulation have been
produced using the ’Onion Universe’ methodology presented in Fosalba et al. (2008). An all-
sky map has been constructed by cloning the simulation box from the MICE simulation and
translating it around the observer, and afterwards splitting the light cone into concentric shells
of size dz ∼ 0.003(1 + z) and an angular resolution of ∆θ ∼ 0.85 arcmin. Moreover, the map
produced has been validated using different lensing probes such as auto and cross-correlations
with foreground MICE galaxy and dark matter particles (see Fosalba et al. (2015b) for details).
Figure (4.4.1) is showing the full CMB lensing convergence map from the MICE simulation.

The observed lensing convergence map used in this analysis is the one provided by the Planck
collaboration Planck Collaboration et al. (2016c). This map has been built using a quadratic
estimator, with the lensing reconstruction methodology described in Okamoto & Hu (2003), to
the foreground-cleaned CMB temperature and polarization maps build using the component
separation method (Planck Collaboration et al. (2016a)). The map is provided with a pixel
resolution of Nside = 2048 which corresponds to a pixel size of 1.7 arcmin.

3Barcelona Supercomputing Center, www.bsc.es.
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MICE simulated  map

-0.0307453 0.0352697

Fig. 4.4.1 – healpix map of the CMB lensing signal of the full sky using the MICE
simulation.

4.4.2 The different void catalogs

4.4.2.1 Cosmic voids in the MICE galaxy mocks

We examine how potential systematic effects modify the resulting void populations. We com-
pare the void parameter distributions for different tracer densities and various initial Gaussian
smoothing applied to the density fields.

Edge/mask effects may lead to different mean void properties as at survey boundaries the full
extent of underdense regions around minima may not be captured with good precision. Our
initial tests revealed that the indeed the voids identified using redMaGiC tracers in the MICE
octant have different properties compared to void properties of DESY1-like survey patches inside
the octant. We therefore used the official mask used in the DESY1 cosmological analysis (Elvin-
Poole et al. (2017)). We note that it is possible to put two independent DESY1-like patches on
the MICE octant. Therefore, to gain statistical power and more precision on our expected void
lensing signals, we will study two MICE Y1-like void catalogues.

We thus run our void finder using two different redMaGiC samples as tracers. The redMaGiC
high-luminosity sample applies a stronger cut in luminosity (L > 1.5L∗) which offers higher
precision in photometric redshift. On the other hand, the redMaGiC high-density sample has
a more relaxed luminosity cut (L > 0.5L∗), resulting in an increased galaxy density. We then
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Fig. 4.4.2 – Comparison of the different void catalog obtained using different tracers, the
redMaGiCHigh-Luminosity sample (purple) and redMaGiC high-density sample (orange)
and different smoothing scale for the void finder 10Mpc/h (solid lines) and 20Mpc/h

(dashed lines)

further probe systematic effects by running the void finder on these two two samples using
different initial Gaussian smoothing scales, namely 10 Mpc/h and 20 Mpc/h. Figure 4.4.2
shows a comparison of the resulting void catalogs for the different tracer density and smoothing
scales. We compare the void catalogues in terms of three characteristic parameters of voids;
distribution in size (Rv), distribution of mean density (δ̄) and distribution in central void density
(δ1/4). We observe the following properties:

• Comparing the different resulting catalogs a higher number of voids is detected when the
tracer density is lower (redMaGiC high-luminosity sample). Such effects are expected and
have already been studied in simulations (see e.g. Sutter et al., 2014).

• A larger smoothing scale decreases the number of voids for both tracer densities.

• The mean void radius is shifted towards larger values for larger smoothings, as potential
merging of smaller voids into larger encompassing voids is expected.

• The previous effect is also manifested in the density contrast distributions. Smaller voids
tend to be deeper and therefore the excess of small voids in the catalogs constructed using
10 Mpc/h smoothing is observable as a shift towards deeper mean density contrasts in the
population.

We aim to test how such competing effects found in alternative void samples influence the
signal-to-noise (S/N) of CMB lensing ×MICE voids.
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4.5 Simulated cross-correlation analyses

4.5.1 Stacking methodology

The CMB lensing imprint of single voids is practically impossible to detect (see e.g. Krause
et al., 2013). We therefore apply an averaging method using cutouts of the CMB map at void
positions (see e.g. Kovács et al., 2017, and reference therein). This stacking procedure can be
described with the following steps:

• we define a catalogue of voids and potentially select subgroups to probe their specific
imprint type;

• we cut out patches of the CMB convergence map centered at the void center position using
healpix tools (Górski et al., 2005);

• we re-scale the patches given the angular size of voids;

• we smooth the CMB convergence map with an arbitrary smoothing scale of 1◦ to remove
noise at scales smaller than the typical void size;

• we stack all patches and measure the average signal in different concentric radius bins
around the void center.

More formally, we rely on the following formula in the stacking to express the size of the patch
(Sp) in pixels.

Sp = 2 ∗ N ∗
Rv

npixels
(4.2)

where npixels is the required resolution in pixel numbers, and N the number of void radii we wish
to enclose in each patch. We chose a quite large relative patch size enclosing five void radii. Such
choice is helpful to detect the lensing imprint of void surroundings such as the compensation
wall that may appear in the outer void density profile. Two examples of our stacked images are
shown in Figure 4.5.1. We do not apply any other filtering in the stacking procedure such as
exclusion of large-scale modes up to ` < 10 (see Cai et al., 2017, for related results).

4.5.2 Optimization of the measurement

The imprint of voids on the CMB lensing maps depends on their properties. Nadathur et al.
(2017) showed that simulated cosmic voids, identified with the methodology, trace the peaks of
the underlying gravitational potential differently given different density, size, and environment.
They reported that voids can be grouped based on a combined density-radius observable to
have distinct lensing profiles. In particular, they found that the more numerous compensated
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Fig. 4.5.1 – Examples of the stacked lensing convergence signal obtained for medium size
voids (top) or large voids (bottom).
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Fig. 4.5.2 – Signal-to-noise measured in a MICE Y1-like mock for different subsets of
a void catalogue based on high luminosity redMaGiC tracers and 20 Mpc/h smoothing.
In each subfigure, we show a cumulative S/N in the radial direction for increasing radius
while different images correspond to different ordering schemes (δ or Rv) and averaging
technique : differential (left panels) or cumulative (right panels). In the vertical axes on
the left, we indicate the number of voids used for the stacking given the corresponding cuts

on void parameters on the right side of the figures.

voids (voids-in-clouds) imprint less pronounced lensing signals on the CMB map than voids
surrounded by voids (voids-in-voids). These findings appear to be robust against changing the
galaxy tracer sample.

While we base our work on a different void definition, we aim to explore the possible optimization
of the void catalogue by pruning in a similar manner. We therefore perform the stacking
measurement for subsets of our void catalogues for both tracer densities and two different initial
smoothing scales. The resulting imprints are characterized by comparing the stacked signal
of voids to typical fluctuations of the CMB lensing map at random locations. We measure
azimuthally averaged radial profiles from the stacked images. We then estimate a cumulative
signal-to-noise (S/N) by gradually adding signals in each radial bins corresponding to larger
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Fig. 4.5.3 – CMB lensing profile for three different redshift bins
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evolution.

radii. This estimator is defined as follows:(
S
N

)2
(r) =

r∑
i≤r, j≤r

S(i)cov−1(i, j)S( j) − Nbins (4.3)

where S(i) is the amplitude of the lensing signal in the radius bin i, cov−1 the inverse covariance
matrix. We estimate the covariance using 500 random rotations of the void catalogs. We then
correct these estimates by multiplying them by the Anderson-Hartlap factor α = (Nrandoms −

Nbins − 2)/(Nrandoms − 1) (?), and Nbins is the number of radius bin already computed to have
an unbiased estimate. We compute the S/N in two different ways:

• Differential signal-to-noise: we estimate the signal-to-noise for each radius/density con-
trast bin.

• Cumulative signal-to-noise: we evaluate the signal-to-noise in cumulative way that is to
say evaluating it for all catalog below a radius/density contrast threshold.

The S/N measured in differentially stacked images shows how sub-classes of voids contribute
to the total detection significance. Similarly, the cumulative stacking, that gradually makes use
of all the voids in the sample, indicates which portion of the radius-ordered and density-ordered
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data provides the highest detection significance. An example of such tests is shown in figure
4.5.2. Further results for other versions of the void catalogues are presented in figures D.0.1,
D.0.2, and D.0.3. We use the mean of the two MICE Y1-like footprints for the signals but
consider the noise corresponding to a single Y1 footprint to model the DES expectations.

We make the following observations based on these optimization efforts :

• The most numerous medium size voids contribute most to the total lensing signal, i.e void
with radius in the range 40Mpc/h . Rv . 80Mpc/h.

• Similarly, the rather shallow but numerous voids show a better chance to measure their
CMB lensing imprint, namely voids with mean density in the range −0.2 . δ̄ . −0.1,
again this range of densities are the most frequents in the voids catalogs (see 4.4.2).

• The S/N appears to be high enough to study the sub-classes of voids as suggested by
Nadathur et al. (2017) with a caveat that photo-z voids have different properties compared
to ZOBOV voids and we can expect less pronounced differences for the subclasses of the
former

• While most of the S/N is contained inside the void radius (R/Rv < 1) and in the close
surroundings (1 < R/Rv < 2, measuring the cumulative S/N up to (R/Rv = 5) also
increases the detectability.4

• The highest S/N is achieved by stacking all voids, even if some voids are expected to
contribute with less pronounced signal and higher noise at small scales (see Kovács et al.,
2017, for a counter-example in the case of ISW imprints)

The best possible configuration is observed when using the high luminosity catalogue with
20 Mpc/h smoothing, reaching a cumulative S/N ≈ 20 in the full profile up to R/Rv = 5.
Nevertheless, all measurement configurations show significant CMB lensing signals for voids in
a survey like DES Y1 thus we will measure the corresponding observed lensing imprint of all
DES void catalogues and smoothing versions.

We note that he main results above are based on the full void sample with a variety of redshifts
in 0.2 < z < 0.9. For completeness, we also performed a simple redshift binning test for voids
of size 20Mpc/h < Rv < 70Mpc/h. Figure 4.5.3 shows that MICE voids in the high luminosity
sample with 20 Mpc/h smoothing show no clear evidence for redshift evolution in their CMB
profiles.

These findings are helpful to identify trends in the observed signal but the realistic uncertainties
in the observed Planck κ map may exceed the simple variance that we estimated with the Y1-like

4In Figure 4.5.2, we can see that a cumulative S/N ≥ 10 is encolse inside the void surroundings.
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High density
Smoothing DES Y1 MICE 1 MICE 2
10 Mpc/h 303 262 294
20 Mpc/h 89 64 64

High luminosity
Smoothing DES Y1 MICE 1 MICE 2
10 Mpc/h 579 524 564
20 Mpc/h 195 180 181

Table 4.6.1 – Number of voids identified in DES Y1 data vs. in two Y1-like MICE
patches. High luminosity sample are in better agreement.

patches within the MICE simulation. Therefore, we will determine the DES Y1 measurement
error bars by stacking on random locations on the Planck map 500 times.

