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ABSTRACT 

Obsessive-compulsive disorder (OCD) is a clinically heterogeneous 

neuropsychiatric disorder that affects around 1-3% of the population. It is 

characterized by intrusive and unwanted thoughts, urges or images (called 

obsessions) and repetitive behaviours or mental acts (called compulsions), 

which are performed to partially relieve the anxiety or distress caused by the 

obsessions. Family and twin studies have consistently reported that OCD 

involves both environmental and polygenic risk factors. However, despite a 

number of genetic linkage, candidate genes and genome-wide association 

studies have been performed, very little progress has been made towards 

elucidating the genetic causes of OCD. In this project we have applied new 

omics approaches, including rare variant association studies (RVAS) and 

transcriptomics and metagenomics analyses, to focus on areas relatively 

underexplored in OCD, which could explain part of the missing heritability 

observed in this disorder. We have identified and replicated an enrichment of 

rare variants in TMEM63A, a gene that encodes for a calcium-permeable cation 

channel, through whole-exome sequencing, RVAS and targeted resequencing 

analyses. Moreover, we have observed an overrepresentation of genes enriched 

in rare variants in OCD cases related to calcium signalling, suggesting a 

potential role of calcium signalling dysfunction in the aetiology of OCD. 

Transcriptomic studies have identified differential expression of genes involved 

in neuronal development and function in OCD patients, such as NRCAM, which 

encodes for a neuronal cell adhesion molecule. Integration of our RVAS and 

transcriptomic results also uncover a possible role of semaphorins and axon 

guidance in OCD. Finally, metagenomics studies have confirmed the previously 

reported increase of the Rikenellaceae bacterial family in the gut microbiome as 

a potential biomarker of OCD and have shown a specific oro-pharyngeal 

dysbiotic signature in OCD patients, characterised by a significant higher 

Actinobacteria/Fusobacteria ratio compared to controls. In summary, our results 

support the high complexity of OCD and actively encourage further research in 

these areas through multiple omics approaches. 
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RESUM 

El trastorn obsessiu compulsiu (TOC) és un trastorn neuropsiquiàtric clínicament 

heterogeni que afecta al voltant d’un 1-3% de la població. Es caracteritza per 

pensaments intrusius i no desitjats, ànsies o imatges (anomenades obsessions) 

i per comportaments o actes mentals repetitius (anomenats compulsions), que 

es realitzen per alleujar parcialment l’ansietat causada per les obsessions. 

Estudis familiars i de bessons han reportat consistentment que el TOC implica 

factors de risc ambientals i poligènics. No obstant, tot i que s’han realitzat molts 

estudis de lligament genètic, de gens candidats i d’associació del genoma 

complet, s’ha avançat molt poc a l’hora d’elucidar les causes genètiques del 

TOC. En aquest projecte hem aplicat nous enfocaments òmics, incloent estudis 

d’associació de variants rares (RVAS) i anàlisis de transcriptòmica i 

metagenòmica, per centrar-nos en àrees relativament poc explorades del TOC 

que podrien explicar part de l’heretabilitat perduda observada en aquest 

trastorn. Hem identificat i replicat un enriquiment de variants rares a TMEM63A, 

un gen que codifica un canal catiònic permeable per calci, a través d’anàlisis de 

seqüenciació de l’exoma complet, RVAS i reseqüenciació dirigida. A més, hem 

observat una sobrerepresentació de gens enriquits en variants rares en casos 

de TOC relacionats amb la senyalització de calci, suggerint un possible paper 

de la disfunció de la senyalització de calci a l’etiologia del TOC. Els estudis de 

transcriptòmica han identificat una expressió diferencial de gens involucrats en 

el desenvolupament i la funció neuronal, com NRCAM, que codifica per una 

molècula d’adhesió cel·lular neuronal. La integració dels resultats dels nostres 

estudis de RVAS i transcriptòmica també revelen un possible paper de les 

semaforines i del guiatge axonal al TOC. Finalment, els estudis de 

metagenòmica han confirmat l’increment prèviament reportat de la família 

bacterial Rikenellaceae en el microbioma intestinal com a possible biomarcador 

de TOC i han mostrat una signatura disbiòtica específica de l’orofaringe en els 

pacients de TOC, caracteritzada per una relació significativa més alta 

d’Actinobacteris/Fusobacteris en comparació als controls. En resum, els nostres 

resultats donen suport a l’alta complexitat del TOC i fomenten activament la 

recerca en aquestes àrees a través de la utilització de multiples òmiques. 
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 1 

INTRODUCTION 

 

 

1. Obsessive-compulsive disorder  

1.1. History  

Obsessive-compulsive disorder (OCD) has probably existed since time 

immemorial. In fact, there are early descriptions about this disorder dated in the 

7th century, when Saint John Climacus (570-649) reported the story of a monk 

who was overcome by intrusive, blasphemous thoughts1. 

 

In the European Renaissance, from 14th to 16th century, it was believed that 

people who suffered obsessions and compulsions were possessed by the Devil. 

Based on this, the treatment of individuals suffering OCD was done by the 

clergy, and involved the banishment of the "evil" from the "possessed" person 

through exorcism1. 

 

By the 1700s, physicians started treating OCD as a lunatic disorder and, until 

the 1850s, it was included in the old notion of “insanity”. Some years later, OCD 

became a separate disease: first, as a member of the old class of neuroses; 

then, as a variant of a new concept called psychosis; and finally, as a neurosis 

proper. But it was not until the late 1880s that OCD achieved full clinical and 

nosological definition2. 

 

1.2. Definition, symptomatology and diagnosis  

OCD is a neuropsychiatric disorder characterized by intrusive and unwanted 

thoughts, urges or images (called obsessions) and repetitive behaviours or 

mental acts (called compulsions) which are performed to partially relieve the 

anxiety or distress caused by the obsessions (Figure 1)3. 
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Figure 1. Theoretical basis of obsessive-compulsive behaviour. From Pauls et al., 20144 

 

 

The clinical expression of obsessions and compulsions varies greatly among the 

individuals with OCD and, for this reason, this disorder is catalogued as 

“clinically heterogeneous”. Moreover, frequency and severity of OCD symptoms 

also vary across patients, ranging from moderate symptoms to constant and 

incapacitating intrusive thoughts or compulsions3–6.  

 

The symptomatology of OCD can be divided into different dimensions or 

subtypes. It has been suggested that each dimension may have distinct genetic 

or aetiological origins, as well as distinct neural circuitry5,6. Besides, individuals 

can have symptoms in more than one dimension3. A meta-analysis7 of 21 factor 

analytic studies published between 1994 and 2008, that included 5,124 patients, 

reported that OCD symptoms could be divided into four factors, accounting for 

79% of the variance: i) symmetry (with symmetry obsessions and repeating, 

ordering and counting compulsions); ii) forbidden thoughts (with aggressive, 

sexual, religious and somatic obsessions and checking compulsions); iii) 

cleaning (with contamination obsessions and cleaning compulsions); and iv) 

hoarding (with hoarding obsessions and compulsions) (Table 1). It is important 

to highlight, however, that in the fifth edition of the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-5), hoarding is classified as a distinct but 

OCD-related disorder3. 
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Table 1. Factor structure of obsessive-compulsive disorder. From Bloch et al., 20087 
 

Factor (% variance) Obsessions Compulsions 

Symmetry (26.7) Symmetry 
Repeating 
Ordering 
Counting 

Forbidden thoughts (21.0) 

Aggressive 
Sexual 

Religious 
Somatic 

Checking 

Cleaning (15.9) Contamination Cleaning 

Hoarding (15.4) Hoarding Hoarding 

 

 

The DSM provides clinicians with official definitions and criteria for diagnosing 

OCD and, although not all experts agree on the definitions and criteria set forth 

there, it is considered the “gold standard” by most mental health professionals. 

The diagnosis of OCD requires  the presence of distressing and time-consuming 

obsessions and compulsions that interfere with the normal functioning of an 

individual, and neither obsessions nor compulsions can be attributed to the 

physiological effects of a substance. It is also important to exclude those cases 

whose obsessions and compulsions belong to another OCD-related disorder 

(e.g. generalized anxiety disorder, body dysmorphic disorder, trichotillomania, tic 

disorder, major depression disorder, etc.)3.  

 

Clinicians also use the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and 

its children’s version, the Children’s Yale-Brown Obsessive-Compulsive Scale 

(CY-BOCS), to rate the severity of OCD symptoms8,9. These are clinician-rated 

scales that measure severity for obsessions and compulsions separately, and 

independently of the type of obsessions and compulsions. 

 

1.3. Epidemiology  

The age of onset for OCD ranges from very early childhood (before age 10) into 

adulthood, with a median age of onset of 19 years old10. Between 30 to 50% of 

individuals with OCD have childhood-onset OCD, a form that can lead to a 

lifetime disorder3,11–13. It is thought that there may be genetic and/or epigenetic 

factors that affect the age at which symptoms manifest in an individual4. Indeed, 
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some studies reported the possibility of classifying childhood-onset OCD as a 

distinct neurodevelopmental form of the disorder, as childhood-onset OCD is 

associated with a specific set of correlates that differ from findings reported in 

studies of adult OCD subjects14–16. 

 

According to the DSM-5, the worldwide 12-month prevalence of OCD is 1.1% - 

1.8%, although some studies have reported a greater percentage13,17,18. 

Nevertheless, the prevalence of OCD may be underestimated, as many 

individuals with OCD are secretive about their symptoms and may lie to 

clinicians, denying having unusual behaviours or providing limited insight about 

them. Notably, there is a well-established gender imbalance in the prevalence of 

OCD: childhood-onset OCD is more prevalent in males than females, whereas 

this ratio is inverted in adulthood-onset OCD3,19,20. 

 

Although OCD is a common disorder, there are no clear environmental risk 

factors associated with the disease. Some reported environmental triggers 

consist on adverse perinatal events21, inflammatory processes22, and biologically 

or emotionally stressful and traumatic life events23. The most well documented 

environmental risk factor is a childhood streptococcal infection. Swedo et al.24 

reported a subgroup of paediatric patients with early and brusque onset of OCD 

and/or tic disorders after pharyngitis or upper respiratory distress caused by 

streptococcal infections. This subgroup is known by the acronym PANDAS 

(paediatric autoimmune neuropsychiatric disorders associated with streptococcal 

infections). The proposed theory is that an initial autoimmune reaction to a 

streptococcal infection produces antibodies that interfere with basal ganglia 

function, causing symptom exacerbations that can result in a broad range of 

neuropsychiatric symptoms. 

 

1.4. Prognosis and impact  

OCD has a significant impact on public health, especially if it is not treated, as it 

becomes a chronic disorder. It is associated with reduced quality of life and high 

levels of social and occupational impairment. This functional impairment is 
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associated, in turn, with symptom severity, time spent obsessing and doing 

compulsions, and avoidance of situations that can trigger obsessions or 

compulsions3,25.   

 

Moreover, individuals with OCD often show other comorbid disorders, having a 

lifetime diagnosis of anxiety disorder (76%), depressive or bipolar disorder 

(63%), or tic disorder (up to 30%). Comorbid obsessive-compulsive personality 

disorder is also common in individuals with OCD (23% - 32%)3. Furthermore, as 

a worrying fact, suicide attempts are reported in up to one-quarter of individuals 

with OCD26. 

 

To make matters worse, OCD does not have a good prognosis. Skoog et al.27 

performed a follow-up study of 122 OCD patients during 40 years and showed 

that only 48% of the OCD patients recovered. Besides, 48% of the patients had 

OCD for more than 30 years.  

 

1.5. Neurobiology  

Classical theoretical models suggest that OCD is underpinned by structural and 

functional abnormalities in orbito-fronto-striatal circuits. For this reason, since the 

1980s, structural and functional imaging research has been used to elucidate 

the pathophysiology of OCD.  

 

Over the years, investigators have used different techniques, such as region of 

interest (ROI), voxel-based morphometry (VBM) and diffusion tensor imaging 

(DTI) methods –in structural imaging studies- or positron emission tomography 

(PET), single photon emission computed tomography (SPECT), proton magnetic 

resonance spectroscopy (1H-MRS) and functional magnetic resonance imaging 

(fMRI) methods –in functional imaging studies.  

 

However, it is important to highlight that there are a lot of inconsistent findings in 

these neuroimaging studies, which could reflect confounding factors of the 

disorder, such as the comorbidity or the heterogeneity of OCD. Moreover, most 
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of the studies had small sample sizes and used heterogeneous samples that 

varied in severity, frequency and duration of the symptoms, gender, age at 

onset, and/or treatment conditions. 

 

1.5.1. Structural imaging studies 

Several studies have reported brain structural abnormalities in OCD patients.  In 

2009, Rotge et al.28 published a meta-analysis of brain volume changes in OCD 

patients using magnetic resonance imaging (MRI) data from 14 case-control 

studies. OCD subjects showed a reduced volume of the left anterior cingulate 

cortex (ACC) and of the left and right orbitofrontal cortex (OFC), and an 

increased volume of the left and right thalamus. Moreover, they found that the 

severity of obsessive or compulsive symptoms correlated significantly with the 

thalamic volumes. This study suggested a structural alteration of the thalamo-

cortical circuitry that may contribute to the pathophysiology of OCD. Other 

studies reported abnormalities in additional brain systems, including the parietal 

lobe (particularly the angular and supramarginal gyri) and the dorsolateral 

prefrontal cortex29,30. This supported the new idea that other brain regions and 

circuits could also be involved in the pathophysiology of OCD29. Of note, some 

structural imaging studies also reported that different dimensions of OCD may 

involve abnormalities in different neuronal systems31,32. 

 

1.5.2. Functional imaging studies 

Functional imaging studies of OCD have mainly focused in the OFC and the 

striatum. In fact, the most replicated finding consists on an increased activation 

of the lateral and medial OFC29,33, although hypermetabolic rates or hyperactivity 

have also been shown in the ACC and in the basal ganglia, which have been 

observed to decrease after treatment30. Recent functional studies suggested that 

other regions in the brain, such as dorsolateral and dorsoventral prefrontal 

cortices, and pre-frontal connections, could participate in the cognitive deficits 

observed in OCD subjects34. Some investigators also observed a general 

neuronal dysfunction in the brain of OCD patients30. Moreover, connectivity 
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studies have shown connectivity dysfunction between prefrontal and striatal 

regions33,35. As in structural imaging studies, some functional studies also 

reported that different dimensions of OCD may involve different neural 

correlates6,36,37. 

 

1.6. Neuropsychology  

Given the structural and functional abnormalities found in some regions of the 

brain of individuals with OCD, it is logical to hypothesize that OCD patients 

would show neurocognitive impairment of tasks carried out by these regions. 

Following this hypothesis, several investigators have conducted a large number 

of neuropsychological studies of OCD. However, the results yielded are 

inconsistent.  

 

In order to summarize the results obtained during the last years, Abramovitch et 

al.38 performed a meta-analysis of 115 studies that involved over three thousand 

OCD patients and results from tests of 10 neuropsychological domains (distinct 

types of functions that the brain uses to execute behaviours). They found a 

reduced performance across all domains among OCD patients compared to 

healthy controls. Specifically, medium to large effect sizes were found for the 

memory domain; medium effect sizes were found for attention, executive 

functions and processing speed; and small effect sizes were found for working 

memory and visuospatial abilities.  

 

It is thought that neurocognitive indices could be used as endophenotypes of 

OCD39. Some studies have suggested that different neuropsychological profiles 

could be associated with different dimensions of OCD40 and that there is 

significant correlation between severity of OCD and neuropsychological 

impairment41. Moreover, it has been shown that cognitive dysfunction in OCD 

can improve in the course of treatment42 and that the neuropsychological profile 

could also determine treatment outcome43. 
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1.7. Treatment  

Many OCD patients can achieve substantial improvement through the 

establishment of an adequate treatment. However, for approximately 50% of the 

individuals with OCD treatment response is incomplete44. The first-line treatment 

for OCD consists of cognitive behavioural therapy (CBT), selective serotonin-

reuptake inhibitors (SSRIs) or a combination of the two45,46. The effectiveness of 

the available SSRIs has been studied during more than 20 years. Recently, 

Soomro et al.47 conducted a meta-analysis (which included 17 studies and over 

3000 samples) that demonstrated that SSRIs are nearly twice as likely as 

placebo to produce a clinical response. It should be noted that several studies 

have shown a decrease of the hypermetabolic rates in the OFC, the caudate 

and the ventrolateral prefrontal cortex after CBT or pharmacological treatment in 

OCD patients, which provides support for the current model of OCD4. 

 

Non-pharmacological treatment, such as electroconvulsive therapy (ET), 

repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation 

(DBS), or ablative neurosurgery, is indicated in severe OCD patients that do not 

respond to pharmacological and CBT4,48. Results from these neuromodulation 

therapies are encouraging and give also support to the prevailing model of OCD, 

as these treatments target the circuitry implicated in the disorder4. In fact, the 

ultimate goal of the surgery is to interrupt this circuitry imbalance thought to be 

present in OCD. 

 

1.8. Biological model of OCD 

The prevailing model for the neural and pathophysiological basis of OCD, based 

on data from neurobiological, neuropsychological and treatment studies, is the 

cortico–striato–thalamo–cortical (CSTC) model (also called frontostriatal model 

or corticostriatal model)49.  

 

Briefly, the CSTC circuit projects from specific territories in frontal cortex to 

targets in the striatum, and then, via direct and indirect pathways, through the 
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basal ganglia to the thalamus. Finally, these structures project back to the frontal 

cortex50. In healthy individuals, the direct pathway is modulated by the indirect 

pathway4 (Figure 2). Specifically, glutamatergic signals from the frontal cortex 

(OFC and the ACC) lead to excitation in the striatum, which increases inhibitory 

GABA signals to the globus pallidus interna (GPi) and the substantia nigra (SNr) 

through the direct excitatory pathway. This decreases the inhibitory GABA 

output from the GPi and SNr to the thalamus, resulting in excitatory 

glutamatergic output from the thalamus to the frontal cortex. In the indirect 

pathway, the striatum inhibits the globus pallidus externa (GPe), which 

decreases its inhibition of the subthalamic nucleus (STN). The STN excites then 

the GPi and SNr that inhibit the thalamus and its glutamatergic output. In OCD 

individuals, there may be an imbalance between the direct and indirect 

pathways4. The prevailing model describes hyperactivity of the direct pathway 

over the indirect pathway due to a lower threshold for activation of this system, 

and this results in a hyperactivation of the orbitofrontal–subcortical pathway. As 

a consequence, the OFC could mediate exaggerated and persistent concerns 

and fears leading to the development of obsessions and, subsequently, to the 

development of compulsions, which are performed to neutralize the anxiety 

caused by the obsessions.  

 

 

 

Figure 2. The cortico–striato–thalamo–cortical circuitry in healthy individuals (a) and OCD 
patients (b). From Pauls et al., 20144 
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Recently, though, some investigators have proposed modifications of the model, 

with the involvement of the lateral and medial orbitofrontal cortices, the dorsal 

anterior cingulate cortex and the amygdalo-cortical circuitry, in addition to the 

cortico-striatal circuitry4,50. 

 

Pauls et al.4 suggested an integrative model of genetics, environment and 

neurobiology for the expression of OCD. Individuals with OCD may have a 

genetic predisposition to the impact of environmental factors that may modify, 

through epigenetic mechanisms, the expression of genes involved in the 

serotonin, glutamate, catecholamine, and dopamine systems, which are involved 

in the OCD physiopathology. Neuroanatomical changes derived from these 

modifications may lead to an imbalance between the direct and indirect 

pathways involved in the CSTC circuit, and this imbalance, in turn, could result 

in the manifestation of clinical features of OCD (Figure 3). 

 

 

 

Figure 3. Biological model of OCD. From Pauls et al., 20144 

 

 

2. Genetics of OCD 

2.1. Genetic architecture of OCD 

There is compelling evidence that OCD is a complex neuropsychiatric disorder 

that probably arises from a combination of environmental and genetic risk 

factors. The interaction of some genes with a mild to moderate effect increases 
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the vulnerability to OCD, while environmental factors contribute almost equally to 

OCD risk. However, the genetic architecture underlying OCD has not yet been 

well defined. 

 

The genetic architecture of a complex disorder refers to a comprehensive 

description of how genes and the environment interact to produce the 

phenotype. It involves multiple factors: the number of genetic variants 

contributing to the phenotype, the size of their effects on the phenotype, the 

frequency of those variants in the population, and their interactions with each 

other and the environment51,52 Is it not surprising, then, that defining the genetic 

architecture of complex disorders still represent an arduous task in human 

genetics research, although fundamental for understanding disease aetiology.  

 

In the following sections I will provide an overview of all the genetic studies that 

have been done in OCD to help define its genetics architecture. 

 

2.2. Heritability  

OCD family studies published since 1930 have consistently reported that OCD is 

familial53: the rate of OCD among relatives of patients is significantly higher than 

either the rate of OCD among controls or the OCD estimated population 

prevalence. 

 

There have been at least 18 studies on relatives of adult OCD cases, and only 

two of them did not report that OCD was familial4. However, these two54,55 

observed a higher rate of mental illness among OCD relatives. In addition, all 

studies performed on relatives of childhood-onset OCD concluded that OCD was 

familial4. These studies also observed a 10-fold higher risk of OCD for relatives 

of childhood-onset OCD patients. This risk is only two-fold higher in relatives of 

adult OCD cases53 (Table 2). 

 

 

 



Introduction 

 12 

Table 2. Recurrence rates among relatives in OCD family studies. From Stewart et al., 201056 
 

Publication years 

Proband relatives 

Control relatives 
Obsessive-
compulsive 

disorder 

Obsessive-
compulsive 

features 

Family history 
studies 

    

1930-1986 0 - 0.198 0.07 – 0.327 NA 

Adult family 
studies 

OCD Subclinical OCD OCD 
Subclinical 

OCD 

1987-2006 0.007 – 0.117 0.046 – 0.156 0 – 0.027 0 – 0.030 

Child family 
studies 

    

1990-2005 0.050 – 0.227 0.065 
0.009 – 
0.026 

0.015 

 
NA: not applicable.  

 

 

Nevertheless, the fact that family studies showed that OCD is familial does not 

necessarily mean that it is transmitted within families through genetic factors. 

Twin studies, which allow an estimation of the extent to which genetic and 

environmental factors play a role in the aetiology of complex disorders 

comparing the concordance of monozygotic (MZ) and dizygotic (DZ) twins, did 

provide evidence that OCD familiality was influenced by both genetics and 

environment.  

 

There have been numerous twin studies conducted to date investigating the role 

of additive and non-additive genetic effects, as well as shared and non-shared 

environment. Recently, Taylor S.57 performed a meta-analysis that included 

24,161 twin pairs from 14 published studies. The findings supported the 

hypothesis that genetic risk factors play an important role in the manifestation of 

obsessive-compulsive symptoms. Specifically, this meta-analysis showed that 

additive genetic variance accounts for 37 to 41% of variance of obsessive-

compulsive behaviours and non-shared environmental factors account for 50 to 

52%, while shared environmental factors and non-additive genetic effects made 

little or not contribution. These findings did not vary with sex or symptom 

severity, although variance due to non-shared environment increased with age, 

suggesting that environmental risk factors could be more important for the 
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manifestation of late-onset OCD. The study also described that interactions 

between non-shared environmental and genetic risk factors are crucial for 

developing the obsessive-compulsive behaviours, and that obsessive-

compulsive symptoms are shaped by etiologic factors common to all types of 

obsessive-compulsive behaviours but also have symptom-specific aetiologies.   

 

2.3. Genetic studies of OCD 

2.3.1. Genetic linkage studies 

As family and twin studies evidenced that there is a genetic basis for familial 

OCD, the first approaches to identity this genetic factors involved genetic linkage 

studies58–63. However, none of the genetic linkage studies performed reached 

accepted levels of statistical significance. This could be explained because 

genetic linkage studies are particularly useful to identify genes involved in 

Mendelian disorders (caused by alterations in a single gene) but not so much for 

finding risk alleles of complex disorders, which are thought to be caused by a 

large number of risk loci of small to moderate effect64. The fact that in almost all 

studies samples sizes were small could also explain the lack of significance 

achieved. The largest genetic linkage study59 included 966 individuals from 219 

families. 

 

Nevertheless, it should be noted that two genomic regions on chromosomes 9 

and 15 were identified in several studies58,59,61,65 and that SLC1A1, a gene that 

encodes a glutamate transporter, is the closest gene to the linkage peak found 

in the chromosomal region 9p65. Moreover, several candidate genes studies 

corroborated a possible association of SLC1A1 with OCD4.  

 

2.3.2. Candidate gene studies 

To date, more than one hundred of candidate gene studies for OCD have been 

published, most of them focused on genes that are known to be involved in 

systems linked to the pathophysiology and pharmacology of OCD, as serotonin, 

glutamate and dopamine systems.  
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To integrate the results of so many studies, Taylor et al.66 performed two meta-

analyses of OCD. The first meta-analysis included 20 single nucleotide 

polymorphisms (SNPs) that were studied in 5 or more datasets. In this study, 

OCD was associated with variants in serotonin-related genes (SLC6A4 and 

HTR2A) and, only in males, in the catechol-O-methyltransferase (COMT) and 

mono-amine oxidase A (MAOA) genes. There were, also, non-significant trends 

for one glutamate-related gene (SLC1A1) and two dopamine-related genes 

(SLC6A3 and DRD3). The second meta-analysis, which was conducted for 210 

polymorphisms that had been examined in less than five data sets, identified 

associations for polymorphisms in trophic factors (BDNF, NGFR and NTRK2), 

GABA (GABRB3), glutamate (GRIK2), serotonin (HTR2A), bradykinin 

(BDKRB2), acetylcholine (CHMR5, CHRNA1), glycine (GLRB), ubiquitin 

(UBE3A), immunological factors (TNFA) and myelinization (OLIG) genes. 

 

a) Serotonin system 

Serotonin-related genes have been extensively studied in OCD candidate gene 

studies67 because OCD is commonly treated with drugs that act in the serotonin 

system, such as SSRIs. The serotonin transporter SLC6A4 is probably one of 

the most widely studied genes in neuropsychiatry68 and has been related to 

OCD in multiple studies4.  

 

b) Glutamate system 

Glutamated-related genes were first found to be involved in OCD through 

imaging and animal model studies. Specifically, 1H-MRS demonstrated that 

glutamate concentrations are altered in the caudate and ACC of individuals with 

OCD. Moreover, Slitrk5 and Dlgap3 knockout mice showed compulsive 

grooming behaviours related to glutamate signalling dysfunction4. Later, genetic 

association studies provided stronger evidence of glutamate involvement in the 

pathophysiology of OCD. Particularly, SLC1A1 has been associated with OCD in 

several studies69. Other genes, such as GRIN2B, GRIK2 and GRIK3, have also 

been implicated in the disorder70. 
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c) Dopamine system 

The dopamine hypothesis in OCD is based predominantly in pharmacological 

studies. As SSRIs are not effective in all individuals with OCD, it is thought that 

other neurotransmitters apart from serotonin must be involved in the 

pathophysiology of the disorder. Indeed, considerable improvement has been 

seen in individuals with OCD when SSRIs treatment is complemented with 

dopaminergic antagonists71. Besides, dopamine agonists have been found to 

provoke tic and repetitive behaviours in animal models72. Several genes, such 

as the dopamine transporter (SLC6A3) and the dopamine receptors (DRD1, 

DRD2, DRD3 and DRD4), have yielded positive associations with OCD in 

several studies4. DRD4, in particular, has been extensively studied73. 

 

The DRD4 gene encodes for the D4 subtype of the dopamine receptor, a 

member of the dopamine G-protein-coupled receptor family that also includes 

D1, D2, D3 and D5. DRD4 is responsible for neuronal signalling in the 

mesolimbic system of the brain, an area of the brain that regulates emotion and 

complex behaviour. This receptor is located primarily in the frontal cortex, 

midbrain, amygdala and the cardiovascular system and is of great interest for 

research into neuropsychiatric disorders and psychopharmacology. Many mental 

disorders have been associated with mutations in this gene, including attention 

deficit hyperactivity disorder, autonomic nervous system dysfunction and the 

novelty seeking personality trait73. Moreover, it was found that density of DRD4 

mRNA was 6-fold higher in brains of schizophrenic patients74 and that it binds 

the antipsychotic drug clozapine with higher affinity than does any other 

dopamine receptor75. 

 

DRD4 has a high degree of genetic variation in the human population, 

containing a polymorphic number (from 2 to 10 copies) of 48 base pair (bp) 

repeats in the third intracytoplasmic loop of the receptor, a region that seems to 

be involved in G-coupling of the protein to its effector systems and that can 

influence clozapine binding76. It is important to highlight that in 1997, Cruz et 

al.77 described an increased prevalence of the seven-repeat variant of DRD4 
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(DRD4*7R) in patients with OCD with tics, whereas Millet et al.78 reported a 

protective effect of the DRDR*2R variant against OCD symptoms.  

 

Nöthen et al.79 reported a 13-bp deletion in the first exon of DRD4, which 

produces a stop at codon 99. They hypothesized that this variant consists of a 

null mutation that encodes a truncated non-functional protein, leading to a 

complete loss-of-function of the D4 receptor. They tested for association of this 

deletion with various psychiatric disorders (schizophrenia, bipolar affective 

disorder and Tourette's syndrome) and they showed that the mutation occurred 

in similar frequency in all psychiatric and control samples. It should be noted that 

the subjects included in the study had a German origin and that sample size was 

small (232 healthy volunteers, 118 individuals with schizophrenia, 99 with bipolar 

affective disorder and 91 with Tourette's syndrome, according the DSM-III-R 

criteria). Another study80 also reported no association of the null mutation in 

DRD4 in Italian patients with OCD, bipolar mood disorder and schizophrenia. 

Again, the sample size was small (157 OCD patients, 196 schizophrenics, 111 

bipolars and 162 healthy controls of Italian descent). Nevertheless, a recent 

study81 highlighted again the presence of this 13-bp exonic deletion in DRD4 in 

one family after exome-sequencing of ten trios with OCD. In addition, an in-

frame deletion of 21-bp affecting codons 36 to 42 of DRD4 was also associated 

with OCD by Chichon et al.82 

 

2.3.3. Genome-wide association studies 

Once the human genome was almost entirely sequenced in 200383, it was 

possible to develop genotyping arrays, which provide genotype calls for 

thousands of SNPs and can also be used to detect some genomic structural 

variants (SVs), mostly copy number variants (CNVs). They have been widely 

used for genome-wide association studies (GWAS)84.  

 

GWAS are observational studies that test if any measured common variant 

(minor allele frequency, MAF >5%) is associated with a trait85. The latest SNP-

arrays assess between half a million to two million common variants along the 
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human genome to detect differences in allele frequencies between cases and 

controls86,87. Nowadays, the biggest catalogue of published GWAs88 contains 

over 3,300 publications and almost 60,000 unique SNP-trait associations, which 

are, mostly, at non-coding variants and enriched at regulatory sites. Almost all 

complex disease categories have been addressed by GWAS, including 

neuropsychiatric, neurodegenerative, cardiovascular, metabolic, autoimmune 

and musculoskeletal diseases, and several types of cancer. These include two 

OCD GWAS performed by independent OCD consortia89,90.  

 

The International OCD Foundation Genetics Collaborative (IOCDF-GC) 

published the first GWAS89, comprising 1,465 cases, 5,557 ancestry-matched 

controls and 400 trios from 22 sites worldwide, and genotyping about 500,000 

SNPs. In the case-control-trio analysis, which included all the samples together, 

no SNPs were found to be associated with OCD at a significant genome-wide 

level. The most significantly associated SNP was rs297941, near FAIM2 (FAS 

apoptotic inhibitory molecule 2, P=4.99 x 10−7). In the case-control analysis, two 

SNPs in DLGAP1 (discs large-associated protein 1), a member of the 

postsynaptic scaffold in neuronal cells showed the strongest association with the 

phenotype (P=2.49 x 10−6 and P=3.44 x 10−6). When only the data of the trio 

analysis was considered, a SNP near BTBD3 (BTB (POZ) domain-containing 3), 

a key regulator of dendritic field orientation, yielded genome-wide significance 

(P=3.84 x 10−8). However, this SNP had no genome-wide significance when all 

the data was analysed together (case-control-trio analysis). 

