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Abstract

Telecommunication networks, power grids, water/gas networks, metro and rail systems
are some examples of transportation networks where this thesis is focused. Nowadays,
most of these are crucial to support our modern society way of life. These critical
infrastructures are built to geographically distribute resources over a certain region. Single
failures can occur in a network and most of them have been well investigated and can be
dealt with and eliminated. However, multiple failures, which are irrelevant statistically,
cause catastrophic consequences to the normal operation of these networks. Unlike single
failures, multiple failures cannot be solved, but their consequences can be mitigated. In
this sense, guaranteeing network robustness to avoid users and services being affected is
essential. However, most critical infrastructures in the real world cannot be adequately
depicted as single isolated networks and so have to be represented as two or more
interdependent networks. In interdependent networks, node interactions are represented
by connectivity links withing the networks (intralinks) and dependency links between the
networks (interlinks).

The proper performance of interdependent networks depends on the normal operation
of the networks that are interconnected. In order to study the robustness of interdependent
networks, three factors should be considered: the network model, the interdependency
model and the failure model. In interdependent networks, a small fraction of the nodes
removed from one network may lead to a dynamic failure process involving both networks
and cause severe consequences to the networks’ operation. The aim of this thesis is to
measure and analyze the robustness of different interdependent networks models under
large-scale failures and, in particular, to consider interdependent networks where at least
one of the networks is a telecommunication network. Both, the effects of different
network models and the dynamic process of failure propagation between networks are
considered. New interconnection strategies are proposed to improve the robustness of the
interconnected networks. This thesis mainly focuses on two types of large-scale failures:
targeted attacks and cascading failures.

Part of this thesis is also focused on analyzing and enhancing some previous work
in both single and interdependent networks. Hence, the topological properties of
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telecommunication networks that determine the sensitivity to random failures and targeted
attacks are identified and compared with previous studies. Through this analysis the
most relevant topological properties that can be used to group networks with similar
robustness behavior are identified. In the case of interdependent networks, robustness
under targeted attacks is analyzed for different interlink patterns between two networks.
The identification of the critical nodes according to the most dangerous targeted attack
in one network is used to interconnect networks with similar and dissimilar topological
properties as a more real case. Results indicate that the interlink patterns can identify
critical new parts in the networks and an attack in a network can change when it is spread
to another network. Moreover, by selecting a suitable interlink pattern, the robustness
level under targeted attacks can be improved.

Additionally, interdependent networks can help to study the interconnection of
physical and logical layers in telecommunication networks (a more general vision of
network multilayer research). Thus, as a study case a robust design of a Software Defined
Network (SDN) is proposed by identifying the critical nodes of the physical network to
find suitable placement for the controllers. By comparing previous proposals, the SDN
network resulting from this new approach performs better in the case of targeted attacks.
Finally, based on previous study, an enhanced region-based interconnection model is
proposed by considering a limit to the number of interlinks between the interconnected
nodes. The new interconnection model has yielded promising results in maintaining an
acceptable level of network robustness under cascading failures with a limited number of
interlinks.



Resumen

Las redes de telecomunicaciones, eléctricas, agua/gas, metros o ferroviarias son un
ejemplo de redes de transporte. Actualmente, la mayorı́a de ellas con cruciales para
soportar nuestro modo de vida de la sociedad moderna. Estas infraestructuras crı́ticas
están construidas para distribuir recursos geográficamente sobre ciertas zonas. Una falla
individual puede ocurrir en una red y la mayorı́a de estas han sido bien investigadas
y pueden enfrentadas y eliminadas. No obstante, las fallas múltiples, las cuales
son irrelevantes estadı́sticamente, causan consecuencias catastróficas a la operación
normal de estas redes. A diferencia de las fallas individuales, las fallas múltiples no
pueden ser resueltas, pero sus consecuencias pueden ser mitigadas. Sin embargo, la
mayorı́a de las infraestructuras crı́ticas del mundo real no pueden ser descritas como
redes independientes, por lo cual tienen que ser representadas como dos o más redes
interdependientes. En las redes interdependientes, las interacciones entre nodos son
representadas por enlaces de conectividad internos (intralinks) y enlaces de dependencia
(interlinks).

El correcto funcionamiento de las redes interdependientes depende de la operación
normal de las redes que están interconectadas. A la hora de estudiar la robustez de las
redes interdependientes, tres factores han de ser considerados: el modelo de la red, el
modelo de interdependencia y el modelo de falla. En las redes interdependientes, una
pequeña fracción de nodos removidos de una red puede desencadenar un proceso de fallo
dinámico que involucra ambas redes y causa consecuencias severas en la operación de
las redes. El objetivo de esta tesis es medir y analizar la robustez de diferentes modelos
de redes interdependientes bajo fallas de gran escala y, en particular, considerar redes
interdependientes donde al menos una de las redes es una red de telecomunicaciones. Los
efectos de diferentes modelos de red y procesos dinámicos de propagación de fallos entre
redes son considerados. Nuevas estrategias de interconexión son propuestas para mejorar
la robustez de las redes interconectadas. El principal tipo de fallas que se abarcan en esta
tesis son las fallas a gran escala, cuando se producen tanto por ataques dirigidos como por
fallas en cascada.

Parte de esta tesis también se enfoca en analizar y mejorar algunos trabajos previos
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tanto en redes individuales como en redes interdependientes. En este caso, se identifican
las propiedades topológicas de las redes de telecomunicaciones que determinan la
sensibilidad a fallas aleatorias y ataques dirigidos y se comparan con estudios previos.
Mediante este análisis se extraen las propiedades topológicas más relevantes que pueden
ser usadas para agrupar redes con un comportamiento de robustez similar. En el caso de
las redes interdependientes, la robustez bajo ataques dirigidos es analizada para diferentes
patrones de enlaces de interdependencia (interlinks) entre dos redes. La identificación
de los nodos crı́ticos en el ataque dirigido más peligroso en una red es usada para
interconectar redes con propiedades topológicas similares y disimilares como un caso
más real. Los resultados indican que los patrones de enlaces de interdependencia pueden
identificar nuevas partes crı́ticas en la red y un ataque en una red puede cambiar cuando se
propaga hacia la otra red. También, la adecuada selección del patrón de interdependencia
puede mejorar el nivel de robustez bajo ataques dirigidos.

Adicionalmente, las redes interdependientes pueden ayudar al estudio de la
interconexión de las capas fı́sica y lógica en las redes de telecomunicaciones (una visón
más general de la investigación de redes multicapa). En este caso, se propone el diseño
robusto de una red SDN considerando la identificación de los nodos crı́ticos de la capa
fı́sica para encontrar las ubicaciones adecuadas para los controladores. Comparando con
propuestas previas, la red SDN resultante de esta nueva propuesta mejora el rendimiento
frente a ataques dirigidos. Finalmente, teniendo en cuenta los estudios previos, se
propone un modelo mejorado para la interconexión basada en regiones considerando un
lı́mite para el número de enlaces de interconexión entre las redes interconectadas. Los
resultados presentados muestran que el nuevo modelo de interconexión mantiene unos
niveles de robustez aceptables bajo fallas en cascada con un número limitado de enlaces
de interdependencia (interlinks).



Resum

Les xarxes de telecomunicacions, alta tensió, aigua/gas, metro o ferrocarrils son un
exemple de xarxes de transport. Actualment, la majoria d’elles son crucials per suportar
el nostre mode de vida a la societat moderna. Aquestes infraestructures critiques estan
construı̈des distribuint els recursos en certes zones geogràficament localitzades. Una
fallada individual o aı̈llada, que pot ocórrer a la xarxa, solen ser esdeveniments controlats
i ben investigats per ser afrontades i/o eliminades. No obstant, les fallades múltiples,
encara que estàticament menys importants, poden causar conseqüències catastròfiques al
normal funcionament de la xarxa. A diferencia de les fallades individuals, les fallades
múltiples no solen poder-se solucionar, però poden aplicar-se mètodes per mitigar les
seves conseqüències. En aquest sentit, garantir la robustesa de la xarxa es essencial per
preservar els serveis previstos als usuaris. No obstant, la majoria de les infraestructures
critiques en el mon real no poden ser descrites con a xarxes independents, per tant han de
ser representades com dos o més xarxes interdependents. En les xarxes interdependents,
les interaccions son representades connectant enllaços de dependències (interlinks).

El correcte funcionament de les xarxes interdependents depèn del correcte mode
d’operació de les xarxes que estan interconnectades. A l’hora d’estudiar la robustesa
de les xarxes interdependents, tres aspectes s’han de considerar: el model de xarxa,
el model d’interdependències i el model de fallades. En xarxes interdependents, una
petita fracció de nodes eliminats en una xarxa pot desencadenar un procés de fallades
dinàmiques entre les dues xarxes causant conseqüències severes a l’operativitat de la
xarxa. L’objectiu d’aquesta tesis és mesurar i analitzar la robustesa de diferents models
de xarxes interdependents sota fallades de gran abast i, en particular, considerant que
almenys una de les xarxes analitzades sigui una xarxa de telecomunicacions. Els efectes
dels models de xarxa i dels processos dinàmics de propagació de fallades entre les xarxes
es tenen en compte. Proposem noves estratègies d’interconnexió per millorar la robustesa
de la xarxes interconnectades. El principal tipus de fallades que cobrim en aquesta tesis,
son les fallades de gran abast, quan es produeixen tan atacs dirigits com fallades en
cascada.

Part d’aquesta tesis també es focalitza en analitzar i millorar algunes del les anteriors
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propostes tan en xarxes úniques com en xarxes interdependents. En aquest cas, es proposa
una comparació de propietats topològiques i com afecten al grau de robustesa front atacs
dirigits en xarxes de telecomunicacions. A través d’aquest anàlisis, s’extreu quines son les
propietats topològiques més rellevants per poder agrupar xarxes amb nivells similars de
robustesa. En el cas de xarxes interdependents, la robustesa front atacs dirigits s’analitzen
diferents patrons de interlinks per connectar les dues xarxes. La identificació dels nodes
més crı́tics segons l’atac més incisiu en una xarxa s’utilitza com a model d’interconnexió
entre topologies amb propietats topològiques similars o dispars. Els resultats indiquen
que els patrons d’interconnexió poden identificar noves parts crı́tiques a la xarxa on un
tipus d’atac pot canviar el seu comportament quan propaga a l’altre xarxa. La conclusió,
és que un bon patró d’interconnexió pot elevar el nivell de robustesa d’avant atacs dirigits.

Addicionalment, les xarxes interdependents poden ajudar a l’estudi de les xarxes
fı́sica i lògica d’una xarxa de telecomunicació (com a visió més general de l’estudi de
xarxes multicapa). En aquest cas, s’ha realitzat l’estudi del disseny de xarxes SDN
considerant la identificació dels nodes crı́tics de la capa fı́sica per triar el posicionament
adequat dels controladors. Comparant amb propostes anteriors, la xarxa SDN resultant
d’aquesta nova aproximació millora el rendiment front a atacs dirigits. Finalment,
basant-nos en estudis previs, presentem un nou model d’interconnexió per regions
considerant la limitació d’Inter enllaços entre xarxes. Els resultats presentats mostren
el manteniment d’uns nivells acceptables de robustesa davant fallades en cascada amb
número limitat d’interlinks.



Chapter 1

Introduction

1.1 Motivation

Transportation networks support most areas of daily life including fundamental systems
and services that are indispensable to the security, economic, and social well-being of
our countries and communities [1, 2]. Customers, businesses, governments and the
military depend on telecommunication networks to satisfy, not only their communication
needs, but also to access information, obtain products and services, manage finances,
handle commerce transactions, respond to disasters, execute network centric operations
and wage warfare [2]. Telecommunication networks, along with water supply systems,
power grids, transportation systems, oil and gas pipelines, are critical infrastructure
systems. Therefore, these infrastructures must have the ability to provide and maintain
an acceptable level of service in the face of multiple failures and challenges to normal
operation [2]. Network robustness, defined as the ability of a network to continue
to operate when subjected to failures [3], can be evaluated by measuring the impact
large-scale failures have in different scenarios.

Large-scale failures in critical infrastructures rarely occur, but when they do, their
consequences are catastrophic and expensive. Failures in critical infrastructures imply
service disruptions that can affect thousands of people, multiple communities, entire
countries, or delimited geographical areas [4]. For instance, in 2014, a human error
in configuring Time-Warner’s Internet routers in the United States resulted in a failure
that prevented 11.4 million clients from accessing broadband services for three hours
[5]. Another well-studied large-scale example is the 2003 Northeast Blackout in the
United States and Canada, where an overload in a transmission line resulted in 50 million
people losing power for up to two days and an estimated cost of US$ 6 billion [6]. This
blackout also affected essential provisioning services such as water supply, metro and
mobile communication.

1



CHAPTER 1. INTRODUCTION 2

Failures have different origins. Sometimes an element of the network fails without
any specific pattern (random failures), and other times are generated by targeted attacks
on the most important network elements (sequential or simultaneous targeted attacks) [2].
Usually, natural disasters (hurricanes, earthquakes, tsunamis, tornadoes, floods or forest
fires), man-made disasters (Electromagnetic Pulse (EMP), Weapons of Mass Destruction
(WMD) or terrorist attacks), technology-related failures (power grid blackouts, hardware
failures, dam failures or nuclear accidents), or cyber-attacks (viruses, worms or denial
of services attacks) are responsible for large-scale failures in transportation networks [2,
7]. In some cases, failures can spread within the network or generate cascading failures.
In the literature, a wide range of metrics for measuring the network robustness can been
found [8–11]. These metrics are either based on the structural or centrality properties
of networks, or can be measured from the networks’ quality of service parameters of
networks [9–11].

One of the lines of research the Broadband Communications and Distributed Systems
(BCDS) research group at the University of Girona (Spain) has is the robustness analysis
of transportation networks under multiple failures and several doctoral dissertations and
research projects have been carried out by the BCDS research group in this area. In [12] the
multi-layer survivability in routing schemes for GMPLS-based networks was studied. The
robustness against large-scale failures in telecommunication networks was also analyzed
in [13] and subsequently, new robustness evaluation mechanisms for complex networks
were proposed in [8]. In addition to these doctoral dissertations, the BCDS research group
has carried out the RoGER project [14], financed by the Spanish Ministry of Economy
and Competitiveness. The RoGER project evaluates the robustness of interdomain routing
networks to large-scale failures, develops new failure models and denes new robustness
metrics [14]. As can be seen in Table 1.1, in these projects, network models failure models
and robustness metrics have been considered as the main aspects with which to analyze
the robustness in the case of isolated transportation networks.

However, many critical infrastructures are highly dependent and need to interact with
another to produce and distribute the essential goods and services required for the proper
functioning of society [1]. Therefore, recent years have seen the interest in robustness
analysis research, not only for isolated complex networks, but also for interdependent
networks [15]. In interdependent networks, node interactions are represented by
connectivity (intralinks) and dependency links (interlinks). A critical infrastructure in
which the nodes of two or more networks are interconnected by interlinks is known as
an interdependent network. A key property of interdependent networks is that a node
failure in one network can spread to nodes in the interconnected networks [16]. Hence,
interdependencies between critical infrastructures mean that the behavior and reliability
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Table 1.1: Aspects considered when studying the robustness of single networks

Topic Description

Network model

Defines how the networks are modeled:

• Theoretical models: random, scale free, small world, etc.

• Real networks: power grids, rail and telecommunication networks

Failure model

Defines how the network elements are removed from the network:

• Random failures

• Targeted attacks: Sequential and simultaneous

• Cascading failures

• Virus and epidemics

Robustness metrics

Defines how the failure impact is measured:

• Structural metrics

• Centrality metrics

• Functional metrics

of one network depend on the other networks [7, 16, 17].
In interdependent networks a small fraction of removed nodes in one network may

lead to a dynamic failure process and cause severe consequences to the networks’
operation [16, 17]. Previous studies have pointed out that there is a critical fraction of
interdependent nodes above which a single node failure can lead to cascading failures
collapsing the whole system, whereas below this critical dependency a failure of a
few nodes causes very little damage to the network [16–19]. A good example of
interdependent networks is the interconnection of a power grid and a telecommunication
network, where the power grid relies on the telecommunication network for control and
the telecommunication network relies on the power grid for electricity supply [20]. A
well-studied real case of large-scale failures in interdependent networks was the 2003
Italy Blackout, where a single failure in the power grid resulted in failures that propagated
over a telecommunication network, ultimately affecting more than 55 million people [16,
20].

As the added complexity of interdependent networks poses new challenges the
interest to research in this area has likewise increased. [21]. Aspects, such as a network
model of the topologies to be interconnected, an interdependency model between the
interconnected networks and a failure model that affects the network, are decisive to
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Table 1.2: Aspects to consider in interdependent network scenarios

Topic Description

Network model

Interdependent networks should be represented by models that capture the
topological properties of the transportation networks to be interconnected. These
properties partially define the network’s sensitivity to certain types of failure
scenarios.

Interdependency model

Defines the properties of the interconnections between the nodes in the networks to
be interconnected:

• Interdependency type: Defines the relationship that exists between the
interconnected nodes. This can be physical, cyber, geographical or logical
interdependency [1].

• Interlink type: Defines the dependency between two interconnected nodes.
Thus, an interlink can be unidirectional [16] or bidirectional [23].

• Interconnection type: Represents the number of nodes placed in the other
network that are interconnected to a node. Thus, interconnection type can
be one-to-one nodal correspondence [16] or one-to-multiple nodal
correspondence [23].

• Interlink pattern: Defines if nodes are to be randomly interconnected or to
follow a certain pattern [25].

• Interconnection constraint: This restrict which nodes can be
interconnected, e.g., centrality (related to node importance in each
network) [29], functionality (related to services to be offered) [25, 34] or
distance (related to node location) [38].

Failure Model

Defines how the network elements are disconnected/removed. Network failures can
be generated from random failures or targeted attacks on nodes or links, which lead t
o dynamic failure processes such as:

• Single affectation to its interconnected nodes

• Cascading failure process

define the vulnerability and behavior of interdependent networks under multiple failures.
Therefore, understanding and analyzing the interdependency between transportation
networks is essential in order to design more robust interdependent networks. Most of
the previous work is focused on analyzing the robustness of interdependent networks in
the context of random failures and targeted attacks triggering a cascading failure process
[16, 18, 19, 22–28]. Meanwhile, other studies are focused on identifying the influence
intedependency types have on the propagation of failures between the interconnected
networks [25, 29–37]. A summary of the aspects that have been considered when
constructing scenarios to evaluate the interdependent network robustness is shown in
Table 1.2.

The Geographically-constrained and Interdependent networks: RObustness
indicatorS (GIROS) project, which is being carried out by the BCDS research group,
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is responding to these challenges by developing new robustness analysis models for
interdependent networks [39]. This research thesis aims to contribute to the GIROS

project by measuring and analyzing the robustness of different interdependent network
models under large-scale failures, and with a particular focus on interdependent networks
where at least one of the networks is a telecommunication network. The effects of
different network topologies and the dynamic process of failure propagation between
networks are also considered and new interconnection strategies are defined to improve
the robustness of the interconnected networks. The case studies considered in this thesis
capture the essential properties of interdependent networks, consequently they can be
used by network administrators in real scenarios in order to identify critical points in their
networks, to improve investment strategies and to assess the social and economic risks
of the critical infrastructure in question. The four scenarios to be studied in this research
work are as follows:

1. Two networks with similar topological properties being interconnected by
bidirectional interlinks and one-to-one nodal correspondence. This scenario
represents interconnection case of of two backbone telecommunication networks
or the interlayer relations in telecommunication networks.

2. Two networks with different topological properties being interconnected by
bidirectional interlinks and one-to-one nodal correspondence. This scenario
represents, for instance, the case of a telecommunication network connected to a
power grid, and vice versa.

3. A multilayer network represented by bidirectional interlinks and one-to-one nodal
correspondence. This study depicts the case of a Software Defined Network (SDN)
modeled as an interdependent network by considering two networks: 1) a physical
network, and 2) a control network running over the physical network.

4. Two geographical networks being interconnected by bidirectional interlinks and
one-to-multiple nodal correspondence. This scenario represents the case of two
telecommunication networks being interconnected according to the proximity of
the nodes.

In Scenarios 1 and 2, the impact targeted attacks have on the robustness of
interdependent networks is analyzed for different interlinks patterns. The failure
spreading of the most dangerous targeted attack in one network to its interconnected
network is also studied. In Scenario 3, the critical parts of a physical network are
identified and the best placements for controllers are found in order to improve the SDN
network robustness against targeted attacks. In Scenario 4, an enhanced region-based
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interconnection model is proposed by considering a limit to the number of interlinks
between the nodes. The influence of reducing the number of interlinks in the robustness
of region-based interdependent networks is also analyzed under cascading failures.

1.2 Research Questions

The aim of this dissertation is to conduct a research on geographical robustness
measures in interdependent transportation networks under large-scale failures, in
particular, to consider interdependent networks where at least one of the networks is a
telecommunication network. This thesis is dedicated to a better understanding of the
following research questions:

1. What are the topological properties of networks that determine the sensitivity to a
certain type of failure?

2. How can the impact of targeted attacks in interdependent networks be reduced?

3. What influence do interlink patterns have on targeted attacks spreading?

4. How can identifying the critical parts in a network influence or improve the network
robustness in the case of targeted attacks?

5. How can a region-based interconnection model be enhanced by reducing the
number of interlinks?

6. What impact does reducing the number of interlinks have on the robustness of
interdependent networks under cascading failures?

1.3 Methodology

Figure 1.1 presents the methodology used to address the research questions, run the
simulations and evaluate the results. The simulations are developed by using the igrapha

package in Rb. The following provides an explanation of each of the process the activities
are described:

• Network model: The telecommunication networks, power grid and the SDN
network are characterized by relationship between the network elements. Thus,
networks to be interconnected are modeled from real topologies or graph models.

a http://igraph.org/r/
b https://www.r-project.org/
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Figure 1.1: Methodology

• Interconnection model: This represents the interconnection strategy to be analyzed.
Thus, networks are interconnected by following an interdependency type, interlink
type, interconnection type, interlink pattern and interconnection constraint.

• Failure model: A failure in a network element (node or edge) is defined as the
physical loss of this element. In interdependent networks, a failure is made by
eliminating the given element of one network and generating a dynamic process
between the interconnected networks.

• Robustness metrics: These are used to compare and quantify the impact failures
have on the network. Three types of robustness metrics can be used: structural,
centrality and functional.

• Results: The simulation results of a failure model on an interdependent network
with a specific interconnection model are analyzed via numerical and visual
representation. These results are validated through the publication of a paper in
JCR indexed journals and its presentation at specied conferences.

1.4 Contributions

The main contributions of this thesis are the following:

• A structural and centrality robustness analysis of real telecommunication networks
under multiple failures to detect the most relevant topological parameters of
networks with similar robustness.

• An interconnection model to mitigate the impact of targeted attacks on network
robustness. This model is based on the analysis of the vulnerability of
the interconnected networks to targeted attacks. Thus, the most suitable
interconnection model is identified in order to reduce the impact of targeted attacks
and enhance the robustness of interdependent critical infrastructures.
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• A more robust design for the control plane in a Software Defined Network is
developed by what are the critical parts of physical topology are in order to place
controllers in the case of targeted attacks.

• An enhanced region-based interconnection model to interconnect two geographical
networks by decreasing the number of interlinks. This model is able to maintain an
acceptable level of network robustness under cascading failures, while reducing the
deployment and maintaining cost.

1.5 Outline of the document

This doctoral thesis is organized into chapters that present the contributions mentioned
above:

• In Chapter 2, a review of the research efforts related to robustness measurements in
single networks under multiple failure scenarios is presented. Moreover, a structural
and centrality robustness comparison considering real telecommunication networks
under random failures and targeted attacks is done. Through this analysis the
common topological properties for grouping networks with similar robustness are
identified. Thus, this chapter is focused on the first research question.

• In Chapter 3, a review of the most relevant research on the robustness measurements
in interdependent networks based on network model, interdependency model and
failure model is presented. Furthermore, an interconnection mechanism based on
interdependency matrices is proposed to mitigate the impact of targeted attacks. The
impact of targeted attacks on the network robustness is also analyzed in two case
studies: 1) two interconnected telecommunication networks and 2) a power grid
interconnected to a telecommunication network. Finally, the failure propagation
between the interconnected networks is also studied. In this chapter the second and
third research questions are addressed.

• In Chapter 4, a Software Defined Network (SDN) is considered as a case study
in order to provide a robust design and to achieve SDN architecture that is more
resilient to targeted attacks. The proposal is focused on identifying what the critical
parts of physical topology are and finding the best controller placements to mitigate
the damage from targeted attacks. Additionally, in order to show the performance
of the proposed algorithm, the robustness of the SDN is analyzed when a targeted
attack occurs in the switches of a real telecommunication network and compared
with previous proposals. Thus, the fourth research question is covered in this
chapter.
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• In Chapter 5, a review of the most relevant research into robustness measurements
in region-based interdependent networks is carried out and an enhanced
interconnection model for region-based interdependent networks is presented. The
model proposed introduces a new strategy for interconnecting nodes between two
geographical networks by limiting the number of interlinks. Finally, the impact of
limiting the number of interlinks on the robustness of region-based interdependent
networks to cascading failures is discussed. Thus, this chapter addresses the fifth
and sixth research questions.

• In Chapter 6, the main contributions of this doctoral dissertation are summarized
and lines for future research are proposed.



Chapter 2

Robustness measurements in single
networks: review and applications

Telecommunication networks, power grids, water/gas networks, metro and rail systems
are some examples of transportation networks. These critical infrastructures are built
to geographically distribute resources over a certain region. Multiple failures can
have catastrophic consequences on the normal operation of networks. In this sense,
guaranteeing network robustness to avoid users and services being affected is essential.
A wide range of metrics have been proposed for measuring the network robustness. In
this chapter a review of research efforts related to robustness measurements in single
networks under multiple failure scenarios is carried out. Moreover, a structural and
centrality robustness comparison taking as study case real telecommunication networks
experiencing random failures and targeted attacks is made. Throughout this analysis
the common topological properties for grouping networks with similar robustness can
be identified.

2.1 Introduction

Transportation networks distribute flows of critical resources in different geographic
regions [40]. Telecommunication networks, via optical fiber cables, electrical
networks, via power lines, water/gas networks, pipelines, are some examples of critical
infrastructures that provide our society with essential services [1, 40]. Therefore, it is
of utmost importance that these networks are robust to avoid the interruption of services
running on them in scenarios of multiple failures. This research particularly focus on
the study of robustness measurements in telecommunication networks under random
failures and targeted attacks. Telecommunication networks are crucial transportation
infrastructures required to support a variety of human activities such as socialization,

10
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entertainment, information gathering, health and well-being, learning, transportation and
emergency communications.