4.6 Results for observations - DES Y1 × Planck

4.6.1 Simulated catalogues compared to observed catalogues

In the light of the simulated stacking measurements using the MICE κ map, we aim to measure
the DES Y1 tracers × Planck CMB κ signal. We thus use the observed redMaGiC catalogs from
DES Y1, presented in 4.4.2.1, to construct void catalogues with the different tracer densities and
initial smoothing scales.

Figure 4.5.4 shows a comparison of the observed and simulated void catalogues. We report
a very good agreement in terms of sizes, central density, and mean density for both MICE
Y1-like patches when they are compared to DES Y1 data. We find that the simple two-sample
Kolmogorov-Smirnov histrogram consistency tests (Kolmogorov (1933); Smirnov (1948)) sug-
gest that in general high luminosity samples are in better match. However, the overall agreement
is sufficient, thus we aim to test the consistency of simulations and observations for all void
catalogue versions.

4.6.2 Consistency tests of DES Y1 and MICE

Wemeasure the stacked imprint of DES Y1 voids with the same methodology and parameters as
in the case of the MICE mock. As an example, we compare the stacked images of the κ imprints
of voids in high luminosity catalogues with 20 Mpc/h smoothing in figure 4.5.5.

A visual inspection shows a clear excess negative κ imprint in the center of the voids. The central
spots for both MICE and DES Y1 are surrounded by an extended positive ring of overdensities,
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Fig. 4.5.5 – Comparison of simulated (left) and observed (right) stacked lensing signals.
Clear excess is observed for DESY1 data inside the re-scaled void radius R/Rv = 1marked

by the dashed circles.
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with more noisy reconstruction for DES Y1 due to the presumably higher noise level in the
Planck map.

We then also measured the azimuthally averaged radial imprint profile in the stacked images to
quantify the results. We present the results in figure 4.6.1 for all four void catalogue versions.
The shaded region mark 1σ errors computed with 500 random realizations of the stacking
measurement on the MICE κ map, while the error bars correspond to 500 random stacking runs
on the Planck κ map.

We note that our estimates of the stacked CMB κ profile in theMICEmock are in great qualitative
and quantitative agreement with the simulated profiles by ? and Nadathur et al. (2017) even if
they used different void definitions and different tracer catalogues.

However, our observed DES Y1 signal shows a clear excess with respect to MICE ΛCDM

cosmology, on the other hand , in Pollina et al. (2018) the authors obtained consistent agreement
in the void properties between DES voids and the MICE simulation, emphasizing thus the reality
of the discrepency observed here.

As a consistency statistic, we first measure the amplitude (A) of the observed and simulated
lensing imprints as a function of the distance to the void radius in the usual re-scaled units:

A(R/Rv) =
κDESY1(R/Rv)

κMICE (R/Rv)
(4.4)

One may relate this amplitude to the AL phenomenological lensing amplitude that was estimated
by the Planck team in their analyses (?).

We observe a good general agreement in the sign and the shape of the observed and simulated
profiles; negative κ values in the interior of voids plus an extended range of positive convergence
in the surroundings. However, we detect a significant excess signal in the interior of DES Y1
voids. For 20 Mpc/h smoothing, we obtain A ≈ 2 for both tracer densities. Furthermore, we
find 3 ≤ A ≤ 4 when 10 Mpc/h smoothing is applied for both high luminosity and high density
tracer catalogues. We note that the convergence of the profiles to zero signal at large distance
from the void center is an important null test which proves that our method provides an unbiased
estimate.

We aim to characterize further the significance of these excess signals inside the void radius.
The significance level of the observed signal compared to zero signal has been evaluated using
the cumulative signal-to-noise (4.3) of the first three points of the reconstructed lensing profile;
namely the points residing inside the void radius, defined as follows
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Fig. 4.6.1 – We present our main findings in this figure. Points with 1σ error bars
mark the CMB lensing convergence profiles of DES Y1 voids for various configurations
indicated by the figure legend and titles. Solid lines with shaded 1σ error ranges show
the simulated imprint of MICE voids for the same combinations of smoothing and tracer
density. Shaded text boxes indicate the significance (S) and anomaly (A+) measures of the
different configurations. These significance values correspond only to the void interiors that
we shaded with the same color. The lower panels show the A amplitude and its 1σ errors
of the observed κ signal compared to the MICE estimate in each bin (κDESY1/κMICE ).

S =

√√√ 3∑
i≤3, j≤3

S(i)cov−1(i, j)S( j) − Nbins . (4.5)

The measured values of this S detection significance are:

• S = 7.22σ (high luminosity, 20 Mpc/h smoothing)

• S = 7.83σ (high density, 20 Mpc/h smoothing)

• S = 12.91σ (high luminosity, 10 Mpc/h smoothing)

• S = 9.06σ (high density, 10 Mpc/h smoothing)
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amplitude and its 1σ errors of the observed κ signal compared to the MICE estimate in

each bin (κDESY1/κMICE ).

Importantly, the detection significance of the DES Y1 clusters × CMB lensing signals by Baxter
et al. (2018) is 8.1σ, i.e. comparable to the DES Y1 voids × CMB lensing signal from the very
same tracer data set. We note, however, that the overall significance of our void lensing signal is
even higher if not only the void interior (first three radial bins) is considered. The outer profile’s
less significant positive convergence also carries some information, even if not truly helpful to
understand the physics of voids itself.

Then, in order to evaluate the significance of the excess part of the signal itself with respect to
the simulated template profile, we defined the discrepancy measure D based again on the the
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first three bins in the profile in the void interior:

D =
κDESY1 − κMICE

NDESY1
(4.6)

where N is the noise of the κ signal. We estimated the following values of this D excess
discrepancy parameter:

• D = 3.36σ (high luminosity, 20 Mpc/h smoothing)

• D = 4.95σ (high density, 20 Mpc/h smoothing)

• D = 9.59σ (high luminosity, 10 Mpc/h smoothing)

• D = 6.23σ (high density, 10 Mpc/h smoothing)

We conclude that the excess signal of DES Y1 voids appears to be robust against changing the
tracer density and the void finder configuration. Importantly, the excess is seen when stacking
all voids in the catalogues. We minimized the role of any a posteriori selection bias by analyzing
the MICE simulation prior to looking at the DES Y1 data and in fact this pre-analysis showed us
that stacking all voids is always beneficial in our measurement configuration. Nevertheless we
test how different splits of the void catalogue may affect the results.

4.6.3 Tests of the excess signal - z and Rv dependence

We perform simple tests to verify if the excess signal measured in the observed catalogs is
localized in size or redshift space.

Therefore, we first divide our sample into two bins in void radius, 20 Mpc/h < Rv < 70 Mpc/h

and 70 Mpc/h < Rv < 130 Mpc/h. The resulting stacked images are shown in figure E.0.1
for both MICE and DES Y1 to again check their consistency. We find that the DES data shows
a similar excess for both small-intermediate and large voids. Then, we split our data into two
redshift bins of 0.2 < z < 0.5 and 0.5 < z < 0.9. The stacked CMB lensing signals in both
simulation and observed catalogs are measured for these sub-classes. We present these results
in figure E.0.2. No important difference is seen in the relative strength of the DES Y1 and MICE
catalogues at lower and higher redshifts.

We thus conclude that the excess signal is quite robust against subdividing the void catalogues.

4.6.4 Imprint of superclusters - MICE vs. DES Y1

Following Kovács et al. (2017), we inverted our void finder in order to identify superclusters
with the same algorithm but instead of looking for minima in the smooth density fields in slices,
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it looks for maxima (see again section 4.2.2 for details). We built various supercluster catalogs
with the same combinations of tracer density and initial smoothing scale.

Then we applied our stacking methodology to simulated and observed lensing κ maps. An
example of the resulting stacked images are shown in figure 4.6.3 for the high luminosity sample
with 20Mpc/h smoothing. We found evidence for an excess CMB lensing signal of superclusters
that appears to be comparabe to the excess signal of DES Y1 voids in magnitude.

We again measured the radial κ profile in MICE and DES Y1 for both high luminosity and high
density tracers. These imprints are compared to void results in figure 4.6.2.

We verify that the both the simulated and observed imprints are fairly symmetrical around zero.
Moreover, the significances of the observed supercluster signals, shown in the lower panels
figure 4.6.2, are in good agreement with the DES Y1 void amplitudes. We estimate the following
detection and discrepency values for the DES Y1 superclusters:

• S = 7.03σ (high luminosity, 20 Mpc/h smoothing)

• D = 4.4σ (high luminosity, 20 Mpc/h smoothing)

• S = 7.97σ (high density, 20 Mpc/h smoothing)

• D = 4.4σ (high density, 20 Mpc/h smoothing)

The overall detection significance of the DES Y1 superclusters × Planck CMB lensing signal
is again comparable not just to our DES Y1 void lensing results, but also to the 8.1σ DES Y1
clusters ×CMB κ detection by Baxter et al. (2018) who used the very same DES Y1 data set with
a different method testing different scales. We conclude that our robustness test using DES and
MICE superclusters clearly verified the existence of a significant excess signal in the observed
data with respect to MICE ΛCDM cosmology.

4.7 Discussion & Conclusions

The main objective of this work was to study cosmic voids identified in Dark Energy Survey
galaxy samples, culled from the first year of observations. We relied on the redMaGiC sample
of luminous red galaxies sample of exquisite photometric redshift accuracy to robustly identify
cosmic voids in photometric data. We then aimed to cross-correlate these cosmic voids with
lensing maps of the Cosmic Microwave Background.

Such a signal has already been detected by Cai et al. (2017) with a significance of 3.2σ. On
positions of voids identified in the BOSS footprint, they stacked patches of the publicly available
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Fig. 4.6.3 – Comparison of simulated (left) and observed (right) stacked lensing signals.
Clear excess for DES Y1 data inside the re-scaled supercluster radius R/Rv = 1 marked

by the dashed circles.
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lensing convergence map of the Planck satellite. In general, we followed their methodology but
we put more emphasis of simulation analyses to optimally detect a signal with DES data, given
different galaxy tracer density, void finder parameters, and sub-classes of voids with different
properties (see Nadathur et al., 2017, for details). In particular, we used simulated DES-like
redMaGiC galaxy catalogs together with a simulated lensing convergence map from the MICE
Grand Challenge N-body simulation to test our ability to detect the CMB lensing imprint of
cosmic voids.

We analyzed the signal-to-noise corresponding to the CMB κ profile of MICE redMaGiC voids.
We considered different void populations. We varied the galaxy density and also the initial
smoothing scale applied to density field to find the centres of the voids (see Sánchez et al., 2017,
for details). These parameters affect the significance of the measurement as the total number
of voids, mean void size, underdensity in void interiors, and their depth in the centres are all
affected by these choices and so is the resulting signal and noise.