 

The OCD Collaborative Genetics Association Study (OCGAS) published the 

second GWAS90, which included 1,065 families that involved 1,406 patients with 

an early age of OCD onset and population-based samples resulting in a total 

sample of 5,061 individuals. A marker on chromosome 9, near the gene PTPRD, 

a member of the protein tyrosine phosphatase (PTP) family that is thought to 

have a role in promoting neurite growth and regulating neurons axon guidance, 

presented the smallest p-value (P=4.13 × 10−7). 
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A meta-analysis of the two consortia91, investigating a total of 2,688 OCD cases 

with European ancestry and 7,037 matched controls, was also performed. No 

SNP exceeded the genome-wide threshold for significance. The SNP with the 

lowest p-value (P=7.1 × 10-7) was 87.2 kb 5’ to CASC8 (Cancer Susceptibility 

Candidate 8) and the second SNP with the lowest p-value (P=1.1 × 10-6) lied 

entirely within GRID2 (Glutamate Ionotropic Receptor Delta Type Subunit 2). 

Variants located in or near the genes ASB13, RSPO4, DLGAP1, PTPRD, 

GRIK2, FAIM2 and CDH20 were among the top signals. 

2.3.4. Animal models of OCD 

During the last 30 years, many attempts have been done to develop animal 

models of OCD that could help us understand the underlying biology of this 

disorder. Although the intrusive obsessional thoughts and fears about human 

topics could never be assessed through animal models, they could help us study 

other aspects of OCD, such as compulsions and ritualistic behaviours. 

Animal models of OCD are based on behavioural similarity, as it is suggested 

that the behaviour of genetically modified animal models should be similar to 

some specific conducts in individuals with this disorder92. Some models are 

induced by genetic manipulation, but there are also pharmacological animal 

models of OCD (based on drug-induced OCD-like behaviours) and behavioural 

manipulation-based animal models of OCD (based on repetitive behaviours 

occurring naturally or under stressful events)92. 

Currently, there are eight mouse models of OCD that show compulsive-like 

behaviour due to genetic modifications (5-HT2c receptor, aromatase (Cyp19a1), 

Slitrk5 and Slc1a1 knock outs (KO), dopamine transporter (DAT) knockdown, 

and DiCT-7, Hoxb8, and Dlgap3 mutant mice) and one mouse model of OCD 

that shows compulsive-like behaviour as a result of selective breeding92,93. 

These mouse models provided evidence that serotonin, glutamate and 

dopamine are related to the expression of OCD-like behaviours such as anxiety 

and excessive self-grooming94,95. 
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In 2014, Tang et al.96 published a canine model of OCD. They suggested that 

the limited genetic diversity of dog breeds facilitates the identification of genes, 

functional variants and regulatory pathways underlying complex psychiatric 

disorders. They identified four genes involved in synaptic function with variation 

present only in cases: neuronal cadherin (CDH2), catenin alpha2 (CTNNA2), 

ataxin-1 (ATXN1), and plasma glutamate carboxypeptidase (PGCP). 

 

Recently, D’Amico et al.97 suggested that functional validation of all the 

candidate genes and variants that are being discovered through next generation 

sequencing (NGS) methods will be cost and time consuming using traditional 

animal models (mostly rodents). For this reason, they proposed switching to 

zebrafish models of OCD, which have faster and cheaper genetic manipulation, 

phenotypic reproducibility of OCD-like behaviours and feasibility to develop high-

throughput screenings for the discovery of novel OCD drug therapies. 

 

 

3. Missing heritability in OCD 

3.1. The missing heritability problem 

Despite all the genetic studies performed in OCD, as well as in many other 

complex disorders, there is still a big difference between the proportion of 

phenotypic variance, predictable to be explained by genetic influences, and the 

heritability really explained by the genetic variants identified so far. This is known 

as the “missing heritability”86. 

 

Taking into account the common disease/common variant hypothesis86, which 

assumes that the genetic component of complex diseases is the sum of the 

effects of common genetic variants with small to modest effect sizes, it was 

thought that, at least, GWAS would be an effective method to identify the genetic 

variation that contributes to the pathogenesis of OCD. However, GWAS seem to 

be insufficient to explain the heritability of, not only OCD, but most complex traits 
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and diseases98. So, where is the rest of the genetic variation underlying this type 

of disorders? 

 

There are many plausible explanations (but no consensus) as to where this 

missing heritability is hiding. Some of the most supported hypotheses involve 

common genetic variants with small effect sizes, rare and low-frequency 

variants, structural variation, and gene-gene and gene-environment interactions. 

 

3.1.1. Common genetic variants with small effect sizes 

One possible explanation for the missing heritability issue is that there might be 

common genetic variants with such small effect sizes that they have not yet 

been identified by GWAS because of its inadequate statistical power51,87. To 

identify these kind of variants with enough statistical power it would be required 

to conduct GWAS with samples sizes of, al least, 60,000 individuals87. However, 

GWAS and meta-analyses of combined GWAS conducted to date using bigger 

sample sizes still only explain a small proportion of the heritability (20%)84, so it 

is unclear how much more of the genetic variance underlying complex traits 

would be explained by increasing sample sizes87. 

 

3.1.2. Rare and low-frequency variants 

Nowadays, much of the speculation about missing heritability is focused on the 

possible contribution of rare (MAF <1%) and low-frequency variants (MAF 

between 1% and 5%)99. Indeed, rare variation is already known to play an 

important role in human diseases, as many monogenic diseases are caused by 

highly penetrant and relatively rare variants. Moreover, loss-of-function (LoF) 

variants are very rare and they are less probable to occur than missense 

variants. Evolutionary theory predicts that deleterious variants are likely to be 

rare as a result of purifying selection100. 

 

The common disease/rare variant hypothesis86 proposes that at least part of the 

genetic component of complex phenotypes may be due to the sum of the effects 
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of rare and low-frequency variants. This hypothesis posits that these variants are 

likely to have effect sizes larger than those of common variants, conferring a 

moderate but readily detectable increase in relative risk of complex phenotypes, 

without demonstrating clear Mendelian segregation and contributing 

substantially to the missing heritability (Figure 4)99.  

Figure 4. Classification of genetic variants by risk allele frequency and strength of genetic 
effect. From Manolio et al., 200999 

Because rare variants are not usually captured in GWAS or candidate gene 

studies, they could be contributing substantially to missing heritability99. In fact, 

rare variants have been underrepresented on genome-wide genotyping arrays 

and are difficult to impute from common variants, as they are in low linkage 

disequilibrium86,99. Low-frequency variants are already being studied in GWAS 

with a high number of samples. In any case, both require extremely high sample 

sizes to be detected in enough samples for a sufficiently powered association 

test. Even so, once MAF falls below 0.5%, detection of associations becomes 

very unlikely99. Furthermore, rare variants involved in complex disorders cannot 

be studied by classical linkage analysis because they do not usually have 

enough large effect sizes. So, detection of rare and low-frequency variants is an 

essential step to evaluate the role of this variation in complex phenotypes. 
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3.1.3. Structural variation 

Although there are several studies about SVs in complex traits and diseases, 

most of this kind of variation, such as, CNVs, novel sequence insertions, big 

deletions, inversions, translocations, and complex rearrangements, are 

incompletely assessed by most association studies. Hence, they could be 

contributing to some of the unexplained heritability of complex phenotypes. 

Currently, much of the research in SVs is focused on CNVs, which have been 

shown to be associated with a few complex disorders. CNVs were first analysed 

through the array-based comparative genomic hybridization (CGH) technique, 

and later by GWAS. Disease-associated CNVs detected so far include both rare 

variants with large effect sizes and common variants with more modest effects99. 

In general, rare disease-associated CNVs are large (600 kb - 3 Mb), affecting 

many genes, whereas common disease-associated CNVs are smaller (20-45 

kb)99. In particular, rare de novo CNVs have been shown to be of importance in 

several neuropsychiatric disorders101. 

In fact, there have been two studies analysing the involvement of CNVs in OCD. 

McGrath et al.102 published a genome-wide investigation of large (>500 kb), rare 

(MAF <1%) CNVs in OCD and Tourette’s syndrome, including 1,613 OCD 

patients. There was no global CNV burden difference between cases and 

controls, but there was a 3.3-fold increased burden of large deletions previously 

associated with other neurodevelopmental disorders. Moreover, OCD patients 

showed a 1.4% rate of de novo CNVs, slightly higher than estimates in controls 

(0.7%). Two regions stand out from this analysis: five cases shared deletions in 

chr16p13.11, three of them de novo, and most of them in individuals with OCD, 

and another four OCD patients presented SVs in chr22q11 (three duplications 

and one de novo deletion). Recently, Gazzellone et al.81 published a high-

resolution analysis of CNVs in a paediatric cohort of OCD, including 307 

unrelated probands and 3,861 controls. They genotyped rare CNVs (MAF 

<0.5%) of at least 15 kb and they identified de novo CNVs in 4/174 trios. They 

also showed an enrichment of CNVs in genes that encode targets of the fragile 
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X protein (involved in intellectual disability), as well as deletions or duplications 

of exons in ASTN2, NLGN1, PTPRD, DLGAP1, DLGAP2, and BTBD9, all of 

them involved in neuronal processes. Furthermore, four individuals with OCD 

had CNVs involving known genomic disorder loci.  

Despite the last improvements in SVs detection through SNP arrays, this type of 

variation still remains largely unexplored, especially for small indels and CNVs 

embedded within complex regions of the human genome. However, NGS 

approaches are evolving at a fast pace and are able to identify SVs with higher 

accuracy103.  

3.1.4. Gene-gene and gene-environment interactions 

It has been proposed that another significant part of the missing heritability may 

be due to the interactions between genes or between genes and the 

environment.  

Gene-gene interactions are also known as “epistasis”. Specifically, functional 

epistasis is the phenomenon where the effect of a particular variant on the 

phenotype depends on the genotype of another variant, while statistical epistasis 

is the effect of a combination of causal variants, where the sum of their effects 

are not independent104. It is thought that part of the missing heritability could be 

explained by epistatic genetic interactions between the already identified genetic 

variants. As an example, Zuk et al. reported that the amount of heritability 

explained by 71 risk loci associated with Crohn’s Disease was 21.5% under the 

assumption of additive genetic architecture, and 62.8% under the a model that 

considers epistatic interactions51,105. However, studying epistasis is an 

overflowing task and the magnitude of its actual contribution to the heritability of 

complex phenotypes still remains to be determined. 

In addition to gene-gene interactions, gene-environment interactions could also 

influence the genetic architecture of complex traits through epigenetic changes 

of gene expression51,86. Although there is evidence for gene-environment 
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interactions in model organisms, human genetic-environmental interaction 

analyses still need to evolve and achieve robust results51,106. 

3.2. New approaches to decipher the missing heritability 

Nowadays, many efforts are being made to identify the genetics behind the 

missing heritability in complex traits and diseases. Emerging research areas, 

methods and tools may help explain some of the underlying biology of complex 

phenotypes, including OCD, and to validate the proposed hypotheses for the 

missing heritability, which are not necessarily exclusive. We describe them in the 

following sections. 

3.2.1. Next-generation sequencing 

The emergence of NGS methods in the last decade has revolutionised genomic 

research as they started to become essential for the identification of human 

genetic variation in health and disease. These methods provide fast high 

throughput sequencing data, outperforming by several degrees of magnitude 

previous technologies. Nowadays, one single human genome can be sequenced 

in one day for approximately 1000 euros107. 

Despite the cost reductions in NGS, whole-genome sequencing (WGS), the 

process of determining the complete sequence of a genome at a single time, is 

still an expensive approach in the “genomics of disease” research field, where a 

lot of samples are needed to achieve statistically significant results. A cost-

effective alternative consists of the enrichment of specific regions of interest, 

such as the exome (the protein-coding region of a genome), or a specific subset 

of genes or regions. In fact, although the exome represents less than 1-2% of 

the genome, whole-exome sequencing (WES) is a well-justified, and extensively 

used strategy for disease gene identification, because about 85% of known 

disease-related variants are located in exons108. 
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NGS technologies include a variety of methods that are grouped broadly as 

template preparation, sequencing and imaging, and data analysis. The unique 

combination of specific protocols distinguishes one technology from another and 

determines the type of data produced from each platform109. Although 

Illumina/Solexa dominates the NGS market currently, some methods (e.g. 

Roche, Life/APG, Helicos BioSciences, Polonator and the near-term technology 

of Pacific Biosciences) have clear advantages for particular applications over 

others. 

 

NGS has evolved in parallel with bioinformatics, as it relies heavily in 

bioinformatic algorithms for providing appropriate genotypes. Through these 

algorithms, NGS allows the detection of many different types of genetic 

variation, whether known or novel, such as nucleotide substitutions, small indels, 

and some SVs (inversions, translocations, CNVs, and novel sequence 

insertions). However, effective detection of SVs remains challenging and needs 

to improve in accuracy, sensitivity and specificity.   

 

All this genetic variation can have a functional impact in the phenotype, which is 

usually well established when the variants lie in protein-coding DNA regions.  

Bioinformatic tools are used to annotate the location of the variants and to 

predict their functional effect. Variants in the coding region are classified as 

synonymous (no amino-acid change), missense (change of the amino acid 

encoded), nonsense (introduction of a premature stop codon) or stoploss (loss 

of a stop codon), while indels can be in-frame (multiple of three base-pairs) or 

frameshift if they lead to a change in the reading frame and thus the amino-acid 

composition of the protein. For missense variants, a prediction on the effect on 

the protein functionality is based on sequence conservation among species and 

on the possible effect of the amino acid changes to the protein structure. 

Variants outside of the coding region are annotated when they modify the sites 

at which splicing takes place, located at the extremes of exons and introns110. 

These variants may lead to abnormal splicing, by including intronic sequence or 

not including exons. Bioinformatic functional prediction is also possible for other 

non-coding variants that may affect regulatory elements controlling gene 
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expression111. Finally, the effect of VNTRs and SVs is usually not functionally 

annotated, as functional prediction is more complex. They may affect coding 

regions, inserting or deleting coding sequence, leading to in-frame or frameshift 

products. CNVs may increase or decrease gene copy numbers, and the 

breakpoints of SVs may occur within genes, leading to shortened or chimeric 

genes.  Usually these effects are annotated manually. 

 

In the case of OCD, there have been two published studies that have performed 

WES. Cappi et al.112 published a WES study of 20 sporadic OCD cases and their 

unaffected parents to identify rare de novo SNVs conferring risk to the 

phenotype. They described that the rate of de novo SNVs in OCD was 

significantly higher than the rate of de novo SNVs in unaffected subjects. 

Moreover, several genes harbouring de novo SNVs were highly interconnected 

when a protein-protein interaction (PPI) network was constructed to analyse 

functional molecular interactions among them. These genes also ranked high 

when a Degree-Aware Disease Gene Prioritization (DADA) study was performed 

to observe relatedness to the candidate OCD genes reported by the two OCD 

GWAS published to date. Finally, they found enrichment in immunological and 

central nervous system functioning pathways. For instance, three of the most 

relevant genes were WWP1, BAMBI and SMAD4, all three involved in 

neurological processes. Gazzellone et al.81 sequenced exomes of ten trios and 

identified a 13-bp exonic deletion in DRD4, supporting the hypothesis of the 

contribution of this gene in the OCD aetiology.  

 

3.2.2. Rare variant association studies 

Two types of rare variants association studies (RVAS) are used to explore the 

contribution of rare variants in the missing heritability of complex traits and 

diseases: variant-based tests and gene-based tests. Variant-based tests 

examine if a variant is enriched or depleted in cases versus controls from the 

general population (with individuals assumed to be unrelated). However, 

standard single variant association analyses are statistically underpowered to 

detect rare variant associations, except when sample sizes and/or effect sizes 
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are very large. To solve this problem, investigators have recently developed 

statistical methods based in aggregating or collapsing rare variants within 

biological units of association, defined using gene annotations, genomic 

coordinates or functional characterization113. Traditionally, rare variants are 

grouped by genes and, for this reason, these tests are also known as gene-

based tests.  

We can divide gene-based tests into four main categories: burden tests, 

adaptive burden tests, variance-component tests, and combined burden and 

variance-component tests (Table 3)114. These methods are based on different 

genetic architectures underlying complex phenotypes, and power for each test 

depends on the true disease architecture. As true genetic architectures of 

complex disorders are unknown, it is highly recommended to use more than one 

test when performing RVAS114. 

a) Burden Tests

Burden tests collapse information for multiple genetic variants into a single 

genetic score and test for association between this score and a trait114. The main 

limitation of these tests is that they assume that all rare variants in a set are 

causal and influence the phenotype in the same direction. However, it is known 

that the same gene can carry variants affecting the phenotype in opposite 

directions. So, in scenarios where only a small fraction of the rare variants are 

causal, or where both trait-increasing and trait-decreasing variants are present, 

these tests lose power. 

b) Adaptive Burden Tests

These tests were developed to address the limitations of the original burden 

tests114. They are more robust because they allow for weighting of variants (by 

allele frequency or pre-estimated direction of the effect, for example) and for the 

inclusion of covariates when appropriate. However, most adaptive burden test 

are computationally intensive and simulation studies suggested that they have 

similar power to that of variance-component and combined tests. 
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The Kernel-Based Adaptive Cluster (KBAC)115 method is an example of adaptive 

burden test that combines causal/non-causal variant classification and 

association testing. Moreover, it allows the incorporation of covariates to control 

for potential confounders including age, sex, and population substructure. This 

method was reported to perform particularly well in the presence of variant 

misclassification and gene interaction. 

 

c) Variance-Component Tests 

Variance-component methods test for association considering the distribution of 

genetic effects for a group of variants114. They are powerful in the presence of 

both trait-increasing and trait-decreasing variants or when there is only a small 

fraction of causal variants, but they lose power compared to burden tests when 

most variants are causal and have the same direction of effects. 

 

The Sequence Kernel Association Test (SKAT)116 is a computationally efficient 

variance component test that tests for association of common and rare variants 

and that offers flexibility in terms of covariate adjustment, study design, and 

different variant prioritization/weighting strategies.  

 

d) Combined Burden and Variance-Component Tests 

Some complex phenotypes may present a combination of scenarios. This 

means that it is possible that some regions present a large proportion of causal 

variants with effects in the same direction, while other regions present both trait-

increasing and trait-decreasing variants, or a small fraction of causal variants. In 

these cases, it is better to use a method that combines burden and variance-

component tests114. 

 

The SKAT Optimal test (SKAT-O)117 and the Mixed effects Score Test (MiST)118 

are both combined methods. SKAT-O is an adaptive linear combination of 

unidirectional burden test and variance-component SKAT test, while MiST is a 

hierarchical regression model combining two independent test statistics that 

quantify variant effect sizes and directions of association. 
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Table 3. Summary of Statistical Methods for Rare Variant Association Testing. From Lee et al., 2014114 
 

 Description Methods 

Powerful when 

A large proportion 
of variants are 

causal 

Only a small 
fraction of 

variants are 
causal 

All or near all variants 
have the same 

direction of effect 

There are both trait-
increasing and trait-
decreasing variants 

Burden tests 
Collapse rare variants 

into genetic scores 

ARIEL test, CAST, 
CMC method, MZ 

test, WSS 
✓ ✗ ✓ ✗ 

Adaptive 
burden tests 

Use data-adaptive 
weights or thresholds 

KBAC method, 
aSum, Step-up, 

EREC test, VT, RBT 
✓ ✗ ✗ ✓ 

Variance-
component 
tests 

Test variance of 
genetic effects 

SKAT, SSU test, C-
alpha test 

✗ ✓ ✗ ✓ 

Combined 
tests 

Combine burden and 
variance-component 

tests 

SKAT-O, MiST, 
Fisher method 

✓ ✓ ✓ ✓ 

 

ARIEL: accumulation of rare variants integrated and extended locus-specific; aSum: data-adaptive sum test; CAST: cohort allelic sums test; CMC: combined 
multivariate and collapsing; EC: exponential combination; EPACTS: efficient and parallelizable association container toolbox; EREC: estimated regression 
coefficient; GRANVIL: gene- or region-based analysis of variants of intermediate and low frequency; KBAC: kernel-based adaptive cluster; MiST: mixed-effects 
score test for continuous outcomes; MZ: Morris and Zeggini; RBT: replication-based test; Rvtests: rare-variant tests; SKAT: sequence kernel association test; 
SSU: sum of squared score; VAT: variant association tools; VT: variable threshold; and WSS: weighted-sum statistic.  
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Recently, Moutsianas et al.119 evaluated the power of different gene-based tests 

under different genetic architectures, locus effect sizes, sample sizes, filters for 

neutral variation, and significance thresholds and reported that SKAT-O, KBAC 

and MiST have the highest individual mean power across simulated datasets. 

However, they observed wide architecture-dependent variability in the individual 

loci detected by each test, suggesting that inferences about disease architecture 

from analysis of sequencing studies can differ depending on which methods are 

used. Moreover, their results imply that tens of thousands of individuals, 

extensive functional annotation, or highly targeted hypothesis testing will be 

required to confidently detect or exclude rare variant signals at complex disease 

loci. 

 

3.2.3. Transcriptomics  

The effect of genomic and environmental factors can also be analysed through 

the study of the RNA, which can give us information about the effect of 

regulatory or splicing variants that we cannot detect by WES and/or that we do 

not know how to interpret them. The study of RNA can tell us which genes or 

pathways are involved in the phenotype and we can identify, later, the causal 

genetic or environmental factor. 

 

About 88% of all the human genetic variation currently associated with complex 

traits and diseases by GWAS lie within intronic or intergenic regions and occur 

within putative regulatory elements far more often than expected by 

chance120,121. This suggests that this variation is likely to have causal effects by 

influencing gene expression rather than affecting protein function.  

Correspondingly, a growing number of studies are showing the relationship 

between genetic variants and gene expression variation, such as the latest effort 

of the GTEx consortium122, describing the genetic effect on gene expression 

levels across 44 human tissues.  

 

In fact, whole-transcriptome analysis (the study of the complete set of transcripts 

in a cell, and their quantity, for a specific developmental stage or physiological 
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condition123) is increasingly acquiring a pivotal role in the study of human 

complex traits and diseases. Currently, a valid approach in this field is focused 

on studying, first, the presence of differential gene expression between disease 

and healthy phenotypes, and then, examining the genome to identify genetic 

variants that could be responsible for the observed variation in gene expression. 

This approach is especially interesting in the case of regulatory variants, whose 

impact is difficult to predict from the DNA level. Indeed, it was demonstrated that 

combining WES and transcriptomics can provide a more comprehensive view of 

human diseases, increasing the overall diagnostic yield of exome-based studies 

up to 30%124,125. 

 

The first studies that investigated the role of RNA in specific phenotypes used 

microarrays and sequencing-based technologies, such as Serial Analysis of 

Gene Expression (SAGE), and Cap Analysis of Gene Expression (CAGE)120. But 

it was not until the development of NGS, and specifically RNA-sequencing 

(RNA-Seq), that we obtained significant progress in the resolution and analysis 

of different layers of transcriptome complexity126. When sequencing with high 

coverage, RNA-Seq allows to catalogue all species of transcripts, including 

mRNAs, small RNAs, microRNAs and non-coding RNAs; to determine the 

transcriptional structure of genes (their start sites, the splicing patterns, post-

transcriptional editing and fusion transcripts); and to quantify gene expression 

levels (even when the levels of expression are low) in different conditions. It also 

allows us to analyse, at a single-nucleotide resolution, the allele-specific 

expression. Therefore, RNA-Seq provides a comprehensive view of the 

transcriptional landscape. 

  

The RNA-Seq technology is very useful for differential expression (DE) analysis. 

Many software packages have been developed for the identification of 

differentially expressed genes between groups of samples127. They differ in the 

statistically design used. Some examples are shown in the Table 4. 
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Table 4. Summary of the top software packages developed for the identification of 
differentially expressed genes 
 

Method Description 

baySeq128 
Uses the Bayesian empirical approach to estimate a posteriori probability of each 
set of models, which defines differential expression patterns for each tuple.  

limma+voom129 

Based on the linear model and originally developed to analyse data from 
microarray and currently extended for RNA-Seq analysis. The limma user guide 
recommends the use of the TMM normalization of the edgeR package associated 
with the use of the voom conversion, which essentially transforms the normalized 
counts to logarithms base 2 and estimates the mean-variance relation to 
determine the weight of each observation made initially by a linear model. 

edgeR130 
A Poisson super dispersion model is used to account for technical and biological 
variation. Apply the Bayesian empirical method to moderate the degree of over 
dispersion against transcripts. 

DESeq131 
Based on a negative binomial distribution, with variance and mean bound by local 
regression.  

DESeq2132 

Firstly, it builds a model with observed counts. Secondly, it fits using the same 
method from the original DESeq, or fit in two steps: find the value of the 
parameter that makes the likelihood largest, which is called maximum likelihood 
estimation. Then, it takes all the gene values and moves these values towards an 
average value. It uses Bayes theorem to guides the amount of movement for 
each gene: if the information for the gene is low, its value is moved close to the 
average, if the information for the gene is high, its value is moved very little. 
Thus, the moved values are useful to evaluate different sets of genes as well as 
to apply a threshold. 

NOIseq133 
Empirically models the noise in the counting data and allows the data analysis 
without replication 

SAMseq134 
Uses re-sampling for sequencing counts with different depths. It can be applied to 
data with quantitative results, two-class, or multiple-class. 

 

 

Several studies have evaluated these and other statistical methods for DE 

analysis, but no single method is clearly superior, since each has particular 

strengths that may be suitable for specific RNA-Seq datasets127. 

 

3.2.3.1. Transcriptomics and neuropsychiatric disorders 

Due to the inability to access live brain tissues, which would be highly 

informative, transcriptomics studies of neuropsychiatric disorders have used, 

mostly, RNA samples from animal models and post-mortem brain tissues (Table 

5)120,135. However, although they provide valuable information, they have some 

important inconveniences. For instance, animal models cannot reproduce the 

complete range of human neuropsychiatric symptoms. On the other hand, post-

mortem brain tissues are subjected to changes in pH, hypoxia, dehydration and 

other factors that may affect stability of RNA products, and interfere in the 
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analysis. It is possible that differences in these factors between cases and 

controls may lead to false associations, while post-mortem samples of aged 

individuals may present symptoms of degenerative disease that could be 

confounded with the phenotype of interest. In addition, there is a scarcity of post-

mortem brain samples and biobanks that hinder this approach. 

 

Researchers have also used blood transcriptional profiles to discover possible 

disease biomarkers and investigate mechanisms relevant to mental disorders. 

Many studies have been done in different psychiatric disorders such as 

schizophrenia, autism or major depression, among others (Figure 5)136–138. This 

method represents a less-invasive and more feasible alternative to brain tissue.  

Further, there is a correspondence between blood and brain transcriptomic 

profiles: between 35% and 80% of known transcripts are present in both tissues, 

with correlations in the expression levels ranging from 0.25 to 0.64, and with 

stronger correlations observed among particular subsets of genes139.  

 

Another option is to perform transcriptomic studies on patient-derived cell lines. 

This is a very interesting field, especially since it is possible to generate iPSC-

derived neuronal cell lines from patients and controls, which would help model 

neuropsychiatric disorders. Nevertheless, there remain many challenges in this 

type of studies. 

 

To date, one study140 has investigated the transcriptomics of OCD. It compares 

gene expression levels in various obsessive psychiatric disorders (which 

included OCD, obsessive-compulsive personality disorder or tics) and healthy 

subjects, using post-mortem brain tissue and microarrays. Doing so, they 

discovered 286 genes that were differentially expressed between cases and 

controls. However, they could not associate any known clinical risk SNV with 

gene expression differences observed in cases and controls.  
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Table 5. Summary of RNA sequencing studies in post-mortem human brains of psychiatric disorders. From Wu et al., 2017135 
 

Studies Neuropsychiatric disorder 
Subjects Post-mortem 

brain tissues 
Results 

Cases Controls 

Zhou et al. 2011 Cocaine and alcohol addiction 16 16 Hippocampus 
Gene expression changes between both cocaine-
addicted and alcoholic post-mortem brains and 
their respective controls 

Wu et al. 2012 Schizophrenia 9 9 
Superior temporal 

gyrus 

Identification of three clusters strongly linked to 
schizophrenia: synaptic vesicle trafficking, 
neurotransmission-related functions, and neural 
development. 

Sinclair et al. 2013 Schizophrenia 20 20 Prefrontal cortex 
Abnormal expression of FKBP5, PTGES3, BAG1, 
and glucocorticoid receptor genes 

Hwang et al. 2013 Schizophrenia 14 15 Hippocampus 
144 differentially expressed genes in cases. 
Upregulation of immune/inflammation genes 

Akula et al. 2014 Bipolar disorder 11 11 
Dorsolateral 

prefrontal cortex 
Altered expression of gene transcripts involved in 
neuroplasticity and circadian rythms 

Kohen et al. 2014 
Schizophrenia, Bipolar 
disorder and Major 
Depression disorder 

50 29 Mid-hippocampus Disrupted hippocampal miR-182 signalling 

Cruceanu et al. 2015 Bipolar disorder 13 13 
Anterior cingulate 

cortex 
Dysregulation of G protein-coupled receptors 

Farris et al. 2015 Alcoholism 16 15 Prefrontal cortex 
Multiple ion channels and related processes in the 
human prefrontal cortex linked to extended alcohol 
abuse 

Yin et al. 2016 
Major Depression disorder 
and Suicide 

30 29 
Dorsal prefrontal 

cortex 

Identification of dorsal striatum-specific immune 
response and oxidative phosphorylation pathways 
for BD 

Pacifico & Davis 2017 Bipolar disorder 18 17 Dorsal striatum 
Downregulation of GABRG2 in suicide cases and 
identification of an SNP for association with 
suicide death 
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Figure 5. Classification of 108 human blood-based transcriptome gene expression studies 
performed between 2005 and 2015 by neuropsychiatric disease type. From Breen et al., 2016136 

 

 

3.2.4. The study of the microbiome 

The human microbiome refers to the complex microbial ecosystem that resides 

on each person. It consists of about 3.8x1013 microbial cells and includes 

bacteria, archaea, fungi, protists and viruses141. The composition and 

abundance of the different microbial populations integrating the microbiome are 

variable not only between individuals but also within the different body parts. The 

metagenome refers to the collective genomes of the microbiome, although often, 

microbiome is used for both concepts142.  

 

In recent years, the compositional and functional diversity of the human 

microbiome has increasingly gained attention in the missing heritability 

problem143. Three main observations may explain the arising of this field: i) the 

microbiome has a strong impact in human health144 and its composition is 

associated with many important traits, including obesity, cancer, and 

neurological disorders; ii) the human microbiome encodes 100 times more 

genes than the human genome145, which may act as a rich source of genetic 

variation and phenotypic plasticity; and iii) human genotypes, host’s behaviour, 

environment, and vertical and horizontal transmissions from other hosts can 

influence the composition and structure of the human microbiome, and this 
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microbiome can influence human phenotypes. Thus, if the development of a 

phenotype is related to the microbiome, looking only at human genetic variation 

produces a gap between phenotypic variance and observed genotypic variance, 

with high estimates of heritability values in family studies and low estimates in 

genetic studies. 

 

Understanding the precise functionality and implications of the human 

microbiome is a complex task that is being carried out thanks to the 

development of metagenomics. There are two main metagenomic approaches: 

16S ribosomal RNA (rRNA) gene amplicons sequencing and metagenomics 

shotgun sequencing. 

 

To date, 16S-rRNA sequencing has been the most common approach to 

analyse the microbiome, although this technique is restricted to the identification 

of bacteria and archea. The 16S rRNA gene is present in all the species 

belonging to these two domains and is composed by an alternation of highly 

conserved and hypervariable regions (Figure 6). Genetic differences in the 

hypervariable regions have been considered to reflect, for most bacteria and 

archea, genome divergence. This method uses universal PCR primers 

complementary to highly-conserved regions to generate amplicons that contain 

hypervariable regions, which are then sequenced and used to infer taxonomic 

identifications based upon bioinformatic alignments against sequence 

databases146. 

