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ABSTRACT  

Cigarette smoking continues to be leading cause of preventable cause of 

death worldwide. Cognitive modulation by nicotine seems to be a key 

factor in nicotine addiction. Several studies indicate that initial nicotine 

intake has a positive effect on cognition, which may contribute to the 

development of nicotine dependence. Conversely, when chronic nicotine 

treatment ceases, cognitive functioning is altered. The orexin and the 

endocannabinoid system have been reported to play a crucial role in 

different stages of nicotine addiction and in learning and memory 

processes. Our results show that orexin receptors influence the pro-

cognitive effects of acute nicotine treatment, whereas the 

endocannabinoid system acting through CB1R modulates the cognitive 

deficits associated with nicotine withdrawal. In addition, our work reveals 

an inflammatory process associated with the cognitive deficits of early 

nicotine abstinence. Given that the presence of cognitive alterations is 

associated with increased smoking relapse risk, our results identify CB1R 

and anti-inflammatory drugs as new potential therapeutic strategies for 

nicotine dependence. 
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RESUMEN  

El consumo de cigarrillos es una de las principales causas de muerte 

prevenible en el mundo. Los efectos de la nicotina sobre la memoria 

parecen parece ser un factor clave en la adicción a la nicotina. Diversos 

estudios indican que el consumo inicial de nicotina tiene un efecto positivo 

sobre la cognición, lo que puede contribuir al desarrollo de la dependencia 

de la nicotina. Por el contrario, cuando el consumo de nicotina cesa, se 

altera el funcionamiento cognitivo. Las orexinas y el sistema 

endocannabinoide desempeñan un papel crucial en las diferentes etapas 

de la adicción a la nicotina y en los procesos de aprendizaje y memoria. 

Nuestros resultados demuestran que los receptores de orexina la mejora 

de memoria inducido por un el tratamiento agudo de nicotina, mientras 

que el sistema endocannabinoide, actuando a través de los receptores CB1 

modula los déficits cognitivos asociados con la abstinencia de nicotina. 

Además, hemos revelado que un proceso inflamatorio está asociado al 

desarrollo de los déficits cognitivos de la abstinencia a nicotina. Dado que 

la presencia de alteraciones cognitivas se asocia con un mayor riesgo de 

recaída en el hábito de fumar, nuestros resultados identifican a los 

receptores CB1 y fármacos antiinflamatorios como potenciales nuevas 

estrategias terapéuticas para la dependencia de la nicotina. 
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1. Nicotine  

1.1 Tobacco use: a public health concern 

Tobacco consumption remains one of the leading causes of preventable 

disease and death worldwide, resulting in approximately 7 million 

premature deaths per year. This mortality is mainly due to lung cancer, 

coronary heart disease, respiratory and chronic obstructive pulmonary 

disease, which represent an important impact on health care expenses (US 

surgeon report, 2014). Despite public awareness of the harmful effects of 

tobacco use, it is estimated that 22.5% (32% men, 7% women) of global 

adult population are current smokers (Gowing et al, 2015).  

Tobacco is mainly consumed in the form of cigarettes, which are conceived 

as the most effective form to deliver nicotine to the organism. Nicotine is 

the main psychoactive component of tobacco and responsible for the 

addictive and cognitive properties of tobacco. Aside from nicotine, 

tobacco smoke contains more than 4000 compounds with many been 

reported as irritant, carcinogenic and toxic contributing to the 

development of smoking-related diseases. In an effort to avoid the toxic 

molecules present in tobacco smoke, some smokers have shifted to the 

use of smokeless tobacco (e-cigarettes). Since this alternative is perceived 

as “healthier” than traditional cigarettes its use has rapidly increased and 

now also represents a major public health concern (Etter and Eissenberg, 

2015; Pulvers et al, 2016). 

Quitting smoking at any age has substantial health benefits, which 

encourage near 50% of adult smokers to make a quit attempt every year. 

However, 80% of smokers who try to quit on their own relapse within the 

first month of abstinence with only a 3% of them remaining abstinent at 

six months (Benowitz, 2010; Control Center for Disease, 2016). These data 
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illustrate the powerful force of tobacco addiction and the chronic nature 

of the disorder. 

1.2 Nicotine: neuropharmacology  

Nicotine accounts for the 95% of the alkaloids present in the leaves of 

Nicotiana tabacum plant where it acts as a natural insecticide (Schmeltz 

and Hoffmann, 1977). Nicotine is a tertiary amine consisting of a pyridine 

and a pyrrolidine ring and is predominantly found as the (S)-nicotine 

isomer. The (R)-nicotine only represents a 1–0.6% of total nicotine and is 

less active pharmacologically than (S)-nicotine (Armstrong et al, 

1998)(Figure 1). 

1.2.1 Pharmacokinetics and metabolism 

Nicotine is a weak base (pKa of 8.0), whose ability to cross membranes 

depends on the environmental pH. During tobacco burning, nicotine is 

transported in small smoke particles into the lungs. Tobacco smoke is an 

acidic environment (pH 5.5–6.0) where nicotine is ionized and can no 

longer cross membranes easily. When tobacco smoke arrives to alveoli 

and small airways, the surrounding fluids (pH 7.4) unionize nicotine so it 

can be rapidly absorbed and transferred to the bloodstream (Hukkanen et 

Figure 1. Chemical structure of nicotine [3-(1-methyl-2-pyrrolidinyl)pyridine]. 
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al, 2005). Following a puff, nicotine can reach the brain within 10-20 

seconds. This short time gap between smoke inhalation and perception of 

the effects of nicotine makes smoking the most reinforcing form of 

nicotine administration facilitating the development of addiction 

(Hukkanen et al, 2005; Perkins et al, 2016).  

Other forms of nicotine administration, such as nicotine replacement 

therapy, increase gradually nicotine blood levels, resulting in lower 

nicotine levels in the brain and poor abuse liability (Flowers, 2016). 

Smokeless tobacco (e-cigarettes) was first advertised as a tool to reduce 

nicotine dependence given its reduced nicotine delivery. However, recent 

studies have shown that e-cigarettes can produce nicotine plasma levels 

similar to those observed with conventional cigarettes smokers (Dawkins 

and Corcoran, 2014; Etter and Bullen, 2011; Pulvers et al, 2016). Since the 

amount of nicotine obtained from e-cigarettes may determine its 

addictiveness, it is not surprising that users, especially young ones, can 

develop dependence on e-cigarettes (Etter and Eissenberg, 2015). 

Nicotine is metabolized primarily by the liver enzyme CYP2A6 (Hukkanen 

et al, 2005). In humans, approximately 70% of nicotine is converted to 

cotinine. Many animal species, including mice, rabbits, and monkeys, 

metabolize nicotine primarily to cotinine as in humans (Matta et al, 2007). 

Genetic variants affecting CYP2A6 function are associated with cigarette 

use (Benowitz, 2009), vulnerability to develop nicotine addiction (Audrain-

McGovern et al, 2007; Chenoweth et al, 2016) and responsiveness to 

smoking cessation pharmacotherapy (Lerman et al, 2015), suggesting that 

nicotine metabolism contributes to nicotine addiction.  

The plasma half-life (t1/2) of nicotine in human averages about 2 hours 

(Hukkanen et al, 2005). Nevertheless, rodents display faster nicotine 

metabolism and are less sensitive to the effects of nicotine (t1/2 rat: 45 
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minutes; t1/2 mouse: 6-7 minutes). Thus, it is important to adjust doses in 

order to obtain a response comparable to humans, when using a murine 

model of nicotine addiction (Matta et al, 2007).  

1.2.2 Mechanism of action: nicotinic acetylcholine receptors  

Nicotine exerts its physiological and psychological effects through binding 

and activation of nicotinic acetylcholine receptors (nAChRs). These 

receptors are widely distributed through the central nervous system (CNS) 

(Figure 2), being expressed by neurons, microglia and astrocytes (Egea et 

al, 2015; Maurer and Williams, 2017). nAChRs are also abundantly 

expressed in the peripheral nervous system (Gotti et al, 2006) and in non-

neuronal cells including keratinocytes, endothelial cells, digestive, 

respiratory, and immune cells (Albuquerque et al, 2009; Kawashima et al, 

2015). 

Figure 2 Distribution of nicotinic acetylcholine receptors in the rodent 
central nervous system (Adapted from Gotti et al, 2006). 
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Nicotinic receptors are ligand-gated ion channels (Changeux, 1990) made 

of a combination of five alpha (α2–α7, α9, and α10) and beta subunits (β2–

β4) arranged around a central permeable pore. The alpha subunits can 

conform homo-oligomeric and hetero-oligomeric receptors because these 

subunits contain the binding site for the ligand. In contrast, beta subunits 

only arrange hetero-oligomeric receptors and exhibit 2 ligands binding 

sites at the interface between α and β subunits (Le Novere et al, 2002) 

(Figure 3). The different combination of subunits accounts for the diverse 

structure and function of nAChRs. 

Figure 3. Schematic representation of nicotinic acetylcholine receptors 
(nAChRs). Nicotinic receptors consist of five transmembrane subunits 
arranged around a water-filled cation-permeable pore. Nicotinic extracellular 
domain carries the acetylcholine/nicotine binding sites at the boundary 
between subunits. The most common nAChRs in the brain are hetero-
oligomeric α4β2 nAChRs and homo-oligomeric α7 nAChRs (Adapted from Zoli 
et al, 2015). 
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Upon binding of the endogenous neurotransmitter acetylcholine, the 

open conformation of the nAChRs stabilizes and allow the influx of small 

cations, such as Na+, K+, and Ca2+ (Albuquerque et al, 2009; Dani, 2015). 

This open conformation lasts several milliseconds before it changes to a 

close-resting state (responsive to agonist) or a close-desensitized state 

(unresponsive to agonists). Interestingly, nAChRs in the close-resting state 

have 20 times lower affinity for agonists than nAChRs in the close-

desensitized state. In physiological conditions, brief and high 

concentration of acetylcholine at the synapse induces opening of the 

nAChRs’ pores followed by a rapid recovery from desensitization. 

However, prolonged exposure to low concentrations of nicotine, as occur 

during tobacco use, induces activation accompanied by a significant 

desensitization (Picciotto et al, 2008). Since regular smokers maintain 

levels of circulating nicotine over the course of the day, nAChRs remain 

longer in a desensitized state promoting an increase in the number of high-

affinity receptors (De Biasi and Dani, 2011; Fasoli et al, 2016). Long-term 

forms of nAChRs inactivation could explain several aspects of nicotine 

addiction. Thus, tolerance and withdrawal might be a consequence of the 

slow recovery of nAChRs into functional states from different levels of 

desensitization and inactivation (De Biasi and Dani, 2011; Giniatullin et al, 

2005; Picciotto et al, 2008). In agreement, a human study showed that 

after 2 days of smoking abstinence, participants’ cravings were reduced 

only when nAChRs were again nearly saturated (Brody et al, 

2006).Depending on the localization, the gating of the receptor promotes 

different responses. Thus, activation of nicotinic receptors in presynaptic 

terminals triggers the direct release of neurotransmitters, including 

acetylcholine, glutamate, GABA, dopamine, norepinephrine, and 

serotonin. Postsynaptic nAChRs activation allows the influx of cations 
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promoting the depolarization of the neuron and, in the case of Ca2+, also 

induces Ca2+ depending signaling cascades (Albuquerque et al, 2009; 

Dani, 2015).  

In the mammalian brain, the heteromeric α4β2* receptor (asterisk 

indicates that other subunits may be present in this receptor) and the α7 

homomeric receptor are mostly expressed (Dani, 2015; Zoli et al, 2015). 

The α4β2* receptor is considered the principal mediator of nicotine 

dependence given its high affinity for nicotine and slow desensitization. 

Conversely, the α7 receptor exhibits lower affinity to nicotine with a fast 

activation which explains its involvement in rapid synaptic transmission, 

long-term potentiation (LTP) and learning (Dani, 2015; Picciotto and 

Kenny, 2013). Other nAChRs subtypes have a more restricted distribution 

Figure 4. Nicotinic acetylcholine receptor desensitization depends on agonist 
concentration and time exposure. Classical desensitization induced by 
relatively high (micromolar to millimolar) agonist concentrations proceeds 
from the open receptor state in milliseconds (e.g. for α7 nAChRs) or seconds 
(e.g. for α4β2 nAChRs). High-affinity desensitization induced by low agonist 
concentrations proceeds from the agonist-bound closed state before channel 
opening (i.e. without receptor activation) with slow kinetics (seconds to 
minutes). The upregulation or downregulation of nAChRs is usually observed 
with long-lasting application of agonist (Giniatullin et al, 2005). 
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in the brain, but they might also represent the most abundant receptor 

subtype in a specific brain area.  

1.2.3 Role of nAChRs subunits in nicotine addiction 

Investigating the nAChRs at which nicotine acts may provide valuable 

insights to better understand the neurobiology of nicotine addiction and 

facilitate the development of novel therapeutic strategies. However, it is 

difficult to attribute any particular behavioral effect of nicotine to a 

specific nAChRs subtype has been difficult, due to the lack of selective 

antagonist and agonist for all nAChRs subtypes (Zoli et al, 2015). The 

development of genetically modified animal models with knockout (KO), 

knockin or selective expression of nAChRs subunits has enabled the 

investigation of the role of specific nAChRs in nicotine addiction.  

1.2.3.1 α4β2* nAChRs 

The α4β2*-containing nAChRs are the most abundant in the CNS, with 

several evidence supporting the role of this nAChR subtype in the 

reinforcement and withdrawal of nicotine (McLaughlin et al, 2015; Stoker 

and Markou, 2013). In the ventral tegmental area (VTA), α4β2* nAChRs 

are located in GABAergic presynaptic terminals, where they regulate the 

release of the inhibitory neurotransmitter (Mansvelder et al, 2002). 

However, nicotine binding rapidly desensitizes these nicotinic receptors 

(Mansvelder et al, 2002), disrupting inhibitory GABAergic transmission in 

the VTA might contribute, at least in part, to the reinforcing properties of 

nicotine. 

Early studies reported reduced nicotine reward in β2 (KO), using the 

intravenous nicotine self-administration (Picciotto et al, 1998)  and the 

conditioning place preference (CPP) (Walters et al, 2006). These 

observations could be the result of nicotine’s inability to stimulate the 
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mesocorticolimbic dopaminergic system in β2 KO mice, since a reduced 

dopamine release and responsiveness of dopaminergic neurons has been 

observed in the absence of β2 subunits (Maskos et al, 2005; Stoker and 

Markou, 2013). Furthermore, lentiviral re-expression of β2 in the VTA 

reinstated nicotine self-administration behavior (Maskos et al, 2005) 

suggesting that β2 subunit is essential for the reinforcing effects of 

nicotine. Nicotine withdrawal affective signs also seem to be dependent 

on β2* nAChRs (Hamouda et al, 2018). Indeed, anxiety-like behavior 

associated to nicotine withdrawal were reduced in β2 KO mice (Jackson et 

al, 2008; McLaughlin et al, 2015). Additionally, β2 KO mice did not exhibit 

the learning deficits in fear conditioning associated with nicotine 

withdrawal (Portugal et al, 2008). In contrast, β2* nAChRs do not 

participate in the expression of the somatic signs of nicotine withdrawal 

(De Biasi and Salas, 2008; McLaughlin et al, 2015). These findings indicate 

that nAChRs containing the β2 subunit are critical for the development of 

nicotine dependence and expression of withdrawal signs upon cessation 

of nicotine administration. 

Similar to mice lacking β2 KO mice, 4 KO mice failed to enhance 

dopamine levels in the mesocorticolimbic system after nicotine exposure 

and to acquire nicotine self-administration (Pons et al, 

2008). Interestingly, mice with a single point mutation in the α4 gene self-

administered nicotine at lower doses than their wildtype counterparts and 

exhibited conditioned place preference also at very low nicotine doses 

(Wilking and Stitzel, 2015). Altogether, these findings suggest a 

modulatory role for the 4 subunit in nicotine reinforcement. 
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1.2.3.2 α7* nAChRs 

Similar to the α4β2 nAChRs, homomeric α7 receptors exhibit a widespread 

expression through the brain and a significantly lower affinity for 

nicotine.  In the VTA, α7 nAChRs regulate presynaptic glutamate release 

onto dopaminergic neurons (Feduccia et al, 2012; Zoli et al, 2015). The 

effects of α7* nAChRs on nicotine reinforcement appear to be subtler than 

those of α4β2 nAChRs. Importantly, α7 nAChRs rapidly recover from 

nicotine-induced desensitization (Subramaniyan and Dani, 2015). This 

rapid recovery suggests that α7* nAChRs, unlike α4β2* nAChRs, may 

remain sensitive to fluctuations in nicotine levels during continuous 

nicotine exposure and might consequently be important in the 

maintenance of nicotine dependence (Stoker and Markou, 2013). 

Nevertheless, contradictory results have been obtained when evaluating 

the role of the α7 subunit in the reinforcing properties of nicotine. Thus, 

even though pharmacological blockage of the α7 subunits decreased 

nicotine self-administration in rats (Walters et al, 2006), genetic deletion 

of the α7 subunit unaltered nicotine self-administration (Brunzell and 

McIntosh, 2012). In addition, a mouse strain that had lower α7 mRNA 

expression tended to have a greater sensitivity for the rewarding 

properties of nicotine (Harenza et al, 2014). This observation was 

confirmed by the increased nicotine reward revealed in the CPP paradigm. 

The different observations between all of these studies might be explained 

by the differences in the experimental approaches (pharmacological vs 

genetic), the use of different animal models (rats vs mice) and the genetic 

differences of mice strains. Therefore, the precise role of α7* nAChRs in 

nicotine reinforcement remains unclear. 

Withdrawal signs seem to be independent of α7* nAChRs. Thus, both 

wildtype and α7 KO mice exhibited similar somatic signs of nicotine 
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withdrawal (Stoker et al, 2012). In addition, the learning deficits in fear 

conditioning associated with nicotine withdrawal were unaffected in the 

α7 KO mice (Kutlu and Gould, 2016a; Portugal et al, 2008).  

1.2.3.3 α5* nAChRs 

Human genetic studies have highlighted the polymorphic nature of the 

CHRNA5- CHRNA3-CHRNB4 genomic cluster, encoding subunits α5, α3, 

and β4, respectively, and its implication in smoking behaviors, 

dependence risk and lung cancer (Bierut et al, 2008; Bierut and Tyndale, 

2018). Polymorphisms in the CHRNA5 gene have been associated with a 

reduced function of α5* receptors (Bierut, 2011). This alteration has been 

described to increase the risk of tobacco dependence by 30%, which can 

be doubled if the individual carries 2 risks alleles instead of a single allele 

(Saccone et al, 2009). In addition, the α5 subunit gene variant is a major 

risk factor for lung cancer and chronic obstructive pulmonary disease in 

smokers (Bierut, 2011). The α5 subunit seems to be determinant to the 

sensitivity and aversion to nicotine (Antolin-fontes et al, 2015; Frahm et 

al, 2011). Thus, mice lacking the α5 subunit self-administered high doses 

of nicotine that are otherwise aversive in wildtype mice (Fowler and 

Kenny, 2014). Interestingly, re-expression α5 nAChR subunits in the 

habernulo-interpeduncular pathway in KO mice restored similar nicotine 

intake levels than in wildtype mice (Antolin-fontes et al, 2015). Therefore, 

it seems that deletion of the α5 subunit increases the reinforcing effects 

of high doses of nicotine perhaps by attenuating the adverse effects 

associated with high nicotine concentrations. During nicotine withdrawal, 

somatic signs were decreased in α5 KO compared with wildtype mice 

(Jackson et al, 2008; Stoker and Markou, 2013). In contrast, α5* nAChRs 
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do not appear to mediate affective symptoms of nicotine abstinence 

(Jackson et al, 2015; Salas et al, 2009). 

1.2.3.4 β4* nAChRs 

Genome-wide association studies have revealed that variants in CHRNB4’s 

coding region reduce the risk for nicotine dependence (Haller et al, 2012), 

and variants in CHRNB4’s regulatory domain decrease the age of onset for 

tobacco intake (Haller et al, 2012; Saccone et al, 2009). Notably, mouse 

studies have shown that the lack of β4* nAChR reduces the reinforcing 

properties of nicotine (Harrington et al, 2016), whereas overexpression of 

this subunit induced a strong aversion to nicotine (Frahm et al, 2011). 

These divergent data highlight the balance of positive and aversive 

signaling mechanisms associated with nicotine intake. During nicotine 

withdrawal, β4 KO mice displayed decreased somatic signs compared with 

wildtype mice (Stoker et al, 2012). Overall, these results suggest that the 

β4 subunit is involved in many aspects of nicotine dependence. 