We first evaluated that the shape and amplitude of the CMB lensing profile in the MICE mock
agrees well with previous estimates by Cai et al. (2017), despite using different tracers and
void definition. We then comprehensively searched for the best combination of parameters that
guarantee the best chance to detect a signal with observed DES data. We concluded that a
combination of a 20 Mpc/h initial Gaussian smoothing in the density field and the lower tracer
density of the higher luminosity redMaGiC galaxy catalogue are preferable to achieve the highest
signal-to-noise. Looking into the sub-classes of voids and their contribution to the cumulative
signal, we found that the most numerous medium size voids (40Mpc/h < Rv < 80Mpc/h)) and
rather shallow voids (−0.2 > δ̄ > −0.1) add most to the total signal. However, we found that
stacking all voids is preferable for the best measurement configuration that one should utilize
with observed DES data.

We then identified voids in the observed DES redMaGiC catalog and compared their properties
with MICE voids. In general, we found a good agreement when comparing observed void
catalogues with both DES Y1-like MICE mocks that we used for predictions.

We repeated the simulated stacking analyses now using the observed Planck CMB lensing map.
We detected a correlation with 7 − 12σ significance depending on the void catalog version
considered. However, this detection shows a non-negligible excess with respect to simulation
estimates. Firstly, a visual inspection already revealed that most of the discrepancy is originated
in the void centres, i.e. where ∼ 60 − 70% of the S/N is coming from based on our MICE
analyses. We thus explored the inner part of voids in greater details using further statistical
probes.

In the interior of voids, we found a 3.4σ discrepancywith respect to theMICEΛCDM cosmology
even in the most conservative analysis. We found no evidence for dependence on void radius
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and/or redshift by dividing the void catalogs into bins. Furthermore, we inverted the void finder
method to find extended underdensities, or superclusters, and tested the relation of the CMB κ

imprint of these objects in MICE versus in DES Y1. We again detected an excess DES Y1 signal
of 4.4σ significance in observed data with respect to MICE estimates.

These excess signals are plausibly related to the excess ISW signal identified by Kovács et al.
(2017) in the same redMaGiC DES Y1 data set. In fact the ISW-lensing dual probe is valuable
for probes of modified gravity since lensing depends on the gravitational potential, whereas ISW
depends on its time derivative.

The origin of these excess signals of voids and superclusters is of course not necessarily cos-
mological. However, with more evidence from different observables and different surveys, now
involving DES tracers × Planck CMB lensing, at least the excess appears to be robust. Impor-
tantly, no CMB color dependence has been seen in the related ISW measurments which may
exclude some possibilities. A residual contamination, coming from unresolved extragalactic
point sources, may still be blamed though (see e.g. Millea et al., 2012). Dust from galaxies at
all redshifts contributes to the CMB temperature fluctuations, which, in turn, would result in a
positive correlation between CMB temperatures and galaxy density (see e.g. Ho et al., 2008).
However, Hernández-Monteagudo & Smith (2013) reported that realistic contamination of this
kind leave a different ISW imprint than what has been observed thus this possibility seems
unlikely.

Considering alternative models, neither modifications of the concordance model, given other
precise constraints (Nadathur et al., 2012), nor simple modified gravity scenarios seem to resolve
the tension in ISW measurements (e.g. Cai et al., 2015). Nevertheless, our detection of excess
CMB lensing signals associated with DES Y1 voids and superclusters that also show ISW excess
may shed new light in this problem.

In summary, we argue that catalogues of cosmic voidsmay bemore informative about dark energy
than presumably optimal techniques. We observe possible problems at the largest scales and
averaging in traditional two-point correlation probes may wash out the interesting new features.
In the Dark Energy Survey Collaboration, we aim to continue this research along similar lines,
including measurements of the imprint of supervoids and superclusters in a bigger catalogue
based on three years of observations (Y3). In the near future, beyond a better understanding of the
methodologies and possible re-analyses, new cosmic web decomposition data from experiments
like the Dark Energy Spectroscopic Instrument (DESI) (DESI Collaboration et al., 2016) and
the Euclid mission (Laureijs et al., 2011) will further constrain the lensing and ISW signals of
super-structures.
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Conclusions

This thesis have been devoted to the analysis of the first year of observation of the Dark Energy
Survey (DES) galaxy catalog. After giving a brief introduction to the state-of-the art of cosmol-
ogy today as well as the main cosmological probes and tool that have been used for this work in
chapter 1, we have presented in chapter 2 DES and the main cosmological results that came out
from the first year of observation. In these results we exposed in particularly the methodology
followed by the collaboration to extract robust information from galaxy catalogs from DES and
how this results, coming from a galaxy survey, are the first to achieve accuracy comparable to
Cosmic Microwave Background experiment such as the Planck satellite Tauber et al. (2010);
Planck Collaboration et al. (2011).

In the results presented in chapter 2, we have saw that one key element to infer cosmology
using cosmic shear or galaxy-galaxy lensing resides in the redshift distribution of the source
galaxies.From this point, we have dedicated chapter 3 to the first main project of this thesis,
namely redshift distribution inference using rather new methodology the so-called clustering-
redshift methods. In a first phase, we have been using simulated galaxy catalog to probe different
approaches of these type of methods as well as different intrinsic parameters to define an optimal
procedure minimizing the systematic budget induced by the method itself. Whereas in recent
experiments clustering-redshift have been used at most to cross-check redshift distibution infered
by photometric redshift algorithm, in DESY1, has been used as an additional tool in cosmological
analyses. In particular, we have been developing a framework that allows us to use clustering-
redshift techniques to correct the distribution inferred by regular photo-z methodologies allowing
a shift along the redshift axe, and shown that in one hand, the dominant systematic error in our
procedure was due to the fact that we are not able to model the galaxy bias evolution, and on the
other hand that the systematic induced by the photo-z error of our high-precision photometric
redshift reference sample was sub-dominant.
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In Chapter 4, we have been looking for imprints of cosmic voids identified preliminary in the
DES galaxy catalogs. Cosmic voids have recently raise a particular in cosmology because of
their low-density characteristic that suppose that its form regions where Dark Energy is more
dominant than in the rest of the universe, this aspect make them good candidates to test gravity.
Beside this, recent work have shown, looking at the cosmic void integrated Sachs-Wolfe (ISW)
signal, some discrepancies between the cosmological standard model and observation. This
anomaly remains unexplained and gives an additional motivation to look at the imprint of void
cosmic void not in the temperature anisotropies map from the CMB, as it is done for the ISW
signal, but on the lensing convergence map recently provided by the Planck collaboration Planck
Collaboration et al. (2016c). In our analysis, the imprint of voids in the CMB lensing map
have been detected both in CDM simulation and DES observation at a significant level and
furthermore, the detected signal appear to be similarly to the ISW to be in excess in the observed
datasets with respect to the simulated ΛCDM . Both ISW signal and lensing convergence are
related to the gravitational potential, and both are showing a significant excess with respect to
simulatedΛCDM cosmology, this two excess signal remain mysterious and further investigation
will have to be done in order to explain these two excesses and the connections of one with the
other. To conclude, in this thesis, we have used two different ways to use cross-correlation in
cosmology, in particular we have shown in one hand that cross-correlation techniques could be
a tool to infer redshift distribution of galaxies and on the other hand that it is also an essential
approach in the cosmological parameter estimation and to probe of the ΛCDM cosmology.
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Appendix A

Clustering Redshift : The choice of the
reference sample

Along our analysis, we have been using as reference sample the redMaGiC higher-luminosity
sample. Although in the context of DESY1 cosmological analysis Elvin-Poole et al. (2017);
Prat et al. (2017), two additional redMaGiC samples were created, the redMaGiC High-density
(L > 0.5L∗) sample and the redMaGiC High-luminosity sample (L > 1.5L∗) as well as a
combined version of these three catalogs has been built as described in Elvin-Poole et al.
(2017)), the redshift distribution of the redMaGiC combined sample in the buzzard simulation
is shown in Fig.(A.0.1). As one can see in the figure the combination of the sample consists in
selecting one of the here-above mentioned redMaGiC catalogs for a specific redshift range.
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Fig. A.0.1 –Redshift distribution of the combined redMaGiC sample in buzzard simulation
differentiating with color the various samples that has been used to construct this sample.
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Table A.0.1 – Total systematic error with redMaGiC combined sample as a reference.
The table shows the total systematic error for the mean matching procedure, for the three

WL source redshift bins and photo-z codes.

Bin 1 Bin 2 Bin 3
BPZ 0.037 0.016 0.007
DNF 0.021 0.015 0.016

Here we re-iterate the analyses presented in 3.4 and characterize the total systematic budget
(with the simulated buzzard catalogs) but using this time the combined redMaGiC sample as
reference sample for the two different photo-z code. Table A.0.1 expose the results obtained
in this case, and comparing it to the different corrections obtained in Table 3.4.2 and 3.4.3 one
observes enlargement of the total systematic in the first tomographic bin and reduction of it on
the third one. The first tomographic bin, as one can see in Fig.(A.0.1), will have a larger overlap
with galaxies from redMaGiC high-density sample this sample includes more fainter galaxies
(L > 0.5L∗) increasing at the same time the number density of galaxy and the photo-z bias of
our references. This last aspect, will thus increase the redMaGiC photo-z systematic (section
3.4.2.2) and will be observed mostly in the first bin.

On the other hand, we have now, a reference sample made of three different samples of galaxies,
this will have as consequence to make the redshift evolution of the combined redMaGiC bias
to vary more than the higher-luminosity redMaGiC one. Especially on the third bin where
the ’change’ in sample occurs in the middle of the bin (z = 0.75), such a variation will cause
an increase in the systematic due to the reference sample bias evolution although what we are
observing here is a cancellation of this systematic due to the opposite effects it induces with
respect to the unknown sample bias evolution and give us a smaller value as it can be seen in the
table.

In our analysis, given that both the bias evolution systematic and redMaGiC photo-z systematic
are stronger using the combined redMaGiC sample as reference, we decided to use as fiducial
reference sample the higher-luminosity redMaGiC sample.
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Clustering-Redshift : galaxy bias
correction

As it has beenmentioned in section 3.4.2.1, in principle if we couldmake a good estimation of the
auto-correlation signal of both (unknown and reference) samples, it would be possible to correct
the bias evolution systematic. In 3.4.2.1 to estimate the auto-correlation signal, we have been
using the true redshift of our galaxies (since we were using simulated catalogs) binned in narrow
redshift bins. Here the goal is to explore the possibility to correct these evolutions in observed
catalogs (using now photometric redshift). Fig. B.0.1 compares the evolution in redshift of the
auto-correlation signals (in the Buzzard simulation) using the true redshift and the one recovered
using photo-z, for the WL sample, the redMaGiC higher-luminosity and combined samples.
From the figure, one can see that using photometric redshifts does not allow us to recover the
true evolution of the auto-correlation signal, specially for theWL sample where the reconstructed
signal behaves differently: due to the low-quality of the photometric redshifts, it is not possible
to recover the true signal bining the sample in such narrow bins.

