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Abstract

A multiple sequence alignment (MSA) provides a description of the
relationship between biological sequences where columns represent a shared
ancestry through an implied set of evolutionary events. The majority of
research in the field has focused on improving the accuracy of alignments
within the progressive alighment framework and has allowed for powerful
inferences including phylogenetic reconstruction, homology modelling and
disease prediction. Notwithstanding this, when applied to modern genomics
datasets - often comprising tens of thousands of sequences - new challenges
arise in the construction of accurate MSA. These issues can be generalised to
form three basic problems. Foremost, as the number of sequences increases,
progressive alignment methodologies exhibit a dramatic decrease in
alignment accuracy. Additionally, for any given dataset many possible MSA
solutions exist, a problem which is exacerbated with an increasing number
of sequences due to alignment uncertainty. Finally, technical difficulties
hamper the deployment of such genomic analysis workflows - especially in a
reproducible manner - often presenting a high barrier for even skilled
practitioners. This work aims to address this trifecta of problems through a
web server for fast homology extension based MSA, two new methods for
improved phylogenetic bootstrap supports incorporating alignment
uncertainty, a novel alignment procedure that improves large scale
alignments termed regressive MSA and finally a workflow framework that
enables the deployment of large scale reproducible analyses across clusters
and clouds titled Nextflow. Together, this work can be seen to provide both
conceptual and technical advances which deliver substantial improvements

to existing MSA methods and the resulting inferences.






Resum

Un alineament de sequéncia multiple (MSA) proporciona una descripci6 de
la relacié entre seqiiencies biologiques on les columnes representen una
ascendencia compartida a través d'un conjunt implicat d'esdeveniments
evolutius. La majoria de la investigacié en el camp s'ha centrat a millorar la
precisié dels alineaments dins del marc d'alineacié progressiva i ha permes
inferencies poderoses, incloent-hi la reconstruccié filogenetica, el modelatge
d'homologia i la prediccié de malalties. Malgrat aixo, quan s'aplica als
conjunts de dades de genomica moderns, que sovint comprenen desenes de
milers de seqiiéncies, sorgeixen nous reptes en la construccié d'un MSA
precis. Aquests problemes es poden generalitzar per formar tres problemes
basics. En primer lloc, a mesura que augmenta el nombre de seqiiéncies, les
metodologies d'alineacié progressiva presenten una disminucié espectacular
de la precisié de l'alineacié. A més, per a un conjunt de dades, existeixen
molts MSA com a possibles solucions un problema que s'agreuja amb un
nombre creixent de seqiiencies a causa de la incertesa d'alineacié. Finalment,
les dificultats técniques obstaculitzen el desplegament d'aquests fluxos de
treball d'analisi genomica, especialment de manera reproduible, sovint
presenten una gran barrera per als professionals fins i tot qualificats. Aquest
treball t¢ com a objectiu abordar aquesta trifecta de problemes a través d'un
servidor web per a l'extensié rapida d'homologia basada en MSA, dos nous
metodes per a la millora de l'arrencada filogenética permeten incorporar
incertesa d'alineacié, un nou procediment d'alineacié que millora els
alineaments a gran escala anomenat MSA regressivu 1, finalment, un marc de
flux de treball permet el desplegament d'analisis reproduibles a gran escala a
través de clasters 1 computacié al nivol anomenat Nextflow. En conjunt, es
pot veure que aquest treball proporciona tant avancos conceptuals com
tecniques que proporcionen millores substancials als métodes MSA existents

1les consequiencies resultants.
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Preface

The document is structured such that the introduction chapter is intended to
provide background for the reader who may not be specifically skilled in the
art of multiple sequence alignment methods and inferences. Thereafter, each
of the five central chapters contains a manuscript. It is here where the reader
will find more grounding material for the specific problem addressed in
each. To avoid confusion, with the exception of the introduction and
discussion chapters, the references, figures and tables for each of the
respective chapters are self-contained. The discussion chapter is intended to
provide context for the results of each central chapter. For the sake of
brevity, the supplementary material from all manuscripts have been excluded
from this document; however, they are available online from the respective

journal publications.
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1. Chapter 1: Introduction

1.1 Multiple sequence alignment

Our most fundamental insights in biology arise from comparisons. And for
good reason. Comparative biology exploits the single most important fact in
life-science: that all life is related. Relatedness has persisted as the central
idea, woven with ever-changing technologies, through the fabric of our
advances. The concept of shared ancestry - what we call homology - is the
basis for so much of our biology and in sketching the iconic tree of life,
Darwin initially conceptualised homology through anatomical comparisons,
those of beaks, bones and barnacles. Importantly, comparative anatomy
provided a quantification of the similarity between species. With rulers in
hand, numbers could be compiled and calculations performed paving the
way for the scientific method machine and its instruments of observation,
measurement and hypothesis formulation. Yet quantification of anatomy is
not entirely satisfactory. It allows for the formulation of phylogenetic
relationships but provides no direct connection to evolution’s mechanism.
Variation and natural selection as concepts can only explain so much. The
raw material of evolution is the molecule and our core representation of

these molecules is the sequence.

Sequences have a unique role in bioinformatics and it is worth devoting
some words to them. With a sequence, our measurements of similarity are

quantified at single molecule resolution. But more importantly, the sequence
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representation opened up a toolbox of quantification methods and allowed
biology to stand on the shoulders of mathematicians and computer
scientists. From simple edit-distances to complex machine learning

algorithms, strings of characters lend themselves amenable to computation.

A linear or 'text-like' structure - what we now call sequence - was first
proposed for proteins in the 1880s (Curtius 1883). Fisher and Hofmeister
both developed independent peptide theories at the turn of the 20th century
by comparing and contrasting the chemical and physical properties of
different proteins (Hofmeister 1902). The hypothesis that proteins were
made up of chains of amino acids with particular meaning was not fully
proven until protein sequences were published. The first, gramicidine S in
1947, a five peptide protein (Consden, Gordon, and Martin 1947) was
followed shortly after by Sanger and Tuppy with a section of 30 amino acids

from the B chain of insulin (Sanger and Tuppy 1951).

Biochemistry had occupied the minds of many scientists in the early 20th
century but the catalytic enzymes themselves were seen as intractable
compared to the small molecule steroids and vitamins. Proteins were
comparatively huge and proved difficult to separate and purify. And so the
story of the first sequences is one of method development. Sanger himself
had remarked that "of the three main activities involved in scientific research
thinking, talking, and doing, I much prefer the last and am probably best at

it" (Stretton 2002). Over a number of years, he and others developed
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techniques to isolate and selectively remove the labeled N-terminus of
amino acid sequences. Starting with insulin - which was available in both
high quality and quantity due to its therapeutic value - the first sequences
were collected and comparisons made. This era saw a great multi-disciplinary
convergence which foreshadowed what we are currently observing with
molecular biology and computer science. The post-war physicists had turned
their hand to crystallography and started the first comparative studies on
three-dimensional ~ atomic  arrangements. Starting with  ungapped
supet-imposition of protein fragments focusing on active sites, they began
the search for governing principles to relate sequence, structure and

function.

The background training of some biochemists had allowed for a connection
to genetics. Neel and Pauling demonstrated respectively that Mendel's
inheritance patterns could describe sickle-cell anemia and that gel
electrophoresis could separate normal and sickle-cell hemoglobin (Neel
1952), (Pauling and Itano 1949). This discovery marks the advent of
'molecular diseases' and provided a hereditary link to the molecular
phenotype observed. In 1959, on the centenary after the Origin of a Species,
Anfinsen released his seminal textbook The Molecular Basis of Ewvolution in
which he highlights this convergence of fields stating how "many scientists,
working either in protein chemistry or in genetics, or for that matter in

relatively unrelated fields, have arrived at long-range research plans that are
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similar to my own, down to almost the last detail of experimental planning"

(Anfinsen 1959) .

In collecting sequences for today's big data genomics, our measurements are
rarely on proteins themselves. As to our most useful proxy, nucleic acids, the
heritory role of DNA had been hypothesized since its discovery by Miecher
in 1869. Later in his life he conjectured that DNA could be a "molecular
text" consisting of a linear sequence of chemical symbols. But it is hard to
disentangle the revisionism from the facts here; these statements were by no
means core views of the scientific community. The consensus until as late as
1949 was that DNA was a simplistic, repetitive molecule of four nucleotides.
Even as advances in X-ray diffraction shined an electromagnetic light on the
nucleic bases of DNA, the notion from Astbury and Bell that these bases
could "form the long scroll on which is written the pattern of life" was
marginalised. The discovery of both the definitive genetic role of DNA and
the base pairing rules paid rest to this (Chargaff and Magasanik 1949). In
solving the structure of DNA, a mechanism for Darwin's evolution was
realised (Watson and Crick 1953). The translational code linking nucleic
acids to proteins became the goal with Nirenberg and Matthaei
demonstrating the first triplet codon (UUU/phe) which was soon followed
by the deciphering of all 64 codons (Nirenberg and Matthaei 1961). The
code was practically universal across species (Woese 1961) and in our best
abstraction, it was sequences which where mutated and selectively passed on

to future generations.
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Nucleic acid sequencing itself would not be routine until 1977 (Sanger,
Nicklen, and Coulson 1977). For the intervening period, the protein
sequencing effort would continue in earnest, a laborious operation carried
out by a handful of laboratories around the world. These earliest studies -
including pivotal work on the evolution on haemoglobin chains - presented
the sequences one after each other, unaligned (Ingram 1961). The first
primitive alighments were published with the aptly title of "Chemical
Paleogenetics" by Pauling and Zuckerkandl along with work by Margoliash
on cytochrome c in the same month. Data was still scarce, but as the
techniques for protein purification, Edman degradation and N-terminal

sequencing improved, the first sequence databases became available.

Margaret Dayhoff and colleagues assembly of sequences from 1965 titled
the _Atlas of Protein Sequence and Structure consists of 70 proteins, mainly
cytochrome ¢, hemoglobins, and fibrinopeptides from various species
(Strasser 2010). During the compilation, new possibilities for the
representation of sequences presented themselves. It had been noted there
are all manner of ways to organise and sort protein data and left
unquestioned, the human eye will find patterns in the tea leaves. Dayhoff
took the liberty of changing the common three letter amino acid code,
converting it into a single letter code. Crucially, gaps could be introduced to
improve the alignment. With this leap and enough data, a statement on the

origins of specific residues could be made. This point must be stressed as it
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marks a progression from species having a shared ancestry, to sequences
having a shared ancestry and finally to individual residues having a shared

ancestry.

