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Abstract

Learning latent variable models is a fundamental machine learning problem,
and the models belonging to this class — which include topic models, hidden Markov
models, mixture models and many others — have a variety of real-world applications,
like text mining, clustering and time series analysis. For many practitioners, the
decade-old Expectation Maximization method (EM) is still the tool of choice, despite
its known proneness to local minima and long running times. To overcome these
issues, algorithms based on the spectral method of moments have been recently
proposed. These techniques recover the parameters of a latent variable model by
solving — typically via tensor decomposition — a system of non-linear equations
relating the low-order moments of the observable data with the parameters of the
model to be learned. Moment-based algorithms are in general faster than EM as
they require a single pass over the data, and have provable guarantees of learning
accuracy in polynomial time. Nevertheless, methods of moments have room for
improvements: their ability to deal with real-world data is often limited by a lack
of robustness to input perturbations. Also, almost no theory studies their behavior
when some of the model assumptions are violated by the input data. Extending
the theory of methods of moments to learn latent variable models and providing
meaningful applications to real-world contexts is the focus of this thesis.

Assuming data to be generated by a certain latent variable model, the standard
approach of methods of moments consists of two steps: first, finding the equa-
tions that relate the moments of the observable data with the model parameters
and then, to solve these equations to retrieve estimators of the parameters of the
model. In Part I of this thesis we will focus on both steps, providing and analyzing
novel and improved model-specific moments estimators and techniques to solve
the equations of the moments. In both the cases we will introduce theoretical
results, providing guarantees on the behavior of the proposed methods, and we
will perform experimental comparisons with existing algorithms. In Part II, we



will analyze the behavior of methods of moments when data violates some of the
model assumptions performed by a user. First, we will observe that in this context
most of the theoretical infrastructure underlying methods of moments is not valid
anymore, and consequently we will develop a theoretical foundation to methods
of moments in the misspecified setting, developing efficient methods, guaranteed
to provide meaningful results even when some of the model assumptions are violated.

During all the thesis, we will apply the developed theoretical results to chal-
lenging real-world applications, focusing on two main domains: topic modeling and
healthcare analytics. We will extend the existing theory of methods of moments to
learn models that are traditionally used to do topic modeling — like the single-topic
model and Latent Dirichlet Allocation — providing improved learning techniques
and comparing them with existing methods, which we prove to outperform in
terms of speed and learning accuracy. Furthermore, we will propose applications
of latent variable models to the analysis of electronic healthcare records, which,
similarly to text mining, are very likely to become massive datasets; we will propose
a method to discover recurrent phenotypes in populations of patients and to cluster
them in groups with similar clinical profiles — a task where the efficiency properties
of methods of moments will constitute a competitive advantage over traditional
approaches.
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Introduction

Cerca una maglia rotta nella rete

che ci stringe, tu balza fuori, fuggi!
Va, per te ’ho pregato. Ora la sete
mi sara lieve, meno acre la ruggine

E. Montale

In our conception of the world, we are naturally led to think that what
we observe around us is the result and consequence of a series of hidden
mechanisms that we can not perceive. As humans, we have the ambition of
understanding and explaining those mechanisms, finding meaningful models
that enable us to describe, explain and predict the hidden relationship be-
tween what can be observed and its latent causes.

Latent Variable Models (LVM) are a formidable tool to accomplish this need.
Formally, a latent variable model is a probabilistic graphical model, designed
as a set of hidden variables that influence the behavior of other observable
random variables (called features). Both observable and latent variables are
assumed to be random and to follow certain probability distribution; the influ-
ence that latent variables play on the observable features is generally described
in terms of probabilistic dependence. Latent variable models can be applied as
a tool in all the fundamental tasks of machine learning, like clustering — with
mixture models — time series analysis — with Hidden Markov Models and their
extensions — natural language processing — with topic models — and prediction.

When collecting data from reality, it is common to perform hypotheses
on the intrinsic mechanisms governing their generation; these assumptions
hypothesize that reality can not behave in totally arbitrary ways — a scenario
where no prediction nor modeling would be possible — but follows some mech-
anisms, that make it, to certain extent interpretable and predictable. Latent



variable models are synthetic tools to describe these mechanisms. Learning
a latent variable model means to find a model that properly describes the
process that governs the generation of the data that we are observing. This
task is commonly performed by algorithms that take as input a set of observed
data, in terms of observable variables, and return an hypothesized model that
properly describes them. Algorithms can come with different levels of com-
plexity: the structure of the model may be known completely — leaving to the
algorithm only the duty of estimating the parameters of a model — or partially,
with the algorithm that also has to estimate part of the structure of the model.

Recent technology development has boosted the generation of massive datasets,
characterized by thousands of observable features and millions of observations.
Learning algorithms for latent variable models need to be able to deal with
these kind of data, returning meaningful models in conveniently short running
time. Providing algorithms to learn latent variable models is the objective of
this thesis. In particular, our focus will be on learning techniques able to run
efficiently on massive high dimensional datasets, maintaining the guarantee
of returning provably good models. We will study algorithms for several
latent variable models in various different scenarios, from the case when the
structure of the model is assumed known, and the algorithm is required to
retrieve only the parameters of the model, to the case when some information
is missing, and the algorithm is required to retrieve a meaningful model with
only partial information.

The standard approach to learn a parametric LVM is based on maximum
likelihood principle, and consists of finding the model that maximizes the
likelihood of the observed data. Given a dataset

X ={zW, .. 2z}

the maximum likelihood approach first assumes data to be generated by a
certain probability distribution P[X|©] — depending on a set of unknown
parameters © — and then it looks for the value of ©® maximizing the likelihood:

Oy = argmax P[X|O] = argmaxHIP[x(i)|@].
o o

=1

This approach is theoretically appealing, but it comes with several complica-
tions: the likelihood function is in general non-convex, and admits closed-form



solutions only for trivial models. During the years, several heuristics have
been designed to approximatively maximize the likelihood. For many decades,
the standard approach to accomplish this task has been the Expectation
Maximization (EM) method (Dempster et al., |1977), an heuristic that is easy
to implement, but is known to be prone to poor local optima. Furthermore,
EM requires several passes across the entire dataset at each iteration, which
makes it unusable with massive high-dimensional datasets (Balle et al., [2014).
EM is not always applicable, as complex models do not allow an explicit
calculation of the likelihood function; for these cases approximate inference
approaches have been developed, which have similar limitations to those of
EM. Some methods are based on Monte Carlo sampling, and are computa-
tionally demanding. Others are based on convex relaxations of the objective
functions to be optimized, consequently returning suboptimal models.

To overcome these limitations, in recent years a new framework to learn
latent variable models emerged: the Method of Moments (MoM). Instead of
explicitly relying on the probability density function of a model, methods of
moments work by finding equations that relate the low order moments of the
observable data with the parameters of the latent variable model that one
wants to learn, and solving these equations typically employing tensor /matrix
factorization techniques. Compared to EM, moment-based algorithms provide
a stronger theoretical foundation. In particular, it is known that in the setting
where data is generated by a given model, whose characteristics are known to
the user — a setting called the realizable setting — the output of a method of
moments will converge to the true parameters of the model as the amount of
training data increases. Furthermore, MoM algorithms only make a single
pass over the training data, they are highly parallelizable and they always
terminate in polynomial time. These promising characteristics make methods
of moments the ideal learning framework for the challenging settings that we
have in mind, as MoM allows to deal with massive datasets with guarantees
of retrieving a meaningful model. The theory of methods of moments to learn
latent variable models will be the core focus of this thesis.

The first part of this thesis studies methods of moments when data is assumed
to be generated by a known latent variable model, whose parameters are to
be estimated. This is the standard setting in which methods of moments
are traditionally employed. Once a latent variable model has been designed,
the learning procedure consists of two steps: first, finding the equations that
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relate the moments of the observable data with the model parameters and
second, to solve these equations to retrieve estimators of the parameters of
the model. In this part of the thesis we will focus on both steps, providing
and analyzing novel estimators for the moments and novel techniques to solve
the equations that allow to retrieve, from the moments, the model parameters.

The second part of the thesis focuses on methods of moments when some
of the information about the model generating the data is missing, or not
properly specified by a user. In this context, we will observe that most of
the theoretical infrastructure underlying methods of moments is not valid
anymore — a fact that limits the applicability of methods of moments in
scenarios where the model generating the data is unknown or misspecified,
like it commonly happens with real-world data. The objective of the second
part of this thesis will thus be to develop theoretical foundations to methods of
moments in the misspecified setting, developing efficient methods, guaranteed
to provide meaningful results even when some of the model assumptions are
unknown or violated.

Despite the huge number of applications of latent variable models to real-
world problems, the adoption of methods of moments is still limited, and
practitioners still prefer to use more traditional approaches, like EM or ap-
proximate inference methods. Providing stable and accurate MoM algorithms
and pioneering their usage in a real experimental framework are thus two
strictly related research goals. For this reason, during all the thesis, we will
apply the developed theoretical results to challenging real world applications,
focusing on two main domains: text mining and healthcare analytics.

Text mining is a discipline of natural language processing that aims at
finding latent topics in text corpora. Here, the observable data, generally
coincides with the words appearing in a document, while the hidden variable
can be, for example, the topics with which each document is dealing. Datasets
in this discipline tend to be large — with several texts in it — high-dimensional
— as the vocabularies contain thousands of words — sparse — especially for
corpora with just short texts likes feeds, tweets or medical annotations. These
characteristics, make the traditional approaches based on the likelihood prin-
ciple difficult to apply efficiently, while they constitute the ideal application
scenarios for methods of moments. During the thesis we will apply methods
of moments to learn models that are traditionally used to do topic modeling,
comparing them with more traditional approaches.



Healthcare analytics also constitute a natural application field for latent
variable models: every time a patient visits an healthcare center, a record
is produced, containing for example clinical findings and prescriptions. In
this context, data represents the observable manifestation of a hidden status,
representing the true, unobservable status of patient’s diseases. Similarly to
text mining, healthcare records are very likely to become massive datasets,
with several dimensions associated to millions of patients, where the efficiency
properties of methods of moments constitute a competitive advantage over
traditional approaches. In this thesis, we will apply methods of moments to
learn latent variable models able to provide a latent representation of patient
statuses, allowing to discover recurrent phenotypes in populations of patients
and to cluster patients in groups with similar clinical profiles.

Research Problems and Related Works

The seminal works on learning latent variable models with methods of
moments date back to the years around 2010, when the machine learning
community started realizing that a frequentist approach exploiting the mo-
ments could help solving problems that where known to be intractable if faced
with traditional likelihood-based approaches. Generalizing an approach intro-
duced by |Pearson| ((1894)), methods of moments first store in multidimensional
tensors the low-order moments of the observable data, and then recover the
parameters of the desired model via tensor decomposition techniques. The
idea produced several early applications for Markov models (Chang, (1996),
evolutionary trees (Mossel and Roch| 2005), mixture models (Feldman et al.,
2006) and multi-view models (Chaudhuri et al., 2009), finding a more explicit
formalization in the subsequent works by [Hsu et al.| (2012); [Hsu and Kakade
(2013); |Anandkumar et al. (2012b) and |Anandkumar et al.| (2012a). |Anand{
kumar et al. (2014) presented an exhaustive survey showing that spectral
learning of most of the LVMs can be abstracted in two steps: first, given a
prescribed LVM, they show how to operate with the data to obtain an empir-
ical estimate of the moments, expressed in the form of symmetric low rank
matrices and tensors; in a second step, the moments are decomposed using
tensor /matrix decomposition techniques, to obtain the unknown parameters
of the model. That paper also recalls and studies a method to derive such
decomposition, the Tensor Power Method (TPM). This abstraction allows to
split the research on methods of moments in two main non-disjoint areas.



A first area concentrates on methods to retrieve from data empirical es-
timates of the moments for specific LVMs. Examples are the works by
and Ohl (2014)) for mixture models with categorical observations, by (Chaganty]

and Liang (2013) for mixtures of linear regressions, by Anandkumar et al.|
(2012b)) for naive Bayes models, and by Hsu et al.| (2012)) for hidden Markov
models. Important examples come from text mining, where equations to
retrieve a moment representation for the single-topic model are provided
by |Anandkumar et al.| (2012b)) and Zou et al,| (2013). An alternative and
more complex model is Latent Dirichlet Allocation (LDA) (see |Griffiths and
Steyvers, 2004; Blei et al., [2003)), for which Anandkumar et al.| (2012al) provide
empirical estimators of the moments.

A second research area focuses on methods to decompose the low-order
moments to retrieve the parameters of the model. Literature on tensor decom-
position is vast and it is believed to originate from the works by
(1927, [1928). The topic received attention in the field of psychometrics
roll and Chang, 1970; Harshman, 1970; Tucker| [1966) and chemometrics
(Appellof and Davidson), [1981)) and extensive surveys are provided by
and Bro| (2006); Kolda and Bader (2009) and [Sidiropoulos et al.| (2017)). These
works also present several classical techniques to obtain the so-called canonical
polyadic decomposition (CPD) of a three dimensional tensor, which expresses
it as a linear combination of rank-1 tensors. [Kolda and Bader| (2009)) recall
one of the most popular algorithms to obtain the CPD of a generic tensor:
Alternating Least Square (ALS) (whose origins traces back to
\Chang, 1970, [Harshman| |1970)). ALS is an heuristic that works by fixing
all-but-one of the factors decomposing a tensor, and updating the remaining
factor by solving an overdetermined linear least squares problem. ALS is
easy to implement and to understand but is known to be prone to local
minima, requiring several random restarts to return meaningful results (see
the discussion by Kolda and Bader], 2009, pg. 18). A different line of work
consists in approaching the tensor decomposition problem with simultaneous
Schur decompositions (Van Der Veen and Paulraj, 1996; De Lathauwer et al.|
2004} |Colombo and Vlassis, 2016)) or matrix optimization methods to perform
simultaneous diagonalization (Kuleshov et al,[2015)). In theory, one could use
any of these methods to decompose the three-dimensional tensor containing
the third-order moments, but the high dimensionality of that tensor makes
this approach often computationally unfeasible. On the other hand, one
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can rely on the specific structure of the whole set of low-order moments by
using not only the third, but also the first and the second order moments
to explicitly exploit their symmetry properties and obtain the desired model
parameters more efficiently and with provable guarantees of global optimality.
This is the approach followed by methods of moments.

The reference method here is the Tensor Power Method (TPM) from |Anand;
kumar et al. (2014). TPM manipulates the low-order moments to obtain a
symmetric orthogonal tensor that is decomposed using a high-dimensional
extension of the well-known matrix power method, with an approach pro-
posed by Zhang and Golub| (2001) and |Kolda| (2001). The main issue of
this algorithm is its scalability, since its running time grows as k° where k
is the number of latent components. An alternative, which in general has
better dependence on the number of latent factors, consists in using matrix-
based techniques and a simultaneous diagonalization approach, specializing
an approach that can be traced back to Sanchez and Kowalskil (1990) and
Leurgans et al.| (1993). Examples of these methods of moments are provided
by |Anandkumar et al. (2012b), with an algorithm based on the eigenvectors
of a linear operator; |Anandkumar et al.| (2012a)) also present an alternative
method based on the singular vectors of a Singular-Values Decomposition
(SVD). These two methods are faster than TPM by far, but they are more
sensitive to perturbations on the input data.

A method of moments uses a set of n samples to empirically estimate the
moments and then uses tensor decomposition methods to recover the model
parameters from the decompositions of the estimated, perturbed, moments.
Methods of moments can thus be improved by improving the convergence
rate of the estimators — obtaining better moments with smaller sample sizes
— by working on the decomposition algorithms to reduce their sensitivity to
iput perturbations — returning better model parameters when the input
moments are perturbed — and improving their performance — performing
the decompositions in shorter running times. In this thesis, we will focus
on all these aspects, working on novel moment-estimators for several latent
variable models and providing improved tensor decomposition techniques that
allow to recover, from an estimation of the moments, robust estimates of the
parameters of a latent variable model in short running times.

As explained in the introduction, the traditional approach to learn latent
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variable models is based on the maximum-likelihood principle and aims at
finding the model that maximizes the likelihood of an observed dataset. How-
ever, maximizing the likelihood is a difficult task even for simple models:
Arora et al.|(2012)) for example proved that maximum likelihood estimates for
the single topic model are NP-hard, while |Roch| (2006) proved the same for
latent trees. Consequently, several heuristics have been developed aiming at
solving the maximum likelihood problem under an approximate point of view.
Expectation Maximization (Dempster et al [1977), for example is an iterative
technique that, starting from a user defined initialization (typically random),
iteratively updates the parameter of a model, increasing the likelihood at
each iteration. EM has only local guarantees of convergence, but is easy to
understand and to implement, which makes it the most used technique in
this field. Furthermore, EM requires the complete calculation of the posterior
distributions, which may not be feasible for models with a complex structure;
in this case it is common to use approximate inference approaches based on
variational inference or Monte Carlo-based approaches (see Bishop| 2006/ for a
detailed presentation of these techniques). Approximate inference techniques
are widely used in tasks like topic modeling (Blei et al., [2003; (Griffiths and
Steyvers, [2004) and mixture-models learning (Marin et al., 2005). Thanks to
their flexibility, they allow to deal with complex models, but, unlike methods
of moments, they fail to provide optimal models in small running times.

Methods of moments and likelihood-based techniques aim at the same purpose
— retrieving the parameters of a model — following two different frameworks.
However, these two frameworks are not unrelated, but complementary. For
example, empirical studies indicate that initializing EM with the output
of a MoM algorithm can improve the convergence speed of EM by several
orders of magnitude, yielding a very efficient strategy to accurately learn
latent variable models (Balle et al. 2014; Chaganty and Liang, [2013; Bailly|
2011). In the case of relatively simple models this approach can be backed by
intricate theoretical analyses (Zhang et al., 2014), showing that initializing
EM with the output of a method of moments can provide guarantees of global
optimality.

Despite their theoretical appeal, the practical applications of methods of
moments are still limited, and EM remains the tool of choice of most of
practitioners, notwithstanding the slow running times and the well-known
proneness to poor local optima. While this is partially due to the novelty of
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the MoM framework, there are also deeper theoretical issues that limit the
robustness of these methods in real-world applications. Methods of moments
in fact, to work with guarantees, require the user to know the exact structure
of the latent variable model that he wants to learn; this means knowing the
number of latent variables of a model, their distribution, and their proba-
bilistic relation with observable data. However, most of these characteristics,
are by definition unknown to the user, who can only estimate them with
cross-validation techniques. |[Kulesza et al.| (2014) demonstrated that when
the number of latent states imposed by the user is not enough to describe
the training data, a MoM can lead to unexpected results, and provided in
a subsequent work (Kulesza et al., [2015) potential ways to overcome this
issue. In general, it is possible to demonstrate (see Chapter [5|) that when the
characteristics of the model generating the data are unknown or misspecified,
most of the traditional methods of moments provide no guarantees on their
results. Furthermore, for methods of moments to work properly, it is crucial
to deal with moments whose expectations are in a prescribed relation with
respect to the parameters of the model one wants to learn; however, efficient
formulations of the moments are known only for few, simple, latent variable
models, requiring heavy assumptions on the data, that are systematically
violated in real world scenarios. The problem of the applicability of methods
of moments in settings where the model generating the data is unknown or
not properly specified is largely unstudied; in this context, the traditional
approach consists of refining the results of a MoM with EM, so to obtain
a parameter that, at least locally, is guaranteed to be meaningful, locally
maximizing the likelihood. While this approach is effective in practice, a
theory on why in the misspecified setting a MoM would return a meaningful
model (and thus a good initializer for EM) is still not present. Providing a
theoretical analysis of methods of moments in the misspecified setting is one
of the objectives of this thesis.

Overview of contributions

The first part of this thesis (Chapters|1]to 4] is dedicated to the theory
of methods of moments for learning latent variable models when all the
characteristics of the model generating the data are known, and only the
parameters of that model need to be recovered.
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Chapter [1] is dedicated to recalling the basis of methods of moments. We will
present how methods of moments work by presenting a simple application
for learning Naive Bayes Models with Poisson-distributed features. We will
show how it is possible to recover a set of equations that relate the low-order
moments of the observable data with the parameters of the model and we
will then present the most used techniques to solve these equations — namely
the tensor decomposition methods from Anandkumar et al.| (2012b} 2014]),
and Alternate Least Square (Kolda and Bader] 2009). We will conclude the
chapter with a brief discussion on how this approach can be generalized to
any latent variable model, and on the conditions required to guarantee the
identifiability of a model in this setting.

A fundamental part in methods of moments is the step that decomposes
the matrices/tensors containing the moments to retrieve an estimate of the
parameters of the model generating the data. This step is generally accom-
plished using algorithms that employ matrix/tensor decomposition methods,
which ideally are required to run in short running times and to guarantee good
robustness to random perturbations — providing good learning accuracy when
only a limited amount of data is available. A scan of the literature for these
methods present some alternative tools of choice: | Anandkumar et al.| (2012alb)
present methods with high scalability, but poor robustness to perturbations,
while |Anandkumar et al.| (2014) introduce a method with better robustness
but significantly worse running times. At the same time, existing methods
from tensor factorization theory (see for example [Tomasi and Bro 2006} |Kolda
and Bader| 2009; Sidiropoulos et al.[|2017) provide heuristics with a worse
computational complexity and less guarantees on the learning accuracy. These
limitations of existing methods led us to search for an algorithm with high
learning accuracy and strong efficiency guarantees. In Chapter [2| we provide
a novel algorithm for the simultaneous solution of moment equations that
allows to retrieve, from estimates of the moments, a set of estimates of the
model parameters. This algorithm will rely on simple matrix operations —
being consequently fast — and will guarantee a best-in-class learning accuracy.
We will analyze the proposed method under the theoretical point of view,
studying its computational complexity and its robustness to random pertur-
bations of the input. Finally we will experimentally compare the proposed
method with existing techniques, showing that the proposed algorithm out-
performs each existing method either in terms of speed or in learning accuracy.
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One of the areas where latent variable models find a natural field of ap-
plication is natural language processing and topic modeling. In this field,
the observable variables are the words appearing in a text, while the latent
variables are the topics with which a text is dealing. A simple model is the
single-topic model, where each text is assumed to be about only one topic and
the probability of a given word appearing in a text depends on the topic of the
text. An alternative and more complex model is Latent Dirichlet Allocation
(LDA) (see |Griffiths and Steyvers, 2004} Blei et al., 2003), where each text
is assumed to deal with a multitude of topics, and each word of a text is
assumed to be associated to a unique topic. Learning techniques for topic
modeling are in general dominated by Bayesian approaches, with techniques
based on Markov Chain Monte Carlo methods (Griffiths and Steyvers| 2004)
and variational techniques (Blei et al., 2003). At the same time, methods of
moments exist to learn standard models like the single-topic model (Anand-
kumar et al., 2012b; |Zou et al., 2013) and LDA (Anandkumar et al., |[2012a).
In Chapter |3| we present novel methods of moments to learn these two models
aiming at improving existing ones. In particular we will introduce new of esti-
mators of the moments for the single-topic model and for LDA| studying their
sample complexity and providing novel sample complexity bounds. We will
show, both experimentally and with a theoretical analysis, that the proposed
estimators have an improved robustness in comparison with existing ones.
Furthermore we will compare the proposed approaches with the standard
Bayesian approach proposed by |Griffiths and Steyvers| (2004)) on real-world
text corpora, both for single-topic model and LDA. We will show that the
moment-based method presented in this chapter recovers higher-quality topics
in much smaller running time.

In Chapter 4] we will present an application of latent variable models to
healthcare analytics, focusing on the specific task of patient clustering. We
will consider the most simple kind of electronic healthcare records — namely
ICDY records (Geraci et al., [1997) registering patient diagnostics — and we
will use these data with two objectives: clustering patients in groups with
homogeneous clinical profiles and retrieving meaningful phenotypes — i.e.
abstract representations describing the most recurrent diseases-patterns in
patient statuses. To accomplish this task we will model our data as mixture
models, learn the mixture with a method of moments and use that mixture to
cluster the various patients, using a model-based clustering approach (Marin
et al., 2005)). The choice of a model-based approach over the more traditional
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distance-based methods like k-means (Macqueen, [1967) or spectral clustering
(Ng et al., 2002) has two benefits: first it allows to deal with high-dimensional
sparse data, as it will be the case for our dataset, and second it provides
a meaningful generative model for our dataset, allowing an easy construc-
tion of phenotypes. The task of performing a moment-based learning of
a mixture model will come with a peculiar challenge, because no efficient
moment-estimators are known for such kind of latent variable models. As a
consequence, we will propose an approximate approach where we will develop
moment-estimators that are provably almost-unbiased — i.e. with a bias that
can be calculated and is provably small — and feed a decomposition algorithm
with these estimators. The resulting parameters will then be refined with
EM, in order to remove the bias inherited from the moment estimation. We
will see that this hybrid MoM-EM approach will work effectively, with EM
rapidly converging to good optima. Furthermore, it will allow to present an
efficient implementation of the decomposition method presented in Chapter
allowing it to run with a better computational complexity. We will apply
this approach to the considered dataset of patients obtaining clusters and
phenotypes that make sense under the clinical point of view. Furthermore, we
will compare on synthetic data our approach with more traditional clustering
algorithms, outperforming them in terms of clustering accuracy.

In all the chapters above we have focused on scenarios where data was
generated by a latent variable model whose structure was assumed to be
known to the user, and the task of a learning algorithm was reduced solely to
recovering the parameters of the model. Methods of moments require the user
to explicitly know the structure of the latent variable model that he wants to
learn, as this information is explicitly used in two points: one is when the
moment are calculated, as the formulation of the moment estimators depend
on the specific model generating the data; different model will have different
estimators. The second is in the decomposition algorithm, where a user needs
to ask for a specific number of latent states to be returned by the algorithm.
All the theory of methods of moments has been developed in the realizable
setting where the model characteristics are known to the user, and data does
not violate any model assumption. This approach allowed to build a clear
and round theoretical framework for methods of moments, but also limited
the theoretical reliability of these methods in real-world scenarios, where the
model generating the data is always unknown, and model assumptions are
sure to be violated. In the second part of this thesis (Chapters [5[ and @, we
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will concentrate on analyzing methods of moments when data does not follow
a model of the mathematical form assumed by the algorithm, violating some
of the assumptions that the user makes.

In Chapter |5 we will focus on the scenario where a method of moments
is required to learn a latent variable model from data, but the number of
latent states required by a user is too small to accurately represent the
training data. This is a very common scenario, in particular when data is
high-dimensional and it is difficult to find a number of latent states to compre-
hensively describe the dataset, or this number is too high to be estimated. For
example, an important application of low-dimensional learning comes from
exploratory data analysis, where a mixture model with two states is required
to bisect a dataset into two well-distinct classes. The desired behavior of
a learning technique when run in a low-dimensional setting, is to return a
small model that synthetically describes the data, providing the optimal
low-dimensional model approximating the data we are observing. In Chapter
we will demonstrate that this is not the behavior of existing methods of
moments, which instead are likely to return unexpected results when plugged
with a misspecified number or latent states. As a consequence, we provide
a novel decomposition algorithm for method of moment, that phrases the
decomposition task as a non-convex optimization problem and generalizes the
method presented in Chapter 2] We demonstrate that the proposed algorithm,
when run in a low-dimensional setting, returns the optimal low-dimensional
model approximating the one generating the data, according to an intuitive
definition of optimality. Starting from these remarks, we apply this method
to hierarchically learn latent variable models, starting with a simple, two-
dimensional model, which is then refined iterating the learning step on each
of the retrieved dimensions. The hierarchical nature of this method allows
for a fast and accurate solution of the optimization problem raising in the
decomposition task, based on low-dimensional grid search. An immediate
application of this approach is to perform hierarchical clustering, where a
mixture with two classes is learned, used to bisect our dataset, and then the
procedure is iterated on each of the two retrieved clusters. In this chapter
we will also present an application of this approach to natural language
processing, providing a specialization of our method to perform hierarchical
topic modeling.

All the guarantees provided by the theoretical analysis of methods of moments

17



come with the assumption that a user is able to calculate unbiased estimators
of the moments, that asymptotically exhibit a prescribed relation with the
parameters of the model. However, this assumption is possible only when data
is accurately described by a latent variable model of known structure, while
when the structure of the model is not known or no finite model accurately
describes the data — as it is the case in real-world scenarios — nothing is known
on the asymptotic behavior of the moment equations. Consequently, the
theoretical infrastructure guaranteeing that methods of moments will return
a good model approximating the data, loses most its strength in real-world
contexts. In Chapter [6] we demonstrate that theoretical guarantees on the
behavior of methods of moments can be retrieved also when no hypotheses
on the model generating the data are made. In particular, we will consider a
simple calculation formula for the moments, and we will demonstrate that
the decomposition technique introduced in Chapter 5| provides a meaningful
relation between the input data and the output model, regardless the model
generating the data. This means that its output will accurately describe the
data, even if the user imposes no hypotheses on the input data. Additionally,
we will analyze the cost function of the considered method and its action on
the input data, observing that it automatically suggests a rule to split them
into meaningful clusters. From this observation, we will introduce a novel
model-independent clustering algorithm that will be particularly suitable for
high-dimensional binary data. We will thus apply this approach to the medical
records studied in Chapter {4, obtaining meaningful hierarchical phenotypes
and clinically reasonable trees of clusters.