However, in the case of the redMaGiC samples, one can observed similarity between the two
redshift evolutions. Here we will show that it is feasible to correct the small discrepancy induced
by the redMaGiC photo-z errors, using a sub-sample of redMaGiC galaxies for which we have
spectroscopic redshifts.

Indeed if one considers Eq.(3.12), and assumes that neither the dark matter density field nor the
galaxy bias of our sample evolve considerably with redshift in the scales considered here and the
narrow bins treated here, Eq.(3.12) can be rewritten as:
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Fig. B.0.1 –Toppanel: 1-bin estimate of the square root of the auto-correlation functions for
the WL sample using alternatively the galaxy true redshift (yellow), photo-z mean redshift
MEANz (purple) and a random draw from the photo-z posterior zMC (orange). Second
and third panel: 1-bin estimate of the square root of the auto-correlation functions for the
two different redMaGiC samples (combined and higher luminosity) using alternatively the
redMaGiC true redshift (pink) and photo-z (blue), the dashed blue line being the signal

infered after applying the correction presented here.

w̄true
rr (< z >) = w̄DM (< z >)b2

r (< z >)
∫

dz′n2
r,true(z

′) (B.1)

w̄
photo−z
rr (< z >) = w̄DM (< z >)b2

r (< z >)
∫

dz′n2
r,photo−z(z

′), (B.2)

where the quantities outside the integrals are now evaluated at the mean redshift < z > of the
reference bins. If one now divides these two equations, one will end with a correction to apply
to the photometric auto-correlation signal to recover the true one, namely :

w̄true
rr (< z >) = w̄

photo−z
rr (< z >)

∫
dz′n2

r,true(z
′)∫

dz′n2
r,photo−z

(z′)
(B.3)

In principle, to compute this correction onewould need to know the right hand side of the equation
(the true redshift distributions, binning both with photometric and spectroscopic redshifts). Even
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Appendix B Clustering-Redshift : galaxy bias correction

though we don’t have access to this information in the full redMaGiC sample, we can use a sub-
sample of redMaGiC for which we have spectral information. In Fig.(B.0.1), the dashed blue
lines represent the signal obtained after applying this correction for both the combined and
Higher-luminosity samples. And as it can be seen there, the correction applied allows us to
recover the true signal. Note that for the WL sample case, this would not be feasible, due to
the fact that the redshift evolution of the bias could not be considered constant within the bin
considered, and smaller bins are not possible due to the poor photo-z resolution.
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Appendix C

Clustering redshift : Lensing
magnification effect

As mentioned in section 3.2 and can be explicitly observed on the reconstructed distribution
given by clustering-redshift based methodology (see for example figure 3.4.1), the tails of our
reconstructed distributions are noisy and the origin of it could come from lensing magnification
effects.

Lensing magnification effects presented first in Narayan (1989) and estimate later in various
works Bartelmann & Schneider (2001); Scranton et al. (2005); Ménard et al. (2010); Morrison
et al. (2012), causes extra-correlations signal between two samples with large redshift separation.
This extra-signal is due tomagnification effects of background galaxy bymatter distribution along
the line of sight that bias the observed spacial density of galaxies.

In the literature, lensing magnification effects in clustering-redshift distribution has been ne-
glected, because expected to be small compare to the real clustering signal 1, although in the
redshift ranges where we don’t have overlap (in the tails of the distributions) between ’unknown’
and ’reference’ samples this effects can become dominant and thus influence our estimation of
the mean of the distribution.

In principle, one could theoretically estimate the impact of lensing magnification in our recon-
struction. Starting with the observed over-density can be then formulate as :

δobs = δg + δµ (C.1)

1in Ménard et al. (2010) and Scranton et al. (2005) this effects is at the order of ∼ 1% at arcminute scale for high
redshift source lensed by a lens at redshift z = 0.5
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where g stands for the galaxy over-density component and µ for the magnified one. In this
perspective, one can rewritte the cross-correlation signal of two sample of galaxy as :

wur (θ) =< δg,uδg,r > + < δg,uδµ,r > + < δµ,uδg,r > + < δµ,uδµ,r > (C.2)

In chapter 3, only the first term (namely the intrinsic clustering of the two galaxy samples) in
the right hand side of the equation has been considered, we are now interested in evaluating
how much the additional second and third terms could bias our redshift reconstruction (here
we will not be considering the forth term in the equation which considers correlation between
magnified objects of the two sample and should be sub-dominant compare to the two other ones,
see Heavens & Joachimi (2011); Duncan et al. (2014)). In order to evaluate the impact of these
two components, assuming linear bias model, this terms can be expressed in fourier space using
Limber equation (see 1.2.2.4) in the flat-sky approximation as :

< δg,uδg,r >= bubr

∫ χH

0
dχηu(χ)ηr (χ)

∫ ∞

0

kdk
2π

P(k, χ)J0(χkθ) (C.3)

where P(k, χ) is the 3D matter power spectrum at wavenumber k and comoving distance χ, bu,r
are the biases of our two samples, ηu,r (χ) are their radial distribution in co-moving distances,
and J0(χkθ) is the zeroth order Bessel function. And the terms due to lensing magnification
could also be evaluate in a fourier frame as :

< δg,1δµ,2 >= b1(2.5s − 1)
∫ χH

0
dχη1(χ)K(χ)

∫ ∞

0

kdk
2π

P(k, χ)J0(k χθ) (C.4)

the subscripts 1 and 2 correspond either to the unknown reference sample, s being the slope of
the magnitude number counts which can be expressed, for a flux limited sample, as function of
the galaxy number density n and the galaxy magnintude m :

s =
dlog10n(> m)

dm
(C.5)

and K(χ) being the lensing kernel of the sample in the background define as :

K(χ) =
3H2

0Ωmχ

c2a

∫ χH

χ
dχ′η2(χ

′)
χ′ − χ

χ′
(C.6)

with H0 and a, the Hubble parameter today and the scale factor.

Using the equations presented here, it is then possible to theoretically estimate the clustering
signal of equation C.2, the difficulty here come when one has to estimate the parameter s for our
samples. Indeed, in one side the redMaGiC sample is not a flux-limited function.

However in the case of small redshift bins one can approximate the redMaGiC sample to be
flux limited with m > Mmax + 5log10(d(zbin)), and thus s can be estimate evaluating the slope
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Fig. C.0.1 – Top panel : Different effect on the reconstructed redshift distribution due
to lensing magnification, the shaded area being the impact of the different magnification
components. The points are the clustering redshift measurement done in simulation and
the vertical bars are the mean computed for including or not magnification effects. Bottom
panel : zoom of the tails of the distribution where the magnification effects are stronger.

where the number counts drops binned in magnitude bins. On the other hand, in the case the
unknown sample, the weak lensing sample is not flux limited, one should used a more general
expression than equation C.5 that imply to characterize well the selection function of the sample.
The goal here being to give an estimate of the lensing magnification impact on our reconstruction
we choose instead to use characteristic values, specifically 2.5s − 1 = ±1.5 for the slope of the
magnitude number count. Computing in this way the different components of equation C.2,
one can evaluate in one side the clustering-redshift theoretical signal including the different
magnification effects (equation C.4), as well as the effects of each of the magnification terms and
compare it to the measured clustering redshift distribution, this is shown in figure C.0.1.

As it can be seen in Fig.(C.0.1), magnification lensing is stronger in the tails of the distributions,
and in particular for the first and the third bin, where we were observing positive tails. In the
first bin, this effect is mostly drive by the redMaGiC magnification whereas in the last bin the
WL sample would be the one magnified. The shade region representing the range of cumulative
number count slope for the WL sample. And the different vertical lines been the different mean
of the distributions taking into account (or not) the different lensing magnification effects, as one
can see the differences on this means differ more in the first and last bins, where the magnification
effects are dominant on the tails. In particular, as expected in the first bin the correlation signal
in the tail is dominated by magnification effects on redMaGiC galaxies at high-redshift and this
excess signal is also observed in the clustering-redshift reconstruction. For the last bin we can
also observed magnification effect on the weak lensing sample, however this effects are highly
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dependent on the parameter s and further test should be done to conclude that the signal in the
tail comes from this effect.

We conclude here that as it can been on Figure C.0.1, magnification effects could have a non-
neglectable effect especially for redshift distribution with long tails, however in our framework
(section 3.2) we have been evaluating the mean of our reconstruction within a ±2σWZ window,
which excludes the redshift ranges where these effects are strong. However, resolution require-
ment in redshift distribution for future surveys are increasing and correcting from these effect
might become essential.
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Appendix D

Signal-to-noise optimization

In section 4.5.2, we presented the methodology we have been adopted in order to optimized the
void imprints in the CMB lensing maps. We have presented there the cumulative signal-to-noise
obtained for one of the various void catalogs we have been testing. Figure D.0.1,D.0.2 and D.0.3
are the cumulative signal-to-noise signals obtained for these additional catalogs.
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Fig. D.0.1 – Signal-to-noise measured in a MICE Y1-like mock for different subsets of
a void catalogue based on high density redMaGiC tracers and 20 Mpc/h smoothing. In
each subfigure, we show a cumulative S/N in the radial direction for increasing radius
while different images correspond to different ordering schemes (δ or Rv) and averaging
technique (differential or cumulative). In the vertical axes on the left, we indicate the
number of voids used for the stacking given the corresponding cuts on void parameters on

the right side of the figures.
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Fig. D.0.2 – Signal-to-noise measured in a MICE Y1-like mock for different subsets of
a void catalogue based on high luminosity redMaGiC tracers and 10 Mpc/h smoothing.
In each subfigure, we show a cumulative S/N in the radial direction for increasing radius
while different images correspond to different ordering schemes (δ or Rv) and averaging
technique (differential or cumulative). In the vertical axes on the left, we indicate the
number of voids used for the stacking given the corresponding cuts on void parameters on

the right side of the figures.
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Fig. D.0.3 – Signal-to-noise measured in a MICE Y1-like mock for different subsets of
a void catalogue based on high density redMaGiC tracers and 10 Mpc/h smoothing. In
each subfigure, we show a cumulative S/N in the radial direction for increasing radius
while different images correspond to different ordering schemes (δ or Rv) and averaging
technique (differential or cumulative). In the vertical axes on the left, we indicate the
number of voids used for the stacking given the corresponding cuts on void parameters on

the right side of the figures.
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Appendix E

Tests of the excess signal

Additionally to the signal measurements of the voids imprint in the CMB maps of chapter 4,
we have performed several consitency tests in order to find out weather or not we could identify
specific trends in the excess signal detected for the observed catalogs. Namely in a first time we
re-iterate our stacking analysis dividing our void samples (both simulated and observed) in a first
time into two void radius bins (20Mpc/h < Rv < 70Mpc/h and 70Mpc/h < Rv < 130Mpc/h)
and in a second time into two redshift bins (0.2 < zv < 0.5 and 0.5 < zv < 0.9). Figure E.0.1
and E.0.2 are showing the stacked image of these two tests for both MICE and DES.