1 5 10 15 20 25
Ala.Tyr,Lys.Ilu.Ala.Asp.Ser.Cys.Val.Ser.Cys.Gly,Ala.Cys.Ala,Ser.Glu.Cys.Pro.Val Asn,Ala,I1u.Ser.Gln.Gly.Asp.Sex,I1u,

30 35 40 45 30 55
Phe.Val.Ilu.Asp.Ala.Asp.Thr.Cys.Ilu.Asp.Cys.Gly.Asn.Cys.Ala.Asn.Val.Cys.Pro.Val.Gly.Ala.Pro.Val.Gln.Glu

1 5 10 15 20 25 30 35 4o L5 50 55
1. ADOKIADSCVSCGACASECPVYNATISQGDSIFVIDADTCIDCGNCANVCPVGAPYQE

il 5 10 15 20 25
2. AOKIADSCVSCGAGCASECPVNAISQGDSI
3. FYIDADTCIDCGNCANVCPVGAPVYVQE
4. AD C CG CA CPVY A 0
5. AV DRDSCVSDCGACASVCPVGAFiQGUS
6. ADSGADSGADSGADDSGADSGADSGADSGE
7. A ADS D GA S GA S Ds
8. 1] S A G

2. ADSGADSGADSGADDSGADSGADSGADSE
3. ADSDADSCVYDCGACASYCPVYGAPSQGDSE

Figure 1: The earliest multiple sequence alignments were created by hand. Adapted from
the publication Ewvolution of the structure of ferredoxin based on living relics of primitive amino acid
sequences by Eck and Dayhoft in 1966.

The representation of aligned sequences was key. Almost immediately the
concept of using this information as a molecular clock arose as formalised in
Molecules as documents of evolutionary history (Zuckerkandl and Pauling 1965). In
aligning residues, a multiple sequence alignment (MSA) is created and a
statement implying a series of evolutionary events is made. Gaps represent
insertions or deletions and mismatches represent substitutions. From here it

was only natural to now quantify this evolution with the help of models.
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All models are wrong but some are useful - George E.P. Box.

Herein lies one of the central themes of this dissertation. MSAs can be
useful for many things: evolution, structure, function. And yet we are unable
to know the truth of a given evolutionary history, hence the absolute
correctness of an MSA is practically unknowable. Moreover, we have
another layer of inherent uncertainty that arises beyond that of biological
intractability. Our representations, scoring schemes and alignment
algorithms come along with their own assumptions, something that will be
reviewed in more detail in section 1.3 and addressed in the publications that

form Chapter 3 and Chapter 4.

With enough data in hand, measurements of similarity could be made. By
collecting sequences and aligning them, it was possible to observe the
individual substitutions and generate a measure for how often a given
substitution occurs. This generates what we now call a scoring scheme. The
first scoring schemes were basic and generated from the well studied
proteins such as cytochrome c and ferredoxin (McLachlan 1971). At the
time of the last edition of A#as published in 1978, the quantity of data
allowed for the definition of the first point accepted mutation (PAM)
substitution matrices, representing mutations compiled from 1,573
substitutions (Strasser 2010). A PAM considers amino acid changes with
silent changes not included (eg AAG to AAA / Lys to Lys is not a PAM). It

becomes apparent for obvious reasons that within homologous sequences,
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the substitutions of similar physicochemical amino acids are observed more
frequently (Glutamic Acid to Aspartic Acid) than dissimilar substitutions
(Tryptophan to Alanine). A matrix of PAM-1 is the average observed
mutations that is seen when 1% of amino acids are substituted. It is
especially important to grasp however that substitution is not a one way
street. What we observe are mutations. But those substitutions which have
occured twice (reversions or otherwise) may be unseen. Therefore it follows
that after 100 PAMs, not all residues have changed. Many positions will
have changed and then returned to their original state whilst others will not
have changed at all. The PAM-250 matrix was the first published in A#as
and is still available for use on the NCBI-BLAST web servers today. Despite
some methodological critiques and the vast quantities of new data collected
over the last 40 years, the original PAM matrices have proven remarkably

robust.

With the advent of larger computationally derived multiple sequence
alignment data, the BLOcks SUbstitution Matrix (BLOSUM) series of
matrices was developed (Henikoff and Henikoff 1992). These matrices use
the log-odd ratio taken from 2,000 blocks of aligned sequences across 500
groups of related proteins and have become the defacto standard scoring
matrices for scoring the similarity of protein sequences. As nucleic acid
sequencing gained popularity and the significance of non-coding section of a
genome was piquing interest, improved scoring schemes for DNA also

became available (States, Gish, and Altschul 1991).
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It was not lost on the earliest practitioners that with a comparative measure,
statistics can be applied to estimate the probability that a substitution has
occurred by chance. Rudimentary procedures for searching for homologous
sequences had even been developed in the initial sequence comparison work
(McLachlan 1971). But to do this in an efficient and objective manner,

automated methods for aligning sequences were therefore needed.

In comparing any two sequences, there are generally considered to be two
ways to align them. The first is global alignment, where the objective is to
match the entire lengths of the sequences to be aligned. Alternatively, local
alighment aims to maximise portions of the sequences or substrings.
Efficient global alignment made an entrance into biology via Saul
Needleman and Christian Wunsch (Needleman and Wunsch 1970). The
algorithm that carries their name aims to maximise the similarity between
two sequences. The solution they developed can be generalised with the
most famous being Levenshtein's approach which secks to minimise edit

distance (Sellers 1974).

In its initial formulation, Needleman-Wunsch begins with a matrix of size
len(N) x len(M) with the two sequences to be aligned represented along the
edges of the matrix. Once a scoring scheme (including gap penalties) has
been decided upon, the first column and row of the matrix are filled

additively with the gap penalty scores. Next, and for each cell progressing in
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a top-down, left to right fashion, one of three possible outcomes is selected
based on the highest score. Taking the score:

e from the top left diagonal, add to it the score from our scoring
scheme for the two amino acids those positions representing a
match/mismatch in our aligned sequences.

e from the cell above, add to it the cost of a gap, representing the
addition of a gap into sequence M of our alignment.

e from the cell to the left, add to it the cost of a gap, representing the

addition of a gap into sequence N of our alignment.

The highest score of the three is then entered into the cell. The choice of
gap penalty here has an obvious impact on the resulting alignment but also
for the implementation (and thus complexity) of the algorithm. To better
approximate biological processes, an affine gap penalty concept was
developed where the penalty is composed of an initial gap opening cost plus

a gap extension penalty.

It is important to note that it is possible for more than one of the three
outcomes (match/mismatch, gap in sequence M or gap in sequence N) to
have the same score. This becomes important for the second part of the
algorithm known as the traceback. Once the matrix has been completed, we
start from the bottom right and traceback to the top left following the path
to generate the optimal scoring alignment. Given that there can be many

optimal paths, there are many optimal alignments.
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The key concept of Needleman-Wunsch is that it efficiently removes from
consideration those comparisons that are unable to contribute to the
maximum scoring alignment. Many improvements were subsequently made
to the algorithm in terms of speed and memory usage. A recursive approach
was added whilst David Sankoff developed an approach that completes the
table in quadratic time (Sankoff 1972). It was determined that storing of the
complete matrix was not necessary given that the optimal score only comes
from the line directly above or the cell to the left which significantly reduced
the memory requirements. Other heuristic improvements included 'banding'
of the matrix to eliminate the need for full computation of the matrix at the
expense of possibly excluding the optimal solution. In cases where the
global alignment is of key importance, these derivatives of

Needleman-Wunsch are still in use today.

The consequences of dynamic programming on the newly formed field of
bioinformatics proved to be far-reaching. Further modifications of
Needleman-Wunsch made the framework applicable beyond that of
obtaining the maximum global score of two sequences. When sequences
have changed over evolutionary time, meaningful comparisons of the
complete (global) sequences may not be highly informative. Often
evolutionary forces are applied to domains and motifs as epitomized in the
phrase "Nature is a tinkerer and not an inventor" (Jacob 1977). In local
alignment this is accommodated by finding the optimal scoring alighment

between subsequences of the original sequences.
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This was first described by Smith and Waterman (Smith and Waterman
1981). In filling the matrix, the technical modifications to
Needleman-Wunsch are rather simple. The first row and column of the
matrix are initialised with scores of zero and in computing the scores, any
negatively scoring cells are set to zero. During the traceback procedure, we
now start with the highest scoring cell and work back to generate the
optimally scoring local alignment. Many of the modifications used to
improve Needleman-Wunsch could also be applied to Smith-Waterman
(vice-versa) as shown by the overlap in the algorithmic development.
Significant later advances included Gotoh who reduced the complexity from
O(m2n) to O(mn), and Myers and Miller who reduced space requirements to
be linear, i.e. to the length of one of the sequences (Gotoh 1982; Myers and

Miller 1988).

With the efficient alignment between pairs of sequences computationally
possible, methods for sequence search were still absent until the 1980s; if
only because the databases themselves did not exist. The first genome had
been published in 1977 and it was still common for sequences to be copied
by hand from literature (Sanger et al. 1977). The same year saw the initial
release of the structure based Protein Data Bank (Bernstein et al. 1977)
shortly followed by the first nucleotide database, the EMBL Nucleotide
Sequence Data Library in 1980 (Baker 2000). The American effort for

coordinating sequence resources coalesced at the national level leading to
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the formation of the NCBI in 1987. Its first director would be David
Lippman. Lippman, along with Pearson, had two years prior released the
FASTA alignment software package which included Wilbur and Lipman's
previous algorithm for database searching of nucleic acids and protein

sequences (Lipman and Pearson 1985; Wilbur and Lipman 1983).

FASTA and its successor BLAST are in essence sequence alignment
algorithms with heuristics based on k-mers. In k-mer search, sequences are
first split into tuples of size k (termed k-tuples) and the location of matches
between the k-tuples in the sequences are recorded. A year earlier, an
algorithm to detect all common subsequences of length k had been
developed and applied pairwise to RNA sequences up to 5,000 nt in length
(Dumas and Ninio 1982). Wilbut and Lipman used this k-mer search routine
and then extended it to only consider regions where a certain number of
k-tuple matches are found within a window. In these regions, termed
significant diagonals, joining between close diagonals occurs and a banded
Needleman-Wunsch dynamic programing type alignment is used to generate

alignments and corresponding alignment scores.

When searching a database containing hundreds, thousands or even millions
of sequences as can now be done with BLAST, the distribution of alignment
scores becomes critical to knowing whether a given 'hit' is significant.
Assuming that most of the sequences in a given database have a random

relationship with any given query, Wilbut and Lipman first removed the
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highest scoring alignments - these appear as outliers and are assumed to be
related sequences - and plotted the distribution of the random scores. This
distribution looks remarkably like a normal distribution, thus following a
transformation allows the use of standard P-value hypothesis testing (Wilbur
and Lipman 1983). The implementation and statistical basis for rapid

detection of sequence homology was realised.

The original algorithm was improved upon by Lipman and Pearson to allow
for global and local gapped alignments with FASTP and FASTA respectively
(Pearson and Lipman 1988). But it was the 1990 release of BLAST that
changed the course of heuristic sequence searches (Altschul et al. 1990). It is
hard to overestimate the importance of BLAST in this story. As the most
cited publication of 1990s, it has stood the test of time even as the size of
sequence databases increased by many orders of magnitude. On a personal
level, performing BLAST on NCBI website was my first introduction to
bioinformatics and I remember the profound feeling of wizardry at my

fingertips with that first sequence search.