The consequences of multiple failures in telecommunication networks are dramatic
as when they occur millions of users and services can be disconnected. Failures in
telecommunication networks can be caused by fiber cuts, configuration errors, viruses
and worms, cyber-attacks, terrorism or natural disasters [2]. For instance, in 2014, a
human error in configuring TimeWarner’s Internet routers in the United States resulted in
a failure that prevented 11.4 million clients from accessing broadband services for three
hours [5]. Therefore, robustness measuring in telecommunication networks is useful for
network administrators to evaluate and reduce the impact of multiple failures in their
networks. Robustness can be defined as network’s ability to continue performing well
when it is subject to failures [3].

Telecommunication networks are considered as complex according to their network
topology. Through complex networks the structure of networks can be represented
and overall network performance can be understood and predicted. [41]. A basic
representation of a complex network is carried out by the nodes, links and dynamic
processes that run over them. In telecommunication networks, the nodes represent
routers or switches, links are the physical (or logical) interconnections between them and
connections perform the dynamic processes [10]. In the field of complex networks, a large
number of graph metrics have been studied to characterize the topological properties,
structure and dynamics of networks [42–44]. However, a subset of these metrics is only
representative for measuring the network robustness in static or multiple failure scenarios
[9–11]. Thus, measuring the vulnerability of networks to potential failures is an important
aspect for network planning in order to manage and mitigate service disruption.

Safeguarding networks against multiple failures requires an analysis of robustness
measurements to detect the parts of the network that are highly vulnerable. Consequently,
a set of appropriate robustness metrics should be considered to measure the consequences
of such failures in the network performance. In this chapter, a review of the main research
efforts related to robustness measurements in single networks under multiple failure
scenarios is carried out. Moreover, a structural and centrality robustness analysis of real
telecommunication networks under multiple failures (random and targeted) is carried out.
Through this analysis the most relevant topological parameters to group networks with
similar robustness are identified and compared with the results found in previous works.

This chapter is structured as follows. In Section 2.2, the basic notation and models
in complex networks are introduced. A review of robustness metrics in transportation
networks is presented in Section 2.3. Robustness measurements in single networks are
reviewed in 2.4. In Section 2.5, the structural properties of the networks studied in this
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work are described, while the simulation results of structural and centrality robustness
metrics under multiple failure scenarios are presented and analyzed in Section 2.6. Last,
Section 2.7 provides a discussion and lessons learned.

2.2 Review of models in single networks

The characterization of the interactions between the network elements is carried out by
concepts in the field of network science. Essentially, the mathematical graph theory can be
applied to study complex networks in a wide range of disciplines. Traditionally, complex
networks have been modelled as random graphs. As network science has continued to
grow in importance and popularity, other complex network models have been developed
[41]. The two most well-known examples of recently introduced complex network models
are those of small-world and scale-free graphs [41]. In this section, the basic notation in
single networks and models of complex networks are introduced.

2.2.1 Basic notation in single networks

Generally, complex networks are studied by applying methods developed in the field of
mathematical graph theory. In the context of graph-theory, mathematical structures called
graphs are used to model pairwise connections between components of a network [41]. A
complete definition of a network must include both structural and behavioral information
[45]. Graphs consist of nodes or components (vertices), links or connections (edges), and
a mapping function that defines how nodes connect to one another [41].

Let G(S,U) be an unweighted and undirected graph with a set of nodes S and a set
of links U . Let us denote N as the number of nodes and L as the number of links. The
adjacency matrix A of a graph G is an N×N symmetric matrix with elements ai j that
are either 1 or 0 depending on whether there is a link between nodes i and j or not. The
Laplacian matrix Q of G is an N×N symmetric matrix Q = ∆−A, where ∆ = diag(di) is
the N×N diagonal degree matrix with the elements di = ∑

N
j=1 ai j. Note that the degree of

a node i (di) is the number of outgoing links from the node. Interested readers are referred
to [45] for a detailed coverage of graph theory and its relevance to this research.

2.2.2 Random graph of Erdős-Rényi

The random graph of Erdős-Rényi (ER) is one of the most studied models of complex
networks. Let us denote the random graph by ERp(N), where N is the number of nodes
in the graph and p is the probability of having a link between any two nodes (or in short,
the link probability). ERp(N) is the set of all such graphs in which a graph having L links
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appears with probability pL(1− p)Lmax−L , where Lmax is the maximum possible number
of links. Many properties of the random graph are known analytically in the limit of large
graph size N, as was shown by Erdős-Rényi in [46] and later by Bollobás [47]. Typically,
for large graph size N, the degree distribution of the random graph model, which is
a binomial distribution, can be replaced by a Poisson distribution [48]. The expected
structure of the random graph varies depending on the value of p. most important point is
that it possesses a phase transition: from a low link density or low p value for which there
are few links and many small components to a high link density or high p value for which
an extensive fraction of all the nodes are joined together in a single giant component [41].

2.2.3 Small-World graph of Watts-Strogatz

The Small-World (SW) model describes the fact that despite the large graph size, in most
real-world networks there is a relatively short path between any two nodes [48]. The
most studied SW model is the one proposed by Watts and Strogatz [49], which starts by
building the ring RN with N nodes and then joins each node to 2× s neighbors (s on either
side of the ring) [48]. This results in the ring lattice RNs with L = s×N links. The SW
graph is then created by moving, with probability pr, one end of each link (connected to
a clockwise neighbor) to a new node chosen uniformly in the ring lattice, except that no
double links or loops are allowed [48]. The rewiring process allows the small-world model
to interpolate between a regular lattice (pr = 0) and something which is similar, though not
identical, to a random graph (pr = 1) [49]. For already small pr, the small-world becomes
a locally clustered network in which two arbitrary nodes are connected by a small number
of intermediate links. This model is located between an ordered finite lattice and a random
graph, presenting the small world property and the high clustering coefficient [44]. Watts
and Strogatz [49] showed that small-world networks are common in a variety of realms
ranging from the C-Elegans neuronal system to power grids.

2.2.4 Scale-Free graph of Barabási-Albert

The Scale-Free (SF) model has a power-law degree distribution which contrasts with
that of random or small-world graphs. Barabási [50] showed that the growth and
preferential attachment of nodes, which implies that the nodes with larger degrees are
more likely candidates for the attachment of new nodes, give rise to a class of graphs
with a power-law degree distribution. The Barabási-Albert model starts with a small
number m0 of fully-meshed nodes, followed at every step by a new node attached to
m≤m0 = 2×m+1 nodes already present in the system [48]. After t steps this procedure
results in a graph with N = t +m0 nodes and L = m0(m0−1)

2 +mt links [48]. The structure
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of the Internet and the World Wide Web (WWW), which consist of a small number of
extremely popular nodes or sites called hubs and a large number of nodes or unpopular
sites with few links, are examples of scale-free networks [45, 50].

2.3 Review of robustness metrics in single networks

In the field of complex networks a large number of graph metrics have been studied
to characterize the topological properties, structure and dynamics of networks [42–44].
However, a subset of these metrics is only representative for measuring network
robustness in static or multiple failure scenarios. To classify robustness metrics we
consider a taxonomy based on structural properties, centrality measures and services
supported by networks. A preliminary version of this taxonomy can be found in [10].
Figure 2.1 shows an extended taxonomy of robustness metrics. A brief description of
these robustness metrics is presented in this section.

2.3.1 Structural metrics

Structural metrics are a well-known area in the conventional analysis of graphs. They
are also used to explain stability - or the lack of it - in a network, and to determine how
viruses spread through a network under node/link removal [45]. A preliminary robustness
analysis in isolated networks is carried out by considering the following basic network
properties: average nodal degree (〈k〉), average shortest path length (〈l〉), Diameter (D)
and assortativity coefficient (r). Other metrics are based on these basic network properties
such as heterogeneity (σk), efficiency (ε) and Graph Diversity (GD).

Vertex connectivity (κv) and edge connectivity (κe) are an extension of the classical
connectivity (κ) measurement. In addition, structural metrics also use the Adjacency
(A) and Laplacian (Q) matrices to abstract and calculate the robustness of the networks
e.g., Symmetry Ratio (SR), largest eigenvalue (λ1), algebraic connectivity (λ2), natural
connectivity (λ̄ ), Effective Graph Resistance (EGR) and Weighted Spectrum (WS). Other
metrics that have been used to measure the robustness in networks based on their structural
properties are clustering coefficient (〈C〉), percolation limit (ρc), Number of Spanning
Trees (NST ), Average Two-Terminal Reliability (AT T R) and Viral Conductance (VC).
The key features of these structural metrics are described below.

2.3.1.1 Average nodal degree

Let di be the degree of node i in a network G with N nodes. The average nodal degree
(〈k〉) of G is defined as [51]:
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Structural



Average nodal degree (〈k〉)
Average shortest path length (〈l〉)
Diameter (D)
Assortativity coefficient (r)
Heterogeneity (σk)
Efficiency (ε)
Vertex connectivity (κv)
Edge connectivity (κe)
Cluster coefficient (〈C〉)
Symmetry Ratio (SR)
Largest eigenvalue (λ1)
Algebraic connectivity (λ2)
Natural connectivity (λ̄ )
Effective Graph Resistance (EGR)
Graph Diversity (GD)
Weighted Spectrum (WS)
Percolation limit (ρc)
Number of Spanning Trees (NST )
Average Two-Terminal Reliability (AT T R)
Viral Conductance (VC)

Centrality



Degree centrality (dc)
Eigenvector centrality (ec)
Closeness centrality (cc)
Betweenness centrality (bc)
Cross-clique centrality
Spreaders

Functional



Elasticity (E)
QuaNtitative Robustness Metric (QNRM)
QuaLitative Robustness Metric (QLRM)
Endurance (ξ )
R-value
R∗-value (robustness surfaces (Ω))

Figure 2.1: Taxonomy of robustness metrics in single networks

〈k〉= 1
N

N

∑
i=1

di (2.1)

Networks with higher 〈k〉 are on average considered as better-connected and as a
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result are more likely robust (i.e., there are more chances to establish new connections)
[10]. However, detailed topology characterization based only on the average degree is
rather limited, since graphs with the same average node degree can have vastly different
structures [52].

2.3.1.2 Average shortest path length

Regarding the average shortest path length (〈l〉) this is calculated as an average of all the
shortest paths between all the possible origindestination node pairs of the network [10]:

〈l〉= 2
N(N−1)

N

∑
i=1

N

∑
j=i+1

li j, (2.2)

where N is the number of nodes in the network and li j is the shortest path between nodes
i and j in the network [11]. Values can take any number larger than or equal to 1, where
〈l〉 = 1 means that all the nodes are directly connected to each other [11]. Therefore, a
network is more robust if 〈l〉 is at its lowest as then it is likely to lose fewer connections
[10].

2.3.1.3 Diameter

The Diameter (D), like the average nodal degree, is another coarse robustness metric of
a network. The diameter D is the longest of all the shortest paths between pairs of nodes
[53]:

D = max
(
li j
)
, (2.3)

where li j is the shortest path between nodes i and j in the network. Thus, one would want
the diameter of networks to be low to achieve the higher robustness.

2.3.1.4 Assortativity coefficient

The assortativity coefficient (r) lies within the range [−1,1] and it defines two types of
networks. Disassortative networks with r < 0 have an excess of links connecting nodes
of dissimilar degrees. Assortative networks with r > 0, which have an excess of links
connecting nodes of similar degrees, have the opposite properties [52]. As can be found
in [54], such networks exhibit greater vulnerability to certain types of targeted attacks.
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2.3.1.5 Heterogeneity

Based on 〈k〉, the heterogeneity (σk) is a coefficient of variation of the connectivity and it
is defined as [55]:

σk =
StDev(〈k〉)
〈k〉

, (2.4)

where StDev(〈k〉) is the standard deviation of the average nodal degree and 〈k〉 is the
average nodal degree. Lower σk values translate to higher network robustness [10].

2.3.1.6 Efficiency

Similar to the average shortest path length, the efficiency (ε) is calculated as the averaged
sum of the reciprocal (multiplicative inverse) of the shortest paths [56]:

ε =
2

N(N−1)

N

∑
i=1

N

∑
j=i+1

1
li j
, (2.5)

where N is the number of nodes in the network and li j is the shortest path between nodes
i and j in the network. The greater the ε value, the greater the network robustness is [11].

2.3.1.7 Vertex and edge connectivity

In addition to the classical connectivity measure κ , which distinguishes connected graphs
(κ = 1) and unconnected graphs (κ = 0), two more connectivity measures have been
defined: vertex and edge connectivity [57]. Vertex connectivity (κv) represents the
smallest number of nodes that must be removed to disconnect the network. The same
definition can be applied to edge connectivity (κe) when considering links instead of
nodes.

2.3.1.8 Clustering coefficient

The clustering coefficient (〈C〉) captures the presence of triangles formed by a set of three
nodes and compares the number of triangles to the number of connected triples [49]. The
clustering coefficient (Ci) of a node i is the portion of actual links between the nodes
within its neighborhood divided by the maximal possible links between them [49]. Note
that the neighborhood of node i includes all the nodes directly connected to it but excludes
the node i itself. A larger Ci value means that the node has a more compact system of
connections with its neighbors [58]. The clustering coefficient of a network is the average
of all individual Ci’s, calculated as [58]:
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〈C〉= 1
N

N

∑
i=1

Ci, (2.6)

where N is the number of nodes in the network and Ci is the clustering coefficient of a node
i. The higher the clustering coefficient is, the higher the network robustness is, because
the number of alternative paths increases with the number of triangles in the presence of
failure on a node or link [11]. The clustering coefficient ranges within the interval [0,1],
where 〈C〉= 1 indicates all the possible existing triangles due to the fact that all the nodes
are interconnected.

2.3.1.9 Symmetry ratio

The Symmetry Ratio (SR) has been used for partially predicting the robustness of a
network in the face of attacks [59]. The Symmetry Ratio SR for a network G is calculated
as [59]:

SR =
e

D+1
, (2.7)

where e is the number of distinct eigenvalues of the Adjacency matrix A and D is the
diameter. Networks with low symmetry ratio values are considered more robust to random
failures or targeted attacks [10].

2.3.1.10 Largest eigenvalue

The largest eigenvalue or spectral radius (λ1) is the largest nonzero eigenvalue of the
Adjacency matrix of a network [45]. Generally, networks with high values of λ1 have
a small D and higher node distinct paths. The λ1 metric also provides information
on network robustness [52] and captures the virus propagation properties of networks
defining an epidemic threshold of node infection [60].

2.3.1.11 Algebraic connectivity

Algebraic connectivity (λ2) is defined as the second smallest Laplacian eigenvalue [61].
Let us order the eigenvalues of the Laplacian matrix Q as 0 = λ1 ≤ λ2 ≤ ·· · ≤ λN . Then,
the algebraic connectivity is λ2. Algebraic connectivity measures how difficult it is to
break the network into different components is. If λ2 = 0 the graph is disconnected, so
higher λ2 values indicate better network robustness [48]. Most λ2 values are between zero
and one, but can be equal to the number of nodes when all the nodes are interconnected
[11].
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2.3.1.12 Natural connectivity

Networks with identical algebraic connectivity (λ2) can be compared using natural
connectivity (λ̄ ). The λ̄ metric characterizes the redundancy of alternative paths by
quantifying the weighted number of closed walks of all lengths [62]. In addition, λ̄ is
expressed as the average of the eigenvalues of the adjacency matrix [62]:

λ̄ = ln

(
1
N

N

∑
i=1

eλi

)
, (2.8)

where N is the number of nodes in the network. A higher λ̄ value indicates a more robust
network [63].

2.3.1.13 Effective graph resistance

The Effective Graph Resistance (EGR) can be written as a function of nonzero Laplacian
eigenvalues (λi). Let us order the eigenvalues of the Laplacian matrix Q as 0 = λN ≤
λN−1 ≤ ·· · ≤ λ1. Then, the Effective Graph Resistance EGR is calculated as [40]:

EGR = N
N−1

∑
i=1

1
λi
, (2.9)

where N is the number of nodes in the network. Note that the second smallest eigenvalue
λN−1 = λ2 is the algebraic connectivity defined previously. The effective graph resistance
is the sum of the effective resistances over all pairs of nodes. Then, the EGR metric
measures the number of paths between two nodes and their length. The smaller the EGR

value is, the more robust the network [64]. Therefore, EGR strictly decreases if a link is
added into a graph and strictly increases if a link is removed from a graph [40, 64, 65].

2.3.1.14 Graph diversity

The Graph Diversity (GD) is related to the number of nodes shared with the shortest path
considering all the possible paths between two nodes. This metric is equal to one when
the paths do not share any common point of failure (node or link). Total Graph Diversity
(T GD) is the average of all the Effective Path Diversities (EPDs) over all the paths [66].
Consequently, calculating this metric requires significant computational resources. Larger
T GD indicates greater robustness [66].

2.3.1.15 Weighted spectrum

The Weighted Spectrum (WS) metric is based on the eigenvalues (λi) of the normalized
Laplacian matrix and the n-cycle of a graph. The Weighted Spectrum (WS) is given as the
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normalized sum of n-cycles [67]:

WS = N
N−1

∑
i=1

(1−λi)
n, (2.10)

where N is the number of nodes in the network. Different values of n indicate different
topology properties to be analyzed e.g., n = 3 is associated with the clustering coefficient,
while n = 4 is related to the number of disjoint paths in a network [67]. The network
robustness is calculated as W ′−W , where W denotes the default WS of the original graph
and W ′ denotes the WS of the resulting network after link or nodal failures [68].

2.3.1.16 Percolation limit

The percolation limit or percolation threshold (ρc) returns the critical fraction of nodes
that need to be removed before the network disintegrates [11]. Degree diversity (κ0) is
taken into account to calculate the percolation limit [69]. Hence, the higher the degree
diversity, the higher the percolation limit. Then, a higher ρc indicates that the fraction of
nodes that can be removed without disconnecting the network is higher, which means that
the network is more robust [11]. According to [70], the percolation limit can be calculated
as:

1−ρc =
1

κ0−1
, (2.11)

where κ0 is the degree diversity, also called the second-order average degree. In a network
G with corresponding nodal degrees d1,d2, . . . ,dN , the degree diversity (κ0) is defined as
[35]:

〈k0〉=
∑

N
i=1 d2

i

∑
N
i=1 di

(2.12)

2.3.1.17 Number of spanning trees

The number of spanning trees (a spanning tree is a subgraph containing N−1 edges and
no cycles [3]) as an indicator of network robustness has been suggested in [71]. The
Number of Spanning Trees (NST ) counts all the possible spanning trees that exist for a
network. The NST in a network can be determined by Kirchhof’s matrix-tree theorem
[72]. However, it has been proven that the NST can be written as a function of the
unweighted Laplacian eigenvalues [3]:

NST =
1
N

N

∏
i=2

λi (2.13)
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2.3.1.18 Average two-terminal reliability

The Average Two-Terminal Reliability (AT T R) measures the probability of a
randomly-chosen pair of nodes being connected [73]. The two-terminal reliability
between two nodes is equal to one if a path exists between them; otherwise, it is equal to
zero [4]. Thus, when the network is fully connected, exactly one component exists and
AT T R = 1. In another case [4], the AT T R metric is calculated as the sum over the number
of node pairs in each connected component and divided by the total number of node pairs
in the network. The AT T R is defined as [73]:

AT T R =
∑

c
i=1 Ki(Ki−1)
N(N−1)

, (2.14)

where c is the number of components, Ki is the number of nodes in component i and
N is the number of nodes in the network. At failure scenarios, the higher the average
two-terminal reliability is, the higher the robustness is [10, 73].

2.3.1.19 Viral conductance

The last structural metric is Viral Conductance (VC), where the robustness is measured
with respect to virus spread [74]. This metric is measured by considering the area
under the curve that provides the fraction of infected nodes in steady-state for a range
of epidemic intensities [74]. The lower the VC in a network, the more robust with respect
to virus spread it is. However, as this work is focused on random failures and targeted
attacks, the VC metric is not evaluated.

2.3.2 Centrality metrics

This group of metrics attempts to identify which elements in a network are the most
important or central [54]. Consequently, they could help disseminate information in the
network faster, stopping epidemics and protecting the network from breaking. These
metrics also define the network centralization as a measure of how central the most central
node is in relation to how central all the other nodes are [75, 76]. Centralization, which
is a key characteristic of a network, can be used to measure network robustness as the
differences between the centrality of the most central node and that of all the others [75,
76]. In general, the most central network is the most robust i.e., if the network has more
nodes with similar centrality values, there are then several spots to attack when centrality
metrics are used to select the elements to be removed.

A large number of centrality metrics have been proposed to identify the most central
nodes in networks. However, the following are the most common: degree centrality,
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eigenvector centrality, closeness centrality, betweenness centrality and spreaders. In
degree and eigenvector centralities the importance of a node is given in terms of its
neighbors, whereas in closeness and betweenness centralities the importance is related to
the path lengths. A brief description of the most common centrality metrics is presented
in this section.

2.3.2.1 Degree centrality

Degree centrality (dc) is the simplest measure of nodal centrality and is determined by
the number of neighbors connected to a node [77]. The larger the degree, the more
important the node is. However, if a node with a high nodal degree fails, potentially higher
numbers of connections are also prone to being affected. In many real networks only a
small number of nodes have high degrees e.g., in social networks or citation networks
the number of edges connected to a given vertex may often be a good measure of its
importance. Thus, the degree centrality of a node i (dc) is simply the degree of node i

given by [54]:

dc =
N

∑
j=1

ai j, (2.15)

where N is the number of nodes in the network and ai j is an entry of the adjacency matrix
(A) of the network.

2.3.2.2 Eigenvalue centrality

Accordingly, eigenvalue centrality (ec) is based on the notion that a node should be viewed
as important if it is linked to other important nodes [78]. Thus, the eigenvalue centrality
can take a large value either by the node being connected to many other nodes or by
it being connected to a small number of important nodes. The eigenvalue centrality is
proportional to the sum of the centrality scores of its neighbors, where the centrality
corresponds to the largest eigenvector of the adjacency matrix. The eigenvalue centrality
of a node i (ec) is given by [78]:

ec =
1
γ

N

∑
j=1

ec j, (2.16)

where γ is a constant and ec j are the eigenvalue centralities of its neighboring nodes.
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2.3.2.3 Closeness centrality

With closeness centrality (cc) the nodal importance is measured by how close a node is to
other nodes [77]. It is based on the length of the shortest path between a given node and
all the other nodes in the network. An important node is typically close to the other node
if it can reach the whole network more quickly than the non-close nodes. Consequently, a
node with the highest closeness centrality has the shortest distance to the other nodes, on
average. The closeness centrality of a node i (cc) is given by [54]:

cc =
N

∑
N
j=1 li j

, (2.17)

where N is the number of nodes in the network and li j is the shortest path between nodes
i and j in the network.

2.3.2.4 Betweenness centrality

Betweenness centrality (bc) is when the number of shortest paths that pass through a
given node is counted [75]. A node may have a high betweenness centrality while
being connected to only a small number of other vertices (which are not necessarily
important/central). This is due to the fact that nodes that act as bridges between groups
of other nodes typically have high bc. Thus, nodes with high bc play a broker role in
the network and are important in communication and information diffusion [77]. The
betweenness centrality of a node i (bc) is given by:

bc =
N

∑
j=1

gi j(i)
gi j

, (2.18)

where N is the number of nodes in the network, gi j(i) is the number of shortest paths
between nodes i and j passing through node i and gi j is the total number of shortest paths
between nodes i and j. Similar to bc, the link betweenness centrality (lc) can also be
calculated as the degree to which a link makes other connections possible.

2.3.2.5 Spreaders

Centrality metrics also take into account measures in epidemic scenarios where the best
spreaders of an epidemic do not correspond to the most central nodes. Instead, the most
efficient spreaders are those located within the core of the network according to a k-shell
decomposition analysis [79]. This metric is not evaluated in this work as it is focused on
random and targeted attacks.
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2.3.3 Functional metrics

This set of metrics quantifies the variation of the performance of a network in response
to multiple failures by focusing on the Quality of Service (QoS) parameters of the
established connections. Thus, these metrics define key aspects of the services that run
over a network. Services can be classified according to different QoS parameters, such
as: throughput, delay, jitter, packet loss, etc. Some network failures, if not all, impact
all these parameters resulting in a reduction of the QoS levels [80]. Moreover, from
the perspective of the operator network, failures also affect the number of connections
established and the future connection demands [80]. In this section a short description of
functional robustness metrics is presented.

2.3.3.1 Elasticity

The concept of robustness considered by this metric is the ability of a network to maintain
its total throughput under node and link removal [81]. The Elasticity (E) is the area under
the curve of throughput (TG) versus the percentage of nodes removed. Initially, TG(0) = 1,
which accounts for the normalized throughput. The elasticity decreases as the percentage
of removed nodes is increased and thus this metric provides a measure of robustness at
any point of node removal [81]. Therefore, when n nodes have been removed, E can be
computed as [81]:

E
( n

N

)
=

1
2N

n

∑
k=0

(
TG

(
k
N

)
+TG

(
k+1

N

))
, (2.19)

where N is the number of nodes in the network and TG(
k
N ) is the throughput at each

interval when k nodes are removed.

2.3.3.2 Quantitative robustness metric

The QuaNtitative Robustness Metric (QNRM) analyses how multiple failures affect the
number of connections established in a network. In this metric, the number of Blocked
Connections (BC) in each time step are analyzed. Let us define BC as a connection that
should have been established at time t but could not be established as a consequence of
nodal failures. The QNRM in each time stamp t is defined as [80]:

QNRM[t] =
BC(t)

T TC(t)
, (2.20)

where BC(t) is the number of BC in a given time step and T TC(t) is the number of total
connections that should have been established in the same time step. Then, the average of
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all the values obtained during the interval of interest is computed as [80]:

QNRM =
∑

Total
t=0 QNRM[t]

Total
, (2.21)

where Total is the maximum number of time steps.

2.3.3.3 Qualitative robustness metric

The QuaLitative Robustness Metric (QLRM) analyses how the quality of service on a
network varies when a failure occurs in the network. This metric measures the average
shortest path length (〈l〉) in each time step. In contrast to the QNRM, the QLRM evaluates
the Established Connections (EC). In order to compare the QLRM for different topologies
the values obtained from the average shortest path length are normalized. The QLRM is
defined as [80]:

QLRM =
U(〈l〉)
U(P)

, (2.22)

where U(〈l〉) is the quotient of the standard deviation of the 〈l〉 of the topology and its 〈l〉
before a failure, and U(P) is the same quotient, but calculated when a failure has affected
a certain percentage of nodes (P) in the network.