143



Appendix E Tests of the excess signal

5.0 4.0 3.0 2.0 1.0 0.0 1.0 2.0 3.0 4.0 5.0

R/Rv

5.0

4.0

3.0

2.0

1.0

0.0

1.0

2.0

3.0

4.0

5.0

DESY1 20Mpc/h<Rv < 70Mpc/h

5.0 4.0 3.0 2.0 1.0 0.0 1.0 2.0 3.0 4.0 5.0

R/Rv

5.0

4.0

3.0

2.0

1.0

0.0

1.0

2.0

3.0

4.0

5.0

DESY1 70Mpc/h<Rv < 130Mpc/h

5.0 4.0 3.0 2.0 1.0 0.0 1.0 2.0 3.0 4.0 5.0

R/Rv

5.0

4.0

3.0

2.0

1.0

0.0

1.0

2.0

3.0

4.0

5.0

MICE 20Mpc/h<Rv < 70Mpc/h

5.0 4.0 3.0 2.0 1.0 0.0 1.0 2.0 3.0 4.0 5.0

R/Rv

5.0

4.0

3.0

2.0

1.0

0.0

1.0

2.0

3.0

4.0

5.0

MICE 70Mpc/h<Rv < 130Mpc/h

4.0

3.2

2.4

1.6

0.8

0.0

0.8

1.6

2.4

3.2

4.0

×
10

3

Fig. E.0.1 – Consistency tests of small vs. large voids in observations and simulation. No
trend is seen as DES Y1 data shows stronger imprints in both bins.
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Fig. E.0.2 – Consistency tests of low-z vs high-z voids in observations and simulation. No
trend is seen as DES Y1 data shows stronger imprints in both bins.

145





Bibliography

Abbott T., et al., 2016, , 94, 022001

Abell G. O., 1958, , 3, 211

Abell G. O., 1961, , 66, 607

Aihara H., et al., 2018, , 70, S4

Alam S., et al., 2017, , 470, 2617

Alpher R. A., Follin J. W., Herman R. C., 1953, Physical Review, 92, 1347

Amendola L., Frieman J. A., Waga I., 1999, , 309, 465

Arnouts S., Cristiani S., Moscardini L., Matarrese S., Lucchin F., Fontana A., Giallongo E.,
1999, , 310, 540

Babcock H. W., 1939, Lick Observatory Bulletin, 19, 41

Bartelmann M., Schneider P., 2001, , 340, 291

Baxter E. J., et al., 2018, , 476, 2674

Becker M. R., 2013, , 435, 115

Behroozi P. S., Wechsler R. H., Wu H.-Y., 2013, , 762, 109

Benítez N., 2000, , 536, 571

Bennett C. L., et al., 2003, , 583, 1

Bertschinger E., 1985, , 58, 1

Betoule M., et al., 2014, , 568, A22

Beutler F., et al., 2011, , 416, 3017

Blanchard A., Schneider J., 1987, , 184, 1

Blas D., Lesgourgues J., Tram T., 2011, , 7, 034

147

http://dx.doi.org/10.1103/PhysRevD.94.022001
http://adsabs.harvard.edu/abs/2016PhRvD..94b2001A
http://dx.doi.org/10.1086/190036
http://cdsads.u-strasbg.fr/abs/1958ApJS....3..211A
http://dx.doi.org/10.1086/108472
http://cdsads.u-strasbg.fr/abs/1961AJ.....66..607A
http://dx.doi.org/10.1093/pasj/psx066
http://adsabs.harvard.edu/abs/2018PASJ...70S...4A
http://dx.doi.org/10.1093/mnras/stx721
http://adsabs.harvard.edu/abs/2017MNRAS.470.2617A
http://dx.doi.org/10.1103/PhysRev.92.1347
http://adsabs.harvard.edu/abs/1953PhRv...92.1347A
http://dx.doi.org/10.1046/j.1365-8711.1999.02841.x
http://adsabs.harvard.edu/abs/1999MNRAS.309..465A
http://dx.doi.org/10.1046/j.1365-8711.1999.02978.x
http://adsabs.harvard.edu/abs/1999MNRAS.310..540A
http://dx.doi.org/10.5479/ADS/bib/1939LicOB.19.41B
http://adsabs.harvard.edu/abs/1939LicOB..19...41B
http://dx.doi.org/10.1016/S0370-1573(00)00082-X
http://adsabs.harvard.edu/abs/2001PhR...340..291B
http://dx.doi.org/10.1093/mnras/sty305
http://adsabs.harvard.edu/abs/2018MNRAS.476.2674B
http://dx.doi.org/10.1093/mnras/stt1352
http://adsabs.harvard.edu/abs/2013MNRAS.435..115B
http://dx.doi.org/10.1088/0004-637X/762/2/109
http://adsabs.harvard.edu/abs/2013ApJ...762..109B
http://dx.doi.org/10.1086/308947
http://adsabs.harvard.edu/abs/2000ApJ...536..571B
http://dx.doi.org/10.1086/345346
http://adsabs.harvard.edu/abs/2003ApJ...583....1B
http://dx.doi.org/10.1086/191027
http://adsabs.harvard.edu/abs/1985ApJS...58....1B
http://dx.doi.org/10.1051/0004-6361/201423413
http://adsabs.harvard.edu/abs/2014A%26A...568A..22B
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://adsabs.harvard.edu/abs/2011MNRAS.416.3017B
http://adsabs.harvard.edu/abs/1987A%26A...184....1B
http://dx.doi.org/10.1088/1475-7516/2011/07/034
http://adsabs.harvard.edu/abs/2011JCAP...07..034B


Bibliography

Boggess N. W., et al., 1992, , 397, 420

Cai Y.-C., Li B., Cole S., Frenk C. S., Neyrinck M., 2014a, , 439, 2978

Cai Y.-C., Neyrinck M. C., Szapudi I., Cole S., Frenk C. S., 2014b, , 786, 110

Cai Y.-C., Padilla N., Li B., 2015, , 451, 1036

Cai Y.-C., Neyrinck M., Mao Q., Peacock J. A., Szapudi I., Berlind A. A., 2017, , 466, 3364

Carlstrom J. E., et al., 2011, , 123, 568

Cautun M., Paillas E., Cai Y.-C., Bose S., Armijo J., Li B., Padilla N., 2018, , 476, 3195

Cawthon R., et al., 2017, preprint, (arXiv:1712.07298)

Chantavat T., Sawangwit U., Sutter P. M., Wandelt B. D., 2016, , 93, 043523

Choi A., et al., 2016, , 463, 3737

Coe D., Benítez N., Sánchez S. F., Jee M., Bouwens R., Ford H., 2006, , 132, 926

Coil A. L., et al., 2011, , 741, 8

Colberg J. M., et al., 2008, , 387, 933

Coleman G. D., Wu C.-C., Weedman D. W., 1980, , 43, 393

Cooper M. C., et al., 2011, , 193, 14

Crocce M., Castander F. J., Gaztañaga E., Fosalba P., Carretero J., 2015, , 453, 1513

Crocce M., et al., 2017, preprint, (arXiv:1712.06211)

DES Collaboration et al., 2017, preprint, (arXiv:1708.01530)

DESI Collaboration et al., 2016, preprint, (arXiv:1611.00036)

Dark Energy Survey Collaboration et al., 2016, , 460, 1270

Davies C. T., Cautun M., Li B., 2018, preprint, (arXiv:1803.08717)

Davis M., Peebles P. J. E., 1983, , 267, 465

Davis C., et al., 2017, preprint, (arXiv:1710.02517)

Davis C., et al., 2018, ,

Dawson K. S., et al., 2013, , 145, 10

Dawson K. S., et al., 2016, , 151, 44

148

http://dx.doi.org/10.1086/171797
http://adsabs.harvard.edu/abs/1992ApJ...397..420B
http://dx.doi.org/10.1093/mnras/stu154
http://adsabs.harvard.edu/abs/2014MNRAS.439.2978C
http://dx.doi.org/10.1088/0004-637X/786/2/110
http://adsabs.harvard.edu/abs/2014ApJ...786..110C
http://dx.doi.org/10.1093/mnras/stv777
http://adsabs.harvard.edu/abs/2015MNRAS.451.1036C
http://dx.doi.org/10.1093/mnras/stw3299
http://adsabs.harvard.edu/abs/2017MNRAS.466.3364C
http://dx.doi.org/10.1086/659879
http://adsabs.harvard.edu/abs/2011PASP..123..568C
http://dx.doi.org/10.1093/mnras/sty463
http://adsabs.harvard.edu/abs/2018MNRAS.476.3195C
http://arxiv.org/abs/1712.07298
http://dx.doi.org/10.1103/PhysRevD.93.043523
http://adsabs.harvard.edu/abs/2016PhRvD..93d3523C
http://dx.doi.org/10.1093/mnras/stw2241
http://adsabs.harvard.edu/abs/2016MNRAS.463.3737C
http://dx.doi.org/10.1086/505530
http://adsabs.harvard.edu/abs/2006AJ....132..926C
http://dx.doi.org/10.1088/0004-637X/741/1/8
http://adsabs.harvard.edu/abs/2011ApJ...741....8C
http://dx.doi.org/10.1111/j.1365-2966.2008.13307.x
http://adsabs.harvard.edu/abs/2008MNRAS.387..933C
http://dx.doi.org/10.1086/190674
http://adsabs.harvard.edu/abs/1980ApJS...43..393C
http://dx.doi.org/10.1088/0067-0049/193/1/14
http://adsabs.harvard.edu/abs/2011ApJS..193...14C
http://dx.doi.org/10.1093/mnras/stv1708
http://adsabs.harvard.edu/abs/2015MNRAS.453.1513C
http://arxiv.org/abs/1712.06211
http://arxiv.org/abs/1708.01530
http://arxiv.org/abs/1611.00036
http://dx.doi.org/10.1093/mnras/stw641
http://adsabs.harvard.edu/abs/2016MNRAS.460.1270D
http://arxiv.org/abs/1803.08717
http://dx.doi.org/10.1086/160884
http://adsabs.harvard.edu/abs/1983ApJ...267..465D
http://arxiv.org/abs/1710.02517
http://dx.doi.org/10.1093/mnras/sty787
http://dx.doi.org/10.1088/0004-6256/145/1/10
http://adsabs.harvard.edu/abs/2013AJ....145...10D
http://dx.doi.org/10.3847/0004-6256/151/2/44
http://adsabs.harvard.edu/abs/2016AJ....151...44D


Bibliography BIBLIOGRAPHY

De Vicente J., Sánchez E., Sevilla-Noarbe I., 2016, , 459, 3078

DeRose J., Wechsler R., Rykoff E., et al., 2017, in prep.