In comparing BLAST to FASTA, the first difference comes from the
representation of the query sequences. Instead of attempting to compare
every k-tuple of the query with every k-tuple in the target database, BLAST
first constructs a list of query k-tuples and - importantly - generates a list of
similar k-tuples. It then only keeps the k-tuples which would score above a

neighbourhood threshold score. The basis for this is that statistically
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significant target sequences should contain these high scoring k-tuples
derived from the query sequence. This list of similar words can be stored in
a tree data structure that allows for efficient searching. The target database is
then scanned for matches to the query k-tuples and the position of exact
matches recorded called seed locations. For each seed location, an ungapped
local alignment between the query and target sequence is performed,
extending the alignment in both directions until the total score of the
alignment extending from the seed region decreases. These alignments
become high-scoring segment pairs (HSP) whose score is evaluated for
significance according to the Gumbel extreme value distribution. When
more than one HSP is found within the same target sequence, an attempt is
made to combine them into a longer alignment. Finally, all alignments whose

expected score is lower than a threshold E are reported.

This final point on the E-value statistic marks another difference between
database searching with FASTA and BLAST. FASTA takes the view that all
sequences in our target dataset are @ priori equally likely to be related to the
query. The more nuanced approach of BLAST is that the @ priori chance of
being related is proportional to sequence length. Longer sequences are more
likely to be multi-domain and therefore the query is more likely to be related
to longer sequences than it would be to shorter sequences (Altschul and
Gish 1996). This becomes crucial when considering nucleic acid searches
where the target database sequences can comprise of whole chromosomes

with lengths in the order of hundreds of millions of nucleotides.
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Vast database searching is made possible with FASTA and BLAST;
however, there are still trade-offs in terms of specificity when compared to
optimal dynamic programming algorithms such as Smith-Waterman. This is
noticeable when searching for more distantly related sequences. There is an
appreciable 'twilight' zone for detection that occurs at approximately 25%
sequence identity for proteins and 60% for nucleic acids. To extend this
twilight zone, a BLAST iteration based on profiles termed position specific
iterative BLAST (PSI-BLAST) was developed. In PSI-BLAST, prior to
searching, a profile is first generated from closely related sequences. This
profile can then be used to search a database with significantly similar
sequences added to the profile and the search performed in an iterative
manner. This approach is very successful and had led to the discovery and

characterization of diverse sequences which share a common origin

(Altschul et al. 1997).

A sequence profile is a generalised extension of the slightly more intuitive
position specific scoring matrices (PSSMs). A PSSM at its essence is a
reduced representation of a multiple sequence alignment. At each position
the frequency of each character is recorded. PSSMs are able to use the
wider information content that comes from aligned sequences and
evolutionary constraints. These prove to be very useful for pattern matching
of motifs for example but they forbid gaps (insertions/deletions) which

prohibits use for longer sequence comparisons. Profiles alleviate the
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problem of gaps by allowing insertion and deletion states. At each position,
these states have a score derived from the frequency than an insertion or
deletion is observed at that position in the MSA. These generalized profiles

form the basic representation of the query sequence in PSI-BLLAST.

Further improvements to profiles were made with the introduction of the
hidden Markov model representation (HMM) as applied to profiles (Durbin
et al. 1998). Profile-HMMs differ from the profiles discussed above in that
they are able to better contextualise the evolutionary signal through the use
of probabilistic modeling, e.g. the probability an alanine in the query
sequence matches the model given the previous residue was a matched
leucine. Three different hidden states are used in profile-HMMs: match
states, insert states and delete states. These three states describe the
position-specific frequencies of characters as well as the insertions and
deletions frequencies for each position in the consensus sequence (Mount

2009).

Applying the algorithmic framework of HMMs allow us to tackle several
fundamental sequence alignment problems using different algorithms. The
forward algorithm can be used to calculate how likely a given sequence is to
be emitted from a model and thus gives an estimate of the likelithood of
homology. The Viterbi algorithm gives the most probable path between
states given a sequence and thus the returns the optimal alignment score.

Finally to generate and train a profile-HMM from an MSA, the
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forward-backwards and Baum-Welch expectation maximization algorithms
are used. The use of profile-HMMs was pioneered and popularised through
the software developed by Sean Eddy with the HMMER package (Eddy
1998) being central to the building of the most widely used protein family

database Pfam (Sonnhammer et al. 1998).

The use of probabilistic models also extends to RNA. In an alternative to
the primary sequence based profile-HMMs, there are the related stochastic
context free grammars, termed covariance models (CMs) for the purposes of
RNA homology search (Nawrocki and Eddy 2013). At a basic level, these
can be considered as structured-HMMs where the relationships of columns
do not run strictly left to right along a consensus sequence . This allows for
the modeling of long range interactions and pairwise structures whose
nucleotides may 'co-vary' during evolution. These models along with
structure annotated MSAs form the basis of the RNA families database

Rfam (Nawrocki et al. 2015).

The history of multiple sequence alignment is not a linear progression of
ideas and the previous chronological description defies the reality of the
developments. MSA methods have been heavily influenced by the
concurrent advances in computation and sequencing technologies and ideas
have cross-pollinated from many fields. In the homology searching examples
above, we see how the MSA is a means-to-an-end with a certain amount of

circularity. The detection of homologous sequences can be improved by
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including these very sequences into the seed MSA. In phylogeny applications
of MSA, the circularity is even more apparent with the majority of methods
relying on MSA built with a guide tree which reflects the resulting
phylogenetic tree (Lake 1991). This guide tree approach is formalised as the
progressive MSA framework which will be discussed in the following

section.

To objectively organise the sequencing data, automated methods for MSA
generation were required. This was enabled by the adoption of computers as
routine instruments in laboratory. But even with computing power
becoming commoning, new methods were needed. If we consider our
objective is to optimally align all our sequences using a given scoring
scheme, the naive approach would be to expand our algorithms for pairwise
sequence alignment. The dynamic programming approach uses a two
dimensional matrix which can be extended to three dimensions for three
sequences or an n-dimensional lattice for n sequences. However, the
alignment space expands exponentially with the number of sequences to be
aligned as formalised with a computational complexity of O(length ). In
practice, determining an optimal MSA is not possible for all but the smallest
of sequence sets. This intractability necessitates alternative heuristic

approaches.

The most common heuristic approach is the progressive alignment

framework which reduces the problem of aligning all sequences to a series
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of ordered pairwise alignments ordered according to a pre-estimated guide
tree. Original ideas for the progressive alignment method can be traced back
as far as Fitch and Yasunobu who in 1975 generated phylogenies from
gapped alignments. Interestingly, they noted the close relationship between
where gaps are placed and the resulting phylogenetic trees (W. M. Fitch and
Yasunobu 1975). Hogeweg and Hesper were the first to provide an
algorithmic description of a progressive procedure (Hogeweg and Hesper
1984). The idea is to start with the pairwise alignment of all sequences to
generate a similarity matrix (Figure 2). The matrix can be populated with the
alignment score as calculated by the dynamic programming procedure and
can then be used to estimate a tree. Importantly, this tree provides the order
in which the pairwise alignments will occur. The alignment of leaves in this
tree (sequences) does not provide any difficulty beyond the standard
dynamic programing approach; however, when aligning nodes, we come
across situations where we must either align one sequence against already
aligned sequences or align two sets of already aligned sequences. This is
termed profile alignment. Slightly more sophisticated dynamic programing
algorithms that extend Needleman-Wunsch have been developed for
profiles where the sequences that run along the matrix edges are replaced
with character frequences. When progressing through the guide tree,
resolution of the root node yields the final alignment and completes the

progressive procedure.
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Figure 2: Guide trees. The progressive alighment procedure begins with the pairwise
alignment of all sequences. Each of the # choose £ pairwise alignments are scored and the
score is recorded into a distance matrix. Given the eight sequences shown here (A to H) , 28
pairwise alignments are performed. This matrix can then be transformed into the guide tree
using any distance based agglomerative hierarchical clustering method (bottom). The initial

approaches used an average group linkage procedure.
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Figure 3: Progressive multiple sequence alignment. Once the guide tree has been

calculated, the procedure starts with the pairwise alignhment of the leaves. For the eight
sequences above, sequence A and sequence B would first be aligned to generate alignment
1. This would continue along the leaves before the profile alignment of alignment 1 and
alignment 2 is performed to generate alignment 5. The procedure is complete with the

alignment of the final profiles to generate the final alignment at the root of the tree.

Progressive MSA methods have become by far the most widely used
approaches for aligning multiple sequences. This observation is reflected in
the success of the Clustal software. First released in 1988, the original Clustal
(Higgins and Sharp 1988) was a largely faithful implementation of the
progressive framework described above. ClustalW has since gone on to

become the 10th most highly cited publication in science (Thompson,

35


https://paperpile.com/c/Mz7JnB/69vg
https://paperpile.com/c/Mz7JnB/TVeV+mtQ1

Higgins, and Gibson 1994; Van Noorden, Maher, and Nuzzo 2014). It is
hard to overstate the effect of ClustalW popularity on the MSA field. Every
year there are still hundreds of studies published using ClustalW despite

many improvements being available.

One such performance improvement to MSA method involves iterations. In
the earliest work, MSA were used almost exclusively to generate phylogenies.
Herein lies a circularity in the progressive approach: to generate an
interesting alignment, an accurate tree is required and to generate an accurate
tree, a good alignment is required. This was not lost in the approach of
Hogeweg and Hesper. Once an initial tree is estimated and an alignment
created, this alignhment can then be used to generate a new re-estimated tree.
The procedure can continue on ad infinitumr in what is termed guide-tree
re-estimation. Other iterations involve re-aligning preliminary nodes in the
guide tree (Hirosawa et al. 1995). This can be done by separating the
preliminary alignment at each node into partitions and performing
group-to-group dynamic programming on the partitions (Gotoh 1993). The
SP-Score of the alignment resulting from aligning each group (left child and
right child) is evaluated with each iteration and those alignments which
improve the SP score become child nodes. Iterative approaches are
commonly used in many alignment software programs such as MAFFT and

MUSCLE (Katoh et al. 2002; Edgar 2004).
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Another major improvement was the introduction of consistency-based
alignment. In progressive methods, errors made early in the alignment
procedure propagate through the alignment due to the "once a gap, always a
gap" property. Consistency-based methods attempt to improve this by
minimizing these errors through the use of information from different
sources beyond the usual global pairwise alignments. The different
information sources become libraries, the compatibility of which are used to
calculate the consistency score. The most widely used implementation of
consistency is T-Coffee (Tree-based Consistency Objective Function for

Alignment Evaluation) (Notredame, Higgins, and Heringa 2000).

In the original T-Coffee formulation, both local and global pairwise
alignments are performed for all pairs of sequences. Each pairwise alignment
can be represented as a list of paired residues with the pairs weighted using
sequence identity. The libraries are then combined so that the pairs are
weighted according to how consistent the pairs are seen across all the
information sources via examining triplets. This extended library is used as a
scoring scheme to align all the original sequences in a pairwise manner. The
pairwise alignment will therefore better reflect the alighment of residues
consistent with all other residues pairs. These pairwise alighments are then

used as the starting material for a progressive alignment procedure.

Consistency results in significantly improved alignments. This is particularly

true when the identity of sequence is lower. The drawback is the increased
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computational resources required over traditional progressive alignment
programs such as ClustalW. This effectively limits the approach to the
alignment of approximately 1,000 sequences. Consistency-based alignment
has since been used in several different algorithms including ProbCons
which uses probabilistic consistency-based alignment (Do et al. 2005) and

MAFFT-ginisi.