1.2.3.5 α6* nAChRs 

Genetic variation on the CHRNA6-CHRNAB3 gene cluster, encoding the α6 

and β3 subunits respectively, has been reported to increase vulnerability 

to tobacco smoking (Bierut, 2011; Thorgeirsson et al, 2010). In the VTA, 

α6* nAChRs appear to regulate GABA release onto dopaminergic neurons 

(Yang et al, 2011). Notably, the presence of α6 in nAChRs containing α4β2 

subunits seem to maintain the activation produced by nicotine, since it 

slows the rate of desensitization (Liu et al, 2012). Mice lacking the α6 

subunit failed to acquire nicotine-self administration suggesting a role of 

this subunit in the reinforcing effects of nicotine. Furthermore, the α6 

subunit is also involved in the affective component of nicotine abstinence 
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(McLaughlin et al, 2015). Thus, pharmacological blockage of the α6β2* 

prevents nicotine withdrawal-induced anxiety-like effects (Jackson et al, 

2009). In agreement one of the currently used treatments for smoking 

cessation, varenicline, acts as a partial agonist at α6β2* nAChRs (Bordia et 

al, 2012).   
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1.3 Nicotine addiction: a complex brain disease 

Similarly to other addictive processes, nicotine addiction is a chronically 

relapsing brain disease characterized by compulsive tobacco use, loss of 

control over tobacco consumption despite its negative consequences, the 

appearance of withdrawal symptoms upon cessation of tobacco smoking, 

and relapse even after long periods of abstinence (adapted from Koob and 

Le Moal, 2008).  

For many years, addiction was considered a personal “lifestyle choice” 

instead of a brain disorder.  Although initial drug use is certainly a 

voluntary behavior, multiple preclinical and clinical studies have evidence 

that addiction to drugs, including tobacco addiction, is based on 

pathological changes in brain function produced by the repeated 

pharmacological insult to specific brain circuits. In this regard, continuous 

drug exposure has been reported to affect the expression of genes 

involved in neuroplasticity through epigenetic and possibly RNA 

modifications, ultimately altering intracellular signaling cascades and 

neuronal circuits (Volkow and Morales, 2015). Hence, repeated 

stimulation of motivational circuitries by addictive drugs leads to 

maladaptive changes that progressively redirect the behavioral strategies, 

originally driven in response to biological stimuli, towards drug-seeking 

and drug-taking (Kalivas and O’Brien, 2008). Addiction can be 

conceptualized as a three-stage, recurring cycle of binge/intoxication, 

withdrawal/negative affect, and preoccupation/anticipation (craving), 

that worsens over time and involves neuroplastic changes in the brain 

reward, stress, and executive function systems (Koob and Volkow, 2016). 

One of the main challenges in the field of addiction is identifying the 

neuroadaptative changes that contribute to the progression from 

experimental use to addiction.  
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Figure 5. Conceptual representation of the addiction process. Addiction can 
be conceptualized as a three-stage, recurring cycle—binge/intoxication, 
withdrawal/negative affect, and preoccupation/anticipation (craving)—that 
worsens over time and involves neuroplastic changes in the brain reward, 
stress, and executive function systems Derived from a confluence of 
information from social psychology of human self-regulation failure, 
psychiatry, and brain imaging, these three stages provide a heuristic 
framework for the study of the neurobiology of addiction (Adapted from 
Volkow and Koob, 2016). 
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Experiencing with drugs, such as nicotine, does not imply becoming an 

addict. Indeed, the actual percentage of consumers that transit from 

recreational use to addiction ranges from approximately 9% for marijuana 

to 31% for tobacco (Anthony et al, 1994). Thus, addiction is a complex 

disease influenced by a variety of environmental and genetic factors and 

the mechanisms underlying the vulnerability or resilience are still not well 

understood (Addy and Picciotto, 2013). In tobacco addiction, the initial use 

of cigarettes is strongly influenced by environmental factors, such as 

availability and accessibility to tobacco, whereas genetic factors play more 

important role in the transition from regular use to the development of 

addiction (Vink et al, 2005).  

The 5th edition of the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5; American Psychiatric Association [APA], 2013) 

describes the clues for the diagnosis of substance-related and addictive 

disorders. According to this, substance-related disorders are divided into 

two groups: (1) substance use disorders, referring to changes produced in 

brain circuitry that can persist beyond detoxification, leading to cognitive, 

behavioral and psychological symptoms directly related to the substance 

use, and (2) substance-induced disorders, including intoxication, 

withdrawal and mental disorders induced by substances or medications. 

Therefore, the DSM-5 has combined the substance abuse and substance 

dependence categories, previously separated in the 4th edition, into a 

single substance use disorder. Indeed, the nicotine dependence diagnosis 

present in the DMS-IV has been replaced for the diagnose of tobacco use 

disorder, defined as “a problematic pattern of tobacco use leading to 

clinically significant impairment or distress, as manifested by at least 2 of 

the 11 symptoms listen in Table 1 in a 12-month period.  
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Table 1. DMS-5 criteria for substance use disorders. 

A. Impaired control  

1. Substance is often taken in larger amounts or over longer period than 
was intended. 

2. There is a persistence desire or unsuccessful efforts to cut down or 
control substance use. 

3. A large amount of time is spent in activities necessary to obtain the 
substance, use the substance, or recover from it effects. 

4. Development of craving, or a strong desire or urge to use the substance. 

B. Social impairment 

5. Recurrent substance use resulting in a failure to fulfill major role 
obligations. 

6. Continued substance use despite having persistent or recurrent social 
or interpersonal problems caused or exacerbated by the effects of the 
substance. 

7. Important social, occupational, or recreational activities are given up or 
reduced because of substance use. 

C. Risky use of substance 

8. Recurrent substance use in situations in which it is physically hazardous 

9. Substance use is continued despite knowledge of having a psychological 
problem that is likely to have been caused by the substance. 

D. Pharmacological criteria  
10. Tolerance, as defined by either: a need for markedly increased amounts 

of substance to achieve intoxication or desired effect or markedly 
diminished effect with continued use of the same amount of substance. 

11. Withdrawal, as manifested by either: the characteristic withdrawal 
syndrome for the substance or the substance is taken to relieve or avoid 
withdrawal symptoms. 
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1.3.1 Acute effects: reward  

In humans, nicotine obtained from tobacco smoking produces a moderate 

pleasure, reduction in stress and anxiety, increased arousal, improve 

concentration, reaction and performance of certain tasks (Benowitz, 2010; 

Henningfield et al, 1985). These behavioral effects seem to be primary 

sources of reinforcement by nicotine and motivations for smoking (Hall et 

al, 2015a; Pulvers et al, 2014). However, the strong addictive profile of 

tobacco contrasts with the relatively weak primary reinforcing effect of 

nicotine revealed in both clinical and preclinical studies (Caggiula et al, 

2001; Chaudhri et al, 2006). Indeed, complex interactions between 

environmental cues and nicotine also play a critical role in promoting and 

maintaining nicotine seeking (Bani et al, 2014; Garcia-Rivas and Deroche-

Gamonet, 2018; Stoker and Markou, 2015).  

Over the last 30 years, advances in the knowledge of the neurobiological 

mechanisms underlying the psychopharmacological effects of nicotine 

have been possible by the use of preclinical models. In agreement with the 

findings revealed in humans, nicotine administration has reinforcing and 

cognitive effects in non-human primates (Le Foll et al, 2007), dogs (Risner 

and Goldberg, 1983), rats (Caille et al, 2012) and mice (Martín-García et al, 

2009; Stoker and Markou, 2013). 

Nicotine, as other drugs of abuse, induces its rewarding effects by 

enhancing the activity of the mesocorticolimbic reward system. In 

physiological conditions, the reward system is entitled of promoting 

learning of goal-directed behaviors, generate positive emotions, and 

subsequently stimulate the repetition of those learned behaviors (Schultz, 

2010). Many of the behaviors stimulated by the reward system are implied 

in survival, which might explain why the reward mechanisms are 

preserved across species, being especially complex in the case of humans 
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(O’Doherty et al, 2001). 

The mesocorticolimbic system is composed of the VTA, which contains the 

cell bodies of dopaminergic neurons, and the terminal areas, where 

dopamine is released, in the nucleus accumbens (NAc), amygdala, and 

frontal and limbic cortices, (Kelley, 2004; Wise, 2004) (Figure 6). This 

system interacts with diverse brain regions including the amygdala, the 

bed nucleus of the stria terminalis (BNST), the hypothalamus and the 

hippocampus (HPC) that provide information about external context and 

about internal emotional and physiological states (Nestler, 2005). Hence, 

alterations in Nac projections, as occurs during chronic drug intake, 

contribute to addiction by promoting reward-directed behavior (Hyman 

and Malenka, 2001; Kauer, 2004).  

  

Figure 6. Mesocorticolimbic dopamine system. Simplified illustration of the 
circuitry of the mesolimbic dopamine system in rodent brain highlighting the 
major inputs to the nucleus accumbens (NAc) and ventral tegmental area 
(VTA). The release of dopamine from VTA neurons increases in response to 
administration of all drugs of abuse. AMG, amygdala; BNST, bed nucleus of 
the stria terminalis; LDTg, laterodorsal tegmental nucleus; PFC, prefrontal 
cortex; HPC, hippocampus. 
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Dopamine release has been described to facilitate reward-induced 

learning and promote recurrent drug-taking (Cardinal and Everitt, 2004; 

Russo et al, 2012; Wise, 2004). Different excitatory and inhibitory inputs 

directly regulate the activity of the dopamine neurons in the VTA (Markou, 

2008). As an excitatory signaling, glutamate release from different 

projection sites, including the NAc and the prefrontal cortex (PFC), 

promotes the depolarization of the VTA dopamine neurons and the 

consequent release of dopamine into the NAc. Conversely, inhibitory 

GABA signaling from interneurons within the VTA and projections from the 

NAc inhibits dopamine neurons in the VTA. The activity of dopaminergic 

neurons in the VTA is not only modulated by glutamate and GABA, but also 

by acetylcholine. Indeed, direct stimuli of cholinergic neurotransmission 

has been shown to evoke dopamine release into the NAc (Cachope et al, 

2012; Threlfell et al, 2012) and inhibition of cholinergic interneurons 

disrupt drug reinforcing effects (Witten et al, 2010). Acetylcholine 

promotes dopamine release through nAChRs expressed in dopaminergic 

cell bodies and indirectly through glutamatergic and GABAergic terminals 

within the VTA. 

Similar to other drugs of abuse, nicotine exerts its rewarding effects by 

acting on the mesocorticolimbic pathway. Nicotine uses the nAChRs that 

in physiological conditions respond to acetylcholine (Korpi et al, 2015). 

Animal studies reveal that nicotine enhances dopamine 

neurotransmission in mesolimbic areas through direct stimulation of 

nAChRs within the VTA. Thus, intra-VTA infusion of nAChR antagonists 

reduced nicotine-elicited dopaminergic outflow in the NAc, while infusion 

of the same antagonists in the NAc did not have any effect (Nisell et al, 

1994). In agreement, nAChRs located in the VTA, but not in the NAc, 

modulate nicotine self-administration in rats (Corrigall et al, 1994). 
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Nicotine enhances dopamine release into the NAc by primarily acting on 

4β2* and 7 homomeric nAChRs within the VTA. Nicotine acts in the VTA 

through the preferential activation of 4β2* nAChRs that have high 

affinity for nicotine and are mostly expressed in the body of dopaminergic 

neurons and in GABAergic terminals (Zoli et al, 2015). Thus, nicotine acting 

on these receptors induces the depolarization of dopaminergic neurons 

and the release of GABA from GABAergic terminals (Dani, 2015). Nicotine 

binds, to a lesser degree, to the lower-affinity 7 nAChRs highly expressed 

in glutamatergic terminals (Dani, 2015). Nicotine binding to these 

receptors induces the release of glutamate to dopaminergic neurons, 

promoting the activation of these neurons (Dani, 2015; Yan et al, 2018). 

Therefore, nicotine in the VTA triggers both inhibitory and excitatory 

signaling (Figure 7). Interestingly, low concentration of nicotine achieved 

through smoking desensitizes rapidly the nAChRs located in GABAergic 

and dopaminergic neurons, whereas higher nicotine doses are required to 

desensitize nAChRs in glutamatergic neurons. This difference in 

desensitization rates translates to a diminished inhibitory tone while the 

excitation persists leading to depolarization of dopaminergic neurons and 

an overall increase of dopamine transmission from the VTA to the NAc 

(Dani, 2015; Markou, 2008; Yan et al, 2018). Other brain regions are 

involved in nicotine reinforcing effects, aside from the mesocorticolimbic 

pathway. Nicotine administration enhances dopaminergic transmission in 

the BNST (Carboni et al, 2000). In addition, 5 nAChRs in the habenulo-

interpenduncular pathway are key to control nicotine intake (Fowler et al, 

2011). This pathway projecting to and from the VTA acts as an opposite 

mechanism to the reward system and transmits inhibitory signals that limit 

intake of noxious substances. Hence, knockdown of 5 nAChRs signaling 

decreases the stimulatory effects of nicotine and enhances nicotine 
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intake. Finally, smokers with insula damage, a cortical region involved in 

processing interoceptive information of emotional and motivational 

states, are more likely to quit smoking compared to those without insula 

injury (Naqvi et al, 2007).   

Figure 7. Nicotine modulation of dopaminergic transmission in the VTA.
Schematic representation of the neurotransmission interactions in the VTA 
involved in the rewarding effects of nicotine and contribute to nicotine 
dependence. Dopaminergic neurons receive inputs from glutamatergic, 
GABAergic and cholinergic neurons. Nicotine elicits the release of GABA and 
glutamate towards dopaminergic neurons, thus promoting both inhibitory 
and excitatory signaling. Notably, 4β2* nAChRs located in GABAergic 
terminals desensitized rapidly with the consequent decrease of the inhibitory 
input. 7 nAChRs located in glutamatergic terminals remain active longer 
generating an overall excitation of dopaminergic neurons and increase 
dopamine release from the VTA to the NAc (adapted from Markou, 2008). 
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1.3.2 Chronic effects: tolerance and sensitization 

All drugs of abuse, when administered acutely, decrease brain stimulation 

reward thresholds (i.e increasing reward; Kornetsky and Esposito, 1979). 

In contrast, when the drug is chronically administered the reward 

thresholds increase (i.e decrease reward; Koob and Volkow, 2010), this 

phenomenon is termed tolerance. With continued nicotine exposure, 

smokers develop tolerance to some nicotine effects with the consequent 

need of progressively higher doses of nicotine to obtain the same effects 

(Wang and Sun, 2005).  It has been proposed that desensitization and up-

regulation of nAChRs are behind the phenomenon of nicotine tolerance 

and dependence. Following nicotine binding, nAChRs activate and rapidly 

enter in a desensitize (inactive) state. The rate of desensitization and 

recovery varies among receptor subtypes, expressing neuron and brain 

areas. During chronic nicotine exposure, smokers exhibit low plasmatic 

levels of nicotine responsible for maintaining most nAChRs in a 

desensitized state. Moreover, chronic nicotine usage enhances 

substantially the time that nAChRs need to recover from the desensitized 

state, contributing to a generalized nAChRs inactive state in the brain 

(Dani, 2015; Picciotto et al, 2008). Indeed, a brain image study showed 

that cigarette smoking in amounts used by typical daily smokers maintains 

near-complete saturation, and thus desensitization, of brain nAChRs 

(Brody et al, 2006, 2014).  

Long-term exposure to an agonist produces excessive receptor activation 

that is homeostatically compensated by down-regulation of the receptor 

(Dani, 2015). Paradoxically, chronic nicotine exposure increases nicotine-

binding sites in the brain, a phenomenon termed up-regulation of nAChRs 

(Cosgrove et al, 2015; Zoli et al, 2015). Up-regulation of nAChRs observed 

in humans, mice and rats, may be a response to the prolonged 
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desensitization of nAChRs (Picciotto et al, 2008). This up-regulation only 

occurs in nicotinic, but not muscarinic, nAChRs and differs among receptor 

subtypes and brain regions (Gaimarri et al, 2007; Zoli et al, 2015). The 

interplay between the increased nAChRs expression and the low 

desensitization recovery rate might explain why smokers report that they 

receive the most pleasurable effect from the first cigarette of the day 

(Benowitz, 2010; Russell, 1989). 

1.3.3 Acute nicotine withdrawal: physical, affective and cognitive 
symptoms  

Tobacco-dependent subjects seem to maintain nicotine consumption to 

avoid or alleviate the distressing withdrawal symptoms rather than to 

obtain the positive reinforcing effects of nicotine (Koob et al, 2013; Koob 

and Le Moal, 2008b). Indeed, nicotine withdrawal syndrome is considered 

as a major cause of relapse into smoking (Le Foll and Goldberg, 2009). 

Thus, the severity and the duration of withdrawal symptoms has been 

suggested to predict relapse in abstinent smokers (Allen et al, 2008; 

Ashare and Schmidt, 2014; Killen and Fortmann, 1997; Rukstalis et al, 

2005; Zhou et al, 2009).  

Smoking cessation produces a wide range of undesirable effects that can 

be classified as somatic, affective and cognitive withdrawal symptoms 

(Hughes, 2007a; Hughes and Hatsukami, 1986). Somatic or “physical” signs 

of withdrawal include bradycardia, gastrointestinal discomfort, fatigue, 

insomnia, and restlessness. The affective withdrawal symptoms include 

depressed mood, irritability, severe craving for nicotine, anxiety and 

decreased arousal. Cognitive deficits associated with nicotine withdrawal 

include impairments in attention, working memory and episodic memory 

(Hall et al, 2015a; Hughes, 2007a; Wesnes et al, 2013). In general, all 

withdrawal signs onset approximately at 4h after the last tobacco 
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consumption, peak within the first few days of abstinence and could still 

be observed for weeks (Benowitz, 1992; Hughes, 2007a). Detailed 

information regarding the cognitive impairments associated with nicotine 

withdrawal and the neurobiological mechanism involved will be provided 

in section 1.4.3 of this thesis. 

Many of the abstinent symptoms observed in humans can be 

recapitulated in rodent models and withdrawal (McLaughlin et al, 2015). 

In this regard, withdrawal signs can be studied by observing the 

frequencies of certain stereotypes or by evaluating changes in behavior 

during abstinence. As in humans, behavioral manifestations of nicotine 

withdrawal in rodents can be classified also as somatic, affective and 

cognitive. The somatic signs in rodents include teeth chattering, palpebral 

ptosis, tremor, wet dog shakes, changes in locomotor activity, and other 

behavioral consequences (Castañé et al, 2002; Jackson et al, 2018). The 

affective manifestations of nicotine withdrawal in rodents consist of 

increased anxiety-like behavior, aversive effects, and reward deficits 

(Jackson et al, 2008; Johnson et al, 2008; Stoker et al, 2012). Finally, the 

cognitive deficits associated with nicotine withdrawal have been often 

studied using hippocampal-dependent memory tasks in rodents (Kutlu et 

al, 2016; Yildirim et al, 2015). In mice, spontaneous and precipitated 

withdrawal from nicotine results in memory impairment in the contextual 

fear conditioning (Hall et al, 2015a; Leach et al, 2013) and object 

recognition test (Borkar et al, 2017). Similar to humans, attentional deficits 

have been observed in rodents during nicotine withdrawal. Thus, rats 

withdrawn from nicotine exhibit attention deficits in the operant signal 

detection paradigm (Shoaib and Bizarro, 2005). In addition, nicotine 

withdrawal results in cognitive flexibility alterations in mice and the 
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consequent inability to execute new learning strategies (Parikh et al, 

2016).  

1.3.4 Long-term abstinence: relapse to nicotine consumption 

Former smokers remain vulnerable to relapse to tobacco consumption, 

even after years of abstinence. One significant factor thought to be 

important in relapse to drug taking is exposure to environmental stimuli 

previously associated with drug intake (Franklin et al, 2007; Liu, 2016). 

Smoking may be particularly effective in establishing the incentive 

properties of nicotine-associated environmental stimuli (cues), such as the 

smell and taste of cigarettes or contexts within which smoking occurs. 

Stress plays an important role in relapse to smoking. Indeed, external 

stressors are important triggers of relapse, and nicotine withdrawal itself 

produces a “stress-like state” of negative affect (Hughes, 2007b; Wardle 

et al, 2011). Furthermore, relapse to tobacco can also be triggered by a 

single smoked cigarette (re-exposure) (Liu, 2016). The use of animal 

models has been determinant to advance in the study of the mechanisms 

underlying nicotine relapse. Notably, reinstatement models of relapse in 

animals have shown that nicotine-seeking can be triggered by nicotine-

associated conditioned cues, stressors, and re-exposure to nicotine 

(Feltenstein et al, 2012; Liu, 2016; Martín-García et al, 2009; Nygard et al, 

2016), which are the same events that trigger resumption of smoking 

behavior in humans.  

