
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús
establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184

ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso
establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/

WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set
by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en

Enhancing Performance on
Combinatorial Optimization

Algorithms
by

Francisco Cruz Menćıa

A dissertation presented in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy in Computer Science

Advisors:
Dr. Antonio Espinosa
Dr. Juan Carlos Moure

Tutor:
Dr. Juan Carlos Moure

September 10, 2018

Universitat Autònoma de Barcelona
Departament d’Arquitectura de Computadors i Sistemes Operatius

To my grandfather
We will always remember you.

To my dear little Cloe
You are a blessing, I love you.

Abstract

Combinatorial Optimization is a specific type of mathematical optimization
where variables’ domain is discrete. This kind of optimization problems have
an enormous applicability due to its ability to optimize over unitary and non-
divisible objects. Beyond generic algorithms, the research community is very
active proposing algorithms able to tackle specific combinatorial optimization
problems.

The goal of this thesis is to investigate how to widen the applicability of
Combinatorial Optimization algorithms that exploit the structure of the prob-
lems to solve. We do so from a computer’s hardware perspective, pursuing the
full exploitation of computational resources offered by today’s hardware.

For the sake of generality we work on three different problems. First we tackle
the Coalition Structure Generation Problem (CSGP). We find that the state-
of-the-art algorithm is IDP. We propose an optimized and parallel algorithm
able to solve the CSGP. We reach this by defining a novel method to perform
the most critical operation –Splitting– as well as by defining a novel method to
divide the the algorithm’s operation in threads.

Then, we study the Winner Determination Problem (WDP) for Combinato-
rial Auctions (CA), which is very related to the CSGP. We find that state-of-
the-art solvers’ scalability is limited. More specifically we show how to improve
results solving LP relaxations for the WDP in Large Scale Combinatorial Auc-
tions by applying the AD3 algorithm. Then we contribute with an optimized
version of AD3 which is also able to run in a shared-memory parallel scenario.

Finally we study the application of AD3 to solve the LP relaxations of a
more CPU demanding problem: The Side-Chain Prediction (SCP). We present
an optimized way to solve the most critical operation which is solving a Quadratic
Problem for an Arbitrary Factor.

In all the cases we propose optimized algorithms that are scalable in parallel
and that improve significantly the state-of-the-art. Three orders of magnitude
speedup on IDP, one order of magnitude speedup in AD3.

The ultimate purpose of this work is to demonstrate how a hardware-aware
algorithmic design can lead to significant speedups. We show strategies that are
exportable to similar Combinatorial Optimization algorithms. Such strategies
will help the algorithm designer to achieve more efficiency in modern CPUs.

i

Resum

L’optimització combinatòria és un tipus espećıfic d’optimització matemàtica on
el domini de les variables és discret. Aquest tipus de problemes d’optimització
tenen una gran aplicabilitat degut a la seva capacitat d’optimització sobre ob-
jectes unitaris i no divisibles. Més enllà dels algoritmes genèrics, la comunitat
investigadora és molt activa proposant algorismes capaços d’abordar problemes
d’optimització combinatòria per a problemes espećıfics.

L’objectiu d’aquesta tesi és investigar com ampliar l’aplicabilitat d’algorismes
d’optimització combinatoria que exploten l’estructura dels problemes a resol-
dre. Ho fem des de la perspectiva del maquinari d’una computadora, perseguint
l’explotació total dels recursos computacionals que ofereix el maquinari actual.

Per assolir generalitat treballem amb tres problemes diferents. Primer abor-
dem el problema de generació d’estructures de la coalició (CSGP). Trobem
que l’algorisme d’última generació és IDP. Proposem un algoritme optimitzat i
paral·lel capaç de resoldre el CSGP. Aconseguim això definint un nou mètode per
dur a terme l’operació més cŕıtica -Splitting-, aix́ı com definint un nou mètode
per dividir l’operació de l’algoritme en els diferent subprocessos.

A continuació, estudiem el problema de determinació del guanyador (WDP)
per a les subhastes combinades (CA). Trobem que l’escalabilitat dels solu-
cionadors d’avantguarda és limitada. Més concretament, mostrem com millorar
la resolució de resultats de relaxació LP per al WDP en subhastes combinables
de gran escala mitjançant l’aplicació de l’algoritme AD3. A continuació, con-
tribüım amb una versió optimitzada d’AD3 que també es pot executar en un
escenari paral·lel de memòria compartida.

Finalment, estudiem l’aplicació de AD3 per resoldre les relaxacions LP d’un
problema més exigent de la computacionalment: El problema de la predició
de cadenes laterals (SCP). Presentem una manera optimitzada de resoldre
l’operació més cŕıtica, la resol·lució d’un problema quadràtic per a un factor
arbitrari.

En tots els casos proposem algoritmes optimitzats que es poden escalar de
forma paral·lela i que milloren notablement l’estat de la tècnica. Tres ordres de
magnitud a IDP, i un ordre de magnitud a AD3.

iii

L’objectiu final d’aquest treball és demostrar com un disseny algorisme con-
scient de maquinari pot conduir a millores de rendiment significatives. Mostrem
estratègies exportables a algorismes d’optimització combinatòria similars. Aque-
stes estratègies ajudaran al dissenyador d’algorismes a assolir més eficiència en
les CPU modernes.

Resumen

La optimización combinatoria es un tipo espećıfico de optimización donde el
dominio de las variables es discreto. Este tipo de problemas de optimización
tienen una gran aplicabilidad debido a su capacidad de optimización sobre obje-
tos unitarios y no divisibles. Más allá de los algoritmos genéricos, la comunidad
investigadora es muy activa proponiendo algoritmos capaces de abordar proble-
mas de optimización combinatoria para problemas espećıficos.

El objetivo de esta tesis es investigar cómo ampliar la aplicabilidad de algo-
ritmos de optimización combinatoria que explotan la estructura de los problemas
a resolver. Lo hacemos desde la perspectiva del hardware de una computadora,
persiguiendo la explotación total de los recursos computacionales que ofrece el
hardware actual.

Para alcanzar generalidad trabajamos con tres problemas diferentes. Primero
abordamos el problema de generación de estructuras de la coalición (CSGP).
Encontramos que el algoritmo de última generación es IDP. Proponemos un
algoritmo optimizado y paralelo capaz de resolver el CSGP. Conseguimos esto
definiendo un nuevo método para llevar a cabo la operación más cŕıtica -Splitting-
, aśı como definiendo un nuevo método para dividir la operación del algoritmo
en los diferente subprocesos.

A continuación, estudiamos el problema de determinación del ganador
(WDP) para las subastas combinatorias (CA). Encontramos que la escalabilidad
de los solucionadores de vanguardia es limitada. Más concretamente, mostramos
cómo mejorar la resolución de resultados de relajación LP para el WDP en sub-
astas combinatorias de gran escala mediante la aplicación del algoritmo AD3. A
continuación, contribuimos con una versión optimizada de AD3 que también se
puede ejecutar en un escenario paralelo de memoria compartida.

Finalmente, estudiamos la aplicación de AD3 para resolver las relajaciones
LP de un problema más exigente de la computacionalmente: El problema de la
predición de cadenas laterales (SCP). Presentamos una manera optimizada de
resolver la operación más cŕıtica, la resoución de un problema cuadrático para
un factor arbitrario.

En todos los casos proponemos algoritmos optimizados que se pueden escalar
de forma paralela y que mejoran notablemente el estado de la técnica. Tres
órdenes de magnitud en IDP, y un orden de magnitud en AD3.

v

El objetivo final de este trabajo es demostrar como un diseño algoritmo
consciente de hardware puede conducir a mejoras de rendimiento significativas.
Mostramos estrategias exportables a algoritmos de optimización combinatoria
similares. Estas estrategias ayudarán al diseñador de algoritmos lograr más
eficiencia en las CPU modernas.

Acknowledgements

First and foremost, I want to thank my advisors Juan Carlos Moure and Toni
Espinosa, because this PhD would not have been possible without their support.
Thanks for your patience, your always valuable advice, for pointing me in the
right direction when I was lost, for sharing a beer with me in the right moment,
for never giving up on me and for your understanding in all circumstances .

Also, I would like to thank Jesus Cerquides, who sat with me many times,
helped me understand many concepts and offered me his help as well as his
guidance during this long journey. His suggestions and ideas have always been
useful and brilliant.

I also want to express my endless gratitude to Juan Antonio Rodriguez-
Aguilar, JAR. He helped me to greatly increase the quality of my work; provided
me with advice, motivation and feedback. He worked hard and behaved in a way
that can only be expected from a best friend or a brother. Big thanks to JAR
for everything!

I cannot forget the constant support of Pedro Meseguer. Not only Pedro has
always been opent to talk, but he also knocked on my door to offer his help and
discuss anything I needed to. Every time I asked him for help, he was there and
provided me with valuable comments.

I am very lucky to work at the Artificial Intelligence Research Institute (IIIA-
CSIC), where I have the opportunity to exchange views with students and re-
searchers. Many people influenced me during my research, and it’s impossible to
mention all of them since my success is due in part to every student, every staff
member, researcher. However I would like to highlight a few names that have
been of fundamental importance to me. Firstly, some of the PhD students (now
PhD holders) who motivated and gave me their advice: Andrea Giovanucci,
Manu Atencia, Marc Pujol, Xavi Ferrer. Thank you, guys,you are a source of
motivation! Then I thank the institutional support I received, thanks to Carles
Sierra and Ramon López de Mántaras who always encouraged me to go ahead.
Also, to Montse Calderón who has been a friend and a confidant and always
tried to make everything easy. I would also like to thank my daily workmates,
such as Anna Enciso, Ana Beltran, Montse Santmarti and Carmen, who made
my day-to-day easier. But above all, I want to thank Bea Hernandez, who has
been always covered for me in my daily duties and has selflessly helped me in
everything she could with enormous patience. Bea, thank you very much for

vii

everything.
Morevoer, I have been involved in the Computer Architecture and Operating

Systems Department, where I found some great people. I want to thank Alejan-
dro for our conutless talks and conversations, it has been very rewarding to work
close to him. Thanks also to Ania and Porfidio who always had good words for
me and helped me with everything I needed with the utmost kindness.

I also have words of gratitude for my friends, who understood every time I
was not able to join them, but they were still there, hoping that I managed to
finish my PhD. Thank you for your support Xavi, Ariadna, Isaac, Adela, Marta,
Anita, Izkor. Thanks also to my dear and crazy vermut friends for identical
reasons: Mario, Núria, Berta, Jose, Nati and Joan. Soon we will party!

Furthermore, I want to thank my wonderful family who unconditionally sup-
ported me during this journey, thanks to my mother Pepi, my aunt Mercedes
and my siblings Daniel and Mireia, as well as their respective partners Javi,
Jesús, Ester and Manu. You are all extraordinary, I am very proud to be part
of our family. I would also like to thank my new family: Paqui, Ramon, Alvaro,
Judith, Elba and Pepe, who understood from the beginning that I was always
busy and supported me and helped me enormously.

Finally, I will thank my wonderful wife, Paqui, for her love and constant
support, for all the late nights and early mornings. Thank you, my love, for
being there all the time.

– Francisco Cruz

Contents

Abstract i

Resum iii

Resumen v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 2
1.2 Selected Problems . 3
1.3 Challenges . 6

1.3.1 Coalition Structure Generation 7
1.3.2 Combinatorial Auctions 8
1.3.3 Side-Chain Prediction . 9

1.4 Contributions . 9
1.4.1 Coalition Structure Generation 9
1.4.2 Winner Determination Problem in Combinatorial Auctions 13
1.4.3 Side-Chain Prediction . 17

1.5 Structure of the Thesis . 19

2 Background 21
2.1 Overview of Modern Computer Architecture 21

2.1.1 Parallelism . 21
2.1.2 Memory Subsystem . 25
2.1.3 What Can a Software Architect Do? 27

2.2 Combinatorial Optimization . 29
2.2.1 Methods Solving Combinatorial Optimization Problems . 31
2.2.2 Bounding . 32

2.3 Analysis . 34

3 Building an efficient and parallel DP/IDP 37
3.1 Chapter Overview . 37
3.2 Coalition Formation . 38
3.3 Key Definitions . 39

ix

3.4 Algorithms to Solve the CSG . 41
3.4.1 Dynamic Programming Algorithms 41
3.4.2 DP Algorithm . 42
3.4.3 IDP Algorithm . 44

3.5 Single-Thread Implementation 44
3.5.1 Data Representation . 45
3.5.2 Splitting Generation . 45
3.5.3 Memory Accesses . 47

3.6 Multi-thread Implementation . 48
3.6.1 Identifying Sources of TLP 48
3.6.2 Speeding up Work Distribution Among Threads 49
3.6.3 Potential Parallel Performance Hazards 50

3.7 Experimental Results . 50
3.7.1 Single-Thread Execution 51
3.7.2 Multi-Thread Execution 53

3.8 Conclusions . 54

4 Large Scale Combinatorial Auctions 55
4.1 Chapter Overview . 55
4.2 Introduction . 57
4.3 Background . 58
4.4 Solving Combinatorial Auctions with AD3 61
4.5 Parallel Realization of AD3 . 63

4.5.1 Edge-centric Shared Data Layout 63
4.5.2 Reordering Operations . 66

4.6 Empirical Evaluation . 68
4.6.1 Experiment Setup . 68
4.6.2 Different Distributions Hardness 69
4.6.3 Single-Thread Analysis 69
4.6.4 Convergence and Solution Quality 70
4.6.5 Multi-Thread Analysis . 72

4.7 Conclusions . 73

5 Side Chain Prediction 75
5.1 Chapter Overview . 75
5.2 The Biological Perspective . 77

5.2.1 Background . 77
5.2.2 The Side-Chain Prediction Problem 78
5.2.3 PDBs and SCWRL4 . 79

5.3 Solving the Problem . 81
5.3.1 How to Encode the Problem as a Factor Graph 81
5.3.2 Effectively Solving the LP problem 83
5.3.3 Designing a New Dataset 84

5.4 Optimizing the Computation of Arbitrary Factors 87
5.4.1 Algorithmic Description 87
5.4.2 Optimizing Performance 89

5.4.3 Reducing the Number of Instructions 91
5.5 Performance Analysis . 95

5.5.1 Optimized vs Reference Version 95
5.5.2 Single-Core Execution . 96
5.5.3 Multi-Core Execution . 99

5.6 Conclusions . 106

6 Conclusions and Future Lines 109
6.1 Summary . 109
6.2 Lessons Learned . 112
6.3 Future Work . 115

List of Figures

2.1 Processor-memory Gap. Image from
[Hennessy and Patterson, 2011] 26

2.2 A typical mono-processor cache system 27

2.3 Linear Programming relaxation. 32

3.1 a) Banker’s sequence versus b) lexicographical order. 46

3.4 Experimental data (BAN: Banker’s sequence; LEX: Lexicograph-
ical order). 52

3.5 Single-thread IDP versus 6-, 12- and 24-thread IDP execution . . 53

4.1 Factor Graph encoding of our CA example. 62

4.2 a) AoS data representation of AD3, compared to b) SoA data
representation of PAR-AD3. 65

4.3 Processing phases and parallelism in PAR-AD3. 65

4.4 Solving time in seconds for different distributions, single thread.
a) Simplex b) Barrier . 70

4.5 Fastest single-thread algorithm solving different distributions and
problem sizes. 71

4.6 Speedup of PAR-AD3 for different distributions against barrier
in a multi-thread execution . 71

4.7 Convergence of simplex, barrier and PAR-AD3 72

4.8 Fastest algorithm solving different distributions and problem sizes
using multiple threads. 73

5.1 Structure of an amino-acid. 77

5.2 Structure of a protein. Backbone and side-chains. 77

5.3 Left: portion of a PDB file description of a molecule. Right: 3D
representation given the whole PDB input. 80

5.4 a) A graphical representation of the pairwise interaction of the
aminoacid number 2 in a Factor Graph. b) A schematic 2D draw-
ing of the positions of the aminoacid influencing the aminoacid
number 2. c) A table with the different stable configurations of
aminoacid number 1 and aminoacid number 2; every combination
requires a certain Energy. 82

xiii

5.5 AD3 Time and number of iterations required by AD3 for each
protein of the Yanover’s dataset. The results are shown with the
instances sorted by increasing time 85

5.6 AD3 Time and iterations required by AD3 for each protein with
the new proposed dataset. The results are shown with the in-
stances sorted by increasing time. 86

5.7 An example of a calculation of projectVarPotentialsToFactor . . 89
5.8 Vectorization example. Breaking Read-After-Write (RAW) and

Write-After-Read (WAR) dependencies 93
5.9 Vectorization example. Avoiding memory aliasing problems . . . 93
5.10 Solving time and speedup reached by the Optimized version with

respect to the Reference version when solving all the LP relax-
ations of our protein dataset. Results are sorted by the elapsed
time experimented by the Reference version 96

5.11 Iterations per cycle performed by PAR-AD3 when using 1-6 cores
and running one or two threads per processing core. 99

5.12 Memory cache structure for two cores. 101
5.13 Load and store accesses to the Last Level Cache (LLC) using 1

and 2 threads per core and 1 to 6 core configurations. 103
5.14 Load and store accesses to the Last Level Cache (LLC) per time

unit using 1 and 2 threads per core and 1 to 6 core configurations. 104
5.15 Instructions required per work unit using 1 and 2 threads per core

and 1 to 6 core configurations. 105
5.16 Profile of instructions executed and clock cycles consumed when

solving a representative problem using 1 thread and 6 threads.
Four different phases are identified along the execution. 105

List of Tables

1.1 Qualitative features of the selected problems studied in this thesis 4
1.2 Splittings enumeration example 10

3.1 Coalition values for a CSG problem of size 4. 41
3.2 Trace of execution of a problem of size 4. 43
3.3 Coalitions generated using lexicographical order. 49

5.1 Performance metrics when executing in a single-core with one
thread and with two threads. 98

xv

Chapter 1

Introduction

Combinatorial Optimization is a specific type of mathematical optimization
where variables’ domain is discrete. This kind of optimization problems have
an enormous applicability due to its ability to optimize over unitary and non-
divisible objects. Hence, they help to model many real world problems involving
resources like people, tools, time-slots, etc. [Paschos, 2013]. However, Combina-
torial Optimization problems are typically hard to solve [Ausiello et al., 2012].
Their complexity is commonly NP-hard and NP-complete, hence being com-
putationally very expensive, specially when many variables are involved.

The standard method used for solving Combinatorial Optimization prob-
lems is Integer Programming (IP). Modern IP solvers are a “swiss knife” for
Combinatorial Optimization problems. The most powerful solvers are commer-
cial products such as IBM ILOG CPLEX Optimization Studio [Ibm, 2011] and
GUROBI [Optimization, 2017]. Although there are also open source alternatives
such as SCIP [Achterberg, 2009] or GLPK [Makhorin, 2000], commercial solvers
are one step ahead of Open Source alternatives in terms of performance.

Beyond generic algorithms, the research community is very active proposing
algorithms able to tackle specific Combinatorial Optimization problems. Ex-
amples of these approaches are classical problems like the traveling salesman
problem, set bin packing or knapsack problems. These and other problems are
discussed in [Bernhard and Vygen, 2008]. It is well-known that specific algo-
rithms are able to exploit the structure of targeted problems and thanks to that,
they are able to outperform generic algorithms.

The goal of this thesis is to investigate how to widen the applicability of
Combinatorial Optimization algorithms that exploit the structure of the prob-
lems to solve. We do so from a computer’s hardware perspective, pursuing the
full exploitation of computational resources offered by today’s hardware.

In this chapter we first introduce our motivation in section 1.1, then in section
1.2 we present a brief description of the problems that we target. Next, in section
1.3 we expose the challenges pursued in this work, and thereafter in section 1.4
we present our contributions. Finally, in section 1.5 we outline the structure of
this dissertation.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

During the last decades, computers’ computational capacities have enormously
increased. This is mainly due to both the increment of processor clock frequen-
cies, and the ability to integrate more transistors in a single chip. With more
transistors, chip designers have exploited the possibility of implementing new
strategies to increase processors’ performance. Examples of these strategies are
vectorized instructions, out-of-order execution or branch prediction.

In state-of-the-art research in artificial intelligence, and more specifically in
Combinatorial Optimization, we find algorithmic proposals and implementations
that exhibit a low exploitation of computational resources. This is particularly
paradoxical when considering computationally-intensive algorithms whose
running times are critical. The observed infra-utilization of resources is mainly
due to a gap between programmer and hardware. We distinguish four factors
conditioning this relationship:

• Complex Hardware. Hardware research has considerably advanced,
giving rise to much more powerful yet complex computational archi-
tectures. Modern processors have been designed considering hardware
techniques that improve the average program execution performance. For
instance: nowadays we count on computer systems with a hierarchical
heterogeneous memory system; systems with more than one processing
unit; processors able to multiplex threads; also able to run instructions
that run in parallel with the same core; among many other features. We
argue that achieving the maximum performance of a computer requires a
precise understanding of its architecture.

• Increase of abstraction in programming languages. At the same
time, programming languages have also changed. Nowadays there are
high-level languages that give programmers a higher degree of abstraction,
thus facilitating rapid development. However, such benefits in terms of
ease of development come at the price of losing control over the code that
a machine actually runs.

• Difficulty to grasp the parallel paradigm. Parallel computers are
a reality. The trend in computer’s architecture is to include more com-
putational units inside of the same chip [Sutter, 2005]. However, parallel
programming follows a different paradigm than sequential programming.
Moreover, current programming languages offer a very narrow support for
parallel algorithms, hence hindering their exploitation by developers.

• Outdated conceptual model. Finally, algorithm designers use a
conceptual machine model that has not changed for decades. However, as
mentioned above, hardware has significantly changed in terms of complex-
ity and capability of hosting parallelism. Common knowledge traditionally
shared by developers time ago (e.g. “all instructions take approximately

1.2. SELECTED PROBLEMS 3

the same time” or “all memory accesses have the same cost”) are no longer
true. Most often development occurs in an architecturally-neutral manner,
namely disregarding the full potential offered by the new conceptual model
offered by modern computer architectures.

Against this background, in this thesis we propose to learn the
architecturally-dependent algorithmic strategies that increase the performance
of a particular family of algorithms: Combinatorial Optimization algorithms that
exploit the structure of the problems to solve. Such strategies are to be founded
on a better exploitation of hardware resources. Examples of such architecturally-
dependent strategies are: data-oriented mechanisms for reducing memory foot-
print, the design of data structures that can be more efficiently accessed, or the
design of a thread scheduling approach that maximizes the benefit of parallel
resources.

1.2 Selected Problems

In this section we describe the Combinatorial Optimization problems that are
the focus of our study throughout this thesis. For the sake of generalization of
results, we analyze representative problems that vary in:

• size, from small problems (with low number of variables) that can be solved
optimally to large problems (with a large number of variables) that can be
only approximated;

• type of constraints composing a problem, being these either linear or
declarative (able to implement first-order logic functions); and

• objective function, where the target of the algorithm will be to find either
exact solutions or approximate ones.

Moreover, since the Combinatorial Optimization has applications in many
fields, we choose Combinatorial Optimization algorithms from different domains
(coalition formation, auctions and biology) with the aim of reaching results
with a wide range of applicability.

In what follows, we characterize the structural features of the different
problems selected in this thesis:

• Coalition Structure Generation. We first target a scenario where the
Combinatorial Optimization problem has a low number of variables but
a large density of restrictions. To this end, we work on those problems
where there exists a constraint for every possible combination of variables.

This problem has few decision variables subject to a large number of
linear constraints.

• Winner Determination Problem in Combinatorial Auctions.
We also study the case where the number of variables is larger than in

4 CHAPTER 1. INTRODUCTION

the Coalition Structure Generation and the restrictions are structured
according to known distributions. This distributions can be artificial or
represent actual-world problems such as logistics or planning. We do such
study facing the Winner Determination Problem (WDP) in Combinatorial
Auctions (CA).

This problem has a large number of decision variables subject to a set of
linear constraints.

• Side-Chain Prediction. Finally we will look at an industrial case
where the number of variables is large and the restrictions are more
expressive, implementing non-linear functions that can be characterized
by declarative constraints: The Side-Chain Prediction (SCP) problem.

This problem has a large number of decision variables subject to a set of
declarative constraints.

Table 1.1 presents a summary of the qualitative features of the problems
studied in this thesis. Table 1.1 shows that our selected problems allow us to
cover a wide spectrum of problem structures in terms of size, type of constraints,
and optimality.

Problem Scale Constraints Objective

CSG small linear optimal
WDP medium-large linear approximate
SCP large declarative approximate

Table 1.1: Qualitative features of the selected problems studied in this thesis

Coalition Structure Generation

In the multi-agent systems area [Wooldridge, 2009], coalition formation is one
of the central types of collaboration. It involves the creation of typically dis-
joint groups of autonomous agents that collaborate in order to satisfy their
individual or collective goals. One of the major research challenges in the field
is the search for an effective set of coalitions that maximizes the global utility
[Shehory and Kraus, 1998] of the agents.

According to [Sandholm and Lesser, 1997], the coalition formation process
is divided into three activities.

• Coalition Structure Generation (CSG);
• solving the optimization problem of each coalition; and

1.2. SELECTED PROBLEMS 5

• dividing the value of the generated solution among agents.

We focus on the first of these activities, namely Coalition Structure Gen-
eration, which is a particular type of Combinatorial Optimization problem.
The Coalition Structure Generation problem considers a set of agents A =
{a1, a2, . . . , an} such that every possible association between them has some
revenue (or score). The objective is to find the set of associations (coalitions)
with the largest aggregated revenue.

This is an interesting topic faced from different perspectives as summarized
in a recent survey [Rahwan et al., 2015]. Our goal is to face problems where all
the possible association between agents are defined and coalitional values do not
follow any particular distribution. This is the hardest problem type in CSG, as
shown by the low performance achieved by the state of the art. Indeed, IDP
[Rahwan and Jennings, 2008b], a state-of-the dynamic programming algorithm
takes around 2 months of running time to obtain a solution for a problem with
only 27 agents, as reported in [Rahwan et al., 2009].

Winner Determination for Combinatorial Auctions

A combinatorial auction [Rothkopf et al., 1998] is a type of market mechanism
where there is only one seller (auctioneer) and many participants (bidders). The
auctioneer has a finite set of different objects to sell. The participants can place
bids for single items or combinations of items. A combinatorial bid for a set
of items I at a given price p indicates that the bidder is willing to pay p when
provided with all the items in I. Thus, a bidder bids for all the items in I
as a whole. There is a bidding phase during which all participants place their
combinatorial bids. The winner determination problem is that of determining
the combination of bids that maximizes the auctioneer’s revenue.

In [Leyton-Brown et al., 2009], the authors observe that small and medium-
sized problems (with dozens and hundreds of variables) are well addressed
by Mixed Integer Programming (MIP) solvers. They also empirically deter-
mine the hardness of different known distributions. However, although there
are application domains that claim to be large-scale, namely involving thou-
sands and even millions of bids, current results indicate that the scale of win-
ner determination problems for CAs that can be optimally solved is small
[Leyton-Brown et al., 2009, Ramchurn et al., 2009]. For instance, CPLEX (a
state-of-the-art commercial solver) requires a median of around 3 hours to solve
the integer linear program encoding the Winner Determination Problem (WDP)
of a hard distribution instance of a CA with only 1000 bids and 256 goods. This
fact seriously hinders the practical applicability of current solvers to large-scale
CAs.

Side-Chain Prediction

Proteins are macromolecules that play a fundamental role in every living being.
In general terms, a protein is a large chain of 20 possible amino-acids sharing

6 CHAPTER 1. INTRODUCTION

the same structure: an amine (−NH2) and a carbooxyl (−COOH) functional
groups along with a radical (or side-chain) specific to each amino-acid. A side-
chain can take different configurations, each one being defined by a collection
of angles, named rotamers. Side-chains have some preferred or stable rotamer
configuration.

Amino-acids can catenate themselves in a linear structure. The angle formed
between two amino-acids on each link will mostly depend of the side-chain con-
figurations of the two amino-acids. However, not only the neighbor amino-acids
occur in a particular link. Other sections of the protein that are close in the
space also have their influence in the tridimensional composition. All in all, the
sequence of amino-acids, together with their side-chain configuration determine
both the structure of the protein and its properties.

An important research topic in biology is protein design [Krivov et al., 2009].
One approach is to first develop a 3D model of a protein that satisfies a particular
function to subsequently compute the amino-acid sequence of the protein given
its tridimensional structure. This is known as Side-Chain Prediction.

Side-Chain Prediction is a complex problem. It requires the model of the
physics happening at molecular level, the computation of the energy needed by
every possible side-chain using Van der Waals forces, the use of a library of stable
rotamers and the execution of a combinatorial optimization algorithm. The
Combinatorial Optimization phase is the most time-consuming. Its input is an
optimization problem with a variable for every radical position. Every variable
has associated a list of candidate side-chains, each one with its energetic cost.
The objective is to minimize the amount of molecular energy needed to conform
a protein. The expected result is the assignment of side-chains to variables so
that the overall energetic cost is minimized.

Key features of the Combinatorial Optimization problem are:
• Length. As many variables as amino-acids counts on. Therefore, the prob-
lem size is inherently big since proteins are built by chaining hundreds or
thousands of amino-acids.

• Fixed arity. By the modelization method constraints are always pairwise.
• Declarative constraints. Constraints are declarative, hence they can’t be
approached using a linear optimization method.

1.3 Challenges

In this dissertation, we aim at improving the performance of representative state-
of-the-art Combinatorial Optimization algorithms through the better exploita-
tion of hardware resources. Our objective is to obtain a better performance
thanks to an architecturally-aware algorithmic design.

After visiting the existing literature on state-of-the-art algorithms for Com-
binatorial Optimization, we observe that hardware considerations such as par-
allelism or memory organization are barely considered. We argue that this is
due to the already discussed programmer-hardware gap in section 1.1. Such

1.3. CHALLENGES 7

infra-utilization of hardware resources largely motivates our research.

The research challenges that we tackle in this thesis are framed in the
context of maximizing hardware resources. We face such goal from a computers’
architecture perspective by proposing mechanisms for enhancing algorithmic
performance in a modern processor. Thus, in what follows we pose research
challenges whose solutions will lead to improving algorithmic performance in a
modern processor by:

1. reducing the amount of instructions to process,
2. increasing memory system throughput, and
3. increasing parallelism.

Henceforth, we shall refer to the above-mentioned architecturally-aware goals as
performance enhancement goals.

In what follows, we identify the research challenges posed to achieve our
performance enhancement goals by each of the selected problems described in
section 1.2.

1.3.1 Coalition Structure Generation

The Coalition Structure Generation problem can be solved using a Dynamic
Programming algorithm known as DP [Yun Yeh, 1986]. This algorithm was
revised and updated years later, resulting into an improved version of DP, the
so-called Improved DP (or IDP) [Rahwan and Jennings, 2008b]. IDP overcomes
some of DP’s drawbacks like the redundant evaluation of coalition structures.

Both DP and IDP algorithms run for a deterministic number of itera-
tions, since they do not reduce work. Other algorithms like Branch-and-bound
[Land and Doig, 1960a] can skip computation during the search if they are
able to prove that a path is not leading to a good solution. The computa-
tion of bounds depends of the data encoded in the problem. Hence, pruning
techniques are highly dependent of the problem data distribution. DP and
IDP worst-case complexity is the lowest of other known algorithms such as IP
[Rahwan et al., 2007] or IDP-IP [Rahwan and Jennings, 2008a]. For these rea-
sons DP and IDP are general-purpose CSG algorithms in the sense that they
are well suited for problems whose distribution is unknown.

The first challenge of this thesis is to analyze the algorithmic features of DP
and IDP that most affect their algorithmic performance. In this particular case
this will amount to studying their: problem structures, memory access patterns,
and most time-consuming operations.