Importantly, with consistency based methods, many different information
sources can be used. This has lead to the development of a range of
different applications. R-Coffee utilises RNA covariation information as part
of the library weighting scheme to accurately align RNA (Wilm, Higgins, and
Notredame 2008). Expresso uses 3D structural information to build a library
and produces very accurate structural multiple sequence alignments
(Armougom et al. 2006). Another flavour is PSI/TM-Coffee which uses

profiles built using PSI-BILAST and is presented in Chapter 2.

The previous section provides a general background to multiple sequence
alignment. Specific developments that relate to alignment uncertainty are
discussed in section 1.3 whilst recent large scale MSA methods are examined

in section 1.4.

1.2 Phylogenetic methods
When considering phylogeny and multiple sequence alignment, given the

almost ubiquitous prerequisite of an MSA to build an phylogenetic tree, the
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interest in an MSA is often consequential. However, it could be considered
that they are two different perspectives of the same data. A phylogeny
focuses on the relationship between the rows of an MSA (i.e. species or
genes), while an MSA refers to the relations between the columns (i.e.

residues).

By definition, an MSA performs sequence comparisons. A phylogenetic tree
does not have to obey the same limitations. Comparative anatomy originates
at least as far back as Aristotle and morphological comparisons were
performed throughout the middle ages. However when species were
considered as fixed entities through time, there was little room for the idea
of shared ancestry. With Lamarck's conceptual leap forward in 1801, a
theory and mechanism for how species could change over time was
developed. This opened up the possibility for phylogeny as we know it. In
the years that followed On the Origin of Species, there was a great flurry of
interest. Between 1866 and 1867, paleontologists and comparative
morphologists reexamined their respective fields through the evolutionary
looking glass leading to the construction of the first phylogenies. This was
popularised in-part by the work of Ernst Haeckel who coined the term

phylogeny (Haeckel 1866).
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Figure 4: Early phylogenies. Drawing by Ernst Haeckel in 1866. Early phylogenies often

conflated species with larger taxonomic groups represented at internal nodes (Haeckel

1866).
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Beyond morphology-based measures, and prior to the advent of rapid
sequence, molecular comparisons were possible through early molecular
studies. The introduction of molecular measures for species comparison
provided a far superior proxy for quantifying the underlying evolutionary
processes. Zuckerkandl and Pauling coined the term molecular clock after
studying the amino acids present in haemoglobins (Zuckerkandl and Pauling
1965). The concept of immunological distance was introduced by Allan
Wilson and colleagues using a quantitative micro-complement fixation
method. This procedure was used to compare serum albumins across
primate species and allowed for the construction of a distance matrix (Sarich
and Wilson 1967). The assumption was that these proteins evolve at a steady
rate allowing similarity measures to become clockwork. The rate of change
observed in the molecules was well suited for the deepest questions relating
to hominid evolution and the conclusions drawn have held to be largely true.
For example immunological results indicated the last common ancestor
between human and chimpanzees to be approximately 5 million years ago.
This has been proven to be a far superior estimate compared to the

paleontology estimates of between 10 to 30 million years.
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Figure 5: Early phylogenetic trees of hominids based on immunological distance.
The immunological distance matrix (below) is be used to construct a phylogeny. Adapted

from Sarich and Wilson 1967 (Sarich and Wilson 1967).

Immunological similarity is simply one measure of molecular distance and
has merit for the particular question of primate evolution across this time
scale. But to develop metrics that fit more broadly across all of life,

ubiquitous sequences are needed. Ribosomal RNA (rRNA) specifically
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allows for this quantification. 16S rRINA is essential for protein synthesis
and is present in cells from all forms of life. It has sections that are known
to evolve at differing rates which provides a multi-scale evolutionary clock.
In 1977 Woese and Fox presented the first phylogenetic description linking
all three kingdoms of life based on the association coefficient of 16S
fragments (Woese and Fox 1977). In the same year, Sanger’s rapid DNA
sequencing technique was published which soon resulted in phylogenetic
analysis using the sequences themselves. With large amounts of single
nucleotide resolution data, polymorphism rates could be used to establish
more accurate models of evolution (Kreitman 1983). These would
subsequently be used incorporated into tree construction techniques that did

not rely simply on distance measurements.

We saw in the MSA section how a similarity or distance measures can be
used to construct a guide tree. The most simple of these use distance
measures, for example morphological measurements or sequence identities.
Distance measures are useful in that they allow the construction of trees via
pairwise comparisons. UPGMA (Unweighted Pair Group Method with
Arithmetic Mean) was one of the first of such methods and results in a
rooted tree where the distance from the root to each tip is equal (Sokal,
Michener, and University of Kansas 1958). In making these distances equal,
UPGMA assumes that the molecular clock - the rate of evolution - is equal

across all sequences. For phylogenetic applications specifically, this
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assumption makes UPGMA not particularly well-suited for inferring

relationships.

In contrast, Neighbour-Joining (NJ) can avoid this assumption whilst still
taking a distance matrix as input (Kumar and Filipski 2004). The NJ method
begins with a star shaped tree which is decomposed to the final tree in
joining interactions. To begin with, the distance matrix is transformed into a
Q-matrix which is used for choosing which sequences to join. The
sequences with the lowest score (leaf z and leaf /) in the Q-matrix are joined
and a new node representing the ancestor of the now joined sequences is
created (node #). We next calculate the distance from # to @ and # to b before
updating the distance matrix which now has « and 4 removed in place of .
This process is repeated until all sequences of the tree are resolved.
Importantly, NJ does not require ultrametric data and it results in an
unrooted tree where the branch lengths can be interpreted as an

approximation for the number of substitutions that have occured.
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Figure 6: UPGMA and Neighbor Joining trees. UPGMA trees (left) are rooted and
have equal branch lengths which assumes the sequence data has a constant-rate of
evolution. Neighbor Joining trees (right) are unrooted with branches of differing lengths

representing differing evolutionary distances.

The previous methods for tree construction rely on pairwise distances as
input. Maximum parsimony on the other hand takes as input characters for
each of our taxa (Walter M. Fitch 1971; Farris 1970). These characters could
be encoded from categorical data such the presence of absence of an
anatomical feature or behavioral trait. For the purposes of this discussion
however, our input characters are encoded from a pre-computed multiple
sequence alignment. The characters are amino or nucleic acids with an
optimality function that selects a phylogenetic tree minimizing the number
of character-state changes. It is relatively easy to score the parsimony of any
given tree by simply calculating the number of required character state
changes. However there is no method to generate an optimal tree given the
NP-hard nature of the problem. The number of possible trees in the tree

space is huge and it is impractical to find optimal trees in dataset beyond
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approximately 10 taxa. There exists heuristic approaches where from an
initial sample of possible trees, each tree is scored and the tree with the
highest parsimony score selected. This tree is then permuted and the
resulting trees scored and selected in an iterative hill-climbing optimisation
procedure. The drawback here is that it is possible to get stuck in local
optima. Another drawback is that by definition, the most parsimonious tree
describes the shorted path explaining the character state changes and not the
actual evolutionary history. This results in maximum parsimony methods
that underestimate the actual number of evolutionary changes that have

occured.

A related approach is maximum likelihood in where the aim is to maximise
the probability of observing the data (sequences) given our model
(Felsenstein 1981). First introduced by Felsenstein in 1981, the model in this
context consists of the tree topology, the branch lengths but also the
mathematical description of the process that generated the observed
mutations. This description of the evolutionary changes is most commonly
modelled as a Markov chain which contains the probabilities of substitutions
and the frequencies of the different characters. Analogous to calculating
maximum parsimony, calculating the likelihood of any given tree can be
performed efficiently using the pruning algorithm. Yet finding the optimal
model is difficult and relies on heuristic optimisations. The likelihood
landscape is often not smooth due to the discrete nature of different

topologies leading to local optima that can be difficult to traverse from. To
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search the tree space, “moves” or operations are performed which change
the tree topology. The different moves of neighbour interchange, subtree
pruning and regrafting and tree bisection and reconnection each have
increasing coarse abilities to jump across topological space. Software based
on maximum likelihood are among the most commonly used methods for
phylogeny construction as popularized through packages including PhyML
and RAXxML  (Guindon et al. 2010; Stamatakis 2014). Extending the
principle of maximum likelihood, bayesian methods incorporate a prior
probability into the likelihood measure. Here there is an underlying prior
probability distribution of possible trees so the Markov chain can be
constructed such that it has the desired distribution in a Markov chain
Monte Carlo method. Bayesian based approaches have been made available
through software such as MrBayes and BEAST (Cummings 2004;
Drummond and Rambaut 2007).

The methods described above assume a belief in the probability of the
evolutionary model. Alternatively we can use nonparametric methods to
assess the reliability of a given phylogeny after we have constructed it.
Nonparametric testing is less dependent on the evolutionary model and uses
the empirical evidence in the data to assess the robustness of a phylogeny.
The first application of nonparametric assessment as applied to phylogentics
in 1982 Mueller and Ayala who used 'jackknifing' to determine the validity of
UPGMA branch lengths (Mueller and Ayala 1982). The jackknife procedure

is a resampling technique that involves systematically removing observations
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from a dataset and then re-estimating the phylogeny with the reduced data.
The procedure is repeated many times to create a series of replicates. Shortly
after the application of the jackknife, Felsenstein applied the bootstrap
procedure which has become the defacto non-parametric test of phylogenies
(Felsenstein 1985). Bootstrapping is similar to jackknifing however it
involves resampling with replacement. This is very amenable to
phylogenetics if we consider an observation to be a single column in a MSA.
It is possible to resample otheur MSA, creating many replicate MSA of the
same length as the original. The bootstrap replicates are able to inform us of
the variation that arises from resampling and provides an estimate for the

variation in the true but unknown underlying distribution.

Applying the bootstrap procedure to create replicate bootstrap trees is
relatively straightforward. Replicate MSA are generated by resampling the
original MSA columns with replacement. For a given MSA replicate, some
sites may have been sampled multiple times and some sites may not be
included. This is done for each replicate with typically 100 replicates
generated but dependant on the specific dataset. One assumption for the
bootstrap procedure is independent observations. If we consider our
characters to be sites, or columns in a MSA, then we must assume that they
evolve independently. This assumption is patently incorrect as the evolution
of some sites is highly dependent on the context of other sites. However for

practical purposes, Felsenstein's bootstrap has proven to be a reasonable
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first approximation of the true confidence of the clades (Efron, Halloran,

and Holmes 19906).