Drinkwater M. J., et al., 2010, , 401, 1429

Drlica-Wagner A., et al., 2018, , 235, 33

Duncan C. A. J., Joachimi B., Heavens A. F., Heymans C., Hildebrandt H., 2014, , 437, 2471

Dyson F. W., Eddington A. S., Davidson C., 1920, Philosophical Transactions of the Royal
Society of London Series A, 220, 291

Eifler T., Krause E., Schneider P., Honscheid K., 2014, , 440, 1379

Einstein A., 1905, Annalen der Physik, 322, 891

Einstein A., 1916, Annalen der Physik, 354, 769

Einstein A., 1917, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften
(Berlin), Seite 142-152.,

Elvin-Poole J., et al., 2017, preprint, (arXiv:1708.01536)

Feroz F., Hobson M. P., Bridges M., 2009, , 398, 1601

Fixsen D. J., 2009, , 707, 916

Flaugher B., et al., 2015, , 150, 150

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, , 125, 306

Fosalba P., Gaztañaga E., Castander F. J., Manera M., 2008, , 391, 435

Fosalba P., Crocce M., Gaztañaga E., Castander F. J., 2015a, , 448, 2987

Fosalba P., Crocce M., Gaztañaga E., Castander F. J., 2015b, , 448, 2987

Fowler J. W., et al., 2007, , 46, 3444

Friedmann A., 1922, Zeitschrift fur Physik, 10, 377

Fry J. N., Gaztanaga E., 1993, , 413, 447

Gamow G., 1946, Physical Review, 70, 572

Gatti, Vielzeuf. et al., 2018, , 477, 1664

Górski K. M., Hivon E., Banday A. J., Wandelt B. D., Hansen F. K., Reinecke M., Bartelmann
M., 2005, , 622, 759

149

http://dx.doi.org/10.1093/mnras/stw857
http://adsabs.harvard.edu/abs/2016MNRAS.459.3078D
http://dx.doi.org/10.1111/j.1365-2966.2009.15754.x
http://adsabs.harvard.edu/abs/2010MNRAS.401.1429D
http://dx.doi.org/10.3847/1538-4365/aab4f5
http://adsabs.harvard.edu/abs/2018ApJS..235...33D
http://dx.doi.org/10.1093/mnras/stt2060
http://adsabs.harvard.edu/abs/2014MNRAS.437.2471D
http://dx.doi.org/10.1098/rsta.1920.0009
http://dx.doi.org/10.1098/rsta.1920.0009
http://adsabs.harvard.edu/abs/1920RSPTA.220..291D
http://dx.doi.org/10.1093/mnras/stu251
http://adsabs.harvard.edu/abs/2014MNRAS.440.1379E
http://dx.doi.org/10.1002/andp.19053221004
http://adsabs.harvard.edu/abs/1905AnP...322..891E
http://dx.doi.org/10.1002/andp.19163540702
http://adsabs.harvard.edu/abs/1916AnP...354..769E
http://arxiv.org/abs/1708.01536
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://adsabs.harvard.edu/abs/2009MNRAS.398.1601F
http://dx.doi.org/10.1088/0004-637X/707/2/916
http://adsabs.harvard.edu/abs/2009ApJ...707..916F
http://dx.doi.org/10.1088/0004-6256/150/5/150
http://adsabs.harvard.edu/abs/2015AJ....150..150F
http://dx.doi.org/10.1086/670067
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://dx.doi.org/10.1111/j.1365-2966.2008.13910.x
http://adsabs.harvard.edu/abs/2008MNRAS.391..435F
http://dx.doi.org/10.1093/mnras/stv138
http://adsabs.harvard.edu/abs/2015MNRAS.448.2987F
http://dx.doi.org/10.1093/mnras/stv138
http://adsabs.harvard.edu/abs/2015MNRAS.448.2987F
http://dx.doi.org/10.1364/AO.46.003444
http://adsabs.harvard.edu/abs/2007ApOpt..46.3444F
http://dx.doi.org/10.1007/BF01332580
http://adsabs.harvard.edu/abs/1922ZPhy...10..377F
http://dx.doi.org/10.1086/173015
http://cdsads.u-strasbg.fr/abs/1993ApJ...413..447F
http://dx.doi.org/10.1103/PhysRev.70.572.2
http://adsabs.harvard.edu/abs/1946PhRv...70..572G
http://dx.doi.org/10.1093/mnras/sty466
http://adsabs.harvard.edu/abs/2018MNRAS.477.1664G
http://dx.doi.org/10.1086/427976
http://adsabs.harvard.edu/abs/2005ApJ...622..759G


Bibliography

Granett B. R., Neyrinck M. C., Szapudi I., 2008, , 683, L99

Granett B. R., Kovács A., Hawken A. J., 2015, , 454, 2804

Guth A. H., 1981,

Hamaus N., Sutter P. M., Wandelt B. D., 2014, Physical Review Letters, 112, 251302

Hamilton A. J. S., 1993, , 417, 19

Hartlap J., Simon P., Schneider P., 2007, , 464, 399

He S., Alam S., Ferraro S., Chen Y.-C., Ho S., 2017, preprint, (arXiv:1709.02543)

Heavens A. F., Joachimi B., 2011, , 415, 1681

Hernández-Monteagudo C., Smith R. E., 2013, , 435, 1094

Hewett P. C., 1982, , 201, 867

Hildebrandt H., et al., 2017, , 465, 1454

Ho S., Hirata C., Padmanabhan N., Seljak U., Bahcall N., 2008, Physical Review D, 78, 043519

Hoyle B., et al., 2018, , 478, 592

Hu W., Okamoto T., 2002, , 574, 566

Hubble E., 1929, Proceedings of the National Academy of Science, 15, 168

Huff E., Mandelbaum R., 2017, preprint, (arXiv:1702.02600)

Huterer D., Turner M. S., 1999, , 60, 081301

Ilbert O., et al., 2006, , 457, 841

Jain B., Taylor A., 2003, Physical Review Letters, 91, 141302

Jarvis M., Bernstein G., Jain B., 2004, , 352, 338

Johnson A., et al., 2017, , 465, 4118

Joudaki S., et al., 2018, , 474, 4894

Kahn F. D., Woltjer L., 1959, , 130, 705

Kaiser N., 1984, , 284, L9

Kerscher M., Szapudi I., Szalay A. S., 2000, , 535, L13

Kilbinger M., et al., 2013, , 430, 2200

150

http://dx.doi.org/10.1086/591670
http://adsabs.harvard.edu/abs/2008ApJ...683L..99G
http://dx.doi.org/10.1093/mnras/stv2110
http://adsabs.harvard.edu/abs/2015MNRAS.454.2804G
http://dx.doi.org/10.1103/PhysRevLett.112.251302
http://adsabs.harvard.edu/abs/2014PhRvL.112y1302H
http://dx.doi.org/10.1086/173288
http://adsabs.harvard.edu/abs/1993ApJ...417...19H
http://dx.doi.org/10.1051/0004-6361:20066170
http://adsabs.harvard.edu/abs/2007A%26A...464..399H
http://arxiv.org/abs/1709.02543
http://dx.doi.org/10.1111/j.1365-2966.2011.18816.x
http://adsabs.harvard.edu/abs/2011MNRAS.415.1681H
http://dx.doi.org/10.1093/mnras/stt1322
http://adsabs.harvard.edu/abs/2013MNRAS.435.1094H
http://dx.doi.org/10.1093/mnras/201.4.867
http://adsabs.harvard.edu/abs/1982MNRAS.201..867H
http://dx.doi.org/10.1093/mnras/stw2805
http://adsabs.harvard.edu/abs/2017MNRAS.465.1454H
http://dx.doi.org/10.1103/PhysRevD.78.043519
http://adsabs.harvard.edu/abs/2008PhRvD..78d3519H
http://dx.doi.org/10.1093/mnras/sty957
http://adsabs.harvard.edu/abs/2018MNRAS.478..592H
http://dx.doi.org/10.1086/341110
http://adsabs.harvard.edu/abs/2002ApJ...574..566H
http://dx.doi.org/10.1073/pnas.15.3.168
http://adsabs.harvard.edu/abs/1929PNAS...15..168H
http://arxiv.org/abs/1702.02600
http://dx.doi.org/10.1103/PhysRevD.60.081301
http://adsabs.harvard.edu/abs/1999PhRvD..60h1301H
http://dx.doi.org/10.1051/0004-6361:20065138
http://adsabs.harvard.edu/abs/2006A%26A...457..841I
http://dx.doi.org/10.1103/PhysRevLett.91.141302
http://adsabs.harvard.edu/abs/2003PhRvL..91n1302J
http://dx.doi.org/10.1111/j.1365-2966.2004.07926.x
http://adsabs.harvard.edu/abs/2004MNRAS.352..338J
http://dx.doi.org/10.1093/mnras/stw3033
http://adsabs.harvard.edu/abs/2017MNRAS.465.4118J
http://dx.doi.org/10.1093/mnras/stx2820
http://adsabs.harvard.edu/abs/2018MNRAS.474.4894J
http://dx.doi.org/10.1086/146762
http://adsabs.harvard.edu/abs/1959ApJ...130..705K
http://dx.doi.org/10.1086/184341
http://cdsads.u-strasbg.fr/abs/1984ApJ...284L...9K
http://dx.doi.org/10.1086/312702
http://adsabs.harvard.edu/abs/2000ApJ...535L..13K
http://dx.doi.org/10.1093/mnras/stt041
http://adsabs.harvard.edu/abs/2013MNRAS.430.2200K


Bibliography BIBLIOGRAPHY

Kinney A. L., Calzetti D., Bohlin R. C., McQuade K., Storchi-Bergmann T., Schmitt H. R., 1996,
, 467, 38

Köhlinger F., et al., 2017, , 471, 4412

Kolmogorov A., 1933, Giornale dell’ Istituto Italiano degli Attuari, 4, 83

Kovács A., 2018, , 475, 1777

Kovács A., Sánchez C., García-Bellido J., the DES collaboration 2017, , 465, 4166

Krause E., Chang T.-C., Doré O., Umetsu K., 2013, , 762, L20

Krause E., et al., 2017, Submitted to: Phys. Rev. D

LSST Science Collaboration et al., 2009, preprint, (arXiv:0912.0201)

Laigle C., et al., 2016, , 224, 24

Landy S. D., Szalay A. S., 1993, , 412, 64

Laureijs R., et al., 2011, preprint, (arXiv:1110.3193)

Leavitt H. S., Pickering E. C., 1912, Harvard College Observatory Circular, 173, 1

Lemaître G., 1927, Annales de la Société Scientifique de Bruxelles, 47, 49

Lesgourgues J., 2011, preprint, (arXiv:1104.2932)

Lewis A., Challinor A., 2006, , 429, 1

Lewis A., Challinor A., 2011, CAMB: Code for Anisotropies in the Microwave Background,
Astrophysics Source Code Library (ascl:1102.026)