Challenge 1 Identify the algorithmic features of DP and IDP that most impact
their performance in a modern processor

The contributions of the previous challenge will allow us to determine the
most time-consuming operations together with their memory access patterns.

8 CHAPTER 1. INTRODUCTION

Furthermore, since neither DP nor IDP benefit from the parallel paradigm, lever-
aging on the results provided to the former challenge naturally leads to the next
one:

Challenge 2 How to enhance DP/IDP to benefit from the parallel paradigm
and better exploit hardware resources?

1.3.2 Combinatorial Auctions

Due to the the high complexity of Combinatorial Optimization problems, the
limits of exact and exhaustive methods shown by coalition structure generation
algorithms is early reached. If so, approximate algorithms stand as an alternative
to optimal algorithms.

Branch-and-bound algorithms that employ good pruning strategies may re-
duce their solving time significantly. The standard method for solving Combi-
natorial Optimization problems with linear objective functions is Mixed Integer
Linear Programming (MILP), which prunes subtrees of the search space based
on linear programming relaxations to estimate bounds. In this scenario, the
efficiency of the linear programming solver will condition the efficiency of the
overall Branch-and-bound algorithm.

As stated in the literature, large scale Combinatorial Optimiza-
tion problems (e.g stereo vision, Side-Chain Prediction, protein design
[Yanover et al., 2006]) go beyond the capabilities of state-of-the-art solvers, ac-
cording to [Yanover et al., 2006] they face problems that are so big that cannot
to be solved by standard solvers: “[..] We found that using powerful, off-the-shelf
LP solvers, these problems cannot be solved using standard desktop hardware.”.
The machine learning literature has recently contributed with a wealth of algo-
rithms to obtain approximate solutions for Combinatorial Optimization prob-
lems, e.g [Gabay and Mercier, 1976a, Ihler et al., 2005, Wainwright et al., 2005,
Martins et al., 2014].

Despite the existence of such powerful approximate algorithms, to the best of
our knowledge there is no approximate algorithm in the literature to solve large-
scale winner determination problems for combinatorial auctions. This leads to
our next research challenge:

Challenge 3 How to solve a relaxation of a combinatorial auction winner de-
termination problem?

Fulfilling this challenge will require: (a) to find a state-of-the-art, represen-
tative approximate algorithm that is prone to parallelism; and (b) to show that
such algorithm can indeed cope with large-scale combinatorial auction WDPs.
Notice that solving a relaxation of the winner determination problem does not
provide a feasible solution to the problem. However, this is a stepping stone
towards building such feasible solution.

After finding a suitable algorithm satisfying our requirements, our next chal-
lenge will be:

1.4. CONTRIBUTIONS 9

Challenge 4 How to design a shared-memory parallel algorithm to solve relax-
ations of the Winner Determination Problem?

1.3.3 Side-Chain Prediction

In Side-Chain Prediction, the most time-consuming phase is the resolution of a
Combinatorial Optimization problem. This is caused again by the structure of
the problem. The existence of pairwise constraints of declarative nature has a
major influence on the hardness of the Combinatorial Optimization problem.

In [Yanover et al., 2006, Sontag et al., 2012], convex optimization methods
are used to efficiently solve the relaxation to the optimization problem posed by
the Side-Chain Prediction.

Although the contributions to challenge 4 are expected to produce a shared-
memory parallel algorithm to solve large-scale winner determination problems,
we cannot benefit from it to solve the Side-Chain Prediction problem. This
is because the structure of Side-Chain Prediction problems is different to that
of winner determination problems. On the one hand, Side-Chain Prediction
constraints are always pairwise. On the other hand, as mentioned in section 1.2,
constraints in a side-prediction problem are declarative, and hence different to
the linear constraints in winner determination problems. These two observations
call for different algorithmic solutions to the side-prediction problem.

Both challenges 3 and 5 can be reached with the choice of an algorithm that
is able to cope with the types of constraints handled by Combinatorial Auc-
tions Winner Determination Problem and Side-Chain Prediction. In addition,
as shown in [Martins, 2012b], AD3 is able to solve LP relaxations for the Side-
Chain Prediction. Nonetheless as already stated AD3 is not optimized and it is
not able to run in parallel. Our next challenge descent directly from this fact.

Challenge 5 How to design a shared-memory parallel algorithm to solve relax-
ations of Side-Chain Prediction problem?

The achievement of this challenge can be done by extending the contributions
to challenge 4 to also cope with declarative constraints.

1.4 Contributions

Next, we present the contributions in this thesis in relation to the challenges
posed in section 1.3. Likewise in section 1.3, we present our contributions around
the selected problems described in section 1.2.

1.4.1 Coalition Structure Generation

In this section we present our contributions in reply to challenges 1 and 2.
Recall that challenge 1 above focused on finding the algorithmic features of DP
and IDP that most impact their performances on a modern processor. To tackle
this challenge, we measured and characterized the execution of both DP and

10 CHAPTER 1. INTRODUCTION

IDP. From our extensive analysis, we learned that the main factors affecting
DP and IDP performances are:

• The efficiency in splittings enumeration. When following a dynamic
programming strategy to solve a Combinatorial Optimization problem, the
problem is divided in subproblems, which are solved by also dividing them
into smaller subproblems. This process is repeated until the subproblems
to be solved are trivial and can be easily solved by a simple evaluation.
Then, the chosen dynamic programming method aggregates results from
solving subproblems to build up a global solution. In the case of DP and
IDP, the division of work is carried by the operation that enumerates
splittings, which consists in enumerating all the partitions of size 2 of a
given set, as shown in Table 1.2. The Table 1.2 shows all the splittings
(partitions of size 2) of a set of objetcs. Our performance analysis found
that more than 99% of the processor running time is spent in computing
the enumeration of splittings, having a dramatic impact on algorithmic
performance. However, the literature disregards how to implement such
operation efficiently.

Set of Objects Splittings

{♠,♥,♣,♦} {♠}, {♥,♣,♦}
{♥}, {♠,♣,♦}
{♣}, {♥,♠,♦}
{♦}, {♥,♣,♠}
{♠,♥}, {♣,♦}
{♠,♣}, {♥,♦}
{♠,♦}, {♣,♥}

Table 1.2: Splittings enumeration example

• The non-uniform memory access pattern. Notice that in order to
obtain a good memory system performance, consecutive memory access
should request addresses that are near in memory, ideally consecutive
[Guide, 2011]. In other words, memory system performance can be
achieved by enforcing locality. Both DP and IDP algorithms enumerate
splittings and evaluate the generated pairs within each splitting. In order
to evaluate a pair, the computer has to perform two memory requests.
If the two memory requests access addresses that are close in memory,
the operation will be efficient. Otherwise, if the requests access distant
memory positions, the operation will produce an inefficient memory
access. The ideal situation will be to have only efficient memory accesses.
However, since all the possible pairs are evaluated by DP and IDP, they
unavoidably perform both efficient and inefficient splitting evaluations.

1.4. CONTRIBUTIONS 11

Hence, there is no memory representation favoring a higher locality for
DP/IDP.

• The lack of parallelism. In modern processors it is common to have
more than one computational unit. However, DP and IDP use just one
core and ignore the rest.

The findings of our analysis conclude that these three factors completely
drive the performance of DP/IDP. However, the state of the art on coalition
structure generation has not addressed any of them. We conclude that in order to
increase DP/IDP performance, there is a need for defining strategies addressing
the above-mentioned factors:

• how to efficiently perform the splitting enumeration operation,
• how to represent the problem in memory to minimize the effects of the
non-local access patterns, and

• how to get profit from parallel architectures.

Our first contribution compiles the above-mentioned observations:

Contribution 1 The three factors that limit the performance of both DP
and IDP are: the inefficient splitting enumeration, the non-uniform memory
access pattern, and their lack of parallelism.

The second challenge inquires whether it is possible to obtain a hardware-
efficient and parallel version of DP/IDP. We accomplish the second challenge
by means of the following strategies: (i) a novel method for enumerating split-
tings, (ii) a compact representation of coalitions, and (iii) a novel method for
parallelizing DP/IDP.

Although in the literature we find measures of IDP’s running times, there
is no reference implementation available to benchmark our contributions. And
yet, in order to analyze our improvements we need a reference or baseline im-
plementation to compare with. For that reason, we have implemented a se-
quential algorithm following the specifications of [Yun Yeh, 1986] for DP, and
[Rahwan and Jennings, 2008b] for IDP. Henceforth, we shall refer to those al-
gorithms as base-DP and base-IDP respectively, or simply as base algorithms if
there is no risk of misunderstanding.

Next, we detail the above-mentioned strategies that target the performance
goals defined in section 1.3:

• Efficient enumeration of splittings. We propose a novel method for
enumerating splittings, the so-called Fast-split method. Thanks to the use
of logic arithmetic, Fast-split is able to perform the splitting operation
–the most critical operation– using only 12 machine-code instructions
per splitting. The result is a fast mechanism able to boost the execution
of DP/IDP. Fast-split yields very significant speedups: One order of

12 CHAPTER 1. INTRODUCTION

magnitude with respect to our base-IDP version, and two orders of
magnitude with respect to the times reported by the state-of-the-art IDP
implementation 1.

We observe from this strategy that:

An optimal way to enumerate splitting fulfills the the performance en-
hancement goal of reducing the number of instructions.

• Compact representation of coalitions. We define a compact way
of representing coalitions. In our proposal, we use a binary encoding.
Thanks to the compactness provided by such encoding, we manage to
significantly reduce the memory footprint. At the same time, our compact
representation allow us to significantly increase the amount of information
sent by data transfers between memory and CPU. This representation
helps to cope with the non-uniform memory access pattern exhibited by
DP/IDP.

We observe from this strategy that:

A compact memory representation satisfies the performance enhancement
goal of increasing memory system throughput.

• Parallelization. We design the first parallel version of DP/IDP. Our
contribution is twofold:

– We define an even way of dividing the work among different threads
with the objective of maximizing the workload per thread and
minimizing communication and synchronization between them.

– We endow each thread with an algorithm to find its assigned tasks,
without requiring communication with other threads.

Our parallel algorithm obtains a 5X speedup with respect to base-IDP on
a six-core computer.

We observe from this strategy that:

Our thread level parallelization of DP/IDP accomplishes the performance
enhancement goal of increasing parallelism.

Combining the above-mentioned strategies, we reach a 60X speedup with

1Our base-IDP is able to solve a problem of 27 agents in 2.9 days in an Intel Xeon E5645.
As already stated, there is no state-of-the-art public implementation of IDP available, but
authors report in [Rahwan et al., 2007] that IDP solves a problem of 27 agents in more than
2 months using an unspecified computer.

1.4. CONTRIBUTIONS 13

respect to our base implementation in a 6-core computer. Since IDP is reported
to solve a 27-agent problem in around 2 months [Rahwan et al., 2007], our
result is by large the fastest Dynamic Programming algorithm, able to solve the
same problem in 1.2 hours. We can announce our contribution as:

Contribution 2 We contribute with the first parallel implementation of
DP/IDP, which employs an efficient method for performing enumerations
and a compact data representation. Our approach reaches a speedup of 60X
in a six-core computer with respect to our base implementation.

The above-mentioned contributions have been reported in the following
publications:

1. Cruz-Menćıa, F., Cerquides, J., Espinosa, T., Moure, J. C., Ramchurn,
S. D., and Rodriguez-Aguilar., J. A. (2013). Coalition structure genera-
tion problems: optimization and parallelization of the IDP algorithm. In
Proceedints of the 6th International Workshop on Optimisation in Multi-
Agent Systems, OPTMAS 2013, workshop affiliated with AAMAS 2013..

2. Cruz-Menćıa, F., Cerquides, J., Espinosa, A., Moure, J. C., and Rodriguez-
Aguilar, J. A. (2013). Optimizing performance for coalition structure
generation problems’ IDP algorithm. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Ap-
plications (PDPTA), page 706. The Steering Committee of The World
Congress in Computer Science, Computer Engineering and Applied Com-
puting (WorldComp), July 22-25, las Vegas, Nevada.

3. Cruz-Mencia, F., Espinosa, A., Moure, J. C., Cerquides, J., Rodriguez-
Aguilar, J. A., Svensson, K., and Ramchurn, S. D. (2017). Coalition
structure generation problems: optimization and parallelization of the
IDP algorithm in multicore systems. Concurrency and Computation:
Practice and Experience, 29(5).

Furthermore, the source code of our parallel implementations of DP an IDP
is publicly available at:

https://github.com/CoalitionStructureGeneration/DPIDP.

1.4.2 Winner Determination Problem in Combinatorial
Auctions

We start focusing on challenge 3, which considered how to solve a relaxation of
the WDP.

With the raise of big data and machine learning, the limits of applicabil-
ity of classic linear programming techniques have been reached [Sheffi, 2004].
To cover such limitation, convex optimization algorithms are gaining signifi-

14 CHAPTER 1. INTRODUCTION

cance. Recent studies, demonstrate that convex optimization algorithms are
well suited to approximate LP relaxations for large problems very efficiently
[Boyd and Vandenberghe, 2004].

The Alternate Direction Dual Decomposition (AD3) [Martins et al., 2015]
is an ADMM-based [Gabay and Mercier, 1976a], dual-decomposition, message-
passing2 algorithm. It is a state-of-the art convex optimization algorithm that
has been successfully applied to solve LP relaxations in different application
domains, such as frame semantic parsers or protein prediction [Martins, 2012b].
AD3 has advantages over other convex optimization algorithms that can be
summarized as follows:

• it exhibits fast convergence to quality solutions;
• it also counts with a defined library of factors that are able to perform
different optimization functions very efficiently;

• it allows the decomposition of the overall problems into local subproblems
(encoded thanks to the library of factors), which can be solved indepen-
dently.

We observe that in the state-of-the-art WDP research there is no specific
approach to cope with large-scale problems relaxations. We also observe that,
up to our knowledge, there is no proposal for solving WDP relaxations using
a convex optimization technique. Finally, we observe that AD3 is prone to be
parallelized.

Because of the above-mentioned observations, we choose AD3 as the algo-
rithm to develop a solver for WDP LP relaxations. Our contribution starts by
proposing an encoding of the WDP into a Factor Graph [Loeliger, 2004] that
can be solved by means of AD3. Our encoding only employs the atMostOne
factor, namely one of the already bundled factors in the AD3 factor library.

We also study the scope of applicability of AD3 as a method to solve re-
laxations for large-scale WDPs. To this end, we use the WDP distributions
defined by [Leyton-Brown et al., 2009], and we compare the solving times of
AD3 with those obtained by CPLEX, an off-the-shelf commercial solver, when
solving WDP LP relaxations. We empirically find that while problems of small
and medium size3 are well addressed by CPLEX, larger and harder problems
are better suited for AD3.

Therefore, our contribution in reply to challenge 3 can be summarized as
follows:

2In this case, message-passing refers to a term in the field of convex optimization and it is
related to the order that the operations are performed according to a graphical modelization of
the optimization problem. This is distinct to message-passing in computer architecture, where
it stands for a parallelization paradigm where threads communicate themselves through send
and receive primitives.

3We use the term simpler/harder to refer to those problems that are easy/hard to solve to
[Leyton-Brown et al., 2009]. We also refer to moderate size for problems involving hundreds of
variables and constraints. By large scale we refer to problems involving thousands of variables
and constraints. The sizes and distributions that we consider in our study are discussed in
detail in Chapter 4.

1.4. CONTRIBUTIONS 15

Contribution 3 We provide a general encoding of a WDP into a Factor
Graph that can be employed by the AD3 algorithm to solve LP relaxations of
WDPs. We observe that AD3 is the algorithm of choice to solve large-scale
WDP relaxations.

Next, to tackle challenge 4, we address the design of a parallel and high
performance AD3 algorithm. Such parallel version is constrained to one type
of factors, atMostOne, since these are the only factors required to solve WDP
relaxations. To design our parallel version with the aim of satisfying the per-
formance goals described en section 1.3, we follow the next strategies: address
specificity, increase memory system performance, embrace shared-memory
parallelization, and promote vectorization.

Next, we detail the implementation of such strategies.

• Address specificity. We reach specificity by considering only the atMo-
stOne factor. For AD3, every factor is a “black box” able to solve a local
optimization problem. Our approach is to build a specific algorithm able
to work only with atMostOne factors. This yields some advantages that
lead to increase performance:

– on the one hand, having the same factor in all the computation nodes
of the Factor Graph favors homogeneity, which benefits task balanc-
ing, hence favors parallelization;

– on the other hand, it also allows us to blend the computation hap-
pening at factors together with the rest of computation happening
at AD3.

This strategy satisfies the performance goal concerned with reducing the
number of executed instructions.

• AoS to SoA. At present, the publicly available implementation of AD3

[Martins, 2012a] follows an array of structures (AoS) paradigm for mem-
ory organization. Instead, we propose an alternative memory organization
based on a structure of arrays (SoA) as suggested in [Guide, 2011] to
increase locality and promote sequential memory access. Thus, in our
alternative way of organizing memory helps improve memory system
throughput.

This new memory organization achieves the performance enhancement
goal of increasing memory throughput.

• Embrace edge-centric parallelization. We reach shared-memory
parallelism by distributing AD3 computations among different execution
threads. In AD3, computations occur at two levels: computation at
factors, and computation at variables –factors and variables are the
two types of nodes of a Factor Graph. Typically, the machine learning

16 CHAPTER 1. INTRODUCTION

literature claims that algorithms running over Factor Graphs can be
readily parallelized because each factor independently solves a local
subproblem [Martins et al., 2014]. Thus, the parallelization approach
suggested by the machine learning literature can be considered as factor-
centered. Instead, we propose a parallelization paradigm where edges are
promoted to first-class citizens, hence following an edge-centric paradigm,
as suggested by [Roy et al., 2013]. In an edge-centric paradigm, the
computation is performed from an edge perspective. According to this
paradigm, computation is moved as much as possible to the edge, with
the objective of promoting edge-only dependent computations. Then the
algorithm iterates also through the collection of edges, regardless which
factors are edges attached to. Such parallelization design offers some
important advantages with respect to a factor-centered design in terms of
performance, namely:

– Simple memory organization. Edges are simpler than factors.
An edge always connects two nodes, while a factor may have a variable
number of nodes it is attached to. Therefore, the memory representa-
tion of a set of edges can be performed with simpler data structures,
for instance using vectors, which are very efficient: (i) vectors are
convenient for sequential memory access, leading to a high memory
system performance; (ii) vectors can be easily divided in even blocks,
making them suitable for workload distribution in a parallel execu-
tion; and (iii) vectors also ease instruction vectorization (SIMD).
On the contrary, factors are more complex and need the definition of
complex structures like linked lists, which are versatile but inefficient
from a performance engineering point of view.

– Flexibility. In a Factor Graph, the number of edges is typically
larger than the number of factors. An edge-centric design offers more
granularity than a factor-centric approach leading to a fine-grained
parallelism. Notice that obtaining a higher granularity benefits the
dynamic parallelization, since thread workload is adapted dynami-
cally.

Both advantages above lead to an improvement of algorithmic perfor-
mance. On the one hand, the simpler memory organization enforces
memory locality. On the other hand, more flexibility helps to reach a
better balance between parallel threads.

This strategy fulfills the performance enhancement goal of increasing
parallelism and also increase the memory throughput.

• Promote vectorization. We reach vectorization by decomposing
every calculation in elemental operations. Hence, elemental operations
can be grouped together and carried out at once. This fact, with a

1.4. CONTRIBUTIONS 17

more convenient memory organization, aids the compiler to reach a vec-
torized code able to perform several operations using one single instruction.

This optimization satisfies two performance enhancement goals: reducing
the number of executed instructions and increasing parallelism.

By combining the above-mentioned performance enhancement strategies, we
develop the first shared-memory parallel AD3-based algorithm able to efficiently
solve LP relaxations for the WDP. Our work can be outlined as:

Contribution 4 We develop a novel shared-memory parallel version of AD3

capable of solving WDP relaxations. Our approach reaches a speedup of 14.4X
in a 6-core computer compared to the publicly available implementation of
AD3.

The above-mentioned contributions have been reported in the following
publications:

1. Cruz-Mencia, F., Cerquides, J., Espinosa, A., Moure, J. C., and Rodriguez-
Aguilar, J. A. (2015b). Paving the way for large-scale combinatorial
auctions. In Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, pages 1855–1856. International
Foundation for Autonomous Agents and Multiagent Systems.

2. Cruz-Mencia, F., Cerquides, J., Espinosa, A., Moure, J. C., and Rodriguez-
Aguilar, J. A. (2015a). Parallelisation and application of AD3 as a method
for solving large scale combinatorial auctions. In International Conference
on Coordination Languages and Models, pages 153–168. Springer.

Furthermore, the source code of our parallel implementation of AD3,
together with datasets, is publicly available at:

https://github.com/parad3-wdp/ca

1.4.3 Side-Chain Prediction

In this section we present our contributions giving answer first for challenge 5.

AD3 has already proposed to be used as a method to solve the Maximum
A Posteriori (MAP) in the problem of Side-Chain Prediction. This proposal
requires the encoding of the Side-Chain Prediction problem as a Factor Graph
where all the factors are pairwise and encode local subproblems with the use of
declarative constraint.

18 CHAPTER 1. INTRODUCTION

As in the WDP for CA, we show how to encode a Side-Chain Prediction as
a Factor Graph to be solved by means of AD3. This time our codification relies
on the representation of every amino-acid as a multi-variable and every possible
side-chain configuration as a binary choice associated the specific multi-variable.
Interactions between different amino-acids are modeled as pairwise forces and
we use one factor for every pair of interacting amino-acids.

We measure the performance of AD3 and with previous related works
[Yanover et al., 2006, Sontag et al., 2012], being the fastest algorithm on this
class. We also discover that the problems in [Yanover et al., 2006] dataset are
solved very efficiently by AD3 and they does not exhibit enough computational
work to allow us to stress AD3. For this reason, we propose an extension of the
dataset thanks to the use of a modern proprietary tool able to model Side-Chain
Prediction problems (SCWRL4 [Krivov et al., 2009]).

We show then how to design an efficient algorithm able to solve LP relax-
ations for the Side-Chain Prediction problem. We contribute by extending the
shared-memory parallel AD3 algorithm developed in challenge 4, with the sup-
port for declarative constraints. Hence widening its applicability to a wide scope
of problems.

Since the parallelization happens in outer levels, the fulfillment of challenge
5 is accomplished through an performance analysis and optimization of the com-
putation happening at subproblem level in only one thread. Then our parallel
mechanism designed in challenge 4 will be able to solve every subproblem in the
parallel resources.

Nonetheless, the performance enhancement goals remain intact. We increase
the single thread performance following the next actions.

• Move towards a less instruction scenario. In our work, we analyze
the process of resolution of an Arbitrary factor, which is the one imple-
menting the declarative constraint. As a result of our analysis we find that
we are able to encode an equivalent algorithm leading to a more efficient
execution. The specific actions we do to get this results are.

– Make data structures simpler. We do that reducing encapsulation so
functions that manipulate data are specialized.

– Promoting vectorization. We increase the instructions throughput by
obtaining vectorized code.

– Making use of external libraries. We use state-of-the art optimized
linear algebra libraries to compute critical operations.

This optimization satisfies two performance enhancement goals: reducing
the number of executed instructions and increasing parallelism.

• Redesign memory representation and management. We redesign
how the data is stored in memory, data structures are expressed in
a way that we enforce sequential access and high locality. We also
define per-thread scratch areas, where threads are able to store partial

1.5. STRUCTURE OF THE THESIS 19

results. These scratch areas are reused by threads, having a exclu-
sive and close-to-cpu access. The fact that it is exclusive help with
cache-coherence policies, while the fact that is close-to-cpu helps with
the latency of the data. In addition, we radically reduce the dynamic
memory allocation requests (a reduction of around the 98% of the
memory allocation calls). In order to get this reduction, our optimized
version makes an estimation of what will be the memory required and
allocate it in advance. Then, it is able to track whether some extra
memory is required to solve a particular expensive subproblem. This re-
duction of the memory allocation calls comes with benefits in performance.

This optimization satisfies the performance goal of increase the memory
system performance.

The design and realization of these strategies achieves our last contribution,
announced as:

Contribution 5 We propose the designing of an efficient algorithm to solve
the quadratic problems for Arbitrary factors. Our approach delivers an aver-
age speedup of 10.8X in a 6-core computer with respect to the publicly available
implementation of AD3.

This contribution gives answer to the question

How to design a shared-memory parallel algorithm to solve relaxations of
Side-Chain Prediction?

We make the source code of this work available at:

https://github.com/parad3-scp/source

1.5 Structure of the Thesis

In this chapter we have presented an overview of this dissertation, where we have
identified our objectives and what are the solutions we propose, we also present
what are our contributions.

Our work is in between of two disciplines, the Combinatorial Optimization
field where we find applications for our contributions and the computer archi-
tecture field which provide us the means to reach them. In the next chapter we
present a brief introduction to fundamental concepts that frame our work, both
in Combinatorial Optimization and computer’s architecture fields.

The next Chapters (3 to 5) are focusing on each one of the applications we
are targeting in this thesis.

20 CHAPTER 1. INTRODUCTION

In Chapter 3, we describe the work we have done optimizing the IDP algo-
rithm as well as proposing the first parallel version of IDP for the problem of
the Coalition Structure Generation, after a brief introduction to the problem we
present what are our contributions and our what are results.

Chapters 4 and 5 are closely linked since they present a workaround of the
same algorithm: AD3. However there are differences both in the application
domain as well as in which aspect of AD3 has been studied.

In Chapter 4 we propose to use AD3 as a method to solve LP relaxations
for the Winner Determination Problem for Large Scale Combinatorial Auctions.
Beyond our contributions in the domain of the Combinatorial Auctions, in this
chapter we show to effectively parallelize AD3, giving rise to PAR-AD3.

In Chapter 5 we apply PAR-AD3 to solve LP relaxations to Side-Chain
Prediction problems. In this chapter we also show how to optimize the execution
inside a thread, since this time –as opposed to the previous chapter– most of the
CPU load falls into the computation of the local subproblems.

We end the dissertation in Chapter 6, where we draw conclusions and present
pointers to possible future lines.

Chapter 2

Background

In this chapter we present key concepts that are basic to understand the argu-
ments and explanations contained in this document, both regarding computer’s
architecture and combinatorial optimization. The expert to any of this topics
can freely skip parts of this background.

First we introduce relevant concepts of modern computer architecture. Such
concepts, like parallelism, locality and others, will be recurrent during the rest of
the dissertation and, in consequence, we draw an brief overview of them. Next,
we present an outline of combinatorial optimization strategies that constitute a
frame for the algorithms we work on.

2.1 Overview of Modern Computer Architec-
ture

Computer design has vastly evolved from its beginnings. As Gordon Moore1

predicted 50 years ago enunciating his very acclaimed Law, the chip industry
has been able to improve enough in one year to fit as twice of the transistors than
the previous year. Moore’s Law was adjusted in 1975 to the pace to double the
number of transistors every two years. Nowadays processors are able to integrate
orders of 109 transistors in a single chip. They are extremely complex systems
that implement many features in order to improve the system performance.

2.1.1 Parallelism

The use of parallelism is one of the most recurrent techniques that are imple-
mented in current processors in order to speedup the execution of programs. We
understand parallelism as any method that allows the processor to perform two
or more tasks, either fine-grained or coarse-grained, at the same time.

1Co-founder and chairman emeritus of Intel Corporation

21

22 CHAPTER 2. BACKGROUND

In 1972 Michael Flynn proposed a taxonomy of parallel architectures that
has become very popular [Flynn, 1972]. According to Flynn, parallel systems
can be categorized as:

• SISD: Single Instruction Stream, Single Data Stream.
A processor executes a sequence or stream of instructions, each operating
with a single data. It happens in a regular uni-processor machine.

• SIMD: Single Instructions Stream, Multiple Data Stream.
A single sequence of instructions, with each single instruction operating
on vectors containing a sequence of data. This kind of processing strategy
happens in the vector operations (also called multimedia or SIMD
operations) implemented in a modern computer.

• MISD: Multiple Instructions Stream, Single Data Stream.
There is no machine implementing MISD.

• MIMD: Multiple Instructions Stream, Multiple Data Stream.
The processor executed multiple Instruction Streams simultaneously, with
each stream operating with a subset of a large set of data. This execution
model happens in a multithreaded and/or multicore computer.

Flynn’s taxonomy is the classical approach to classify parallel systems. Nowa-
days this taxonomy is still widely used although is not expressive enough to
reflect current parallel hardware strategies. Let us examine different levels of
parallelism present in modern processors.

Bit Level Parallelism (BLP)

BLP represents the most fine-grained use of parallelism, and takes part at the
registers and logic-arithmetical units. Processors do not operate bit by bit,
instead, they operate by blocks of bits (words). As for today, a regular desktop
computer processor has words of 64 bits; this number has been increasing as the
semiconductor technology has been improving. Increasing the number of bits of
the processor words implies a big investment in the number of transistors and
datapaths, but in reward, increments the processor capabilities, specially when
working with large precision numbers.

Instruction Level Parallelism (ILP)

Processors increment the processor execution throughput by making use of the
pipelining technique in order to execute multiple instructions at the same time.
Pipelining is a strategy that consists in dividing the execution of each single
instruction in different stages. The processor has different units specialized for
the processing of every one of those stages. The main idea behind this approach

2.1. OVERVIEW OF MODERN COMPUTER ARCHITECTURE 23

is to overlap the execution of multiple instructions at the same time, and then
maintain a full usage of the processor capabilities.

With this objective all the pipelined execution has to be synchronized to
the speed of the slowest stage. This implies a slow down of the total execution
process of each single instruction but in reward the system achieves a higher
instruction throughput. Since there are instructions more complex than others,
the processor pipeline contains different execution paths, with different resources,
that make the total execution times of instructions to be different.

The ILP2 of the program is a characteristic that is exploited automatically
by the processor H/W, which means that it is something transparent to the
programmer. In order to do that, the processor has to analyze the instruction
dependencies to guarantee the correct result of the execution. Such dependencies
are due to different factors and are categorized in three types: i) data dependen-
cies, where one operand of an instruction is the result of a previous instruction,
ii) name dependencies, where the same processor registers are used by different
instructions containing different instances of data, and iii) control dependen-
cies, where there are conditional jumps that determine the execution flow. The
processor analyzes any kind of dependence and acts accordingly.

Modern compilers help to produce code that will be efficiently executed in
parallel at the instruction Level. The expert programmer can also adapt the
code to exhibit a higher degree of ILP. Techniques that help improving ILP are
the reordering of instructions, the renaming of variables and the explicit unroll
of loops.

For the programmers’ eye, the instructions are virtually executed in parallel.
Unfortunately, the programmer cannot see what is exactly happening inside
the processor, but can obtain some feedback through profiling. A metric that
allows the programmer to estimate how well the ILP is performing is the rate
of Instructions Per Cycle (IPC), which can be retrieved from internal processor
counters after executing the program.

Thread Level Parallelism (TLP)

It is possible to execute different threads running at the same time and shar-
ing the same hardware and the same memory address space. Thread Level
Parallelism, or TLP, is commonly understood as Parallelism; at the same time,
algorithms that get benefit of TLP are known as Parallel Algorithms. Computer
architectures having TLP capabilities are also known as Parallel Architectures.

From a hardware perspective, Thread Level Parallelism can be exploited in
two different ways. The first usage of TLP is by multiplexing the same hardware
resources to allow several threads to run concurrently (using H/W multithread-
ing, or just multithreading). A second usage of TLP is replicating the different
processor units, or processing cores, and executing one thread in each core. To-
day, a common situation is to have both multiple cores with multithreading

2ILP is also an acronym that stands for Integer Linear Programming, which is a topic stud-
ied in this dissertation. However in this section, ILP stands for Instruction Level Parallelism.
Both acronyms are widely used in their respective communities.