Given a collection of replicate trees, an estimation of some parameter is
required to assess the correctness. With continuously distributed parameters,
for example a mean, it would be possible to plot the distribution of
parameters from our resampled collection and get an estimation of variance.
Yet tree topologies are discrete. One solution is to create a majority-rule
consensus tree. This method predates the bootstrap and was introduced in
1981 by Margush and McMorris (Margush and McMorris 1981). A
consensus tree is created by first quantifying how many times we observe a
given split (partition) in the replicate trees. The partitions that occur in the
majority of replicates are retained resulting in a final consensus tree. We can
extend this by observing the proportion of times we see a given partition in
the replicates and allows the quantification of support or lack-thereof for

any partition.
This concept of the support values combined with the concept of alignment

uncertainty makes up the methods contained within manuscripts of

Chapters 3 and 4.
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1.3 Alignment uncertainty

In previous sections we introduced MSA and an important downstream
inference, phylogeny. An MSA allows us to make inferences on several
evolutionary parameters beyond that of phylogenetic trees. An MSA is often
a single step in a pipeline of processes that make up any given genomic
analysis. And yet, almost without exception, the MSA is taken as a single
observation of truth. The inference from an MSA is based on the observed
molecular characters whilst often taking the homology of those characters,

L.e. the column structure as a given.

Before discussing alighment uncertainty, it is important to clarify the scope.
Alignments usually have a meaning dependant on the context of their
application. For example, in a phylogeny study, residues sharing the same
column are implied to have a strict common ancestry. For a molecular
biologist studying enzymatic roles, the residues may reflect function. A
protein structure study on the other hand may wish to align residues based
on 3D superimposition. For the purposes of this discussion, the truth is

assumed to be phylogenetic.

The weakness of relying on a single MSA is a well know but a somewhat
ignored issue. With reference to the progressive alignment framework, in
1991 Lake detailed how the guide-tree has a major impact on the maximum

parsimony tree inferred from the MSA (Lake 1991). The order of the

alignment, as defined by the guide-tree structure, becomes reflected in the

50


https://paperpile.com/c/Mz7JnB/wJJs

tree topology. Further the tunable parameters of the alignment method act
as a proxy for the underlying evolutionary process we are attempting to
deconstruct. The gap-opening penalty should correspond to the indel-rate,
the gap extension penalty to the average indel length whilst the mismatch
penalty should reflect the percent identity of the sequences we are aligning.
The guide-tree itself is a distance-based phylogenetic parameter. This creates
a circular dependency in that these parameters are best estimated with a
correct MSA in hand. For the most part, a high quality phylogeny estimation
requires a high quality MSA whilst a high quality MSA requires a high quality

estimation of phylogeny.

There have been attempts to overcome this circularity through joint
estimation of the mutually dependant alignment and inferred parameters.
Thorne et. al. include the insertion-deletion and amino acid replacement
rates of all pairwise alignments in an attempt to capture the regional
heterogeneity of replacement rates (Thorne, Kishino, and Felsenstein 1991).
However the most common approach to study the robustness of our
inferences results from exploration of the parameter space. Morrison and
Ellis examined the effect of the gap-opening penalty and gap-extension
penalty on the resulting phylogeny from neighbour joining, parsimony and
maximum likelihood methods. The aim was to determine how different
alignments affect the resulting phylogenetic trees. In their case study of
apicomplexa 185 rDNAs they concluded that "different alignments

produced trees that were on average more dissimilar from each other than
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did the different tree-building methods used" (Motrison and Ellis 1997).
This result was attributed to taxa towards the tips of a tree being sensitive to
the MSA method. These taxa are more sensitive to the MSA method than to
the tree-building method. In exploring the gap-opening and gap extension
steps they conclude, at least with respect to ClustalW, that these parameters
govern the tension of the alignment (gappiness) yet do not have a major

effect on the resulting phylogenetic trees.

When considering the alternative alignments resulting from parameter space
exploration, it was observed that some regions were inherently more
ambiguous than other regions. One such early study generated 15 alternative
alignments by differing the gap penalties. The alternative alignhments could
then be used to score columns based on their observed frequency in the
alternative alignments (Gatesy, DeSalle, and Wheeler 1993). The first
applications of this method on inferences was to simply remove or 'cull
ambiguous columns prior phylogenetic tree building. This concept of
removal of regions had previously been performed manually in a subjective
manner based on the gappiness observed. The exploration the parameter
space however provides an objective criteria for uncertainty. Other culling
or trimming methods such trimAl and G-blocks are still popular today but
do not rely on alternative alignments to provide an assessment of robustness

(Capella-Gutiérrez, Silla-Martinez, and Gabaldén 2009; Castresana 2000).
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As an alternative to removal of ambiguous regions, Wheeler et. al. developed
a method to incorporate alternative alignments into single alighment to be
used for downstream inferences (Wheeler, Gatesy, and DeSalle 1995). It is
based on the idea of eliding (to join together or merge) and up-weights the
signals in common columns whilst down-weighting the signal in variable
columns. The source alternative alignments are first generated by varying the
alignment parameters as discussed previous. The authors concluded that
culling ambiguous regions results in robust trees, but which are conservative
with many unresolved taxa. By including the ambiguous regions of an
alighment and weighting them in an appropriate way, more accurate

inferences can be made.
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e e DOrOCOYdUlIG Dorocordulia
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Figure 7: Phylogenies resulting from culled alignment versus elided alignments.
Phylogenies from trimmed or culled alignments (left) are robust but often unresolved.
Methods such as Elison (right) result in trees attempt to alleviate this by including all
alternative alignments and weighting columns accordingly. Adapted from (Wheeler, Gatesy,

and DeSalle 1995).

The previous examples consider the parameter space by examining

alternative alighments from a single aligner. However we can also consider
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the aligner as black-box and perform inferences from it. Alignment
uncertainty more recently brought into the scientific mainstream in 2008
with a publication in Science by Wong et. al. in which different alignment
methods were used to generate MSA upon which phylogeny and positive
selection rates where estimated (Wong, Suchard, and Huelsenbeck 2008). An
important point stressed in the publication was that in era of comparative
genomics, evolutionary processes are inferred across thousands of genes and
taxa. The assumptions applied when considering carefully selected genes on
curated datasets become impractical for large datasets. Using a collection of
1,502 orthologous genes across seven species of yeast, the authors show
how different MSA methods can result in very different inferences. When
considering the tree-topology of maximum likelihood trees, seven of the
most popular MSA methods produced alignments that resulted in different
trees on 40.2% of the 1,502 gene sets. Inferences of synonymous versus
nonsynonymous substitution rates were also shown to be sensitive to
alignment method with 14.8% of sites differing in classification at 0.05 false
positive threshold. Another important result showed how the bootstrap
support for the phylogenetic trees correlates with variability in the alternative
alighments. In cases where bootstrap values were shown to be low for a

given tree, the alignhments were generally more dissimilar.
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Figure 8: Different alighment methods can result in different inferences. In this
example adapted from Wong et. al. 2008, the yeast gene YPLO77C alignment produced
from seven different alighment methods produce six different estimated trees (Wong,

Suchard, and Huelsenbeck 2008).

The combining of multiple MSA methods was described in 2006 with
M-Coffee which generates MSA from several methods and then uses
consistency to generate a final alignment (Wallace et al. 2006). M-Coffee was
shown to outperform the individual methods themselves on the
HOMSTRAD, Prefab and Balibase benchmark sets. This work led into
methods for evaluating alignments accuracy based on an extension of
consistency scoring termed the Transitive Consistency Score (TCS) (Chang,
Di Tommaso, and Notredame 2014). TCS adopts the CORE method which
uses consistency to score but normalizes this after considering the maximum
possible of all possible pair combinations (Andrade 2003). Whilst not relying
on alternative alignments, the TCS score is independent from the library

generation, so any source of pairwise alighment can be used to populate the

pairwise library. Further, TCS provides three different scores which are
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applied to the residue, column or alignhment as a whole. Using the column
score it is possible to provide a lossless alternative to the column removal
methods described earlier which results in significantly better estimates of

structural accuracy and more accurate phylogenetic trees.

The TCS method is important in that it does not rely on multiple MSAs.
However it is difficult to decompose the sources of uncertainty. To do this
we must examine the underlying origins of alternative alignments. One such
source is co-optimal solutions. With the dynamic programming algorithms
described in the first section of this chapter, we saw how it is possible for
there to be more than one pairwise alignment with the same optimal score.
The choice of alignment is arbitrary and often hard-coded into the algorithm
implementation. However when considering the progressive framework
with the "once a gap, always a gap" principle, we can see how small errors
early in the alignment procedure can result in large discrepancies in the final
alignments. To date, examining co-optimal solutions within MSA has been
most elegantly handled with a method termed Heads or Tails (HoT)
(Landan and Graur 2007). The first version of the algorithm performed the
MSA once with the input sequence as is, and then simply reversed each of
the sequences and ran the MSA procedure again. The concept is that
sequences which were on the horizontal axis of the dynamic programming
matrix in the first instance, get placed on vertical axis of the matrix in the
second alignment procedure. This examination of the "high-road" and

"low-road" provides a way to quantify which regions of the alighments are
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sensitive to co-optimal solutions. The method was later expanded upon to
perform the reversal of the sequences at each step alignment (internal node)
as governed by the guide-tree. This step explores more of the co-optimal
space but is limited in application. It becomes a non-trivial problem to
re-engineer each MSA software package to perform such operations. Indeed
some MSA programs such as PRANK now have options to have the

selection of co-optimal alighments performed randomly (Léytynoja 2014).

Another important parameter in the alighment is the guide-tree as illustrated
by Lake in 1991. If we consider the guide tree to simply be a distance-based
phylogenetic view of our dataset, we can apply the same nonparametric
support tests that are traditionally applied to phylogenetic trees. It is this
concept that was applied in Guidance (Penn et al. 2010). Uncertainties in the
guide tree can be quantified through bootstrap methods to generate
bootstrap replicates of the guide trees. These guide-tree replicates can be
used to generate alternative MSA, with one alternative MSA for each
replicate guide-tree. The Guidance score for each column of an alignment
can be evaluated based on the frequency it is observed in the collection of

replicate MSA.

More recently Guidance 2 was introduced which provides a measure of
uncertainty by combining HoT and the original Guidance as well as gap
opening and extension parameter exploration (Sela et al. 2015). These

methods provide value in that they provide alternative alignments and have
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the ability to identify the source of the alignment uncertainty. However, they
are not flexible in that they require significant work arounds for each
alignment method. To date, Guidance 2 is configured to run with ClustalW,
MAFFT and PRANK alignment methods. Alternatively the TCS score is
independent of the methods used. It is however limited to a size of
approximately 1,000 sequences due to the computational complexity of the

consistency framework.

In Chapter 4 we describe a procedure that can be easily applied to the
majority of MSA methods to assess alighment uncertainty and is able to
handle datasets with many thousands of sequences that are aligned with

large scale MSA methods.

1.4 Large scale MSA methods

We saw in the first section of this chapter how the NP-complete nature of
the MSA problem required heuristic approaches, the majority of which have
been built around the progressive alignment framework. Historically, we can
consider these algorithms to be roughly split into two categories, fast and

and accurate.

The most accurate of these heuristic approaches implement some form of
consistency-based algorithm. The strength of consistency is in its ability to
evaluate all pairwise matches taking into account their compatibility with all

other pairwise alignments. Yet this procedure comes at a significant cost. In
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practical applications, consistency-based methods such as T-Coffee are
unable to align more than a few hundred sequences with MAFFT-L-INS-i
being limited to approximately 200 sequences with a maximum length of

2,000 characters.