Limber D. N., 1954, , 119, 655

MacCrann N., et al., 2018, preprint, (arXiv:1803.09795)

Mao Q., et al., 2017, , 835, 161

Martí P., Miquel R., Castander F. J., Gaztañaga E., Eriksen M., Sánchez C., 2014, , 442, 92

Matthews D. J., Newman J. A., 2010, , 721, 456

McQuinn M., White M., 2013, , 433, 2857

Melchior P., Sutter P. M., Sheldon E. S., Krause E., Wandelt B. D., 2014, , 440, 2922

Ménard B., Scranton R., Fukugita M., Richards G., 2010, , 405, 1025

151

http://dx.doi.org/10.1086/177583
http://adsabs.harvard.edu/abs/1996ApJ...467...38K
http://dx.doi.org/10.1093/mnras/stx1820
http://adsabs.harvard.edu/abs/2017MNRAS.471.4412K
http://dx.doi.org/10.1093/mnras/stx3213
http://adsabs.harvard.edu/abs/2018MNRAS.475.1777K
http://dx.doi.org/10.1093/mnras/stw2968
http://adsabs.harvard.edu/abs/2017MNRAS.465.4166K
http://dx.doi.org/10.1088/2041-8205/762/2/L20
http://adsabs.harvard.edu/abs/2013ApJ...762L..20K
http://arxiv.org/abs/0912.0201
http://dx.doi.org/10.3847/0067-0049/224/2/24
http://adsabs.harvard.edu/abs/2016ApJS..224...24L
http://dx.doi.org/10.1086/172900
http://adsabs.harvard.edu/abs/1993ApJ...412...64L
http://arxiv.org/abs/1110.3193
http://adsabs.harvard.edu/abs/1912HarCi.173....1L
http://adsabs.harvard.edu/abs/1927ASSB...47...49L
http://arxiv.org/abs/1104.2932
http://dx.doi.org/10.1016/j.physrep.2006.03.002
http://adsabs.harvard.edu/abs/2006PhR...429....1L
http://dx.doi.org/10.1086/145870
http://adsabs.harvard.edu/abs/1954ApJ...119..655L
http://arxiv.org/abs/1803.09795
http://dx.doi.org/10.3847/1538-4357/835/2/161
http://adsabs.harvard.edu/abs/2017ApJ...835..161M
http://dx.doi.org/10.1093/mnras/stu801
https://ui.adsabs.harvard.edu/#abs/2014MNRAS.442...92M
http://dx.doi.org/10.1088/0004-637X/721/1/456
http://adsabs.harvard.edu/abs/2010ApJ...721..456M
http://dx.doi.org/10.1093/mnras/stt914
http://adsabs.harvard.edu/abs/2013MNRAS.433.2857M
http://dx.doi.org/10.1093/mnras/stu456
http://adsabs.harvard.edu/abs/2014MNRAS.440.2922M
http://dx.doi.org/10.1111/j.1365-2966.2010.16486.x
http://adsabs.harvard.edu/abs/2010MNRAS.405.1025M


Bibliography

Ménard B., Scranton R., Schmidt S., Morrison C., Jeong D., Budavari T., Rahman M., 2013,
preprint, (arXiv:1303.4722)

Millea M., Doré O., Dudley J., Holder G., Knox L., Shaw L., Song Y.-S., Zahn O., 2012, , 746, 4

Morrison C. B., Scranton R., Ménard B., Schmidt S. J., Tyson J. A., Ryan R., Choi A., Wittman
D. M., 2012, , 426, 2489

Morrison C. B., Hildebrandt H., Schmidt S. J., Baldry I. K., Bilicki M., Choi A., Erben T.,
Schneider P., 2017, , 467, 3576

Nadathur S., Crittenden R., 2016, , 830, L19

Nadathur S., Hotchkiss S., 2015, , 454, 889

Nadathur S., Hotchkiss S., Sarkar S., 2012, JCAP, 6, 42

Nadathur S., Hotchkiss S., Crittenden R., 2017, , 467, 4067

Narayan R., 1989, , 339, L53

Newman J. A., 2008, , 684, 88

Neyrinck M. C., 2008, , 386, 2101

Norberg P., Baugh C. M., Gaztañaga E., Croton D. J., 2009, , 396, 19

Okamoto T., Hu W., 2003, , 67, 083002

Omori Y., et al., 2017, , 849, 124

Ostriker J. P., Peebles P. J. E., 1973, , 186, 467

Padin S., et al., 2008, , 47, 4418

Peebles P. J. E., 1980, The large-scale structure of the universe

Peebles P. J. E., Hauser M. G., 1974, , 28, 19

Penzias A. A., Wilson R. W., 1965, , 142, 419

Perlmutter S., 2003, Physics Today, 56, 53

Perlmutter S., et al., 1999, , 517, 565

Planck 2015 results. XXI. 2016, AAP, 594, A21

Planck Collaboration et al., 2011, , 536, A1

Planck Collaboration et al., 2016a, , 594, A9

152

http://arxiv.org/abs/1303.4722
http://dx.doi.org/10.1088/0004-637X/746/1/4
http://adsabs.harvard.edu/abs/2012ApJ...746....4M
http://dx.doi.org/10.1111/j.1365-2966.2012.21826.x
http://adsabs.harvard.edu/abs/2012MNRAS.426.2489M
http://dx.doi.org/10.1093/mnras/stx342
http://adsabs.harvard.edu/abs/2017MNRAS.467.3576M
http://dx.doi.org/10.3847/2041-8205/830/1/L19
http://adsabs.harvard.edu/abs/2016ApJ...830L..19N
http://dx.doi.org/10.1093/mnras/stv1994
http://adsabs.harvard.edu/abs/2015MNRAS.454..889N
http://dx.doi.org/10.1088/1475-7516/2012/06/042
http://adsabs.harvard.edu/abs/2012JCAP...06..042N
http://dx.doi.org/10.1093/mnras/stx336
http://adsabs.harvard.edu/abs/2017MNRAS.467.4067N
http://dx.doi.org/10.1086/185418
http://adsabs.harvard.edu/abs/1989ApJ...339L..53N
http://dx.doi.org/10.1086/589982
http://adsabs.harvard.edu/abs/2008ApJ...684...88N
http://dx.doi.org/10.1111/j.1365-2966.2008.13180.x
http://adsabs.harvard.edu/abs/2008MNRAS.386.2101N
http://dx.doi.org/10.1111/j.1365-2966.2009.14389.x
http://adsabs.harvard.edu/abs/2009MNRAS.396...19N
http://dx.doi.org/10.1103/PhysRevD.67.083002
http://adsabs.harvard.edu/abs/2003PhRvD..67h3002O
http://dx.doi.org/10.3847/1538-4357/aa8d1d
http://adsabs.harvard.edu/abs/2017ApJ...849..124O
http://dx.doi.org/10.1086/152513
http://cdsads.u-strasbg.fr/abs/1973ApJ...186..467O
http://dx.doi.org/10.1364/AO.47.004418
http://adsabs.harvard.edu/abs/2008ApOpt..47.4418P
http://dx.doi.org/10.1086/190308
http://adsabs.harvard.edu/abs/1974ApJS...28...19P
http://dx.doi.org/10.1086/148307
http://adsabs.harvard.edu/abs/1965ApJ...142..419P
http://dx.doi.org/10.1063/1.1580050
http://adsabs.harvard.edu/abs/2003PhT....56d..53P
http://dx.doi.org/10.1086/307221
http://adsabs.harvard.edu/abs/1999ApJ...517..565P
http://dx.doi.org/10.1051/0004-6361/201525831
http://adsabs.harvard.edu/abs/2016A%26A...594A..21P
http://dx.doi.org/10.1051/0004-6361/201116464
http://adsabs.harvard.edu/abs/2011A%26A...536A...1P
http://dx.doi.org/10.1051/0004-6361/201525936
http://adsabs.harvard.edu/abs/2016A%26A...594A...9P


Bibliography BIBLIOGRAPHY

Planck Collaboration et al., 2016b, , 594, A13

Planck Collaboration et al., 2016c, , 594, A15

Planck Collaboration et al., 2018, preprint, (arXiv:1807.06209)

Pollina G., et al., 2018, preprint, (arXiv:1806.06860)

Prat J., et al., 2017, preprint, (arXiv:1708.01537)

Rahman M., Ménard B., Scranton R., Schmidt S. J., Morrison C. B., 2015, , 447, 3500

Rahman M., Ménard B., Scranton R., 2016a, , 457, 3912

Rahman M., Mendez A. J., Ménard B., Scranton R., Schmidt S. J., Morrison C. B., Budavári T.,
2016b, , 460, 163

Riess A. G., et al., 1998, , 116, 1009

Ross A. J., Samushia L., Howlett C., Percival W. J., Burden A., Manera M., 2015, , 449, 835

Rozo E., et al., 2016, , 461, 1431

Ruhl J., et al., 2004, in Bradford C. M., et al., eds, Vol. 5498, Z-Spec: a broadband millimeter-
wave grating spectrometer: design, construction, and first cryogenic measurements. pp 11–29
(arXiv:astro-ph/0411122), doi:10.1117/12.552473

Rykoff E. S., et al., 2014, , 785, 104

Rykoff E. S., Rozo E., Keisler R., 2015, ArXiv: 1509.00870,

Sachs R. K., Wolfe A. M., 1967, , 147, 73

Samuroff S., et al., 2018, , 475, 4524

Sánchez C., et al., 2017, , 465, 746

Schmidt S. J., Ménard B., Scranton R., Morrison C., McBride C. K., 2013, , 431, 3307

