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ABSTRACT

Context: Probabilistic selling is the strategy that the seller creates an additional probabilis-
tic product using existing products. The exact information is unknown to customers until they
receive the probabilistic products. This strategy is still a relatively new area for both researchers
and practitioners. Many of the corresponding operations problems need to be solved to take full
advantage of the opportunity of this innovative marketing strategy. However, limited attention
has been paid to examining the inventory management of probabilistic selling from the perspec-
tive of Operations Management, which cannot meet the needs of decision-making in reality.

Objectives: Considering different characteristics of the probabilistic product, the buyer, and
the seller involved in probabilistic selling, i.e., the probabilistic product form, the buyers‚Äô
behaviours of demand switch and barter exchange, and the seller’s product allocation behaviour,
we establish models and solve the decision problems of pricing, inventory, joint decision of pricing-
inventory, and product allocation, etc. Based on the analysis of optimal decisions and strategy
comparison results, we shed some lights on the effectiveness of probabilistic selling on managing
uncertainty, and its profitability.

Method: First, we analyze the practice scenarios of probabilistic selling. Next we mainly
use newsvendor inventory model, hotelling model, and optimization theory to model, solve, and
analyze the operational problems. Then we give some analytical results. Next we conduct the
numerical analysis using softwares of Matlab and Mathematica. Finally, we provide insightful
managerial implications for the practice of probabilistic selling.

Results: The thesis derives the optimal operational decisions of inventory order, pricing,
inventory allocation, and product line design in probabilistic selling. Overall, the analysis of
the results show that probabilistic selling can benefit the seller with higher expected profit by
reducing demand/supply uncertainty and improving inventory efficiency. The performance of
probabilistic selling is closely dependent on customers’ price sensitivity, product similarity, and
uncertainty level, etc. Main results considering different research scenarios are as follows:

1) When the price for the probabilistic product is independent on demand reshape, a proper
cannibalization can benefit the retailer in terms of yielding a higher expected profit. Probabilistic
selling is more profitable with relatively lower product similarity and higher price-sensitive
customers, while inventory substitution strategy outperforms probabilistic selling with higher
product similarity.

2) When the price for the probabilistic product is dependent on demand reshape, probabilistic
selling can benefit the seller with higher expected profit and lower inventory. Probabilistic selling
is more profitable with lower product differentiation, higher customers’ price sensitivity, and
higher demand uncertainty. Improper pricing would undermine the seller’s profit.
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3) When the seller offers physical probabilistic product, he can benefit from two effects, namely
the risk pooling effect due to demand reshape and the risk diversification effect due to inventory
flexibility.

4) When the seller offers barter choice in probabilistic selling, he may benefit from the
marketing effect in the barter process. Offering barter choice can broaden the application range
of probabilistic selling, which will increase with successful barter probability.

Conclusions/Implications: First, the thesis helps sellers understand how to manage their
inventory, pricing and related implementation issues to take full advantage of probabilistic
selling. Second, this thesis explores the mechanism of this innovative marketing strategy as an
inventory management tool to combat uncertainty which also riches the literature on Operations
Management, especially inventory management.
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1
INTRODUCTION

1.1 Background

Opaque selling is becoming an emerging marketing strategy which first appeared in travel

industry. There are three prominent examples in travel industry to execute opaque selling:

Priceline, Hotwire and Germanwings. They also represent three different types of opaque selling

in literature: Name-Your-Own-Price (NYOP), fixed opaque product (FOP), and variable opaque

products (VOP). NYOP is one type of opaque selling for some information about products (such

as suppliers, specific address, etc.) are unknown before customers confirm their purchases.

Priceline.com is the first executor of NYOP, which integrates service products from many providers

and then offers the consumers a right to bid the price of the service products including hotels,

flights and rental cars (Bai et al., 2015). Priceline will look for a product to match customers’

offer and charge the credit card once accept their offers. The second selling form is that some

other attributes except for price are concealed from customers. For example, intermediary like

Hotwire.com as shown in Fig. 1.1 would withhold information of some attributes of the service

(e.g., specific address of hotels or name of airline company) until customers finish the purchases

(Jiang, 2007). The third method named as variable opaque product (VOP) gives the customers

the right to choose the level of uncertainty (Post, 2010; Post and Spann, 2012). For example, if

you want to travel, the Germanwings.com allows you to select your departure airport and the

theme you prefer for the trip by choosing one among those offered products. The destination is

unknown and you can exclude certain destinations for charge. This method gives more flexibility

to customers and decrease the uncertainty. To facilitate comparison, we define the second form of

opaque selling as fixed opaque product (FOP).

The successful achievement in travel industry has inspired the interest of practitioners

of retailing industry (e.g., Tmall.com, jd.com, AgonSwim.com, Littleblackbag.com). From the

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Hotwire.com website (The names of hotels are hidden)

perspective of an online retailer, Fay and Xie (2008) firstly defined probabilistic selling as “a

seller who creates probabilistic goods using existing distinct products or services and offers the

probabilistic product as customer’s additional choice” and examined why, when, and how a seller

can benefit from offering the probabilistic product. Fig. 1.2 gives an example of probabilistic

selling.

Most of existing literature consider probabilistic selling the same as opaque selling because

both strategies encourage the sellers to offer opaque products. However, the great difference

between probabilistic selling scenario and the above three opaque selling forms is the creation

method of opaque products. Opaque intermediaries which are common in travel industry gen-

erates the opaque product by mixing the products from different service providers. While in

retailing industry, the sellers usually generate the opaque product by mixing their existing

products. Furthermore, the capacity of service products in travel industry is usually fixed. In

contrast, the seller has to make inventory decision of the products in retailing industry.

Considering the significant difference of operations management between opaque product in

travel industry and opaque product in retailing industry, we consider probabilistic selling as one

form of opaque selling and focus on probabilistic selling strategy in the thesis. In order to avoid

ambiguity, we define the products sold with unknown information as “probabilistic product” or

“opaque product”, and the products sold with full information are named as “specific product” or

“component product” throughout the thesis.

Although motivated by marketing tools to price discriminate among customers, expand

market and improve margin price, opaque selling has also been proved by limited research to

benefit sellers on inventory management (Fay and Xie, 2011, 2014; Wu and Wu, 2015). However,

most of the rare operational research about opaque selling focus on the revenue management

solving control mechanism and pricing issues with fixed capacity (Gallego and Phillips, 2004;

Petrick et al., 2012; Gönsch and Steinhardt, 2013). The research that considers retailer’s inventory

decision with stochastic demand when offering probabilistic products is rare. The effect of this

selling strategy on inventory management, supply chain issues are confusing but interesting.

Overall, in terms of probabilistic selling, this strategy is still a relatively new area for both

2



1.2. RESEARCH OBJECTIVES

Figure 1.2: Probabilistic selling in Taobao.com

researchers and practitioners, though an emerging literature suggests that probabilistic selling is

promising and has broad potential applications. Many of the corresponding operations problems

need to be solved to take full advantage of the opportunity of this innovative marketing strategy.

1.2 Research objectives

Based on the urgent needs, research gaps and significance in practice application, we focus on

the inventory mechanism of probabilistic selling under different practical circumstances. We seek

to provide further insights into the probabilistic selling strategy in order to help sellers better

understand how to manage their inventory, pricing and related implementation issues when

introducing probabilistic selling. This part we will introduce the specific research motivations,

research lines, and results.

1.2.1 Managing demand uncertainty: Probabilistic selling versus inventory
substitution

Demand variability is prevailing in the current rapidly changing business environment, which

makes it difficult for a retailer that sells multiple substitutable products to determine the

optimal inventory. To combat demand uncertainty, both strategies of inventory substitution and

probabilistic selling can be used. Although the two strategies differ in operation, we believe

that they share a common feature in combating demand uncertainty by encouraging some

customers to give up some specific demand for the product to enable demand substitution. It

is interesting to explore which strategy is more advantageous to the retailer. We endogenize

the inventory decision and demonstrate the efficiency of probabilistic selling through demand

substitution. Then we analyze some special cases without cannibalization, and computationally

evaluate the profitability and inventory decisions of the two strategies in a more general case

3



CHAPTER 1. INTRODUCTION

to generate managerial insights. The results show that the retailer should adjust inventory

decisions depending on products’ substitution possibility. The interesting computational result is

that probabilistic selling is more profitable with relatively lower product similarity and higher

price-sensitive customers, while inventory substitution outperforms probabilistic selling with

higher product similarity. Higher demand uncertainty will increase the profitability advantage of

probabilistic selling over inventory substitution.

1.2.2 Inventory decision in probabilistic selling with price-dependent
demand reshape

By considering that the demand switch from the higher-priced specific products to the lower-

priced probabilistic product depends on the price gap, we examine the optimal inventory decision

and expected profit in probabilistic selling. We investigate how probabilistic selling benefit the

seller through demand reshape and demand substitution in this circumstance. We perform a

simulation study to extensively explore the effects of demand uncertainty, demand correlation,

price sensitivity, and price discount on inventory decisions and profitability of probabilistic selling.

The results show that probabilistic selling can benefit the seller with higher expected profit

and lower inventory by reducing demand uncertainty and improving inventory efficiency, even

without considering the increased demand due to offering the low-priced probabilistic product.

Moreover, the effect of probabilistic selling is more significant with lower product differentiation,

higher customers’ price sensitivity, and higher demand uncertainty. It is noted that the optimal

selection of the price discount is necessary to secure good performance of probabilistic selling,

given that improper pricing will undermine seller’s profit.

1.2.3 Inventory-pricing policy in “physical” probabilistic selling

We investigates the impacts of a new type of probabilistic selling (PS) where the retailer orders

specific products and package some as a discounted physical probabilistic product (PPP) rather

than merely a virtual choice. We call this PS strategy as physical probability selling (PPS).

The price gap between the specific products and the probabilistic product result in demand

reshape, i.e., some customers who originally buy specific products will switch to buying the

probabilistic product, which decreases aggregate demand uncertainty. However the price discount

decreases the profit margin. Considering this trade off, we develop a three-product newsvendor

model to address the question of how to set the price for the PPP and make inventory allocation

decisions. We prove that there are two effects under PPS, namely the risk pooling effect due

to demand reshape and the risk diversification effect due to inventory flexibility. With demand

uncertainty, PPS can improve the retailer’s profit at lower inventory levels with proper demand

reshape induced by the optimal price discount. The optimal price discount increases with demand

uncertainty. PPS is more profitable with smaller product differentiation and higher customer
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price sensitivity. With supply uncertainty, we demonstrate through numerical studies that PPS is

a viable strategy to combat asymmetrical supply risk that yields higher profits and service levels.

1.2.4 Pricing-product allocation policy in probabilistic selling with barter
choice

After buying the probabilistic product, the customer who is not satisfied with the allocated

product may wish to barter with other customers. Moreover, there are online shops offering

customers the option to barter their allocated products before confirming their orders. Exploring

the seller’s motivation to offer the probabilistic product with barter choice, we consider two

questions: 1) How does barter affect the seller’s optimal decisions in probabilistic selling? 2) Can

and when does barter make probabilistic selling more advantageous to the seller? Considering

the key factors of product cost, successful barter probability, and the marketing benefit brought

by barter in probabilistic selling, we use the Hotelling model to address the questions. We show

that barter can broaden the application range of probabilistic selling, which will increase with

successful barter probability. When the marketing benefit is sufficiently large, barter can increase

the profit of probabilistic selling to the seller. When the marketing benefit is low while the barter

probability is high, barter will not benefit the seller in probabilistic selling. Our findings help the

seller make optimal decisions on barter choice, pricing, allocation probability, and product line

design, i.e., the seller merely offers the component products, merely the probabilistic product, or

both.

1.3 Research innovations

The thesis has the following innovative points:

1) We construct the newsvendor model to characterize the demand reshape and demand

substitution pattern in probabilistic selling. This is the first study that captures the inventory

decision in probabilistic selling considering demand reshape that is independent and dependent

with the price discount for the probabilistic product, respectively. We derive some management

suggestions for pricing and inventory management in probabilistic selling.

On the one hand, rare literature endogenize inventory decision in probabilistic selling and

majority literature set the demand for the specific product or the probabilistic product as deter-

ministic. While we consider stochastic demand for both the specific products and the probabilistic

product in our work except for the study on probabilistic selling with barter choice. This as-

sumption enables us to explore the performance of probabilistic selling on managing stochastic

demand, and improving inventory efficiency. On the other hand, the demand substitution and

demand reshape pattern in probabilistic selling is unique, which also riches the study on demand

reshape and demand substitution.
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2) We are the first study that compares the performance of probabilistic selling and inventory

substitution in managing demand uncertainty through demand substitution. Our work enriches

the research about probabilistic selling as an inventory management tool. The analytical approach

and research findings may help practitioners gain more insight on the capacity of probabilistic

selling on combating demand uncertainty, and facilitate their inventory related decision-making.

3) We are the first to explore the profitability and pricing-inventory policy of the retailer that

offers the physical probabilistic product (PPS). We analytically examine the risk-pooling effect

of PPS through demand reshape, and also find the risk diversification effect of PPS that helps

alleviate asymmetrical supply risk through numerical studies.

4) We are the first to examine the decisions on pricing, allocation probability, and product

line design, i.e., the seller merely offers the component products, merely the probabilistic product

or both, in probabilistic selling with the barter choice. The analysis helps the seller understand

when and how to offer the barter choice in probabilistic selling to achieve the maximum profit

with consideration of product cost, successful barter probability, marketing benefit brought by

per barter unit.
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THEORETICAL FRAMEWORK

S ome literature regards probabilistic selling the same as opaque selling. However, prob-

abilistic selling is based on the retailing industry, and the operations management in

retailing industry is very different from that in the travel industry. For example, inventory

is usually constrained in the travel industry while in retailing industry the seller has to make

inventory decision. Furthermore, the intermediary retailer in travel industry creates the opaque

product by mixing the products from different service providers, while in the retailing industry

the seller usually creates the opaque product by mixing his own existing products. Therefore, we

consider probabilistic selling as one form of opaque selling in our thesis. Although we focus on

the probabilistic selling form in our research, literature about other forms of opaque selling is

also necessary for they share the same spirit of opaque products. Some results or observations in

related research on other forms of opaque selling still give us some important reference value.

Then we will give a comprehensive review about opaque selling. Considering different motivations

and methods in related research, we divide the literature into two streams. One investigates

opaque selling in economics and marketing literature, and the other one considers this selling

strategy from the aspect of operations management.

The economics and marketing literature considers different issues with respect to different

implementation forms in practice: NYOP, FOP, VOP and PS. Table 2.1 shows us the basic

characteristics of different forms of opaque selling. The research on NYOP, FOP, VOP is usually

based on the scenario of a service provider-intermediary system. And the research on probabilistic

selling is based on the scenario of a service/product seller-customer system.
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Table 2.1: Different forms of opaque selling

Form
Posted
price

Opaqueness
Creation of probabilistic
product/opaque product

Supply chain system

NYOP No Fixed
Product/service integra-
tor

service provider-
intermediary system

FOP Yes Fixed
Product/service integra-
tor

service provider-
intermediary system

VOP Yes Flexible
Product/service integra-
tor

service provider-
intermediary system

PS Yes Fixed Product/service owner
service/product seller-
customer

2.1 Opaque selling in economics and management

2.1.1 Name-Your-Own-Price

The NYOP modes opened by service integrators have been fully discussed (Hann and Terwiesch

2003; Fay 2004; Terwiesch et al. 2005). The research focus on multi aspects: pricing especially

the optimal threshold price, bidding patterns (repeat bidding or single bidding) and effectiveness

analysis (Bai et al., 2015). Because we focus on opaque selling strategy with posted price, we

won’t give a detailed review about the NYOP mode research.

2.1.2 Fixed opaque product

Some literature explore the optimal strategy and profit ability of fixed opaque product in a

monopolist market (i.e., one service provider in the service provider-intermediary system). Some

papers focus on investigating the effect of fixed opaque product on pricing competition, market

share, etc. in competitive environments (i.e., multiple service providers in the service provider-

intermediary system). And some research devote to comparing effectiveness of opaque selling

with other selling strategies. Most of the research address the decisions on pricing, competition,

channel selection, and optimal transparency level.

2.1.2.1 Fixed opaque product in a monopolist market

Granados et al. (2005) develop an economic model of a supplier who distributes products across

two channels with different levels of market transparency. The model provides guidelines for

firms to set optimal transparency levels and prices with profit maximization. And the market

transparency is related with willing to pay. Jiang (2007) considers a monopoly firm selling

multiple flights a day. The airlines decide whether to offer both the full-information tickets with

regular price and opaque tickets at a discounted price or just one of them. They find that opaque

selling can increase a firm’s sales and profits depending on customer heterogeneity in terms of

their willingness to pay for a particular flight. Especially when customers are too heterogeneous,
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the firm will prefer to offer only full-information products. The study of Anderson and Xie (2012)

use a nested logit model along with logistic regression and dynamic programming to set the

optimal choice-based price for a service provider to post on the opaque intermediary. Cai et al.

(2013) investigated probabilistic selling under which the retailer generates the probabilistic good

by mixing products from different suppliers. They studied how probabilistic selling endogenously

influences suppliers’ channel selections.

2.1.2.2 Fixed opaque product in a competitive market

From the perspectives of opaque intermediary in competitive environments, Fay (2008) publishes

the first paper to model an intermediary selling an opaque product. He considers two symmetric

service providers who share a common opaque intermediary. Customers are divided into the

“brand-loyals” and the “searchers” which are represented by a Hotelling model. The paper

analyzes the pricing equilibrium and the profitability with firm competition. The results show

that there is fierce competition if there is little brand-loyalty in the marketplace. However, if

brand-loyalty amount is moderate, entry of an intermediary would enable service providers to

raise prices. Shapiro and Shi (2008) and Tappata (2012) extend the two service provider scenario

into multiple service providers by using the circular city model in Salop (1979). Shapiro and

Shi (2008) attempt to explore the effect of opaque intermediary on the competition of service

providers. The results show that although the opaque intermediary intensifies competition for

less sensitive (non-loyals) customers, it can segment the market and allow the service providers

charge a higher price for more sensitive customers(loyals). Tappata (2012) shares the same

setting while allowing for elastic aggregate demand in their model. Further they also study the

welfare effect of opaque intermediary. The results show that opaque intermediary can create

welfare by increasing price competition and expanding market sales compared with no opaque

intermediary model. Service providers can use the opaque intermediary to increase profits with

intermediate product differentiation value. Other related literature also consider competing

firms selling opaque products through an intermediary (Jerath et al., 2010, 2009). Granados

et al. (2017) investigate the demand and cannibalization effects of the opaque channel through

empirical study of an international airline. They find that airlines can benefit from opaque selling

in markets with high levels of competition.

2.1.2.3 Strategy comparison

Jerath et al. (2010)constructed a stylized economic model in which two firms with fixed capacities

sell products to consumers in two periods. They attempt to explain and compare the benefits of

using either transparent last-minute sales or opaque sales through an intermediary. They find

that sales through opaque intermediary are preferred when consumer valuations for travel are

lower or there is higher service differentiation between competing service providers. Gal-Or (2011)

compares the profit of a monopoly service provider who can use either a price-posted or a NYOP
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opaque selling channel. They show that NYOP is preferable for a monopoly service provider.

However, in the presence of competition within service providers, opaque selling with posted price

is more profitable with price competition (Chen et al., 2014). Anderson and Xie (2014) considers

a monopolist using three selling channels: a full information channel, an opaque channel with

posted price and NYOP. The paper illustrates how opaque channels segment consumers and

compares optimal revenues and prices for sellers using full information channels with the three

channels situation.

2.1.3 Variable opaque product

VOP method gives more flexibility to customers who can set the opaqueness rather than the

service provider (Post, 2010). Research about VOP mode investigate on the design problems of

price structure, opacity design and opaque packages, etc.

For example, Post (2010) proposed the term “variable opaque product” through the case

of airline industry and develop a pricing heuristic to maximize the incremental revenue from

opaque selling with varied opaqueness level. This product-price pricing structure provides a

useful basis for price optimization models for VOP. Lee et al. (2012) discuss how to design opaque

destination packages for airline carrier. They use a multidimensional binary logit model to predict

the purchase probability which is influenced by distance, city attractiveness and length of stay.

Post and Spann (2012) take the “Blind Booking” at Germanwings as the case and analyze some

significant results from the implementation of VOP. The encouraging results of“Blind Booking”

show that, with reasonable product price and opacity level (Germanwings requires no less than

3 destinations), the revenues generated by VOP would be predominantly incremental without

cannibalization. Bai et al. (2015) investigate the design problems of pricing, opacity design and

depict how customers choose marketing channels based on “Blind Booking” at Germanwings.

2.1.4 Probabilistic selling

The research on probabilistic selling is based on a retailer-customer system. The economics and

marketing literature related to probabilistic selling demonstrate the profit ability of probabilistic

selling in conditions concerning different characteristics of subjects (e.g., market, customer,

product) as shown in Table 2.2. They explore the benefits of probabilistic selling in terms of price

discrimination, market segmentation and expansion, and product line extension etc.

Fay and Xie (2008) firstly define probabilistic selling strategy and attempts to use Hotelling

model and Circle model to explore the fundamental conditions required for offering “probabilistic

products”. The results show that offering probabilistic products can combat demand uncertainty

and enhance inventory efficiency. Huang and Yu (2014) explores the importance of consumer

bounded rationality on the adoption of probabilistic selling and demonstrates that consumer

bounded rationality in probabilistic selling may soften price competition and increase the in-

dustry profits. Rice et al. (2014) make comparison of markdown selling and probabilistic selling
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Table 2.2: Probabilistic selling on economics and marketing.

Subject Focus Literature

Seller
Monopolist

Fay and Xie (2008); Huang and Yu (2014)
Rice et al. (2014); Zhang et al. (2014)

Market Competition None

Customer
Preference heterogeneity

Fay and Xie (2008); Rice et al. (2014)
Fay et al. (2015)

Loyalty heterogeneity Fay (2008); Shapiro and Shi (2008)
Bounded rationality Huang and Yu (2014)

Product
Horizontal product

Fay and Xie (2008); Huang and Yu (2014)
Fay and Xie (2008); Rice et al. (2014)

Fay et al. (2015)
Vertical product Zhang et al. (2014)

Horizontal or vertical product Huang and Yu (2014)

strategies. As price discrimination tools, markdown selling strategy depends on buyer patience

and probabilistic selling segments market based on buyer preference. They identify the condi-

tions required for probabilistic selling to be more advantageous through analytical model. The

results show that probabilistic selling can improve margin management and inventory utilization.

Zhang et al. (2014) investigate probabilistic selling in quality-differentiated markets rather than

horizontal markets and explore whether probabilistic selling can be profitable in this situation.

The above literature focus on the profit ability of probabilistic selling concerning different

characteristics of markets, customers and products. They consider how probabilistic selling

influence seller’s decision and customers’ purchase choice. Another direction is to explore the

effect of probabilistic selling on product design. For example, Fay et al. (2015) find that introducing

probabilistic products by mixing component products can not get the full potential of probabilistic

selling. The retailer should also adjust its product mix (e.g., optimal number and types of products)

when introducing probabilistic products. The paper reveals that, when facing several consumer

segments with diverse preferences, a seller should produce more differentiated products when it

moves to probabilistic selling from TS. Otherwise, when there are few consumers with moderate

tastes, the retailer should produce less differentiated products when switching to probabilistic

selling.

2.2 Opaque selling in operations management

One stream of operational research focus on the revenue management of opaque selling which

solve control mechanism and pricing issues with fixed capacity (as shown in Table 2.3). Flexible

products belongs to this stream. Flexible product is firstly defined as a menu of two or more

alternative products offered by a supply chain issues constrained supplier in Gallego and Phillips

(2004). And the supplier reserves some information of flexible product until a time near the end
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of the booking process. Therefore, we assume flexible product is the same as probabilistic product.

Gallego and Phillips (2004) analyze the two-flight case for an airline with fixed capacity offering

flexible products and specific products simultaneously. Considering demand induction and canni-

balization, they use simulation to compare results under various control structures and different

pricing scenarios. Different from Gallego and Phillips (2004), Petrick et al. (2012) consider an

arbitrary notification date within the booking horizon in a similar problem setting. They present

several revenue management models and control mechanisms for offering flexible products and

reveal that flexible products can increase revenue with fixed capacity and unpredictable demand.

Gönsch and Steinhardt (2013) extend dynamic programming decomposition techniques to develop

a new approach for service provider to control capacity in situation of offering both opaque

products and traditional ones simultaneously. They show that their approach outperforms other

well known capacity control approaches used in the opaque product setting with a simulation

study.

The second stream focus on exploring the inventory mechanism of probabilistic selling. Fay

and Xie (2011) regard probabilistic selling as a new mechanism for inventory management in

the presence of demand uncertainty although the seller commits to buyers before it has the

opportunity to acquire more information. Fay and Xie (2014) extend the novel strategy from a

marketing tool to an inventory-management mechanism, which focus on the impact of timing

of probabilistic product assignment and demonstrate the advantage of probabilistic selling to

improve inventory utilization. As shown in Table 2.3, the above research dealing with inventory

management consider the “scenario” uncertainty that one product is more popular than the other

with a probability. Rare literature consider stochastic demand rather than “scenario” uncertainty

except for Wu and Wu (2015) and Fu et al. (2017). Endogenizing both capacity and pricing

decisions in a single-product system, Wu and Wu (2015) considers the stochastic demand in their

single-product inventory model, integrating demand postponement and opaque selling from the

perspective of travel intermediary. The result demonstrate that the postponement of delivery

allows the firm to use less safety stock to hedge against demand uncertainty. Fu et al. (2017)

analytically demonstrated that offering a flexible product can improve the seller’s profit.

The third stream of literature attempt to expand probabilistic selling into supply chain. For

example, Li and Ma (2016) developed a non-cooperative dynamic price Stackelberg game model

to study the dynamic characteristics of a supply chain under probabilistic selling with risk-averse

customer.

2.3 Comments on the literature

Great majority of the research focus on analyzing the rationality of the mechanism, the imple-

mentation issues and the profit ability from the aspect of marketing tool with economic models.

Limited literature consider opaque selling in increasing inventory efficiency with constrained
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Table 2.3: Distinguishing characteristics of related literature on operational management.

Subject Focus Literature

Capacity
Constrained

Gallego and Phillips (2004); Petrick et al. (2012)
Gönsch and Steinhardt (2013)

Non-constrained Fay and Xie (2014); Wu and Wu (2015)

Demand
Scenario uncertainty Fay and Xie (2014)

Stochastic uncertainty
Gallego and Phillips (2004); Petrick et al. (2012)

Gönsch and Steinhardt (2013); Wu and Wu (2015)

capacity on revenue management. However, rare literature consider opaque selling in an opera-

tional management setting and explore the effect of opaque selling on operational issues such

as capacity planning, procurement, supply chain coordination, etc. Just as Wu and Wu (2015)

refers that future research should include how probabilistic selling affect inventory decisions and

supply-chain dynamics.