The fast methods including the original ClustalW, MAFFT and MUSCLE
software packages avoid this limitation at the expense of accuracy. However
there are still some limitations on these methods which arise from the initial
guide-tree construction. The distance-based tree-building procedures which
dictate the order in which the sequences are aligned (NJ and UPGMA) have
computational complexities of between O(N?) and O(\N?) depending on the
implementation. These approaches become practically impossible beyond a
few thousand sequences with 100,000 sequences requiring the computation
of approximately 5 billion distances to generate a guide tree. For this reason,
the first major innovation required for datasets above several thousand
sequences has focused on speeding up this step. The guide-tree problem can
be generalised as an agglomerative hierarchical clustering problem. Originally
the distances upon which the clustering was performed were based on the
accurate but slow Needleman-Wunsch algorithm. The next generation of
aligners moved to word-based distance measures to speed up the
comparison, however this does not alleviate the required quadratic time of

the all-versus-all comparisons and subsequent tree construction.
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The most obvious way to reduce the time and memory requirements of tree
building is to reduce the number of comparisons performed. This was first
successfully applied with the PartTree algorithm where a subset of the
sequences are selected and clustered recursively (Katoh and Toh 2007).
Beginning at top and then at each level of the recursion, the longest
sequence, the sequence with the lowest similarity to the longest and n - 2
random sequences are selected where n is the group size defined by the user.
These seed sequences are then used to construct a UPGMA tree and each of
the remaining non-seed sequences are associated to one of the seed
sequences to create a new group. The same procedure is performed on each
of these groups recursively until all sequences are at the leaf of a tree. The
final tree can be constructed from the expanded trees. This results in
dramatic speed up and reduces the time complexity to quasilinear O(IN log
N). In practical terms the authors show that PartTree can align ~60,000
sequences in a matter of minutes using standard desktop computing
hardware. PartTree is implemented as part of the MAFFT software package
in which it shows a slight decrease in accuracy compared to full tree building

methods when benchmarked with Pfam.

Another related method that avoids full distance matrix calculation is the
mBed algorithm (Blackshields et al. 2010). Like PartTree, in mBed we first
select a set of seed sequences but based on a constant stride selection from
the length sorted total dataset. From these seed sequences, reference points

can either be refined or not, but in either case the distance between every
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sequence and the reference points are calculated. These distances then
become a vector for each sequence which contain the coordinates from that
sequence to the reference points. The vectors are approximations for the
distance between sequences such that we can create an embedded distance
matrix which can be used to create guide trees using UPGMA. For very
large dataset (over 100,000 sequences) there exists the possibility to use
k-means clustering to cluster the vectors directly without the need for an
embedded distance matrix. mBed is implemented as part of the Clustal
Omega software package (Sievers and Higgins 2013). When evaluated on the
the 10 largest Pfam/HOMSTAD datasets, the mBed method took less than
7% of the time that is used to construct the full distance matrix with an
average of difference of alignment accuracy of 1.9%. Beyond the
optimisations in guide-tree construction, Clustal Omega also utilises an
HMM aligner. This differs from the standard profile-profile dynamic
programming approach in that it aligns profile-HMMs using HHalign which

has been shown to result in more accurate alignments.

Another large-scale method UPP uses HMMs in slightly different manner
(Nguyen et al. 2015). UPP first randomly selects a subset of sequences from
the dataset and generates a backbone alignment and guide-tree. From this
clustering of the backbone sequences, an ensemble of HMMs are built using
the HMMER software package. The original sequences which were not part

of the backbone are then aligned to the HMMs and the best scoring

61


https://paperpile.com/c/Mz7JnB/wUhN
https://paperpile.com/c/Mz7JnB/LoOA

incorporated into the alignment. These ensemble HMMs are analogous to

the seed sequences described in the methods above.

One final method which employs a very similar strategy is MAFFT
sparsecore (Yamada, Tomii, and Katoh 20106). In this procedure, the
sequences are first sorted by length before a random selection of 500
sequences are taken from of longest 50% of sequences. These become the
core sequences. An MSA is created from this core using the accurate
G-INS-i method before the remaining sequences are added to the core using

a progressive alignment method.

We see in a number of recent applications in large scale MSA methods a
trend towards separating the heuristic agglomerative hierarchical clustering
step from traditional progressive alignment step. This separation of
clustering and alignment methods forms much of the inspiration for the
regressive alignment procedure which is described in Chapter 5. The
approach described is generalised so it can combine any clustering method
with any alignment method to produce efficient and accurate alignments of

tens of thousands of sequences.

In applying these methods to large scale datasets, significant challenges
present themselves. The requirements of computationally intensive analysis
can include the complex orchestration and management of tasks. This is

especially true when trying to adhere to principles of reproducibility. The
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analysis described in Chapter 3 provided an initial motivation to explore
methods for developing and deploying such large scale MSA analyses. This

resulted in the Nextflow workflow platform described in Chapter 6.

1.5 Reproducible workflows and deployment

Retrospectively, the concept of a workflow has existed since the advent of
the scientific method. Indeed a methods section is simply a description of
actions that should guarantee the repeatability of a given experiment. We can
likewise define a workflow to be an orchestrated and repeatable sequence of
actions that transform inputs into desired outputs. With the adoption of
computing into scientific fields, the use of workflows and computational
pipelines has became integral. Today we think of workflows as the
combination of different software packages to perform a series of
operations on data. Yet any given piece of software could internally be
considered as a workflow, and likewise a workflow can considered to be a
piece of software in its own right. For the purposes of this introduction I
will narrow our definition of a workflow to a description of software steps

to perform a genomic analysis.

The humble Bash script has long been used by bioinformatics practitioners.
As the most commonly used Unix shell, Bash provides a collection of useful
features which make it amenable to writing workflows. Filename globbing
allows wildcard matching of input files, the piping between steps allows of

processes to be chained together, variables can be defined and methods exist

63



for conditional testing and iterations. In common usage, a Bash script
provides a simple top-to-bottom description of the command line
operations that could be typed into the text-based shell terminal. Whilst
powerful for simple tasks, Bash scripts are error prone and are not designed
to handle complex parallel and distributed computation as modern

real-world computational pipelines often require.

An alternative to Bash scripting is GNU Make which was originally
developed to automate the various compilation phases required to build
software packages in an executable format. It uses the concept of targets
which define the desired output of the steps. The targets are contained in
rules which specify recipes explaining the actions (commands) to perform
on the files to produce the targets. The main concept here is the dependency
and relationships between the targets which allows for a bottom-up
definition of the workflow beginning with target files. Make has advantages
in that the tasks can be implicitly parrelised based on the dependency graph.
The correct re-execution of tasks also becomes implicit based on changes in

the targets.

Both Bash and Make require a certain level of technical ability to develop the
types of workflow routinely deployed in genomic analysis. Data science skills
are increasingly valued across all disciplines however the vast majority of
university graduates today still lack even basic data handling skills beyond

point and click spreadsheets. Graduates trained in biology have traditionally
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been the main developers of their own analysis workflows and as such tools
which accommodate this level of technical proficiency are popular. The
most successful platform of this ilk being Galaxy (Afgan et al. 2016). Galaxy
allows Dbiologists with little programming experience to conduct
computational analysis through a graphical user interface in a web browser.
It relies on either a publically or locally installed server mained by an
administrator. Workflows are defined using a drag and drop type
functionality. There exists a large collection of tools in wrappers which allow
commonly used software to be integrated efficiently into the workflow
(Blankenberg et al. 2014). Likewise data services allow inputs to be remotely
referenced and sourced. As well as providing a method to define a
workflow, Galaxy provides a back-end engine which allows execution with
queuing systems commonly used in HPC systems. This distinction here
between the workflow definition and the workflow engine is important as

highlighted by the common workflow language (CWL) initiative.

CWL is a specification for the definition of workflow applications in a
portable manner not only across hardware environments, but also across
different workflow engines (runners) implementations. It is yet be seen how
this top-down approach of defining a specification and then having the
community develop the software will play out. In practice, the vast majority
of users rely on the reference cwl-runner engine. Alternatively there are
commercial implementations such as the Seven Bridges Genomics platform

(Malhotra et al. 2017) or Arvados by Curoverse. The CWL specification is
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detailed but presents users with a significant obstacle. Complaints often
include the verbosity of even simple pipelines. Likewise, it is not clear how
this interoperability of workflow runners ensures reproducibility at the level
of the workflow as a whole. By definition, different engines are different
implementations written with different code which raises obvious questions
in reproducing workflow logic. Minor variances in underlying libraries used
by rounding and sorting functions have the potential to obliterate the
reproducibility characteristic of portable workflows run on different

implementations.

An alternative to CWL is the Workflow Definition Language (WDL)
developed by the Broad Institute. Like CWL, WDL is a workflow language
specification, however it has been designed in-house by the same team
focused on their own workflow management engine termed Cromwell. The
tag-line for WDL is very telling in reference to CWL: "Finally a workflow
language meant to be read and written by humans". There are efforts to
bring two together with planned support for CWL planned for Cromwell 30
onwards. More significantly, initiatives such as the Global Alliance for
Global Health (G4GH) attempt to provide broader harmony between
workflow engines and languages by providing further specifications. For
example the task execution schema is an effort to define a standardized
schema and API for describing batch execution tasks whilst the workflow
execution schema is a common API which describes how to submit a

workflow to a workflow execution system. One characteristic of WDL is the
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inclusion of the runtime specification in the task definition. This goes against
principle of separating workflow logic from the runtime engine. With
respect to workflow portability, this is best achieved through separation of

workflow logic from the runtime.

Another popular tool is Snakemake which is based on the Make philosophy
described above (Késter and Rahmann 2012). Snakemake consists of a
language which is made of rules similar to Make but written in python. It
extends the python programing language to be a domain specific language.
Snakemake is also has an engine for running Snakefiles and is considered
lightweight and portable. It can run on HPC and cloud environments with

Kubernetes support.

The previous wotkflow languages and/or engines provide a way to define
the overall workflow logic. They commonly split the operation into
execution steps which can be run either locally, sent as jobs to a HPC queue
or spun up as an instance in the cloud. For this model to work efficiently,
there is a requirement that the tools are available at the place where the
computation occurs. The packaging of tools has recently been revolutionised
by containerisation technology. The ability to isolate the execution of
software  tools was initiated by virtual machines (VMs) which are an
emulation of a complete computer system. Every VM runs a virtual copy of
all the entire hardware an operating system requires to run. VMs are very

useful for some tasks however they use up a lot of resources and are slow to
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initiate which makes them not well suited for running thousand of small jobs
as routinely happens in genomics analyses. Containers provide an alternative
as popularised through the adoption of Docker and more recently
Singularity (Boettiger 2015; Kurtzer, Sochat, and Bauer 2017). These
technologies differ from VMs in that they do not provide any hardware
virtualisation, moreover containerised software share the operating system
kernel with hosting environment. By using a layered file system and the host
kernel, only the required container processes are run which reduces the
container overhead dramatically. When applied to typical genomics
pipelines, Docker containers have been shown to have little effect on the
required resources (Di Tommaso et al. 2015). This portable approach has
consequences in terms of reproducibility whilst also facilitating the transition
that is occuring with moving the compute to the data and not vice-versa

(Pulverer 2015).