2.3.3.4 R-value

Using the R-value, the network robustness is given by an arbitrary topological vector and
a weight vector [82]. The topological vector (t̂) components take into consideration one or
more QoS parameters, network properties or any other structural robustness metric e.g.,
hop-count, average shortest path length (〈l〉), maximum nodal degree (kmax) or algebraic
connectivity (λ2) [82]. The weight vector (ŵ) components reflect the importance of the
topological vector for the network service [82]. The R-value of the network robustness is
computed by a weighted, linear norm [82]:

R =
m

∑
k=1

ŵkt̂k, (2.23)

where ŵ and t̂ are the m× 1 weight and the topology vectors, respectively. Thus, the
R-value includes several graph metrics characterizing network robustness. The R∗-value
can take values in the interval [0, 1] where R = 0 is the absence of network robustness
and R = 1 is perfect robustness [82].
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2.3.3.5 Endurance

Endurance (ξ ) is also calculated by one or more QoS parameters (e.g., delay) or
topological metrics (e.g., size of the largest connected component). In contrast to the
R-value, endurance places greater importance on perturbations affecting low percentages
of elements in a network. Endurance is normalized to the interval [0, 1], where ξ = 1
denotes the non-existence of robustness, whereas ξ = 0 is correlated to the maximum
possible degree of robustness [83].

2.3.3.6 R∗-value

The R∗-value is a functional metric, which is the R-value computed via a normalized
eigenvector or Principal Component (PC). The PC gives each of the robustness metrics
dimension and non-arbitrary weights [84]. The R∗-value is defined as [84]:

R∗ =
m

∑
k=1

v̂kt̂k, (2.24)

where v̂ is the m× 1 normalized eigenvector or Principal Component (PC) and t̂ is the
m×1 topology vector (set of robustness metrics). Without failures the R∗-value is set to
one and can take values in the interval [0,+∞) when failures are considered [84]. Then, a
greater R∗-value will mean better robustness. A graphical representation of the R∗-value
is called the robustness surface (Ω) and and it enables a visual assessment of network
robustness variability to be made [84].

The robustness surface allows the network performance variability for a given failure
scenario to be visually assessed [84]. In fact, Ω is a matrix where the rows are the
percentage of failures (P) and the columns are the distinct failure configurations (m). The
list of percentage of failures P (e.g., P = 1%,2%, . . . ,100%) denotes the range of failures
for which the robustness is evaluated [84]. A failure configuration represents a realization
of the failure process. The different failure configurations m depict the different subsets of
elements that fail for a given percentage of failures, with each subset being distinct from
one another [84]. The robustness value in Ω[p][i], where p ∈ 1%..|P|% and i ∈ 1 . . .m, is
given by R∗ (2.24) [84].

2.4 Review of robustness measurements in single
networks under multiple failure scenarios

Failures on network elements (nodes or links) can affect the normal operation of networks
due to their physical removal from the network. Removing a network element causes
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Figure 2.2: Taxonomy of multiple failures in single networks

a change in the topological structure of a network, which has consequences in terms
of system performance, properties and architecture, such as transportation properties,
information delivery efficiency and the reachability of network components (i.e., ability
to go from one node of the network to another) [85, 86]. Therefore, services supported
by a network and users connected to it may experience catastrophic consequences due to
loss of connectivity. In order to protect networks against multiple failures, several works
have focused on studying the vulnerability of single complex networks. In this section
a classification of multiple failures and a review of robustness measurements in single
networks are presented.

2.4.1 Types of multiple failures in single networks

Failures that affect critical infrastructures have several origins including natural disasters,
man-made disasters, technology-related disasters or cyber-attacks [2, 7]. For instance, the
geographical layout of the fiber optic infrastructure has a critical impact on the robustness
of the network in the face of geographical physical failures such as earthquakes and
Electromagnetic Pulse (EMP) attacks [4]. Figure 2.2 shows a general classification of
multiple failures based on affected elements, temporal dimension and strategy used to
remove the networks’ elements. Interactions between network elements (node or links)
are responsible for the correct functioning of a network. Thus, a failure on a node or link
may cause service interruption due to decreased network performance [85]. Moreover,
depending on the nodes or links that have been removed from the network, the impact of
a failure can be catastrophic.

Regarding the temporal dimension, failure types can be either static or dynamic.
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Static failures are essentially one-off failures that affect one or more elements at any given
moment [10]. Dynamic failures have a temporal dimension [10] i.e., in a given time one or
more network elements initially fail, but due to the dynamics of failure it spreads to other
elements. Then, the initial failure causes other elements to also fail after a certain time.
The spread of epidemic-like failures in telecommunication networks [87] and cascading
failures in power grids [88] are some examples of dynamic failures in complex networks.

The strategy used to remove nodes or links plays a crucial role in triggering a
failure and damaging a network. Thus, when an object that causes an attack knows
and uses precise information about the network’s topological structure, it is called an
attack with white-information (targeted) [89]. However, when the attacker has little or
no information, it is considered a black-information attack (random) [89]. The former
would be more related to intentional failures, while the latter would be linked more with
unintentional failures [10, 89]. The remainder of this section is focused on random and
targeted attacks as the main failure scenarios in telecommunication networks.

2.4.1. Random failures

In a random (unintentional) failure, nodal or link failures occur selecting the elements at
random [10, 70]. This type of failure is also called unintentional as they appear randomly.
Human error, manufacturing defects, worn-out mechanical parts and natural disasters are
some examples of random failures because a certain fraction of the network elements
and their connections are removed randomly [4, 70, 90]. When a network is subject to
random failures their integrity might be compromised [70]. Thus, the impact of such
failures involves the affectation of large regions due to the geographical distribution of
the network elements.

Random failure damages nodes (links) with uniform probability, which can be seen as
a simple abstraction of the successive error in a complex network [91]. Random failures
lead to a probabilistic measure with statistical independence due to the fact that the nature
of the failure is unknown and it has occurred independently [90, 92]. Consequently, in
the random failure model considered in this work, all the network elements have the same
probability to fail and this does not depend on the failure of another. The probability of
a network element (node or link) i becoming inactive due to random failure is given by
[93]:

Pra(i) =
1
|NE|

, (2.25)

where |NE| is the number of network elements. Therefore, if the elements that fail are
nodes, then |NE|= N, whereas if the elements that fail are links, then |NE|= L. When a
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network is subjected to random failures, the availability of their elements (nodes or links)
can be calculated in order to estimate the failure probability of the network. Let us define
the binary-state of a network element NE as S(NEi), where S(NEi) = 1 if the element is
in up (failure free) state, and S(NEi) = 0 is if the element is in down (failed) state [92].
Let us also consider the set of the failure states of the network S = Sn as a combination
of the states of the network elements. Therefore, the probability of a network state Sn is
Pr(Sn) and is given by:

Pr(Sn) = ∏
NEi∈NEup(Sn)

Λ(NEi) ∏
NEi∈NEdown(Sn)

(1−Λ(NEi)) , (2.26)

where NEup(Sn) and NEdown(Sn) denote the set of network elements being in the up and
down states in network state Sn, respectively, and Λ(NEi) is the availability of network
element NEi. Availability is calculated as a function of the failure rate of the network
elements, which can be defined from the historical data set of failures. Therefore, the
probability of a network failing due to random failures depends on the failed network
elements in the given network state. Knowing the failure probability of a network is
relevant for network design and planning because network robustness can be measured
when a fraction of random elements are removed from the network in order to assess the
impact of failures and take actions to mitigate them.

2.4.1.2 Targeted failures

In targeted (intentional) failures, the network elements are removed with the express
purpose of maximizing the damage done to a network [54, 91, 94]. In the literature,
thses are known as targeted attacks where the most important nodes based on certain
property are the first to be removed from the network. For instance, in backbone
telecommunication networks the most vulnerable routers can be identified by the number
of shortest paths passing through a given router or by the number of physical links from
one router to others. Moreover, other real world features, such as the number of potentially
affected users and socio-political and economic considerations, are also used to rank the
nodes to be removed in a telecommunication networks [10]. Figure 2.3 shows that all the
nodes in the network are ranked by their degree centrality (dc) and the attack is triggered
on node 2 because it has the highest degree centrality (so it is the most vulnerable). As
can be seen, the network is fragmented in several components causing enormous damage
to the network.

Targeted attacks, on the other hand, are not random and the attacker must have
some knowledge about the network topology in order to trigger the attack on the most
vulnerable (the most important) network elements [90, 91]. Centrality metrics (e.g.,
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(a) Node vulnerability is calculated (b) Node 2 is the first to be attacked

Figure 2.3: Targeted attacks in single networks

degree, betweenness, closeness and eigenvector centrality) are widely used to identify
the critical elements (nodes or links) in networks and to discern the probability that an
element will be attacked initially and become inactive [40, 54, 85, 86, 90, 91, 93, 94].
The probability of a network element i (node or link) with a given property (e.g., centrality
metric) value becoming inactive due to a targeted attack is given by [93]:

Pta(wi) =
wi

∑
|NE|
i=1 wi

, (2.27)

where wi is the property value selected to identify the importance of the network
element and |NE| is the number of network elements. Therefore, if the nodes fail, then
|NE| = N whereas if the links fail, then |NE| = L. Moreover, in contrast to random
failures, in a targeted attack a network element has a different failure probability from the
others, which is highest for the most important network elements. However, its failure
probability does not depend on failure of the others. There are two major strategies for
selecting which elements are attacked:

• Simultaneous targeted attack: in this type of targeted attack, first of all
vulnerability is calculated for all the elements (node or link) in the network. Second,
the elements are ranked once by the attacker from the most vulnerable (the most
important) to the least vulnerable (the least important) [90]. Last, a specified
fraction of the elements is removed based on this sorted list i.e., from the most
vulnerable element to the least vulnerable element.

In telecommunication networks, some failure scenarios can be modeled as
simultaneous targeted attacks e.g., in an Ethernet switched network, the most
vulnerable switches can be identified by the number of connected links. Thus, the
attack can target the switches with the highest number of links in order to maximize
the damage. Note that although other properties (role, traffic load, placement,
etc.) can be considered to identify the most important switches in the network,
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the number of interlinks is the most illustrative example.

• Sequential targeted attack: vulnerability is calculated for all the elements (node or
link) in the original network, and the element with the highest vulnerability is then
removed. Next, the vulnerability of all the elements in the resulting network are
recalculated and once again the highest ranked element is removed and so on [54,
85]. This process of recalculating the vulnerability of elements and removing the
highest ranked element continues until the desired fraction of elements is reached.

Sequential targeted attack may be used to describe certain types of failure scenarios
in telecommunication networks e.g., the most vulnerable routers of a backbone
network can be identified in order to protect the network’s function. When a router
fails, its functioning can be distributed to any one router in the network. Then, the
failure of one router will affect the importance of the remaining ones. Therefore,
the sequential targeted attack is appropriate to model the network vulnerability in
such scenarios.

2.4.2 Robustness measurements in single networks

Robustness measurements in single networks become relevant when the goal is to protect
the network against multiple failures [85, 91]. Moreover, the robustness analysis helps
to learn how to construct failure-robust networks and also how to increase the robustness
of critical infrastructures. Consequently, enormous interest and effort has been directed
at studying the impact of node (link) removal in the normal functioning of critical
infrastructures by means of several robustness metrics. In this section, a review of
robustness measurements in single networks under multiple failures (random and targeted
attacks) and the influence of their topological properties on network robustness is carried
out, particularly emphasizing telecommunication networks.

The robustness of the Internet has been widely analyzed under random and targeted
failures because of its importance to society and its particular topological structure. The
Internet can be viewed as a special case of a random, Scale-Free (SF) network, where the
probability of a node being connected to k other nodes follows a power-law: P(k)∼ k−α

(α ≈ 2.5) [70]. The Internet shows high robustness against random removal of nodes (for
example, random failure of routers), but is relatively vulnerable, at least in terms of the
fraction of nodes removed, to the specific removal of the most highly connected nodes
(degree centrality) [95, 96]. The approach presented by Cohen et al. [70] based on the
percolation theory has lead to a general condition for the critical fraction of nodes, ρc,
that need to be removed before the network disintegrates. If a fraction P of the nodes is
removed randomly, then for α > 3 there exists a critical threshold, ρc, such that for P > ρc
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the network disintegrates into smallest components [70].
However, the Internet is extremely vulnerable to attack when a few of the most

important nodes for maintaining the network’s connectivity are selected and removed
first from the network (simultaneous targeted attacks) [96]. In [94] it was found that
even networks with α ≤ 3 (such as the Internet), known to be resilient to the random
removal of nodes, are highly sensitive to intentional attack on nodes with the highest
connectivity (simultaneous targeted attacks). Such error tolerance and attack vulnerability
are generic properties of communication networks because their connectivity depends
on a small fraction of the highest-degree vertices [96]. Additionally, Holme et al.
[85] have been studied the response of the Internet subject to attacks on nodes and
links. It was found that removals by recalculated degrees and betweenness centralities
(sequential targeted attacks) are often more harmful than attack strategies based on the
initial network (simultaneous targeted attacks), suggesting that the network structure
changes as important nodes or links are removed [85]. In [93] it was shown that few
knowledge of the highly connected nodes in an intentional attack reduces the percolation
threshold (ρc) drastically compared with the random case. This suggests that, for example,
the Internet can be damaged efficiently when only a small fraction of hubs is known to
the attacker [93].

Despite the fact that power-law node degree distribution is widely used for modeling
telecommunication networks such as the Internet, other models can be used for modeling
current structural of backbone core networks such as rings in fiber optical networks or
random graphs in IP-Layer 3 networks. For the random graph of Erdős-Rényi (ER), the
strategies based on recalculating the most important nodes (sequential targeted attacks)
are, as expected more harmful than their counterparts based on the initial network [85].
The ER model, which lacks structural bias, is the most robust of the Small-World (SW)
and Scale-Free (SF) models. Then, building a hub-less network would be very robust to
attack. Even if the network connections were fixed in a random pattern this would lead to
a tremendous increase in the attack-robustness of the network (as the ER model shows)
[85].

The robustness of a set of real telecommunication networks against random and
targeted attacks were studied in [10], and the most robust networks were identified by
comparing the measurements of some classical and contemporary metrics in simulated
scenarios. In [11] the robustness of real telecommunications networks and generic
topologies (ER, SW and SF) in non-failure scenarios were compared. Both [10, 11] rank
the best topologies based on their robustness metrics. In [11] it was shown that some
the robustness measurements of a set of metrics present incompatibilities in detecting the
most robust networks in a faultless scenario. The temporal evolution of the topological
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robustness of backbone telecommunication networks by identifying their trends was
analyzed in [97]. Maniadakis et al. [97] have found that modifying the structure of
networks over time does not guarantee a better robustness.

Trajanovski et al. [90] studied the robustness of random (ER, SF and SW) and real
networks (power grid, railway and social collaboration network) under node removal,
considering random node failure, as well as targeted node attacks based on network
centrality measures (node degree, betweenness, closeness and eigenvector centrality).
Their analysis suggest that that real-world networks are susceptible to rapid degradation
under sequential targeted attacks. Therefore, centrality-based targeted attacks are
sufficient for studying the worst-case behavior of real-world networks [90]. An analytical
comparison of well-known robustness metrics in some model and empirical networks
under random and targeted attacks is carried out by Iyer et al. [54]. They showed that
for scale-free networks (SF) the node degree centrality (dc) metric is the most effective
strategy to remove nodes in simultaneous targeted attacks, whereas for sequential attacks
it is betweenness centrality (bc) [54].

In addition to the simultaneous and sequential targeted attacks based on centrality
metrics, a combination of centrality metrics and other strategies have been studied.
Nie et al. [91] have proposed two new attack strategies named IDB (Initial Degree
and Betweenness) and RDB (Recalculated Degree and Betweenness). Experimental
results indicate that the proposed strategies are more efficient than the traditional ID
(Initial Degree distribution) and RD (Recalculated Degree distribution) strategies.The
Small-World (SW) network in particular behaves more sensitively towards the proposed
strategies [91]. In [98], the damage and behavior of both real networks and synthetic
networks against attacks is analyzed. Empirical study has shown that for real networks in
a wide range of domains there exists a critical-point before which damage attack is more
destructive than degree attack. This is further explained by the fact that degree attack
tends to produce networks with more heterogeneous damage distribution than damage
attack [98].

The impact of geographical failures on network robustness has also been studied.
Long et al. [99] measured the survivability of core backbone communication networks
to geographic correlated failures and determined the most vulnerable geographic cuts
or nodes in the network. Neumayer et al. [4, 73] analyzed network connectivity
after a random geographic disaster. The random location of the disaster has modeled
situations where the physical failures are not targeted attacks. In particular, disasters
can take the form of a randomly located disk or line on a plane and their impact on
network performance has been estimated using the Average Two-Terminal Reliability
(AT T R) metric [4]. The effect of large scale disasters [100] and the identification of
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critical region vulnerability [33] have been modeled by geometric forms which have a
certain geographical area of impact and consequently determine their damage on network
elements that are located in such areas. Disasters can be circular to model solar Coronal
Mass Ejections (CME) and Electromagnetic Pulse (EMP) weapons, polygonal to model
power blackouts, or they may have movement to model hurricanes and typhoons [100].

In addition to the robustness analysis of a set of networks, some works have extracted
the topological properties that make a network more vulnerable to a certain type of failure.
In [81, 101, 102] the characteristics of network topologies that maintain a high level of
throughput in spite of multiple attacks are studied. Topologies with high degree core
nodes show robustness to random attacks, while topologies with low degree core nodes
demonstrate robustness to targeted attacks by nodal degree centrality (dc) [101] e.g., a
random failure can break a random graph of Erdős-Rényi (ER) into several components,
whereas a Scale-Free (SF) network is more robust in this failure scenario. However,
SF networks are highly vulnerable to a targeted attack by nodal degree centrality (dc)
due to the presence of high degree core nodes (hubs) [93, 94, 96]. From [101] it can
also be concluded that topologies with a small fraction of low degree core nodes show
vulnerability to targeted attacks by nodal betweenness centrality (bc).

Through the analysis of Internet AS-level topologies, Mahadevan et al. [103] studied
the assortativity coefficient (r) which ranges in [−1,1]. In disassortative networks (with
disassortative values i.e., r < 0) the majority of radial links connect nodes of different
degrees, indicating that such networks are vulnerable to random failures, targeted attacks
and faster virus spreading. The opposite properties apply to assortative networks (with
assortative values i.e., r > 0), which have an excess of tangential links connecting nodes of
similar degrees [103]. In [102] it was also showed that Internet topologies with negative r

values have the highest performance against random failures. Conversely, low performing
topologies have positive r values [102]. In [81] it was shown that, for a given network
density, regular and semi-regular topologies can have higher degrees of robustness than
heterogeneous topologies, and that link redundancy is a sufficient but not necessary
condition for robustness. This is due to the almost constant degree for the semi-regular
class results in high network performance. However, heterogeneous networks span a wide
range of degrees and behave differently under attacks [81]

In disassortative networks (r < 0), a simultaneous targeted attack by degree is the
most effective means of exposing the vulnerability of a network [54]. In contrast,
for assortative networks (r > 0) a simultaneous targeted attack by node betweenness
is the most effective method of degrading the network [54]. Additionally, networks
exhibit greater vulnerability to a sequential attack based on any centrality metric (degree,
betweenness, eigenvalue or closenness) than is the case under simultaneous attack [54]. In
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all cases of sequential attacks, networks are most effectively degraded by removing nodes
in decreasing order of betweenness centrality, while removing nodes in reverse order of
degree is the least effective method [54]. Additionally, in [90] it was suggested that by
slightly increasing degree assortativity (through degree-preserving rewiring), networks
become more resilient to targeted attacks, if somewhat less resilient to random attacks.
On the other hand, networks whose assortativities are moderately minimized are more
tolerant to random attacks (and less tolerant to targeted attacks) [90]. Additionally, in
[40] it was proved that the links addition increases the network robustness but is not a
sufficient design constraint of a network.

2.4.3 Summary and research direction

Telecommunication networks have become essential to many aspects of our society, and
thus the consequences of network disruption are now dramatic and expensive. As can be
seen in the previous section, telecommunication networks are not sufficiently robust under
random and targeted attacks. Additionally, some topological properties of networks have
defined the robustness behavior in certain failure scenarios. Table 2.1 is a summary of the
relevant results from previous research. As can be seen, most of the works are focused
on identifying the behavior of network robustness in the context of various network types
when they are subject to failure. Other works are focused on identifying the relevant
topological properties that define the robustness profiles based on a set of metrics. Thus,
what follows is the research direction that will be taken in the remainder of this chapter:

• Several robustness metrics have been proposed to measure the network robustness,
but some of these have given contradictory results in identifying the most robust
networks. Thus, a set of structural and centrality metrics is analyzed in order to
address a comprehensive study of topological parameters that define the network
robustness to random and targeted failures. Through this analysis the most relevant
topological parameters to group networks with similar robustness are identified.

• The study of robustness in real networks takes on importance due to the fact
that their topological properties provide networks with different resistance levels
to multiple failures. Moreover, some of their topological properties can not
be emulated by classical graph models. Therefore, a structural and centrality
robustness analysis of a set of real telecommunication networks under multiple
failures (random and targeted) is carried out in order to understand the response
of real telecommunication networks to such as failures.

• Determining what type of failure will cause the greatest damage to networks is
relevant to designing and planning more robust networks. Consequently, the types
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of failures that causes major damage to networks are identified and are compared
with the results of previous works
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Table 2.1: Comparison of relevant results on robustness measurement in single networks

Author Network model Failure model Main result Robustness metric

Callaway et al. [95] Internet (SF) Random and targeted attacks
on nodes

Fragility to removing the most highly connected nodes Percolation threshold

Cohen et al. [70, 94] Internet (SF) Random and targeted attacks
on nodes

High robustness to randomly removing of nodes and fragility to removing the most highly
connected nodes

Percolation threshold

Albert et al. [96] Internet (SF) Targeted attacks on nodes Highly sensitive to targeted attacks on nodes with the highest connectivity Giant component

Cohen et al. [94] Internet (SF) Targeted attacks on nodes Fragility to removing the most highly connected nodes Percolation threshold

Holme et al.[85] Internet (SF), ER and
SW

Targeted attacks on nodes and
links

Strategies with recalculated degree and betweenness are more harmful than the initial
information strategies

Average shortest
path length and giant
component

Gallos et al. [93] ER, BA, Internet (SF),
and social

Targeted attacks on nodes Little knowledge of the well-connected nodes is sufficient to greatly reduce ρc Percolation threshold

Sydney et al. [81,
102]

ER, SW, BA, social
and technological

Random and targeted attacks
on nodes

The ability of a network to maintain its total throughput is reduced by increasing the
removed nodes

Elasticity

Manzano et al. [10] Real
telecommunication
networks

Random and targeted attacks
on nodes

Ranking of the most robust networks by comparing some classical and contemporary
metrics

Some structural and
functional metrics

Van der Meer[11] Real
telecommunication
networks

No failures Relations between the robustness measurements of a set of metrics Some structural and
functional metrics

Continue on the next page
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Table 2.1: Comparison of relevant results on robustness measurement in single networks

Author Network model Failure model Main result Robustness metric

Trajanovski et al. [90] ER, SW, BA, social
and technological

Random and targeted attacks
on nodes

Real-world networks are susceptible to rapid degradation under sequential targeted attacks R-value

Iyer et al. [54] ER, SW, BA,
social, biological
and technological

Random and targeted attacks
on nodes

Node degree centrality is the most effective metric to remove nodes in simultaneous
targeted attacks, whereas for sequential attacks it is betweenness centrality (bc)

V-index
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(a) RENATER (b) DELTACOM

Figure 2.4: Network layout of some telecommunication networks

2.5 Topological properties of real telecommunication
networks

In this section the topological properties of real telecommunication networks are
described. This set of networks have been selected through a careful search in specialized
databases considering the number of times that they were used in relevant publications
e.g., a preliminary robustness analysis of this set of topologies can be found in [10, 11,
97, 104]. The topologies are part of important telecommunication network repositories
such as [105, 106]. Thus, the 15 real telecommunication networks serve as a standardized
benchmark for testing, evaluating and comparing several network robustness metrics.

Some of these networks are backbone transport networks (representing real physical
links), whereas others are logical networks (representing the IP layer). Then, the selected
networks offer a wide range of topological properties which allow structural and centrality
robustness analysis to be carried out. By comparing their network robustness, the common
topological properties that can be used to group networks with similar robustness under
random failures and targeted attacks are identified. Moreover, the analysis carried out
allows for the possibility of identifying the type of failure that causes the highest damage
on the network. Figure 2.4 shows the network layout of some of the telecommunication
networks that are studied.

Each network topology is modeled by a graph G(S,U), which is given by a vertex set
S = 1,2, . . . ,N and an edge set U = 1,2, . . . ,L. In telecommunication networks vertices
(i.e., nodes) can be routers, switches, hosts or any telecommunication equipment, and
edges (i.e., links) can be optical fiber cables, wired or wireless links (physical or virtual).
The graph representation and topological map of the set of networks considered as study
cases can be found in [105, 106]. Table 2.2 presents the main topological properties of
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Table 2.2: Topological properties of the 15 real telecommunication networks

Network N L 〈k〉±StDev kmax 〈l〉 D r

ABILENE 11 14 2.55 ± 0.52 3 2.42 5 0.067

GEANT 40 61 3.05 ± 1.95 10 3.53 8 -0.204

RENATER 43 56 2.60 ± 1.70 10 3.93 9 -0.1544

GpENI L2 51 61 2.39 ± 1.73 9 4.69 10 -0.232

TISCALI L3 51 129 5.06 ± 5.42 22 2.43 5 -0.361

CESNET 52 63 2.42 ± 3.13 19 3.05 6 -0.374

GARR 61 89 2.92 ± 3.09 14 3.62 8 -0.258

CORONET L1 100 136 2.72 ± 0.83 5 6.67 15 0.035

DELTACOM 113 183 3.24 ± 1.85 10 7.16 23 0.316

USCARRIER 158 189 2.39 ± 0.82 6 12.09 35 -0.095

COGENTCO 197 245 2.48 ± 1.06 9 10.51 28 0.02

SPRINT L1 264 313 2.37 ± 0.81 6 14.7 37 -0.188

ATT L1 383 488 2.55 ± 1.15 8 14.13 39 -0.062

US MW 411 553 2.69 ± 1.13 7 13.65 42 0.112

KDL 754 899 2.38 ± 0.85 7 22.73 58 -0.096

the real telecommunication networks: number of nodes (N), number of links (L), average
nodal degree (〈k〉) ± standard deviation (StDev), maximum nodal degree (kmax), average
shortest path length (〈l〉), diameter (D) and assortativity coefficient (r). The networks are
different sizes, ranging from 11 to 754 nodes and from 14 to 899 links. ABILENE is the
smallest network with 11 nodes and 14 links, and the KDL network is the largest with
754 nodes and 899 links.