Overall, opaque selling is still a relatively new market practice and has aroused interests

from service providers, commerce retailers, customers and researchers. It is urgent to help firms

to develop an optimal strategy for adopting this selling strategy. We will focus on the form of

probabilistic selling in this thesis and shed light on the logic of this strategy considering more

practical settings.
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3
MANAGING DEMAND UNCERTAINTY: PROBABILISTIC SELLING

VERSUS INVENTORY SUBSTITUTION

3.1 Introduction

The prevailing variability of the business environment, rapidly evolving technologies, fierce

competition, and sophisticated customer demands are increasing the difficulty for firms to

determine the optimal inventory under demand uncertainty. For example, many retailers try

to capture market share and meet customers’ various demands by carrying a wide variety of

products. Usually the products are similar and may be substitutable, e.g., clothes in different

colour, beverages with different flavours, and bags in different patterns. Although increasing

product variety can increase the retailer’s market size, it would also increase its total inventory,

leading to longer inventory cycles and higher safety stock (Rajagopalan, 2013). In addition,

any mis-match between inventory and demand, even for a single product, would reduce profit

due to the inventory cost or stock-out cost. Uncertain demand for multiple products makes it

more arduous to match supply and demand for improving inventory efficiency. Therefore, it is

important to effectively manage demand uncertainty when firms seek to benefit from market

expansion through increasing product variety.

To address the problem of managing demand uncertainty with multiple substitutable products,

the retailer can consider two strategies, namely inventory substitution, which is well known in

Operations Research, and probabilistic selling, which is popular in Marketing. Being an effective

tool to minimize the mis-match between capacity and demand, inventory substitution uses

substitute products to meet demand when stock-out occurs (Mcgillivray and Silver, 1978; Parlar

and Goyal, 1984; Ernst and Kouvelis, 1999). Probabilistic selling means the retailer creates an

additional probabilistic product with hidden information using existing products (Fay and Xie,
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2008). For instance, travel agencies offer probabilistic service products (e.g., hotel rooms, air

tickets, package tours etc.) with some information concealed from customers until customers

confirm their orders. Online retailers like Tmall.com, Amazon.com, and AgonSwim.com (Fay and

Xie, 2010) offer discounted probabilistic products with some attributes, e.g., colour, style, brand

etc, unknown to customers until they receive the products. The price-sensitive customers who are

indifferent to the attributes would choose to buy discounted probabilistic products.

Although the two strategies are triggered by the need to address different problems in

different research fields, we see that both strategies share the same spirit of demand substitution.

Specifically, in applying inventory substitution, the retailer substitutes the remaining inventory

of one product for another. The customer whose required product is sold out can choose to accept

the substitute or not. In applying probabilistic selling, the retailer offers customers an additional

lower-priced choice to enhance the demand substitution of specific products with full information

by the probabilistic product. Inventory substitution induces insensitive customers and makes

use of available inventory (of a substitute product) at the end stage of selling, while probabilistic

selling induces insensitive customers at the beginning stage and then uses available inventory

(of either the requisite product or a substitute product) during the selling stage. Consequently,

the retailer can substitute products through the demand of insensitive customers to minimize

the mis-match between inventory and demand. Although the two strategies differ in operation to

hedge against demand uncertainty, they share a common characteristic in combating demand

uncertainty by encouraging some customers to give up some specific demand, e.g., colour, pattern

etc, for the product to enable demand substitution. Therefore, it is interesting to explore which

strategy is more advantageous for the retailer that sells substitutable products with demand

uncertainty.

However, despite the popularity of probabilistic selling in marketing research for the purposes

of market expansion and price discrimination (Fay and Xie, 2008, 2014), little is known about

probabilistic selling as an inventory tool. There is little research on using economic models to

analyze the inventory mechanism of probabilistic selling (Fay and Xie, 2011, 2014). The first

study that endogenizes the capacity decision is Wu and Wu (2015), which explores opaque selling

as a strategy to induce demand postponement. They considered the one-product scenario with

stochastic demand from the perspective of an intermediary. While we also study probabilistic

selling in the newsvendor setting, we focus on exploring the inventory ability of probabilistic

selling from the perspective of a retailer that can manage demand uncertainty through demand

substitution.

In this chapter we develop a single-period newsvendor model with three products to analyze

probabilistic selling with a view to generating insights into using probabilistic selling to manage

demand uncertainty. We then compare probabilistic selling with inventory substitution in the

special cases without cannibalization. To gain additional insights into the normal situation,

we use computational examples to compare the two strategies in terms of overall profit and
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inventory with considerations of customer transition (reflected by the cannibalization index under

probabilistic selling and by the substitution fraction under inventory substitution) and demand

uncertainty.

We make two main contributions under this chapter: First, this is the first study that captures

the inventory decision in probabilistic selling considering the cannibalization effect. Second, this is

the first study that compares the performance of probabilistic selling and inventory substitution

in managing demand uncertainty through demand substitution. The results show that the

retailer’s inventory decisions depends on products’ substitution possibility. The comparison results

show that probabilistic selling outperforms inventory substitution with relatively lower product

similarity and higher price-sensitive customers, while inventory substitution is more profitable

than probabilistic selling when product similarity is higher. Besides, higher demand uncertainty

will increase the profitability advantage of probabilistic selling over inventory substitution. Our

work enriches the research about probabilistic selling as an inventory management tool. The

analytical approach and research findings may help practitioners gain more insight on the

capacity of probabilistic selling on combating demand uncertainty, and facilitate their inventory

related decision-making.

3.2 Literature Review

3.2.1 Probabilistic selling

Limited attention has been paid to examining the inventory mechanism of probabilistic

selling. Fay and Xie (2011) regarded probabilistic selling as a new mechanism for inventory

management in the presence of demand uncertainty despite that the seller is committed to buyers

before it has the opportunity to acquire more information. Focusing on the impact of the timing

of the assignment of the probabilistic product, Fay and Xie (2014) demonstrated the advantage

of probabilistic selling in improving inventory utilization. Nevertheless, the uncertainty in the

above studies concerns the probability that one product is more popular than another, and they

use the “scenario-based” approach to represent uncertainty (Gupta and Maranas, 2003) rather

than the “distribution-based” approach. Just as Rice et al. (2014) pointed out that little research

has shown the effectiveness of probabilistic selling when the seller is uncertain about the total

category demand rather than the relative popularity of a specific item.

Different from the above literature, we model the demand as normally distributed with

a mean and a standard deviation, which is widely used in OM research. Some studies have

considered demand uncertainty and recognized the benefit of probabilistic products in increasing

inventory efficiency with fixed capacity in the study field of revenue management (Gallego and

Phillips, 2004; Gönsch and Steinhardt, 2013). However, they don’t endogenize inventory decision

in their research. Then Wu and Wu (2015) considered stochastic demand in their single-product

inventory model, and integrated demand postponement and opaque selling from the perspective
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of a travel intermediary. They showed that postponement of delivery allows the firm to use less

safety stock to combat demand uncertainty. Different from Wu and Wu (2015), the demand for

the probabilistic product is also stochastic and we explore probabilistic selling as an inventory

mechanism from the perspective of a retailer selling multiple alternative products. Furthermore,

we focus on comparing probabilistic selling and inventory substitution, both of which use demand

substitution to hedge against demand uncertainty.

3.2.2 Inventory substitution

There is a large body of work on inventory management with substitutable demand. The

substitution phenomenon has been widely investigated considering various substitution patterns.

The substitution can be led by the supplier, which is common in the airline industry (Vulcano

et al., 2012). It can also be led by the customer that is willing to buy a substitute product

when their preferred product is out of stock (Parlar and Goyal, 1984; Ernst and Kouvelis, 1999;

Baris and Selcuk, 2013; Ye, 2014). The substitution scenarios considered in existing research

include two products with one-way or two-way substitution (Mcgillivray and Silver, 1978; Parlar

and Goyal, 1984), three products with partial substitution (Ernst and Kouvelis, 1999), and an

arbitrary number of products with demand substitution (Netessine and Rudi, 2003; Wang and

Parlar, 1994). According to the probability of customers willing to accept substitution, some

research considers total substitution (i.e., the probability is equal to 1) (Mcgillivray and Silver,

1978; Pasternack and Drezner, 1991) or constant substitution (i.e., the probability is between

0 and 1) (Parlar and Goyal, 1984; Ernst and Kouvelis, 1999). Some studies assume that the

revenue received for a product is independent of the substitution, while others assume that the

substitution will incur a performance-related cost (Pasternack and Drezner, 1991). Shah and

Avittathur (2007) examined cannibalization considering the downward substitution pattern with

a standard product and its customized extensions. We consider partial substitution with cost as

Parlar and Goyal (1984) and Pasternack and Drezner (1991) in our study.

3.3 Inventory decision under inventory substitution

3.3.1 Notation and Assumption

We consider a retailer that sells two specific products, indexed i, j=1,2 (it is assumed that

i 6= j). The retailer purchases a quantity Q t
i of product i and a quantity Q t

j of product j at the

same fixed unit cost c > 0, and sells them at price p. The clearance price is s. The stock-out

penalty is 0. We assume that the demand D i (D j) is normally distributed with mean ui (u j) and

standard deviation σi (σ j). Let f (xi) ( f (x j)) and F(xi) (F(x j)) be the probability density function

and cumulative density function of D i (D j), respectively. In addition, let f (xi, x j) be the joint

probability density function of the demand for the products. When the retailer adopts neither

probabilistic selling nor inventory substitution, the optimal inventory decision for each product is
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just the optimal inventory decision for the single-product newsvendor model, i.e., the optimal

order quantities Qs∗
i and Qs∗

j are determined by the following equations:

F(Q t∗
i )= p− c

p− s
, (3.1)

F(Q t∗
j )= p− c

p− s
. (3.2)

Now we consider the case where the retailer adopts inventory substitution and assume that

only a fraction rs of the unsatisfied customers that face stock-out will accept the substitution

(Parlar and Goyal, 1984). Assume that substitution incurs a cost t per unit (Pasternack and

Drezner, 1991). We also suppose that p− t > s to make sure that the retailer can benefit from

substitution. Substitution occurs when the demand for product i ( j) exceeds its supply while

the demand for product j (i) is less than its supply (i.e., the substitution paths in Fig. 3.1. After

substitution, the total demand for product i may or may not be satisfied.

Figure 3.1: Substitution paths in adopting inventory substitution.

3.3.2 The optimal inventory solution

The expected profit is given in Eq.(3.3), which comprises the revenue, the savage cost,

and the acquisition cost. (Qs
i ,Q

s
j) are the two inventory decisions that jointly maximize the

expected profit. The demand for product i( j) comes from the original demand and the substitution

demand when demand of product j(i) excess its supply. Therefore, the revenue under inventory

substitution comes from satisfying both the original demand (i.e. min(D j,Qs
j) and min(D i,Qs

i ) and

the substitution demand (i.e. min
[
(Qs

i −D i)+, rs(D j −Qs
j)
+
]

and min
[
rs(D i −Qs

i )
+, (Qs

j −D j)+
]
).

E(Qs
i ,Q

s
j)= E



pmin(D i,Qs
i )+ pmin(D j,Qs

j)− c(Qs
i +Qs

j)

+(p− t)min
[
(Qs

i −D i)+, rs(D j −Qs
j)
+
]

+(p− t)min
[
rs(D i −Qs

i )
+, (Qs

j −D j)+
]

+s
[
(Qs

i −D i)++ (Qs
j −D j)+− rs(D i −Qs

i )
+− rs(D j −Qs

j)
+
]
.

(3.3)

Pasternack and Drezner (1991) have shown the concave property of the expected profit. So

the optimal inventory decisions can be determined by applying the first-order condition to the

expected total profit function. We characterize the optimal order quantities (Qs∗
i ,Qs∗

j ) in Eq.(3.4),
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which is similar to the results in Rudi et al. (2001). F(Qs∗
i ) = p−c+(p−t−s)R(Qs∗

i ,Qs∗
j )

p−s

F(Qs∗
j ) = p−c+(p−t−s)T(Rs∗

i ,Qs∗
j )

p−s ,
(3.4)

where

R(Qs∗
i ,Qs∗

j )=
∫ Qs

i

0

∫ ∞

Qs∗
j +(Qs∗

i −D t
i)/rs

f (xi, x j)dx jdxi − rs

∫ Qs∗
j

0

∫ Qs∗
i +(Qs∗

j −D t
j)/rs

Qs∗
i

f (xi, x j)dxidx j,

T(Qs∗
i ,Qs∗

j )=
∫ Qs∗

j

0

∫ ∞

Qs∗
i +(Qs∗

j −D t
j)/rs

f (xi, x j)dx jdxi − rs

∫ Qs∗
i

0

∫ Qs∗
j +(Qs∗

i −D t
i)/rs

Qs∗
j

f (xi, x j)dxidx j.

The first term of R(Qs∗
i ,Qs∗

j ) raises Qs
i due to the possibility that the excess inventory of

product i may not meet the substitution demand for product j, while the second term lowers Qs
i

because the substitution demand for product Qs
i can be satisfied with the excess inventory of

product Qs
j . The same observation holds for T(Qs∗

i ,Qs∗
j ).

3.4 Inventory decision under probabilistic selling

3.4.1 Notation and assumption

Under probabilistic selling, the offer of the probabilistic product indexed k may cannibal-

ize the specific product market (Granados et al., 2010; Post and Spann, 2012). So, given the

cannibalization effect, the observed demand distribution needs to be revised as (Dp
i ,Dp

j ,Dp
k ) in

Section 3.4.2. As before, the retailer has to purchase quantities Qd
j , Qd

i , and Qd
k to meet the

demands for the specific products i, j, and the probabilistic product k, respectively. The quantity

Qd
k is a mix of products i and j. If we assume that the proportion of product i in the mix is r, then

the retailer has to order Qp
i =Qd

i +rQd
k of product i and Qp

j =Qd
j +(1−r)Qd

k of product j.

Following Fay and Xie (2014), Jerath et al. (2010), and Wu and Wu (2015) in operationalizing

probabilistic selling, we assume that probabilistic selling postpones the delivery of the probabilis-

tic product with regular price to meet the substitution demand for a specific product sold at a

higher price. The retailer obtains revenue p for each specific product and p0 (p > p0 > s) for each

probabilistic product sold. Since the consumer of the probabilistic product pays a lower price,

they would accept uncertainty about product availability and postponement of product delivery.

Fig. 3.2 shows the sequence of events.

3.4.2 Revised demand distribution

We consider the cannibalization effect on the specific products, which means that the demand

for the probabilistic product Dp
k consists of two parts: the demand that switches from the specific
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Figure 3.2: The sequence of events.

products to the probabilistic product, and the new market expansion demand Dk induced by the

low-priced probabilistic product. We assume that Dk is normally distributed with mean uk and

standard deviation σk. The demand D i and D j, and the demand D i(D j) and the new market

expansion demand Dk are correlated with ρ i j and ρ ik(ρ jk), respectively. Let ai (a j) be the canni-

balization index of the demand for the specific product i ( j) (0≤ ai(a j)≤ 1), which is independent

of Dk. The observed demand for the probabilistic product is given by Dp
k =aiD i+a jD j+Dk.

The observed demands Dp
i and Dp

j are different from the original demands D i and D j in

traditional selling. It is important to define the demand relationships between traditional selling

and probabilistic selling, for we will compare the two selling strategies with respect to the

inventory decision and expected profit. Following Eynan and Fouque (2003), and Hsieh (2011),

we characterize the distribution parameters of the observed demands Dp
i , Dp

j , and Dp
k under

probabilistic selling as follows:

up
i = (1−ai)ui,

up
j = (1−a j)u j,

σ
p
i = (1−ai)σi,

σ
p
j = (1−a j)σ j,

up
k = aiui +a ju j +uk,

σ
p
k =

√
a2

iσ
2
i +a2

jσ
2
j +σ2

k +2aiρ ikσiσk +2a jρ jkσ jσk +2aia jρ i jσiσ j .

Because the demand for the probabilistic product includes a part of the original demands for

the specific products, the demand correlation after cannibalization should be updated as follows:

ρ∗ik =
aiσi+a jρ i jσ j+ρ ikσk

σ
p
k

, (3.5)

ρ∗jk =
a jσ j+aiρ i jσi+ρ jkσ jσk

σ
p
k

. (3.6)

So we define the joint probability density function of the demand for the products under

probabilistic selling f (xi, x j, xk) as f ∗(xi, x j, xk) after cannibalization.
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Figure 3.3: The substitution pattern under probabilistic selling.

3.4.3 Substitution pattern

Probabilistic selling encourages substitution between the specific products and the probabilistic

product when stock-out occurs. As shown in Fig. 3.3, different from inventory substitution, there

is no direct substitution between the specific products. The substitution between the specific

products occurs through the probabilistic product. Besides, the offer of probabilistic selling may

increase total product sales.

Furthermore, there are two stages of substitution owing to postponement of product delivery

under probabilistic selling. In the first stage of substitution, substitution occurs to meet the

demands for the higher-priced specific products. For instance, if the demand realization of either

specific product i ( j) exceeds its available inventory Qd
i (Qd

j ), the retailer can select the popular

product i ( j) from the probabilistic product inventory Qd
k to meet the high-priced demand first. In

the second stage of substitution, if the demand for the probabilistic product exceeds its remaining

inventory after the first stage of substitution while the specific products are available, either of

the specific products can serve as a substitute. There is no possibility that both specific products

i and j are out of stock when the demand for the probabilistic product can be fully satisfied.

3.4.4 The optimal inventory decision

The decision variables in the inventory model are (Qp
i ,Qp

j ) rather than (Qd
i ,Qd

j ,Qk
j ). Thus

it suffices to characterize the second stage of substitution. Specifically, we present these cases

and their corresponding probabilities of occurrence in Table 3.1. For instance, Case 3 means

that product j is out of stock, while product i has excess inventory, and the excess inventory is

sufficient to cover the demand for the probabilistic product. The expected profit, which includes

the revenue, the savage cost, and the acquisition cost, is given as follows:

E(Qp
i ,Qp

j )= E


pmin(Dp

i ,Qp
i )+ pmin(Dp

j ,Qp
j )− c(Qp

i +Qp
j )

+p0 min
[
Dk, [(Qp

i −Dp
i )++ (Qp

j −Dp
j )+]

]
+s

[
(Qp

i −Dp
i )++ (Qp

j −Dp
j )+−Dk

]+
.

(3.7)
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Table 3.1: Classification scheme for all the possible cases and their corresponding occurring
probabilities

Case i j k Probability

1 Yes Yes Yes Pr(Dp
i <Qp

i ,Dp
j <Qp

j ,Dp
k < (Qp

i +Qp
j −Dp

i −Dp
j ))

2 Yes Yes No Pr(Dp
i <Qp

i ,Dp
j <Qp

j ,Dp
k > (Qp

i +Qp
j −Dp

i −Dp
j ))

3 Yes No Yes Pr(Dp
i <Qp

i ,Dp
j >Qp

j ,Dp
k < (Qp

i −Dp
i ))

4 Yes No No Pr(Dp
i <Qp

i ,Dp
j >Qp

j ,Dp
k > (Qp

i −Dp
i ))

5 No Yes Yes Pr(Dp
i >Qp

i ,Dp
j <Qp

j ,Dp
k < (Qp

i −Dp
i ))

6 No Yes No Pr(Dp
i >Qp

i ,Dp
j <Qp

j ,Dp
k > (Qp

i −Dp
i ))

7 No No No Pr(Dp
i >Qp

i ,Dp
j >Qp

j ,Dp
k > (Qp

i −Dp
i ))

Proposition 3.1. If the distribution function of the demand is continuous and differentiable,

then the expected profit function is concave in (Qp
i ,Qp

j ).

Proof. See the Appendix A.

It can be recognized from Eq.(3.7) and Table 3.1 that the modelling of product i and product j

are symmetrical. We just analyze the inventory decision of one product and the analysis of the

other product is similar. Differentiating the expected total profit once, we obtain the expected

value of a marginal unit of product i as follows:

∂E(Qp
i ,Qp

j )

∂Qp
i

= p(1−Pr(Dp
i <Qp

i ))

+p0[Pr(Dp
i <Qp

i ,Dp
j >Qp

j ,Dp
k >Qp

i −Dp
i )

+Pr(Dp
i <Qp

i ,Dp
j <Qp

j ,Dp
k >Qp

i +Qp
j −Dp

i −Dp
j )]

+s[Pr(Dp
i <Qp

i )−Pr(Dp
i <Qp

i ,Dp
j >Qp

j ,Dp
k >Qp

i −Dp
i )

−Pr(Dp
i <Qp

i ,Dp
j <Qp

j ,Dp
k >Qp

i +Qp
j −Dp

i −Dp
j )]− c.

(3.8)

The first term of Eq.(3.8) means that any additional inventory of product i will result in an

incremental sales except when there is excess inventory of product i (Dp
i <Qp

i ). The retailer can

still benefit from the marginal unit of product Qp
i by satisfying the demand for the probabilistic

product (which may happen whenever the demand for product j can be satisfied), yielding p0.

The third term means that, if the inventory of product i exceeds its demand and the demand for

the probabilistic product can also be satisfied, the marginal unit of product i is only worth its

salvage value s. To simplify the notation, we re-arrange Eq.(3.8) and characterize the optimal

order quantities.

Proposition 3.2. The optimal order quantities (Qp∗
i ,Qp∗

j ) under probabilistic selling can be
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expressed as  F(Qp
i
∗) = p−c+(p0−s)G(Qp∗

i ,Qp∗
j )

p−s

F(Qp∗
j ) = p−c+(p0−s)N(Qp∗

i ,Qp∗
j )

p−s ,
(3.9)

where

G(Qp∗
i ,Qp∗

j )=
∫ Qp∗

i

0

∫ Qp∗
j

0

∫ ∞

Qp∗
i +Qp∗

j −Dp
i −Dp

j

f ∗(xi, x j, xk)dxidx jdxk

+
∫ Qp∗

i

0

∫ ∞

Qp∗
j

∫ ∞

Qp∗
i −Dp

i

f ∗(xi, x j, xk)dxidx jdxk,

N(Qp
i
∗,Qp

j
∗)=

∫ Qp∗
i

0

∫ Qp∗
j

0

∫ ∞

Qp∗
i +Qp∗

j −Dp
i −Dp

j

f ∗(xi, x j, xk)dxidx jdxk

+
∫ ∞

Qp
i

∫ Qp∗
j

0

∫ ∞

Qp∗
j −Dp

j

f ∗(xi, x j, xk)dxidx jdxk.

We see that the optimal order quantities are adjustments of the solution for the newsvendor

model given in Eq.(3.1) and Eq.(3.2). Specifically, G(Qp∗
i ,Qp∗

j ) raises Qp
i due to the possibility of

substituting for the probabilistic product. Substitution occurs in two cases: one is the case where

product i has excess inventory while product j is out of stock, the other is the case where both

specific products i and j have excess inventory, while the probabilistic product is out of stock.

Similarly, N(Qp∗
i ,Qp∗

j ) raises Qp
j due to the substitution ability of product j. The implication of

this proposition is that the retailer should hold more inventory of the products that have greater

possibilities to substitute the other products. Thus the retailer can make incremental profit from

the substitute product.

Compared with inventory substitution, the inventory decision under probabilistic selling is

influenced by the price of the probabilistic product. Next, we analytically derive some properties

of the effect of p0 on the optimal inventory decision.

Proposition 3.3. When the price of the probabilistic product increases, the retailer should

adjust its inventory decision depending on the substitution possibility. Specifically,

a) The retailer should order more product j and less product i (
∂E(Qp

i
∗)

∂p0
< 0,

∂E(Qp
j
∗)

∂p0
> 0) if the

substitution possibility of product i is sufficiently small (G < b∗
d∗ N).

b) The retailer should order more product i and less product j (
∂E(Qp

i
∗)

∂p0
> 0,

∂E(Qp
j
∗)

∂p0
< 0) if the

substitution possibility of product i is sufficiently large (G > a∗
c∗ N).

c) The retailer should order more of both products i and j (
∂E(Qp

i
∗)

∂p0
> 0,

∂E(Qp
j
∗)

∂p0
> 0) if the

substitution possibility is moderate ( b∗
d∗ N <G < a∗

c∗ N),

where a∗, b∗, c∗, and d∗ denote the value of
∂E(Qp

i ,Qp
j )2

∂2Qp
i

,
∂E(Qp

i ,Qp
j )2

∂Qp
i ∂Qp

j
,
∂E(Qp

i ,Qp
j )2

∂Qp
j ∂Qp

i
, and

∂E(Qp
i ,Qp

j )2

∂2Qp
j

at (Qp
i
∗,Qp

j
∗), respectively. Besides, a∗

c∗ > 1 and b∗
d∗ < 1.
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Proof. See the Appendix A.

In the classic single-product newsvendor model, the optimal inventory (i.e. Eq.(3.1) and

Eq.(3.2)) increases with the price. However, when it comes to the two-product setting of prob-

abilistic selling. How does the retailer adjust the optimal inventory decision when the price of

the probabilistic product increases? Proposition 3.3 states that, if there is an increase in the

price of the probabilistic product, the retailer should order more of one product and less of the

other when the difference of their substitution possibilities is large (e.g., G < b∗
d∗ N, G > a∗

c∗ N). And,

when the difference is not large, the retailer should increase the inventory of both products (e.g.,
b∗
d∗ N <G < a∗

c∗ N). That means that the retailer should always order more product with higher sub-

stitution possibility. However, whether increase the inventory of product with lower substitution

possibility or not depends on the difference of the two product’s substitution possibility.

3.5 Comparisons for some special cases

Comparing the two strategies is difficult when the substitution fraction rs, and the canni-

balization indices ai and a j are non-zero. Therefore, we first compare the two strategies under

some special cases, and then conduct computational studies in the next part to compare the two

strategies in general. In practice, the cannibalization index a in probabilistic selling may become

zero when customers’ price sensitivity is low or product differentiation is very large (Granados

et al., 2010; Post and Spann, 2012). The substitution fraction rs may become zero when product

differentiation is very large.

Case 1: ai = a j = 0, Dk = 0 and rs=0. Inventory substitution is equivalent to probabilistic

selling as they have the same optimal order quantity and expected profit, and neither strategy

can improve the profit of the retailer.

This case may arises when the product differentiation is too large in a saturated market.

In this case, both inventory substitution and probabilistic selling fail to generate additional

profit from substitutable demand, and the introduction of low-priced products cannot attract new

demand in this market. Thus, both strategies reduce to the classical newsvendor model.

Case 2: ai = a j = 0, Dk 6= 0 and rs = 0. Probabilistic selling outperforms inventory substitution

as it yields a higher profit with a higher inventory level.