The last chapter concludes this work and highlights the main research chal-
lenges emerging from the problems faced in this thesis. Some of them are
theoretical and aim at improving our current understanding of methods of
moments, studying the relations that link this family of techniques with
traditional likelihood-based methods. Some others are applied, and focus on
extending the applicability of methods of moments to real-world scenarios.
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Chapter 1

Background: Methods of
Moments

In this chapter we present the basis of Method of Moments. We begin
by introducing a simple family of latent variable models called naive Bayes
models and show how to learn them with methods of moments, presenting
an overview of the state-of-the-art approaches. We will then show how the
proposed technique can be extended to several other models.

1.1 Naive Bayes Models

A naive Bayes model is a latent variable model characterized by d + 1
random variables (Y, X, ..., X;) with the following characteristics:

e Y is a hidden (unobservable) discrete variable with a finite number of
possible outcomes: Y € {1,... k}. We define

w; =PY =j), w=(wi,...,w) € A"
where A¥~! is the k—dimensional simplex:
AR = L(7y, M) € RP Zm =1}

The entries of the vector w are commonly named the mizing weights of
the model.
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e The vector X = (X7,...,Xy) is observable, its distribution depends on
the value of the hidden variable Y and the random variables X1, ..., Xy
are conditionally independent given Y. It is common to call the entries
of X the features of the model, and their conditional probability density
functions may follow any parametric distribution:

Distr(X|Y = j) = P;[X], Distr(X;|Y =j) = P,;[X;].
A special role is played by the conditional expectations of the features:
py=EX[Y =j] €RY, p;; = E[X[Y = j]
M =[], .., | 11x] € RTF
The vectors piq, ..., i, are commonly called centers of the model.

Remark 1.1.1. The value of d typically represents the amount of observable
information, while the value k represents the number of latent states that
are enough to provide a synthetic description of the data generated by the
model. Even if d and k can take any value, during this thesis we will be
mostly interested in the case of high-dimensional models, where d > k.

The generative process determined by a naive Bayes model, first generates an
unobservable outcome for Y, say 7, and then generates a set of observations
Xy, ..., X4, whose distribution depends on the value of Y. The conditional
independence of the features allows the following simple factorization of the
probability density function:

k
PIXy,. . X = ) wiP[Xa, o XY =] =) wy [ [ Rl X

j=1 Jj=1 i=1

Naive Bayes models are a family of latent variable models, and their spe-
cific distribution depends on the special characteristics of the conditional
distributions of the features, namely the probability density function P;,[-].

1.1.1 Learning Naive Bayes Models

In the most generic scenario, each IP;; is a specific probability density
function following a certain probability distribution and depending on a
certain set of parameters O, ;:

Pji[-] =Pjil10i4]
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The knowledge of the distributional properties of P;;, together with the
number of latent states k, constitute the probabilistic structure of the model,
and we will abstract it with the notation S. In general, this information will
not be observable from a dataset, and constitutes the model assumption that
a user does on the data that he is observing.

The union of all the parameters ©; ; characterizing each distribution P;;,
together with the mixing weights w, constitute the set of parameters of the
model, and it will be denoted with the pair (©,w), where © = {0;,},,. Also
the parameters of the model will not be directly observable from data, but
unlike the model structure, they will not be imposed by the user, as they will
be the object of a learning process. Consider for example a dataset X', and
impose then the model assumption that data is generated by a naive Bayes
model with a certain structure S. The objective of a learning task will thus be
to find the model parameters (0, w) that allow a model with structure S to
best describe the data. A learning algorithm for a prescribed latent variable
model with structure S will thus be an algorithm that, when inputted with a
dataset X, it returns a meaningful approximation of the parameters:

A (X,S) = (8,0).

The definition of meaningfulness that one will adopt will determine how a
learning algorithm will operate, and we will see an example in the proceeding
of this chapter.

1.1.2 Naive Bayes Models and Clustering

The main application of naive Bayes models is clustering. Consider a
dataset
X = {20 . 2™},

and assume it to be generated by a naive Bayes model with k states. This
means that we assume to have k probability distributions Py, .., [P, and each
observation z( is assumed to be sampled by one of these distributions; the
mixing weights w determine the asymptotic frequencies of the distributions in
the dataset. This suggests an intuitive approach to clustering, by assigning
each sample to the distribution that has the highest likelihood of having
generated it, which allows to partition the considered dataset into %k classes.
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Assume to have learned from data a naive Bayes model with a known struc-
ture. We thus have k distributions Py, .., [P, that we can use to partition our
dataset. We want to assign each sample to its most likely latent state, where
this probability is defined as follows:

PY = j|X = z] = w;P[X = z|Y = j].

This implies
Cluster(z) = argmax w;P;[x].
j
This approach to clustering is commonly called model-based clustering, as it is
grounded on a model assumption on the data. Furthermore, this assumption
exploits the model structure to provide a synthetic description of the data we
are observing, being an interpretable and probabilistically robust approach.

1.1.3 Example: Poisson’s Naive Bayes Models

In this section we will analyze a special case of naive Bayes model, where
all the features are conditionally distributed as Poisson random variables.

Poisson distribution is an integer-valued probability distribution with the
following density function

T

x!

P[z] e, xe{0,1,2.., 00}

A Poisson distribution only depends on the parameter p > 0, which coincides
with the expectation and the variance of the distribution:

E[X] =p, Var[X]=p if X = Poiss(u).

A Poisson’s naive Bayes model is a naive Bayes model where all the features
are conditionally distributed as Poisson random variables. The distribution
of the jth feature conditioned to state ¢ will thus be

P;i[-] =~ Poiss(;;)

for a certain parameter y;;. It is immediate to observe that if X = (X7, ..., Xq)
is the vector of features of the considered model, then

ELX[Y = j] = wja.
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The vector p; = (i1, .., tjq) € R? will thus coincide with the jth center of
the model: p; = E[X|Y = j]. For a Poisson’s naive Bayes model the model
structure is thus simple:

S P;; ~ Poiss(-)
k latent states
and the parameters characterizing each distribution will coincide with the
centers of the model:

1 = Oji-
Poisson’s naive Bayes models are thus entirely determined by their mixing
weights w and their matrix of the centers M, which are their only parameters:

(M,w) = (0, w)[] From now on, we will call the pair (M, w) the parameters
of a Poisson’s naive Bayes model.

Considering a dataset X generated by a Poisson’s naive Bayes model with
parameters (M,w), we want an algorithm able to return an estimate (M, @)
of its parameters.

1.2 The Method of Moments

In this section we present a framework to learn latent variable models,
called method of moments. We will use as instrumental example Poisson’s
naive Bayes models, clarifying how the approach can be easily generalized to
several well-known latent variable models.

The idea at the basis of the method of moments is an immediate conse-
quence of the law of large numbers, which we recall here:

Theorem 1.2.1. Let {2, ... 2™} be an iid sample generated from a distri-
bution X such that B[X]| = p. Then the following relation holds:

" 2@
. Zz
LD

"'We remark that this is the case for any naive Bayes model whose features conditional
distributions P;; depend on a unique parameter j;,; for example, this is the case for
Bernoulli or Exponential random variables.
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The consequence of this theorem is that we can calculate for a distribution
a good estimator of its expectation, by just averaging out a large-enough set of
observed samples. Furthermore, the estimator is guaranteed to approximate
the parameters 1 with increasing accuracy while the sample size increases.
If for example, the samples are generated by a Poisson distribution, and
if we have enough data, the sample average will be a good estimator for
the parameter u, which is the sole parameter of the considered distribution.
The sample average >_ 2 /n is commonly called first-order sample moment,
and it is an approximation of the theoretical first-order moment, that is the
expectation p of the random variable; the usage of the moments of a dis-
tribution for calculating its parameters is commonly called method of moments.

While the Poisson distribution example is a trivial application of the method
of moments, it provides a possible learning strategy for more complex latent
variable models. We will now see how to extend this approach to naive Bayes
models, focusing on the special case of Poisson’s naive Bayes model. Consider
a dataset generated by a Poisson’s naive Bayes model with parameters (M, w)
and £ latent states:

X = {zW . 2™},

where each observation is a d dimensional vector. Our goal is to provide a
method to recover an estimate (M, &) of the model parameters. Trying to
repeat the steps used to estimate the parameters of a Poisson distribution,
we begin by calculating the first order moment of the observed sample, which

will be called Mj:
- n )
M= "R

- n
=1

It is easy to observe that the expectation of M; has a nice form:

k
E[M)] = My =Y wi, (1.1)
=1

which suggests to solve the system of d equations that arises by substituting
M, with its estimator in equation , to obtain asymptotically converging
estimators of the model parameters. However, even in the theoretical scenario
where we have infinite data and Ml = M, the system M; = Zle w;; has,
in most of the cases, several solutions: we have k x d + (k — 1) parame-
ters and just d equations, which are in general not enough to identify the
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model we want to learn. To see a simple example, consider the case where
d > k and assume that (M,w) is a solution of the system ([1.1]); then also
(MO, O"w) will be a solution of the same system for any orthogonal matrix O.

A possible learning strategy may thus consist in providing additional con-
straints to system ([1.1)), by including also the second and the third order
moments. These constraints will be provided by the following proposition:

Proposition 1.2.1. Define the following estimators, called respectively the
second and the third order sample moments :

I ) )
My=Y" % — diag(M,) € R

=1
- " 2@ ©) (4) ~
Mgzzx ®xn ® —M372€Rd><d><d
=1

where
(M?,,Q)h,l,m :Xh:l:m((Ml)h + 3(M2)h,h)
+ X (hsti=m)v(ith=m) (M2)n1 + Xn=tz£m (M2)h

X 1S the indicator function and ® represents the Kronecker product between
vectors. Then we have, for a Poisson naive Bayes model

k

E[M,] = M, = Zwiﬂi @ i (1.2)
i=1
~ k
=1

Proof. We only provide the proof for the second order moment, that for Ms;
being conceptually identical. Consider first the off-diagonal entries of our
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estimator, for certain [ # j:

E[(lfa).;] =E[) “—E

- Z WhE[(X)l(X)j]Y = I

- Z%E[(XMY = hE[(X);]Y = h]
h:l

= Whith Ik, j -
h=1

The proof for the diagonal terms works similarly:

E[(M2)i,] =E[(X)7] — E[(X),]

. k
=Y WB[(X)FY = h] = wapin
h=1 h=1

k

k
= Z wr(png + Mi,l) - Z Whith,l
h=1

h=1
k
o 2
= E Whith
h=1

where we have used the fact that for a Poisson distribution X with expectation
u, it holds that E[X?] = pu + u?. O

The estimators for the second and the third order moments provided above,
allow to add d? + d® equations to system ({1.1)), obtaining the following set of
equations:

M, = Z§:1 Wi,
My = Zf:l Wil @ fi, (1.4)
M, = Zf:l Wilki & i & ;.
Unlike system , system admits a unique set of solutions if d > k
and if M is a full-rank matrix, which is a quite generic constraint. In fact,
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Comon et al. (2017)) guarantee that if equation has a unique solution
and system has at least one solution, then also the whole system (|1.4])
admits the same unique solution. Generic uniqueness of the real solutions
of is guaranteed by known results on tensor decomposition (Chiantini
et al} [2017; Qi et al.| 2016), and can be verified using Kruskal’s (Kruskal,
1977) criterion (see also |Kolda and Bader, |2009, Sec. 3.2).

The fact that the system ([1.4) has a unique solution, suggests a possible
learning strategy for Poisson’s naive Bayes models:

1. Calculate estimators for the low-order moments of the model, namely
M, M, and Ms;, using equation (I.1)) and Proposition [1.2.1]

2. Plug the estimated moments in the left terms of the system (1.4)) and
find a set of parameters (M, @) that approximately solve that system:

Ml ~ Zle dzﬂ’l?
My~ Y ifls ® fi (1.5)
My = Zle Will; @ fi; & f;.

Notice that the approximations symbols in system are required, because
the existence and the uniqueness of a solution is only guaranteed in the
theoretical scenario where we have infinite data. The idea of this approach is
that while the sample size increases, the estimators of moments get closer to
their theoretical values, and, as a consequence, the parameters (M ,w) will
asymptotically approach their theoretical homologous (M, w).

It is important to remark that the usage of the third order moment is
necessary to guarantee the uniqueness of solution for system (|1.4)), for which
it is not sufficient the second order moment, as the following theorem shows.

Theorem 1.2.2. Let (M,w) a pair of parameters solving the following system
of equations:
M, = Zle Wi i,
. (1.6)
My = ) iy witki @ fis.
Then, also the pair (M,dj
M = MQY?0 diag(O"w'/?)™!
(OTwl/Q) o (OTW1/2>7

w

31



is a solution of the same system, for any orthogonal matriz O, where o is the
point-wise (Hadamard) product between vectorsﬂ

Proof. We can rewrite the system (1.6 as follows
Ml = Muw
My = MQMT
Our thesis is proved if we demonstrate that
Mé = Mw
MOMT = MQMT
where Q = diag(). We begin with the first equality:
Mo = MQY20 diag(0OTw'?) (O w!?) o (0T w!/?)
_ MQI/?ooTwl/2
= Mw.

The second equality works similarly. O]

The only remaining challenge is thus to find a technique able to solve system
(1.5)). Concretely, we will need an algorithm A able to recover exactly (M,w)
from the unperturbed system (|1.4)):

A : (M17M27M37k“) — (M,C{J)

Furthermore, when the exact moments M, My, M3 are not available, and
only their estimators My, M,, Mj are accessible to the user, A needs to return
approximate pairs (M, @) that get closer to (M, w) while My, My, Ms get closer
to My, My, M3. In the next section we present the most popular approaches
to accomplish this task.

1.2.1 Tensor Decomposition
In this section we concentrate on the task of solving the system
M, = Zle Wi i,
M, = Zf:l Wil & [,
M; = Zf:l Witki & i & fg

2We have used the notation Q = diag(w).
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where only the left terms of the equations are known. The objective the
task will be to recover the values of the vector w and of the matrix of the
centers M = |1, ..., pi], assuming to know the value of k. While an overview
of approaches for tensor decomposition is presented in the introduction of
this thesis, we present here in more detail a few techniques that are widely
used in the literature: Alternating Least Square (Carroll and Chang, |1970;
Harshman, 1970), SVD method from Anandkumar et al. (2012a)) and tensor
power method from Anandkumar et al. (2014).

Alternating Least Square and Other General-Purpose Decomposi-
tion Methods

Theoretically, the solution to system could be found by looking just
at the third order moment, solving the following set of d® equations:

k
Ms = Zwim & i & (1.9)

i=1

This is a consequence of the well-known Kruskal’s criterion (Kruskal, |1977)),
which guarantees that M3 has a unique CP decomposition of the form de-
scribed at Equation (1.9). As a consequence, one could simply try to directly
decompose the third order moment, without considering the constraints im-
posed by My and M; which are theoretically redundant. To this objective, a
variety of tensor decomposition algorithms exist to approximatively solve this
problem, with the algorithm named Alternating Least Square (ALS) (Carroll
and Chang 1970; [Harshman, [1970; Kolda and Bader, 2009) being by far the
one most used by practitioners.

ALS is a general-purpose decomposition algorithm, that works even for
non-symmetric tensors, a more general case with respect to that studied by
methods of moments. Given a three-dimensional tensor 7', it aims at finding
three d x k matrices

A=lay,....,ax], B=[b,....b], C=lci,...,ci
enabling the following decomposition:
k
i=1

33



for a certain vector A = (A1, ..., A\x). After a random initialization, the de-
composition is found via an iterative algorithm that first fixes two of the
matrices to be learned (say A and B) and then retrieves C' by solving the
overdetermined system of equations ([L.10)), leaving C' as the only unknown
variable. This algorithm, which is described in detail by Kolda and Bader
(2009), however may have very large running times, because M3 may be very
high dimensional. Furthermore ALS is not guaranteed to find the matrices
A, B and C' allowing the decomposition at Equation , even when such
decomposition is possible, being prone to poor local optima.

Beside ALS, literature provides several examples of general-purpose decom-
position methods aimed at finding the decomposition of M3 described at
Equation ((1.9)) (see for example Tomasi and Bro, 2006} [Kolda and Bader,
2009; |Sidiropoulos et al.l 2017). A recent example, that specifically focuses
on the case of a symmetric tensor with the structure of Mj is the Random
Projections method, proposed by |[Kuleshov et al.| (2015]). The method consists
in finding the matrix M by directly performing simultaneous diagonaliza-
tion — using a variation of the well-known Jacobi algorithm (Cardoso and
Souloumiac, (1996 — of random linear combinations of the slices of M3, which
the authors observe admitting the following writing

Ms, = MQ'Y? diag(m, ) QM T,

where Ms, is the rth slice of M3 and m, is the rth row of M. This method,
under an incoherence assumption on the vectors u;, can robustly recover the
weights w; and vectors u; from the tensor Ms, even when it is not orthogonally
decomposable. However, in practice the Random Projections method is way
slower than ALS (see for example the experiments in Chapter [5) and hardly
usable on high-dimensional tensors, reason why we will omit it from most of
the experiments of this thesis.

The SVD Method

Anandkumar et al.| (2012a) provide a simple technique to solve the system
of equations , based on the well-known Singular Value Decomposition
(SVD) of a matrix (Golub and Reinsch, 1970). Letting My = USU" be the
SVD of M,, the authors develop two equivalent writings for the second order
moment:

My, =EE", My= MQM', (1.11)
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where E = US'Y? € R¥™* will be called the whitening matrix and = diag(w),
and show that there exists a unique orthogonal matrix O € R*** such that
MQY? = EO. The SVD method consists thus of finding O and retrieving
the desired parameters by solving the following system of equations:

MQY?2 = EO
Mw = Ml.

To find O, they introduce the following matrix-based characterization of the
slices of Ms:

My, = MQY? diag(m,)Q'?M " = EO diag(m,)O"E,

where Ms, is the rth slice of M3 and m, is the rth row of M. Multiplying
Ms, at the left and at the right with the pseudoinverse (Stewart and Sun,
1990) of matrix F, they get a new matrix

H, = E'M;,(E")" = Odiag(m,)O"

whose left singular vectors coincide with the matrix O. However, the singular
vectors O may not be uniquely determined if two or more values of m,. are
identical; to solve this issue, Anandkumar et al.| (2012a) suggest to perform a
random linear combination of the various matrices H,, using some random
vector 7 € R?, and get the matrix

H, = O diag((npy , ..., npi ))OT
whose left singular vectors are almost surely unique.

SVD method requires the matrix M to be full rank, and asks for d > k.
Under these conditions, it guarantees to return the exact solution of the
system ([1.4) (Anandkumar et al., 2012a)) — a guarantee that ALS does not
present. The behavior of this method has been also studied in the context
where it only has access to perturbed moments, providing guarantees of
learning accuracy even in a perturbed setting.

Another critical advantage over ALS lays in the fact that it works with low-

dimensional whitened matrices, a fact that dramatically reduces its memory
requirements and speeds up its running time, which is extremely competitive.
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However, despite its theoretical soundness, SVD method is known to have
a poor learning accuracy, not being able to learn reliable model parameters

when the input moments are perturbed (see |[Anandkumar et al. 2014, and
Chapter [2).

Tensor Power Method

The tensor power method (TPM) (Anandkumar et al., 2014) also considers
the whitening matrix defined above, E = USY? € R™* as defined in the
previous section, but instead of whitening the slices of M3, it directly whitens
the full tensor M3 into a symmetric orthogonally decomposable tensor:

k
T = ZM‘ETM@‘ & ETNZ' X ET,UZ‘ € RFxkxk

=1

The authors then observe that if (v, A) is a robust eigenvector/eigenvalue pair
of T, then there exists a column p; of M such that AEv = ;. Consequently,
the problem reduces to find the robust eigenvectors of 7', a task that is
performed via a three-dimensional extension of the well-known matrix power
method to find the eigenvectors of the matrix.

The requirements and the guarantees of TPM are similar to those of SVD
method: M should be full rank, d > k and it guarantees to return the exact
solution of the system . A study of its robustness to perturbation has
been carried on by Anandkumar et al| (2014); in general, TPM is known to
provide a better learning accuracy with respect to the SVD method. TPM
works with whitened tensors, which makes it faster than ALS. However, its
running time is asymptotically slower than that of SVD method — depending
a factor O(k®) on the number of latent states k. This makes the scalability
the major drawback of TPM.
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1.3 A Framework for Several Models

In the previous sections we have seen, for the Poisson’s naive Bayes models,
how to estimate from data three entities M;, M and M;3 of the form

k
M, = sz‘,ui, (1.12)
i—1
k
i—1
k
Mz = sz‘m @ i @ iy (1.14)

i=1
and how to recover from them the parameters that characterize the model,
namely the mixing weights w and the matrix of the centers M = [u1, ..., fug].

The same approach can be extended to any latent variable model admit-
ting a similar parameterizations, obtaining a general two-steps approach:

1. The first step consists of the estimation of the moments, as defined in
Equations [1.12][1.13] and [1.14] The implementation of this step depends
on the particular structure of the considered model. Above, we have
seen an example for naive Bayes models, but analogous estimators can
be found in the literature for e.g. Gaussian mixture models (Hsu and
Kakade, 2013; (Ge et al 2015]), hidden Markov models (Balle et al.|
2014)) or mixtures of linear regressions (Chaganty and Liang;, [2013)).

2. The second step of method of moments consists in decomposing the
moments [1.12][1.13] and [1.14] to retrieve the desired model parameters,
using, for example, one of the decomposition algorithms described above.
This step is model-independent, in the sense that does not depend on the
specific characteristics of the model. However, decomposition algorithms
may impose requirements on the matrix M, as it is the case with TPM
and SVD method, which require M to be full rank.

In the next chapters, we will focus on several aspects of methods of moments;
we will introduce improved and more robust tensor decomposition methods,
we will study how the robustness of a method of moments depends on the
random noise in the input data and we will present applications of several
latent variable models to various domains.
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Chapter 2

Singular Value-Based Tensor
Decomposition

A fundamental building block in methods of moments is the step that,
from an estimate of the moments, retrieves an estimate of the parameters of
a latent variable model describing the data. As explained in Chapter 1], this
step is accomplished by solving the equations of the moments

k
M, = sz’m,
z:l
My = sz’m & g,
i=1

k
M; = Zwmi & i & g,

i=1

where only the left terms of the equations are known, providing algorithms
that take as input the moments My, My and M3 and return the model param-
eters w € R¥ and M = [y, ..., ] € R>*. Furthermore, in the most realistic
setting, these methods are required to deal with approximate estimates of
the moments Ml, Mg and M3 rather than with their unperturbed theoret-
ical values; in this case, they are required to be robust to perturbations,
returning approximate parameters (M @) that are provably close to their
theoretical counterparts (M, w) if M, My and M; are close to M;, My and M.
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In Chapter [I, we have seen that there exist several algorithms able to ac-
complishing this task, from the naive approaches that directly decompose
the tensor Mj (Kolda and Bader] [2009), to the most recent methods from
Anandkumar et al.| (2012b, 2014)) that, making use of the full set of low-order
moments, provide theoretically robust methods. Existing decomposition meth-
ods differ from each other on various points. The methods from Anandkumar
et al.| (2012blla)) are only based on matrix operations, and are thus simple to
implement and understand. They are fast but sensitive to perturbations, as
they are based on the intensive usage of the singular vectors of perturbed
matrices, which are known to be unstable to random noise (to this purpose,
see the work by Stewart| 1990, Section 6). Tensor Power Method instead
(Anandkumar et al., 2014) is more difficult to implement, requiring deep
familiarity with tensor operations and is slower, requiring O(k%) operations,
but guarantees a better stability with respect to the perturbations of the
input moments.

In this chapter we provide a new decomposition algorithm that aims at
overcoming the limitations of existing techniques, named SVTD, Singular
Value based Tensor Decomposition. This method is alternative to the ones
presented above, and is based on the singular values of a SVD, which are
known to be stable under random perturbations (unlike the singular vectors,
as shown by [Stewart| 1990, Section 2). Our algorithm is simple to implement
and understand, is deterministic and based only on standard matrix opera-
tions rather than tensor ones. Experimental results (see Section show
that SVTD outperforms existing matrix-based methods from /Anandkumar
et al.| (2012a,b)) in terms of reconstruction accuracy, is an order of magnitude
faster than TPM providing a similar learning accuracy.

The outline of the chapter is the following: Section 2.1 contains the proposed
decomposition algorithm, Section studies its sensitivity to perturbations
and Section tests the presented method against existing decomposition
techniques.

2.1 Singular Value based Tensor Decomposition

In this section we present an algorithm to solve the system of Equations
(1.4), retrieving the parameters of a latent variable model from the equations
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of the moments. The proposed method only relies on matrix decomposition
techniques, and is deterministic. We will experimentally see in Section
see that it also scales better in time and memory than TPM (Anandkumar
et al., [2014), and is more robust than the matrix-based approaches from
Anandkumar et al.| (2012blja)).

Our method relies on the observation that M, and the slices of M5 admit a
representation in terms of matrix products as

My = MQMT, (2.1)
My, = MQY? diag(m,)QY*M T, (2.2)

where Q = diag(w), M3, € R%? is the rth slice of M3 and m, is the rth
row of M. As a first step, it stores the whitened slices of Mj3 into a three-
dimensional tensor H in R¥**** and then performs d SVD on the slices of
H (belonging to R¥*¥) obtaining the rows of M as the singular values of
that slices; for this reason we name our method Singular Value-based Tensor
Decomposition (SVTD). The key steps of our algorithm (SVTD) are outlined
in Algorithm (|1]).

Algorithm 1 SVTD

Require: M, M,, M3, and the number of latent states k& < d
1: Decompose My as My, = UkSkUkT with a SVD truncated at the kth
singular vector.
2: Define the whitening matrix £ = UkS,i/ ? and calculate its pseudoinverse
Bt = (S,)~2U].
3: Select a feature r and compute Ms,
4: Compute O as the left singular vectors of H, = ET]W&TEJrT
and m, as the singular values.
5. fori=1—d do
6: Compute H;, = ETngiETT, where ET = (S),)"Y2U,] is the Moore-
Penrose pseudo-inverse of E
7. Obtain the ith row of M as the diagonal entries of O" H;O
8: end for
9: Obtain w solving M; = Mw
10: Return (M, w)

The constructive proof of the following theorem will explain why SVTD
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performs a correct retrieval of the desired model parameters.

Theorem 2.1.1. Let r be the feature selected at Step 3 of SVTD, and assume
k < d. If all the elements of m, are distinct and My and Ms have rank k,
then SVTD produces the values of (M,w) exactly.

Proof. As a first step we perform a SVD to My = UpSiU,, where U, € R?**
and S;, € R¥* are the matrices of the singular vectors and values truncated
at the kth greatest singular value. Then we define the whitening matrix
E = UkS,i/2 € R™* and for a slice My, of M3, we define H, € R*** as

H, = E'M;, (BT,

where Ef = (S;,)~'/2U, is the Moore-Penrose pseudo-inverse of E. Now,
observe that there exists a unique orthogonal £ x k matrix O, such that

MQY? = EO. (2.3)

To see that such a matrix exists, it is enough to observe that the matrix
O = EtMQ'Y? is orthogonal (which can be seen from equation MQM T =
EET) and fulfills the requested relation. To see that it is unique, assume that
that O; and O, are two orthogonal matrices such that MQY? = EO; = EO,.
Then, multiplying by ET on the left, we obtain O; = ETEO, = ETEO, = O,.
Using Equation , one gets the following characterization of Ms,.:

My, = MQY? diag(m,)QY?M " = EO diag(m,)O"E",
from which it follows that
H, = Odiag(m,)O".

Now, one gets the rth row of M as the singular values of H,. Repeating these
steps for all the ¢ € {1, ..., d} will provide the full matrix M. In order to avoid
ordering issues with the columns of the retrieved M, one can use the same
matrix O to diagonalize all the matrices H;, as O is uniquely determined,
because the elements of m, are distinct. So, compute O as the singular
vectors of H,, for a certain feature r, and re-use it for all the other features.
The subsequent estimations of w is straightforward, and can be obtained by
solving the linear system M; = Mw. O]
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Remark 2.1.1 (On the generality of the algorithm). Like other decomposition
algorithms for methods of moments, our method requires the number of latent
states to be smaller than the features size, & < d, which is in general a
realistic requirement: think for example of the naive Bayes models to perform
clustering; in general one wants to retrieve few tens of clusters from hundreds
of available features. Also, we remark that during the construction of the
algorithm we have not made any hypotheses on the probability distribution
of the data; instead, we have required the matrix M to be full rank and, in
addition, to have at least one feature r with different conditional expectations
on the various clusters. Furthermore, we do not need to know in advance
what this feature is, as Remark will explain. This last requirement is
not present in the other matrix-based methods, as they rely on a randomized
matrix to guarantee the uniqueness of the results (see Section ; but
the reconstruction accuracy of these methods is significantly worse than that
of SVTD, as we will show experimentally. Finding a deterministic method
that joins the scalability properties of simultaneous diagonalization methods
without requiring this separation condition is an interesting open problem.