24 CHAPTER 2. BACKGROUND

capabilities.
• Hardware Multithreading requires a lower investment in terms of tran-
sistors, since functional units are shared by different threads. The most
advanced multithreading mechanisms allow several threads to share the
same processor core simultaneously. This mechanism improves the usage
of the computation units, since some threads can issue work to those units
while other threads are waiting due to some dependence situation. It is a
good mechanism to hide the waiting latencies of single threads and keep
busy the CPU with productive work when some threads are waiting.

• Multicore processors are based on the replication of the functional units,
and integrate several complete cores inside the same chip. This implies
that the computational power is multiplied, ideally providing a linear
improvement in the performance as the number of cores running threads
is increased.

Current processors do not divide the execution of a sequential program into
separate execution of independent threads, and future processors are not ex-
pected to do so in the near future. Compilers can automatically parallelize the
execution of a program only on very simple situations and for some code por-
tions. Therefore, parallelization relies most of the time on the programmer,
who has to identify opportunities for exploiting TLP and to actively design and
write programs using explicit operations for thread creation, synchronization,
and communication.

It is not realistic to expect an increase of performance directly proportional
to the number of cores offered by the hardware. There are three main problems
for achieving optimal performance from the parallel execution:

• Amdhal’s law. Every algorithm has a sequential part, i.e. which cannot
be arranged for parallel execution, and according to Amdhal’s law the
sequential part of the algorithm constrains the maximum overall speedup,
following this pattern:

Speedup =
1

(1− p) +
p

s

(2.1)

where p is the fraction of parallel code and s the speedup obtained in this
parallelization.

• Unbalanced parallel work load. Sometimes the amount of work that
must be done by each parallel thread is unbalanced. In this situation, the
execution time of the program will be limited by the execution time of
the slowest thread, which will likely be the thread that is assigned more
work to perform.

• False cache-line sharing. This problem arises when a core writes to a
cached memory area in other thread’s cache, producing an invalidation of

2.1. OVERVIEW OF MODERN COMPUTER ARCHITECTURE 25

that data and a performance degradation.

With all of that, trends in Computer Architecture are to integrate more
cores in processors; for instance the Intel Xeon E5-2698V4 is a general-purpose
processor with 20 cores and able to run up to 40 threads simultaneously. One
architecture that deserves mention is the GPU architecture, which was initially
conceived for graphics operations and nowadays includes thousands of indepen-
dent cores. TLP (or parallelization) has become a very interesting paradigm for
many applications and a challenging way to generate new solving approaches for
already known problems.

Data Level Parallelism (DLP)

DLP is exploited by MIMD and SIMD processors, but is commonly referred as
SIMD (Single Instruction Multiple Data) or also vectorization. In a vectorized
operation, a single instruction is able to perform the same operation to different
elements of a vector. This support for vectorized operations is frequently offered
by means of specialized units. SIMD multiplies the throughput of the opera-
tions, hence speeding up the computation. SIMD capabilities were introduced
as extensions to the Instruction Set Architecture (ISA) of popular processor
architectures, like MMX and SSE for Intel, and AliVec for PowerPC.

The paradigmatic example for SIMD is the vector addition, where elements
of two vectors are added. For instance, if our processor allows 512 bit vector
operations and we require to sum two vectors of 64bit integers, a vectorized code
will end executing 8 times less operations than a regular code.

The vectorization of instructions is responsibility of the programmer with
the assistance of the compiler. Vectorization is usually achieved by decorators
to the language like the use of openMP #pragmas in C or the vector syntax of
Cilk Plus.

2.1.2 Memory Subsystem

The memory subsystem is comparatively slow compared to the processing capa-
bilities. This performance difference has been widening through the last decades
where industry has been able to improve processor performance at a higher rate
than memory performance. This fact is known as the processor-memory perfor-
mance gap. Figure 2.1 shows the growth of the processor-memory gap during
the last decades.

A modern computer has different volatile memory types. From registers,
which are very fast (around 0.25ns-0.5ns access time) but very limited in storage
capacity at a high cost, to the main memory system which is slower (around
50-250 ns access time) but with a very large capacity and much cheaper.

The memory subsystem is organized following a hierarchic structure where
there exist several levels of intermediate memories (memory caches). Caches can
be specialized, (i.e. instruction cache and data cache) or general purpose. The
number of caches depends on every design, but the most typical approach for

26 CHAPTER 2. BACKGROUND

Figure 2.1: Processor-memory Gap. Image from [Hennessy and Patterson, 2011]

a current CPU is to implement two or three levels of cache. As long as more
close to the processor a cache memory is, it has the advantages of less latency
and higher bandwidth, but the drawback of a more limited capacity and higher
price per storage unit.

The cache system is based on the exploitation of the principle of locality,
given the fact that most of the programs manifest some patterns when accessing
data. We distinguish two types of locality:

• Temporal locality: Data fetched from memory is very likely to be accessed
again in the near future.

• Spatial locality: Data which is close in memory is frequently accessed close
in time.

The information is transferred between the different memory levels in blocks
named cache lines. Cache lines are the minimum unit to be read or written
from/to memory and it is a few bytes long (nowadays the standard is 64 bytes).

From a hardware perspective, caching data for reading is quite easy. The
cache system knows which blocks of data are in every specific cache and when
they are going to be replaced they are simply released and overwritten. By
the contrary, write operations are more problematic since they introduce a dis-
crepancy of the data stored in the cache and the data stored in higher levels
of memory. In a single-core processor, the problem is not very dramatic, since
the update in the cache system after a write operation can be consolidated to
the main memory either using a write-through policy (store operation is sent to
cache and to the main memory at the same time) or a write-back policy (the

2.1. OVERVIEW OF MODERN COMPUTER ARCHITECTURE 27

CPU

L1
data

L1
instr

L2 L3

CACHE SYSTEM

DRAM

MEMORY SYSTEM

FASTER SLOWER

Figure 2.2: A typical mono-processor cache system

actual store to main memory is done when the block is released from cache).

In multicore systems, every core has its own private L1 and/or L2 cache.
Data can be cached at different core’s private cache at the same time, therefore
there is a need to establish mechanisms able to ensure the cache coherence in
all the system. There are different hardware techniques to keep the coherence
between caches: one option is to invalidate every updated cache line in every
foreign cache; another option is to notify other cores’ caches about the change.

TLP has other major implications in the memory system. For the program-
mer, the most relevant consideration is that threads can be executed in any
order, and there is no hardware synchronization between threads. Hence if some
data is used by different threads, it is the programmer’s responsibility to ensure
that the result will be correct. This can be done either by restructuring the
code to avoid conflicting situations, or by using primitives offered by the oper-
ating system to establish atomic operations or mutual exclusion zones, with the
corresponding impact in the performance.

2.1.3 What Can a Software Architect Do?

Both the use of different levels of parallelism by of a program and the design
of the data structures that are stored in memory and the access pattern to
these data have a substantial impact in the execution performance. The soft-
ware architect obtains benefits from many of the improvements in computer’s
architecture for free.

Nonetheless, programming languages and compilers do not offer the complete
support to squeeze hardware capabilities. It requires a knowledge of the actual

28 CHAPTER 2. BACKGROUND

hardware executing and a right characterization of the executed code. Soft-
ware architects carry out performance engineering thanks to the adoption of a
methodology. We provide a brief description of key aspects of such methodology.

Code profiling. A profiler is a tool that generates execution reports. It
can be very useful since it helps to discover which are the portions of code that
are being executed the most and underline which are the critical parts of the
code to optimize. For example, if 90% of the execution time is devoted inside a
single function, it is worth to concentrate efforts in optimizing the execution of
that particular function.

Use Thread Level Parallelism. TLP should be used at the higher level
possible, parallelizing big chunks of execution. Depending on the problem, this
parallelism could be hard to exploit. The ideal situation is to make every thread
work with a disjoint set of data. In the most complex scenario, where using
disjoint data is not possible, threads should be as much self-dependent as they
can.

There exist two programming models that are able to express parallelism:

• Message Passing: Every thread has a private memory and threads
share information using explicit messages. The main advantage of this
paradigm is that it can be used both in multicore environments and also
in distributed systems with separate memory address spaces. It can be
useful when different threads do not need to share a large amount of data.
Typically message passing application threads work with disjoint sets of
data. There exists a standardization of message primitives [Forum, 1993].

• Shared memory: All the threads share the same memory space. Threads
have access to the same memory positions and the programmer must deal
with dependencies, data conflicts, race conditions and deadlocks. The
main advantages of this paradigm are the higher performance achieved by
very fast communication and the possibility to include parallelism in the
code in an incremental way. A standard API for parallelism is OpenMP
[Dagum and Menon, 1998].

Analyze memory access pattern and choose the right data repre-
sentation. Data access is critical for applications, and the software designer
should design the data representation so it can be accessed satisfying as much
as possible the principles of spacial and temporal locality. Thus, maximizing
the data re-use and promoting sequential access. A useful resource provided by
the processor is the set of performance counters, providing information about
Cache Hits and Misses.

2.2. COMBINATORIAL OPTIMIZATION 29

Check the output of the compiler. Modern compilers provide infor-
mation about code optimization. Examining the output of the compiler can
provide valuable information of the optimization techniques applied to the
code. Information such as vectorization, loop unrolling or code transformations
are shown to the developer. A useful information is the problems preventing
from performing certain optimizations; this can help the developer to adjust or
improve the code in order to allow the compiler to do a better job.

Choose a compact representation. Using a compact representation in
programs with high memory footprint helps to increase data access bandwidth
in certain circumstances. The case of sparse matrix calculations is paradigmatic.

Identify bottlenecks. Thanks to profiling tools such as Linux kernel
perf tools or Intel R© VTune TMit is possible to inspect hardware counters and
identify the bottlenecks of an application.

Use less instructions. This might look obvious, but a program that exe-
cutes less instructions is -as a general rule- faster than a program that executes
more instructions.

2.2 Combinatorial Optimization

Combinatorial optimization is a topic that consists of finding a set of objects
from a finite set subject to some constraints and where a certain objective
function is optimized.

A generic Combinatorial Optimization problem has:

• A finite set A.
A = {1, 2, . . . , n}

• Weights (costs) defined as cj for all j ∈ A.
• A set F of feasible subsets of A.
• an optimization function

minF⊆A

⎧⎨
⎩
∑
j∈S

cj : S ∈ F

⎫⎬
⎭ .

30 CHAPTER 2. BACKGROUND

This topic is a subset of mathematical optimization where the combinatorial
term indicates that the optimization is applied in the discrete domain.

Combinatorial Optimization is also refereed in the literature as discrete or
integer optimization [Nemhauser and Wolsey, 1988]. Although other classifica-
tions consider both Combinatorial Optimization and Integer Programming a
subset of Discrete Optimization [Hammer et al., 2000].

Essentially, the three topics are very interleaved and the different nomen-
clatures come from facing the optimization problem from different perspectives.
While Combinatorial Optimization emphasizes either the combinatorial origin,
formulation or solution algorithm of a problem; Discrete Optimization empha-
sizes the difference to continuous optimization. Integer Programming emphasizes
the usage of integer valued variables in the formulation or the solution.

Combinatorial Optimization is a wide topic with a large and diverse appli-
cability to real world problems. The most classical and exemplified applications
belong to the domains of scheduling, planning, or packing. A collection of rele-
vant and paradigmatic examples of applications are discussed in [Paschos, 2013].
Nonetheless, optimization problems involving non divisible entities (i.e. people,
objects, spaces, resources and more besides) are the objects of applicability of
Combinatorial Optimization techniques, hence everyday widening applicability.
As a little example, only in the area of Artificial Intelligence, Combinatorial
Optimization is applied to solve problems in different research lines including
agents, machine learning, auction theory or natural language processing.

One of the main characteristics of the Combinatorial Optimization instances
is its hardness. The combinatorial behaviour of this family of problems comes
with an enormous space of solutions. In many cases the combinations are too
high that it is not assumable to process all the space of solutions along with it
is not realistic to target the optimal solution. There is a large body of research
presenting techniques to obtain reasonable solutions dodging the fact that in
many cases it is not assumable to reach the optimal. Instead of finding the
optimal, different methods do “the best they can do” given some computational
resources and time.

We find three different approaches to tackle Combinatorial Optimization
problems:

• Find the optimal solution. Where an algorithm runs until it finds a
solution, providing or not intermediate results.

• Find a sub-optimal solution. Where an algorithm run-time is usually
limited by some constraint (typically the run-time). Algorithms of this
class provide a solution with or without measure of quality. They also
may find the optimal even the may not be able to prove it.

• Find an approximate solution. Approximate algorithms are applied

2.2. COMBINATORIAL OPTIMIZATION 31

to find a quick approximation. In general it is done by solving the Linear
Relaxations of the problem. The approximate solution is useful as a bound
or as an heuristic.

2.2.1 Methods Solving Combinatorial Optimization Prob-
lems

The complexity of Combinatorial Optimization Problems is variable. This is
because the problem’s structure of constraint varies depending on the problem
itself.

As long as an algorithm is able to take profit of the particularities of a
particular structure, the complexity varies. Recall that the complexity of a
problem is defined by the lowest complexity of the set of algorithms solving that
problem.

In [Ausiello et al., 2012] there is an extensive study of the different catego-
rizations of complexity. This study is complemented with an online resource
[Kann, 2009] where one can track algorithmic advances for each problem type.
In practice, many of the different Combinatorial Optimization problems fall in
the class of NP-hard or NP-complete.

The most naive approach to solve a Combinatorial Optimization problems is
the enumeration of solutions. Since the solutions belong to the discrete domain
–hence they are enumerable– and we have already an evaluation function by
definition, a simple enumeration and evaluation of all the solutions leads to
find the optimal. This strategy is obviously very expensive since the number of
possible solutions trends to be very large.

According to [Paschos, 2012], there are two classical algorithmic approaches
to solve the Combinatorial Optimization problems: Dynamic Programming
[Bellman, 1954] and Branch and Bound [Land and Doig, 1960b].

Dynamic Programming

Dynamic Programming is a special type of enumeration that avoids work by
breaking down the problem into a sequence of problems, then establishing
a recurrence link between their optimal solutions to build up the solution.
This quite general strategy was first proposed by Bellman back in the 1950’s
[Bellman, 1954]. It is guaranteed to find the optimal solution but needs the
complete execution of the algorithm to provide it.

32 CHAPTER 2. BACKGROUND

Figure 2.3: Linear Programming relaxation.

Branch-and-bound

Branch-and-bound explores the space of solutions. It uses bounds to cut the
exploration of some paths and also uses an heuristic to guide the search more
efficiently. Branch-and-bound algorithms are usually faster than Dynamic Pro-
gramming as long as they have a good heuristic and they are able to compute
good bounds. The search space is reduced as long as good is the bound we
are able to compute. There is an enormous corpus of research regarding the
three structural components of Branch-and-bound: different ways to compute
bounds; a very large number of proposed heuristics and meta-heuristics; new
ways of branch scheduling.

With regards to our work, we focus our attention on the bounding mecha-
nism.

2.2.2 Bounding

In search, bounding is done with the aim of skipping work. The bounding is
carried out thanks to the ability to over-estimate partial solutions quickly. And
solutions can be over-estimated by transforming the Combinatorial Optimization
problem into an regular less-constrained optimization problem, which is simpler
to solve.

The classical yet powerful standard method to relax the problem is the known
as Linear Programming (LP) relaxation, which consists in removing the integral-
ity constraint.

Figure 2.3 shows the space of solutions for a given Combinatorial Optimiza-
tion problem, where all the solutions are the dots inside the polygon with solid
lines. The LP relaxation defines a new problem where the space of solutions is
any point contained in the area delimited by the dotted line. Now solutions are

2.2. COMBINATORIAL OPTIMIZATION 33

no longer discrete points. Instead, solution is any point of the new defined area
and it can be approximated using poligonometrics calculations.

In practice the industry has very powerful tools able to solve LP relax-
ations such as IBM ILOG CPLEX Optimization suite [Ibm, 2011] or GUROBI
[Optimization, 2017]. They provide efficient implementations of classical algo-
rithms such as Simplex and Barrier. They conform the state-of-the-art in opti-
mization and carry a large history of success being the reference to benchmark
new algorithmic proposals. Although being fairly general purpose algorithms,
both commercial solvers perform really well on many domains, becoming a stan-
dard solution for any kind of optimization problems. The drawbacks of such
programs is that they are quite general and do not exploit the particularities of
specific problems.

Convex Optimization

When the linear problem is big enough, i.e. having thousands of variables and
tens of thousands of constraints, finding the result of an LP relaxation using
classic methods is computationally expensive.

In the last decades, there is a growing interest in convex optimization prob-
lems, which is a super class of Linear Programming. And more recently there is
a family of algorithms known as “Proximal algorithms” that have been proven
to be very successful when solving large-scale optimization problems.

(..) convex optimization problems (beyond least-squares and linear
programs) are more prevalent in practice than was previously thought.
Since 1990 many applications have been discovered in areas such as
automatic control systems, estimation and signal processing, com-
munications and networks, electronic q circuit design, data analysis
and modeling, statistics, and finance. Convex optimization has also
found wide application in combinatorial optimization and global opti-
mization, where it is used to find bounds on the optimal value, as well
as approximate solutions. We believe that many other applications
of convex optimization are still waiting to be discovered.

[Boyd and Vandenberghe, 2004]

The key concept of the proximal algorithms is precisely their ability to face
very big problems, they are able to do so by splitting the problem in many small
pieces that can be solved using generic optimization methods.

The Alternate Direction Method of Multipliers (ADMM) is a proximal algo-
rithm developed in the 1970s [Gabay and Mercier, 1976a], and is closely related

34 CHAPTER 2. BACKGROUND

to many other algorithms, such as belief propagation, dual decomposition, the
method of multipliers, and others.

ADMM was developed so early that there were hardly use cases for it. Nowa-
days, with the needs of the Big Data era, this algorithm have been proved useful
to many applications, including data processing [Boyd et al., 2011], natural lan-
guage processing [Rush and Collins, 2012], vision [Chan et al., 2017], and oth-
ers.

ADMM is an algorithm that solves a problem of the form:

minimize f(x) + g(z)

subject to Ax+Bz = c

with variables x ∈ R
n and z ∈ R

m, where A ∈ R
p×n, B ∈ R

p×m, c ∈ R
p, and

the functions f and g are convex. The main difference of this formulation with
respect to a generic Optimization Problem is that the set of variables is divided
in two, i.e. x and z, with the objective function separable across this splitting.

ADMM is an iterative algorithm that in every iteration performs a x-
minimization step and a z-minimization step, followed by dual variable update
according the Augmented Lagrange Method of Multipliers [Hestenes, 1969]. Up-
dates on x and z are performed alternatively, hence the name of Alternate Di-
rections.

Very recently, a variation of ADMM known as AD3 [Martins et al., 2014] has
been proposed as an approximation algorithm with good theoretical properties
and advantages over ADMM:

• It is formally proved that it can run in parallel .
• It has a library of specific factors (functions), that can represent different
types of constraints.

• It reaches consensus faster because the global state is notified to each
sub-problem.

2.3 Analysis

Against this background we observe that Combinatorial Optimization is a large
topic with high applicability to real world problems. Above the different tech-
niques, commercial of-the-shelf products such as IBM CPLEX and GUROBI are
very efficient and they are the industry standard. Although both IBM CPLEX

2.3. ANALYSIS 35

and GUROBI target general-purpose optimization problems, they are very effi-
cient and used widely in the industry.

Recent research in combinatorial optimization has shown how new techniques
are very useful when targeting selected problems. At the same time, today com-
puters are everyday more powerful but also more complex. However performance
engineering considerations are largely ignored by the combinatorial optimization
community.

We show how a better use of the computational resources can move one
step forward in the performance execution of selected instances of combinatorial
optimization problems.

Chapter 3

Building an efficient and
parallel DP/IDP

3.1 Chapter Overview

In this chapter we tackle the optimization of the algorithms able to solve the
Coalition Structure Generation using a Dynamic Programming strategy. Dy-
namic Programming strategy follows a brute-force approach, where all the pos-
sible solutions are evaluated.

This strategy has advantages and drawbacks. The main advantage is that this
algorithm running time is not sensible to data input structure, therefore when
there is not a defined pattern or distribution in the data, this algorithm is a safest
choice. By the contrary other algorithms like IP [Rahwan et al., 2007], or D-IP
[Michalak et al., 2010] are able to exploit data structure to reduce execution
times, but in worst-case scenario their performance is dramatically worst.

As proposed in D-IP [Michalak et al., 2010], where a distributed anytime al-
gorithm is presented, in this chapter we present an algorithm able to exploit the
power of distribution but using a different paradigm. Our proposal is building a
IDP based algorithm able to run in a shared memory scenario, which is common
in nowadays computers [Sutter, 2005]. Using a shared memory paradigm sim-
plifies the communication between computation nodes, since there is no need to
send messages between them, but it requires a data dependence study, because
of possible synchronization.

As far as we are concerned, no reference implementation neither of DP nor
IDP algorithms has been published. Also there is not any version able to run in

37

38 CHAPTER 3. BUILDING AN EFFICIENT AND PARALLEL DP/IDP

parallel. We have found, though, non-negligible issues on the algorithmic details
that have a considerable impact on the overall performance.

The contributions of this work can be summarized as:

• We analyze and evaluate fast methods for generating splittings, the most
critical operation, establishing that a bad choice can degrade performance
by 10x or more.

• We parallelize the generation of splittings and execute the problem on a
shared-memory, multi-core, multi-thread and multi-processor system.

• We identify the main performance bottleneck: both the sequential and
parallel execution are limited by the lack of temporal and spatial locality
of the memory access pattern, and by the weak support for irregular and
scattered accesses provided by current memory hierarchies.

• We find out that the performance advantage of IDP versus DP is only re-
alized for large problems, when reducing memory bandwidth requirements
pay off.

• We make our code publicly available at the following URL:
https://github.com/CoalitionStructureGeneration/DPIDP.

The rest of the chapter is organized as follows. First we present an introduce
the background that frames the Coalition Structure Generation Problem. Then
we show how this problem is tackled by Dynamic Programming algorithms.
Thereafter we show details of our optimizations in sequential and propose a
method to parallelize DP/IDP. Finally we end with an experimentation section
where we characterize the algorithm performance.

3.2 Coalition Formation

The multi-agent systems research field belongs to the artificial intelligence area
where agents are autonomous software entities coexisting in a closed system.
Agents have an individual vision of their environment and they have their our
goals, preferences, beliefs and capabilities [Shoham and Leyton-Brown, 2008].

Agents are able to interact with other agents in order to satisfy its own
goals. In fact, one of the key aspects of the multi-agents research field is the
ability of the agents to communicate between themselves in order to satisfy their
individual or collective objectives. Collaboration can be useful if the agents are
cooperative where they pursue a shared goal but also if they are selfish, since
their own goals may exceed agent sole capabilities.

Agents collaborate following different paradigms, every one has its strengths
and weaknesses [Horling and Lesser, 2004]. One of the paradigms of major suc-
cess is the formation of coalitions where a group of agents establish a collabora-

3.3. KEY DEFINITIONS 39

tion in order to satisfy a common objective for a given period of time.

Coalition Formation is a potential method for face a substantial scope of
applications including distributed vehicle routing [Sandholm and Lesser, 1997],
cooperative transmission in wireless networks [Han and Poor, 2009], task allo-
cation [Shehory and Kraus, 1998], among many others.

According to [Sandholm and Lesser, 1997] the coalition formation process
involves three main activities.

• The Coalition Structure Generation. All the agents are grouped in teams
forming a structure of exhaustive and disjoints groups where all the mem-
bers of a group collaborate to reach a given goal. Some coalitions are pre-
ferred than others and they are scored in order to evaluate them. Scores
can be defined by a designer of the system or by the agents themselves.
An optimal Coalition Structure is a structure that maximizes the global
score of the every all the possible coalitions.

• Solving the optimization problem in every coalition. The agents members
of a coalition start to collaborate to solve a specific problem. There is no
collaboration with agents outside the coalition.

• Dividing the reward of every coalition. Members of a coalition get benefit of
the coalition gain reached thanks to the coalition. This gain can be evenly
distributed among agents or with an agreed distribution in advance.

The Coalition Structure Generation is a computational-intense process that
can be modeled as a cooperative game. If the valuations of every coalitions is
influenced by the rest of coalitions, then the model is based on partition function
games [Thrall and Lucas, 1963] if by the contrary, valuations depends only on
the members of each coalition, then this situation is modeled as a characteristic
function game.

We tackle the Coalition Structure Generation Problem as characteristic func-
tion game. In particular we are interested in optimizing exact algorithms able
to solve the Coalition Structure Generation. This problem is equivalent to the
Complete Set Partitioning [Lin, 1975], it is also identical to the Winner Deter-
mination Problem in Combinatorial Auctions [Lehmann et al., 2006].

3.3 Key Definitions

Let us define some role-playing entities involved in the Coalition Structure
Generation process for multi-agent systems.

• Agent (ax): A single agent. E.g. Ann or Bob.

40 CHAPTER 3. BUILDING AN EFFICIENT AND PARALLEL DP/IDP

• Agent Set (A): The set of all available agents. A = {a1, a2, . . . , an}.
E.g. A= {Ann, Bob, Chris, Dave}.

• Coalition (C): C ⊆ A. C is a subset of A that contains the agents
participating in a coalition.
E.g. C= {Ann, Chris, Dave}.

• Split : Is the operation performing a binary partition of a coalition.
E.g. {Ann,Chris,Dave} → ({Ann},{Chris,Dave}).

• Splitting : Is the result of the split operation. A splitting is a 2-tuple
represented by (C1, C2). C=C1 ∪ C2 where |C1|,|C2| >0, C1 ∩ C2=∅.
E.g. ({Ann},{Chris,Dave}) or ({Ann,Chris},{Dave}).

• Coalition Structure (CS): Is a collection of disjoint Coalitions such that
their union constitute the Agent Set.
E.g. ({Ann},{Bob},{Chris,Dave}).

• The evaluation function of a single coalition (v(C)), or simply the
value of a coalition: Is a function returning a value representing the reward
of this coalition. We will assume that this function reads values from a
table.

• The evaluation fucntion of a CS (V(CS)), or the value of a CS. Is a
fucntion returning a value representing the reward of a coalition structure.
It is computed by adding the values of all the CS member coalitions.

• The set of all possible CSs (ΠA): Is a set that contains all the possible
coalition structures over the Agent Set.

The Coalition Structure Generation problem is formally defined as the prob-
lem of finding a Coalition Structure (CS) over the Agents (A) with maximal
value. This maximal CS is named optimal and it is denoted by CS*.

CS∗ = argmaxCS∈ΠAV (CS) (3.1)

the value of a given CS is determined by the value of all included coalitions.

V (CS) =
∑

C∈CS

v(C) (3.2)

As an example, consider an agent set of size 4 whose agents are A={a1,a2,. . . ,
an}. Agents can establish coalitions with other agents in order to perform a task.
Every possible coalition has a particular value associated, those values are shown
in the table 3.1. The goal of the CSG problem is to find the coalition structure
providing maximum global satisfaction. From Table 3.1 one can notice that the
coalition formed by {a2,a3} has lower value than the sum of v({a2}) and v({a3}),
meaning that agents a2 and a3 prefer to work alone rather than collaborate. Just

3.4. ALGORITHMS TO SOLVE THE CSG 41

looking at the values on the table one can realise the difficulty of the problem,
even for this moderated size.

C v(C)

{a1} 33
{a2} 39
{a3} 13
{a4} 40

{a1,a2} 87
{a1,a3} 87
{a1,a4} 70
{a2,a3} 36
{a2,a4} 52
{a3,a4} 67

{a1,a2,a3} 97
{a1,a2,a4} 111
{a1,a3,a4} 100
{a2,a3,a4} 132

{a1,a2,a3,a4} 151

Table 3.1: Coalition values for a CSG problem of size 4.

3.4 Algorithms to Solve the CSG

Combinatorial Optimization problems contain solutions belonging to the discrete
space. This imply that every possible solution can be enumerated and evaluated.
Therefore the most simple -and inefficient- approach to solve the problem is a
brute-force algorithm that explores all the possible partitions of the Agent Set
in Coalition Structures. Unfortunately the number of possible CS is a very large
number known as bell number and denoted by Bn, satisfying the inequation:

αnn/2 ≤ Bn ≤ nn (3.3)

where n is the number of agents and α is a positive constant
[Sandholm et al., 1999].

3.4.1 Dynamic Programming Algorithms

Dynamic Programming algorithms are able to reach the optimal solution per-
forming an exhaustive search of the space of solutions. Several algorithms fol-
lowing a Dynamic Algorithms strategy has been proposed so far.

42 CHAPTER 3. BUILDING AN EFFICIENT AND PARALLEL DP/IDP

The first Dynamic Programming algorithm able to solve the Coalition Struc-
ture Generation problem was the DP algorithm [Yun Yeh, 1986].

3.4.2 DP Algorithm

The DP [Yun Yeh, 1986] algorithm uses Dynamic Programming to find the op-
timal solution of the problem. For a given input data, DP first evaluates all
the possible coalitions of size 2. For each possible pair of agents ax and ay, DP
evaluates if it is better to form a coalition or not. This is done by comparing
value[{ax ,ay}] with value[{ax}]+ value[{ay}]. The maximum value represents
the preferred formation and substitutes the previous value[{ax, ay}].

After evaluating all coalitions of size 2, DP starts evaluating all possible
coalitions of size 3, saving the maximum between value[{ax, ay, az}] and all its
possible splittings. There are three ways to split the coalition: {ax, ay}+{az},
{ax, az}+{ay} and {ax}+{ay, az}. Note that all the splittings for coalitions
of size 3 have at most 2 elements. Since DP evaluates the coalitions of size
3 after evaluating and finding optimal values for coalitions of size 2, the new
coalition values computed for size 3 will also be optimal. This process is repeated
increasing the size of the coalitions (m).

Algorithm 1 Pseudo-code of the DP Algorithm

1: for m = 2 → n do
2: for C ← coalitionsOfSize(m) do �

(
n
m

)
iterations

3: max value ← value[C]
4: C1 ← getF irstSplit(C)
5: while (C1) do � 2n−1 − 1 iterations
6: C2 ← C − C1

7: if (max value < value[C1] + value[C2] then
8: max value ← value[C1] + value[C2]
9: end if

10: C1 ← getNextSplit(C1)
11: end while
12: value[C] ← max value
13: end for
14: end for

The DP algorithm (see Algorithm 1) is composed of three nested loops: (i)
the outer loop (line 1), where coalition size (m) grows from 2 to the total number
of agents (n), (ii) the intermediate loop (line 2), where all coalitions of size m are
generated, a total of

(
n
m

)
, and (iii) the inner loop (line 5), where each coalition

is split and evaluated, a total of 2m−1 − 1 splittings. The temporal complexity
of the DP algorithm is determined by these three loops: Θ(3n).