 

Metagenomics shotgun sequencing is based in obtaining the completely set of 

genes that are present in the microbiome147. It provides better accuracy, and 

covers all taxonomical levels, including organisms such as viruses and fungi, 

which cannot be captured by 16S-rRNA sequencing. However, it is much more 

costly than 16S-rRNA sequencing, and the generated data presents numerous 

challenges in downstream analyses. 
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Figure 6. Amplification strategy of the hypervariable regions of the 16S rRNA gene 

 

 

3.2.4.1. The gut-brain axis 

The relationship between the gut microbiome and the brain has been one of the 

most studied systems in human metagenomics research. The existence of the 

gut-brain axis was proposed in 2004 by Sudo and colleagues148, who discovered 

that germ-free mice had an impaired stress response, which could be reversed 

by reconstitution of a balanced microbiome at  early developmental stages.  

 

The gut–brain axis is a communication system that involves neural, hormonal 

and immunological signalling between the gut microbiome and the brain, with 

neural connections involving the central nervous (CNS), autonomic, and enteric 

nervous systems (ENS)149. This communication system is bidirectional: the brain 

can influence gastrointestinal and immune functions of the gut, and the gut 

microbiota and its metabolites can influence the brain (Figure 7).   

 

Specifically, it is known that emotional factors can modulate gastrointestinal 

functions (such as motility, secretion and mucin production) and immune 

functions (such as modulation of cytokine production by cells of the mucosal 

immune system) of the gut. For example, it has been reported that stress can 

influence the chronic progression of some gastrointestinal illnesses, such as 

inflammatory bowel diseases (IBD)150. Stress and IBD have been associated, in 
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turn, with compositional changes in the gut microbiome, linking, so, the brain 

and the gut microbiota151,152. These modulations via the gut-brain axis are known 

as top-down modulations. 

 

Bottom-up signalling has also been reported149. There is evidence that the gut 

microbiome influences brain development153, neurogenesis154, and brain 

function149. Some studies have shown that this influence may be explained via 

the gut-brain-axis by: i) the capability of the human gut microbiome to affect 

levels of excitatory and inhibitory neurotransmitters, such as serotonin, 

dopamine, norepinephrine and GABA, by producing and/or consuming them or 

by modulating host neurotransmitters and/or related pathways155; ii) the release 

of gut hormones from enteroendocrine cells; iii) the activation of the enteric 

nervous system and signalling of the brain via ascending neural pathways; and 

iv) activation of the immune system via cytokine release by the mucosal immune 

cells156. 

 

Interestingly, the greatest diversity of microbial genetic content resides in the 

human gut. Recently, Qin et al.145 reported a human gut microbial gene 

catalogue, identifying 3.3 million non-redundant microbial genes from stool 

samples of 124 European individuals. They also showed that, although there is a 

considerable variability between individuals in the gut microbiome, there is a 

“core microbiome” shared between individuals, which can be defined as the set 

of genes present in a given habitat in all or the vast majority of humans157. Most 

of the microorganisms present in the gut are bacteria and there are already 

1,000 species identified. The genus Bacteroides and the phylum Firmicutes 

account for over 90% of the total149. 
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Figure 7. The neural, immunological, endocrine and metabolic pathways by which the microbiota influences the brain, and the proposed 
brain‑to‑microbiota component of this axis. Bacterial products gain access to the brain via the bloodstream and the area postrema, via cytokine release from 
mucosal immune cells, via the release of gut hormones from enteroendocrine cells, or via afferent neural pathways, including the vagus nerve. Stress and 
emotions can influence the microbial composition of the gut through the release of stress hormones or sympathetic neurotransmitters that influence gut 
physiology and alter the habitat of the microbiota. DC, dendritic cell; GABA, γ-aminobutyric acid. Adapted from Collins et al., 2012149 
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3.2.4.2. The human microbiome in psychiatric disorders 

Based on the idea that gut microbiome can affect brain function, several studies 

have emerged focusing on variations in the microbiota and the effect on various 

neuropsychiatric disorders, including anxiety, depressive disorders, autism and 

schizophrenia, among others158. These studies, which have been done in both 

animals and humans, have mostly focused in the gut but also, to a lesser extent, 

in the oro-pharyngeal microbial composition, partly as a proxy to the gut 

microbiome, as it might be difficult to obtain stool samples from patients with 

psychiatric disorders. 

 

While there are many differences in the microbial composition of the faecal and 

oral microbiome, Segata et al.159 documented overlapping metabolic pathways 

of these two microbiome profiles, which supports the fact that many studies of 

microbiome and neuropsychiatric disorders have focused on the oral 

microbiome. 

 

Several studies have observed the influence of the microbiome composition on 

the behaviour of animal models. For instance, there are several evidences in 

rodents that demonstrate the influence of the composition of the gut microbiota 

on anxiety and major depressive disorder. In these studies germ-free mice have 

demonstrated reduced anxiety-like behaviours160,161 or depression-associated 

changes in stress response, accompanied by altered levels of monoamines and 

proinflammatory cytokines. 

 

Human studies have reported a link to the microbiome for major depression 

disorder, autism, schizophrenia, anorexia and Alzheimer’s disease, identifying 

differences in the composition of the microbiome in cases and controls. 

Specifically, two studies reported high-level differences at both phylum and 

genus levels between the oral microbiome of individuals with schizophrenia 

versus healthy controls162,163. Another study was able to classify patients with 

and without depression with 100% sensitivity and 97% specificity just by looking 

at the microbial genomes from stool swabs164. And a study on autistic patients 
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found a different microorganisms distribution in stool samples in cases versus 

healthy controls165.  

 

Other studies have evaluated response to probiotic administration. For instance, 

decreased cognitive reactivity to sad mood was observed in randomized 

controlled trials after a month of probiotics administration166, and a fascinating 

study167 showed a drastic drop to 0% in the rates of autistic spectrum disorders 

and ADHD in young teenagers supplemented with probiotics as infants 

compared to controls (individuals not supplemented).  

 

Regarding OCD, there are still very few studies investigating the role of human 

microbiome in this disorder. Even so, there are some evidences that allow us to 

hypothesize that changes in human microbiota could explain some of the 

missing heritability in OCD. For example, there is one study that showed 

attenuation of obsessive-compulsive behaviour in mice after Lactobacillus 

rhamnosus probiotic administration168. Another study performed in healthy 

humans showed reduced obsessive-compulsive subscores on the Hopkins 

symptoms checklist after Lactobacillus helveticus and Bifidobacterium longum 

administration during 30 days169. Recently, just some months ago, Jung et al.170 

reported that compulsive checking in mice was accompanied by changes in 

several communities of bacteria belonging to the order Clostridiales (class 

Clostridia, phylum Firmicutes), and predominantly in Lachnospiraceae and 

Ruminococcaceae families of bacteria. Finally, a very recent study has shown 

that there is an altered bacterial community structure in the gut of PANDAS 

patients with respect to controls171. They suggested that this altered microbiome 

developed after streptococcal infections and could have lead to a pro-

inflammatory status that may influence behaviour and brain functions and result 

in the sudden onset of tics, OCD, and other behavioural symptoms.   
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HYPOTHESES AND OBJECTIVES 

 

 

OCD is a complex neuropsychiatric disorder that arises from a combination of 

environmental and genetic risk factors, as demonstrated by family and twin 

studies. However, the genetic architecture underlying this disorder has not been 

elucidated yet. The current model proposes that individuals with OCD may have 

a genetic predisposition to the impact of environmental factors that may modify 

the expression of genes involved in the serotonin, glutamate, catecholamine, 

and dopamine systems, which are involved in the OCD pathophysiology. These 

modifications, may, in turn, lead to an imbalance in the CSTC circuit, resulting in 

the manifestation of clinical features of OCD. Despite a number of genetic 

linkage, candidate genes, and association studies have been performed in order 

to decipher the biology underlying OCD, there is still a big gap between the 

proportion of phenotypic variance expected to be explained by genetic 

influences and the heritability explained by the genetic variants identified so far. 

 

Nowadays, there are many plausible explanations as to where the missing 

heritability is hiding in complex disorders. Much of the speculation about it 

involves rare and low-frequency variants, common genetic variants with small 

effect sizes, structural variation, and gene-gene and gene-environmental 

interactions. In order to study these hypotheses, new genomic approaches are 

being developed. Moreover, transcriptomics is gaining increasing attention in the 

missing heritability problem, as the effect of genomic and environmental factors 

may be explained through the study of the RNA. Recently, metagenomics have 

also emerged as a new focus to study neuropsychiatric disorders based on the 

idea that variations in the human microbiome could affect brain function. 

 

Based on these aforementioned facts, our hypotheses are: 

 

1. Rare variants and common variants of small size effects contribute to 

OCD risk. 
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2. Some genes could be differentially expressed between OCD subjects 

and healthy individuals, which may be captured in blood transcriptomics. 

3. There is an altered gut and oro-pharyngeal microbiome profile in OCD 

cases compared to healthy individuals, and this alteration may be 

modified by OCD treatment. 

 

Arising from these hypotheses, our general objective is to gain insight into the 

genetic and environmental factors contributing to OCD risk. This general 

objective is assessed from two perspectives, which we separated in two different 

studies: 

 

Objectives of Study I: Deciphering OCD by whole-exome sequencing 

 

i. To identify genes and pathways with an enrichment of rare variants 

associated with OCD through: 

a) Rare variant association analysis from whole-exome sequencing 

data.  

b) Replication of the best candidates through targeted resequencing.  

c) Functional validation of candidate genes. 

ii. To identify low-frequency and common, exonic, potentially damaging 

variants associated with OCD. 

 

Objectives of Study II: Multiomics longitudinal study of OCD 

 

iii. To identify differentially expressed genes in peripheral blood of OCD 

untreated cases compared to controls, reflecting an OCD specific 

transcriptome signature. 

iv. To compare the gut and oro-pharyngeal microbiome profiles in OCD 

untreated cases and controls and evaluate potential differences. 

v. To compare the transcriptomic and microbiome profile of the same OCD 

individuals after treatment and consider the potential effect of treatment. 
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METHODS  

 

 

1. Subjects 

To perform the work presented here, we had access to two independent OCD 

cohorts. Our main study cohort consisted of 668 adulthood-onset OCD patients 

that were recruited between 2004 and 2017 at the OCD Clinic and Research 

Unit of the Hospital Universitari de Bellvitge, in Barcelona. All patients met the 

DSM-IV3 criteria for OCD for at least one year and their diagnosis was done by 

two experienced psychiatrists using the Structured Clinical Interview for DSM-IV 

Axis I Disorders - Clinician Version (SCID-IV)172. The severity of OCD symptoms 

was assessed using the Spanish clinical version of the Yale-Brown Obsessive–

Compulsive Scale (Y-BOCS)173,174. All the patients were from Spain and had 

European ancestry. Exclusion criteria included: i) age under 18 or over 65; ii) 

presence or past history (in the previous six months) of psychoactive substance 

abuse or dependence; iii) mental retardation; iv) neurological disease 

comorbidity except tic disorder; v) present or past history of psychotic disorders; 

and vi) presence or past history of any other severe medical condition. 

Comorbidity with other Axis I disorders was not considered an exclusion criterion 

provided that OCD was the main diagnosis and the reason for seeking medical 

assistance. From these 668 OCD patients, 625 were included in the Study I 

(WES analyses) and were assessed at one time-point, where we collected blood 

to extract DNA (Table 6). They were all undergoing cognitive behavioural 

therapy (CBT) and pharmacological treatment. The remaining 40 patients were 

included in the longitudinal design of Study II, and were assessed at two 

different time-points: before and after at least three months of CBT and 

pharmacological treatment. For these patients we collected blood, pharyngeal 

swab and stool samples at the two time-points, as well as the dietary information 

(see questionnaire and dietary data in Supplementary Tables S1 and S2) from 

nearly all patients (Table 7). Three patients were included in both studies.  
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In addition, for replication analysis we included 117 children and adolescents 

aged between 8 and 19 years with a current diagnosis of OCD according to 

DSM-IV3 criteria recruited by the Department of Child and Adolescent Psychiatry 

and Psychology at the Hospital Clínic i Provincial de Barcelona. The Spanish 

version of the semi-structured diagnostic interview K-SADS-PL (Schedule for 

Affective Disorders and Schizophrenia for School-Age Children-Present and 

Lifetime Version)175 was administered to both parents and the child as informant 

in order to establish the diagnosis of OCD and to assess past and current 

psychiatric comorbidity. OCD severity was measured at the time of admission 

using the Children’s Yale-Brown Obsessive-Compulsive Scale (CY-BOCS)176. 

The age of onset of OCD was defined as the age at which patients first 

displayed significant distress or impairment associated with obsessive-

compulsive symptoms. Exclusion criteria included intellectual disability and 

neurological disorders. Patients with psychiatric comorbidities were not 

excluded.  

 

An age and gender matched control cohort comprising 105 unrelated healthy 

individuals from the same socio-demographic environment was also recruited by 

the OCD Clinic and Research Unit of the Hospital Universitari de Bellvitge. Prior 

to inclusion, each control participant underwent the Structured Clinical Interview 

for DSM-IV (non-patient version) to exclude presence or past history of any 

psychiatric disorder. Additional exclusion criteria were the same used for OCD 

patients. For 63 samples, only blood was collected, while for controls included in 

the longitudinal study we collected blood, pharyngeal swab and stool samples, 

as well as the dietary information at a single time-point for nearly all samples 

(Table 8 and Supplementary Table S3).   

 

Written informed consent was obtained for all the participants after receiving a 

complete description of the study, which was done according to the principles of 

the Declaration of Helsinki after approval by the appropriate Ethic Committees 

(the Bellvitge University Hospital Ethical Committee, Barcelona, Spain; and the 

Hospital Clínic Ethical Committee, Barcelona, Spain). 
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In addition, exome sequencing data from 1896 additional in-house samples from 

other projects (involving controls and patients from different pathologies) were 

included in the bioinformatic analysis. From these, 567 were used as controls in 

the RVAS performed in the Study I. Finally, 1481 controls from the Multi Case-

Control (MCC) – Spain cohort177 were used in the targeted resequencing 

replication study. 

Table 6 displays the collected samples for Study I and Study II. Tables 7 and 8 

show all the analysis performed on samples collected in the Study II. 

Supplementary Table S4 displays the clinical information for nearly all OCD 

samples recruited and Supplementary Table S5 displays the clinical information 

for the OCD and control samples included in the metagenomics study. 

Table 6. Samples included in the Study I and Study II 

Analysis OCD patients Controls 

Adulthood-onset 
OCD patients 

Childhood-
onset OCD 

patients 

Healthy 
individuals 

Other 
controls 

Study I 

WES 
306 

- 
63 

(BUH) 
1896 

(Various) 

Targeted 
322 

(BUH) 
117 
(CH) 

8 
(BUH) 

1473 
(MCC) 

Study II 
43* 

(BUH) 
- 

34 
(BUH) 

- 

BUH: Hospital Universitari de Bellvitge, Barcelona; CH: Hospital Clínic i Provincial de Barcelona. 
Various: Various hospitals in Catalonia; MCC: Multi Case-Control (MCC) – Spain cohort.  * Three of 
these samples were also included in Study I. 
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Table 7. Summary of samples and analyses performed on OCD cases included in Study II 
 

OCD 
samples 

 

Genomics Transcriptomics Metagenomics 

Total 
WES 

mRNA 
T0 

mRNA 
T3 

sRNA 
T0 

sRNA 
T3 

S 
T0 

S 
T3 

Ph 
T0 

Ph 
T3 

493 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ 1 

569 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

644 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

834 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

875 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

884 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 8 

885 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

893 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ 7 

896 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 7 

897 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

898 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

899 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 8 

937 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 5 

953 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ 3 

972 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

992 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 8 

994 ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ 1 

998 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

1000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

1001 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ 2 

1002 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

1011 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 6 

1012 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

1014 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

1019 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 5 

1021 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

1025 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 8 

1027 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

1030 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

1031 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

2004 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 5 

2005 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 5 

2013 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 5 

2017 ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ 4 

2020 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ 8 

2022 ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ 7 

2024 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

2026 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

2027 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

2029 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

2030 ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ 8 

2031 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 8 

2032 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9 

Total ✓ 38 38 38 38 38 32 31 32 32 317 

Total ✗ 5 5 5 5 5 11 12 11 11 70 

 

WES: whole-exome sequencing; mRNA: messenger RNA; sRNA: small RNA; S: stool samples; Ph: 
Pharyngeal swabs; T0: samples recruited before treatment; T3: samples recruited after, at least, 
three months of treatment. In grey, samples that have all analyses done. 
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Table 8. Summary of samples and analysis performed on controls included in Study II 
 

Controls 
Genomics Transcriptomics Metagenomics 

Total 
WES mRNA sRNA S Ph 

C 91 ✓ ✓ ✓ ✓ ✓ 5 

C 92 ✓ ✓ ✓ ✓ ✓ 5 

C 93 ✓ ✓ ✓ ✓ ✓ 5 

C 97 ✓ ✓ ✓ ✓ ✓ 5 

C 98 ✓ ✗ ✓ ✗ ✗ 2 

C 99 ✓ ✓ ✓ ✓ ✓ 5 

C 100 ✓ ✗ ✓ ✓ ✓ 4 

C 101 ✓ ✗ ✗ ✓ ✓ 3 

C 102 ✗ ✗ ✗ ✓ ✗ 1 

C 103 ✓ ✓ ✓ ✓ ✓ 5 

C 104 ✓ ✓ ✓ ✓ ✓ 5 

C 105 ✓ ✓ ✓ ✓ ✓ 5 

C 106 ✓ ✓ ✓ ✓ ✓ 5 

C 107 ✓ ✓ ✓ ✓ ✓ 5 

C 108 ✓ ✓ ✓ ✓ ✓ 5 

C 109 ✓ ✓ ✓ ✓ ✓ 5 

C 110 ✓ ✓ ✓ ✓ ✓ 5 

C 111 ✓ ✓ ✓ ✓ ✓ 5 

C 112 ✓ ✓ ✓ ✓ ✓ 5 

C 113 ✓ ✓ ✓ ✓ ✓ 5 

C 114 ✓ ✓ ✓ ✓ ✓ 5 

C 115 ✓ ✓ ✓ ✓ ✓ 5 

C 116 ✓ ✓ ✓ ✓ ✓ 5 

C 117 ✓ ✓ ✓ ✓ ✓ 5 

C 118 ✓ ✓ ✓ ✓ ✓ 5 

C 119 ✓ ✓ ✓ ✓ ✓ 5 

C 120 ✓ ✓ ✓ ✓ ✓ 5 

C 121 ✓ ✓ ✓ ✓ ✓ 5 

C 122 ✓ ✓ ✓ ✓ ✓ 5 

C 123 ✓ ✓ ✓ ✓ ✓ 5 

C 124 ✓ ✗ ✓ ✓ ✓ 4 

C 125 ✓ ✓ ✓ ✓ ✓ 5 

C 126 ✓ ✓ ✓ ✓ ✓ 5 

C 127 ✓ ✓ ✓ ✓ ✓ 5 

Total ✓ 33 29 32 33 32 159 

Total ✗ 1 5 2 1 2 11 

 

C: control; WES: whole-exome sequencing; mRNA: messenger RNA; sRNA: small RNA; S: Stool 
samples; Ph: Pharyngeal swabs. In grey, samples that have all analyses done. 

 

 

 

 

 



Methods 

 50 

2. Study I: Genomics 

2.1. DNA samples and quality control 

For our main cohort, blood samples were collected in EDTA tubes and 

processed 24-48 hours after collection. Samples were first centrifuged at 2500 × 

g at room temperature for 10 minutes. Plasma was then removed and stored for 

future use. The remaining blood cells were subjected to DNA extraction using 

the Wizard® Genomic DNA Purification Kit (Promega Corporation) according to 

the manufacturer’s instructions. DNA was quantified for each sample using the 

Qubit dsDNA BR Assay Kit (Invitrogen) and DNA integrity was assessed by 

running the samples on a 1% agarose gel stained with SYBR Safe DNA Gel 

Stain (Invitrogen).  

 

2.2. Whole-exome capture and sequencing 

We generated whole-exome libraries for 437 samples (306 OCD cases and 63 

controls from Study I, and 35 OCD cases and 33 controls from Study II). The 

improvement of NGS capture kits during the project development has led to the 

usage of different capture kits for exome sequencing, to take advantage of the 

better capture options.  

 

The initial 40 captures were performed with TruSeq DNA Sample Preparation Kit 

(Illumina) and Agilent SureSelect Human All Exon 35Mb Kit (Agilent 35; Agilent 

Technologies). From then on, all samples were captured with NimbleGen 

SeqCap EZ Library v3.0 (NimbleGen v3; Hoffmann-La Roche). Of these, 64 

samples were prepared with TruSeq DNA Sample Preparation Kits (Illumina) 

and the remaining samples with NEXTflex™ Pre-Capture Combo Kit, 

NimbleGen SeqCap EZ Compatible (Bioo Scientific). A workflow for the whole-

exome capture process is summarized in Figure 8.  
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Figure 8. Whole-exome capture workflow with NEXTflex™ Pre-Capture Combo Kit, NimbleGen 
SeqCap EZ Compatible (Bioo Scientific) and NimbleGen SeqCap EZ Library v3.0 (Hoffmann-
La Roche) 
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Briefly, for each sample, about 500 ng – 1µg of genomic DNA was fragmented 

using ultrasonication to generate double stranded DNA fragments of 

approximately 500 bp with 3ʹ and 5ʹ overhangs on a Covaris S2 instrument 

(Covaris). Then, fragments underwent under three enzymatic steps: end repair, 

adenylation, and ligation with specific paired-end indexed adapters (that will be 

used later for sequencing on the Illumina HiSeq). All purification steps between 

the enzymatic reactions were performed with AMPure XP beads (Beckman 

Coulter). Later, the fragments were amplified by polymerase chain reaction 

(PCR) with kit-specific PCR oligos to generate genomic libraries. PCR products 

were cleaned again using AMPure XP beads and quantified by a DNA High 

Sensitivity chip on a Bioanalyzer 2100 instrument (Agilent Technologies). Then, 

the DNA libraries were multiplexed in pools of 4 samples for a final combined 

mass of 1.1 μg, and the resulting library pools were hybridized to the biotin 

labelled probes of NimbleGen v3. A physical pull-down was then performed 

using streptavidin-bound T1 Dynabeads (Life Technologies) to purify the library-

bait hybrids. After stringent washing (to remove nonspecific binding), each 

library pool was amplified by PCR with the kit-specific PCR oligos. After PCR 

amplification, the library pools were cleaned using QIAquick PCR Purification Kit 

(Qiagen), and quantified by a DNA High Sensitivity chip on a Bioanalyzer 2100 

instrument. Each pool was then sequenced on one lane of an Illumina 

HiSeq2000 / Illumina Hiseq 3000 (Illumina) to generate 2 x 100 bp paired-end 

reads using SBS v3 chemistry (Illumina).  

 

2.3. Bioinformatic analyses of DNA variants 

After sequencing, we were provided fastq files for each sample by the 

sequencing facility. These were analysed with the in-house developed pipeline 

described below (Figure 9).  

 

The analysis for Study I included data from 628 OCD cases, 63 controls and 

1896 samples studied by our group. Inclusion of all these samples in the 

bioinformatic analyses provides more accurate results in variant calling as it 
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increases the sample size. Targeted data was analysed following the same 

workflow implemented for WES analyses. 

 

2.3.1. Alignment  

Reads were aligned to the GRCh37/hg19 version of human reference genome 

using the Burrows-Wheeler Alignment Maximal Exact Matches (BWA-MEM) 

algorithm version 0.7.10178. Alignment post-processing was performed according 

to GenomeAnalysisTK (GATK) best practice guidelines179 by using picard-

tools180 and the GATK 3.2-2 version pipeline181. This included conversion of the 

mapping data (SAM file) to a sorted BAM file, PCR duplicate marking, local re-

alignment around potential insertions/deletions, and base-quality recalibration. 

The resulting alignments were used as input for variant calling. 

 

2.3.2. Variant calling 

Variant calling was performed using GATK HaplotypeCaller v3.3179,181. The 

HaplotypeCaller algorithm calls SNPs and indels simultaneously via local de-

novo assembly of haplotypes in active regions. We used HaplotypeCaller in its 

GVCF mode. In this mode an intermediate genomic gVCF file is generated per 

sample. These files are used for joint genotyping of multiple samples in a very 

efficient way.  

 

2.3.3. Variant quality filtering 

Potential false positive variant calls were filtered out based on six statistical 

annotation scores at the individual variant site and/or across samples: i) a 

minimum depth of coverage of 10 reads per variant; ii) a maximum allele 

balance bias (ABB) of 0.7; iii) Fisher strand bias (FS) in the top 10 percentile 

among all variants; iv) alternative allele frequency with thresholds at individual 

variant site of 0.2 and average across samples of 0.25; v) genotype quality score 

with a threshold of 20 at individual site and a minimum average across samples 

of 30; and vi) a minimum call rate across samples of 80%. 
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Variants that passed the hard-filtering step were then scored with the GATK 

Variant Quality Score Recalibration (VQRS) tool179,181. The VQSR filter uses 

annotation metrics, such as quality by depth, mapping quality, and variant 

position within reads, from a set of “true” variants (variants found in HapMap 

phase 3 release 3) to generate an adaptive error model. It then applies this 

model to the remaining variants to calculate a probability that each variant is real 

(and not a sequencing or data processing artefact). This probability is a 

recalibrated quality score called variant quality score log-odds (VQSLOD), which 

can be used to filter lower quality variants. We applied a GATK VQSLOD filter 

corresponding to a threshold that maintains 99.9% sensitivity for the “true” 

variants. 

 

2.3.4. Annotation 

Functional annotation of high quality variants was performed using ediva182, 

which provides information from multiple databases, including SNP ID from the 

National Center for Biotechnology Information (NCBI) SNP Database (dbSNP) 

build 132, genomic annotation (exon/intron/UTR), gene annotation, variant type 

(synonymous, missense, nonsense, stopgain, splice variants), conservation 

around variants based on phastCons; segmental duplication filter, multiple 

estimates of the impact of amino acid substitution on the structure and function 

of proteins (tools: Sift, Polyphen2, Condel, LRT, PhyloP, MutationAssessor and 

MutationTaster), and frequencies of predicted variants in the 1000 Genomes 

project (1000G)183, in the Exome Variant Server (EVS)184 and in the Exome 

Aggregation Consortium (ExAC)185. 
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Figure 9. Flowchart used for bioinformatic analyses of DNA variants 
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2.4. Rare variant association study 

Before running RVAS analysis, we used the software VCFtools186 to exclude 

unknown related samples and an quality control (QC) in-house pipeline to filter 

samples for inclusion in the analysis based on different criteria: i) sample ID; ii) 

number of variants per sample; iii) sample transition to transversion (Ti/Tv) ratio; 

and iv) data stratification (technical or population based) (see Supplementary 

Methods S1 and Supplementary Figures S1-S8 for more details). Data 

stratification was computed through principal component analysis (PCA) of all 

synonymous SNVs without linkage disequilibrium, and outlier samples could be 

filtered out. PCA data was saved to be included as covariates in the RVAS 

method, allowing to correct possible batch effects. In addition, for studies 

including data obtained with different capture kits, variants that were not well 

covered by all kits were filtered out to remove kit-based stratification. Table 9 

displays the number of variants before and after filtering for each QC analysis 

performed. 

 

 

Table 9. Number of variants before and after QC analyses 
 

  Study I Study I Study I Study I 

 RVAS RVAS Targeted WES analysis 

Capture kit 
Agilent 35 
Agilent 50 

NimbleGen v3 
NimbleGen v3 Targeted NimbleGen v3 

OCD cases 
Before QC 306 266 439 35 
After QC 292 206 1481 28 

Controls 
Before QC 630 253 427 33 
After QC 601 188 1474 28 

Variants 
Before QC 1,184,368 2,035,201 20,378 428,104 
After QC 624,516 490,150 13,751 403,973 

 

QC: quality control; Agilent 35: Agilent SureSelect Human All Exon 35Mb Kit; Agilent 50: Agilent 
SureSelect Human All Exon 50Mb Kit; NimbleGen v3: NimbleGen SeqCap EZ Library v3.0. 

 

 

The exome sequencing data was used to perform two different RVAS analyses. 

As the OCD samples were sequenced with two different kits (Agilent 35 and 

NimbleGen v3), a first RVAS included, after filtering steps, high-quality whole-

exomes of 292 OCD samples and 601 controls, captured with Agilent 35, Agilent 
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SureSelect Human All Exon 50Mb Kit (Agilent 50) and NimbleGen v3. A second 

more homogenous analysis included high-quality whole-exomes of 206 OCD 

samples and 188 controls, all captured with NimbleGen v3. In both cases, the 

controls included the 63 healthy individuals recruited for this study, and 

additional samples selected from the 1896 samples analysed by our group. The 

selected samples for the first analysis consisted of: control samples, healthy 

parents from intellectual disability patients, and an even number of chronic 

lymphocytic leukaemia, fibromyalgia, cystic fibrosis and stroke patients. In the 

second analysis, only healthy parents from intellectual disability patients, 

fibromyalgia, and stroke patients were included.  

 

For replication, a RVAS was done with high-quality targeted resequencing data 

from 427 OCD samples and 1474 controls (854 control samples were used to 

test association, whereas the rest was used to estimate the local AF). 

 

RVAS was carried out using an in-house pipeline (Susak et al., in revision), 

aggregating rare variants at the gene level. The pipeline includes four different 

RVAS methods: Burden test, KBAC115, SKAT-O187 and MiST118. The last version 

of this pipeline, which we used in the targeted resequencing analysis, included 

also a new Bayesian rare variant Association Test using Integrated Nested 

Laplace Approximation or INLA (BATI). This method is conceptually similar to 

the MiST approach in terms of statistical model specification but it is based on 

Bayesian inference (Susak et al., in revision). 

 

RVAS analysis was performed for all variants and considering separately all 

missense or all truncating mutations. We also applied two different MAF cut offs, 

of 0.01 and 0.005, filtering out variants above these cut-offs in our dataset and in 

the 1000 Genomes Project, EVS and ExAC databases. For missense variants, 

we also filtered out variants with a Cadd2 score below 15. When possible 

(SKAT-O, MiST, BATI (only for the replication data)), we included the first 10 

principal components in the model as covariates (Supplementary Figure S9), 

and weighted the variants by MAF (giving more weight to rarer variants). In the 

MiST and BATI analysis we also included the Cadd2 score as additional variant 
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information. Finally, in the BATI analysis, we also included the number of 

variants per sample and the Ti/Tv ratio as covariates.  

 

The RVAS output is a table including the number of unique variants considered 

for each gene, the number of unique variants observed in cases and in controls, 

the number of carriers in cases and in controls, the number of cases and 

controls that participated in the analyses, and the overall and FDR-adjusted p-

values for the different Euclidean tests (in the case of frequentist tests, all but 

BATI). In the case of BATI, the Deviance Information Criteria (DIC)188 is the 

Bayesian criteria applied for significance purposes (Susak et al., in revision). To 

determine the DIC cutoff value corresponding to a certain FDR, we performed 

simulations. For each simulation we randomly shuffled cases and controls and 

then applied the BATI test in each gene. By doing so we expect that if a gene is 

found to be associated to the group of cases constructed artificially is due by 

random chance rather than by any true biological signal. The DIC threshold for a 

0.01 FDR is then obtained from the 0.01 quantile of the empirical distribution of 

p-values across all genes.  

 

We filtered out highly variable genes reported unlikely to be good candidates for 

disease causation189. 

 

2.5. Variant validation 

Rare variants in significant genes that were found to be present in an 

unexpected high number of cases or controls were considered likely false 

positives and tested by conventional Sanger sequencing approaches.  

 

Specific primers (Supplementary Table S6) were designed to surround the 

candidate variant with the software Primer3190, tested in silico with Blat191 and 

the USCS In-Silico PCR192 tool, and ordered from Sigma-Aldrich Corporation. 