In this case, neither the customers in probabilistic selling nor in inventory substitution

accept a substitute when the product differentiation is too large. However, there are some

new customers enticed to buy discounted products under probabilistic selling. This case can

be explained by similar arguments in Post and Spann (2012), and Anderson (2009). Therefore,

inventory substitution reduces to the classical newsvendor model and probabilistic selling can

increase the profit by market expansion. However, the optimal inventory level under probabilistic

selling is higher than that under inventory substitution because both Qp
i
∗> p−c

p−s and Qp
j
∗> p−c

p−s

when G(Qp∗
i ,Qp∗

j )> 0 and N(Qp∗
i ,Qp∗

j )> 0.
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Case 3: ai = a j = 0, Dk 6= 0 and rs 6= 0. Inventory substitution requires more customers willing

to accept the substitute product than probabilistic selling to achieve the same profit at the same

marginal profit from the substitute product.

In this case, the comparison of the two strategies depends on the demand and marginal profit

obtained from the substitute product. When the size of the new market expansion demand under

probabilistic selling is the same as the number of customers that face a stock-out situation and

accept another product, the retailer has the same amount of discounted product sales under

the two selling strategies. However, probabilistic selling can increase the high-priced product

sales through substitution while inventory substitution cannot. Therefore, probabilistic selling

outperforms inventory substitution when it can attract an equal number of customers willing

to accept a substitute. Besides, because the retailer offers the probabilistic product in the first

selling stage rather than the second under inventory substitution, it has the potential to secure

more demand for the low-priced products.

3.6 Computational studies

In this section we consider a more general case where the cannibalization index ai = a j 6= 0

and rs 6= 0. The main question that drives the design of the computational studies is under what

conditions probabilistic selling outperforms inventory substitution, and vice versa. Specifically,

we explore the effects of the customer transfer coefficient and demand uncertainty on the optimal

profit and inventory under both strategies. The customer transfer coefficient is reflected by the

substitution fraction rs under inventory substitution and the cannibalization index ai(a j) under

probabilistic selling. The difference is that one is positive transfer induced by price and the other

is negative transfer forced by the stock-out of products.

We assume that the original demands D t
i and D t

j are equal, which are normally distributed

with parameters that satisfy the assumptions: mean ui(u j)= 100, standard deivation σi(σ j)=σ=
[20,30,40,50], the initial correlation coefficient ρ i j = 0, p = 40, c = 20, s = 10, ai = a j = a ∈ [0,1],

t = 2, and rs ∈ [0,1]. In order to focus on the substitution effect of the two strategies, we assume

that there is no new market expansion demand under probabilistic selling (e.g., Dk = 0 when the

original market is saturated). For simplicity, we use “PS” and “IS” to denote probabilistic selling

and inventory substitution, respectively.

3.6.1 The effect of the customer transfer coefficient

As shown in Fig. 3.4, with different price discounts (i.e., 95%, 90%, and 85%), the results reveal

the same trend that probabilistic selling achieves the highest expected profit at a relatively small

customer transfer coefficient, while the expected profit under inventory substitution increases

with the customer transfer coefficient. These two observations are consistent with the results in

Zhang et al. (2016) and Rajaram and Tang (2001), respectively.
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Figure 3.4: Expected profit of inventory substitution and probabilistic selling with different price
discounts.

The efficiency of demand substitution under probabilistic selling increases with a smaller

customer transfer coefficient (if the index is too small, the buffering effect of the probabilistic

product for demand substitution becomes insignificant), while being restricted at larger customer

transfer coefficient. One reason is that profit decreases with demand correlation when demand

is multivariate normal (Netessine and Rudi, 2003). It can be obtained from Eqs 3.5-3.6 that

the correlation between the newly revised demand would increase as more customers switch

from product i ( j) to k. The positively correlated demands of products i, j, and k result in high

possibilities of large and small substitution demands simultaneously. The probability that the

retailer substitutes specific products for the probabilistic product, or vice versa when stock-out

occurs is relatively small. Another reason is that more customers will switch to buying the

probabilistic product that yields a lower profit margin, which can harm the retailer’s profit. When

the profit that demand substitution brings cannot offset the lower sales of the specific products,

profit improvement will decrease. Therefore, probabilistic selling is most advantageous when the

customer transfer coefficient is large enough to enable substitution, but not so large that very

few consumers will buy the high-priced products.

As shown in Fig. 3.4, the expected profit under probabilistic selling with a fixed customer

transfer coefficient would decrease with price discount. This means that probabilistic selling

requires some customers that have high price sensitivity to be attracted by the product with a

small discount. Otherwise, when only few customers are attracted by a large discount, inventory
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substitution would be more advantageous than probabilistic selling.

3.6.2 Comparison of the expected profit

In this section we compare the performance of the two strategies when customers are price-

sensitive. We take the fixed discount 95% as an example and define PSe − ISe as the difference

in the optimal expected profit under the two strategies. A positive value means that probabilistic

selling is more advantageous; otherwise, inventory substitution strategy is more advantageous.

We draw a colour map as shown in Fig. 3.5 to facilitate analysis of strategy selection. We colour a

positive value in red and a negative one in blue. From the computational results, we make the

following observations:

(a) (b)

(c) (d)

Figure 3.5: Expected profit comparison with respect to different initial demand uncertainty

Observation 3.1: With a relatively small customer transfer coefficient under probabilistic

selling and inventory substitution, the former is more profitable. Inventory substitution out-

performs probabilistic selling when the transfer coefficients under the two strategies are very

high.

Observation 3.2: Probabilistic selling is more advantageous than inventory substitution at

higher demand uncertainty.
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From Fig. 3.4 and Fig. 3.5, we see that probabilistic selling can greatly improve profit with

a smaller customer transfer coefficient than inventory substitution. For example, probabilistic

selling can achieve a higher profit with a = 0.1 when σ=20, while inventory substitution requires

rs = 0.4 to achieve the same profit. When σ=30, probabilistic selling can achieve a higher profit

with a = 0.2, while inventory substitution requires rs = 0.5. However, when the customer transfer

coefficient is larger, the advantage of probabilistic selling diminishes while inventory substitution

can still bring more profit to the retailer. The customer transfer coefficient a under probabilistic

selling mainly depends on customers’ price sensitivity and product differentiation. Probabilistic

selling requires that some customers are sensitive to price to be attracted to buy the probabilistic

product (Zhang et al., 2016; Fay and Xie, 2008). At the same time, product differentiation should

be large enough to avoid too much transfer (Post, 2010). Inventory substitution mainly depends

on product differentiation. And the more customers that will accept another product are, the

more sales the retailer can get in the second selling stage.

Therefore, lower product differentiation is necessary for inventory substitution to be advan-

tageous. Just as shown in Fig. 3.5, when product differentiation is very low, and the customer

transfer coefficient a and rs are high, inventory substitution can bring more profit to the retailer.

Therefore, the implication for the retailer is as follows: Adopting a proper selling strategy to

manage demand uncertainty depends on customer characteristics and product differentiation. If

the specific products have great similarity, inventory substitution is more advantageous, while

relatively lower product similarity and higher price-sensitive customers can bring more profit

to the retailer that adopts probabilistic selling. This observation is consistent with reality that

probabilistic selling is common in third-party intermediary platforms which sells various products

from different vendors, e.g., a seller may use inventory substitution to sell double-bed rooms and

twin-bed rooms in one specific hotel, and may use probabilistic selling to sell rooms belonging to

different hotels (e.g., Hotwire.com).

Observation 3.2 is obvious. The red-coloured area increases with demand uncertainty. The

application range for adopting probabilistic selling is much wider when demand uncertainty is

larger. Therefore, probabilistic selling is a more promising strategy to combat demand uncertainty.

3.6.3 Comparison of the optimal inventory decision

We define PSv − ISv as the difference between the optimal total inventory under the two strate-

gies. A negative value means that the retailer would hold less inventory when implementing

probabilistic selling. We draw a colour map as shown in Fig. 3.6, in which we colour the pos-

itive values in red and the negative values in blue. From the results, we make the following

observation.

Observation 3.3: Probabilistic selling is more advantageous than inventory substitution in

reducing inventory under most circumstances.

As shown in Fig. 3.6, the blue-coloured area is very large. The inventory level under proba-
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(a) (b)

(c) (d)

Figure 3.6: Optimal inventory comparison with respect to different initial demand uncertainty

bilistic selling is usually lower than that under inventory substitution. Combined with Fig. 3.5,

we find that when probabilistic selling outperforms inventory substitution in terms of yielding a

higher profit, its optimal inventory is always lower than that under inventory substitution. The

only exception is when a = 0.1 and rs = 0.3 with σ=50. In contrast, when inventory substitution

is more profitable, its optimal inventory is usually higher than that under probabilistic selling.

Therefore, if it is optimal for the retailer to adopt probabilistic selling in a specific environment,

it can usually obtain a higher profit with lower inventory than inventory substitution.

3.7 Conclusions

By offering the low priced probabilistic product to induce some customers to buy a flexible

product, the retailer can substitute demand when stock out occurs to hedge against the demand

uncertainty. Both probabilistic selling and inventory substitution strategy share the common

feature in combating demand uncertainty through demand substitution. Therefore, our study

focuses on analyzing and comparing the efficiency of the two strategies. In this chapter we

first develop a single-period newsvendor model with three products to analyze probabilistic

selling with a view to generating insights into using probabilistic selling to manage demand

uncertainty. We then compare probabilistic selling with inventory substitution in the special
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cases without cannibalization. To gain additional insights into the normal situation, we use

computational examples to compare the two strategies in terms of overall profit and inventory

with considerations of customer transition and demand uncertainty.

While both inventory substitution and probabilistic selling can induce demand from product-

insensitive customers to achieve demand substitution, they differ in that probabilistic selling

allows customers to accept uncertainty voluntarily at a discounted price rather than forcing

them to accept another product like that under inventory substitution. The computational results

show that probabilistic selling will bring more profit to the retailer when selling products with

relatively lower similarity to higher price-sensitive customers, and it is more profitable to use

inventory substitution to sell products with high similarity. Besides, higher demand uncertainty

increases the profitability of probabilistic selling over inventory substitution.

The research of exploring the inventory mechanism of probabilistic selling compared with

inventory substitution has theoretical and practical significance. The study enriches the research

about probabilistic selling as an inventory management tool to combat demand uncertainty.

According to the conclusions of this manuscript, the retailer can choose the efficient strategy

considering product differentiation, customer characteristics, and level of demand uncertainty.

This has significant practical implications for the retailer that sells multiple products as follows:

First, under probabilistic selling, the retailer should not be afraid of cannibalization because a

proper degree of cannibalization can benefit the retailer in terms of yielding a higher expected

profit. When the price of the probabilistic product increases, the retailer should always order

more inventory of the product with higher substitution possibility. Second, if the retailer sells

the substitute product with lower product similarity to price-sensitive customers, it is advised

to use probabilistic selling to achieve a higher profit, and order less inventory than inventory

substitution in most cases. On the other hand, inventory substitution is the better choice for the

retailer when the product similarity is higher.

We assume in this study that the price of the probabilistic product is an exogenous variable.

Future research may extend our work by combining the pricing and inventory decisions. It is also

worth considering PS in a supply chain setting (Shen et al., 2017; Minner, 2003). For example, it

is interesting to explore the conditions under which a retailer’s probabilistic selling will benefit

the supplier, the retailer, and both.
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4
INVENTORY DECISION OF PROBABILISTIC SELLING WITH

PRICE-DEPENDENT DEMAND RESHAPE

4.1 Introduction

When the retailer offers probabilistic goods, the retailer usually charges a lower price for the

probabilistic products than their source products. According to Meredith and Maki, a low-priced

brand would cannibalize sales of a higher-priced brand (upward cannibalization) with enough

price gap between the two brands (Meredith and Maki, 2001). Therefore, the price gap between

the specific product and probabilistic product would reshape the demand, i.e., demand for specific

products switch to the probabilistic product. And it is necessary to consider the price-dependent

demand reshape in probabilistic selling.

Therefore, this chapter analyzes the effect of probabilistic selling on inventory management

through demand substitution and price-dependent demand reshape. The study of this chapter is

based on Chapter 3. And the difference of this chapter is: In order to concentrate on the effect

of probabilistic selling on inventory management, we ignore the increased demand due to the

offer of the lower-priced products, i.e.,the demand for the probabilistic products comes from the

switched demand. Furthermore, we assume that the demand switch is mainly determined by the

price discount for the probabilistic product(Meredith and Maki, 2001; Eynan and Fouque, 2003).

It is notable that the extant studies on demand reshape rarely consider the switching cost

(Eynan and Fouque, 2003, 2005). However, the demand switch in probabilistic selling is cost, i.e.,

price discount, driven. Therefore, we employ a switch pattern similar to Eynan and Fouque (2005)

but consider the switching cost. Moreover, the switching rate is determined by the switching cost,

i.e., the price gap between the probabilistic product and the specific products.
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The main purpose of this study is to analyze the effect of probabilistic selling on inventory

management through demand substitution and price-dependent demand reshape. We construct a

newsvendor-type model to characterize the price-dependent demand substitution pattern. We

perform a simulation study to extensively explore the effects of demand uncertainty, demand

correlation, price sensitivity, and price discount on inventory decisions and profitability of prob-

abilistic selling. The results show that probabilistic selling can benefit the seller with higher

expected profit and lower inventory by reducing demand uncertainty and improving inven-

tory efficiency, even without considering the increased demand due to offering the low-priced

probabilistic product. Moreover, the effect of probabilistic selling is more significant with lower

product differentiation, higher customers’ price sensitivity, and higher demand uncertainty. It is

noted that the optimal selection of the price discount is necessary to secure good performance of

probabilistic selling, given that improper pricing will undermine seller’s profit.

4.2 The Model

4.2.1 Definitions and assumptions

We consider the scenario where an online retailer of two homogeneous products, i and j, creates

the virtual probabilistic product k, and sells i, j, and k simultaneously. In probabilistic selling,

the specific products i and j achieve substitution through the probabilistic products k instead of

being direct substitutes for each other. The event sequence of probabilistic selling is as follows:

First, the retailer purchases a quantity Qp
i of product i and a quantity Qp

j of product j. Second, it

announces the prices of the specific products and the price discount of the probabilistic product.

All the demands for the products arrive at the same time. Then the retailer would substitute

the available products for the stock-out products. The substitution policy is that the demands

for specific products i and j have priority to be satisfied. The retailer aims to make the optimal

inventory decisions with different price discounts.

We use the following notation throughout this chapter:

p: the selling price of two specific products i and j,

r: discount of the regular price p (i.e., the probabilistic product k would be sold at price (1− r)p,

λ: price sensitivity level of customers (the customers with higher price sensitivity are more likely

to switch from purchasing specific products to the probabilistic product),

α: the rate of customers switching from the specific products i and j to the k,

c: purchasing cost of the products,

v: salvage cost of the products i, j and k,

q: penalty cost of the products i, j and k,

D i:distribution of the original demand for the specific product i, D i ∼ (ui,σi),

D j:distribution of the original demand for the specific product j, D j ∼ (u j,σ j),

Dp
i : stochastic demand of product i when offering the probabilistic product,
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Dp
j : stochastic demand of product j when offering the probabilistic product,

uk:mean of the demand for the probabilistic product k,

σk: standard deviation of the demand for the probabilistic product k,

ρ i j: the correlation coefficient of the original demands for products i and j,

f (x, y):the joint distribution function of the original demands for specific products i and j.

Without loss of generality, we assume that the demands for specific products follow the normal

distribution. The retailer gives a discount of r to induce some customers to buy the probabilistic

product. When introducing the discounted probabilistic product, α per cent of the customers

who originally intend to buy specific products would switch to buy the probabilistic product k.

The switch rate α is related to two key elements, namely the price gap and the level of product

differentiation (Meredith and Maki, 2001). Therefore, give two certain specific products, we define

the switch rate as

α=λr, (4.1)

where λ is the price sensitivity level of the customers. The discount rate r satisfies 0 ≤ r <
1− c/p to make sure that the price of the probabilistic product is higher than the cost c. Eq.(4.1)

implies that the switch rate is positively related to the discount r when λ> 0. When r = 0, the

probabilistic selling problem degenerates into the classic newsvendor problem without demand

substitution and into the centralized inventory strategy when r = 1.

4.2.2 Model

We assume that the total demand for the probabilistic product comes from demand for the specific

source products. Thus, the original demands for the two specific products i and j would be

reshaped under probabilistic selling as follows:

Dp
i = (1−α)D i,

Dp
j = (1−α)D j.

(4.2)

The demand distribution of the probabilistic product can be expressed as

Dp
k = αD i +αD j. (4.3)

The expected profit in Eq.(4.4) includes the revenue, the salvage cost, the penalty cost, and the

acquisition cost as follows:

E
(
Qp

i ,Qp
j

)
= E



pmin
(
Dp

i ,Qp
i
)+ pmin

(
Dp

j ,Qp
j

)
+ (1−λr) pmin

[
Dp

k ,
[(

Qp
i −Dp

i
)++

(
Qp

j −Dp
j

)+]]
+s
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i −Dp
i
)++

(
Qp

j −Dp
j

)+−Dp
k

]
− c

(
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)
−q

[(
Dp
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i
)++

(
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)+−
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)+−

(
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)+)+] (4.4)
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The demands for the products vary over the domain D i ≥ 0 and D j ≥ 0. With a given switch

rate α, the expected profit E
(
Qp

i ,Qp
j

)
depends on the relationship between α and the optimal

order sizes Qp
i and Qp

j . Therefore, the expected profit can be calculated in four different cases,

i.e., Case I:αQp
i +αQp

j ≤Qp
i and αQp

i +αQp
j ≤Qp

j ; Case II: αQp
i +αQp

j ≤Qp
i and αQp

i +αQp
j ≥Qp

j ;

Case III:αQp
i +αQp

j ≥Qp
i and αQp

i +αQp
j ≤Qp

j ; Case IV: αQp
i +αQp

j ≥Qp
i and αQp

i +αQp
j ≥Qp

j ,

as shown in Fig. 4.1.

(a) (b)

(c) (d)

Figure 4.1: The four cases of the expected profit.

Considering the spirit of modelling the expected profit is the same as those in the above

four cases, we just present in this section the details of case IV for conciseness. The expected

profit functions in the other three cases can be formulated in the same way. Analysis of Case IV

proceeds as follows:

(1)Under the condition of
{
Q i ≥ (1−α)D i,Q j ≥ (1−α)D j,Q i +Q j −D i −D j ≥ 0

}
, the proba-

bilistic product is out of stock. However, the generated substitute demand for product i (or

product j) can be met from stock. The expected profit function is

∫ Qp
i +Qp

j

0

∫ Qp
i +Qp

j −x

0

[
p (1−α) x+ p (1−α) y+ (1− r) p (αx+αy)+ s

(
Qp

i +Qp
j − x− y

)
− c

(
Qp

i +Qp
j

)]
f (x, y)dxdy

(2)Under the condition of
{
Q i ≥ (1−α)D i,Q j ≥ (1−α)D j,Q i +Q j −D i −D j ≤ 0

}
, the proba-

bilistic product is stock out. Only part of the substitute demand can be met from the remaining
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inventory of products i and j. The relevant expected profit function is

∫ Qp
i +Qp

j

0

∫ Q p
j

1−α

Qp
i +Qp

j −x

[
p (1−α) x+ p (1−α) y+ (1− r) p

(
Qp

i +Qp
j − (1−α) x− (1−α) y

)
− q

(
x+ y−Qp

i −Qp
j

)
− c

(
Qp

i +Qp
j

)]
f (x, y)dxdy

+
∫ Q p

i
1−α

Qp
i +Qp

j

∫ Q p
j

1−α

0

[
p (1−α) x+ p (1−α) y+ (1− r) p

(
Qp

i +Qp
j − (1−α) x− (1−α) y

)
− q

(
x+ y−Qp

i −Qp
j

)
− c

(
Qp

i +Qp
j

)]
f (x, y)dxdy

(3)Under the condition of
{
Q i ≤ (1−α)D i,Q j ≥ (1−α)D j,Q j − (1−α)D j ≤αD i +αD j

}
, both

the probabilistic product and specific product i are stock out. Furthermore, only part of the

substitute demand can be met from the remaining inventory of product j. The relevant expected

profit function is

∫ ∞
Q p

i
1−α

∫ Q p
j

1−α

0

[
pQp

i + p (1−α) y+ (1− r) p
[
Qp

j − (1−α) y
]
− q

(
x+ y−Qp

i −Qp
j

)
− c

(
Qp

i +Qp
j

)]
f (x, y)dxdy

(4)Under the condition of
{
Q i ≤ (1−α)D i,Q j ≤ (1−α)D j

}
, both specific products i and j are

stock out. None of the substitute demand can be met. The relevant expected profit function is

∫ ∞
Q p

i
1−α

∫ ∞
Q p

j
1−α

[
pQp

i + pQp
j − q

(
x+ y−Qp

i −Qp
j

)
− c

(
Qp

i +Qp
j

)]
f (x, y)dxdy

(5) Under the condition of
{
Q i ≥ (1−α)D i,Q j ≤ (1−α)D j,Q i − (1−α)D i ≤αD i +αD j

}
, both

the probabilistic product and specific product j are stock out. Furthermore, only part of the

substitute demand can be met from the remaining inventory of product i. The relevant expected

profit function for this part is

∫ Q p
i

1−α

0

∫ ∞
Q p

j
1−α

[
p (1−α) x+ pQp

j + (1− r) p
[
Qp

i − (1−α) x
]− q

(
x+ y−Qp

i −Qp
j

)
− c

(
Qp

i +Qp
j

)]
f (x, y)dxdy

By calculating the Hessian matrices in the four cases, we can show that the expected function

E
(
Qp

i ,Qp
j

)
is concave with respect to (Qp

i ,Qp
j ) (Proof. See the Appendix B). However, we cannot

derive closed-form solutions due to the high complexity of the expected profit function, which

prevents us from investigating the relationships among different variables of interest. Fortunately,

the expected profit function is concave, so we can search for the optimal solution using a numerical

simulation approach.
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4.3 Simulation insights on inventory and profit performance

4.3.1 Simulation design

This simulation aims to obtain insights into the inventory and profit performance in probabilistic

selling by addressing the following two questions: (1) What is the performance of probabilistic

selling in terms of total inventory level and expected profit compared with that of the classic

newsvendor model? (2) What is the effect of demand uncertainty, demand correlation, price

discount, and price sensitivity on the profitability of probabilistic selling?

Consistent with the above assumptions, we set the parameter values for the simulation

studies as follows: ui = u j = 1200, p = 40, c = 10, s = 0, q = 4,σ = σ1 = σ2 = 400,500,600,ρ i j =
−0.5,0,0.5, r ∈ [0,0.75], and λ ∈ [0,4/3] 1. With different parameter combinations, we use the

Mathematica to search for the optimal orders of products i and j (Qp
i and Qp

j ), and the corre-

sponding expected profit E(Qp
i ,Qp

j ). Then we calculate the profit increase PI = E(Qp
i ,Qp

j )−E(Q t
i ,Q

t
j)

E(Q t
i ,Q

t
j)

and inventory decrease DI = (Q t
i+Q t

j)−(Qp
i +Qp

j )
Q t

i+Q t
j

with respect to those of the classical newsvendor

model, where Q t
i and Q t

j denote the optimal orders of products i and j in the classical newsvendor

model, respectively.

4.3.2 Simulation analysis

(1) Effects of price discount and demand uncertainty

Figure 4.2: The effects of price discount and demand uncertainty on inventory level

1The switch rate becomes 1 When the customer price sensitivity is larger than 4/3. Then all the customers will
buy the probabilistic product, which will not affect optimal inventory level anymore but decrease the expected profit
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Figure 4.3: The effects of price discount and demand uncertainty on the expected profit

As shown in Fig. 4.2, the inventory level decreases with price discount. This pattern can

be explained from two aspects. On the one hand, the increasing price discount induces more

customers who intended to buy the two different specific products to buy single species of

probabilistic product, which reshapes the demand distribution. Consequently, the aggregate

demand uncertainty would decreases with the switching amount (Eynan and Fouque, 2003).

Besides, the demand substitution also contributes to inventory decrease. Because with nonzero

price discount, the demand of probabilistic product become a pool for substitution when stock-out

occurs, which also helps to reduce demand uncertainty. However, on the other hand, the retailer

would sell more of the lower-priced probabilistic product to customers with increasing price

discount. Consequently, this phenomenon leads to a trade-off between the benefits of decreased

inventory and profit decrease resulting from more low-priced customers. Therefore, the curves in

Fig. 4.3 show that the expected profit increases with price discount first and then decreases with

it. With lower price discounts between 0 and 0.2, probabilistic selling can benefit the retailer

with higher profit and lower inventory. However, with larger price discounts, the benefit of

lower inventory would not offset the profit decrease due to lower prices, resulting in a rapid

decline. Another observation from Fig. 4.2 and Fig. 4.3 is that the efficiency of probabilistic selling

would increase with respect to higher demand uncertainty. As demand reshape and demand

substitution would benefit the retailer with reduced demand uncertainty, there will be more room

for improvement through probabilistic selling.

(2) Effects of customer price sensitivity and price discount

As shown in Fig. 4.4, when the customers’ price sensitivity is higher, the retailer can achieve

higher profit increases with the optimal price discount. This is logical because with higher
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Figure 4.4: The effects of price sensitivity on the expected profit

Figure 4.5: The effects of price sensitivity on the inventory level
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customers’ price sensitivity, there would be more demand switch, even though the retailer offers

a small price discount. In other words, the retailer will benefit more from the smaller “price

sacrifice”. The curves in Fig. 4.5 share the same logic that the retailer can always get higher

inventory decrease with higher customer price sensitivity. When the switch rate approaches

1, we can expect that probabilistic selling reduces to centralized inventory and the inventory

levels would be the same. We can also interpret the observation from the perspective of product

differentiation. It is reasonable that lower product differentiation leads to higher price sensitivity

with some certain price discount. And according to the observation that higher price sensitivity

can benefit the retailer with higher profit, we can conclude that the retailer has the potential to

gain more profit by offering products with weaker product differentiation at the optimal price

discount.

(3) Effects of demand correlation and price discount

Figure 4.6: The effects of demand correlation on the expected profit

From Fig. 4.6 we can see that the expected profit decreases with demand correlation, which is

consistent with Netessine and Rudi (2003). As for the aspect of demand reshape, lower demand

correlation results in lower demand uncertainty. As for the aspect of demand substitution, posi-

tively correlated demands of products i and j result in simultaneous large or small substitution

demands with a high possibility. That means that the probability that the retailer substitutes

specific products for the probabilistic product occurs is low. Therefore, the negative correlation

will result in higher expected profit.