One further consideration for workflows platforms is collaboration and
sharing. Both software development and science are increasingly
collaborative endeavours often conducted across the world between people
who will never physically met. The concept of social coding has become
popularised by platforms such a GitHub and GitLab which provide users

the opportunity to publish, review, and discuss software.
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> VBoxManage startvm "rnaseq"
--type headless; ssh user@host
"hisat2 --version"

Figure 9: Different levels of reproducibility. In this example of deploying the hisat2

mapping software, different reproducibility stacks are shown. Adapted from (Griining et al.

2018).

Chapter 6 describes the Nextflow workflow platform and highlights the real

problem of reproducibility in genomic workflows which can be solved

through containerisation, code sharing and portable deployment.
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Multiple sequence alignment is one of the most commonly used modeling
technique in biology (Van Noorden, Maher, and Nuzzo 2014). MSA models
are routinely used for evolutionary and structural reconstruction as well as
function prediction. Given the most common scoring functions, computing
an exact MSA is an NP-Complete problem that can only be approximately
solved wusing a heuristic approach like the one implemented in the
progressive algorithm. This algorithm is at the core of most aligners. It is an
agelomerative procedure requiring a pre-computed guide tree that used to
incorporate sequences one by one, starting from the leaf up to the root. At
every node, a pairwise dynamic programming procedure merges sequences
(leaves) or intermediate MSAs treated as profiles (internal nodes). We show
here how the same guide trees can be used to incorporate the sequences in
the opposite order, starting from the root all the way down to the leaves.
This approach that we named 'regressive alignment' yields significant

benefits both in terms of scalability and accuracy.

Limitations in the scaling up of the progressive algorithm were initially
uncovered in the Clustal Omega benchfam analysis (Sievers and Higgins
2013). Until then small scale empirical analysis had supported the
expectation that increasing the number of sequences in an MSA would lead
to more accurate models (Katoh 2002). In the ClustalO benchmarks,
reference sequences with known 3D structures were embedded in very large
datasets (up to 93,681 homologues) and their projected alignhments were

compared with independently derived structure based reference alignments.
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Against all expectations, sequences embedded with more than a thousand
homologues proved to be less accurately aligned than when aligned on their
own. The effect worsens when increasing the number of homologues. Three
recent attempts were made to address this problem, the first one, the
chained algorithm (Boyce, Sievers, and Higgins 2014) depends on a
processive tree in which every node has at least one leaf child, it brings
modest improvements but was heavily criticized (Yamada, Tomii, and Katoh
2010) for its reliance on unrealistic biological assumptions (Tan et al. 2015).
The two most recent alternative, UPP (Nguyen et al. 2015) and
MAFFT-sparsecore (Yamada, Tomii, and Katoh 2016) rely on a similar
principle that involves selecting a subset of representative sequences, turning
them into an HMM which is subsequently used to incorporate all the

sequences in the final model.

These three approaches all share a similar component: the seeding of the
computation with a smaller MSA and the controlled incorporation of the
remaining sequences. The main difference is in the selection of sequences
than form part of the seed MSA. This approach sets all these methods
significantly appart from a regular progressive approach where balanced
internal nodes usually leads to the pairwise alignment of large sub-MSAs. We
worked under the hypothesis that site degeneration is the main source
accuracy loss when scaling up. Based on this, we designed a regressive
algorithm meant to generalize the seeded MSA approach by fulfilling two

simple conditions: aligning small datasets and not relying on profile
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alignments. A procedure consistent with these two constraints can be
implemented using a recursive clustering approach that given M sequences
produces N smaller non overlapping sub-datasets each contributing a
representative sequence. The MSA of these N representatives is the first
parent MSA. During the next iteration, the same algorithm is applied onto
each sub-dataset and collects a maximum of N new representative sequences
- with the extra constraint of including the original representative of the
whole subgroup within the representative set. Each of the IN sequence
within the first parent therefore occurs both in this parent MSA and in one
of its IN children MSA. This procedure is carried out recursively until each
sequences has been incorporated in at least one MSA, thus yielding a

maximum of M/N MSAs, each containing a maximum of N sequences.

Since each parent MSA shares one sequence - the representative - with each
of its children MSAs, these MSAs can be efficiently merged (Figure 1a)
without any need for profile-profile alignments. This is done by treating each
residue in the common sequence as a connector between the two
corresponding child and parent columns. Insertions occuring in the child
MSA are projected in the parent as deletions (i.e. insertion of a block of gaps
within the parent) while insertions occuring within the parent guide
sequence are treated in a symmetric fashion. Insertions occuring between the
same residues in both the child and the parent representative sequence are
considered to have been independently acquired. Since these insertions are

non homologous they cannot be aligned and are therefore concatenated (i.e.
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blocks of gaps are inserted in the child to match the parent insertion, and in
the parent to match the child insertion). This merging is linear in time and
memory and proportional to the unaligned length of the two sequences. The
RAM memory footprint is further lowered by recording the length of gap

indels and inserting them only when writing the final MSA onto disk.

Parent MSA

Merged MSA
=1 - J=—K--L=—KI/— . -

S (U [P G D G p—

—1 ] ==K~ LK~ L=

Child MSA

Figure la. The merging of a child and parent MSA and made possible through

representative sequences shown here in blue without the need for profile-profile alignments.

A key step of this recursion is the selection of N representative sequences
within a dataset of M sequences. K-means or any related algorithms could
provide a simple and efficient way to produce these groups, yet for the sake
of benchmarking and comparison with existing methods, we chose to
generate the representative sets from third party binary guide trees generated
by large scale aligners (Figure 1b). Under this scheme, each node is assigned

the label of the longest of the two sequence labeling its left and right
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children. Starting from the leaves, every parent node is therefore labeled
with the name of its longest child sequence and the algorithm proceeds
accordingly all the way up to the root, labeled with the longest sequence.
Given a fully labeled tree, the sequences of the first parent MSA are
collected by expanding the root, its children, and the next generation
children iteratively until N sequences have been collected. Since these N
nodes correspond to as many non-overlapping children subtrees, each node
effectively provides both a representative (the node label) and a sub-dataset
(all the leaves connected to this node). Within the first parent MSA, each
sequence is either a leaf or an internal node label. Internal nodes are
recursively processed in a similar way until all leaves have been incorporated
in an MSA. Once all the MSAs have been collected they are merged into the
final MSA.

As defined above, the regressive algorithm does not depend on a specific
alignment procedure. This enabled us to use third party aligners for both
guide tree generation and the computation of parent and children MSAs. By
keeping all things equal aside from the agglomerative procedure this
approach therefore provides a direct estimate of the progressive and
regressive algorithm relative accuracy. We wused this approach to
systematically compare ClustalO and Mafft using the ClustalO embed
k-means and Maftt parttrees as guide trees. These two aligners were selected
because they are strictly progressive and allow input and and output of

binary guide trees.
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parent MSA: aei

child 1: 2 — abc child 2: e — efg child 3: 1 — ikm

child 1(I): ¢ — cd child 2(I): g — gh child 3(I): 1 — jj
child 3(1I): k — kl
child 3(I1II): m — mn

g h i ]
Figure 1b. The guide tree is initially labelled with the longest sequence of each child node.
Starting with the root node, the sequences of the parent MSA are collected by expanding
the root, the children, and the next generation children iteratively until N sequences have
been collected. In the example above, with N=3, the parent MSA would consist of
sequences a, ¢ and i. From this MSA, the internal nodes are recursively expanded in a similar
way until all sequences at the leaves have been added to a MSA. Once all the MSA have
been generated (7 MSAs in the example above), they are merged through the common

representative sequence.
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In three out of four combinations of tree and aligner, the regressive
implementation outperforms the progressive and when considering the most
discriminative measure (total column score, TC). On the 20 largest datasets,
the regressive algorithm delivers MSAs that are 6.5 points more accurate
than when estimated in a progressive manner (40.26 and 34.24 respectively).
Out of all these combinations, the most accurate on large datasets is the
regressive implementation of ClustalO using parttree that outperforms its
progressive equivalent by 15.27 points (42.21 and 26.94 respectively). We
used PCA to dissect the contribution of each component in these analysis
with a clear indication of improved accuracy being driven by the regressive
algorithm. We did the same analysis on UPP and MAFFT-sparsecore, the
two most recent large scale aligners. While the standalone version of these
aligners  is  significantly ~more accurate than  ClustalO  and
MAFFT-sparsecore, we were able to show that the regressive deployment of
MAFFT-sparsecore using a ClustalO guide tree outperforms all alternative
protocols evaluated here (51.07 vs 44.98 for Mafft-sparsecore, the best

aligner in non-regressive mode)

Albeit clearly superior to its progressive counterpart, the regressive assembly
nonetheless fails at preventing the accuracy drop associated with sequences
embedding. We therefore took advantage of the regressive algorithm
modular nature to go one step further and combined methods that were not

initially meant to be so. For instance, ginsi, the consistency based flavor of
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Mafft, is among the most accurate small scale aligner on the reference
sequences but the cost of the consistency transformation, cubic in time with
the number of sequences, prevents it from aligning over a thousand
sequences. This limitation is easily overcome by deploying ginsi in a
regressive way. We did so using both the ClustalO and the PartTree
guidetrees and found these combinations to result in some of the most
accurate models reported across all the analysis carried out here (Table 1).
On the 20 largest datasets, the best regressive ginsi mode is 8.88 points
better that the best progressive aligner (Mafft-fftnsl with a ClustalO tree)
and 5.23 points better that the best seeded aligner (Mafft-sparsecore). Even
more importantly our analysis show that the regressive deployment of ginsi
is one of the method less affected by the scaling up when considering the
drop in accuracy with respect to the direct MSA of the reference sequences.

20 points more accurate than the progressive aligners, and 11.9 points over
the single best progressive aligner (Regressive-ginsi vs progressive MAFEFT
with ClustalO guide trees for both). Even more important that the absolute
accuracy, we show that the most accurate flavor of the regressive ginsi is
almost not affected by the scaling up (68.82 on the seed MSAs vs 68.32 on

the embedded sequences).

The ginsi improvement comes at cost with CPU requirement almost two
orders of magnitude above fftnsl, the fastest method benchmarked here.
This overhead is, however, manageable thanks to the high order

parallelisation allowed by the precomputation of the parent and children
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alignments. The lack of any dependence between these models makes it
possible to estimate them all at the same time and their merging is linear in
time with both the length and the number of sequences. The scaling up also
appears to be slightly more favorable for the regressive implementation,
especially when dealing with the most CPU demanding datasets. The
comparison is even more favorable to the regressive approach when
considering identical aligners for which the regressive performances often

outperform the progressive agglomeration.