DNA was amplified using standard PCR amplification conditions and visualized 

on a 1.5% agarose gel. Unincorporated primers and dNTPs were removed with 

ExoSAP-IT (Affymetrix), and a 10 μl sequencing reaction was setup with 2 μl of 



Methods 

 59 

BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Byosistems), 10 μM of 

forward or reverse primer and 1-2 μl of PCR product. Sequences were purified 

by gel filtration using Sephadex G50 Gel-Filtration Resin (Sigma-Aldrich 

Corporation) and run on an ABI 3730XL DNA analyser (Applied Byosistems) at 

the UPF Genomics Core Facility. Data files were analysed with the software 

CLC Main Workbench (CLC bio). 

 

2.5.1. DRD4 deletion genotyping 

We were particularly interested in a 13-bp frameshift deletion (p.78_82del) in 

DRD4 for which we set-up a multiplex PCR to directly genotype all recruited 

OCD cases and a similar number of controls obtained from a cohort of samples 

from the Hospital Universitari Vall d'Hebron (Barcelona, Spain) and from a 

cohort of general population of school children recruited for the BRain 

dEvelopment and Air polluTion ultrafine particles in scHool childrEn (BREATHE) 

project193 (Barcelona, Spain). Specifically, we genotyped 614 OCD patients and 

664 controls. 

 

The multiplex PCR design used two pairs of primers that amplified two different 

regions of DRD4 simultaneously (Supplementary Tables S7 and S8). The first 

pair, called DRD4 deletion primers, amplified a region of 674 bp only when the 

sample carried the deletion. We achieved this by designing a reverse primer on 

the deletion breakpoint. When the sample did not have the deletion, the primer 

could not amplify a PCR product, because the primer could not hybridize. The 

second pair, called DRD4 control primers, amplified a region of 429 bp in all 

samples (Figure 10). All PCR runs included one positive control (a sample 

known to carry the deletion). 
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Figure 10. Schematic representation of the multiplex PCR design. Blue arrows represent the 
DRD4 deletion primers (forward and reverse), designed to amplify only in samples that carry de 
DRD4 deletion (represented in yellow). Purple arrows represent the DRD4 control primers (forward 
and reverse), designed to amplify in both wild-type and deletion-carrying samples.  

 

2.6. Targeted resequencing design and capture 

For the validation of candidate OCD genes discovered by RVAS, we designed a 

SureSelect QXT Custom 1Kb-499kb library through the Agilent Sure Design tool 

(Agilent Technologies), in a shared capture array that included 20 candidate 

OCD genes (Supplementary Table S9). 

 

Libraries for 439 OCDs (322 adults and 117 children) and 1481 MCC-Spain 

cohort control samples were prepared and captured at the CRG Genomics Core 

Facility, using an in-house pre-capture protocol. Briefly, DNAs underwent DNase 

I enzymatic fragmentation, adapter ligation, nick translation, pooling of samples 

and PCR amplification, with purification processes between each step, and with 

a final capture with the probes of the designed library.   

 

2.7. Common variants analysis 

On the Study I dataset, we also performed an association study of coding, 

damaging (Cadd2 score >15) common variants discovered by WES. We used, 

as input, the WES data resulting from the QC in-house pipeline. Moreover, 

variants that were not in Hardy-Weinberg equilibrium were filtered out.  

  Reference                                                                                                                                           

  Deletion                                                                                                                                            

429 bp 

 671 bp 
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The association analysis was based on logistic regression models, where each 

variant was analyzed at a time in contrast to the gene-based tests for rare 

variant association analysis, assuming a log-additive mode of inheritance. We 

included the first 10 PCA as in the RVAS analysis to correct for potential batch 

effects. The p-values were obtained from the likelihoods ratio tests derived from 

a comparison with the null model (i.e. the model without genetic information). 

We used the function WGassociation from R package SNPassoc194. 

 

2.8. Gene set enrichment analysis 

Gene set enrichment analyses were performed with the ConsensusPathDB 

software195. Over-represented sets were searched among pathway-based sets 

and Gene Ontology (GO)-based sets using KEGG, Reactome, Wikipathways, 

Biocarta and GO terms as reference gene-sets. For each of the predefined sets, 

a p-value was calculated according to the hypergeometric test based on the 

number of genes present in both the predefined set and our list. The size of the 

tested predefined sets was corrected to the number of set members that were 

annotated with a gene ID. The p-values were corrected for multiple testing using 

the false discovery rate method (FDR), and results were available as q-values.  

 

 

3. Study I: Functional analyses 

Functional assays for the DRD4 13 bp frameshift deletion (p.78_82del) included 

functional tests on immortalized B-lymphoblastoid cell lines from OCD patients 

and controls, and the development of a drd4 knockout zebrafish model by 

ZeClinics (Supplementary Methods S2). 

 

3.1. Immortalization of lymphocytes by Epstein-Barr virus 

We obtained blood samples collected in EDTA tubes from 5 OCD patients that 

carried the DRD4 deletion and 7 healthy individuals. We then isolated 

mononuclear cells (MNCs) from peripheral blood using a density gradient 
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medium called Lymphoprep™ (Stemcell Technologies) and centrifuging samples 

at 800 × g for 20 minutes at room temperature. Granulocytes and erythrocytes 

have a higher density than MNCs and therefore sediment through the 

Lymphoprep™ layer. MNCs were recovered from the interphase layer and 

incubated with Epstein-Barr virus (EBV) for 2 hours at room temperature (1 ml of 

EBV per 6x106 cells). The infected MNCs were cultured for at least 12-15 days 

in RPMI 1640 with L-Glutamine medium (Gibco, Thermo Fisher Scientific) 

supplemented with 15% heat inactivated fetal bovine serum (FBS) (Gibco, 

Thermo Fisher Scientific), 1% penicillin/streptomycin 10,000 U/mL (Thermo 

Fisher Scientific) and cyclosporin A (CsA) at the final concentration of 0.2 μg/ml. 

CsA was added because immortalization by EBV occurs with greater frequency 

if the lymphocytes T cells are functionally inactivated196. After this period, 

immortalized lymphocytes B cells were maintained in RPMI 1640 with L-

Glutamine medium (Gibco, Thermo Fisher Scientific) supplemented with 10% 

heat inactivated FBS (Gibco, Thermo Fisher Scientific) and 1% 

penicillin/streptomycin 10,000 U/ml (Thermo Fisher Scientific). 

 

3.2. Material extraction from B-lymphoblastoid cell lines 

Genomic DNA and protein were extracted from B-lymphoblastoid cell lines using 

the Wizard® Genomic DNA Purification Kit (Promega Corporation), and the 

RIPA Lysis and Extraction Buffer (Thermo Fisher Scientific) with Halt™ Protease 

Inhibitor Cocktail (Thermo Fisher Scientific), respectively. 

 

3.3. DRD4 expression levels in B-lymphoblastoid cell lines 

Before testing DRD4 expression levels, we confirmed the carrier and wild-type 

status of all generated cell lines by multiplex PCR (see Supplementary Figure 

S10). Then, we used two approaches, western-blot and flow cytometry, to detect 

an effect of the DRD4 deletion in protein expression levels, comparing DRD4 

expression in B-lymphoblastoid cell lines from heterozygote carriers and 

controls. 
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3.3.1. Western-blot assay 

Protein extracts were quantified with the Pierce™ BCA Protein Assay Kit 

(Thermo Fisher Scientific), using a BSA standard. Next, protein lysates (from 10 

µg to 30 µg) were prepared in 4x NuPAGE™ LDS Sample Buffer (Thermo 

Fisher Scientific) and 10x NuPAGE™ Sample Reducing Agent (Thermo Fisher 

Scientific) and they were boiled for 10 min at 95ºC. We then separated the 

proteins by electrophoresis on NuPAGE™ 4-12% Bis-Tris protein gels (Thermo 

Fisher Scientific), using the NuPAGE™ MES SDS Running Buffer (Thermo 

Fisher Scientific) and the XCell SureLock™ Mini-Cell Electrophoresis system at 

200 V for 1h. Transfer was performed by dry blotting of proteins onto 

nitrocellulose membranes using the iBlot™ Transfer Stacks (Thermo Fisher 

Scientific) and the iBlot® Gel Transfer Device at 20V for 7 min. 

For the detection of DRD4, the blots were blocked with 3-6% of BSA in TBS-T 

0.1% and incubated overnight at 4ºC with an anti-DRD4 monoclonal antibody 

(sc-136169; 1:2000 dilution; Santa Cruz Biotechnology). After washing with 

TBS-T 0.1%, blots were incubated with HRP-coupled anti-mouse IgG (1:2000 

dilution; Sigma-Aldrich Corporation) during 1 h at room temperature and washed 

again. Later, bands were visualized using the Luminata™ Classico or Forte 

Western HRP substrates (EMD Millipore). DRD4 protein levels were quantified 

using ImageJ software197 and normalize using the anti-α-Tubulin antibody 

(1:20,000 dilution; Sigma-Aldrich Corporation #T6199). 

3.3.2. Flow-cytometry assay 

Flow-cytometry analysis was performed to detect DRD4 surface expression in B-

lymphoblastoid cell lines of OCD cases and patients. For each sample, cells 

were counted to a final concentration of 5x106 cells/mL and pre-treated with 

human aggregated IgG (10 μg/ml) to block Fc receptors. Next, we performed 

indirect immunostaining: samples were incubated with the unlabelled anti-DRD4 

monoclonal antibody (sc-136169; Santa Cruz Biotechnology) followed by PE-

conjugated F(ab’)2 polyclonal rabbit anti-mouse IgG+IgM (Jackson 

Immunoresearch, West Grove, PA). Cell viability was assessed by incubating for 
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10 min at RT with 200 ng/mL DAPI (Sigma-Aldrich Corporation #D9542). A 

sample of cells stained only with the secondary antibody was included as 

control. 

 

Data for 10,000 events per sample was acquired on LSR II flow cytometer (BD 

Biosciences) and analysed using FlowJo software (TreeStar).  The PE median 

fluorescence intensity (MFI) was calculated for each sample. PE median 

fluorescence intensity ratio of stained/non-stained paired samples was evaluated 

as an indicator of the degree of DRD4 expression. 

 

 

4. Study II: Transcriptomics 

4.1. RNA samples and quality control 

Blood samples for transcriptomic analyses were recruited from 38 OCD patients 

(at two time-points) and 32 healthy individuals in PAXgene Blood RNA Tubes 

(PreAnalytiX GmbH), which contain a reagent composition that protects RNA 

molecules from degradation by RNases and minimizes induction of gene 

expression. We then isolated and purified total intracellular RNA using the 

PAXgene Blood RNA Kit (PreAnalytiX GmbH). Quality control and quantification 

of RNA was done with the RNA 6000 Nano kit or the RNA 6000 Pico kit on a 

Bioanalyzer 2100 instrument (Agilent Technologies).   

 

4.2. Total RNA sequencing 

Total RNA sequencing (RNA-Seq) was done by the CRG Genomics Core 

Facility following the TruSeq Stranded Total RNA with Ribo-Zero Globin 

(Illumina) protocol. Briefly, about 500 ng of RNA were used to sequence whole-

transcriptome of each sample. Ribosomal RNA and globin mRNA, which is 

present in high levels in whole blood, were depleted before library preparation. 

Next, whole-transcriptome sequencing libraries were prepared following these 

steps: i) RNA fragmentation; ii) cDNA synthesis; iii) adenylation; iv) adapters 
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ligation; and v) amplification of DNA fragments. Finally, RNA libraries were 

sequenced on a HiSeq2000 machine (Illumina), multiplexing 6 libraries per lane, 

with 50 bp single-end reads. This is expected to yield similar amount of 

information as an array-based expression level analysis.    

 

4.3. RNA bioinformatic analyses 

4.3.1. Quality control, alignment and estimation of transcript levels 

The sequencing facility provided fastq files that were analysed with an extensive 

pipeline for RNA-Seq analyses developed by Roderic Guigo’s group (CRG), 

called Grape RNA-Seq Analysis Pipeline Environment (Grape)198. After quality 

control, reads were aligned to the GRCh37/hg19 version of human reference 

genome using the GENCODE v19 annotations199 with the Spliced Transcripts 

Alignment to a Reference (STAR) aligner200 (version 2.4.0).   After the alignment, 

Grape next estimates gene and transcript expression levels, calculates exon 

inclusion levels and identifies novel transcripts using bigwig201 and RSEM202.  

 

We then constructed a count matrix containing the number of reads per 

transcript for each sample with htseq-count, a tool developed with HTSeq203 that 

pre-processes RNA-Seq data for DE analysis by counting the overlap 

of reads with transcripts.  

 

4.3.2. Normalization of read counts 

DE analysis was performed with the help of Dr. Escaramís. Prior to DE analysis 

we first filtered out non-expressed genes, by requiring more than 4 reads in at 

least ten individuals for each gene of the count matrix. This was followed by 

upper-quartile normalization204, which has been shown to perform better than 

scaling by total lane counts (e.g. RPKM). 

 

To improve the normalization process, we later applied the strategy proposed by 

Risso et al.205, the Remove Unwanted Variation (RUV) method from RNA-Seq 

data, that adjusts for nuisance technical effects by performing factor analysis on 
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suitable sets of control genes. The main assumption of RUV is that one can 

identify and use a set of synthetic negative control genes, which are genes 

whose expression is known a priori not to be influenced by the biological 

covariates under study (e.g., housekeeping genes or spike-in controls). Risso 

and colleagues also discuss the use of “in-silico empirical” controls if a good set 

of negative controls is not readily available, as in the case of our DE study. 

Thus, we used as the “in-silico empirical controls” the least significantly DE 

genes based on a first-pass DE analysis performed prior to RUV normalization. 

We decided to keep the first factors that showed correlation with our potential 

batch variables. 

 

4.3.3. Differential expression analysis 

DE was evaluated in three independent analyses: i) comparing OCD patients 

before treatment versus control individuals; ii) comparing the same OCD 

patients but after receiving the treatment (during, at least, three months) versus 

controls; and iii) OCD paired analysis, pre-treatment vs. post-treatment. 

 

We performed DE analysis using the Bioconductor package edgeR130 for DE 

analyses of read counts arising from RNA-Seq or similar technologies. edgeR 

functionality uses empirical Bayes methods that permit the estimation of gene-

specific biological variation even for experiments with minimal levels of biological 

replication. For DE we used the statistical implementation of the package based 

on generalized linear models using likelihood ratio tests for inferential purposes. 

 

 

5. Study II: Metagenomics 

5.1. Microbiome samples 

Stool samples from 28 OCD cases at two time-points, 7 OCD cases at a single 

time-point (before or after treatment), and 33 healthy subjects were collected 

with the Stool Collection Tube (Stratec Molecular), which has a liquid 
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stabilization buffer that inactivates DNases, preserves the microorganism titre, 

prelyses bacteria and prevents degradation of DNA. For subsequent DNA 

extraction we used the PSP Spin Stool DNA Basic Kit (Stratec Molecular).  

 

Pharyngeal swab samples from 28 OCD cases at two time-points, 8 single time-

point OCD cases and 32 healthy individuals were collected with the Catch-All 

sample collection swabs (Epicentre) and PowerBead tubes (MO BIO 

Laboratories). These tubes contain a buffer that protects nucleic acids from 

degradation. These samples were then processed with the PowerSoil DNA 

Isolation kit (MO BIO Laboratories) to extract genomic DNA from a variety of 

organisms.  

 

5.2. 16S-rRNA sequencing 

16S-rRNA sequencing was performed by the UPF Genomics Core Facility. For 

each set of samples (96 stool and 96 pharyngeal swab samples), the bacterial 

16S ribosomal RNA (rRNA) gene was amplified using a specific primer set for 

the V3-V4 regions and the obtained PCR products were purified, quantified, and 

pooled in an equimolar way in a final amplicon library that was sequenced on a 

MiSeq System. One 2 x 300 bp paired-end sequencing run was performed for 

each analysis (stool and pharyngeal swab samples). 

 

5.3. Metagenomics bioinformatics analyses 

Metagenomics analyses were done in collaboration with Jesse Willis from Dr. 

Gabaldón’s Group (CRG). 

 

5.3.1. Processing of 16S rRNA sequence reads and taxonomy assignment 

The DADA2 pipeline using version 1.6.0 of the DADA2 R package206 was 

employed to obtain counts of amplicon sequence variants (ASV), and then 

assign taxonomy to the sequences using the silva database.207,208 The 

parameters used in the pipeline were the same as in the DADA2 pipeline tutorial 
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(version 1.8), except for those that are particular to each dataset when using the 

filterAndTrim function. Those were as follows. For stool samples: 

truncLen=c(280,225), maxN=0, maxEE=c(5,10), truncQ=1, trimLeft=c(20,15), 

and for the pharyngeal swab samples: truncLen=c(250,230), maxN=0, 

maxEE=c(10,10), truncQ=1, trimLeft=c(20,30). 

 

5.3.2. Microbiome composition profiling 

The 16S rRNA ASV counts from the 96 stool and pharyngeal swab samples, 

along with clinical data and diet information collected for each individual, were 

stored and analysed in objects in R using the Phyloseq package (version 

1.22.3)209, which also has functions for filtering taxa, normalizing values and 

other calculations, as well as producing plots. The 16S counts were normalized 

per sample, obtaining the relative abundance of each taxon within a sample, 

with all values between 0 and 100. 

 

5.3.3. Diversity measures 

We estimated α- and β-diversity measures within samples using the Phyloseq209, 

picante (version 1.6.2)210 and vegan (version 2.4.6)211 R packages (see 

Supplementary Methods S3 for details). α-diversity refers to species richness 

(number of taxa) within a single sample, while β-diversity refers to dissimilarity in 

taxonomic abundance profiles from different samples. 

 

We estimated α-diversity using different indices, which give slightly different 

information. These include the Observed diversity, Chao1 index, Abundance-

based Coverage Estimator (ACE), Shannon, Simpson, Inverse Simpson, and 

Fisher Diversity indices using the estimate_richness function from the Phyloseq 

package. We also calculated Faith’s phylogenetic diversity and species richness 

using the pd function from the picante package (version 1.6.2)210. Boxplots were 

generated using ggplot2 (version 2.2.1)212. Statistical significance of α-diversity 

differences between groups was evaluated with Mann–Whitney U test when 
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samples were independent, and with Wilcoxon rank-sum test when samples 

were paired. 

 

We estimated β-diversity as the weighted and unweighted UniFrac distance 

between samples with the Unifrac function, as well as the Jensen-Shannon 

Divergence (JSD) with the JSD function, both from the Phyloseq package. We 

also calculated the Bray-Curtis dissimilarity and Canberra index using the 

vegdist function in the vegan package (version 2.4.6)211. Furthermore, the 

adonis function in the vegan package was used to perform a PERMANOVA test 

on β-diversity with 999 permutations considering even dependence of samples 

(paired OCD samples after and before treatment) using the “strata” argument 

within the adonis function. We used a Principal Coordinate Analysis (PCoA) to 

visualize the clustering of the samples. 

 

5.3.4. Statistical analyses 

We performed the Kruskal-Wallis rank sum test between categorical variables 

(e.g. sample type, type of obsessions) and taxa abundances or other continuous 

variables. In all cases, we applied the Bonferroni correction to adjust the p-

values by the number of comparisons. Boxplots were generated using ggplot2212 

and association plots were generated using the assoc function from the R 

package vcd (version 1.4.4)213.  

 

To identify possible taxa biomarkers associated with OCD, which differ in 

abundance and occurrence between OCD and control samples, we performed a 

linear discriminant effect size analysis (LEfSe)214 via the Galaxy web application 

with the Huttenhower lab’s tool. LEfSe combines Kruskal-Wallis test or pairwise 

Wilcoxon rank-sum test with linear discriminant analysis (LDA). It ranks features 

by effect size, which put features that explain most of the biological difference 

between sample groups at top. We used an α value for the statistical test equal 

to 0.05 and a logarithmic LDA score threshold of 2.0. 
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RESULTS  

 

Study I: Deciphering OCD by whole-exome sequencing  

 

 

In this section we present the results of the first part of the project, whose aim 

was to decipher the genetic architecture of OCD from WES data. We generated 

sequencing data from 306 OCD cases and 63 controls, and performed a joint 

variant calling together with data from 1896 Spanish individuals, thus increasing 

accuracy for rare variant calling. We analysed all the samples from alignment to 

annotation, placing special emphasis in the quality control and filtering steps to 

achieve highly accurate results. The generated genotypes were used for RVAS. 

Significant results were validated through Sanger sequencing validation, and we 

did gene set enrichment analysis. Further, we performed targeted resequencing 

to replicate some of the identified candidate genes associated with OCD. We 

also studied in detail a DRD4 13-bp frameshift deletion enriched in OCD cases 

compared to controls from our RVAS dataset. We tested its association with 

OCD in a larger cohort of cases and controls and performed some functional 

analyses. Exome data was also used to explore other scenarios, such as the 

association of common and low-frequency variants with functional effects.  
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1. Rare variant association analyses 

1.1. Selection of well covered variants is an essential step for high 

accurate downstream analyses 

Because our analysis included a large number of whole-exome samples 

belonging to different projects and captured with different kits, which could cause 

stratification of the data, we assessed this potential stratification by PCA. This 

analysis showed that samples clustered by the capture kit used (Figure 11).  

 

 

Figure 11. PCA of all 2265 whole-exome samples. We performed the PCA analysis selecting all 
synonymous SNVs without linkage disequilibrium of all samples.  
 

 

In an attempt to reduce the stratification in the samples to be used in RVAS, we 

considered only the variants located within the intersection of the regions 

covered by the Agilent 35, Agilent 50 and NimbleGen v3 kits. However, after 

selecting those variants, we observed again stratification of our data. Finally, we 

selected variants that were effectively well covered (with at least 10 reads) by 

the three kits and were able to remove data stratification (Figure 12) despite 

losing a significant number of variants (Table 10). We also confirmed that 

samples did not cluster by project. 
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Figure 12. PCA of all 2265 whole-exome samples. We performed the PCA analysis selecting all 
synonymous SNVs without linkage disequilibrium of all samples.  
 

 

 

Table 10. Number of SNVs and indels found in the resulting files of each process 
 

Process SNVs Indels Total 

Pre-intersection (post-annotation) 2,163,981 147,786 2,311,767 
Intersection (a)  1,360,558 81,760 1,442,318 
Intersection (b)  1,122,164 62,204  1,184,368 

 
Intersection (a) refers to the intersection of SNVs and indels with all the regions supposed to be 
covered by Agilent 35, Agilent 50 and NimbleGen v3. Intersection (b) refers to he intersection of 
SNVs and indels with all the regions effectively well covered by the three kits. 

 

 

1.2. Results are highly dependent on the RVAS approximation 

To find genes enriched in rare variants in OCD cases compared to controls, we 

performed two RVAS. The first one, with a larger sample size, included 292 

OCD cases and 601 controls captured with Agilent 35, Agilent 50 and 

NimbleGen v3, whereas the second should include a larger number of variants 

by selecting only samples captured with NimbleGen v3 (253 cases and 187 

controls) and thus skipping the filtering by well covered variants by all kits. In 

addition, we used two frequency cut-offs to determine rare variants (either MAF 

<0.01 or MAF <0.005) and considered separately all missense or all truncating 

variants. 
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We found little overlap in the results obtained in the different analyses. However, 

we observed an extremely high level of significance in the results by MiST, with 

many genes showing p-values of 0. We concluded that there was a likely error in 

the implementation of the MiST algorithm, and removed all genes with a p-value 

of 0. Table 11 summarizes the number of statistical significant genes found by 

all the analyses performed (nominal and adjusted p-value <0.05 with Benjamini-

Hochberg correction). As can be seen from the data presented in this table, we 

consistently obtained a higher number of significant genes when we used 

samples captured with the three kits. On the other hand, the different methods 

applied found different significant genes, with little overlap between the four 

methods (Figure 13, Supplementary Table S10). Burden test and SKAT-O were 

the two methods that presented more similar results, while MiST was the 

method that presented higher differences with the other three tests. Finally, we 

compared the overlap between combining three capture kits and a larger 

number of samples or just one capture kit and a smaller number of cases and 

controls (Figure 14, Supplementary Table S11) and we saw little concordance. 

 

Given the little overlap between tests, we decided to focus further analyses on a 

reduced set. Because the genetic architecture of OCD is unknown, we 

considered SKAT-O the best approach, as it considers a combination of 

scenarios, being able to detect associations both under the burden test and the 

variance-component method. MiST results were disregarded, as stated above. 

Burden test and KBAC were considered as further support for shared genes.  

 

Quantile-quantile (Q-Q) plots of the association results (Figure 15) show the p-

value distribution of the performed SKAT-O tests. From these plots, we can see 

that our study was underpowered to detect genome-wide significant 

associations. The analysis of truncating variants is clearly underpowered in 

contrast to the analysis of the missense ones, shown by the bigger deviation of 

the observed p-values towards the bottom side of the plot as well as the lower 

inflation factor estimates. This is mainly due to the fact of little amount of such 

types of variants. 
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Table 11. Number of statistical significant genes found by each approximation 
 

 Agilent 35, Agilent 50 and NimbleGen v3 NimbleGen v3 

 MAF <0.01 MAF <0.005 MAF <0.01 MAF <0.005 

 
Missense 
variants 

Truncating 
variants 

Missense 
variants 

Truncating 
variants 

Missense 
variants 

Truncating 
variants 

Missense 
variants 

Truncating 
variants 

 n.pval a.pval n.pval a.pval n.pval a.pval n.pval a.pval n.pval a.pval n.pval a.pval n.pval a.pval n.pval a.pval 

Burden 
test 

745 1*(A) 105 0 768 1* (A) 102 0 428 0 13 0 349 0 6 0 

KBAC 563 0 63 0 529 0 61 0 242 0 7 0 248 0 5 0 

SKAT-O 694 
2* 

(A,B) 
97 1* (C) 701 1* (A) 96 1* (C) 442 0 13 0 268 0 4 0 

MiST 507 136 7 4 481 159 6 3 373 219 2 0 354 247 0 0 

 

n.pval: nominal p-value <0.05; a.pval: adjusted p-value <0.05 with Benjamini-Hochberg correction. *These genes were false-positive associations (A:TIA1; B: 
MAGEF1; and C:ASPN). Highly significant genes identified by MiST with adjusted p-values of 0 were removed, as they are likely due to an error in the 
implementation of the algorithm. 
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RVAS of all samples captured with Agilent 35, Agilent 50 and NimbleGen v3 

MAF <0.01 MAF <0.005 

Missense variants Truncating variants Missense variants Truncating variants 

    
RVAS of samples captured with NimbleGen v3 

MAF <0.01 MAF <0.005 

Missense variants Truncating variants Missense variants Truncating variants 

    
 
Figure 13. Representation of the concordance between the results of the distinct methods used in the different approximations tested. Highly 
significant genes identified by MiST with adjusted p-values of 0 were removed, as they are likely due to an error in the implementation of the algorithm. 
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RVAS MAF <0.005 missense 

Burden test 3 kits vs. Burden test kit KBAC 3 kits vs. KBAC 1 kit SKAT-O 3 kits vs. SKAT-O 1 kit MiST 3 kits vs. MiST 1 kit 

    
RVAS MAF <0.005 truncating 

Burden test 3 kits vs. Burden test kit KBAC 3 kits vs. KBAC 1 kit SKAT-O 3 kits vs. SKAT-O 1 kit 

   
 

Figure 14. Representation of the concordance between RVAS results using whole-exome samples captured with Agilent 35, Agilent 50 and 
NimbleGen v3 and whole-exome samples captured with only NimbleGen v3. Highly significant genes identified by MiST with adjusted p-values of 0 were 
removed, as they are likely due to an error in the implementation of the algorithm. 
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Figure 15. Quantile–quantile (Q-Q) plots of observed versus expected –log (P) p-values among 

genes of SKAT-O results for (A) missense variants with MAF <0.01 in samples captured with Agilent 

35, Agilent 50 and NimbleGen v3, (B) truncating variants with MAF <0.01 01 in samples captured 

with Agilent 35, Agilent 50 and NimbleGen v3, (C) missense variants with MAF <0.005 in samples 

captured with NimbleGen v3, and (D) missense variants with MAF <0.005 in samples captured with 

NimbleGen v3. Grey area is delimited by 95% confidence bands of the expected p values. Genomic 

inflation factors (λ) are shown in each plot.  
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1.3. Top RVAS genes did not validate by Sanger sequencing  

Some of the most significant genes were carrying, in each case, one specific 

variant that was present in around 10-28 OCD cases and between 0-5 control 

samples. This was unexpected, and we suspected errors in variant calling. To 

confirm these results, we tried to validate some of them by Sanger sequencing 

in 4-5 samples each. We sequenced variants in 11 suspicious genes (Table 12), 

and we included a variant in GJA5, which did not seem false positive. We could 

not detect any of the suspicious variants in any of the supposed carriers, while 

the GJA5 variant was detected in all supposed carriers (Figure 16). 

 

In many of these cases, the false-positive variants had an allele balance 

distribution deviating significantly from the expectation, a phenomenon we 

termed allele balance bias (ABB). At this point, our colleagues (Dr. Ossowski’s 

group, CRG) developed a genotype callability score based on the ABB for all 

positions of the human exome, which detected false positive variant calls that 

passed state-of-the-art filters (Muyas et al., in revision). We then re-ran the 

variant filtering step incorporating a maximum ABB threshold of 0.7, based on a 

probability model to belong to the recurrently deviated AB and on evaluation of 

ABB by Sanger sequencing. We also repeated all the downstream analyses. 

 

 

Table 12. Results of variants validation by Sanger sequencing  
 

Gene Position Variant 
Samples 

tested 
Positive 
samples 

WARS chr14:100835597 T>G 5 0 

TIA1 chr2:70457911 T>G 5 0 

RBM25 chr14:73572606 AAG>A 5 0 

PPCS chr1:42922346 T>G 4 0 

GDE1 chr16:19519097 G>T 4 0 

RBL1 chr20:35695248 G>A 4 0 

SLC6A5 chr20:35695248 G>A 4 0 

CHKA chr11:67838254 G>T 4 0 

MTOR chr1:11188155 G>A 4 0 

KCNA2 chr1:111146951 G>A 4 0 

GRIN2B chr12:13720095 A>C 4 0 

GJA5 chr1:147230554 G>A 5 5 
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Figure 16. CLC Main Workbench capture of two examples of variant validation by Sanger 
Sequencing. (A) The suspicious variant detected in WARS was confirmed as a false positive, as it 
did not validate in 5 genomic DNA OCD samples that were supposed to carry it. (B) The variant 
detected in GJA5 which we expected to be true, was detected in 5 genomic DNA OCD samples that 
were supposed to carry it. 

 

 

1.4. RVAS results provided a set of novel OCD candidate genes 

After analysing the ABB filtered results, and focusing on SKAT-O output, we 

identified a set of candidate genes potentially associated with OCD. These 

genes could present different scenarios: i) they were enriched in variants in OCD 

cases versus controls; ii) they had similar amount of variants between OCD 

cases and controls, but presented some specifics variants enriched in OCD 

cases; and iii) they were enriched in variants in controls, which means that they 

could have a protective effect. We considered the third scenario the most 

unlikely to be real, and did not follow up on those genes.  

 

We selected the top OCD candidate genes derived from SKAT-O method (MAF 

<0.005), based on p-value scores, number and type of variants, function of the 

gene, brain expression (from GTEX215 data), and its involvement in neurological 
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pathways. We also considered if the genes had been found in more than one 

analysis. Further, we searched for genes previously associated with OCD in the 

literature within the nominally significant enriched genes. These include genes 

linked to OCD through candidate gene studies, GWAS, functional evidence, 

animal models studies (such as canine-OCD genes) and latest NGS studies. We 

found four known OCD-related genes enriched in variants in OCD cases versus 

controls: CHD8 (involved in OCD by Cappi et al.112), ASTN2 and USP54 

(involved in OCD by Gazzellone et al.81), and DHRS11 (involved in OCD by 

Stewart et al.89). Of note, DHRS11 was nominally significant in the truncating 

analyses, which gave additional support to the association of this gene with 

OCD. The top 27 significant OCD candidate genes are listed in Table 13. 