As can be seen in Table 2.2, the TISCALI L3 and DELTACOM networks have higher
〈k〉 with 5.0588 and 3.2389, respectively. In contrast, SPRINT L1 and KDL have the
lowest 〈k〉 values, 2.3712 and 2.3846, respectively. According to kmax, TISCALI L3 has
the node with the highest number of connections (22), while ABILENE has the node with
the lowest degree (3). In telecommunication networks, kmax is used to identify the most
important node according to the number of links, because if the node with the highest
nodal degree fails, a potentially higher number of connections are also prone to being
affected.

In terms of 〈l〉 and D, ABILENE and TISCALI L3 have the lowest values for these
properties. The former has 〈l〉= 2.4182, while the latter has 〈l〉= 2.4298. Both networks
have D = 5. Nonetheless, KDL and SPRINT L1 with 22.727 and 14.705 have the highest
values of 〈l〉, and KDL and US MW have the highest D values, 58 and 42, respectively.
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Last, Table 2.2 shows that most of the networks analyzed have a negative or near to
zero value of r. DELTACOM (0.3158) is the most assortative network and CESNET
(-0.3739) is the most disassortative. As explained in section 2.3.1, when r < 0 the network
is said to be disassortative, meaning that it has an excess of links connecting nodes of
dissimilar degrees, whereas assortative networks are when r > 0 indicating an excess of
links connecting nodes of similar degrees.

2.6 Robustness measurements in telecommunication
networks: structural and centrality analysis

In this section, first the measurement of structural and centrality robustness metrics in
a static scenario are presented and a preliminary robustness comparison is carried out.
Then, some simulation scenarios are set up to allow the robustness under random and
targeted attacks to be evaluated and analyzed. Most of the metrics presented in Fig. 2.1
were simulated under multiple failure scenarios. However, in this work only the most
relevant results are presented as the metrics analyzed allow the robustness behavior of the
set of the real networks to be abstracted for grouping according to common topological
properties.

Multiple failure scenarios were simulated for random and targeted attacks and in each
of them a subset of the structural and centrality robustness metrics is analyzed. The nodes
to be removed in the simultaneous targeted attacks were selected by their degree centrality
(dc), whereas for the sequential targeted attacks they were selected by their betweenness
centrality (bc). In all the scenarios, the percentage of nodes removed (P) ranged from
1% to 70 %. Twenty and ten runs were performed for random and targeted attacks,
respectively. For each of the runs, different subsets of nodes were selected according
to the failure scenario.

2.6.1 Robustness measurements in a static scenario

Table 2.3 shows the measures of structural and centrality robustness metrics for the
defined set of real networks in a static scenario. The first and second columns in Table 2.3
show that ABILENE and CORONET L1 have maximum vertex connectivity (κ) and edge
connectivity (ρ), (two in each case), i.e., more than one element must be removed to break
these networks. The clustering coefficient(〈C〉) shows that the TISCALI L3 (0.3776) and
GPENI L2 (0.1847) networks are the most robust. Their nodes are more interconnected
with their neighbors as there are many triangles (i.e., many alternative paths) in case of
nodal or link failures. However, for the CORONET L1 network 〈C〉 = 0 as it does not
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have any triangles, as can be seen in its topological map available in [106]. As regards
to the Symmetry Ratio (SR), the lowest value indicates high robustness. Thus, ABILENE
and USCARRIER, with SR values equal to 2.2 and 4.5143, respectively, are the most
robust networks. In consequence, SR suggests that the impact caused by removing a node
does not depend on which node is removed [10].

With the largest eigenvalue (λ1), TISCALI L3 and DELTACOM are the most robust
networks with values of 9.5895 and 6.0015, respectively. On the other hand, TISCALI L3
and ABILENE have the highest values of the second smallest Laplacian, each one with
0.5255 and 0.3238. Therefore, according to the algebraic connectivity (λ2), they are
the most robust networks. Also, a similar robustness result can be concluded for the
TISCALI L3 and ABILENE networks from their low values of D and 〈l〉. Nonetheless,
DELTACOM is one the most robust networks according to λ1, with a low λ2 value
(0.0233) and high values of 〈l〉 (3.2389) and D (10), making its robustness results the
opposite. In this case, a relevant conclusion about its robustness cannot be drawn as the
λ1 and λ2 metrics rank the DELTACOM network in a different way.

Based on natural connectivity (λ̄ ), TISCALI L3 and GARR are the most robust
networks as they have the highest values at 5.6718 and 2.3343, respectively. With
Effective Graph Resistance (EGR), ABILENE and GEANT have the best robustness as
they obtain the smallest values of EGR: 7.54E+01 and 1.31E+03, respectively. KDL
and US MW, , however, obtain the worst EGR (with values of 1.98E+06 and 3.48E+05,
respectively). Weighted Spectrum (WS) was calculated with N = 3 and the most robust
networks are GARR and ABILENE with values of 0.1990 and 0.3333, respectively.

Regarding percolation limit (ρc), TISCALI L3 (0.8974) and CESNET (0.8142) have
the highest values, indicating that these networks are more robust. With respect to Number
of Spanning Trees (NST ), in general, the larger the network, the higher the NST is.
Therefore, NST must be compared in similar sized networks. By comparing the NST of
the whole set of networks, KDL and US MW are shown to be the most robust networks.
However, by comparing the NST metric for networks with similar size, TISCALI L3 is
more robust than RENATER and CESNET because, as shown in Table 2.2, the first has
more links than the others. Therefore, the number of spanning trees in the TISCALI L3
network is higher. In the static scenario, the Average Two-Terminal Reliability (AT T R)
for all the networks is one.
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Table 2.3: Structural and centrality robustness metrics of telecommunication networks in a static scenario

Network κ ρ 〈C〉 SR λ1 λ2 λ̄ EGR ρc WS NST dc ec cc bc lc

ABILENE 2 2 0.15 2.2 2.68 0.33 1.1 7.5E+01 0.39 0.33 2.5E+02 0.05 0.35 0.24 0.2 0.09

GEANT 1 1 0.15 5 4.39 0.14 1.57 1.3E+03 0.69 0.7 6.9E+10 0.18 0.79 0.3 0.45 0.09

RENATER 1 1 0.17 4.78 3.88 0.14 1.28 1.8E+03 0.63 0.71 4.3E+08 0.17 0.83 0.22 0.4 0.09

GpENI L2 1 1 0.18 5.1 3.74 0.054 1.22 4.5E+03 0.62 1.25 5.5E+05 0.13 0.81 0.21 0.42 0.21

TISCALI L3 1 1 0.38 10.2 9.59 0.53 5.67 1.3E+03 0.89 0.77 1.9E+22 0.34 0.76 0.38 0.29 0.01

CESNET 1 1 0.08 8.67 4.97 0.14 1.65 2.8E+03 0.81 0.41 8.7E+05 0.33 0.87 0.46 0.69 0.24

GARR 1 1 0.05 7.63 5.79 0.12 2.33 3.8E+03 0.8 0.19 5.6E10 0.18 0.83 0.33 0.46 0.08

CORONET L1 2 2 0 6.67 3.29 0.05 1.13 1.0E+04 0.49 0 1.5E+26 0.02 0.85 0.09 0.2 0.07

DELTACOM 1 1 0.09 4.91 6 0.02 2.29 1.8E+04 0.69 1.67 1.8E+33 0.06 0.94 0.15 0.4 0.05

USCARRIER 1 1 0.06 4.51 2.98 0.01 1.03 8.4E+04 0.4 1.78 4.6E+23 0.02 0.92 0.07 0.45 0.27

COGENTCO 1 1 0.01 7.04 3.79 0.01 1.09 9.4E+04 0.48 0.41 5.9E+34 0.03 0.94 0.09 0.34 0.15

SPRINT L1 1 1 0.03 7.14 2.93 0.01 1.01 2.0E+05 0.39 1.42 7.6E+41 0.01 0.96 0.06 0.28 0.16

ATT L1 1 1 0.04 9.82 3.71 0.01 1.14 3.3E+05 0.52 2.59 5.9E+74 0.01 0.97 0.05 0.19 0.1

US MW 1 1 0.05 9.79 4.22 0.01 1.21 3.4E+05 0.54 3.44 2E+94 0.01 0.96 0.07 0.25 0.12

Continue on the next page
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Table 2.3: Structural and centrality robustness metrics of telecommunication networks in a static scenario

Network κ ρ 〈C〉 SR λ1 λ2 λ̄ EGR ρc WS NST dc ec cc bc lc

KDL 1 1 0.03 13 3.17 0.01 1.03 1.9E+06 0.41 3.91 3E+120 0.01 0.98 0.03 0.23 0.14
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As regards centrality-based metrics, nodal degree centrality (dc), nodal closeness
centrality (cc), nodal betweenness centrality (bc) and link betweenness centrality (lc) are
considered to measure network centralization. As explained in section 2.3.2, network
centralization is used to analyze network robustness based on these centrality metrics
as the differences between the centrality of the most central node and that of all the
others [76]. This indicates that those networks close to uniform centrality distributions
are more robust in the case of targeted attacks on the most central nodes. In Table 2.3 it
can be seen that the networks with the highest centralization values when considering
dc are TISCALI L3 (0.3388) and CESNET (0.325); with ec, the KDL (0.986) and
ATT L1 (0.9756) networks are the most central; based on cc, the CESNET (0.4605) and
TISCALI L3 (0.3837) networks have the highest centralization values; the most central
networks based on bc are CESNET (0.6939) and GARR (0.4591), and last USCARRIER
(0.27) and CESNET (0.24) have the highest network centralization based on lc.

This preliminary robustness analysis (summarized in Table 2.3) shows that some
metrics differ when identifying the most robust networks. Hence, taking just one metric
into account is not sufficient to measure network robustness. Therefore, a set of significant
metrics to calculate robustness and compare the results should be considered. In order to
identify the relationships between network properties and their robustness, the behavior of
this set of real telecommunication networks when multiple failures occur under targeted
attacks and random failures must be considered.

2.6.2 Robustness measurements under simultaneous targeted
attacks

In this section, the robustness analysis of the real telecommunication networks when
nodes are removed under the simultaneous targeted attack is presented. According to
[54], the nodal degree centrality (dc), which is a purely local centrality measure, is the
most effective technique for removing nodes in the case of simultaneous targeted attacks.
In Fig. 2.5(a) the robustness results using Average Two-Terminal Reliability (AT T R)
metric are shown. When the network is fully connected, exactly one component exists
and AT T R is one. Successive removals of nodes or links will bring it closer to zero [73].
If failures affect two topologies in the same percentage of nodes or links, the one that
takes longest to reach a given critical AT T R can be considered as the more robust [73].
The AT T R metric provides an approximation to measure the network connections and to
group networks with similar robustness, as can be seen in Fig. 2.5(a). Then, for each
subset of networks the common topological properties among them can be identified.

As can be observed in Fig. 2.5(a), it is possible to identify different affectation levels
i.e., the number of lost connections when a given percentage of nodes are eliminated from
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(a) Average Two-Terminal Reliability (AT T R) results

(b) Natural connectivity (λ̄ ) results

Figure 2.5: Robustness analysis of telecommunication networks under simultaneous
targeted attacks by degree centrality (dc): Structural measurements

networks. The weak level is between 1 and 5 % of failures, where network connections
can decrease dramatically to 60 %. When the percentage of nodes removed (P) is in the
range of 5-20 %, networks have an intermediate affectation with a reduction of 70 %
of connections. At 20 % or more of P, networks reduce their connection to < 10%, so
networks are near to being completely disconnected with a severe affectation. Therefore,
making robustness comparisons for P > 20% is not relevant as these networks are close
to being completely disconnected and the robustness metrics do not reflect real behavior.

For each P, the number of nodes removed from the ABILENE network does not vary
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substantially due to its small number of nodes and links. Consequently, ABILENE was
not considered in the present analysis. The robustness analysis using the AT T R metric
(see Fig. 2.5(a)) shows that CORONET L1 is the most robust network as its network
connections are maintained at over 80 % when P is not more than 10 %. CORONET L1
has a high value of average nodal degree (〈k〉) (2.72), and low values of maximum nodal
degree (kmax) (5) and average shortest path length (〈l〉) (6.6741), which would explain
this result. This network is also an assortative network with r = 0.0357. Nonetheless, the
KDL network has the least robustness. For instance, in the range of 3 to 5 % of P, the
connections of KDL are reduced to < 15%. This is because KDL has the lowest value of
〈k〉 (2.3846) and the highest value of 〈l〉 (22.727), and it is also a disassortative network
(r =−0.096).

In Fig. 2.5(a), it can be seen that the GEANT, RENATER and TISCALI L3 networks
have similar AT T R behavior and that these networks remain in the top five of most robust
networks. At 5 % of P their networks’ connections are reduced to 80 %. This first set
of networks has high values of 〈k〉 and low values of 〈l〉 and diameter (D). In contrast,
the COGENTCO, SPRINT L1 and USCARRIER networks lose more than 50 % of their
connections after 5 % of P. This second set of networks is characterized by low values of
〈k〉 and high values of 〈l〉 and D.

In Fig. 2.5(b), the robustness results for natural connectivity (λ̄ ) are presented. As
can be seen, with < 20% of P it is possible to identify which networks are more robust
than others and they can be grouped. Thus, the most robust networks are TISCALI L3,
DELTACOM and GARR, and the least robust are USCARRIER, SPRINT L1 and KDL.
Analogous robustness results for λ̄ were obtained with the largest eigenvalue (λ1) metric.
Hence the structural metrics selected in this analysis agree in grouping the more and less
robust networks. These sets of networks have similar topological properties, as can be
seen in Table 2.3.

With respect to centrality-based metrics and comparing the structural robustness
results, the networks with high centralization values are the most robust i.e., networks
have more nodes with similar centrality values that can help to maintain network
connections when the percentage of nodes removed increases according to targeted
attacks. However, in simultaneous targeted attacks, the network centralization based on
degree centrality (dc) is the most appropriate metric to measure the network robustness
owing to nodes being removed by their degree centrality values. Similar to structural
metrics, centrality-based metrics allow network robustness to be compared to no more
than 20 % of failures.

Figure 2.6 shows the robustness results of network centralization based on degree
centrality (dc). As can be seen, it is possible to identify three subsets of networks:
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Figure 2.6: Robustness analysis of telecommunication networks under simultaneous
targeted attacks by degree centrality (dc): Centrality measurements

the first has two networks with the highest robustness (TISCALI L3 and CESNET), the
second has four networks with an intermediate robustness (GEANT, RENATER, GARR
and GPENI L2) and the third has the least robust networks e.g., SPRINT L1, ATT L1,
US MW and KDL. The topological properties of these subsets of networks are similar i.e.,
the most robust networks have high values of 〈k〉 and low values of 〈l〉 and D, whereas
the least robust networks have low values of 〈k〉 and high values of 〈l〉 and D (see Table
2.3).

2.6.3 Robustness measurements under sequential targeted attacks

This section presents the robustness analysis of the real telecommunication networks
when nodes are removed under the sequential targeted attack. In this scenario the most
effective technique for removing nodes is nodal betweenness centrality (bc) [54]. As more
vertices are removed, the network structure changes, leading to the different distributions
of the most important nodes from the initial ones [85]. As can be seen in Fig. 2.7(a),
Average Two-Terminal Reliability (AT T R) results show that all the networks are more
robust under sequential targeted attacks than when compared to simultaneous targeted
attacks. A similar robustness behavior for both attacks can be found in [54, 85]. Figure
2.7(a) also shows that when the percentage of removed nodes (P) is between 1 and 5 %,
50 % of the network connections are lost. At 15 % of P, most of the networks reduce
their connections to < 20% and, at 20 % or more, networks are near to being completely
disconnected.

By comparing this robustness result with the robustness result in simultaneous
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(a) Average Two-Terminal Reliability (AT T R) results

(b) Natural connectivity (λ̄ ) results

Figure 2.7: Robustness analysis of telecommunication networks under sequential
targeted attacks by betweenness centrality (bc): Structural measurements

targeted attacks, in sequential targeted attacks the TISCALI L1 network moves up from
fourth to first place in the ranking of most robust networks, whereas CORONET L1 goes
down to eighth place. TISCALI L1 has a high average nodal degree (〈k〉) value (5.0588)
and a low average shortest path length (〈l〉) value (2.4298), which can explain this result.
In contrast to the CORONET L1 network, TISCALI L3 is one of the most disassortative
networks (r = −0.3614). This means that disassortative networks are less vulnerable
to sequential targeted attacks by nodal betweenness centrality and assortative networks
show more robustness under simultaneous targeted attacks by nodal degree centrality.



CHAPTER 2. ROBUSTNESS IN SINGLE NETWORKS 50

Figure 2.8: Robustness analysis of telecommunication networks under sequential
targeted attacks by betweenness centrality (bc): Centrality measurements

This result for assortativity coefficient (r) analysis is the same as that found in [54, 103].
In both targeted attacks, KDL is the least robust network.

In Fig. 2.7(b) the robustness results for the natural connectivity (λ̄ ) metric are
presented. The λ̄ metric allows the networksthat are the most robust to < 25% of P to be
identified. In this sense, TISCALI L3 presents the best robustness and USCARRIER the
poorest. The largest eigenvalue (λ1) metric exhibits similar robustness behavior to λ̄ . In
both cases, the robustness degradation is lower than the results found in the simultaneous
targeted attacks.

For centrality-based metrics, the most robust networks are also those with high
centralization values. In contrast to the simultaneous targeted attack results, for sequential
targeted attacks these metrics allow network robustness to be compared to no more than
35 % of failures. In this failure scenario, network centralization based on nodal closeness
centrality (cc) and nodal betweenness centrality (bc) are the most effective metrics to
measure the network robustness in sequential targeted attacks due to the nodes being
removed by their betweenness centrality values. As shown in Fig. 2.8, in the range
of 1–10 % of P, the shortest paths are quickly lost and so the length of the shortest
path between nodes quickly increases. Therefore, networks have fewer nodes with high
values of betweenness or closeness centrality, which generates the increases in network
centralization values.

Figure 2.8 shows the robustness results according to the network centralization based
on bc. As can be observed, in the range of 1-10 % of failures, it is not easy to identify
which networks are most robust due to the high variability produced by the increase in
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Figure 2.9: Robustness analysis of telecommunication networks under random failures:
Structural measurements

〈l〉. Nonetheless, when P is between 10 and 30 %, it can be seen that TISCALI L3
is the most robust network, followed by the group including the CESNET, RENATER,
GEANT and GARR networks and last by a set of least robust networks e.g., SPRINT L1,
USCARRIER and KDL. Like the robustness results presented in sequential targeted
attacks, the most robust networks have high values of 〈k〉 and low values of 〈l〉 and D,
whereas the least robust networks have low values of 〈k〉 and high values of 〈l〉 and D.

2.6.4 Robustness measurements under random failures

In this section, the robustness analysis of the set of real telecommunication networks,
when nodes are removed under random failures is presented. Figure 2.9 shows the
robustness results according to Average Two-Terminal Reliability (AT T R) for random
node failures. As can be seen, all the networks are more robust under random failures
as compared to both types of targeted attacks. This is because in random attacks most
central nodes are less likely to be removed in first percentages of failures.

Figure 2.9 shows that network connections are over 50 % from 1 to 10 % of failures,
whereas all of them reduce their connections to < 50% in the range of 10–25 % of P. At 68
% or more failures, all the networks have < 5% of connections. In this case, TISCALI L3
is the most robust network and KDL is the least robust. The set of networks with high
robustness to random node failures has low values of average shortest path length (〈l〉)
and diameter (D), and they are the most disassortative networks (r < 0). Furthermore, it
can be observed that networks with high average nodal degree (〈k〉) show robustness to
random attacks, which is in line with the results found in [101, 102].
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2.7 Discussion and lessons learned

In accordance with the results presented here, some conclusions can be drawn. First,
the robustness analysis based on structural metrics shows that the subset of most robust
real telecommunications networks under targeted attacks has high values of average
nodal degree (〈k〉) and low values of average shortest path length (〈l〉) and Diameter
(D), whereas the subset of least robust networks has the opposite results for 〈k〉, 〈l〉
and D. Similar to previous studies, for disassortative networks (r < 0) simultaneous
targeted attacks by nodal degree centrality is the most effective method of degrading
a network. However, in sequential targeted attacks by nodal betweenness centrality,
assortative networks (r > 0) are more vulnerable. These results are a consequence of
disassortative networks having an excess of links connecting nodes of dissimilar degrees,
which in simultaneous targeted attacks are removed rapidly according to their degree
centrality value.

The second round of conclusions is focused on the robustness comparison using
the centrality-based metrics. The subset of real telecommunication networks with high
values for the network centralization metrics based on nodal degree centrality (dc), nodal
closeness centrality (cc) and nodal betweenness centrality (bc) shows robustness under
targeted attacks as more central nodes must be removed to affect network performance.
Networks with low results in centralization metrics are less robust. Moreover, a
robustness analysis according to centrality-based metrics can be carried out by selecting
the appropriate metric to identify the impact of nodal failures. Hence, in simultaneous
targeted attacks by nodal degree centrality, the centralization metric based on dc should
be used to measure the robustness. However, in the case of sequential targeted
attacks by nodal betweenness centrality, network robustness should be measured by the
centralization metric based on bc.

As regards the results of nodal random failures, the subset of more robust real
telecommunication networks has low values of average shortest path length (〈l〉) and
Diameter (D), and they are the most disassortative networks (r < 0). Similar to previous
studies, topologies with high average nodal degree (〈k〉) also show robustness to random
failures as there are more nodes available to maintain connections. Additionally, in
random failures the probability of affecting central nodes at first values of percentage
of removed nodes (P) is low compared to targeted attacks. Therefore, a lot of nodes
would have to be removed to degrade the network structure to the same affectation levels
reached by targeted attacks.



Chapter 3

Robustness measurements in
interdependent networks: review, new
proposals and applications

Most of critical infrastructures in the real world cannot be described adequately as single
isolated networks, but should be represented as interdependent networks. Consequently,
the proper functioning of interdependent infrastructures depends on the normal operation
of networks that are interconnected. In order to study the robustness of interdependent
networks, three factors should be considered: the network model, the interdependency
model and the failure model. In this chapter, a review of the most relevant research
on robustness measurements in interdependent networks is presented. Moreover, as an
application scenario, an interconnection mechanism based on interdependency matrices
is proposed to mitigate the impact of targeted attacks, and the propagation of these attacks
between interconnected networks is also studied.

3.1 Introduction

Critical infrastructures are not isolated, but interact with each other to provide the goods
and services that are essential to modern society [107]. Transportation infrastructures
provide many examples of interdependent networks. Power grid, water/gas networks,
metro and rail systems rely on telecommunication networks for their control systems
[21]. Particularly, in a power grid connected to a telecommunication network, and vice
versa, each router receives power from a substation and every substation sends data
and receives control signals to/from one router [20, 108, 109]. Another example is the
case of power grids and water distribution networks, where their interdependencies are
illustrated by the fact that pump stations, control units and storage tanks in water networks

53
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depend directly on substations in the power network to function well [25, 110]. These
interdependent networks are characterized by connectivity links within each network and
interdependency links between networks.

Interdependency between critical infrastructures is a crucial aspect to the normal
operation of the whole system, but it increases these systems’ vulnerability to failures
because the behavior and reliability of one network then depends on the other networks
[16]. If one network depends on and supports another network, a pair of networks are
interdependent [111]. A fundamental property of interdependent networks is that a node
failure in one network can spread to nodes in the other, leading to cascading failures
and system collapse [16]. Moreover, the geographical distribution of network elements
influences the susceptibility of networks to certain type of failures and their impact in
network operation. For instance, in the case of an interdependent network formed by
a power grid and a telecommunication network, electrical blackouts affect large regions
and are usually the result of cascading failures due to interdependencies between the two
networks [6, 16, 20, 108, 109]. Therefore, interdependent networks are more complex
and vulnerable than isolated networks [21].

In previous research, interdependent networks have been generated by
interconnecting at least two real transportation networks or artificial graphs following
a certain interlink pattern and their robustness has been analyzed under distinct failure
strategies [7, 107, 111, 112]. The robustness of these interdependent networks is
mainly influenced by three aspects which can define their behavior and vulnerability
to failures. First, there are the topological properties of networks that have to be
interconnected, which partially define the network’s sensitivity to certain types of failure.
Second, there is the interdependency model between two networks, which defines the
nodes that can be interconnected and how they interact. An interdependency model is
determined by interdependency type (physical, cyber, geographic or logical), interlink
type (unidirectional or bidirectional), interonnection type (one-to-one or one-to-multiple
nodal correspondences), interlink pattern and constraints on interconnecting the nodes
(distance, importance, risk, capacity or cost). Last, there is the failure model that defines
how the network elements are disconnected. For instance, failures can originate from
random or targeted attacks, which in interdependent networks can trigger a cascading
failure process due to the interdependency between the interconnected networks.

Most previous studies have focused on measuring the impact of failures in
interdependent networks and proposing strategies to reduce the damage they generate
[107]. This chapter presents the relevant research on robustness measurements in
interdependent networks based on network models of the topologies to be interconnected,
interdependency models between the interconnected networks and failure models that
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affect the networks. In contrast to previous work, we have considered the impact of the
most dangerous attack on a network to propose an interconnection mechanism, based
on interdependency matrices, which mitigates the damage done to its interconnected
network. This is because when a network interacts with another, the critical parts of
the network may change due to a failure spreading between them. Therefore, it is
interesting to identify changes in robustness in two interdependent network scenarios:
1) the interconnection of two networks with similar topological properties e.g., two
interconnected backbone telecommunication networks and 2) the interconnection of
two networks with different topological properties e.g., a power grid interconnected
to a telecommunication network. Whether or not a failure spreads and generates
a cascading failure is beyond the scope of this work. Instead, the focus is on
protecting telecommunication and power grid networks from propagating failures. These
interdependent networks also support the investigation of the effects of distinct interlink
patterns on the propagation of targeted attacks between the two interconnected networks.