Remark 2.1.2 (On the selection of feature r). The initial steps of the
algorithm require the isolation of a feature r to compute the matrix O.
While theoretically we could select any feature r such that all elements of
My = (f1ry ..., fr) are distinet, it is clear that, if matrices My, My and M;
are subject to perturbations, the results obtained by the algorithm might vary,
depending on the selected feature r. However, known results from matrix
perturbation theory (see for example Stewart and Sun|/1990)), indicate that
the matrix O (which contains the singular vectors of H,) is more sensitive
to random perturbations when the minimum difference between the entries
of my = (ft1r, ..., k) is small. This fact suggests that a possible heuristic
to choose the feature r (and hence a reliable matrix O), is to repeat steps
3 and 4 of the algorithm, isolating different features and selecting the one
that maximizes the quantity min,;(|p;,» — pj-|). With this heuristic, a user
can run SVTD without any previous knowledge of the feature to extract. Its
cost is that of performing d times a k x k SVD, therefore O(d k?), and is
dominated by the costs of other parts of the algorithm as discussed next.

Remark 2.1.3 (Complexity analysis). We start analyzing the time complex-
ity. Using randomized SVD techniques (see [Halko et al.| 2011)), step 1 can be

carried out with a total of O(d?k) steps, the SVD on ETMjs,.(ET)T requires
O(k?) steps while step 6 requires O(d?k) steps for matrix multiplication for
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each one of the d iterations. So the overall complexity of Algorithm [1}is
O(d’k + K* + &°k).

We need to add the additional cost of the feature-selection method outlined
in Remark whose cost is O(dk?). Since d > k, this cost is dominated
by the larger O(d*k) component.

It is important to highlight that the general implementation given in
Algorithm [I] has mainly a descriptive purpose. For a specific latent variable
model, optimized implementations may exists, as we will see in Chapter [4]
Computations can be further accelerated by exploiting the sparsity of the
data, that is, using sparse matrix arithmetic techniques. We also remark that
the algorithm is trivially parallelizable: Assuming that we have m machines
on which to parallelize steps 5, 6, 7 of the algorithm and the feature selection
task, we can reduce the total running time to O(d*k + k* + d*k/m).

Regarding memory, notice that we never use the full tensor M;z, but only
its rth slice, for the selected feature r. This means that only that slice has
to be computed and stored, and the memory complexity of the algorithm is
O(d?).

These complexity requirements are comparable to those of the methods
from |Anandkumar et al. (2012alb)); however, those methods are randomized,
with nontrivial variance in their output, so they may require several runs of the
full algorithm in order to provide accurate results. The tensor power method
from |Anandkumar et al.|(2014)) has in general higher cost. It is an iterative
technique, with a number of iterations difficult to bound a priori; the authors
suggest that accuracy e can be reached with O(k°*(log(k) + loglog(1/e)))
operations, among iterations, random restarts and actual matrix operations,
higher than our O(k®). To this time we need to add the time to get the
k x k x k whitened tensor from the sample, which is not trivial for many
LVMs.

2.1.1 Comparison with other decomposition methods.

As said in Chapter [I| Kruskal’s criterion guarantees that M; has a unique
CP decomposition, so, instead of SVTD, one could simply try to directly
decompose the third order moment, using for example one of the general-
purpose tensor decomposition methods described by [Tomasi and Bro| (2006]);
Kolda and Bader| (2009); [Sidiropoulos et al| (2017), to retrieve the param-
eters (M, w). However, this approach is impractical: M3 may be too large,
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and explicitly decomposing it may not even be computationally feasible on
common machines. SVTD instead relies on the full system of equations
(1.4), and uses a whitening matrix to work with low dimensional tensors,
while maintaining guarantees of provably solving the considered system. For
example, the whitening step that SVTD performs at step 4 of Algorithm
reduces the slices of M3 to small £ x k matrices, reducing the complexity
of the algorithm and allowing for fast yet optimal solutions on commodity
machines, even when d has is very high.

The tensor power method (TPM) — described by |Anandkumar et al.| (2014)
and recalled in Chapter [1| — is the most popular alternative. While very
robust, the implementation of this method may be complex for someone who
is not familiar with tensors. In addition, it is an iterative method, and so it
requires a tuning of the hyperconvergence parameters, which might require
many trial-and-error tests. These practical considerations, together with its
higher time and memory complexity outlined in Remark [2.1.3] are drawbacks
compared to matrix-based methods like SVTD.

Matrix-based methods from Anandkumar et al.| (2012alb), are technically
more similar to the method presented here, and they are two variations of
the same approach, one (Anandkumar et al., 2012b) using eigenvectors, and
the other (Anandkumar et all 2012a)) using singular vectors, and have been
presented as well in Chapter [I] There are at least two differences between
SVTD and these approaches:

1. The first difference is the way the matrix M is retrieved. In fact, the
SVD method from Anandkumar et al.| (2012a)) recovers M essentially
from Equation (2.3)), relying on the identity

MQY? = FO

while SVTD recovers the rth row of M from the singular values of the
matrix

H, = E"M3,(E")" = Odiag(m,)0".
2. The second difference, is how the matrix O is retrieved; SVD method
gets it as the singular vectors of
d
Hy = E'(Y" ne My, )(EN)T = Odiag((npe] .o iif )0,

r=1
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for some random vector n € R%. The introduction of the random vector
n has the purpose of guaranteeing that the elements of (nu, ..., nu, )
are almost surely distinct, and so O is unique. In SVTD instead we
fix a specific feature r, choosing the one with the maximum minimum
variation between the feature components; this is the same of saying
that we fix n to be the rth coordinate vector, giving a recipe for finding
r in Remark [2.1.2] providing in this way the choice that maximizes
stability.

2.2 Perturbation Analysis

In the previous section we have presented an algorithm to recover the
parameters (M,w) from the unperturbed low-order moments M;, M, and
Ms;. However, in real world applications, we do not have access to the exact
values of the moments, but to a set of estimators M;, My and M that aim at
approximating them, with the guarantee that each estimator M; gets closer to
its theoretical counterpart M; while the sample size increases. When learning
a latent variable model from data, we thus plug the estimated moments M,
M, and M; into a decomposition algorithm like SVTD; ideally, the more
similar the perturbed moments are to their expectations, the better the output
parameters (M, o) of the algorithm are expected approximate (M,w). The
following theorem shows that SVTD presents this property, showing how
the approximation of the input moments propagates to the estimated model
parameters.

Theorem 2.2.1. Given the unperturbed versions of My, My and Mz and the
feature we want to isolate, r, let o, and cvpy, be

Q= f}l;]f.l(\m,r — pir|) >0, an, = I}g,? (04(M2)? — 0441 (M2)?) > 0

where o;(My) are the singular values of My. Assume the empirical estimates
My and M3 satisfy

||M2 — Ms||p <€, ||M3 — Ms||r <e

Then, there exists a functioﬂ (M, w), of the model parameters, such that, if
e <y(M,w), Algom'thm fed with My, My and Ms, provides an estimated

For an explicit formulation of the value of v(M,w), we refer the reader to the proof of

the theorem and to Remark
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matriz M whose rows rii;, for all i € {1, ...,d}, satisfy

C
[|m; —1mll2 < Cre + \/Eai(CQ + =)+ O(VEC,€?)

A,

where m; are the rows of M, Cy, Cy and Cs are polynomial functions of
|E||r, ||O||r and ||Ms;||r, and Cy is a polynomial function of ||E||r, ||O||r,
|| Ms;||F, 1/, and 1/apy,.

A key role is played by «,., the minimum difference between the elements

of (41,4, .-, kr); when samples are large enough, the theorem guarantees that
the algorithm works correctly, although “large enough” depends on a,.. When
this condition is not satisfied, the learning algorithm still works, but might
provide output results that are different from the theoretical generative model.
We recall here Remark [2.1.2], where we wondered how to select the proper
feature r; Theorem [2.2.1] confirms the intuition that the one guaranteeing the
highest accuracy would be the one with the highest possible «..
The role played by ajy, is less intuitive, as it is not directly related to
the parameters of the model. Looking at the proof of the theorem, it is
possible to see that a,,, emerges as a consequence of the whitening step. In
particular, the whitening matrix E' is calculated from the singular vectors of
the perturbed M,, whose sensitivity to perturbations gets worse when a,y, is
small. We can conjecture that if we were able to find a different method to
retrieve the whitening matrix, we could get rid of the component dependent
on ayy, in the perturbation theorem; this is equivalent to claim that the
components depending on ayy, in the perturbation bound are a consequence
of the algorithm that we are using rather than of the complexity of the
problem. The exploration of this conjecture and the research of algorithms to
calculate the whitening matrix not depending on «}, is an open problem for
future research.

2.2.1 Proof of Theorem 2.2.1]

The goal of the proof is to develop a perturbation bound for each row m;
of the unknown matrix M such that, ||h; — m;||e < Bound(e), for a certain
function Bound(e). We notice, from Algorithm , that each m; is obtained
as the diagonal entries of the following matrix:

O B, (BT)'O,
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where the tildes indicate that we are dealing with perturbed matrices. There-
fore, we will need to find the perturbations of the matrices composing this
equation, as the following relation holds:

||77’L1 — mzHg S ||OTETM3’Z(ET)T6 — OTETM&Z'(ET)TOHF.

In short, having perturbation bounds on ]\;[371 JET and O will be sufficient to
reach our goal.

Perturbations on Mg,,,»

We know by hypothesis that || Ms,; — Ms,||p = [|Ang,||F < e

Perturbations on ET

It is a known fact (see |Stewart) |1990) that, given the SVD M, =USV,
and My = USUT, if ||My — Ms||r < €, we have that

IS — S||p <e. (2.4)

Algorithm [T} when fed with perturbed moments retrieves a perturbed whiten-
ing matrix E = U,(Sk)"/?, while the unperturbed value of E is defined as
E = U(Sk)"/?, where the subscript k indicates the truncation at the kth
singular value. So, to reach a perturbation bound on ET, we first need to
look for a perturbation bound on E, that will be obtained bounding the
error of (S;)"/? and Uy. The first one is a consequence of equation [@2.4): if

Ag = (Sp)Y2 = 5}/% we have
€

1As]lp < —F——=
2 O'k(M2>

where o,(My) is the kth the singular value of Ms. To find a bound on Uy, we
will use Lemma [2.2.1] to get

- 2€||Ms||p + €2
[[Ux — UkllF < V8k%,

Mo

where ag, = ming<y (03(My)? — 0441(M3)?) and o;(Ms) are the singular values

of M,. We thus conclude that, if Ay = Up,—Uy, E = E 4+ AySY?2 + UAg + ApAg,
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and hence

~ o[ M U
||E—E||F<f(e):e(||51/2||p\/8_k’ 1Mellr e, 1101l
aMQ 2 Uk»(MQ)

2el| M. 2
+V3E €||Ma|[F + € )
s, (24/0k(Ma))

We are now ready to find a perturbation bound on the pseudoinverse of E,
using a known bound from [Stewart and Sun| (1990): if ||E — E||r < f(¢) then

|ET = E'|r < f(o)7(E)
where 7(E) = [|E'[[} + [[(E7E)7Y|p|[I - EE"||p.

Perturbations on O

We now look for the value of g(¢) = ||O — O||p. If SVID is fed with
unperturbed moments, O comes from the decomposition of ETM;,.(ET)':

E'M;,(ET)" = Odiag(m,)O". (2.5)
O will be obtained from the singular vectors of the same, but perturbed,
matrix: EfM;,.(ET)T. First, we observe that
1B My, (ET)' = B My (E7)||r <
<2f(T (B E||p|[Ms, || 7 + el | ET][:
+2¢f(e)m(E)||ET||p
+ f(&)*T(E)*(|| M3l + €)
=h(e).

Using Corollary [2.2.1} we assume the hypothesis that

f(2||H||F 1+ 1- WHHHHF 1 1o )

where H, = E'M;,(ET)" and o, = min,s; (|, — pjr|), to get that ||O —
Ollr < 2v2h(e)/a, = g(€). We are now able to conclude our proof by
analyzing

|lmi — 1|2 < [|OTEYMy;(ET)O — OTE My ,(ET)1O||p <

h(e) < (2.6)
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< Pig(€) + Pye + Pyf(e) + O(€2Py),

where Py, P, and Py are polynomials in ||E||p, ||O||r and ||Ms,||F, and Py is
a polynomial in ||E||r, ||O||r, || Ms||r, g(€), € and f(e) . The thesis follows
making explicit these polynomials.

O]

Remark 2.2.1. In the statement of Theorem [2.2.1] we said that there exists
a number (M, w), such that, if € < v(M,w), the perturbation bound of the
thesis works. Looking at the proof of the theorem, we are able to explicitly
calculate this number, just by solving the inequality . We can practically
think at v(M,w) as the largest value of € that satisfies this inequality.

Lemma 2.2.1. Consider M, the perturbed My, and their SVD, My = USVT,
M, =USUT. Let Uy and Uy, be matrices of the first k left singular vectors of
My and My. Define oy, = ming<y, (0:(Ms)? — 041 (Ms)?). If || My — M| <
MMH@—UMF<¢@E%%E3

Proof. Consider MM, = US2UT and MyM, = US?UT. Then HMQMQT —
MM, ||p < 2¢€||Ms||p + €. Take now the matrix of the first & columns of U
and (Z, that are eigenvectors of MyM, ' and MQMQT, obtaining Uy = [uy, .., ug]
and Uy = [y, .., ug]. From Theorem we have that, for any i = 1, ..., k,
holds

s — @] < 2% — 2¢|| Ma||p + €2
min(o;_1 (My)? — 0;(My)?, 05(My)? — 0i41(My)?)
< 93 2ellMallr + €
Oé]\/[2

from which the thesis follows.
O

The following results, taken from |Yu et al. (2015 and |Chen et al.| (2012),
present perturbation bounds on the eigenvectors and on the singular vectors
of symmetric matrices.

Theorem 2.2.2 (Cor. 1, pg. 4 |Yu et al.|2015). Consider A and A two
symmetric matrices in R, with eigenvalues A\ > ... > \g and \; > ... > \q.
Fiz a j € {l,..,d} and assume that min(\;_1 — Aj, \j — A\j11) > 0, where we
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define \g = 00 and A\gy1 = —o0. Ifv € R® (resp. ©) is an eigenvector of A
(resp. A), associated to \; (resp. \;), then

2:||A— Al|r
min(Aj_1 — A\j, Aj — Ajiq)

lv—o]] <

Theorem 2.2.3 (Thm. 3.2, Chen et al|2012). Let B € R¥* be a matriz,
with SVD B = Udiag((oy, ...,0%))V with o1 > 09 > ... > o > 0, and let
T

B = B+ Ay be a perturbed matmz with SVD B = Udzag((al, ...,ak))f/ :
Define:

V2||As||r |1Bllr 1
= min |o; — 0| > 0, = — = 1 1——
ap rgél]n\cr ;] €8 on VB o (1+ k)
Then, if
1
€ < (2.7)
" s+ V1405
The following upper bound holds:
- V2e
U = Ullr < £ (2.8)

\/1—2’}/3634‘\/1—6%—4’}/363

The following corollary is essentially a rewriting of the previous theorem.

Corollary 2.2.1. In the same setting of Theorem [2.2.3, if there exists an
€ > 0 such that

f(2||B||F (Ut /L= D)+ fo + A1BIR0+ /1 )

then ||U —U||p < 2\/5@

Proof. Note that if € satisfies the hypothesis of the corollary, then (2.7)) is
satisfied and hence we have (2.8)):

1Ag]] <e<

\/§€B < \/563

U= Ullr < </
\/1—2’)/B€B+ \/1—623—4’)/363 1_27363
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Now we plug in the last equation the bound of (2.7)), to get
V2ep
1— — %2
2yp+4/1+47%
_ 3 29 + /1 +4~%
b V14473

2vp
<V2p, | —E— +1
\/\/1 + 473

< 2ep

U —Ullr <

2.3 Experiments

In this section we test the algorithm presented in this chapter against
other decomposition methods.

Experimental setting: All the experiments in this section have been run
on a MacBook Pro with a 2.7 GHz Intel Core i5 processor and 8 GB of
RAM memory. All the algorithms have been implemented in Python 2.7
(interpreted, not compiled), using the numpy (Walt et al., [2011) library for
all linear algebra operations, including Singular Value Decomposition, for
which we used numpy’s non-randomized SVDH SVTD and the methods from
Anandkumar et al| (2012a,b|, 2014]) have been implemented by this thesis
author. For ALS we have used the implementation provided by scikit—tensorﬁ
All the implementations written by the author of this thesis, as well as the
code of the implementations of the competing methods, have been publicly
disclosed and are freely accessibleﬁ

We test SVTD on the task of decomposing a tensor of moments obtained from

2https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.
html

3 https://github.com/mnick/scikit-tensor

4 https://github.com/mruffini/SpectralMethod.git
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a random sample, comparing its performance with that of existing methods.
We fix a dimension of d = 100 features with £ = 5, and, for several sample
sizes comprised between n = 1000 and n = 10,000, we generate a random
sample X distributed as a Poisson’s naive Bayes model (see Chapter [1|) with
parametersﬂ (M,w). For each synthetic sample, we proceed as follows:

e We estimate the values of M, M, and M; using Theorem 1.2.1

e We retrieve from the estimated M, M, and M; the pair of unknowns
(M, &) using SVTD as in Algorithm [l We also generate alternative
solutions using the decomposition algorithms from Anandkumar et al.
(2014)) (“Tensor power method”, with 25 random restarts and 20 itera-
tions per restart), from Anandkumar et al. (2012a) (“SVD method”),
and with ALS as described by Kolda and Bader (2009) — where ALS is
used to directly find the CP decomposition of the Ms, with a random
initialization and stopping after 250 iterations.

e Fach time we generate a solution, we register the time in seconds
employed by the various algorithms. For each method, we represent the
average time used to recover the parameters over the various runs in
Figure [2.1b

e For each set of retrieved parameters (M, @) we calculate the learning
error as: Err = ||[M — M|y, where M is the matrix used in the
simulations. For each sample size, we repeat the experiment 10 times
(each time with newly generated parameters), and we plot in Figure
2.Tal the results in function of n.

In Figure[2.1D] the average running times of the various methods are presented.
On average, SVTD is way faster than ALS and TPM — as a consequence
of the better dependence on the number of latent states — and it is slightly
slower than the SVD method, due to the feature selection process outlined in
Remark [2.1.2] With respect to accuracy, Figure shows that SVTD and
TPM are quite comparable among themselves, being the top performers in
terms of learning accuracy.

SFor each sample size, the parameters (M, w) have been randomly generated by sampling
a uniform distribution and normalizing the columns of M to have sum 5, and the vector w
to have sum 1.
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Figure 2.1: In Figure the average running times are represented. Figure
contains the analysis of the learning accuracy; the x—axis represents the
size of the synthetic dataset while the y—axis is Err, the reconstruction error
for the various tested methods. The shaded areas represent the variance of
the output of the experiments over 10 runs with same sample size.
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We conclude that SVTD provides learning accuracy similar to TPM while
having a running time in the order of the more inaccurate SVD-based method.
Also, it is deterministic and requires little hyperparameter tuning. ALS also
has worse performance in terms of learning accuracy and is far slower than
the other methods tested.

2.4 Conclusions

In this Chapter we have introduced SVTD, a new algorithm to solve the
moment Equations , and and retrieve from them the param-
eters of a latent variable model. Experimentally, SVTD guarantees a leaning
accuracy comparable or better to that of TPM while having significantly
shorter running times — running times that are comparable to those of the
less robust SVD method. The robustness of SVTD to random perturbations
of input data has been theoretically assessed in Theorem [2.2.1] providing
a bound that depends on the minimum difference between the elements of
the vector (uyi,, ..., fk,r) — an expected result, being the condition of such
difference to be greater than zero a constraint for the proper functioning
of SVTD. Improving SVTD to remove such constraint and studying the
feasibility of tighter perturbations bounds are open points for future research.
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Chapter 3

Methods of Moments for Topic
Models

The automatic mining of topics in large text corpora is one of the most
natural fields of applications of latent variable models. Consider for example
a text document, that is dealing with one or more topics. Clearly, these topics
will influence the words that are likely to appear in the text; if for example we
are reading a paper about mathematics, it will be very unlikely to find words
like onion or tomato. Vice-versa it is unlikely to find words like limit or partial
derivative in a cooking book. In general, we can assume that a text is dealing
with a limited number of topics, which will determine the probability of each
word of appearing the text. It is easy to map this framework into a latent
variable model perspective, where the topics are the latent variables, and the
observable features are the words, which we can represent as discrete ran-
dom variables whose distribution is determined by the value of the latent topic.

This approach is the one followed by most of the topic models that can
be found in the literature. The simplest model is probably the single-topic
model (Hofmann, [2017)), where a text is assumed to deal with a single topic
that determines the probability of the various words of the vocabulary to
appear in the text. This model makes the additional assumption that the
words are exchangeable, in the sense that each word is independent from the
other words appearing in the text and generated by a discrete distribution
only dependent on the value of the latent topic. Despite its simplicity, the
single-topic model is a powerful tool to describe texts — especially if short,
and likely to deal with a unique topic — and also allows to perform text clus-
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tering, grouping together texts dealing with the same latent topic. However,
the single-topic hypothesis is commonly considered an over-simplification
and more powerful models allowing texts to deal with multiple topics have
emerged. In this direction, one of the most popular models is the Latent
Dirichlet Allocation (LDA) (Blei et al., 2003)). With LDA, each word of a
text is sampled by a unique topic, but different words may be sampled from
different topics allowing in this way the text to deal with multiple subjects.
After its introduction, LDA evolved in several directions, allowing for example
the topics to evolve with the time (Blei and Lafferty, 2006)), or allowing forms
of correlations between the words appearing in a text (Blei and Lafferty} 2005).

Topic models are probabilistic graphical models with a pretty simple struc-
ture. Nevertheless, their learning has always been considered a hard task;
Arora et al|(2012) for example proved that maximizing the likelihood of the
single-topic model is an NP-hard problem. The most popular approach in
general consists in using approximate inference approaches aiming at approx-
imately maximizing the likelihood function of a topic model, recovering in
this way a reasonably good (but not provably optimal) model. Variational
methods for example (Blei et al., 2003) are used for learning LDA; here a
convex relaxation of the likelihood is provided and maximized with a variation
of Expectation Maximization. More recently, approaches based on Gibbs
sampling and monte Carlo methods emerged (Griffiths and Steyvers|, 2004)
and established as standard learning techniques. However, these methods
suffer of bad computational performances, and tend to scale poorly when the
model dimensions or the sample size are big.

In this scenario, methods of moments emerged as a powerful alternative. In
fact, the scalability properties of these methods together with their provable
guarantees of learning accuracy are characteristics that approximate inference
approaches do not have. A first approach was presented by [Anandkumar et al.
(2012b) who introduced a simple technique to learn the single-topic model.
Some of the same authors presented then extensions to LDA (Anandkumar
et al., [2012a)) and to the correlated topic model (Arabshahi and Anandkumar)
2017). All these approaches follow the learning strategy outlined in Chapter
— retrieving unbiased moment estimators that are then decomposed to retrieve
the parameters of the model — and represent a promising alternative to the
likelihood-based approaches outlined above. However, despite the theoretical
soundness of these works, a little attention is paid to make them robustly
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applicable in real-world contexts. For example, the estimators provided by
Anandkumar et al|(2012a) and |/Anandkumar et al. (2012b) are not usable
in practice, because they are extremely sensitive to the noise. More robust
estimators have been introduced by |Zou et al.| (2013), however without the-
oretically assessing their convergence rate, or experimentally testing their
performance on real data.

In this chapter, we will consider two classic topic models, namely the single-
topic model and LDA, we will provide improved estimators for their moments
— in Section for the single-topic model and in Section for LDA — and
present a theorem that relates their sample accuracy to the sample size and to
the lengths of the documents. In Section we will experimentally show that
the proposed estimators outperform those from existing literature in terms
of convergence speed. Section will be dedicated to use the provided
estimators, together with SVTD, to learn from real-world text corpora the
topic models studied in this chapter and to compare their learning perfor-
mance with those of traditional methods based on Markov-Chain Monte Carlo
(MCMC); we will show that the proposed approach has significantly better
performance in terms of both speed and quality of the learned model.

3.1 Learning Topic Models with Methods of
Moments

In Chapter [I, we have seen an example of application of methods of
moments to learn latent variable models. We have seen that for any model
admitting a parametrization in terms of centers and weights (M, w), the follow-
ing two-steps approach allows to learn asymptotically converging estimators
of the model parameters:

1. Recover a set of estimators Ml, Mg and Mg whose expectation exhibit
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the following relations with the model parameters:

k

i=1

_ k
E[M;] = M, = sz'/iz' & fhi, (3.2)

i=1

~ k

=1

2. Plug the retrieved estimates into a decomposition algorithm — like for
example SVTD from Chapter [2| - to retrieve from those estimates an
estimated pair of model parameters (M, ).

In this chapter we will focus on learning topic models with methods of
moments, concentrating on the single-topic model and on LDA, and following
the two-steps approach described above. As the second step, namely the
decomposition part, has been extensively treated in Chapter [2] we will focus
here on the first part, the moment estimation procedure. Once we will
have unbiased moment estimators, we will be able to retrieve asymptotically
converging estimates of the model parameters, decomposing the moments for
example with SVTD.

3.2 Moments Estimators for the Single-Topic
Model

In this section we recall the single-topic model for which we introduce a
new estimator of the moments; we then provide a sample accuracy bound for
this estimator and we compare it with existing methods.

We consider a corpus of n text documents and a set of k topics; each document
is deemed to belong to only one topic. The vocabulary appearing in the
corpus consists of d words, from which it is immediate to label all the words
of the vocabulary with a number between 1 and d. The generative process
works as follows:
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e First, a (hidden) topic Y € {1,...,k} is drawn, according to a given
probability distribution; we define, for any j € {1, ..., k} the probability
of drawing the topic j as follows:

w; =PY =j), and w= (wi,...,wg) .

e Once the topic has been chosen, all the words of the documents are
generated according to a multinomial distribution; for each ¢ € {1, ..., d},
5, will be the probability of generating the word ¢ under topic j:

P(Drawing wordi|Y = j) = ;..

Also we will denote by p1; = (p4;1, ..., itj,a) the vectors containing the
probabilities of the various words to appear under topic j. It is a
common practice to identify a topic with the probability distribution of
the words under that topic, i.e. with each of the vectors yuq, ..., up. We
will denote with M the matrix whose columns coincide with the topics:

M = [pal, ooy ).

A practical encoding of the words in a document consists of identifying the
tth word of a text with 7" words with a d—tuple X; € R?, defined as:

1 if the word ish,
(Xi)n = .
0 otherwise.

In fact, if X; is the tth word of a document of T" words, we can define a
vector X whose coordinate h represents the number of times the word h has
appeared in the document: X = Ethl X;. It is common to call X a bag of
words representation of a document. We can see that, if the topic is j, each
coordinate of X is distributed as a binomial distribution with parameter T’
and

Distr((X)i|Y = j) = B(T, pjq)-

Remark 3.2.1. The single-topic model is a powerful tool for text mining;
assume to have a corpus of texts X and to have a single-topic model with
parameters (M, w) that accurately describes it. Then, it is possible to infer,
for each text x of the corpus, the latent topic that best describes that text,
using the following formula:

P(X = a]Y = j)w,

PY =4 X =2) = )
V=ilX =0 = s —ay = i)m

(3.4)
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This formula also enables us to cluster the texts of a corpus, grouping together
those that deal with the same topic.

It is immediate to observe that the single-topic model admits a parametriza-
tion similar to the one provided in Chapter [I| for naive Bayes models, in terms
of a vector of weights w and a matrix of centers (here, the topics) M. We
now consider a corpus of n documents

X ={zW, .. 2z}

where each vector () is a bag of words representation of the document i,
whose length is #;:
t;
S
t=1

Any learning algorithm for the single-topic model will aim at recovering from
a dataset X, an estimate of the parameter (M,w) of a single topic model
that is approximately generating the data. We know from Chapter [I} that, if
we assume the matrix of the topics M to be full rank, it will be enough to
recover a set of estimators M, M, and M; whose expectation will respect
the relations described at Equations [3.1][3.2] and 3.3 The following theorem
provides these estimators.