Altogether these results suggest that the regressive approach described here
provides a practical solution to the critical problem of MSA scalability - a
problem fueled by the accelerating pace of high throughput whole genome
sequencing. Not only does the regressive approach provide a mature
solution, but it also defines a very new exciting development framework by
providing a clean break between the development of highly accurate small
scale aligners - like ginisi - and the design of novel scale clustering
algorithms, like parttree and ClustalO. Until now, the aligner and the
clustering algorithm had been tightly connected with each component
fine-tuned to compensate the weakness of the other and extra iterations
meant to fix everything. The regressive framework alleviates these
constraints and allows the independent combination of all available methods
even when these involve iterative refinements. But the the regressive mode
is also more general that the progressive as it is less strictly bound to a binary

pre-clustering and could be deployed using k-trees and even b-trees whose
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node order may vary. Exploring the possibilities afforded by these many
variation will be the focus of further studies in the longterm quest for

scalable multiple sequence alignment comparisons.
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7. Chapter 7: Discussion

7.1 PSI/TM-Coffee webserver

When performing sequence searches, as the pairwise identity of proteins
drops below approximately 30%, the number of false negatives explodes and
many true homologous sequences are missed (Rost 1999). In the Chapter 1
we discussed PSI-BLAST which uses profiles created from queries to
perform BLAST homology searches. We can apply the same principle to
multiple sequence alignment. With PSI-Coffee, for every sequence in to our
dataset, we first perform a BLAST search and collect the resulting sequences
(Chang et al. 2012). Each collection of sequences - one set per sequence in
the original dataset - is then transformed into a profile . Profiles prove to be
a valuable tool in homology detection and are especially useful when the
identity of homologues is in the twilight zone. With homology extension, the
evolutionary constraints at each position in the query sequences are
examined and quantified. By aligning these profiles and not the sequences
themselves, the quality of pairwise alighments is improved leading to a

reduction in highly detrimental errors early in the alignment process.

In the homology extension step, PSI-Coffee uses BLAST to search for
homologous sequences against a full database of sequences. However in
some situations, it may be more efficient to search against a reduced
database. This is particularly applicable to transmembrane proteins (TMPs)

which make up 20 and 30% of prokaryotic and eukaryotic proteins. TMPs,
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whose structure traverses the entire membrane, are central players in many
important biological processes. They act as gateways for the transport of
specific molecules. This has lead to significant research efforts into
understanding their function and exploitation as potential as drug targets. It
has proven exceptionally hard to experimentally determine the 3D structure
of TMPs due to difficulties in purification and crystallisation. This places

even more emphasis on homology based prediction methods.

Chapter 2 describes the web server for PSI/TM-Coffee which uses a
reduced UniRef database that is filtered to contain only TMPs. This reduced
database is shown to obtain similar results at a significantly reduced
computational cost over full protein databases. In evaluating the
performance of the method with BAIBASE2-ref7 «-helical TMPs,
PSI/TM-Coffee displayed a significant improvement in comparison to the
most accurate methods (MSAProbs, Kalign, PROMALS, MAFFT,
ProbCons and PRALINE).

The PSI/TM-Coffee web server itself has become an integral part of the
T-Coffee family of online resources. It has contributed to the widespread
adoption of T-Coffee web server by the many communities (Di Tommaso et
al. 2011). The overall usage of the T-Coffee service shows approximately
70,000 unique users in the last 12 months with the original web server

publication having approximately 500 citations since 2011. This alone shows
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the importance of these services and their significance to users whom rely

on them to perform accurate and efficient multiple sequence alighments.

7.3 Phylogenetic supports incorporating alignment uncertainty

Phylogenies are one of the most common inferences made from MSA
methods. The large number of high impact works published in the field over
these last years highlights the need of the biological community for reliable
methods. Indeed phylogeny reconstruction is often an essential step for the

generation of evolutionary hypotheses.

Given a phylogenetic tree, branch support analysis is, for the most part,
currently carried out using Felsenstein’s bootstrap method. This procedure is
common in most phylogenetic studies and has received nearly 10,000
citations over the last 30 years. By incorporating alignment uncertainty, we
show that the original bootstrap measure does not capture all the
confounding factors associated with tree building. In chapters 3 and 4 I
describe two new methods that attempt to capture these effects and can be

used to estimate branch stability in phylogenetic trees.

In chapter 3 Using alignment uncertainty to improve phylogenetic bootstrap reliability 1
describe an approach that builds on the work of Wong et al. published in
Science in 2008. In this work it was established how uncertainty from

multiple alignhment procedures effects reconstructing phylogenies and
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inferring evolutionary rates. They were able to show that in many cases
different aligners produce different phylogenies, with no simple objective
criterion sufficient to distinguish among these alternatives. They did
however, stop short of proposing a solution. Indeed, it is relatively easy to
tell apart two alternative trees based on the same alighment, but it is much
less straightforward to determine the relative merits of two or more
alternative alignments and their associated phylogenies. When building
phylogenies, one is left with no option but to use the methods reported to

be on average the most accurate on one benchmark or another.

With this first method we propose a simple but effective solution to
incorporate the uncertainty and instability generated by the various
alternative alignment methods. This way, one does not need anymore to
arbitrarily choose an alignhment method. In fact, we show how the
combination of these uncertainties adds up into significantly more
informative bootstrap values and therefore ends up increasing the level of
certainty. This approach does not appear to yield better trees but it increases

dramatically the capacity to discriminate between correct and incorrect trees.

In chapter 4 Generalized bootstrap supports for phylogenetic analyses of protein
sequences incorporating alignment uncertainty 1 describe a different approach to the
same problem. This work first establishes that all available large-scale
aligners, including the most recent ones, can be induced to produce very

unstable alignment models and phylogenetic trees by simply changing
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sequences input order. Considering the lack of any objective criteria to
define an optimal sequence input-order - that may not even exist - this
finding is problematic for most analysis. In the benchmarks performed,
instability dominates large datasets with less than 50% of the branches being
reproducible when dealing dataset consisting of 10,000 sequences or more.
Branches are affected across the entire trees, including deep and shallow
nodes. Even though we demonstrate that no solution exists to solve this
problem, we nonetheless show how alignment induced instability can be
used to estimate a new branch reliability index. This index was initially a
combination of the regular bootstrap estimate procedure that quantifies
column sampling effects with the input order effect so as to provide a
combined estimation of the joint effect of column sampling and taxa
shuffling onto each branch in the final tree. However it became apparent
that it could be generalised to take alternative alignments from any source

and was thus named Unistrap.

These works together describes a simple and effective methods to quantify
this effect of alighment instability onto phylogenetic tree reconstruction.
They provide the biological community with novel conceptual tools that
allow proper quantification of all the confounding factors affecting tree

reconstruction, including MSA induced noise and evolutionary sampling,.
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7.4 The Regressive Multiple Sequence Alignment

Multiple sequence alignhments are essential for a large number of tasks in
biology including phylogenetic inference, structural modeling and functional
predictions. The increase in the size of the datasets used in these
applications necessitates methods that likewise scale. In chapter 5, Regressive
computation of large scale multiple sequence alignments, 1 describe a new
agglomerative multiple sequence alignment algorithm whose scaling up

capacities outperform all available methods in terms of accuracy.

The computation of accurate multiple sequence alighments is an
NP-complete problem. There is no exact solution guaranteed and for this
reason all available methods are based on approximate heuristics. Reliance
on heuristics requires these methods to be revisited and readapted each time
the nature of the problem changes, even slightly. For instance, over the last
years, the growing appetite for increasingly large datasets has revealed an
unforeseen limitation of the current alignment framework - known as
progressive alignment. Against all expectations, alignment accuracy
decreases when increasing the number of sequences above a thousand
homologues. This result was a genuine surprise because it had long been
observed that all things being equal, a given group of sequences would see
its relative alighment accuracy increase when embedded within a larger
dataset. This limitation is a major issue because it brings the current

paradigm of MSA scaling up to a dead-end. It casts serious doubts on our
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capacity to effectively integrate the biological information contributed by the

new genome projects.

I present a very simple and extremely effective way to scale up MSA
modelling methods termed regressive by reference to the progressive
algorithm. When doing a progressive (or a regressive) alignment, sequences
are clustered using a guide tree that defines the order in which they will be
aligned. The progressive alignments then starts by aligning the most similar
sequences - sister leafs - and proceeds all the way until the root. The
regressive approach uses the same tree, but rather than going from leaf to
root, we first use the tree to collect the most diverse sequences and then
start aligning them, the same algorithm is then applied recursively while
proceeding towards the root. The first alignment that contains the most
diverse sequences is treated as a scaffold onto which all subsequent

alignments are grafted.

For validation purpose, the implemented the algorithm allows for use of
common large scale aligners - Mafft, ClustalO and UPP to be deployed in
both a regressive and a progressive way. This approach allowed us to dissect
precisely the contribution of each algorithmic component and conclude on
the superiority of the regressive approach over the progressive one. All
things being equal, on the 20 largest reference datasets in HOMFAM,
(10,000 to 93,000 sequences), the regressive approach outperforms the

progressive approach by over 6.5 percentage points on average. More
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importantly, the improved scalability of the regressive framework also
allowed us to deploy small scale highly accurate methods like mafft-ginsi on
very large datasets for which they were not originally intended. The resulting
alignments are the most accurate ever reported on these datasets. This result
is of direct practical use to the community since this validation, comes along
with a mature production software implemented in T-Coffee and available

on GitHub.

The regressive algorithm is, however, much more than a new software.
Thanks to the clear separation it provides between the guide tree and the
aligners, the regressive algorithm redefines the field of research in multiple
sequence alignment computation. It allows a strict dichotomy to be
implemented between the development of highly accurate small scale
aligners on one side and the development of ever faster and more accurate
clustering algorithms on the other side. By explicitly breaking the connection
between alignment and clustering, it is hoped the two independent
communities can contribute their specific capacities and develop novel
methods whose availability is of strategic importance for the future of

biology.

7.5 The Nextflow Workflow Framework
At a time when the precision medicine initiative is about to introduce the
systematic use of -omics data in our everyday life, the notion of reproducible

genomic analysis appears more critical than ever. It is often assumed that
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reproducibility issues merely result from wet lab experimental fluctuation. In
chapter 6 I show that this assumption is incorrect and that standard in-silico
analysis - such as RNA-Seq quantification and phylogenetic reconstruction -
can be substantially unstable across the most common computational
platforms, even when using state-of-the art genomic analysis tools. Nextflow
is a method for computational workflow management that provides a simple
and effective solution to this problem. It is shown how Nextflow makes it
possible to deploy existing pipelines in an efficient and stable fashion and
provides a long awaited answer to the issue of guaranteeing computational

reproducibility when running -omics data analysis.

The principles developed in Nextflow are appealing to anyone developing
high throughput data analysis pipelines with limited software development
resources. While most existing similar framework, such as Galaxy, require
full pipeline re-implementation, Nextflow is a light weight solution that
makes it possible to rapidly adapt any third party tool with limited re-coding
requirements. Once adapted, tools can be deployed agnostically across the
most common IT infrastructures, like clouds, supercomputers, local clusters
and workstations. Nextflow is a freeware open-source software and has been
designed to fuel collaboration and help efficiently compare alternative

numerical analysis procedures in an open way.

It is already a mature solution with a growing community of users with

extensive documentation and support. Nextflow has been adopted into daily
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use by scientists in companies and research institute alike such as the Broad
Institute, the Joint Genome Institute, Cornell University, The Sanger
Institute, Scilifel.ab, Karolinska Institute and the International Agency for
Research in Cancer among others. This shows how important and timely the
contribution is and it is hoped Nextflow will have a long lasting impact on
the establishment of novel quality standards for reproducible Big Data

analysis, in biology and beyond.
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