Animal studies have shown that relapse to nicotine-seeking could be 

mediated by the orexin system. Thus, blockade of the orexin receptor 1 

(OXR1) attenuates cue-induced reinstatement of nicotine-seeking in mice 

(Plaza-Zabala et al, 2013). In addition, nicotine relapse also involves the 

corticotropin-releasing factor (CRF). Blockade of CRF1 receptors 
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prevented stress-induced reinstatement of nicotine-seeking behavior in 

rats (Bruijnzeel, 2017; Bruijnzeel et al, 2009). Moreover, blockade of CRF1 

receptors also prevents stress-induced reinstatement of nicotine-seeking 

in the mouse (Plaza-Zabala et al, 2010). The endogenous cannabinoid 

system also has a crucial role in the reinstatement of nicotine-seeking 

behavior. Antagonism of cannabinoid receptor 1 (CB1) blocks the 

reinstatement of previously extinguished nicotine-seeking behavior in rats 

(Cohen et al, 2005; Gamaleddin et al, 2015). Interestingly, all these 

mentioned mechanisms also have a role in other effects of nicotine, 

including cognitive modulation, that will be further discussed in this thesis. 

Reinstatement of nicotine-seeking behavior has also been found to be 

sensitive to antagonists for noradrenergic (Forget et al, 2010) and β-

adrenergic receptors (Chiamulera et al, 2010), and metabotropic and 

ionotropic glutamate receptors (Dravolina et al, 2007; Gipson et al, 2013). 
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1.4 Cognitive effects of nicotine 

Nicotine addiction involves maladaptive changes that go beyond the 

reward system (Le Foll and Goldberg, 2005). The existing overlap between 

the neural substrates of reward and learning and memory processes could 

explain the participation of cognitive processes in nicotine addiction 

(Kelley, 2004; Volkow and Baler, 2014). Thus, nicotine addiction involves 

maladaptive learning and memories that contribute to the development 

of drug-taking behaviors. Human and animal research have shown that 

initial nicotine intake facilitates the association of nicotine reinforcing 

effects with specific context and cues (Garcia-Rivas and Deroche-

Gamonet, 2018; Thewissen et al, 2005). These associative memories grow 

stronger, with extended nicotine use, and conduct to drug-seeking 

behaviors. In addition, cognitive inflexibility and cognitive deficits that 

emerge during nicotine abstinence might both contribute to the 

maintenance and relapse to nicotine (Kutlu and Gould, 2016b). Therefore, 

cognitive modulation by nicotine seems to be a key factor in nicotine 

addiction.  

This section focusses on the effects that nicotine exerts on cognition with 

a particular emphasis in the effects of acute, chronic, and nicotine 

withdrawal. While acute nicotine improves learning and promotes 

consumption, cognitive deficits that arise during nicotine withdrawal 

might influence relapse into tobacco consumption. A better knowledge of 

the neurobiological mechanisms underlying the acute and chronic effects 

of nicotine might provide novel insights into nicotine addiction, which 

represents the main objective of this thesis. 
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1.4.1 Acute nicotine effects on cognition 

Human and animal research reveal that nicotine given acutely can improve 

memory performance (Gould and Leach, 2014). Indeed, growing evidence 

supports that the pro-cognitive effects of nicotine during initial use might 

facilitate the development of drug-context associations, contributing to 

repeated nicotine use and the development of nicotine addiction (Hall et 

al, 2015a; Kenney et al, 2011; Stoker and Markou, 2015).  

1.4.1.1 Human studies 

Several human studies have shown that nicotine has cognitive enhancing 

effects, when given acutely (Newhouse et al, 2012; Valentine and 

Sofuoglu, 2017; Zandonai et al, 2018). However, the first studies that 

evaluated the effect of nicotine on cognition failed to distinguish between 

the improvements due to the acute administration of nicotine and the 

normalization of the cognitive deficits of nicotine withdrawal. (Hall et al, 

2015a; Kutlu et al, 2016). Thus, many studies from the 1970s to the 1990s 

that claimed that nicotine improved memory were, in fact, demonstrating 

the reversion of withdrawal-induced cognitive deficits in tobacco-

dependent smokers (Heishman et al, 1994). Taking this premise into 

account, the studies supporting the pro-cognitive effects of nicotine 

presented in this section only correspond to research performed in 

nonsmokers or in smokers that no longer exhibit withdrawal-cognitive 

deficits. Thus, human studies have shown that acute nicotine 

administration improves performance in a variety of attention tasks, 

short-term episodic memory and working memory (Hall et al, 2015a; 

Heishman et al, 2010; Valentine and Sofuoglu, 2017). In nonsmoker adults, 

transdermal nicotine treatment significantly improves attention when 

evaluated in a continuous performance test (Barr et al, 2008; Newhouse 
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et al, 2012; Poltavski and Petros, 2006). Thus, nicotine-treated subjects 

presented an enhancement in both the ability to maintain focus in the task 

(sustained attention) and the ability to discriminate a relevant from a 

competing stimulus (selective attention). In addition, acute nicotine 

treatment also improved spatial attention and oriented attention (File et 

al, 2001; Foulds et al, 1996; Hahn et al, 2007; Heishman and Henningfield, 

2000; Rusted and Alvares, 2008; Thiel et al, 2005; Vossel et al, 2008). 

Indeed, it has been suggested that nicotine improves learning by involving 

aspects of cognitive function as well as other related processes, such as 

attention. Indeed, nicotine improved working memory only when 

maintaing attention was key to perform the task correctly (McClernon et 

al, 2003). 

Besides the cognitive effects of nicotine at the beginning of tobacco 

dependence, nicotine and other agonists might be of potential therapeutic 

interest in a population with pre-existing cognitive deficits. Thus, some 

clinical studies have reported that nicotine can ameliorate cognitive 

impairments associated with Alzheimer disease (Lombardo and Maskos, 

2015), schizophrenia (D’Souza and Markou, 2012) and attention 

deficits/hyperactivity disorders (ADHD) (van Amsterdam et al, 2018), at 

lower doses than those observed during smoking. Thus, a single dose of 

transdermal nicotine improved attentional performance in schizophrenia 

patients by ameliorating deficits in response inhibition (Barr et al, 2008). 

Similarly, treatment with the 7 nAChRs agonist 3-[(2,4-

dimethoxy)benzylidene]anabaseine significantly improves 

neurocognition, as measured by a battery for assessment of 

neuropsychological status,  suggesting that nAChRs could represent a 

target to enhance cognition in schizophrenia (Olincy et al, 2006). 

Additionally, nicotine improved attention in patients with ADHD (van 
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Amsterdam et al, 2018; Kutlu et al, 2015). The positive impact that nicotine 

has on these populations may explain the high comorbidity observed 

between smoking and the mentioned CNS disorders. This suggests that 

individuals with pre-existing cognitive deficits might smoke as an attempt 

to self-medicate (Garcia-Rivas and Deroche-Gamonet, 2018; Kumari and 

Postma, 2005; Valentine and Sofuoglu, 2017). 

1.4.1.2 Animal studies 

In agreement with human studies, many animal studies indicate that acute 

nicotine administration enhances learning and memory. In this regard, 

animal models represent a useful tool to elucidate the mechanisms 

underlying the pro-cognitive effect of nicotine. The most used approaches 

to evaluate the effects of nicotine on memory in animals are paradigms 

based on hippocampal-dependent learning, such as the object recognition 

and fear conditioning tests (Gould and Leach, 2014).  

In the fear conditioning paradigm, a training session can involve two 

different types of learning: a tone-shock association (cued 

conditioning) that is hippocampal-independent and amygdala-

dependent, and a context-shock association (contextual 

conditioning) that is hippocampal- and amygdala-dependent 

(Fanselow and Dong, 2010; Logue et al, 1997) (Figure 8). Multiple 

fear conditioning experiments have shown that acute nicotine 

treatment enhances contextual, but not cue conditioning (Davis et 

al, 2005; Davis and Gould, 2006; Gould and Leach, 2014; Gould and 

Wehner, 1999; Gulick and Gould, 2008; Portugal et al, 2012b). 

These behavioral effects were present even 1 week after nicotine 

treatment (Wilkinson and Gould, 2013). Nicotine, as other drugs 

of abuse, presents an inherent biphasic nature, which translates 
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into opposing effects depending on the used dose. Interestingly, 

the pro-cognitive effects are observed at low nicotine doses, 

similar to those achieved by smokers (Davis et al, 2005). It has 

been suggested that nicotine enhances contextual memory by 

acting mainly in the HPC, since differential brain areas are 

recruited in the contextual and the cue version of the fear task. 

Indeed, nicotine infusion into the dorsal, but not ventral, HPC 

enhances contextual fear conditioning (Davis et al, 2007; Kenney 

et al, 2012b). Conversely, direct administration of nicotine into the 

PFC or the thalamus, two areas well connected to the HPC and 

with a high density of nAChRs, did not affect contextual fear 

conditioning (Perry et al, 2002), suggesting that nicotine enhances 

contextual fear learning by acting directly into the HPC (Kenney 

and Gould, 2008).  

Figure 8. Schematic representation of fear conditioning and extinction in 
rodents. In this paradigm, a particularly neutral conditioned stimulus (CS), 
usually a chamber in contextual fear conditioning or a tone in cued fear 
conditioning, is presented together with an aversive unconditioned stimulus 
(US), typically an electrical footshock, resulting in an US–CS association. New 
exposure to the CS in absence of the US evokes an evaluable conditioned 
response: the freezing behavior, a natural response in rodents experiencing 
fear. FC, fear conditioning. 
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In the spatial object recognition, animals are presented with two identical 

objects to explore in a maze or arena. 24 hours after this training session, 

one of the objects (familiar) is replaced by a new one (new). A 

discrimination index is calculated with time that animals spend exploring 

the familiar and the new object. High discrimination indexes reflect good 

memory performance while low discrimination indexes suggest memory 

deficits (Figure 9). Using this test, nicotine exhibited a tendency to improve 

memory performance in mice (Kenney et al, 2011). Notably, this tendency 

became significant when the complexity of the task was increased by 

leaving a gap of 48h between the training session and the test (Kenney et 

al, 2011). Thus, these results suggest that nicotine’s ability to improve 

learning might be associated with the complexity of the task.  
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1.4.1.3 Neurobiological mechanisms  

The HPC seems to play a crucial role in the positive impact of acute 

nicotine on cognitive tasks. Thus, several studies have focused on the HPC 

to examine the neurobiological mechanisms involved in nicotine pro-

cognitive effects. nAChRs are widely abundant in the HPC. The main 

nAChRs present in the HPC are the α4β2* and the α7 (Yakel, 2012; Zoli et 

al, 2015). α4β2* are more abundant in GABAergic hippocampal 

Figure 9. Schematic representation of the novel object recognition test. This 
test is useful to study short-term and long-term memory and evaluates the 
rodents’ ability to recognize a novel object in the environment. This test is 
based on the natural preference for novel objects displayed by rodents. The 
task procedure consists of three phases: habituation, training, and test phase. 
In the habituation phase, each animal is allowed freely exploring the maze in 
the absence of objects for 9 minutes. During the familiarization phase, a single 
animal is placed in the maze containing two identical sample objects for 9 
minutes. During the test phase, one of the familiar objects is replaced by a 
new one and the animal is returned to the maze. The time that the animal 
spends exploring both objects is recorded to calculate a discrimination index. 
Normal rodents spend more time exploring the novel object than the familiar 
one resulting in a high discrimination index. Low discrimination indexes 
suggest memory deficits.  



Introduction 

37  

interneurons, whereas α7 nAChRs are predominantly expressed in 

pyramidal cells (Ji and Dani, 2000; Kenney et al, 2012b). Early studies 

suggested that the α7 receptors are the dominant nAChRs involved in 

hippocampus-dependent learning. α7 nAChRs have a relevant role in 

diseases with cognitive impairment, such as schizophrenia and Alzheimer 

disease (Brunzell and McIntosh, 2012; Lombardo and Maskos, 2015). 

Animal studies have suggested that α7 nAChRs do not have a predominant 

role in the enhancement of learning induced by nicotine in spite of the 

cognitive effects produced by the activation of α7 nAChRs by 

endogenously released acetylcholine (Kenney and Gould, 2008). Thus, 

antagonism of the α7 nAChRs did not disrupt the nicotine improvement of 

learning (Davis et al, 2007; Davis and Gould, 2006). Conversely, 

antagonism of the α4β2* blocked the effects of nicotine on contextual 

learning, suggesting that this receptor subtype is involved in nicotine 

effects on memory (Davis et al, 2007; Davis and Gould, 2006). Given the 

localization of α4β2*, it seems that nicotine improves learning by acting 

on hippocampal interneurons rather than directly at hippocampal 

pyramidal cells (Jia et al, 2010). In agreement, electrophysiology 

experiments have shown that nicotine facilitates LTP in CA1 by acting on 

α4β2* receptors located in hippocampal interneurons (Jia et al, 2010), but 

not through α7* receptors (Nakauchi and Sumikawa, 2012). These data 

indicate that nicotine (exogenous) and acetylcholine (endogenous) 

modulate learning and memory by acting on different nAChRs suggesting 

a dissociation between normal neural communication and drug-induced 

alterations.  

The molecular mechanisms involved in the effects of nicotine on learning 

and memory have not been yet fully clarified. It is feasible that cellular 

processes downstream from nAChRs must interact with cell signaling 
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cascades involved in learning and memory to enhance hippocampus-

dependent learning (Kutlu and Gould, 2016a). On the other hand, NMDA 

receptors in the HPC are critical to learning and memory (Khakpai et al, 

2016; Place et al, 2012). Interestingly, multiple studies have suggested that 

the depolarization triggered by nAChRs could facilitate activation of NMDA 

receptors (Gould and Leach, 2014; López-Hidalgo et al, 2012). In this sense, 

currents mediated by postsynaptic nAChRs could contribute to the 

depolarization needed to remove the blockade of NMDA receptors 

exerted by the presence of magnesium (Ji et al, 2001). The interaction 

between NMDA and nAChRs could explain that nicotine administration 

reversed the deficits in contextual fear learning produced by two different 

NMDA antagonists (André et al, 2011). nAChRs and NMDA receptor 

activation will lead to a greater internal release of Ca2+ and the consequent 

activation of several cell signaling cascades. PKA and ERK are plausible 

kinases to be modulated by nicotine given their involvement in 

hippocampal-dependent learning (Abel and Nguyen, 2008). In agreement, 

the decrease of ERK and PKA activity blocked the enhancing effect of 

nicotine on contextual fear (Raybuck and Gould, 2007). Interestingly, 

nicotine administration modulates other components of the PKA-ERK 

cascade. Several studies have demonstrated a crucial role of CREB in the 

formation of long-termed memories in a wide range of animal models 

(Kida and Serita, 2014). Indeed, gain or loss of CREB function improves and 

impairs, respectively, the formation of memories (Kida and Serita, 2014). 

Notably, nicotine paired with learning leads to an increase in expression 

of Jnk1 in the HPC (Kenney et al, 2010) and was associated with increased 

CREB phosphorylation at the Jnk1 promoter region in the HPC (Kenney et 

al, 2012a) (Figure 10).   
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Alternatively, nicotine may activate other pathways to modulate learning 

considering that the increase in intracellular calcium, triggered by 

activation of nAChRS, is common to many signaling cascades involved in 

cognitive processes (Berridge, 2014). Activation of other pathways would 

probably act in parallel with those usually activated to enhance learning. 

One of the objectives of this thesis is to identify other mechanisms 

involved in the effects that nicotine exerts on learning, given their 

contribution to the development of nicotine dependence. 

 

Figure 10. Cell signaling cascade involved in the acute effect of nicotine on 
hippocampus-dependent learning. Activation of nAChRs will lead to an 
increase in intracellular calcium that could provide the necessary 
depolarization to allow NMDA-receptor mediated calcium influx. Calcium 
leads to the activation of PKA and ERK, which in turn activate CREB and 
consequently stimulates Jnk1. Activation of JNK kinase seems critical for 
nicotine to enhance learning (Gould and Leach, 2014).  
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1.4.2 Chronic nicotine effects on cognition 

Nicotine intake improves hippocampus-dependent learning, although this 

effect disappears with sustained nicotine consumption. Indeed, 

contextual and cued fear conditioning in mice remained unaltered after a 

chronic treatment with nicotine (Davis et al, 2005). In addition, similar 

results have been observed in other types of hippocampus-dependent 

learning. Thus, chronic treatment with nicotine did not affect memory in 

the object recognition task in mice (Kenney et al, 2011). In agreement, 

other cognitive processes related to executive functions remained 

unaltered when mice were chronically treated with nicotine (Cole et al, 

2015; Ortega et al, 2013). These studies suggest that chronic nicotine 

treatment may develop tolerance to the pro-cognitive effect, which may 

be related to differences in activation and desensitization states of nAChRs 

(Picciotto and Mineur, 2014). 

1.4.3 Effects of withdrawal from chronic nicotine on cognition 

In contrast to the positive cognitive effects of acute nicotine, nicotine 

withdrawal alters a variety of cognitive processes in humans, including 

impairments in attention, working memory and episodic memory (Hall et 

al, 2015a; Hughes, 2007a; Wesnes et al, 2013). During the last decade, 

increasing attention has focused on cognitive impairments that emerge 

during smoking abstinence, since these impairments seem to play a critical 

role in relapse in tobacco consumption (Ashare and Schmidt, 2014).  

1.4.3.1 Human studies 

Difficulty in concentrating has often been reported by abstinent smokers 

(Hughes, 2007a). These deficits arise as soon as 30 minutes after smoking 

cessation (Hendricks et al, 2006), last for days and are observed as more 
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omission errors and slower reaction times in sustained attention tasks, 

compared to non-abstinent smokers (Harrison et al, 2009). Several human 

studies describe that abstinence from smoking also affects working 

memory performance (Hall et al, 2015a). Following overnight abstinence, 

smokers had less accuracy and exhibited slower reaction times when 

performing working memory tasks (Jacobsen et al, 2005, 2007; Loughead 

et al, 2010; Patterson et al, 2010). Alterations in working memory became 

more visible when the difficulty of the task was increased (Jacobsen et al, 

2007; Loughead et al, 2009, 2010). There is also strong evidence that 

deficits in episodic memory could be a primary trait of nicotine withdrawal 

during tobacco abstinence. Thus, smokers following a 24 hours period of 

abstinence exhibited diminished episodic memory when evaluated in a 

recognition memory task, compared to their performance when smoking 

normally (Merritt et al, 2010; Wesnes et al, 2013). Interestingly, a pilot 

study reported that abstinent male smokers showed reduced 

performance in the recognition test compared to their female 

counterparts, suggesting substantial sex differences in the cognitive 

effects of tobacco abstinence (Merritt et al, 2012).  

These cognitive deficits that appear within the first few days of tobacco 

cessation are gaining importance as a core dependence phenotype of 

nicotine withdrawal and a target for medication development efforts 

(Ashare and Schmidt, 2014). Indeed, cognitive deficits observed during 

nicotine withdrawal could directly promote short-term relapse to tobacco 

smoking (Culhane et al, 2008; Miglin et al, 2017; Patterson et al, 2010). 

These cognitive symptoms during withdrawal can be alleviated by nicotine 

re-exposure (Myers et al, 2008; Soar et al, 2008), suggesting that smokers 

might relapse to tobacco use to recover from the cognitive impairments 

observed during nicotine abstinence. In addition, current pharmacological 
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agents used for smoking cessation, such as varenicline and bupropion, 

enhance mood and cognitive function during early nicotine abstinence 

(Ashare and McKee, 2012; Loughead et al, 2010; Patterson et al, 2009). 

The cognitive-enhancing effects of these compounds seem to be an 

important part of their efficacy as smoking cessation agents.  

1.4.3.2 Animal studies 

Many of the abstinent symptoms observed in humans, including the 

cognitive alterations, can be recapitulated in rodent models of nicotine 

withdrawal (McLaughlin et al, 2015). Among preclinical models, the use of 

osmotic minipumps is a well-stablished model to study the effects of 

chronic nicotine exposure (Hamouda et al, 2018; Jackson et al, 2018; 

Matta et al, 2007). Minipumps only require a minimal surgical procedure 

to be implanted and produce a constant level of circulating nicotine in the 

animal (Damaj, 2003; Jackson et al, 2018). Plasma nicotine levels obtained 

using minipumps with appropriate dosage could resemble those reported 

in smokers i.e plasma levels between 0.06–0.31 μM of humans consuming 

an average of 17 cigarettes a day (Benowitz and Peyton, 1984; Davis et al, 

2005; Turner et al, 2014a). Withdrawal symptoms can be assessed after 

the sudden discontinuation of nicotine treatment (spontaneous 

withdrawal) or administration of nAChRs antagonists, such as 

mecamylamine (De Biasi and Salas, 2008). One advantage of the use of 

mecamylamine is that induction of nicotine withdrawal can be timed to 

behavioral assessment.  