 

The results for these genes were mostly concordant for the assay with three kits 

or just with NimbleGen v3, but for some genes we observe that the analysis with 

three kits identifies a much larger number of control carriers, such as FAT3. This 

indicates that those genes might be false positives due to the small size of our 

control cohort in the NimbleGen v3 only analysis or that some samples added 

have some specific variants that had not too much weight in the analyses, as the 

p-values were still significant. 

 

1.5. Gene set enrichment analyses highlighted neuronal 

development and function related pathways 

We did pathway and Gene Ontology (GO) enrichment analyses with all 

statistically significant genes with nominal p-value <0.05 found by the SKAT-O 

method, performed selecting only those samples captured with NimbleGen v3 

and a MAF <0.005. We selected this set of genes because this was the most 

homogeneous approximation performed and, hence, the one expected to have 

less false-positives. In total, we included 272 genes in the analyses (268 from 

missense variant analysis and 4 from truncating variant analysis).  
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Table 13. Top OCD candidate genes derived from SKAT-O method (MAF <0.005) 
 

Gene Kit 
Total 

Variants 

Unique  
variants 
cases 

Unique  
variants 
controls 

Affected 
cases 

Affected 
controls 

Total 
Cases 

Total 
controls 

p-value 

Missense variants 

FAT3 
1 34 28 10 44 9 253 188 0.0003 

3 47 28 29 40 44 281 597 0.0066 

WDR11 
1 9 9 0 11 0 253 188 0.0005 

3 11 9 5 11 7 291 601 0.0099 

USP54 
1 10 9 2 19 2 253 188 0.0012 

3 14 9 9 16 14 292 601 0.0226 

SLC7A8 
1 6 6 0 12 0 253 188 0.0017 

3 9 6 6 14 9 292 601 0.0083 

MFSD6L 
1 6 6 0 10 0 253 188 0.0030 

3 9 7 5 11 8 291 601 0.0093 

TTLL4 
1 9 8 1 13 1 253 188 0.0031 

3 16 10 8 17 9 291 601 0.0000 

FAR1 
1 2 2 0 12 0 253 188 0.0035 

3 1 1 0 1 0 292 601 0.2003 

GLDN 
1 7 7 0 9 0 252 188 0.0061 

3 7 7 5 10 12 291 601 0.1780 

TRPM3 
1 15 14 1 14 1 253 188 0.0064 

3 19 14 7 14 7 290 601 0.0041 

CHD8 
1 8 8 1 14 1 253 188 0.0080 

3 6 6 2 8 3 286 596 0.0178 

 
Kit 1: NimbleGen v3; Kit 3:  Agilent 35, Agilent 50 and NimbleGen v3. Total variants: total number of unique variants participating in analysis for this gene. 
Unique variants cases/controls: number of unique variants in cases/controls. Affected cases/controls: number of affected cases/controls. Total cases/controls: 
number of cases/controls that participated in the analysis.  
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Table 13 (continued). Top OCD candidate genes derived from SKAT-O method (MAF <0.005) 
 

Gene Kit 
Total 

Variants 

Unique  
variants 
cases 

Unique  
variants 
controls 

Affected 
cases 

Affected 
controls 

Total 
Cases 

Total 
controls 

p-value 

Missense variants 

LRRK1 
1 17 16 3 19 3 246 188 0.0114 

3 25 18 12 21 16 285 601 0.0052 

PLXNA4 
1 20 17 3 19 3 253 188 0.0130 

3 23 17 11 20 15 292 600 0.0020 

PTPRF 
1 9 8 1 9 1 252 187 0.0160 

3 15 11 5 12 5 289 598 0.0010 

ASTN2 
1 9 9 1 12 1 252 188 0.0185 

3 15 10 9 14 10 291 601 0.0092 

RSPO2 
1 3 3 0 8 0 253 188 0.0188 

3 5 3 3 8 3 292 601 0.0018 

TMEM63A 
1 5 5 0 9 0 212 166 0.0189 

3 6 6 2 10 3 250 574 0.0016 

STXBP5L 
1 10 9 1 13 1 253 188 0.0190 

3 16 9 9 14 9 292 601 0.0007 

PAM 
1 9 8 1 9 1 253 188 0.0217 

3 13 8 6 10 6 292 601 0.0213 

CNPPD1 
1 4 4 0 7 0 253 188 0.0245 

3 7 5 3 9 4 291 600 0.0123 

PCDHAC1 
1 6 6 0 7 0 253 188 0.0283 

3 10 6 5 7 6 292 601 0.0308 

 
Kit 1: NimbleGen v3; Kit 3:  Agilent 35, Agilent 50 and NimbleGen v3. Total variants: total number of unique variants participating in analysis for this gene. 
Unique variants cases/controls: number of unique variants in cases/controls. Affected cases/controls: number of affected cases/controls. Total cases/controls: 
number of cases/controls that participated in the analysis.  
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Table 13 (continued). Top OCD candidate genes derived from SKAT-O method (MAF <0.005) 
 

Gene Kit 
Total 

Variants 

Unique 
variants 
cases 

Unique 
variants 
controls 

Affected 
cases 

Affected 
controls 

Total 
Cases 

Total 
controls 

p-value 

Missense variants 

SLC44A1 
1 3 3 0 7 0 253 188 0.0441 

3 6 4 2 8 4 292 601 0.0013 

ZNF883 
1 5 5 0 5 0 253 188 0.1024 

3 5 5 1 5 1 288 600 0.0196 

EPHA5 
1 6 4 2 7 2 253 188 0.3081 

3 7 5 4 10 4 292 601 0.0013 

Truncating variants 

DHRS11 
1 2 2 0 2 0 253 188 0.0825 

3 2 2 0 2 0 292 601 0.0421 

ZNF534 
1 2 2 0 4 0 253 188 0.0846 

3 3 2 2 4 3 292 601 0.0516 

MFSD6L 
1 2 2 0 6 0 253 188 0.0358 

3 2 2 1 6 2 292 601 0.0099 

METAP1D 
1 1 1 0 5 0 253 188 0.0406 

3 2 1 1 5 1 292 601 0.0016 

 
Kit 1: NimbleGen v3; Kit 3:  Agilent 35, Agilent 50 and NimbleGen v3. Total variants: total number of unique variants participating in analysis for this gene. 
Unique variants cases/controls: number of unique variants in cases/controls. Affected cases/controls: number of affected cases/controls. Total cases/controls: 
number of cases/controls that participated in the analysis. Results that are not statistically significant are highlighted in blue. 
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We found six significantly enriched pathways (p-value < 0.01) (Table 14). These 

were: “TRP channels”, “Carboxyterminal post-translational modifications of 

tubulin”, “Other semaphorin interactions”, “Acyl chain remodelling of PS”, “Amine 

compound SLC transporters”, and “Acyl chain remodelling of PE”. All these 

pathways are related to neuronal development and function, which gives 

additional support to the genes highlighted in the RVAS analysis as good OCD 

candidate genes.  

 

Gene Ontology enrichment identified twenty-one GO terms significantly enriched 

(p-value <0.01) (Supplementary Table S12). We found enrichment of some 

interesting GO terms, such as “neurotransmitter transporter activity” (with 

SLC18A1, SLC6A9, SLC6A16, SLC36A2, SLC44A1 as gene members), “ion 

binding”, “transmembrane transporter activity”, and “microtubule-based process” 

(highlighted in grey).  

 

 

Table 14. Enriched pathway-based sets 
 

Pathway p-value q-value Members Size 
Effective 

size 

TRP channels 0.00046 0.17177 
TRPV5; TRPC3; TRPV3; 

TRPM3 
25 25 

Carboxyterminal post-
translational 
modifications of tubulin 

0.00234 0.32172 
TTLL4; TTLL6; AGBL1; 

TTLL3 
38 38 

Other semaphorin 
interactions 

0.00261 0.32172 ITGA1; PLXNA1; PLXNA4 19 19 

Acyl chain remodelling 
of PS 

0.00458 0.42221 
MBOAT1; PLA2G4A; 

LPCAT4 
23 23 

Amine compound SLC 
transporters 

0.00972 0.43278 
SLC44A1; SLC6A9; 

SLC18A1 
30 30 

Acyl chain remodelling 
of PE 

0.00972 0.43278 
PLA2G4A; LPCAT4; 

MBOAT1 
30 30 

 
p-value: p-value calculated according to the hypergeometric test based on the number of physical 

entities present in both the predefined set and user-specified list of physical entities; q-value: p-

values corrected for multiple testing using the false discovery rate (FDR). Size of the predefined sets 

were also corrected to the number of set members that are annotated with an ID of the user-

specified ID type. 
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1.6. TMEM63A association with OCD was confirmed in a targeted 

resequencing replication assay 

The RVAS performed was part of a pilot approach for discovering OCD 

candidate genes and, although the sample size was relatively small (limited by 

the available budget), the results obtained were encouraging enough to develop 

a validation targeted resequencing in a bigger cohort of OCD patients. We 

performed targeted resequencing for 20 of the top OCD candidate genes 

identified in the RVAS (Table 15). These were sequenced in 439 OCDs (322 

adults and 117 children) and 1481 MCC-Spain cohort control samples. We 

selected these genes based, again, on p-value scores, number of variants in 

cases versus controls, type of variants giving high score in the algorithms used, 

and function of the gene, as well as involvement in neurological function and 

pathways.  

 

After performing the alignment, variant calling and filtering, annotation and QC 

(see Supplementary Methods S1.3), there remained 427 OCD cases, 1474 

controls, and a total of 13,751 unique SNVs and indels.  

 

Targeted resequencing data was analysed with BATI, the new method 

developed in our group, included in the latest version of our pipeline. Given that 

BATI outperforms all other tests, we decided to focus on this method on this and 

future analyses. We used 427 OCDs and 854 control samples to test association 

of the 20 candidate OCD genes with the disorder (the remaining control samples 

were used to estimate the local AF), and we found one statistical significant 

gene associated with OCD when we tested missense variants (Table 16). This 

gene was the Transmembrane Protein 63A (TMEM63A), an osmosensitive 

calcium-permeable cation channel. OCD samples presented almost double of 

variants on this gene than controls. The DIC value for TMEM63A was 7.12, 

above the empirical DIC threshold cut-off of 6, corresponding to a FDR of 0.01 

calculated for this dataset.  
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Table 15. Description of the 20 OCD candidate genes included in the targeted resequencing study 
 

Gene Name description Function 
Brain 

expression 
Linked to 

OCD 

Linked to other 
neuropsychiatric 

/ neurological 
disorder  

ASTN2 Astrotactin 2 Neuronal migration Yes Yes81 

Autism, Schizophrenia, 
ADHD, bipolar disease, 

intellectual disability, 
and global 

developmental delay216 

CHD8 
 

Chromodomain Helicase DNA 
Binding Protein 8 

Transcriptional regulation, epigenetic remodeling, 
promotion of cell proliferation, and regulation of 
RNA synthesis 

Yes Yes112 Autism217 

CNPPD1 
Cyclin Pas1/PHO80 Domain 
Containing 1 

Involved in cell cycle processes Yes No - 

DHRS11 Dehydrogenase/Reductase 11 Oxidoreductase activity and coenzyme binding Yes Yes89 
Autism218 

Schizophrenia218 

EPHA5 EPH Receptor A5 
Axon guidance molecule during development; 
plays also a role in synaptic plasticity in adult 
brain through regulation of synaptogenesis 

Yes No 
Bipolar disorder219 

ADHD220 
MDD221 

FAT3 FAT Atypical Cadherin 3 
May play a role in the interactions between 
neurites derived from specific subsets of neurons 
during development 

Yes No - 

LRRK1 Leucine Rich Repeat Kinase 1 Protein kinase activity Yes No Parkinson222 

PAM 
Peptidylglycine Alpha-Amidating 
Monooxygenase 

Catalyze the conversion of neuroendocrine 
peptides to active alpha-amidated products. 
Alters cooper, an essential trace element crucial 
for normal synaptic function. 

Yes No - 

PCDHAC1 
Protocadherin Alpha Subfamily 
C, 1 

Establishment and maintenance of specific 
neuronal connections in the brain 

Yes No - 

PLXNA4 Plexin A4 
Plays a role in axon guidance in the developing 
nervous system 

Yes No 
Autism223 

Alzheimer224 
Parkinson225 
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Table 15 (continued). Description of the 20 OCD candidate genes included in the targeted resequencing study 
 

Gene Name description Function 
Brain 

expression 
Linked to 

OCD 

Linked to other 
neuropsychiatric 

/ neurological 
disorder  

PTPRF 
Protein Tyrosine Phosphatase, 
Receptor Type F 

Possible cell adhesion receptor. It possesses an 
intrinsic protein tyrosine phosphatase activity 
(PTPase) and dephosphorylates EPHA2 
regulating its activity 

Yes No - 

RSPO2 R-Spondin 2 

Activator of the canonical Wnt signaling pathway 
and regulator of the canonical Wnt/beta-catenin-
dependent pathway and non-canonical Wnt 
signalling 
 

Yes No - 

SLC44A1 
Solute Carrier Family 44 
Member 1 

Choline transporter. May be involved in 
membrane synthesis and myelin production 

Yes No - 

STXBP5L Syntaxin Binding Protein 5 Like 
Inhibitor of synaptic transmission. May inhibit 
exocytosis in neurosecretory cells 

Yes No 
Infantile-onset 

neurodegenerative 
disorder226 

TMEM63A Transmembrane Protein 63A 
Acts as an osmosensitive calcium-permeable 
cation channel 

Yes No -- 

TTLL4 Tubulin Tyrosine Ligase Like 4 
Glutamylase which preferentially modifies beta-
tubulin and non-tubulin protein 

Yes No - 

USP54 Ubiquitin Specific Peptidase 54 Thiol-dependent ubiquitinyl hydrolase activity Yes Yes81 - 

WDR11 WD Repeat Domain 11 
Involved in a variety of cellular processes, 
including cell cycle progression, signal 
transduction, apoptosis, and gene regulation 

Yes No - 

ZNF534 Zinc Finger Protein 534 May be involved in transcriptional regulation Yes No - 

ZNF883 Zinc Finger Protein 883 May be involved in transcriptional regulation Yes No - 

 
. 
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Table 16. Results from RVAS of the 20 OCD candidate genes, using the BATI algorithm and missense variants with a MAF <0.005 
 

Genes 
Total 

variants 
Unique 
cases 

Unique 
controls 

Affected 
cases 

Affected 
Controls 

Total 
cases 

Total 
Controls 

% variants 
in cases 

% variants 
in controls 

DIC  

TMEM63A 14 11 6 17 18 427 854 3.98 2.11 7.12 

USP54 24 13 17 21 27 427 854 4.92 3.16 2.85 

FAT3 66 36 42 41 73 427 854 9.60 8.55 1.69 

PTPRF 28 13 18 16 21 427 854 3.75 2.46 0.81 

RSPO2 3 2 2 5 6 427 854 1.17 0.70 -0.24 

ZNF534 16 10 12 11 34 427 854 2.58 3.98 -0.27 

STXBP5L 18 9 14 12 16 427 854 2.81 1.87 -0.52 

TTLL4 29 11 23 22 40 427 854 5.15 4.68 -0.75 

PCDHAC1 16 10 11 12 18 427 854 2.81 2.11 -0.81 

CHD8 21 12 14 12 19 427 854 2.81 2.22 -1.36 

EPHA5 13 4 10 7 9 427 854 1.64 1.05 -1.43 

SLC44A1 9 5 6 5 7 427 854 1.17 0.82 -1.44 

CNPPD1 10 4 9 8 13 427 854 1.87 1.52 -1.52 

PAM 16 9 10 10 15 427 854 2.34 1.76 -1.55 

LRRK1 33 13 25 19 43 427 854 4.45 5.04 -1.61 

ZNF883 2 1 1 1 3 427 854 0.23 0.35 -1.69 

PLXNA4 32 15 20 17 37 427 854 3.98 4.33 -1.70 

WDR11 25 12 15 11 20 427 854 2.58 2.34 -1.89 

ASTN2 20 10 13 10 18 427 854 2.34 2.11 -1.91 

DHRS11 1 1 0 2 0 427 854 0.47 0.00 NA 

 
Total variants: total number of unique variants participating in analysis for this gene. Unique cases/controls: number of unique variants in cases/controls. 
Affected cases/controls: number of affected cases/controls. Total cases/controls: number of cases/controls that participated in the analysis. DIC: deviance 
information criterion. NA: not available. 
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2. A rare deletion in DRD4 might be associated with OCD 

2.1. Identification of a deletion in DRD4 and validation in a larger 

cohort of OCD patients and controls 

By doing variant curation, we found a heterozygous 13-bp frameshift deletion in 

DRD4 (p.78_82del) carried by seven OCD cases (7 alleles in 306*2 

chromosomes, giving an MAF=0.0114) and absent in the controls of our RVAS 

sample dataset. When we explored all the whole-exome samples of our 

database (1959 samples, excluding OCDs) we only observed this deletion in 

sixteen samples (MAF of 0.0041). Only three of these samples were Spanish, 

while twelve belonged to the TwinsUK project and one was Italian. We validated 

by Sanger sequencing the DRD4 deletion found in the seven OCD patients and 

we confirmed (sequencing a few selected samples) that controls were true 

negatives (Figure 17). 

 

With this scenario, we decided to study the frequency of this deletion in a larger 

cohort of OCD cases and controls with a specifically designed multiplex PCR 

(Figure 18). Combining all data, we obtained a total MAF of 0.011 (13 carriers in 

614 cases) in OCD cases versus a total MAF of 0.0016 (8 carriers in 2558 

controls) in controls. This difference in allele frequencies was statistically 

significant (allelic association with Odds ratio (OR)=6.8; p-value <0.0001) (Table 

17).  

 

We compared the obtained frequencies to the reported frequencies for the 

DRD4 deletion in different databases. The MAF in the CIBERER Spanish 

Variant Server (0.0012) was similar to that of our control dataset. However, it 

was higher (between 0.009 and 0.02) in the rest of databases (Table 18) and, in 

some databases, similar to our OCD cases.  

 



Results Study I 

 92 

 
 

Figure 17. (A) CLC Main Workbench capture of the Sanger sequences of two OCD samples (OCD 699 and OCD 793) that carried the deletion (highlighted in a 
red box) and two controls (Control 17193 and Control 17191), aligned to the DRD4 reference sequence (B) UCSC Genome Browser capture of the blat 
alignment of the Sanger sequences of one OCD (OCD 699) and one control (Control 17191) samples to the GRCh37 Reference sequence. The PhyloP plot 
showed sites predicted to be conserved (shown in blue with positive scores) or fast-evolving (shown in red with negative scores). 
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Figure 18. Gel electrophoresis of the multiplex PCR designed to detect the DRD4 13-bp 
frameshift deletion.  Lanes correspond to 7 OCD samples homozygous for the reference allele 
(695, 696, 909, 803, 804, 911 and 912) and one (699) heterozygous carrier of the deletion. Primers 
amplified two different regions of DRD4 simultaneously. A 674 bp fragment was amplified only when 
the sample had the deletion, and a 429 bp fragment was amplified in all samples as positive control.  

 

 

 

Table 17.  Allele frequencies of the DRD4 13-bp frameshift deletion in the different OCD and 
control cohorts tested 
 

Cohort  
Number of 

DRD4 
deletions 

Total 
number of 
samples 

MAF 
Total 
MAF 

OR  

OCD 
 

Initial OCD RVAS 
cohort 

7 306 0.0114 
0.011 

6.8 
(p-value 
<0.0001) 

Additional OCDs 6 308 0.0097 

Control 

Initial control RVAS 
cohort 

0 630 0 

0.0016 

Control in-house 
database cohort* 

3 1264 0.0012 

Additional VHIR 
control cohort 

3 268 0.0056 

Additional 
BREATHE control 

cohort 
2 396 0.0025 

 
MAF: minor allele frequency. OR: Odds ratio. *Genotypes from WES.  We selected only Spanish 
unrelated samples from the analysis. 
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Table 18.  Allele frequencies of the DRD4 13-bp frameshift deletion in different databases 
 

Database MAF 

CIBERER Spanish Variant Server 0.0012 

1000 Genomes (Iberian populations in Spain) 0.009 

ExAC (European Non-Finnish) 0.02016 

EVS (EuropeanAmericans) 0.012 

gnomAD(European Non-Finnish) 0.01321 

 

 

 

2.2. Western blot and flow-cytometry did not show differences in 

DRD4 expression between OCD cases and controls 

As the DRD4 deletion was significantly associated with OCD, we performed 

functional studies to decipher if this variant could be affecting DRD4 expression, 

and thus, downstream pathways. We established immortalized human B-

lymphoblastoid cell lines from blood samples of five OCD patients that carried 

the DRD4 deletion and seven healthy individuals without this variant. 

 

We studied DRD4 protein expression in B-lymphoblastoid cell lines by western 

blot in order to see if OCD patients carrying the DRD4 deletion had lower levels 

of this protein than controls. We performed three independent experiments and 

we did not see differences between OCD cases and controls (Figure 19). 

 

As we observed a high degree of variability between the biological replicates in 

the western blot assay, we also studied DRD4 protein expression in B-

lymphoblastoid cell lines of OCD cases and controls by flow-cytometry (which 

has higher accuracy). We performed indirect immunostaining of DRD4 in all 

OCD cases and controls B-lymphoblastoid cell lines. After selecting only alive 

cells, we measured the median fluorescence intensity (MFI) for each sample 

and, after normalising with paired non anti-DRD4 stained samples, we obtained 

the MFI ratios, which were indicative of the degree of DRD4 expression. 

However, we did not see differences in MFI ratios between OCD cases and 
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controls, which indicates an absence of differences in DRD4 expression (Figure 

20).  

 

 

 

 
 
Figure 19. DRD4 expression in B-lymphoblastoid cell lines of OCD cases and controls. (A) 
Western blot analysis of DRD4 expression in OCD cases and controls. (B) Expression of DRD4 
determined by western blot analysis in OCD cases and control samples (mean ± SD; n = 3 
independent experiments). (C) Boxplots representing the distribution of the expression values of 
DRD4 in OCD cases and controls. p-value obtained from T-test is indicated. 
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Figure 20. (A) Gating strategy for selection of B-lymphoblastoid cells. Single cells were selected 
using FSC and SSC and viable cells were further identified using DAPI. (B) Surface DRD4 labelling 
of B-lymphoblastoid cell lines by indirect immunofluorescence. Results of 3 representative 
experiments of 24 performed are shown (Orange histogram: Control 2 DRD4 labelled B-
lymphoblastoid cell lines; Blue histogram: OCD 897 DRD4 labelled B-lymphoblastoid cell lines; Grey 
histogram: OCD 897 non stained). (C) Boxplots representing the distribution of the median 
fluorescence intensity (MFI) values in OCD cases and controls. Center lines show the medians and 
box limits indicate the 25th and 75th percentiles. p-value obtained from T-test is indicated. 

 
 
 
 

2.3. The zebrafish drd4 double mutant model did not show any 

behavioural phenotype 

In parallel to the functional studies in B-lymphoblastoid cell lines, ZeClinics 

performed a drd4 genetically modified zebrafish model to assess the potential 

role of drd4 zebrafish orthologues (drd4a and drd4rs) in neural function and their 

potential role in OCD pathogenesis. 
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To evaluate this, a target validation approach was designed based on stable 

knockout via the CRISPR/Cas9 system. DRD4 has three zebrafish orthologues. 

Of these, two have a clear CNS expression pattern (drd4a and drd4rs, Figure 

21A). Therefore, we decided to focus the efforts on those two only. Interestingly, 

and as observed by CLUSTALW sequence alignment, the protein sequence 

conservation is extremely high between human DRD4 and its zebrafish 

orthologues (Figure 21B). sgRNAs were selected targeting each gene on the 

first coding exon in order to generate knockout alleles for both genes (Figure 

21C). Then, the single heterozygous knockouts were crossed to generate 

double heterozygous animals. Finally, single and double homozygous larvae 

were obtained through the cross of the double het animals for performing the 

proposed phenotypic analysis. 

 

 

 

Figure 21. (A) From top to bottom, expression pattern in zebrafish larva CNS of drd4a, drd4b and 
drd4rs. (B) Protein sequence alignment among human DRD4 and zebrafish drd4a and drd4rs. (C) 
Schematic representation of CRISPR targeting location for drd4a and drd4rs. 
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Thus, ZeClinics tested single and double homozygous larvae through a 

complete behavioural protocol, to address if mutant animals displayed any 

general neural dysfunction (total locomotion and locomotion per minute), anxiety 

(thigmotaxis) or learning/memory impairment. To this end they had separate 

groups divided as indicated in Table 19. 

 

 

Table 19. Genotypes of the groups assessed 
 

Genotype n Subgroups n 

ra+/+ rs+/+ 83 ra+/+ rs+/+ 1 

ra+/+ rs+/- 3 

ra+/- rs+/+  25 

ra+/- rs+/- 54 

ra+/+ rs-/- 19 ra+/- rs-/- 18 

ra+/+ rs-/- 1 

ra-/- rs+/+ 54 ra-/- r  s+/- 36 

ra-/- rs+/+ 18 

ra-/- rs-/- 18   

 

 

However, despite they generated early-truncated proteins for both tested genes, 

the results show that none of the mutant groups displayed any behavioural 

phenotype under the tested conditions, when compared to the wild-type group 

(Figure 22). This suggests that the CNS is perfectly functional for both single 

and double mutant animals. Additionally, they did not detect any developmental 

phenotype or important effect in other systems such as cardiac or metabolic. 

 

The present data suggests that the experimental approaches used in this project 

are not appropriate to detect the expression of truncated form of DRD4. 

 



Results Study I 

 99 

 

 

Figure 22. Phenotypic analyses of Drd4 zebrafish orthologous genes. From left to right and up 
to bottom: total locomotion, thigmotaxis, locomotion per minute and habituation.  

 

 

3. Common and low-frequency variants in genes involved in 

neuronal development and function showed association with 

OCD  

To explore, with the available data, all the possible scenarios that could explain 

the genetic risk factors contributing to OCD, we also performed a common and 

low-frequency variant association study. As with the rare variant analysis we 

considered two sample sets: we tested association of potentially damaging, 

common exonic variants in (1) 292 OCD cases versus 601 controls (considering 
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samples captured with Agilent 35, Agilent 50 and NimbleGen v3); and (2) 253 

cases and 187 controls (considering only NimbleGen v3 exomes). These studies 

detected 34 and 13 variants with statistical significance (Benjamini- Hochberg 

adjusted p-value <0.01) in analysis (1) and (2), respectively. Manhattan plots 

show the distribution of p-values along the chromosomes (Figure 23). In the 

analysis (1) 13 variants reached genome-wide significance, whereas in analysis 

(2) only a few were above the suggestive significance threshold. Associated 

variants included both risk (present in more cases than controls) and protective 

(present in more controls than cases) variants. 

 

 

Figure 23. Manhattan plots for analysis (1) (left) and analysis (2) (right) of common variant 

analysis. A thin red line indicates level for genome-wide significant association (–log10(1 × 10−8)), 

whereas a thin blue line indicates level of suggestive evidence for association (–log10(1 × 10−5)). 

 

 

As we were using controls from different projects we could have false-positive 

protective variants (variants associated to other disorders). Thus, we considered 

only those protective variants that were present in more than 90% of the controls 

Applying this criterion we found 1 and 17 variant in analysis (2) and (1), 

respectively (Tables 20 and 21). From the 17 variants, five variants reached the 

genome-wide significance, all of them within genes expressed in the brain.  
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As several of the identified variants were indels, we decided to check them in the 

ExAC database185 as an additional quality control step (Supplementary Table 

S13). Nearly all of them were reported in ExAC and have a reference SNP (rs) 

identifier, although some of them did not pass their filters.  

 

We also compared our results with the available data from the IOCDF-GC 

GWAS89, the OCGAS GWAS90, the meta-analysis from the two consortia91 and 

the exon-focused GWAS done by Costas et al.227. However, none of our variants 

were reported by these studies nor were they located near the top hits of these 

analyses (within 2Mb). 

 

 

Table 20. Common variants of the analysis (2) associated with OCD with statistical 
significance (adjusted p-value <0.001) 

 

Variant 
Variant 
type 

Gene p-value 
adjusted 
p-value 

%  
cases 

% 
controls 

Brain 
expr. 

chr10; 
126691552;t;g 

Non-
synonymous 
SNV 

CTBP2 1,46e-05 1,46e-05 23,72 10,11 Yes 

 
p-value: nominal p-value; adjusted p-value: adjusted p-value with Benjamini-Hochberg correction; % 
cases/controls: percent of cases/controls carrying this variant; Brain expr.: Brain expression from 
GTEX215 or Human protein atlas data. This variant is not present in the ExAC database and is 
highlighted in blue. 
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Table 21. Common variants of the analysis (1) associated with OCD with statistical significance (adjusted p-value <0.001) 
 

Variant Variant type Gene p-value 
adjusted 
p-value 

%  
cases 

% 
controls 

Brain 
expr. 

Neuropsychiatric/ 
neurological related 

disorders 

chr4;54319247;cag;c frameshift deletion FIP1L1 2.61e-17 1.20e-16 18.84 5.32 Yes  

chr1;31905889;a;acag inframe insertion SERINC2 1.08e-15 4.12e-15 96.58 97.00 Yes 
Alcohol dependence228, 

ASD229 

chr10;126691552;t;g nonsynonymous SNV CTBP2 2.24e-11 6.44e-11 21.58 6.49 Yes  

chr13;25670803;a;g nonsynonymous SNV PABPC3 2.70e-10 6.91e-10 12.33 3.00 Yes  

chr3;40503526;g;gctgct
gctgctgcta 

inframe insertion RPL14 3.71e-09 8.54e-09 19.86 6.82 Yes  

chr17;39595484;g;a stopgain SNV KRT38 1.27e-08 1.95e-08 20.55 7.15 No  

chr2;233273011;c;g nonsynonymous SNV ALPPL2 8.96e-08 1.21e-07 16.78 5.32 No  

chr6;32489786;t;g nonsynonymous SNV HLA-DRB5 2.10e-07 2.69e-07 29.11 12.98 Yes  

chr3;75790880;a;g nonsynonymous SNV ZNF717 3.49e-07 4.22e-07 11.99 3.16 Yes SCZ230 

chr1;152280347;c;t nonsynonymous SNV FLG 6.64e-07 7.27e-07 14.04 4.66 No  

chr1;202407189;g;gt frameshift insertion PPP1R12B 4.07e-06 4.07e-06 8.56 3.16 Yes  

chr1;248113040;a;g nonsynonymous SNV OR2L8 1.00e-05 0.0017 100.00 100.00 No  

chr9;136037742;g;a nonsynonymous SNV GBGT1 1.00e-05 0.0017 22.95 8.49 Yes  

chr13;25670797;c;g nonsynonymous SNV PABPC3 2.00e-05 0.0031 6.85 2.16 Yes  

chr14;92537360;g;gctgc
tgctgctgctgctgctgctgctc 

inframe insertion ATXN3 2.00e-05 0.0031 14.38 6.16 Yes SCA-3231 

chr3;75786355;t;a nonsynonymous SNV ZNF717 4.00e-05 0.0057 7.53 2.33 Yes SCZ230 

chr7;149983566;g;a stopgain SNV ACTR3C 4.00e-05 0.0057 10.62 3.33 Yes  

 

p-value: nominal p-value; adjusted p-value: adjusted p-value with Benjamini-Hochberg correction; % cases/controls: percentage of cases/controls carrying this 
variant; Brain expr.: Brain expression from GTEX215 or Human protein atlas data; Neuropsychiatric/neurological related disorders of the gene carrying the 
variant; ASD: autism; SCZ: schizophrenia; SCA-3: spinocerebellar ataxia type 3. Variants that are not present in the ExAC database are highlighted in blue. 
Variants that did not pass the ExAC filters are highlighted in grey. 
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Study II: Multiomics longitudinal study of OCD 

 

 

In this section we present the results of the second part of the project, whose 

aim was to decipher the genetic architecture of OCD combining multiple omics 

analyses under a longitudinal study design. We analysed a total of 43 OCD 

patients and 34 healthy individuals, from whom we obtained blood, stool and/or 

pharyngeal swab samples. Samples from OCD patients were recruited at two 

time-points: before treatment (OCD T0 samples) and after at least 3 months of 

treatment (OCD T3 samples). The comparison of control versus OCD diagnosed 

and untreated patients should elucidate whether peripheral blood reflects an 

OCD specific transcriptomic signature. The study of the microbiome should 

explain dysbiotic signatures in OCD. The longitudinal design may address the 

treatment effect. Tables 7 and 8 shows all the analyses performed for each 

sample included in Study II. 
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1. Transcriptomics 

We collected blood samples for transcriptomic analyses from 38 OCD patients, 

(at two time-points) and 32 healthy individuals. We extracted RNA and we did 

RNA-sequencing. After that, we processed the data and normalized the read 

counts to be able to perform DE analysis. We performed three independent 

comparisons for DE: (1) OCD T0 versus controls; (2) OCD T3 versus controls; 

and (3) OCD paired analysis (OCD T0 versus OCD T3). 