Theorem 3.2.1. Fiz a value n € N, and let z(V @) be n sample docu-
ments generated according to a single-topic model wzth parameters (M,w).
Define the vector M, € R?, and the symmetric tensors M, € R4 and
M € R&4xd yhose entries are as follows, for h <1< m:

(@)
(Ml) ST h,
y _Z?=1($(i))h(95(i) — Xh=1)i
(Ma)py = ST (4~ 1), ,

v > it (@)@ D) (@),
M. m = m—
( 3)h,l, Xh<li< Z l(tz _ 2) tl 1)t1

i=

> (@)t

) —
+ X (h=l<m)V(h<l=m) Zn (t _ 2)(t _ 1)t
i=1 ? ¢

>y (@D)n(z® — 1) (2

e S -

7

|
[\
~—

3
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where x s the indicator function and t; is the number of words appearing
i document i. Then, the estimators My, My and Ms respect the relations

described at Equations[3.1]3.3 and 3.5,

Proof. We will prove the statements only for

(G) S

Similar arguments hold for the other equations. It is easy to see, by conditional
independence, that

E((z") ZwE )Y =)

but the conditioned (z®), and (), are components of a multinomial
distribution and so

k k

D wB(EN @Y =) =Y w6 — t) i,

J=1 Jj=1

which implies the thesis.
O
Notice that, because M and M; are symmetric, the previous theorem
defines all the entries of these tensors. Given a sample, we are able to cal-
culate the three estimators Ml, Mg and ]\ng. It is immediate to see that
limy, oo M; = M, for i = 1,2, 3.

The following theorem provides a sample accuracy bound for the estima-
tors of Theorem [B.2.11

Theorem 3.2.2. Let My and Ms be the empirical estimates of My and Ms
obtained using Theorem and let (ty,...,t,) be a vector containing the

lengths of the various documents of the corpus. Define

n

Ztl, Ty = Z( —Dti, Ty=) (ti—2)(t; = )t;,

i=1 i=1

(it — 1))? n (it — D) (t — 2))?
e = Sl = DP e S~ Dt = 2)°)
T; T:
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Then, for any pair e >0 and 0 < < 1, such that

n n 1
VI (1= [10]13) + /205 0g(5) < e

1t holds that )

Also, for any pair e >0 and 0 < § < 1, such that

n n 1
VD= M3 + 4200 hog(5) < e

it holds that )
P(||M3 — Ms||p <€) >1—0.

Remark 3.2.2. We briefly comment on the meaning of the theorem by
focusing on M, (similar arguments hold for M3) and analyzing the case where
all the documents have the same length ¢ (¢; = ¢ for all ). Then the bound
simplifies to:

1 1 2
VETTRIVATA PRV
It is interesting to notice that the worst-case accuracy of the bound is € =
O(1/y/n). An interpretation for this fact is that, even if the documents in the
corpus are very long (large t), it is impossible to accurately learn the model

with just a few samples, as in particular we may not even see all the topics.

Remark 3.2.3 (Alternative estimates of the moments). The simplest esti-
mation of the low-order moments for the single-topic model is provided by
Anandkumar et al| (2012b)), who, for each document i € {1,...,n} consider

three randomly selected words, xgi), xéi), x:(f), and then show that

S (@)

" n_>oo> (Ml)h7 n n_>oo> (M2>h,l:
S (@@ @)
(M3)h,l,m-
n n—oo

This method only uses three words per document, and has mainly illustrative
purposes, as noticed by the authors. A method more similar to the one
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proposed in Theorem is described by Zou et al.| (2013]). Both the method
by |Zou et al.| (2013) and that in Theorem average the estimators with the
document lengths, taking into consideration all the words in each document.
However, in the method by [Zou et al.| (2013)), the averaging is done for each
document and then they are averaged together with the same weight; for
example, [Zou et al| (2013) calculate the off-diagonal entries of M, as follows:

I = (@), (™),

(Wi =23 (t; — D,

i=1
This calculation is a simple average of many estimators giving the same weight
to all documents, namely 1/n. Instead, in Theorem |3.2.1] we propose the
following different formula:

n

Y @) n @), (- 1)
S ST PR Sl e s sy o s

We can see that here we perform a weighted average, where the weight of the
sample 7 is %, giving in practice more weight to longer documents,
which are sup]posed to be the most reliable; we will experimentally see in
Section [3.4] that the proposed approach is less sensitive to noise, leading to
improved results. If all the documents have the same length, the two estimates

will produce the same number.

3.2.1 Proof of Theorem [3.2.2

We want to express the elements of the matrix M, — M, in an appropriate
way and then express a bound using McDiarmid’s inequality (McDiarmid
1998 and Lemma [3.2.1]). We consider the set of all the documents in a corpus:

X = (W, .. 2.
It is easy to see that M, can be expressed as a function of X'
- —~ )
My(X) = " wily (3.5)
i=1
where w; = %, t; is the length of the ith document, 7o = Y | t;(t; — 1),
and Mg(l) are independent matrices defined as follows:

B ti(t; — 1) '

(3.6)
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Notice that, for any 1, ]E(Mg(i)) = M,. We now define the following function:
(I)(‘)E) = ||M2(‘)E) — Ms||F

and observe that, given two samples differing only by one element
X =W, 20, ...,:l?l(-n))

X = (W, 2V x(n))

we obtain the following inequality:
[D(X) — D(X)] < [[My(X) — Mo(X)||r =

@

= (35" — 2"

/

Where J\ng(l) is calculated pluggmg 2®" in formula (3.6). Now, observing that
||M2 ||F <1 and ||M2 ||F <1, we obtain:

()

|[wi (M A )HF<2wz

The inequality above enables us to apply McDiarmid’s inequality, stating that

2 _ €2

P(||My — My||p > E(||My — My||p) +¢€) < e > =e 2w et

where we used the notation W™ = 3" w2, and defined

€
t =

2™

We now provide a bound for ]E(||M2 — M,||F). Using Jensen’s inequality we
have

E(|[ N — Mal[r) < \/E([ N — M| [2) =

— VE(INE|2) — [|Ms] 2 = ZE sz wa))?) = || Mo

where we have used Equation (3.5)). This last term is equal to

o () ~ ()
ZE Zw u,v)) + ZE(Z wjwi (M) (u,0) (M2 ’ )@uwy) — || Mo [%

U,V i#j
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and using the fact that E(MQES,U)MQEi{v)) = (MQ)?M), this equals

- - ()
> wB(|Me 7 13) + > wiwi] | Ma[% — || M]3

i=1 i#j

Now using that ||M2(i)||p < 1, we can bound this from above by

Do w? Ml wywi = 1) = | Y w(l— || Mo[}).
i=1 i#j i=1
where in the last equality we used the fact that 3, wjw; = 1 -1, wi. So,

using the notation Wi™ = S w?, we have B(|| My—My||7) < \/Wén)(l — || Ms][%),
from which we obtain

P18, — Mol > /W1~ M) + 1y 20 < .
In conclusion, we can state that if e™** = § we get, for any § € (0,1]

P(||Mz — Mo|[r > €) <6

n n 1
€= VWL = [M][2) + /2147 log(5)

A similar argument works for Ms.

where

]
Lemma 3.2.1 (McDiarmid’s inequality, McDiarmid||[1998.). Let X, ..., X,,
be independent random variables all taking values in the set C. Furthermore,
let f:C™ — R be a function of Xi, ..., X,, satisfying for all © and for all
Ty eeey Ty, s € C

If (21, s Ty ey @) — [0, s )| < i
Then for all € > 0,
2¢>

P(f - E[f] >¢€) < eSCp(—W)-
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3.3 Extension to Latent Dirichlet Allocation

In this section we extend the results of the previous section to a more
complex latent variable model, the latent Dirichlet allocation or, for short,

LDA.

The obvious criticism of the single-topic model is that each document can deal
with a unique topic, a hypothesis that is commonly considered unrealistic.
To overcome this issue, more complex models have been introduced, one
of them being LDA (Griffiths and Steyvers|, [2004; Blei et al., |2003). In its
simplest form, LDA assumes that each document deals with a multitude
of topics, in proportions that are governed by the outcome of a Dirichlet
distribution. More precisely, considering our text corpus with n documents
with a vocabulary of d words, the generative process for each text is the
following;:

e First a vector of topic proportions is drawn from a Dirichlet distribution
with parameter a € R¥, Dir(a); we recall that Dirichlet distribution is
distributed over the simplex

AR = fy e R* Vi, v; € [0, 1], and Zvi =1},
and has the following density function, for h € AF~1:
[(co) [Ti, b
H?:l I'(a;)

Where ap = Y «;. From a practical point of view, this step consists of
drawing a vector of parameters h € A*~! such that h; represents the
proportion of the topic 7 in the document.

P(h) =

e Once the topic proportions (also named mizture of topics) have been
chosen, each word of the document is generated according to the fol-
lowing procedure: first a (hidden) topic of the word, say Y € {1, ..., k},
is drawn, according to the probabilities defined by h (so we will have
probability h; of drawing topic j) and then we will generate the word
itself according to a multinomial distribution; for each i € {1, ...,d},
5, will be the probability of generating the word ¢ under the topic j.
Again, we will denote with p; = (g1, ..., ttj,4) the topics of the model,
and we will store them as columns of a matrix M = [u4], ..., |p]-
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Keeping the notation used in the previous section, we will write xg-i) € R4
for the coordinate vector indicating the word at position j in document i,
@ =3 xg-z) for the word-count vector of document i, and t; = Y7 (™),
for the number of words in that document. In the case of LDA, the unknown

model parameters are the pair (M, «).

As in the case of the single-topic model, we want to manipulate the ob-
servable moments in order to obtain a set of symmetric low-rank tensors.
The following theorem is an immediate modification of the one presented by
Anandkumar et al| (2012a, Lemma 3.2), and relates the observable moments
of the known variables with the unknowns (M, «), providing the required
representation. The only modification consists of the fact that we have used
the estimates of Theorem [3.2.1] instead of the standard ones of Remark [3.2.3l

Theorem 3.3.1. Let Ml, Mg and Mg be the empirical estimates defined in
Theorem [3.2.1). Define

Qp

M = M, — M, ® M
9 2 a1 1 1 ® My,

Mg = Ny — 0 (M) 4 —— 2%y e i @ M,
&0+2 ’ (()ég—l—2)(0[0—|—1)

where M 5 € R&x4xd 4s o three-dimensional tensor such that

(My2)nam = (M) py (M) 4 (Ma) 1 (M) 4 (My) o (My);).

Then
k

~ o Q;
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This technique allows to express the observable moments in the form of a
symmetric tensor. Both M3 and M5 have symmetric-rank less than or equal
to k, and so we can use any tensor decomposition algorithm to retrieve from
them the unknown model parameters (M, «).

Remark 3.3.1 (Advantages of our approach). The approach outlined above
has various advantages over traditional methods based on MCMC algorithms,
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like the one presented by |Griffiths and Steyvers| (2004). While MCMC methods
require several passes over the data, our method only uses one pass to compute
the moments described in Theorem [3.3.1] This guarantees higher efficiency,
which is confirmed by our experiments in Section [3.4.2] Furthermore, if
the tensor decomposition method applied to the moments is robust, and
provably recovers (M, «) from the moments, then the proposed approach will
be guaranteed to recover the parameters of the model generating the data,
guarantees that do not seem to exist for MCMC approaches.

Remark 3.3.2 (Inference). Similarly to the single-topic model, one of the
main usages of LDA is to infer the mixture of hidden topics of each document
in a corpus. Unfortunately, an exact formula to perform this inference
is not known, but a number of approximate approaches exist, like Gibbs
sampling (Griffiths and Steyvers, 2004; Newman et al., 2009)) and Expectation
Propagation (Blei et al., 2003). In our case, if we assume to know the values
of model parameters (M, ), we can apply a modified Gibbs sampler to infer
the topic mixture for a given text; consider a text, whose words are 1, ..., 7y;
then, in LDA, each word z; is generated by a unique topic Y,,. Using the
equations for Gibbs sampling from |Griffiths and Steyvers| (2004)), if Y, is the
hidden topic of word z; and y_,, is the set of topic assignment for all the
words in the document excluded z;, it can be shown that

n_;; + a;

X ) 37
Zt—l‘f_OéO ( )

P(Y& = jly—zm xz) ~ Uy,
where n_; ; is the number of words assigned to topic j excluding z;, t is the
total number of words in the document and f; ., is the probability of drawing
the word x; under topic j. So, given a document, first we have to assign to
each word a hidden topic, and then update this assignment word by word in
a iterative way, using a Monte-Carlo assignment governed by equation .
Each iteration updates the number of words assigned to a given topic; after a
suitable number of iterations, we can estimate the topic mixture for a given
document as the vector h € R” such that h; = ZJ_:Z:, where n; is the number
of words assigned to topic j.

3.4 Experiments

In this section we will study experimentally, the learning performance of
methods of moments for the single-topic model and for LDA. We will begin
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by experimentally studying the convergence rate of the estimators described
in section [3.2] comparing it with that of existing moments estimators for
the single topic model. Section instead will focus on the end-to-end
learning of topic models from real-world text corpora. In particular, we will
use the moments estimators provided in this chapter together with SVTD
from Chapter [2| to learn from real-world corpora single-topic models and LDA.
The quality of the learned models will be assessed against that of standard
MCMC approach (Griffiths and Steyvers, [2004)).

Experimental setting: We use here the same experimental setting de-
scribed in Chapter 2] Additionally, the implementation of LDA based on
MCMC that we use in Section is based on the open-source LDA python

packagelT]

3.4.1 Recovering M, and Mj

In Section [3.2] we described new estimators to recover the matrix M, and
tensor M3 from a sample, comparing it with the methods presented in the
state of the art literature from [Zou et al (2013), outlined in Remark [3.2.3]
In this section we compare, using synthetically generated data, how well the
two different methods recover My and M3 as a function of the sample size.
To perform this experiment, we generated a set of 1000 synthetic corpora
according to the single-topic model described in Section [3.2] with different
sizes (the number of texts for each corpus); the smallest corpus contained
100 texts, the largest 10000; each text contained a random number of words,
from a minimum of 3 to a maximum of 100. For each corpus, the values of
the unknowns (M, w) have been randomly generated by sampling a uniform
distribution and normalizing both the columns of M and the vector w to
have sum 1. From them, we have been able to obtain the theoretical values
of My and M3 using equations and and to compare those values
with the one empirically estimated from data using the equations in Theorem
for the presented method and the method from [Zou et al| (2013 for
the competing one. Results appear in Figure [3.1) where we show how the
estimated My and M;, namely M, and Ms, approach the theoretical values;
in particular, the chart presents the errors

ET’I"QZHMQ—MQHF and E’I"TgZHMg—MgHF

Link to the code: https://github.com/lda-project/lda
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Figure 3.1: The z—axis of the figures represents the sizes of the synthetic
text corpora, while the y—axis is Erry for the top chart and Errs for the
bottom chart. Green lines represent the errors obtained with the method
presented in Theorem [3.2.1 while blue lines represent the errors obtained
with the method by Zou et al. (2013) on the same corpora.
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as a function of the sample size n used to find Mg and Mg. We can see
that the method in Theorem [3.2.1) outperforms the state-of-the-art technique;
this is because it gives more weight to longer documents, where the signal is
stronger, and less to shorter ones, where the signal is noisier.

3.4.2 Real Data

In the previous section, we have seen that the moment estimators provided
in this chapter present superior convergence properties in comparison with
those from existing literature. In this section we use these estimators in
conjunction with SVTD from Chapter 2 to learn topic models on real world
text corpora. In particular, we will consider two corpora: Dante’s “ Divina
Commedia” and the State of the Union addresses from 1945 to 2005. In both
cases, we will learn a single-topic model — using the moment estimates from
Section and SVTD as a decomposition engine — and an LDA — using the
moment estimates from Section and again SVTD for the decomposition —
and compare quantitatively and qualitatively their behavior. Additionally, we
will compare these approaches with a standard method to learn LDA based
on Markov chain Monte Carlo (MCMC) approach, described by |Griffiths and
Steyvers| (2004)).

Dante’s Divina Commedia

Dante’s “Divina Commedia” (Alighieri, [1979) is an Italian epic poem
written in the first half of the 14th centuryf| It narrates the imaginary trip
of the main character, Dante himself, in the afterlife, guided by Virgilio, the
famous Latin poet, and Beatrice, a Florentine woman that inspired most of
Dante’s works. The storyline represents an allegorical description of death
soul’s journey towards God according to medieval world view. It begins with
Dante’s travel trough the “Inferno” (Hell), where damned souls are deemed
to eternal punishment according to their sins; the journey then moves to
“Purgatorio”, a seven-level mountain, where, at each level, a capital sin (sins
less serious than those punished in Hell) is allegorically described; here souls
are discounting their punishment, before finally moving to “Paradiso”, Heaven,
which is visited by Dante in the last third of the book. The book is divided
into 100 chapters: 34 for Hell, 33 for Purgatory and 33 for Heaven.

2The full text can be found here: http://www.gutenberg.org/files/1012/1012-0.
txt
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We analyze the performance of methods of moments on this dataset, us-
ing both the single-topic model and LDA (setting oy = 0.2), employing SVTD
as decomposition engine and fixing the vocabulary size to d = 1820 words,
which corresponds to the 70% most frequent onesf| Also, we experimentally
compare our results with those of a classic approach to learn LDA described
by |Griffiths and Steyvers| (2004)) based on MCMC — setting as a stopping
criterion 2000 iterations of the sampler (which is the default value provided by
the Python package we used). As a first step, we study how the quality of the
results depends on the number of topics k£ requested to the algorithm. To do
this, we use the various competing methods to learn a set of model parameters
(M, w), for all the values of k between 2 and 32. For each returned pair of
parameters, we evaluate the running time of the algorithm and the average
topic coherence across the various topics, displaying the results in Figure
("ST SVTD" and "LDA SVTD" represents the results of the single-topic
model and LDA learned with the proposed method of moments and "LDA
MC" represents the results of LDA learned with MCMC). The coherence
(Mimno et al., [2011) of a topic in a corpus is a quantitative indicator of the
quality of a topic, and evaluates how much pairs of words that are highly
probable in a topic tend to co-occur in the texts of the corpus; a good model
is expected to generate topics with high coherence scores. Formally, the
coherence of a topic p in a corpus is defined as

L j-1

D(w;,w;) + 1

Coherence(p) = Z Z log ————2——
j=2 i=1 D(w;)

where (wq, ...,wy) is the list of the L = 20 most frequent words in topic g,
D(w;) (resp. D(w;,w;)) is the count of documents containing the word w;
(resp. w; and w;). In Figure we can see that the proposed method of
moments outperforms MCMC in terms of speed and coherence. Furthermore,
while the performance of moment-based method remains good as model grows,
the coherence of MCMC degrades strongly[f] For method of moments, the
single-topic model and LDA have similar performance in terms of coherence

3We tested the same experiment with different vocabulary sizes — like 80% and 90% of
the most frequent words — obtaining nearly identical topics.

4We tried to improve the quality of the topics obtained with MCMC by allowing for
further iterations, but the increased running time yielded no improvements in the coherence
results.
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(left chart), while the running times of LDA are larger (right chart). From
the coherence chart, we can see that k € {2,3,4} are all good numbers of
topics for the moment-based approaches; so, we keep k = 3 and perform
two additional analysis, focusing only on the models learned with SVTD and
method of moments. First, we plot in Figure the topic assignment for
the various texts of the corpus, with the single-topic model (top figure) using
Equation for the assignment, and for LDA (bottom figure), using the
approach described in Remark [3.3.2] The z—axis represents the chapter of the
book: the first 34 are Hell, 35 to 67 are Purgatory, and the last 33 are Heaven,
while the areas represent how much each chapter belongs to each of the
topics. It is interesting to observe that, both with the LDA and single-topic
models, each of the three topics is clearly dominant in one of the three areas
of the corpus (Hell, Purgatory and Heaven): topic 1, is clearly dominant in
Purgatory’s chapters, topic 2 in Hell, while topic 3 dominates Heaven. To
see that this makes sense, we print in Table the most relevant words
for each topic, for the two models, where the relevance (Sievert and Shirley,
2014) is an indicator of how much a word characterizes a topic. Formally, the
relevance of a word w with respect to a topic p and is defined as

P(wl|p)
P(w)

where P(w|p) (resp. P(w)) is the probability of sampling w with topic u (resp.
in the overall corpus) and the weight parameter was set to A = 0.7. Again, the
topics are similar between the LDA and single-topic models, and are coherent
with the topic assignment results. For example, the most relevant words for
topic 3 are Cristo, luce, lume, meaning Christ and light. The similarity of the
topics between the LDA and single-topic models is expected from the analysis
of the coherence, where the LDA and single-topic models gave very similar
scores. An interpretation of this is the fact that Divina Commedia is close to
following a single-topic model, with each chapter dealing with a single topic.

r(w, p) = ANogP(w|p) + (1 — ) log

(3.8)

State of the Union Addresses

Every year, the president of United States of America presents a speech to
a joint session of the United States Congress, where he outlines his governative
agenda, the national priorities and legislative projects. We considered the set
of n = 65 state of the union addresses presented between 1945 and 2005, and
we perform the same analysis performed for the Divina Commedia corpus.
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Figure 3.2: Figure contains the topic coherence of a single-topic model
and an LDA learned with method of moments (resp. ST SVTD and LDA
SVTD) and an LDA learned with MCMC (LDA MC), in function of the
number of topics k; Figure [3.2b| contains an analysis of the running times.

Both the figures refer to the Divina Commedia corpus.
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Single Topic Model (SVTD)

W N =

LDA (SVTD)

20 40 60 80 100

Inferno Purgatorio Paradiso

Figure 3.3: The topic assignment for the single-topic model and LDA learned
with method of moments for the Divina Commedia.
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single-topic model (SVTD)

Topic 1: disse, saprai, morta, torre, maestro
(Transl.) said, will know, dead, tower, master

Topic 2: vidi, serpente, greve, maestro, sovra
(Transl.) I saw, snake, heavy, master, above

Topic 3: luce, Cristo, creata, lume, vicine
(Transl.) light, Christ, created, light, near

LDA (SVTD)

Topic 1: saprai, morta, torre, saggio, disse
(Transl.) will know, dead, tower, wise, said

Topic 2: vidi, cotai, greve, serpente, maestro
(Transl.) I saw, so many, heavy, snake, master

Topic 3: luce, creata, vicine, Cristo, lume
(Transl.) light, created, near, Christ, light

Table 3.1: The most relevant words for each topic for the Divina Commedia,
learned by method of moments with SVTD setting & = 3, both for the
single-topic model and for LDA.
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Again, we keep the 70% most frequent words, obtaining a total vocabulary
of k = 1184 words, and analyze topic coherence (Figure and running
times (in Figure for method of moments with SVITD — using LDA
("LDA SVTD") and single-topic model ("ST SVID") — and MCMC — only
for LDA ("LDA MC"). Again, the performance of MCMC degrades as the
model increases, while moment-based methods, both when learning LDA and
single-topic models, keeps providing meaningful results, always using smaller
running times. From now on we will only focus on the methods leaned with
the moment-based approach.

Overall, the single-topic model presents a better coherence and smaller run-
ning times than LDA. We set k = 18, which is also good for both the models
and present in Figure the topic assignment for the two models, where the
areas represent how much each document deals with each topic. Also, Table
presents the most relevant words for each topic according to the LDA and
single-topic models. The topics make sense and look similar across the two
models. However, unlike the Divina Commedia case, they are not identical.
For example, topic 8 for the single-topic model looks like a mixture of topic 7
and 8 in LDA. Looking at the topic assignments in Figure [3.4d, we can see
that speeches from the same president share similar topic assignments: for
example, topic 15 is dominant for G.W. Bush, and mainly deals with terrorism
and Iraq. Cold-war presidents have a strong predominance of topics involving
the Soviet Union, space missions and the Vietnam war. The two models are
often coherent, with some notable exceptions, like president Kennedy: LDA
assigns him to a mixture of topics that properly describe the challenges of
cold war (LDA topics: 12, 13, 17, 18), while the single-topic model provides
a simpler characterization with speeches assigned to topics 18 (again a cold
war topic) and 14 (cold war, with a focus on Europe and foreign politics).

3.5 Conclusions

In this chapter, we have presented an application of methods of moments
to learn two well-known topic models: the single-topic model and the LDA,
analyzing the theoretical properties of the proposed approach in Sections [3.2]
and Furthermore, we have applied the proposed approach in conjunction
with SVTD — presented in Chapter [2| - to learn the topics of two real-world
text corpora, comparing its performance with that of the standard MCMC-
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function of the number of topics k; Figure [3.4b; an analysis of the running
times. Figure|3.4c; the topic assignment for the two models learned by SVTD

LDA learned with method of moments, and an LDA learned with MCMC, in
setting k = 18. All the figures refer to the state of the union corpus.

Figure 3.4: Figure : the topic coherence of a single-topic model and an
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single-topic model (SVTD)

Topic 1:
Topic 2:
Topic 3:
Topic 4:
Topic 5:
Topic 6:
Topic 7:
Topic 8:
Topic 9:
Topic 10:
Topic 11:
Topic 12:
Topic 13:
Topic 14:
Topic 15:
Topic 16:
Topic 17:
Topic 18:

dollars, 1947, 1945, estimated, reconversion

21st, century, affordable, children, Medicare
class, work, cold, people, worked, working

years, people, energy, elected, congress, peace
21st, challenge, children, century, parents
challenge, children, working, challenges, work
produced, care, health, kids, people

Vietnam, plan, recommend, deficit, numbers
highway, Vietnam, recommend, program, federal
Hussein, Saddam, intelligence, aids, weapons
applause, program, government, federal, people
benefits, democratic, economic, great, life
federal, government, programs, Hussein, intelligence
alliance, Atlantic, people, free, Europe

applause, terrorists, Iraq, Iraqi, terror

strikes, bargaining, collective, labor, management
space, soviet, disarmament, military, defense
disarmament, space, defense, soviets, military

LDA (SVTD)

Topic 1:
Topic 2:
Topic 3:
Topic 4:
Topic 5:
Topic 6:
Topic 7:
Topic 8:
Topic 9:
Topic 10

Topic 11:
Topic 12:

Topic 13
Topic 14

Topic 15:
Topic 16:
Topic 17:
Topic 18:

dollars, 1947, 1945, estimated, reconversion
21st, college, affordable, children, child
class, cold, worked, cuts, talk
regulations, plan, government, reducing, inflation
Vietnam, south, 21st, tonight, principle
challenge, children, working, work, challenges
Vietnam, south, tonight, north, conflict
companies, plan, deficit, invest, care
highway, maintenance, postal, planning, program
: Hussein, Saddam, seniors, aids, intelligence
applause, Medicare, Hussein, seniors, Saddam
controls, demands, labor, study, initiative
: percent, family, people, America, tonight
: produced, care, kids, health, renew
applause, Iraq, terrorists, terrorist, seniors
collective, strikes, bargaining, management, labor
soviet, soviets, military, peace, disarmament
space, disarmament, civil, defense, Latin

Table 3.2: The most relevant words for each topic for the state of the union
corpus, learned by SVTD setting k = 18, both for the single-topic model and

for LDA.
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based approach. In all the experiments, the proposed approach outperforms
the MCMC-based one in terms of both coherence of the learned topics and
running times.
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Chapter 4

Methods of Moments for
Clustering and an Application to
Healthcare Analytics

4.1 Introduction

Healthcare analytics is a natural field of application for machine learning.
On a daily basis, hospitals and healthcare institutions produce millions of
data points providing clinical information on the status of their patients.
Machine learning can help in finding patterns in these data, helping doctors
in making data-driven decisions.

Latent variable models find a natural field of applications in this context.
For example, imagine to assign to each patient a latent variable, indicating
his true (unobservable) medical status, and that all the data that a hospital
collects about the patient are random variables whose distribution depends on
the latent condition of the patient. This strategy provides a generic modeling
framework to use latent variable models to study and synthesize the statuses
of patients visiting a hospital, enabling also to predict the future evolution of
patient latent statuses, given their observable data. In this chapter we will
use this modeling framework with the objective of clustering patients into
groups with homogeneous clinical profiles.
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4.1.1 Clustering Patients

Clustering patients is a strategic activity for modern healthcare systems.
First, similar patients share the need for similar cares, so the system can
design specific guidelines to treat and prescribe diagnostic patterns rather
than single diagnostics. Also, clear and tested clusters based on comorbidities
help clinicians to decide treatments on specific patients. Third, characterizing
patient patterns helps the system in planning resources and in performing
fair comparisons between institutions.

In this chapter we aim at providing a technique for clustering patients into
homogeneous groups. We want this technique to rely on generic, widely
available data — so to be easily usable in several different hospitals — to be
able to run in nearly real time and to be simple to use — so that its imple-
mentations could be seamlessly used by doctors or hospital professionals. In
general, these professionals have little or no training in data science; their
organizations often have a statistics department, but asking the department
for analysis usually takes weeks, which hinders intuition and innovation, and
leads in most cases to abandoning the analysis because of more pressing
day-to-day matters. Our goal is to propose an algorithm that would be largely
autonomous, requiring no ad-hoc tuning before every analysis required by the
user, and efficient so that intuitions can be explored almost in real time, even
for large populations.

Despite the increasing availability of Electronic Healthcare Records (EHR),
this data is in general heterogeneous, differing in content and structure be-
tween various healthcare systems; this hinders the development of algorithms
that can be re-used on several hospitals as well as the reproducibility of re-
search in different contexts. At the same time, hospitals can benefit from the
existence of standard, widely used procedures, as this reduces the development
costs and provides trusted, out-of-the-box methods ready to be used on their
EHR. A patient clustering method that aims to be used on several healthcare
systems should thus be based on data available in most of the hospitals.
The most universal EHR are probably patient ICD records, in their older
and more recent versions, respectively ICD9 (Geraci et al., |1997) and ICD10
(World Health Organization, 2004). ICD-based EHR contain information
about patients diagnostics registered by the hospital. A clustering algorithm
able to leverage on such data will be general enough to be universally applied
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in various healthcare systems.