Similar to the observed in humans, mouse experiments have consistently 

shown that withdrawal from nicotine results in hippocampus-dependent 

cognitive deficits (Gould and Leach, 2014; Hall et al, 2015a; Leach et al, 

2013; Parikh et al, 2016). Thus, impairments in fear conditioning have 
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been reported following spontaneous (Davis et al, 2005; Portugal et al, 

2012a; Wilkinson and Gould, 2013) and precipitated (Raybuck and Gould, 

2009) nicotine withdrawal. Spontaneous nicotine withdrawal has also 

been reported to alter spatial object-recognition (Kenney et al, 2011). 

Furthermore, mecamylamine-precipitated nicotine withdrawal has been 

associated with alterations in cognitive flexibility. Thus, withdrawn mice 

were unable to execute a new learning strategy, manifested as an increase 

in learning errors in an operant strategy switching task (Parikh et al, 2016). 

These data suggest that cognitive difficulties, inability to learn adaptive 

coping strategies and the frustration that can result from them could 

influence relapse. Therefore, treating these changes in cognition could 

facilitate abstinence and prevent relapse. Effective therapeutic 

development requires a deeper understanding of the neurobiological 

basis for these symptoms, which represents an objective of this thesis. 

1.4.3.3 Neurobiological mechanisms  

Experiments in mice suggest a selectivity of nicotine withdrawal to 

alter hippocampus-dependent learning (Gould and Leach, 2014). 

Indeed, withdrawal from chronic infusion of nicotine into the dorsal 

HPC disrupted learning, whereas withdrawal from chronic infusion 

into the cortical area above the HPC or the thalamic region directly below 

the HPC did not disrupt learning (Davis and Gould, 2009). In humans, 

abstinent smokers recover from the withdrawal-cognitive deficits over 

time (Hughes, 2007a), which suggests that the underlying changes in brain 

function should also improve in a similar time frame. It seems that nicotine 

withdrawal could affect cognition by modulating nAChRs, as occurs with 

the positive effects that acute nicotine has on learning. In mice, nicotine 

withdrawal deficits in hippocampus-dependent learning lasted 4 days and 
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by the 5th day, learning was similar to controls (Gould et al, 2012). 

Interestingly, upregulation of the high-affinity nAChRs (β2*) in the HPC 

was paralleled with the duration of cognitive deficits. This pattern of 

upregulation was exclusive to the HPC as it was not observed in cortex or 

cerebellum (Gould et al, 2012). In addition, withdrawal deficits were 

absent in mice lacking the β2 subunit supporting its role in the cognitive 

deficits associated with nicotine withdrawal (Portugal et al, 2008; Yildirim 

et al, 2015). Therefore, changes in high-affinity nAChR upregulation in the 

HPC seem to be an important contributing factor to the development of 

cognitive deficits during nicotine withdrawal. 

Several studies have implicated other receptors and mechanisms different 

of nAChRs in the cognitive symptoms of nicotine withdrawal. Thus, a 

variation on the cannabinoid receptor 1 gene (CNR1) seems to moderate 

cognitive disruption during nicotine withdrawal in humans (Evans et al, 

2016). This study found that homozygotes for a major allele of CNR1, 

associated with an increased expression of this gene, exhibited greater 

nicotine withdrawal-related cognitive disruption (Evans et al, 2016). 

Moreover, cocaine-and amphetamine-regulated transcript peptide 

(CART), a neuropeptide known for its pro-cognitive properties, seems to 

be involved in memory impairment induced by nicotine withdrawal. Early 

nicotine withdrawal resulted in drastic reduction in CART 

immunoreactivity that correlated to memory impairment (Borkar et al, 

2017). Furthermore, nicotine withdrawal deficits might be associated with 

changes in noradrenergic function. Thus, the norepinephrine reuptake 

inhibitor atomoxetine restored cognitive function during nicotine 

withdrawal (Davis and Gould, 2007). 

These findings provide some initial steps to understand the mechanisms 

involved in the cognitive deficits associated with nicotine withdrawal. 
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However, more research in this field is necessary to understand how 

nicotine withdrawal affects cognitive function and facilitate the 

development of more specific therapeutic targets for nicotine addiction. 
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In summary, several studies indicate that acute or initial nicotine intake 

has a positive effect on cognition which may contribute to the 

development of nicotine dependence. However, this pro-cognitive effect 

disappears during chronic nicotine treatment, indicating the development 

of tolerance to this effect. Interestingly, when chronic nicotine treatment 

ceases, cognitive functioning is altered, especially those that rely on 

hippocampal function. Therefore, chronic nicotine usage seems to induce 

neuroadaptive changes in the brain resulting in tolerance to the pro-

cognitive effects of acute nicotine and then deficits in learning are 

uncovered when nicotine exposure ends (Figure 11).  

  

Figure 11. Theoretical model of the cognitive effects of smoking and 
withdrawal-induced relapse. Initiation of nicotine use produces cognitive 
benefits which dissipate over time with chronic nicotine use. Cognitive 
performance declines upon nicotine abstinence. Cognition recovers over time 
(red line), however altered cognition for some individuals drops to intolerable 
levels which might induce relapse (blue line). Developing a treatment that 
could alleviate the withdrawal-induced deficits in cognition would 
substantially enhance the likelihood of successfully quitting (green line) 
(Adapted from Hall et al, 2015). 
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1.5 Therapeutic strategies for nicotine addiction  

Nicotine addiction is difficult to treat given its complex nature of chronic 

and relapsing disorder. The majority of attempts to quit smoking in the EU 

continue to be without any professional cessation assistance (Filippidis et 

al, 2018), even though reports estimate that near 80% of smokers who try 

to quit on their own relapse within the first month of abstinence 

(Benowitz, 2009). During the last years, the use of established aids such as 

pharmacotherapy has become less popular, while the use of e-cigarettes 

as a potential cessation method has grown (Filippidis et al, 2018; 

Prochaska and Benowitz, 2016). The most promising approaches for 

achieving long-term abstinence after smoking cessation include a 

combination of behavioral approaches along with pharmacotherapies, 

probably because counseling improves medication adherence (Polosa and 

Benowitz, 2011). However, the outcome of nicotine abstinence, even with 

combined therapy, is still modest. Interestingly, the ability to maintain 

smoking abstinence during the first week of a quit attempt is a strong 

predictor of success at end of treatment and at 6 months (Ashare et al, 

2013). Thus, the early withdrawal period is a vulnerable time for most 

smokers and represents a critical window to evaluate novel smoking 

cessation treatments. 

Present pharmacotherapies for tobacco addiction include nicotine 

replacement therapy, bupropion and varenicline. Generally, all these 

medications, if used properly, increase significantly the quitting rates 

compared to placebo treatments. Clinical trials have revealed that 

varenicline has a greater efficacy than bupropion and nicotine 

replacement therapy (abstinence rates from 9-52 weeks: 23% for 

varenicline, 15% for bupropion, and 10% for nicotine replacement 

therapy, approximately) (Prochaska and Benowitz, 2016).  
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1.5.1 Nicotine replacement therapy 

Nicotine medications act on nAChRs to mimic or replace the effects of 

nicotine from tobacco. Nicotine replacement therapy provides nicotine to 

counteract the physical dependence that arise during abstinence without 

exposure to toxic combustion products (Benowitz, 2009). However, it does 

not completely prevent withdrawal symptoms since nicotine replacement 

methods provide lower and slower rising plasma nicotine concentrations 

compared to cigarettes smoking. Nicotine replacement therapy also 

provides positive reinforcing by increasing arousal and exerting a stress-

relieving effect, aside from ameliorating withdrawal signs (Prochaska and 

Benowitz, 2016). The degree of reinforcement is related to the rapidity of 

absorption and the peak nicotine level achieved in arterial blood. Thus, 

reinforcement better achieved with rapid-delivery formulations such as 

nicotine nasal spray and, to a lesser extent, nicotine gum or inhaler. By 

using these products, smokers can dose themselves with nicotine when 

they have the urge to smoke cigarettes. On the other hand, nicotine 

patches deliver nicotine gradually and produce sustained nicotine levels 

throughout the day, thus not providing much positive reinforcement. 

Combination of nicotine patches (slow release) with nicotine gum, inhaler, 

or nasal spray (rapid release) are more effective than the use of single 

nicotine replacement products (Prochaska and Benowitz, 2015). 

1.5.2 Varenicline 

Varenicline is a partial agonist of the α4β2 receptor, which mediates 

dopamine release and is thought to be the major receptor involved in 

nicotine addiction (Mihalak et al, 2006). Varenicline activates the α4β2 

nAChRs with a maximal effect at around 50% that of nicotine. This action 

relieves nicotine withdrawal symptoms, including craving, and at the same 
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time blocks effects of nicotine from tobacco use on the receptor, thereby 

decreasing the rewarding effects of cigarettes that are smoked. Preclinical 

studies have revealed that varenicline blocks the rewarding properties of 

nicotine using the CPP in mice (Bagdas et al, 2018) and rats (Biala et al, 

2010). In addition, high doses of varenicline induced place aversion in mice 

(Bagdas et al, 2018). Smokers under varenicline treatment often reduce 

the number of cigarettes smoked per day even before their target quit day 

(Ebbert et al, 2010). Interestingly, human studies have demonstrated that 

varenicline is effective in alleviating cognitive withdrawal symptoms 

(Ashare and Schmidt, 2014; Loughead et al, 2010; Patterson et al, 2009). 

Given the varenicline’s site of action, these results support the hypothesis 

that nicotine withdrawal deficits may be related to hypersensitivity of 

nAChRs.  

Major side effects of varenicline are nausea, vomiting, and insomnia (Fiore 

and Jaén, 2008). Shortly after varenicline was released the market, 

multiple studies reported an association between varenicline use and 

psychiatric adverse events, such as depression, psychosis, and suicide 

(Prochaska and Benowitz, 2016). Due to these psychiatric effects, the FDA 

placed a Box Warning on varenicline, and recommended caution when 

prescribing the drug (Drug Safety and Availability - FDA, 2016). Recently, 

and after evaluating large clinical trials, the FDA has determined that the 

risk of serious side effects on mood, behavior, or thinking with the use of 

varenicline is lower than previously suspected and removed the Boxed 

Warning (Drug Safety and Availability - FDA, 2016). 

1.5.3 Bupropion 

Bupropion hydrochloride was initially developed and marketed as an 

antidepressant (Stahl et al, 2004). It was the unexpected observation of 
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spontaneous smoking cessation among veterans treated with bupropion 

for depression that led to the exploration of bupropion as a smoking 

cessation medication (Benowitz, 2009). Bupropion blocks dopamine and, 

to a lesser extent, norepinephrine reuptake and has some weak nAChR 

antagonist effect (Carroll et al, 2014). Thus, bupropion increased brain 

levels of dopamine and norepinephrine, simulating the effects of nicotine 

on these neurotransmitters. In non-withdrawn rats, bupropion decreased 

the reward thresholds indicating an increase in reward, measured by 

intracranial self-stimulation (Cryan et al, 2003). Interestingly, bupropion 

also normalized the elevated brain reward thresholds and reduced the 

somatic signs of withdrawal in rats (Cryan et al, 2003) . In agreement, a 

human study revealed a reduced responding for a reward unrelated to 

smoking during smoking abstinence (Perkins et al, 2013b). This effect of 

withdrawal was reversed by bupropion treatment suggesting the 

reinforcement enhancing effect of this compound. Furthermore, it has 

been suggested that bupropion’s mechanisms for aiding smoking 

cessation could be the attenuation of mild cognitive effects that occur 

early in nicotine withdrawal (Perkins et al, 2013).  

1.5.4 Electronic nicotine delivery systems 

Electronic nicotine delivery systems (ENDS; e-cigarettes, e-hookah, vape 

pens) are battery-powered devices that generate an aerosol for inhalation, 

typically containing nicotine. Although ENDS are pictured as a “safer” 

alternative to traditional cigarettes for smokers unable or unwilling to quit, 

their innocuity is still on debate. Recent investigations have indicated that 

END’s users can achieve nicotine blood concentration similar to that 

observed in cigarettes smokers, suggesting that ENDs could be potentially 

addictive (Pulvers et al, 2016). Alarmingly, an increase in the use of these 
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devices has been observed among youth. These could be partially 

explained because ENDS are sold in child-friendly flavorings (e.g., cotton 

candy, gummy bear, Froot Loops®, Oreo, Skittles) and in low-cost single 

units. With only a few years of surveillance data, it is uncertain whether 

ENDS use in adolescence could be a doorway to nicotine addiction, later 

conventional tobacco use, and other drugs of abuse (i.e., vaping cannabis) 

(Prochaska and Benowitz, 2016).  
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2. Neuroinflammation 

For many years, neuroinflammation has been described as a complex 

response that the CNS exerts to manage pathogens, toxins, trauma and 

neurodegeneration. However, recent publications indicate that the 

organized actions of glial cells, neurons, inflammatory cytokines and 

chemokines that constitute neuroinflammation are not only provoked by 

pathological conditions, but they can also be induced by alterations in 

neuronal activity (Xanthos and Sandkühler, 2014). In this regard, 

neuroinflammation has been linked to depression (Blank and Prinz, 2013; 

Wohleb et al, 2016), chronic exposure to stress (Delpech et al, 2015), 

epilepsy (Vezzani et al, 2011), sleep alteration (Zhu et al, 2012), and 

deficits in learning and memory formation (Hein and O’Banion, 2011; 

McKim et al, 2016).  

2.1 Cellular and molecular mechanisms of inflammatory 

processes 

2.1.1 Overview of microglial cells 

Microglial cells are the immune effector cells in the CNS considered as key 

cellular mediators of neuroinflammatory processes in the CNS. Microglia 

comprise cells approximately 10% of the total cell brain population in 

rodents and between 0.5% to 16.6% in humans (Lawson et al, 1990; 

Mittelbronn et al, 2001). They are considered the resident macrophages 

of the brain and represent 5–20% of total glial cells in rodents (Ginhoux et 

al, 2013). Microglial cells distributed differently along the brain 

parenchyma and their density varies depending on the brain region, going 

from 5% in corpus callosum to 12% in substantia nigra (Lawson et al, 1990) 
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and being more abundant in gray matter compared to white matter (Kofler 

and Wiley, 2011). 

The ability to visualize microglia without the need for immunolabeling and 

the development of novel two-photon in vivo imaging methodologies 

provided unprecedented sights into the role of these cells in vivo. 

Traditionally, microglia in the normal CNS was considered as functionally 

inert and hence described as “quiescent” or “resting”. However, it is now 

clear that microglia are highly active and plastic in physiological conditions, 

changing the previous notion of “resting” microglial phenotype in normal 

adult CNS to the concept of surveillance phenotype (Davalos et al, 2005; 

Kettenmann et al, 2011; Nimmerjahn et al, 2005). In this state, microglia 

morphology is characterized by a small soma and long and highly dynamic 

ramifications through which monitors neural function and contact 

synapses (Kettenmann et al, 2011). In normal conditions, microglia plays a 

functionally dynamic role in synaptic plasticity, possibly through the 

release of cytokines and growth factors. Ramified microglial cells also 

contribute to structural plasticity through the elimination of synapses via 

phagocytic mechanisms, which is necessary for normal cognition 

(Kettenmann et al, 2013). Upon injury or alteration in the CNS, microglia 

cells shift from a ramified surveilling state to an activated phagocytic one, 

characterized by an ameboid morphology with a large soma and retraction 

of its ramification (Kitamura et al, 1978; Stence et al, 2001). This 

morphological change is generally accompanied by changes in the 

expression of pro-inflammatory and anti-inflammatory molecules (Blank 

and Prinz, 2013; Delpech et al, 2015) (Figure 12). 
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2.1.2 Cytokines 

Cytokines are small proteins or glycoproteins released by different types 

of cells such as microglia, neurons and astrocytes within the CNS. 

Cytokines are key modulators of inflammation but also have primary roles 

in neuronal plasticity, neurogenesis and learning and memory in 

physiological conditions (Hanisch, 2002; Makhija and Karunakaran, 2013; 

Turner et al, 2014b). The term cytokine comprises more than 300 

peptides, where interleukins (ILs), interferons (IFNs) and tumor necrosis 

factors (TNFs) represent the three most important families. In addition, 

cytokines can be classified based on the nature of the immune response 

Figure 12. Schematic representation of the different morphology of 
microglial cells. Upon a harmful stimulus, microglia cells shift from the state 
to a reactive state. Significant morphological accompany both states IL, 
interleukin; PGE2, prostaglandin E2 ; TNF, tumour necrosis factor. 
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as pro-inflammatory (i.e IL-1, TNF or IFN-) or anti-inflammatory (i.e IL-

10 and IL-12) (Turner et al, 2014b) (Figure 13).  

2.2 Neuroinflammation and tobacco use 

A potential link between smoking and inflammation has been widely 

established. Although most of these studies have focused on the 

relationships between inflammatory markers and increased 

cardiovascular risk (Lo Sasso et al, 2016; Wannamethee et al, 2005), there 

are some studies that have evaluated the role of inflammatory molecules 

in other aspects of nicotine dependence. Thus, a preclinical study found 

that precipitation of nicotine withdrawal results in an upregulation of 

CX3CR1, a key component of a signaling pathway associated with the 

induction of proinflammatory cytokines in microglial cells (Ding et al, 

2015). Additionally, a pilot human study found that an inflammatory 

response, observed as increased levels of c-reactive protein, was 

associated with the affective signs of nicotine withdrawal in a sub-group 

Figure 13. Proinflamamtory and anti-inflammatory molecules.  
IL, interleukins; IF, interferon; IFG, insulin-like growth factor; TGF, tumor 
growth factor; TNF, tumor necrosis factor.  
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of abstinent smokers (Corwin and Klein, 2003). Interestingly, enhanced 

levels of c-reactive protein in humans have also been associated with 

neurocognitive decline following surgery (Ramlawi et al, 2006) and in older 

adults (Bettcher et al, 2012). 

 

2.3 Neuroinflammation and cognitive impairment 

Many disorders of the CNS that course with cognitive deficits may have an 

inflammatory component underneath (Blank and Prinz, 2013). Thus, 

changes in microglial morphology have been directly associated with 

deficits in cognition in a mice model of schizophrenia (Gomes et al, 2015). 

In line with this study, an increase in microglia reactivity has been found 

to be underlying the cognitive deficits following an intermittent alcohol 

exposure (Zhao et al, 2013) and chronic stress exposure (McKim et al, 

2016). Interestingly, microglial reactiveness has been associated with an 

increase in the expression pro-inflammatory genes, such as IL-1β and 

TNF, in models with memory alterations (Blank and Prinz, 2013; Hanisch, 

2002; Streit et al, 1999, 2004). Notably, these two cytokines have a central 

role in learning and memory processes in both healthy (Kohman and 

Rhodes, 2013; Moraes et al, 2015; Santello and Volterra, 2012) and 

pathological brain (Cacci et al, 2005; Cho et al, 2015; Kitazawa et al, 2011). 

A recent study revealed that microglial-derived IL-1β seems to be critical 

for normal hippocampus-dependent learning and memory (Williamson et 

al, 2011). Indeed, expression of IL-1β increases in response to normal 

learning (Ross et al, 2003; Schneider et al, 1998). Moreover, mice lacking 

IL-1β or its receptor exhibited impairments in fear memory (Goshen et al, 

2007) and spatial learning (Hein et al, 2010). In contrast, high levels of IL-

1β impair contextual and spatial memory (Barrientos et al, 2002, 2009; 
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Hein et al, 2010; Spulber et al, 2009). It has been suggested that IL-1β 

could mediate memory processes by affecting LTP in the HPC. Indeed, It is 

known that IL-1β gene expression is increased after LTP induction ex vivo, 

but also in vivo in freely moving rats (Balschun et al, 2003; Schneider et al, 

1998). This enhancement of IL-1β expression seems to play a role not only 

during induction, but also during LTP maintenance (Loscher et al, 2003; 

Schmid et al, 2009). These data suggest that physiological levels of IL-1β 

are necessary for normal memory, whereas concentrations that are either 

too low or too high impair memory. 