However, the price profit gap becomes small when the price discount is very large. The possible

reason is that when price discount is large, the demand for the specific products is small while the

demand for the probabilistic product is large. Then the substitution demand from the customers

41



CHAPTER 4. INVENTORY DECISION OF PROBABILISTIC SELLING WITH
PRICE-DEPENDENT DEMAND RESHAPE

Figure 4.7: The effects of demand correlation on the expected profit

who buy specific products is small, which reduces the effect of demand substitution. Similarly,

the optimal inventory level with smaller demand correlation is lower, while becomes higher

when the price discount is very large. The reason is that the benefit from demand substitution

would diminish when the price discount become larger. Meanwhile, the substitution probability is

larger when demand correlation is negative, which increases optimal inventory (e.g., the optimal

inventory increases with its substitution probability). Therefore, the inventory level with lower

demand correlation maybe higher than the inventory level with higher demand correlation.

4.4 Conclusions

To investigate the effects of probabilistic selling on inventory decisions and expected profit

through demand reshape and demand substitution, we first analyse the demand reshape and

substitution patterns under probabilistic selling and propose a single-period newsvendor model

with stochastic demands for multiple products. Subsequently, we perform a simulation experiment

to figure out the effects of price discount, customer price sensitivity, demand uncertainty, and

demand correlation on the retailer’s optimal inventory level and expected profit. The results show

that probabilistic selling can benefit the seller with higher expected profit and lower inventory by

reducing demand uncertainty and improving inventory efficiency, even without considering the

increased demand due to offering the low-priced probabilistic product. Besides, the efficiency of

probabilistic selling with respect to managing inventory is closely dependent on customers’ price

sensitivity or product differentiation, demand uncertainty, and the demand correlation. Moreover,

the effect of probabilistic selling is more significant with lower product differentiation, higher
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customers’ price sensitivity, and higher demand uncertainty. It is noted that the optimal selection

of the price discount is necessary to secure good performance of probabilistic selling, given that

unsuitable values of lead to lower expected profits in our simulation.
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5
INVENTORY-PRICING POLICY IN “PHYSICAL” PROBABILISTIC

SELLING

5.1 Introduction

In the retailing industry, retailers can attract customers by providing mystery products (e.g.,

some product information is unknown to customers until they place the orders). For example,

the mystery sealed “lucky bags” of discounted products (called Fukubukuro) are very popular in

Japan during the new year holiday. These lucky bags come in all shapes and sizes with various

themes ranging from clothes, accessories, toys, cosmetics etc. Customers do not know what is

exactly inside the bag until they buy and open them. Every year, customers in Japan and overseas

fans are attracted by the random surprise and discount from the lucky bags. Another example is

Ferrero that proffers the Kinder Joy or Kinder Surprise eggs containing random toys. Ferrero

reported that the good performance of its range of Kinder products helped it achieve a 14%

increase in annual pretax profit after sales in 2014 (Abdulla, 2015). Chocolate company Zaini

also produces similar mystery chocolate toys. Yet another example is the toys proffered in a

gashapon machine or an opaque box, which can be found in shopping stores or online websites,

e.g., Taobao.com, Amazon.com, ToyWiz.com etc. Fig. 5.1 provides a specific example of an online

retailer selling toys packaged in an opaque box (referred to as mystery products). A customer

buying such an opaque product has a chance to get one of the component cartoon figures printed

on the box. If the customer does not accept uncertainty, they may pay a higher price for a specific

product packed in a transparent box.

Except for the benefit of demand expansion due to customer curiosity, it is a significant

1Source of the specific product: https://item.taobao.com. The figure of the probabilistic product was taken in a
retail store in Japan.
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(a) (b)

Figure 5.1: An example. 1

issue to ascertain the operational benefits to retailers of offering such mystery products. Besides,

when offering the specific and mystery products simultaneously, how should the retailer set its

inventory-pricing policy? Specifically, we address the following questions in this chapter: What is

the optimal price discount for the mystery product that yields the maximum profit to the retailer?

How should the retailer allocate inventory between the specific and mystery products? What are

the impacts of the key factors such as demand variability, customer price sensitivity, and product

differentiation on the optimal outcomes? And, how does supply uncertainty affect the retailer’s

performance?

The selling strategy that offers mystery products can be regarded as a special form of

probabilistic selling (PS). Fay and Xie (2008) defined PS as the selling strategy under which

the retailer selling multiple products creates an additional “virtual” probabilistic product by

hiding some product information to be sold at a discount. However, differing from the probability

product in Fay and Xie (2008), ours is a discounted physical probabilistic product (PPP) that can

also be bought in bricks-and-mortar shops rather than merely a “virtual” product bought online.

To differentiate our work from Fay and Xie (2008), we refer to the PS strategy under study as

“physical probabilistic selling” (PPS).

Related research has demonstrated that the offer of a lower-priced probabilistic product

enables the retailer to segment the market (Shapiro and Shi, 2008; Fay and Xie, 2008) and

increase the product category range to satisfy customers’ personalized needs, which facilitate

differential pricing to increase market size and profit (Anupindi and Jiang, 2008; Fay and Xie,

2008). Some operational studies also have explored the benefits of adopting PS for inventory

management through postponing the delivery of the probabilistic product (Petrick et al., 2012;

Gönsch and Steinhardt, 2013; Gallego and Phillips, 2004; Wu and Wu, 2015), dynamic allocation

depending on inventory (Elmachtoub and Wei, 2015), or demand substitution (Zhang et al., 2016).

However, the above literature considers “virtual” probabilistic products rather than physical ones.
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In addition, the benefits for inventory management are not applicable under PPS. In our setting,

the customer that buys the PPP will get the product immediately and the retailer cannot benefit

from PPS through demand postponement or dynamic allocation. In other words, the retailer

has to make the pricing and inventory allocation decisions in advance. The benefits of demand

postponement and dynamic allocation from selling “virtual” probabilistic products do not exist

and the motivation for adopting PPS is unclear.

In this study we consider a retailer ordering two specific products from a upstream supplier

has the choice to allocate some inventory as a discounted PPP. All the demand for the PPP comes

from the stochastic demand for the specific products, depending on the price discount and product

differentiation. We construct a model to derive the retailer’s optimal price-inventory decisions to

maximize its expected profit. We then compare PPS with traditional selling (TS) with respect

to expected profit and optimal inventory. Finally, we perform numerical studies to investigate

the effect of supply risk on PPS. To address the research questions, we follow the approaches of

Eynan and Fouque (2003), and Hsieh (2011) for modelling and analysis.

Our main result is that PPS can help alleviate both demand and supply uncertainty risks.

First, we find that PPS can pool the uncertainty risk through demand reshape. Under PPS,

the price gap that exists between the specific product and the PPP causes demand reshape,

i.e., the demand for the specific product switches to the demand for the PPP. The practice of

demand reshape through offering a low-priced PPP affects the retailer’s profits in two ways.

On the one hand, the aggregate demand uncertainty will be reduced. On the other hand, the

revenue will decrease due to the product switch. We show that the retailer can improve its

profit while decreasing its inventory with an optimal price discount for the PPP. The larger the

demand uncertainty is, the larger discount the retailer needs to offer to induce more demand

switch to pool the demand risk. In addition, we find that the advantage of PS is decreasing

in product differentiation and increasing in customer price sensitivity. Second, PPS can even

be more advantageous due to its inventory allocation flexibility when the supply is subject to

asymmetrical uncertainty risk.

We make four contributions in this study. 1) Considering PS, we are the first to explore the

profitability and pricing-inventory policy of the retailer that offers the PPP. 2) We analytically

examine the risk-pooling effect of PPS through demand reshape. 3) We find the risk diversification

effect of PPS that helps alleviate asymmetrical supply risk through numerical studies. 4) In terms

of demand reshape, we establish that PPS is a special application of the demand switch induced

by price discount in real practice. Our research findings and their management implications

help practitioners gain more insight on the risk-pooling effect of PPS and facilitate their pricing-

inventory related decision-making.
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5.2 Literature Review

5.2.1 Probabilistic selling

Our work differs from this stream of literature by exploring the benefits of PS when the retailer

offers a PPP rather than merely a virtual choice. Given that the retailer cannot reap the benefits

postponement and dynamic allocation by offering the PPP, we analytically examine the benefit of

PPS for managing demand uncertainty through demand reshape. In addition, we also evaluate

by numerical studies the performance of PPS in alleviating supply uncertainty through inventory

flexibility.

5.2.2 Demand reshape

Our model also considers the three-product scenario similar to the “merge-switching” pattern in

Hsieh (2011), whereby a firm selling multiple products (e.g., A, B, and C) convinces customers

that originally purchase products A and B to switch to purchasing product C without cost. The

demand switching pattern under PPS in our study is different from his as follows: 1) There are

two kinds of product under PPS, namely products A and B, while product C is a PPP that may

become product A or B. 2) Demand switching in his research is driven by advertising rather

than the price gap under PPS (Meredith and Maki, 2001). Therefore, we have to characterize the

relationship between the price discount and switch rate, and then analytically derive both the

price and inventory allocation decisions.

5.2.3 Risk management strategies

Managing inventory is difficult due to risk, which is usually subject to prevalent demand or

supply uncertainty, and firms can adopt a number of strategies to manage the corresponding risk.

In the single-product system, firms can consider adopting the strategies of centralized inven-

tory, transshipment, or postponement to combat demand uncertainty. Centralized inventory is

used by a firm that sells the same product at multiple locations, whereby it consolidates inventory

in one single warehouse. Pooling inventory allows a firm to take advantage of random fluctuations

in demand (Eppen, 1979; Snyder and Shen, 2011). The transshipment strategy is used by a firm

to re-distribute inventory of the same echelon among multiple locations (Dong and Rudi, 2004;

Tai and Ching, 2014; Dehghani and Abbasi, 2018). Postponement benefits a firm by delaying its

operational activities (e.g., production and delivery of products) in the supply chain until the firm

receives more information about the demand (Aviv and Federgruen, 2001; Tang, 2011; Anand

and Girotra, 2007; Anupindi and Jiang, 2008). For a review of the research on transhipment and

postponement, the reader may refer to Paterson et al. (2011) and Van Hoek (2001).

In a multi-product system, strategies such as component commonality, inventory substitution,

and demand reshape are usually considered to combat risk. Component commonality means

that a firm that manufactures different end products can decrease inventory and manufacturing
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cost by improving component part standardization (Collier, 1981, 1982; Gerchak et al., 1988).

Inventory substitution is used to persuade the customer to buy a substitute when their required

product is out of stock (Parlar, 1988; Bassok et al., 1999; Lee et al., 2015; Chen et al., 2015).

Eynan and Fouque (2003), and Hsieh (2011) explored the risk polling effect of “demand reshape”

by encouraging the customer to switch to buying another product. The difference between demand

reshape and inventory substitution is that the former is a voluntary switch while the latter is a

forced switch when stock-out occurs (Eynan and Fouque, 2003).

Supply uncertainty has also been widely studied mainly in two forms, i.e., supply disruption

and yield uncertainty. Supply disruption means that the supply may be halted due to natural

disasters, political events, social threats etc. Yield uncertainty usually means that the delivery

quantity of the supplier is random. Regarding the strategies to combat supply uncertainty, Tomlin

(2006) pointed out that in the single-product setting, faced with supply uncertainty, a firm can

consider increasing the inventory level, souring from more reliable suppliers (Parlar and Wang,

1993; Wang et al., 2010; Tang and Kouvelis, 2011; Giri, 2011), or just accepting the risk passively.

Schmitt et al. (2015), and Atan and Snyder (2012) showed that decentralized inventory design,

i.e., stocking inventory at multiple locations, can help the firm reduce cost variance by risk

diversification. Schmitt et al. (2015) also pointed out that centralization is optimal when supply

is deterministic and demand is stochastic due to the risk-pooling effect.

The majority of the literature explores the use of a strategy into combat either demand

uncertainty by risk pooling or supply uncertainty by risk diversification. In contrast, we study

the advantage of PPS as a strategy to combat both demand and yield uncertainty. Specifically, we

focus on the performance of PPS in terms of its risk-pooling effect, i.e., demand reshape by price

discount, and risk-diversification ability ,i.e., inventory flexibility by offering PPP.

5.3 Model

5.3.1 Definitions and assumptions

1) Definitions

p: the selling price of two specific products i and j,

r: the PPP k is sold at a discount r, where 0< r ≤ 1, so the price of the PPP is (1− r)p,

α: the rate of customers switching from the specific products i and j to the PPP k,

d: level of product differentiation between the two specific products,

λ: the sensitivity of the switch rate to r/d,

c: purchasing cost of the products,

v: salvage cost of the products i, j and k,

q: penalty cost of the products i, j and k,

D i:distribution of the original demand for the specific product i, D i ∼ (ui,σi),

D j:distribution of the original demand for the specific product j, D j ∼ (u j,σ j),
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D̃ i:distribution of the demand for the specific product i after demand reshape, D̃ i ∼ (ũi, σ̃i),

D̃ j:distribution of the demand for the specific product j after demand reshape, D̃ j ∼ (ũ j, σ̃ j),

uk:mean of the demand for the PPP k,

σk: standard deviation of the demand for the PPP k,

ρ i j: the correlation coefficient of the original demands for products i and j,

X ,Y , Z: the demands for the specific products i and j, and the PPP k, respectively,

f̃ (x, y, z): the joint distribution function of the demand for the specific and probabilistic products

after demand reshape,

Qp
i ,Qp

j , Qp
k : the inventory for the specific products i, j, and the PPP k, respectively,

Q t
i,Q

t
j: the inventory for the specific products i and j respectively, under TS,

Q∗
pps,Q

∗
ts: the optimal total inventory under PPS and TS, respectively,

φpps, φts: the expected profit under PPS and TS, respectively.

2) Assumptions

a) We make the usual assumption that p > c > v to make the analysis meaningful.

b) We assume that the price of the specific products p is exogenous, which is determined by the

market.

c) The retailer orders the products from a upstream supplier and has the ability to package them.

In order to focus on the demand reshape effect, we ignore the package cost in our study.

d) We assume that the retailer cannot open the package to substitute the PPP for the specific

products, or vice versa2. All the unsold products will be disposed of at the salvage cost.

e) The customer who faces a stock out will leave the market rather than choosing a substitute

product.

5.3.2 Model

The retailer creates the PPP using the existing specific products and gives a discount of r to induce

some customers to buy the PPP. Given the discounted PPP, a fraction α of the customers who

originally intend to buy specific products will switch to buying the PPP. The value of α depends

on two key elements, namely the price gap between the specific and probabilistic products, and

the level of product differentiation (Anderson, 2009; Post, 2010). Therefore, we define

α=
λr/d if 0< r 6 d/λ

1 if r > d/λ
(5.1)

where 0<α≤ 1. d (d0 <d< 1) measures the level of product differentiation. The lowest product

differentiation d0 ensures that the assumption about the original demand distributions for the

two specific products is reasonable 3. A smaller d denotes small differentiation between the two
2This is reasonable for the operation costs (e.g., the machine setup cost and labour cost to check the product

information or to re-package the product).
3When product differentiation is very small, i.e., the extreme case when d = 0 and the two products reduced to one

single product, the retailer may lose some customers due to lower product variety.
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specific products (e.g., two T-shirts in different colours have smaller differentiation than those

made of different materials). λ (λ > 0) denotes the sensitivity of the switch rate, i.e., from a

specific product to the PPP k, to r/d 4. A larger λ means that the customers are more sensitive to

price, and a smaller λ means that the customers are more sensitive to product differentiation. It

is evident from Eq.(5.1) that the switch rate increases with the discount rate and decreases with

product differentiation. When λ is large enough to make λr/d > 1, then all the customers buying

the specific products will switch to buying the PPP, for which we define α= 1. Thus, the original

demands for the specific products i and j are as follows:

ũi = (1−α)ui,

ũ j = (1−α)u j,

σ̃i = (1−α)σi,

σ̃ j = (1−α)σ j.

(5.2)

It follows that the mean and standard deviation of the demand distribution of the PPP are,

respectively, as follows:

uk = aui +au j,

σk = α
√
σi2 +σ j2 +2ρ i jσiσ j .

(5.3)

With the discount rate 0< r ≤ 1, we can divide the demand scenario into eight cases as follows:

1)X ≤ Qp
i ,Y ≤ Qp

j , Z ≤ Qp
k ;2)X > Qp

i ,Y ≤ Qp
j , Z ≤ Qp

k ;3)X ≤ Qp
i ,Y > Qp

j , Z ≤ Qp
k ;4)X ≤ Qp

i ,Y ≤
Qp

j , Z > Qp
k ;5)X > Qp

i ,Y > Qp
j , Z ≤ Qp

k ;6)X ≤ Qp
i ,Y > Qp

j , Z > Qp
k ;7)X > Qp

i ,Y ≤ Qp
j , Z > Qp

k ; and

8)X >Qp
i ,Y >Qp

j , Z >Qp
k .

We can express the retailer’s expected profit function under PPS as the sum of the expected

profits of the demands in each case, e.g., the expected profit in Case 4) is

∫ Qp
i

0

∫ Qp
j

0

∫ ∞

Qp
k

[
px+ py+ (1− r)pQp

k +v(Q i +Qp
j − x− y)− q(z−Qp

k ))
]

f̃ (x, y, z)dzdydx. (5.4)

According to Eynan and Fouque (2003), and Hsieh (2011), we can express the expected profit

as the sum of independent newsvendor problems as follows:

φpps =
∫ Qp

i

0

[
px+v(Qp

i − x))
]

f̃ (x)dx+
∫ ∞

Qp
i

[
pQp

i − q(x−Qp
i )

]
f̃ (x)dx

+
∫ Qp

j

0

[
py+v(Qp

j − y))
]

f̃ (y)d y+
∫ ∞

Qp
j

[
pQp

j − q(y−Qp
j )

]
f̃ (y)d y

+
∫ Qp

k

0

[
(1− r)pz+v(Qp

k − z))
]

f̃ (z)dz+
∫ ∞

Qp
k

[
(1− r)pQp

k − q(z−Qp
k )

]
f̃ (z)dz,

4The implicit assumption is that the demand switch due to the price and the product dimensiona are independent.
This is similar to and supported by the prospect theory (Tversky and Kahneman, 1991). Zhou (2011) also pointed out
that “customers’ preference-dependent ‘loss utility’ occurs separately in the price dimension and product dimension”.
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where f̃ (x)= ∫ ∞
y=0

∫ ∞
z=0 f̃ (x, y, z)dzdy, f̃ (y)= ∫ ∞

x=0
∫ ∞

z=0 f̃ (x, y, z)dzdx, and f̃ (z)= ∫ ∞
x=0

∫ ∞
y=0 f̃ (x, y, z)d ydx.

Therefore, the optimal inventory for the specific products i and j Qp∗
i , Qp∗

j and that for the PPP

Qp∗
k satisfy the equations F(Qp∗

i ) = ∫ Qp∗
i−∞ f̃ (x)dx = ∫ zi

−∞ fs(x)dx = p−c+q
p−v+q , F(Qp∗

j ) = ∫ Qp∗
j

−∞ f̃ (y)d y =∫ z j
−∞ fs(x)dx = p−c+q

p−v+q , and F(Qp∗
k ) = ∫ Qp∗

k−∞ f̃ (z)dz = ∫ zk
−∞ fs(x)dx = (1−r∗)p−c+q

(1−r∗)p−v+q , respectively, where

fs(x)= 1p
2π

e−x2/2. Assuming that all the demands follow the normal distribution, we characterize

the optimal inventory decisions as follows:

Qp∗
i = ũi + ziσ̃i,

Qp∗
j = ũ j + z jσ̃ j,

Qp∗
k = uk + zkσk.

(5.5)

Then the expected profits of products i, j, and k can be characterized as φi = (p− c)ũi −
[(c−v)zi + (p−v+ q)L(zi)] σ̃i, φ j = (p− c)ũ j −

[
(c−v)z j + (p−v+ q)L(z j)

]
σ̃ j, and φk = ((1− r)p−

c)uk − [(c − v)zk + ((1− r)p − v + q)L(zk)]σk, respectively, where L(z) = ∫ ∞
x=z(x − z) fs(x)dx (z ={

zi, z j, zk
}
) (see, e.g., Silver et al., 1998). Then the expected profit is the sum of φi, φ j, and

φk as follows:

φpps = (p− c)ui − rp(uiλ
r
d

)− [(c−v)zi + (p−v+ q)L(zi)] (1−λ r
d

)σi

+ (p− c)u j − rp(u jλ
r
d

)− [
(c−v)z j + (p−v+ q)L(z j)

]
(1−λ r

d
)σ j

− [(c−v)zk + ((1− r)p−v+ q)L(zk)]λ
r
d

√
σ2

i +σ2
j +2ρ i jσiσ j .

(5.6)

5.4 Optimal pricing and inventory allocation

In this section we derive the optimal price discount for the PPP r∗, the optimal switching rate α∗,

and the optimal inventory allocation, and then analyze the conditions under which PPS is more

profitable than TS.

Proposition 5.1. φpps is concave in r when λ r
d 6 1 and decreases with r when λ r

d > 1. φpps

is concave in α.

Proof. See the Appendix C.

This proposition implies that PPS can achieve its highest profit with a proper switch rate

induced by an optimal price discount. When λ r
d > 1, all the customers switch to buying the PPP

and the model reduces to the single-product newsvendor problem, i.e. α= 1. With increasing r,

the aggregate demand uncertainty remains the same but the price of the PPP decreases. Then

the retailer cannot gain any benefit from the discount. Therefore, φpps decreases with r when

λ r
d > 1 and the optimal price discount r∗ is located within the range r∗ ⊆ (0,min(d/λ,1)]. Fig.

5.2 gives an example of the profit change under PPS with respect to price discount, which also

verifies Proposition 5.1.
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Figure 5.2: Example of profit change with respect to r
(ui = u j = u = 1200,σi =σ j =σ= 500, p = 20, c = 10, q = 4,v = 6,λ= 1,d = 0.4).

Proposition 5.2. The optimal price discount r∗ is characterized by Dc = 2pr∗(uk −L(zk)σk),

where Dc = [(c−v)z+ (p−v+ q)L(z)] (ασi +ασ j)− [(c−v)zk + (p−v+ q)L(zk)]σk, zi = z j = z, and

L(zi)= L(z j)= L(z).

Corollary 1. The condition under which PPS is more profitable than TS is that there exists a

positive r∗ for which the equation holds.

Proof. See the Appendix C.

The result is not difficult to understand. Dc means the cost saving of the switched demand

due to centralization through PPS and the right hand side of the equation is two times of the

expected revenue loss due to the price discount. Note that uk−L(zk)σk is the expected sales of the

PPP and supposed to be non-negative, the cost saving Dc should always be non-negative when

the retailer adopts PPS. This is consistent with our institution that the retailer should balance

the cost saving resulting from risk pooling and the profit loss due to the lower profit margin of

the PPP. The best optimal price discount that maximizes profit under PPS can be achieved when

the cost saving equals two times of the expected revenue loss. The corollary is intuitive with

reference to Proposition 5.2. When r∗ → 0, it is not profitable for the retailer to offer the PPP.

Proposition 5.3. The optimal switch rates and the optimal inventory decisions are char-

acterized by α∗ = λ r∗
d ,Qp∗

i = (1−α∗)ui + zi(1−α∗)σi,Q
p∗
j = (1−α∗)u j + z j(1−α∗)σ j, and Qp∗

k =
α∗(ui +u j)+α∗zk

√
σ2

i +σ2
j +2ρ i jσiσ j .

Proof. The proof is easy and we omit it.

Note that Qp∗
k is a mix of both specific products i and j. Therefore, PPS provides allocation

flexibility, which also benefits the retailer when supply shortage occurs. We evaluate the perfor-
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mance of PPS in terms of the expected profit, inventory, and customer service level when supply

shortage occurs by numerical studies.

Proposition 5.4. φ∗
pps ≥ φ∗

ts, Q∗
pps ≤ Q∗

ts, i.e., the optimal price discount makes PPS more

profitable than TS, yielding a higher profit and lower inventory. Furthermore,
∂(Q∗

pps−Q∗
Ts)

∂r∗ ≤ 0.

Proof. See the Appendix C.

The proposition shows that, because φ∗
ts is independent of r, φpps is concave in r when

λr/d ≤ 1. Thus, we believe that the improper pricing may make PPS worse than TS. However,

PPS can always improve profit through optimal price discount. The total inventory under PPS

always decreases with increasing optimal price discount. This is the result of the risk-pooling

effect due to demand reshape. This can be explained by Eq.(5.3) that the aggregate demand

deviation can be reduced after demand reshape, i.e., σ̃i + σ̃ j +σk ≤ σi +σ j since ρ i j ≤ 1. The

decreased demand deviation results in lower safety stock, which can decease the inventory cost.

From the perspective of practice, the excess inventory of one product can be used to meet the

demand for another product. Similar to the findings on centralized inventory (Snyder and Shen,

2011), the risk-pooling effect is significant especially when the demands for products i and j are

negatively correlated. In addition, the chance of this supply-demand match happening under

TS is very small, because the customers that intend to buy one product are usually reluctant to

accept another product without a price discount.

Proposition 5.5. The optimal profit and inventory differences have the following properties:
∂(φ∗

pps−φ∗
ts)

∂d < 0,
∂(φ∗

pps−φ∗
ts)

∂λ
> 0,

∂(Q∗
pps−Q∗

ts)
∂d > 0,and

∂(Q∗
pps−Q∗

ts)
∂λ

< 0, i.e., the advantage of PPS is de-

creasing in product differentiation d and increasing in customer price sensitivity (or decreasing in

customer product sensitivity).

Proof. See the Appendix C.

This proposition implies that it is more profitable to adopt PPS to sell products with smaller

product differentiation to customers with higher price sensitivity. This is easy to understand as

PPS reshapes demand through price discount. A smaller product differentiation or a higher price

sensitivity means that with a small price discount, a large proportion of the customers will switch

from buying the specific products to buying the PPP, which decreases the aggregate demand

uncertainty. So it will cost the retailer less to pool the risk, which increases the profitability of

PPS. When d is low enough or λ is large enough to make λr/d > 1 , the problem reduces to the

single-product newsvendor problem and the retailer will only offer PPP.

This can partially explain why the gashapon machines only sell PPPs, and all the Kinder

Surprise toys are packaged in opaque chocolate eggs. From the operations management perspec-

tive, when the toys are similar and customers’ price sensitivity is high, the best strategy for the

retailer is to give a very small discount to induce all the customers to buy the PPP, which can

efficiently decrease the risk of demand uncertainty. Besides, our conclusion can also partially

explain why the retailer of Kinder Joy provides two versions, i.e, the boy’s and the girl’s version,

and there are usually different gashapon machines in a store rather than one big machine.

54



5.5. NUMERICAL STUDIES

Because the differentiation between the Kinder Surprise toys for boys and girls are relatively

large, the retailer gives a larger price discount to induce all the customers to buy the product,

which may be worse than TS due to a loss in profit margin. On the other hand, when the price

discount is the same as before, the demand switch is very limited because a girl will not accept

the boy’s version of the toy.