Clustering is a fundamental task of machine learning, and literature is rich of
examples of applications to populations of patients. A line of work gathers
papers that apply standard clustering methods like k-means (Macqueen, [1967)
in a variety of scenarios (see for example |Rixen et al., |1996; Kshetri, 2011}
Pérez et al., 2016)); while literature here is copious, these works tend to be very
specific on the clinical problem the authors intend to solve and require domain
knowledge to properly engineer, select and process the data and the algorithm,
a perspective that is far from the standardized clustering algorithm we have
in mind. Furthermore, general-purpose clustering methods often depend on a
concept of distance between the features, a concept that may lose part of its
meaning in high dimensional settings (Aggarwal et al., 2001} [Kriegel et al.|
2009)), especially when data is sparse and/or categorical — a very frequent case
in healthcare analytics. Additionally, the “right” notion of distance may be dif-
ferent for every application of the algorithm, i.e., may change if the manager is
trying to cluster patients with diabetes, young or older population, or users of
semi-critical units, or any other possible profile. For instance, Kshetri (2011))
use k-means to model patient states in intensive care units, defining feature
specific distances to face the issue of mixed data types. Designing a distance
function may involve selecting or weighting the relevant diagnostics, clinical
findings, discretizing or combining attributes, etc., and this may be difficult
and error-prone in a everyday usage. The same problem applies to other
distance-based methods that we are aware of. Linkage-based methods such as
DBSCAN (which also require a distance function) are designed for finding com-
pact “shapes” in data rather than interpretable results or homogeneous groups.

An alternative line of work on patient clustering leverages on tensor de-
composition techniques to find recurrent phenotypes and use them to cluster
patients (see Ho et al., 2014bla; Wang et al., [2015; |Perros et al., |2017)); using
several standard sources of data (like ICD codes and procedures) these tech-
niques first create a multidimensional tensor, that, for each patient, counts the
cooccurrences of the data along various observable modes (for example, entry
(,7,h) to be 1 if patient ¢ has disease j and has been prescribed procedure
h). A low-rank tensor decomposition will then return synthetic represen-
tations of recurrent phenotypes and allow to cluster patients according to
their similarity to one of the phenotypes. While widely applicable, these
techniques tend to suffer of long computational times, requiring the decompo-
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sition of very high dimensional tensors, making difficult any real time analysis.

A different class of clustering techniques relies on the distributional properties
of the observed variables, using mixture models (see |Marin et al., 2005; [Sun
et al., 2007; Melnykov et al., [2010). Mixture models describe the observ-
able data as outcomes of joint probability distributions and present many
advantages over the cited techniques: they do not need an a-priori defined
distance, their nature of probabilistic graphical models allows natural and
objective interpretations and their flexibility allows to work with both single
and multiple sources of data. Additionally, mixture models enable to describe
the data one is using under the latent variable models perspective, where
the latent variable indicates the true, unobservable medical status of the
patient, while the observable features — like for example the diseases of a
patient — are random variables whose outcomes depend on the latent states
of the patient. This is the approach we take here, focusing on a special case
of mixture models, namely naive Bayes models (see Chapter (1)) where all the
observable features are conditionally independent binary variables (this model
is typically called mizture of independent Bernoulli variables). Performing
clustering with these models is easy, and can be done with a 1-row formula,
but it requires to know the parameters of the considered mixture model. As
a consequence, a learning procedure is typically required to recover, from a
a dataset that has to be clustered, the mixture model that will be used to
perform the clustering task.

The traditional approach to learn mixture of independent Bernoulli vari-
ables, consists in using Expectation Maximization (EM) (Dempster et al.,
1977), a technique that however tends to scale too badly for the kind of
interactive high-dimensional discovery that we envision. At the same time,
methods of moments (see Chapter |1) provide guarantees of speed, stability
and results quality that make them suitable for our purposes. This is the
approach we take here. However, applying methods of moments to learn
mixture of independent Bernoulli variables is not a trivial task, as direct
approaches for calculating unbiased estimators of the moments (like those
outlined in Chapters [l or [3|) are not known; while several indirect approaches
have been proposed —|Jain and Oh| (2014)) for example rely on optimization
techniques, while |Anandkumar et al.| (2012b) propose a multi-view factoriza-
tions of the features — none of them, when used on real data provides the
efficient and robust performance we require for our goals (see Section for
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a more detailed description of existing techniques).

In this chapter, we propose a novel learning technique for mixtures of inde-
pendent Bernoulli variables and use it to perform patient clustering. Our
approach, instead of using a method of moments to retrieve asymptotically
convergent estimates of the unknown parameters, uses this decomposition
procedure to generate approximate parameters that are then used to feed
EM as starting point. In the practical applications, using this technique, EM
converges fast, reaching in few steps surprisingly good optima; also the high
scalability allows the usage of this method on high-dimensional datasets. Addi-
tionally, we apply our method to three real-world datasets to perform patient
clustering. The first two datasets have been obtained by a collaboration with
the Servei Catala de la Salut — the major healthcare provider in Catalonia
(Spain) — and contain data from hospital admissions of two selected profiles:
patients with Congestive Heart Failure, and “Tertiary” patients (patients with
serious diseases that can only be treated by top specialists or with highly
specialized equipment). The third dataset is the publicly available MIMIC
[T (Johnson et al., 2016|), which contains clinical care data collected at Beth
Israel Deaconess Medical Center (Boston, US) from 2001 to 2012. In all
the cases, the data we consider contains essentially the list of ICD9 codes
of patients’ diagnostics. Data is turned into a binary matrix where columns
represent diagnostics, so highly sparse, as every patient has most often less
than a dozen diagnostics out of several thousand possible ones. The proposed
method finds well-characterized clusters in the data, which clinicians find
meaningful, novel to some extent, and potentially useful for refining clinical
guidelines.

In Section 4.2] we provide details on mixture of independent Bernoulli vari-
ables, together with some indications on how to use them to perform clustering.
Section [4.3] overviews learning techniques for these models and presents a
novel approach for this purpose. Section experimentally compares the
proposed technique with other methods, both from the clustering and methods
of moments literature. Finally in Section 4.6, we apply our method to the
real-world datasets described above to perform patient clustering.
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4.2 Clustering with Mixtures of Independent
Bernoulli Variables

In this section we will present the latent variable model we are going to
use in the rest of the chapter, together with some details on how it can be
used to perform clustering.

We will focus on a special class of naive Bayes models (see Chapter |[1)),
where the observable features are binary variables. In this setting, our model
will be characterized by the following generative process:

e First, a latent state Y € {1,...,k} is drawn from a discrete random
variable:
P(Y =j) = wj, w=(wy,...,wx) € A",

e Then, a random vector with d binary features X = (X7, ..., X) is drawn.
The features are conditionally independent, and their distribution only
depends on the value of the latent state Y:

Distr(X;|Y = j) = Binary(p;;) P(X; =1]Y =j) = p;,; € [0,1].

Similarly with what done with Poisson naive Bayes models, we will
define centers of the mixture, the vectors p; = (yj1, ..., tjq4), and we
will store them in the columns of a matrix M = [uy, ..., ux] € R,

A consequence of the binary nature of the features and of their conditional
independence, is the fact that the model is entirely characterized by its
mixing weights w and by its matrix of centers M. Learning a mixture of
independent Bernoulli variables from a set of observations X = {z(1) .. z(™}
means to recover an estimated pair of model parameters (M,@) of a mix-
ture of independent Bernoulli variables that approximatively describe the data.

Mixture of independent Bernoulli are a powerful tool to perform cluster-
ing. In fact, given a random sample x generated by such a model, we can
derive a conditional distribution for its latent state Y:

d
PY =j|X =2) xw; H/ﬁ%l — )t (4.1)
i=1
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and perform clustering by assigning it to the class corresponding to its most
likely latent state:

Cluster(X) = argmax(P(Y = j|X)). (4.2)
G=1,k

This clustering procedure, has the additional advantage of providing a clear
and interpretable description of the clusters. In fact, the vectors ;; contain
the probabilities of observing non-zero values for the various features; taken
a vector X belonging to the cluster Y = j, its ith entry will be likely to be
1 if the corresponding entry in the center yu;, namely p;;, will be high. The
centers p; will thus be synthetic descriptors of the clusters, highlighting the
expected behavior of a sample belonging to that class.

Given a dataset of independent binary vectors X = {zM, ..., 2™}, we can
model it as generated by a mixture of independent Bernoulli variables, and
use Equation to cluster its samples into k groups. However, Equation
(4.2)) requires to know the parameters (M,w) of the mixture we want to use
to perform clustering, which, to be retrieved, require a learning algorithm.
The next section is dedicated to this task.

4.3 Learning Mixtures of Independent Bernoulli
Variables

In this section we present a learning algorithm for mixtures of independent
Bernoulli variables. We will begin with a quick overview of existing methods,
to propose then a novel technique.

4.3.1 Existing Methods

The standard approach to learn mixtures of independent Bernoulli vari-
ables consists in employing Expectation Maximization (EM) (Dempster et al.,
1977). EM, starting from an initial estimate (M,®), iteratively updates those
parameters, increasing at each step the likelihood of the model, until con-
vergence is reached. The working mechanism of EM is very simple: first,
Equation is used to calculate the probability that each observed sample
belongs to each cluster. Then each center p; is re-calculated as the weighted
average of all the points in the dataset, where the weight for each point
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is the probability that this point would belong to cluster j. The issue of
EM is that it may converge to poor local optima, if initialized poorly, and
that at each iteration it requires a full pass across all the samples in the
dataset. Random initializations are thus unlikely to provide meaningful re-
sults in reasonable amounts of time (See Marin et al., 2005, for details on EM).

Given the fact that mixtures of independent Bernoulli variables admit a
parametrization in terms of a pair (M,w), exactly like the models studied
in Chapters [ and [3] methods of moments represent a viable and promising
alternative for their learning. To follow this approach, we require a fam-
ily of estimators M;, M, and M; providing the following relation with the
parameters of the model.

k
E[Ml] =M = Z%‘Mz’; (4.3)
=1
~ k
E[My] = My = wipt; ® s, (4.4)
=1
~ k
=1

As we have seen in previous chapters, the typical approach to retrieve these
estimators consists of relying on the low order moments of the observed data,
providing additional translations to obtain unbiased estimators (like we did
for example in Theorems or . However, equations allowing such
a direct approach for mixtures of independent Bernoulli variables are not
known, and finding moment-based estimators for all the entries of My and
M; ended up being a challenging task.

To see this, take a dataset X = {2, ..., (™} and define the raw moments
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as follows:

x(l
M; = Z (4.6)

D ® x(l
M, = Z (4.7)

i, = Z (1)

It is trivial to see that the raw-moments are good estimators for M; and for
the off-diagonal entries of My and M3, because we have that, for each triple
of mutually distinct 4, 7 and h,

~

E[(My);] = (M), (4.9)
E[(My);] = (Ms)sj, (4.10)
E[(Ms)ijn] = (M) - (4.11)

However, the relations above fail if at least two of 7, j and A coincide; that
means that the raw moments, do not suffice to estimate the off diagonal entries
of My and Mj; unfortunately, it is enough to spend some time playing with
the estimates above to realize that no trivial variations of the raw moments
allow to retrieve unbiased estimators for the diagonal entries of M, and Ms.

This challenging scenario led to the introduction of several indirect tech-
niques to retrieve unbiased estimators of the moments at Equations ,
and . Jain and Oh/ (2014) for example follow an optimization-based
approach: first they estimate the raw moments, then they discard their diago-
nal entries, which are treated as missing entries. A tensor/matrix completion
technique based on alternating least square is then used to fill these missing
entries. This approach, however, only works when the number of features is
significantly higher than the number of clusters k; furthermore, it requires
the storage of the full three dimensional tensor M3 in memory, reducing the
scalability of the algorithm (depending on a factor d® for both memory and
time requirements, where d is the number of features). Another method has
been proposed by |Anandkumar et al. (2012b)) — and subsequently refined
(Anandkumar et al., 2014) — and it is based on the so-called multi-view
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approach. Here, the features are first split into three views, X,, X, and X,
like in the following example:

X = (3(17 s 7Xd57 Xda+17 s 7Xda+db7 Xda+db+17 s 7Xda+db+dc)'

After that, a number of linear transformations are performed on the cross-
moments between the views — including matrix inversions, compositions
and singular value decompositions — to retrieve consistent estimators of the
moments. This approach, which requires to have at least d > 3k features, is
known to be extremely unstable under random perturbations. Furthermore,
the definition of the views — i.e. the decision of which features to put in
each view — is a non-trivial task, that — when only limited data is available
— meaningfully impacts the output parameters. These limitations make the
multi-view approach to clustering hardly applicable in the medical setting,
where the stability of a learned model represents a key requirement.

4.3.2 A New, Approximate Approach

All the existing techniques for estimating mixtures of independent Bernoulli
variables present some drawback, whether in terms of efficiency, or in terms
of poor robustness to perturbations. In this section we will present a new
approach that aims at overcoming the limitations listed above.

Our approach relies on the observation that the raw moments provide un-
biased estimators for the desired moments , and for most of
their entries — namely all the off-diagonal entries — and only the diagonal
entries present a certain kind of bias. In the following theorem we show that
this bias of the raw moments is small.

Theorem 4.3.1. Let MI,MQ and M; be the raw moments defined at Equations
(4.6),(4.7) and (4.8). Define the values of the conditional second and third

order moments for an observable variable:

i =EIXTY = )

j7i

uy =EXFY =), p
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If pji €10,1] Vi, j, we have for all i # j:

k
~ 2
[(M3)i; — (Mz);s] < Z%‘M;,-) — (My)?,

=1
k 2

~ (Ma):,

M3)ii0— (Ms);i1| < wj (-2')‘——17,
(s = Gl < 3w~

|(M3)i,i,i - (M?))i,i,i

k
< Z%Mﬁ) — (My);.

j=1
Proof. First, recall that because each y;,; € [0,1], we have that
©) 2 (3) 3
Wi 2 Wi Mg = Hjge
We now prove each claimed equation one by one.

~ k 2
L | (Ma)s — (Ma)id < 375 winf) — (M1)2.
The thesis is a consequence of the following chain of inequalities:

k k
"~ 2
(Mo)si = E[z?] = > wipl) > > w2, =
par =i

k
= (My)is > (D wjinys)* = (M)},
j=t

where we have applied the Jensen inequality.

~ k 2 (M2)?
2. [(Ms)iag — (Ms)iaal < 320y wipd? i — ey
We have

k k
"~ 2
(Ms);i0 = ij,ug‘,i),uj,l > Z%’M?,m]’,l =
j=1 j=1
(M2)3,
(M)’

from which again we get the desired inequality.

~ k 3
3. [(Ms)sas — (My)saal < 325, wip) — (M),
The proof of this point is identical to that of point 2.

= (M3)i1 >
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]

The theorem above says that if we are learning a mixture of independent
Bernoulli variables, the expected value of the bias of the raw moments is
small. Starting from this observation, we propose the following approximate
approach:

1. First, use the raw moments as input to SVTD, to retrieve a pair (M , W)
of model parameters — which, will be biased as a consequence of the
bias in the input moments.

2. Then, we plug these estimated parameters as initializers for EM, with the
objective of improving them, obtaining a model that locally maximizes
the likelihood.

This approach is an heuristic, but presents several advantages over existing
techniques: first, it allows an efficient and optimized implementation of SVTD
— that we will call Approximate Singular Value-based Tensor Decomposition
(ASVTD): this implementation, instead of taking as input the moments, takes
as input a dataset, and embeds the calculations of the moments with the
inner steps of SVITD, obtaining, as we will see in Section [£.3.2] improved
computational performance. The second advantage will be that, despite the
lack of theoretical guarantees, this approach will lead to high-quality model
parameters, with EM converging fast to surprisingly good local optima, as
we will experimentally see in Section [4.5]

Algorithmic Details: Implementing ASVTD

Our approach consists of using the raw moments as input to SVTD, ob-
taining a pair of approximate estimates (M ,w) that are then updated with
EM, until when convergence is reached. The usage of the raw moments
allows to modify the structure of SVTD in order to reduce its complexity, by
embedding the moment calculation in the inner steps of SVTD (we refer the
reader to Chapter 2/ and Algorithm (1] for details on SVTD). This improved
implementation will lead exactly the same results as SVTD inputted with
the raw moments, but with an improved efficiency.

Pure SVTD works with all the explicit slices of the d x d x d tensor Mjs, which
may be computationally demanding, especially when the number of features
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is high. Using the raw moments, enable us to avoid the explicit usage of the
slices of M3, working with matrices with a lower dimension, improving the
complexity of the algorithm. Given a dataset

X ={zW, .. 2"}

we define 7 € R™*? the matrix whose ith row is the vector z(¥. This matrix,
together with the number of latent states k& will be the input of ASVTD.

Algorithm 2 Approximate - SVTD

Require: The sample z € R™? the number of latent states k < d
1: Compute M, = € Rxd

2: Decompose M2 as M2 = UkSkUk with a SVD.

3: Define the whitening matrix £ = U, kS,i/ ? and calculate its pseudoinverse
Bt = (S,)~2U].

4: Project Z on R™*: z = z(ET)T

5: Initialize a,,;, = —o0 and O = [ as the k x k identity matrix.

6: fori=1— d do X

7. Compute H; : 21 ding((a )iz

8:  Compute the smgular Values of H;, (s1,...,8x) and the left singular

vectors O;.

9: if mini¢j(|si — Sjl) > Qmin then

10: Set: upin, = min;(]s; — s;|), and O = O;

11:  end if

12: end for

13: fori=1—ddo

14:  Obtain the ith row of M as the diagonal entries of O" H;O
15: end for '

16: Obtain w solving (>, xél)/n)jzl”d = (Md))j:l,,d

17: Return (M, Q)

Comparing SVTD (Algorithm [I) and its approximate implementation
(Algorithm , we notice that the main differences are in the loop from row
6 to 12 of Algorithm [2| In fact, standard SVTD computes the matrices H;,
whitening the 7th slice of Mj:

H; = E"Ms,(E")";
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this operation is pretty expensive, as it requires O(d?k) operations, and is
repeated d times, for a total cost of O(d?k). Instead, in ASVTD, we never
compute explicitly M, but we compute directly H;, exploiting the fact that,
in this case
Bz diag((alY, .., a)) (BT

n

i

So, at row 4, we whiten the matrix of the observed samples, and we use it
during all the algorithm; the calculation of each H; now costs only O(k?n),
which in many cases is a substantial improvement (especially when the number
of the features is high).

Notice that there is a second difference between the implementation of ASVTD
and that of SVTD, that is the fact that ASVTD has explicitly implemented
the feature selection process described at remark[2.1.2] In fact, SVTD requires,
at step 3, to isolate a feature, for which to calculate the matrix O that will
be used to diagonalize the various matrices H,, and retrieve consequently the
rows of the matrix M. This procedure is explicitly implemented in ASVTD
in the loop from row 6 to 12, where the feature that maximizes the difference
between the two nearest singular values is selected.

We now analyze the complexity requirements of ASVTD. It is easy to see that
the steps from 1 to 4 have a time complexity of O(d?n) for step 1, O(d?k)
for step 2, using randomized techniques (Halko et al., 2011) and O(ndk) for
step 4. In the loop from step 6 to 12 we have the calculation of H;, costing
O(k*n), and a k x k SVD, costing O(k?), giving a total time complexity of
O(d*n + dk*n + dk?) in the realistic cases where d, k < n. Also the memory
requirements are mild, as the only storage is for the matrices H;, costing
O(dk?), M,, costing O(d?) and Z, for O(dn). The total memory is thus
O(dk? + d* + dn).

4.4 Putting it All Together

We are now ready to merge all the elements presented till now, and to show
how to use the presented learning technique to cluster a dataset of independent
binary vectors. Starting from a dataset X', our proposed approach consists
of the following flow: First, estimate the raw moments M;, Ms, Ms, as in

Equations (4.6)), (4.7) and (4.8) and retrieve the model parameters (M, w)
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with SVTD (or, directly use ASVTD for an optimized implementation). Then,
apply EM to improve the quality of the estimated parameters. Last, use the
clustering formula described at Equation to group the observed samples
into k clusters.

Remark 4.4.1 (Tuning the clustering results). The runs of EM performed
after the parameter retrieval guarantee that the retrieved mixture model is
(locally) optimal in terms of likelihood. Additional fine-tuning is possible
re-running the algorithms in different configurations, for example modifying
the number of clusters, adding/excluding certain features, or performing
additional clustering within one of the clusters. The interpretation technique
provided in the Section allows a user to visually inspect results and add
expert considerations on the discovered patterns. Other types of manual
fine-tuning (like manually assign a patient to a different cluster) may be
possible, at the cost of adding human bias to the results of the model.

4.5 Experiments

In the previous section we have described an approach to cluster a dataset
of high-dimensional binary vectors into k£ groups. In this section we want to
experimentally compare the clustering accuracy of the proposed method with
that of state-of-the-art methods.

We proceed as follows: First we generate a synthetic dataset, distributed as
a mixture of independent Bernoulli, registering for each sample, the cluster
to which it belongs (i.e. the latent variable generating the observation); the
synthetic parameters (M, w) have been generated as exponentially distributed
random numbers, normalized to be between 0 and 1. Then, we cluster the
samples in an unsupervised way, and we compare the obtained clusters with
the theoretical ground-truth, registered when generating the data. We then
repeat this procedure for various model and sample sizes. In order to analyze
the clustering accuracy, we use the Adjusted Rand Index from Hubert and
Arabie (1985) between the theoretical ground-truth partition and the one
obtained with the clustering algorithm. We recall that the adjusted rand
index is an indicator that compares whether two partitionings of a dataset
are or not similar; an adjusted rand index of 1 indicates that two clusterings
are identical, while a random labeling should have a value close to 0. Our
comparison will be performed between several different algorithms:
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. The approach described in this chapter: in particular, we will use
Algorithm [2] to recover a set of approximate parameters that will be
then refined with EM; last, Equation (4.2) will be used to perform
clustering. EM will be run until convergence, stopping the algorithm
when the norm of the variation on the estimated w between an iteration
and the next will be less than 0.01.

. With formula (4.2)), where the parameters are retrieved using the three-
views method of moments from Anandkumar et al.| (2012b)) (3V-MoM
in the charts). Here, we obtained the views by randomly splitting the
features into three groups. For this case, we test both, the scenario where
EM is used after the parameter retrieval (to get improved parameters)
and scenario where not.

. As above, with formula , where the parameters are retrieved with
the three-views method of moments, but using the variation from
Anandkumar et al.| (2014) (3V-TPM in the charts) and obtaining the
views following the procedure of the previous point. Also for this case,
we test both, the scenario where EM is used after the parameter retrieval
and scenario where not.

. K-Means.

. Spectral Clustering from von Luxburg| (2007), using a linear kernel (
"SC-lin” in the figures).

. PCA clustering, where k-means is used to cluster the sample where the
dimensionality has been reduced using a PCA.

The results are displayed in figure [{.I] The top three figures represent

the experiment where EM is not run after the multi-view clusterings from
Anandkumar et al.| (2012b], 2014)), while the three figures below represent the
experiment where EM is used. In the leftmost figures we fixed the number of
features d = 99 and the number of latent states k = 12, varying the sample
size from n = 100 to n = 10000. In the central figures, the sample size
n = 10000 and the number of features d = 99 are fixed, while the number
of latent states varies from k = 2 to k = 33. In the rightmost figure, the
sample size n = 10000 and the number of latent states & = 4 are fixed,
while the number of features varies from d = 12 to d = 99. It is interesting
to notice that all the reference methods (K-means, Spectral Clustering and
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Figure 4.1: Adjusted Rand Index of the compared methods, when EM is
not used after the multi-view methods (top three figures) and when is used
(bottom three figures).
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PCA) are outperformed by methods of moments; also, it seems that the
intuition of using a mixed method of moments + EM approach provides good
results, as ASVTD + EM, despite the lack of theoretical guarantees, performs
better than the pure (i.e. without EM) multi-view methods of moments from
Anandkumar et al. (2012b], 2014)). If we plug some EM iterations after the
multi-view approaches (three figures below), we can see an improvement in
their learning performance, behaving similarly to ASVTD + EM. However,
while ASVTD does not need any preprocessing of the data, multi-view meth-
ods of moments do require to split the features into conditionally independent
views, a task that may require several trial and errors when dealing with
unbalanced real-world datasets.

40 _ Method Time
ASVTD | EM 13 sec.
:, 3V-TPM + EM 3.68 sec.
ggo 3V-MoM + EM 0.77 sec.
His KMeans 0.76 sec.
" SC - lin 7.48 sec.
- PCA 0.38 sec.

(a) (b)

Figure 4.2: The average clustering time spent for each method.

We now briefly discuss the running times. For each run of the experiment
described in the previous paragraph we registered the time employed by each
of the clustering methods. We then average all these records, in order to get,
for each method, the average time needed to perform the clustering. Results

are displayed in Table [4.2b]

It is immediate to see that Spectral Clustering method is much slower than
the competing techniques. This is a consequence of dealing with an n x n
affinity matrix, that requires a number of operations quadratic in the sample
size. PCA and K-means are pretty fast, but we have seen that they perform
poorly on binary data. Looking at methods of moments, 3V-TPM + EM
seems to be the slowest method, consequence of a worst scalability on the
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number of latent components, while ASVTD + EM and 3V-MoM + EM have
similar performance. Figure displays for each method of moments how
much of this running time is spent in the decomposition part — the orange
portion — and how much in EM. As expected, ASVTD is significantly faster
than other decomposition methods, due to the better scalability. However, as
it does not provide a guaranteed estimation of the model parameters, EM
takes a bit more time to converge. If we look at the other algorithms we can

see a significantly longer time in decomposing tensors, and a shorter time in
doing EM.

Experimental setting: All the experiments in this section have been run
on a MacBook Pro with a 2.7 GHz Intel Core i5 processor and 8 GB of
RAM memory. All the algorithms have been implemented in Python 2.7
(interpreted, not compiled), using the numpy (Walt et al., [2011) library for
all linear algebra operations, including Singular Value Decomposition.[] The
methods from |Anandkumar et al.| (2012b;, 2014)) have been implemented by
the author of this thesis. For K-Means, spectral clustering and PCA, we have
used the implementation provided by Scikit-Learn python library (Pedregosa
et al.| 2011).@. Implementations for ASVTD have been publicly disclosedﬂ

4.6 Patient Clustering

In this section we present the results of applying the proposed approach
to cluster patients form real-world EHRs.

4.6.1 The Datasets

We consider three datasets. The first two have been provided by Servei
Catala de la Salut, the major provider of public healthcare in Catalonia,
Spain.ﬁ The datasets are subsets of a bigger database containing all hospi-
talizations in Catalonia for the year 2016. The first dataset contains all the
patients affected by Heart Failure, to be precise patients having a primary

'https://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.
html

2 http://scikit-learn.org

3 https://github.com/mruffini/NaiveBayesClustering

4Due to privacy constraints, these datasets are not publicly available.
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or secondary diagnostic 428 in the ICD-9 code. The second dataset contains
“tertiary” patients, those with a serious disease that is supposed to be treated
in one of the 5-6 large, reference hospitals in the area, because either the
expertise or the required resources are only found there; criteria for tertiarism
include all oncology surgery, all heart surgery, all neurosurgery, major trau-
matism, acute ictus, myocardial infarct and sepsis, transplants, and a few
rarer conditions. The third dataset we consider is MIMIC III (Johnson et al.,
2016), a freely available dataset containing clinical care data collected at
Beth Israel Deaconess Medical Center from 2001 to 2012, focusing again on
the diagnostic ICD9 records. The datasets have the same format: each row
represents a visit of a patient to a hospital, and the columns contain the codes
of the diagnostics that the doctor annotated in the patient history during
the stay; their order is considered irrelevant. Diagnostics are coded in the
international ICD-9 code (Geraci et al., [1997). The codes are hierarchical,
of the form ddd.dd, with the .dd part being optional: the first 3 digits are
a general diagnostic and extra digits, if present, make the diagnostic more
precise. We kept only the first three digits of the ICD-9 codes, which are
those with more consensus among doctors, obtaining a total vocabulary of 696
codes. In this way it is straightforward to map a dataset into a n x 696 matrix
with binary entries, where n is the number of records of each dataset, using
an approach analogous to the bag-of-words: first associate each registered
disease to a unique number between 1 and 696, and then populate a matrix
Z placing a 1 at position (7, j) if the record i presents diseases j, otherwise a
zero. After this processing, we obtained three datasets: for the Tertiarism
dataset, x; with n = 16311 samples, for the Heart Failure dataset z. with
n = 23154 samples and, for the MIMIC dataset #,, with n = 56360 samples [’

4.6.2 Modeling Strategy

With the approach described above we will obtain, for each dataset, a
binary matrix, whose rows will correspond to the patients, and columns will
correspond to the diseases. We will model the rows of each dataset as sampled
from a mixture of independent Bernoulli variables, with & latent states[f]

SFor MIMIC we also removed the patients whose age was greater than 100 years, as we
found these records less reliable — for example finding date of birth dating back to mid
XIX century, a problem not present in the other datasets.