Schneider P., van Waerbeke L., Mellier Y., 2002, , 389, 729

Schneider M., Knox L., Zhan H., Connolly A., 2006, , 651, 14

Scottez V., et al., 2016, , 462, 1683

Scottez V., Benoit-Lévy A., Coupon J., Ilbert O., Mellier Y., 2018, , 474, 3921

Scranton R., et al., 2005, , 633, 589

Seldner M., Peebles P. J. E., 1979, , 227, 30

153

http://dx.doi.org/10.1051/0004-6361/201525830
http://adsabs.harvard.edu/abs/2016A%26A...594A..13P
http://dx.doi.org/10.1051/0004-6361/201525941
http://adsabs.harvard.edu/abs/2016A%26A...594A..15P
http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/1806.06860
http://arxiv.org/abs/1708.01537
http://dx.doi.org/10.1093/mnras/stu2636
http://adsabs.harvard.edu/abs/2015MNRAS.447.3500R
http://dx.doi.org/10.1093/mnras/stw256
http://adsabs.harvard.edu/abs/2016MNRAS.457.3912R
http://dx.doi.org/10.1093/mnras/stw981
http://adsabs.harvard.edu/abs/2016MNRAS.460..163R
http://dx.doi.org/10.1086/300499
http://adsabs.harvard.edu/abs/1998AJ....116.1009R
http://dx.doi.org/10.1093/mnras/stv154
http://adsabs.harvard.edu/abs/2015MNRAS.449..835R
http://dx.doi.org/10.1093/mnras/stw1281
http://adsabs.harvard.edu/abs/2016MNRAS.461.1431R
http://arxiv.org/abs/astro-ph/0411122
http://dx.doi.org/10.1117/12.552473
http://dx.doi.org/10.1088/0004-637X/785/2/104
http://adsabs.harvard.edu/abs/2014ApJ...785..104R
http://dx.doi.org/10.1086/148982
http://adsabs.harvard.edu/abs/1967ApJ...147...73S
http://dx.doi.org/10.1093/mnras/stx3282
http://adsabs.harvard.edu/abs/2018MNRAS.475.4524S
http://dx.doi.org/10.1093/mnras/stw2745
http://adsabs.harvard.edu/abs/2017MNRAS.465..746S
http://dx.doi.org/10.1093/mnras/stt410
http://adsabs.harvard.edu/abs/2013MNRAS.431.3307S
http://dx.doi.org/10.1051/0004-6361:20020626
http://adsabs.harvard.edu/abs/2002A%26A...389..729S
http://dx.doi.org/10.1086/507675
http://adsabs.harvard.edu/abs/2006ApJ...651...14S
http://dx.doi.org/10.1093/mnras/stw1500
http://adsabs.harvard.edu/abs/2016MNRAS.462.1683S
http://dx.doi.org/10.1093/mnras/stx3056
http://adsabs.harvard.edu/abs/2018MNRAS.474.3921S
http://dx.doi.org/10.1086/431358
http://adsabs.harvard.edu/abs/2005ApJ...633..589S
http://dx.doi.org/10.1086/156699
http://adsabs.harvard.edu/abs/1979ApJ...227...30S


Bibliography

Sheldon E. S., Huff E. M., 2017, , 841, 24

Silk J., 1968, , 151, 459

Smirnov N., 1948, doi:https://doi.org/10.1214/aoms/1177730256, 19, 279

Smith S., 1936, , 83, 23

Smoot G. F., et al., 1992, , 396, L1

Soares-Santos M., et al., 2012, Physics Procedia, 37, 1445

Springel V., 2005, , 364, 1105

Springel V., et al., 2005, , 435, 629

Sutter P. M., Lavaux G., Hamaus N., Wandelt B. D., Weinberg D. H., Warren M. S., 2014, , 442,
462

Tauber J. A., et al., 2010, , 520, A1

The Dark Energy Survey Collaboration 2005, ArXiv Astrophysics e-prints,

Totsuji H., Kihara T., 1969, , 21, 221

Troxel M. A., et al., 2017, preprint, (arXiv:1708.01538)

Vargas-Magaña M., et al., 2013, , 554, A131

Wechsler R., DeRose J., Busha 2017, in prep.

York D. G., et al., 2000, , 120, 1579

Zuntz J., Kacprzak T., Voigt L., Hirsch M., Rowe B., Bridle S., 2013, , 434, 1604

Zuntz J., et al., 2015, Astronomy and Computing, 12, 45

Zuntz J., et al., 2017, preprint, (arXiv:1708.01533)

Zwicky F., 1937, , 86, 217

de Jong J. T. A., et al., 2015, , 582, A62

de Lapparent V., Geller M. J., Huchra J. P., 1986, , 302, L1

van Uitert E., et al., 2018, , 476, 4662

154

http://dx.doi.org/10.3847/1538-4357/aa704b
http://adsabs.harvard.edu/abs/2017ApJ...841...24S
http://dx.doi.org/10.1086/149449
http://adsabs.harvard.edu/abs/1968ApJ...151..459S
http://dx.doi.org/https://doi.org/10.1214/aoms/1177730256
http://dx.doi.org/10.1086/143697
http://adsabs.harvard.edu/abs/1936ApJ....83...23S
http://dx.doi.org/10.1086/186504
http://adsabs.harvard.edu/abs/1992ApJ...396L...1S
http://dx.doi.org/10.1016/j.phpro.2012.02.480
http://adsabs.harvard.edu/abs/2012PhPro..37.1445S
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://adsabs.harvard.edu/abs/2005MNRAS.364.1105S
http://dx.doi.org/10.1038/nature03597
http://adsabs.harvard.edu/abs/2005Natur.435..629S
http://dx.doi.org/10.1093/mnras/stu893
http://adsabs.harvard.edu/abs/2014MNRAS.442..462S
http://adsabs.harvard.edu/abs/2014MNRAS.442..462S
http://dx.doi.org/10.1051/0004-6361/200912983
http://adsabs.harvard.edu/abs/2010A%26A...520A...1T
http://adsabs.harvard.edu/abs/1969PASJ...21..221T
http://arxiv.org/abs/1708.01538
http://dx.doi.org/10.1051/0004-6361/201220790
http://adsabs.harvard.edu/abs/2013A%26A...554A.131V
http://dx.doi.org/10.1086/301513
http://adsabs.harvard.edu/abs/2000AJ....120.1579Y
http://dx.doi.org/10.1093/mnras/stt1125
http://adsabs.harvard.edu/abs/2013MNRAS.434.1604Z
http://dx.doi.org/10.1016/j.ascom.2015.05.005
http://adsabs.harvard.edu/abs/2015A%26C....12...45Z
http://arxiv.org/abs/1708.01533
http://dx.doi.org/10.1086/143864
http://adsabs.harvard.edu/abs/1937ApJ....86..217Z
http://dx.doi.org/10.1051/0004-6361/201526601
http://adsabs.harvard.edu/abs/2015A%26A...582A..62D
http://dx.doi.org/10.1086/184625
http://adsabs.harvard.edu/abs/1986ApJ...302L...1D
http://dx.doi.org/10.1093/mnras/sty551
http://adsabs.harvard.edu/abs/2018MNRAS.476.4662V

	Declaration of Authorship
	Abstract
	Pròleg
	List of Figures
	List of Tables
	I Concepts
	1 Cosmological background
	1.1 History and Theory
	1.1.1 General relativity (1915) : a theory to describe our universe
	1.1.2 The Friedmann equations (1922): 
	1.1.3 Hubble and the expanding universe 1929
	1.1.4 CMB discovery : Big bang theory 1940-1965
	1.1.4.1 Prediction and detection
	1.1.4.2 Inflation

	1.1.5 The presence of Cold Dark Matter: 1937 - today
	1.1.6 Accelerating expansion: 1998 
	1.1.7 Towards a concordance model: today's state of the art

	1.2 Observables
	1.2.1 Cosmological distances
	1.2.1.1 Comoving Distance
	1.2.1.2 Angular Diameter Distance
	1.2.1.3 Luminosity Distance

	1.2.2 Large Scales Structure og the universe
	1.2.2.1 Structure observation and linear evolution
	1.2.2.2 The two-point correlation function
	1.2.2.3 The bias
	1.2.2.4 The angular two-point correlation function and the Limber approximation
	1.2.2.5 Estimators

	1.2.3 Gravitational Lensing
	1.2.3.1 Propagation and deflection in an inhomogeneous universe
	1.2.3.2 Estimating gravitational lensing effects

	1.2.4 Cosmic Microwave Background
	1.2.4.1 Temperature anisotropies
	1.2.4.2 Cosmic Microwave Background Lensing


	1.3 Summary and discussion

	2 The Dark Energy Survey
	2.1 History and goals
	2.2 The Dark Energy Camera & the Dark Energy Collaboration
	2.2.1 Survey overview
	2.2.2 Survey plan
	2.2.3 DES, a photometric survey
	2.2.3.1 Galaxy spectral information and spectroscopic redshifts
	2.2.3.2 Photometry


	2.3 DES photometry: the samples from the first year of observations
	2.3.1 A high-precision redshift sample: redMaGiC
	2.3.2 A sample for Weak lensing 

	2.4 DES first year main results
	2.4.1 Cosmological inference methodology
	2.4.2 Clustering measurement for combined probes
	2.4.3 Cosmic Shear
	2.4.4 Galaxy-galaxy lensing
	2.4.5 Combined cosmological analysis

	2.5 Discussion


	II Redshift Estimation in DESY1
	3 Clustering redshift
	3.1 Motivations
	3.2 Clustering-redshift methodology
	3.2.1 Basic theory
	3.2.1.1 Schmidt/Ménard
	3.2.1.2 Weighted method
	3.2.1.3 Newman
	3.2.1.4 Bias correction


	3.3 The Dark Energy Survey first year fiducial methodology
	3.3.1 Matching procedures
	3.3.1.1 Shape matching
	3.3.1.2 Mean matching
	3.3.1.3 Error estimation

	3.3.2 The samples used
	3.3.2.1 The Buzzard simulations
	3.3.2.2 The 'unknown sample'
	3.3.2.3 The reference sample


	3.4 Systematic evaluation and model parameters optimization
	3.4.1 Fiducial methodology
	3.4.2 Characterization of the method systematics
	3.4.2.1 The bias evolution systematic
	3.4.2.2 The redMaGiC photo-z systematic
	3.4.2.3 The shape systematic
	3.4.2.4 Total systematic budget
	3.4.2.5 On the choice of the integration scales and the clustering-redshift method
	3.4.2.6 On the choice of the window function


	3.5 Dark Energy Survey results
	3.5.1 Shape Catalogs
	3.5.2 Clustering-redshift methodology applied to DESY1 WL samples
	3.5.2.1 Results
	3.5.2.2 Comparison with results in simulated catalogs

	3.5.3 Additional independant tests

	3.6 Summary and Conclusions


	III Cosmic voids vs CMB
	4 CMB lensing around voids
	4.1 Definition and interest
	4.2 Void definition
	4.2.1 Void properties
	4.2.2 Void Finding
	4.2.2.1 Finding void in galaxy catalogs
	4.2.2.2 The 2.5 void finder


	4.3 Cosmic voids and the CMB
	4.4 Data sets
	4.4.1 Simulations - the MICE galaxy mock and  map
	4.4.2 The different void catalogs
	4.4.2.1 Cosmic voids in the MICE galaxy mocks


	4.5 Simulated cross-correlation analyses
	4.5.1 Stacking methodology
	4.5.2 Optimization of the measurement

	4.6 Results for observations - DES Y1  Planck
	4.6.1 Simulated catalogues compared to observed catalogues
	4.6.2 Consistency tests of DES Y1 and MICE
	4.6.3 Tests of the excess signal - z and Rv dependence
	4.6.4 Imprint of superclusters - MICE vs. DES Y1

	4.7 Discussion & Conclusions

	5 Conclusions
	A Clustering Redshift : The choice of the reference sample
	B Clustering-Redshift : galaxy bias correction
	C Clustering redshift : Lensing magnification effect
	D Signal-to-noise optimization
	E Tests of the excess signal
	Bibliography


	Títol de la tesi: Cross-correlations in the Dark Energy Survey:from redshift distribution inference to probesof gravity with the Cosmic Microwave Background
	Nom autor/a: Pauline Eva Vielzeuf