The conclusion that PPS is more advantageous when customer price sensitivity is higher

may partially explain that the sealed “lucky bags” are usually offered at the end of the selling

season or during holidays in Japan. Because the customers that postpone their purchases until

the holiday time are often highly price sensitive. The retailer can give a small discount to induce

demand switch more easily. Therefore, the advantage of offering the PPP at the product release

time will not be so apparent.

5.5 Numerical studies

We examine the effects of demand uncertainty, product differentiation, and customer price

sensitivity on the performance of PPS to generate some practical insights. Then, we explore the

effect of PPS on managing supply shortage risk. For the numerical studies, we assumed that the

demands are normally distributed with ρ i j =−0.5,ui = u j = 1200,σi = [20,500],σ j = [20,500], p =
12, c = 10, q = 4,v = 6,λ= 1 and d = 0.4. So we required the maximum price discount not to exceed

1/6 to ensure that (1− r)p > c. We computed the optimal decisions using the MATLAB software.

5.5.1 Parameter analysis

In this part we explore the optimal decisions and performance of PPS under different demand

uncertainty combinations. The observations are as follows:

Observation 5.1: The optimal price discount increases with demand uncertainty.

Observation 5.2: A larger demand uncertainty increases the advantage of PPS over TS in

terms of increasing profit while decreasing inventory.

Fig. 5.3- Fig. 5.5 illustrate the relationship between demand uncertainty and the optimal

price discount, total inventory, and expected profit. With increasing demand uncertainty of one

product or both products, the retailer should give a greater price discount for the PPP to induce

more reshaped demand to pool the risk. The increasing demand uncertainty makes PPS more

advantageous than TS in terms of higher profit and lower inventory. Therefore, we can deduce

that PPS is more profitable at a higher optimal price discount. This also shows that PS can

pool the risk through demand reshape, and its effect on risk pooling will be more effective when

demand uncertainty is larger.
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Figure 5.3: Optimal price discount with respect
to demand uncertainty

Figure 5.4: Profit change with respect to demand
uncertainty

Figure 5.5: Inventory change with respect to de-
mand uncertainty

5.5.2 Effect of supply uncertainty

The analysis above shows the advantage of PPS in pooling the risk of demand uncertainty

through demand reshape. It is interesting to further explore the performance of PPS when supply

risk occurs. The supply risk in our study is subject to yield uncertainty which means that the

delivery quantity of the supplier is random. In reality, it may arise due to shortages of raw and

semi-finished materials, failed production schedules, quality problems, etc. We assume that the

retailer cannot predict the supply condition and does not have a second chance to order product

from other suppliers. Alternatively, the retailer adopts the default passive acceptance strategy

mentioned in Tomlin (2006) to react to supply disruption. In this section we consider the case

where the supply of one product is in shortage while the other product is unlimited to reflect

asymmetrical supply shortage, and the case where the supplies of both products are in shortage
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to reflect symmetrical supply shortage. We define the supply shortage rate as the percentage of

orders that are not met from supply under TS.

In addition, we define the Type-2 service level 5 as ESL =∑N
n=1

1
N ESLn =∑N

n=1
1
N (1−σnL(zn)),

where ESLn is the service level of product n ( Snyder and Shen, 2011). Table 5.1 and Table 5.2

show the optimal inventory, and the resulting profit and service level under both TS and PPS

when supply risk occurs. The order of the PPP Qp∗
k is a mix of the specific products i and j, and

we define the proportion of product j as ϕ. Therefore, as shown in Table 5.1, the retailer will

reduce the proportion of product j allocated to the PPP (denoted by Qp∗
k (ϕ)) when the supply

of product j (denoted by S j) falls short while the supply of product i is unlimited (denoted by

U). When the supplies of both products i and j fall short, we assume that the retailer would

ration the limited inventory according to the proportions of the demands for the specific and

probabilistic products. We use the same parameters of p, c, q,v,ρ i j,u,λ,d as in the above section

and σi =σ j =σ. We varied the demand standard deviation within [50,500] and took σ= 500 as

an example to present the results. φ% and ESL% denote the increases in the expected profit and

service level under PPS, respectively (compared with those under TS).

Table 5.1: The results for the case of asymmetrical supply shortage

S j Q t∗
i Q t∗

j Qpps
i Qp∗

j Qp∗
k (ϕ) φ% ESL%

U 1326.7 1326.7 1208.05 1208.05 223.82(0.5) 9.21 2.10
1300 1326.7 1300 1208.05 1208.05 223.83(0.41) 9.53 2.28
1100 1326.7 1100 1208.05 1100 223.83(0) 32.53 4.06
900 1326.7 900 1208.05 900 223.83(0) 150.07 6.67
700 1326.7 700 1208.05 700 223.83(0) 88.36 10.34
500 1326.7 500 1208.05 500 223.83(0) 35.27 15.35
300 1326.7 300 1208.05 300 223.83(0) 21.27 22.16
100 1326.7 100 1208.05 100 223.83(0) 14.87 31.54

Table 5.2: The results for the case of symmetrical supply shortage

S j Q t∗
i Q t∗

j Qpps
i Qp∗

j Qp∗
k (ϕ) φ% ESL%

U 1326.7 1326.7 1208.05 1208.05 223.82(0.5) 9.21 2.10
1300 1300 1300 1189.78 1189.78 220.44(0.5) 9.50 2.29
1100 1100 1100 1006.74 1006.74 186.52(0.5) 15.50 2.10
900 900 900 823.69 823.69 152.61(0.5) 17.69 1.30
700 700 700 640.65 640.65 118.7 (0.5) 0.53 0.36
500 500 500 457.61 457.61 84.78 (0.5) -0.19 -0.37
300 300 300 274.56 274.56 50.87(0.5) -0.16 -0.79
100 100 100 91.52 91.52 17(0.5) -0.03 -0.68

5The two common definitions of the service level are Type-1 service level and Type-2 service level. The Type-2
service level (also called fill rate) is defined as the percentage of demand that is met from stock. More information can
be found in Snyder and Shen (2011).
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Figure 5.6: Effect of asymmetrical supply short-
age

Figure 5.7: Effect of symmetrical supply shortage

Observation 5.3: PPS will be more advantageous than TS in terms of increasing profit and

service level when asymmetrical supply shortage occurs.

As shown in Fig. 5.6, with increasing supply shortage rate, profit increase will increase first

and then decrease afterwards. However, the ESL increase will always increase with the supply

shortage rate. Through demand reshape, PPS attracts customers to buy the PPP, which enables

the retailer to allocate inventory flexibly. The offer of the PPP diversifies the supply uncertainty.

The supply of the PPP comes from either of the specific products, which holds the spirit of dual

souring. Therefore, the advantage of PPS in combating supply risk is very impressive when

supply shortage is asymmetrical. However, when there is symmetrical supply shortage, the

performance of PPS is not impressive, as shown in Fig. 5.7. In fact, at a high symmetrical supply

shortage rate, the supply risk may make PPS worse than TS. This may be caused by the fact that

when both specific products are subject to shortage risk, the effect of inventory flexibility will

vanish. Furthermore, the retailer still has to allocate some inventory for the low-priced PPP even

though the demands for the regular-priced products cannot be satisfied.

5.6 Conclusions

To answer the questions of whether and how PS will benefit the retailer when the retailer offers

the PPP, we focus on studying the risk-pooling effect of PPS through demand reshape. Modelling

demand reshape under PPS, we obtain the optimal price discount for the PPP, the optimal

inventory decisions, and the resulting profit. Then we explore the effect of demand variability,

customer price (product) sensitivity, and product differentiation on the optimal outcomes. In

addition, we examine the performance of PPS in terms of profit and service levels when the

retailer faces supply shortage risk. The results show that PPS can alleviate the risks from both

the demand and supply sides simultaneously. PPS can improve profit with lower inventory at a
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proper discount, which increases with demand uncertainty. PPS is more profitable when product

differentiation is smaller and customer price (product) sensitivity is higher (lower). The numerical

results show that PPS is a viable strategy to combat asymmetrical supply shortage risk that

yields higher profits and service levels.

We prove that offering a PPP can improve the profit of the retailer, even without altering

the prices of the original products, postponing product assignment or allocating the inventory

dynamically. The implications for the studies on PS are 1) Isolating the demand switch effect

in PS, we are surprised to find that the retailer can even benefit from demand cannibalization,

i.e., the offering a lower-priced PPP may decrease the demands for the specific products. 2) We

consider a new type of PS method and explore its benefits. From a practical point of view, our

research findings may help retailers manage demand uncertainty and improve profit through

adopting PPS. Furthermore, the offer of the PPP also alleviates the retailer’s reliance on product

supply. Overall, the retailer can enjoy the benefits of demand centralization while maintaining a

decentralized product configuration by offering a low-priced PPP.

Future research may extend our work by considering the package cost under PPS, market

competition, and endogenizing the pricing of the specific products. Another direction may extend

our work by considering the procurement and production planning for PPP manufacturing when

resources are constrained. The PPP may help the manufacturer to maximize the use of the raw

materials.
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6
PRICING-PRODUCT ALLOCATION POLICY IN PROBABILISTIC

SELLING WITH BARTER CHOICE

6.1 Introduction

Many sellers offer probabilistic products based on their existing products, which are called the

constituent component products, by concealing some information about the latter from customers

to increase revenues (Fay and Xie, 2008; Post, 2010; Post and Spann, 2012), improve inventory

efficiency (Fay and Xie, 2014; Zhang et al., 2016), increase market segmentation (Jiang, 2007;

Rice et al., 2014) etc. The customer who buys the probabilistic product is allocated one of the

component products by the seller and the specific information about the product is unknown

to the customer until he pays for it. For example, one can book a hotel room with no specific

address of the hotel or buy an air ticket without the airline’s name or flight time at a low price

from Hotwire.com. One can also book a trip with no specific destination at a large discount

from Germanwings.com. However, customers usually have heterogeneous preferences for the

component products and may wish to barter their allocated products for the preferred ones. If he

is lucky enough, the customer who buys the probabilistic product can increase his satisfaction if

he gets his preferred product through bartering. Just like the “Fukubukuro” (also known as the

“mystery bag” or “lucky bag”), which is a well-known Japanese New Year’s Day custom where

merchants make grab bags filled with unknown random products and sell them at substantial

discounts. If the customer is not satisfied with the probabilistic product that he is allocated, he

can exchange it for a more preferred product with other customers. One innovative e-commerce

practice called “Little Black Bag” has extended this Japanese custom from offline to online where
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customers can buy and trade fashion accessories1. The customer does not know what is exactly

in his bag until he places the order. If the customer finds that the product he likes is in another

customer’s bag, he can make an offer to trade his product with the other customer concerned.

Once the customer is happy with all the products in his bag, he can confirm the order and Little

Black Bag will ship the products to him. So, in essence, Little Black Bag is engaged in both

probabilistic selling and bartering simultaneously.

Our research is motivated by customers’ willingness to barter and the emergence of barter

platforms associated with probabilistic selling. What benefits can barter bring to the seller?

First, barter plays an advertising or marketing role. Buttyán et al. (2010) found that barter

can improve message delivery to participants and stimulate them to co-operate. Take Little

Black Bag for example, which is not a typical online shopping website, but a combination of an

online community and an online shop. Dan Murillo, CEO and co-founder of Little Black Bag,

said, “The transactions achieve 2 million per month, and the customers spend about an hour a

day using the service. It’s like going into the stock exchange” (Daniela, 2012). The information

that the customers have revealed in the barter process helps the company understand customers’

demand, and make better purchase and product assignment decisions. Besides, the customers

can share the barter information through other social networking platforms, which also helps

market their products. Therefore, increasing brands join the platform by offering lower wholesale

prices and regard it as a marketing platform to promote their products by customers themselves.

AliPay is another example that demonstrates the marketing effect of barter. AliPay sponsored the

“Collecting five blessing cards” event in 2016, which encouraged people to barter with one another

with a view to gathering the full set of cards that would entitle them to monetary rewards. The

event attracted a large number of new customers and created a huge customer relationship

network, which enabled AliPay to rank first in terms of app attention for eight consecutive days

in the 2016 spring festival in China. Second, when offered the chance to barter for the more

preferred product in the community before Little Black Bag delivers the order, the customer has

a higher valuation for the probabilistic product. This enables the company to charge a higher

price for the probabilistic product.

The innovative retailing mode that combines probabilistic selling with barter seems an

interesting and promising concept for e-commerce. However, to the best of our knowledge, there

is no research on probabilistic selling considering the barter choice. We conduct this research

to address the following questions: 1) How does barter affect the seller’s optimal decisions in

probabilistic selling? 2) Can and when does barter make probabilistic selling more advantageous

to the seller?

1Little Black Bag is a social shopping site where shoppers buy a mystery bag of fashion products for their use or
for trading with friends. The company was founded on 1 February 2012 and raised US$800 million on 16 August 2012
(source from https://www.crunchbase.com/organization/little-black-bag).
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6.2 Literature review

Our research is related to both probabilistic selling and barter. The research on probabilistic

selling is scant but growing, and all the related literature assumes that the probabilistic product

sales are non-transferable. The literature on barter focuses on exploring the economics, operations,

and marketing benefits of barter. However, there is no literature that considers the barter choice

in probabilistic selling.

6.2.1 Probabilistic selling

Existing studies on probabilistic selling assume that the probabilistic product sales are non-

refundable, non-transferable, or non-exchangeable (Fay and Xie, 2008). However, in reality, some

customers who buy the probabilistic product may wish to barter for their preferred products with

other people through various social channels. There is even a shop that offers its probabilistic

product with the barter choice. So it is interesting to explore the motivation of the firm to offer a

barter platform that facilitates customers to exchange their probabilistic products. To the best of

our knowledge, there is no research exploring the effect of barter on probabilistic selling.

6.2.2 Barter

Barter means that businesses or individuals can trade their undesired goods for the goods they

need directly without the use of money. With the development of Internet-based technology and

rapid globalization, barter services have staged a comeback to become a global form of trade, not

only at the individual level but also at the firm level.

Some literature studies the advantages of barter from the economic and operational perspec-

tives. Williams (1996) observed that the barter system provides economic value to its members.

Lobo and de Sousa (2014) found that barter can increase value by reducing the depreciation rate.

Prendergast and Stole (2001) showed that barter can create liquidity for cash-constrained firms.

Chen and Kao (2010) observed that barter is more popular during periods of hyper-inflation. Özer

and Özturan (2011) proved that barter can increase the efficiency of allocation and satisfaction of

participants in auctions. Plank et al. (1994) studied barter as a tool of moving excess inventory.

Another huge benefit of barter is helping an enterprise to create partnerships and networks

with other businesses, which can help refer, promote, and market the former’s business. So a

few studies consider the marketing benefit of bartering. For example, Ference (2009) observed

that barter can help businesses build long-term mutual trust relationships. Guriev and Kvassov

(2004) regarded barter as a tool to price-discriminate between customers who pay in cash and

those who pay in kind. Oliver and Mpinganjira (2011) observed that barter can increase trade

sales volume and facilitate entry into new markets.

No literature has considered barter in probabilistic selling. A barter platform gives customers

a chance to improve their satisfaction by bartering their products for preferred ones. Also, when
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customers barter with one another on the platform or share their products through other channels

by inviting other people to join the platform, the transaction information delivered by customers

can not only help businesses understand customers’ preferences, but also act as a marketing tool

to expand the market.

6.3 The Model

6.3.1 Assumptions and definitions

We assume that a seller sells online two functionally similar component products j = 1,2 of

equal costs: c1 = c2 = c ⊆ [0,1]. It also offers a probabilistic product that can be one of the two

component products with given probabilities. Besides, the seller offers the customers who buy

the probabilistic product a choice to exchange their products in the seller’s barter community.

Specifically, as shown in Fig. 6.1, the product information is revealed to the customer when he

places the order. If the customer gets the product he prefers, he will confirm the order; otherwise,

he chooses to barter his product for another one in the barter community. We assume that the

marketing role of barter is proportional to the quantity of successful barter products. In addition,

we assume that the successful barter probability is α⊆ (0,1) in practice. Finally, the customer

will confirm the order no matter whether he gets his preferred product after bartering.

Figure 6.1: Event sequence of probabilistic selling with barter.

Following Fay and Xie (2008), we assume that the customer’s valuations for the two component

products follow the Hotelling model. We define vi j as the valuation for product j of customer i,

whose location on the Hotelling line is xi with a fit-cost-loss coefficient t. So customers’ valuations

for the two component products without barter are given in Eq. (6.1) as follows:{
v1i = 1− txi,

v2i = 1− t(1− xi).
(6.1)
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On the other hand, customers’ valuations for the two component products with the barter choice

are given in Eq. (6.2) as follows:{
v∗1i = v1i +α(v2i −v1i)+,

v∗2i = v2i +α(v1i −v2i)+.
(6.2)

As shown in Eq. (6.2), if a customer who buys the probabilistic product values product 1 over

product 2 (i.e., v1i> v2i) while being allocated product 2, he will choose to barter and his valuation

for product 2 becomes v2i +α(v1i −v2i). If a customer has the same valuations for product 1 and

product 2, then he has no motivation to choose barter and his valuations for the products will

not change when offered the barter choice. Besides, we assume that product 1 is allocated as the

probabilistic product with probability ϕ⊆ [0,1]. Then, customers’ valuation for the probabilistic

product without the barter choice is v0i = ϕv1i + (1−ϕ)v2i, while with the barter choice, the

valuation becomes v∗0i =ϕv∗1i+ (1−ϕ)v∗2i. We use the following definitions throughout this chapter.

6.3.2 Probabilistic selling with barter

Without loss of generality, we confine our analysis to the case where ϕ≥ 1/2 because we assume

that the demand is symmetric, i.e., the results when ϕ6 1/2 (i.e., product 2 is allocated as the

probabilistic product with ϕ ≥ 1/2) is the same. Then according to Eq. (6.2), the valuation for

the probabilistic product v∗0i of the customer who prefers product 1 to product 2 (i.e., xi < 1/2)

decreases with xi. The valuation for the probabilistic product v∗0i of the customer who prefers

product 2 to product 1 (i.e., xi > 1/2) increases with xi when 1
2 ≤ ϕ < ϕ̄ and decreases with xi

when ϕ̄≤ϕ≤ 1. Therefore, there are two possible outcomes of the Hotelling line of probabilistic

selling with barter as shown in Fig. 6.2. It is noted that ϕ̄= 1
2(1−α) is the allocation probability

that makes customers who prefer product 2(1) to product 1(2) have the same valuation with the

customer who is indifferent product 1 and product 2 (i.e., v∗0i=1-t/2). Furthermore, the larger the

allocation probability is, the larger the successful barter probability it will need to make the

customers have the same valuation. In the first case where 1
2 ≤ϕ< ϕ̄, the Hotelling line is divided

into three segments: customers with xi ≤ x̂1 purchase product 1, customers with xi ≥ x̂2 purchase

product 2, and customers with x̂1 < xi < x̂3 and x̂4 < xi < x̂2 purchase the probabilistic product.

In the second case where ϕ̄≤ϕ≤ 1, the Hotelling line is divided into three segments: customers

with xi ≤ x̂1 purchase product 1, customers with xi ≥ x̂2 purchase product 2, and customers with

x̂1 < xi < x̂3 purchase the probabilistic product.

The seller that uses probabilistic selling with barter will choose either full coverage or partial

coverage of the market, depending on which yields a higher profit. Therefore, in this section

we first derive the seller’s optimal pricing and optimal allocation probability, and the resulting

profits of probabilistic selling with barter in a fully covered market (i.e., x̂3=x̂4=1/2 in Fig. 6.2(a)

and x̂3=x̂2 in Fig. 6.2(b)) and a partially covered market (i.e., x̂3<1/2/x̂4>1/2 in Fig. 6.2(a) and

x̂3<x̂2 in Fig. 6.2(b)). We then compare the optimal profits between the two markets to derive the

seller’s optimal strategy for probabilistic selling with barter.
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Variable Definition

c The costs of the products c ⊆ [0,1]

ϕ Product 1 is allocated as the probabilistic product with probability ϕ⊆ [0,1]

q The marketing benefit brought by per unit of the barter product q ≥ 0

α⊆ (0,1)
The probability that the customer who buys the probabilistic product can

get his preferred one through bartering

x̂1 The maximum value of xi for which a customer will purchase product 1

x̂2 The minimum value of xi for which a customer will purchase product 2

ϕ̄( ¯̄ϕ)
The allocation probability that makes customers who prefer product 2(1) to product 1(2)

have the same valuation with the customer who is indifferent product 1 and product 2

pps
j , pps

0
The price of the component product j and the probabilistic product in probabilistic selling

without barter

ppb
j , ppb

0
The price of the component product j and the probabilistic product in probabilistic selling

with barter

Dpb
j , Dpb

0
The sales of the component product j and the probabilistic product in probabilistic selling

with barter

GTs The profit of traditional selling in which the seller does not offer the probabilistic product

Gb The marketing benefit for the seller from offering the barter choice

Gbp, Gps The profits of probabilistic selling with and without barter, respectively

GCa, G Ia
The profits of probabilistic selling with barter in a fully and partially covered market,

respectively, when the seller makes positive sales of the component products

G∗
Ca, G∗

Ia
The profits of probabilistic selling with barter in a fully and partially covered market,

respectively, when the seller only sells the probabilistic product

6.3.2.1 Optimal strategy with barter in a fully covered market

As shown in Fig. 6.2(a), the optimal price of the probabilistic product ppb
0 should be 1− t/2 to

make sure that the market is fully covered. Otherwise, as shown in Fig. 6.2(b), the optimal

price ppb
0 should be the valuation for the probabilistic product v∗0i at location x̂2 (i.e., ppb

0 =
ϕ (1− tx2 +αt(2x2 −1))+(1−ϕ)(1−t(1−x2))). So we compare the optimal profit GA

Ca when 1
2 ≤ϕ< ϕ̄

and optimal profit GB
Ca when ϕ̄≤ϕ≤ 1 to derive the optimal strategy. The profit function is

GCa =
2∑

j=1

(
ppd

j − c
)
D j +

(
ppd

0 − c
)
D0 +Gb. (6.3)

With xi < 1/2, customer i prefers product 1 to product 2. When the customer buys the
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(a) 1
2 ≤ϕ< ϕ̄

(b) ϕ̄≤ϕ≤ 1

Figure 6.2: Customer valuations

probabilistic product, it turns out to be product 1 with probability ϕ and product 2 with probability

1−ϕ. When the customer gets his preferred product, he confirms the order. Otherwise, he chooses

to barter, while offering the barter choice will bring more benefit to the firm. For example in Fig.

6.2(b), when the customer prefers product 1, i.e., xi < 1/2, the benefit (e.g., a lower wholesale price

because of the marketing role of bartering, more accurate decisions because of big data about

the market etc) brought by barter is expressed as (1/2− x̂1)qα(1−ϕ). When the consumer prefers

product 2, i.e., xi > 1/2, the marketing benefit brought by barter in the market where xi > 1/2 is

expressed as (x̂3 −1/2)qαϕ. Therefore, Gb = (1/2− x̂1)qα(1−ϕ)+ (x̂3 −1/2)qαϕ for the case of Fig.

6.2(b).

From Fay and Xie (2008), the optimal profit of traditional selling is

GTs =
1− t/2− c if c ≤ 1− t,

(1−c)2

2t if c > 1− t.
(6.4)

Taking into account that the seller may not offer the probabilistic product, we compare GCa

with GTs to derive the seller’s optimal strategy for probabilistic selling with barter in a fully
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covered market as follows2:

With 0<α≤ α̃,

GCa =
− q2α2−2t(−1+α)(4+qa)+t2(−3+2α+α2)

8t(−1+α) − c if c ≤ ¯̄c, ¯̄ϕ≤ϕ∗ ≤ ϕ̄,
(1−c)2

2t if c > ¯̄c,
(6.5)

and with α̃<α< 1,

G∗
Ca =

1− c− t
2 + qα

2 if c ≤~c, ¯̄ϕ≤ϕ∗ ≤ ϕ̄,
(1−c)2

2t ifc >~c,
(6.6)

where ¯̄c = 1− t+ t/2
√

(t(1−α)+qα)2

t2(1−α) ,~c = 1− t+p
qtα , ϕ̄= 1

2(1−α) , ¯̄ϕ= 1−2α
2(1−α) , and α̃= t

q+t .

Our analysis proves that the optimal profit when 1
2 ≤ϕ< ϕ̄ outperforms that when ϕ̄≤ϕ≤ 1,

i.e., GA
Ca ≥GB

Ca. Thus, the optimal price is ppb∗
0 = 1− 1

2 t. Furthermore, due to symmetry of the

model, ¯̄ϕ ≤ ϕ∗ ≤ 1
2 is the optimal allocation probability when ϕ∗ ≤ 1

2 . Therefore, the optimal

allocation probability in a fully covered market is ¯̄ϕ≤ϕ∗ ≤ ϕ̄. We give the optimal pricing for the

component products in the Appendix.

Note that ã is the dividing point where there are positive demands for the component products.

When 0 ≤α< α̃, the seller will offer both the probabilistic product and component products in

probabilistic selling with barter. Otherwise, when the successful barter probability is high enough,

i.e., α> α̃, the seller will only offer the probabilistic product. Eq. (6.5) and Eq. (6.6) indicate that

when the product price is relatively low, i.e., c ≤ ¯̄c when α≤ α̃ and c ≤~c when α̃<α< 1, the seller

can improve its profit through probabilistic selling with barter. When the product price is high,

i.e., c > ¯̄c when α ≤ α̃ and c >~c when α̃ < α < 1, traditional selling is optimal. This finding is

consistent with that in Fay and Xie (2008).

6.3.2.2 Optimal strategy with barter in a partially covered market

Similarly, we derive the seller’s optimal strategy for probabilistic selling with barter in a partially

covered market as follows:

With 0<α≤ α̃,

G Ia =



1− t
2 − c if 0< c ≤ 1− t,

(1−c)2

2t if 1− t < c ≤ c̃,

− (4+4c2+4qα)(1−α)+t2(−1+a)2+q2α2+(−1+α)(4t+2αt(−2+q)+8c+4ct(−1+α)+4cqα)
8t(−1+α)α if c̃ < c < ˜̃c,

(1−c)2

2t if c ≥ ˜̃c,

(6.7)

and with α̃<α< 1,

G∗
Ia =

1− t
2 − c if 0< c ≤ 1− t,

(1−c)2

2t ifc > 1− t,
(6.8)

2All the proofs in this chapter are given in the Appendix D.
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where c̃ = 1− 1
2 t+ qα−αt

2 and ˜̃c = 1− 1
2 t+ qα

2(1−α) . G∗
Ia is the seller’s optimal profit when it only

offers the probabilistic product. Eq. (6.7) shows that when 0<α≤ α̃ and c̃ < c < ˜̃c, the seller can

benefit from probabilistic selling and the optimal allocation probability is ϕ∗ = 1
2 . Otherwise,

offering no probabilistic product, i.e., traditional selling, is optimal. As shown in Eq. (6.8), when

α̃<α< 1, offering merely the probabilistic product will decrease the seller’s profit, while offering

no probabilistic products is optimal. Therefore, there is no optimal price for the probabilistic

product or the optimal allocation probability when α̃<α< 1. We provide the optimal pricing and

allocation decisions in a partially covered market in the Appendix.