Table 3.2 shows a trace of the DP algorithm for a problem of size 4. Where

3.4. ALGORITHMS TO SOLVE THE CSG 43

C
oa
li
ti
o
n
si
ze

C
oa
li
ti
o
n

C
oa
li
ti
o
n

S
p
li
tt
in
g
s

V
a
lu
e
o
f

S
to
re
d
va
lu
e

se
le
ct
io
n

G
en
er
a
ti
o
n
(A

)
V
a
lu
e
(v
[A

])
G
en

er
a
ti
o
n

sp
li
tt
in
g
s
(v
s)

m
a
x
(v
[A

],
v
s)

m
=
2

{a
1
,a

2
}

87
{a

1
},{

a
2
}

v
[{a

1
}]+

v
[{a

2
}]=

7
2

87
{a

1
,a

3
}

87
{a

1
},{

a
3
}

v
[{a

1
}]+

v
[{a

3
}]=

4
6

87
{a

1
,a

4
}

73
{a

1
},{

a
4
}

v
[{a

1
}]+

v
[{a

4
}]=

7
3

73
{a

2
,a

3
}

36
{a

2
},{

a
3
}

v
[{a

2
}]+

v
[{a

3
}]=

5
2

52
{a

2
,a

4
}

52
{a

2
},{

a
4
}

v
[{a

2
}]+

v
[{a

4
}]=

5
3

53
{a

3
,a

4
}

67
{a

3
},{

a
4
}

v
[{a

3
}]+

v
[{a

4
}]=

5
3

67

m
=
3

{a
1
,a

2
,a

3
}

97
{a

1
},{

a
2
,a

3
}

v
[{a

1
}]+

v
[{a

2
,a

3
}]=

8
5

97
{a

2
},{

a
1
,a

3
}

v
[{a

2
}]+

v
[{a

1
,a

3
}]=

1
2
6

1
2
6

{a
3
},{

a
1
,a

2
}

v
[{a

3
}]+

v
[{a

1
,a

2
}]=

1
0
0

1
2
6

{a
1
,a

2
,a

4
}

11
1

{a
1
},{

a
2
,a

4
}

v
[{a

1
}]+

v
[{a

2
,a

4
}]=

9
8

1
1
1

{a
2
},{

a
1
,a

4
}

v
[{a

2
}]+

v
[{a

1
,a

4
}]=

1
1
2

1
1
2

{a
4
},{

a
1
,a

2
}

v
[{a

4
}]+

v
[{a

1
,a

2
}]=

1
2
7

1
2
7

{a
1
,a

3
,a

4
}

10
0

{a
1
},{

a
3
,a

4
}

v
[{a

1
}]+

v
[{a

3
,a

4
}]=

1
0
0

1
0
0

{a
3
},{

a
1
,a

4
}

v
[{a

3
}]+

v
[{a

1
,a

4
}]=

1
1
2

1
1
2

{a
4
},{

a
1
,a

3
}

v
[{a

4
}]+

v
[{a

1
,a

3
}]=

1
2
7

1
2
7

{a
2
,a

3
,a

4
}

13
2

{a
2
},{

a
3
,a

4
}

v
[{a

2
}]+

v
[{a

3
,a

4
}]=

1
0
6

1
3
2

{a
3
},{

a
2
,a

4
}

v
[{a

3
}]+

v
[{a

2
,a

4
}]=

7
8

1
3
2

{a
4
},{

a
2
,a

3
}

v
[{a

4
}]+

v
[{a

2
,a

3
}]=

9
2

1
3
2

m
=
4

{a
1
,a

2
,a

3
,a

4
}

15
1

{a
1
},{

a
2
,a

3
,a

4
}

v
[{a

1
}]+

v
[{a

2
,a

3
,a

4
}]=

1
6
5

1
6
5

{a
2
},{

a
1
,a

3
,a

4
}

v
[{a

2
}]+

v
[{a

1
,a

3
,a

4
}]=

1
6
6

1
6
6

{a
3
},{

a
1
,a

2
,a

4
}

v
[{a

3
}]+

v
[{a

1
,a

2
,a

4
}]=

1
4
0

1
6
6

{a
4
},{

a
1
,a

2
,a

3
}

v
[{a

4
}]+

v
[{a

1
,a

2
,a

3
}]=

1
6
6

1
6
6

{a
1
,a

2
},{

a
3
,a

4
}

v
[{a

1
,a

2
}]+

v
[{a

3
,a

4
}]=

1
5
4

1
6
6

{a
1
,a

3
},{

a
2
,a

4
}

v
[{a

1
,a

3
}]+

v
[{a

2
,a

4
}]=

1
5
2

1
6
6

{a
1
,a

4
},{

a
2
,a

3
}

v
[{a

1
,a

4
}]+

v
[{a

2
,a

3
}]=

1
2
5

1
6
6

T
ab

le
3.
2
:
T
ra
ce

o
f
ex
ec
u
ti
o
n
o
f
a
p
ro
b
le
m

o
f
si
ze

4
.

44 CHAPTER 3. BUILDING AN EFFICIENT AND PARALLEL DP/IDP

the optimal coalition structure have a value of 166 units. Finding what are
the members of the coalition structure can be retrieved navigating backwards.
Starting for the bigger size split, we know that best splitting of the last level is
{{a2},{a1,a3,a4}}. From there we inspect the two members of the splitting. i.e.
{a2} and {a1,a3,a4}. The first member is a size-one coalition, thus is already
optimal meanwhile the second one has three members. So we will need to look
at the splittings of this particular coalition. Looking at the table we see that the
best splitting {a1,a3,a4} is {{a4},{a1,a3}}. Now we have again two members
of the splitting, but both are optimal. So the best coalition structure will be
{{a2},{a4},{a1,a3}}

3.4.3 IDP Algorithm

While DP generates all the possible splittings of each coalition, IDP
[Rahwan and Jennings, 2008b] introduces conditions to avoid the generation and
evaluation of a large amount of splittings. The performance advantage of IDP
is a reduction in the total number of operations and memory accesses. Overall,
IDP explores only between 38% and 40% of the splittings explored by DP for
problems from 22 to 28 agents. Algorithm 2 presents the pseudo-code of IDP,
where the main changes are the filters introduced on lines 4 and 6.

Algorithm 2 Pseudo-code of the IDP Algorithm

1: for m = 2 → n do
2: for C ← coalitionsOfSize(m) do �

(
n
m

)
iterations

3: max value ← value[C]
4: (lower bound, high bound) ← IDPBounds(n,m)
5: C1 ← getF irstSplit(C, lower bound)
6: while (sizeOf(C1) ≤ high bound do
7: C2 ← C − C1

8: if (max value < value[C1] + value[C2] then
9: max value ← value[C1] + value[C2]

10: end if
11: C1 ← getNextSplit(C1, C)
12: end while
13: value[C] ← max value
14: end for
15: end for

3.5 Single-Thread Implementation

In this section we analyze the operations of generating and evaluating splittings
inside the inner loop, which consumes ≈ 99 % of the execution time. We com-

3.5. SINGLE-THREAD IMPLEMENTATION 45

pare two suitable options and analyze their performance and the impact of the
memory access pattern.

3.5.1 Data Representation

The coalitions and their associated values are stored in a vector. A coalition
is represented using an integer index where the bit at position x of the index
indicates that agent x is a member of the coalition. The index determines the
vector element containing the coalition value. Using this representation, the
input of the CSG problem fits into a vector of 2n − 1 positions. With coalitions
represented by 4-byte words, we can run problems up to 32 agents.

3.5.2 Splitting Generation

The splitting generation problem can be reduced to the subset enumeration
problem, since each coalition splitting is composed by a subset, C1, and its
complementary, C2. Generating all the subsets C1 from a coalition C and then
calculating the complementary C2 = C − C1, though, would produce the same
splitting twice: once for each of the splitting subsets. We remove one element
from the coalition (the agent with the highest rank) when performing the subset
enumeration, so that the removed element is never part of the enumerated subset
and always belongs to its complementary.

There exist several ways of enumerating subsets [Loughry et al., 2000], like
banker’s sequence, lexicographical order, and gray codes. The banker’s sequence
seems a suitable option for IDP, since it generates the splittings in growing
order of |C1|, and then simplifies the filtering of splittings by its size. Figure
3.1a shows a scheme of the banker’s sequence operation for C={a1,a4,a5,a6,a7},
and assuming that only coalitions with |C1|=2 need to be evaluated. Note that
element a7 is always assigned to the complementary subset (lighted colour). The
generation starts directly from the first splitting of size |C1| = 2, follows with
the remaining

(
4
2

)− 1 subsets of the same size, and stops before generating the
first subset of size 3. The code does not waste instructions generating useless
subsets.

When generating splittings in lexicographical order (see Fig. 3.1b), some
filtering code is required to check that the size of the splitting ranges between a
given pair of bounds. Execution resources are wasted to generate splittings that
are then discarded, and to perform the filter check. In Fig. 3.1, only 6 out of 14
splittings are actually needed (note the check and discard crossed signs).

Both methods were implemented using recurrent functions that calculate the
next splitting from the previous one. The lexicographical order was implemented

46 CHAPTER 3. BUILDING AN EFFICIENT AND PARALLEL DP/IDP

Figure 3.1: a) Banker’s sequence versus b) lexicographical order.

3.5. SINGLE-THREAD IMPLEMENTATION 47

with a few number of very simple operations: C1 ← (C1 + C∗∗) AND C, where
C∗∗ is the two’s complement of C, that can be precalculated for all the split-
tings of a given coalition. The whole splitting code requires only few machine
code instructions in a current x86 ISA. On the other hand, our implementa-
tion of banker’s sequence, an improved version of the algorithm published in
[Loughry et al., 2000], required, on average, 6 times more instructions. More
details about the implementation, like the usage of a special population count
instruction for computing |C1|, can be found in the published code.

.L72:

01 addl %r10d, %edx

02 movl %eax, %ecx

03 andl %eax, %edx

04 subl %edx, %ecx

05 movslq %edx, %r9

06 movslq %ecx, %rcx

07 movl (%r8,%rcx,4), %ecx

08 addl (%r8,%r9,4), %ecx

09 cmpl %ecx, %esi

10 cmovl %ecx, %esi

11 addl $1, %edi

12 cmpl %r13d, %edi

13 jbe .L72

3.5.3 Memory Accesses

All memory accesses correspond to reads from the vector of coalition values
performed in the inner loop of the algorithm, and a few writes on the intermediate
loop. The total number of data read operations done by the DP algorithm is
around 2×3n. As explained above, IDP evaluates only a subset of the splittings,
corresponding to 38%-40% of the read operations performed by DP.

The memory-level parallelism of the algorithm is moderate. The inner loop
recurrence can generate multiple independent read requests, without having to
wait for data, subject to storage availability for pending requests and for the
window of instructions blocked on those data.

The data-reuse degree of the algorithm is high. There are 2n elements in
the value vector, and so the average number of reads to the same data item is
≈ 2×(3/2)n (≈100, 000 for n = 27). However, accesses to the same item are
scattered in time, specially when the algorithm analyzes medium- or large-size
coalitions. The combinatorial nature of the problem involves a pseudo-random

48 CHAPTER 3. BUILDING AN EFFICIENT AND PARALLEL DP/IDP

read access pattern, where reads that are consecutive in time refer to data from
distant positions in memory.

The bad performance behavior of the memory access pattern arises for vectors
that do not fit into the processor’s cache. The vector size is 2n+2 bytes, which is
16 MBytes for n=22. For larger n’s an important amount of vector accesses will
miss the cache and will request a full 64-Byte cache block to DRAM. This creates
both latency and bandwidth problems. The moderate memory-level parallelism
helps hiding part of the DRAM latency but, as we will show later, an important
amount of this latency is exposed in the execution time. Also, given the lack
of spatial locality, most of the 64-Byte block read from DRAM will be unused.
In the worst situation, only 4 Bytes out of 64 will be used, giving a bandwidth
efficiency of 1/16= 0.0625.

3.6 Multi-thread Implementation

This section analyzes the algorithm’s data workflow in order to find its potential
thread-level parallelism (TLP). Exploiting concurrency efficiently is not straight-
forward, and a new method to generate coalitions is devised. Finally, potential
performance problems are described.

3.6.1 Identifying Sources of TLP

The simplest and most efficient approach is always to parallelize the outer loop
of a program. DP and IDP, though, exhibit loop-carried dependencies on the
outer loop: the optimal values for coalitions of size m must be generated before
using them for generating the optimal values for coalitions of size m+ 1.

The intermediate loop generates all the coalitions of a given size, and for each
coalition it analyzes all the splittings of certain sizes. Tasks corresponding to
coalitions are independent: they only modify the value associated to the coali-
tion, and only read values corresponding to coalitions of lower size. Therefore,
there cannot exist read-after-write (RAW) dependencies nor any other false data
dependence among the tasks. However, the single-thread code was designed to
accelerate coalition generation by using an inherently sequential algorithm that
uses the previous coalition to generate the next one in lexicographical order.
The next subsection describes a method for breaking this artificial dependence.

3.6. MULTI-THREAD IMPLEMENTATION 49

3.6.2 Speeding up Work Distribution Among Threads

Assume we have t threads and we want each thread to evaluate a disjoint set
of coalitions. We must distribute work to assure good load balance, and do
it in a fast and efficient way. Table 3.3 illustrates the generation of all the
possible coalitions of size m=3 from a set of n=6 agents. The single-thread code
implements a sequential algorithm to generate in lexicographical order all

(
6
3

)
=20

coalitions, represented as bitmaps in the binary encoding columns of Table 3.3.
In practice, we must calculate cnt=

(
n
m

)
and then assign cnt/t coalitions to each

thread. Once a thread obtains its starting position in the coalition series, say k,
it can generate the whole range with the fast sequential method. But we need
an efficient strategy to generate the kth coalition without having to compute all
the previous coalitions from the beginning.

Order Encoding Coalitions Order Encoding Coalitions

(k) Bin Dec (k) Bin Dec

1 ...111 7 {a1, a2, a3} 11 ..111. 14 {a2, a3, a4}
2 ..1.11 11 {a1, a2, a4} 12 .1.11. 22 {a2, a3, a5}
3 .1..11 19 {a1, a2, a5} 13 1..11. 38 {a2, a3, a6}
4 1...11 35 {a1, a2, a6} 14 .11.1. 26 {a2, a4, a5}
5 ..11.1 13 {a1, a3, a4} 15 1.1.1. 42 {a2, a4, a6}
6 .1.1.1 21 {a1, a3, a5} 16 11..1. 50 {a2, a5, a6}
7 1..1.1 37 {a1, a3, a6} 17 .111.. 28 {a3, a4, a5}
8 .11..1 25 {a1, a4, a5} 18 1.11.. 44 {a3, a4, a6}
9 1.1..1 41 {a1, a4, a6} 19 11.1.. 52 {a3, a5, a6}
10 11...1 49 {a1, a5, a6} 20 111... 56 {a4, a5, a6}

Table 3.3: Coalitions generated using lexicographical order.

Algorithm 3 describes getCoalition(n,m, k), a function that generates the
kth coalition in lexicographical order of m elements from a set of n. The de-
scription is done recursively to help understand how it works, although the
actual implementation is iterative in order to improve its performance. The
coalition is created recursively, bit by bit, starting from the least significant bit
and considering

(
n
m

)
possibilities. The first half of the possible coalitions have

the less significant bit set to 1. If the requested rank, k, is lower than or equal to
h=1/2×(

n
m

)
, then the bit is set to 1, and m is decremented by one. Otherwise,

the bit is set to zero, and the rank k is reduced to k − h. Each recursive call
decrements the number of bits to consider to (n− 1).

50 CHAPTER 3. BUILDING AN EFFICIENT AND PARALLEL DP/IDP

Algorithm 3 pseudocode of getCoalition(n,m, k)

1: if ((m == 0) OR (k == 0)) then
2: return 0
3: end if

4: h ←
(
n− 1

m− 1

)

5: if (k ≤ h) then
6: return 1 + 2×getCoalition(n− 1,m− 1, k)
7: end if
8: return 2×getCoalition(n− 1,m, k − h)

3.6.3 Potential Parallel Performance Hazards

The first and last iterations of the outer loop exhibit few TLP, compromising the
efficiency of the parallel execution. We tuned the implementation so that threads
are launched in parallel only for iterations that have a minimum amount of work.
A minor problem is the need for a few number of synchronization barriers at the
end of every iteration of the outer loop. They can be neglected, except for very
small problem sizes.

An important performance issue is the occurrence of false cache sharing
misses. They occur when different threads update different positions in the
vector of values that happen to be mapped to the same cache line.

Finally, there is also the issue of true cache sharing. Threads generate values
for coalitions of size m that are stored into local caches. When all the threads
need to access those values for handling larger coalitions, data has to be moved
from local storage to all the execution cores.

3.7 Experimental Results

The computer system used in our experiments is a dual-socket Intel Xeon E5645,
each socket containing 6 Westmere cores at 2.4 GHz, and each core executing
up to 2 H/W threads using hyperthreading (it can simultaneously execute up to
24 threads by H/W). The Last Level Cache (LLC) provides 12 MiB of shared
storage for all the cores in the same socket. 96 GiB of 1333-MHz DDR3 RAM
is shared by the 2 sockets, providing a total bandwidth of 2×32 GB/sec. The
Quickpath interconnection (QPI) between the two sockets provides a peak band-
width of 11.72 GB/sec per link direction.

Input data was created using a uniform distribution as described by
[Larson and Sandholm, 2000] for problem sizes n = 18 . . . 27.

3.7. EXPERIMENTAL RESULTS 51

0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

18 19 20 21 22 23 24 25 26 27

(a) Execution time (log).

3.7.1 Single-Thread Execution

DP and IDP were executed using both the banker’s and lexicographical splitting
generation methods. Figure 3.2a plots the execution time in logarithmic scale
for the four algorithmic variants. Lexicographic order is around 7x to 11x faster
than banker’s and, therefore, in what remains of chapter we will use the first
splitting method.

Figure 3.3a represents the execution time of DP and IDP divided by 3n (al-
gorithmic complexity). This metric evaluates the average time taken by the
program to execute a basic algorithmic operation, in this case a splitting evalu-
ation. It is similar to the CPI (Cycles Per Instruction) metric, but at a higher
level. The metric helps identifying performance problems at the architecture
level. Figure 3.3a shows two different problem size regions: those that fit into
the LLC (n<22), and those that do not. A small problem size determines a
computation-bound scenario, where DP slightly outperforms IDP, even when it
executes around 20% more instructions. The reason is that IDP is penalized by
a moderate number of branch mispredictions.

Large problem sizes determine a memory-bound scenario, where IDP amor-
tizes its effort on saving expensive memory accesses to outperform DP by 40-
50%. Figure 3.4a shows the effective memory bandwidth consumption seen by
the programs. The shape of the curves can be deduced from Figure 3.3a, but
we are interested on the actual values. The effective bandwidth ranges between
0.5 and 1.0 GB/sec. A small fraction of this bandwidth comes from the LLC
and lower-level caches, and the remaining fraction comes from DRAM. Even
considering the worst case described in section 3.3, that only 4 bytes out of the
64-Byte cache block are effectively used, it is still a very small value compared
to the peak 32 GB/sec. The conclusion is that DRAM latency is the primary

52 CHAPTER 3. BUILDING AN EFFICIENT AND PARALLEL DP/IDP

18 19 20 21 22 23 24 25 26 27

(a) Time / Complexity Θ(3n).

18 19 20 21 22 23 24 25 26 27

(a) Effective Memory Bandwidth (GB/s).

Figure 3.4: Experimental data (BAN: Banker’s sequence; LEX: Lexicographical
order).

3.7. EXPERIMENTAL RESULTS 53

performance limiter. Results on the next subsection corroborate this conclusion.

3.7.2 Multi-Thread Execution

We focus our multi-thread analysis on IDP, which outperforms DP for inter-
esting problem sizes. We run IDP using t= 6, 12, and 24 threads. The case
t=6 corresponds with using a single processor socket. The case t=12 uses only
one socket but also exploits its hyperthreading capability. Finally, t= 24 is an
scenario where all 2 sockets have their 6 cores running 2 threads each, using
hyperthreading. Figure 3.5 shows the speedup compared to the single-thread
execution. Again, distinguishing between small and big problem sizes is useful.

0

1

2

3

4

5

6

7

8

9

18 19 20 21 22 23 24 25 26 27

Sp
ee

du
p

Problem size (n)

Figure 3.5: Single-thread IDP versus 6-, 12- and 24-thread IDP execution

The t=6 configuration provides a speedup of 5 for small problems, and lower
than 4 for large problems. The t=12 configuration further increases performance
around 60% for small problems, and 30% for bigger problems. The fact that
executing two threads per core do improves performance corroborates previous
latency limitations, since hyperthreading is a latency-hiding mechanism. It also
indicates that 6 threads do not generate enough LLC and DRAM requests to
fully exploit the available LLC and DRAM bandwidth.

The effective memory bandwidth achieved with 12 threads is around 2.5
GB/sec for the bigger problem sizes, or around 13 times lower than the peak
achievable bandwidth. Given the lack of spatial locality of DRAM accesses, we
are probably reaching the maximum bandwidth available for the pseudo-random
memory access pattern of the problem.

The t=24 configuration checks the benefit of using a second socket. Per-
formance is highly penalized for small problems, due to the overhead of com-

54 CHAPTER 3. BUILDING AN EFFICIENT AND PARALLEL DP/IDP

munication traffic along the QPI links for both false and true cache sharing
coherence. On average, half of the data accessed by a thread is fetched from the
other socket. Compared to the single-socket scenario, where all data is provided
from local caches, performance drops up to 7 times for very small problems.

Large problems benefit very little from a second socket, with improvements
near to 10%. The advantage of the 2-socket configuration is that the available
DRAM bandwidth is duplicated, and the overhead due to coherence traffic is
not so important, given that most of the data is obtained from DRAM. Anyway,
the small performance gain does not justify using a second socket. Again, the
symmetric, scattered memory access pattern does not fit well with the NUMA
hierarchy. We are currently working on a way to partition data that reduces
communication between sockets.

3.8 Conclusions

In this chapter we present an optimized implementation of the DP and IDP
algorithm and a novel contribution describing the first parallel version of DP
and IDP.

Our implementations clearly outperform the results found in the literature.
According to [Rahwan et al., 2007], they need around 2 months to solve a CSG
problem with 27 agents using IDP (2.5 days in selected distributions with IP
algorithm), in some unspecified computer, and using an IDP implementation
which code is not provided. Our best single-thread implementation solves a
same sized CSG problem in 5.8 hours. The multi-core implementation reduces
execution time to 1.2 hours. Therefore, we claim that our implementation is the
fast implementation of IDP published so far. We have made available to the
community our source code.

We have analyzed the bottlenecks of DP and IDP. The pseudo-random mem-
ory access pattern lacks locality, and exploits the memory system capabilities
very inefficiently. The latency tolerance ability of multi-threading improves per-
formance on a multi-core processor. However, a dual-socket NUMA system is
not appropriate for solving neither small nor big problems. The use of GPUs or
accelerators with massive thread parallelism can obtain benefits from some of
the core operations that have been described here, in fact our work has set the
grounds for a GPU implementation described at [Svensson et al., 2013].

Chapter 4

Large Scale Combinatorial
Auctions

4.1 Chapter Overview

In this chapter we study a variation of the Coalition Structure Generation: The
Winner Determination Problem (WDP) in Combinatorial Auctions (CA). Both
problems are identical in terms of their formulation, but in practice they differ
in terms of scale and distribution.

While in the Coalition Structure Generation we faced a problem where all
the possible combinations were evaluated, in the case of the WDP CA’s there
are -in the general case- only a subset of the possible combinations defined.

A standard and well-known method to solve WDP for CAs is to use search
algorithms. A common practice is to improve search algorithms by the use of a
heuristic and a bounding mechanism. It is also a common practice to use Linear
Programming (LP) relaxations as a method to compute those bounds as well as
offer support to the heuristic. Classic and yet very used algorithms to compute
LP relaxations are Simplex based methods and interior-points methods (also
known as barrier) [Nesterov and Nemirovskii, 1994].

We show that off-the-shelf commercial solvers implementing simplex and bar-
rier such as IBM ILOG CPLEX [Ibm, 2011] or Gurobi [Optimization, 2017] are
well suited for solving WDP for CA when the problem size is moderated (i.e.
few hundreds of variables and constraints).

However, as long as the problem becomes bigger they lose potential in front

55

56 CHAPTER 4. LARGE SCALE COMBINATORIAL AUCTIONS

of other methods. More specifically, we find convex optimization methods that
are able to deliver a better response than CPLEX or GUROBI when computing
an LP relaxation on a large-scale Combinatorial Optimization problem.

AD3 [Martins et al., 2014] is a Convex Optimization Graph-based Algorithm
that has successfully applied in the domain of Natural Language Processing. it
has interesting properties, such as fast convergence to a solution and a novel way
of organize the computation. It’s source code is freely accessible.

The main purpose of this chapter is to demonstrate that the optimization
and parallelization of AD3 can deliver enormous benefits when solving relax-
ations of large-scale Combinatorial Optimization problems, and in particular
WDPs in large-scale CAs. For solving this problem we use a simplified version
of AD3 that assumes that all the factors are factors implementing the same
function. The AtMostOne function.

We make the following contributions:

• We show how to encode the WDP for CAs so that it can be approximated
by AD3. For this endeavour we employ the computationally-efficient fac-
tors provided by AD3 to handle hard constraints.

• We propose an optimized, parallel implementation of AD3, the so-called
PAR-AD3. Our implementation is based on a mechanism for distributing
the computations required by AD3 as well as on a data structure orga-
nization that together favor parallelism. PAR-AD3 delivers an average
speedup of 3X using one thread and an additional 4.8X in a 6-core com-
puter, delivering an average speedup of 14.4X in the mentioned 6-core
computer.

• We show that while AD3 is up to 12.4 times faster than CPLEX in a single-
thread execution, PAR-AD3 is up to 23 times faster than parallel CPLEX
in an 8-core architecture1. Therefore PAR-AD3 becomes the algorithm of
choice to solve large-scale WDP LP relaxations.

• We make our code publicly available at the following URL:
https://github.com/parad3-wdp/ca.

To summarize, our results indicate that PAR-AD3 obtains significant speed-
ups on multi-core environments, hence increasing AD3’s scalability and showing
its potential for application to large-scale Combinatorial Optimization problems
in particular and for large-scale coordination problems that can be cast as Com-
binatorial Optimization problems.

The rest of the chapter is organized as follows. First, we introduce some
background on AD3. Next, we detail how to encode the WDP for CAs by

1The use of different architectures –6-core or 8-cores– to perform different experiment re-
sponds solely to our computational resources availability.

4.2. INTRODUCTION 57

means of AD3. Thereafter, we thoroughly describe PAR-AD3 and afterwards
we present empirical results. Finally, we draw some conclusions and set questions
that will find answers in the next chapter.

4.2 Introduction

Auctions are a standard technique to solve coordination problems that
has been successfully employed in a wide range of application domains
[Parsons et al., 2011]. Combinatorial auctions (CAs) [Cramton et al., 2006] are
a particular type of auctions that allow to allocate entire bundles of items in a
single transaction. Although computationally very complex, auctioning bundles
has the great advantage of eliminating the risk for a bidder of not being able to
obtain complementary items at a reasonable price in a follow-up auction (think
of a CA for a pair of shoes, as opposed to two consecutive single-item auctions
for each of the individual shoes). CAs are expected to deliver more efficient
allocations than non-combinatorial auctions complementarities between items
hold.

CAs have been also employed to solve a variety of coordination problems (e.g.
transportation [Sheffi, 2004], emergency resource coordination in disaster man-
agement [Ramchurn et al., 2008], or agent coordination in agent-driven robot
navigation [Sierra et al., 2001]). However, although such application domains
claim to be large-scale, namely involving thousands and even millions of bids,
current results indicate that the scale of the CAs that can be optimally solved is
small [Leyton-Brown et al., 2009, Ramchurn et al., 2009]. For instance, CPLEX
(a state-of-the-art commercial solver) requires a median of around 3 hours to
solve the integer linear program encoding the Winner Determination Problem
(WDP) of a hard instance of a CA with only 1000 bids and 256 goods. This
fact seriously hinders the practical applicability of current solvers to large-scale
CAs.

Linear Programming (LP) relaxations are a standard method for ap-
proximating Combinatorial Optimization problems in computer science
[Bertsimas and Tsitsiklis, 1997]. Yanover et al. [Yanover et al., 2006] report
that realistic problems with a large number of variables cannot be solved
by off-the-shelf, commercial LP solvers (such as CPLEX). Instead, they pro-
pose the usage of TRBP, a message-passing, dual-decomposition algorithm, to
solve LP relaxations, and show that TRBP significantly outperforms CPLEX.
Since then, many other message-passing and dual decomposition algorithms
have been proposed to address this very same problem [Kolmogorov, 2006,
Komodakis et al., 2007, Globerson and Jaakkola, 2008, Rush et al., 2010]. The
advantage over other approximate algorithms is that the underlying optimiza-
tion problem is well-understood and the algorithms are convergent and provide
certain guarantees. Moreover, there are ways of tightening the relaxation toward

58 CHAPTER 4. LARGE SCALE COMBINATORIAL AUCTIONS

the exact solution [Sontag et al., 2012].

In order to solve LP relaxations, there has been a recent upsurge of interest in
the Alternating Direction Method of Multipliers (ADMM), which was invented in
the 1970s by Glowinski and Marroco [Glowinski and Marroco, 1975] and Gabay
and Mercier [Gabay and Mercier, 1976b]. As discussed in [Boyd et al., 2011],
ADMM is specially well suited for application in a wide variety of large-scale
distributed modern problems. Along this line, Martins has proposed AD3

[Martins et al., 2014], a novel algorithm based on ADMM, which proves to out-
perform off-the-shelf, commercial LP solvers for problems including declarative
constraints. AD3 has the same modular architecture of previous dual decom-
position algorithms, but it is faster to reach consensus, and it is suitable for
embedding in a Branch-and-bound procedure toward the optimal solution. Mar-
tins derives efficient procedures for handling logic factors and a general proce-
dure for dealing with dense, large, or combinatorial factors. Notice that until
[Martins, 2012b], the handling of declarative constraints by message-passing al-
gorithms was barely addressed, and not well understood. This hindered their
application to combinatorial auction WDPs, which typically require this type
of constraints. Therefore, AD3 constitutes a promising tool to solve WDPs in
CAs.

As discussed in [Martins, 2012b] (see section 7.5), AD3 is largely amenable to
parallelization, since AD3 separates an optimization problem into sub-problems
that can be solved in parallel. Nonetheless, to the best of our knowledge there
is no parallel implementation of AD3. Therefore, the potential speedups that
AD3 may obtain when running on multi-core environments remain unexplored.
And yet, this path of research is encouraged by recent experiences in paral-
lelization of ADMM applied to solve an unconstrained optimization problem
[Miksik et al., 2014]. Indeed, Miksik et al. show that a parallel implementation
of ADMM delivers large speedups for large-scale problems. Notice though that
the work in [Miksik et al., 2014] cannot be employed to solve the WDP for CAs
because it cannot handle hard constraints.

4.3 Background

Graphical models are widely used in computer vision, natural language pro-
cessing and computational biology, where a fundamental problem is to find the
maximum a posteriori probability (MAP) given a Factor Graph. Since finding
the exact MAP is frequently an intractable problem, significant research has
been carried out to develop algorithms that approximate the MAP.

Linear Programming (LP) relaxations have been extensively applied to ap-
proximate the MAP for graphical models since [Santos Jr, 1991]. Typically, such
application domains lead to sparse problems with a large number of variables

4.3. BACKGROUND 59

and constraints (i.e beyond 104). As shown in [Yanover et al., 2006], message
passing algorithms have been proved to outperform state-of-the-art commercial
LP solvers (such as e.g. CPLEX) when approximating the MAP for large-scale
problems. This advantage stems from the fact that message-passing algorithms
better exploit the underlying graph structure representing the problem.

Along this direction, several message passing algorithms have been
proposed in the literature: ADMM [Eckstein and Bertsekas, 1992], TRBP
[Wainwright et al., 2003], MPLP [Globerson and Jaakkola, 2008], PSDD
[Komodakis et al., 2007], Norm-Product BP [Hazan and Shashua, 2010],
and more recently Alternate Direction Dual Decomposition (AD3)
[Aguiar et al., 2011].