An increase in the levels of TNF also contributes to cognitive impairment 

(Belarbi et al, 2012). Similar to IL-1β, physiological levels of TNF can be 

beneficial but an exaggerated production of this cytokine is detrimental to 

the induction of LTP in both its early and late phases (Butler et al, 2004). 

TNF also plays a clear role in a form of long-term plasticity called synaptic 

scaling, a plasticity mechanism able to adjust the strengths in synapses 

through increased AMPA receptors expression in response to an episode 

of strong cell activation. This leads to neuronal network stabilization. 

Indeed, it has been shown that TNF is necessary for increased surface 

AMPA receptors and synaptic strength after chronic blockade of neuronal 

activity (Stellwagen and Malenka, 2006). 

Inflammatory cytokines including IL-1β, TNF, and IFNγ are also key 

modulators of neurogenesis (Borsini et al, 2015). Neurogenesis is a 

complex neurobiological process by which new neurons are generated 

from neural stem cells (Boldrini et al, 2018; Imayoshi et al, 2009). Current 

data have estimated that approximately 700 new neurons are added to 

the adult human HPC daily, suggesting that neurogenesis has a critical role 

in mediating human brain functions, such as memory formation and 

learning (Deng et al, 2010; Spalding et al, 2013). In rodents, 2 neurogenic 
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niches have been described: (1) the subventricular zone of the lateral 

ventricles and (2) the subgranular zone of the dentate gyrus (DG) in the 

HPC. Several studies support the involvement of adult hippocampal 

neurogenesis in memory and learning (Aimone et al, 2014; Deng et al, 

2010; Saxe et al, 2006; Zhao et al, 2008). These studies have revealed that 

new granule cell neurons have higher levels of excitability and plasticity 

and are thought to play an important role in forming memories (Ge et al, 

2007), spatial learning (Deng et al, 2010), pattern separation (Sahay et al., 

2011), cognitive flexibility, and the association between old and new 

memories (Jessberger and Gage, 2014; Kohman and Rhodes, 2013). 

Under physiological conditions, surveilling microglia cells play a supporting 

role in neurogenesis (Ekdahl et al, 2009; Hanisch and Kettenmann, 2007; 

Ziv and Schwartz, 2008). This, exposure of rats to environmental 

enrichment induced not only increased neurogenesis, but also a significant 

increase in the number of hippocampal microglia (Ziv et al, 

2006). Conversely, reactive microglia and secretion of cytokines have been 

suggested to impaired neurogenesis in an inflammatory environment 

(Chesnokova et al, 2016; Monje et al, 2003). 

In summary, strong evidence supports the role of microglia, cytokines and 

neurogenesis as key players of neuroinflammation-induced cognitive 

dysfunction. However, further research is needed to better understand 

the role of neuroinflammation in memory processes. Identifying the key 

molecules involved in these processes could lead to the development of 

new tools to prevent the cognitive dysfunction associated with nicotine 

withdrawal. 
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3. The endocannabinoid system 

The endogenous cannabinoid system is one of the most important 

physiological systems involved in establishing and maintaining human 

health. Endocannabinoids and their receptors are found throughout the 

body: in the brain, connective tissues, glands, and immune cells. 

3.1 Overview of the endocannabinoid system 

Albeit the extensive consumption of cannabis derivatives over thousands 

of years, it was not until the 1980s when it was unraveled that cannabinoid 

compounds exert their biological effects through the activation of specific 

endogenous receptors, instead of by altering the cellular membrane 

permeability as it was formerly believed (Devane et al, 1988; Herkenham 

et al, 1990; Howlett and Fleming, 1984; Matsuda et al, 1990). This 

discovery was followed by the identification of the endogenous ligands of 

cannabinoid receptors, which were referred to as endocannabinoids 

(Devane et al, 1992; Mechoulam et al, 1995). Hence, the endocannabinoid 

system consists of endocannabinoids, their GPCR-family receptors and the 

enzymatic machinery that synthesizes and degrades endocannabinoids. 

Therefore, exogenous cannabinoids act through the hijacking of the 

endocannabinoid system, which represents the major site of action of 9-

tetrahidrocannabinol. (THC) and other cannabinoids. The biological effects 

induced by these compounds are directly linked to the neuroanatomical 

distribution and physiological role of this endogenous system. Three 

characteristics distinguish the endocannabinoids from other 

neurotransmitters systems: (1) the endocannabinoid system has a 

retrograde signaling, (2) endocannabinoids are synthesized on demand 

since they cannot be stored in vesicles due to its lipophilic nature and (3) 

activation of cannabinoid receptors modulates excitability of the neurons 
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inhibiting the release of both excitatory and inhibitory neurotransmitters. 

This system is involved in a wide variety of biological functions, including 

brain development, control of energy expenditure, motivation, pain 

perception, reward, cognition and stress, among others (Chen, 2015; 

Mechoulam and Parker, 2013). 

3.1.1 Cannabinoid receptors  

Endocannabinoids and external cannabinoids exert their pharmacological 

actions through the activation of at least two distinct cannabinoid 

receptors: CB1R and CB2R. CB1R was the first cloned and characterized 

cannabinoid receptor (Matsuda et al, 1990), abundantly expressed 

throughout the CNS (Herkenham et al, 1990, 1991). Shortly after, CB2R 

was identified and initially considered as a peripheral receptor, since it was 

first found in the spleen (Munro et al, 1993). Both belong to the GPCR 

family and are mainly coupled to Gi/o protein. Diverse studies also point 

to the existence of other receptors that bind cannabinoid ligands, such as 

G protein-coupled receptor 55 (GPR55) (Pertwee, 2009), the sphingosine-

1-phosphate lipid receptors GPR3, GPR6 and GPR12 (Kostenis, 2004; Yin et 

al, 2009), the peroxisome proliferator-activated receptor (PPAR) 

(O’Sullivan, 2009), or the transient receptor potential cation channel 

subfamily V member 1 (TRPV1) (De Petrocellis and Di Marzo, 2010). 

3.1.1.1 Cannabinoid receptor type 1  

CB1R is the most abundant GPCRs receptor in the CNS and constitutes the 

main cannabinoid receptor involved in the psychoactive effects of THC and 

other cannabinoid ligands. Its distribution has been well characterized 

both in rodents (Herkenham et al, 1991; Tsou et al, 1998) and humans (Lee 

et al, 2018; Terry et al, 2010; Westlake et al, 1994). The highest density of 

CB1R has been observed in the basal ganglia, cerebellum, and HPC. These 



Introduction 

63  

receptors have also been found in cortex, amygdala, thalamus and 

hypothalamus, among other brain regions (Herkenham et al, 1991). The 

high CB1R levels in the sensory and motor regions are consistent with the 

important role of CB1R receptors in motivation and cognition. CB1R is also 

expressed in peripheral tissues, including the retina, gonads, peripheral 

neurons, adipocytes, heart, lung, liver, adrenal gland, and immune and 

vascular system (Pertwee et al, 2010). At the cellular level, CB1R 

expression is mainly restricted to presynaptic terminals, where they 

modulate the release of multiple excitatory and inhibitory 

neurotransmitters, usually by promoting the inhibition of their release 

(Wilson and Nicoll, 2002) (Figure 14).  

  

Figure 14. Schematic representation of the main areas expressing CB1 in the 
mouse brain. AMG, amygdala; CPu, caudate putamen; Ctx, cortex; DRN, 
dorsal raphe nucleus; GP, globus pallidus; LC, locus coeruleus; NAc, nucleus 
accumbens; NTS, nucleus of the solitary tract; OB, olfactory bulb; OT, olfactory 
tubercle; PAG, periaqueductal gray; SNr, substantia nigra pars reticulata; VTA, 
ventral tegmental area (Flores et al, 2013). 
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3.1.1.2 Cannabinoid receptor type 2 

CB2R is primarily located in the immune system including the spleen, 

thymus and immune cells, and are deeply involved in inflammatory 

processes (Walter and Stella, 2004). Originally, it was assumed that CB2R 

was absent in CNS neurons (Munro et al, 1993). However, further research 

suggests that CB2R is expressed by some neurons, particularly under 

certain pathological conditions (Atwood and Mackie, 2010; Van Sickle et 

al, 2005; Viscomi et al, 2009). In addition, CB2R may be upregulated under 

neuroinflammatory conditions in certain cell populations within the brain, 

such as microglial cells (Cabral et al, 2008; Carlisle et al, 2002; Stella, 2013). 

Interestingly, recent studies suggest that besides their role in 

neuroinflammation, CB2R also controls the rewarding properties of 

diverse addictive drugs, such as cocaine (Aracil-Fernández et al, 2012; Xi 

et al, 2011), alcohol (Ortega-Álvaro et al, 2015) and nicotine (Navarrete et 

al, 2013).  

3.1.2 Endocannabinoids 

The discovery of the cannabinoid receptors prompted the research to 

identify the endogenous molecules that stimulate these receptors. Two 

molecules, known as endocannabinoids, were isolated, one from the 

brain, N-arachidonoylethanol-amide (anandamide or AEA) and a second 

from peripheral tissue, 2-arachidonoyl glycerol (2-AG) (Devane et al, 1992; 

Mechoulam et al, 1995). 

Anandamide behaves as a partial agonist at both CB1R and CB2R, although 

presents lower affinity for CB2R, and binds also to the TRPV1 receptor 

(Cristino et al, 2008). 2-AG concentration in the brain is much higher than 

anandamide and acts as a full agonist for both CB1R and CB2R with higher 

potency than anandamide (Reggio, 2010). Beside these molecules, other 
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putative endocannabinoids have also been identified, such as 2-

arachidonylglycerolether (Hanus et al, 2001) and O-

arachidonoylethanolamine, among others (Porter et al, 2002) (Figure 15). 

Despite the ability of these additional endogenous lipids to bind to 

cannabinoid receptors, their functional relevance remains to be 

elucidated.  

Unlike most of the neurotransmitters, anandamide and 2-AG are not 

stored in presynaptic vesicles, but rather synthesized and released on 

demand in the postsynaptic terminals in an activity-dependent manner (Di 

Marzo et al, 2005). Once released from the postsynaptic neurons, 

endocannabinoids travel retrogradely across synapses and activate CB1R 

on presynaptic terminals, acting as fast retrograde synaptic messengers to 

produce a transient decrease of the release of other neurotransmitters 

(Ohno-Shosaku et al, 2001; Wilson and Nicoll, 2002). Given its fast-

modulatory effects, endocannabinoid tone is finely controlled by 

balancing its biosynthesis and degradation. 

Figure 15. Endocannabinoids structure 
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3.1.3 Synthesis and degradation of endocannabinoids 

Anandamide is principally synthetized as a consequence of the hydrolysis 

of its phospholipid precursor N-arachidonoyl-phosphatidylethanolamine 

by the action of a specific phospholipase D (Di Marzo et al, 2005). 2-AG 

results from the hydrolysis of diacylglycerol by a diacylglycerol lipase 

(DAGL) (Di Marzo et al, 2005). Endocannabinoids are removed from the 

synaptic cleft and taken up by the cell following their release and upon 

activation of their molecular targets. After their reuptake in the cell, 

endocannabinoids are degraded by the effect of specific hydrolases. 

Anandamide is hydrolyzed to arachidonic acid and ethanolamine by fatty 

acid amide hydrolase (FAAH) (Cravatt et al, 1996), while 2-AG is mainly 

hydrolyzed by the monoacylglycerol lipase (MAGL) to arachidonic acid and 

glycerol (Dinh et al, 2002a, 2002b). Both are intracellular enzymes, but 

FAAH is primarily expressed in the soma and dendrites of postsynaptic 

neurons (Egertová et al, 2003), whereas MAGL is expressed in presynaptic 

terminals (Gulyas et al, 2004) (Figure 16). 
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Figure 16. Simplified scheme representing the synthesis and degradation 
of two main endocannabinoids. 2-arachidonolglycerol (2-AG) is 
biosynthesized from diacylglycerol (DAG) by diacylglycerol lipase-α (DAGLα), 
and anandamide (AEA) is synthesized from N-acyl-
phosphatidylethanolamine (NAPE) by NAPE-specific phospholipase D (NAPE-
PLD). As lipids, endocannabinoids, mainly 2-AG, readily cross the membrane 
and travel in a retrograde fashion to activate CB1Rs located in the 
presynaptic terminals. 2-AG in the synaptic cleft is taken up into the 
presynaptic terminals, via a yet unclear mechanism, and degraded to 
arachidonic acid (AA) and glycerol by monoacylglycerol lipase (MAGL). On 
the other hand, AEA, synthesized in postsynaptic terminal, Although 
endocannabinoid retrograde signaling is mainly mediated by 2-AG, AEA can 
activate presynaptic CB1Rs as well. Fatty acid amide hydrolase (FAAH) is 
primarily found in postsynaptic terminals and is responsible for degrading 
AEA to AA and ethanolamine (EtNH2). Although NAPE-PLD is expressed in 
presynaptic terminals in several brain regions, it is not clear yet whether AEA 
is responsible for anterograde signaling in the endocannabinoid system. 
Alternative routes exist for the metabolism of endocannabinoids, depending 
on the brain region and physiological conditions (Zhou and kumar, 2018)  
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3.1.4 Cannabinoid receptor signaling 

Stimulation of cannabinoid receptors produces a wide variety of effects 

through the activation of diverse signal transduction pathways (Bosier et 

al, 2010). Both CB1R and CB2R exert their reported biological effects by 

activating heterotrimeric Gi/o type G proteins. Through coupling to Gi/o, 

CB1R activation mediates the inhibition of adenylyl cyclase, with 

subsequent reduction in cAMP levels and protein kinase A activity 

(Howlett, 2005). In addition, CB1R coupling to Gβγi/o can stimulate the 

phosphorylation and activation of various members of the MAPK family, 

including ERK1/2, p38 and c-Jun N-terminal kinase (Bouaboula et al, 1995; 

Howlett, 2005). CB1R also modulates the activity of several ion channels, 

including the activation of the inward-rectifying K+ channels, and the 

inhibition of N-type and P/Q-type Ca2+ channels, triggering the 

repolarization of the plasmatic membrane and impeding neurotransmitter 

release (Bosier et al, 2010). The lipid composition of the cellular 

membrane in the surroundings of the receptor, and particularly 

cholesterol content, seems to be critical for the regulation of signal 

transduction pathways triggered upon CB1R stimulation (Maccarrone, 
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2010) (Figure 17). 

Figure 17. Endocannabinoid-mediated retrograde inhibition of 
neurotransmitter release in glutamatergic transmission. Endocannabinoids 
are synthesized and released on demand in the postsynaptic terminals in an 
activity-dependent manner after postsynaptic Ca2+ elevations. Once released 
from the postsynaptic neurons, endocannabinoids act retrogradely on the 
CB1R located at the presynaptic terminals to produce transient decrease of 
neurotransmitter release. N-Methyl-D-aspartate receptor (NMDAR); 
phosphatidylinositol (PI); diacylglycerol (DG); 1-Phosphatidylinositol-4,5-
bisphosphate phosphodiesterase beta (PLCβ) (Adapted from Kano, 2014). 
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3.1.5 Exogenous cannabinoids: focus on cannabidiol 

Over 100 compounds, called phytocannabinoids, have been isolated from 

Cannabis Sativa extracts. Among them, the two major active constituents 

are Δ9-tetrahydrocannabinol (THC) (Gaoni and Mechoulam, 1964) and 

cannabidiol (CBD) (Mechoulam and Shvo, 1963). THC is the main 

psychoactive component of the plant and mediates the rewarding 

properties of cannabis (Huestis et al, 2001). In contrast, CBD does not have 

reinforcing effects nor abuse potential (Katsidoni et al, 2013; Parker et al, 

2004).  

Although CBD was isolated more than 50 years ago, the interest in this 

phytocannabinoid experimented a dramatic increase in recent years. 

Several studies have positioned CBD as a potential therapeutic strategy for 

the treatment of several neuropsychiatric disorders (Campos et al, 2012, 

2016; Fernández-Ruiz et al, 2013). In this sense, CBD has been proposed 

to exert neuroprotective effects in neurodegenerative conditions, 

including Alzheimer's (Martín-Moreno et al, 2011) and Parkinson's disease 

(Garcia-Arencibia et al., 2007), epilepsy and multiple sclerosis (Leo et al, 

2016). Furthermore, CBD has been described as an anti-inflammatory 

(Ben-Shabat et al, 2006; Esposito et al, 2011; Mecha et al, 2013; Napimoga 

et al, 2009), and immunomodulatory (Kozela et al, 2010; Malfait et al, 

2000) compound. Indeed, CBD has been shown to decrease the 

production of inflammatory cytokines, the activation of microglial cells 

(Alvarez et al, 2008; Kozela et al, 2011; Napimoga et al, 2009) and to 

improve cell proliferation and neurogenesis in the HPC (Mori et al, 2016; 

Schiavon et al, 2016). In agreement, a recent investigation reported that 

CBD protects against memory impairments and hippocampal cell loss in a 

mouse model of artery occlusion (Schiavon et al, 2014)  
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The pharmacological actions of CBD in the modulation of the addictive 

properties of different drugs of abuse have also been studied. In this 

sense, most of the effects of CBD have been investigated in the context of 

opiate drugs. In morphine-dependent rats, CBD reduces withdrawal signs 

(Bhargava, 1976; Chesher and Jackson, 1985; Hine et al, 1975a, 1975b). 

CBD does not reduce heroin self-administration or heroin-primed 

reinstatement of drug seeking in an animal model of relapse, however CBD 

has been reported to be effective in diminishing heroin cue-primed drug 

seeking and normalizes heroin-induced impairments in accumbal AMPA 

and CB1R levels (Ren et al, 2009). In addition to these preclinical studies, 

a human study demonstrated that CBD does not alter the subjective 

effects of fentanyl, but attenuates heroin cue-induced drug craving and 

anxiety (Hurd et al, 2015). These results indicate that CBD effectively 

reduces opioid-paired cue reactivity but has little effect on the acute 

reinforcing properties of opioids. However, additional work shows that the 

reward-facilitating effects of morphine on intracranial self-stimulation are 

decreased by systemic CBD administration (Katsidoni et al, 2013). 

Interestingly, CBD could be a potential therapeutic agent to treat nicotine 

dependence. Preliminary findings from a pilot study in humans revealed 

that CBD reduced cigarette smoking significantly compared to placebo in 

smokers trying to quit (Morgan et al, 2013). In addition, CBD treatment 

ameliorated the salience and pleasantness of cigarette cues after 

overnight abstinence in dependent smokers (Hindocha et al, 2018). 

To date, the mechanisms through which CBD exerts its effects remain to 

be elucidated. Multiple targets have been proposed to mediate the 

pharmacological effects of CBD. Early studies indicated that CBD was a 

CB1R inverse agonist similar to rimonabant (Pertwee, 2008; Thomas et al, 

2009). However, it has been demonstrated that CBD has negligible activity 
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on CB1R and CB2R (Mechoulam et al, 2002), but may interfere with the 

endocannabinoid system and directly or indirectly stimulate FAHH 

(Bisogno et al, 2001; De Petrocellis et al, 2011),  5-hydroxytryptamine 1A 

(5-HT1A) receptors (Gomes et al, 2011; Zanelati et al, 2010), adenosine 

receptors, TRPV1, and nuclear receptors of the peroxisome proliferator-

activated receptor family (Esposito et al, 2011; Fernández-Ruiz et al, 

2013). Although these results have shed a light on how CBD acts to 

modulate behavior, further research is needed to fully elucidate CBD’s 

mechanism of action. 

3.2 Main physiological functions of the endocannabinoid system 

The extensive distribution of the endocannabinoid system in the CNS and 

numerous peripheral tissues correlates with its role as a modulator of 

multiple physiological functions. The presence of CB1R in the basal ganglia 

and cerebellum has been related to fine control of motor coordination and 

cerebellar learning performance (Fernández-Ruiz and Gonzáles, 2005; 

Kishimoto and Kano, 2006). The endocannabinoid system also controls 

nociception under diverse sorts of acute and chronic pain conditions 

(Maldonado et al, 2016; La Porta et al, 2014). Notably, this 

neuromodulatory system ensures an appropriate reaction to stressful 

events, regulating anxiety and fear responses (Lutz et al, 2015). It has also 

been associated with the modulation of emotions and motivation 

(Mechoulam and Parker, 2013), reward processing and addiction 

(Maldonado et al, 2006; Parsons and Hurd, 2015). CB1R expression in the 

HPC has been widely investigated because of the deleterious effects of 

cannabis on learning and memory (Kano et al, 2009; Puighermanal et al, 

2009). In this regard, agonism of CB1R has been shown to alter 

hippocampal oscillatory activity by depressing synaptic activity and 
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plasticity at CA3-CA1 synapses (Hampson and Deadwyler, 2000). In 

addition, this neuromodulatory system regulates synapse formation and 

remodeling (Harkany et al, 2008; Kano et al, 2009), and diverse processes 

involved in neuronal development, including neuronal survival, 

differentiation, proliferation and migration (Galve-Roperh et al, 2013; 

Harkany et al, 2008; Rueda et al, 2002). Acting at the peripheral level, the 

endocannabinoid system modulates the immune and cardiovascular 

systems, controls gastrointestinal motility and metabolism, and regulates 

the function of the liver, the adipose tissue and the reproductive system, 

among others (Grotenhermen and Müller-Vahl, 2003; Watkins and Kim, 

2014). 