The remainder of this chapter is structured as follows. In Section 3.2, a review of
aspects to consider in constructing interdependent network scenarios is presented. In
Section 3.3, a review of robustness measurements in interdependent networks is carried
out. The interlink patterns proposed for the three interdependency matrices are described
in 3.4. In Section 3.5, the topological properties of networks to be interconnected are
presented. The effect of the interdependency matrices to mitigate and propagate targeted
attacks in the interdependent networks is provided in Section 3.6. Last, the results are
discussed along with the lessons learned in Section 3.7.

3.2 Review of aspects to consider in interdependent
network scenarios

In the literature, several approaches have been proposed for modeling and analyzing
interdependent critical infrastructures [7]. These approaches are all useful for capturing
interdependencies between transportation networks. Interdependent networks can be
generated from the interconnection of at least two single transportation networks by
interlinks. Moreover, this representation allows the robustness of interdependent networks
to be measured by modeling failures in network elements and then simulating the failure
process within a network and its propagation between the interconnected networks [7].
Consequently, network models of the topologies to be interconnected, interdependency
models between the interconnected networks and failure models that affect the networks
are three key factors that determine vulnerability and the behavior of interdependent
networks under multiple failures. Figure 3.1 summarizes the factors that may be
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Figure 3.1: Factors to consider in interdependent network scenarios

considered in interdependent network scenarios to evaluate its robustness. In this section,
these three factors to characterize interdependent network scenarios are introduced.
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3.2.1 Network model: Network-based approach for interdependent
networks

Interdependent networks should be represented by models that capture the topological
properties of the transportation networks to be interconnected. Consequently, the
characterization of the interactions between the nodes of these critical networks can
be carried out according to concepts in the field of network science. In this work,
interdependent critical infrastructures are modeled by using a network-based approach,
where each infrastructure is modeled as a network (graph) and the interdependencies
between the networks are expressed by interlinks. This representation describes
the interdependencies between them because it captures the topological properties
of transportation networks and the flow patterns within an interdependent critical
infrastructure [7, 16, 18, 26, 31].

Let us consider two undirected networks G1(S,U) and G2(T,V ), each with a set
of nodes (S,T ) and a set of links (U,V ), respectively. Within network G1, the nodes
are randomly connected by L1 links with degree distribution P1(k), while the nodes in
network G2 are randomly connected by L2 links with degree distribution P2(k). When G1

and G2 interact, a set of bidirectional interlinks I joining the two networks is introduced.
Consequently, an interdependent network is defined as G = (S ∪ T,U ∪V ∪ I), where
S∪T is the set of nodes in G and U ∪V ∪ I is the set of links in G [31]. Let us denote
N = N1 +N2 as the number of nodes in G and L = L1 +L2 +L12 as the number of links
in G. Note that L12 is the number of interlinks between the G1 and G2 networks.

Interdependent networks can be generated from interconnecting at least two complex
networks, generating some models that could be extended to real world systems. Thus,
Erdős-Rényi (ER), Small-World (SW) and Scale-Free (SF) graphs can be considered
to generate interdependent networks to address robustness studies. An interdependent
network can be generated by interconnecting networks with similar or dissimilar
topological properties such as nodal degree distributions [113]. The ER-ER coupled
system represents the interconnection of two random graphs of Erdős-Rényi (ER) [46]
and may model the interconnection of two backbone telecommunication networks. Other
interdependent network models whose networks have similar degree distributions are
the SW-SW coupled system, which represents the interconnection of two Small-World
(SW) graphs of Watts-Strogatz [49], and the SF-SF coupled system, which correspond
to interconnection of two Scale-Free (SF) graphs of Barabási-Albert [50]. Many modern
networks, such as the Internet, scientific collaboration, telephone, power grids and airline
networks, can be approximated by the SF graph [49], thus a SF-SF system can model the
interconnection of these real networks [113]. Regarding the interconnection of networks
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with dissimilar properties there are combinations such as the ER-SF, ER-BA and SF-BA
coupled systems. For instance, the interconnection of a telecommunication network and
a power grid can be represented by an ER-SF interdependent network.

As in the case of simple networks, interdependent networks also have a matrix
representation [31]. Let us define the Adjacency matrix A of an interdependent network
G as the N×N matrix:

AN×N =

(
A1 αB12

αBT
12 A2

)
, (3.1)

where α represents the coupling strength of the interaction, A1 is the N1×N1 Adjacency
matrix of network G1, A2 is the N2×N2 Adjacency matrix of network G2 and B12 is the
N1×N2 interconnection matrix representing the interlinks between node i in network G1

and node j in network G2 [31]. Considering bidirectional interlinks, then B21 = BT
12 [31].

Let bi j denote as the (i, j) entry in the B12 matrix, where bi j = 1 if the node i and node
j are interconnected, and bi j = 0 if they are not. The interdependency matrix (B) of the
whole coupled system is given by [31]:

BN×N =

(
0 B12

BT
12 0

)
(3.2)

Similar to the adjacency matrix, let us introduce the Laplacian matrix Q of an
interdependent network G as a N×N symmetric matrix given by [31]:

QN×N =

(
Q1 +αD1 −αB12

−αBT
12 Q2 +αD2

)
, (3.3)

where Q1 is the N1×N1 Laplacian matrix of adjacency matrix A1 in network G1

and Q2 is the N2×N2 Laplacian matrix of adjacency matrix A2 in network G1, D1 is the
N1×N2 diagonal matrix of degrees in network G1 and D2 is the N2×N1 diagonal matrix
of degrees in network G2. The diagonal matrices of degrees D1 and D2 may be defined as
[31]: (D1)ii = ∑ j(B12)i j,

(D2) j j = ∑ j(B21)i j = ∑ j(BT
12)i j;

(3.4)

Depending on the coupling weight α , different diffusion processes can be expressed
in interdependent networks. When α = 0, there are no interactions between the networks
[31]. However, if α < α∗, then the two networks are structurally distinguishable. On the
other hand, if α > α∗, the two networks behave as a whole unit [114]. The α∗ value
represents a structural transition point. For large α values, a superdiffusion process
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is observed, i.e., diffusion in the interconnected networks takes place faster than in
either of the networks separately [115]. Superdiffusion is a synergistic phenomenon
in an interconnected network that can occur for values of α < α∗, where the network
components function distinctly [116]. Therefore, the consequences of a failure in one
network on the other network depend on a diffusion process provided by the strengths of
the interconnections between the nodes.

3.2.2 Other models for interdependent networks

In addition to the network-based model previously described, other approaches
have been proposed in the literature for modeling and analyzing interdependent
critical infrastructures, including empirical methods, agent-based methods,
system-dynamics-based methods, economic-theory-based methods, Hierarchical
Holographic Modeling (HHM) based methods, High Level Architecture (HLA) based
methods, Petri Net (PN), dynamic control system theory and Bayesian Network (BN) [7,
117]. These approaches are all useful in capturing interdependencies between critical
infrastructures. Interested readers are referred to [7, 117] for detailed descriptions and
comparisons of the various modeling approaches. However, what follows is presented a
brief description of some of the models that are based on graph representation:

• Hierarchical Holographic Modeling (HHM) based method: In this approach, the
term hierarchical refers to an understanding of risks depending on different levels
in a hierarchy [117]. The term holographic modeling refers to a multiview image
of a critical infrastructure with regards to identifying vulnerabilities [117]. The
basis of HHM is the overlap among various holographic models with respect to the
objective functions, constraints, decision variables and input-output relationships of
the critical infrastructure [117].

• High Level Architecture (HLA) based method: This approach breaks the entire
interdependent network down into individual operating networks [117]. In the
HLA-based interdependency modeling architecture, three levels can be identified:
the low level includes the models of single critical infrastructures, the middle level
covers the interaction model between critical infrastructures and the high level
represents the global interdependent model [118].

• Petri-Net (PN) based method: The Petri-net (PN) can be represented by a four
tuple: PN = (P,T, I,O), where P stands for a set of places, T for transitions, I for
input functions (a mapping from bags of places to transitions) and O for output
functions (a mapping from transitions to bags of places) [7]. Places may contain
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any number of tokens. When a transition switches (”fires”), it consumes the tokens
from its input places, performs some processing task and places a specified number
of tokens into each of its output places [117].

• Bayesian Network (BN) based method: This approach represents the probabilistic
relationship between system and component reliability. The BN consists of
a directed acyclic graph where nodes represent random variables and directed
links represent causal relationships between these nodes. A BN model
requires conditional probabilities to model the dependencies among components,
subsystems and systems to represent probabilistic failure relationships in a
multilevel system configuration [119]. Moreover, the BN model is capable
of combining information from multiple sources at multiple levels for system
reliability prediction when the BN model is coupled with statistical Bayesian
inference techniques [119].

3.2.3 Interdependency model

The fundamental property characterising interdependent networks is the existence of
two different kinds of links: connectivity links (within a transportation network)
and interdependency links (between separate transportation networks) [111]. In
interdependent networks, how the state of a node influences on the functioning of its
interconnected node is determined by the direction of the interlink [1]:

• Unidirectional interlinks: An interlink is unidirectional if the dependency is in
one way i.e., the state of a node i in one network depends on the state of a node j

in the other, but the state of node j does not necessarily depends on the state of the
same node i [20].

• Bidirectional interlinks: An interlink is bidirectional if the dependency is in
two-way i.e., the state of node i in a network depends on the state of node j in
the other, and vice versa [1, 111].

Interdependency can be also defined as the bidirectional relationship between the
nodes of two or more critical infrastructures, where a node’s state in a network depends
on least one node’s state in other to continue functioning, and vice versa. There are
several interdependency types, which have different characteristics and effects on the
relationships between the interconnected networks. The following are the common
interdependencies that can be evidenced between transportation networks:
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• Physical interdependency: The state of an infrastructure is dependent on the
material output(s) of the other [1] e.g., outages in power systems have caused traffic
signals, water supply pumping station and automated teller machines to fail and
businesses to close [7].

• Cyber interdependency: The state of an infrastructure depends on the
information transmitted through the information infrastructure [1] e.g., failures on
telecommunication networks affect the control system of power grid substations
and cause their failure due to a lack of control from the central system [20].

• Geographic interdependency: Infrastructures are geographically interdependent
if a local environmental event can create state change in them all [1]. It also refers
to interconnection based on the proximity between infrastructure systems [120] e.g.,
power grids provide power to infrastructures that are localized near to a distribution
node. A failure in a power grid can cause the disruption of the interconnected
networks (mobile networks, water and railway) and can affect large geographical
regions [108].

• Logical interdependency: The state of an infrastructure depends on the state of
the other via a mechanism that does not belong to the above types [1]. Logical
interdependencies are usually caused by human decisions and actions undertaken
in political or societal areas e.g the amount of oil and gas delivered is highly
dependent on the political decisions of OPEC (Organization of the Petroleum
Exporting Countries) members [117].

Interdependency links represent the idea that for a node to operate it requires support
from a least one another node which, in general, is in another network [111]. According to
the number of interlinks that are allocated to a node, the following interconnection types
can be identified:

• One-to-one nodal correspondence model: Let us consider two undirected
networks G1 and G2, each with the same number of nodes (N1 = N2). Then, in
this model a node i in network G1 is interconnected to one and only one node j

in network G2, and vice versa [16]. The one-to-one interconnection can be found
in multilayer telecommunication networks where a node in a low layer provides
services to a node in the upper layer [15, 121]. However, in practice not all network
G1 nodes depend on network G2 nodes, and vice versa.

• One-to-multiple nodal correspondence model. Let us consider two undirected
networks G1 and G2, each with a number of nodes N1 and N2, respectively. In this
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(a) One-to-one correspondence (b) One-to-multiple correspondence

Figure 3.2: Interdependent networks representation

model a fraction of the q1 nodes in G1 depends on one or more than one node in
network G2 and a fraction of the q2 nodes in G2 depends on one or more than one
node in network G1 [18]. When q1 and q2 are large, a strong coupling between
two networks is presented, whereas for small q1 and q2 values, the interdependent
network shows a weak coupling [18]. The one-to-multiple interconnection can be
found when a communication node provides control services to several nodes in a
power grid, and a node in the power grid provides power to a several nodes in the
communication network.

The two interconnection types in interdependent networks are illustrated in Fig. 3.2.
Nodes in G1 are represented with filled circles, whereas nodes in G2 are represented
with unfilled circles. The interlinks are represented by dashed lines between the nodes
of the two networks. As can be seen in Fig. 3.2(a) each node has one and only one
interlink, whereas in Fig. 3.2(b) nodes have one or more interlinks. In both cases, the
interlink patterns are represented by an interdependency matrix B. Note that in Fig. 3.2(a)
and Fig. 3.2(b) the interlinks between networks G1 and G2 follow a random pattern.
However, in other cases, interlinks may be allocated following a specific pattern based
on the properties, functionality or vulnerability of the nodes as can be seen in the next
sections. In addition, constraints such as distance, importance, risk, capacity or cost can
be considered to define which nodes will be interconnected.

3.2.4 Failure model: dynamic process in interdependent networks

Transportation networks operate in an environment subject to failures [25]. Failures
can be caused by different events that affect the normal functioning of these critical
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infrastructures. A triggering event is caused by unintentional failures (such as natural
disasters or configuration errors) or intentional failures (such as cyber-attacks or
terrorism), which damage one network element or a fraction of them [2, 7, 10, 117].
However, the complexity of interdependent networks in which two or more single
transportation networks are interconnected by interlinks, means that failures in a network
are propagated to its interconnected networks with dramatic and expensive consequences
[16].

From the topological properties of transportation networks it is possible to discern
what failure type causes the greatest damage in each network. However, failures in
interdependent networks present a dynamic process due to the interdependency and
the functional properties of the networks to be interconnected. For instance, when a
network is under random failures or targeted attacks, the balance of flows is broken
causing overloads on some nodes, which may ultimately trigger cascading failures [32].
Therefore, identifying changes in the robustness of interdependent networks help us to
understand the behavior of networks in the face of failures and to find strategies to reduce
their impact through improving the interconnection patterns between the interconnected
networks. Let us consider two networks G1 and G2, which are interconnected by
bidirectional interlinks. In general, because of the failure propagation between the
interconnected networks, when a fraction of P1 of the nodes in network G1 fail, a fraction
of P2 of the dependent nodes in network G2 are removed. Thus, two cases can be
considered to define the operational state of the nodes in interdependent networks [22,
120]:

1. A node i in network G1 is functional if at least one of its interconnected
nodes in network G2 is operative. This condition can be presented in
interdependent networks with one-to-one nodal correspondence or one-to-multiple
nodal correspondence.

2. A node i in network G1 is functional if all of its interconnected nodes in G2 are
operative. This case is presented in interdependent networks with one-to-multiple
nodal correspondence.

In addition to both conditions, other constraints can be considered to define the
operational state of a node. For instance, a node i in network G1 is functional if the
node i belongs to the giant component of the functional nodes in network G1 [122].
Note that these constraints can define whether a cascading failure process between
the interdependent networks is triggered or not. Therefore, the dynamic process of
failures may have different implications that should be considered in order to protect
interdependent networks from failures. The following are two failure processes on
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(a) (b)

Figure 3.3: Dynamic process of single affectation on interdependent networks (a) Node
2 in G1 is attacked (b) Node 2 in G2 fails due to interdependency

interdependent networks which can be triggered by random failures or targeted attacks
on one of the interconnected networks:

1. Dynamic process of single affectation on interdependent networks Let us
consider an interdependent network G with one-to-one nodal correspondence and
bidirectional interlinks. Let us also consider that each node i (i = 1,2, . . . ,N1) in
network G1 depends on one and only one node j ( j = 1,2, . . . ,N2) in network G2

to continue functioning, and vice versa. Thus, when a random failure or a targeted
attack occurs on a node i in network G1, the dependent node j in network G2 is
removed without allowing the attack to propagate to other nodes in network G2,
and vice versa. Figure 3.3 shows targeted attacks on two interdependent networks.
Each node in network G1 depends on one, and only one, node in network G2, and
vice versa. Bidirectional interlinks between the networks G1 and G2 are shown as
dashed horizontal lines while U and V intralinks are shown as non-directed solid
arcs. In Fig. 3.3(a), node 2 in network G1 is attacked because it has the highest
nodal degree. Then, as can be seen in Fig. 3.3(b), only dependent node 2 in network
G2 is removed.

2. Dynamic process of cascading failures on interdependent networks Let us
consider two networks G1 and G2, which are partially dependent in the sense that
only a fraction q1 (q2) of the nodes in network G1 (G2) are interdependent, the
rest being autonomous [18, 112, 122]. When a fraction of the nodes in network
G1 fail, a cascading failure process is induced. Generally, node i in network G1 is
functional if a) at least one of its interconnected nodes in network G2 is operative,
and b) node i belongs to the giant component of the functional nodes in network
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(a) (b) (c)

Figure 3.4: Dynamic process of cascading failures on interdependent networks (a) Node
2 in G1 is attacked (b) Node 2 in G2 fails due to interdependency (c) Node 5 in G2 fails
due to it not belonging to the giant connected component of G2, causing the failure of
node 5 in G1 due to the interdependency

G1 [122]. Thus, at each stage of a cascading failure, the nodes that depend on
the initially attacked nodes are removed first. Next, the nodes that do not belong
to the giant connected component of the network are removed [122]. Figure 3.4
shows the dynamic process of cascading failure on an interdependent network with
one-to-one nodal correspondence and bidirectional interlinks. In Fig. 3.3(a), node
3 in network G1 is attacked. Then, due to the interdependency, in Fig. 3.3(b) only
dependent node 3 in network G2 is removed. Node 5 in network G2 also fails due
to it not belonging to the Largest Connected Component (LCC) of network G2,
causing the failure of node 5 in network G1 due to the interdependency.

3.2.5 Interdependent network scenarios in previous works

According to the three aspects presented in Fig. 3.1, a number of interdependent
networks may be constructed to evaluate their robustness. Hence, a comparison of the
previously studied interdependent network scenarios is presented in Table 3.1. As can be
seen, the network models considered in these research works are both artificial and real
networks, which have been interconnected by several types of interlinks (bidirectional or
unidirectional), interconnections (one-to-one or one-to-multiple) and patterns (random,
topological-based or geographical). Regarding the failure model, most of them have
taken both random failures and targeted attacks triggering a cascading failure process
into account. The relevant results of these works about the robustness of interdependent
networks under multiple failures are presented in the following section.
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Table 3.1: Comparison of the interdependent network scenarios considered in previous works

Author Network model Interlink type Interconnection type Interlink pattern Triggered event

Buldyrev et al. [16], Parshani
et al. [18] and Zhou et al. [19]

SF-SF and ER-ER Bidirectional One-to-one Random Random failure

Jian et al. [28] SF-SF and ER-ER Bidirectional One-to-multiple Random Random failure

Shao et al. [22] SF-SF and ER-ER Unidirectional One-to-multiple Random Random failure

Hu et al. [23] ER-ER Unidirectional and
bidirectional

One-to-one and
one-to-multiple

Random Random failure

Gao et al. [24, 122, 123],
Havlin et al. [124], Dong et al.
[125]

NoN SF-SF and NoN ER-ER Bidirectional One-to-one and
one-to-multiple

Random Random failure

Huang et al. [126] SF-SF Bidirectional One-to-one Random Targeted attacks

Dong et al. [127] ER-ER Bidirectional One-to-multiple Random Targeted attacks

Zhang et al. [26] SF-SF and ER-ER Bidirectional One-to-one Random Random and targeted attacks

Dong et al. [27] NoN SF-SF and NoN ER-ER Bidirectional One-to-one and
one-to-multiple

Random Targeted attacks

Wang et al. [128] and Wu et al.
[129]

Real and artificial networks Bidirectional One-to-one and
one-to-multiple

Random and geographical Targeted attacks: localized and
terrorist

Wang et al. [25] Power and water
interdependent network

Bidirectional One-to-one and
one-to-multiple

Distance, betweenness, degree,
and clustering coefficient

Random and targeted attacks

Continue on the next page
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Table 3.1: Comparison of the interdependent network scenarios considered in previous works

Author Network model Interlink type Interconnection type Interlink pattern Triggered event

Wang et al. [29] SF-power grid and ER-power
grid

Bidirectional One-to-one Assortative, disassortative and
random

Random failure

Tan et al. [30] and Cheng et
al.[33]

SF-SF Bidirectional One-to-one Assortative, disassortative and
random

Random and targeted attacks

Tian et al. [32] SF-SF Bidirectional One-to-one Communities-based on
assortative, disassortative and

random patterns

Random and targeted attacks

Golshan et al. [34] Real power grid and
communication network

Bidirectional One-to-one Assortative, disassortative and
random

Random and targeted attacks

Fu et al [130] SF-SF and ER-ER Unidirectional and
bidirectional

One-to-multiple Random Random and targeted attacks

Yagan et al [131] ER-ER Unidirectional and
bidirectional

One-to-multiple Random Random failure

Li et al [35] ER-ER, real power grid and
communication network

Bidirectional One-to-multiple Random and cost-based Random failure

Ji et al [36] ER-ER, SF-SF and SW-SW Bidirectional One-to-multiple Random and nodal
properties-based

Random failure

Parandehgheibi et al.[20] Real power grid and
communication network

Unidirectional and
bidirectional

One-to-one Random Random failure

Continue on the next page
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Table 3.1: Comparison of the interdependent network scenarios considered in previous works

Author Network model Interlink type Interconnection type Interlink pattern Triggered event

Tauch et al. [132, 133] ER-ER Bidirectional One-to-multiple Random Random failure

Chai et al. [37] Power grid-ER, power grid-SF
and power grid-SW

Bidirectional One-to-one Assortative, disassortative and
random

Random and targeted attacks

Martı́n-Hernández et al. [31] ER-ER, SF-SF, SW-SW and
Lattice

Bidirectional One-to-multiple Random and diagonal

Shahrivar et al. [134] Random k-partite networks and
ER

Bidirectional One-to-multiple Bernoulli interconnections
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3.3 Review of robustness measurements in
interdependent networks

Interdependencies between transportation networks pose new challenges and expose
vulnerabilities that should be studied in order to protect these critical infrastructures
against service disruption and increase network availability [21]. The robustness analysis
of interdependent networks can be considered as a fundamental factor to find methods
that contribute to improving their design and to mitigating the impact of failures. In this
section, a review of relevant research on the robustness measurements of interdependent
networks is carried out by considering the three factors described in previous section.
Thus, the response of several interdependent network models to different failure models
and the impact of the interdependency models on interconnected transportation networks
are described.

3.3.1 Robustness measurements on interdependent networks under
random failures

Previous research has focused on analyzing the robustness of interdependent networks
to cascading failures resulting from random initial failures by using the percolation
theory. The percolation theory helps identify the global connectivity of complex networks
with critical threshold (ρc), which distinguishes between the connectivity phase and the
fragmented phase of networks [107]. Percolation on a single network is an instantaneous
process but on interdependent networks the removal of a random fraction of the nodes
initiates a cascading failure [112]. When an initial node failure occurs in interdependent
networks, a dynamic process of failure between the networks occurs. The most common
cascading failure process was described in section 3.2.4, and this showed that there is
a critical percolation threshold (ρc) above which a considerable fraction of the nodes in
the two networks remain functional at a steady state [16]. However, if ρ < ρc, then both
networks fragment completely and the entire system collapses [16].

Scale-Free interdependent networks (SF-SF) were surprisingly found to be more
vulnerable to random attack than Erdős-Rényi interdependent networks (ER-ER) [16, 18].
This is because the hubs in one network, which are the source of the stability of single
SF networks, can be dependent on low degree nodes in the other network and are thus
vulnerable to random damage via dependency links [16]. Furthermore, the percolation
threshold decreases with increasing assortativity and therefore assortative networks (r >
0) are more fragile in both the ER and SF cases even though in general, SF networks are
less robust than ER interdependent pairs [19]. Interdependencies significantly increase
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the entire network’s vulnerability to random failure [18, 23, 24, 123]. In the case of
partially interdependent networks (ER-ER and SF-SF), for strong coupling (large values
of q1 and q2) the networks exhibit a first-order transition, while for a weak coupling
they exhibit a second-order phase transition. The first-order phase transition presented
in interdependent networks is totally different from the second-order phase transition
occurring in single networks [28]. Therefore, interdependence between networks can
vastly increase the system’s vulnerability, since node failure in one network may lead to
the failure of dependent nodes in other networks, and this may happen recursively and
lead to a cascade of failures and system collapse [107].

Interdependent networks reach the steady state when the cascade of failures ends
[22]. For ER-ER networks with unidirectional interlinks the Largest Mutually Connected
Component (LMCC) in the steady state follows a simple law, which is equivalent to the
random percolation of a single network in the limit of a large number of support links [22].
The case where both connectivity (intralinks) and dependency (interlinks) links connect
different networks in coupled ER-ER systems was studied in [23]. The connectivity links
can increase the robustness of the system, while the dependency links can decrease its
robustness [23]. In the cascading failure process considered by Hu et al. [23], those
nodes that are part of the remaining smaller clusters become inoperative unless there
is a path of connectivity links connecting these small clusters to the Largest Connected
Component (LCC) of the other network. In ER-ER networks under this failure scenario,
an unusual phase-transition phenomena including first- and second-order hybrid transition
was found [23]. Moreover, an unusual discontinuous change from second-order to
first-order transition as a function of the dependency coupling between the two networks
was discovered[23].

Other interdependent networks are formed when more than two networks might
interact with each other. Thus, the robustness of Network of Networks (NoN), which is
an extension of coupled networks, is also studied [124]. In a NoN, each node is a network
and pairs of networks are considered linked if dependency links exist between them [112].
The robustness of a network formed by n interdependent networks with a one-to-one
correspondence of dependent nodes was analyzed by Gao et al. [24, 122, 123]. In this
type of network, percolation properties were examined including the size of the LCC at
each phase of the cascading failure, the size of the LCC at steady state and the percolation
threshold (ρc), among others. For tree-like NoNs, the number of networks in the NoN
(n) affects overall robustness, but the specific topology of the NoN does not [24, 122]. In
contrast, for a random regular NoN the number of networks n does not affect robustness,
but the degree of each network within the NoN does [122]. Moreover, the robustness
of n interdependent networks with a partial support-dependence relationship was studied
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in [125]. When there is a strong interdependent coupling between the networks of a
NoN, the percolation transition is discontinuous (it is a first-order transition), unlike the
well-known continuous second-order transition in single isolated networks [124].