As discussed in [Martins et al., 2014], the recently-proposed AD3 has some
very interesting features in front of other message passing algorithms: it reaches
consensus faster than other algorithms such as ADMM, TRBP and PSDD; it
does have neither the convergence problems of MPLP nor the instability prob-
lems of Norm-Product BP; and its anytime design allows to stop the optimization
process whenever a pre-specified accuracy is reached. Furthermore, as reported
in [Martins et al., 2014], AD3 has been empirically shown to outperform state-
of-the-art message passing algorithms on large-scale problems.

Besides these features, AD3 also provides a library of computationally-
efficient factors that allow to handle declarative constraints within an optimiza-
tion problem. This opens the possibility of employing AD3 to approximate
constrained optimization problems.

Algorithm 4 outlines the main operations performed by AD3 on a Factor
Graph G with a set of factors F , a set of variables V , and a set of edges E ⊆
F × V . AD3 receives a set of parameters θ that encode variable coefficients
and a penalty constant η able to regulate the update step size. We use the
function ∂(x) to denote all the neighbours (i.e. connected nodes) of a given
graph node. The primal variables q and p, the dual λ as well as the unary
log-potentials ξ are vectors which are updated during the execution .We refer
the reader to [Martins et al., 2014] for a detailed description of the algorithm.
AD3 is an iterative three-step algorithm designed to approximate an objective
function encoded as a Factor Graph. A key aspect of AD3 is that it separates
the optimization problem into independent subproblems that progress to reach
consensus on the values to assign to primal and dual variables. Thus, during the
first step, broadcast, the optimization problem is split into separate subproblems,
each one being distributed to a factor. Thereafter, each factor locally solves its
local subproblem. In AD3, this computations is carried on solving a quadratic
problem. During the second step, gather, each variable gathers the subproblems’
solutions of the factors it is linked to. Finally, during the third step, Lagrange
updates, the Lagrange multipliers for each subproblem are updated.

60 CHAPTER 4. LARGE SCALE COMBINATORIAL AUCTIONS

Algorithm 4 Alternating Directions Dual Decomposition(AD3)

input: Factor Graph G, parameters θ, penalty constant η
1: initialize p (i.e. pi = 0.5∀i ∈ 1 . . . |V |), initialize λ = 0
2: repeat � Broadcast
3: for each factor α ∈ F do
4: for each i ∈ ∂(α) do
5: set unary log-potentials ξiα := θiα + λiα

6: end for
7: q̂α := SolveQP(θα + ξα, (pi)i∈∂(α))
8: end for
9: for each variable i ∈ V do � Gather

10: compute avg pi := |∂(i)|−1 ∑
α∈∂(i) q̂iα

11: for each α ∈ ∂(i) do � Lagrange updates
12: λiα := λiα − η(q̂iα − pi)
13: end for
14: end for
15: until convergence

A distinguishing feature of AD3 is that both the broadcast and update steps
can be safely run in parallel. Indeed, notice that, since subproblems are in-
dependent, they can be safely distributed in different factors so that each one
independently computes a local solution. AD3 provides a collection of factors
for which their quadratic problems are defined. As an example we present how
the quadratic problem for the XOR factor is solved in Algorithm 5, where the
input of the algorithm are the potentials Zα : z0, . . . , zK relative to the factor
α. Note that in Algorithm 4 the call to the SolveQP method has two param-
eters, the second parameter is omitted here since it is not needed to solve the
XOR. Algorithm 5 proceeds as follows. Lines 11-13 are responsible of check-
ing if the constraint XOR is already satisfied. Then, if not satisfied, the Zα

vector is transformed using the projection onto simplex method described by
[Duchi et al., 2008]. This method navigates through Zα in decreasing order, to
find the pivot element yi and the value of τ . Afterwards this τ is used to perform
the actual projection. To this end, two auxiliary vectors Z ′

α and Yα are used:
the former will contain the algorithm output and the latter is used to contain a
sorted copy of Zα. Although there are ways to obtain the pivot without the need
of sorting the vector Zα (described in [Duchi et al., 2008]), in AD3 is preferable
to have a persistent sorted vector since order of elements is commonly preserved
or barely altered across the iterations. Therefore efficient sorting methods on
nearly-ordered sequences can be applied. An important feature of the XOR fac-
tor is that its quadratic problem can be solved in O(K · logK), where K stands
for the number of variables connected to the factor.

As to gather, the step in which the subproblems communicate their local
results, each variable can independently (from the rest of variables) gather and
aggregate the results computed by the factors it is linked to. Despite being highly
prone to parallelisation, to the best of our knowledge there is only one public

4.4. SOLVING COMBINATORIAL AUCTIONS WITH AD3 61

Algorithm 5 SolveQP for an XOR factor

input: Zα : z0, . . . , zK , vector with α log-potentials
1: function FindTau(Yα)
2: τ = 0.0;
3: sum :=

∑
yi∈Yα

yi
4: for each yi ∈ Yα do
5: τ := sum−1

K−i
6: if yi > τ then break
7: update sum := sum− yi
8: end for
9: return τ

10: end function
11: z′i := max(0, zi), for each zi ∈ Zα

12: sum :=
∑

z′
i∈Z′

α
z′i

13: if sum > 1.0 then 	 Projection onto simplex
14: sort Zα into Yα: y0 ≤ . . . ≤ yK
15: τ := FindTau(Yα)
16: z′i := max(zi − τ ,0) , for each zi ∈ Zα

17: end if
output: Z ′

α

implementation of AD3 and cannot run in parallel 2. The recent contributions
to the parallelisation of ADMM to solve unconstrained optimisation problems
[Miksik et al., 2014] are very encouraging because they show that it is possible
to obtain very significant speedups by exploiting nowadays parallel hardware.
This finding spurs and motivates the need for a parallel implementation of AD3.

But before that, in the next section we show that the WDP for CAs can be
solved by means of AD3.

4.4 Solving Combinatorial Auctions with AD3

A Combinatorial Auction (CA) is an auction in which bidders can place bids
for a combination of items instead of individual ones. In this scenario, one of
the fundamental problems is the Winner Determination Problem (WDP), which
consists in finding the set of bids that maximise the auctioneer’s benefit. Notice
that the WDP is an NP-complete problem.

Although special-purpose algorithms have addressed the WDP (e.g.
[Fujishima et al., 1999, Sandholm et al., 2001]), the state-of-the-art method for
solving a WDP is to encode it as an integer linear program (ILP) and solve it

2Available at http://www.ark.cs.cmu.edu/AD3/

62 CHAPTER 4. LARGE SCALE COMBINATORIAL AUCTIONS

using an off-the-shelf commercial solver (such as CPLEX [Ibm, 2011] or Gurobi
[Optimization, 2017]). Nonetheless, this approach fails to scale to large CA in-
stances. Indeed, as noticed in [Sheffi, 2004], real problems may involve up to
millions of bids. Therefore, such real problems are out of reach for state-of-the-
art optimal solvers, and hence the need for heuristic approaches arise.

As observed in [Ball, 2011], ”The simplest and, perhaps most tempting ap-
proach, to an optimization-based heuristic is to round the solution to a linear
programming relaxation”. Furthermore, solutions to an LP relaxation can pro-
vide a very effective start to finding a good feasible solution to the non-relaxed
optimisation problem. Hereafter we focus on solving the LP relaxation of the
WDP by means of AD3. Since AD3 requires a Factor Graph to operate, we first
show how to encode the WDP as a Factor Graph. Then we show how AD3 can
run on top of this Factor Graph. We shall start by showing such encoding by
means of an example to finally derive a general procedure.

Consider an auctioneer puts on sale a pair of goods g1, g2. Say that the
auctioneer receives the following bids: b1 offering $20 for g1 ; b2 offering $10 for
g2; and finally b3 offering $35 for goods g1 and g2 together. The WDP for this
CA can be encoded as the following ILP:

maximise 20 · x1 + 10 · x2 + 35 · x3

subject to x1 + x3 ≤ 1 [constraint c1]

x2 + x3 ≤ 1 [constraint c2]

x1, x2, x3 ∈ {0, 1}

where x1, x2, and x3 stand for binary decision variables that indicate whether
each bid is selected or not; constraint c1 expresses that good g1 can only be
allocated to either bid b1 or bid b3 and constraint c2 encodes that good g2 can
only be allocated to either bid b2 or bid b3.

x1

AtMost1AtMost1

x2 x3

c1

Decision
Variables

Constraint
Factors

c2

20 10 35

Figure 4.1: Factor Graph encoding of our CA example.

4.5. PARALLEL REALIZATION OF AD3 63

Now we can encode the optimisation problem above into a Factor Graph as
illustrated in Figure 4.1. First, we create a variable node for each bid. Each
variable contains its bid’s offer (indicates the value that the auctioneer obtains
when the variable is active). For instance, variable x1 for bid b1 contains value
20. Then we create a factor node per good, connecting the bids that compete
for the good, and which are therefore incompatible. For instance, factor c1 is
linked to the variables corresponding to bids b1 and b3.

We observe that each factor representing a constraint in the Factor Graph
in figure 4.1 corresponds to the ”AtMost1” function introduced by Smith and
Eisner [Smith and Eisner, 2008], which is satisfied if there is at most one active
input. Although AD3 does not directly support ”AtMost1” constraints, as seen
in [Martins, 2012b], an XOR factor can be used to define it by adding a slack
variable to the factor. The XOR factor complexity is O(K · logK), where K
stands for the number of variables connected to the XOR factor. Notice that
the operation of AD3 when solving the WDP only involves computationally-
efficient factors.

4.5 Parallel Realization of AD3

The AD3 algorithm is amenable to general, architecture-level optimization and
parallelization [Martins, 2012b]. We propose an efficient realization of the
message-passing3 algorithmic pattern using shared variables and targeting multi-
core computer architectures. The so-called PAR-AD3, that exploits the inherent
parallelism at two dimensions: thread-level and data-level. For that, we reorga-
nize both the data structures layout and the order of operations. The approach
is generalizable to other similar graph processing algorithms. The key insights
of our design are:

• An edge-centric representation of the shared variables that improves mem-
ory access performance.

• A reorganization of the operations that promotes parallel scaling (thread
parallelism) and vectorizing (data parallelism).

4.5.1 Edge-centric Shared Data Layout

AD3 is a message passing algorithm that iterates on three steps: broadcast,
gather and Lagrange multiplier update. The message passing pattern isolates
the operations applied to the different elements of the graph (factors, variables
and edges), so that multiple operations can be performed concurrently on the

3Recall that message-passing algorithm here stands for a classification of the algorithm in
graphical models and not for the use of passing messages between CPU threads or processes.

64 CHAPTER 4. LARGE SCALE COMBINATORIAL AUCTIONS

graph data. These operations and data can then be physically distributed along
different computation and storage elements.

The memory requirements of AD3 are approximately proportional to the
number of edges, and, for the problem sizes considered, they are fulfilled by
most current shared-memory computer systems. In this situation, the fastest
and most efficient mechanism for communication and synchronization between
processing cores is using shared variables (instead of explicit messages). The dif-
ferent processing cores of the computer will operate concurrently on the different
elements of the graph (factors, variables or edges), both reading input data and
generating new results stored in the shared memory. Execution performance
is improved with a careful selection of synchronization operations at the right
point and an appropriate data structures layout.

Memory access performance is very sensitive to the data layout and data
access pattern. When a loop has to iterate along a large regular data structure,
the best performance is achieved when the next elements of the structure are
naturally fetched from the next memory positions at each step of the iteration.
Since AD3 demands more computation work operating in edge data than in
vertex or factor data, we adopt an edge-centric data representation, as reported
in [Roy et al., 2013]. We want all information related to edges, such as unary
log-potentials or lagrangian components, to be stored in consecutive memory
positions. With this purpose, we apply a memory layout transformation that
converts data structures originally designed in an Array of Structures (AoS)
representation to a Structure of Arrays (SoA) representation.

Figure 4.2 illustrates how data was stored in memory in AD3 and how the
data layout is modified in PAR-AD3. For the sake of clarity, we present data
regarding 2 variables and 4 edges. AD3 encodes the information following an
AoS representation, where all properties related to each variable or edge are
stored consecutively (see figure 4.2a).

As the AD3 design is variable-centric, iterating on all the edges in the graph
requires an indirect and scattered access to the variables (edges are accessed
using the pointers associated to each variable). In contrast, the PAR-AD3

SoA memory layout (figure 4.2b) stores the properties of variables and edges
sequentially, thus resulting in a different array for each edge or variable property.
Now, iterating on all edges of the graph requires consecutive accesses to array
elements. The AOS memory representation of AD3 benefits from memory access
patterns where all the variable properties are used together, meanwhile the SoA
memory representation of PAR-AD3 benefits from the access of any property
traversing all variables or edges.

To summarize, the PAR-AD3 data representation transforms many scattered
memory accesses into sequential, improving the memory access throughput. A
derived advantage of the simplified edge access pattern is to foster better parallel

4.5. PARALLEL REALIZATION OF AD3 65

ID Degree Var potential Pointer to
edges piDegreeID Var

potential
Pointer to

edges pi

Variable #1 Variable #2
a) AD3 data layout: Array of Structures

b) PAR-AD3 data layout: Structure of Arrays

Factor IDVar ID
unary
log-

potential
qi,alpha

Edge #1

Factor IDVar ID
unary
log-

potential
qi,alpha

Edge #2

. . .

. . .

Edge #3 Edge #4Edge #1 Edge #2

VarID . . .

FactorID . . .

Edge #3 Edge #4Edge #1 Edge #2

Unary log-
potentials

. . .

qi,alpha . . .

Edge Dependent data

Degree

ID

Variable #1 Variable #2

. . .

. . .

Var potentials

pi

Variable #1 Variable #2

. . .

. . .

Variable Dependent data

ID Degree Var potential Pointer to
edges piDegreeID Var

potential
Pointer to

edges pi

Edge #3 Edge #4

. . . qi,alpha
unary
log-

potential
Factor IDVar IDqi,alpha

unary
log-

potential
Factor IDVar ID

Figure 4.2: a) AoS data representation of AD3, compared to b) SoA data rep-
resentation of PAR-AD3.

GatherBroadcast

Iterating
Edges

Iterating
Variables

Iterating
Variables

Iterating
Factors

Iterating
Edges

Iterating
Edges

Update
Edges

Sort
Potentials

Solve
Factors

Phases: Accumulate Average Update Multipliers

Update Multipliers

Figure 4.3: Processing phases and parallelism in PAR-AD3.

66 CHAPTER 4. LARGE SCALE COMBINATORIAL AUCTIONS

scaling and vectorization, but we need additional algorithmic transformations
that are described in the next section.

4.5.2 Reordering Operations

Parallel scaling means distributing compute operations on large chunks of data
along different computational units sharing the same memory space. Vectoriz-
ing applies data parallelism strategies inside the same computational unit, and
consists in using instructions that operate simultaneously on a small vector of
consecutive data elements. Both parallel scaling and vectorizing are usually ap-
plied to simple loop iterations with clearly separated inputs and outputs, no
recurrent dependencies, and sequential accesses to vector elements.

Our proposal reshapes the way the algorithm defines the graph operations
towards a new structure of many simple consecutive loops, outlined in figure
4.3. The original Broadcast step is now split in three phases: update edge, sort
potential and solve factors. Also, the original Gather step is now split in two
phases: accumulate and average. Note that we iterate on factors twice and also
iterate on variables twice: this makes the loops simpler and provides more data
locality. As a result, all phases are now parallelized for concurrent execution
(thread parallelism) and four out of six are vectorized: update edge, accumulate,
average and update multiplier.

Algorithm 6 shows a pseudo-code of PAR-AD3 as a result of the optimiza-
tions applied. A pool of parallel threads is created outside of the main loop (line
2). Whenever a parallel loop inside the main loop is reached (lines 4, 9, 12, 19,
24, 27), the loop iterations are distributed to the threads for parallel execution.
There is an implicit synchronization after each loop, so that all threads wait
for the generation of the results in one loop before starting the execution of the
next.

As thoroughly described in the next section, these contributions have a signif-
icant impact in the sequential execution as well as allow good parallel scalability
when an increasingly large number of threads are used.

It is important to underline that this code reorganization takes benefit from
considering that all the factors are solving the same Quadratic Problem (QP),
hence some computations that belong to the local subproblem are interleaved in
other phases of PAR − AD3. In other words, we are sacrificing encapsulation
to in exchange gain extra performance. We can see examples of this technique
looking at Algorithm 5 where lines 11 and 14 (accumulate and sorting) are no
longer execued inside every factor but they are precalculated in advance (see
Algorithm 6 lines 7, 9-11). This way we en having a lightweight QP that most
of the time performs an addition and exit. The precalculated operations are run
in a bunch from a parallelized graph-wise perspective.

4.5. PARALLEL REALIZATION OF AD3 67

Algorithm 6 PAR-AD3 pseudo-code

input: Factor Graph G, parameters θ, penalty constant η
1: initialize p (i.e. pi = 0.5∀i ∈ 1 . . . |V |), initialize λ = 0
2: create threads
3: repeat
4: parallel for iα ∈ E do � Update edges
5: Update log-potentials ξiα := θiα + λiα

6: compute q̂iα = θiα + ξiα
7: compute q̂′iα = max(0, q̂iα)
8: end for
9: parallel for factor α ∈ F do � Sort potentials

10: q̂ sortedα := sort(q̂α)
11: end for
12: parallel for factor α ∈ F do � Solve factors
13: sum =

∑
i∈∂(α)(q̂

′
iα)

14: if sum > 1.0 then
15: τ := FindTau(q̂ sortedα)
16: q′iα := max(qiα − τ ,0), for each qiα ∈ qα
17: end if
18: end for
19: parallel for variable i ∈ V do � Accumulate
20: for i ∈ ∂(α) do
21: p̃i := p̃i + q̂iα
22: end for
23: end for
24: parallel for variable i ∈ V do � Average
25: pi := p̃i/ |∂(i)|
26: end for
27: parallel for iα ∈ E do
28: λiα := λiα − η(q̂iα − pi) � Update multipliers
29: end for
30: update η
31: until convergence
output: primal variables p and q, dual variable λ

68 CHAPTER 4. LARGE SCALE COMBINATORIAL AUCTIONS

Since a clear trend in computer architecture is an increase of parallelism
both at instruction and thread level, (for example, the intel Xeon Phi accelerator
operates with 512-bit vector registers and contains more than 60 execution cores)
the methodology applied to PAR-AD3 makes it ready to benefit from upcoming
improvements.

4.6 Empirical Evaluation

In this section, we assess PAR-AD3 performance against the original AD3 algo-
rithm to evaluate our performance improvements as well as to the state-of-the-
art optimisation software CPLEX with the aim of determining the scenarios for
which PAR-AD3 is the algorithm of choice. We also quantify its current gains,
both in sequential and parallel executions. To this end, we first find the data
distributions and range of problems that are best suited for PAR-AD3. There-
after, we briefly analyse two algorithmic key features: convergence and solution
quality. Afterwards, we quantify the speedups of PAR-AD3 with respect to
AD3 and CPLEX in sequential and parallel executions. From this analysis we
conclude that PAR-AD3 significant speedup with respect to AD3 (14.4X in a 6-
core computer). It also obtains larger benefits from parallelisation than CPLEX.
Indeed, PAR-AD3 achieves a peak speedup of 23X above CPLEX barrier, the
state-of-the-art solver for sparse problems.

4.6.1 Experiment Setup

In order to generate CA WDP instances, we employ CATS, the CA gen-
erator suite described in [Leyton-Brown et al., 2000]. Each instance is gen-
erated out of the following list of distributions thoroughly described in
[Leyton-Brown et al., 2009]: arbitrary, matching, paths, regions, scheduling,
L1, L3, L4, L5, L6 and L7. We discarded to employ the L2 distribution, be-
cause the CATS generator is not capable of generating large instances. While
the first five distributions were designed to generate realistic CA WDP in-
stances, the latter ones generate artificial instances. The main difference be-
tween the two distribution categories is the use of dummy goods that add
structure to the problem inspired in some real life scenarios. i.e. Paths
models the transportation links between cities; Regions models an auction
of real estate or an auction where the basis of complementarity is the two-
dimensional adjacency of goods; Arbitrary extends regions by removing the
two-dimensional adjacency assumption, and it can be applied to model elec-
tronic parts design or procurement; Matching models airline take-off and land-
ing rights auctions; and Scheduling models a distributed job-shop schedul-
ing domain. Artificial (or Legacy) distributions have been often criticized
[Andersson et al., 2000, Leyton-Brown et al., 2000, De Vries and Vohra, 2003]

4.6. EMPIRICAL EVALUATION 69

mainly due to their poor applicability, specially in the economic field. However
they are interesting in order to study the algorithm performance in different sit-
uations. Both AD3 and PAR-AD3 are well suited for large-scale hard problems.
For this reason, we first determine which of these distributions are hard to solve,
putting special attention to the realistic ones. For our experimentation, we con-
sidered a number of goods within [103, 104] in steps of 103 goods. Furthermore,
the number of bids ranged within [104, 4 ·104] in steps of 104 bids. Each problem
scenario is characterized by a combination of distribution, number of goods, and
number of bids. Our experiments consider 5 different instances for each problem
scenario and we analyze their mean value. Experiments are executed in two
different hardware architectures.

• Experiments comparing AD3 against PAR-AD3 were run in a computer
with a 6-core Intel(R) Core(TM) i7-7500U processor with 32 GB RAM
and the hyper-threading mechanism enabled.

• Experiments comparing PAR-AD3 against CPLEX were run in a com-
puter with two four-core Intel (R) Xeon(TM) L5520 processors with 32
GB RAM and the hyper-threading mechanism disabled.

While the former experiments comparing AD3 against PAR-AD3 were run
in a local environment, the latter experiments were run in a cluster licensed
with CPLEX. Unfortunately we were not able to reproduce the former experi-
mentation of AD3 against PAR-AD3 in the cluster due to hardware availability
issues.

4.6.2 Different Distributions Hardness

We empirically determine the hardness of the relaxation for our experimental
data by solving the LP using CPLEX simplex (simplex henceforth), CPLEX
barrier (barrier henceforth), the state-of-the art algorithms. Results are plot in
figures 4.4a and 4.4b. According to the results, scheduling and matching from the
realistic distributions and L1, L4 from the legacy ones are very well addressed by
simplex, where solving time is, in general, less than one second. Both AD3 and
PAR-AD3 are not competitive in this scenario. Applicability of PAR-AD3 will
be shown to be effective to the rest of distributions, especially in hard instances.
Barrier is also doing a good job when the problems are hard, particularly in the
arbitrary and regions distributions, where the problem representation matrix is
more sparse.

4.6.3 Single-Thread Analysis

After comparing the publicly-available version of AD3 against sequential PAR-
AD3, we observed that PAR-AD3 outperformed AD3 even in sequential execu-

70 CHAPTER 4. LARGE SCALE COMBINATORIAL AUCTIONS

s
c
h
e
d
u
li
n
g

p
a
th

s

re
g
io

n
s
-n

p
v

a
rb

it
ra

ry
-n

p
v

m
a
tc

h
in

g

L
1

L
3

L
4

L
5

L
6

L
710

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Simplex solving time

s
c
h
e
d
u
li
n
g

p
a
th

s

re
g
io

n
s
-n

p
v

a
rb

it
ra

ry
-n

p
v

m
a
tc

h
in

g

L
1

L
3

L
4

L
5

L
6

L
710

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Barrier solving time

Figure 4.4: Solving time in seconds for different distributions, single thread. a)
Simplex b) Barrier

tion, reaching an average speedup of 3X and a peak speedup of 6.4X. Moreover,
we observed that the harder the instances, the larger the speedups of PAR-AD3

with respect to AD3. Since both algorithms are well suited for hard instances,
this is particularly noticeable. Next, we compared the single-thread average
performance of PAR-AD3 against simplex and barrier. The results are plot in
Figure 4.5,where we display the best algorithm for the different distributions and
problem sizes. PAR-AD3 is shown to be well suited for larger problems (the
upper-right corner) in almost all the distributions. In general, barrier is the best
algorithm in the mid-sized problems, while simplex applicability is limited to a
small number of cases. Distribution paths presents a different behaviour, where
adding goods increases the average bid arity and this is beneficial for simplex,
which runs better in dense problems.

In general, the larger the WDP instances, the larger the PAR-AD3 benefits.
Single-threaded PAR-AD3 reaches a peak speedup of 12.4 for the hardest dis-
tribution when compared to barrier, the best of the two state-of-the-art solvers.

4.6.4 Convergence and Solution Quality

Figure 4.7 shows a trace of an execution that illustrates the way the different
solvers approximate the solution over time (using a regions distribution, 5× 103

goods, and 104 bids). We chose this run because the similar performance of
the three algorithms made them comparable. Note that PAR-AD3 converges
to the solution in 29 sec. , while barrier requires 102 sec. and simplex 202 sec.
(not visible in the figure).Furthermore, notice that PAR-AD3 quickly reaches a
high-quality bound, hence promptly guaranteeing close-to-the-solution anytime
approximations. In general, our experimental data indicate that the initial solu-
tion provided by PAR-AD3 is always significantly better than the one assessed
by both simplex and barrier. Finally, upon convergence, there is a maximum

4.6. EMPIRICAL EVALUATION 71

Simplex Barrier PAR-AD 3

Figure 4.5: Fastest single-thread algorithm solving different distributions and
problem sizes.

Figure 4.6: Speedup of PAR-AD3 for different distributions against barrier in
a multi-thread execution

72 CHAPTER 4. LARGE SCALE COMBINATORIAL AUCTIONS

Convergence

Figure 4.7: Convergence of simplex, barrier and PAR-AD3

deviation of 0.02% between PAR-AD3 solutions and those assessed by CPLEX.
Note that we run CPLEX with default parameters, has the feasibility tolerance
set to 10−6. This means that CPLEX solutions may be infeasible up to a range
of 10−6 per variable. In the same sense, PAR-AD3 feasibility tolerance is set to
10−12. This good initial solution is a nice property that makes PAR-AD3 suit-
able to be used as a method able to obtain quick bounds, either to be embedded
in a MIP solver or also to provide a fast solution able to be used towards an
approximate solution.

4.6.5 Multi-Thread Analysis

PAR-AD3 obtained an average speedup of 4.8X in a 6-core computer with re-
spect to AD3, delivering an aggregated speedup of 14.4X with respect to AD3.

We also have run PAR-AD3, simplex and barrier with 8 parallel threads
each, hence using the full parallelism offered by our computer. The results are
displayed in figure 4.8. When comparing with figure 4.5 (corresponding to the
single-thread execution), we observe that PAR-AD3 outperforms simplex and
barrier in many more scenarios, and in general PAR-AD3 applicability grows
in concert with the parallel resources in all cases. Hence, we infer that PAR-
AD3 better benefits from parallelisation than simplex and barrier. The case of
the paths distribution is especially remarkable since simplex is faster than other
algorithms when running in a single-thread scenario. Nonetheless, as PAR-AD3

better exploits parallelism, it revealed to be the most suitable algorithm for
hard distributions when running in multi-threaded executions, including paths.
In accordance with those results, it is expected that increasing the number of
computational units will widen the range of applicability of PAR-AD3.

Finally, we compared PAR-AD3 performance against barrier using 8 threads.
We only compare PAR-AD3 to barrier since it is the best suited algorithm for the
selected distributions (i.e in some executions PAR-AD3 can be up to three orders

4.7. CONCLUSIONS 73

Simplex Barrier PAR-AD3

Figure 4.8: Fastest algorithm solving different distributions and problem sizes
using multiple threads.

of magnitude faster than simplex). Figure 4.6 shows the average performance
speedup of PAR-AD3 versus barrier as a function of the total running time
of the execution of barrier (shown in the X-axis). We observe a clear trend
in all scenarios: the harder the problem becomes for barrier, the larger the
speedups obtained by PAR-AD3. Our peak speedup is 23X (16X when taking
the mean execution time of the different instances). The best results are achieved
in the arbitrary distribution, which in addition was significantly better solved
by barrier than by simplex according to figure 4.4. We recall that arbitrary is a
distribution that can be applied to the design of electronic parts or procurement
since it removes the two-dimensional adjacency of regions. In arbitrary, larger
speedups correspond to the more sparse scenario, i.e. the bottom-right corner
in figure 4.8.

4.7 Conclusions

In this chapter we have opened up a path towards solving large-scale CAs. We
have proposed a novel approach to solve the LP relaxation for the WDP. Our
approach encodes the optimization problem as a Factor Graph and uses AD3, a
dual-decomposition message-passing algorithm, to efficiently find the solution.

In order to achieve higher efficiency, we rearranged the operations performed
by AD3 providing a new algorithm, the so-called PAR-AD3, which is an opti-

74 CHAPTER 4. LARGE SCALE COMBINATORIAL AUCTIONS

mized and parallel version of AD3. PAR-AD3 delivers an average speedup of
14.4X in a 6-core computer with respect to AD3.

Our experimental results validate PAR-AD3 efficiency gains in large scale
scenarios. We have shown that PAR-AD3 performs better than CPLEX for
large-scale CAs in the computationally hardest distributions, both in single- and
multi-threaded scenarios, with a peak speedup of 23X. Furthermore, the speedup
is larger in multi-threaded scenarios, showing that PAR-AD3 scales better with
hardware than CPLEX. Therefore, PAR-AD3 has much potential to solve large-
scale coordination problems that can be cast as optimization problems.

However the described version of PAR-AD3 for WDPs for CA is limited to
solve the LP relaxations for those problems whose constraints can be represented
by constraints of the type AtMostOne, i.e. all the problems that can be modeled
as a 0-1-knapsack problem. In the next chapter we show how to obtain a bigger
applicability by extending the kind of Quadratic Problems that the algorithm
will be able to compute.

Chapter 5

Side Chain Prediction

5.1 Chapter Overview

In the previous chapter we presented a parallel and efficient design of AD3, the
so-called PAR-AD3 and applied it to approximate LP relaxations for the Winner
Determination Problem (WDP) in Combinatorial Auctions (CA). In the case of
the WDP for CA, it was possible to encode the problem considering only one type
of constraint –or factor– known as AtMostOne. Implementing a method to solve
the AtMostOne factor was enough to solve the problem by means of PAR-AD3.
Moreover, AtMostOne was shown to carry very lightweight computation. Hence,
in the previous chapter, the computational load was centered in the computation
happening outside the factor. Our work was focused in the design of a parallel
paradigm and we studied how to represent the data and the organization of the
computation scheduling. In other words, we were designing how to orchestrate in
parallel a set of thousands factors of a Factor Graph to be solved by PAR-AD3.
In the present chapter we still work with PAR-AD3, but this time we tackle a
problem that requires a computational-intensive constraint to be solved. While
we get benefit of the parallelization as was designed in the previous chapter, in
this chapter we will focus in the optimization of computationally intense factor:
The Arbitrary factor. This new factor allow the representation of any discrete
function, widening the applicability of PAR-AD3 substantially.

This chapter presents how to approximate results for LP relaxations for a
problem belonging to the domain of Biology: the Side-Chain Prediction problem.
Our work follow the steps of the contributions of Chen Yanover et al in their
studies with the belief propagation algorithm [Yanover et al., 2006], where they
propose Tree Reweighted Belief Propagation to approximate LP relaxations for
the Side-Chain Prediction problem. They also build a dataset optimization

75

76 CHAPTER 5. SIDE CHAIN PREDICTION

problems for Side-Chain Prediction that is freely downloadable.

We make the following contributions:

• We propose an optimized version of the method to solve Arbitrary factors.
This optimized version can be embedded into PAR-AD3. Our PAR-AD3

reaches an average speedup of 2.7X in a single-threaded execution and
10.8X using our 6-core computer with respect to AD3.

• We contribute with the generation of a Combinatorial Optimization
dataset based on Side-Chain Prediction problems.