6.3.2.3 Optimal strategy for probabilistic selling with barter

We compare the profits and the corresponding conditions analyzed above to derive the seller’s

optimal strategy for probabilistic selling with barter in Proposition 6.1.

Proposition 6.1: Given the successful barter probability threshold α̃, the seller’s optimal

strategy for probabilistic selling with barter is as follows:

With 0<α≤ α̃,

Gbp = Max [GCa,G Ia,GTs]=


GA

Ca if c ≤ c̃, ¯̄ϕ≤ϕ∗ ≤ ϕ̄,

GA
Ia if c̃ < c < ˜̃c, ϕ∗ = 1

2 ,

GTs if c ≥ ˜̃c,

(6.9)

and with α̃<α< 1,

G∗
bp = Max

[
G∗

Ca,G∗
Ia,GTs

]=
G∗

Ca if c ≤~c , ¯̄ϕ≤ϕ∗ ≤ ϕ̄,

GTs if~c < c ≤ 1.
(6.10)

From the above results, when 0 < α < α̃, we see that when the product cost c is small,

i.e., c ≤ c̃, it is optimal for the seller to offer the probabilistic product and the market is fully

covered. When the cost c is relatively high, i.e., c̃ < c < ˜̃c, it is optimal for the seller to offer the

probabilistic product at a higher price and choose to partially cover the market (refer to Table

6.1). When α̃ < α < 1, there are no demands for the component products. When c ≤~c, offering

merely the probabilistic product with barter and fully covering the market is the optimal strategy

for the seller. When the product cost is sufficiently high, i.e., c >~c when 0 < α < α̃ and c > ˜̃c

when α̃<α< 1, the seller should not offer the probabilistic product. We summarize the optimal

decisions on price and allocation probability, and the resulting sales in Table 6.1.

Proposition 6.2: Increasing successful barter probability α and the marketing benefit brought

by per barter unit q gradually cannibalize the sales of the component products. The selling decision

on offering the component products or not in probabilistic selling depends on the successful barter

probability α, marketing benefit per barter unit q, and product differentiation t. In addition,
∂α̃
∂q < 0 and ∂α̃

∂t > 0.
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Table 6.1: Optimal decisions of probabilistic selling with barter

α≤ α̃ α> α̃

D j


−t+qα+tα
4t(−1+α) if c ≤ c̃
−t+qα+tα
4t(−1+α) if c̃ < c < ˜̃c

1−c
2t if c ≥ ˜̃c

{
0 if c ≤~c
1−c
2t if c >~c

D0


tα−qα−t
2t(−1+α) if c ≤ c̃
2−2c−t−2α+2cα+qα+tα

2tα−2tα2 if c̃ < c < ˜̃c
0 if c ≥ ˜̃c

{
1 if c ≤~c
0 if c >~c

ppb
0


1− 1

2 t if c ≤ c̃
1
4 (2+2c+ t(−1+α)− qα) if c̃ < c < ˜̃c
N/A if c ≥ ˜̃c

{
1− 1

2 t if c ≤~c
N/A if c >~c

ppb
1


1
2 (2+α(q− t)(1−ϕ)− tϕ) if c ≤ c̃
1− 1

2 t if c̃ < c < ˜̃c
1+c

2 if c ≥ ˜̃c

{
N/A if c ≤~c
1+c

2 if c >~c

ppb
2


1
2 (2+α(q− t)ϕ− t(1−ϕ)) if c ≤ c̃
1− 1

2 t if c̃ < c < ˜̃c
1+c

2 if c ≥ ˜̃c

{
N/A if c ≤~c
1+c

2 if c >~c

ϕ∗


[

¯̄ϕ, ϕ̄
]

if c ≤ c̃
1/2 if c̃ < c < ˜̃c
N/A if c ≥ ˜̃c

{[
¯̄ϕ, ϕ̄

]
if c ≤~c

N/A if c >~c

Increasing successful barter probability will increase the valuation for the probabilistic

product, which makes the probabilistic product more attractive to customers. Note that ã is the

threshold that makes all the customers switch to buying the probabilistic product. Therefore,

when α≤ α̃, the seller will offer both the probabilistic product and component products, while

it only offers the probabilistic product when α> α̃. Furthermore, as the marketing benefit per

barter unit increases, the threshold decreases, i.e., the seller is more likely to merely offer the

probabilistic product. t can be interpreted as the degree of horizontal product differentiation. As

product differentiation increases, the threshold increases, i.e., the seller is likely to offer both

the component products and the probabilistic product. This means increasing marketing benefit

per barter unit encourages the seller to merely offer the probabilistic product, while increasing

product differentiation plays the opposite role.

This proposition provides important guidance to the seller as to whether or not to offer

the component products in probabilistic selling with barter: If product differentiation is high

while customers’ successful barter probability is low, the seller may consider offering both the
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component and probabilistic products. Offering merely the probabilistic product is advantageous

only when customers’ successful barter probability is high enough.

6.4 Comparison with probabilistic selling without barter
choice

From Fay and Xie (2008), the seller’s optimal profit of probabilistic selling without the barter

choice is as follows:

Gps =
1− c− 3

8 t if c ≤ ĉ,
(1−c)2

2t if c > ĉ,
(6.11)

where ĉ = 1− t/2.

We compare Gbp with the profit without barter Gps and define ∆bp−ps = Gbp −Gps (the

detailed comparison results are given in the Appendix). Fig. 6.3 summarizes the comparison

results between probabilistic selling without barter (PS) and probabilistic selling with barter

(PB) when (a) 0< q < t
4 , (b)1

4 t ≤ q ≤ 1
3 t, (c) 1

3 t ≤ q < 1
2 t, and (d) 1

2 t ≤ q < t. In Fig. 6.3, PB denotes

the strategy that the seller offers both the component and probabilistic products with barter

when α≤ α̃. PB∗ denotes the strategy when there are no demands for the component products

and the seller only offers the probabilistic product with barter when α> α̃. PS denotes that the

seller offers both the component and probabilistic products without the barter choice. TS denotes

that there is no demand for the probabilistic product and the seller only offers the component

products, i.e., traditional selling without the probabilistic product.

Proposition 6.3: Barter broadens the application range of probabilistic selling, which in-

creases with the successful barter probability when it is below or above the threshold α̃.

As shown in Fig. 6.3, the seller cannot benefit from probabilistic selling when the product

cost is high enough. This result is consistent with that in Fay and Xie (2008), who proved that

probabilistic selling cannot benefit the seller when c > 1− t/2. However, offering the barter choice

renders probabilistic selling more profitable than traditional selling when 1− t/2 < c < ˜̃c if the

successful barter probability is below a threshold, i.e., α≤ α̃, and when 1− t/2< c <~c if successful

barter probability is above a threshold, i.e., α> α̃. It is easy to prove that both ˜̃c and~c are greater

than 1− t/2. Thus, we can deduce that when the product cost is high, i.e., 1− t/2 < c < ˜̃c when

α ≤ α̃ and 1− t/2 < c <~c when α > α̃, the offer of the barter choice makes probabilistic selling

beneficial to the seller. In other words, barter broadens the application range of probabilistic

selling. However, offering the probabilistic product can never be the strategy to increase profit

when the product’s value is much more higher, i.e., c ≥ ˜̃c and c ≥~c.

The proposition has significant implications for practice. For the seller, when the product cost

is relatively high, it may consider offering the barter choice in probabilistic selling to increase

its profit (refer to Proposition 6.4). When the successful barter probability is below or above the
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(a) (b)

(c) (d)

Figure 6.3: Optimal strategies under different conditions.

threshold α̃, the higher the product cost is, the higher the successful barter probability it needs

to make probabilistic selling advantageous over traditional selling.

Proposition 6.4: The decision as to whether or not to offer the barter choice depends on the

product cost c, successful barter probability α, and marketing benefit per barter unit q. Specifically,

1) When the successful barter probability is below a threshold, i.e., α≤ α̃, the seller considers

the three strategies of PS, PB, and TS. If the marketing benefit is small, i.e., 0 < q ≤ t
3 , PS is

optimal when the cost is low, i.e., c ≤ c̄, and PB is optimal when the cost is medium, i.e., c̄ < c < ˜̃c.

2)When the successful barter probability is above a threshold, i.e., α> α̃, the seller considers

the three strategies of PS, PB∗, and TS. If q is sufficiently low, i.e., q < 1/4t, the offer of the barter

choice will decrease the profit of probabilistic selling. If the marketing benefit is sufficiently high,

i.e., q ≥ 1/3t, then barter can increase the profit of probabilistic selling.

3)When the cost is high enough, i.e., c ≥~c when α> α̃ and c ≥ ˜̃c when α≤ α̃, it is optimal not to

offer the probabilistic product.

4)When the marketing benefit is sufficiently large, i.e., q ≥ 1
2 , barter increases the profit of PS.

When the marketing benefit is q = 0, barter decreases the profit of PS when 0<α< 1.
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The implications of the above findings for practice are that the successful barter probability

is not necessarily the higher the better for probabilistic selling with barter. The performance also

depends on the marketing benefit brought by bartering. Increasing successful barter probability

α increases the valuation for the probabilistic product, which can cannibalize the sales of the

high-priced component products. Therefore, barter will weaken the price-discrimination effect of

probabilistic selling and make the probabilistic product more attractive. From this perspective,

barter will undermine the value of probabilistic selling. However, from another point of view, the

more people that buy the probabilistic product, the more marketing benefit the seller can gain

from bartering. Thus, when the marketing benefit brought by per unit of the barter product is low

while the successful barter probability is high, the profit increase through bartering cannot offset

the profit decrease. Just as shown in Fig. 6.3(a), offering the barter choice cannot benefit the seller

when the successful barter probability is above a threshold, i.e., α> α̃ while q is sufficiently low,

i.e., 0< q < 1/4t. In the extreme case where the marketing benefit is q = 0, barter will decrease

the profit of PS when 0<α< 1.

Proposition 6.5: The cost ranges that make probabilistic selling with barter more profitable

than probabilistic selling without barter, i.e.,
(
c̄, ˜̃c

)
and (0,~c) increase with the successful barter

probability.

The implications of the above finding for practice are that when offering probabilistic selling

with the barter choice, the seller can choose its products depending on the estimated successful

barter probability. Provided that the successful barter probability is above or below a threshold,

the higher the successful barter probability is, the wider are the ranges of products that the seller

can sell through probabilistic selling with barter.

6.5 Extension

We assume in the above study that successful barter probability α is exogenous and independent

with the allocation probability ϕ. In reality, successful barter probability α highly depends on

allocation probability: even allocation leads to the highest successful barter probability, and the

successful barter probability will be very low when the allocation probability is seriously uneven.

Therefore, we consider successful barter probability α depends on allocation probability in

the extension part. The successful barter probability achieves its highest when ϕ = 1/2 while

becomes zero when ϕ= 0 or ϕ= 1. This is consistent with the reality that no barter happens when

all the customers get the same product. Even when ϕ= 1/2, we cannot guarantee the successful

barter probability be 1 for reasons like customer patience, customer arrival sequence, and other

operational issues. Therefore, we use k ⊆ [0,1] to capture the effect of operations on the successful

barter probability α and define it as barter probability. Making α⊆ [0,1] , we define the successful

barter probability α= 4kϕ(1−ϕ).

Keeping other assumptions and definitions the same, we first derive the seller’s optimal
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Table 6.2: Optimal allocation strategies of probabilistic selling with barter

q k ϕ∗

q ≤ t/2 k ≤ k1
∂GA

Ca
∂ϕ

> 0,ϕ∗ = ϕ̄ ∂GB
Ca

∂ϕ
< 0,ϕ∗ = ϕ̄

k1 < k ≤ k̃
∂GA

Ca
∂ϕ

< 0,ϕ∗ = 1
2

∂GB
Ca

∂ϕ
< 0,ϕ∗ = ϕ̄

k > k̃
∂GA

Ca
∂ϕ

< 0,ϕ∗ = 1
2

∂GB
Ca

∂ϕ
< 0,ϕ∗ = ϕ̄

q > t/2 k ≤ k̃
∂GA

Ca
∂ϕ

< 0,ϕ∗ = 1
2

∂GB
Ca

∂ϕ
< 0,ϕ∗ = ϕ̄

k > k̃
∂GA

Ca
∂ϕ

< 0,ϕ∗ = 1
2

∂GB
Ca

∂ϕ
< 0,ϕ∗ = ϕ̄

Note: ϕ̄ is the solution of the equation 8kϕ2(1−ϕ)= 2ϕ−1, k1 = −2q+t
4(q−t)(−ϕ+ϕ2) , and k̃ = t

q+t .

allocation strategies of probabilistic selling with barter in Table 6.2. We find that even allocation

is optimal except for the case when both the barter probability and the marketing benefit are

relatively low, i.e., k ≤ k1 and q ≤ q ≤ t/2. In that case, the profit increases with allocation

probability (e.g., the optimal profit decreases with the successful barter probability α). That

means when the barter probability is very low, the overall marketing benefit cannot offset the

loss due to the cannibalized sales of high-priced component products. And then the lower the

successful barter probability, the higher the profit. Similarly, comparing the resulting profit

results and corresponding conditions analyzed, we then derive the seller’s optimal strategy for

probabilistic selling with barter in Proposition 6.6.

Proposition 6.6: Given the barter probability k, the seller’s optimal strategy for probabilistic

selling with barter is as follows:

With k ≤ k1 and q/2,

Gbp = Max [GCa,G Ia]=


GA

Ca if c ≤ c̃,ϕ∗ = ϕ̄,

GA
Ia if c̃ < c < ˜̃c, ϕ∗ = 1

2 ,

GTs if c ≥ ˜̃c,

(6.12)

and with k1 < k ≤ k̃,

Gbp = Max [GCa,G Ia]=


GA

Ca if c ≤ c̃,ϕ∗ = 1
2 ,

GA
Ia if c̃ < c < ˜̃c,ϕ∗ = 1

2 ,

GTs if c ≥ ˜̃c,

(6.13)
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and with k̃ < k ≤ 1,

G∗
bp = Max

[
G∗

Ca,G∗
Ia

]=
G∗

Ca if c ≤~c ,ϕ∗ = 1
2 ,

GTs if~c < c ≤ 1,
(6.14)

where c̃ = 1− 1
2 t+ qα−αt

2 , ˜̃c = 1− 1
2 t+ qα

2(1−α) , ~c = 1− t+p
qtα , α̃= t

q+t ,k1 = −2q+t
4(q−t)(−ϕ+ϕ2) ,α= k, α̃=

k̃ = t
q+t .

We get the same result that the optimal profit when 1
2 ≤ ϕ ≤ ϕ̄ outperforms that when

ϕ̄≤ϕ≤ 1. And proposition 6.2 still holds. Besides, we also prove that GA
Ca is worse off than GPs

and G Ia when k ≤ k1 and q ≤ 1
2 . Then the comparison results of PS, PB, and TS considering

different conditions of product cost c, barter probability k, successful barter probability α, and

the marketing benefit q is the same with Fig. 6.3 except for that the successful barter probability

α= k and α∗ = k∗ = t
q+t . Therefore, the propositions 6.3-6.5 still hold. Besides, if the seller chooses

PB strategy, even allocation can help to achieve the maximum profit.

6.6 Conclusions

Motivated by existing online shopping platforms that support customers who buy probabilistic

products to barter their allocated products for their preferred products, we study the seller’s opti-

mal pricing and allocation strategies for probabilistic selling with the barter choice. Considering

the effects of product cost, barter probability, and marketing benefit brought by bartering, we

explore when barter benefits probabilistic selling and makes it more profitable to the seller. We

find a barter probability threshold for offering the component products in probabilistic selling

with barter. Above the threshold, the probabilistic product will cannibalize all the component

product sales, and then the seller prefers to fully cover the market and offer merely the proba-

bilistic product. When the barter probability is below the threshold, barter can increase the profit

of probabilistic selling when the product cost is medium and the cost ranges increase with the

barter probability. Besides, barter can broaden the application range of probabilistic selling and

the range will increase with the barter probability.

This is the first study on probabilistic selling with the barter choice. Our findings shed light

on the practice of probabilistic selling with the barter choice. First, our findings help the seller

in making decisions on pricing, allocation probability, and product line design, i.e., the seller

merely offers the component products, merely the probabilistic product, or both. Second, our

analysis helps the seller understand when and how to offer the barter choice in probabilistic

selling to achieve the maximum profit with consideration of product cost, successful barter

probability, marketing benefit brought by per barter unit. Specifically, Fay and Xie (2008) proved

that probabilistic selling can improve the seller’s profit only when the product cost is low, i.e.,

c ≤ 1/2. Our research indicates that when the product cost is high, i.e., c > 1/2, the seller can offer

the barter choice in probabilistic selling to increase its profit under some conditions. When the
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barter probability is below or above a threshold, the higher the product cost is, the higher the

barter probability is needed to make probabilistic selling advantageous over traditional selling.

However, the barter probability is not necessarily the higher the better. When the marketing

benefit brought by bartering is sufficiently low and the barter probability is high, the seller will

not benefit from offering the barter choice.

In this study we assume that the demand is deterministic and symmetrical. Future studies

can extend our model to consider demand uncertainty and asymmetrical demand. In addition,

the barter probability is independent of the demand distribution in our model. However, when

the demand is asymmetrical, the probability of bartering products A for B and that of bartering

products B for A may be different. While we focus on the profit of the seller in our study, future

research may consider the effect of barter on consumer welfare in probabilistic selling.
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Considering different characteristics of the probabilistic product, the buyer, and the seller involved

in probabilistic selling, i.e., the probabilistic product form, the buyers’ behaviours of demand

switch and barter exchange, and the seller’s behaviours of product allocation, we establish model

and solve the decision problems of pricing, inventory, joint decision of pricing-inventory, and

product allocation, etc. Comparing probabilistic selling with traditional selling, probabilistic

selling with barter choice with probabilistic selling without barter choice, and probabilistic selling

with inventory substitution, we have derived some conditions to optimize probabilistic selling.

Based on the analysis of optimal decision and strategy comparison results, we shed some lights

on the profitability and the effectiveness of probabilistic selling on managing uncertainty.

The main results show that probabilistic selling can benefit the seller with higher expected

profit by reducing demand/supply uncertainty and improving inventory efficiency. The per-

formance of probabilistic selling is closely dependent on customers’ price sensitivity, product

similarity, and uncertainty level, etc.

The thesis has important implications for the practice. First, the thesis helps the sellers

understand the mechanism of probabilistic selling on managing demand uncertainty and supply

uncertainty. Second, the thesis helps sellers take full advantage of probabilistic selling by opti-

mizing their inventory, pricing and related implementation issues in more realistic circumstances.

Third, the thesis provides some references for the sellers to coordinate marketing and operational

decisions in practice to improve their profit.

The thesis has important implications for the existing theory. First, the thesis riches related

Operational Management research on inventory management in probabilistic selling. Second,

we focus on exploring the mechanism of this innovative marketing strategy as an inventory

management tool to combat uncertainty. Then the work also riches the literature on inventory
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management. Third, the models and analysis methods in the thesis may also apply to the study

of other similar Operations-Marketing interface problems.

The implementation forms of probabilistic selling is diverse and flexible, with many in-

teresting decision-making issues that need to be resolved. The future research directions as

follows:

(1) Probability selling strategy considering consumer behavior

Due to the incomplete information of the probabilistic product, customers may behave overcon-

fident, limited rational, optimistic/pessimistic, and brand loyalty, etc. in the purchasing process.

These customer behaviours will influence seller’s operational decisions in probabilistic selling.

(2) Cooperation mechanism design in probabilistic selling

Sellers using probabilistic selling must determine the product mix, the proposition of one

component product in the mix, and if the offer of the probabilistic product is limited, etc. Further-

more, creating probabilistic products may require the cooperation of multiple competing suppliers

similar with the opaque intermediary. Therefore, probabilistic selling will lead to selling coopera-

tion and game among channel participants, and furthermore affects other related operations, e.g,

advertising cooperation, production cooperation, supply management, etc.

(3)Production operations management in probabilistic selling

Since there is no need to develop additional physical product when the seller extends the

product line by creating the probabilistic product. Then expect this selling strategy can reduce

manufacturer’s cost on product design, procurement, and production.
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A.1 Proof of Proposition 3.1

The expected profit function is

E(Q i
p,Q j

p)=∫ Qp
i

0

∫ Qp
j

0

∫ Qp
i +Qp

j −Dp
i −Dp

j

0
[pDp

i + pDp
j + p0Dp

0 + s(Qp
i +Qp

j −Dp
i −Dp

j −Dp
0 )] f ∗(xi, x j, xk)dxidx jdxk

+
∫ Qp

i

0

∫ Qp
j

0

∫ ∞

Qp
i +Qp

j −Dp
i −Dp

j

[pDp
i + pDp

j + p0(Qp
i +Qp

j −Dp
i −Dp

j )] f ∗(xi, x j, xk)dxidx jdxk

+
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i

0

∫ ∞

Qp
j

∫ Qp
i −Dp
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0
[pDp

i + pQp
j + p0D0 + s(Qp

i −Dp
i −D0)] f ∗(xi, x j, xk)dxidx jdxk
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i

0
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Qp
j
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+
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Qp
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∫ Qp
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0

∫ Qp
j −Dp
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[pQp
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j + p0D0 + s(Qp

j −Dp
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Qp
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0
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So
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+ (s− p0)
∫ ∞

Qp
i

∫ Qp
j

0
f ∗(xi, x j,Q

p
j −Dp

j )dxidx j

+ (p0 − p)
∫ ∞

Qp
i

∫ ∞

0
f ∗(xi,Q

p
j , xk)dxidxk

+ (p0 − p)
∫ Qp

i

0

∫ ∞

Qp
i −Dp

i

f ∗(xi,Q
p
j , xk)dxidxk ≤ 0.

In addition,

∂E(Qp
i ,Qp

j )2

∂Qp
i ∂Qp

j
=
∂E(Qp

i ,Qp
j )2

∂Qp
j ∂Qp

i
=

(s− p0)
∫ Qp

i

0

∫ Qp
j

0
f ∗(xi, x j,Q

p
i +Qp

j −Dp
i −Dp

j )dxidx jdxk

Therefore, the Hessian Matrix ∣∣∣∣∣∣∣∣
∂E(Qp

i ,Qp
j )2

∂2Qp
i

∂E(Qp
i ,Qp

j )2

∂Qp
i ∂Qp

j

∂E(Qp
i ,Qp

j )2

∂Qp
j ∂Qp

i

∂E(Qp
i ,Qp

j )2

∂2Qp
j

∣∣∣∣∣∣∣∣ ≥ 0.

We have the result.
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A.2 Proof of Proposition 3.3

The optimal order quantities must satisfy the following equations
∂E(Qp

i ,Qp
j )

∂Qp
i

= p− (p− s)F(Qp
i
∗)+ (p0 − s)G(Qp

i
∗,Qp

j
∗)− c = 0,

∂E(Qp
i ,Qp

j )

∂Qp
j

= p− (p− s)F(Qp
j
∗)+ (p0 − s)N(Qp

i
∗,Qp

j
∗)− c = 0.

Differentiating the above results with respect to p0 yields a∗ ∂E(Qp
i
∗)

∂p0
+b∗ ∂E(Qp

j
∗)

∂p0
= −G(Qp

i
∗,Qp

j
∗),

c∗ ∂E(Qp
i
∗)

∂p0
+d∗ ∂E(Qp

j
∗)

∂p0
= −N(Qp

i
∗,Qp

j
∗).

where a∗, b∗, c∗, and d∗ denote the values of
∂E(Qp

i ,Qp
j )2

∂2Qp
i

,
∂E(Qp

i ,Qp
j )2

∂Qp
i ∂Qp

j
,
∂E(Qp

i ,Qp
j )2

∂Qp
j ∂Qp

i
, and

∂E(Qp
i ,Qp

j )2

∂2Qp
j

at

(Qp
i
∗,Qp

j
∗), respectively.

Then we get 
∂E(Qp

i
∗)

∂p0
= b∗N(Qp

i
∗,Qp

j
∗)−d∗G(Qp

i
∗,Qp

j
∗)

a∗d∗−b∗c∗ ,
∂E(Qp

j
∗)

∂p0
= c∗G(Qp

i
∗,Qp

j
∗)−a∗N(Qp

i
∗,Qp

j
∗)

a∗d∗−b∗c∗ .

There are four cases to consider as follows:

Case 1 If {c∗G>a∗N & b∗N<d∗G}, then {G < a∗
c∗ N & G < b∗

d∗ N & a∗
c∗ > 1 & b∗

d∗ < 1}. Therefore,

we can deduce that
∂E(Qp

i
∗)

∂p0
< 0 and

∂E(Qp
j
∗)

∂p0
> 0 with G < b∗

d∗ N.

Case 2 If {c∗G<a∗N & b∗N>d∗G}, then {G > a∗
c∗ N & G > b∗

d∗ N & a∗
c∗ > 1 & b∗

d∗ < 1}. Therefore,

we can deduce that
∂E(Qp

i
∗)

∂p0
> 0 and

∂E(Qp
j
∗)

∂p0
< 0 with G > a∗

c∗ N.

Case 3 If {c∗G>a∗N & b∗N>d∗G}, then {G < a∗
c∗ N & G > b∗

d∗ N & a∗
c∗ > 1 & b∗

d∗ < 1}. Therefore,

we can deduce that
∂E(Qp

i
∗)

∂p0
> 0 and

∂E(Qp
j
∗)

∂p0
> 0 with b∗

d∗ N <G < a∗
c∗ N.