3.3  Involvement of the endocannabinoid system in nicotine 

addiction 

Several studies support the crucial role of the endocannabinoid system in 

nicotine addiction. Animals pretreatment with the selective CB1R 

antagonist rimonabant (SR141716A) did not exhibit nicotine-enhanced 

dopamine extracellular levels in the NAc (Cheer et al, 2007; Cohen et al, 

2002) and the BNST (Cheer et al, 2007). Consistent with this, nicotine-

induced CPP was absent in rats and mice pretreated with rimonabant (Le 

Foll and Goldberg, 2004; Merritt et al, 2008), and in mice lacking CB1R 

(Castañé et al, 2002; Merritt et al, 2008). Furthermore, CB1R antagonists 

reduce nicotine self-administration in rats (Cohen et al, 2002; Shoaib, 

2008), suggesting that signaling through CB1R is necessary for the 

rewarding and reinforcing properties of nicotine. The endocannabinoid 

system also plays a role in the reinstatement of nicotine-seeking. 

Rimonabant attenuated cue- (Cohen et al, 2005; De Vries and 
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Schoffelmeer, 2005), and context-induced (Diergaarde et al, 2008) 

nicotine-seeking in rats.  

Besides CB1R, the role of CB2R in the rewarding, reinforcing and physical 

effects of nicotine has also been addressed (Gamaleddin et al, 2012; 

Navarrete et al, 2013). Interestingly, pharmacological and genetical 

blockade of CB2R abolished nicotine-induced CPP and reduced nicotine 

self-administered. In addition, somatic signs of nicotine withdrawal were 

significantly decreased in CB2KO mice. In contrast, another study reported 

that genetic deletion of CB2 receptors does not alter the expression of 

anxiogenic-like withdrawal responses and somatic withdrawal signs 

(Ignatowska-Jankowska et al, 2013). These contradictory results could be 

due to differences in the genetic background (CD-1 vs C57BL/6), which 

would emphasize the significant influence of genetics on nicotine 

withdrawal behaviors. Therefore, it is not clear the role of CB2R in the 

rewarding, reinforcing, and motivational effects of nicotine. 

Given the role of CB1R in nicotine reinforcement and nicotine-seeking 

behavior, CB1R was pictured as a possible target to treat nicotine 

addiction. Additionally, rimonabant was proposed as potential drug to 

protect successful quitters from significant post-cessation weight gain, 

since rimonabant was initially developed as a potential treatment for 

obesity (Cahill and Mh, 2012). Rimonabant at the dose of 20 mg was 

licensed as an aid for weight control in the European Union in June 2006, 

but was not licensed for smoking cessation (Acomplia, 2006). Phase III 

trials were conducted to test the use of rimonabant for long-term smoking 

cessation with the avoidance of significant weight gain. The STRATUS 

program (STudies with Rimonabant And Tobacco USe), engaged two 

cessation trials (STRATUS-EU and STRATUS-US), and one relapse 

prevention trial (STRATUS-WW) (Cinciripini et al, 2006) 
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Results from STRATUS-EU and STRATUS-US indicated that 20 mg 

rimonabant treatment increased the chances of quitting approximately by 

1.5-fold (Cahill and Ussher, 2011; Le Foll and Goldberg, 2009; Steinberg 

and Foulds, 2007). The STRATUS-WW trial reported that who had quit on 

the 20 mg regimen were more likely to remain abstinent. In addition, it 

was reported that adding a nicotine patch to rimonabant was well 

tolerated and increased smoking cessation rates over rimonabant alone 

(Rigotti et al, 2009). Concerns on the safety of rimonabant were raised by 

reports of 1-year treatment in overweight and obese patients. 

Rimonabant significantly increased the risk of suicide attempts or ideation 

(Moreira and Crippa, 2009). In addition, it was revealed that many patients 

abandoned rimonabant treatment due to anxiety and depression (Moreira 

and Crippa, 2009). Due to these psychiatric side effects, the European 

Medicines Agency (EMEA) recommended the suspension of the marketing 

authorization for rimonabant on October 23th, 2008. 

Contradictory results have been found regarding the participation of the 

endocannabinoid system in nicotine withdrawal. Somatic signs of 

withdrawal remained unaltered in KO mice for CB1R (Castañé et al, 2002; 

Merritt et al, 2008). However, an amelioration of physical signs has been 

observed in mice pretreated with rimonabant (Merritt et al, 2008). Few 

studies have assessed the role of endocannabinoids in withdrawal signs. 

Mice treated with a high dose of URB597, a selective FAAH inhibitor, 

significantly enhanced spontaneous nicotine somatic withdrawal signs 

(Merritt et al. 2008). In contrast, URB597 did not modify the withdrawal 

somatic signs in rats, although it was effective in reducing withdrawal-

induced anxiety (Cippitelli et al. 2011). The discrepancy between these 

two studies could suggest possible species differences in the regulation of 

nicotine withdrawal mechanisms by FAAH inhibition between rats and 
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mice (Muldoon et al, 2013). Furthermore, inhibition of MAGL by 

administration of JZL184, dose-dependently reduced somatic and aversive 

withdrawal signs, an effect blocked by rimonabant, indicating a CB1 

receptor-dependent mechanism (Muldoon et al, 2015).  

Although the role of the endocannabinoid system in the somatic and 

affective symptoms of withdrawal has relatively been studied, the 

involvement of this system in other aspects of withdrawal, such as 

cognitive symptoms, have not been explored yet and constitutes one of 

the main objectives of the present thesis. 
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4. The orexin/hypocretin system

Two decades ago, the orexin/hypocretin system was discovered 

simultaneously by two independent groups through different scientific 

approaches in the US (de Lecea et al, 1998) and Japan (Sakurai et al, 1998). 

De Lecea’s group identified a hypothalamic mRNA species that encoded 

for a polypeptide precursor that after cleavage form two peptide 

transmitters (de Lecea et al, 1998). One of these peptides was shown to 

be strongly neuroexcitatory in neuronal cultures. These peptides were 

named hypocretin-1 and hypocretin-2 (“hypo” for hypothalamus, “cretin” 

for the sequence resemblance to the hormone secretin). At the same time, 

the research group of Sakurai identified two peptide transmitters that 

activated two orphan receptors (Sakurai et al, 1998). Molecular cloning 

studies showed that these peptides derive from a common precursor 

peptide, and were able to stimulate food intake in rats upon 

intracerebroventricular infusion (Sakurai et al, 1998). The peptides were 

termed orexin-A and orexin-B, from orexis, the Greek word for appetite) 

and the orphan receptors became the OX1R and OX2R orexin receptors. 

Both sets of names are still in use, with hypocretin-1 being equivalent to 

orexin A and hypocretin-2 to Orexin-B. 
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4.1 Overview of the orexin system 

4.1.1 Orexin peptides 

Orexin-A and orexin-B are 33- and 28-amino acid peptides, respectively, 

result from the proteolysis of a common precursor, prepro-orexin (131 

amino acids) (de Lecea et al, 1998; Sakurai et al, 1998). The gene encoding 

prepro-orexin is located on chromosome 17 in humans (Sakurai et al, 

1999). The sequence of orexin-A is identical in rats, mice, pigs, dogs, and 

humans, whereas orexin-B differs only in one or two amino acids between 

these species (Wong et al, 2011). The strong preservation of the orexin 

system across vertebrate evolution reveals its functional relevance. 

Diverse post-translational modifications take place in order to obtain the 

mature functional orexin peptides. Orexin-A and orexin-B share 46% of 

their sequence (Sakurai et al, 1998), and their overall 3D structures are 

quite similar, which explains their ability to bind the same receptors (Kim 

et al, 2004; Lee et al, 1999). However, orexin A appears to be more stable 

and lipophilic than orexin B. In the CNS, orexin peptides act as 

neuromodulators. Hence, they are stored in secretory vesicles, transferred 

through the axon to the neuronal terminals and released in a Ca2--

dependent manner (de Lecea et al, 1998).  
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4.1.2 Orexin receptors 

Two GPCR receptors respond to orexin stimulation: OXR1 (425 amino 

acids) and OXR2 (444 amino acids). These receptors are also known as 

hypocretin receptor 1 (Hcrtr-1) and hypocretin receptor 2 (Hcrtr-2), 

respectively (de Lecea et al, 1998; Sakurai et al, 1998). Orexin receptors, 

similar to orexin peptides, are highly conserved across mammalian species 

and there is an overall 64% identity between them in humans (Sakurai et 

al, 1998). Studies on heterologous expression systems have shown that 

orexin receptors differ in their ligand binding affinities. Thus, OX2R 

presents a rather equal affinity for both orexin peptides, while OX1R 

shows a 10- to 100-fold higher affinity for orexin-A than orexin-B 

(Ammoun et al, 2003; Sakurai et al, 1998) (Figure 18). 

  

Figure 18. Orexin peptides and their receptors. Orexin-A and orexin-B are 
cleaved from their precursor prepro-orexin (Adapted from Sakurai 2014). 
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4.1.3 Orexin receptors signaling 

The signaling pathways activated by orexin receptor stimulation have 

been extensively investigated in transfected heterologous cell systems. 

However, these studies provide limited information about the particular 

signaling pathways taking place in native receptor-expressing neurons, 

from which available data are still limited (Kukkonen, 2017). The main 

signal transduction mechanism accepted for orexins indicates that OX1R 

couples to Gq proteins and that OX2R couples to Gq and Gi/o family 

members. In neurons, the most frequent response after agonist binding to 

orexin receptors is an enhancement of intracellular Ca2+ concentrations, 

explaining the commonly reported neuroexcitatory nature of orexin 

peptides on the brain (Eriksson et al, 2001; van den Pol et al, 1998). Upon 

ligand binding, orexin receptor promotes the activation of Gq proteins, 

which induces the stimulation of phospholipase C (PLC) and subsequent 

production of the second messengers diacylglycerol and inositol 

trisphosphate (IP3) from membrane phospholipids. In turn, this triggers 

the activation of protein kinase C (PKC), which phosphorylates and 

modulates effector ion channels leading to Ca2+ entrance (Kohlmeier et 

al, 2004; Uramura et al, 2001; Xia et al, 2009), as well as further IP3-

mediated entry via store-operated Ca2+ channels (Kukkonen and 

Akerman, 2001; Larsson et al, 2005). Therefore, activation of orexin 

receptors commonly translates into an increase in action potential 

frequency (Figure 19).  

As previously mentioned, the activation of PLC upon OX1R stimulation 

leads to the production of diacylglycerol and concomitant activation of 

PKC. Among other effectors, PKC phosphorylates extracellular signal-

regulated kinase (ERK) and p38 kinase, both in recombinant cells 

(Ammoun et al, 2006; Tang et al, 2008) and neurons (Gorojankina et al, 
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2007; Selbach et al, 2010). These kinases are two well-known members of 

the mitogen-activated protein kinase (MAPK) pathway, which is involved 

in several cellular processes, including synaptic plasticity, cell survival and 

proliferation (Selbach et al, 2010; Thornton and Rincon, 2009).  

Figure 19. Main cellular signalling pathways activated upon orexin receptor 
stimulation. Orexin receptor stimulation is associated with Gq-dependent 
activation of the PLC/PKC pathway and diverse MAPK cascades, as well as 
membrane depolarization through modulation of cation channels. Gs and Gi 
protein stimulation has also been observed, leading to increase or decrease of 
AC activity, respectively. 2-AG, 2-arachidonoylglycerol; AC, adenylyl cyclase; 
DAGL, diacylglycerol lipase; IP3, inositol trisphosphate; MAPK, diverse 
members of the mitogen-activated protein kinase cascade; PIP2, 
phosphatidylinositol bisphosphate; PKA and PKC, protein kinases A and C; PLC, 
phospholipase C; SOC, store-operated Ca2+ channels. 
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4.2 Orexin main physiological functions in the CNS 

Orexin-expressing neurons represent a small population exclusively 

located in the lateral hypothalamus (LH), the perifornical area (PFA), and 

the dorsomedial hypothalamus (DMH). Although limited in number and 

localization, they have extensive projections throughout the brain (Peyron 

et al, 1998). The widespread projections of the orexin system reflect the 

variety of physiological functions of orexin peptides.  

Soon after the identification of orexins, two groups demonstrated an 

association between orexin deficiency and narcolepsy (Chemelli et al, 

1999; Lin et al, 1999; Peyron et al, 2000). Thus, regulation of 

sleep/wakefulness is one of the best-understood roles of the orexin 

system. Indeed, suvorexant, a dual OXR antagonist, has been approved by 

the FDA for the treatment of insomnia (Herring et al, 2014; Michelson et 

al, 2014).  

Orexins were also initially reported to be regulators of feeding behavior 

based on their capacity to elicit food intake when centrally administered 

to rats (Sakurai et al, 1998). Thus, pharmacological and genetical blockade 

of OX1R attenuates food consumption (Hara et al, 2001; Haynes et al, 

2000; Yamada et al, 2000).  

The role of the orexin system in stress responses has been well-established 

on the basis of three kinds of evidences. First, orexinergic neurons mainly 

located in the PFA/DMH are activated by different stressors, including 

immobilization, footshock, cold exposure, and food deprivation (Berridge 

et al, 2010; Johnson et al, 2012). Second, some stress-induced responses, 

such as stress-induced analgesia (Xie et al, 2008), footshock-induced 

reinstatement of cocaine seeking (Boutrel et al, 2005) as well as stress-

induced ACTH and cardiovascular responses (Chang et al, 2007; Kayaba et 

al, 2003; Samson and Taylor, 2001) induce activation of the orexin system. 
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Finally, direct modulation of orexin system by the intracerebroventricular 

administration of orexin-A induces anxiety-like effects in several 

behavioral models of anxiety (Suzuki et al, 2005). The existence of 

reciprocal interactions between orexin and CRF neurons (Winsky-

Sommerer, 2004) suggests that the orexin system is an important 

component of the pathways contributing to the physiological CRF-

mediated behaviors that occur in response to stressful situations (Giardino 

and de Lecea, 2014). Dysregulation of stress responses could lead to the 

development of different anxiety disorders, which might be influenced by 

the activity of the orexin system (Flores et al, 2015; Johnson et al, 2010). 

Increasing evidence suggests the involvement of orexins in higher brain 

functions. However, the possible mechanisms of action by which orexin 

could promote learning and memory, are still poorly understood. 

Alterations in orexin regulation of hippocampal cholinergic activity have 

been linked to age-related dysfunctions in arousal, learning, and memory 

(Stanley and Fadel, 2012). In addition, a pilot human study showed that 

during a hippocampal-dependent social task, participants exhibited an 

increase in orexin-A (Blouin et al, 2013). Other studies also suggest the 

contribution of the orexin system to spatial and nonsocial learning and 

memory. In this regard, intracerebroventricular injection of orexin-A 

improved memory in both an active and passive avoidance paradigm 

(Jaeger et al, 2002). Furthermore, antagonism of OX1R in the CA1 or DG 

has been shown to impaired acquisition, consolidation and retrieval in the 

Morris water maze (Akbari et al, 2007; Akbari et al, 2006) and passive 

avoidance tasks (Akbari et al, 2008). However, the exact role of orexin in 

learning and memory is still unclear.  

Multiple evidence supports a role for orexins in the reinforcing properties 

of different drugs of abuse (Plaza-Zabala et al, 2012b). The dopamine 
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neurons in the VTA might be a crucial site of action for orexins to mediate 

these effects (Aston-Jones et al, 2009). Accordingly, direct injections of 

orexin-A in the VTA increase dopamine levels in the NAc (España et al, 

2010, 2011; Narita et al, 2006). Although most of the research on the 

involvement of orexins in drug addiction has focused on elucidating the 

function of OX1R (Khoo and Brown, 2014; Plaza-Zabala et al, 2012b), 

recent studies point to a role for OX2R in reward regulation. Thus, 

antagonism of OX2R reduces heroin (Schmeichel et al, 2015) and ethanol 

self-administration (Brown et al, 2013), as well as the cue-induced 

reinstatement of nicotine-seeking behavior (Uslaner et al, 2014). 

4.3 Involvement of the orexin system in nicotine addiction 

Several reports suggest that orexin transmission may regulate the 

addictive properties of nicotine. Orexins could participate in the attention-

enhancing effects of nicotine (Lambe et al, 2005), which suggests that the 

orexin system may contribute to nicotine addiction through the 

modification of nicotine-cognitive effects. Indeed, orexins and nicotine 

have been found to activate the same thalamocortical synapses in PFC 

with the consequent improvement of attention in rats (Lambe et al, 2005). 

Interestingly,  narcoleptic patients usually report cognitive deficits. A high 

percentage of this population smoke tobacco regularly, and it has been 

hypothesised that smoking could be a way of self-medication to improve 

cognition (Peřinová et al, 2016). 

Nicotine has also been shown to alter anxiety-like behavior when given 

acutely by a mechanism involving orexin signaling (Plaza-Zabala et al, 

2010). Thus, the anxiogenic-like effect produced by acute administration 

of nicotine was abolished by pretreatment with the OX1R antagonist 

SB334867 and in orexin KO mice. In addition, acute nicotine injection 
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increased c-Fos expression in orexin neurons (Pasumarthi et al, 2006). 

Furthermore, intravenous nicotine self-administration modified orexin-A 

mRNA levels in the arcuate nucleus and the rostral lateral areas of the 

hypothalamus in rats (LeSage et al, 2010). Similarly, non-contingent 

chronic nicotine administration regulated prepro-orexin and orexin 

receptor mRNA levels in the rat hypothalamus (Kane et al, 2000). At the 

behavioral level, pretreatment with the OX1R antagonist SB334867 or dual 

orexin antagonist almorexant decreased intravenous nicotine self-

administration in rats under a fixed-ratio 5 schedule of reinforcement 

(Hollander et al, 2008; LeSage et al, 2010). 

Moreover, the OX1R antagonist SB334867 decreased the number of 

nicotine rewards earned under a progressive-ratio schedule of 

reinforcement (Hollander et al, 2008), suggesting that orexins acting on 

OX1R regulate nicotine reinforcement and the motivation to seek the 

drug. Stroke-associated damage to the insular cortex in human smokers 

results in spontaneous cessation of the smoking habit and a low urge to 

smoke (Naqvi et al, 2007). Interestingly, intra-insular infusion of SB334867 

decreased nicotine intake in rats in a self-administration paradigm 

(Hollander et al, 2008), suggesting that insular OX1R transmission is crucial 

for the reinforcing effects of nicotine. In addition, the orexin system seems 

to have an important role in the somatic manifestations of 

mecamylamine-precipitated nicotine withdrawal (Plaza-Zabala et al, 

2012a). Thus, somatic nicotine withdrawal signs were attenuated in mice 

lacking the prepro-orexin gene or treated with the OX1R antagonist 

SB334867, but not with the OX2R antagonist TCSOX229 prior 

mecamylamine administration. Notably, direct administration of 

SB334867 into the paraventricular nucleus of the hypothalamus (PVN) 

decreased somatic signs of abstinence (Plaza-Zabala et al, 2012a), 
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suggesting that orexin signaling acting on OX1R in this brain area is 

critically involved in the modulation of nicotine withdrawal. Given the 

association of withdrawal signs and relapse (Killen and Fortmann, 1997; 

Rukstalis et al, 2005; Zhou et al, 2009), its not surprising that the orexin 

system might have a role in relapse to tobacco consumption. Preclinical 

research has shown that intracerebroventricular administration of orexin-

A reinstates previously extinguished nicotine-seeking behavior, and this 

effect was abolished by the OX1R antagonist SB334867 (Plaza-Zabala et al, 

2010). In addition, blockade of OX1R, but not blockade of OX2R, 

attenuated cue-induced reinstatement of nicotine-seeking (Plaza-Zabala 

et al, 2013), suggesting that reinstatement of nicotine seeking is mediated 

via OX1R. 

These findings support the implication of orexins in nicotine addiction and 

highlight the importance of understanding the role of the orexin system in 

the addictive properties of nicotine.
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General objective 

Extensive data suggest that the effects that nicotine exerts on memory are 

relevant for the initiation and maintenance of nicotine dependence. 