• We present a detailed performance analysis where the we show the perfor-
mance limiters of our PAR-AD3 both in sequential and parallel.

• We release our code and materials to be freely accessible at
https://github.com/parad3-scp/source.

The chapter is organized as follows:

The chapter starts with an introduction to the Side-Chain Prediction prob-
lem. We provide an overview of the key concepts needed to understand the
rationale behind this Problem.

Then we show how to encode a problem of Side-Chain Prediction as a Factor
Graph in order to be solved by means of AD3.

Next we use a Side-Chain Prediction-based dataset proposed by
[Yanover et al., 2006] in order to measure the performance of AD3 algorithm
when solving the Side-Chain Prediction. We show that more than the 90% of
the problems in the dataset do not suppose a big challenge for AD3. Most of
them are solved in less than one second and also in the majority of cases AD3

is able to find the optimal solution. In order to have a highest computational
challenge, we build a new Side-Chain Prediction-based dataset. The new dataset
is based in the Side-Chain Prediction problem for larger proteins than the ones
present in the Yanover dataset.

Then we study how to optimize the aforementioned Arbitrary factors from a
computational performance perspective, and present our optimized and parallel
algorithm with support to Arbitrary factors.

The chapter ends with a description of the techniques we used to improve
algorithm performance in a single-thread execution. Finally we present results
in both in single core and multicore and examine in detail the limitations of our
new proposed algorithm.

5.2. THE BIOLOGICAL PERSPECTIVE 77

5.2 The Biological Perspective

5.2.1 Background

Proteins are large biomolecules consisting of one or more chains of amino-acids.
Proteins are a fundamental component for every living organism. They are spe-
cially interesting because they can perform a broad range of biological functions.
They are also very diverse yet structurally very simple. Molecular properties
such as shape, polarity, hydro-affinity of a protein are determined in a great
extent by the sequence of amino-acids conforming it.

Amino-acids are small and simple molecules. All the amino-acids share the
same structure, shown in figure 5.1. They are formed by an amina group (-
NH3), a carbon with a residue (R) attached, and a carboxyl group (-COOH).
The residue (R) also known as side-chain, is what characterizes an amino-acid.
There exist up to 21 possible residues or side-chains giving rise to the 21 existent
amino-acids. This 21 amino-acids constitute the bricks able to build proteins.

OH
C

C

O

NH2

R

Figure 5.1: Structure of an amino-acid.

A protein has two structural elements: The backbone and the side-chains.
The backbone is the large chain of amino-acids connected that define the struc-
ture of the protein, and the side-chains are the small chains decorating and giving
properties to the backbone, as shown in figure 5.2.

The link between two amino-acids is characterized per two angles in the two
planes of the 3-dimensional space. This angles receive the name of rotamers.

NH2 - CH - C - NH - CH - C - NH - CH - C- NH- CH - C - OH

O= O= O= O=

R1

-

R2

-

R3

-

R4

-

backbone

side-chains

Figure 5.2: Structure of a protein. Backbone and side-chains.

Amino-acids can adopt different forms or conformations since side-chains can
be folded in different ways. A particular conformation of a side-chain is defined
by the collection of angles between the different atoms constituting the side-

78 CHAPTER 5. SIDE CHAIN PREDICTION

chain. However, not all the possible angle configurations are equiprobable. In
fact, it is known that there are some configurations that appear repetitively in the
nature. They are known as stable side-chain configurations. The biology research
community has studied the characteristics of such stable configurations, fruit of
this research, there are different approaches that approximate the side-chain
configuration given a particular amino-acid context. Some relevant libraries
that were used in the last decades are [Lovell et al., 2000, Tuffery et al., 1991].
Nowadays the most relevant rotamer library is [Dunbrack, 2002].

As said, the particular sequence of amino-acids together with their side-chain
conformations is what determines the properties of the protein. In particular,
there is one property that has a capital relevance to our problem and no less
relevance to the protein functional purpose: the protein tridimensional structure.

5.2.2 The Side-Chain Prediction Problem

Roughly speaking, the conceptual idea catching the essence of the problem is
“Draw a protein first, then let’s find how to build it”. The second part of the
sentence is what the Side-Chain Prediction is about. Let us give you a more
detailed view of the problem.

In the Side-Chain Prediction problem, the starting point is the
3D structure of a protein and the objective is to find which are
the sequence of amino-acids and their corresponding side-chains.
This problem is a classic but still a difficult challenge in computa-
tional biology that has been tackled from different perspectives, i.e.
[Summers and Karplus, 1989, Holm and Sander, 1991, Lee and Subbiah, 1991,
Tuffery et al., 1991, Desmet et al., 1992, Dunbrack Jr and Karplus, 1993,
Wilson et al., 1993, Kono et al., 1994, Laughton, 1994, Hwang and Liao, 1995,
Koehl and Delarue, 1995, Bower et al., 1997, Samudrala and Moult, 1998,
Dunbrack Jr, 1999, Mendes et al., 1999, Xiang and Honig, 2001,
Liang and Grishin, 2002].

Typically, solving methods define an energy function over a discretization of
the side-chain angles, then the global minimum can be found using search algo-
rithms. Even when the energy function contains only pairwise interactions, the
configuration space grows exponentially and it can be shown that the Side-Chain
Prediction problem is NP-complete [Fraenkel, 1997, Pierce and Winfree, 2002].

The Model

A common model is to express the Side-Chain Prediction problem as a Combi-
natorial Optimization problem where the optimization function minimizes the

5.2. THE BIOLOGICAL PERSPECTIVE 79

energy in terms of pairwise interactions among nearby residues and interactions
between a residue and the backbone.

More formally,

E(r) =
∑
<ij>

Eij (ri, rj) +
∑
i

Ei (ri, backbone) (5.1)

where r = (r1, ..., rN) denotes an assignment of rotamers for all residues, and
E the result of applying an Energy function.

Library of Rotamers

All the known methods require the use of a library of rotamers to work. The
library of rotamers provides a description of which are the stable configurations
of the residues as they have been observed in the nature. Thanks to the use of
a library of rotamers we can discretize the space of solutions considering only
the stable configurations of the side-chains as possible solutions, in our notation
ri ∈ LR(P, i) where LR represent the call to the rotamer’s library, P is the
protein and i the side-chain we are evaluating. The rotamer’s library will return
the possible formations of the side-chain i.

The Energy Function

As stated before, the optimization function minimizes over the energy needed to
conform the protein. There exist different energy functions that try to estimate
the energy consumption of a protein [Canutescu et al., 2003, Rohl et al., 2004].
Different energy functions generate different graphical models to be solved. The
election of the energy function has impact in the quality of the solution but also
in the amount of computation that has to be done.

5.2.3 PDBs and SCWRL4

The Protein Data Bank (PDB) was established in the 1970’s as the first open-
access digital resource in the biological sciences. It is today a leading global
resource for experimental data central to scientific discovery. Through an online
information portal and downloadable data archive, the PDB provides access to
3D structure data for large biological molecules (proteins, DNA, and RNA). It
was established by Walter Hamilton at Brookhaven National Laboratory. The
PDB contained at that time 7 structures. Nowadays the PDB is coordinated
by the Research Collaboratory for Structural Bioinformatics (RCSB) and at

80 CHAPTER 5. SIDE CHAIN PREDICTION

[…]

ATOM 1 N ILE A 1 67.218 29.846 14.254 1.00 31.92 N
ATOM 2 CA ILE A 1 67.984 30.207 15.478 1.00 31.99 C
ATOM 3 C ILE A 1 67.129 30.161 16.751 1.00 30.80 C
ATOM 4 O ILE A 1 67.630 29.777 17.810 1.00 31.93 O
ATOM 5 CB ILE A 1 68.636 31.591 15.330 1.00 33.42 C
ATOM 6 CG1 ILE A 1 68.990 32.198 16.686 1.00 34.77 C
ATOM 7 CG2 ILE A 1 67.703 32.530 14.653 1.00 34.20 C
ATOM 8 CD1 ILE A 1 68.581 33.692 16.821 1.00 35.44 C
ATOM 9 N VAL A 2 65.846 30.521 16.665 1.00 28.20 N
ATOM 10 CA VAL A 2 64.985 30.494 17.851 1.00 25.06 C
ATOM 11 C VAL A 2 63.521 30.163 17.504 1.00 24.34 C
ATOM 12 O VAL A 2 63.004 30.602 16.458 1.00 23.42 O
ATOM 13 CB VAL A 2 65.062 31.855 18.593 1.00 25.01 C
ATOM 14 CG1 VAL A 2 64.567 33.001 17.682 1.00 23.91 C
ATOM 15 CG2 VAL A 2 64.271 31.806 19.903 1.00 24.74 C
ATOM 16 N VAL A 3 62.880 29.367 18.363 1.00 22.53 N
ATOM 17 CA VAL A 3 61.471 28.983 18.200 1.00 20.77 C
ATOM 18 C VAL A 3 60.669 29.638 19.333 1.00 20.99 C
[…]

Figure 5.3: Left: portion of a PDB file description of a molecule. Right: 3D
representation given the whole PDB input.

the time of this writing there are more than one hundred thousand molecules
described.

PDB is also the file format describing the molecules. The PDB files describe
the atoms of a molecule and their coordinates in the 3D space. There exist a
large number of tools that are able to visualize the proteins described by a PDB.
The web resource itself (http://www.rscb.org) allows to view and interact with
a molecule. Figure 5.3 shows a partial view of a PDB file and its visualization.

The state of the art solver for the Side-Chain Prediction is SCWRL4
[Krivov et al., 2009]. SCWRL4 is developed at the Dunbrack Lab in the Fox
Chase Cancer Center and it is the most advanced software for solving the Side-
Chain Prediction. SCWRL4 can be freely used for research purposes but its
source code is proprietary and it is not accessible.

SCWRL4 is able to execute Side-Chain Prediction simulations over known
proteins described in PDBs. To achieve the simulation, SCWRL4 extracts the
backbone atoms and their coordinates from a PDB. Next, it generates a prob-
abilistic model using the side-chain configurations provided by rotamer library
and then apply the energy function over the different possibilities. Finally, after
solving the optimization problem, SCWRL4 places the minimal configuration of
side-chains in place.

One interesting feature of SCWRL4 is the option to dump the optimization
problem into a file once it is internally built and opens the door to use the com-
bination of RSCB Protein DataBank + SCWRL4 as generator of Combinatorial
Optimization problems.

5.3. SOLVING THE PROBLEM 81

5.3 Solving the Problem

In this section we study the current performance of AD3 when solving
LP relaxations for the proteins published at the SCWRL3-Based dataset
[Yanover et al., 2006]. This dataset is formed by proteins of one unique chain
and up to 1000 residues. This model uses the SCWRL3 energy function
[Canutescu et al., 2003].

We show how to encode the problem of Side-Chain Prediction as a Factor
Graph able to be solved by means of AD3. Next we encode all the problems
of the Yanover’s dataset as a Factor Graph and solve them using the public
implementation of AD3.

We observe how we are soon solving all the LP relaxations for all the problems
in this dataset very fast. As AD3 is powerful, SCWRL3 based problems in the
Yanover dataset are solved very efficiently.

After concluding that it would be desirable to have a new dataset with hard-
est instances, we end the section building an new dataset containing harder
problems.

5.3.1 How to Encode the Problem as a Factor Graph

Variables and Multi-Variables

The problem of the Side-Chain Prediction can be encoded as a Factor Graph to
be solved by means of AD3. In the Factor Graph encoding, every amino-acid is
represented by a multi-variable. The term multi-variable stands for a variable
that is formed by a set of binary variables. In the context of the Side-Chain
Prediction, a multi-variable has as many binary variables as possible side-chains
configurations can have the amino-acid, according to the information provided
by the rotamer library.

If, for instance, a given amino-acid can have two different side-chains that can
be expressed in two and three configurations respectively, there will be a total 5
binary variables associated to the same multi-variable. Every multi-variable has
one and only one of it’s binary variables active, meaning that every amino-acid
has only one radical position having one side-chain attached.

In addition, every different side-chain conformation requires a different level
of energy is mapped to a potential value associated to every binary variable.

82 CHAPTER 5. SIDE CHAIN PREDICTION

Connections Between Multi-Variables

A protein is a complex system where the forces from different atoms inter-
act. The forces interacting between different aminoacids play a fundamental
role in the protein folding process. In our model of the problem of the Side-
Chain Prediction, forces are modeled as pairwise interactions, where every pair
of aminoacids that are close enough in the 3D space are linked.

Figure 5.4a shows a graphical representation of a Factor Graph encoding the
Side-Chain Prediction problem. In the figure we show only the interactions on
aminoacid number 2. Figure 5.4 shows the shape of the protein we are trying to
predict, where we mark the aminoacids that interacts with aminoacid number
2 (central point, in blue). We also show in Figure 5.4 how one of the factors
looks like. It is a table of dimensions |R1| × |R2| where |R1| and |R2| are the
number of possible radical configurations of each aminoacid of the interaction.
The content of the table cells is the energy required by the protein to express
the given radical selection.

aa
#2

Energy
2-3

Energy
1-2

aa
#1

aa
#3

aa
#100

Energy
2-100

aa
#102. . .

Energy
2-102a)

b)

v21 v21v21R22

v11 v13v12R21

R13R12R11

c)
Energy 1-2

Figure 5.4: a) A graphical representation of the pairwise interaction of the
aminoacid number 2 in a Factor Graph. b) A schematic 2D drawing of the
positions of the aminoacid influencing the aminoacid number 2. c) A table with
the different stable configurations of aminoacid number 1 and aminoacid number
2; every combination requires a certain Energy.

5.3. SOLVING THE PROBLEM 83

5.3.2 Effectively Solving the LP problem

AD3 has be proven to efficiently solve the problem of the Side-Chain Prediction,
using the dataset from Yanover. Martins compares the performance of AD3 with
MPLP, using David Sontag’s [Sontag et al., 2012] implementation showing the
progress in the dual objective over the time for two of the most largest problem
instances. In both cases, AD3 rapidly surpasses MPLP in getting a better dual
objective.

AD3 claims to be the fastest algorithm solving the LP relax-
ations for Yanover’s Side-Chain Prediction dataset, since Sontag’ MPLP
[Sontag et al., 2012] revisited the problem of the Side-Chain Prediction, find-
ing that MPLP obtained better results than TRBP. Furthermore, TRBP was
proved to obtain better performance than CPLEX –The general purpose LP
solver from IBM– in [Yanover et al., 2006].

Experimental Hardware Setup

We run our experiments in a server with an Intel(R) Core(TM) i7-7500U proces-
sor with hyper-threading enabled. This processor has a Last Level Cache (L3)
cache of 15GB and 6 cores with two levels of private caches. The server has
32GB of RAM.

Solving the Yanover’s Dataset

We have thoroughly tested AD3 against Yanover’s dataset, with the objective
of characterizing AD3 execution. A problem can be finished in three ways:

• finding an optimal integer solution,
• monitoring the increment of the primal and dual objectives through the it-
erations and detecting when the result is not improving enough (according
to a threshold) or

• stopping the process, reaching a maximum number of iterations or execu-
tion.

We are looking different aspects from the qualitative results of our experimen-
tation.

Solution type. The dataset is formed by 369 proteins, AD3 is able to find
the optimal integer solution for 93.77% of the problems. In the rest of the cases
AD3 is able to converge to an approximate solution with an error smaller than

84 CHAPTER 5. SIDE CHAIN PREDICTION

−106. Note that his error is negligible compared to the amount of energy we are
trying to minimize is in the order of 103.

Solving time. AD3 is able to solve the 72.1% of the dataset in less than one
second, 22.5% in less than five seconds. The 5.4% left are the hardest cases that
require a mean of 12 seconds to be solved. The hardest case is the protein named
’1kwh’ and it solved optimally in 31.3 seconds. Figure 5.5a shows AD3 solving
times for the dataset in growing order.

Iterations needed. Close to 96% of the proteins need less than 2000 iterations
to be solved. The remaining proteins require a mean of 2822 iterations. The
maximum number of iterations needed by AD3 is 5364, and it is again for the
’1kwh’ protein. Figure 5.5b shows the number of iterations that AD3 require to
solve the dataset.

Summarizing the measures just described, AD3 finds the optimal for 93.77%
of the problems, it solves 94.6% of the problems in less than 5 seconds, and 96%
of the executions require less than 2000 iterations. At the light of these results
we can extract two main conclusions. First, AD3 is suitable for solving the Side-
Chain Prediction problem and, second, the selection of proteins in Yanover’s
dataset doesn’t constitute a big challenge for AD3 since almost all of them are
solved optimally and efficiently.

Our objective is to optimize and propose a parallel version of AD3, and to
that end we require to have computationally intensive tasks. However, in the
case of the Yanover’s dataset only a few portion of the problems represent a
real challenge for AD3, barely 5-10 cases. For this reason we find the need of
building a new protein dataset.

5.3.3 Designing a New Dataset

Since most of the problems in Yanover’s SCWRL3-Based dataset are not hard
enough to stress the AD3 algorithm, we generated a new dataset with bigger
proteins. The 296 proteins in the dataset are unique chains of aminoacids con-
taining between 1000 and 4000 residues.

The protein description files are downloaded from http://rcsb.org. We
use the SCWRL4 [Krivov et al., 2009] tool on those files to generate the graph-
ical models. SCWRL4 integrates a more sophisticated energy function than its
predecessor (SCWRL3) to generate more accurate results, and at the same time
graphical models that are much more complex

We run AD3 for solving the experiments in the new dataset to corroborate

5.3. SOLVING THE PROBLEM 85

(a) Time

(b) Iterations

Figure 5.5: AD3 Time and number of iterations required by AD3 for each protein
of the Yanover’s dataset. The results are shown with the instances sorted by
increasing time

86 CHAPTER 5. SIDE CHAIN PREDICTION

(a) Time

(b) Iterations

Figure 5.6: AD3 Time and iterations required by AD3 for each protein with
the new proposed dataset. The results are shown with the instances sorted by
increasing time.

that there is a higher number of hard problems. Figure 5.6 plots the time
required to find a solution by AD3 on the instances of the new dataset as well
as the number of iterations required. These two plots are analogous to the
ones in Figure 5.5. We keep the scale of the axes to make the figures visually
comparable. The execution times ranging between 30 seconds and 160 seconds
that correspond to the 20 hardest instances in the dataset are cut at the right
of the figure 5.6a.

5.4. OPTIMIZING THE COMPUTATION OF ARBITRARY FACTORS 87

5.4 Optimizing the Computation of Arbitrary
Factors

This section presents the main contribution of the chapter: the realization of an
optimized design of the algorithm to solve an Arbitrary factor. We first underline
the main differences between the Arbitrary factor and the AtMostOne factor.

• Use case. The applicability of the Arbitrary factor is much wider, since
it is able to implement any function.

• Morphology. The Arbitrary factor is able to represent pairwise interac-
tions between multi-variables. In contrast, the AtMostOne factor operates
with binary variables only, but with heterogeneous arity.

• Complexity. While solving the quadratic problem for first order logic
factors –like the AtMostOne factor– is computationally very lightweight
(see Algorithm 5 in Chapter 4), solving the quadratic problem for an
Arbitrary factor requires significantly much more computation work.
Moreover the computational effort that is needed to solve an Arbitrary
factor can substantially vary from one factor to another: the workload is
not balanced.

• Integration. Some operations involved for the AtMostOne factors depend
only on edge-related information and can be interleaved with graph-wise
operations, which provides opportunities for efficient parallel execution (see
section 4.5.2). In contrast, the elementary operations needed to solve the
Arbitrary factor depend on a high amount of factor-related information
and cannot be performed outside the factor.

5.4.1 Algorithmic Description

This section presents an algorithmic definition for solving a quadratic problem
in an Arbitrary factor. We focus in the type of operations and memory struc-
tures that are required to solve the problem. The reader can find a more detailed
description of the principles behind the Arbitrary factor at [Martins, 2012b] (sec-
tion 6.5).

Algorithm 7 shows an overview of the process of solving a quadratic prob-
lem for an Arbitrary factor. For simplicity, in the presented algorithm we have
omitted the description of two computationally intense processes, in functions
projectV arPotentialsToFactor and projectV arPotentialsWithDistribution,
in lines 5 and 15, respectively. They play an important role regarding exe-
cution performance, since they propagate the selection of the variables to the

88 CHAPTER 5. SIDE CHAIN PREDICTION

Algorithm 7 SolveArbitraryQP : Solving an Arbitrary factor

Require: Var1 potentials (V p1), Var2 potentials (V p2), Factor Potentials (Fp)
1: function SolveArbitraryQP(V p1,V p2,Fp)
2: if isEmpty(ActiveSet) then

3: A ←
[−2 1
1 0

]

4: distribution ← [1]
5: projectionMatrix ← projectV arPotentialsToFactor(V p1, V p2, Fp)
6: ActiveSetval.push(max(projectionMatrix))
7: ActiveSetpos.push(max pos(projectionMatrix))
8: end if
9: for i ∈ 1 . . . max iterations do

10: if hasChanged(ActiveSet) then
11: [τ, z1, . . . , zn] ← A−1 × [1]⊕ActiveSetval
12: else
13: � find a potential to add to the activeSet
14: output = initialize(V p1, V p2, Fp, distribution)
15: output = projectV arPotentialsWithDistribution(V p1, V p2, Fp, distribution)
16: if (max val(output)±ε = τ) or (max pos(output) ∈ ActiveSetpos) then
17: return
18: end if
19: ActiveSetval.push(max(output))
20: ActiveSetpos.push(max pos(output))
21: A ← updateMatrix(A,ActiveSet)
22: � adds a row and a column to matrix A
23: distribution ← update(A,ActiveSet)
24: end if
25: if blocked(ActiveSet) then
26: RemoveBlocking(ActiveSet)
27: Updates: A, distribution
28: end if
29: end for
30: end function

5.4. OPTIMIZING THE COMPUTATION OF ARBITRARY FACTORS 89

Generic Factor

2.842 0.722 -1.791 23.061

-29.68 56.685 -9.756 -37.205

-22.33 55.018 27.514 -11.044

-21.407 -2.151 -26.242 12.698

-17.531 11.693 -22.909 -18.784

0.345

6.457

12.234

-1.85

R1

R2

R3

R4

Aminoacid #1

0.001

10.235

4.02

-1.15

6.23

Aminoacid #2

2.496 -5.736 -14.026 24.91

-40.26 39.993 -32.225 -45.59

-26.695 44.541 11.26 -13.214

-20.602 -7.458 -37.326 15.698

-24.106 -0.994 -41.373 -23.164

aa1 choice

aa
2

ch
oi

ce

R1

R2

R3

R4

R5

2.496 -5.736 -14.026 24.91

-40.26 39.993 -32.225 -45.59

-26.695 44.541 11.26 -13.214

-20.602 -7.458 -37.326 15.698

-24.106 -0.994 -41.373 -23.164

0.345 6.457 -12.234 -1.85

0.345 6.457 -12.234 -1.85

0.345 6.457 -12.234 -1.85

0.345 6.457 -12.234 -1.85

0.345 6.457 -12.234 -1.85

0.001 0.001 0.001 0.001

10.235 10.235 10.235 10.235

4.02 4.02 4.02 4.02

-1.15 -1.15 -1.15 -1.15

6.23 6.23 6.23 6.23

+

+

=

Figure 5.7: An example of a calculation of projectVarPotentialsToFactor

factors. We next present an overview of them.

Let us have two multivariables aa1 and aa2, and a factor f linking these
two variables. Every multi-variable is formed by a set of |aa1| and |aa2| binary
variables and their associated potentials. The factor potentials F is a matrix
with dimension |aa1|×|aa2|. The function projectV arPotentialsToFactor maps
all the potentials of aa1 and aa2 to the factor f and then finds the minimum
energy. It does that defining two all-ones vectors as ones1 and ones2, where
|ones1| = |aa1| and |ones2| = |aa2|, and then computing the projected matrix
as P = (aa1)

ᵀ × ones2 + aa2 × (ones2)
ᵀ + F . An example of this calculation is

shown at figure 5.7. Function projectV arPotentialsWithDistribution works in
a very similar way, but this time some energetic values are weighted according
to a distribution.

In line 21, matrix A is updated, but this update must guarantee that the
resulting matrix will not be singular, otherwise the inversion in line 11 will fail.
The original strategy to handle this problem was very cumbersome. we have
devised a simpler solution that consists of checking the singularity of the matrix
while the matrix is created: if a combination of row and column introduces a
singularity, then this combination is removed.

5.4.2 Optimizing Performance

Solving factors implementing the Arbitrary factor requires that some data struc-
tures must be kept into memory persistently. We show how a good choice of the

90 CHAPTER 5. SIDE CHAIN PREDICTION

memory representation strategy can help to increment the performance. We also
show some techniques to optimize computations. During the rest of the chapter
we will refer to the original implementation of AD3 as Reference version and
our contributed version as Optimized version.

Next we present which techniques we used, why we used them and what is
the expected result. Finally, we present empirical evidence of our improvements.

Memory Design

The data required to represent a problem with Arbitrary factors can be divided
into two classes. On one hand, we have data structures that store the state of
the problem; this is the case for variable potentials, factor potentials, the list of
variables or factors that are active, or the value of the lambdas corresponding
to the edges. On the other hand, memory is needed for some intermediate
calculations, such as the aforementioned matrix operations or the current list of
candidate solutions for a given factor.

The first class of data is allocated statically at the beginning of the execution
in both the Reference version and the Optimized version.

On the contrary, the second class of data –the one generated for interme-
diate calculations– is allocated and freed dynamically in the Reference version,
while it is statically allocated in the Optimized version. This decision has some
implications that are discussed next.

The first and obvious implication is that allocating memory in advance avoids
to eventually request memory to the operating system. Allocating new memory
is, in general, expensive in terms of performance. Hence a reduction of the num-
ber of memory allocation requests has the potential of increasing performance.

In exchange, the Optimized version has to estimate in advance the amount
of memory the algorithm is going to need. Unfortunately, this information is
not known beforehand. In addition, the memory will not be evenly distributed
across the factors. A precise analysis to the operations done for factor calculation
reveals that a factor maintains a list of pairwise solutions, named as active set,
and that memory requirements have a quadratic growth with respect to this
active set. Hence there will be factors with high memory requirements, the ones
that are very active considering more possible solutions, and idle factors with
very few memory requirements. We propose to reserve memory in advance using
a double strategy.

• Per thread scratch areas. We create scratch areas that are private
to each execution thread. Scratch areas are used to store data that is
going to be consumed in the short term. For instance, when inverting a

5.4. OPTIMIZING THE COMPUTATION OF ARBITRARY FACTORS 91

matrix using LU decomposition, partial results are stored in the scratch
area. Separating scratch zones per thread, we assure that there will not
be undesired effects like race competitions or false cache sharing.

• Per factor pre-allocated memory space. We allocate a configurable
amount of memory assigned exclusively to each factor. Since the memory
requirements are quadratic with respect to the number of active possibili-
ties a factor is considering, we can define this parameter as the maximum
number of active possibilities a factor can hold and represent it by
 .
Then, if it turns out that a particular factor is very active and needs more
memory, the algorithm ask the system for free memory –although this call
will be expensive–. A downside of this pre-allocation is that the initial
memory given to each factor has to be decided in advance. However, in
practice AD3 doesn’t have large memory requirements and, in the case of
the Side-Chain Prediction, considering values of the order of
 ≈ 50 leads
to a good compromise of a limited memory usage and very few requests
for extra memory.

Using a memory profiling tool, we obtain the total amount of memory al-
location calls done by the program. The Reference version needs an average
of 7.16 × 106 allocation calls when solving the Side-Chain Prediction dataset.
In contrast, the Optimized version needs an average of 1.57 × 105, which is a
significant reduction of 97.8% of the system calls.

As we will detail in the next section, the Optimized version executes less
instructions. This fact has an impact in the memory system where we have
measured an average of 57% less memory accesses to the main memory system
in the Side-Chain Prediction dataset.

However, there are two features that are very similar in both algoritms. On
one hand, the Reference version as well as the Optimized version have compa-
rable memory footprints, i.e. an average of around 200MB for our dataset. On
the other hand, both algorithms have a similar Last Level Cache Hit rate, 27%
and 29% in the Reference and the Optimized versions, respectively. These num-
bers are reasonable since the data the algorithm have to consume is one order
of magnitude bigger than the cache system, and the memory access pattern is
arbitrary, i.e. not known beforehand. A possible future work emerges from this
result, since a proper graph partition or factor reorganization could lead to an
improvement in the locality of the algorithm.

5.4.3 Reducing the Number of Instructions

In a single-thread execution, the total execution time of an algorithm can be
expressed as the total number of instructions executed × the average number

92 CHAPTER 5. SIDE CHAIN PREDICTION

of Instructions executed Per Cycle (IPC). Next we describe the strategies we
have followed to reduce the total number of instructions executed. Our strate-
gies pursue the objective of reducing instructions executed, but also exploiting
the capacities of a modern processor and also get benefit of present and future
generations of processors.

Reducing Abstraction

After a analyzing the type of operations that are performed by the Reference
version, the Optimized Version expresses the operations in a more machine-
understandable fashion. As other numerical libraries do (like STL, Boost or
MKL) we sacrifice the encapsulation and the versatility of the Object Oriented
paradigm. In exchange, we obtain a lower overhead and a bigger control of the
code that is produced. As a result of this process, we produce a totally new
implementation where there are deep differences in data structures and code
organization.

Promoting Vectorization

Our Optimized Version uses vectorized instructions. Moreover, the code has
been designed to be auto-vectorized by the compiler. We empirically measure
that our vectorization yields a reduction of around 20% of the instruction count
in our current architecture. We believe that an auto-vectorizable code will bene-
fit better from future processors, since support for vector instructions is a trend-
ing hardware technique.

Achieving a vectorized code can be done in different ways. Our approach
is to organize the code in a way that the compiler will know how to vectorize
without the need of using machine-dependent intrinsics. This way we ensure
portability and reusability of our code in future processor generations. Next we
illustrate two paradigmatic algorithmic changes we have performed to loops in
order to help the compiler to generate a vectorized code.

The first example in figure 5.8 shows a portion of code that removes a par-
ticular element with position rmv of different vectors simultaneously. In the
case of the first implementation the compiler is not able to vectorize the code,
since there is a real dependence on every iteration with the previous one. All
the vector accesses depend on the variable vector dest pos which is condition-
ally increased in almost every iteration. For the compiler it is not possible to
produce a prediction of the value of vector dest pos at compilation time, and
consequently it generates code that is not vectorized (or scalar).

Instead, we alter how vector dest pos is computed, since it can be easily ob-

5.4. OPTIMIZING THE COMPUTATION OF ARBITRARY FACTORS 93

1

2 v e c t o r d e s t po s =0;
3 // Loop not v e c t o r i z ed
4 f o r (i n t i =0; i < end ; i++) {
5 i f (i !=rmv) {
6 act iveSetCopy [v e c t o r d e s t po s] = data−>a c t i v eS e t [i] ;
7 i f (! keepz) zCopy [v e c t o r d e s t po s] = z [i] ;
8 i f (! keepd) dCopy [v e c t o r d e s t po s] = d [i] ;
9 v e c t o r d e s t po s++;

10 }
11 }

1 // Loop Vector i zed
2 f o r (i n t i =0; i < rmv ; i++) {
3 act iveSetCopy [i] = data−>a c t i v eS e t [i] ;
4 i f (! keepz) zCopy [i] = z [i] ;
5 i f (! keepd) dCopy [i] = d [i] ;
6 }
7 // Loop Vector i zed
8 f o r (i n t i=rmv+1; i < end ; i++) {
9 act iveSetCopy [i −1] = data−>a c t i v eS e t [i] ;

10 i f (! keepz) zCopy [i −1] = z [i] ;
11 i f (! keepd) dCopy [i −1] = d [i] ;
12 }

Figure 5.8: Vectorization example. Breaking Read-After-Write (RAW) and
Write-After-Read (WAR) dependencies

1 double ∗output = &data−>tau [0] ;
2 f o r (i n t x=0;x<width ; x++) {
3 output [x]=0;
4 // Loop not Vector i zed
5 f o r (i n t y =0; y < width ; y++){
6 output [x]+=data−>inverseA [x∗width + y] ∗ data−>varB [y] ;
7 }
8 }

1 double ∗output = &data−>tau [0] ;
2 f o r (i n t x=0;x<width ; x++) {
3 double acc=0;
4 // Loop Vector i zed
5 f o r (i n t y =0; y < width ; y++){
6 acc+=data−>inverseA [x∗width + y] ∗ data−>varB [y] ;
7 }
8 output [x]=acc ;
9 }

Figure 5.9: Vectorization example. Avoiding memory aliasing problems

94 CHAPTER 5. SIDE CHAIN PREDICTION

tained knowing the current iteration and the position that is going to be removed.
This time, this loop is vectorized, potentially speeding up the execution of this
particular loop up to 4 times in our current hardware. In addition this code is
not machine-dependent, assuring compatibility with different architectures.