Case 4 If {c∗G<a∗N & b∗N<d∗G}, then {G > a∗
c∗ N & G < b∗

d∗ N & a∗
c∗ > 1 & b∗

d∗ < 1}. There is no

intersection set. Therefore, we can deduce that
∂E(Qp

i
∗)

∂p0
< 0 and

∂E(Qp
j
∗)

∂p0
< 0 can not coexist.
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Assuming that E
(
Qp

i ,Qp
j

)
is continuations and differentiable, we take the first and second partial

derivatives of E
(
Qp

i ,Qp
j

)
with respect to Qp

i and Qp
j , respectively under the four cases:

(1) Case I: rQp
i + rQp

j ≤Qp
i andrQp

i + rQp
j ≤Qp

j

∂E
(
Qp

i ,Qp
j

)
∂Qp

i
=

∫ Qp
i /(1−α)

0

∫ ∞

0
((1− r) p+ q) f (x, y)dxdy+

∫ ∞

Qp
i /(1−α)

∫ ∞

0
(p+ q) f (x, y)dxdy

+
∫ Qp

i /(1−α)

Qp
i −Qp

j α/(1−α)

∫ Qp
i +Qp

j −x

0
(s− (1− r) p− q) f (x, y)dxdy

+
∫ Qp

i −Qp
j α/(1−α)

0

∫ (Qp
i −x)/α

0
(s− (1− r) p− q) f (x, y)dxdy− c

∂E
(
Qp

i ,Qp
j

)
∂Qp

j
=

∫ ∞

0

∫ Qp
j /(1−α)

0
((1− r) p+ q) f (x, y)dxdy+

∫ ∞

0

∫ ∞

Qp
j /(1−α)

(p+ q) f (x, y)dxdy

+
∫ Qp

i /(1−α)

Qp
i −Qp

j α/(1−α)

∫ Qp
i +Qp

j −x

0
(s− (1− r) p− q) f (x, y)dxdy

+
∫ Qp

j /α

Qp
i /(1−α)

∫ Qp
j −αx

0
(s− (1− r) p− q) f (x, y)dxdy− c

∂E
(
Qp

i ,Qp
j

)2

∂2Qp
i

=
∫ ∞

0

1
1−α (−rp) f (

Qp
i

1−α , y)dy+
∫ Qp

i +Qp
j −Qp

i /(1−α)

0

1
1−α (s− (1− r)p− q) f (

Qp
i

1−α , y)dy

+
∫ Qp

i /(1−α)

Qp
i −Qp

j α/(1−α)
(s− (1− r)p− q) f (x,Qp

i +Qp
j − x)dx

+
∫ Qp

i −Qp
j α/(1−α)

0

1
α

(s− (1− r)p− q) f (x,
Qp

i − x

α
)dx < 0
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∂E
(
Qp

i ,Qp
j

)2

∂2Qp
j

=
∫ ∞

0

1
1−α (−rp) f (x,

Qp
j

1−α )dx+
∫ Qp

j /α

Qp
i /(1−α)

1
1−α (s− (1− r)p− q) f (x,Qp

j −αx)dx

+
∫ Qp

i /(1−α)

Qp
i −Qp

j α/(1−α)
(s− (1− r)p− q) f (x,Qp

i +Qp
j − x)dx

+
∫ Qp

i −Qp
j α/(1−α)

0

1
1−α (s− (1− r)p− q) f (x,

Qp
j

1−α )dx < 0

∂E
(
Qp

i ,Qp
j

)2

∂Qp
i ∂Qp

j
=
∂E

(
Qp

i ,Qp
j

)2

∂Qp
j ∂Qp

i
=

∫ Qp
i /(1−α)

Qp
i −Qp

j α/(1−α)
(s− (1− r)p− q) f (x,Qp

i +Qp
j − x)dx < 0

(2) Case II : rQp
i + rQp

j ≤Qp
i andrQp

i + rQp
j ≥Qp

j

∂E
(
Qp

i ,Qp
j

)
∂Qp

i
=

∫ ∞

Qp
i /(1−α)

∫ ∞

0
(p+ q) f (x, y)dxdy+

∫ Qp
i /(1−α)

0

∫ ∞

0
((1− r)p+ q) f (x, y)dxdy

∫ Qp
i −Qp

j α/(1−α)

0

∫ (Qp
i −x)/α

0
(s− (1− r)p− q) f (x, y)dxdy

+
∫ Qp

i +Qp
j

Qp
i −Qp

j α/(1−α)

∫ Qp
i +Qp

j −x

0
(s− (1− r)p− q) f (x, y)dxdy− c

∂E
(
Qp

i ,Qp
j

)
∂Qp

j
=

∫ ∞

0

∫ Qp
j /(1−α)

0
((1− r)p+ q) f (x, y)dxdy+

∫ ∞

0

∫ ∞

Qp
j /(1−α)

(p+ q) f (x, y)dxdy

∫ Qp
i +Qp

j

Qp
i −Qp

j α/(1−α)

∫ Qp
i +Qp

j −x

0
(s− (1− r)p− q) f (x, y)dxdy

+
∫ Qp

i −Qp
j α/(1−α)

0

∫ Qp
j /(1−α)

0
(s− (1− r)p− q) f (x, y)dxdy− c

∂E
(
Qp

i ,Qp
j

)2

∂2Qp
i

=
∫ ∞

0

1
1−α (−rp) f (

Qp
i

1−α , y)d y

+
∫ Qp

i +Qp
j

Qp
i −Qp

j α/(1−α)
(s− (1− r)p− q) f (x,Qp

i +Qp
j − x)dx

+
∫ Qp

i −Qp
j α/(1−α)

0

1
α

(s− (1− r)p− q) f (x,
Qp

i − x

α
)dx < 0

∂E
(
Qp

i ,Qp
j

)2

∂2Qp
j

=
∫ ∞

0

1
1−α (−rp) f (x,

Qp
j

1−α )dx

+
∫ Qp

i +Qp
j

Qp
i −Qp

j α/(1−α)
(s− (1− r)p− q) f (x,Qp

i +Qp
j − x)dx

+
∫ Qp

i −Qp
j α/(1−α)

0

1
1−α (s− (1− r)p− q) f (x,

Qp
j

1−α )dx < 0
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∂E
(
Qp

i ,Qp
j

)2

∂Qp
i ∂Qp

j
=
∂E

(
Qp

i ,Qp
j

)2

∂Qp
j ∂Qp

i

=
∫ Qp

i +Qp
j

Qp
i −Qp

j α/(1−α)
(s− (1− r)p− q) f (x,Qp

i +Qp
j − x)dx

(3) Case III: rQp
i + rQp

j ≥Qp
i andrQp

i + rQp
j ≤Qp

j

∂E
(
Qp

i ,Qp
j

)
∂Qp

i
=

∫ Qp
i /(1−α)

0

∫ ∞

0
((1− r)p+ q) f (x, y)dxdy+

∫ ∞

Qp
i /(1−α)

∫ ∞

0
(p+ q) f (x, y)dxdy

+
∫ Qp

i /(1−α)

0

∫ Qp
i +Qp

j −x

0
(s− (1− r)p− q) f (x, y)dxdy− c

∂E
(
Qp

i ,Qp
j

)
∂Qp

j
=

∫ ∞

0

∫ Qp
j /(1−α)

0
((1− r)p+ q) f (x, y)dxdy+

∫ ∞

0

∫ Qp
j /(1−α)

0
(p+ q) f (x, y)dxdy

+
∫ Qp

i /(1−α)

0

∫ Qp
i +Qp

j −x

0
(s− (1− r)p− q) f (x, y)dxdy

+
∫ Qp

j /α

Qp
i /(1−α)

∫ Qp
j −αx

0
(s− (1− r)p− q) f (x, y)dxdy− c

∂E
(
Qp

i ,Qp
j

)2

∂2Qp
i

=
∫ Qp

i /(1−α)

0
(s− (1− r)p+ q) f (x,Qp

i +Qp
j − x)dx

+
∫ Qp

i +Qp
j −Qp

i /(1−α)

0

1
1−α (s− (1− r)p+ q) f (

Qp
i

1−α , y)d y

+
∫ ∞

0

1
1−α (−rp) f (

Qp
i

1−α , y)d y

∂E
(
Qp

i ,Qp
j

)2

∂2Qp
j

=
∫ Qp

i /(1−α)

0
(s− (1− r)p+ q) f (x,Qp

i +Qp
j − x)dx

+
∫ Qp

j /α

Qp
i /(1−α)

(s− (1− r)p+ q) f (x,Qp
i −αx)d y

+
∫ ∞

0

1
1−α (−rp) f (x,

Qp
j

1−α )dx

∂E
(
Qp

i ,Qp
j

)2

∂Qp
i ∂Qp

j
=
∂E

(
Qp

i ,Qp
j

)2

∂Qp
j ∂Qp

i
=

∫ Qp
i /(1−α)

0
(s− (1− r)p+ q) f (x,Qp

i +Qp
j − x)dx
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(4) Case IV: rQp
i + rQp

j ≥Qp
i andrQp

i + rQp
j ≥Qp

j

∂E
(
Qp

i ,Qp
j

)
∂Qp

i
=

∫ Qp
i +Qp

j

0

∫ Qp
i +Qp

j −x

0
(s− (1− r)p− q) f (x, y)dxdy+

∫ Qp
i /(1−α)

0

∫ ∞

0
((1− r)p− q) f (x, y)dxdy

+
∫ ∞

Qp
i /(1−α)

∫ ∞

0
(p+ q) f (x, y)dxdy− c

∂E
(
Qp

i ,Qp
j

)
∂Qp

j
=

∫ Qp
i +Qp

j

0

∫ Qp
i +Qp

j −x

0
(s− (1− r)p− q) f (x, y)dxdy+

∫ ∞

0

∫ Qp
j /(1−α)

0
((1− r)p− q) f (x, y)dxdy

+
∫ ∞

0

∫ ∞

Qp
j /(1−α)

(p+ q) f (x, y)dxdy− c

∂E
(
Qp

i ,Qp
j

)2

∂2Qp
i

=
∫ ∞

0

−rp
1−α f (

Qp
i

1−α , y)d y+
∫ Qp

i +Qp
j

0
(s− (1− r)p− q) f (x,Qp

i +Qp
j − x)dx < 0

∂E
(
Qp

i ,Qp
j

)2

∂2Qp
j

=
∫ ∞

0

−rp
1−α f (x,

Qp
j

1−α )dx+
∫ Qp

i +Qp
j

0
(s− (1− r)p− q) f (x,Qp

i +Qp
j − x)dx < 0

∂E
(
Qp

i ,Qp
j

)2

∂Qp
i ∂Qp

j
=
∂E

(
Qp

i ,Qp
j

)2

∂Qp
j ∂Qp

i
=

∫ Qp
i +Qp

j

0
(s− (1− r)p− q) f (x,Qp

i +Qp
j − x)dx < 0

Then, we get the the Hessian Matrix under the above four cases as follows:∣∣∣∣∣∣∣∣
∂E(Qp

i ,Qp
j )2

∂2Qp
i

∂E(Qp
i ,Qp

j )2

∂Qp
i ∂Qp

j

∂E(Qp
i ,Qp

j )2

∂Qp
j ∂Qp

i

∂E(Qp
i ,Qp

j )2

∂2Qp
j

∣∣∣∣∣∣∣∣ > 0.

Therefore, the expected profit functions have a maximum value. We have the result.
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C.1 Proof of Proposition 5.1

Noting that zi and z j are independent of r, while zk depends on r, we first derive the derivatives

of zk and L(zk) with respect to r as follows: ∂zk
∂r = pv−pc

[(1−r)p−v+q]2 fs(zk) ,
∂L(zk)
∂zk

= v−c
(1−r)p−v+q , ∂L(zk)

∂r =
p(v−c)2

[(1−r)p−v+q]3 fs(zk) .

Then

1) When λ r
d 6 1, the expected profit function is shown in Eq.(??). Then the first derivative is

as follows:

dφpps

dr
= [(c−v)zi + (p−v+ q)L(zi)]

λσi

d
+ [(c−v)z j + (p−v+ q)L(z j)]

λσ j

d

− [(c−v)zk + (p−v+ q)L(zk)]
λ
√
σ2

i +σ2
j +2ρ i jσiσ j

d

+2
pr
d
λL(zk)

√
σ2

i +σ2
j +2ρ i jσiσ j −2

pr
d

(λui +λu j),

(C.1)

and

d2φpps

dr2 = 2
p
d
λ

[
L(zk)

√
σ2

i +σ2
j +2ρ i jσiσ j − (ui +u j)

]
− p2r(v− c)2

[(1− r)p−v+ q]3 fs(zk)
.

Multiplying the first term of d2φpps

dr2 by r > 0, we obtain

2p
[
αL(zk)

√
σ2

i +σ2
j +2ρ i jσiσ j −α(ui +u j)

]
. (C.2)

Because r > 0, Eq.(C.2) does not change sign. The first term αL(zk)
√
σ2

i +σ2
j +2ρ i jσiσ j is the

loss function, which defines the expected demand excessing the order quantity (see, e.g., Silver et
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al., 1998). We subtract the expected loss sales from the mean uk to get the expected sales of the

probabilistic product as α(ui +u j)−αL(zk)
√
σ2

i +σ2
j +2ρ i jσiσ j , which is supposed to be positive.

So we have 2pα
[
L(zk)

√
σ2

i +σ2
j +2ρ i jσiσ j − (ui +u j)

]
< 0. As p2r(v−c)2

[(1−r)p−v+q]3 fs(zk) > 0, d2φpps

dr2 < 0.

2) When λ r
d > 1,α= 1. Then all the customers would switch to buying the probabilistic product

and the expected profit function can be re-written as follow:

φpps = ((1− r)p− c)(ui +u j)− [(c−v)zk + ((1− r)p−v+ q)L(zk)]
√
σ2

i +σ2
j +2ρ i jσiσ j . (C.3)

Then first derivative dφpps
dr =−p

(
(ui +u j)−L(zk)

√
σ2

i +σ2
j +2ρ i jσiσ2

)
. Similarly, we can rec-

ognize that (ui +u j)−L(zk)
√
σ2

i +σ2
j +2ρ i jσiσ j is the expected sales of the probabilistic product

which is supposed to be positive. Therefore, dφpps
dr < 0.

According to Eq.(6.1), given λ and d, we can deduce that φpps is also concave in α. Thus the

proposition is proved.

C.2 Proof of Proposition 5.2

From Proposition 5.1, we can find that the optimal price discount r∗ is located within the range

(0,min(d/λ,1)]. Therefore, we can just consider the expected profit when λ r
d ≤ 1 and set Eq.(C.1)

to zero to determine the optimal price discount.

Let the first derivative dφpps
dr = 0,

r = (
[(c−v)zi + (p−v+ q)L(zi)]ασi + [(c−v)z j + (p−v+ q)L(z j)]ασ j

−[(c−v)zk + (p−v+ q)L(zk)]α
√
σ2

i +σ2
j +2ρ i jσiσ j

)
/ (2p(uk −L(zk)σk)) .

Because the specific products have the same price/cost structure and
∫ zi
−∞ fs(x)dx = p−c+q

p−v+q ,∫ z j
−∞ fs(x)dx = p−c+q

p−v+q , and
∫ zk
−∞ fs(x)dx = (1−r∗)p−c+q

(1−r∗)p−v+q , where fs(x) = 1p
2π

e−x2/2. Then zi = z j and

L(zi) = L(z j). However, zk and L(zk) are dependent on the optimal discount r∗. Therefore, the

optimal discount of r∗ meets the equation as follows:

Dc = 2pr(uk −L(zk)σk), (C.4)

where Dc = [(c−v)z+ (p−v+ q)L(z)](ασi +ασ j)− [(c−v)zk + (p−v+ q)L(zk)]σk, zi = z j = z, and

L(zi)= L(z j)= L(z). Thus the proposition is proved.

C.3 Proof of Proposition 5.4

1) The optimal profit φ∗
ts and total order quantity Q∗

ts in the traditional selling (TS) is as follows:

φ∗
ts = (p− c)ui − [(c−v)zi + (p−v+ q)L(zi)]σi

+ (p− c)u j −
[
(c−v)z j + (p−v+ q)L(z j)

]
σ j.

(C.5)
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Q∗
ts = ui +u j + ziσi + z jσ j.

Therefore,

φ∗
pps −φ∗

ts = [(c−v)z+ (p−v+ q)L(z)] (ασi +ασ j)− [(c−v)zk + (p−v+ q)L(zk)]σk

− pr∗(uk −L(zk)σk).

Substituting Eq.(C.4) into Eq.(C.3), we get φ∗
pps −φ∗

ts = pr∗(uk − L(zk)σk) ≥ 0. Thus, the

proposition that φ∗
pps ≥φ∗

ts has been proved.

2) Next we compare the optimal order quantity Q∗
pps in probabilistic selling with Q∗

ts as

Q∗
pps−Q∗

ts =α∗Q∗
d, where Q∗

d = zk

√
σ2

i +σ2
j +2ρ i jσiσ j −ziσi−z jσ j. Taking the first derivative of

Q∗
d with respect to r∗ , we get

∂Q∗
d

∂r∗ = p(v−c)
√
σ2

i +σ2
j+2ρ i jσiσ j

[(1−r)p−v+q]2 fs(zk) < 0. Then Q∗
d can achieves the maximum

when r∗ → 0. When r∗ → 0, we find that Q∗
d ≤ 0 and lim

r∗→0
(Q∗

pps −Q∗
ts)= 0. Thus, the proposition

that Q∗
pps ≤Q∗

ts has been proved.

3) With Q∗
d ≤ 0 and

∂Q∗
d

∂r∗ < 0, we can get that
∂(Q∗

pps−Q∗
ts)

∂r∗ = λ
d Q∗

d +α∗ ∂Q∗
d

∂r∗ ≤ 0.

C.4 Proof of Proposition 5.5

1) Taking the first derivative of φ∗
pps −φ∗

ts with respect to λ, we obtain

∂(φ∗
pps −φ∗

ts)

∂λ
= pr∗

(
ui

r∗

d
+u j

r∗

d
−L(zk)

r∗

d

√
σ2

i +σ2
j +2σiσ j

)
. (C.6)

Multiplying Eq.(C.6) by λ(λ> 0) does not change the sign. Then we obtain

λ
∂(φ∗

pps −φ∗
ts)

∂λ
= pr∗(uk −L(zk)σk)> 0. (C.7)

Similarly, we can prove that

∂(φ∗
pps −φ∗

ts)

∂d
=− 1

d
[pr∗(uk −L(zkσk))]< 0. (C.8)

2) Taking the first derivative of Q∗
pps −Q∗

ts with respect to λ, we obtain

∂(Q∗
pps −Q∗

ts)

∂λ
= r∗

d
Q∗

d < 0. (C.9)

Similarly, we can prove that

∂(Q∗
pps −Q∗

ts)

∂d
=− r∗

d2 Q∗
d > 0. (C.10)
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Appendix. Proposition 6.1

D.1 Probabilistic selling with barter in a fully covered market

(1) When 1
2 ≤ ϕ < ϕ̄, for given x̂1 and x̂2, the optimal prices that can extract the maximum

consumer surplus are expressed as follows (we let x̂3=x̂4=1/2 in Figure 6.2(a) to make sure that

the market is fully covered):

ppb
0 =ϕ(1− t/2)+ (1−ϕ)(1− t(1−1/2)),

ppb
1 =ϕtx̂1 + (1−ϕ)t(1− x̂1)− tx̂1 − (1−ϕ)αt(1−2x̂1)+ ppb

0 ,

ppb
2 =ϕtx̂2 + (1−ϕ)t(1− x̂2)−ϕαt(2x̂2 −1)− t(1− x̂2)+ ppb

0 .

(D.1)

Taking the first derivative of the profit with respect to x̂1, we get ∂Gc
∂x̂1

= (qα+ t(1−4x1)(−1+α)) (−1+
ϕ). Solving ∂Gc

∂x̂1
= 0, we get x̂1 = −t+qα+tα

4t(−1+α) . Solving ∂Gc
∂x̂2

= (t(−3+4x̂2)(−1+α)+ qα)ϕ = 0, we get

x̂2 = −3t−qα+3tα
4t(−1+α) , ∀ϕ ≥ 1/2. With optimal x̂1 and x̂2, the prices of the component products are

ppb
1 = 1

2 (2+α(q− t)(1−ϕ)− tϕ), ppb
2 = 1

2 (2+ qαϕ− t+ϕt−αtϕ), and ppb
0 = 1− t/2. The profit of

probabilistic selling with barter in a fully covered market is

GA
ca =− q2α2 −2t(−1+α)(4+ qα)+ t2(−3+2α+α2)

8t(−1+α)
− c. (D.2)

Obviously, GA
ca is independent of the allocation probability and the optimal allocation probability

is 1
2 ≤ϕ∗ < ϕ̄.

(2) When ϕ̄ ≤ ϕ < 1, for given x̂1 and x̂2, the optimal price that can extract the maximum

consumer surplus are expressed as follows (we let x̂3=x̂2 in Figure 6.2(b) to make sure that the
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market is fully covered):

ppb
0 =ϕ(1− tx̂2)+ (1−ϕ)(1− t(1− x̂2)+α(2x̂2 −1)),

ppb
1 =ϕtx̂1 + (1−ϕ)t(1− x̂1)− tx̂1 − (1−ϕ)αt(1−2x̂1)+ ppb

0 ,

ppb
2 =ϕtx̂2 + (1−ϕ)t(1− x̂2)−ϕαt(2x̂2 −1)− t(1− x̂2)+ ppb

0 .

(D.3)

The profit function is the same as Eq. (6.3). Similarly, we get x̂1 = −t+qα+tα
4t(−1+α) and x̂2 = −t−tϕ−qαϕ+tαϕ

4t(−1+α)ϕ ,

and a resulting optimal profit is

GB
ca =− q2α2ϕ+ t2 (

1+ (−5+4α+α2)ϕ
)−2tϕ(−4−4c(−1+α)+2α(2+ q(−1+ϕ))+α2(q−2qϕ))

8t(−1+α)ϕ
.

(D.4)

Taking the first derivative, we can find that ∂GB
ca

∂ϕ
= t−4q(−1+α)αϕ2

8(−1+α)ϕ2 < 0. Therefore, the optimal

ϕ∗ = 1
2(1−α) , which makes GB

ca = GA
ca. Therefore, the allocation probability that extracts the

maximum profit when ϕ≥ 1
2 is 1

2 ≤ϕ∗ ≤ ϕ̄. Similarly, when ϕ≤ 1
2 , we can extract the allocation

probability 1−2α
2(1−α) ≤ϕ∗ ≤ 1

2 . Thus, the optimal allocation probability for probabilistic selling with

barter is ¯̄ϕ≤ϕ∗ ≤ ϕ̄
Furthermore, we set x̂1 = −t+qα+tα

4t(−1+α) ≥ 0, i.e., α ≤ t
q+t = α̃, to make sure that there are non-

negative demands for the component products. When α> α̃, i.e., x̂1 = 0 and x̂2 = 1, the seller only

sells the probabilistic product. Thus, the resulting profit is

G∗
Ca = 1− c− t

2
+ qα

2
. (D.5)

(3) Referring to the optimal decisions and resulting profit of traditional selling in Fay and

Xie (2008) (see Eq. (6.4)), we compare GCa and G∗
Ca with GTs to get the optimal strategy for

probabilistic selling with barter.

a) GCa vs GTs

When c < 1− t, GCa −GTs =− (t(−1+α)−qα)2

8t(−1+α) > 0. When c ≥ 1− t, GCa −GTs =∆1 =
− q2α2−2t(−1+α)(4+qα)+t2(−3+2α+α2)

8t(−1+α) − c− (1−c)2

2t . Notice ∂∆1
∂c = 1−t−c

t < 0 and the comparison result is

given by

GCa =
GA

Ca if c ≤ ¯̄c,
(1−c)2

2t if c > ¯̄c,
(D.6)

where ¯̄c = 1− t+ t/2
√

(t(1−α)+qα)2

t2(1−α) .

b) G∗
Ca vs GTs

When c < 1− t, G∗
Ca −GTs = qα

2 > 0. When c ≥ 1− t, G∗
Ca −GTs = ∆2 = 1− c− t

2 + qα
2 − (1−c)2

2t .

Notice ∂∆2
∂c = 1−t−c

t < 0 and the comparison result is given by

G∗
Ca =

1− c− t
2 + qα

2 if c ≤~c.
(1−c)2

2t ifc >~c,
(D.7)
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where~c = 1− t+p
qtα .

Thus, we have derived the optimal strategy for probabilistic selling with barter in a fully

covered market. We summarize the optimal decisions on price and allocation probability, and the

resulting sales and profit in Table D.1.

Table D.1: Optimal decisions for probabilistic selling with barter when market is fully covered

α≤ α̃ α> α̃

D j

{−t+qα+tα
4t(−1+α) if c ≤ ¯̄c

1−c
2t if c > ¯̄c

{
0 if c ≤~c
1−c
2t if c >~c

D0

{ tα−qα−t
2t(−1+α) if c ≤ ¯̄c
0 if c > ¯̄c

{
1 if c ≤~c
0 if c >~c

ppb
0

{
1− 1

2 t if c ≤ ¯̄c
N/A if c > ¯̄c

{
1− 1

2 t if c ≤~c
N/A if c >~c

ppb
1

{
1
2 (2+α(q− t)(1−ϕ)− tϕ) if c ≤ ¯̄c
1+c

2 if c > ¯̄c

{
N/A if c ≤~c
1+c

2 if c >~c

ppb
2

{
1
2 (2+α(q− t)ϕ− t(1−ϕ)) if c ≤ ¯̄c
1+c

2 if c > ¯̄c

{
N/A if c ≤~c
1+c

2 if c >~c

Gpb

{
GA

Ca if c ≤ ¯̄c
(1−c)2

2t if c > ¯̄c

{
G∗

Ca if c ≤~c
(1−c)2

2t if c >~c

ϕ∗
{

¯̄ϕ≤ϕ≤ ϕ̄ if c ≤ ¯̄c
N/A if c > ¯̄c

{
¯̄ϕ≤ϕ≤ ϕ̄ if c ≤~c
N/A if c >~c

Note:~c = 1− t+p
qtα and ¯̄c = 1− t+ t/2

√
(t(1−α)+qα)2

t2(1−α) .

D.2 Probabilistic selling with barter in a partially covered
market

(1) When 1
2 ≤ϕ< ϕ̄ (as shown in Figure 2(a)), the profit function is given by

GA
Ia = (ppd

01 −c)(x̂3−x̂1)+(ppd
02 −c)(x̂2−x̂4)+(p1−c)x̂1+(p2−c)(1−x̂2)+(x̂3−x̂1)qα(1−ϕ)+(x̂2−x̂4)qαϕ,

(D.8)
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where ppd
01 and ppd

02 are the price for the probabilistic product. For given x̂1, x̂2, x̂3, and x̂4, the

optimal prices that can extract the maximum consumer surplus are expressed as

ppd
01 =ϕ(1− tx̂3)+ (1−ϕ)(1− t(1− x̂3)+ tα(1−2x̂3)),

ppd
02 =ϕ(1− tx̂4 +αt(2x̂4 −1))+ (1−ϕ)(1− t(1− x̂4)),

ppd
1 =ϕtx̂1 + (1−ϕ)t(1− x̂1)− tx̂1 − (1−ϕ)αt(1−2x̂1)+ ppd

01 ,

ppd
2 =ϕtx̂2 + (1−ϕ)t(1− x̂2)−ϕαt(2x̂2 −1)− t(1− x̂2)+ ppd

02 .