 

1.1. RNA analysis is sensitive to batch effects 

We processed the RNA-Seq output data to perform subsequent analyses with 

high levels of accuracy. First, we performed quality control, alignment and 

estimation of transcript levels. Next, we constructed a count matrix that 

contained the number of reads by transcript for each sample. We also filtered 

out non-expressed genes, by requiring more than 4 reads in at least ten 

individuals. Boxplots of relative log expression (RLE = log-ratio of read count to 

median read count across sample) and plots of principal components (PC) of 

raw data, showed a need for between-sample normalization (Figure 24). After 

upper-quartile normalization, results improved considerably but we still saw 

some remaining variability (Figure 25), probably due to some technical batch 

effects (e.g. RNA quality, library preparation day, pooling). We then applied the 

Remove Unwanted Variation (RUV) method for RNA-Seq data205. 

 

We used p-values from bivariate correlation analysis of 20 factors from RUV 

analysis versus different sets of potential batch effects derived from our study to 

decide which factors to include in the model (see Figure 26). There was a strong 

correlation of the variables blood extraction, RNA extraction, library preparation 

and personnel, sequencing lane, and pooling with the first few factors (OCD T0 

versus controls, factors W_1 to W_9; OCD T3 versus controls factors W_1 to 

W_4; and OCD T0 versus OCD T3, factors W_1 to W_4). Including the specified 

number of unwanted factors as covariate regressors in our DE analyses was 

successful in reducing inflation of p-values, as can be seen in Figure 27.   
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Figure 24. Pre-normalization quality control plots. Relative log ration expression (RLE) per sample (left 
images) and plot of principal components (PC) of raw data (right images) of (A) OCD T0 (blue colour) vs. 
controls (grey colour); (B) OCD T3 (orange colour) vs. controls; and (C) OCD T3 vs. OCD T0.  
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Figure 25. Upper quartile normalization quality control plots. Relative log ration expression (RLE) per 
sample (left images) and plot of principal components (PC) of processed data (right images) of (A) OCD T0 
(blue colour) vs. controls (grey colour); (B) OCD T3 (orange colour) vs. controls; and (C) OCD T3 vs. OCD 
T0. 
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Figure 26. Heatmap of p-values from bivariate correlation analysis of 20 factors from RUV analysis versus different sets of potential batch effects 
derived from (A) OCD T0 vs. controls; (B) OCD T3 vs. controls; and (C) OCD T0 vs. OCD T3. p-values were calculated with ANOVA for categorical 
variables and with Spearman’s rank correlation coefficient for quantitative variables. B.Ex: blood extraction day; R.Ex: RNA extraction day; Lib: library 
preparation; Seq: sequencing lane; P.Lib: person who did the library preparation; Pool: sequencing pool of the RNA sample; RIN: RNA Integrity number.   
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Figure 27. Q-Q plots of DE p-values pre RUV (left images) and post RUV analyses (right 
images). (A) OCD T0 vs. controls; (B) OCD T3 vs. controls; and (C) OCD T3 vs. OCD T0. 
Corresponding inflation factor values are indicated within each plot. 
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1.2.  DE analyses identified genes specifically deregulated in OCD 

DE analysis identified twenty-eight genes differentially expressed in OCD T0 vs. 

controls, 70 in OCD T3 vs. controls and 35 in OCD T0 vs. OCD T3 (nominal p-

value <0.001, FC <0.83 (downregulated) or FC >1.2 (upregulated)) (Figure 28). 

In this project we will focus on the OCD T0 vs. control analysis, as this is the 

most relevant to identify factors contributing to OCD. The higher number of 

differentially expressed genes in OCD T3 vs. controls could reflect the effect of 

the pharmacological treatment. 

 

Table 22 shows the top significant genes (nominal p-value <0.001, FC >1.2 or 

<0.83) from DE analysis of OCD T0 vs. controls, and how these genes behave 

in the OCD T3 vs. controls analysis, as well as in the OCD T0 vs. OCD T3. In 

general, genes overexpressed or underexpressed in OCD T0 vs. controls had a 

smaller FC in OCD T3 vs. control and did not have a significant FC in OCD T0 

vs. OCD T3. The FC value between OCD T0 and OCD T3 was lower than the 

FC value between OCD T0 and controls or OCD T3 and controls. We looked at 

brain expression of these in the GTEX database215. 

 

From the top significant genes, there were five statistically significant with an 

adjusted p-value <0.05 (after Benjamini-Hochberg correction) and a FC >1.2 or 

FC <0.83: NRCAM, AL583722.4, AC098935, KRTAP4-6, and HIST2H2BE. 

From these genes, AL583722 is an RNA gene of unknown function, AC098935 

a pseudogene, and KRTAP4-6 encodes a keratin-associated protein. 

Interestingly, NRCAM is a neuronal cell adhesion molecule and HIST2H2BE 

(Histone Cluster 2 H2B Family Member E) is a core component of nucleosome 

that may play a role in transcription regulation, DNA repair, DNA replication and 

chromosomal stability. 

 

We looked for LoF variants in HIST2H2BE in WES data from the OCD cases 

and controls of this study, which could explain the underexpression of this gene, 

but we did not find any variant possible associated with the DE found. 
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Figure 28. Volcano plot from the DE analysis of (A) OCD T0 vs. controls, (B) OCD T3 vs. controls and (C) OCD T0 vs. OCD T3. The horizontal green line 
corresponds to the 0.01 p-value threshold, whereas the vertical blue lines correspond to 0.83 and 1.2 fold change thresholds. Red dots correspond to genes 
with statistically significant differential expression. All values with a FC <0.83 and p-value <0.001 are highlighted as potential down-regulated in (A) OCD T0 vs. 
controls, (B) OCD T3 vs. controls or (C) OCD T3 vs. OCD T3. All values with a FC >1.2 and p-value <0.001 are highlighted as potential upregulated in (A) OCD 
T0 vs. controls, (B) OCD T3 vs. controls or (C) OCD T3 vs. OCD T3. 
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Table 22. Top significant genes from DE analysis of OCD T0 vs. controls, and comparison with results of OCD T3 vs. controls and OCD T0 vs. OCD T3 
 

Ensemble ID 
Gene 

Symbol 

OCD T0 vs. Controls OCD T3 vs. Controls OCD T3 vs. OCD T0 
Reads 

average 
Reads 
range 

>= 4 
reads 

B.e. 
logFC p-val padj logFC p-val padj 

log 
FC 

p-val padj 

ENSG00000091129.15 NRCAM 1,99 2.88e-06 0.02 1.81 3.06e-04 0.05 0.59 0.016 0.47 2.38 0-14 25 Yes 

ENSG00000258858.1 AL583722.4 0.77 8.30e-06 0.04 0.54 0.001 0.10 -0.14 0.281 0.84 9.58 2-20 99 Yes 

ENSG00000226945.1 AC098935 -0.47 1.34e-05 0.04 -0.33 0.007 0.22 -0.09 0.474 0.90 16.95 3-59 106 No 

ENSG00000198090.3 KRTAP4-6 1.78 1.58e-05 0.04 NA NA NA -0.10 0.712 0.96 1.81 0-12 18 No 

ENSG00000184678.8 HIST2H2BE -1.83 2.23e-05 0.04 -1.24 0.005 0.19 0.09 0.701 0.96 5.03 0-188 29 Yes 

ENSG00000258754.3 LINC01579 0.88 9.32e-05 0.12 0.75 0.002 0.14 -0.21 0.088 0.68 27.57 3-117 107 Yes 

ENSG00000251453.1 HAUS1P1 0.40 1.40e-04 0.17 0.35 0.002 0.12 0.02 0.779 0.97 70.45 
24-
195 

108 Yes 

ENSG00000268230.1 AC012313 0.45 1.93e-04 0.18 0.31 0.006 0.2 -0.04 0.638 0.95 25.76 7-67 108 NA 

ENSG00000129484.9 PARP2 -0.29 2.15e-04 0.18 -0.08 0.376 0.82 0.26 0.001 0.23 48.09 13-86 108 Yes 

ENSG00000179152.14 TCAIM 0.27 2.84e-04 0.20 0.23 0.009 0.23 -0.15 0.060 0.63 230.82 
52-
620 

108 Yes 

ENSG00000266644.1 AC103810 -1.07 3.18e-04 0.20 -1.19 3.84e-04 0.06 0.25 0.436 0.89 2.41 0-10 30 Yes 

ENSG00000203615.2 AC069200.1 -1.02 3.34e-04 0.20 -0.09 0.735 0.95 0.74 0.012 0.43 2.55 0-14 29 Yes 

ENSG00000270264.1 NDUFB8P2 -0.35 3.96e-04 0.21 -0.02 0.811 0.96 0.32 0.001 0.25 21.23 7-41 108 Yes 

ENSG00000157766.11 ACAN 0.62 4.12e-04 0.21 0.35 0.076 0.53 -0.21 0.097 0.69 21.23 7-41 108 No 

ENSG00000253908.1 AC104115 0.39 4.20e-04 0.21 0.27 0.138 0.64 0.04 0.723 0.96 16.67 6-37 108 Yes 

ENSG00000129197.10 RPAIN -0.39 4.58e-04 0.21 -0.41 5.29e-04 0.07 0.18 0.017 0.47 44.47 7-110 108 Yes 

ENSG00000259177.1 AC018946 0.28 4.73e-04 0.21 0.21 0.008 0.23 -0.11 0.087 0.68 53.24 
21-
114 

108 No 

  
logFC: base 2logarithm of fold change; p-val: p-value; padj: adjusted p-value after FDR correction; Reads average: average number of reads per sample; Reads range: 
range of the number of reads across all samples; samples >=4 reads: number of samples containing at least 4 reads, from a total of 108 samples; B.e: brain expression; 
NA: not available. Top genes with significant adjusted p-value in the OCD T0 vs. controls comparison are shown in bold font. Overexpressed genes (log2FC >0.263 (FC 
>1.2)) are highlighted in green, and underexpressed genes (log2FC <-0.263 (FC <0.83)) are highlighted in orange. 
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Table 22 (continued). Top significant genes from DE analysis of OCD T0 vs. controls, and comparison with results of OCD T3 vs. controls and OCD T0 vs. 
OCD T3 
 

Ensemble ID Gene Symbol 
OCD T0 vs. Controls OCD T3 vs. Controls OCD T3 vs. OCD T0 

Reads 
average 

Reads 
range 

>= 4 
reads 

B.e. 
logFC p-val padj logFC p-val padj logFC p-val padj 

ENSG00000229048.4 DUTP1 0.29 5.11e-04 0.21 0.25 0.004 0.18 -0.05 0.492 0.91 45.79 16-87 108 Yes 

ENSG00000187054.10 TMPRSS11A -1.24 5.27e-04 0.21 -0.61 0.113 0.60 0.24 0.417 0.89 45.79 16-87 108 No 

ENSG00000237781.2 AL356356 -0.77 5.42e-04 0.21 -0.47 0.073 0.53 0.31 0.154 0.74 5.81 0-38 48 No 

ENSG00000175336.8 APOF -0.53 5.78e-04 0.21 -0.38 0.013 0.28 0.09 0.637 0.95 8.08 1-17 97 No 

ENSG00000258379.1 AL355097 -0.50 5.84e-04 0.21 -0.11 0.585 0.91 -0.06 0.635 0.94 14.22 2-43 100 No 

ENSG00000140939.10 NOL3 0.91 6.40e-04 0.22 0.31 0.308 0.8 0.05 0.828 0.98 2.66 0-16 28 Yes 

ENSG00000162368.9 CMPK1 -0.82 6.66e-04 0.22 0.05 0.803 0.96 0.62 0.006 0.37 4.31 0-18 55 Yes 

ENSG00000105229.2 PIAS4 -0.62 6.70e-04 0.22 -0.44 0.030 0.38 0.35 0.062 0.63 5.73 0-18 77 Yes 

ENSG00000234361.1 AL391863 0.49 7.18e-04 0.22 0.36 0.008 0.22 -0.06 0.587 0.93 16.55 1-45 107 No 

ENSG00000254087.3 LYN -0.60 8.97e-04 0.26 -0.50 0.006 0.20 0.06 0.750 0.96 16.55 1-45 107 Yes 

ENSG00000257000.1 AC137590 -0.36 9.25e-04 0.26 -0.25 0.023 0.35 0.02 0.852 0.98 19.59 3-47 107 No 

 
logFC: base 2logarithm of fold change; p-val: p-value; padj: adjusted p-value after FDR correction; Reads average: average number of reads per sample; Reads range: 
range of the number of reads across all samples; samples >= 4 reads: number of samples containing at least 4 reads, from a total of 108 samples; B.e: brain 
expression; NA: not available. Top genes with significant adjusted p-value in the OCD T0 vs. controls comparison are shown in bold font. Overexpressed genes (log2FC 
>0.263 (FC >1.2)) are highlighted in green, and underexpressed genes (log2FC <-0.263 (FC <0.83)) are highlighted in orange. 
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We also attempted to increase the FC threshold regardless of the adjusted p-

value (FC >1.5 or FC <0.665, nominal p-value <0.05) considering that we had a 

small sample size to have real statistical power, and taking into account genes 

with an average of more than 10 reads across all samples. Following this 

approach, we observed upregulation of some interesting genes, such as 

SYNGR1 (Synaptogrin 1), involved in synapse formation and function, and 

MTRNR2L1 (MT-RNR2 Like 1), a neuroprotective molecule (Supplementary 

Table S14).  

 

Finally, we also checked for overlap with the results from the study reported by 

Jaffe et al.140, in which post-mortem brain tissue and microarrays were used to 

compare gene expression levels in various obsessive psychiatric disorders 

(which included OCD, obsessive-compulsive personality disorder or tics) and 

healthy subjects. We compared genes with FC >1.2 or FC <0.83, and we saw 

overlap of 23 genes. From these, 10 had the same direction of expression 

change (upregulated o downregulated) in both studies (Table 23), and three had 

nominal p-value <0.05 in our analysis: ARPC3 (Actin Related Protein 2/3 

Complex Subunit 3), ZMAT2 (Zinc Finger Matrin-Type 2) and PKD1 (Polycystin 

1, Transient Receptor Potential Channel Interacting). 

 

 

Table 23. Genes overlapped between our study and the study reported by Jaffe et al.140 
 

Ensemble ID Gene 
Study II: transcriptomics Jaffe et al.140  

logFC p-val 
adj. 

p-val 
logFC p-val 

adj. 
p.val 

ENSG00000111229.11 ARPC3 0.880 0.010 0.487 0.338 0.026 0.209 

ENSG00000146007.6 ZMAT2 -0.690 0.014 0.530 -0.305 5.4e-05 0.014 

ENSG00000008710.13 PKD1 0.489 0.014 0.530 0.434 1.5e-05 0.009 

ENSG00000184007.13 PTP4A2 -0.358 0.060 0.674 -0.354 8.3e-05 0.015 

ENSG00000109670.9 FBXW7 -0.284 0.116 0.752 -0.379 6.6e-05 0.014 

ENSG00000196850.4 PPTC7 -0.290 0.146 0.780 -0.272 1.6e-04 0.021 

ENSG00000082701.10 GSK3B -0.267 0.179 0.798 -0.404 1.2e-04 0.019 

ENSG00000078177.9 N4BP2 -0.327 0.228 0.831 -0.276 0.001 0.036 

ENSG00000125505.12 MBOAT7 0.294 0.290 0.863 0.291 2.6e-05 0.011 

ENSG00000150656.10 CNDP1 -0.296 0.318 0.873 -0.454 0.002 0.063 

 
logFC: base 2logarithm of fold change; p-val: p-value; padj: adjusted p-value after FDR correction.  
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1.2.1. Gene set enrichment analysis showed an overrepresentation of OCD 

associated genes belonging to axon guidance and semaphorin pathways 

We did gene set enrichment analysis with all the statistically significant genes 

with nominal p-value <0.01 in the DE analysis of OCD T0 vs. controls (n=171). 

By doing pathway enrichment analysis, we found seven pathways significantly 

enriched (p-value <0.01) (Table 24). Among these pathways we found “axon 

guidance” and “Semaphorin interactions”, which are related to neuronal 

development and function. Interestingly, ARPC3 was present in the “axon 

guidance” pathway. By doing GO enrichment analyses we found twelve GO 

terms significantly enriched (p-value <0.01) (Supplementary Table S15), most of 

them related to cell function and organization. 

 

 

Table 24. Enriched pathway-based sets 
 

Pathway p-value q-value Members Size 
Effective 

size 

Fc gamma R-mediated 
phagocytosis  

0.001 0.103 
ARPC3; SPHK1; AMPH; 

LYN 
91 90 

Axon guidance 0.002 0.103 
LYN; DPYSL4; ARPC3; 

RHOC; VLDLR; NRCAM; 
TREM2 

357 356 

Cilium Assembly 0.003 0.103 
PCM1; IFT74; ARL13B; 

HAUS6; ATAT1 
187 187 

Semaphorin interactions 0.004 0.126 DPYSL4; TREM2; RHOC 64 64 

Organelle biogenesis 
and maintenance 

0.007 0.141 
PCM1; ARL13B; HAUS6; 

IFT74; ATAT1 
240 237 

Cell Cycle 0.007 0.141 
LYN; PCM1; ARPP19; 
HIST2H2BE; HAUS6; 
PIAS4; STAG2; NHP2 

561 559 

Dectin-2 family 0.009 0.152 CLEC4E; LYN 29 28 

 
p-value: p-value calculated according to the hypergeometric test based on the number of physical 

entities present in both the predefined set and user-specified list of physical entities; q-value: p-

values corrected for multiple testing using the false discovery rate (FDR). Size of the predefined sets 

were also corrected to the number of set members that are annotated with an ID of the user-

specified ID type. 
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2. Metagenomics 

We collected 56 OCD paired stool samples (OCD T0 and OCD T3), 7 OCD un-

paired stool samples (4 OCD T0 and 3 OCD T3), and 33 stool samples from 

healthy individuals. We also collected 56 OCD paired pharyngeal swab samples, 

8 un-paired OCD pharyngeal swab samples (4 OCD T0 and 4 OCD T3), and 32 

pharyngeal swab samples from healthy individuals. We extracted DNA from all 

them and performed 16S-rRNA sequencing targeting the variable V3 and V4 

regions of the 16S rRNA gene. Metagenomics analyses were done in 

collaboration with Jesse Willis from Gabaldón’s Group (CRG). We analysed the 

microbiome composition profiling in each group of samples, estimated diversity 

measures, and performed several statistical analyses to study the association of 

taxa abundances with OCD and OCD subtypes. 

 

2.1. Gut microbiome 

2.1.1. OCD T0 samples showed a trend towards a decrease of α-diversity 

The gut microbiome biodiversity for OCD T0, OCD T3 and controls was 

analysed via α- and β-diversity values. The OCD T0 group showed an overall 

lower level of all α-diversity indices considered in this study (Figure 29). 

Although these differences were not significant (the smallest p-value was 0.057) 

all tests showed the same trend. Moreover, the OCD T3 group showed more 

similarity to the control group in all measures, suggesting a possible interaction 

between the treatment and the gut microbiome.  

 

We used five ecological indices to evaluate the compositional dissimilarity 

between groups both in terms of species abundance (i.e., Bray-Curtis distance, 

Canberra distance and Jensen-Shannon distance) and incorporating their 

phylogenetic relatedness (i.e., unweighted and weighted UniFrac). When 

analysing β-diversity we did not observe a strong separation in any measures, 

although some measures were statistically significant with p-values <0.05 

(Canberra for OCD T0 vs. controls and Bray-Curtis, Canberra and Jensen-

Shannon for OCD T3 vs. controls), as can be seen in Figure 30. 
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Figure 29. Boxplots representing α-diversity indices calculated for Control group (red), OCD T0 group (green) and OCD T3 group (blue) in stool samples: 
Observed, Chao1, ACE, Shannon, Simpson, Inverse Simpson, Fisher, and Faith's Phylogenetic Diversity. Center lines show the medians, box limits indicate the 25th 
and 75th percentiles, and outliers are represented by dots. The corresponding p-values are reported below each index (OCD T0 vs. controls and OCD T3 vs. controls 
calculated with Mann–Whitney U test; OCD T0 vs. 0CD T3 calculated with Wilcoxon rank-sum test). 
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Figure 30. Principal coordinate analysis plot of OCD T0 (green), OCD T3 (red) and control (blue) groups in stool samples. The plots show the two principal 
coordinates for principal coordinates anallysis (PCoA) using Bray-Curtis (A), Canberra (B), Jensen-Shannon (C), unweigthed UniFrac (D) and weighted UniFrac (E) 
algorithms. The resulting p-values for PERMANOVA analyses are reported in the figures. 
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2.1.2. Specific bacterial families showed different abundances in OCD and 

control samples 

We analysed the microbiome composition profiles in OCD T0, OCD T3 and 

control stool samples and we saw that the 20 most abundant species were 

similar within the three groups, although they differ in abundances. Gut bacterial 

abundances for each group at the genus and family level are shown in the 

Supplementary Figure S11.  

 

To look for distinctive features in OCD T0 vs. control samples, taxa distribution 

was investigated at all taxonomical levels (species, genus, family, order, class 

and phylum). Results of Wilcoxon rank sum test highlighted statistically 

significant taxa abundance differences at the family level (Figure 31), with a 

higher percentage of Rikenellaceae and a lower level of vadinBE97 in OCD T0 

compared to controls. In addition, OCD cases with sexual obsessions presented, 

at the phylum level, lower percentage of Firmicutes and higher percentage of 

Bacteroidetes. Although there was some association between some of the diet 

variables and taxa abundances, there were no significant associations between 

the variables collected in the diet questionnaires and whether the individual 

belonged to the OCD or control group, which suggests that the taxa differences 

between OCD cases and controls may be influenced by the OCD phenotype, 

rather than by other variables. 
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Figure 31. Boxplots representing significant Wilcoxon rank-sum test results of stool samples 
from (A) control (grey) and OCD T0 (blue) groups at the family level, and (B) OCD T0 without 
sexual obsessions symptoms (grey) and with sexual obsession symptoms (orange) at the 
phylum level (B). 0: absence of symptoms; 1: presence of symptoms. p-value is indicated. 

 

 

2.1.3. LEfSe analysis found biomarkers of OCD  

We further analysed the structure of the bacterial community associated with 

OCD by using LEfSe, which revealed a significant increase of the relative 

abundance of different bacterial taxa at different taxonomical levels (Figure 32). 

In concordance with the Wilcoxon rank sum test, the Rikenellaceae family 

(phylum Bacteroidetes) and the Alistipes genus, from this family, were found to 

be biomarkers of OCD. In addition, several genus in the Clostridiales order 

(phylum Firmicutes) were also found in higher levels in OCD than controls, 

including Oscillibacter, Anaerostipes, and Flavonifractor, as well as several 

Costridiales species: Anaerostipes hadrus, Intestinimonas butyriciproducens and 

Clostridium hathewayi. On the other hand, the control group had higher levels of 

the Prevotellaceae family (phylum Bacteroidetes), as well as a set of genus from 

the order Clostridiales: Agathobacter, Coprococcus, Lachnospira, Howardella, 

Romboutsia, Butyricicoccus, Clostridium. Moreover, control samples presented 

high levels of Negativicutes at the order level (class Clostridia, phylum 

Firmicutes). Figure 33 shows the phylogenetic relationship of significant bacterial 

taxa associated with each group. 
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Results obtained from LEfSe highlighted the differential composition of the 

microbiome in OCD vs. controls, especially of Firmicutes and Bacteroidetes. 

However, while it seems that there is an alteration in the composition of the 

bacterial gut community at the phylum level, there is not a differential 

Firmicutes/Bacteroidetes ratio in OCD T0 vs. controls (Figure 34). 

 

 

 

Figure 32. Biomarkers associated with OCD and control groups discovered by a linear 
discriminant effect size (LEfSe) analysis (α value=0.05, logarithmic LDA score threshold=2.0) 
in stool samples. 
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Figure 33. Cladogram representing the phylogenetic relationship of biomarkers associated 
with OCD and control groups through the linear discriminant effect size (LEfSe) analysis (α 
value=0.05, logarithmic LDA score threshold=2.0) in stool samples. 
 
 

 

 

 

 
Figure 34. Mean relative abundances (%) of Firmicutes and Bacteroidetes in Control, OCD T0 
and OCD T3 subjects. p-value of Wilcoxon rank-sum test between Controls and OCD T0, and 
controls and OCD T3 are indicated. 

 



Results Study II 

 123 

2.2. Oro-pharyngeal microbiome 

2.2.1. The oro-pharyngeal microbiome showed little α- and β-diversity 

differences between OCD and controls 

The oro-pharyngeal microbiome biodiversity for OCD T0, OCD T3 and controls 

was also analysed via α- and β-diversity values. In contrast with the gut 

microbiome biodiversity, in the oro-pharyngeal microbiome the OCD T0 group 

did not show any difference in any of the measures for α -diversity (neither 

statistically significant nor a trend) (Figure 35).  

 

When analysing β-diversity with the five ecological indices (Bray-Curtis distance, 

Canberra distance, Jensen-Shannon distance, and unweighted and weighted 

UniFrac) we observed no separation in most of the measures (Figure 36). The 

only statistically significant (p-value <0.05) difference, between OCD T0 and 

controls, was observed for the weighted UniFrac index. So, there is only a 

separation of these two groups when we incorporate the phylogenetic 

relatedness of the taxa and weight for abundance of observed organisms. 

 

2.2.2. OCD samples presented higher abundance of Actinobacteria 

We analysed the microbiome composition profiles in OCD T0, OCD T3 and 

control pharyngeal samples and we saw that the 20 most abundant species 

were similar within the three groups, although they differ in abundances. 

Supplementary Figure S12 shows the distribution of relative abundances of oro-

pharyngeal bacterial families and genera among the three groups.  

 

We looked specifically for enrichment of Streptococcus pyogenes in OCD 

samples vs. controls, as this species was shown to be responsible of 

PANDAS232. However, the first 15 most abundant species did not include 

bacteria form this genus in either OCD T0, OCD T3, or controls. 
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Figure 35. Boxplots representing α-diversity indices calculated for Control group (red), OCD T0 group (green) and OCD T3 group (blue) in pharyngeal 
samples: Observed, Chao1, ACE, Shannon, Simpson, Inverse Simpson, Fisher, and Faith's Phylogenetic Diversity. Center lines show the medians, box limits 
indicate the 25th and 75th percentiles, and outliers are represented by dots. The corresponding p-values are reported below each index (OCD T0 vs. controls 
and OCD T3 vs. controls calculated with Mann–Whitney U test; OCD T0 vs. 0CD T3 calculated with Wilcoxon rank-sum test). 
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Figure 36. Principal coordinate analysis plot of OCD T0 (green), OCD T3 (red) and control (blue) groups in stool samples. The plots show the two 
principal coordinates for principal coordinates anallysis (PCoA) using Bray-Curtis (A), Canberra (B), Jensen-Shannon (C), unweigthed UniFrac (D) and weighted 
UniFrac (E) algorithms. The resulting p-values for PERMANOVA analyses are reported in the figures. 



Results Study II 

 126 

To look for distinctive features in OCD T0 and control samples, taxa distribution 

was investigated at all taxonomical levels. Results of Wilcoxon rank sum test 

highlighted taxa abundance differences (statistically significant) at the order, 

class and phylum level (Figures 37 and 38), with a higher percentage of 

Coriobacteriales, Coriobacteriia and Actinobacteria, respectively, in OCD T0 

compared to controls. In addition, there is also an unclassified taxa less 

abundant in OCD T0 than in controls. Interestingly, OCD cases with ordering 

compulsions presented, at family and order levels, higher percentage of 

Neisseriaceae and Betaproteobacteriales (now called Neisseriales), 

respectively. As in gut, although there was a certain association between diet 

and some taxa, it did not correlate with belonging to the OCD or control group. 

 

 

 

 
Figure 37. Boxplots representing significant Wilcoxon rank-sum test results of stool samples 
from OCD T0 without ordering compulsions (grey) and with ordering compulsions (orange) at 
the family (left) and order (right) level. 0: absence of symptoms; 1: presence of symptoms; 2: 
principal symptom. p-value is indicated. 
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Figure 38. Boxplots representing significant Wilcoxon rank-sum test results of pharyngeal 
samples from the control (grey) and OCD T0 (blue) groups at different taxonomical levels. p-
value is indicated. 

 

 

2.2.3. LEfSe analyses identified OCD biomarkers  

We further analysed the structure of the bacterial community associated with 

OCD by using LEfSe, which revealed a significant increase of the relative 

abundance of different bacterial taxa in different taxonomical levels (Figure 39). 

In concordance with the Wilcoxon rank sum test, we found Actinobacteria as an 

OCD biomarker at the phylum level, including Actinobacteria and Coriobacteriia 

at the class level, Actinomycetales and Coriobacteriales at order level, 
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Actinomycetaceae and Atopobiaceae at family level, Actinomyces and 

Atopobium at genus level, and Actinomyces odontolyticus and Atopobium 

parvulum at species level. Other taxa found in higher levels in OCD than 

controls were Lachnospiraceae (at the family level), including the genus 

Lachnoanaerobaculum and Oribacterium; Mogibacterium (at the genus level); 

and Peptostreptococcus asaccharolyticus (at the species level). All of them 

belong to the order Clostridiales (class Clostridia class, phylum Firmicutes). 

There were also some unclassified Bacteroidales as biomarkers of OCD. On the 

other hand, controls had higher levels of Fusobacteria at phylum level, 

Fusobacteriia at class level, and Fusobacteriales at order level. Figure 40 shows 

the phylogenetic relationship of significant bacterial taxa associated with each 

group. 

 

 

Figure 39. Biomarkers associated with OCD and control groups discovered by a linear 
discriminant effect size (LEfSe) analysis (α value = 0.05, logarithmic LDA score threshold = 
2.0) in pharyngeal samples. 
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Figure 40. Cladogram representing the phylogenetic relationship of biomarkers associated 
with OCD and control groups through the linear discriminant effect size (LEfSe) analysis (α 
value=0.05, logarithmic LDA score threshold=2.0) in pharyngeal samples. 

 

 

Results obtained from LEfSe highlighted the differential composition of the oro-

pharyngeal microbiome in OCD vs. controls, especially of Actinobacteria and 

Fusobacteria. Phylum levels analysis showed a clear alteration of the bacterial 

pharynx community in OCD T0 characterized by a higher 

Actinobacteria/Fusobacteria ratio (p<0.004, Wilcoxon rank-sum test) in OCD T0 

than in controls (Figure 41). 

 

 

 

 
 
 
 
 
Figure 41. Mean relative abundances 
(%) of Fusobacteria and 
Actinobacteria in Control, OCD T0 
and OCD T3 subjects. p-value of 
Wilcoxon rank-sum test between 
Controls and OCD T0, and controls 
and OCD T3 are indicated. 
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DISCUSSION 

 

 

Most research in OCD has been focused on neurobiological, neuropsychological 

and treatment studies. In the last decades, numerous efforts have also been 

made in elucidating the genetic causes of this disorder, mostly through 

candidate genes, linkage studies, and GWAS, and highly successful 

international collaborative projects have enabled association studies to reach 

sizes of thousands samples89,90. However, despite the increases in statistical 

power afforded by these large-scale studies, there is still a big gap between the 

phenotypic variance and the genetic variance identified so far.  