3.3.2 Robustness measurements on interdependent networks under
targeted attacks

Although a random failure can expose the high vulnerability of interdependent networks,
it causes less damage than a failure generated by a targeted attack. This is because
in a targeted attack, the most important network elements (nodes or links) are the
first to be removed [90, 91]. Several properties have been proposed to identify the
critical network elements and to discern the probability that an element will be attacked
initially and become inactive. Hence, several researchers have analyzed the robustness
of interdependent networks in the context of different attack strategies such as targeted
attack and localized attack. The robustness of interdependent SF networks under targeted
attack on high or low degree nodes was studied in [126]. A general technique that maps
the targeted attack problem in interdependent networks to a random attack problem was
introduced. Furthermore, Huang et al. [126] found that when the highly-connected nodes
are protected and have a lower probability of failure compared with single SF networks,
then the coupled SF networks are more vulnerable with ρc values significantly greater
than zero. Thus, interdependent networks are more difficult to defend using strategies
such as protecting the high degree nodes, which have been found useful to significantly
improve the robustness of single networks [126].

The percolation of partially ER-ER networks under targeted attack was studied in
[127]. In the targeted attack considered by Dong et al. [127], the probability of each node
failing is proportional to its degree and it also depends on a factor α . When α = 1 the
nodes with the highest degree have a greater probability of being attacked first, whereas
if α = 0 the nodes are removed randomly. For any value of α , in the case of weak
coupling the system shows a second-order phase transition, and in the strong coupling the
system shows a first-order phase transition. Moreover, in [127] it was found that when the
high degree nodes have a greater probability of failing (α increases), the interdependent
network becomes more vulnerable.

The robustness of interdependent transportation networks by considering network
flows and different attack strategies was analyzed by Zhang et al. [26]. The
interdependent networks had a one-to-one bidirectional nodal correspondence that was
established randomly. Attack strategies removed nodes with the highest load or the largest
degree and a dependent node failed due to overloading or loss of interdependency [26].
Under these scenarios, the robustness of interdependent SF networks (SF-SF) was smaller
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than single SF network or interdependent SF networks without flows. For interdependent
ER networks (ER-ER), the robustness changed substantially possibly due to their narrow
betweenness distribution [26]. Finally, Zhang et al. [26] showed that as the tolerance
parameter β increased in each case, robustness was improved by increasing the capacities
of nodes.

A wide range of possible coupling modes in terms of direction (unidirectional or
bidirectional interlinks), redundancy (average of interlinks by node) and extent (fraction
of network nodes that are dependent on another network) were evaluated in [130]. These
coupling modes were tested in interdependent SF networks (SF-SF) and interdependent
ER networks which generated a one-to-multiple nodal correspondence. Fu et al. [130]
have shown that interdependent networks with unidirectional interlinks are less robust
than those with bidirectional interlinks, and that the degree of redundancy can have a
differential effect on robustness depending on the interlinks’ directionality. Moreover,
optimizing inter-network connections or hardening high degree nodes could help to
reduce the vulnerability of an interdependent network to random or targeted attacks [130].

The robustness of a Network of Networks (NoN) under targeted attack on high- or
low-degree nodes was studied in [27]. For any tree of n fully interdependent networks
(ER-ER and SF-SF) under targeted attacks, the network becomes significantly more
vulnerable when higher degree nodes have a greater probability of failing [27]. For
different values of α , in [27] it was found that the LCC and the critical fraction pc is a
function of average nodal degree (〈k〉) and n for ER and SF networks [27]. Furthermore,
when α is increasing or decreasing, the network becomes more vulnerable or more robust,
which coincides with the classic percolation of a single network to a targeted network
[27]. The robustness of networks coupled by connectivity and dependency links under
three types of targeted-attack strategies was analyzed by Du et al. [135]. The results
showed that the system undergoes a second- to first-order phase transition as coupling
strength increases [135]. Protecting nodes with high degrees of intralinks or interlinks can
increase the robustness of the system. But also defending nodes whose sum of degrees of
intralinks and interlinks is large can prevent the system from becoming vulnerable [135].

Additionally, interdependent networks may be affected by localized attacks, which
are used to simulate the effect of natural disasters such as earthquakes or floods on critical
infrastructures [136]. Generally, in a localized attack all the nodes placed in the influence
area fail [137, 138], but in real cases the failure probability of nodes should decrease
with the distance from the epicenter [128]. Real and artificial interdependent networks
with one-to-one nodal correspondence have been considered to analyze robustness as a
function of the largest mutually connected component [128]. Wang et al. [128] showed
that the impact of the new localized attack on network robustness is relatively small
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compared with the impact generated by traditional localized attacks, random failures and
targeted attacks. On the other hand, in [129] the robustness of a medium-sized energy
system including an oil network and a power network was explored against cascading
failures generated by terrorist attacks. Physical and geographical interdependencies
were considered to generate the interdependent networks. Wi et al. [129] showed that
interdependent networks collapse when only a small fraction of nodes were attacked and
spatially localized attacks cause less vulnerability than equivalent random failures [138].

3.3.3 Robustness measurements on interdependent networks under
different interlink patterns

Interlink patterns refer to those mechanisms whereby the interdependency links between
the nodes of the interconnected networks are allocated. Most of the works presented
above consider a random interconnection pattern to interconnect two or more networks.
However, real interdependent networks are not usually randomly interdependent, but
rather pairs of dependent nodes are coupled according to an interlink pattern [139].
Therefore, other research works have focused on studying the effects of various interlink
patterns on the robustness of interdependent networks. Parshani et al. [139] showed
that inter-similar coupled networks, i.e., coupled networks in which pairs are coupled
according to kind of regularity rather than randomly, are significantly more robust to
random failure. The interdependent networks ER-ER and SF-SF and the port-airport
system were studied in [139]. In [131] was demonstrated that the regular allocation
of bidirectional interlinks always yields stronger robustness than random strategy and
unidirectional interlinks do.

The power and water systems were taken in [25] as an example to analyze the
vulnerability of interdependent infrastructures with bidirectional interlinks. Random
failures and degree-based and betweenness-based attacks were considered to generate
cascading failures. Four interlink patterns based on distance, betweenness, degree
and clustering coefficient were considered to analyze the robustness of interdependent
networks to random failures and targeted attacks. Wang et al. [25] found that the random
removal of nodes causes the network less damage, whereas the betweenness-based attack
causes the largest performance losses. This is due the fact that the high-degree and
high-betweenness nodes usually support more loads. Thus, when nodes with high
loads are attacked and removed, other nodes are assigned more loads, which may
exceed their maximum capacity causing more performance loss [25]. The distance-based
coupling modes had low efficiency change trends under deliberate attacks, but were
rather vulnerable to random attacks. The betweenness-based coupling and the clustering
coupling strategies had relatively good performance, and the betweenness-based strategies



CHAPTER 3. ROBUSTNESS IN INTERDEPENDENT NETWORKS 74

had better tolerance to random events [25]. The degree-based strategy has intermediate
efficiency drops for random disturbance.

The robustness of the interdependent networks’ two artificial networks (ER and
SF graphs) and the power grid were analyzed in [29]. Three coupled patterns with
bidirectional interlinks and one-to-one nodal correspondence were considered. Wang
et al. [29] showed that interlink patterns can dramatically improve the robustness of
interdependent networks by preventing cascade propagation according to the load, the
load redistribution and the node capacity. The results found in [29] indicate that SF
networks play the important role in enhancing the performance of the interdependent
networks. Therefore, for the smaller value node initial load the best coupling pattern
to interconnect a power grid and an SF network is an assortative (”high-to-high” degree
coupling) interlink pattern, while for larger node initial load the best is the disassortative
(”high-to-low” degree coupling) interlink pattern [29].

The study of the effect of coupling preference on cascading failures in interdependent
SF networks generated from initial targeted attacks was carried out under the two main
failure factors: loss of interdependency and overloads [30, 140]. Thus, if one node in a
network is removed, loads will be redistributed globally, leading to the failure of nodes
within the network due to the overload factor, and the failed nodes in this network will
cause the failure of their dependency counterparts in its interconnected network [30]. Tan
et al. [30] found that an assortative interlink pattern (”high-to-high” load coupling) is
more helpful to resist cascades compared to disassortative (”high-to-low” load coupling)
or random interlink patterns. Chen et al. [140] found that a disassortative interlink
pattern is more robust for sparse coupling, while assortative patterns performs better
for dense coupling. For sparse coupling, enhancing the coupling probability can make
interconnected networks more robust against intentional attacks, but keeping increasing
the coupling probability has the opposite effect for dense coupling [30]. Moreover,
increases in redundancy, average degree or network size can significantly improve
assortative coupling robustness [140]. These results can be useful for the design and
optimization of interconnected networks such as communication networks, power grids
and transportation systems [30]. For instance, Golshan et al. [34] showed that assortative
coupling (”high-to-high” degree interconection) is better at mitigating cascading failures
in real power grids interconneceted to communication networks.

Additionally, the influences of community structure on cascading failures on
interdependent SF networks with traffic loads was studied by Tian et al. [32].
Communities, also called clusters or modules, are groups of nodes which probably share
common properties and/or play similar roles within the graph [141]. In [32] three mainly
inter-community connections and coupling preferences were analyzed, i.e., Random
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Coupling In Communities (RCIC), Assortative Coupling In Communities (ACIC) and
Assortative Coupling With Communities (ACWC), where the ACIC model was shown to
best resist cascading failures. For ACIC, cascading failures propagate mainly in a local
community where the initial failure occurs [32]. Furthermore, increasing inter-community
connections can enhance the robustness of interdependent modular SF networks for
both inner attacks and hub attacks [32]. The addition of interlinks to interdependent
networks was studied in [36]. Ji et al. [36] suggested that the low Inter Degree-Degree
(IDD) difference addition strategy and the Random Inter Degree-degree (RID) difference
addition strategy are superior to the four existing link addition strategies (random
addition, low degree, low betweenness and algebraic connectivity based) in improving the
robustness of interdependent networks with high average inter degree-degree difference.
In addition, the weighted allocation of interdependency links under a limited budget to
obtain a more robust interdependent cyber-physical network was studied by Li et al. [35].
If weights of dependency links are identical, node degree distribution is critical to network
robustness, but if weights of dependency links are not identical, choosing dependency link
strategies under a limited budget affects network robustness [35].

3.3.4 Robustness metrics in interdependent networks

Most research in the robustness of interdependent networks under multiple failures has
been carried out using the tools of the percolation theory. However, to quantify the impact
of failures on interdependent networks, new robustness metrics have been proposed and
some metrics used in robustness analysis of single networks have been extended. One
of the first robustness metrics was the Largest Mutually Connected Component (LMCC),
which measures the level of connectivity of a network [16, 126]. In a cascading failure,
clusters of nodes that are disconnected from the network core (giant component) become
non-functional and are removed. The LMCC measures the number of nodes that remain
functional after a cascading failure process in interdependent networks [16]. The larger
the LMCC, the more robust the networks. Therefore, the LMCC is of special interest since
it is the only functional part of an interdependent network [16].

Modiano et al. [20] proposed the Minimum Total Failure Removal (MT FR) as a
new metric to evaluate the robustness of interdependent networks. The MT FR metric
quantifies the minimum number of network elements that should be removed from two
interconnected networks for all the nodes in the networks to fail after the ensuing cascades
[20]. Thus, the larger the MT FR is, the more robust are the networks. In [34], the
final failure size of two interdependent networks was measured after a cascading failure
process to estimate the impact of an initial failure. A number of vulnerability metrics
used to measure the disaster impact in multilayer communication networks was presented
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by Habib et al. [142]. Disaster failures can cause multidomain multilayer failures and
damage large portions of communication networks [142]. Thus, most reviewed metrics in
[142] have focused on quantifying network connectivity, the amount of disrupted traffic,
the probabilistic number of failed components and the economic loss due to disaster
failures.

Other researchers have used algebraic connectivity (λ2) to analyze the robustness of
interdependent networks [31, 132, 134]. In [31] the critical number of interlinks beyond
which any further inclusion does not enhance the algebraic connectivity was analysed; this
phase transition depends on the topology of the graph model and it was discovered that
the transition point also increases with assortativity. In [132] the algebraic connectivity
was evaluated as a robustness metric and was used to rewire interlinks. A tight asymptotic
growth rate on the algebraic connectivity of random interdependent networks for certain
ranges of interlink formation probabilities (again, regardless of the intra-layer topologies)
was provided, showing the importance of the interdependencies between networks to
information diffusion dynamics [134].

Effective Graph Resistance (EGR) as a robustness metric for interdependent networks
by considering the Laplacian matrix of interdependent networks was analyzed in [133].
The results via EGR analysis showed that an interdependent network is more robust
when more interlinks are added to the interdependent network [133]. Relative size,
which is defined as a quotient between the number of nodes in the giant component
after and before a cascading failure was also used to quantify the damage done to
an interdependent network [32]. To understand how communication functionality is
degraded, Chai et al. [37] selected Efficiency (E) [56] to estimate the impact of cascading
failures on interdependent communication and power distribution networks. Centrality
metrics (degree, betweenness, closeness and eigenvalue) were used to rank the nodes
based on their importance and the attacks on the interdependent networks in descending
order. The results showed that for all three coupling networks (Power-ER, power-SF and
power-SW) the different targeted attacks were more effective in reducing their robustness
than random failures [37]. However, power grids coupled with an SF communication
network were the least robust against cascading failures, but they were the most robust
when they depended on a SW communication network [37]. Last, it was found that higher
link density in sparse networks (i.e., at low density region) provides better robustness for
the same type of network model [37].

3.3.5 Summary and research direction

The distinction between internal connectivity links within transportation networks
(intralinks) and interdependent links between these critical infrastructures (interlinks)
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has posed new challenges in interdependent networks, increasing the interest in research
in this area [21]. Because of the interdependency between interconnected networks,
random failures or targeted attacks in one network are propagated to the others with
severe consequences for the operation of the networks. Factors such as the network
model of the topologies to be interconnected, the interdependency model between the
interconnected networks and the failure model that affect the network have been decisive
in defining vulnerability and the behavior of interdependent networks under multiple
failures. Therefore, understanding and analyzing interdependency between transportation
networks is essential for designing more robust interdependent networks.

The main objective of failure vulnerability studies is to identify the critical parts of
networks to improve their robustness to multiple failures. In order to protect networks,
the most important nodes (links) that cause the whole network to malfunction should be
identified. Therefore, one can learn how to build attack-robust networks and also how to
increase the robustness of interdependent networks [85]. A comparison of the relevant
results of previous works about robustness measurement in interdependent networks is
presented in Table 3.2. As can be seen, most of the works are focused on identifying the
network robustness behaviour in the context of random failures and targeted attacks which
trigger a cascading failure process based on a some metrics. Other works are focused on
identifying the influence of interdependency types on the propagation of failures between
the interconnected networks. Therefore, what follows are the research objectives that will
be covered in the remainder of this chapter:

• Interdependencies between transportation networks have severe consequences for
their operation due to the fact that a failure in one network is propagated
to its interconnected network, even causing full service disruption. Previous
research has shown that interdependency links that follow a pattern different
from random coupling may enhance the robustness of interdependent networks to
failures. Targeted attacks in particular have been shown to be the most aggressive
trigger of dynamic failures on interdependent networks. Therefore, three interlink
patterns based on a vulnerability analysis of each transportation network to be
interconnected are proposed. Moreover, we focus on measuring the robustness of
interdependent networks for those interlink patterns to identify the best coupling
strategy for mitigating the impact of targeted attacks.

• From the results presented in Chapter 2, when the topological structure of a
transportation network is taken into account, it is possible to determine which
failure type will produce the greatest damage. In such a scenario, the elements
that could have serious impacts on the robustness of a transportation networks can
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be discerned. However, when one transportation network interacts with another, the
network’s critical parts may change due to failure propagation between them. Thus,
it is interesting to identify changes in robustness when two transportation networks
with similar or dissimilar topological properties interact. In this chapter a study of
targeted attacks propagation between interdependent networks is addressed for the
three proposed interlink patterns.

• The main objective of vulnerability studies is to protect networks against failures
and build more robust networks. Most previous work has focused on analyzing
the robustness of whole interdependent systems by using different metrics such as
percolation threshold, LMCC, algebraic connectivity and EGR, among others. In
this research, however, we are interested in individually measuring the robustness
of networks that are interconnected to analyze the response of one network due to
failures in its interconnected network. Hence, a study of connectivity loss within
each network is carried out to identify changes in the robustness of individual
networks for the three proposed interlink patterns.
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Table 3.2: Comparison of relevant results on robustness measurements in interdependent networks

Author Results Robustness metric

Buldyrev et al. [16], Parshani
et al. [18] and Zhou et al. [19]

In interdependent network scenarios, SF networks are more vulnerable to random attack compared to ER
networks. In addition, the larger the LMCC is, the more robust are the networks.

Percolation threshold and
LMCC

Jian et al. [28] and Zhang et al.
[26]

Under random and targeted attacks, partially interdependent networks (ER-ER and SF-SF), percolation
exhibits a first-order transition for strong coupling , while a second-order phase transition is exhibited by a
weak coupling

Percolation threshold and
LMCC

Shao et al. [22] In interdepedent ER networks with unidirectional interlinks, the largest mutually connected component
(LMCC) in the steady state follows a simple law

Percolation threshold and
LMCC

Hu et al. [23] The interconnectivity links (intralinks) can increase the robustness of the system, while the interdependency
links (interlinks) can decrease its robustness

Percolation threshold and LCC

Gao et al. [24, 122, 123],
Havlin et al. [124], Dong et al.
[27, 125]

The number of networks that are interconnected and their topology influence in the robustness of NoN.
Targeted attacks increase the vulnerability of NoN due to failures on higher degree nodes.

Percolation threshold and LCC

Huang et al. [126] Protecting interdependent SF networks against targeted attacks is more difficult than for single SF networks. Percolation threshold and
LMCC

Zhang et al. [26] The robustness of interdependent networks (ER-ER and SF-SF) with flows is improved when tolerance
parameter β increases due to the nodes supporting more load.

Percolation threshold and LCC

Wang et al. [128] and Wu et al.
[129]

Localized attacks have a relatively small impact compared to random failures or targted attacks Percolation threshold and LCC

Parshani et al. [139] Coupled networks in which pairs are coupled according to some kind of regularity rather than randomly are
significantly more robust to random failure

Percolation threshold and LCC

Continue on the next page
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Table 3.2: Comparison of relevant results on robustness measurements in interdependent networks

Author Results Robustness metric

Wang et al. [25] Random failures cause interdependent networks less damage, whereas betweenness-based attacks cause the
largest performance losses

Percolation threshold and LCC

Wang et al. [29] Interlink patterns can dramatically improve the robustness of interdependent networks by preventing
cascade propagation

Percolation threshold and LCC

Tan et al. [30] and Cheng et
al.[33]

An assortative interlink pattern (”high-to-high” load coupling) is more helpful to resist the cascades in
SF-SF networks. Moreover, a disassortative interlink pattern (”high-to-low” load coupling) is more robust
for sparse coupling, while assortative patterns performs better for dense coupling.

LCC

Tian et al. [32] Assortative coupling in communities (ACIC) been shown to be the most effective in resisting cascading
failures

Relative size of giant
component

Golshan et al. [34] Assortative coupling (”high-to-high” degree interconnection) is better at mitigating cascading failures in
real power grids interconnected to communication networks

Failure finally size

Fu et al [130] and Yagan et al.
[131]

Interdependent networks with unidirectional interlinks are less robust than those with bidirectional
interlinks.

Percolation threshold and LCC

Li et al [35] The robustness of interdependent networks is influenced when weighted allocation of interdependency links
under limited budget is considered

Percolation threshold and LCC

Ji et al [36] The low Inter Deree–Degree difference addition strategy (IDD) and the Random Inter Degree–degree
difference addition strategy (RID) are better at improving the robustness of interdependent networks

LMCC

Parandehgheibi et al.[20] The larger the minimum total failure removal (MT FR), the more robust the networks Minimum total failure removal

Continue on the next page
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Table 3.2: Comparison of relevant results on robustness measurements in interdependent networks

Author Results Robustness metric

Tauch et al. [133] Results via EGR analysis showed that an interdependent network is more robust when more interlinks are
added to the interdependent network

Effective graph resistance

Chai et al. [37] For all three coupling networks (Power-ER, power-SF and power-SW) the different targeted attacks were
more effective to reduce their robustness than random failures

Efficiency and LCC

Martı́n-Hernández et al. [31],
Shahrivar et al. [134] and
Tauch et al. [132]

There is a critical number of interlinks beyond which any further inclusion does not enhance the algebraic
connectivity (2). In failure scenarios, higher λ2 values indicate better network robustness.

Algebraic connectivity
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3.4 Interlink patterns for interdependent networks
based on node vulnerability

In the network-based approach considered in this research, an interlink pattern to
interconnect two transportation networks is modeled via an interdependency matrix B (see
equation 3.2). Let us consider two undirected networks G1 and G2, each with the same
number of nodes N1 = N2. Let B12 be the N1×N2 interconnection matrix representing
the bidirectional interlinks between node i in network G1 and node j in network G2,
and vice versa. In order to interconnect the nodes i and j through an interlink bi j, our
proposal suggests that the vulnerability of nodes in each network to targeted attacks must
be quantified. For simplicity, centrality metrics based on the graph theory are used to rank
the nodes that are more vulnerable to targeted attacks. However, any other property can
be used to quantify the vulnerability of nodes in each network.

Let mi denote a centrality value of node i ∈ G1. Then, nodes i ∈ G1 are ordered
from the highest to the lowest value of mi, i.e., m1 ≥ m2 ≥ ·· · ≥ mi−1 ≥ mi ≥ mi+1 ≥
·· · ≥ mN1−1 ≥ mN1 . Similarly, let n j denote a centrality value of node j ∈ G2. Then,
nodes j ∈ G2 are ordered according to n j, i.e., n1 ≥ n2 ≥ ·· · ≥ n j−1 ≥ n j ≥ n j+1 ≥ ·· · ≥
nN2−1 ≥ nN2 . In both cases, if some nodes have the same centrality measure, then they
are labeled randomly. Based on [34], the three interdependency matrices based on node
vulnerability that can be generated to interconnect two transportation networks are the
following:

• High Centrality Interdependecy Matrix (BHC): denoted as a dependency by an
interlink ni↔ mi which defines a one-to-one correspondence between nodes i and
j in G1 and G2 networks, respectively, i.e., high-centrality (low-centrality) nodes in
G1 are connected to high-centrality (low-centrality) nodes in G2.

• Low Centrality Interdependecy Matrix (BLC): denoted as a dependency by an
interlink mi↔ nN2− j+1 which defines a one-to-one correspondence between nodes
i and j in networks G1 and G2, respectively, i.e., high-centrality nodes in G1 are
connected to low-centrality nodes in G2, and vice versa.

• Random Interdependency Matrix (BRA): denoted as a dependency by a randomly
allocated interlink i↔ j which defines a one-to-one correspondence between nodes
i and j in networks G1 and G2, respectively, i.e., nodes between the networks G1

and G2 are connected without their centrality measures being considered.

The interlink patterns between two transportation networks can be conditioned by a
coupling weight α > 0 which affects interdependency strength. Although the impact of a
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Table 3.3: Interdependent network scenarios to be studied

Aspect Scenario 1 Scenario 1

Network model ER-ER ER-Power grid

Interlink type Bidirectional Bidirectional

Interconnection type One-to-one One-to-one

Interlink pattern BHC , BLC and BRA BHC , BLC and BRA

Triggered event Targeted attacks Targeted attacks

network failure on other networks could be weighted by the coupling coefficient α , this
chapter focuses on a scenario where a failure in one node of a network leads to a failure
in the dependent node in the other network. Thus, the α value does not condition the
failure propagation between the nodes of the interconnected networks and does not limit
the evaluation of the three interdependency matrices to mitigate the impacts of targeted
attacks. The analysis of the effects of α on failure propagation should be considered as a
topic for future research.

As application contexts for the three interlink patterns, the BHC matrix may be used
when the most important telecommunication and power grid nodes serve each other, such
as in a large city where the nodes in a telecommunication network and a power grid
depend on population density. The BLC matrix may be used when the most vulnerable
power nodes serve the least critical telecommunication nodes, and vice versa. For
example, a telecommunication operator can identify zones where blackouts frequently
occur; thus, any of the most critical telecommunication nodes can be located at these
points. In contrast, the BRA matrix connects nodes randomly without considering their
centrality values; this is the case with telecommunication networks and power grids in
non-urban or rural areas. These scenarios show the interlink patterns proposed can be
apply in real-life interdependent networks. However, in the practice the BRA matrix
may be the most common interlink pattern as the interconnection between networks is
generally carried out by considering the function that nodes perform without consider
other factors. Thus, the proper selection of one of these interconnection models depends
on type of networks to be interconnected and the information available of the vulnerability
of the network nodes.
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Table 3.4: Topological properties of networks in Scenario 1

Network Ni Li 〈k〉 kmax 〈l〉 D r

G1 500 677 2.71 10 6.78 19 0.031

G2 500 978 3.91 12 4.73 10 0.021

3.5 Interdependent network scenarios: topological
properties of transportation networks

In this research, transportation networks to be interconnected are modeled as graphs
to catch the main topological properties of the networks, and interlinks are modeled
through interdependency matrices to represent the interdependencies between the nodes.
In Table 3.3 the interdependent network scenarios to be studied are presented. As
can be seen, the scenarios considered to analyze the impact of the proposed interlink
patterns on the robustness of interdependent networks are 1) the interconnection of two
backbone telecommunication modeled as an ER-ER interdependent network, and 2) an
ER telecommunication network connected to a power grid. In this section, the topological
properties of networks considered as study cases are described.

3.5.1 Scenario 1: The interconnection of networks with similar
topological properties

As the first scenario, two backbone telecommunication networks with similar topological
properties are interconnected. The random connection property of a backbone
telecommunication network is modeled using an Erdős-Rényi (ER) random graph with
a Poisson nodal degree distribution. This indicates that most nodes have approximately
the same number of links close to the average nodal degree [46]. Although Scale-Free
(SF) or other graph models can also be used to model telecommunication networks, these
are more associated with large networks (such as multi-autonomous systems networks).
Moreover, some current backbone topologies are also scaling to other models which are
out of the scope of this work.

The ER-ER topology is the interconnection of two single network topologies
generated from an ER graph model with the same number of nodes (N1 = N2 = 500),
a different number of links L1 = 978 and L2 = 677. In order to interconnect the
nodes between the two telecommunication networks, interlink patterns are based on
the vulnerability of nodes in the most dangerous attack for these networks. Hence,
for the high centrality (BHC) and low centrality (BLC) interdependency matrices, the
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(a) ER1 (b) ER2

Figure 3.5: Graph representation for the backbone telecommunication networks (ER1
and ER2) of Scenario 2

interconnection is carried out with the centrality metric used to rank the nodes in that
targeted attack. Whereas in a random interdependency matrix (BRA), the nodes between
the networks are interconnected randomly.