In the second example shown in figure 5.9 the compiler is not able to vectorize
the inner loop. The code performs a reduction with the addition operation, which
is easily vectorizable. However, the problem is that the compiler is not able to
determine if the memory location of output[x] aliases with a memory location
of data− > inverseA[...] or data− > varB[y]. Hence, the compiler assumes the
worst case: a possible data dependence, and fails to create vectorized code.

Again, a slight change in the code, i.e. the definition of a new variable that
accumulates partial results, enables code vectorization and provides a potential
4X improvement.

We have helped the compiler to successfully vectorize 17 loops in the code
for solving the Arbitrary factor in the Optimized version, while only 5 loops with
real data dependencies remain scalar.

Using Specialized Libraries

While the Reference version uses both predefined libraries and specific code
to compute standard algebraic operations, the Optimized version expresses all
the algebraic operations in terms of the standard Linear Algebra Package (LA-
PACK). Using a state-of-the-art optimized library such as LAPACK comes with
a number of benefits: it is portable since LAPACK is extended in many different
architectures; it is well-tested since it is widely used worldwide; it is optimized
since it is the main purpose of the library; and also it is easy to use. LAPACK
is also available through the Intel’s MKL library, offering the possibility of ob-
taining a more specialized code for the Intel Processors.

AD3 is a computationally intensive algorithm that works considering a set
of ’active’ variables for every factor, i.e. all variables that do not have a so-
lution assigned yet. AD3 computes scores in order to select which is the next
variable to be included in the active set. This score is calculated using double
precision, leading to very precise small values. When working with this level of
precision, the numerical method used to compute the score can produce slightly
different results. In some cases this difference makes that different numerical
methods can lead to a different variable selection on particular factors. This
fact introduces a divergence between two algorithms that makes very hard to
contrast results. That’s the case of the Reference and the Optimized versions
where different numerical methods are used and they generate different solutions
at particular subproblems. However, in the big picture, the algorithm converges
to the same solution. We found that using LAPACK, the Optimized version

5.5. PERFORMANCE ANALYSIS 95

gets the same but marginally better solutions in the case of AD3 solving our
Side-Chain Prediction dataset.

5.5 Performance Analysis

In this section, we present an analysis of the performance of the Optimized
version of PAR-AD3 with Arbitrary factors. In our experimentation we have
solved all the instances of the protein dataset with both the Optimized version
as well as with the Reference version.

We first show our results when executing the two algorithms using a sin-
gle thread (single-thread execution). Note that the Reference version is only
able to run in a single-thread way. Then, we present a deeper analysis of the
performance limitations of the execution of the Optimized version. We make
this analysis both for single-thread execution, when using only one processing
core of the processor, and then for the multi-thread execution and using the full
computational capacities of our system.

The Optimized version obtains a speedup of 2.7X in single-thread execution
with respect to the Reference version, and a total speedup of 10.8X when using
a 6-core computer.

5.5.1 Optimized vs Reference Version

We compare the performance of single-thread executions of the Reference and
Optimized versions when solving LP relaxations for all the problems of the pro-
tein dataset. Our experimentation reveals that our Optimized Version is able to
obtain an average Speedup of 2.7X with respect to the Reference version.

Figure 5.10 shows the time required to solve every instance of the dataset.
Results are ordered by elapsed time required by the Reference Version to solve
each case. The figure also depicts the speedup reached by the Optimized version
with respect to the Reference version.

With the help of the hardware performance counters, we investigate the
reason that is causing this speedup. We find that the Optimized version is able
to execute an average of approximately one third (36.8%) of the instructions
executed by the Reference version. In exchange, the Optimized version delivers
a slightly higher average instruction throughput, from 1.26 Instructions per cycle
(IPC) in the case of the Reference version to 1.19 IPC in the Optimized version.
i.e. the Reference version is able to execute around a 5.5% more instructions
per time unit. The significant reduction of instructions together with the slight

96 CHAPTER 5. SIDE CHAIN PREDICTION

Figure 5.10: Solving time and speedup reached by the Optimized version with
respect to the Reference version when solving all the LP relaxations of our
protein dataset. Results are sorted by the elapsed time experimented by the
Reference version

difference in the IPC makes the Optimized version obtain the aforementioned
2.7X single-thread average speedup.

Overall, the Optimized version has an IPC of 1.19. This is an average in-
struction throughput ratio. In the next two sections we inspect the probable
causes that explain this moderate IPC (in the best cases, values of IPC between
2 and 3 can be found).

5.5.2 Single-Core Execution

In this section we identify the factors that limit the performance of the Optimized
version. A moderate IPC indicates that there are instructions waiting to be
executed while some computation resources are available. This can be explained
by four factors:

• Data dependencies. The execution of the available instructions waits
until a previous result has been calculated.

• Memory latency. The execution waits for the data to be fetched from
memory.

5.5. PERFORMANCE ANALYSIS 97

• Computation throughput. The execution cannot move forward
because the computational resources are busy.

• Branch mispredictions. The execution advances in the wrong direction
after a branch prediction. This speculative execution was competing for
resources while was executed, therefore introducing unnecessary overhead.
In addition, the hardware has to rollback the executed code paying also a
cost in performance.

In order to identify which of these performance limiting factors is having more
impact in the execution, we run a set of experiments in a single-core scenario. We
use two different configurations: first, we solve all the instances of the dataset
using one thread, then we repeat our experiments using two threads running
concurrently in the same core. Scheduling two threads concurrently in the same
core allows the hardware to mask the waiting times for one thread by processing
work from the other thread. This experiment helps us to identify the possible
bottlenecks.

Table 5.1 summarizes the metrics we have measured. We observe that using
two threads in the same hardware the performance is increased delivering a
speedup of 1.11X. Although this 11% is not a large improvement, this extra
gain underlines that in the two-threaded execution the hardware was able to use
one thread’s idle time to advance in the execution of the second thread. We
also observe that the two-threaded execution is able to process more iterations
–understood as effective word– per unit time, but also that it requires a higher
number of instructions per work unit (reasons for this increment will be analyzed
in the next section). The two-threaded configuration is able to obtain a higher
IPC as it is expected from using the hyperthreading mechanism. Furthermore
the two-threaded configuration exhibits a lower Last Level Cache (LLC) access
per instruction ratio. However this lower ratio is solely due to the increase in
the number of instructions. The two-threaded execution needs to access more to
the LLC, and this is also expected, since in this execution the lower level caches
are shared by the two threads. Finally we observe that the two executions have
a similar branch prediction behavior, which is very good (a very small amount
of mispredictions).

Considering the performance limiting factors described above, and in the
light of the experimental results, we find that the two-threaded execution is able
to produce more work since it delivers more iterations per time unit, but in
exchange adds an overhead in terms of computational effort.

PAR-AD3 is a complex algorithm having different stages, each one with
a particular computational pattern. It is expected that some stages will be
constrained by some performance limiter, while other stages may be limited

98 CHAPTER 5. SIDE CHAIN PREDICTION

1 thread 2 threads 1 thread 2 threads

Speedup – 1.11X
iterations

elapsedtime
158.2 175.3

Instructions 4.98× 1012 5.46× 1012
instructions

iteration
14.48M 15.92M

IPC 1.19 1.46
LLC accesses

instruction
0.0092 0.0089

LLC accesses 4.60× 1010 4.87× 1010
branch misses

instruction
0.0028 0.0026

Table 5.1: Performance metrics when executing in a single-core with one thread
and with two threads.

by a different reason. The final observed result is an aggregation of all two
factors. We next assume that all the relevant stages have a similar performance
behaviour. This assumption provides an initial explanation of the performance
behaviour of the algorithm. An in-deep analysis that remains an open line is to
perform a detailed per-stage performance analysis.

We can safely say that the performance is not limited by memory problems
or branch mispredictions, at least on the more expensive execution stages. The
LLC accesses/instruction and branch misses/instruction metrics can explain
the performance limiting factors of Memory latency and Branch mispre-
dictions respectively. However we find that these numbers are not big enough
to be constraining the performance of the execution. Note that the execution is
performing approximately one LLC memory access every 100 instructions, which
is a low ratio since our LLC can provide an access every 20 cycles approximately.
We also find that there is a branch misprediction for every 500 instructions ex-
ecuted (0.2%), which is a very small fraction to harm performance significantly.

Therefore, we can conclude that the performance when executing in a single
processing core is mainly limited by computational resources and dependen-
cies. Using two threads in the same core we observe that the Computation
throughput is improved but only to some extent. From that, we can infer that
the current performance limitations have a double origin. First, Data depen-
dencies are clearly a problem, since adding a new thread (more parallelism)
yields to a higher IPC, and this increment of IPC means that the hardware
schedules more work while trying to resolve a dependency. Also, the Compu-
tational throughput should be a problem, at least on some execution stages,
and probably for different resources on different stages (like addition or multi-
plication), since the IPC is still moderate when executing with two threads and

5.5. PERFORMANCE ANALYSIS 99

not explainable by any other factor.

5.5.3 Multi-Core Execution

In this section we analyze the parallel execution of the Optimized version using
the full parallel capabilities of our 6-core processor. Our algorithm was able to
obtain a 3.8X speedup using the 6 processing cores. Combined with the 2.7X
speedup with respect to the Reference version, we obtain an aggregated average
speedup of 10.26X.

Next, we present a scalability analysis of the parallel performance of the al-
gorithm. Figure 5.11 depicts the increase of the execution performance using an
increasing number cores, and allocating one or two threads per core. In our ex-
periments we solve all the LP relaxations of the problems at the SCP dataset for
every thread-core configuration. We define the performance as the number of it-
erations processed per time unit. In the figure we can observe how increasing the
number of cores leads to a performance improvement. However, the performance
increase is not linear with respect to the number of hardware resources that are
used. We observe two effects. First, there is a degradation of the performance
gain as the number of cores increases. Second, the hyperthreading benefits are
also decreasing when increasing parallelism: in the more parallel scenario (using
12 threads in 6 cores) this effect is even harming the performance.

Figure 5.11: Iterations per cycle performed by PAR-AD3 when using 1-6 cores
and running one or two threads per processing core.

100 CHAPTER 5. SIDE CHAIN PREDICTION

The limitations of the parallel execution performance just mentioned can be
explained by three scalability limiting factors (SL1,SL2,SL3):

• SL1. Lack of parallelism. As stated by Amdhal’s law, in a parallel
program the sequential fraction of the execution limits the speedup of the
overall execution.

• SL2. Contention in Shared Memory resources. The increment
in the number of threads accessing the memory system may yield to a
transient or persistent degradation of the memory system performance,
which can be exacerbated by extra data communication requirements.

• SL3. Unbalanced thread workload. If the workload is not equally
balanced between the different threads, then some threads may finish too
early, decreasing part of the advantages of the parallel execution.

All these side-effects coexist in greater o less extent. Next, let us examine
with more detail the particularities of our execution studying each of this three
factors.

SL1. Lack of Parallelism

The lack of parallelism can explain a decrease in the performance due to the
effects of the Amdahl’s Law (described in chapter 2). This law defines how the
sequential fraction of an algorithm constrains the maximum speedup that can
be obtained by the parallel fraction. However as we saw in the previous chapter,
PAR-AD3 was able to speedup the execution up to 5.2X using 6 threads (4.8X
in average). Contributions in the present chapter only affect to the workload
inside a thread and are not increasing the serial fraction. Quite the contrary,
parallel workload is heavily increased, and in consequence the serial fraction is
yet less relevant. All together makes that the effect of the Amdhal’s law is having
marginal impact and it is not a parallel performance limiter.

SL2. Contention in Shared Memory Resources

In a parallel execution, the memory system has to be able to provide data to
different CPUs that are asking for data simultaneously. This situation can yield
to a permanent contention spot or a transient saturation situation of the memory
subsystem.

Let us consider a perfect parallel application that operates with data in
memory and runs in a processor with N cores. This parallel application finishes
its execution at time T when using 1 thread, and finishes at time T/N when using

5.5. PERFORMANCE ANALYSIS 101

N threads. Since the application is perfectly parallel, all the memory requests
are evenly divided into threads. In this situation the memory has to provide N
times more data per unit time in order to match the computation speed.

In practice, the situation is more complex. Typically, in a parallel application
the memory system does not only need to feed more processing cores with data,
but also there is a larger amount of data that must be provided. Taking our
application as an example, we first show some reasons that explain this extra
memory requests and later we examine the memory contention problem.

Extra Memory Requests

In a modern CPU with several cores, the cache system follows a hierarchical
structure. Each processing core has access to some private cache area and some
shared cache area. In the specific case of our processor, each core has two levels
of dedicated or private caches named Level 1 (L1)1 and Level Two (L2); and
a cache that is shared by all the processing cores, known as level three (L3) r
last level cache (LLC). Figure 5.12 presents a simplified diagram of the memory
structure for 2 cores of our processor. We consider that the main memory, which
is the higher level of the memory system, is not a member of the cache system
and then it is not shown in the figure.

CPU 1 CPU2

L1 L1

L2 L2

LLC or L3

Figure 5.12: Memory cache structure for two cores.

The cache memory is not homogeneous: the caches that are close to the
processor are fast but small and, as we ascend in the hierarchy, memories are
slower but bigger.

A very relevant feature of the memory system is that it is transparent to

1In fact, our processor has two L1 caches, one for data and one for instructions.

102 CHAPTER 5. SIDE CHAIN PREDICTION

the programmer: the memory system is seen by the CPU as a unique memory
space. Computation units are physically wired only to the L1 cache. Each
request that is not solved by L1 automatically ascends through the different
levels in the memory hierarchy until it is satisfied. Therefore, if, for instance,
a processing core requests to read a memory position that is not in any of the
memory caches, the request travels through L1, then L2, then L3 (or LLC) and
finally finds the data in the main memory. Then, the fetched memory line is
brought to the processor through the memory hierarchy and keeping copies in
every unit, hoping to be reused by future accesses.

In a parallel scenario, the private and shared caches have to maintain a
coherence and the hardware establishes protocols of coherence that are also
transparent to the processing unit and, henceforth, also to the user. However,
although the programmer doesn’t have control over cache-coherence protocols,
they exist and have impact in the performance. When a cache line is updated in
one private cache, it is automatically invalidated on all the other caches by the
cache-coherence protocol, and this is potentially leading to a future cache miss,
impairing performance. Hence, it is possible to measure to what extent the data
invalidations are hurting the performance by observing the number of requests
to LLC.

Figure 5.13 presents the total number of accesses to the LLC considering
executions with different thread configurations. Let us focus first in the case of
using one thread per core, and later in the hyper-threaded execution (2 threads
per core).

• In the first case, we observe how the increasing the number of cores also
increases the number of LLC accesses. The increment is around 13.5%
when using 6 threads instead of using 1 thread. Since the total number
of instructions also increases around 40%, the increase in LLC accesses
is not very large and, in fact, the rate of LLC accesses per instruction
executed is reduced.

• In the hyper-threaded execution, we observe that accesses to LLC are more
frequent, increasing between 7% and 13% depending on the number of
processing cores that are used. This is an expected behaviour since hyper-
threading schedules two threads per core, and consequently the two threads
are competing for the use of the private caches, and generate more misses in
the lower level cache memories. This effect may be harming performance,
since the execution with hyper-threading will naturally increase the average
memory access time.

Memory contention

One of the factors that can damage the parallel scalability is the concen-
tration of the memory requests in a shorter period of time, demanding more

5.5. PERFORMANCE ANALYSIS 103

Figure 5.13: Load and store accesses to the Last Level Cache (LLC) using 1 and
2 threads per core and 1 to 6 core configurations.

bandwidth and throughput from the memory system than the system is able to
support.

Figure 5.14 depicts the amount of requests per second performed by PAR-
AD3. The execution with 12 threads requires an average of 1.13×108 accesses to
LLC per second; considering that our processor runs at 1.9GHz, we can compute
that our execution is requesting a LLC access every 16.8 cycles. Since every
access moves 64 Bytes, the effective bandwidth provided by the LLC is around
7.2 GB/s, which is far from the maximum peak LLC bandwidth (more than 40
GB/s). Hence the parallel execution is not limited by peak LLC bandwidth.
Since the amount of LLC misses is small, we can also conclude that performance
is not limited by peak DRAM bandwidth, either.

SL3. Unbalanced Thread Workload

In order to detect load balancing problems we analyze the number of instruc-
tions executed using different thread-core configurations. Figure 5.15 plots the
amount of machine instructions executed for each iteration. This is repeated us-
ing different thread configurations. We observe how the number of instructions
per iteration increases together with the number of threads. In an ideal parallel
scenario this figure should plot equally-sized bars. We measure an increase of
the computational effort, as the number of threads grows, between 5% and 10%

104 CHAPTER 5. SIDE CHAIN PREDICTION

Figure 5.14: Load and store accesses to the Last Level Cache (LLC) per time
unit using 1 and 2 threads per core and 1 to 6 core configurations.

per extra thread. Note that this increment is consistent regardless where the
threads are scheduled. i.e. instructions/iteration measures for 2, 4 and 6 threads
are the same using only one thread or two threads per core.

The growth in instructions per work unit can be explained by load balancing
problems. When a parallel region reaches to an end, threads that finish first
remain waiting until the rest of threads reach the same point. During this
waiting time (or spin time) the threads are executing instructions. Looking at
the increment of instructions per work unit gives us a good estimation of the
load balancing problems. We observe a significant increase in the number of
instructions executed by the processor when increasing the number of threads.

In order to better characterize the increment of instructions, we use a profiler
to measure the number of instructions and number of cycles required by different
functional units of the PAR-AD3 in a representative problem. Figure 5.16 shows
the amount of instructions and cycles required by the different execution stages
of PAR-AD3. We have distinguished four different stages or phases during the
whole execution of the program:

• Spin. The processor is waiting for synchronization and executing non-
productive instructions.

• PAR-AD3. The processor is executing graph-wise PAR-AD3 computa-
tions.

5.5. PERFORMANCE ANALYSIS 105

Figure 5.15: Instructions required per work unit using 1 and 2 threads per core
and 1 to 6 core configurations.

Figure 5.16: Profile of instructions executed and clock cycles consumed when
solving a representative problem using 1 thread and 6 threads. Four different
phases are identified along the execution.

• Arbitrary Factor. The processor is computing the solution for an
Arbitrary factor.

106 CHAPTER 5. SIDE CHAIN PREDICTION

• Other. The processor is doing other tasks, such as initializing vars,
reading the problem from disk, communicating with the OS.

The profiling information shown in Figure 5.16 provides us with interest-
ing information. The most obvious effect is that the growth of instructions in
the parallel execution is due to spin instructions. In the 6-threaded execution,
an average of around the 25% of the time is spent waiting for synchronization.
We can also observe a slight growth in the number of instructions executed on
the execution phase named other, which is due to the execution of mechanisms
for handling thread parallelism, parallel data management, communication and
synchronization. This is typically considered as the ”overhead” of the paral-
lel execution. Finally, we observe how the cost in cycles per instruction for
the PAR-AD3 and Arbitrary factor execution stages is also growing when us-
ing 6 threads instead of 1 thread. This is due to the aforementioned memory
contention problems, which increase the latency of the memory accesses and de-
crease the IPC rate (same amount of instructions executed but they take more
time to execute).

On the light of these results we can conclude that the main performance
limiter is the workload balance between threads. Load balancing problems can
be explained by the fact that it is not possible to know a priory which factors
will require more computation. This effect is more visible in the case of solving
Arbitrary factors, which are computationally expensive.

As future line is to study how to improve the load balancing between threads.
There exist different ways to reach a better computational balance between
threads but all of them have a computational overhead. Examples of methods
that will lead to a better balance will be the reduction of the chunk size in the
parallel dynamic scheduling, or the tracking and ordering of the factors according
to their load.

5.6 Conclusions

In this chapter we presented a parallel version of AD3 that is able to solve re-
laxations for Combinatorial Optimization problems encoded as Factor Graphs
using Arbitrary factors. In our chapter, we solve several problem instances
of Side-Chain Prediction, since they are well-known hard problems and they
have already been used to benchmark Combinatorial Optimization algorithms
[Yanover et al., 2006, Sontag et al., 2012, Martins, 2012b]. The principal contri-
bution of this chapter is the realization and evaluation of an optimized version
of Arbitrary factors, which is a multipurpose factor. Adding Arbitrary factors to
PAR-AD3 widens the applicability of our parallel algorithm since it provides the

5.6. CONCLUSIONS 107

capacity of solving relaxations for a larger family of Combinatorial Optimization
problems.

Our optimized version of PAR-AD3 is 2.7 times faster when running a single
thread than the original AD3; moreover, the multi-threaded version runs in
parallel multicore systems and reaches a 10.8X speedup using a 6-core processor.
The achievement of this speedup is due to the application of general hardware-
aware strategies, that can be grouped in two categories: we provide strategies to
improve the memory system performance, and also provide strategies to reduce
the machine instruction count. These strategies go beyond the particularities of
our algorithm and processor, and can be applied to other similar algorithms.

In this chapter we also found that the existing dataset for Side-Chain Pre-
diction based on the SCWRL3 tool [Yanover et al., 2006] has not enough hard
instances to allow us to properly analyze PAR-AD3. As a consequence, we build
our own dataset with the help of the SCWRL4 tool and made it available to the
community in order to provide an easy way to reproduce our experiments and
also to evaluate new algorithms.

Finally we provide a study of the performance and scalability limitations of
our contributed PAR-AD3 algorithm with Arbitrary factors. In a single core
execution we find that our algorithm is CPU-bounded. Then we perform a
scalability study where we observe that PAR-AD3 is increasing performance as
more cores are used. However the efficiency of the parallel execution decreases
with the increase of the number of cores: the performance increase is not linear.
We analyze the possible causes for this limitation and conclude that the main
performance limiter is the workload balance between threads. Finally, we give
hints to possible solutions to improve load balancing.

Chapter 6

Conclusions and Future
Lines

In this chapter we first summarize the work developed during this dissertation in
section 6.1. Then in section 6.2 we draw the most notable conclusions attained
from it, and finally present some lines for future research in section 6.3.

6.1 Summary

The goal of this thesis is to investigate how to widen the applicability of Com-
binatorial Optimization algorithms that exploit the structure of the problems
to solve. We do so from a computer’s hardware perspective, pursuing the full
exploitation of the computational resources offered by today’s hardware.

Our research is motivated by the difficulty shown by recent advances in ar-
tificial intelligence to get benefit from the full power that is present in modern
CPUs. We identify reasons that justify such distance between advances in AI
and hardware resources exploitation:

• the complexity of nowadays hardware,
• the increasing level of abstraction of modern programming languages,
• the difficulty associated to grasping the parallel paradigm, and
• the outdated conceptual computer model used by programmers to design
algorithms.

After identifying the main reasons that explain the gap between potential and
effective algorithm performance, our work is centered on showing how to make

109

110 CHAPTER 6. CONCLUSIONS AND FUTURE LINES

algorithms that better exploit computational resources. To this end, we explore
different problems with varying different features for the sake of generality:

• The Coalition Structure Generation problem, characterized by a small
number of decision variables and a large number of linear constraints.

• The Winner Determination Problem for Combinatorial Auctions, charac-
terized by a large number of decision variables subject to a large number
of linear constraints.

• The Side-Chain Prediction, characterized by a large number of decision
variables subject to a large number of declarative constraints.

We analyze state-of-the-art algorithms solving each of the three problems
and we show how to improve their performance. The improvements rely on the
level of achievement of three different performance enhancement goals:

• reducing the amount of low-level machine instructions to process,
• increasing the memory system throughput and
• increase potential parallelism for executing machine instructions

Coalition Structure Generation Problem

In Chapter 3 we presented our work on the Coalition Structure Generation
Problem where we proposed the first optimized and parallel implementation of
the IDP algorithm [Rahwan and Jennings, 2008b].

First, we identified IDP’s performance limiters as (i) the low efficiency of
the splittings enumeration strategy, (ii) the non-uniform memory access pattern
and (iii) the lack of parallelism; Thereafter, we contribute with an IDP-based
algorithm that overcomes the above-mentioned performance-limiting problems.
In our contribution we propose the following strategies to fulfill our performance
enhancement goals:

• a method for efficient enumeration of splittings;
• a compact representation of the data in memory; and
• a method to parallelize the IDP algorithm.

Our optimized and parallel version is able to obtain a well thread-balanced
execution that significantly reduces the IDP running times reported in the lit-
erature: from the two months required by IDP for a problem with 27 agents in
a 8-core computer to the 1.2 hours required by our algorithm. Therefore, we
obtained a significant three orders of magnitude speedup.

6.1. SUMMARY 111

Winner Determination Problem for Combinatorial Auctions

In Chapter 4 we faced the WDP for CA. We observed that state-of-the-
art solvers effectively find the optimal solution for up to medium-sized WDPs.
However, when a problem is large –having thousands of decision variables– exact
methods are very time consuming and unpractical (solutions can take weeks,
months or even years). In such cases LP relaxations are able to provide an
approximation to the solution of the problem. We found that in the large-scale
setup, the convex optimization community is actively developing algorithms able
to efficiently approximate LP relaxations to large Combinatorial Optimization
problems.

In light of recent developments, we propose to use AD3 [Martins et al., 2014]
as a method to solve LP relaxations of the WDP for large-scale CAs. To that end,
we first show how to encode a WDP for CA to be solved by means of AD3. Then
we determine the scope of applicability of AD3 using distributions generated by
a standard Combinatorial Auction Generator [Leyton-Brown et al., 2000].

Our main contribution is the proposal of an AD3-based parallel and opti-
mized algorithm, the so-called PAR-AD3. It addresses our performance en-
hancement goals thanks to the use of different strategies:

• Addressing problem specificity, producing a faster code but less general.
• The use of a Structure of Arrays (SoA) data representation model.
• The embracing of the edge-centric parallelization.
• The promotion of vectorization

PAR-AD3 is able to solve WDPs for CAs 3 times faster than AD3 using one
thread, plus the possibility of running in parallel delivering an additional 4.8X
using 6 threads in a 6 core computer. The overall result is an accumulated 12.4X
average speedup in our processing resources.

We also evaluate PAR-AD3 against CPLEX solving WDPs for CAs. As
stated in the literature [Leyton-Brown et al., 2009], the hardness of every WDP
for CA depends on its size and distribution. We determine the problem sizes and
distributions that are better suited for PAR-AD3. We observe that PAR-AD3 is
well suited for the hardest distributions having a high number of variables/con-
straints -thousands-, obtaining a peak speedup of 23X with respect to CPLEX.
We also observe that PAR-AD3 is able to scale better than CPLEX algorithms
in parallel architectures.

Side-Chain Prediction (SCP)

In Chapter 5, we extended PAR-AD3 algorithm to be able to cope with
Arbitrary factors. This extension widens the applicability of PAR-AD3 to a
larger scope of problems, since Arbitrary factors are multi-purpose factors able
to represent any discrete function, and hence any Combinatorial Optimization

112 CHAPTER 6. CONCLUSIONS AND FUTURE LINES

problem.

We benchmarked PAR-AD3 performance by solving LP relaxations for Side-
Chain Prediction problems. To perform our experimentation we first used a
public SCP-based dataset [Yanover et al., 2006]. Thereafter, since we needed
harder instances, we built a new dataset and made it publicly available.

The main contribution in this chapter is the realization of an extended version
of PAR-AD3 that includes the optimized computation of Arbitrary factors. The
algorithm performing the optimized computation of Arbitrary factors achieves
our performance enhancement goals by applying the following techniques:

• Improve memory management. On the one hand, we use thread-private
scratch areas in order to perform partial computations, hence promot-
ing memory locality. On the other hand, PAR-AD3 applies a more
sophisticated memory allocation strategy that yields a reduction of 97.8%
memory allocation calls than AD3.

• Reduce the number of executed instructions. PAR-AD3 reduces to
one third (38%) the number of instructions executed by AD3. This is
accomplished thanks to: (i) reducing abstraction in the source code; (ii)
promoting vectorization; and (iii) using specialized libraries for standard
algebraic operations.

PAR-AD3 solves LP relaxations for our Side-Chain Prediction dataset 2.7
times faster than AD3 when using one thread. It also offers the possibility of
running in parallel. A parallel PAR-AD3 execution in a 6-core computer delivers
an average speedup of 10.8X with respect to AD3.

6.2 Lessons Learned

We recall the challenges we proposed at the introduction of this dissertation and
discuss how we approached them. When dealing with the CSG problem, we
faced two challenges, the first one being the following one:

C1. What are the algorithmic features of DP and IDP that most impact their
performance in a modern processor?

First, to address this challenge, thanks to the use of profiling tools we deter-
mined that the most critical operation used in DP/IDP is the splitting genera-
tion.

Second we observed that the IDP algorithm memory access pattern is irreg-

6.2. LESSONS LEARNED 113

ular. The downsides of the irregular memory access pattern are most evidenced
when the memory required to represent an instance of the program does not
fit in the system’s Last Level Cache (LLC). When this is the case, the average
number of Cycles Per Instruction (CPI) starts growing (or the average Instruc-
tions Per Cycle, IPC, starts decreasing), with the corresponding performance
degradation.

Finally, we underline that the sequential nature of DP and IDP prevents
them from getting benefit from parallel architectures.

Recall now our second challenge when dealing with the CSG problem,
namely:

C2. How to enhance DP/IDP to benefit from the parallel paradigm and better
exploit hardware resources?

To address this challenge, we enhanced the execution of DP/IDP y combining
different approaches.

We proposed a novel method able to split coalitions. This method is based on
the reduction of the problem of splitting coalitions to an enumeration problem.
Then we make use of bit-mask operations that have very efficient hardware
implementation to obtain a high throughput of the splits generated. We also
show how to get benefit from parallelism, and with that end, we contribute
with an algorithm that assigns disjoint parts of the work to different threads,
hence avoiding thread communication. Finally, the proposed a very compact
data representation that minimizes the amount of data stored and transferred
from memory to the CPU.

Besides the two challenges tackled for the CSG problem, we also posed two
further challenges related to the WDP for combinatorial auctions. As a first
challenge, we posed:

C3. How to solve a relaxation of a combinatorial auction winner determina-
tion problem?

We showed how to encode the WDP for CA as a Factor Graph. In our encod-
ing, every factor enforces a constraint that ensures that only one bid attached
to the factor will be part of the solution. Then we proposed to apply AD3

[Martins et al., 2014] to find the MAP of the Factor Graph, which is equivalent
to finding the LP relaxation. In our enocding all the factors of the Factor Graph
implement the same function: the AtMostOne function.