(D.9)

Taking the first derivatives of the profit with respect to x̂1, x̂2, x̂3, and x̂4, and setting

them to zero, we get x̂1 = −t+qα+tα
4t(−1+α) , x̂2 = −3t−qα+3tα

4t(−1+α) , x̂3 = −1+c+t−qα−tα−tϕ+qαϕ+tαϕ
2t(1−2α−2ϕ+2αϕ) , and x̂4 =

−1+c+2t−3tϕ−qαϕ+3tαϕ
2t(1−2ϕ+2αϕ) . Given that the price of the probabilistic product is ppd

0 = ppd
01 = ppd

02 , the

optimal ϕ∗ = 1/2. Substituting ϕ∗ into x̂3 and x̂4, we get the optimal x̂3 = 2−2c−t+qα+αt
4αt and

x̂4 = −2+2c+t−qα+3αt
4αt . Notice that the seller chooses to make positive sales of the probabilistic

product when x̂3 > x̂1 or x̂4 < x̂2, and the market is partially covered if x̂3 < 1/2 or x̂4 > 1/2.

Thus we can deduce the condition on the product cost as c̃ < c < ˜̃c, where c̃ = 1− 1
2 t+ qα−αt

2 and
˜̃c = 1− 1

2 t+ qα
2(1−α) . The profit is expressed as follows:

GA
Ia = t(1−α)

8α
+ q2α2

8t(−1+α)α
+ 4t+2(−2+ q)αt+8c+4ct(−1+α)+4cqα+4+4c2 +4qα

8tα
. (D.10)

(2) When 1>ϕ≥ ϕ̄, we get the optimal x̂1 = −t+qα+tα
4t(−1+α) , x̂2 = −1+c+2t

2t , and x̂3 = −1+c+t−tϕ−qαϕ+tαϕ
2t(1−2ϕ+2αϕ) .

And we can get the optimal profit as follows:

GB
Ia =− 1

8t(−1+α)(1+2(−1+α)ϕ)
[−4(−1+ c)2(−1+α)2ϕ−4(−1+ c)q(−1+α)αϕ

+ t2(−1+α2(1−3ϕ)+ϕ+2α3ϕ)+ q2α2(1+ (−3+2α)ϕ)+2t(−1+α)

(−2+2ϕ−2αϕ+2c(1+ (−1+α)ϕ)+ qα(−1+ (3−2α)ϕ+4(−1+α)ϕ2))].

(D.11)

Because
∂GB

Ia
∂ϕ

< 0, the optimal ϕ = 1
2(1−α) . Notice that the denominator of x̂3 is zero when ϕ =

1
2(1−α) . Thus, x̂3 approaches to 1 and the market reduces to a fully covered market, i.e., x̂3=x̂2=1.

Therefore, the optimal profit in the partially covered market is G Ia = GA
Ia with c̃ < c < ˜̃c. Also

when α > α̃, i.e., x̂1 = 0 and x̂2 = 1), the seller only sells the probabilistic product. Thus, the

resulting profit is

G∗
Ia = 4c2 + (2+ qα)2 −4c(2+ t(−1+α)+ qα)+ t2(1−6α+5α2)−2t(2+ (−2+ q)α+ qα2)

8tα
. (D.12)

(3) We then compare G Ia and G∗
Ia with GTs to derive the optimal strategy for probabilistic selling

with barter in a partially covered market.

a) G Ia vs GTs

Because c̃ > 1− t, we can only consider the case where c > 1− t. Notice that α≤ α̃ and ˜̃c ≤ 1, so

G Ia −GTs = (2+2c(−1+α)+t(−1+α)−2α+qα)2

8t(1−α)α > 0. Therefore, the strategy for probabilistic selling when
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α≤ t
q+t in a partially covered market is given by

G Ia =



1− t/2− c if c ≤ 1− t,
(1−c)2

2t if 1− t < c ≤ c̃,

GA
Ia if c̃ < c < ˜̃c,

(1−c)2

2t if c ≥ ˜̃c.

(D.13)

b) G∗
Ia vs GTs

Because c̃ > 1− t, we can only consider the case where c > 1− t.

G∗
Ia − (1−c)2

2t =∆3 = 4−4c2(−1+α)−4α+4qα+q2α2−4c(2+t(−1+α)+(−2+q)α)+t2(1−6α+5α2)−2t(2+(−2+q)α+qα2)
8tα .

∂2∆3
∂c2 = 1−α

tα > 0. And we get c1 and c2 to make ∆3 = 0. Furthermore, we prove that c1 > c̃, c1 > 1,

and c2 < c̃. Therefore, ∆3 < 0 and the strategy for probabilistic selling when α> α̃ in a partially

covered market is given by

G∗
Ia =

1− t/2− c if c ≤ 1− t,
(1−c)2

2t if c > 1− t.
(D.14)

Thus, we have derived the optimal strategy for probabilistic selling with barter in a partially

covered market. Also referring to the optimal decision results of traditional selling in Fay and

Xie (2008), we summarize the optimal decisions on the price and allocation probability, and the

resulting sales and profit when market is partially covered in Table D.2.

D.3 Proof of Proposition 6.1

(1) When 0<α≤ α̃,

Notice that ¯̄c− c̃ = 1− t+ t+qα−tα
2
p

1−α − (1− t+ t+qα−tα
2 )> 0, then we compare GCa with G Ia when

c̃ < c ≤ ¯̄c. We get G Ia−GCa = (−2+2c+t−qα+tα)2

8tα > 0. Therefore, the optimal strategy for probabilistic

selling with barter can be expressed as follows:

Gbp = Max [GCa,G Ia,GTs]=


GA

Ca if c ≤ c̃, ¯̄ϕ≤ϕ∗ ≤ ϕ̄,

GA
Ia if c̃ < c < ˜̃c, ϕ∗ = 1

2 ,

GTs if c ≥ ˜̃c.

(D.15)

(2) When α̃<α< 1,

It is easy to obtain the optimal optimal strategy for probabilistic selling with barter as follows:

G∗
bp = Max

[
G∗

Ca,G∗
Ia,GTs

]=
G∗

Ca if c ≤~c , ¯̄ϕ≤ϕ∗ ≤ ϕ̄,

GTs if~c < c ≤ 1.
(D.16)

95



APPENDIX D. APPENDIX D

Table D.2: Optimal decisions of probabilistic selling with barter when market is partially covered

α≤ α̃ α> α̃

D j


1
2 if c ≤ 1− t
1−c
2t if 1− t < c ≤ c̃
−t+qα+tα
4t(−1+α) if if c̃ < c < ˜̃c

1−c
2t if c ≥ ˜̃c

{
1
2 if c ≤ 1− t
1−c
2t if c > 1− t

D0

{2−2c−t−2α+2cα+qα+tα
2tα−2tα2 if c̃ < c < ˜̃c

0 if others
N/A

ppb
0

{
1
4 (2+2c+ t(−1+α)− qα) if c̃ < c < ˜̃c
N/A if others

N/A

ppb
j

{
2−t

2 if c ≤ 1− t
1+c

2 if c > 1− t

{
2−t

2 if c ≤ 1− t
1+c

2 if c > 1− t

Gpb


1− t

2 − c if c ≤ 1− t
(1−c)2

2t if 1− t < c ≤ c̃
GA

Ia if if c̃ < c < ˜̃c
(1−c)2

2t if c ≥ ˜̃c

{
1− t

2 − c if c ≤ 1− t
(1−c)2

2t if c > 1− t

ϕ

{
1
2 if c̃ < c < ˜̃c
N/A if others

N/A

Note: c̃ = 1− 1
2 t+ qα−αt

2 and ˜̃c = 1− 1
2 t+ qα

2(1−α) .

D.4 Proof of Proposition 6.2

(1) Full coverage

x̂2 − x̂1 = 1
2 + qα

2t(1−α) ,
∂(x̂2−x̂1)

∂α
= q

2t(−1+α)2 > 0, and ∂(x̂2−x̂1)
∂q = α

2t(1−α) > 0.

(2) Partial coverage
∂(x̂3−x̂1)

∂q = α
4tα−4tα2 > 0, and ∂(x̂2−x̂4)

∂q = α
4tα−4tα2 > 0.

D.5 Proof of Proposition 6.5

From proposition 5.5, offering barter is more advantageous when c̄ < c < ˜̃c if α≤ α̃, and c <~c if

α> α̃ & q ≥ 1/3t. Taking the first derivatives of c̄, ˜̃c, and~c with respective to α and simplifying, we

have ∂c̄
∂α

= q2α2(3−2α)+2(q−t)(−1+α)(1+t(−1+α)α)+2qtα(−1+α)2

2(−1+α)
p

(−1+α)α2(−2qt(−1+α)+t2(−1+α)+q2α)
< 0, ∂ ˜̃c

∂α
= q

2(−1+α)2 > 0, and ∂~c
∂α

= qt
2
p

qtα > 0.

Therefore, the result holds.
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D.6 Proof of the comparison results in Figure 6.3

(1) GA
Ca vs Gps

GA
Ca −Gps = ∆4 = α(−2qt(−1+α)+t2(−1+α)+q2α)

8t(1−α) , and ∂2∆4
∂α2 = − q2

4t(−1+α)3 > 0. Therefore, we solve

∆4 = 0 and get α1 = 0 and α2 = −2qt+t2

(q−t)2 . Notice that α2 ≤ 0 when q ≥ t
2 , and α2 ≥ α̃ when q ≤ t

3 .

Thus, the comparison results are as follows:

When q ≤ t
3 ,

α≤ α̃, GA
Ca −Gps < 0 if c ≤ c̃,

and when t
3 < q < t

2 ,

α≤α2, GA
Ca −Gps ≤ 0 if c ≤ c̃,

α2 ≤ α̃, GA
Ca −Gps > 0 if c ≤ c̃,

and when t
2 ≤ q < t,

α≤ α̃, GA
Ca −Gps > 0 if c ≤ c̃,

and when q ≥ t,

α≤ α̃, GA
Ca −Gps > 0 if c ≤ ĉ.

(2) GA
Ia vs Gps

GA
Ia −Gps =∆5, and ∂2∆5

∂α2 = 1
tα > 0. Therefore, the solutions of ∆5 = 0 are c3 and c4 as follows:

c3 = −2+ t+2α− qα+ qα2 − tα2 −
√

(−1+α)α2((t2 −2qt)(−1+α)+ q2α)
2(−1+α)

,

c4 = −2+ t+2α− qα+ qα2 − tα2 +
√

(−1+α)α2((t2 −2qt)(−1+α)+ q2α)
2(−1+α)

.

Notice that α≤α2 makes (−1+α)α2(−2qt(−1+α)+ t2(−1+α)+q2α)≥ 0, and then c3 and c4 exist.

We derive that when q < t
2 , then α2 > 0 and when q ≥ t

3 , then α2 ≤ α̃. Furthermore, c̃− c3 < 0 and

c̃− c4 > 0. Let c̄ denote c3, the comparison results are as follows:

When q ≤ t
3 ,

α≤ α̃,

GA
Ia −Gps ≤ 0 if c̃ < c ≤ c̄,

GA
Ia −Gps > 0 if c̄ < c ≤ ĉ,

and when t
3 < q < t

2 ,

α≤α2,

GA
Ia −Gps ≤ 0 if c̃ < c ≤ c̄,

GA
Ia −Gps > 0 if c̄ < c ≤ ĉ,

α2 <α≤ α̃, GA
Ia −Gps > 0 if c̃ < c ≤ ĉ,
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and when t
2 ≤ q ≤ t,

α≤ α̃, GA
Ia −Gps > 0 if c̃ < c ≤ ĉ.

(3) G∗
Ca vs Gps

G∗
Ca −Gps =∆6 = qα− t

4 . Thus, ∆6 > 0 when α> t
4q , and ∆6 ≤ 0 when α≤ t

4q . Therefore, the

comparison results are as follows:

When 0< q ≤ t
4 ,

α̃<α< 1, G∗
Ca −Gps < 0 if c <~c,

and when t
4 < q ≤ t

3 ,

α̃<α≤ t
4q

, G∗
Ca −Gps < 0 if c <~c,

t
4q

<α< 1, G∗
Ca −Gps > 0 if c < ĉ,

and when q > t
3 ,

α̃<α< 1, G∗
Ca −Gps > 0 if c < ĉ.

(4) The comparison results

When 0≤ q < 1
4 t,

0<α≤ α̃, ∆bp−ps =



GA
Ca −Gps < 0 if c ≤ c̃,

GA
Ia −Gps ≤ 0 if c̃ < c ≤ c̄,

GA
Ia −Gps > 0 if c̄ < c < ĉ,

GA
Ia −GTs > 0 if ĉ ≤ c < ˜̃c,

GTs −GTs = 0 if c ≥ ˜̃c,

α̃<α< 1, ∆bp−ps =


G∗

Ca −Gps < 0 if c ≤~c,

GTs −Gps < 0 ~c < c ≤ ĉ,

GTs −GTs ≤ 0 if ĉ < c ≤ 1,

and when 1
4 t < q ≤ 1

3 t,

0<α≤ α̃, ∆bp−ps =



GA
Ca −Gps < 0 if c ≤ c̃,

GA
Ia −Gps ≤ 0 if c̃ < c ≤ c̄,

GA
Ia −Gps > 0 if c̄ < c < ĉ,

GA
Ia −GTs > 0 if ĉ ≤ c < ˜̃c,

GTs −GTs = 0 if c ≥ ˜̃c,
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α̃<α≤ t
4q

, ∆bp−ps =


G∗

Ca −Gps < 0 if c ≤~c,

GTs −Gps < 0 ~c < c ≤ ĉ,

GTs −GTs ≤ 0 if ĉ < c ≤ 1,

t
4q

<α< 1, ∆bp−ps =


G∗

Ca −Gps > 0 if c ≤ ĉ,

G∗
Ca −GTs > 0 if ĉ < c ≤~c,

GTs −GTs = 0 if~c < c ≤ 1,

and when 1
3 t < q ≤ 1

2 t,

0<α≤ t2 −2qt
(q− t)2 , ∆bp−ps =



GA
Ca −Gps < 0 if c ≤ c̃,

GA
Ia −Gps ≤ 0 if c̃ < c ≤ c̄,

GA
Ia −Gps > 0 if c̄ < c < ĉ,

GA
Ia −GTs > 0 if ĉ ≤ c < ˜̃c,

GTs −GTs = 0 if c ≥ ˜̃c,

t2 −2qt
(q− t)2 <α≤ α̃, ∆bp−ps =



GA
Ca −Gps > 0 if c ≤ c̃,

GA
Ia −Gps > 0 if c̃ < c ≤ ĉ,

GA
Ia −GTs > 0 if ĉ < c < ˜̃c,

GTs −GTs = 0 if ˜̃c ≤ c < 1,

α̃<α< 1, ∆bp−ps =


G∗

Ca −Gps > 0 if c ≤ ĉ,

G∗
Ca −GTs > 0 if ĉ < c ≤~c,

GTs −GTs = 0 if~c < c ≤ 1,

and when 1
2 t < q < t,

0<α≤ α̃, ∆bp−ps =



GA
Ca −Gps > 0 if c ≤ c̃,

GA
Ia −Gps > 0 if c̃ < c ≤ ĉ,

GA
Ia −GTs > 0 if ĉ < c < ˜̃c,

GTs −GTs = 0 if ˜̃c ≤ c ≤ 1,

α̃<α≤ 1, ∆bp−ps =


G∗

Ca −Gps > 0 if c ≤ ĉ,

G∗
Ca −GTs > 0 if ĉ < c <~c,

GTs −GTs = 0 if~c ≤ c ≤ 1,
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and when q ≥ t,

0<α≤ α̃, ∆bp−ps =



GA
Ca −Gps > 0 if c ≤ ĉ,

GA
Ca −GTs > 0 if ĉ < c ≤ c̃,

GA
Ia −GTs > 0 if c̃ < c < ˜̃c,

GTs −GTs = 0 if ˜̃c ≤ c ≤ 1,

α̃<α≤ 1, ∆bp−ps =


G∗

Ca −Gps > 0 if c ≤ ĉ,

G∗
Ca −GTs > 0 if ĉ < c ≤~c,

GTs −GTs = 0 if~c < c ≤ 1,

where c̄ = 1− t
2 + qα−tα

2 +
p

(−1+α)α2(−2qt(−1+α)+t2(−1+α)+q2α)
2(1−α) , ĉ = 1− 1

2 t, c̃ = 1− 1
2 t+ qα−αt

2 , and ˜̃c =
1− 1

2 t+ qα
2(1−α) .

D.7 Proof of Table. 6.2

We replace the successful barter probability α with 4kϕ(1−ϕ) in the pricing, i.e., Eq. (D.1), and

corresponding profit functions, i.e., Eq. (6.3), in the fully covered market.

(1) When 1
2 ≤ϕ≤ ϕ̄,

Taking the first derivatives of the profit with respective to x̂1 and x̂2, we get the optimal

x̂1 = t+4k(q+t)(−1+ϕ)ϕ
4t(1+4k(−1+ϕ)ϕ) , x̂2 = 3t−4kϕ(q−3t)(−1+ϕ)

4t(1+4kϕ(−1+ϕ)) , and a resulting profit is

GA
Ca = 16k2(−1+ϕ)2ϕ2(q2 +1)+ t2(−3−8k(−1+ϕ)ϕ)

8t(1+4k(−1+ϕ)ϕ)
+1−kq(−1+ϕ)ϕ− c. (D.17)

Taking the first derivative of GA
Ca, we get

∂GA
Ca

∂ϕ
= k(−1+2ϕ)(8kq2(−1+ϕ)ϕ(1+2k(−1+ϕ)ϕ))

2t(1+4k(−1+ϕ)ϕ)2 − q+ t
2 . Taking

the first and second derivative of
∂GA

Ca
∂ϕ

with respect to k, we find
∂GA

Ca
∂ϕ

is concave with respect to

k with the second derivative −8q2(−1+ϕ)ϕ(−1+2ϕ)(−1+2k(−1+ϕ)ϕ)
t(1+4k(−1+ϕ)ϕ)4 < 0. Thus, we set

∂GA
Ca

∂ϕ
to zero and

get solutions k0 = 0,k1 = −2q+t
4(q−t)(−ϕ+ϕ2) ,k2 = − t

4(−q+t)(−ϕ+ϕ2) . Furthermore, x̂1 ≤ 0 and x̂2 ≤ 1 (i.e.

k̃ ≤ t
4(q+t)(1−ϕ)ϕ ) to make sure that there are non-negative demands for the component products.

Therefore, we deduce that
∂GA

Ca
∂ϕ

< 0 except for the case when q < t
2 and k ≤ k1.

When k > k̃, the seller only sellers the probabilistic product with x̂1 = 0 and x̂2 = 1. Thus, the

resulting profit is

G∗
Ca = 1− c− t

2
+2qkϕ(1−ϕ). (D.18)

It is easy to find that
∂G∗

Ca
∂ϕ

< 0 and the optimal ϕ∗ = 1
2 . Therefore, the result holds.

(2) When ϕ ≥ ϕ̄, we get the optimal x̂1 = t+4k(q+t)(−1+ϕ)ϕ
4t(1+4k(−1+ϕ)ϕ) and x̂2 = −4kϕq(−1+ϕ)ϕ+t

4t(1+4kϕ(−1+ϕ))ϕ + 1
4 , and a

resulting profit as follows:
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GB
Ca = 1

8t(1+4kϕ(−1+ϕ))ϕ (16kϕ2q2(−1+ϕ)2ϕ+ t2(1+ (−5+16kϕ+16kϕ2)ϕ−16kϕ(1+2kϕ)ϕ2 +
16kϕ5)+8tϕ(1+ c(−1−4kϕ(−1+ϕ))+2kϕ(2+ q(−1+ϕ))(−1+ϕ)+4kϕ2q(−1+ϕ)2(−1+2ϕ))).

The first derivative is
∂GB

Ca
∂ϕ

= 1
8t(1+4kϕ(−1+ϕ))2ϕ2 (32kϕ2q2(1+2kϕ(−1+ϕ))(−1+ϕ)ϕ2 + t2(−1+

4kϕ(−1+ϕ)2+32kϕ2(−1+ϕ)ϕ2+64kϕ3(−1+ϕ)2ϕ2)+32kϕqt(−1+ϕ)ϕ2(1+kϕ(−6+8ϕ)+4kϕ2(3−
7ϕ+4ϕ2))). And it is easy to prove that the first two terms are negative, and we have to prove that

if I= 1+kϕ(−6+8ϕ)+4kϕ2(3−7ϕ+4ϕ2) is positive. Taking the first, second, and third derivative

of I with respect to ϕ, we get ∂I
∂ϕ

= 8kϕ+4kϕ2(−7+8ϕ)+ k(−6+8ϕ)+8kϕ(3−7ϕ+4ϕ2), ∂
2I

∂ϕ2 =
2k(20−84ϕ+96ϕ2), and ∂3I

∂ϕ3 = 24k(−7+16ϕ)> 0. Thus, ∂I
∂ϕ

is convex. Setting ∂I
∂ϕ

to zero, we get

the solution ϕ= 1
16 (7+ (−225+8

p
894 )1/3

32/3 − 13
(3(−225+8

p
894 ))1/3 which is less than 1/2. Therefore, ∂I

∂ϕ
> 0.

The minimum Iϕ=1/2 = 1− k
2 is positive. And then

∂GB
Ca

∂ϕ
< 0, and the optimal is ϕ∗ = ϕ̄ which makes

ppd
0 = 1− t/2 and GB

Ca =GA
Ca. Therefore, the optimal GCa =GA

Ca ≥GB
Ca.

D.8 Proof of Proposition 6.6

The seller that uses probabilistic selling with barter will choose either full coverage, i.e., GA
Ca,

or partial coverage, i.e., G Ia, depending on which yields a higher profit. The comparison results

when k > k1 or q > t/2 will be the same with previous proof for ϕ∗ = 1
2 . The difference is α= k and

α̃= k̃ = t
q+t . We just need to give the sketch proof when k ≤ k1 and q/2.

(1) GA
Ca vs GTs when k ≤ k1 and q/2

When c < 1− t, GA
Ca−GTs = (t+q(−1+2ϕ))2

16tϕ > 0. When c > 1− t, ∆GA
Ca−GTs

= (t2(1−8ϕ)−8(c−1)2ϕ+
(2qt+ q2(2ϕ−1))(2ϕ−1))/(16tϕ)+1− c. ∂∆

∂c = −16(−1+c)ϕ−16tϕ
16tϕ and ∂2∆

∂c2 = −1
t < 0, the comparison

result is given by:

GCa

GA
Ca if c ≤ c′,

(1−c)2

2t if c > c′,

where c′ = 1− t+ (2qϕ̄−q+t)
p

2ϕ̄
4ϕ̄ .

(2) GA
Ca vs GPs

When k ≤ k1 and q/2, the optimal allocation strategy is ϕ∗ = ϕ̄. And ϕ̄ is the solution of

the equation 8kϕ2(1−ϕ) = 2ϕ−1. Substituting k = (2ϕ−1)/(8ϕ2(1−ϕ)) into Eq. (D.17), we get
q2(1−2ϕ)2+2qt(−1+2ϕ)+t(t+16ϕ−8tϕ)

16tϕ − c.

Then ∆GCa−GPs =− (−2qt+t2+q2(1−2ϕ))(−1+2ϕ)
16tϕ . Solving ∆GCa−GPs to zero, we get solutions ϕ1 = 1

2

and ϕ2 = (q−t)2

2q2 . Taking the derivatives of ∆GCa−GPs with respect to ϕ, we get ∂∆
∂ϕ

=− q2−2qt+t2−4q2ϕ2

16tϕ2 ,
∂2∆
∂ϕ2 = (q−t)2

8tϕ3 > 0. Because the maximum ϕ̄ can be achieved with the maximum k1. Therefore, we

substitute k1 into 8kϕ2(1−ϕ) = 2ϕ−1 and get maximum ϕ̄ = t−q
2q . And it’s easy to prove that

ϕ̄<ϕ2 and ∆ϕ=ϕ̄ =− (−2q+t)2

8t < 0. Then ∆GCa−GPs < 0. The result is proved.

(3) GA
Ca vs G Ia
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Due to the complexity of the equations of G Ia, we conduct the simulation in Mathematics to

prove G Ia >GCa. Then we prove c̃ ≤ c′ ≤ ˜̃c to derive the condition for the proposition 6.6.

Substituting k = 2ϕ̄−1
8(1−ϕ̄)ϕ̄2 into ˜̃c, we get ˜̃c = q−2qϕ̄−(−2+t)(−1+2ϕ̄−8ϕ̄2+8ϕ̄3)

2(−1+2ϕ̄−8ϕ̄2+8ϕ̄3) . Then ∆c′− ˜̃c = 1
4 (4−4t+

p
2 (t+q(−1+2ϕ̄))p

ϕ̄
+ 2(q(−1+2ϕ̄)+(−2+t)(−1+2ϕ̄−8ϕ̄2+8ϕ̄3))

−1+2ϕ̄−8ϕ̄2+8ϕ̄3 ) and ∂∆
∂q = (−1+ 2ϕ̄)

p
2

[p
2ϕ̄−1+2(1−2ϕ̄)2ϕ̄

]
(−1+2(1−2ϕ̄)2ϕ̄)

p
ϕ̄

. Notice

that 8kϕ̄2(1− ϕ̄)= 2ϕ̄−1, the maximum ϕ̄ can be achieved when k = 1 and −1+2(1−2ϕ̄)2ϕ̄= 0.

Therefore, −1+2(1−2ϕ̄)2ϕ̄≤ 0, and
√

2ϕ̄ −1+2(1−2ϕ̄)2ϕ̄> 0. Finally, we prove that ∂∆
∂q < 0. Then

∆c′− ˜̃c is highest when q = 0 and ∆c′− ˜̃c = 1
4 t(−2+

p
2p
ϕ

)≤ 0. Therefore, c′ ≤ ˜̃c.

Similarly, we prove that c′ ≥ c̃. Substituting k = 2ϕ̄−1
8(1−ϕ̄)ϕ̄2 into c̃, we get c̃ = 1− t

2 −
(q−t)(−1+2ϕ̄)
16(−1+ϕ̄)ϕ̄2 .

∆c′−c̃ = 1
4

(
−2t+ 2q(−1+2ϕ̄)

−1+2ϕ̄−8ϕ̄2+8ϕ̄3 +
p

2 (t+q(−1+2ϕ̄))p
ϕ̄

)
. Taking the first derivative of ∆c′−c̃, we get ∂∆c′−c̃

∂q =
1
4

(p
2 (−1+2ϕ̄)p

ϕ̄
+ 2(−1+2ϕ̄)

−1+2ϕ̄−8ϕ̄2+8ϕ̄3

)
< 0. Therefore, the lowest ∆c′−c̃ can be achieved when q = t/2. Fur-

thermore, the maximum ϕ̄= t−q
2q = 1

2 . We then substitute ϕ̄ into ∆c′−c̃ and find that ∆c′−c̃ ≥ 0. The

result is proved.
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