Table 3.4 presents the main topological properties of the two telecommunication
networks: number of nodes (N), number of links (L), average nodal degree (〈k〉),
maximum nodal degree (kmax), average shortest path length (〈l〉), diameter (D) and
assortativity coefficient (r). As can be observed, both networks exhibit assortative values
close to zero (0.021 for G1 and 0.031 for G2) and have low values of 〈k〉 (3.91 for G1 and
2.71 for G2) and high values of 〈l〉 (4.73 for G1 and 6.78 for G2) and D (10 for G1 and 19
for G2).

3.5.2 Scenario 2: The interconnection of networks with different
topological properties

As the second scenario, the case of a power grid interconnected to a telecommunication
network is considered. The power grid will be interconnected to two ER
telecommunication networks, each with different susceptibilities to targeted attacks.
Figure 3.5 shows the topologies of the backbone telecommunication networks ER1 and
ER2 such that the larger the nodes, the higher their betweenness centrality values. Note
that ER2 has more nodes with similar betweenness centrality values than does G1. Hence,
for targeted attacks based on betweenness centrality, G2 is able to maintain network
connections for larger numbers of removed nodes than ER1.



CHAPTER 3. ROBUSTNESS IN INTERDEPENDENT NETWORKS 86

Figure 3.6: Graph representation of the IEEE 300 power grid of Scenario 2

The power grid can be modeled as a Small-World (SW ) graph. A Small-World
graph is a regular graph with increased randomness; thus, it exhibits the high clustering
property of a regular graph and the short characteristic path length of a random graph [49].
However, in order to capture the topological properties of a power grid, the IEEE 300
real network [143] used by several researchers (see, e.g., [144]) was selected. Figure
3.6 shows the topology of the IEEE 300 power grid, where the larger nodes have higher
degree centrality values.

For simplicity, the ER1 and ER2 backbone telecommunication networks and the
IEEE 300 power grid have the same number of nodes N = 300, but different numbers
of links (L) 437, 549 and 411, respectively. As shown in Table 3.5, the ER1 and ER2

networks have assortative values (r) close to zero, 0.0134 and 0.0093, respectively; and
the IEEE 300 has a disassortative value (-0.2137). The three networks have low values of
〈k〉 (2.91 for ER1, 3.66 for ER2 and 2.74 for IEEE 300) and high values of 〈l〉 (5.57 for
ER1, 4.57 for ER2 and 9.94 for IEEE 300) and diameter D (12 for ER1, 10 for ER2 and
24 for IEEE 300).

Because telecommunication networks and power grids are more vulnerable to
different types of attacks, the nodes in each network should be weighted using different
centrality metrics. Therefore, the high centrality (BHC) and low centrality (BLC)
interdependency matrices interconnect the two types of networks with a one-to-one
correspondence between the nodes of the networks according to the centrality metric used
to rank the nodes in each targeted attack. Whereas in a random interdependency matrix
(BRA), the nodes between the networks are interconnected randomly.
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Table 3.5: Topological properties of networks in Scenario 2

Network Ni Li 〈k〉 kmax 〈l〉 D r

ER1 300 437 2.91 9 5.57 12 0.0134

ER2 300 549 3.66 8 4.57 10 0.0093

IEEE 300 300 411 2.74 12 9.94 24 -0.2137

3.6 Impact of interlink patterns to mitigate targeted
attacks in interdependent networks

In order to analyze the impact of the proposed interlink patterns to mitigate targeted
attacks in interdependent networks, the robustness of each network is measured
individually. Although several metrics have been proposed for assessing the network
robustness (see Section 2.3), Average Two-Terminal Reliability (AT T R) [73] is selected
as the network robustness metric. This metric has been used widely in previous work
[4, 73, 145, 146] because it provides a good approximation and sensitivity to quantifying
network connectivity under failure scenarios. Furthermore, AT T R can be used to compare
network robustness under various failure scenarios, so it supports analyses of the effects
of the three interlink patterns with regards to the propagation of targeted attacks in the
interdependent critical infrastructures. The AT T R metric is calculated from equation 2.14
[73].

In the failure scenarios considered in this section, the percentage P of nodes removed
ranged from 1% to 70%. Ten runs were conducted and, based on whether the targeted
attacks were simultaneous or sequential, different subsets of nodes were selected for
removal. The next section analyzes the robustness of the networks presented in Table
3.4 and Table 3.5 in the single network scenario. Thus, the most dangerous targeted
attack for each network is detected. Following this, the three interdependency matrices
(BHC, BLC and BRA) are analyzed in terms of their ability to mitigate targeted attacks in
the interdependent networks resulting from Scenario 1 and Scenario 2.

3.6.1 Robustness analysis in the single network scenario

The critical parts of an isolated transportation network are identified by considering a
robustness analysis under a certain type of failure. In backbone telecommunication
networks the most vulnerable routers can be identified by the number of shortest paths
passing through a given router. Generally, this behavior is characterized by measuring
the betweenness centrality (bc) in each node. Therefore, the nodes to be attacked first
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are ranked according to their bc values. For the two telecommunication networks in
Table 3.4, a robustness comparison under targeted attacks is presented in Fig. 3.7(a).
The G1 SE and G2 SE curves present the results of AT T R measurements for G1 and G2

networks, respectively, under the sequential targeted attack based on bc, while the G1 SI

and G2 SI curves present the results of AT T R measures for G1 and G2, respectively, under
simultaneous targeted attacks by bc.

As can be seen in Fig. 3.7(a), G2 is more vulnerable to a sequential targeted attack
by bc than G1. This result is due to G2 having a smaller 〈k〉 and higher values of 〈l〉
and D than G1 does, as can be seen in Table 3.4. So, in the range of 1% and 5% of P, the
network connections in G2 are reduced to 80%, whereas the network connections in G1 are
reduced to 90%. For P > 5%, the network connections in G2 decrease dramatically until
it is completely disconnected when P reaches 20%. In contrast, the network connections
in G1 are close to 0% when P is approximately equal to 30%. Furthermore, Fig. 3.7(a)
shows that G1 and G2 are highly vulnerable under sequential targeted attacks by bc than
under simultaneous targeted attacks by bc.

Regarding to the robustness comparison of networks presented in Table 3.5, Fig.
3.7(b) shows the AT T R measures in a single network scenario for the ER1 and ER2

telecommunication networks and the IEEE 300 power grid under targeted attacks.
The graphs show that ER1 is more vulnerable to a targeted attack than ER2; this is
because ER1 has lower 〈k〉 and higher 〈l〉 and D values than ER2. Moreover, both
telecommunication networks are more vulnerable to sequential targeted attacks based on
betweenness centrality (curves ER1 SE and ER2 SE in Fig. 3.7(b)) than to simultaneous
targeted attacks based on betweenness centrality (curves ER1 SI and ER2 SI in Fig.
3.7(b)); this is because the assortative values are close to zero. The high vulnerability
of Erdős-Rényi random networks to sequential targeted attacks based on betweenness
centrality is reported in [54].

In analyzing the robustness of the ER1 and ER2 telecommunication networks, the
two attacks produce similar damage for specific percentage ranges of nodes removed
(P). For ER1, this range is between 1% and 5%, where the network connections are
reduced to 76%; in the case of ER2, the range is between 1% and 18%, where the network
connections are reduced to 47%. For the remaining P values, the robustness behaviors
of ER1 and ER2 differ for the two attacks. Thus, under a sequential targeted attack
based on betweenness centrality, the network connections of ER1 (curve ER1 SE in Fig.
3.7(b)) and ER2 (curve ER2 SE in Fig. 3.7(b)) are close to 0% when the P values are
approximately equal to 20% and 25%, respectively. In contrast, under a simultaneous
targeted attack based on betweenness centrality, the network connections of ER1 (curve
ER1 SI in Fig. 3.7(b)) and ER2 (curve ER2 SI in Fig. 3.7(b)) are close to 0% when the P
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(a) Robustness of telecommunication networks (G1 and G2) under targeted attacks

(b) Robustnes of telecommunication networks (ER1 and ER2) and power grid
(IEEE 300) under targeted attacks

Figure 3.7: Robustness analysis of isolated networks under targeted attacks

reaches 30% and 37%, respectively.
Regarding to the IEEE 300 power grid, it is more vulnerable to targeted attacks than

the ER1 and ER2 networks, which is expected because of the Small-World characteristics
of the IEEE 300 network. As can be seen in Fig. 3.7(b), the robustness of the IEEE 300
power grid is similar for simultaneous and sequential targeted attacks based on degree
centrality (curves IEEE300 SI and IEEE300 SE). Specifically, for P ranging from 1% to
5%, the network connections in the IEEE 300 network dramatically decrease to 36% and
the network is completely disconnected when P reaches 10%. However, the average for
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the AT T R values of the IEEE 00 network against a sequential target attack is greater than
the average for the AT T R values against a simultaneous target attack. Thus, the IEEE 300
network is more vulnerable to simultaneous targeted attacks based on degree centrality
(curve IEEE300 SI) than to sequential targeted attacks based on degree centrality (curve
IEEE300 SE).

In summary, the robustness analysis addressed in this section reveals that the G1, G2,
ER1 and ER2 telecommunication networks are more vulnerable to a sequential targeted
attack based on betweenness centrality, while the IEEE 300 power grid is more vulnerable
to a simultaneous targeted attack based on degree centrality. This is a significant result
to generate the interdependent networks in both Scenarios 1 and 2 because in the case
of the BHC and BLC interlink patterns the nodes will be interconnected according to the
centrality metric used in the most dangerous targeted attack in each network, i.e., nodes
in the telecommunication networks are ranked by betweenness centrality, while nodes in
the power grid are ranked by degree centrality. In the case of the random interdependency
matrix BRA, however, the nodes of two networks will be interconnected randomly without
considering any centrality metrics.

3.6.2 Mitigation of targeted attacks on interdependent networks
with similar topological properties

In the interdependent network of Scenario 1, dependent nodes in the G1

telecommunication network are only removed as a result of nodal failures in the
G2 telecommunication network, and vice versa. In this scenario, the nodes to be
removed are weighted by their betweenness centrality (bc) values because the G1 and G2

telecommunication networks are highly vulnerable to sequential targeted attacks based on
bc (see Section 3.6.1). A sequential targeted attack may be used to describe certain types
of failure scenarios in telecommunication networks e.g., the most vulnerable routers of a
backbone network can be identified in order to protect the network’s function. When a
router fails, its functioning can be distributed to any one router in the network. Then, the
failure of one router will affect the importance of the remaining ones. So, the sequential
targeted attack is appropriate to model the network vulnerability.

In order to measure the robustness of the resulting ER-ER interdependent
telecommunication network under this failure model, for each interdependency matrix,
the G2 network is initially attacked via a sequential targeted attack based on nodal bc.
Following this, the robustness of G1 network is measured via AT T R. Next, the G1 network
is assaulted with a sequential targeted attack based on bc and the robustness of the G2

network is measured by using the AT T R metric.
In Fig. 3.8, the robustness of G1 when a sequential targeted attack by bc occurs
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Figure 3.8: Robustness of G1 network when a sequential targeted attack based on
betweenness centrality occurs in the G2 network

in G2 is shown. For the three interdependency matrices, when P is between 1% and
10%, the robustness of G1 has a similar degradation level as in the case of the single
network scenario (compare the G1 curve with the other curves in Fig. 3.8). In this
range, there is a reduction of up to 22% of connections. This degradation behavior
is only maintained by the high centrality dependency matrix (BHC) until P is equal to
18% (see G1 HC curve in Fig. 3.8). Furthermore, when P is larger than 11%, the BHC

matrix has a greater impact on G1 robustness than do the low centrality (BLC) and random
(BRA) interdependency matrices. However, the impact of the BLC and BRA matrices on the
robustness of G1 is similar for the rest of the P values (see G1 LC and G1 RA curves in
Fig. 3.8, respectively). Therefore, a robustness analysis beyond 20% of P is not relevant
as the network is close to being completely disconnected. As expected with the BLC

matrix, the nodes with the lowest bc values in G1 are the first to be removed when a
sequential targeted attack occurs in G2. Thus, the lowest impact in the robustness of
G1 is produced by the BLC matrix. In the case of the BRA matrix, a sequential targeted
attack in G2 produces a random failure in G1 and generates an intermediate impact on its
robustness.

The robustness of G2 when a sequential targeted attack by bc occurs in G1 is shown
in Fig. 3.9. As it can be seen, when P is between 1% and 7%, the BHC matrix only
achieves a similar level of degradation in G2 to the case of the single network scenario
(compare G2 SE and G2 HC curves in Fig. 3.9). In this range, up to 30% of the
connections in G2 are reduced. Therefore, for low P values in the ER-ER topology, the
least vulnerable network to a sequential targeted attack by bc exhibits a similar robustness
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Figure 3.9: Robustness of the G2 network when a sequential targeted attack based on
betweenness centrality occurs in the G1 network

behavior for the three interdependency matrices as the single network scenario does,
whereas, the most vulnerable network does the opposite. Additionally, when P increases,
the impact of the matrix BHC (see G2 HC curve in Fig. 3.9) on G2’s robustness is
worse than that of the BLC and BRA interdependency matrices (see G2 LC and G2 RA
curves in Fig. 3.9, respectively). This is because the critical parts of two networks are
interconnected. Consequently, in order to reduce the impact of sequential targeted attacks
by bc, it is recommended that two telecommunication networks are connected by using
a low centrality BLC link pattern model. Thus, the most critical parts of one network are
interconnected to the least critical parts of the other network.

Moreover, in the failure scenario considered in this chapter and when networks G1

and G2 are connected by the BHC matrix, the impact of a sequential targeted attack by bc

in G2 can be approximated to a simultaneous targeted attack by bc in G1 (compare G1 SI
in Fig. 3.7(a) and G1 HC in Fig. 3.8). This interesting result is because with the BHC

matrix the highest bc nodes in G1 are removed first when the attack occurs in G2. An
analogous result can be found for the robustness of G2 when a sequential targeted attack
by bc occurs in G1 (compare G2 SI in Fig. 3.7(a) and G2 HC in Fig. 3.9).

3.6.3 Mitigation of targeted attacks on interdependent networks
with different topological properties

A simple functional model is used to express the failure dependencies between a
power grid and backbone telecommunication networks. The power grid incorporates
generators and substations that are connected to power lines. Similarly, the backbone
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telecommunication network incorporates routers connected by communications links.
Each router receives power from a substation and every substation sends data and receives
control signals to/from one router [20]. In this model, a substation continues to operate
if it is connected to a router and a router continues to operate if it is connected to a
substation. Thus, an attack on a power grid node causes the failure of a dependent node
in the telecommunication network, and vice versa.

In the interdependent networks considered in Scenario 2, dependent nodes in the ER1

or ER2 telecommunication networks are only removed as a result of nodal failures in the
IEEE 300 network, and vice versa. According to the results presented in Section 3.6.1,
the ER1 and ER2 telecommunication networks are highly vulnerable to sequential targeted
attacks by betweenness (bc). Therefore, the telecommunication nodes to be removed are
ranked by their betweenness centrality values. In a real scenario, the betweenness metric
could represent the number of shortest paths passing through a router.

In the case of a power grid, the nodes to be removed are ranked by their degree
centrality (dc) values. This is because power grid functionality depends on nodes with
high degree centrality (i.e., generators and substations). Based on the results presented
in Section 3.6.1, a simultaneous targeted attack on the power grid based on degree
centrality is considered to eliminate the nodes from the IEEE 300 power grid. In power
grids an element failure may trigger cascading failures across the network and lead to a
large blackout [6, 108]. Power outages are consequences of perturbations that overload
the entire system by spreading flows across the network [108, 147, 148]. However,
in this work it is assumed that the electrical properties of the power grid elements are
extended. Therefore, when a node in the IEEE 300 grid is attacked, the load is distributed
to other nodes without leading to cascading failures. Although this failure model in
power grids is not completely realistic, it captures the essential properties required in
order to study the effect of interdependency matrices for mitigating a targeted attack
into interdependent critical infrastructures. This section analyzes the robustness of two
interdependent networks (ER1-IEEE 300 and ER2-IEEE 300) under targeted attacks.

3.6.3.1 The case of the ER1 telecommunication network and the IEEE 300 power
grid

Figure 3.10 shows the robustness of the ER1 backbone telecommunication network
when a simultaneous targeted attack based on degree centrality is launched against the
IEEE 300 power grid. When the ER1 and IEEE 300 networks are interconnected by
a high centrality interdependency matrix BHC, a simultaneous targeted attack based on
degree centrality on the IEEE 300 network causes exactly the same damage to the ER1

network as a simultaneous targeted attack based on betweenness centrality does to the
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Figure 3.10: Robustness of the ER1 network when a simultaneous targeted attack based
on degree centrality occurs in the IEEE 300 network

ER1 in the single network scenario. This is because in the case of the BHC matrix, nodes
in ER1 with the highest betweenness centrality values are removed first when an attack
is launched against the IEEE 300 power grid. This interesting result can be seen by
comparing curves ER1 SI in Fig. 3.7(b) and ER1 HC in Fig. 3.10. Additionally, the
greatest impact on ER1 network robustness occurs when the networks are interconnected
by a link model based on the BHC interdependency matrix (curve ER1 HC in Fig. 3.10).

For the low centrality (BLC) and random (BRA) interdependency matrices, the ER1

network is more robust to a simultaneous targeted attack based on degree centrality on
the IEEE 300 power grid. As expected, in the case of the BLC matrix, nodes in ER1 with
the lowest betweenness centrality values are the first to be removed when the IEEE 300
is attacked, generating the lowest impact on the robustness of ER1 (curve ER1 LC in
Fig. 3.10). In the case of the BRA matrix, a simultaneous targeted attack based on degree
centrality on the IEEE 300 power grid produces a random failure in the ER1 network
(curve ER1 RA in Fig. 3.10) and generates an intermediate impact on its robustness. In
the case of the BLC and BRA matrices, when the percentages of nodes removed (P) are
between 1% and 10%, network connections are reduced by 20% and 30%, respectively. In
the case of the BRA matrix, network connections in ER1 reach 0% when P is approximately
57%, whereas for the BLC matrix P may be greater than 70% to reach 0% network
connections.

The robustness of the IEEE 300 power grid when a sequential targeted attack based
on betweenness centrality is launched against the ER1 backbone telecommunication
network is presented in Fig. 3.11. When P is between 1% and 7%, the robustness in
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Figure 3.11: Robustness of the IEEE 300 network when a sequential targeted attack
based on betweeness centrality occurs in the ER1 network

the case of the BHC matrix (curve IEEE300 HC in Fig. 3.11) is approximated by the
degradation level produced by a simultaneous targeted attack based on degree centrality
on the IEEE 300 power grid (curve IEEE300 SI in Fig. 3.7(b)). For this range of P values,
there is a 65% reduction of network connections in the IEEE 300 power grid. When P is
increased, the BHC matrix (curve IEEE300 HC in Fig. 3.11) produces worse IEEE 300
network robustness compared with the BLC and BRA matrices (see curves IEEE300 LC
and IEEE300 RA in Fig. 3.11, respectively).

In the case of the BHC matrix, the IEEE 300 network connections dramatically
decrease until they reach 0% when P is about 30% (curve IEEE300 HC in Fig. 3.11).
In the case of the BLC and BRA matrices, the network connections reach 0% when the P

values are about 55% and 65%, respectively (curves IEEE300 LC and IEEE300 RA in
Fig. 3.11, respectively). In the case of the BRA matrix, a sequential targeted attack based
on betweenness centrality on the ER1 network causes a random failure in the IEEE 300
power grid and generates an intermediate impact on its robustness (curve IEEE300 RA
in Fig. 3.11) compared with the BHC and BLC interdependency matrices. Consequently,
in order to mitigate the impacts of the targeted attacks considered in this scenario, it is
recommended that an Erdős-Rényi backbone telecommunication network and a power
grid should be connected using an interdependency matrix based on the BLC link pattern
model.
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Figure 3.12: Robustness of the ER2 network when a simultaneous targeted attack based
on degree centrality occurs in the IEEE 300 network

3.6.3.2 The case of the ER2 telecommunication network and IEEE 300 power grid

The robustness of the ER2 backbone telecommunication network when a simultaneous
targeted attack based on degree centrality is launched against the IEEE 300 power grid is
shown in Fig. 3.12. In fact, the results are similar to those obtained for the ER1 network.
The greatest impact on ER2 network robustness is seen with the BHC interdependency
matrix (curve ER2 HC in Fig. 3.12) while intermediate impact is seen with the BRA

interdependency matrix (curve ER2 RA in Fig. 3.12) and the least impact is seen with the
BLC interdependency matrix (curve ER2 LC in Fig. 3.12).

However, in this interdependency scenario and for the failure model considered in
this chapter, the ER2 network is more robust than the ER1 for increasing values of P. In
the range 1% to 7%, the robustness behavior produced by the three matrices is similar
for ER2 with a reduction to 20% network connections. ER2 network connections reach
0% when P is 40% for BHC and 67% for BRA (curves ER2 HC and ER2 RA in Fig.
3.12, respectively), whereas for BLC, P may be greater than 70% (curve ER2 LC in Fig.
3.12). Again, when the ER2 and IEEE 300 networks are interconnected by a BHC matrix,
a simultaneous targeted attack based on degree centrality on the IEEE 300 power grid
causes exactly the same damage to the ER2 network as a simultaneous targeted attack
based on betweenness centrality on the ER2 in the single network scenario (curves ER2 SI
in Fig. 3.7(b) and ER2 HC in Fig. 3.12).

Figure 3.13 shows the robustness of the IEEE 300 power grid when a sequential
targeted attack based on betweenness centrality is launched against the ER2 backbone
telecommunication network (which is more robust than the ER1 network). Comparison
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Figure 3.13: Robustness of the IEEE 300 network when a sequential targeted attack
based on betweeness centrality occurs in the ER2 network

of Figs. 3.11 and 3.13 shows a slight improvement in IEEE 300 network robustness when
it is interconnected with the ER2 by the BHC and BLC interdependency matrices. For
example, when P is in the range 1% to 5% for the IEEE 300 power grid connected to ER2

by the BHC matrix (curve IEEE300 HC in Fig. 3.13), the IEEE 300 network connections
decrease to 47%; on the other hand, when the IEEE 300 power grid is connected to the
ER1, its network connections dramatically decrease to 35% (curve IEEE300 HC in Fig.
3.11). For P equal to 15%, when the IEEE 300 power grid is connected to ER2 by the
BLC matrix, the network connections are 71% (curve IEEE300 LC in Fig. 3.13), whereas
when it is connected to the ER1, the network connections are 70% (curve IEEE300 LC in
Fig. 3.11).

3.7 Discussion and lessons learned

Table 3.6 summarizes the effects of the three interdependency matrices in mitigating
targeted attacks on the interdependent networks. The table shows that each matrix
produces a different impact in terms of propagating targeted attacks on the interconnected
networks. This is because the three interdependency matrices considered as study cases
provide different link patterns for interconnecting interdependent networks based on the
centrality metrics used to rank nodes in the networks (bc: betweenness centrality, dc:
degree centrality and random). However, it is important to remember that different metrics
can be used to rank the most vulnerable nodes in a network.
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Table 3.6: Effects of the BHC, BLC and BRA interdependency matrices to propagate targeted attacks and impact on network robustness

Type of Interdependent Network Type of Attack on First Network Interdependency Matrix (Centrality Metrics) Resulting Attack on Second Network Impact on Network Robustness

ER-ER Sequential by bc BLC (bc,bc) - Lowest

ER-ER Sequential by bc BRA (bc,bc) Random failure Intermediate

ER-Power Grid Sequential by bc BHC (bc,dc) Approximately equal to simultaneous by dc Highest

ER-Power Grid Sequential by bc BLC (bc,dc) - Lowest

ER-Power Grid Sequential by bc BRA (bc,dc) Random failure Intermediate

Power Grid-ER Simultaneous by dc BHC (dc,bc) Exactly equal to simultaneous by bc Highest

Power Grid-ER Simultaneous by dc BLC (dc,bc) - Lowest

Power Grid-ER Simultaneous by dc BRA (dc,bc) Random failure Intermediate
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The numerical results presented in the previous section can be used to identify the
interdependency matrices that best mitigate targeted attacks on the Scenario 1 and 2
networks. Specifically, the low centrality interdependency matrix (BLC) reduces the
impact on a certain type of network when a targeted attack is launched against the other,
and vice versa. This is because when a targeted attack occurs in one network the nodes
that are less important are the first to be removed in the other network and the lowest
impact on network robustness is achieved. However, the high centrality interdependency
matrix (BHC) produces the greatest impact on the robustness of each network. This is
because the most important nodes are the first to be removed in both networks. For the
random interdependency matrix (BRA), a targeted attack on a network produces a random
failure in the other network with an intermediate impact on network robustness.

With regard to the propagation of targeted attacks between the two networks, an
interesting result is that in the case of a link model based on the high centrality
interdependency matrix BHC, a simultaneous targeted attack based on degree centrality
on the power grid causes exactly the same damage to the Erdős-Rényi telecommunication
networks as does a simultaneous targeted attack based on betweenness centrality in a
single network scenario. This is due to for the BHC matrix the nodes with the highest
betweenness centrality in an Erdős-Rényi telecommunication network are the first to be
removed when a simultaneous attack based on degree centrality occurs on the power grid.
In contrast, when two networks with similar topological characteristics are connected by
a BHC matrix, the impact of a sequential targeted attack based on betweenness centrality
in one of the networks generates an impact that approximates to that of a simultaneous
targeted attack based on betweenness centrality on the other network.

This research also assesses the effects of interconnecting the power grid with
different telecommunication networks, each with different susceptibilities to targeted
attacks. The numerical results reveal that connecting a power grid via BHC and BLC

interdependency matrices to a telecommunication network that is less vulnerable to
targeted attacks yields a slight improvement in the robustness of the power grid. This
is because in the interdependency scenario considered in this work (one-to-one nodal
interconnections), a sequential targeted attack based on betweenness centrality on any of
the telecommunication networks propagates to the same nodes in the power grid. Thus,
approximately the same impact on network robustness is observed.



Chapter 4

Robustness measurements in multilayer
networks: design of robust networks

Telecommunication networks are considered as multilayer transportation networks that
can be modeled as the interconnection of single layers. Therefore, interdependent
networks can help to study physical and logical layer interconnection in order to design
more robust telecommunication networks. In this chapter, Software Defined Network
(SDN) is considered as study case to provide a robust design and make that SDN
architecture more resilient to attacks. The proposal is focused on identifying what
the critical parts of physical topology are and finding the best controllers placement to
mitigate the damage done by targeted attacks. Moreover, to show the efficacy of the
proposed algorithm, SDN robustness is analyzed when a targeted attack occurs in the
switches of a real telecommunication network and compared with previous proposals.