Therefore, the main goal of this thesis is to investigate the neurobiological 

mechanisms mediating the cognitive deficits associated with nicotine 

withdrawal and the pro-cognitive effect of acute nicotine administration. 

Specific objectives 

1. To set up a rodent model to evaluate the cognitive deficits that arise

during nicotine withdrawal (Article 1).

2. To evaluate the participation of the endocannabinoid system in the

cognitive deficits of nicotine withdrawal (Article 1).

3. To study the participation of inflammatory processes in the memory

deficits of nicotine withdrawal (Article 2).

4. To evaluate the potential therapeutic use of anti-inflammatory

compounds to prevent the cognitive deficits associated with

nicotine abstinence (Article 2)

1. To evaluate the role of the orexin system in the improvement of

memory induced by acute nicotine administration (Supplementary

results).
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Structural Plasticity Changes During Nicotine Withdrawal  
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Tobacco smoking represents the main leading cause of preventable death 

worldwide (World Health Organization, 2017). Among the 4000 

components present in tobacco, nicotine is the main psychoactive 

compound and responsible for the addictive properties of tobacco. Several 

studies suggest that the effects that nicotine exerts on cognition are 

crucial to the development and maintenance of tobacco addiction (Hall et 

al, 2015a; Kutlu and Gould, 2016b). In this sense, acute or initial nicotine 

intake has a positive effect on cognition, which may contribute to the 

development of nicotine dependence (Gould and Leach, 2014). 

Conversely, nicotine abstinence impacts negatively on cognitive 

functioning (Ashare et al, 2014). Interestingly, these cognitive 

impairments associated with nicotine abstinence ameliorate after nicotine 

re-exposure, suggesting that relapse might occur to reverse the cognitive 

alterations (Hall et al, 2015a; Myers et al, 2008). During the last decade, 

the cognitive deficits associated with nicotine abstinence have gained 

attention as a core dependence phenotype and a predictor for relapse into 

tobacco consumption (Ashare et al, 2014; Loughead et al, 2015). Although 

the mechanisms that mediate nicotine withdrawal-induced cognitive 

impairments are not clear, different studies have suggested a role for CB1R 

(Evans et al, 2016), neuropeptide CART (Borkar et al, 2017), α4β2 nAChRs 

(Yildirim et al, 2015) and noradrenaline (Davis and Gould, 2007) in these 

deficits. The endocannabinoid system has been widely reported as a key 

modulator of learning and memory processes (Marsicano and Lutz, 2006; 

Mechoulam and Parker, 2013). This system to regulates the reinforcing 

properties of different drugs of abuse including nicotine (Cahill and Mh, 

2012; Gamaleddin et al, 2015). However, the potential participation of the 

endocannabinoid system in the neurobiological mechanisms underlying 
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the cognitive deficits associated with nicotine withdrawal remains to be 

elucidated. 

On the other hand, there are well-established links between inflammation 

and tobacco smoking (Corwin and Klein, 2003; Lo Sasso et al, 2016; 

Wannamethee et al, 2005). Thus, higher levels of inflammatory markers 

have been associated with the presence of some smoking-withdrawal 

signs (Corwin and Klein, 2003) and with an increased cardiovascular risk in 

current smokers (Wannamethee et al, 2005). In addition, growing 

evidence implicates neuroinflammatory processes in the development of 

cognitive impairments (McKim et al, 2016; Wohleb et al, 2016; Zhao et al, 

2013). However, the possible role of neuroinflammation and the 

consequent use of anti-inflammatory agents to treat the cognitive deficits 

associated with nicotine abstinence has not been addressed yet.  

This thesis has mainly focused on the neuronal substrates of the cognitive 

effects of nicotine. Using mainly pharmacological and genetical 

approaches, we investigated: (1) The possible participation of the 

endocannabinoid system in the cognitive deficits associated with nicotine 

abstinence, (2) the involvement of an inflammatory phenotype in nicotine-

withdrawal cognitive impairments and (3) the implication of the orexin 

system in the pro-cognitive effect of acute nicotine administration.  

The results described in this thesis indicate that CB1R located in a specific 

hippocampal neural population is associated with the cognitive deficits of 

nicotine withdrawal. Moreover, our results suggest that anti-inflammatory 

agents could be a new therapeutical tool to modulate the cognitive 

alterations observed during abstinence. In addition, we revealed results 

that orexin signaling could be mediating the memory-enhancing effect of 

acute nicotine administration. 
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Role of the endocannabinoid system in the memory deficits 

associated with nicotine abstinence 

Despite the well-known harmful consequences of tobacco smoking, 80% 

of individuals trying to quit relapse within the first month of abstinence 

(Prochaska and Benowitz, 2016). This high relapse rate reflects the limited 

efficacy of current therapies and the complex nature of nicotine addiction. 

During a quit attempt, smokers experiment a range of undesirable signs of 

nicotine abstinence, which seem to play a critical role in relapsing into 

tobacco smoking (Ashare et al, 2014; Hughes, 2007a; Jackson et al, 2015). 

These signs can be classified as somatic, affective and cognitive, and have 

been associated with relapse into tobacco consumption (Ashare et al, 

2014; Garcia-Rivas and Deroche-Gamonet, 2018; Hughes, 2007a). 

Nowadays, these cognitive deficits can be recapitulated in different animal 

models. In rodents, withdrawal from chronic nicotine administration has 

been shown to produce cognitive impairments in hippocampal-dependent 

tasks (Hall et al, 2015a). In this study, we evaluated the role of the 

endocannabinoid system in the memory deficits associated with nicotine 

withdrawal. To assess these memory deficits, we used the novel object 

recognition test and precipitate withdrawal with an injection of 

mecamylamine during the training phase of the task. This allowed to test 

the effect of nicotine withdrawal in the consolidation of memory. 

Precipitation of withdrawal in nicotine-dependent mice resulted in a 

decrease in the discrimination index in the object recognition test. The 

reduced discrimination index was only observed in nicotine withdrawn 

mice and was not due to alteration in locomotor activity since both 

experimental groups (saline and nicotine) exhibited similar exploration 

times. In agreement with our results, precipitation of nicotine withdrawal 

has been described to alter memory performance in other types of 
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hippocampal-dependent tasks, such as the spatial object-recognition and 

contextual fear conditioning during spontaneous and precipitated nicotine 

withdrawal (Gould et al, 2012; Kenney et al, 2011; Raybuck and Gould, 

2009; Yildirim et al, 2015). Consistent with other studies, chronic 

treatment with nicotine did not alter the discrimination index, indicating 

that the deficit in memory performance was only due to precipitation of 

nicotine withdrawal (Article 1).  

Signaling through CB1R has been widely reported to regulate learning and 

memory processes (Kruk-Slomka et al, 2017). Several studies have 

demonstrated that activation of CB1R by exogenous cannabinoids 

significantly alters learning and memory in various animal models, 

including the object recognition task (Lupica et al, 2017; Marsicano and 

Lafenêtre, 2009; Schneider et al, 2008). In our study, pharmacological 

blockade of CB1R with rimonabant prior precipitation of nicotine 

withdrawal prevented the memory impairment observed during nicotine 

abstinence (Article 1). A similar result was obtained in the KO mice for 

CB1R, suggesting that CB1R has a crucial role in the development of the 

cognitive deficits associated with nicotine withdrawal (Article 1). 

Expression of CB1R differs among brain areas and different cell types, 

within the brain. In the HPC, CB1R is mainly located in GABAergic 

interneurons (Kawamura et al, 2006). CB1R are also present in 

glutamatergic terminals, but with a lower density than in GABAergic 

terminals (Steindel et al, 2013). Growing evidence indicates that cellular 

and molecular effects could be differentially mediated by CB1R depending 

on their cell-type localization (i.e. glutamatergic or GABAergic neurons) 

(Busquets-Garcia et al, 2015). In this regard, THC has been shown to act as 

a full agonist of CB1R located in GABAergic terminals, whereas it acts as a 

partial agonist of the glutamatergic ones (Laaris et al, 2010). The 
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differential implications for hippocampal functioning that could result 

from acting on CB1R at glutamatergic or GABAergic terminals prompted 

us to examine which CB1R-expressing neurons were involved in the 

memory impairment associated with nicotine withdrawal. Our results 

show that CB1R expressed in GABAergic neurons mediate the memory 

impairment associated with nicotine abstinence (Article 1). Consistent 

with this, targeted deletion of CB1R from GABAergic neurons has been 

shown to prevent the disruption of hippocampal-dependent behavior by 

THC, whereas deletion of this receptor from glutamatergic neurons was 

ineffective in abolishing other pharmacological effects of THC, such as 

memory impairment (Puighermanal et al, 2009). In agreement, mice 

displaying a reduced GABA transmission exhibited memory deficits when 

evaluated in the object recognition task (Zhu and Lovinger, 2007). In 

addition, CB1R on GABAergic neurons seems to play a crucial role in 

protecting against age-related cognitive decline (Albayram et al, 2011). 

These data, together with our results suggest that CB1R expressed in 

GABAergic neurons is crucial for proper learning and memory processes. 

In physiological conditions, activation of CB1R is always triggered by the 

previous release of endocannabinoids. We found that 2-AG was the 

endocannabinoid responsible for the cognitive deficits associated with 

nicotine withdrawal (Article 1). A significant increase in 2-AG, but not AEA, 

was observed 10 minutes after precipitation of nicotine withdrawal. 2-AG 

tone depends on the balance between its synthesis by DAGLs, and its 

degradation by the hydrolytic enzyme MAGL (Di Marzo et al, 2005). Our 

immunoblot studies showed that the increase of 2-AG was the result of a 

decrease in its degradation since reduced protein levels of MAGL were 

observed in nicotine withdrawn mice (Article 1). Interestingly, reduction 

of 2-AG synthesis triggered by the inhibitor of DAGL O7460 restored 
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memory performance in nicotine abstinent mice. Conversely, inhibition of 

2-AG degradation by administration of the inhibitor of MAGL ZL184 did not 

modify the memory impairment associated with nicotine withdrawal. 

Indeed, JZL184 administration at the highest dose (20 mg/kg) induced a 

cognitive impairment by itself (Article 1). In agreement, other studies have 

reported that blockade of 2-AG degradation impairs hippocampal-

dependent learning and memory in rodents (Griebel et al, 2015; Wise et 

al, 2012).  Our results suggest that precipitation of nicotine withdrawal 

selectively boosts 2-AG signaling, that through activation of hippocampal 

CB1R in GABAergic neurons, contribute to impair memory performance. 

As previously mentioned, CB1R is more densely expressed in GABAergic 

than in glutamatergic neurons in the HPC (Kawamura et al, 2006; Steindel 

et al, 2013). Thus, activation of CB1R primary suppresses GABA release, 

resulting in an increase of excitatory signaling (Katona and Freund, 2012). 

Following THC exposure, this excitatory input seems to modulate memory 

by promoting mTOR signaling  (Graber et al, 2013; Puighermanal et al, 

2009). In the brain, the mTOR pathway regulates many physiological 

functions, including neurogenesis, synaptic plasticity, information storage 

and cognition (Bockaert and Marin, 2015). Given its broad implication in 

many brain functions, it is not surprising that proteins within the mTOR 

signaling cascade are implicated in diseases associated with cognitive 

deficits, such as Down syndrome and Fragile X syndrome (Bockaert and 

Marin, 2015; Costa-Mattioli and Monteggia, 2013). In this sense, several 

reports indicate that the mTOR pathway regulates synaptic plasticity and 

memory by controlling protein synthesis (Bockaert and Marin, 2015; 

Hoeffer and Klann, 2010). Interestingly, administration of the mTOR 

inhibitor temsirolimus prevented the memory impairment observed 

during nicotine abstinence (Article 1). Likewise, treatment with the protein 
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synthesis inhibitor anisomycin also blocked the nicotine withdrawal-

cognitive deficits (Article 1). Thus, mTOR activation and excessive protein 

synthesis might underlie the behavioral deficit induced by nicotine 

withdrawal. In this regard, animal studies have revealed an excessive 

increase in protein synthesis in other conditions characterized by memory 

impairment such as the fragile X syndrome (Bolduc et al, 2008) or the 

administration of amnesic doses of THC (Puighermanal et al, 2009). 

In abstinent smokers, somatic, affective and cognitive withdrawal signs, 

tend to dissipate with time (Hall et al, 2015a; Hughes, 2007a). In our 

model, we observed that memory impairment was still present 4 days 

after precipitation of withdrawal, with mice recovering from these 

cognitive impairments by the 8th day of abstinence (Article 1). Consisting 

with our results, a previous study showed a similar duration of these 

memory impairments in the hippocampal-dependent contextual fear 

conditioning test in C57BL/6J mice (Gould et al, 2012). The fact that 

withdrawal memory deficits had a duration of days suggests the existence 

of changes in synaptic plasticity during nicotine withdrawal. It is widely 

accepted that memories are stored as changes in the “strength” of 

synaptic connections between neurons (Bosch and Hayashi, 2012). 

Synaptic spines exhibit a wide range of size and shape, with several studies 

indicating a positive correlation between the spine head volume, the 

postsynaptic density area, the number of AMPA-type glutamate receptors, 

and synaptic “strength” (Bannerman et al, 2014; Bosch and Hayashi, 2012; 

Matsuzaki et al, 2001). Thus, it seems that spine structure is tightly 

coupled to synaptic functions. Interestingly, morphological evaluation of 

pyramidal neurons in the CA1 of the HPC revealed a decrease of 

mushroom (mature) spines 4 days after precipitation of nicotine 

abstinence when the cognitive deficits were still present (Article 1) (Figure 
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20). 

This type of dendritic spine has been widely associated with long-term 

memory or “memory storage” (Kasai et al, 2010; Segal, 2017). Spines are 

extremely plastic with their density and shape being modifiable by several 

factors, including stress (Maras and Baram, 2012). The stressful condition 

of nicotine withdrawal could be responsible for the reduced density of 

mature spines, probably leading to synaptic dysfunction and cognitive 

deficits. Nonetheless, the mechanisms described in our study should not 

be extended to other types of stressful situations such as acute 

corticosterone administration. Indeed, the injection of compounds 

affecting the endocannabinoid system such as the mGluR5 antagonist 

MTEP and O7460, before an acute amnesic dose of corticosterone did not 

prevent memory impairment in the object-recognition test (Article 1). As 

previously mentioned, glutamate receptors are strongly linked to synaptic 

strength, and are abundant in mushroom spines, but are sparsely 

distributed in thin and filopodia spines of CA1 hippocampal pyramidal 

Figure 20. Schematic representation of the structural plasticity changes 
observed during nicotine abstinence in CA1 pyramidal neurons. 
 



Discussion 

 199

neurons (Matsuzaki et al, 2001). Consistent with this, we found a decrease 

of GluR2 receptors in nicotine abstinent mice that could be related to the 

reduced number of mature spines observed in nicotine-abstinent mice 

(Article 1). In line with our study, cortical neuroplasticity alterations have 

been reported during early withdrawal in abstinent smokers (Grundey et 

al, 2012). It seems that altered neuroplasticity in the PFC may be 

responsible for disrupting the motivation necessary to remain abstinence 

or decreasing the ability to sustain the cognitive control necessary to 

maintain abstinence in front of smoking cravings (Ashare et al, 2014). 

However, no modifications of structural plasticity were observed in 

pyramidal neurons of PFC under our experimental conditions (Article 1).  

The reduced density of mushroom-type spines in the CA1 pyramidal 

neurons observed in nicotine abstinent mice was normalized by a 

subchronic treatment with rimonabant and in GABA-CB1R KO mice. In 

agreement, a similar treatment with rimonabant has been shown to 

reverse cognitive and hippocampal dendritic spine deficits in a model of 

fragile X syndrome (Busquets-Garcia et al, 2013). Although reduced 

dendritic spines of pyramidal neurons in the CA1 in GABA-CB1 KO has been 

reported, we did not observe any modification in the average of spine 

density under basal conditions (Monory et al, 2015). The different 

methodology used to quantify spines (apical versus apical and basal 

dendrites) could explain these contradictory results. Taken together, our 

data suggest that CB1R activation in GABAergic neurons is determinant to 

modulate the morphology of hippocampal spines resulting in the cognitive 

deficits observed during nicotine abstinence. Several studies the role of 

GABAergic-CB1R in other behaviors aside from learning and memory 

processes (Albayram et al, 2016), such as food intake (Bellocchio et al, 

2010), exercise-related behaviors (Fuss et al, 2015) and drug addiction 
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(Martín-García et al, 2016; Talani and Lovinger, 2015)  

 In order to understand the role of 2-AG during nicotine abstinence, we 

evaluated the participation of this endocannabinoid in other aspects of 

nicotine withdrawal. During nicotine abstinence, 2-AG seems to have 

bimodal effects. In this regard, modulation of 2-AG levels induced opposite 

effects on the somatic signs and memory impairment revealed during 

withdrawal. The MAGL inhibitor JZL184 reduced the severity of nicotine 

physical dependence, whereas the inhibition of DAGLs by O7460 

exacerbated somatic signs of withdrawal (Article 1). In agreement with our 

results, a recent study reported that inhibition of MAGL reduced the 

expression of somatic signs of withdrawal (Muldoon et al, 2015). These 

data suggest that on the one hand increased levels of 2-AG might be 

triggered to alleviate somatic signs but on the other hand these higher 

levels of 2-AG have detrimental effects on memory during nicotine 

withdrawal. Since these cognitive deficits last longer, targeting them could 

be more relevant for avoiding early nicotine relapse than physical 

symptoms. Furthermore, several studies have shown an increase in 2-AG 

during stress exposure, suggesting that 2-AG could be released to 

counteract the negative effects of stress (Morena et al, 2016).  

Our results suggest that different neurobiological mechanisms mediate 

the somatic and the cognitive aspects of nicotine abstinence. Thus, the 

mTOR inhibitor temsirolimus and the inhibitor of mGluR5 MTEP blocked 

memory impairment without affecting somatic signs. In agreement, no 

changes in the physical severity of nicotine abstinence were observed in a 

previous study using the mGluR5 antagonist MTEP (Liechti et al, 2007). 

These results reveal the crucial involvement of CB1R located in GABAergic 

cells in the cognitive impairment and neuronal plasticity changes in the 

HPC occurring during nicotine withdrawal (Figure 21). This subpopulation 
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of CB1R could be targeted to prevent smoking relapse by increasing 

cognitive performance during early nicotine abstinence.  
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Figure 21. The endocannabinoid system mediates the cognitive deficits 
associated with nicotine withdrawal. Upon precipitation of nicotine 
withdrawal, brain levels of 2-AG increase probably to counteract the physical 
signs of withdrawal. However, high levels of 2-AG triggered by nicotine 
abstinence impact negatively on memory.  2-AG acting mainly on CB1R 
located in GABAergic terminals leads to a disbalance between excitatory and 
inhibitory neural transmission. As a consequence, the mTOR pathway is 
activated, which in turn induces an aberrant increase in protein synthesis and 
alter structural plasticity. Structural plasticity is affected as a reduced density 
of mature spines is observed in pyramidal neurons of the CA1 region of the 
hippocampus during nicotine abstinence. These changes in structural 
plasticity could explain the long-lasting effects of nicotine withdrawal on 
cognition. 
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Participation of inflammatory processes in the cognitive deficits 

associated with nicotine withdrawal  

Unrevealing the mechanisms involved in the cognitive deficits observed 

during nicotine abstinence are determinant to identify new therapeutical 

targets and, therefore, develop more efficient smoking cessation 

treatments. Since cognitive deficits seem relevant for smoking relapse, 

pharmacotherapies should emphasize on increasing cognitive 

performance during nicotine withdrawal. In this sense, repurposing 

available pharmacotherapies that enhance cognition could be a good 

strategy (Ashare et al, 2014). Several reports have associated the 

development of cognitive impairments with inflammatory processes 

(Allison and Ditor, 2014; McKim et al, 2016). Additionally, there are well-

stablished links between inflammation and tobacco smoking, although 

these studies have mainly focused on the relationship between 

inflammatory markers and increased cardiovascular risk (Lo Sasso et al, 

2016; Wannamethee et al, 2005). However, the possible role of 

neuroinflammation in the cognitive deficits associated with early nicotine 

withdrawal remains to be elucidated.  

As observed in our first study (Article 1), precipitation of nicotine 

withdrawal resulted in a memory impairment in nicotine-treated mice 

when memory was evaluated on the 4th day of withdrawal (Article 2). In 

agreement, several studies have shown similar cognitive deficits in other 

hippocampal-dependent tasks in rodents (Raybuck and Gould, 2009; 

Wilkinson and Gould, 2013; Yildirim et al, 2015). In many CNS disorders, 

the presence of cognitive deficits has been associated with inflammatory 

responses (McKim et al, 2016; Wohleb et al, 2016; Zhao et al, 2013). 