6In all the experiments of this section, the value of k has been manually defined, as a
consequence of expert’s considerations.
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Each latent state will represent a possible unobservable medical status, while
the centers pq, ..., up will represent the probabilities of developing a certain
disease when one is in a given clinical status. Each patient finds himself in
a specific medical status, which can not be observed; instead, we can only
observe some features — the diseases — which can give us indications on the
latent status of the patient. With this modeling strategy, clustering means
to group together the patients with the same latent status. The centers will
represent synthetic descriptors of the various statuses, describing how likely
each diseases is in each status/[]

4.6.3 Analysis of the Results

In all the cases we run ASVTD, followed by EM, to then perform clustering
using Equation ; the stopping criteria for EM was the moment in which
convergence was reached; in particular, we stopped the algorithm when the
norm of the variation on the estimated w between an iteration and the next
was less than 0.01. In order to analyze the results, we plot two charts for
each dataset: a heat-map and a disease-frequency chart. The heat-map, is in
figure In that figure, we took the 40 most common diseases and plot
the matrix z. only for the columns associated to those diseases. We ordered
the rows of z. according to the cluster to which they belong, and draw them
sequentially: each row of Figure is a record, the black points indicate
whether a disease is present. The background color of each row indicates
the cluster (so: white background is the first cluster, clear gray the second,
and so on). The purpose of this figure is to give a first visual inspection of
the patterns present inside the clusters; heat-maps also give an idea of the
dimension of the clusters with respect to the total dataset. Disease-frequency
charts are instead used to give a meaning to those patterns, an example
is at Figure [£.3D} the top-20 diseases in terms of frequency are displayed,
each one in a different row. Then, for each one of the clusters, we show the
relative frequencies of the considered diseases; for example, in Figure [4.3D]
“Dyslipidemia” is present in the 50% of the patients belonging to the first
cluster. To have an additional indication of the content of the clusters, we
represent in Tables [1.1] [4.2] and [4.3] the most relevant diagnostics, where the
relevance (Sievert and Shirley| [2014)) of a diagnostic ¢ with respect to a cluster

"In this framework, the centers are commonly called phenotypes.
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J, given a weight parameter A, is defined as

r(i, ) = Mog(p;s) + (1 = X 1og s/ (O tn.icwn)) (4.12)

h=1

where p;; = P(X; = 1|Y = j). The relevance of a diagnostic with respect
to a cluster j is an indicator that has a high value if the frequency of the
considered diagnostic inside the cluster is much higher then its frequency on
the full dataset; diagnostics with a high relevance are those that characterize
a given cluster with respect to the others. An analysis of the content of a
cluster can be performed merging the information contained in the disease-
frequency charts with those provided by the tables of the highly relevant
diseases: disease-frequency charts will show us the diseases that are frequent
in a given cluster, regardless what happens in the other clusters; conversely,
tables of the highly relevant diseases will highlight those diagnostics that
characterize a cluster with respect to the others, providing in this way a
complete view on the patterns that can be found in the data.

Heart failure dataset

The clusters obtained in the heart failure dataset are plotted in Figure
, with the associated table of the highly relevant diseases. Clusters
can be described with high coherence: Cluster 1 could be called the “purely
metabolic” cluster: high prevalence of hypertension, and also dyslipidemia
and diabetes mellitus. Cluster 2 contains the above complicated with kidney
problems; Patients in Cluster 3 present valvular problems and pulmonary
hypertension, well-known to be related. Cluster 4 is a mixture of kidney
and pulmonary problems (lung diseases are pretty frequent here), with little
metabolic implications. Cluster 5 contains the purely kidney sufferers, with
diabetes mellitus (nephropaty being a common complication of diabetes) and
dyslipidemia. Clinicians confirm that these clusters make sense once seen,
and may be useful for guiding treatment. For example, medication that might
be indicated for the purely cardiac clusters might be not advisable for the
clusters with renal problems if it is suspected to be nephrotoxic.

Tertiarism dataset

The clusters for the tertiarism dataset are plotted in Figure [£.4D] with the
associated Table [4.2] of the high relevant diseases. Clinically, Cluster 1 might
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Figure 4.3: Disease-frequency chart for the Heart Failure dataset.
The corresponding heatmap. The “Heart Failure” disease is not represented
as it appears in all the records of the dataset.
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Figure 4.4: Disease-frequency chart for the Tertiarism dataset. The
corresponding heatmap.
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Cluster Most Relevant Diagnostics Cluster Size

1 Essential hypertension; Dyslipidemia; Cardiac 7290
arrhythmias; Diabetes mellitus; Obesity;
2 Diabetes mellitus; Atherosclerosis; Acute pul- 2915

monary heart disease; Retinal disorders; Hyper-
tensive heart and renal disease;

3 Chronic pulmonary heart disease; Diseases of en- 4480
docardial structures; Diseases of endocardium;
Hypertensive heart disease; Cardiac arrhyth-
mias;

4 Bacterial infection; Disorders of urethra - uri- 2936
nary tractk; Acute renal failure; Hypertensive
heart - renal disease; Disorders of fluid, elec-
trolyte, acid-base balance; Diseases of lung;

5 Hypertensive renal disease; Chronic and/or 5533
acute renal failure; Diabetes mellitus; Anemia;

Table 4.1: The most relevant diseases for each cluster for the Heart failure
dataset.

correspond to patients in need of coronary intervention (heart surgery or
interventional cardiology), again with strong presence of metabolic anomalies.
Cluster 2 is similar, but including myocardial infarction. Cluster 3 includes
nephrology patients, who are also taken to tertiary hospitals when they need
transplant or are in very advanced phase, and who tend to develop arteriopathy
in the long term; interestingly, diabetes mellitus shows up strongly in this
cluster, as it is the leading cause of entrance to dialysis programs. Cluster 4
has a surprising behavior: on a first hand, no clear signal comes out from the
disease-frequency chart, besides the ever-present hypertension, dyslipidemia
and a small signal of colo-rectum cancer. However, if we look at the table
of high relevant diseases, we can see that the most relevant diagnostics for
this cluster are neoplasms. Oncological problems are large constituents of
tertiarism; they are characterized by a large set of codes (almost 100 for
neoplasms, by organ of origin mostly), reason why it is not surprising the
fact that we do not find them in the disease-frequency plot, as there are
many distinct diagnostics indicating oncological diseases; however, the fact
that the most relevant diagnostics for this cluster are neoplasms allows us to
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Cluster Most Relevant Diagnostics Cluster Size

1 Ischemic heart disease; Essential hypertension; 4892
Angina pectoris; Dyslipidemia; Chronic is-
chemic heart disease;

2 Acute myocardial infarction; Chronic ischemic 3982
heart disease; Nondependent abuse of drugs;

Essential hypertension; Dyslipidemia;

3 Hypertensive renal disease; Chronic renal fail- 1043
ure; Chronic ischemic heart disease; Diabetes
mellitus; Acute myocardial infarction;

4 Malignant neopl. of rectum, rectosigmoid junc- 3133
tion, and anus; Secondary malignant neopl. of
respiratory and digestive systems; Malignant
neopl. of trachea, bronchus, and lung; Malig-
nant neopl. of stomach; Diseases of white blood
cells;

5 Chronic renal failure; Hypertensive renal dis- 819
ease; Disorders involving the immune mecha-
nism; Anemia; Disorders of urethra and urinary
tractk;

6 Diseases of endocardial structures; Chronic pul- 2442
monary heart disease; Heart failure; Diseases of
endocardium; Diseases of lung;

Table 4.2: The most representative diseases for each cluster for the Tertiarism
dataset.
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consider this family of diagnostics as characterizing this cluster. Cluster 5
groups kidney patients without arteriopathy, so similar to the first and second
clusters but without previous infarction. Cluster 6 includes patients with
cardiac valvular disease; normally they need heart surgery or interventional
cardiology, but their associated complications are quite different from those
in Clusters 1 and 2.

MIMIC dataset

Cluster Most Relevant Diagnostics Cluster Size

1 Coronary atherosclerosis; Essential hyperten- 16120
sion; Dyslipidemia; Mitral valve disorders;

Acute myocardial infarction;

2 Chronic kidney disease; Hypertensive renal dis- 9504
ease; Congestive heart failure; Encounter for
radiotherapy; Diabetes mellitus;

3 Septicemia; Alcoholic fatty liver; Abscess of 12559
liver; Other anaphylactic reaction; Hyperosmo-
lality and/or hypernatremia;

4 Motor vehicle traffic accident; Accidental fall; 10065
Closed fracture; Closed fracture of cervical ver-
tebra;6 Open wound;

5t Single liveborn; Need for prophylactic vaccina- 8112
tion; Observation for suspected infectious condi-
tion; Extreme immaturity; Perinatal jaundice;

Table 4.3: The most representative diseases for each cluster for the MIMIC
dataset.

The clusters obtained with the MIMIC dataset are plotted in Figures
[4.5a] and [4.5b], while Table contains the most relevant diseases for the
each cluster. Again, the clusters are neat, and clearly characterized under
the clinical point of view. Cluster 1 is characterized by patients suffering
of Dyslipidemia and hearth-related issues, Cluster 2 is characterized by
kidney-related problems, while Cluster 3 seems to contain infections and
liver-related issues. Cluster 4 contains patients who suffered traumatic events
(like accidents and fractures) while Cluster 5 is essentially characterized by
new-born patients.
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Figure 4.5: Disease-frequency chart for the MIMIC dataset. The
corresponding heatmap.
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4.7 Conclusions

We have presented an efficient method for clustering high dimensional
binary data, based on applying methods of moments to learn mixtures of
independent Bernoulli variables. Under the clinical perspective, our method
is able to find interesting and potentially useful patterns even in the simplest
format of EHR, namely, diagnostic codes only. A strong point noted by
clinicians on this clustering approach is that it provides a fresh look, without
prejudice, based on an aseptic algorithm. A natural follow-up consists in
including additional medical information to the features, like demographics,
lab results, vital signs or medications. Also, we believe that including higher-
level diagnostic groups among the features may improve the clarity of some
patterns; these are more clearly defined in the more recent coding scheme
ICD10 than in ICD9Y.
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Chapter 5

A Method of Moments Robust to
Model Misspecification

5.1 Introduction

In the previous chapters, we have presented several results showing how
methods of moments can be used to learn from data latent variable models. In
Chapters [3| and 4] we have presented practical applications of these methods,
showing that they represent a promising framework, that can be successfully
applied on complex, noisy real-world data, with performance that is often
superior to those of existing, classic techniques. Without doubt, efficiency
is one of the competitive advantages of methods of moments: requiring a
single pass through the data — to calculate the moments — and working with
small, low-dimensional tensors — thanks to the whitening step — they allow to
deal with high dimensional massive datasets, returning appealing results in
relatively short time.

At the same time, if the structure of the model generating the data is
known, methods of moments often have the guarantee to recover a model that,
asymptotically with the sample size, converges to the one generating the data.
Consider for example a corpus of texts generated by a single topic model,
then methods of moments — using the procedure described at Chapter [3] —
enable us to learn a model that asymptotically approaches the one generating
the texts we are observing. These guarantees have an intrinsic theoretical
interest — opening a new learning perspective on several models, for which
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previously no accurate learning techniques were known — but it is important
to understand how they translate to the reality, and if they ensure that a good
model will be returned by a method of moments, even with real world data.
Real-world data in fact, may be generated by no finitely specified model, with
an unknown structure, and will likely present outliers; in few words, real world
data will always present model misspecifications. Any learning technique for
latent variable models that aims at being competitive on real-world data,
should be able to return the optimal model describing the data, according
to some definition of optimality. This for example is what happens with the
likelihood-based techniques, that aim at returning the model that (locally)
maximizes the likelihood of the observed data. How do methods of moments
behave in this setting? Do the guarantees that hold in theory, where the
structure of the model generating the data is known, hold also when model
misspecifications are present?

This kind of misspecification can happen for example when the number
of latent states plugged into a learning algorithm is not enough to accurately
describe the data we are observing. For example, we are given a corpus of
texts dealing with k topics and we run a leaning algorithm to learn | < k
topics. In this setting, we expect to retrieve a model with [ topics that
optimally describes the data (according to some definition of optimality). Sur-
prisingly, currently no theory describes the behavior of methods of moments
in this setting, and consequently no guarantees of any kind are provided.
In contrast, the model obtained by likelihood-based methods like EM is
in this case reasonable and desirable: when asked for a small number of
latent variables EM yields a model which is easy to interpret and can be
useful for data visualization and exploration. An important application of
low-dimensional learning can be found in mixture models, where latent class
assignments provided by a simple model can be used to split the training
data into disjoint datasets to which EM is applied recursively to produce a
hierarchical clustering (Steinbach et al., |2000; Savaresi and Boley, [2001)). The
tree produced by such clusterings procedure provides a useful aid in data
exploration and visualization.

In this chapter, we analyze the behavior of methods of moments when the
number of requested latent states is not enough to accurately describe the
data; we will show that most of the existing decomposition methods have no
guarantees to return in this setting a meaningful model (Section . We
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therefore introduce a novel decomposition method, that does presents this
kind of guarantees, producing meaningful results even in misspecified settings
(Section [5.3]). Then, we propose to use this model as a building block of a
hierarchical method of moments, a technique that will enable us to learn
hierarchical representations of latent variable models, that will be applicable,
for example, to perform hierarchical clustering (Section .

Our method will follow a different approach with respect to previous at-
tempts to design methods of moments for misspecified models. Instead of
looking for convex relaxations of existing methods of moments (Balle et al.|
2012; Balle and Mohri, 2012; Quattoni et al., [2014)) or analyzing the behavior
of a method of moments with a misspecified number of latent states (Kulesza
et al., 2014, 2015), we will generalize well-known simultaneous diagonalization
approaches to tensor decomposition by phrasing the problem as a non-convex
optimization problem. Despite its non-convexity, the hierarchical nature of
our method allows for a fast accurate solution based on low-dimensional grid
search. We test our method on synthetic and real-world datasets on the topic
modeling task, showcasing the advantages of our approach and obtaining
meaningful results.

5.2 Existing Decomposition Algorithms and the
Misspecified Setting

In this section we recall the behavior of methods of moments, showing that
existing decomposition algorithms have no guarantees to return meaningful
models when the number of requested latent states is not enough to accurately
describe the data.

Starting from a dataset X', sampled from a certain latent variable model, a
method of moments first recovers a set of (typically unbiased) estimators,
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exhibiting a prescribed relation with the parameters of the models:

E[Ml()()] = M, = Zwim, (5.1)
k

E[M,(X)] = M, = Zwiui ® pi, (5.2)

E[Ms(X)] = Mz = Zwiﬂi @ i & f;. (5.3)

i=1

Then, it decomposes these moments in order to find parameters (M , @) that
approximatively solve the equations above. In Chapter[I} we have seen several
methods to solve these equations. All of them have been analyzed in the
case where the algorithm only has access to noisy estimates of the moments.
However, such analyses assume that the data was generated by a model from
the hypothesis class, that the matrix M has rank k, and that this rank is
known to the algorithm. In practice the dimension k of the latent variable can
be cross-validated, but in many cases this is not enough: data may come from
a model outside the class, or from a model with a very large true k. Besides,
the moment estimates might be too noisy to provide reliabe estimates for
large number of latent variables. It is thus frequent to use these algorithms
to estimate | < k latent variables. However, we will now see that existing
algorithms are not robust in this setting, as they have not been designed to
work in this regime, and there is no theoretical explanation of what their
outputs will be.

When the value of k is known, the SVD method from Anandkumar et al.
(2012bja)) observes that, given the whitening matrixﬂ E. there exists a unique
orthogonal matrix O € R¥** such that MQY? = FO, and that the same
matrix O is also the common diagonalizer of all the whitened slices of Msj:

H, = E'M;,E'" = Odiag(m,)O". (5.4)

Consequently, it calculates the singular vectors of a random linear combina-
tion of the matrices H, to find O, and recovers M by solving the system of
equations MQY? = FO — see Chapter 1] for more details. However, when a

1Recall that given the SVD M, = USU ", the whitening matrix is E = US'/2 € R4*¥k
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value [ < k is used, the method will perform the whitening using the matrix E;r
obtained from the low-rank SVD truncated at rank I: M, ~ U;S;U," = E/E;".
Then, it will compute the matrices H;, = EZTJM?,,TEZTT for r € [d] that may
not be jointly diagonalizable, and there is no theoretical justification of what
what the result of this algorithm will be.

The hypothesis that the whitened slices of Mj are jointly diagonalizable
is also used by SVTD, that we discussed in Chapter 2] So, similarly to
what is said above, SVTD will also lack of guarantees when plugged with a
misspecified number of latent states.

The tensor power method (TPM) (Anandkumar et al. 2014) starts with
a whitening step to transform M3 into a symmetric orthogonally decompos-

able tensor i

T =) wE'p® By @ By € RV (5.5)
i=1

The weights w; and vectors p; are then recovered from 7' using a tensor power
method and inverting the whitening step. However, when a value | < k is
used, TPM will use E; to whiten the tensor Mj to a tensor 7; € R which
may 7; may not admit a symmetric orthogonal decomposition. Consequently,
it is not clear what TPM will return in this case and there are no guarantees
it will even converge. To see this, we present here a simple counterexample by
constructing a tensor M3 € R3*3*3 whose 2 x 2 x 2 whitening does not admit
a symmetric orthogonal decomposition. Consider the following parameters

H1 = y M2 =

o O =
o = O

1 1
y M3 = 1 y W= 1
1 1

from which one can recover a matrix M, and a tensor M3 from equations ([5.2))
and ([5.3]), both of rank & = 3. Using the top 2 singular vectors and values of
M,, M3 would be whitened to a 2 x 2 x 2 tensor T" with the following entries:

T —9(_1+V3 )3 24v3 \3
( )1,1,1 (QW) +< 9+5\/§>7

T =(T = (T = B8
(T)122 = (T)212 = (T)22a 24/9+5v3

(T)I,Q,l = (T)I,I,Q = (T)Q 2,2 — (T)Q 1,1 —

) [Rat]
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To see that T' is not orthogonally decomposable, one can check that in this

case Eq. (5.6) from Lemma is equivalent to (T")111 = (T')2.21, which
here does not hold. Hence T is not orthogonally decomposable.

Lemma 5.2.1 (Robeval (2016)), Example 1.2.3). A 2x 2 x 2 symmetric tensor
T is orthogonally decomposable if and only if its entries satisfy the following
equation:

(T)1,1,1(T)221 4+ (T)21,1(T)222 = (T)511 + (T35, (5.6)

Similarly to what said above, also the decomposition methods that aim at
directly finding the CP-decomposition of M3 do not provide guarantees to
return meaningful model parameters M when [ < k.

ALS (Kolda and Bader}, 2009) will return a matrix that approximately
decomposes Ms, but no theory guarantees that the returned model parameters
will properly describe the data.

The Random Projections method (see Chapter (1| and Kuleshov et al.|2015
for a more detailed explanation) finds M by jointly diagonalizing various
random linear combinations of slices of M3 without any whitening step. When
the value of k is known to the algorithm, it provides — under certain incoherence
assumptions — guarantees of provably decomposing Mj3. Instead, when asked
for [ < k latent states, it will return a matrix that nearly diagonalizes the
slices of M3, but again, no analysis is given for this setting — and no trivial
explanations support the intuition that this matrix should represent a good
model describing the data.

5.3 Simultaneous Diagonalization Based on Whiten-
ing and Optimization

This section presents a new decomposition algorithm to solve equations
, and that we call Simultaneous Diagonalization based on
Whitening and Optimization (SIDIWO). When asked to produce [ = k
components in the noiseless setting, SIDIWO will return the same output as
any of the methods discussed in Section [5.2] However, in contrast with those
methods, SIDIWO will provide useful results with a clear interpretation even
in a misspecified setting (I < k).
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5.3.1 SIDIWO in the Realizable Setting

To derive our SIDIWO algorithm we first observe that in the noiseless
setting and when [ = k, the pair (M,w) returned by all methods described in
Section is the solution of the optimization problem given in the following
lemma.

Lemma 5.3.1. Let Ms, be the r-th slice across the second mode of the
tensor Ms from with parameters (M,w). Suppose rank(M) = k and
let Q = diag(w). Then the matriz (MQY?) is the unique optimum (up to
column rescaling) of the optimization problem

d 1/2
: T\2
gé%lk - (Z(DMS,TD )zy) , (5.7)
i#]

r=1

where Dy, = {D : D = (EO)" for some Oy, s.t. 0O} =1} and E is the
whitening matriz recalled in Section [5.9

Proof. Consider the SVD of M,:
My, =USU"

where U € R™* and S € R*** are obtained from the first k& singular vectors
and values. Define now the matrix £ = USY?; then there exists a unique
k x k orthogonal matrix O such that MQ'Y? = FO. This implies that the
slices of M3 can be rewritten as follows:

Ms, = M QY2 diag(m,) QY?> M = EO diag(m,) (EO)T.
Take now a generic matrix D € Dy; it can be written as
D=0O,E"
for a certain orthonormal matrix O,. So we have
DM;, D" = O, E'EOdiag(m,) (EO)" (O} EN" = O] Odiag(m,) OO,

This matrix is diagonal if and only if O = O, so the problem

min » (Y (DM;,D");)"/? (5.8)

DEDk —
i#j r=1
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is optimized by D = (MQ/?)t = (EO)!, which is the unique (up to a columns
rescaling) feasible optimum.
]

Remark 5.3.1 (The role of the constraints (I)). Consider the cost function
of Problem (j5.7)): in an unconstrained setting, there may be several matrices
minimizing that cost. A trivial example is the zero matrix. A less trivial
example is when the rows of D belong to the orthogonal complement of
the column space of the matrix M. The constraint D = (EOy)" for some
orthonormal matrix O;, first excludes the zero matrix from the set of feasible
solutions, and second guarantees that all feasible solutions lay in the space
generated by the columns of M.

Algorithm 3 SIDIWO: Simultaneous Diagonalization based on Whitening
and Optimization

Require: M, M,, Mj, the number of latent states [
1: Compute a SVD of M truncated at the Ith singular vector: M, ~ U,S; UZT.

2: Define the matrix F; = UlSll/2 € R,
3: Find the matrix D € D; optimizing Problem ({5.7)).
- MQY? = Dt
4: Find (M,®) solving ¢ .
MCUT = M1

5: return (M, Q)

The problem opens a new perspective on using simultaneous diag-
onalization to learn the parameters of a latent variable model. In fact, one
could recover the pair (M, w) from the relation MQY2 = DT by first finding
the optimal D and then individually retrieving M and w by solving a linear
system using the vector M;. This approach, outlined in Algorithm [3] is an
alternative to the ones presented in the literature up to now (even though in
the noiseless, realizable setting, it will provide the same results). Similarly to
existing methods, this approach requires to know the number of latent states.
We will however see in the next section that Algorithm [3| provides meaningful
results even when a misspecified number of latent states | < k is used.
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5.3.2 The Misspecified Setting

Algorithm [3| requires as inputs the low order moments My, Ms, M3 along
with the desired number of latent states [ to recover. If [ = k, it will return
the exact model parameters (M, w); we will now see that it will also provide
meaningful results when [ < k. In this setting, Algorithm [3| returns a pair
(M,&) € R x R! such that the matrix D = (MQY2)! is optimal for the
optimization problem

J 1/2
- T\2
min > (Z(DM&,,D >m‘> : (5.9)
i#j \r=l1

Analyzing the space of feasible solutions (Theorem [5.3.1) and the opti-
mization function (Theorem [5.3.2)), we will obtain theoretical guarantees on
what SIDIWO returns when [ < k, showing that the trivial solutions are not
feasible, and that, in the space of feasible solutions, SIDIWO’s optima will
approximate the true model parameters according to an intuitive geometric
interpretation.

The role of the constraints (II)

The first step consists in analyzing the space of feasible solutions D; when
[ < k. The observations outlined in Remark still hold in this setting:
the zero solution and the matrices laying in the orthonormal complement of
M are not feasible. Furthermore, the following theorem shows that other
undesirable solutions will be avoided.

Theorem 5.3.1. Let D € D; with rows dy, ..., d;, and let L, s denote the r X s
identity matrixz. The following facts hold under the hypotheses of Lemma
(2.3

1. For any row d;, there exists at least one column of M such that (d;, j;) #
0.

2. The columns of any M satisfying MQOY2 = Dt are a linear combination
of those of M, laying in the best-fit -dimensional subspace of the space
spanned by the columns of M.

3. Let w be any permutation of {1,...,d}, and let M, and Q. be obtained
by permuting the columns of M and Q according to . If (u;, pj) # 0 for

any i, j, then ((MWQ}T/Q)]IkJ)T ¢ D, and similarly Hl,k(M,TQ}T/Q)T ¢ D;.
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Proof. Let us recall the notation we are going to use. Consider the matrix
M5 and its SVD:
M2 == U'SU—r

For any | < k, define E; = UlSll/2 € R™ where U; and S; are U and S
truncated at the Ith singular vector (recall: U € R¥* and S € R¥**). We
know that there exists an orthonormal matrix O such that

MQY? = EO.
Let us prove the various points of the theorem.

1. Consider any matrix D € D;. Then we will have, for an orthonormal
Ol7
D = (EO) =0/ s U]

To prove the statement, it is enough to show that the matrix C' =
DMQY? has rank [. To see this, explicitly represent C:

C =DMV =0 S, *UTEO = 0] 572U USY*0 = 01,0
the fact that O and O; are orthogonal proves the claim.

2. Consider again any matrix D € Dy, then
D' = MOV? = (E,0) = U,5,0,.

The columns of U, are the left singular vectors of MQ'/2, that span the
best fit [-dimensional subspace of the space generated by the columns
of M.

3. To prove this we will proceed by contradiction. Assume that (M 0y Q]Ik,l)T €
Dy; this means that there exists an orthonormal matrix O; such that

MQY?,, = B0, = El 0.

But MQY? = FO, so
EO]I]C’[ = E]]:IC,ZOZ'

This would imply that
[ O = O,
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Rk—lxk—l

-84

Observe now that the matrix Z = QY2M " MQ'Y? has all the entries
that are different from zero, by the hypothesis that (i, ;) # 0 for any
1, 7. However, we have that

and so, for some P €

Z=Q"PMTMQY? =07 S0
[o’]o Si| 0 O] 0
L O[PT ] O]Sk]|lO]|P
[O/s0/] o
B 0 |PTSP

where S, is the diagonal matrix with the last & — [ singular values. So
Z has some zero entry. This contradiction proves the claim.

The proof of the fact that Hlyk(M,TQ}r/Q)T ¢ D, is identical.

O

The second point of Theorem [5.3.1] states that the feasible solutions will

lay in the best [-dimensional subspace approximating the one spanned by the

columns of M. This has two interesting consequences: if the columns of M

are not orthogonal, point 3 guarantees that M cannot simply be a sub-block

of the original M, but rather a non-trivial linear combination of its columns
laying in the best [-dimensional subspace approximating its column space.

Consider for example a single-topic model from Chapter [3| with k topics;
in this case, when asked to recover | < k topics, Algorithm [ will not return
a subset of the original k topics, but a matrix M whose columns gather the
original topics via a non trivial linear combination: the original topics will all
be represented in the columns of M with different weights.

When the columns of M are orthogonal, this space coincides with the space of
the [ columns of M associated with the [ largest w;; in this setting, the matrix

(MWQ}T/ 2)1[,” (for some permutation 7) is a feasible solution and minimizes
Problem (5.9). Thus, Algorithm [3| will recover the top [ topics.
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Interpreting the optima.

Let M be such that D = (MQ'?)" € D, is a minimizer of Problem G-9).
In order to better understand the relation between M and the original matrix
M, we will show that the cost function of Problem ([5.9)) can be written in an
equivalent form, that unveils a geometric interpretation.

Theorem 5.3.2. Let dy, ..., d; denote the rows of D € D; and introduce the
following optimization problem

k
min Y sup » (di, ) (d;, ) wnon (5.10)

DeD
Vit VEVM o

where Vyy = {v € R* : v = a" M, where ||a|l; < 1}. Then this problem is
equivalent to ((5.9)).