 

Considering this, we decided to explore new layers of complexity, relatively 

underexplored in OCD, which could explain part of the missing heritability 

observed in this disorder. We believe that understanding the heritability of 

complex neuropsychiatric disorders such as OCD requires a more 

comprehensive assessment of human genetic variation, including rare variation, 

common and low-frequency genetic variation with small effect sizes, structural 

variation, gene-gene and gene-environmental interactions, and taxonomic and 

functional changes to the composition of the human microbiome. Therefore, in 

this project, we have explored OCD through: i) the analysis of both rare and 

common and low-frequency variants from WES data of 306 OCD cases and 601 

controls, and ii) the longitudinal analysis of the transcriptome and the gut and 

oro-pharyngeal microbiome in a small subset of samples (43 OCD cases and 32 

controls).  
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Study I: Deciphering OCD by whole-exome sequencing 

 

 

1. Association studies 

1.1. Analysis of rare variants through WES and targeted 

resequencing identifies TMEM63A as a novel OCD candidate gene 

We have searched for enrichment of rare coding variants in 306 OCD patients 

using WES and RVAS. This represents the first study in OCD following this 

approach. Moreover, this study also represents the first one that includes a WES 

cohort of OCD of this size as, to date, the two published studies81,112 that 

sequenced the exome of individuals with OCD included only 20 and 10 sporadic 

trios, respectively. 

 

To identify rare variants potentially implicated in this disorder, we used different 

RVAS methods and approximations, as recommended114 when the genetic 

architecture underlying the disorder is not known. In this discovery phase we 

ended up with a large list of genes possibly associated with OCD with nominal p-

value <0.05. None of these genes was significant after adjusting for multiple 

testing (FDR), but this was not unexpected, as our sample size was small and 

we did not have enough statistical power. Since each method assumes a 

different genetic basis of OCD, determining which of these genes are really 

associated with the disorder would have required validation of all the results in a 

larger and independent cohort of samples. However, at this point we could only 

perform a preliminary capture array of 20 genes in 439 OCD cases and 1481 

controls, prioritizing risk genes based on statistical significance and biological 

relevance. Moreover, we decided to focus on SKAT-O results, as this method 

considers a combination of scenarios, being able to detect associations both 

under the burden test and the variance-component method. 

 

Of the 20 genes included in the targeted resequencing replication, TMEM63A 

(Transmembrane Protein 63A) showed significant enrichment above the FDR 
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cut-off for missense variants in OCD cases. This gene is highly expressed in 

different parts of the brain, such as the prefrontal cortex, the occipital and 

parietal lobes, and the trigeminal ganglion. It encodes for a calcium-permeable 

cation channel that was described as osmosensitive for years, but, very recently, 

it has been also reported as a mechanically activated ion channel233. 

Mechanosensitive ion channels are involved in the regulation of axon guidance. 

Specifically, they detect tissue stiffness and regulate axon spreading (axons 

grew faster in stiffer substrates). It remains to be determined whether the rare 

variants found in TMEM63A affect the activity of this channel, which, in turn, 

could affect axon guidance during neuronal development and function and lead 

to OCD. 

 

Among the remaining top OCD candidate genes that we found, four had been 

already linked to OCD and have important roles in neuronal development and/or 

function: CHD8 (Chromodomain Helicase DNA Binding Protein 8), ASTN2 

(Astrotactin 2), USP54 (Ubiquitin Specific Peptidase 54), and DHRS11 

(Dehydrogenase/Reductase 11). 

 

CHD8 acts as a chromatin remodelling factor and a transcription regulator. It is a 

negative regulator of the Wnt signaling pathway, which plays an important role in 

developing neural circuits and in adult brain function234. Cappi et al.112 identified 

a de novo missense variant within this gene in an OCD patient. Moreover, de 

novo truncating mutations of CHD8 are amongst the strongest individual risk 

factors for ASD217 and at least one of the reported ASD cases with a de novo 

balanced translocation disrupting CHD8 presented OCD among the various 

symptoms described217. 

 

ASTN2 encodes for a protein that is expressed in the brain and plays a role in 

neuronal migration and modulation of synaptic activity216. CNVs of ASTN2 have 

been identified in patients with different neurodevelopmental disorders, including 

autism, schizophrenia, ADHD, bipolar disease, intellectual disability, and global 

developmental delay216. Recently, Gazzellone et al.81 genotyped OCD paediatric 
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probands and detected a rare deletion within this gene (of at least 15 kb) in two 

OCD patients, one of them presenting also ADHD. 

 

In the same manuscript, Gazzellone et al.81 also performed WES of OCD parent 

trios and found one individual with OCD carrying a nonsense variant in UPS54, 

which encodes for a member of the to the Ubiquitin Specific Peptidases (USP) 

family, which are involved in the Ubiquitin-Proteasome Pathway. This pathway is 

critical for normal function of the nervous system and is implicated in various 

neurological diseases235. 

 

Finally, in the IOCDF-GC GWAS, Stewart et al.89 found association of a 

genome-wide significant SNP (rs6131295), which was an eQTL for DHRS11. 

This gene codes for a dehydrogenase/reductase that has been recently involved 

in neurosteroid metabolism236. Neurosteroids alter neuronal excitability through 

interaction with ligand-gated ion channels and other cell surface receptors, and 

can exert both excitatory and inhibitory actions on neurotransmission.  

 

UPS54 was not replicated in the targeted resequencing assay, but a mild 

enrichment of rare variants in OCD cases compared to controls was observed. 

In the case of DHSR11, the RVAS performed with the targeted data only found 

one missense variant, present in two OCD patients and not in controls, and this 

gene was not significant, whereas the variants reported in the WES RVAS were 

truncating mutations. So, although interesting, this result cannot be evaluated. 

We should consider increasing our sample size to test association of these 

genes with enough statistical power. ASTN2 and CHD8 had negative DIC 

values, which is indicative of non-statistical significant association with OCD in 

our data. 

 

We also did pathway enrichment analysis of all statistically significant genes 

(nominal p-value <0.05) found by the SKAT-O method and the most 

homogeneous approximation performed (i.e. selecting only those samples 

captured with NimbleGen v3 and a MAF <0.005), and we found six pathways 

significantly enriched (p-value <0.01): “TRP channels”, “Carboxyterminal post-
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translational modifications of tubulin”, “Other semaphorin interactions”, “Acyl 

chain remodelling of PS”, “Amine compound SLC transporters”, and “Acyl chain 

remodelling of PE”. All of them are related to neuronal development and 

function, which gives additional support to the RVAS results as good OCD 

candidate genes. 

 

Of these pathways, we consider the first one especially interesting, as it relates 

to calcium signalling, like TMEM63A. Four genes from the TRP (transient 

receptor potential) channel family were enriched in rare variants in OCD cases: 

TRPV5, TRPC3, TRPV3, and TRPM3. These proteins form non-selective cation 

channels that can activate or inactivate voltage-gated ion channels, and regulate 

calcium signalling, which controls diverse cellular functions237. TRP channels are 

involved in many processes in the nervous system, such as the transduction of 

sensory stimulation, neuronal cell death, proliferation and differentiation of 

neural progenitor cells, nerve growth, synaptic transmission, and signal 

transduction of axon guidance during brain development238. TRPV5 and TRPV3 

have been associated, so far, to neuronal functions in rats239,240. TRPC3 and 

TRPM3 were reported highly expressed in human brain, where they play 

important roles regulating diverse neuronal and glial functions237. In fact, recent 

studies are suggestive of potential roles of TRP channels in numerous 

neurological and psychiatric disorders, such as schizophrenia, autism, bipolar 

disorder, anxiety disorder, or Alzheimer’s disease, among others237. 

 

Also interesting is the semaphorin related pathway, which included three 

semaphorin receptors (ITGA1, PLXNA1 and PLXNA4). Semaphorins have an 

important role in the development of the nervous system and in axonal 

guidance241. Recent evidence points to additional roles in the development, 

function and reorganization of synaptic complexes242. In addition, mutations in 

semaphorin genes are linked to several human diseases associated with 

neurological changes242, although their actual influence in the pathogenesis of 

these diseases remains to be demonstrated. 
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Semaphorin-triggered signalling also induces the rearrangement of the actin and 

microtubule cytoskeleton, which could be related to the enrichment of the 

“carboxyterminal post-translational modifications of tubulin” pathway (genes 

involved: TTLL4, TTLL6, AGBL1 and TTLL3). Interestingly, anomalies of the 

microtubule and microtubule related proteins have also been associated with 

psychiatric diseases243. 

 

Three genes (MBOAT1, PLA2G4A and LPCAT4) participate in the two pathways 

related to lipid metabolism that showed enrichment: “Acyl chain remodelling of 

PS” and “Acyl chain remodelling of PE”. Phosphatidylserine (PS) is the major 

anionic phospholipid class particularly enriched in the inner leaflet of the plasma 

membrane in neural tissues, and it is synthesized from phosphatidylcholine or 

phosphatidylethanolamine (PE)244. PS is necessary for the activation of Akt and 

Raf-1 and protein kinase C signalling, which are relevant for neuronal survival 

and differentiation244. In addition, lipid metabolic disorders or abnormalities can 

lead to a variety of neuropsychiatric disorders, such as bipolar disorder, 

schizophrenia or major depressive disorder245. 

 

Finally, three genes from the solute carrier (SLC) family (SLC44A1, SLC18A1, 

and SLC6A9) led to the enriched pathway “Amine compound SLC transporters”. 

SLC transporters facilitate the transport of a wide array of substrates across 

biological membranes and have important roles in physiological processes246. In 

particular, these three genes are involved in the transport of choline (SLC44A1), 

the reuptake of glycine (SLC6A9) and the regulation of glycine levels in NMDA 

receptor-mediated neurotransmission247, and the intracellular transport of 

monoamines, such as serotonin (SLC18A1), to the secretory vesicles of 

neuroendocrine and endocrine cells. Interestingly, several studies have reported 

genetic association between variants in SLC18A1 and susceptibility to bipolar 

disorder and schizophrenia248.  

 

Despite we have found genes and pathways related to neuronal development 

and function, which would indicate that these genes might be good candidates 

for OCD involvement, our results are very preliminary and stem from a pilot 
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study with WES data from only 306 OCD cases. These associations would need 

further validation by additional studies in independent cohorts of OCD cases and 

controls, such as case-control studies of rare variants from WES data, studies of 

rare de novo variants in OCD parent trios, and targeted resequencing replication 

assays of these genes, as well as by gene expression and functional studies. 

 

1.2. Analysis of common and low-frequency variants points towards 

novel OCD candidate genes 

We also performed an association study of common and low-frequency variants 

discovered by WES. These study detected 34 and 13 variants (in samples 

captured with Agilent 35, Agilent 50 and NimbleGen v3 or only with NimbleGen 

v3, respectively) associated with OCD with statistical significance (Benjamini- 

Hochberg adjusted p-value <0.01). Five variants reached genome-wide 

significance in the analysis that included samples captures with the three kits, 

after removing those protective variants that were present in less than 90% of 

the controls. However, the p-values obtained were unexpectedly high, especially 

considering our sample size and significant levels achieved in previous OCD 

GWAS89,90. This may indicate a variant calling bias and validation by Sanger 

sequencing is required, since they could be false-positives. Of note, we did not 

see genome-wide significant variants in the analysis performed with only 

NimbleGen v3 samples, which could be indicative of a batch effect in the Agilent 

libraries. It would be necessary to validate all these variants by Sanger 

sequencing. We also checked for overlap with regions with suggestive evidence 

of association with OCD (p-values <10-05), but we did not identify any 

coincidence.  

 

Some of the variants for which we observed association with OCD were within 

genes involved in neuronal development and function. Nevertheless, our top hit 

corresponded to a variant in FIP1L1 (Factor Interacting With PAPOLA And 

CPSF1), which has no neuronal function known. We also found missense 

variants in CTBP2 (C-Terminal Binding Protein 2), HLA-DRB5 (Major 
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Histocompatibility Complex, Class II, DR Beta 5), GBGT1 (Globoside Alpha-1,3-

N-Acetylgalactosaminyltransferase 1), PABPC3 (Poly(A) Binding Protein 

Cytoplasmic 3) and ACTR3C (ARP3 Actin Related Protein 3 Homolog C), an 

inframe insertion in SERINC2 (Serine Incorporator 2) and a frameshift insertion 

in PPP1R12B (Protein Phosphatase 1 Regulatory Subunit 12B, MYPT2). 

Interestingly, CTBP2 encodes a protein from the CTBPs family that is suggested 

to regulate neuronal differentiation and to be involved in synaptic functions249. 

SERINC2 encodes for a transmembrane protein that facilitates incorporation of 

serine into phosphatidylserine and sphingolipids, which play important roles in 

neural plasticity, signalling and axonal guidance. Moreover, SERINC2 has been 

linked to alcohol dependence228 and autism229. PPP1R12B encodes for the 

regulatory subunit of the myosin phosphatase and its expression is specific to 

heart, skeletal muscle, and brain. It was reported that myosins have specific pre- 

and postsynaptic roles that are required for synapse function and synaptic 

plasticity250.  

 

We found other variants statistically significant that we did not consider because 

they did not pass the ExAC filters. The variants in CTBP2 and PABPC3 were not 

reported in ExAC, and it would be necessary to validate them by Sanger 

sequencing to know if they are population specific. 

 

It would be interesting to genotype the top variants, after validating them by 

Sanger sequencing, in a larger cohort of OCD cases and controls. 

 

1.3. Limitations and considerations of rare, low-frequency and 

common variant analyses from WES data 

Here, we assessed the feasibility of WES analysis to identify rare, low-frequency 

and common genetic variation associated with OCD. In addition to the inherent 

sample size limitation, which was known before hand, our study has uncovered 

some limitations that should be considered in future studies.   
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The improvement of NGS capture methods along the project involved the 

inclusion of samples sequenced at different time points, with diverse sequencing 

platforms and enrichment technologies. These differences could influence 

findings in the subsequent association analysis, generating false associations. 

Aware of this, we removed all possible biases of our data re-analysing all the 

whole-exome samples with the same pipeline, from alignment to variant calling, 

filtering, and annotation. We observed that the main factor leading to different 

clustering in PCA was the set of kit-specific variants originated from different 

captures, while there was practically no detectable impact from sequencing date 

or run, or from the samples’ origin (considering that all samples were collected at 

Spanish hospitals, most around Barcelona). This led us to select only those 

regions well covered by all the kits used to sequence the samples included in 

the association analyses. This meant analysing the coverage in our real data 

and establishing a read depth threshold (10 reads) for each position covered by 

all the kits, rather than selecting the regions targeted by the intersection of them, 

independently of the coverage. Sometimes, different libraries can target the 

same regions, but with different coverage results. If allele frequencies are 

compared from variants sequenced with different read depth in case and control 

cohorts, false associations may be generated and/or true ones masked251.  

 

However, although we tried to diminish at minimum the possible bias, there were 

still confounders that could influence findings, such as the usage of different 

sequencing platforms (case-control imbalances across different sequencing 

platforms might increase type I error rates). For this reason, we conclude that 

the best strategy for NGS association analysis requires both cases and controls 

to be sequenced together using a common experimental design, with the same 

library capture array, library capture kit, platform and sequencing parameters.  

 

In addition, a particular feature of our analysis is that we included as controls 

whole-exome data from various projects. Although the data included 

corresponded to individuals with non-neuropsychiatric or neurological related 

disorders, this is not the optimal approach. It would have been preferable to use 

OCD specific controls. Nevertheless, we only had data for 63 control samples 
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recruited as controls for OCD, which would have not given any statistical power 

to the analysis. Therefore, we reasoned that having a mixture of samples from a 

variety of projects as controls would considerably increase sample size and 

statistical power without having much impact on false associations.  

 

We also need to consider the RVAS methods used in this project. As described 

above, standard single variant association analyses are statistically 

underpowered to detect rare variant associations, except when sample and/or 

effect sizes are large, and RVAS methods can overcome this problem by testing 

the cumulative effects of multiple variants in a genomic region. However, these 

tests have still important limitations. First, gene-based tests should be optimized 

for a specific genetic architecture. In the case of OCD, as in other complex 

diseases, the genetic architecture is not known, and we solved these issue by 

using different RVAS methods, which accounted for different genetic 

architectures. However, this translated in a huge amount of data from the 

different tests that should be validated by a large targeted resequencing study. 

Second, most of the genetic variants identified through WES studies may have 

no discernible effect on OCD, and the inclusion of large numbers of variants with 

no effect in a gene-based test could reduce power. We tried to reduce this 

problem by selecting only exonic variants. In addition, even though some of the 

algorithms used can deal with different variants in the same gene having 

different direction of effects, power would be increased if all variants had the 

same direction, so in order to increase power, we separated them in missense 

and truncating, and performed separate analyses. Missense variants can have 

different effects on protein function, while LoF variants are more likely to all have 

the same type of effect. 

 

Although their capacity to improve statistical power compared to single variant 

association analyses, RVAS methods still need large sample sizes to find 

significant associations. This is especially relevant in the analyses of truncating 

variants. Indeed, we observed that our study was underpowered to detect 

genome-wide significant associations especially in the case of truncating 

variants (Figure 15). The sample size limitation, as mentioned before, was a 
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known limitation of the proposed pilot study, and we intended to follow our 

results with a targeted resequencing analysis of the more relevant genes. This 

kind of two-phase approach has already been proved effective in GWAS and 

gene-disease association studies, as a means to improving power while 

minimizing the cost of the study252–254. 

 

Finally, we have also to take into account that association studies are highly 

dependent on the degree of accuracy of the data. Inclusion of false positive 

variants may lead to false positive associations. We experienced this issue in 

our first implementations of the RVAS methods and we dealt with it by adding 

steps and measures in the quality control and variant filtering processes. 

Nevertheless, it might be important to validate through Sanger sequencing all 

significant associations. 

 

1.4. Future approaches 

In our study we considered the different algorithms available for the analysis of 

rare variants associations. We compared their approaches and concluded that 

the concept developed by the MiST algorithm was likely the best, but its 

implementation could be improved. Based on this, Dr. Escaramís, in 

collaboration with the group of Dr. Ossowski, developed a new RVAS method, 

called BATI (Susak et al., in revision), which is based in Bayesian inference. 

BATI allows the inclusion of prior knowledge about the variants (such as 

functionality or damaging scores) and incorporation of confounders at patient 

level (such as population stratification). In simulated data, BATI substantially 

outperformed existing methods, especially when the information about the 

variants contributes to the development of the disorder.  

 

We think that it would be advantageous to reanalyse our OCD WES dataset 

using BATI. We will also increase the sample size by adding the whole-exome 

samples of the 38 OCD cases and the 33 healthy individuals from Study II, 

which were not available at the time we did the RVAS analyses. Moreover, we 

have recently detected and solved a problem in the QC step of the NimbleGen 
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v3 dataset that had led to the unnecessary removal of some variants, which 

would now be considered in the reanalysis. We hope that BATI will improve the 

power of our analysis, and we will still be able to detect true associations with 

OCD while reducing the number of false results. 

 

Nevertheless, the results of BATI analysis would still suffer from some of the 

abovementioned limitations, such as false positives due to inaccurate data and 

limited power, and, obviously, any result would require further validation by 

targeted resequencing replication. The optimal capture would include a larger 

number of genes, including those passing FDR (if any) and at least 100 of the 

top candidate genes based on their DIC value. These would be assessed in a 

larger cohort of OCD cases and controls. 

 

 

2. The analysis of the consequences of the DRD4 13-bp 

frameshift deletion needs additional functional approaches 

DRD4 has been associated with several neuropsychiatric disorders73–75 and, in 

particular, with OCD77,78. Specifically, a 48-bp VNTR has been associated with 

this disorder, with increased prevalence of the seven-repeat variant (DRD4*7R) 

in patients with OCD and tics77 and a protective effect of the DRDR*2R variant 

against OCD symptoms78. 

 

Although DRD4 did not show up in the list of significant genes in the RVAS 

analyses, we noticed a high MAF difference of a heterozygous 13-pb frameshift 

deletion between cases and controls. In fact, this variant had already been 

noticed, and some studies, with small sample sizes, had reported no OCD 

association of the variant in samples from German and Italian origin80,255.  

Nevertheless, a recent study of Gazzellone et al.81 highlighted the presence of 

this deletion in one OCD patient, which prompted us to consider re-evaluating 

this variant. We decided to genotype this deletion in a larger cohort of OCD 

cases and controls and test for association, obtaining a total MAF of 0.011 in 



Discussion Study I 

 144 

OCD cases versus an MAF of 0.0016 in controls (OR 6.8; p-value <0.0001), 

which gave support to this variant as possible associated to OCD. 

 

We compared the obtained frequencies to the reported frequencies for the 

DRD4 deletion in different databases and we found that only in the CIBERER 

Spanish Variant Server, the MAF was similar to that of our control dataset, but 

higher in the rest of databases (1000G, ExAC, EVS, and gnomAD). Our first 

thought was that this might be a population specific variant, although this would 

not be supported by the 100 IBS samples in 1000G (MAF 0.009). While it is 

possible that the association detected was spurious, we considered that the 

potential functional effect of the variant merited further investigation.  

 

Nöthen et al.79 hypothesized that this variant consists of a null mutation that 

encodes a truncated non-functional protein, leading to a complete loss-of-

function of the D4 receptor. Thus, we expected to find lower expression levels of 

DRD4 in OCD cases carrying this deletion compared to controls. To test this, we 

generated immortalized B-lymphoblastoid cell lines from carriers and non-

carriers of the variant. However, western-blot and flow-cytometry analyses did 

not show consistent differences between deletion carriers and wild-type cell 

lines. The fact that we did not observe changes in DRD4 expression may 

indicate a compensatory effect of the intact allele or a consequence of the B-

lymphoblastoid cell lines immortalization process. Analogous studies in post-

mortem brain tissue of carriers and wild type individuals should help to 

understand whether carriers show decreased expression of DRD4 in the most 

relevant structure.  

  

In parallel to the analysis of expression levels in cell lines, ZeClinics performed a 

drd4 genetically modified zebrafish model to assess the potential role of drd4 

zebrafish orthologues (drd4a and drd4rs) in neural function and their potential 

role in OCD pathogenesis. The idea was to generate, later, mutants carrying the 

DRD4 deletion and study their phenotype. However, no behavioural or 

neurodevelopmental abnormalities were found, nor any effect in other systems, 

when comparing single and double homozygous larvae to the wild-type group. 
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Nevertheless, it has been shown that Drd4 knockout decreases life span in 

mice256 and that the DRD4 genotype predicts longevity in humans256. Moreover, 

exploratory behaviour was reduced in mice lacking Drd4257, as a consequence of 

increased anxiety levels. Thus, although, our present data suggest that drd4 

knockout does not affect natural locomotor behaviour, anxiety state, or defects in 

short memory and learning in zebrafish, DRD4 influence in OCD may require 

specific tests (analogous to the ones performed in the mice knockout study257) 

and functional outcomes that have not been evaluated in the present study. It 

would be also interesting to perform the behavioural tests in adult zebrafish, 

rather than in larvae, and simulate the same design performed in the Drd4 

lacking mice study (8-12 weeks old)257. We should also consider that zebrafish 

may not be the adequate model to see the outcome of the DRD4 13-bp 

frameshift deletion found in humans. 

 

Finally, it is also possible that in the Spanish population this variant is in LD with 

the DRD4*7R variant, associated with OCD. It would be interesting to assess the 

DRD4 48-bp VNTR genotype in the samples carrying the DRD4 deletion, both 

OCD and controls, and study any potential LD. 
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Study II: Multiomics longitudinal study of OCD 

 

 

1. Implications of transcriptomic signatures in OCD patients 

1.1. Differential gene expression between OCD cases and controls 

To date, only one study has investigated transcriptomics profiles of OCD140 

using post-mortem brain tissue and microarrays to compare gene expression 

levels in various obsessive psychiatric disorders (which included OCD, 

obsessive-compulsive personality disorder or tics) and healthy subjects. Here, 

we have searched for differentially expressed genes in peripheral blood of OCD 

cases compared to controls, being the first study with this approach in OCD. 

 

Twenty-eight genes showed differences in expression with a nominal p-value 

<0.001 and a FC >1.2 or FC <0.83 between OCD T0 and control samples. Of 

these, five were statistically significant after FDR correction (p-value <0.05): 

NRCAM, AL583722.4, AC098935, KRTAP4-6, and HIST2H2BE. Moreover, we 

found 70 genes differentially expressed in OCD T3 vs. controls and 35 in OCD 

T0 vs. OCD T3 (nominal p-value <0.001, FC >1.2 or FC <0.83). In general, 

genes overexpressed or underexpressed in OCD T0 vs. controls had a smaller 

fold change in OCD T3 vs. controls and did not have a significant FC in OCD T0 

vs. OCD T3. The lower FC in OCD T3 samples vs. controls could be explained 

by a treatment effect. 

 

Of the five significant transcripts in OCD T0 vs. controls, two, AL583722 and 

AC098935, are non-coding. AL583722.4 is a lincRNA and AC098935 is a 

processed pseudogene affiliated to the antisense RNA class. Both presented 

relatively low levels of expression (average number of reads per sample = 9.6 

and 16.9, respectively), but were detectable in most samples. AL583722 was 

upregulated, whereas AC098935 was downregulated, and these differences 

were maintained in the OCD T3 vs. controls analysis, although with a lower FC. 

The other three are coding genes, and two of them might be relevant to OCD. 
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NRCAM (Neuronal Cell Adhesion Molecule) encodes for a neuronal cell 

adhesion molecule that plays a wide variety of roles in neural development, axon 

growth and guidance, synapse formation, and formation of the myelinated 

structure258. NRCAM has been implicated in neuropsychiatric disorders including 

addiction-related behaviours and autism. Indeed, Ishiguro et al.259,260 showed 

that an haplotype linked to decreased NRCAM expression in post-mortem brain 

samples was protective against addiction vulnerability for polysubstance abuse 

in humans. There is also a study261 reporting association of particular haplotypes 

of NRCAM, which may relate to the expression level of NRCAM in the brain, with 

a subset of autism patients with severe obsessive-compulsive behaviour, but not 

with the full cohort of autism patients. In our cohort of OCD cases we observed 

an increase in the levels of NRCAM expression in the OCD cases (both OCD T0 

and OCD T3), although the general levels of expression were very low (average 

number of reads per sample = 2.38; range of reads across samples = 0-14). 

29% of the OCD cases presented at least four reads or more, in front of a 9.4% 

of the controls. Despite of these low numbers, the FC value of 3.99 is relevant 

enough to validate the expression of this gene in our dataset by real-time PCR 

and/or replicate it in an independent cohort of OCD cases and controls.  

 

HIST2H2BE (Histone Cluster 2 H2B Family Member E) encodes for a core 

component of the nucleosome that is expressed in brain and that may play a 

role in transcription regulation, DNA repair, DNA replication, and chromosomal 

stability. Histone modifications can induce lasting and stable changes in gene 

expression, contributing to functional changes within cells that impact circuit 

level changes in brain and ultimately behavior262. In addition, HIST2H2BE has 

been reported significantly upregulated in schizophrenia as compared to control 

fibroblasts263. In this dataset, we observed downregulation in both OCD T0 and 

OCD T3 samples, although there is much variability in the expression levels 

(number of reads range from 0 to 188), and it is detected in only 29 samples 

(18/76 OCD samples and 11/32 controls). However, we have observed that the 

increased expression detected in controls is mostly due to two samples, which 

have higher number of reads than the rest of samples (188 and 88 reads, while 

the rest of controls samples have between 0 and 8 reads). Thus, to know if this 
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differential expression is not a consequence of two possible outlier samples, we 

should increase the sample size of the analysis or validate it by RT-PCR.  

 

We also searched if the observed differences in expression can be associated 

with genetic variants. Based on WES data from the samples included in these 

analyses, we looked for LoF exonic variants present in the OCD cases that 

might lead to downregulation. However, we couldn’t associate any of the 

significant changes in gene expression with genetic variation. This could be 

explained because gene expression changes can be a consequence of genetic 

variation in non-coding regions (e.g., transcriptional regulatory elements, non-

coding RNAs), or caused by epigenetics mechanisms, such as DNA methylation 

or histone modifications. 

 

We performed pathway and GO enrichment analysis with all the statistically 

significant genes with nominal p-value <0.01 in the DE analysis of OCD T0 vs. 

controls, and we found enrichment of the “axon guidance” and “Semaphorin 

interactions” pathways, which are related to the pathways found in the RVAS 

studies, suggesting a link between changes in rare variation and gene 

expression. 

 

Finally, we also checked for overlap with the results from the study reported by 

Jaffe et al.140, in which they analysed differentially expressed genes from post-

mortem brain tissue in various obsessive psychiatric disorders. We compared 

genes with FC >1.2 or FC <0.83, and we saw 10 genes that had the same 

direction of expression (upregulated o downregulated) in both studies, but only 

three (ARPC3, upregulated, and ZMAT2 and PKD1, downregulated) had 

nominal p-value <0.01 in our study. It would be of interest to check these genes 

in an independent and larger cohort of OCD, in order to identify their relationship 

with this phenotype. 

 

ARPC3 encodes one of seven subunits of the human Arp2/3 protein complex, 

which is implicated in the control of actin polymerization in cells. This complex is 

essential at multiple stages of neural development, such as neurogenesis and 



Discussion Study II 

 

 150 

neuronal migration, and a role in axon guidance has been suggested264. 

Furthermore, ARPC3 is required for actin polymerization in dendritic spines and 

Kim et al.265 showed that disruption of actin dynamics in the frontal cortex of 

mice by knockout of Arpc3 resulted in abnormal dendritic spine morphology 

leading to dysregulation of the psychomotor circuit, a phenotype related to 

positive symptoms of psychosis in humans. It has not been determined whether 

an overexpression of ARPC3 could lead to abnormal actin polymerization in 

dendritic spines. 

 

ZMAT2 (Zinc Finger Matrin-Type 2) has non neuronal function known, whereas 

PKD1 (Polycystin 1, Transient Receptor Potential Channel Interacting) has been 

involved in synapse development266. Thus, a downregulation of PKD1 may affect 

synapse formation in OCD patients. 

 

1.2. Limitations and considerations of the transcriptomic analyses 

RNA-Seq can overcome some limitations associated with array-based 

technologies in DE analyses, such as the requirement of information about the 

sequences being interrogated, the cross-hybridization of highly related 

sequences, the hybridization saturation for highly abundant genes, or the 

difficulty to confidently detect and quantify low-abundance species due to the 

analogue nature of the signal126. However, RNA-Seq has still some limitations, 

such as biases inherent in technical RNA-Seq library preparation and 

sequencing205. 

 

Most of the efforts regarding biases in RNA-Seq have been focused on the 

normalization of sequencing depth. However, these approaches did not usually 

correct all the unwanted biological or technical effects in the data, as we saw in 

our first attempts to normalize our dataset (Figures 24 and 25). We removed 

these biases (variation in blood and RNA extraction, library preparation, 

personnel, pooling and sequencing lane) using the RUV method, ensuring a 

more accurate inference of gene expression levels. Part of this variation may 

have been solved by extraction of blood RNA in parallel, in all samples, and 
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using exactly the same extraction methodology and personnel. Although we 

processed all RNA samples at once for library preparation, the number of 

samples required several experimental batches. 

 

We did RNA-Seq with 50-bp single-end reads multiplexing 6 libraries per lane. 

The total reads per sample ranged from 45,486,470 to 113,250,744, with a 

mean of 73,546,964. Usually, the amount of sequencing required is determined 

by the goals of the experiment and the RNA sample nature and a lower number 

of reads than required can have an impact on the interpretation of the statistical 

analysis results. In our data, some samples and regions have especially low 

number of reads. So, it is not clear whether the observed gene counts are 

representative of the true gene counts. In fact, about 79% of the genes had an 

average number of reads below 10 over all samples. This can lead to false 

positive associations and, thus, we should perform and additional round of 

sequencing of the generated libraries to increase the number of reads. 