Microglia cells play crucial roles in normal development, plasticity, and 

maintenance of neural circuits (Wake et al, 2013). Upon disturbance of 
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brain homeostasis, microglial cells move from a surveillance state, 

indicated by a ramified morphology with small soma, to a reactive state 

characterized by retracted ramifications and larger amoeboid soma 

(Kohman and Rhodes, 2013). Interestingly, a significant increase in the 

perimeter of microglial soma was observed in the CA1 and DG regions of 

the HPC in nicotine abstinent mice (Article 2). This increase in the soma 

perimeter was also present in PFC, but not in the dorsal striatum of 

abstinent mice, suggesting that the change in microglial morphology is 

restricted to areas relevant to cognitive processing (Article 2). Indeed, we 

observed a negative correlation between the perimeter of the soma and 

the performance of mice in the object-recognition task in the DG of the 

HPC and in the PFC (Article 2).  The stressful condition of nicotine 

withdrawal could be responsible for this microglial activation since ample 

evidence demonstrates how stress exposure can induce changes in 

microglia structure and function leading to cognitive deficits (Tay et al, 

2017; Yirmiya et al, 2015). Thus, corticotropin-releasing factor has been 

shown to be involved in the dysphoria and anxiety-like behavior observed 

during nicotine abstinence (Bruijnzeel, 2017), while blockade of 

corticosterone effects abolishes acute and chronic stress-induced 

microglial proliferation and activation (Frank et al, 2012; de Pablos et al, 

2014). Other factors aside from stress also modulate microglial response. 

Given the sensitive nature of microglial cells, these cells can be activated 

in response to the slightest CNS insult (Salter and Stevens, 2017). In this 

regard, it has been reported that glutamatergic neurotransmission 

increases the activity of microglial cells, while GABAergic 

neurotransmission decreases it (Fontainhas et al, 2011). As suggested in 

our first study, precipitation of nicotine abstinence could result in an 

overall increase of glutamatergic response in the HPC mediated through 
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CB1R (Article 1). Therefore, it is plausible that this unbalance between 

excitatory and inhibitory signaling could contribute to the morphological 

change observed in microglial cells. Furthermore, substantial evidence 

supports the role of microglia in synaptic and structural plasticity, where 

microglia interaction with neuronal components can determine the fate of 

dendritic synapses in the adult brain (Delpech et al, 2015; Morris et al, 

2013). Indeed, a recent publication demonstrated that microglial cells 

directly remodel dendritic spines shape, turning mature into immature 

spines (Weinhard et al, 2018). Therefore, an aberrant spine remodeling 

driven by activated microglia could be contributing to the reported 

reduced density of mature spines during nicotine abstinence (Article 1). 

It is still controversial whether the sole change of microglial morphology 

could indicate a particular response state (Salter and Stevens, 2017). 

Therefore, aside from evaluating the morphology of microglial cells, it is 

essential to evaluate their molecular expression profiles. In addition to 

microglial activation, we found an increased mRNA expression of several 

inflammatory markers such as IL1β, TNFα, and IFNγ in both the HPC and 

the PFC during nicotine withdrawal (Article 2). Overexpression of pro-

inflammatory cytokines in the CNS has been associated with several 

neuropsychiatric disorders including depression, Alzheimer’s disease and 

Parkinson’s disease (Borsini et al, 2015). Indeed, changes in cytokine levels 

have a profound impact on hippocampal dependent-memory systems and 

have been associated with synaptic plasticity processes (Patterson, 2015). 

This cumulative evidence has demonstrated that IL1β inhibits 

hippocampal-dependent learning (Jones and Lynch, 2015). In addition, it 

has been suggested that increased levels of TNFα, produced by microglia 

in the HPC, seem to be underlying stress-induced memory impairments 

(Ohgidani et al, 2016). Remarkably, an elevation of plasmatic levels of 
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TNFα and IFNγ was also observed 4 days after nicotine withdrawal 

precipitation (Article 2), pointing these cytokines as possible biomarkers 

of the cognitive deficits present during tobacco abstinence. Indeed, 

cytokine levels in plasma were normalized by the 8th day of withdrawal 

when mice have completely recovered from memory impairment under 

our experimental conditions (Article 1).  

Inflammatory cytokines including IL1β, TNFα, and IFNγ are also key 

modulators of neurogenesis (Borsini et al, 2015), a process with a key role 

in mediating human brain functions including memory formation and 

cognition (Kohman and Rhodes, 2013). Interestingly, cognitive deficits of 

nicotine withdrawal were associated with reduced expression of cell 

proliferation and young neuron markers in the subgranular zone of the 

HPC. Therefore, these results suggest that inflammation-induced deficits 

in cognitive performance during nicotine withdrawal could be related to 

the reductions in hippocampal neurogenesis (Article 2). 

Current pharmacotherapies for smoking cessation have been associated 

with psychiatric adverse events (Hughes, 2016; Prochaska and Benowitz, 

2016). This has increased the demand to develop new treatments for 

smoking cessation. Indeed, many smokers would try to quit smoking if 

effective, inexpensive and less sided-effects approaches were available 

(Volkow, 2018). During the last decade, the interest in the non-

psychoactive cannabinoid CBD has grown exponentially. CBD has been 

featured as an anti-inflammatory and neuroprotective compound 

(Burstein, 2015; Fernández-Ruiz et al, 2013), with potential benefits for 

the treatment of motivational disorders such as drug addiction, anxiety 

and depression (Shoval et al, 2016; Zlebnik and Cheer, 2016). In our study, 

subchronic treatment with CBD prevented the memory impairment in the 

object-recognition task and the activation of microglia in the HPC and the 
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PFC observed 4 days after nicotine withdrawal (Article 2). Consisting with 

this, CBD has been shown to improve object-recognition memory in 

preclinical models that course with cognitive impairment, including 

schizophrenia (Gomes et al, 2015), Alzheimer’s disease (Cheng et al, 

2014a), brain ischemia (Pazos et al, 2013) and cerebral malaria (Campos 

et al, 2015). Furthermore, treatment with CBD also normalized the 

increased expression of IL1β and TNFα in the HPC and the PFC, 

respectively, observed during nicotine withdrawal (Article 2). These results 

suggest that normalizing the levels of proinflammatory cytokines might be 

a mechanism by which CBS restores cognitive function, although studies 

supporting this idea are sparse and controversial (Osborne et al, 2017). 

Nonetheless, some studies propose a possible involvement of TNFα in the 

mechanisms underlying the ability of CBD to improve cognition (Barichello 

et al, 2012; Cheng et al, 2014b). Indeed, chronic administration of CBD 

reduced mRNA levels of TNFα in the PFC which was associated with the 

prevention of memory impairments in a rodent model of meningitis 

(Barichello et al, 2012). Moreover, CBD treatment promoted cell 

proliferation during nicotine withdrawal in the subgranular zone of the 

hippocampal DG. Accordingly, an increase of hippocampal neurogenesis 

following CBD administration was observed in rodent models of 

Alzheimer’s disease (Esposito et al, 2011) and chronic stress (Campos et 

al, 2013). As a whole, these data indicate that CBD might improve 

cognitive performance during nicotine withdrawal through the 

modulation of inflammation and cell proliferation. Interestingly, 

preliminary findings in humans show that CBD treatment reduced 

cigarette consumption (Morgan et al, 2013), and pleasantness of cigarette 

cues after overnight abstinence (Hindocha et al, 2018a) in tobacco 

smokers. However, a recent study has shown that acute administration of 
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a single dose of CBD did not improve memory performance in tasks 

previously shown to be impaired during cigarette abstinence (Hindocha et 

al, 2018b). CBD’s lack of effect in this study could be due to the dose used, 

considering the bell-shaped dose-response effects widely reported for this 

compound (Zuardi et al, 2017). Indeed, low, but not high, doses of 

cannabidiol have been found to be effective in alleviating memory deficits 

in a rat model of Parkinson’s disease and tardive dyskinesia (Peres et al, 

2016). 

In light of the relationships between the inflammatory profile and the 

cognitive impairments observed during nicotine abstinence, we evaluated 

whether the improvement of memory performance by CBD could be 

generalized to other anti-inflammatory agents. Interestingly, 

administration of the NSAID indomethacin prevented the development of 

the cognitive deficits associated with nicotine withdrawal and microglia 

activation in the HPC (Article 2). In agreement, indomethacin has been 

found to rescue the memory deficits induced by stress (Emad et al, 2017; 

Perveen et al, 2018), intermittent ethanol intoxication (Pascual et al, 2007) 

and in a mouse model of Alzheimer's disease (Balducci et al, 2017), but not 

in a model of social defeat stress (Duque et al, 2017). Indomethacin is a 

broad spectrum NSAID that inhibits cyclooxygenase (Cox)-1 and -2 activity, 

although hippocampal mRNA expression of Cox-1 and -2 was not modified 

under our experimental conditions (Article 2). Further experiments 

evaluating the activity of COX-1 and COX-2 should be performed. Recently, 

other mechanisms have been described to be involved in the memory 

rescuing effect of indomethacin. Thus, indomethacin might rescue 

memory impairments by acting on acetylcholinesterase (Emad et al, 2017), 

an enzyme tightly related to formation and encoding of memories 

(Hasselmo, 2006). In addition, increasing serotonin and dopamine 
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transmission in the brain seems to be another mechanism by which 

indomethacin prevented the memory impairment induced by stress 

exposure (Perveen et al, 2018). Given the stressful condition of nicotine 

withdrawal, indomethacin could act through these mechanisms to rescue 

memory impairment during nicotine withdrawal. 

In summary, our work reveals for the first time an inflammatory process 

associated with the cognitive deficits that characterize early nicotine 

abstinence (Figure 22). Moreover, these findings underline the efficacy of 

anti-inflammatory agents to improve cognitive deficits during nicotine 

withdrawal. Given that the presence of cognitive alterations is associated 

with increased smoking relapse risk, our results identify anti-inflammatory 

drugs as new potential therapeutic strategies for nicotine dependence. 
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Figure 22. Neuroinflammation underlies the cognitive deficits associated 
with nicotine withdrawal. In brain areas related with cognitive processing, 
such as prefrontal cortex and hippocampus, microglia cells move from its 
surveilling state to a more reactive state characterized by short ramification 
and large soma when nicotine withdrawal is precipitated. Microglia activation 
is accompanied with increased expression of proinflammatory cytokines such 
as IL1-β and TNFα. Proinflammatory cytokines also affect the proliferation and 
differentiation of new neurons within the subgranular zone of the 
hippocampus. Neuroinflammation and altered neurogenesis contribute to the 
development of the cognitive deficits associated with nicotine withdrawal. 
Anti-inflammatory compounds, such as cannabidiol and the NSAID 
indomethacin reduced microglial reactivity, normalize neurogenesis and 
prevent memory deficits during nicotine abstinence. The increase of 
inflammatory cytokines was also observed in blood samples only when 
cognitive deficits were present. Therefore, these molecules could serve as 
possible peripheral biomarkers of the cognitive deficits associated with 
nicotine withdrawal. 
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Involvement of orexin signaling in the improvement of memory 

induced by acute nicotine administration 

Human and animal studies have demonstrated that nicotine can enhance 

cognition (Hall et al, 2015a; Kutlu and Gould, 2016a), which might 

contribute to initial tobacco use and smoking dependence (Pulvers et al, 

2014). Moreover, cognitive processes that rely on hippocampal function 

have been suggested to be more sensitive to the effects of acute nicotine 

administration (Kutlu and Gould, 2016a). Several reports suggest a 

potential role of the orexin system in cognition, learning and memory 

(Chen et al, 2017; Li et al, 2014). In addition, this system is also involved in 

behaviors associated with nicotine dependence, such as reinstatement of 

nicotine-seeking behavior (Bruijnzeel, 2017; Plaza-Zabala et al, 2013). In 

this study, we evaluated the possible role of the orexin signaling in effects 

that acute nicotine exerts on memory. To assess memory, we used the 

novel object recognition test. Conventionally, the test session in the object 

recognition task is performed 24 hours after the training session (Antunes 

and Biala, 2012). However, under our experimental conditions, this 

protocol was not sensitive enough to observe a memory improvement. 

Therefore, to properly evaluate an enhancement of memory, we set a gap 

of 48 hours between training and test. With this modification of the novel 

object recognition test, control mice exhibited low discrimination indexes 

and the effect of nicotine on memory was revealed (Supplementary 

results). A similar modification to the task has been previously used to 

evaluate the pro-cognitive effect of nicotine in the spatial version of the 

object recognition (Kenney et al, 2011). Increasing the time gap between 

training and test made the task more challenging and converted the 

tendency to improve memory (24 hours) in a significant enhancement of 

memory (48h)(Kenney et al, 2011). 
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Nicotine was administered at different doses (0.25, 0.50, 0.75 and 1 

mg/kg) but only the dose of 0.75 mg/kg resulted in a significant increase 

in the discrimination index in the object recognition test (Supplementary 

results). This difference in the discrimination index was not due to altered 

locomotor activity since all groups exhibited similar exploration times. 

Stress can have detrimental or enhancing effects of memory depending on 

the type and duration of the stress stimuli (Maras and Baram, 2012). 

Indeed, some studies have shown that acute stressful experiences that 

occur shortly after learning (during memory consolidation) can improve 

memory performance (Glienke and Piefke, 2016; McCullough et al, 2015). 

Interestingly, a similar dose to the one used in our study (0.8 mg/kg of 

nicotine) has been reported to have anxiogenic-like effects, to activate 

orexin neurons and to activate the PVN, a stress-related brain region, in 

an orexigenic-dependent manner (Plaza-Zabala et al, 2010). Thus, it is 

possible that nicotine might enhance memory by acting as a mild stressor 

and involving orexin signaling. In our study, pharmacological and genetical 

blockade of the OX1R prevented the memory improvement induced by 

nicotine administration (Supplementary results). Consistent with our 

results, several studies support the role of OX1R in learning and memory 

in a variety of hippocampal-dependent tasks (Akbari et al, 2006, 2008; 

Flores et al, 2014; Yang et al, 2013; Zhao et al, 2014). Notably, antagonism 

of the OX2R also abolished the pro-cognitive effect of nicotine 

(Supplementary results). Most of the studies point to orexin-A as the 

orexin peptide involved in learning and memory (Akbari et al, 2007; Chen 

et al, 2017; Zhao et al, 2013, 2014). Since orexin-A binds with equal affinity 

to OX1R and OX2R, this peptide could be the one mediating the effects of 

nicotine on memory. However, the participation of OXB should not be 

discarded as this peptide has been also shown to improve cognition 
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(Lambe et al, 2005). Indeed, deletion of the prepro-orexin gene, that 

codifies for both orexin-A and orexin-B, prevented the enhancement of 

memory induced by nicotine (Supplementary results). 

In summary, our data reveal that orexin signaling through OX1R and OX2R 

modulates the pro-cognitive effect of nicotine. However, further research 

will be needed to fully understand the mechanism by which the orexins 

system regulated the memory-enhancing effect of nicotine. Considering 

the existence of a reciprocal link between the CRF system and the orexin 

neurons (Tsujino and Sakurai, 2013) and that several studies have 

demonstrated role of CRF on cognition (Gafford et al, 2014; Hupalo and 

Berridge, 2016), the involvement of CRF signaling in the improvement of 

memory induced by nicotine should be explored.  
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The current thesis has identified new neurobiological mechanisms 

involved in the cognitive effects of nicotine. We have identified new 

possible therapeutic targets to treat the cognitive deficits that arise during 

nicotine withdrawal (Article 1 and 2). These cognitive deficits have been 

proposed to be a hallmark of nicotine withdrawal and to predict smoking 

relapse. We have shown that signaling through the CB1R located in 

GABAergic neurons is crucial for the cognitive impairments associated 

with nicotine withdrawal (Article 1). Moreover, we found that structural 

plasticity changes in CA1 pyramidal neurons in the HPC underlie the 

cognitive deficits of nicotine abstinence (Article 1). Furthermore, we have 

revealed for the first time that inflammatory processes are associated with 

the cognitive deficits that characterize early nicotine abstinence (Article 

2). Given the role of microglia in synaptic plasticity, it is hypothesized that 

the increased microglial reactivity observed during nicotine abstinence 

(Article 2) could be mediating the alteration of structural plasticity that 

underlies the cognitive deficits of nicotine withdrawal (Article 1) (Figure 

23). Therefore, blockade of inflammatory processes might be an 

interesting therapeutic strategy to ameliorate the cognitive deficits of 

nicotine withdrawal. Indeed, we propose the study of the use of anti-

inflammatory compounds as potential therapeutic strategy for nicotine 

dependence. In our pilot investigation, we have demonstrated that the 

NSAID indomethacin is effective in normalizing memory performance 

during nicotine withdrawal. However, the use of indomethacin has been 

associated with a number of side effects including gastrointestinal 

erosions, and renal and hepatic insufficiency (Süleyman et al, 2007). 

Therefore, the use of other NSAIDs to with similar therapeutic but less side 

effects could be probably of better interest for such a purpose. 
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In addition, we studied the mechanisms involved in the pro-cognitive 

effect of acute nicotine administration, since this effect has been 

hypothesized to contribute to initial nicotine intake. Our results suggest 

that orexin signaling through both OX1R and OX2R participates in the 

improvement of memory induced by acute treatment with nicotine 

(Supplementary results). The improvement of memory induced by acute 

nicotine administration might be crucial to develope dependence in a 

population with preexisting cognitive deficits that find in smoking a way 

for alleviating their cognitive deficits. 
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Figure 23. Schematic representation of the main mechanisms involved in 
the cognitive deficits associated with nicotine withdrawal assessed in this 
thesis. Precipitation of nicotine withdrawal results in an increase in 2-AG 
levels, that through activation of the CB1R in GABAergic neurons might 
generate an imbalance between excitatory and inhibitory signaling. The 
resulting increase in excitatory transmission could be responsible for the 
shift of microglia to a more reactive or “inflammatory” phenotype. 
Microglial activation also contributes to the inflammatory environment by 
increasing the release of proinflammatory molecules such as IL1-β and 
TNFα. On the other hand, activation of CB1R could increase activity in the 
mTOR pathway and produces an aberrant increase in protein synthesis, 
which could impact negatively on structural plasticity, contributing to the 
cognitive impairment observed during nicotine withdrawal. Indeed, a 
decrease in the density of mature spines was observed in CA1 pyramidal 
neurons of the hippocampus in abstinent mice. Given the role of microglia 
in synaptic and structural plasticity, an aberrant spine remodelling driven 
by activated microglia could be contributing to the reported reduced 
density of mature spines during nicotine abstinence. Restorage of normal 
microglia phenotype by anti-inflammatory drugs prevented memory 
impairment of nicotine withdrawal. Therefore, the use of anti-
inflammatory agents to normalize cognition during early abstinence could 
represent a new therapeutic approach to treat nicotine dependence since 
cognitive deficits are related to increased risk of relapse to tobacco 
consumption in humans. 
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The findings revealed in the present thesis allow to draw the following 
conclusions:  
 

1. The endocannabinoid system plays a key role in the cognitive 
deficits that arise during nicotine withdrawal. CB1R located in 
GABAergic neurons modulates the structural plasticity alterations 
and the cognitive deficits associated with nicotine withdrawal. 
 

2. 2-AG seems to play divergent functional effects during nicotine 
abstinence. Thus, modulation of 2-AG levels induced opposite 
effects on the somatic signs and memory impairment revealed 
during withdrawal. 

 
3. Administration of an inhibitor of the mTOR, an inhibitor of 

mGluR5, and cannabidiol administration blocked memory 
impairment without affecting somatic signs of nicotine 
withdrawal. These results suggest that different neurobiological 
mechanisms mediate somatic signs and cognitive deficits during 
nicotine withdrawal. 
 

4. Precipitation of nicotine abstinence results in an increase of 
microglial reactivity and proinflammatory molecules in brain 
areas related with cognition, and a decrease in neurogenesis in 
the HPC. These data suggest that modulation of inflammation is a 
potential novel target for alleviating cognitive deficits of nicotine 
abstinence. 
 

5. Subchronic treatment with cannabidiol and the NSAID 
indomethacin prevented the memory impairment observed 
during nicotine withdrawal through the modulation of microglial 
reactivity. Since the presence of cognitive alterations are 
associated with increased risk of smoking relapse, our results 
point to anti-inflammatory drugs as new potential therapeutic 
strategies for nicotine dependence. 
 

6. The orexin system participates in the enhancement of the 
memory triggered by acute nicotine treatment. Signaling through 
both OX1R and OX2R contribute to the pro-cognitive effect of 
nicotine. 
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