After some experimentation, we observed that AD3 is competitive with
CPLEX, a state-of-the-art MILP solver, when solving LP relaxations for large-
scale WDPs in hard distributions. We also observe that although AD3 is suitable
for such problems it is prone to optimization and parallelization, and this directly

114 CHAPTER 6. CONCLUSIONS AND FUTURE LINES

drive us to the next challenge.

C4. How to design a shared-memory parallel algorithm to solve relaxations
of the Winner Determination Problem?

We created a novel AD3-based algorithm that is able to run in parallel in a
shared-memory system, the so-called PAR-AD3.

In our parallel version design, we proposed a novel way of representing data
by promoting the edges of the underlying graphical model as active entities,
hence following an edge-centric paradigm. In this paradigm we proposed to
express as many operations as possible from the perspective of an edge. An
edge-centric model has advantages in terms of memory representation because
the morphology of an edge is fixed, hence it can be represented by static and
compact memory structures. Static and compact data structures are, by design,
good for the locality and performance.

We also showed how to grasp parallelization by decomposing the AD3 algo-
rithm in a set of stages that contain parallelizable operations. Inside every stage
the workload is divided into the available threads. Threads solve their part of
work concurrently and then they wait for the last thread to finish in order to
synchronize.

Since PAR-AD3 , as designed in Chapter 4, only allows to solve problems
whose encoding only uses AtMostOne factors, our next challenge has aimed
at widening the scope of applicability of PAR-AD3. We do so by facing the
following challenge:

C5. How to design a shared-memory parallel algorithm to solve relaxations
of the Side-Chain Prediction problem?

In the literature, we find that AD3 has already been proposed to solve re-
laxations of the Side-Chain Prediction (SCP) problem [Martins, 2012b]. We
observe that the resolution of the relaxation for the SCP requires the use of
factors implementing Arbitrary functions.

To fulfill this challenge we extended the PAR-AD3 algorithm, by incorpo-
rating the functionality of solving Arbitrary factors. Then we devised several
strategies to improve the performance of the algorithm when solving Arbitrary
factors. Our strategies can be grouped in two categories. On the one hand, the
strategies that pursue an improvement in the management of the memory sys-
tem. On the other hand, the strategies that pursue the reduction of the number
of machine instructions executed. We applied both strategies to the resolution
of the Arbitrary factors with satisfactory results.

Our PAR-AD3 enjoys the benefits of parallelization as an outcome of our
contribution to challenge C4. Furthermore, it adds the optimized operation of

6.3. FUTURE WORK 115

the computation performed by Arbitrary factors.

We also analyzed the algorithm performance limiters. After a detailed anal-
ysis we conclude that PAR-AD3 is a CPU-bounded algorithm. We also explore
the parallel scalability performance and find that the algorithm is able to scale
with the number of cores and that its main scalability limiter factor is the dif-
ferences in thread’s load balance.

Finally learned that besides the specific details of implementation, the strate-
gies we follow that satisfy our performance enhancement goals (reduce machine
level instructions, improve memory system performance, embrace parallelism)
can lead to significant improvements in similar algorithms.

6.3 Future Work

The research carried out in this dissertation opens paths to several future lines.

We find that our work on the efficient and parallel version of IDP could be
extended in the following directions:

• Improve locality. We propose to represent the data in a very compact
way. However when the problem does not fit in the memory cache system
we observe a degradation of the algorithm performance. Remains open
the study of a more convenient data representation in memory that helps
to improve the locality of memory access without sacrificing compactness.
A memory access pattern with more locality may potentially yield to
better performance.

• Improve performance in NUMA systems. An open line is to improve
the performance of our algorithm in a NUMA system. An intelligent
allocation of data in the different per-CPU memory systems together with
a proper division of the work across the different CPUs available, could
lead to an increase of performance of the algorithm in a NUMA system
execution.

• Benchmark against ODP-IP After presenting our contributions in
[Cruz-Menćıa et al., 2013], ODP-IP [Michalak et al., 2016] was developed.
ODP-IP combines two algorithms –ODP and IP–. The ODP part
stands for Optimal DP, an improved version of IDP that guarantees
the optimal solution exploring less nodes than IDP. ODP also makes
use lexicographic ordering as well as fast split bit-mask operations
as they were suggested in [Cruz-Menćıa et al., 2013]. It remains an
open line to measure the performance of our algorithm against ODP-IP
using the same hardware as well as study the ways of parallelizing ODP-IP.

116 CHAPTER 6. CONCLUSIONS AND FUTURE LINES

• Apply techniques to other algorithms. We can explore the applica-
tion of the performance enhancement techniques employed in IDP, like
the Fast Split or the work division between threads, to other CSG al-
gorithms in the IDP family such as IP-IDP [Rahwan and Jennings, 2008a].

The cases of the Winner Determination Problem for Combinatorial Auctions
and the Side-Chain Prediction problems are addressed with PAR-AD3. Future
lines that remain open for PAR-AD3 are described next.

• Encode more factors. PAR-AD3 encodes two different factors:
AtMostOne and Arbitrary. However, in the literature and also in the
original AD3 description, we find factors that could be added to PAR-
AD3. Although the Arbitrary is able to represent any function through
enumeration of cases, adding new factors will provide a more specialized
code to solve specific problems. Hence the development of specialized
factors are a natural way of extending PAR-AD3.

• Integrate other algorithms. We also know that there are other
algorithms belonging to the same family as AD3 that have a very
similar structure, such as ADMM [Gabay and Mercier, 1976a] or MPLP
[Globerson and Jaakkola, 2008] to name a few. An interesting future
line will be to reuse the performance enhancement techniques in the
conception of PAR-AD3 (e.g. following the edge-centric model, reusing
the stage definition, or the memory representation) to produce the parallel
counterparts of state-of-the-art message-passing algorithms for graphical
models.

• PAR-AD3 autotune. We let unexplored the parametrization of AD3. In
our experimentation we have manually tuned AD3 parameters. However
it is still unexplored how to adjust these parameters to improve in the
resolution of a problem in an automated way using state-of-the-art
techniques for the automated configuration of optimization algorithms
(e.g. iRACE [López-Ibáñez et al., 2016]).

• Improve parallel load balance. We discovered that an improvement
in PAR-AD3 load balance would entail an improvement in the scalability
of the parallel algorithm. Exploring the ways of improving load balancing
remains as a future line.

• Evaluate in a more parallel environment. PAR-AD3 should be
a good algorithm for processors with many cores but its computational
pattern –such as the unbalanced computational load exhibited by the
subproblems– make it unappropriated for a GPU-style hardware. However
current trends in Computer Architecture (i.e. increasing number of cores

6.3. FUTURE WORK 117

per CPU) make PAR-AD3 a promising algorithm to be run on top of
future multicore developments. At the time of the writing there are
processors in the market with more than 20 cores –Intel Xeon E7-8894
has currently 24 cores–. Therefore, empirically quantifying the actual
speed-ups of PAR-AD3 over such architectures remains a subject of
future research.

Bibliography

[Achterberg, 2009] Achterberg, T. (2009). SCIP: solving constraint integer programs.
Mathematical Programming Computation, 1(1):1–41.

[Aguiar et al., 2011] Aguiar, P., Xing, E. P., Figueiredo, M., Smith, N. A., and Mar-
tins, A. (2011). An augmented lagrangian approach to constrained map inference. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pages 169–176.

[Andersson et al., 2000] Andersson, A., Tenhunen, M., and Ygge, F. (2000). Integer
programming for combinatorial auction winner determination. In MultiAgent Sys-
tems, 2000. Proceedings. Fourth International Conference on, pages 39–46. IEEE.

[Ausiello et al., 2012] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-
Spaccamela, A., and Protasi, M. (2012). Complexity and approximation: Combina-
torial optimization problems and their approximability properties. Springer Science
& Business Media.

[Ball, 2011] Ball, M. O. (2011). Heuristics based on mathematical programming. Sur-
veys in Operations Research and Management Science, 16(1):21–38.

[Bellman, 1954] Bellman, R. (1954). The theory of dynamic programming. Technical
report, RAND CORP SANTA MONICA CA.

[Bernhard and Vygen, 2008] Bernhard, K. and Vygen, J. (2008). Combinatorial opti-
mization: Theory and algorithms. Springer, Third Edition, 2005.

[Bertsimas and Tsitsiklis, 1997] Bertsimas, D. and Tsitsiklis, J. (1997). Introduction
to Linear Optimization. Athena Scientific, 1st edition.

[Bower et al., 1997] Bower, M. J., Cohen, F. E., and Dunbrack Jr, R. L. (1997). Pre-
diction of protein side-chain rotamers from a backbone-dependent rotamer library:
a new homology modeling tool1. Journal of molecular biology, 267(5):1268–1282.

[Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011). Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex opti-
mization. Cambridge university press.

[Canutescu et al., 2003] Canutescu, A. A., Shelenkov, A. A., and Dunbrack, R. L.
(2003). A graph-theory algorithm for rapid protein side-chain prediction. Protein
science, 12(9):2001–2014.

119

120 Bibliography

[Chan et al., 2017] Chan, S. H., Wang, X., and Elgendy, O. A. (2017). Plug-and-
play admm for image restoration: Fixed-point convergence and applications. IEEE
Transactions on Computational Imaging, 3(1):84–98.

[Cramton et al., 2006] Cramton, P., Shoham, Y., and Steinberg, R. (2006). Combina-
torial auctions. MIT Press.

[Cruz-Menćıa et al., 2013] Cruz-Menćıa, F., Cerquides, J., Espinosa, A., Moure, J. C.,
and Rodriguez-Aguilar, J. A. (2013). Optimizing performance for coalition structure
generation problems’ IDP algorithm. In Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA), page
706. The Steering Committee of The World Congress in Computer Science, Com-
puter Engineering and Applied Computing (WorldComp), July 22-25, las Vegas,
Nevada.

[Cruz-Mencia et al., 2015a] Cruz-Mencia, F., Cerquides, J., Espinosa, A., Moure,
J. C., and Rodriguez-Aguilar, J. A. (2015a). Parallelisation and application of AD3

as a method for solving large scale combinatorial auctions. In International Confer-
ence on Coordination Languages and Models, pages 153–168. Springer.

[Cruz-Mencia et al., 2015b] Cruz-Mencia, F., Cerquides, J., Espinosa, A., Moure,
J. C., and Rodriguez-Aguilar, J. A. (2015b). Paving the way for large-scale combina-
torial auctions. In Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, pages 1855–1856. International Foundation for Au-
tonomous Agents and Multiagent Systems.

[Cruz-Mencia et al., 2017] Cruz-Mencia, F., Espinosa, A., Moure, J. C., Cerquides,
J., Rodriguez-Aguilar, J. A., Svensson, K., and Ramchurn, S. D. (2017). Coalition
structure generation problems: optimization and parallelization of the IDP algorithm
in multicore systems. Concurrency and Computation: Practice and Experience,
29(5).

[Cruz-Menćıa et al., 2013] Cruz-Menćıa, F., Cerquides, J., Espinosa, T., Moure, J. C.,
Ramchurn, S. D., and Rodriguez-Aguilar., J. A. (2013). Coalition structure genera-
tion problems: optimization and parallelization of the IDP algorithm. In Proceedints
of the 6th International Workshop on Optimisation in Multi-Agent Systems, OPT-
MAS 2013, workshop affiliated with AAMAS 2013.

[Dagum and Menon, 1998] Dagum, L. and Menon, R. (1998). OpenMP: an industry
standard API for shared-memory programming. IEEE Computational Science and
Engineering, 5(1):46–55.

[De Vries and Vohra, 2003] De Vries, S. and Vohra, R. V. (2003). Combinatorial auc-
tions: A survey. INFORMS Journal on computing, 15(3):284–309.

[Desmet et al., 1992] Desmet, J., De Maeyer, M., Hazes, B., and Lasters, I. (1992). The
dead-end elimination theorem and its use in protein side-chain positioning. Nature,
356(6369):539.

[Duchi et al., 2008] Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008).
Efficient projections onto the l 1-ball for learning in high dimensions. In Proceedings
of the 25th international conference on Machine learning, pages 272–279. ACM.

[Dunbrack, 2002] Dunbrack, R. L. (2002). Rotamer libraries in the 21st century. Cur-
rent Opinion in Structural Biology, 12(4):431 – 440.

[Dunbrack Jr, 1999] Dunbrack Jr, R. L. (1999). Comparative modeling of casp3 tar-
gets using psi-blast and scwrl. Proteins: Structure, Function, and Bioinformatics,
37(S3):81–87.

Bibliography 121

[Dunbrack Jr and Karplus, 1993] Dunbrack Jr, R. L. and Karplus, M. (1993).
Backbone-dependent rotamer library for proteins application to side-chain predic-
tion. Journal of molecular biology, 230(2):543–574.

[Eckstein and Bertsekas, 1992] Eckstein, J. and Bertsekas, D. P. (1992). On the dou-
glas?rachford splitting method and the proximal point algorithm for maximal mono-
tone operators. Mathematical Programming, 55(1-3):293–318.

[Flynn, 1972] Flynn, M. J. (1972). Some computer organizations and their effective-
ness. IEEE transactions on computers, 100(9):948–960.

[Forum, 1993] Forum, T. M. (1993). Mpi: A message passing interface.

[Fraenkel, 1997] Fraenkel, A. S. (1997). Protein folding, spin glass and computational
complexity. In DNA Based Computers, pages 101–122. Citeseer.

[Fujishima et al., 1999] Fujishima, Y., Leyton-Brown, K., and Shoham, Y. (1999).
Taming the computational complexity of combinatorial auctions: Optimal and ap-
proximate approaches. In International Joint Conferences on Artificial Intelligence
(IJCAI), pages 548–553.

[Gabay and Mercier, 1976a] Gabay, D. and Mercier, B. (1976a). A dual algorithm
for the solution of nonlinear variational problems via finite element approximation.
Computers & Mathematics with Applications, 2(1):17–40.

[Gabay and Mercier, 1976b] Gabay, D. and Mercier, B. (1976b). A dual algorithm
for the solution of nonlinear variational problems via finite element approximation.
Computers & Mathematics with Applications, 2(1):17–40.

[Globerson and Jaakkola, 2008] Globerson, A. and Jaakkola, T. S. (2008). Fixing max-
product: Convergent message passing algorithms for map lp-relaxations. In Advances
in neural information processing systems, pages 553–560.

[Glowinski and Marroco, 1975] Glowinski, R. and Marroco, A. (1975). Sur
l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-
dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM: Mathe-
matical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse
Numérique, 9(R2):41–76.

[Guide, 2011] Guide, P. (2011). Intel R© 64 and ia-32 architectures software developer’s
manual. Volume 3B: System programming Guide, Part, 2.

[Hammer et al., 2000] Hammer, P., Johnson, E., and Korte, B. (2000). Conclusive
rermarks. Discrete Optimization II, Annals of Discrete Mathematics, 5:427–453.

[Han and Poor, 2009] Han, Z. and Poor, H. V. (2009). Coalition games with coopera-
tive transmission: a cure for the curse of boundary nodes in selfish packet-forwarding
wireless networks. IEEE Transactions on Communications, 57(1):203–213.

[Hazan and Shashua, 2010] Hazan, T. and Shashua, A. (2010). Norm-product belief
propagation: Primal-dual message-passing for approximate inference. Information
Theory, IEEE Transactions on, 56(12):6294–6316.

[Hennessy and Patterson, 2011] Hennessy, J. L. and Patterson, D. A. (2011). Com-
puter architecture: a quantitative approach. Elsevier.

[Hestenes, 1969] Hestenes, M. R. (1969). Multiplier and gradient methods. Journal of
optimization theory and applications, 4(5):303–320.

122 Bibliography

[Holm and Sander, 1991] Holm, L. and Sander, C. (1991). Database algorithm for
generating protein backbone and side-chain co-ordinates from a cα trace: application
to model building and detection of co-ordinate errors. Journal of molecular biology,
218(1):183–194.

[Horling and Lesser, 2004] Horling, B. and Lesser, V. (2004). A survey of multi-agent
organizational paradigms. The Knowledge Engineering Review, 19(4):281–316.

[Hwang and Liao, 1995] Hwang, J.-K. and Liao, W.-F. (1995). Side-chain prediction
by neural networks and simulated annealing optimization. Protein Engineering,
Design and Selection, 8(4):363–370.

[Ibm, 2011] Ibm (2011). IBM ILOG CPLEX Optimization Studio CPLEX User’s Man-
ual.

[Ihler et al., 2005] Ihler, A. T., John III, W. F., and Willsky, A. S. (2005). Loopy
belief propagation: Convergence and effects of message errors. Journal of Machine
Learning Research, 6(May):905–936.

[Kann, 2009] Kann, V. (2009). Complexity and approximation.
urlhttp://www.nada.kth.se/ viggo/approxbook/.

[Koehl and Delarue, 1995] Koehl, P. and Delarue, M. (1995). A self consistent mean
field approach to simultaneous gap closure and side-chain positioning in homology
modelling. Nature Structural and Molecular Biology, 2(2):163.

[Kolmogorov, 2006] Kolmogorov, V. (2006). Convergent tree-reweighted message pass-
ing for energy minimization. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(10):1568–1583.

[Komodakis et al., 2007] Komodakis, N., Paragios, N., and Tziritas, G. (2007). Mrf
optimization via dual decomposition: Message-passing revisited. In Computer Vi-
sion, 2007. ICCV 2007. IEEE 11th International Conference on, pages 1–8. IEEE.

[Kono et al., 1994] Kono, H. et al. (1994). Energy minimization method using au-
tomata network for sequence and side-chain conformation prediction from given
backbone geometry. Proteins: Structure, Function, and Bioinformatics, 19(3):244–
255.

[Krivov et al., 2009] Krivov, G. G., Shapovalov, M. V., and Dunbrack, R. L. (2009).
Improved prediction of protein side-chain conformations with scwrl4. Proteins:
Structure, Function, and Bioinformatics, 77(4):778–795.

[Land and Doig, 1960a] Land, A. H. and Doig, A. G. (1960a). An automatic method
of solving discrete programming problems. Econometrica, 28(3):497–520.

[Land and Doig, 1960b] Land, A. H. and Doig, A. G. (1960b). An automatic method of
solving discrete programming problems. Econometrica: Journal of the Econometric
Society, pages 497–520.

[Larson and Sandholm, 2000] Larson, K. S. and Sandholm, T. W. (2000). Anytime
coalition structure generation: an average case study. J. of Experimental & Theo-
retical Artificial Intelligence, 12(1):23–42.

[Laughton, 1994] Laughton, C. (1994). Prediction of protein side-chain conformations
from local three-dimensional homology relationships. Journal of molecular biology,
235(3):1088–1097.

[Lee and Subbiah, 1991] Lee, C. and Subbiah, S. (1991). Prediction of protein
side-chain conformation by packing optimization. Journal of molecular biology,
217(2):373–388.

Bibliography 123

[Lehmann et al., 2006] Lehmann, D., Müller, R., and Sandholm, T. (2006). The win-
ner determination problem. Combinatorial auctions, pages 297–318.

[Leyton-Brown et al., 2009] Leyton-Brown, K., Nudelman, E., and Shoham, Y. (2009).
Empirical hardness models: Methodology and a case study on combinatorial auc-
tions. Journal of the ACM (JACM), 56(4):22.

[Leyton-Brown et al., 2000] Leyton-Brown, K., Pearson, M., and Shoham, Y. (2000).
Towards a universal test suite for combinatorial auction algorithms. In Proceedings
of the 2nd ACM conference on Electronic commerce, pages 66–76. ACM.

[Liang and Grishin, 2002] Liang, S. and Grishin, N. V. (2002). Side-chain modeling
with an optimized scoring function. Protein Science, 11(2):322–331.

[Lin, 1975] Lin, C.-H. (1975). Corporate tax structures and a special class of set par-
titioning problems. PhD thesis, Case Western Reserve University.

[Loeliger, 2004] Loeliger, H.-A. (2004). An introduction to factor graphs. IEEE Signal
Processing Magazine, 21(1):28–41.

[López-Ibáñez et al., 2016] López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L.,
Stützle, T., and Birattari, M. (2016). The irace package: Iterated racing for auto-
matic algorithm configuration. Operations Research Perspectives, 3:43–58.

[Loughry et al., 2000] Loughry, J., van Hemert, J., and Schoofs, L. (2000). Efficiently
enumerating the subsets of a set. http://www.applied-math.org/subset.pdf.

[Lovell et al., 2000] Lovell, S. C., Word, J. M., Richardson, J. S., and Richardson,
D. C. (2000). The penultimate rotamer library. Proteins: Structure, Function, and
Bioinformatics, 40(3):389–408.

[Makhorin, 2000] Makhorin, A. (2000). Glpk.
urlhttp://www.gnu.org/software/glpk/glpk.html.

[Martins, 2012a] Martins, A. (2012a). AD3 source code.
urlhttps://github.com/andre-martins/AD3.

[Martins et al., 2015] Martins, A. F., Figueiredo, M. A., Aguiar, P. M., Smith, N. A.,
and Xing, E. P. (2015). Ad 3: Alternating directions dual decomposition for map
inference in graphical models. The Journal of Machine Learning Research, 16(1):495–
545.

[Martins, 2012b] Martins, A. F. T. (2012b). The Geometry of Constrained Structured
Prediction: Applications to Inference and Learning of Natural Language Syntax. PhD
thesis, Columbia University.

[Martins et al., 2014] Martins, A. F. T., Figueiredo, M. A. T., Aguiar, P. M. Q., Smith,
N. A., and Xing, E. P. (2014). Ad3: Alternating directions dual decomposition for
map inference in graphical models. Journal of Machine Learning Research, 46. to
appear.

[Mendes et al., 1999] Mendes, J., Baptista, A. M., Carrondo, M. A., and Soares, C. M.
(1999). Improved modeling of side-chains in proteins with rotamer-based meth-
ods: A flexible rotamer model. Proteins: Structure, Function, and Bioinformatics,
37(4):530–543.

[Michalak et al., 2016] Michalak, T., Rahwan, T., Elkind, E., Wooldridge, M., and
Jennings, N. R. (2016). A hybrid exact algorithm for complete set partitioning.
Artif. Intell., 230(C):14–50.

124 Bibliography

[Michalak et al., 2010] Michalak, T., Sroka, J., Rahwan, T., Wooldridge, M., McBur-
ney, P., and Jennings, N. (2010). A distributed algorithm for anytime coalition
structure generation. In Proceedings of the 9th International Conference on Au-
tonomous Agents and Multiagent Systems: volume 1-Volume 1, pages 1007–1014.
International Foundation for Autonomous Agents and Multiagent Systems.

[Miksik et al., 2014] Miksik, O., Vineet, V., Perez, P., and Torr, P. H. S. (2014). Dis-
tributed non-convex admm-inference in large-scale random fields. In British Machine
Vision Conference (BMVC).

[Nemhauser and Wolsey, 1988] Nemhauser, G. L. and Wolsey, L. A. (1988). Integer
programming and combinatorial optimization. Wiley, Chichester. GL Nemhauser,
MWP Savelsbergh, GS Sigismondi (1992). Constraint Classification for Mixed Inte-
ger Programming Formulations. COAL Bulletin, 20:8–12.

[Nesterov and Nemirovskii, 1994] Nesterov, Y. and Nemirovskii, A. (1994). Interior-
point polynomial algorithms in convex programming, volume 13. Siam.

[Optimization, 2017] Optimization, G. (2017). Gurobi optimizer. software.

[Parsons et al., 2011] Parsons, S., Rodriguez-Aguilar, J. A., and Klein, M. (2011).
Auctions and bidding: A guide for computer scientists. ACM Comput. Surv.,
43(2):10:1–10:59.

[Paschos, 2012] Paschos, V. (2012). Concepts of Combinatorial Optimization. ISTE.
Wiley.

[Paschos, 2013] Paschos, V. T. (2013). Applications of combinatorial optimization.
John Wiley & Sons.

[Pierce and Winfree, 2002] Pierce, N. A. and Winfree, E. (2002). Protein design is
np-hard. Protein engineering, 15(10):779–782.

[Rahwan and Jennings, 2008a] Rahwan, T. and Jennings, N. (2008a). Coalition struc-
ture generation: dynamic programming meets anytime optimisation. In Proceedings
of the 23rd Conference on Artificial Intelligence (AAAI), pages 156–161.

[Rahwan and Jennings, 2008b] Rahwan, T. and Jennings, N. R. (2008b). An improved
dynamic programming algorithm for coalition structure generation. In AAMAS (3),
pages 1417–1420.

[Rahwan et al., 2015] Rahwan, T., Michalak, T. P., Wooldridge, M., and Jennings,
N. R. (2015). Coalition structure generation: A survey. Artificial Intelligence,
229:139–174.

[Rahwan et al., 2009] Rahwan, T., Ramchurn, S., Jennings, N., and Giovannucci, A.
(2009). An anytime algorithm for optimal coalition structure generation. Journal of
Artificial Intelligence Research, 34(1):521–567.

[Rahwan et al., 2007] Rahwan, T., Ramchurn, S. D., Dang, V. D., Giovannucci, A.,
and Jennings, N. R. (2007). Anytime optimal coalition structure generation. In
AAAI, pages 1184–1190.

[Ramchurn et al., 2009] Ramchurn, S. D., Mezzetti, C., Giovannucci, A., Rodriguez-
Aguilar, J. A., Dash, R. K., and Jennings, N. R. (2009). Trust-based mechanisms for
robust and efficient task allocation in the presence of execution uncertainty. Journal
of Artificial Intelligence Research, 35(1):119.

Bibliography 125

[Ramchurn et al., 2008] Ramchurn, S. D., Rogers, A., Macarthur, K., Farinelli, A.,
Vytelingum, P., Vetsikas, I., and Jennings, N. R. (2008). Agent-based coordination
technologies in disaster management. In Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems: demo papers, pages 1651–
1652.

[Rohl et al., 2004] Rohl, C. A., Strauss, C. E., Chivian, D., and Baker, D. (2004).
Modeling structurally variable regions in homologous proteins with rosetta. Proteins:
Structure, Function, and Bioinformatics, 55(3):656–677.

[Rothkopf et al., 1998] Rothkopf, M. H., Pekeč, A., and Harstad, R. M. (1998). Com-
putationally manageable combinational auctions. Management science, 44(8):1131–
1147.

[Roy et al., 2013] Roy, A., Mihailovic, I., and Zwaenepoel, W. (2013). X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pages 472–488. ACM.

[Rush and Collins, 2012] Rush, A. M. and Collins, M. (2012). A tutorial on dual de-
composition and lagrangian relaxation for inference in natural language processing.
Journal of Artificial Intelligence Research, 45:305–362.

[Rush et al., 2010] Rush, A. M., Sontag, D., Collins, M., and Jaakkola, T. (2010).
On dual decomposition and linear programming relaxations for natural language
processing. In Proceedings of the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 1–11. Association for Computational Linguistics.

[Samudrala and Moult, 1998] Samudrala, R. and Moult, J. (1998). Determinants of
side chain conformational preferences in protein structures. Protein Engineering,
11(11):991–997.

[Sandholm et al., 1999] Sandholm, T., Larson, K., Andersson, M., Shehory, O., and
Tohmé, F. (1999). Coalition structure generation with worst case guarantees. Arti-
ficial Intelligence, 111(1-2):209–238.

[Sandholm et al., 2001] Sandholm, T., Suri, S., Gilpin, A., and Levine, D. (2001).
Cabob: A fast optimal algorithm for combinatorial auctions. In International Joint
Conference on Artificial Intelligence, volume 17, pages 1102–1108.

[Sandholm and Lesser, 1997] Sandholm, T. W. and Lesser, V. R. (1997). Coalitions
among computationally bounded agents. Artificial Intelligence, 94:99–137.

[Santos Jr, 1991] Santos Jr, E. (1991). On the generation of alternative explanations
with implications for belief revision. In Proceedings of the Seventh conference on
Uncertainty in Artificial Intelligence, pages 339–347. Morgan Kaufmann Publishers
Inc.

[Sheffi, 2004] Sheffi, Y. (2004). Combinatorial auctions in the procurement of trans-
portation services. Interfaces, 34(4):245–252.

[Shehory and Kraus, 1998] Shehory, O. and Kraus, S. (1998). Methods for task allo-
cation via agent coalition formation. Artif. Intell., 101(1-2):165–200.

[Shoham and Leyton-Brown, 2008] Shoham, Y. and Leyton-Brown, K. (2008). Mul-
tiagent systems: Algorithmic, game-theoretic, and logical foundations. Cambridge
University Press.

[Sierra et al., 2001] Sierra, C., de López Màntaras, R., and Busquets, D. (2001). Mul-
tiagent bidding mechanisms for robot qualitative navigation. In Intelligent Agents
VII Agent Theories Architectures and Languages, pages 198–212. Springer.

126 Bibliography

[Smith and Eisner, 2008] Smith, D. A. and Eisner, J. (2008). Dependency parsing by
belief propagation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 145–156. Association for Computational Linguistics.

[Sontag et al., 2012] Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T. S., and
Weiss, Y. (2012). Tightening lp relaxations for map using message passing. arXiv
preprint arXiv:1206.3288.

[Summers and Karplus, 1989] Summers, N. L. and Karplus, M. (1989). Construction
of side-chains in homology modelling: Application to the c-terminal lobe of rhizo-
puspepsin. Journal of molecular biology, 210(4):785–811.

[Sutter, 2005] Sutter, H. (2005). The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobb’s Journal, 30(3):202–210.

[Svensson et al., 2013] Svensson, K., Ramchurn, S., Cruz-Menćıa, F., Rodriguez-
Aguilar, J. A., and Cerquides, J. (2013). Solving the coalition structure generation
problem on a GPU. In Proceedints of 6th International Workshop on Optimisation
in Multi-Agent Systems, OPTMAS 2013, workshop affiliated with AAMAS 2013.

[Thrall and Lucas, 1963] Thrall, R. M. and Lucas, W. F. (1963). N-person games in
partition function form. Naval Research Logistics (NRL), 10(1):281–298.

[Tuffery et al., 1991] Tuffery, P., Etchebest, C., Hazout, S., and Lavery, R. (1991).
A new approach to the rapid determination of protein side chain conformations.
Journal of Biomolecular structure and dynamics, 8(6):1267–1289.

[Wainwright et al., 2003] Wainwright, M. J., Jaakkola, T. S., andWillsky, A. S. (2003).
Tree-reweighted belief propagation algorithms and approximate ml estimation by
pseudo-moment matching. In Workshop on Artificial Intelligence and Statistics,
volume 21, page 97. Society for Artificial Intelligence and Statistics Np.

[Wainwright et al., 2005] Wainwright, M. J., Jaakkola, T. S., andWillsky, A. S. (2005).
Map estimation via agreement on trees: message-passing and linear programming.
IEEE transactions on information theory, 51(11):3697–3717.

[Wilson et al., 1993] Wilson, C., Gregoret, L. M., and Agard, D. A. (1993). Model-
ing side-chain conformation for homologous proteins using an energy-based rotamer
search. Journal of molecular biology, 229(4):996–1006.

[Wooldridge, 2009] Wooldridge, M. (2009). An introduction to multiagent systems.
John Wiley & Sons.

[Xiang and Honig, 2001] Xiang, Z. and Honig, B. (2001). Extending the accuracy
limits of prediction for side-chain conformations1. Journal of molecular biology,
311(2):421–430.

[Yanover et al., 2006] Yanover, C., Meltzer, T., and Weiss, Y. (2006). Linear program-
ming relaxations and belief propagation – an empirical study. J. Mach. Learn. Res.,
7:1887–1907.

[Yun Yeh, 1986] Yun Yeh, D. (1986). A dynamic programming approach to the
complete set partitioning problem. BIT Numerical Mathematics, 26:467–474.
10.1007/BF01935053.

	Títol de la tesi: Enhancing Performance onCombinatorial Optimization Algorithms
	Nom autor/a: Francisco Cruz Mencía