Proof. Recall the considered problem:

k
min S sup S {d, ) (s g, (511)

DeD, vy vEVM 1
where
Vir = {v € R* : v = o M, where ||a||, < 1}

Consider any v € Vy;, then it admits the following representation, for
some « with |lafjs < 1:

v =[{a, ), oy (0 )]
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This allows the following chain of equalities on the cost function:

K k
D sup > (di, pn)(dy, pn)wnvn =Y sup Y (e, pn) (ds, pon) (i, pon)n

i#j vEV N h—1 i#j a:”a”gﬁl h=1

:Z sup Zarzuhr du,uh ]7:uh>

i#j @ allafl2<1 5.5
d
T
= sup E CKT(DM&TD )l’]
i#j a:ljall2<1 r=1

= Z sup (a,t;;)
i2j a:llall2<1

= ltijll

7]
Where the vector t; ; is defined as
tii=((DMs1D");j, ... (DMs4D"); ;)

and the last equality has been obtained from the fact that, for any vector
w € R*, we have
[wl]| = sup (o, w)
af|all2<1

This last equation proves our statement; in fact,

d

Z [tijlle = Z<Z<DM37TDT>?J)1/2-

i#j i#j =1

O
We now provide an interpretation of this theorem. First, observe that
the cost function in Equation ([5.10) prefers matrices D such that the vectors
u; = [(d;, pir/w1), -y (di, pter/Wk)], @ € [1], have disjoint support. This is a con-
sequence of the sup,cy, ., and requires that, for each j, the entries (d;, u1; VW5 w;)
are close to zero for at least all but one of the various d;. Consequently, each
center will be almost orthogonal to all but one row of the optimal D; however
the number of centers is greater than the number of rows of D, so the same
row d; may be nonorthogonal to various centers.
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For illustration, consider again the single-topic model: a solution D to
Problem (5.10) would have rows that should be as orthogonal as possible
to some topics and as aligned as possible to the others; in other words, for
a given topic j, the optimization problem is trying to set (d;, it;,/w;) = 0
for all but one of the various d;. Consequently, each column of the output
M of Algorithm [3| should be in essence aligned with some of the topics and
orthogonal to the others.

It is worth mentioning that the constraint set D; forbids the trivial solu-
tions such as the zero matrix, the pseudo-inverse of any subset of [ columns
of MQ'Y2, and any subset of [ rows of (MQY?)! (which all have an objective
value of 0).

We remark that Theorem does not require the matrix M to be full rank
k: we only need it to have at least rank greater or equal to [, in order to
guarantee that the constraint set D; is well defined.

5.3.3 An optimal solution when [ = 2.

While Problem ((5.7) can be solved in general using an extension of the
Jacobi technique (Cardoso and Souloumiac} [1996; Bunse-Gerstner et al., [1993)),
we provide a simple and efficient method for the case [ = 2. This method will
then be used to perform hierarchical topic modeling in Section [5.4, When
[ = 2, Equation can be solved optimally with few simple steps; in fact,
the following theorem shows that solving is equivalent to minimizing a
continuous function on the compact one-dimensional set I = [—1, 1], which
can easily be done by griding /. Using this in Step 3 of Algorithm [3} one can
efficiently compute an arbitrarily good approximation of the optimal matrix
D € D,.

Theorem 5.3.3. Consider the continuous function F(x) = cjz*+cor3y/1 — 22+
c3xV1 — 22 + cyx? + 5, where the coefficients ci, ..., c5 are functions of the
entries of My and Ms. Let a be the minimizer of F on [—1,1], and consider

the matrix
V1 —a? a
—a  V1-—a?

Then, the matriz D = (E20,)" is a minimizer of Problem (5.9) when | = 2.

O, =
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Proof. First, observe that the set of 2 x 2 orthonormal matrices can be
parametrized as

_[V1—a? a

The set D, can thus be rewritten in function of a, as
Dy = {D: D = (F,0,)" for a € [-1,1]}.

and Problem (5.7)) can be rewritten as

d
min 2(OIH27TOQ)% 9
a€[-1,1] p— ’
where
Hy, = EXMs, EY", forr=1{1,...,d} (5.13)

and where we used the fact that OJHZTOQ is symmetric. We can then write
(04 H2,,0,)1 5 = At + PV — a2+ Favl—a? + a? +

where the coefficients can be written as

A =an?— 2 &) =—afh, &) =2fn, D =f2—an®, & =n?

with h = (H27r)172 and f = (HQJ-)l’l — (H277)272. Lettlng Cj = Zd C(T)

r=1"7

for j € {1,...,5} it follows that optimizing Problem ({5.7) is equivalent to
minimizing the following smooth real function

F(a) = cia* + ca®V'1 — a2 + czavV'1 — a2 + cqa® + cs.
]

5.4 Case Study: Hierarchical Topic Modeling

In this section, we show how SIDIWO can be used to efficiently recover
hierarchical representations of latent variable models. Given a latent variable
model with k states, our method allows to recover a pair (M, &) from estimate
of the moments M7, M, and M;, where the [ columns of M offer a synthetic
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representation of the k original centers. We will refer to these [ vectors as
pseudo-centers: each pseudo-center is representative of a group of the original
centers. Consider the case [ = 2. A dataset X' of n samples can be split into
two smaller subsets according to their similarity to the two pseudo-centers.
Formally, this assignment is done using Maximum A Posteriori (MAP) to
find the pseudo-center giving maximum conditional likelihood to each sample
— as described in Remark for the example of the single-topic model. The
splitting procedure can be iterated recursively to obtain a divisive binary
tree, leading to a hierarchical clustering algorithm. While this hierarchical
clustering method can be applied to any latent variable model that can be
learned with the tensor method of moments (e.g. Latent Dirichlet Allocation),
we present it here for the single-topic model for the sake of simplicity.

We consider a corpus X of n texts encoded as in Section and we split
X into two smaller corpora according to their similarity to the two pseudo-
centers in two steps and use MAP assignment to assign each text = to a
pseudo-center. This process is summarized in Algorithm 4} Once the corpus

Algorithm 4 Splitting a corpus into two parts

Require: A corpus of texts X = {21, ..., 2™},
1: Estimate Ml, ]\2/2 and Mg.
2: Recover | = 2 pseudo-centers with Algorithm [3].
3: for i € [n] do
4: Assign the text 2 to the cluster Cluster(i) = argmax; P(X =
DY = j,&, M), where P(X|Y = j,&, M) is the multinomial distr.
associated to the j-th pseudo-center (Equation (3.4))).
5. end for
return The cluster assignments Cluster.

2

X has been split into two subsets A} and A5, each of these subsets may still
contain the full set of topics but the topic distribution will differ in the two:
topics similar to the first pseudo-center will be predominant in the first subset,
the others in the second. By recursively iterating this process, we obtain
a binary tree where topic distributions in the nodes with higher depth are
expected to be more concentrated on fewer topics.

In the next sections, we assess the validity of this approach on both synthetic
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Adj. Rand Idx

Method Mean St. dev. Run. Time
ALS 0.70 0.17 1.9 sec.
TPM 0.93 0.06 1.2 sec.
SVD 0.52 0.13 0.1 sec.
Rand. Proj. 0.72 0.06 16 min.
SVTD 0.85 0.1 0.2 sec

SIDIWO 0.98 0.01 0.4 sec.

Table 5.1: Table reports the average and standard deviation over 10 runs
of the clustering accuracy for the various methods, along with average running
times.

and real-world data.

Experimental setting: The experiments in this section have been per-
formed in Python 2.7, using numpy (Walt et al., [2011) library for linear
algebra operations, with the exception of the implementation of the method
from Kuleshov et al.| (2015)), for which we used the author’s Matlab imple-
mentationi’} All the experiments were run on a MacBook Pro with an Intel
Core 15 processor. The implementation of the described algorithms have been
publicly disclosed.rf]

5.4.1 Experiment on Synthetic Data

In order to test the ability of SIDIWO to recover latent structures in data,
we generate a dataset distributed as a single topic model (with a vocabu-
lary of 100 words) whose 8 topics have an intrinsic hierarchical structure
depicted in Figure In this figure, topics are on the z-axis, words on the
y-axis, and green (resp. red) points represents high (resp low) probability.
We see for example that the first 4 topics are concentrated over the 1st
half of the vocabulary, and that topics 1 and 2 have high probability on the

Zhttps://github.com/kuleshov/tensor-factorization
Shttps://github.com/mruffini/Hierarchical-Methods-of-Moments.
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Words

Topics

(a)

Figure 5.1: Figure provides a visualization of the topics used to generate
the sample. Figure [5.Ib] represents the hierarchy recovered with the proposed
method.
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1st and 3rd fourth of the words while for the other two it is on the 1st and 4th.

We generate 400 samples according to this model and we iteratively run
Algorithm [4] to create a hierarchical binary tree with 8 leaves. We expect
leaves to contain samples from a unique topic and internal nodes to gather
similar topics. Results are displayed in Figure where each chart repre-
sents a node of the tree (child nodes lay below their parent) and contains the
heatmap of the samples clustered in that node (z-axis corresponds to samples
and y-axis to words, red points are infrequent words and clear points frequent
ones). The results are as expected: each leaf contains samples from one of
the topics and internal nodes group similar topics together.

We compare the clustering accuracy of SIDIWO with other methods us-
ing the Adjusted Rand Index (Hubert and Arabie| 1985)) of the partition of
the data obtained at the leaves w.r.t the one obtained using the true topics;
comparisons are with the flat clustering on & = 8 topics with TPM, the
method from Anandkumar et al.| (2012b) (SVD), the one from Kuleshov et al.
(2015) (Rand. Proj.), ALS from Kolda and Bader| (2009) — where ALS is
applied to decompose a whitened 8 x 8 x 8 tensor T', calculated as in Equation
(5.5) —and SVTD, from Chapter |2, We repeat the experiment 10 times with
different random samples and we report the average results in Table [5.1}
SIDIWO always recovers the original topic almost perfectly, unlike competing
methods. One intuition for this improvement is that each split in the divisive
clustering helps remove noise in the moments.

5.4.2 Experiment on NIPS Conference Papers 1987-2015

We consider the full set of NIPS papers accepted between 1987 and
2015, containing n = 11463 papers (Perrone et al., 2017). We assume
that the papers are distributed according to a single topic model, we keep
the d = 3000 most frequent words as vocabulary and we iteratively run
Algorithm {4 to create a binary tree of depth 4. The resulting tree is shown in
Figure where each node contains the most relevant words of the cluster
(see Equation [3.8] Chapter [3]). The leaf clustering and the whole hierarchy
are easy to interpret. Looking at the leaves, we can easily hypothesize the
dominant topics for the 8 clusters. From left to right we have: [image
processing, probabilistic models|, [neuroscience, neural networks|, [kernel
methods, algorithms|, [online optimization, reinforcement learning|. Also,
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each node of the lower levels gathers meaningful keywords, confirming the
ability of the method to hierarchically find meaningful topics. The running
time for this experiment was 59 seconds.

5.4.3 Experiment on Wikipedia Mathematics Pages

We consider a subset of the full Wikipedia corpus, containing all arti-
cles (n = 809 texts) from the following math-related categories: linear algebra,
ring theory, stochastic processes and optimization. We remove a set of 895
stop-words, keep a vocabulary of d = 3000 words and run SIDIWO to perform
hierarchical topic modeling (using the same methodology as in the previous
section). The resulting hierarchical clustering is shown in Figure where we
see that each leaf is characterized by one of the dominant topics: [ring theory,
linear algebra|, [stochastic processes, optimization| (from left to right). It is
interesting to observe that the first level of the clustering has separated pure
mathematical topics from applied ones. The running time for this experiment
was 6 seconds.

5.5 Conclusions

In this chapter we proposed SIDIWO, a novel decomposition algorithm
that generalizes recent methods of moments relying on tensor decomposition.
While previous algorithms lack robustness to model misspecification, SIDIWO
provides meaningful results even in misspecified settings. Moreover, SIDIWO
can be used to perform hierarchical method of moments estimation for latent
variable models. In particular, we showed through hierarchical topic modeling
experiments on synthetic and real data that SIDIWO provides meaningful
results while being very computationally efficient. A natural future work is
to investigate the capability of the proposed hierarchical method to learn
overcomplete latent variable models, where the number of latent states k is
higher than the number of observable features d. Another area of interest
consists in comparing the learning performance of SIDIWO with those of
other existing methods of moments in the realizable setting.
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Figure 5.2
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Chapter 6

Hierarchical Methods of Moments
for Clustering High-Dimensional
Binary Data

6.1 Introduction

In the previous chapters of this thesis, we have seen how methods of mo-
ments can be used to learn from data latent variable models. In all of them,
we have performed the assumption that data is generated by a certain model,
whose structure is known either entirely — as in Chapters [T} [3] and (4] — or
partially — like in Chapter [5| — to the user. In most of these settings, methods
of moments present guarantees of learning accuracy, ensuring that the learned
model asymptotically approaches the one generating the data. Unfortunately,
these guarantees fail to ensure that a meaningful model describing the data
is always returned by a method of moments.

In fact, consider the standard approach of method of moments, aiming
at learning a model from a certain dataset X': first, the user assumes that the
data is generated by a certain model with % latent states. Then, (unbiased)
estimators for the moments Ml, ]\7[2 and Mg are retrieved and decomposed to
recover a set of model parameters, namely a pair (M, @), with M = (i1, ooy [k
If the model assumptions are properly specified, and data is generated by a
model with parameters (M,w) and k states, then guarantees exist ensuring
that the estimated pair (M, @) will converge to the true pair (M,w) together
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with the sample size. However, this does not mean that a good model will al-
ways be returned, as the sample size may not be big enough to guarantee that
an estimated center fi; is a good estimator for a true center u;. Furthermore,
despite sample accuracy bounds exist (see for example Chapter [3)), it is often
difficult to explicitly assess if the sample size is large enough to ensure good
learning accuracy. Conversely, guarantees that an algorithm would always
return something meaningful with respect to the data, even if the sample size
is small would be desirable. For example, the methods based on maximum
likelihood principle aim at returning the optimal model to describe the data
we are observing, according to a precise definition of optimality — namely the
one described by the likelihood function. Moment-based methods instead do
not provide such kind of interpretation: an understanding of the behavior of
the output of methods of moments with respect to the data that are provided
as input is still missing.

If data comes from a model whose structure is unknown to the user, or
does not come from any finite model — like in the case of real world data —
the situation becomes even more tricky: the limitations described above are
amplified by model misspecifications, and additional complications raise. In
fact, for methods of moments to work, it is crucial to deal with moments
whose expectations are in a prescribed relation with respect to the parameters
of the model one wants to learn:

k

i=1

_ k

=1

~ k
E[M;s) = Ms =Y " wipt; ® pt; ® ;. (6.3)

i=1

However, in real-world scenarios, data will not be exactly generated by any
model, the model can be unknown or misspecified, or the calculation of the
moments may not exhibit the desired expectations provided above. In all
these settings, there are no guarantees nor obvious reasons to expect the
vectors f[i; to be good centers of a model that approximately describes the
data, even when the sample size is big. This limitation is fostered by the fact
that asymptotically convergent estimates of the moments are known only for
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latent variable models with a very simple structure, which imposes hypotheses
on the data that are systematically violated.

The paragraphs above explain why the guarantees that are typically provided
by methods of moments tend to lose part of their value when it comes to
ensuring that a meaningful model is learned, especially when dealing with
real-world data. At the same time, guarantees ensuring that the output of
a method of moments meaningfully describes the data, may be provided by
introducing a data-oriented interpretation of these methods, linking geometri-
cally the output of a method with the data that are provided as input. Having
a clear intuition on what the output of a method will be with respect to the
data, is in fact a key step to ensure that this output makes sense even in the
challenging setting where few data is available or model misspecifications are
present.

In this chapter we present a variation of methods of moments that aims
at overcoming the limitations listed above, while maintaining the efficiency
properties typical of moment-based algorithms. Our approach leverages
on transforming methods of moments from model-learning algorithms - i.e.
methods to learn a specific latent variable model from data - to task-specific al-
gorithms - i.e. methods aimed at directly performing a specific task - focusing
in this chapter on one task: hierarchical clustering. To do this, in Section
we rewrite the method of moments as an optimization problem — leveraging
on the cost function introduced by SIDIWO in Chapter [5] - and we show that
if the moments are calculated in a simple, standardized way independent of
the specific latent variable model, an intuitive relation between the optima
and the input data can be found. Furthermore, this relation automatically
suggests a clustering rule to split data into clusters, which, as we will see
later, is particularly suitable for high-dimensional binary data (Section .
This relation is geometric, and can be used to split the data into clusters only
leveraging on geometric considerations, introducing in this way a model-free,
geometry-based bisecting algorithm, that will be used as a building block of a
divisive hierarchical clustering algorithm, that we will call Data-centric Simul-
taneous Diagonalization based on Whitening and Optimization (D-SIDIWO).

This geometry-based approach substantially differs from the one traditionally

followed by methods of moments and model-based clustering. A traditional
approach would have first learned a model with a method of moments and
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then used that model to assign the samples to the cluster corresponding to
the latent state that maximizes the conditional likelihood, via a Maximum A
Posteriori (MAP) assignment. This is the approach we followed in Chapter [4]
where we used a naive Bayes model and in Chapter [5) where we used SIDIWO
to recursively learn a mixture model with two latent states which would then
used to bisect a dataset.

Beside the novel perspective on methods of moments, D-SIDIWO has two
benefits. First, a model-specific formulation of the moments — which limits
the applicability of methods of moments to models with a simple structure —
is not required. Second, it is grounded on a data-oriented interpretation of the
results, where the entities that are used to cluster the data, have a clear and
meaningful relation with the input data, even if the model that is generating
the data is unknown, or the sample size is relatively small. While removing
the model-dependency on the moment-based algorithm, our approach does
not exclude to retrieve a latent variable model - in particular a mixture model
- from the results of clustering.

In Section we will apply this method to high-dimensional healthcare
records, the same used in Chapter [d] D-SIDIWO in fact looks particularly
suitable for this kind of datasets, as its hierarchical approach has two major
advantages. First, users (doctors or data scientists) do not have to select the
number of clusters, a non-trivial task, especially when this number is high and
the population is heterogeneous. Second, it allows an easy and natural way to
navigate trough a high number of clusters that are organized in meaningful
hierarchical trees. We will see that the proposed approach provides a superior
stability while providing best-in-class quality of the clusters, outperforming
both existing methods of moments and traditional clustering algorithms. Also,
we analyze the results of our technique under the qualitative point of view,
obtaining meaningful clinical results.

6.2 A data-centric Interpretation of SIDIWO

SIDIWO - see Chapter [ - is a decomposition algorithm to solve Equations
(6.1),(6.2) and (6.3) and learn the parameters of a latent variable model.

Starting from the values of the input moments M;, My, M3 and the number
of latent states of the model &k, SIDIWO recovers the parameters (M, w) of
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the desired model by solving the following constrained optimization problem:

J 1/2
: T2
g 2 (Z(DM3,rD )i,]) , (6.4)
i#j

r=1
D, ={D: D = (EO)" for some O, s.t. OkO,;r =1},

where [, is the k& x k identity matrix, and recovers the parameters of the
model from the relation MQY? = EO.

In this section, we present an analysis of SIDIWO under a data-centric
point of view. To do this, we analyze the optimization problem solved
by SIDIWO and show that, if the moments are calculated in simple, standard-
ized way, the optima present a meaningful relation with the input data. This
relation is then used in Section to introduce a method to split data into
clusters. For ease of explanation, we focus on the special case where k = 2.
While extensions to the case k > 2 are immediate, the studied example is an
instrumental building block of the top-down bisecting clustering algorithm
we are going to propose.

Given a dataset {z("}"_, of independent samples, we call raw moments
the following quantities:

0 g )

My=3" % € Rx4, (6.5)
=1

20 20 @ )

AN = DT paxdxd (6.6)

=1

Plugging these moments into SIDIWO using & = 2, the cost function in
Equation ((6.4]) will become

DeDo

r=

d 1/2
min (Z(DMg,TDT);) : (6.7)

Dy = {D : D = (E,0,)" for some O, s.t. 0,0, =1},

where Ey € R%*? is the whitening matrix deduced from the truncated SVD
of M,. Given a feasible solution D € R?*? it is possible to express it terms of
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its rows: D = [dy|ds]". The following theorem, provides a relation between
di1, dy and the input data, which is analyzed and interpreted in Section [6.3|

Theorem 6.2.1. Let di and dy denote the rows of a feasible D € Dy. Then,
the optimization problem at Equation (6.7)) is equivalent to the following one:

n

S di. N (d, . ™
ggggvég; p{di, 2 M) (d, ™)

where Vyy = {v € R* : v, = (a, 2™, where ||als < 1}. Also, for any
= [di|dy]" € Dy the following relation holds:

S e g j=1,2
T @t

n

Proof of Theorem [6.2.1]

The statement of Theorem [6.2.1] is a consequence of the following two
lemmas.

Lemma 6.2.1. Let D = [dy|ds]" € D, be a feasible solution. Then the
following relation holds:

Xy s — 1
Sy e =
Zz (d1, 33“)><d2,$(”) —0

Proof. We first recall the definition of Dy:
Dy={D:D= (EQOQ)T for some Oy s.t. 0202T =1},

It is enough to prove that for any feasible matrix D € D, the following

relation holds: )
DM,D" =T, (6.8)

where I is the 2 x 2 identity matrix. To prove this, we consider the SVD of
M27
=USU", (6.9)

where U € R is the matrix whose columns are the singular vectors and
S € R is a diagonal matrix with the singular values in the diagonal entries.
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[ is such that | < d and is the rank of Mg. It is obvious from Equation
that

ETNL(EYT =1,
where £ = US'/? and E' is its Moore-Penrose pseudoinverse:
E'=(ETE)'ET.

The matrix E5 that we use in the definition of D, can thus be obtained by
keeping only the top two columns of E:

By =USY?I,, = El,
where I; 5 is the [ x 2 identity matrix. Now, consider any D = (E,O,)" € Dy:
D =(E,0,)"
—(04 EJ E;0,)'OJ E
=0, I5;571,,0,0, E,
=0, 15,5 ',y
=0, 1,5 'ET
=0, 1SS UT
=0, Ty, (S UT
=0, Iy, E'
From this, we can observe that
DM;D" = O3 Iy Et My(EY) 1,505 = T,
which proves the thesis. O

Lemma 6.2.2. Consider Algorithm [3, applied to the moments defined in
FEquations (6.5)) and . Then, the cost function

d 1/2
: y T\2
gé%z (Z(DM&TD )1,2) (6.10)

r=1

15 equivalent to

in s di. N (do. ™
Lr)%lp%vél)igvh< 1,2 (dy, ™)

where
Vi = {v € R" : vy, = (a, 2™ where ||a, < 1}.
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Proof. Define the vector t as follows:
t=((DMs1D )19, ..., (DMs4D" )1 5)

and observe that problem (6.10) is trying to minimize the euclidean norm of
t. From the fact that, for any vector w € R%, we have

|lw|| = sup (a,w)
allall2<1
we obtain
nfltfla=n sup (a,t)
aflal2<1
d
=mn sup Z a,(DMs,D "),
allell2<1 5
d n
= sup Zozr Z(w(h))r<d1,x(h)><d27$(h)>
allall2 <17 7 h=1
= sup (o, ") (dy, ™) (dp, 2™)
a:l|all2<1 h=1
n
= sup Z vp{dy, x(h)><d2, x(h))
VEV, h=1
where

Vir = {v € R" : v, = (o, 2™), where [|a||, < 1}

and (z(™), is the rth entry of (™. From this we obtain the thesis.

6.3 A Hierarchical Clustering Algorithm

Theorem [6.2.1] shows an interesting interpretation of the optimization
problem solved by SIDIWO. Introduce two vectors w; and ws defined as
follows:

w; = [(dg, xMY, .. (d;, ™)), i=1,2

then, the cost function of SIDIWO is pushing them to have disjoint support,
preferring solutions where each sample is nearly orthogonal to d; or to dy. At
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the same time, the constraint is pushing each of the vectors d; to be aligned
to the points to which it is not nearly-orthogonal. Each vector d; can be
seen as a linear discriminator, that is optimized in order to be as orthogonal
as possible to a certain set of points of the dataset, with the constraint of
being the most aligned as possible to some of them. We can thus group the
points into two clusters: those that are represented by d; and those that are
represented by ds. do will be optimized to be orthogonal to the first cluster,
dy to the second. This automatically suggests a clustering rule for our points:

Cluster(z®) = argmax(|(dy, zD)|, |(dy, D)) (6.11)
Using these observations we are able to modify SIDIWO and deduce from it
a bisecting algorithm. The adapted algorithm will take as input a dataset
{x®}r_ | calculate the raw moments and from them deduce the discriminator
vectors d; and dy to be used to perform clustering. We call the proposed
method Data-centric SIDIWO, D-SIDIWO and we describe it in details in
Algorithm [5

Algorithm 5 D-SIDIWO

Require: A dataset {z()}7_,
1: Get the raw moments MZ and Mg as and .
2. Compute a SVD of M, truncated at the 2nd singular vector: M, ~
UsSoU,

: Define the whitening matrix Fy = UQS;/Q € R¥x2,

: Find the matrix D = [dy|ds]" € D, optimizing

: for i € [n] do

Cluster(z®) = argmax(|(dy, 24|, [{da, 2)])

: end for

: return The cluster assignment

W N> U A W

Equation provides a splitting procedure that makes particularly
sense for all data types where the angle between two vectors is a good indicator
of their difference; this includes points on the simplex, on the sphere or on the
hypercube, which is the case for binary data. In this last case for example,
it makes sense to consider two points similar if they share several non-zero
entries; similar points will thus provide similar values for the inner product
with d; and will finish in the same cluster.
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The solution of problem can be found easily, following the approach
described in Theorem of Chapter 5 In fact, it is sufficient to observe
that D € D, if and only if D = (F,0)T, where O is an orthogonal matrix,
admitting thus the following parametrization:

V1—a? a

The variable a is the only decision variable in problem (6.7)) that can be thus
optimized by griding on [—1, 1].

O =0(a) =

Algorithm [5| is a method to split a dataset into two parts. Recursively
iterating this procedure we obtain a top-down hierarchical clustering algo-
rithm that can be used to find hierarchical trees of arbitrary depth. Starting
from the full dataset, each iteration of D-SIDIWO generates two new leaves,
on which D-SIDIWO is recursively called. A user can decide when to stop
the splitting procedure: a simple heuristic may consist in halting the method
when a certain maximum depth of the tree is reached.

Comparison with other methods of moments

Despite the core engine of D-SIDIWO is the same of the SIDIWO-based
hierarchical method of moments described in Chapter [5], the approach that we
are taking here to perform clustering is radically different. In the approach of
Chapter |5 at each iteration, we would have used SIDIWO to learn a mixture
model with two states - using the traditional approach to method of moments
described in Chapter [1|- which is then used to bisect the dataset via a MAP
assignment. Like all model-based methods of moments, also this approach
requires to work with model-specific estimates of the moments, and tends to
suffer of the limitations described in the introduction of this chapter.

D-SIDIWO instead uses a generic, standardized definition to estimate the
moments, and directly recovers a set of discriminator vectors with a clear
relation with respect to the input data. Then, these vectors are used to group
the samples of a dataset into two clusters. In this way no model-specific
estimators are required, making the approach easier to implement, and, as
we will see in the experiment section, more stable.
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Traditional methods of moments typically benefit of the application of few
iterations of EM (Dempster et al., [1977) - a step that is often necessary to
get reliable results (see for example what done in Chapter . This approach
can be performed also with D-SIDIWO, recovering, after each binary split, a
mixture model with two components, whose centers are the average of the
points in each cluster and the mixing weights are the clusters proportions.
This mixture can then be refined with EM. We will see in the next section
that, while the performance of D-SIDIWO is good enough to not require such
further refinement, the subsequent application of EM increases the quality of
the retrieved clusters, with a slight increase in the running times. Without
ever incurring in clusters with poor quality, a user can threshold between short
running times and even-better clusters, using or not EM after D-SIDIWO.

6.4 Experiments

In this section we experimentally evaluate the performance of D-SIDIWO.
Instead of using synthetic data, we directly use real-world high-dimensional
binary data — in particular, the electronic healthcare records introduced in
Chapter {4] — focusing again on the task of patients clustering. We will use
these datasets to compare qualitatively and quantitatively the performance
of D-SIDIWO with those of existing approaches to clustering.E]

6.4.1 MIMIC Dataset

Like in Chapter[4] we consider MIMIC III dataset (Johnson et al.,[2016), fo-
cusing on the diagnostic ICD9 records, performing an analogous pre-processing
of the data. We recall that ICD9 is a hierarchical coding of the form ddd.dd,
with the .dd part being optional: the first 3 digits represent a general diag-
nostic while extra digits make the diagnostic more precise. We kept only
the first three digits of the ICD-9 codes, which are those with more consen-
sus among doctors, obtaining a vocabulary of 696 codes. Furthermore, we
further refine the collected data by keeping the 90% most frequent diseases
(corresponding to the 222 top diseases) and discarding the records with less
than 3 diagnostics. After this processing, MIMIC dataset will contain 51181
patients. The dataset is then mapped into a matrix with binary entries, using
a bag-of-words approach: the entry (i,7) of the output matrix is 1 if the

!The experimental setting is identical to that of the previous chapters.
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patient ¢ presents the disease j, otherwise a zero. Similarly to what we did in
Chapter [4] we aim at grouping together patients with similar clinical profiles
by clustering the rows of the retrieved matrix.

Evaluation method

We compare D-SIDIWO on the clustering task against other techniques
from both MoMs and clustering literature.

First, we will perform a comparison on the predictive power of the retrieved
clusters. We will run D-SIDIWO (running it until a given maximum depth,
considering the clustering induced on the leaves) to cluster the samples of
a dataset into k groups, and do the same with the competing methods.
Then, we will create a dataset containing, as only information, the cluster
to which each sample is assigned, and perform a train/test split. We will
then use a logistic regression to predict if a patient length of stay is going
to be higher than a week or not (an information that is available in MIMIC
dataset). The accuracy of the prediction will be measured on the test set, as
a metric indicating the predictive power of the retrieved clusters. During this
experiment, we register the running time of each method during each iteration.