 

It would be interesting to analyse treatment response regarding transcriptomic 

profile of OCD samples, comparing those OCD T0 samples that responded to 

the treatment (27.9% of our dataset) with the ones that did not respond, as well 

as to study treatment effect comparing OCD T0 samples that responded to the 

treatment with their paired OCD T3 samples. As it is unlikely to have enough 

statistical power with our sample size, we should consider adding OCD samples 

from patients that responded to the treatment. 

 

 

2. Implications of altered microbiome in OCD patients 

This is the first study on the microbiome of adulthood onset OCD. As a pilot 

project, we have preliminarily identified gut and oro-pharyngeal microbial taxa 

associated with OCD and have described a dysbiosis in the gut and oro-

pharyngeal community in OCD patients, suggesting a potential role for specific 

microorganisms in the progression of the disorder. Nonetheless, we cannot 

establish a causal relationship. Changes in the microbiome could be a 
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consequence of OCD, and not a cause, or they could be a consequence of both 

bottom-up and top-down modulation of the gut-brain axis, as some animal 

studies suggest156. Thus, most of the discussion is speculative and further 

research is needed to replicate these findings and further interrogate the role of 

all these bacteria in OCD, as well as the direction of the effect. 

 

2.1. The gut microbiome  

In this study, an initial comparative analysis of gut microbiome in OCD cases 

(before and after treatment) with that of healthy controls was conducted via 16S 

rRNA sequencing. We observed that there was a trend of a reduced α-diversity 

and a microbiome composition shift in OCD samples, which presented an 

enrichment of some species and an impoverishment of others. 

 

In the analysis of microbial diversity, OCD T0 samples showed a tendency of 

lower levels of all α-diversity indices measured, whereas OCD T3 group was 

more similar to the control group, suggesting a possible effect of the treatment 

on the gut microbiome. The decrease of α-diversity has also been shown in 

studies of PANDAS171 and ADHD267, which suggests that neuropsychiatric 

patients share changes in the microbiome in the same direction.  

 

There is evidence that the gut microbiome may influence brain development153, 

neurogenesis154, and brain function149 by, for example, its capability to affect 

levels of excitatory and inhibitory neurotransmitters by producing and/or 

consuming them or by modulating host neurotransmitters and/or related 

pathways155, or its capability to activate the immune system via cytokine release 

by the mucosal immune cells156. Thus, it is possible that the reduced α-diversity 

found in the OCD T0 group could reflect an abnormal microbiome community 

that may lead to an anomalous gut-brain communication and deviant levels of 

neurotransmitters, which could be involved in OCD pathophysiology. In fact, 

some studies in germ free and specific pathogen-free (SPF) mice reported 

differences in neurotransmitters and response to stress268–270. Moreover, Huo et 

al.270 suggested that imbalances of the gut-brain axis caused by 
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presence/absence of specific intestinal microbes could affect the 

neuroendocrine system in the brain, resulting in an anxiety-like behavioural 

phenotype. An anomalous microbial diversity could also lead to alterations in the 

immune system and inflammatory reaction, which could be related with the 

association of OCD with inflammatory markers present in the CNS and the 

periphery156.  

 

On the other hand, the brain can also modulate the gut by a top-down function of 

the gut-brain axis. So, it is also possible that the lower α-diversity observed 

could be a consequence of the stress and anxiety provoked by obsessions. 

Indeed, some animal studies271,272 have demonstrated how stressful events alter 

abundance and composition of gut microbiome. 

 

Regarding the specifics of microbial composition, we observed a higher 

percentage of the Rikenellaceae family (phylum Bacteroidetes) and a lower level 

of the vadinBE97 family (phylum Lentisphaerae) in OCD T0 as compared to 

controls. In addition, LEfSe analysis revealed the Rikenellaceae family as a 

biomarker of OCD. This increase of Rikenellaceae in OCD T0 is consistent with 

the results of a recent study that identified Rikenellaceae as a biomarker of 

PANDAS171, among others. Rikenellaceae is also positively associated with pro-

inflammatory status in several metabolic and autoimmune diseases273,274 and 

neuroinflammation in the basal ganglia as an autoimmune response to infections 

was proposed in a subset of OCD cases275. Moreover, a recent study276 also 

reported OCD cases with neuroinflammation throughout the CSTC circuit of 

OCD. Furthermore, higher levels of Rikenellaceae have also been reported in 

ADHD277, Alzheimer’s disease278 and major depressive disorder279. LEfSe 

analysis also revealed Alistipes genus (which belongs to the Rikenellaceae 

family) as a biomarker of OCD. This genus has been found as a biomarker of 

MDD279. However, a decrease in the relative abundance of its genus was 

reported in autism patients280. 

 

LEfSe analysis also found specific members of the Firmicutes phylum (all within 

the Clostridiales order) in higher levels in OCD T0 cases compared to controls: 
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Oscillibacter, Anaerostipes, and Flavonifractor (at genus level) and Anaerostipes 

hadrus, Intestinimonas butyriciproducens and Clostridium hathewayi (at species 

level). Of note, Oscillobacter have been related with prenatal stress281, one of 

the possible environmental risk factors for OCD. The genera Anaerostipes and 

Flavonifractor belong to the Lachnospiraceae and Ruminococcaceae families 

(respectively), which have been associated with compulsion-checking 

behaviour170. Moreover, some studies suggest a relationship between these 

bacterial families and changes in dopamine activity, which is thought to play an 

important role in OCD282–284. Lachnospiraceae and Ruminococcaceae include 

butyrate-producing species, a short chain fatty acid (SCFA) that provides energy 

for other microbes and host cells and promotes energy expenditure, as well as 

facilitating fatty acid oxidation and lypolisis170. Interestingly, Intestinimonas 

butyriciproducens, represents another butyrate-producing bacteria belonging to 

an unclassified family. Jung et al.170 hypothesized that, if the changes in these 

bacteria are consequences and not causes of OCD, the Costridiales members 

may serve to support the energy needs in some compulsive behaviour. 

 

On the other hand, OCD T0 patients had lower levels of Prevotellaceae at family 

level (which belongs to Bacteroidales order and Bacteroidetes phylum). 

Decrease of Prevotellaceae has also been reported in ADHD267 and Parkinson’s 

disease285, as well as reduction of Prevotella in autism286,287, supporting the 

relevance of this bacterium in CNS disorders. Prevotella interacts with the 

immune system and plays a key role in degrading a broad spectrum of 

saccharides288. OCD T0 also presented a decrease of other Clostridiales genus 

(Agathobacter, Coprococcus, Lachnospira, Howardella, Romboutsia, 

Butyricicoccus, Clostridium), as well as reduced levels of Negativicutes at order 

level (which belongs to Clostridia class and Firmicutes phylum). Lower levels of 

Coprococcus has also been reported in autism286. 

 

Interestingly, there was not a differential ratio of Firmicutes/Bacteroidetes in 

OCD T0 cases and controls. These two groups are dominant in the human gut 

microbiome and the Firmicutes to Bacteroidetes ratio is regarded to be of 

significant relevance in human gut microbiota composition289. Firmicutes are 
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primarily associated with energy harvest from food, while Bacteroidetes are 

linked with degradation of complex sugars and proteins into metabolizable 

SCFAs290. Higher Bacteroidetes/Firmicutes ratios have been observed in 

autoimmune and psychiatric disorders, including PANDAS171. It is interesting to 

note that we did observe a higher Bacteroidetes/Firmicutes ratio in OCD cases 

with sexual obsessions compared to OCD cases with other type of obsessions, 

although it involved only six OCD cases with this symptomatology. 

 

2.2. The oro-pharyngeal microbiome 

We also performed a pilot comparative analysis of oral microbiome in OCD 

cases (before and after treatment) with that of healthy controls. The first goal 

was to identify an enrichment of Streptococcus pyogenes in OCD samples vs. 

controls, which had been associated with PANDAS232. However, we did not see 

it.  

 

In contrast to the results from the gut microbiome, we did not observe a 

difference in α-diversity in the oro-pharyngeal microbiome. In the analysis of β-

diversity, only one of the tests showed a difference between OCD T0 and 

controls. In this case it was the weighted UniFrac distance, which considers both 

abundance and phylogenetic relatedness of the taxa. 

 

Interestingly, there was a significant higher Actinobacteria/Fusobacteria ratio in 

OCD T0 than in controls, two of the phyla more abundant in the oropharynx159. 

This was supported both by an increase of Actinobacteria by Wilcoxon test and 

by the identification of this phylum as a biomarker of OCD by LEfSe analysis. 

LEfSe analysis also highlighted an increase of Actinomycetales and a decrease 

of Fusobacteriales, all in accordance with this distorted ratio.  

 

Qiao et al.288 reported a reduced abundance of Fusobacterium in autism 

samples, although results regarding Actinobacteria are in the opposite direction. 
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This may suggest a characteristic dysbiotic signature in OCD. The biological 

consequences of this difference are worthy of further investigation.  

 

Other taxa found through LEfSe analysis in higher levels in OCD T0 samples 

compared with controls were Lachnospiraceae (at family level), and 

Lachnoanaerobaculum. The increase in abundance of Lachnospiraceae is 

consistent with the results reported recently by Jung et al.170, showing increased 

levels of this family in mice with compulsive checking. 

 

Interestingly, OCD T0 cases with ordering compulsions presented higher 

percentage of Neisseriaceae. This association would need further support both 

from replication in metagenomic analysis in an independent cohort of patients 

with this subtype of OCD.  

 

2.3. Limitations and considerations of the metagenomics studies 

It is important to highlight that this is a pilot project and the results are 

preliminary. All the hypotheses performed are based in a samples size of 43 

OCD patients and 33 controls, which is small. The fact that the samples sizes of 

other studies in microbiome and neuropsychiatric disorders are similar or even 

smaller is showing that this is an emerging field, almost unexplored until a few 

years ago. 

 

Regarding microbial composition, we decided to compare only OCD T0 samples 

to controls, as OCD T3 could present treatment effect bias. To date, no 

information is available as to whether SSRIs affect the bacterial composition in 

the gut, although it is known that they possess antimicrobial activity. Therefore, 

we cannot exclude that SSRIs have an impact on gut microbiota. However, it 

would be interesting to further analyse these data comparing OCD T0 samples 

of patients that responded to treatment successfully and those that did not, and 

investigating the microbiome profile before and after treatment of the OCD 

patients that responded. 
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Some findings from this study overlapped with the observations from the 

microbiota profiling study of PANDAS171 and the study performed in rats with 

checking compulsions170, giving support to our results, although further 

validation is required. Moreover, the shared increase in specific microbial taxa 

between OCD and PANDAS supports the idea that these two disorders should 

share common etiological mechanisms, as they also share some 

symptomatology.  
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Study I and II: Discussion remarks 

 

 

In this project we have applied a multiomics approach towards elucidating the 

aetiology of OCD. Each type of omics study has provided a list of differences 

associated with the disorder and the data generated, despite the limitations 

described above, can provide insight on the biological pathways involved in its 

pathophysiology. The analysis of the different omics studies has enabled us to 

characterize biological processes across different layers and to understand the 

interaction of different levels of complexity underlying the disorder. In Figure 42 

we show a modified model of OCD incorporating our results and including 

additional biological levels where the missing heritability could be hiding. 

 

By rare variant association in WES and targeted resequencing data we have 

identified TMEM63A, a calcium-permeable cation channel. Moreover, we have 

observed an overrepresentation of TRP channels enriched in rare variants in 

OCD cases, suggesting a potential role of calcium signalling in the aetiology of 

OCD.  

 

We have also found other interesting genes related to neuronal development 

and function, which require further validation, such as neurotransmitter 

transporters, the CTBP2 gene, suggested to regulate neuronal differentiation 

and to be involved in synaptic functions249, or the SERINC2 gene, which play 

important roles in neural plasticity, signalling and axonal guidance. 

 

Transcriptomic studies have identified differential expression of genes involved 

in neuronal function, such as NRCAM, which encodes for a neuronal cell 

adhesion molecule. We have also replicated the upregulation of the genes 

ARPC3, ZMAT2 and PKD1, found by Jaffe et al.140. 

 

Integration of our RVAS and transcriptomic results converge in an 

overrepresentation of genes belonging to semaphorin pathways, which play a 
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role in development of the nervous system, function and reorganization of 

synaptic complexes, and axonal guidance. In fact, NRCAM, ARPC3, SERINC2 

and the TRP channels have been implicated in axonal guidance, and we have 

suggested a possible role of TMEM63A in this process, as it was recently 

described as a mechanosensitive channel highly expressed in brain. 

Semaphorin-triggered signalling also induces the rearrangement of the actin and 

microtubule cytoskeleton, and we have found several OCD associated genes 

belonging to the “carboxyterminal post-translational modifications of tubulin” 

pathway. Moreover, ARPC3, the gene replicated from Jaffe et al.140, is required 

for actin polymerization in dendritic spines. Interestingly, the actin-microtubule 

cytoskeleton system is essential for correct pathfinding. With this, we suggest an 

important role of axon guidance in OCD and we encourage further studies in this 

direction. 

 

Finally, metagenomics studies have confirmed the increase of the Rikenellaceae 

bacterial family in the gut microbiome as a potential biomarker of OCD and have 

shown a specific oro-pharyngeal dysbiotic signature in OCD, characterised by a 

significant higher Actinobacteria/Fusobacteria ratio compared to controls. As 

mentioned before, the changes in the human microbiome can be a cause or a 

consequence of OCD, and specific studies to elucidate the microbiome-OCD 

relationship are needed. 

 

Although this study represents a pilot project and has several limitations that 

must be considered, our results support the high complexity of OCD and actively 

encourage further research in these areas through multiomics approaches. We 

also consider that it would be interesting to study structural variation and genetic 

variation in non-coding regions through WGS, as well as gene-gene and gene-

environment interaction. 
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Figure 42. An integrative model of genetics, microbiome, environment and neurobiology for the expression of OCD. Modified from Pauls et al.4 
Individuals with OCD may have genetic predisposition to the impact of environmental factors that may trigger alterations in neurodevelopment and brain 
function, two processes that may be affected by dysregulation of the calcium signaling and axonal guidance pathways caused by modification of the expression 
of genes involved in these systems. This, in turn, may modify the expression of glutamate-, serotonin- and dopamine-system-related genes. Neuroanatomical 
expression of these modifications may result in an alteration of the brain circuits involved in OCD, leading to the OCD symptomatology. The human microbiome, 
which can be modified by environmental factors, may influence brain development and function by itself or modifying the expression of specific host genes. 
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CONCLUSIONS 

 

 

1. Selection of genetic variants well covered by all exome capture kits is an 

essential step for downstream analyses, as it allows removing PCA stratification 

due to library capture kit batch effect. 

 

2. We have identified TMEM63A as a novel OCD candidate gene by analysis of 

rare variants through WES and targeted resequencing. 

 

3. We have observed an overrepresentation of calcium related genes enriched 

in rare variants in OCD cases, such as TMEM63A and TRP channels, 

suggesting a potential role of calcium signalling in the aetiology of OCD. 

  

4. The analyses performed in B-lymphoblastoid cell lines and zebrafish suggest 

that these model systems are not adequate to validate the functional 

consequences of the DRD4 13-bp frameshift deletion. The influence of the 

DRD4 deletion in OCD may require specific tests and functional outcomes that 

have not been evaluated in the present study. 

 

5. We have observed some common and low-frequency variants associated to 

OCD with genome-wide significance, which do not overlap with previous 

reported associated regions. However, validation and replication studies are 

needed to confirm the relationship of these variants with OCD. 

 

6. We have identified differential expression of genes involved in neuronal 

function in OCD patients, such as NRCAM, a neuronal cell adhesion molecule. 

However, these results require validation and/or replication, since the average 

number of reads obtained is very low. 
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7. RVAS and DE analyses results converge in an overrepresentation of OCD 

associated genes belonging to semaphorin pathways, which are relevant in 

neuronal development and function, and suggests an important role of axon 

guidance in OCD. 

 

8. We have noticed a trend towards a decrease of α-diversity in the gut 

microbiome of OCD patients, and validated the previously reported increase of 

the Rikenellaceae family in OCD individuals as a potential OCD biomarker. 

 

9. We have identified a significant higher Actinobacteria/Fusobacteria ratio in the 

oro-pharyngeal microbiome in OCD patients as compared to controls, 

suggesting a characteristic oro-pharyngeal dysbiotic signature in OCD. 
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SUPPLEMENTARY METHODS 

 

 

S1. Quality control 

S1.1. Quality control of samples captured with Agilent 35, Agilent 50 

and NimbleGen v3 

From our in-house WES dataset, we selected only those samples that we were 

going to use in subsequent analysis: 306 OCD cases and 630 unrelated Spanish 

samples that did not present any neuropsychiatric disorder or related, which we 

used as controls in the RVAS. All these samples had been whole-exome 

captured with Agilent 35, Agilent 50 and NimbleGen v3  

 

We excluded samples with 0 variants and variants that had more then 20 % of 

NA calls in the samples, which made a total of 116,856 excluded variants 

(9.87%). We then filtered by a minimum number of variants per sample of 

42,500 (Supplementary Figure S1), excluding 5 samples.  

 

We did not filter by transition to transversion (Ti/Tv) ratio per sample because we 

considered that all samples met the standards: the ratio of transitions to 

transversions is typically around 2 across the entire genome and higher in 

protein coding regions (Supplementary Figure S2).   

 

Then, we performed a PCA and filtered out outliers based on the first two 

principal components, PC1 and PC2 (Supplementary Figure S3). After selecting 

a maximum threshold of 3 for PC1 and of 5 for PC2 and a minimum threshold of 

-10 for PC2, we excluded 26 samples. Next, we excluded 442,995 positions with 

any sample presenting alternative variants or with all samples presenting only 

NA genotypes. Finally, after QC filtering, we had 292 OCD cases, 601 controls, 

and a total of 624,516 unique SNVs and indels. The samples of the control 

group belonged to the following projects: controls, centenarians, healthy parents 
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of intellectual disability probands, and chronic lymphocytic leukemia, cystic 

fibrosis and fibromyalgia, and stroke patients. 

 

S1.2. Quality control of samples captured with NimbleGen v3 

From our in-house WES dataset, we selected only those samples that we were 

going to use in subsequent analysis: 266 OCD cases and 206 unrelated Spanish 

samples that did not present any neuropsychiatric disorder or related, which we 

used as controls in the RVAS. All these samples had been whole-exome 

captured with NimbleGen v3  

 

We excluded samples with 0 variants and variants that had more then 20 % of 

NA calls in the samples, which made a total of 838,503 excluded variants (41.2 

%). We then filtered by a minimum number of variants per sample of 47,500 

(Supplementary Figure S4), excluding 5 samples. We did not filter by transition 

to transversion (Ti/Tv) ratio per sample because we considered that all samples 

met the standards (Supplementary Figure S5).  Then, we performed a PCA and 

filtered out outliers based on the first two principal components, PC1 and PC2 

(Supplementary Figure S6). After selecting a minimum threshold of -5 for PC1 

and of -10 for PC2 and a maximum threshold of 10 for PC2, we excluded 15 

samples. Next, we excluded 16,815 positions with any sample presenting 

alternative variants or with all samples presenting only NA genotypes. Finally, 

after QC filtering, we had 253 OCD cases, 188 controls, and a total of 490,150 

unique SNVs and indels. The samples of the control group belonged to the 

following projects: controls, healthy parents of intellectual disability probands, 

and fibromyalgia, and stroke patients. 

 

S1.3. Quality control of samples from targeted sequencing 

From the targeted sequencing samples, we excluded those with less than 150 

variants (Supplementary Figure S7), and those variants that had more then 20 

% of NA calls in the samples. We also filtered out samples with a Ti/Tv ratio 
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lower than 1.8 and higher than 4, in order to delete outliers (Supplementary 

Figure S7). We did not apply hard filters by number of mutations per sample or 

Ti/Tv ratio because we included these variables later in the RVAS model, as 

covariates. Next, we performed a PCA but we did not filter by PC, as there were 

no outliers (Supplementary Figure S8). After QC filtering, we had 427 OCD 

cases, 1474 controls, and a total of 13,751 unique SNVs and indels. 

 

 

S2. Development of a drd4 knockout zebrafish model 

(ZeClinics methodology) 

S2.1. Zebrafish maintenance 

Adults wild-type zebrafish (Danio rerio), strain AB, purchased from KIT-

European Zebrafish Resource Center (EZRC) were maintained at 28–29ºC on a 

light cycle of 14h light: 10h dark (lights on at 7am; lights off at 9 pm). 

 

S2.2. CRISPR/Cas9 design for gene Knock Out 

Gene sequences were retrieved using http://www.ncbi.nlm.nih.gov/gene and 

http://www.ensembl.org/Danio_rerio/Info/Index. sgRNAs were designed using 

the online tool http://crispor.tefor.net/, based on exon site and high efficacy and 

not off-target published algorithms.  

 

S2.3. Zebrafish embryo preparation and sgRNA’s microinjection  

Fertilized zebrafish embryos were collected in E3 medium in Petri dishes. At 1-

cell stage (0-0.5 hours post fertilization (hpf)), >20 embryos (to identify the best 

sgRNA candidates for KO efficiency) per gene were injected. At 3 hpf, deformed 

or not fertilized embryos were discarded. 20-25 embryos of 48 hpf per injected 

pool were selected for Double Strand Break (DSB) efficacy analysis. To do so 

different steps were followed:  

i) Genomic DNA extraction 
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ii) PCR with HIFI-Taq from genomic DNA using Diagnosis primers 

(XX_Fw/XX_Rv). Fw and Rv primers should be ~100-150 bp from DNA 

break. Hence, PCR size should be ~300 bp. PCR in a 10 uL volume.  

iii) Clean with PCR cleaning columns (Qiagen better). Elute in 20 uL dH2O. 

iv) Take 1 uL of clean PCR for T7 endonuclease reaction (when KO). 

 

Injected embryos were grown to adulthood to identify F0 mutant founders, which 

were outcrossed to wt animals to generate F1 heterozygous mutants. F1 embryo 

pools were selected to grow to adulthood through the above mentioned protocol. 

 

When F1 animals reached adulthood, their fins were individually clipped and 

used to extract genomic DNA. The region of interest was amplified and analysed 

by Sanger sequencing to identify isogenic mutant animals promoting the 

appearance of early stop codons in drd4a  and drd4rs.  

 

After selecting knockout alleles for each gene (F1 generation), we crossed 

single heterozygous between each other in order to generate double 

heterozygous animals (F2 generation). Through the cross of these double het 

animals we obtained single and double homozygous larvae for performing the 

proposed phenotypic analysis. 

 

S2.3. Behavioural protocol 

Putative behavioural alterations were assessed by comparing locomotion 

differences among the different genotypes: wild-type, ra or rs single knock-out, 

ra and rs double knock-out. Larvae were analysed at 120 hpf by locomotion 

assessment using the EthoVision XT 12 software and the DanioVision device 

from Noldus Information Technologies, Wageningen, The Netherlands. This 

closed system consists of a camera placed above a chamber with circulating 

water and a temperature sensor set at 28 ◦C. Individualized larvae in a 48-wells 

plate are placed in the chamber, which can provide different stimuli (light/dark 

environment, tapping, sound) controlled by the software. Prior to each 

experiment, larvae are left for 10 minutes in dark for acclimation, then 
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predetermined series of alternating dark and light environment and external 

stimuli are presented to the larvae. The final experimental protocol is divided in 

two main parts: first a 50 minutes of dark/light alternating environments phase 

(10 min each), then a series repeated tapping for 30 seconds (1 tapping/sec). 

 

Different sets of information can be extrapolated from the different phases: the 

first phase is useful to detect anomalies in larval movement and deviations from 

the stereotyped behaviour (natural locomotor behaviour of zebrafish is active in 

dark and immobile in light) and changes in the larval total locomotion. Moreover, 

measuring the time spent by the larvae in the center or in the periphery of the 

well allows us to extrapolate the anxiety state of the individual (thigmotaxis).  

Finally, in the second part of the trial, defects in short memory and learning 

could be evaluated by testing the capacity to gradually reduce response to the 

external stimuli, a process known as “habituation”. 

 

S2.4. Statistical analysis 

Data was analysed using the IBM SPSS Statistics version 20.0 software 

(Armonk, NY, USA). Data are presented as mean ± standard error (SE). Prior to 

the analyses, the Shapiro-Wilk test was used to assess the normality of the 

distribution of the dependent variables. Statistical analysis of the data for the 

locomotive parameters was performed using One-way ANOVA followed by the 

Dunnett test. Results were statistically compared between genetic groups and wt 

(negative control) group. Differences were considered statistically significant 

when p<0.05. 

 

 

S3. Diversity measures 

We estimated α- and β-diversity measures within samples. α-diversity refers to 

species richness (number of taxa) within a single sample, while β-diversity refers 

to dissimilarity in taxonomic abundance profiles from different samples. 
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We estimated α-diversity within samples as measured by Observed diversity, 

Chao1 index, Abundance-based Coverage Estimator (ACE), Shannon, Simpson, 

Inverse Simpson, and Fisher Diversity indices using the estimate_richness 

function from the Phyloseq package. We also calculated Faith’s phylogenetic 

diversity and species richness using the pd function from the picante package 

(version 1.6.2)1. Boxplots were generated using ggplot2 (version 2.2.1)2. 

Statistical significance of α-diversity differences between groups was evaluated 

with Mann–Whitney U test when samples were independent, and with Wilcoxon 

rank-sum test when samples were paired. 

 

The observed diversity index measures the number of different species per 

sample, which is defined as “richness”. It does not considers the abundances of 

the species or their relative abundance distributions. The Chao1 index is also a 

qualitatively measure of alpha diversity which, beside species richness, 

considers the ratio of singletons (n = 1) to doubletons (n = 2) giving more weight 

to rare species. The ACE incorporates data from all species with fewer than 10 

individuals, rather than just singletons and doubletons. The Shannon diversity 

index relates taxa richness and evenness, which is defined as the relative 

abundances of the different species making up the samples’ richness. The 

Simpson diversity index considers the number of species present, as well as the 

abundance of each species, but it has a strong dependency on the few most 

common species. The inverse of Simpson index refers to the effective number of 

taxa types that is obtained when the weighted arithmetic mean is used to 

quantify average proportional abundance of taxa types in the dataset of interest. 

Fisher is an alpha diversity measure with an inherent assumption of a 

logarithmic series-type rank abundance structure of communities. Finally, Faith’s 

Phylogenetic Diversity (PD) is the phylogenetic analogue of taxon richness and 

is expressed as the number of tree units which are found in a sample.  

 

We estimated β-diversity as the weighted and unweighted UniFrac distance 

between samples with the Unifrac function, as well as the Jensen-Shannon 

Divergence (JSD) with the JSD function, both from the Phyloseq package, and 

we also calculated the Bray-Curtis dissimilarity and Canberra index using the 
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vegdist function in the vegan package (version 2.4.6)3. Furthermore, the adonis 

function in the vegan package was used to perform a PERMANOVA test on β-

diversity with 999 permutations considering even dependence of samples 

(paired OCD samples after and before treatment) using the “strata” argument 

within the adonis function. We used a Principal Coordinate Analysis (PCoA) to 

visualize the clustering of the samples. 

 

Bray-Curtis dissimilarity is a statistic used to quantify the compositional 

dissimilarity between two samples, based on abundance or read count data. It is 

dominated by the abundant species so that rare species add very little to the 

value of the coefficient. The Canberra metric is not affected as much by the 

more abundant species in the community, and thus differs from the Bray-Curtis 

measure. The Jensen–Shannon divergence is a method of measuring the 

similarity between two probability distributions. UniFrac is a distance metric used 

for comparing biological communities. It differs from dissimilarity measures in 

that it incorporates information on the relative relatedness of community 

members by incorporating phylogenetic distances between observed organisms 

in the computation. Unweighted uniFrac metric is purely based on sequence 

distances (does not include abundance information), while in weighted UniFrac 

metric branch lengths are weighted by relative abundances (includes both 

sequence and abundance information). 
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SUPPLEMENTARY FIGURES 

 

 

 

 

Supplementary Figure S1. Number of variants per sample before and after filtering. We 

removed those samples wit less than 42,500 variants, as they represented outliers of our sample 

dataset. 

 

 

 

Supplementary Figure S2. Transition/transversion (Ti/Tv) ratio per sample. 
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Supplementary Figure S3. PCA of all samples involved in posterior RVAS before and after filtering. We performed the PCA analysis selecting all 

synonymous SNVs without linkage disequilibrium of all samples. Agilent 35: Agilent SureSelect Human All Exon 35Mb Kit; Agilent 50: Agilent SureSelect Human 

All Exon 50Mb Kit; NimbleGen v3: NimbleGen SeqCap EZ Library v3.0; OCD: obsessive compulsive disorders; ID: intellectual disability; CLL: chronic 

lymphocytic leukemia. 
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Supplementary Figure S4. Number of variants per sample before and after filtering. We 

removed those samples wit less than 47,500 variants, as they represented outliers of our sample 

dataset. 

 

 

 

 

Supplementary Figure S5. Transition/transversion (Ti/Tv) ratio per sample. 
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Supplementary Figure S6. PCA of all samples involved in posterior RVAS before and after filtering. We performed the PCA analysis selecting all 

synonymous SNVs without linkage disequilibrium of all samples. NimbleGen v3: NimbleGen SeqCap EZ Library v3.0; OCD: obsessive compulsive disorders; ID: 

intellectual disability. 
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Supplementary Figure S7. Targeted resequencing quality control. Number of variants (left) 
and Ti/Tv ratio (right) per sample after filtering. 

 

 

 

 

Supplementary Figure S8. Targeted resequencing quality control. PCA of all samples 
involved in the targeted resequencing study. We performed the PCA analysis selecting all 
synonymous SNVs without linkage disequilibrium of all samples.  
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Supplementary Figure S9. Percentage of explained variance by the first 20 principal components 
derived from (A) PCA of samples whole-exome sequenced with Agilent 35, Agilent 50 and 
NimbleGen v3; (B)  PCA of samples whole-exome sequenced with NimbleGen v3; and (C) PCA of 
the targeted resequencing samples. We selected the 10 first principal components to be included as 
covariates in subsequent RVAS. 
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Supplementary Figure S9. Gel electrophoresis of the multiplex PCR designed to detect the 
DRD4 13-bp frameshift deletion in B-lymphoblastoid cell lines of OCD patients carrying the 
deletion and controls. OCD samples (the first 5 lanes) presented the 674 bp, band corresponding 
to the deletion. Control samples (the next 7 lanes) only presented the positive control band of 429 
bp, which meant that they did not have the deletion.  
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Supplementary Figure S11. Gut bacterial abundances for OCD T0, OCD T3 and controls at the genus (A) and family (B) level.
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Supplementary Figure S12. Oro-pharyn1geal bacterial abundances for OCD T0, OCD T3 and controls at the genus (A) and family (B) level. 
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SUPPLEMENTARY TABLES 

 

 

Supplementary tables are provided in electronic format. 

 

 

Supplementary Table S1: Clinical diet questionnaire 

Supplementary Table S2: Diet questionnaire answers from OCD patients 

Supplementary Table S3: Diet questionnaire answers from controls 

Supplementary Table S4: OCD patient data according to age and gender 

Supplementary Table S5: Clinical data from OCD patients included in the 

metagenomics study 

Supplementary Table S6: List of primers sequences used for Sanger 

sequencing validation 

Supplementary Table S7: Primers used in the multiplex PCR for DRD4 

validation 

Supplementary Table S8: PCR amplification conditions for DRD4 validation 

Supplementary Table S9: Targeted sequencing design 

Supplementary Table S10: Gene list from Venn Diagram analyses comparing 

different RVAS methods  

Supplementary Table S11: Gene list from Venn Diagram analyses comparing 

RVAS performed with whole-exome samples captured with one or three kits 

Supplementary Table S12: Enriched gene ontology-based sets from RVAS 

results 

Supplementary Table S13: ExAC data of the common variants of the study (1) 

associated to OCD with statistical significance (adjusted p-value < 

0.005Supplementary Table S14: DE genes with FC >1.5 or FC <0.665 and 

nominal p-value <0.05 

Supplementary Table S15: Enriched gene ontology-based sets from DE 

analyses OCD T0 versus controls results 
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