The second comparison will be on the stability of the clustering methods.
Consider a clustering algorithm, and run it over a dataset §; = S U S,,
obtaining a clustering that we will call C;. Now, assume to perturb the
original dataset, by removing S,, and including a new set S, of different
samples, independently generated: S = S U S,. Then re-run the clustering
algorithm obtaining a second clustering C,. If a clustering algorithm is stable
under such kind of perturbations, the partitions induced by C; and C5 on &
are expected to be similar. We run this test on our dataset, by randomly
taking |S| = 40944 and |S,| = |Sy| = 5118 (respectively, the 80% and 10%
of the total sample size). For each of the tested methods, we generate two
clusterings, one on &7 and one on Sy, and we compare them on § = §; N Ss,
expecting them to be similar. We use the adjusted Rand index (Hubert and
Arabie, |1985)) to compare the two partitions: an index close to 1 will indicate
consistent clusterings, and thus stability of the method. All the experiments
will be run 5 times and the standard deviation of the results will be reported.
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Stability Predictive Run

Method Mean St.dev. Accuracy  Time

3V-TPM 0.1 0.06 0.57 3.6 sec.
3V-MoM 0.12 0.02 0.61 1.6 sec.
D-SIDIWO 0.95 0.01 0.62 18 sec.
3V-TPM+EM 0.58 0.12 0.58 236 sec.
3V-MoM+EM 0.55 0.29 0.62 248 sec.
ASVTD-+EM 0.73 0.1 0.60 238 sec.

D-SIDIWO+EM  0.90 0.10 0.63 88 sec.

Table 6.1: The clustering performance of flat methods of moments compared
with those of D-SIDIWO on MIMIC dataset.

Comparison with other methods

First we compare D-SIDIWO with flat methods of moments, focusing on
ASVTD (see Chapter , and on the multi-view approaches from |Anandkumar
et al.| (2012b) (named 3V-MoM) and |Anandkumar et al. (2014) (3V-TPM).
In all the cases we model the data as generated by a mixture of independent
Bernoulli variables (see Section [£.2). We select 16 clusters, run a method of
moments to retrieve model parameters, and use them to perform clustering,
via a MAP assignment. For D-SIDIWO, we run the method until when we
reach a maximum depth of 5, corresponding to 16 leaves/clusters. For all
the methods, we study the effect of adding some iterations of EM, setting
as a stopping criterion the norm of the variation of the matrix M between
two iterations to be less than 0.0001. We print in Table the results of the
experiments. D-SIDIWO outperforms existing methods of moments in terms
of predictive power and stability, providing competing results even without
EM. Without EM, pure methods of moments look faster than D-SIDIWO;
however, their running times explode if aided with EM, while D-SIDIWO
plus EM runs in few tens of seconds.

We now perform a comparison with other hierarchical methods. We com-
pare D-SIDIWO with SIDIWO, using the hierarchical method of moments
from Chapter [5| (with and without using EM after each binary split) where
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Figure 6.1: Analysis of the stability and of the predictive power for
the MIMIC dataset. Shaded areas represent the standard deviation of the
results over 5 experiments. Figure [6.1c| contains the average running time in
seconds of the various methods.
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again data is modeled as generated by a mixture of independent Bernoulli
variables, and the moments are retrieved via a multi-view approach. Also,
we compare the results with those of standard divisive clustering algorithms:
bisecting K-means, which iteratively uses K-Means to recursively bisect a
dataset (Savaresi and Boley|, |2001) and Principal Direction Divisive Parti-
tioning (PDDP) from [Boley| (1998)). We run the various methods for several
maximum depths, each of which will correspond to a number of clusters - a tree
with maximum depth 4 will have 2°~! clusters. Stability analysis is presented
in figure while accuracy scores, for the analysis of predictive power, are
plotted in figure [6.1b] x—axis always represents the maximum depth of the
tree. Looking at predictive power, the top performers are D-SIDIWO and
SIDIWO aided with EM; but while pure D-SIDWIO has performance similar
to those of existing divisive clustering methods, the performance of pure
SIDIWO look poorer. D-SIDIWO is the top performer in terms of stability,
while the version aided with EM provides a similar, but slightly lower, score.
Running times can be compared in Figure [6.1¢; we can see that D-SIDIWO
is among the fastest methods.

Analysis of the clusters

In this section we assess the quality of the clusters obtained by the proposed
algorithm on the MIMIC dataset. To do this, we plot in Figure the output
of the clustering procedure, stopping, for ease of visualization, the algorithm
at the maximum depth of 4 (getting in this way 8 clusters). For each leaf, we
annotate the most relevant diseases (using the relevance score as in Chapter
at Equation . In this way we can infer the content of the clusters
from their most characteristic diseases. The clusters are clearly characterized
and grouped in homogeneous branches of the tree. The bottom-left part of
the tree contains new-born patients; then, proceeding clockwise, we can find
clusters regarding, hearth, kidney, liver, infection and injury.

6.4.2 Tertiarism Dataset

The second dataset is the Tertiarism dataset we used in Chapter [, pro-
vided by the Servei Catala de la Salut. It contains ICD9 records for all the
hospitalizations in year 2016 of “tertiary” patients, that are those with a
serious disease that is supposed to be treated in the larger hospitals in the
area.

151



awolpuAs ssadisip Alojelidsey : 92 UJOgMBU JO SUOIIPUOD Alotelidsal Jauyl0 : 0LL
uonelsab 1oys 01 Buneel siepiosiq : §92 aolpunel [ereusad oyl : vLL
UJOQaAl| @1eW ‘UIM| : LEA uoneisab 1oys o) Bunejas sieplosiq : §9Z

SUJOgMBU JO UONEN[BAS PUB UoleAIasSdQ : 6ZA
uoneuooeA ojoelAydold Jo) pesN : SOA
uiogenl 8|BuIS : 0EA

- peay Jo punom uado Jayi0 : €28
J8A1 01 Aunlu] @ 498
JUBPIOOE DlYjel} B|0IYdA I0JO|N 183

Ainfur Buimaoljoy ‘ebeyiiowsH : gs8
abeyllowsy [eigalaoenu| : Lgp
Ie} [ejueplooy - 883

SISOY.IID pUE 8SBas|p JBAI| O1UoIyD : LLS
SS80S(R JBAIT : gLS
elwaondes : ge0

aln|le} LesH : ggh wsijogejaw piodi| Jo sieplosiq : 2Le
aseasip Aaupiy 21UoIyo aalsusLIadAH : 0¥ uolsuapadAy [elluassy : Loy
(aMD) aseas|p Asupiy OlUCIYD) : G8§ 9SBas|p 1Jeay O|Wwayds| 9|UOIYD JO SWIO) JaUl0 : P

Figure 6.2: The hierarchical tree for the MIMIC dataset.
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Stability Predictive Run

Method Mean St.dev. Accuracy Time
3V-TPM 0.06 0.03 0.67 5.35 sec.
3V-MoM 0.06 0.01 0.68 0.70 sec.
D-SIDIWO 0.89 0.01 0.7 7 sec.
3V-TPM+EM 0.67 0.08 0.68 214sec.
3V-MoM+EM 0.71 0.10 0.69 97 sec.
ASVTD+EM 0.65 0.07 0.69 50 sec.
D-SIDIWO+EM  0.86 0.3 0.7 30 sec.

Table 6.2: The clustering performance of flat methods of moments compared
with those of D-SIDIWO on the Tertiarism dataset.

Comparison with other methods

We perform the same evaluation performed with MIMIC, presenting
the comparison with flat methods of moments in Table [6.2] and those with

hierarchical methods in Figures [6.3a] and [6.3¢ Again, D-SIDIWO
outperforms existing flat spectral methods, both with and without EM. At

the same time it results stable under random perturbations of the dataset,
while keeping conveniently fast running times.

Analysis of the clusters

Figure [6.4] presents the content of the clusters provided by D-SIDIWO
when we ask for 8 leaves. Again, the clusters make sense and relate with
major traumatic events, neoplasms, hearth and kidney-related problems and
complicated labors.

6.5 Conclusions

In this chapter, we have presented D-SIDIWO, a novel clustering algo-
rithm based on a data-oriented interpretation of the method of moments.
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Unlike existing methods, D-SIDIWO is grounded on a explicit relation be-
tween the input data and the output parameters of a method of moments,
providing guaranteed results that are optimal according to an intuitive geo-
metric interpretation which hold regardless the model generating the data.
We tested the proposed algorithm on two real-world datasets, showing that
D-SIDIWO provides meaningful results on real data even without the aid of
EM, outperforming other methods in terms of speed, clusters quality and
stability.
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Conclusions, Open Problems and
Future Work

In this thesis, we have investigated several aspects of methods of moments,
analyzing the theory on which these methods are grounded, and presented
their most notable limitations and possible improvements. Also, we have
provided applications of these tools to two prominent areas of applied machine
learning: topic modeling and healthcare analytics. Importantly, in this thesis
we have shown that the aspects of interest of methods of moments go beyond
their theoretical properties and they can be applied with success to real world
problems — an area poorly explored in previous literature. We have provided
implementations of these techniques — which require little or no parameter
tuning and provide superior computational and learning performance with
respect to existing methods — enabling also non-specialized practitioners to
use them in their research activities.

Despite the recent progresses, the theory studying methods of moments
is still not exhaustive, their understanding is still limited and several problems
remain open. In this chapter, we will outline some open problems arising
from the theory studied in this thesis. Furthermore, we will present some
possible ideas of applications for the models and the approaches presented in
this thesis.

Theoretical Open Problems

To improve the perturbation theorem for SVTD

In Chapter 2] we have introduced SVTD, a decomposition algorithm
for methods of moments. Together with SVTD, we have also presented a
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perturbation theorem (Theorem that analyzes how the noise on input
moments propagates to the output model returned by SVTD. This theorem
ensures that, under certain hypotheses, SVTD is guaranteed to return a model
that gets closer to the one generating the data as the sample size increases.
Intuitively, this theorem explains why SVTD works in practice — for example
in the experimental Section [2.3] The bounds that this theorem provides
are very similar to the ones presented by Anandkumar et al. (2012b) for
the SVD method; however, the experiments performed in Section prove
that SVTD has a better learning accuracy than the SVD method. This fact
suggests that the bounds provided by Theorem can be widely improved.
One possibility to provide such improvement may consist in analyzing the
perturbations under a different and more structured point of view, separating
the contribution to the final error coming from the problem from those coming
from the algorithm. Those coming from the problem can be studied using
the condition number, for which we could rely on the recently developed
theory on Waring decompositions (Breiding and Vannieuwenhoven), |2018)),
which is an extension of the decompositions studied here. Understanding
the exact contribution to the error that is given by the problem may enable
us to understand which part of the noise we are seeing is introduced by the

algorithm, and to perform a better analysis leading to bounds tighter than
those in Theorem [2.2.1l

To make SVTD more general, reducing its requirements

Another improvement point related to SVTD is the fact that in Theorem
2.1.1] we have assumed that at least one feature of the model we want to
learn has different conditional expectations across the various values of the
latent state. When this requirement is violated SVTD does not fail, but
the returned parameters have no guarantees to properly solve the equations
of the moments — even in the setting where the theoretical, unperturbed
moments are availableﬂ Even if this requirement is mild, it is interesting
to study how to modify SVTD in order to remove this limitation, so to see
if improved experimental performance is obtained. For example, the SVD
method (Anandkumar et al. 2012b) overcomes this issue by performing a
random transformation of the model to be learned; this approach could be
ported to our case by finding the matrix O (line 4 of Algorithm (1)) from

2Simple experiments running SVTD where this condition is violated show that it may
actually fail to provide the right solution of the moment equations.
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Figure 6.5: Leftmost figure: an overcomplete naive Bayes model with Gaussian
features, where we have d = 2 and k = 4. Center figure: the two pseudocenters
learned by SIDIWO allow to bisect the data into two clusters. Rightmost
figure: iterating, we are able to recover four pseudocenters, coinciding with
the four centers of the model.

the singular vectors of a random linear combination of the various matrices
H,., which would ensure the almost certain uniqueness of the results. It may
be interesting to see if a similar approach — which has the cost of adding
artificial random noise to the algorithm — would improve the performance of
SVTD. Ideally, it may guarantee similar or improved performance, with less
theoretical limitations.

To use SIDIWO to learn hierarchical models

In Chapter [5] we have introduced a technique to retrieve hierarchical
representations of latent variable models. That method enables to retrieve
a hierarchical tree whose nodes describe portions of the analyzed data with
increasing accuracy. One interesting extension of this work may consist in
analyzing whether there exist hierarchical latent variable models that can be
accurately learned with the proposed hierarchical method of moments — like
for example binary latent trees.

To use SIDIWO to learn overcomplete models

Another interesting open question is whether the hierarchical approach
introduced by SIDIWO may enable to learn overcomplete latent variable
models — models where the number of latent states is higher than the number
of observable features, so with d < k. A simple example may come from
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a naive Bayes model (see Chapter [1) with Gaussian features — like the one
depicted in the leftmost chart of Figure [6.5] — with bidimensional features,
d = 2, and k = 4 latent states/clusters. This simple model would be not
learnable with a traditional approach to method of moments — which would
require d > k. Conversely, with the hierarchical approach proposed in Chapter
[l we are able to first learn a model with two pseudo-centers, which allows
to bisect the data as done in the center chart of Figure [6.5 and then to
iterate the approach on the two clusters, to obtain four pseudo-centers, which
are very close to the actual centers of the model. Our intuition is that the
pseudo-centers obtained in this way asymptotically approximate those of
the model generating the data, allowing SIDIWO to learn model otherwise
not learnable with standard methods of moments. A possible next step may
consist in studying if and under which conditions this intuition is confirmed;
if confirmed, this would make SIDIWO a robust learning technique for certain
overcomplete latent variable models.

To discover explicit relations between the data and the outputs of
a method of moments

An important open problem is the one of finding explicit links between
inputs and outputs of methods of moments; a problem that, if solved, could
dramatically increase our understanding of these techniques. In Chapter [0]
we did a first step in this direction, geometrically linking the input data with
the optima of SIDIWO and using the optima to perform clustering. However,
this required to modify the purpose of methods of moments, renouncing to
explicitly learn a latent variable model and working with a standardized, not
model-dependent definition of the moments. An interesting next step consists
in continuing the analysis carried on in Chapter [6] under a model-dependent
perspective, with the objective of discovering an explicit relation between the
input data and the models that are returned by methods of moments.

To connect methods of moments with maximum likelihood

A interesting path that is worth exploring consists in finding theoretical
relations linking methods of moments with maximum-likelihood based ap-
proaches. For example, consider a dataset X', and assume it to be generated
by a certain latent variable model, parameterizable with a pair (M,w) and let
(]\7[ ,@) be the pair of parameters returned by a method of moments run on
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the observed data. Now, assume to have an oracle, able to return the model
maximizing the likelihood of the observed data: (M ML, War). This model
will probably be different from the one returned by the method of moments,
as they are optimizing two different cost functions: the method of moments
is trying to match the empirical moments, while the likelihood-based one is
trying to maximize the likelihood of the observed data. Studying a relation
between the maximum-likelihood model and the one learned with a method
of moments is a poorly explored research area. Intuitively, the two models are
expected to converge to the same model (M, w) as the sample size increases,
but it would be interesting to understand if the two optimization problems
are in some way related to each other. For example, can we say that, in
certain scenarios, the optimization problem solved by a method of moments
is a relaxation of the maximume-likelihood problem? The fact that methods of
moments typically return good initializers for likelihood-maximizing heuristics
(Balle et al., |2014; Zhang et al., 2014) seems to foster the intuition that some
kind of relation may exists, however an explicit intuition on the relation
between the two optimization problems is missing and remains an interesting
open problem to be explored in future works.

Model selection and connections with the minimum description
length principle

In the first part of this thesis, we have presented a set of methods to
learn latent variable models assuming that the number of latent states k was
known to the algorithm, overcoming this requirement in part II, with a series
of hierarchical approaches. Additionally, in Chapters [5] and [6], we proposed
a set of algorithms that are guaranteed to return a meaningful model for
any value of the input k; nevertheless, finding which is the best value of k
to enable a latent variable model to properly describe a dataset, remains
an interesting open problem. Consider for example the patient clustering
problem studied in Chapter [4 in that case, the value k represents the number
of clusters in which we want to group our population of patients. While the
results in Chapters [5] and [0] tell us that with the proposed algorithms we will
likely obtain a meaningful clustering for any value of k, it is interesting to
understand whether it exists a value k that is better than the others, and to
find a principled way to determine it.

An interesting approach may come from the so-called Minimum Description
Length (MDL) principle, which is an information-theoretical formalization of
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Occam’s razor (Grunwald, |2004)). Loosely speaking, the MDL principle relies
on the fact that regularities occurring in the data can be used to retrieve a
compressed encoding of the data itself, and on the idea that between two
encodings equally able to capture these regularities, the one providing the
highest compression should be preferable. Phrasing this under a probabilistic
perspective, a latent variable model could be interpreted as a synthetic
encoding of the training set, an entity able to capture most of the regularities
appearing in the data, while keeping a conveniently compressed representation.
Increasing the number of latent states, would increase the ability of the model
to capture these regularities, but would also increase the size of the model we
use to describe the data, yielding to a less compressed representation. As a
consequence, the MDL principle translates to the probabilistic framework as
a model-selection tool, where the model is selected by thresholding between
how well a model describes the data and how big the model is; too big models
will be probably accurate, but will be penalized by their high dimension,
while very small models will be not enough accurate to be selected.

The MDL is commonly used in the literature to select the number of states
in a latent variable model (Roberts, 1999), and the predominant formalization
(Grunwald} 2004) consists of building a cost function summing the likelihood
of a model with respect to the training data to some non-decreasing function
of the number of parameters of the model — with the first term indicating the
goodness of fit, and the second acting as a regularizer, preferring in this way
smaller models. This approach is well studied, it can be successfully used in
practice to select the value of k (Roberts et al., [1998) and generalizes other
well-known model-selection tools like the Bayesian Information Criterion
(BIC) (Schwarz et al., |1978)) — but it is based on the likelihood function and,
implicitly, on the maximum likelihood principle, whose relation with the
outputs of a method of moments are not always clear.

An alternative approach may come from the observation that the method
of moments is essentially solving a low-rank tensor factorization problem, and
the model selection task consists in finding the proper rank to be used to
perform the decomposition. This problem can easily be framed under the
MDL perspective: a rank-k matrix decomposing a tensor would be seen as a
synthetic representation of the tensor itself, and the optimal rank could be
found by tresholding between the size of the matrix — obviously depending on k
—and the decomposition error. Under the model perspective this would mean to
select k using a cost function composing the error in the tensor decomposition
task — which would indicate how well the model fits the data — with an
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additional cost penalizing models where k is too big. This approach seems
more aligned with the spirit of methods of moments than the likelihood-based
formalization; additionally, literature provides several MDL-based approaches
to find the optimal rank for the tensor decomposition task (Zarowski, [1998;
Ramirez and Sapiro, 2012; Liu et al., 2016; Squires et al., 2017), which suggest
that this approach is feasible. Extending these works under the probabilistic
model-selection perspective may lead to the development of a principled
approach to model-selection in methods of moments, which is an interesting
area for future research.

Methods of moments to learn interpretable generative models, and
relations with deep-learning

During all this thesis, Latent Variable Models have been seen as proba-
bilistic models able to approximately describe the training data. However,
in order to keep tractable the equations arising during the learning task,
limitations have been posed over the complexity of a model: in Chapter
for example, we performed the assumption of conditionally independent
diseases, given the latent medical status of a patient; in Chapter [3| while
modeling texts, we assumed exchangeable words, claiming that each word has
no direct relation with the words in its context. These limitations allowed
us to calculate straightforward equations of the moments, enabling learning
techniques with provable guarantees of global optimality; at the same time,
the models we retrieved were able to describe the training data in a satisfying
way and were simple — ensuring interpretability of their behavior when used
in practical tasks like clustering (see Chapter . On the other hand, it is
natural to wonder whether more complex and sophisticated models would
have better captured the patterns and the regularities arising in the data
— perhaps at the cost of sacrificing the interpretability of the model or the
efficiency and optimality of the learning task.

Understanding how much a model hypothesis is limiting to accurately
describe a dataset is an interesting area for future research, which nicely
intersects with another branch of machine learning: the theory of generative
processes. A latent variable model in fact can be seen as a generative process
able to generate samples according to a prescribed probability distribution.
Ideally, if a model accurately describes the data and captures all its charac-
teristics, it is expected to generate synthetic samples indistinguishable from
the training ones; the similarity between the training data and the ones
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sampled from the model distribution may thus be an indicator of how well
a model describes the data. A potential future line of research consists of
comparing synthetic samples generated from models learned with methods
of moments with the training data, checking how well the synthetic data
resembles the training one. This opens the problem on how to determine
whether or not two datasets are indistinguishable, and what indistinguishable
means; to this extent one could leverage on some statistical hypothesis tests,
like the one introduced by (Gretton et al.| (2012) — which uses a metric called
Maximum Mean Discrepancy (MMD) — as an indicator of how much the
distributions of two samples differ. Alternatively, one could train a classifier
(called discriminator) to distinguish whether a sample is real or synthetic and
consider its generalization accuracy as an indicator of the distinguishability
of the two datasets.

In a recent work (Avino et al., [2018)), we used these two approaches to
evaluate the model describing patient medical records introduced in Chapter
after having learned the model, we used it to generate synthetic ICD9
medical records, and compared the generated data with the real one — using
both the MMD and a discriminator — showing that for a high number of
clusters, synthetic and real data are hard to distinguish under both the
criteria. On one hand this was a positive result, showing that that methods
of moments can learn highly descriptive model. However, ICD9 records are
highly structured data, and it is not a surprise that a simple model like a
naive Bayes model is able to accurately describe their behavior. Extending
this analysis to more challenging scenarios is a interesting next step, which
would help us in setting the boundaries on which modeling tasks can be
accomplished using an understandable model and which tasks instead can
not. Consider for example the task of modeling texts: while we can expect
that models like the Single Topic Model and the LDA will not be able to
generate credible synthetic texts, it would be interesting to understand if a
more complex — but still understandable and interpretable — model would be
capable of this task.

Beside the theoretical implications described above, it is important to
observe that generating synthetic but plausible data is a task with several
practical applications: synthetic data can be used for example to establish
cross-industry benchmarks, to stress-test a system by trying it on larger
datasets than available, or as the shareable version of data otherwise protected
by privacy constraints. Finding latent variable models able to generate realistic
synthetic data in various contexts would have the benefit of providing an
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interpretable description of the data — via the structure of the LVM — and an
effective generator for synthetic data. It is interesting to observe that not-
interpretable models able to generate plausible data in challenging contexts
exist, and have been object of an increasing interest in the deep learning
community during the last few years. These models, called implicit generative
models (Mohamed and Lakshminarayanan) 2016)), are probabilistic parametric
models whose likelihood function is not explicitly accessible but from which
it is possible to generate synthetic samples. Unlike the LVMs we have seen
up to now, they are not interpretable, and they are typically represented via
a deep neural network with millions of parameters, which propagates the
outcomes of a prior to generate synthetic, structured data. These networks
are trained with the explicit objective of generating data indistinguishable
from the training one: they use objective functions aimed for example at
minimizing the MMD (Li et al., 2015)) or at matching the moments between
synthetic and training data (Ravuri et al., 2018) or at making a discriminator
unable to distinguish between synthetic and real data (Goodfellow et al.,
2014). Implicit generative models have been successfully used to generate
synthetic data from a variety of scenarios, including images (Goodfellow et al.,
2014)), texts (Yu et al., [2017) and medical data (Esteban et al., 2017} |Choi
et al., 2017} [Yoon et al., [2018) and, while they seem to be able to simulate
arbitrarily complex models, they do not provide any interpretation on the
process generating the data; additionally, these models typically require longer
training times in comparison with the simpler latent variable models studied
in this thesis (see |Avino et al. 2018). Understanding in which contexts and
in which modeling tasks implicit generative models could be substituted by
more interpretable LVMs is an interesting area of future research.

Ideas for Applications

Clustering patients using multiple sources of data

In Chapter 4, we have presented a technique to cluster patients in groups
with homogeneous clinical profiles, starting from 1CD9 data. In our modeling,
each patient is characterized by a latent state, which represents his unob-
servable clinical status; observable features, like the ICD9 diagnostics, are
the real-world manifestation of this latent state. This model can be easily
extended to include other observable features, without changing its intrinsic
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structure. For example, modern healthcare systems collect for each patient
data coming from several sources, other than ICD9 record, like lab results,
medical notes, X-ray images, ethnic and genetic information about the patient.
An interesting model, would consider these sources of data as different views
on the patient latent state. Each view will follow its own distribution, which
will depend on the latent patient status; for a certain status, the views may
be considered to be conditionally independent. For example, imagine to add
doctors notes to the model described in Chapter [ Then, we would have
two views: one representing the ICD9 records, and another one the doctor
annotations on patient status. The first view will be distributed as a mixture
of independent Bernoulli variable, while the second, for example as a single
topic model; both depending on the same latent variable, representing the
patient’s medical status. This kind of modeling may be powerful to provide
improved and more granular clusters, which consider several, otherwise hardly
joinable datasets. Two interesting challenges may arise in this setting: first,
not all the patients may have data regarding all the views — some patients may
have X-ray images but not lab tests, some other blood tests but no medical
annotations for examples — and second, views may present conflicting clusters
— a clustering done on the sole ICD9 records for example may group patients by
clinical profiles, while the one done only on medical notes may group patients
by the prescriptions recommended to the patients by the doctors (see for
example |He et al.|2017). Providing a method able to deal with missing and
conflicting views and yet return meaningful clusters is an interesting future
line of applications.

Sequential models to describe medical time series

The clustering approaches described above and in Chapter {4] assume to
have data representing a snapshot of patient status at a certain point of his
life. During his life, however, a patient may move across several different
statuses, visiting a hospital several times and producing at each visit different
data records. An interesting next step may thus consist in studying the
evolution of patient status along time, while several records — possibly from
different views — are provided at different points in time. This may require
to introduce more complex latent variable models (see for example |Alaa and
Van Der Schaar|2018; Li et al. 2018| ), studying the relations between the
data observed at a certain time with those of the subsequent observation,
or studying how the waiting times between an observation and the next are
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distributed.

Methods of moments and privacy-preserving machine learning

A setting where methods of moments may give an important contribution
is privacy-preserving machine learning, and its applications to healthcare
analytics. Imagine for example that several hospitals (called parties in privacy
jargon) have their own private data from certain patients. The parties do
not want to exchange the data between them, but do want to use all the
available data to develop a certain latent variable model (for example, to
perform clustering like in Chapter [4)), which will be more reliable as developed
on a bigger sample and less biased on a specific hospital population. This
scenario may comprehend two different settings.

1. One — called vertically partitioned (VP) setting — where the parties
share different kinds of data for the same set of patients. For example
one hospital may have lab-results data, while another ICD9 records for
the same set of patients. This kind of data, can be modeled using a
multi-view approach as described above, with the additional constraint
that the views can not be shared between the parties.

2. The second setting — called the horizontally partitioned (HP) setting—
is when the hospitals share the same kind of data — like ICD9 records —
but for different populations of patients.

In both the settings, the objective is to use all the data available to the
various hospitals to learn a certain latent variable model, without actually
exchanging these data between the parties, never compromising the privacy
of the patients; the learned model will then be shared between the hospitals,
so to be used for the tasks it is needed for. An interesting future application
of the work presented in this thesis is to develop methods of moments able
to work robustly in the two settings described above. This may be almost
automatic for the HP setting: here, each party should compute their own
moments, add noise to guarantee differential privacy of the moments, and
then pass the moments to a party that has to aggregate and decompose the
moments to retrieve the model parameters, which are then shared back with
the hospitals. Also dealing with the VP setting looks doable, even if more
difficult: methods of moments for multi-view models exist (Anandkumar
et al., [2012b) but require to perform heavy inner products between the views,
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which is not straightforward in a privacy-preserving setting. However, privacy-
preserving inner products exist (Gascon et al., 2017), and can help to deal
also with this more challenging scenarios.

Methods of moments and genetic data

A last interesting area where latent variable models and methods of
moments can have a positive impact is the handling and the modeling of
genetic data. These kinds of data are in fact typically high dimensional,
sparse and with a number of available features that is in general way larger
than the sample size (Cavalli-Sforza and Bodmer], 1999)), which is the ideal
setting for methods of moments. Examples of application may be clustering
— taking genotypes as inputs to discover partitions in human populations
(Rosenberg et al., 2002) — or analysis of genotype-phenotype relations — where
model-based causal relations between genetic structure and phenotype are
investigated (Rakitsch et al., 2013). In both the cases, methods of moments
can help in learning interpretable yet high dimensional models with high
efficiency, following for example an approach similar to the one described in

Chapter [4]
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