4.1 Introduction

The multilayer interconnection present in telecommunication networks is partly due to
the fact that protocols interact at multiple levels and in part because of the ways in which
players operate, provide and use the services of those networks [15, 121]. Robustness
analysis in multilayer networks can be carried out at the bottom layer, the upper layer
or both layers, depending on network designer’s interest [149]. For instance, the
robustness of the Internet can be examined at the physical, Multiprotocol Label Switching
(MPLS), Internet Protocol (IP), Point of Presence (PoP) and Autonomous System (AS)
levels from a topological point of view. In multilayer telecommunication networks, the
interconnection between networks in each layer is carried out through logical or physical
interlinks [15]. Hence, a failure in a physical network node (e.g., a fiber optical node or a
switch) results in the failure of multiple upper-layer networks (Ethernet, IP, MPLS, etc.)

100
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[142].
Given the high complexity and scale of telecommunication networks, multiple

correlated failures can have catastrophic consequences on connectivity, which in turn can
cause the collapse and disruption of the provided services [142]. Therefore, understanding
the vulnerability of physical networks to failures is crucial to design multilayer networks
that better resist failures [15]. In this chapter, we are interested in designing a more
robust Software Defined Network (SDN) as a particular case of multilayer networks.
An SDN architecture separates the network’s control logic from the data forwarding
devices (routers and switches), providing the network with a centralized control plane, the
functions of which move from network devices to dedicated controller instances running
on software [150]. However, the centralized control plane proposed by SDN poses a great
challenge for network robustness because of the new vulnerable parts that are introduced
[151].

In this chapter, a robust SDN control plane design in order to maintain the proper
network operation in the presence of failures is proposed. Our proposal is focused on
identifying what the critical parts of physical network are and finding the best placements
for controllers to improve SDN robustness against targeted attacks. As shown in Chapter
2, when the topological structure of the networks is taken into account, the type of attack
producing the greatest damage can be determined. In addition, network operators can
detect the most vulnerable areas where failures frequently occur due to natural disasters
(hurricanes, earthquakes, tsunami, tornados, floods or forest fires) or technology-related
disasters (power grid blackouts, hardware failures, dam failures or nuclear accidents).
Therefore, in the physical network, a subset of less vulnerable switches C has a high
probability of being selected to place κ controllers. Moreover, we consider that the subset
of switches to be managed by each controller c is determined by a maximum distance δ

between switches and controllers.
In this work, the SDN architecture is modeled as an interdependent network, where

each control plane node is directly connected to a given physical switch by a bidirectional
link. Additionally, in-band controller-switch communication via single shortest path is
assumed i.e., the control traffic from controllers to switches is delivered via the same
physical links [152, 153]. Thus, one-to-one dependence relation between data and control
plane nodes is performed. Due to this correspondence, a targeted attack in one physical
switch can lead to cascading failure in SDN architectures. To show the efficacy of the
proposed algorithm to design a control plane layer (GCS), the robustness of three SDN
architectures is analyzed when a targeted attack takes place in the switches of a real
telecommunication network.

The remainder of this chapter is structured as follows: Section 4.2 contains a review
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of previous work. A mathematical model for SDN interdependent networks and the
failure process in SDN are defined in Section 4.3. In Section 4.4, a mechanism for
the robust design of control planes in SDN architectures is proposed. The resulting
SDN topology from a physical network and the impact analysis of a targeted attack on
network robustness are provided in Section 4.5. Finally, discussion and lessons learned
are presented in Section 4.6.

4.2 Review of controller placement problem for SDN
architectures

Software Defined Network (SDN) is an emerging networking paradigm that breaks the
vertical integration of current network infrastructures by separating the control plane
from the data plane [150]. With this separation, the physical network elements (routers
and switches) become simple data forwarding devices and SDN controllers take the
centralized control logic [150]. For instance, the controllers can send the switch
configuration to adapt to traffic demands and can take decisions to mitigate the failures in
the physical network [154]. However, the SDN control plane cannot be fully physically
centralized due to responsiveness, reliability, and scalability metrics [150]. Hence,
distributed controllers can be used to control different subsets of switches in order to
reduce the processing capacity of each controller and decrease the switch-to-controller
latency [150].

An SDN architecture can be modeled as an interdependent network where the
switch-switch network (GSS) for data forwarding and the controller-switch network (GCS)
for network control, are interconnected by bidirectional interlinks [152]. In SDN, failures
can take place in the physical network, where a switch or link fails, or in the domain
of the controllers, where the controller fails. The interdependency introduced in SDN
architectures and their sophisticated supported services make this type of network more
vulnerable to failures. This growing reliance in telecommunication networks is translated
into increased disruption consequence, and increased disruption consequences leads to
networks becoming more attractive for target attacks [2]. One SDN node failure (switches
or controllers) can lead to cascading failures due to the nodal mutual dependence [152].
Therefore, SDN robustness depends on the proper operation of these interdependent
networks.

From the perspective of security and reliability, an SDN architecture exhibits new
vulnerable parts in both the data plane and the control plane. For instance, the most
vulnerable physical network elements can be identified by the number of shortest paths
that pass through a given router or by the number of physical links from one switch to
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others. In SDN architectures, controllers introduce a centralized point of failure [151].
Controller failures are usually caused by software malfunctioning or cyber-attacks e.g.,
a Denial of Service (DoS) attack in one controller can generate the disconnection of the
dependent subset of switches [155]. The consequences of this type of failure are dramatic
as the SDN can even become disconnected. Therefore, designing fault-tolerant SDN
architecture that is robust to targeted attacks poses several challenges as the controllers
can be physically distributed along the network and connected to different switches.

One of the critical challenges in SDN is the control plane layer design where defining
the best controller locations has several repercussions on robustness. The Controller
Placement Problem (CPP) refers to how to select the best switches in the physical network
for placing κ controllers to maximize an objective function such as inter-controller
latency, switch-controller latency, links load, controllers load or resilience [152, 153].
Previous work has addressed CPP as a key issue to improve the performance and resilience
of SDN. Performance improvement was studied in [156]. Heller et al. [156] decided on
the number of controllers and their placements to minimize the latency from nodes to
their assigned controller. Bari et al. [157] solved the Dynamic Controller Provisioning
Problem (DCPP) to dynamically adapt the number of controllers and their placements
with changing network conditions due to traffic patterns or bandwidth demands.

Regarding the Resilient Placement Controller Problem (RPCP), a greedy algorithm
was used by Hu et al. [158] to provide placement decisions to maximize the reliability
of SDN networks. In [152], the controller placement problem for improving the SDN
resilience was analyzed by using interdependent network modeling and a new metric
to measure the impact of cascading failures was proposed. RPCP in large scale SDN
networks with respect to latencies constraints, resilience against node and link failures,
and load balancing in the control plane was also studied under heuristic approaches by
Lange et al. [153]. In [159], the minimum number of controllers for building a scalable,
robust and balanced control layer was identified. The proposed k-Critical algorithm also
satisfied a target communication between controller and switches such as delay, latency
or convergence time [159].

Additionally, the Fault Tolerant Controller Placement (FTCP) problem was solved
by Ros et al. [160]. This proposal considers the fact that in a given topology there is a
set of facilities where controllers can be deployed, and it also requires that each node is
effectively connected to at least one controller with high reliability. Thus, a reasonable
number of controllers and their placements to achieve very high reliability in the SDN
network are identified. Mattos et al. [161] proposed a distributed control architecture
with optimized controller placement and assurance of network resilience. This controller
architecture establishes control areas with distributed control. The global network view is
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achieved by applying a designated controller, which is an area controller that assumes the
role of maintaining the consistency of the entire network [161].

In contrast to previous studies, a novel algorithm to improve robustness to targeted
attacks in SDN networks with distributed controllers is proposed. Our approach is based
on analyzing the critical parts of the physical network most vulnerable to targeted attacks
in order to define the best placements for controllers. As constraints of the SDN control
layer design (GCS), our method requires three input parameters: 1) a switch-switch
network (GSS), 2) the number of controllers (κ) and 3) the maximum distance between
controllers and switches (δ ). The values for κ and δ are design parameters that could
be defined from the particular requirements of the network operator. For instance,
in large-scale networks the distance δ has practical implications for the control layer
design in SDN, affecting availability and convergence time. The distance δ can also be
defined by the geographical proximity between controllers and switches. However, we
are not focused on finding optimal minimum-latency placements to reduce the delay in
controllers-to-switches communication [156], but rather on presenting an initial analysis
of GSS network vulnerability to certain types of targeted attacks as a fundamental aspect
to solve the resilient controller placement problem.

4.3 Modeling interdependency and failure processes in
multilayer networks: The case of SDN architectures

In multilayer networks, each layer can be represented as a graph and the interaction
between layers as interlink patterns. For the case of an SDN architecture, two layers -
a physical layer and a logical layer - are interconnected through bidirectional interlinks
and one-to-one nodal correspondence. Therefore, in this study an SDN architecture is
constructed by the interconnection of switch (physical layer) and control (logical layer)
topologies. Given the interdependency between switches and controllers the failure of a
node in an SDN layer can have a devastating impact on topological connectivity, which
in turn can cause cascading failures and the collapse of the whole network. Based on
[152] and [29], a mathematical model of an interdependent SDN architecture and a failure
model in SDN networks are defined in this section.

4.3.1 Interdependent model for SDN architectures

In an effort to further understand the structure of an SDN architecture, a network-based
model for studying SDN networks is employed. Consider the switch-switch network
as an undirected graph GSS(S,U), and the controller-switch network as an undirected
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Figure 4.1: Interdependent network modeling of an SDN architecture

graph GCS(T,V ), each with a set of nodes (S,T ) and a set of links (U,V ), respectively.
The nodes in GSS consist of the physical switches randomly connected by a set of U

intralinks with degree distribution PSS(k). Analogously, the nodes in GCS consist of the
controllers and switches connected by a set of V intralinks with degree distribution PCS(k).
Moreover, in-band controller-switch communication via single shortest path is assumed,
and one-to-one correspondence between a node i in network GSS and node j in network
GCS is considered. Thus, the interdependent SDN network resulting from the connection
of these two networks is a graph G with S∪ T nodes and U ∪V intralinks, plus a set
of bidirectional interlinks I joining the two networks Consequently, the SDN graph is
defined as G(N,L) = (S∪T,U ∪V ∪ I).

Let B12 be a N1×N2 interconnection matrix representing the interlinks between a
node i in network GSS and a node j in network GCS. Because we consider bidirectional
interlinks, it follows that B21 = BT

12 [31]. Let bi j denote as the (i, j) entry in the B12

matrix, where bi j = 1 if the entry belongs to the main diagonal, and bi j = 0 otherwise.
The interdependency matrix (B) of the whole system G is given by the equation 3.2.

In the GCS network, the switches are limited to a maximum distance δcs from their
assigned controller c. Therefore, if the distance δcs between switches i = {1,2, . . . ,N1}
and controller c is less than or equal to the maximum distance (δcs ≤ δ ), switches i

belong to the subnetwork controlled by controller c. Distance δ can represent a design
constraint such as delay propagation or latency, physical distance of links or the number
of hops. Distance δ also has implications in the availability and convergence time of the
SDN architecture. Figure 4.1 shows an SDN architecture modeled as an interdependent
network.

As an illustrative example of an interdependent SDN network, Fig. 4.2(a) shows
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(a) GSS network (b) GCS network

Figure 4.2: Generating the GCS network for an interdependent SDN network (a) in the
GSS network controller c is placed on switch 1 (b) in the GCS network a switch i belongs
to the subnetwork controlled by controller c if δcs ≤ δ

a physical network (GSS) as a random graph and Fig. 4.2(b) shows the controller-switch
network (GCS) as a shortest path routing tree for in-band controller-switch communication
on GCS [152]. In Fig. 4.2(a) nodes i are the physical switches, whereas in Fig. 4.2(b)
switch 1 is controller c (placed on the switch 1) and the other nodes are the switches
controlled by it.

4.3.2 Cascading failures in SDN architectures

Due to the fact that the SDN architecture could be modeled as an interdependent network,
SDN robustness depends on the proper functioning of both GSS and GCS networks.
When interconnecting the GSS and GCS networks by bidirectional interlinks, we consider
that each node i = {1,2, . . . ,N1} in network GSS depends on one, and only one, node
j = {1,2, . . . ,N2} in GCS to continue functioning, and vice versa. Furthermore, a
subset of nodes in network GCS depends on communication whit a particular controller
c ∈ {1,2, . . . ,κ} to maintain proper functioning.

In SDN architectures, a targeted attack in one physical switch could lead to cascading
failure. When a node i in GSS is attacked, the dependent node j in GCS is removed.
Therefore, if a subset of nodes in GCS is disconnected from a controller c due to the failure
of switch i, by mutual dependence the same subset of nodes in GSS also fails. Similarly,
if one controller c is attacked, the subset of dependent nodes in GCS fails and this failure
will spread to the same subset of nodes in GSS.

In Fig. 4.3, each node in GSS depends on one, and only one, node in GCS, and
vice versa. Bidirectional interlinks I are shown as dashed horizontal lines, and U and V

intralinks are shown as undirected solid arcs. To illustrate the cascading failure model in
SDN networks, Fig. 4.3(a) shows that node 3 is attacked in GSS. Then, due to dependence,
node 3 in GCS fails (see Fig. 4.3(b)). As a consequence of the failure of node 3 in GCS,
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(a) (b) (c)

Figure 4.3: Cascading failures in SDN networks (a) node 3 in GSS is attacked (b) node
3 in GCS also fails (c) nodes 6 in GSS and in GCS also fail because they are disconnected
from controller c

node 6 in GCS also fails because it is disconnected from the controller located in node 1.
Finally, by mutual dependence, the failure spreads to node 6 in GSS (see Fig. 4.3(c)).

In targeted attacks the network elements are removed with the purpose of maximizing
the impact of the attack on the network. As explained in Chapter 2, the targeted attack
that will produce the greatest damage can be determined from the topological structure of
networks. Hence, it is crucial to understand the vulnerability of physical switch-to-switch
network to targeted attacks and define the appropriate placement for controllers. In this
chapter, the topological properties of the GSS network are considered to select the most
important nodes for network connectivity i.e., a centrality metric is measured to rank
the nodes to be removed first in the targeted attack. Therefore, the critical parts of one
physical topology to certain types of attack can be identified and the best placements for
controller to reduce the impact of targeted attacks can be determined.

4.4 Robust design of multilayer networks: finding the
best placements for controllers in SDN architectures

Algorithm 1 provides a procedure to find the best placements for controllers in order to
improve the SDN network robustness. Algorithm 1 requires as input three parameters:
1) a switch-switch network (GSS), 2) the number of controllers (κ) and 3) the maximum
distance between controllers and switches (δ ). As output, Algorithm 1 generates an array
C containing the best placements for controllers. In the first step in Algorithm 1 (line 1),
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Algorithm 1: Robust control plane design: finding the best placements for
controllers in SDN architectures

Data: a switch-switch network (GSS), the number of controllers (κ) and the
maximum distance between controllers and switches (δ )

Result: an array C containing the best placements for controllers to improve
SDN network robustness

1 attack strategy← getMostDangerousAttackStrategy(GSS)
2 C← getLeastCriticalNodes(GSS,κ,attack strategy)
3 for all c ∈C do
4 for all s ∈ S do
5 if δcs ≤ δ then
6 s ∈ GTc

7 end
8 end
9 end

10 GCS = (GT1,GT2 , . . . ,GTc),c = {1,2, . . . ,κ}
11 G← getInterdepentSDNGraph(GSS,GCS)
12 return C

the targeted attack strategy that produces the greatest damage in GSS is identified through
analyzing topological structure of the networks or identifying the areas where failures
frequently occur. Based on the number of controllers κ and the type of attack identified to
be the most dangerous, a subset of less vulnerable switches can be selected as the possible
controllers locations (C) (line 2). Note that the subset C is an array with κ nodes, which
is contained in the set of nodes S of the GSS network.

Then, for each controller c ∈ C, the Algorithm 1 generates a hierarchical tree graph
(GTc) via single shortest path, which contains a subset of GSS nodes to be controlled by
controller c (lines 3 to 9). Each tree graph GTc has as diameter DTc ≤ δ and controller c

as the root. If the distance δcs ≤ δ , switch i will be part of the subnetwork managed by
controller c. For simplicity, we consider δcs as the shortest path between controller c and
switches i = {1,2, . . . ,N1}. In the GTc graph, controller c is connected to the switches by
using the physical links of GSS (as shown in Fig. 4.2(b)). Furthermore, to achieve a load
balancing among controllers, the number of nodes of each GTc is expected to be the same
and is given by the fraction between the number of nodes of GSS (N1) and the number of
controllers (κ).

In line 10, the controller-switch network (GCS) is generated by the interconnection
of the κ tree graphs GTc with an in-band controller-switch communication strategy, i.e.,
the control traffic from controllers to switches is delivered via the physical links of GSS.
Thus, controller-controller communications are not direct. Finally, the interdependent
SDN graph G(N,L) is obtained by the interconnection of GSS(S,U) and GCS(U,V ) with a



CHAPTER 4. ROBUSTNESS IN MULTILAYER NETWORKS 109

one-to-one correspondence between node i in GSS and node j in GCS (line 11). Therefore,
a subset of switches C as the best locations to place the κ controllers are identified (line
12).

As can be seen, the proposed algorithm takes the robustness of the physical network
(GSS) to a given targeted attack into account in order to generate the control plane network
(GCS) of the SDN architecture. Consequently, based on the critical parts of the physical
network, the best placements for controllers to improve SDN network robustness are
identified. The number of controllers (κ) could be defined by the network operator
in order to balance the load of controllers, reduce the deployment cost or limit the
geographical location of data centers. In addition, in this chapter the control plane
network is defined in function of a maximum distance δ based on the number of hops.
Other definitions to δ such as latency (a key aspect in data center locations [162]) or the
distance of physical links (an important design criteria in large-scale networks) could be
considered in the algorithm.

4.5 Robustness measurements in multilayer networks:
robust design of the control plane in SDN
architectures

In order to provide a practical use case for the robust design of multilayer networks,
this section covers the control plane problem in SDN architectures to improve
network robustness to targeted attacks. Initially, the topological properties of a real
switch-to-switch network (GSS) are described and a robustness analysis of this GSS

network under simultaneous and sequential targeted attacks is carried out. Through
this study case, the most dangerous targeted attack in the single network scenario of
GSS is identified. Then, by executing Algorithm 1, an SDN interdependent network is
obtained from the GSS network, a number of controllers (κ) and a maximum distance
(δ ). Therefore, a subset of switches C as the best locations to place the κ controllers are
identified. Last, the network robustness of this SDN network is studied in the cascading
failure model (presented above in section 4.3.2), when a percentage of nodes (P) are
removed from the GSS based on the most dangerous targeted attack.

4.5.1 Topological properties of the physical network

Internet2 was selected for this study case because it supports SDN networking and it has
also been studied as an SDN network in previous works [153]. Internet2’s Advanced
Layer 2 Service (AL2S) provides an effective and efficient wide area 100 gigabit Ethernet
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Figure 4.4: Internet2 AL2S network’s topology map

technology [163]. The AL2S layer allows for building Layer 2 circuits (VLAN, Virtual
Local Area Network) on the Internet2 AL2S backbone. Open Exchange Software Suite
(OESS) is a set of software used to configure and control dynamic (user-controlled)
VLAN networks on OpenFlow enabled switches [163]. Figure 4.4 shows the Internet2
Network Advanced Layer 2 Service topology map, where each switch has SDN Ethernet
add/drop capabilities [163].

In this chapter, the Internet2 AL2S backbone is considered as the switch-switch
network (GSS). Table 4.1 presents the main topological properties of this network: number
of nodes (N1), number of links (L1), average nodal degree (〈k〉), maximum degree (kmax),
average shortest path length (〈l〉), Diameter (D) and assortativity coefficient (r). As can be
observed in Table 4.1, the network exhibits an assortative (r) value close to zero (-0.128)
and has a low value of 〈k〉 (2.62), and high values of 〈l〉 (4.65) and D (11).

4.5.2 Robustness measurements in the physical network under
targeted attacks

The Average Two-Terminal Reliability (AT T R) is selected as the robustness metric to be
analyzed in the SDN interdependent network under targeted attacks. Figure 4.5 shows
the robustness comparison for the Internet2 AL2S network under targeted attacks in
the single network scenario. The INTERNET2 SI Dc and INTER-NET2 SI Bc curves
present the results of AT T R measures for the Internet2 AL2S network under simultaneous
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Table 4.1: Topological properties of the Internet2 AL2S network

Network N1 L1 〈k〉 kmax 〈l〉 D r

Internet2 39 51 2.62 5 4.65 11 -0.128

targeted attacks based on nodal degree centrality (dc) and nodal betweenness centrality
(bc), respectively, while INTERNET2 SE Dc and INTERNET2 SE Bc curves present the
results of AT T R measures for the Internet2 AL2S network under the sequential targeted
attack based on dc and bc, respectively. In the failure model, the percentage of nodes
removed (P) ranges from 1% to 70%. Ten runs were carried out and, in accordance with
each targeted attack, different subsets of nodes were removed.

As can be seen in Fig. 4.5, the Internet2 AL2S network is more vulnerable to
sequential targeted attacks (see curves INTERNET2 SE Dc and INTERNET2 SE Bc)
than to simultaneous targeted attacks (see curves INTERNET2 SI Dc and
INTERNET2 SI Bc). This result can be explained due to the Internet2 AL2S
network presenting a small value of 〈k〉 and high values of 〈l〉 and D. In Fig. 4.5, in
the range of 1% and 5% of P network connections of the Internet2 AL2S topology are
reduced to 70% in a sequential targeted attack by bc (see curve INTERNET2 SE Bc)
and to 66% in a sequential targeted attack by dc (see curve INTERNET2 SE Dc). When
P ranges from 6% to 15%, in both sequential targeted attacks the network connections
dramatically decrease to 21%. For P > 15%, the network connections in the sequential
targeted attacks begin to exhibit similar behavior, and the Internet2 AL2S network is
almost completely disconnected when P reaches 40%.

In the case of a simultaneous targeted attack, the network connections are reduced to
87% when nodes are removed by their dc (see curve INTERNET2 SI Dc) and to 85%
when nodes are removed by their bc (see curve IN-TERNET2 SI Bc). However, for
simultaneous targeted attacks there are 22% of network connections when P reaches 20%
of removed of nodes. For P > 20%, the Internet2 AL2S topology shows more robustness
to simultaneous targeted attacks by bc than to simultaneous targeted attacks by dc. The
network connections of Inter-net2 are approximately 0% when P reaches 45%.

The robustness analysis presented in this section shows that the Internet2 AL2S
network is more vulnerable to a sequential targeted attack by betweenness centrality (bc)
(see curve INTERNET2 SE Bc in Fig. 4.5). This is an important result due to in the
first step in the Algorithm 1 (line 1), the targeted attack strategy that produces the greatest
damage in GSS must be identified. Therefore, based on the strategy explained in the
section 4.4 (line 2 in the Algorithm 1), the sequential targeted attack by bc will select as
the critical parts of the network those nodes with the highest betweenness centrality for
each of the resulting networks after removing the desired fraction of nodes (P).
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Figure 4.5: Robustness analysis of Internet2 AL2S under targeted attacks in the single
network scenario

4.5.3 Robust design of the control plane in SDN architectures to
mitigate the impact of targeted attacks

The input parameters to Algorithm 1 are defined as follows. The Internet ASL2 network is
considered as GSS. The number of controllers κ is equal to 5 because according to [160],
8 controllers or less are enough to reach high availability. The distance δ is equal to 6
and it is defined in function of the diameter (D) of network GSS, i.e., δ = round(D/2).
For the switch-to-switch topology considered as study case, the Algorithm 1 selects as
best placements for controllers the switches that are the least vulnerable to a sequential
targeted attack based on betweenness centrality (bc). This prevents the controllers from
being removed in the first percentages of attacked nodes. Therefore, the best placements
for controllers for the resulting SDN architecture (GA1) after executing Algorithm 1 (with
κ = 5 controllers and a distance δ = 6) are CA1 = {32,34,35,37,38}. The subsets of
switches (ST ) managed by each controller c ∈CA1, the number of switches (NT ) in each
tree graph of the controller-to-switch network (GCS) and their diameter (DT ) are presented
in Table 4.2.

Similarly, we have generated two SDN topologies from the Internet AL2S network in
order to compare their robustness with the robustness of the SDN topology generated from
the Algorithm 1 (GA1). The former is the GLBc network, where the nodes for placing
κ controllers are selected as those having the lowest betweenness centrality (bc), i.e., the
controllers will be placed on the switches that are less vulnerable to simultaneous targeted
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Table 4.2: Subsets of switches managed by each controller in the SDN topologies

Network C ST NT D

GA1

32 {32,12,21,22,33,36} 6 2

34 {34,25,24,30} 4 2

35 {35,1,2,5,7,8,9,14,15,17,26,27,29,39} 14 6

37 {37,3,4,6,13,16,18,19,23,28,31} 11 6

38 {38,11,10,20} 4 2

GLBc

10 {10,7,8,17,20,24,38} 7 3

18 {18,3,4,6,11,16,19,23} 8 3

32 {32,12,13,25,33,34} 6 3

36 {36,21,22,28,30,37} 6 3

35 {35,1,2,5,9,14,15,26,27,29,31,39} 12 6

GHCc

20 {20,10,11,38} 4 2

7 {7,3,6,8,17,18,19,23,35} 9 5

12 {12,4,13,16,21,22,28,32,33,37} 10 3

24 {24,25,25,30,34,36} 6 4

14 {14,1,2,5,15,26,27,29,31,39} 10 5

attacks by bc. The latter is the GHCc network, where κ controllers are placed in nodes
with the minimum distance to switches, i.e., controllers will be placed in switches with
the highest values of closeness centrality (cc) [152]. Therefore, the κ = 5 controllers for
the GLBc network are placed in the subset of nodes CLBc = {10,18,32,36,35}, whereas
for the GHCc network they are located in the subset of nodes CHCc = {20,7,12,24,14}.
The subsets of switches managed by each controller c in CLBc and CHCc are presented in
Table 4.2. Note in Table 4.2 how the GHCc network has a lowest distance (i.e., the lowest
diameter D) among the controllers and switches than the GA1 and GLBc networks.

The placements for controllers for each of the three SDN architectures considered in
this chapter are graphically illustrated in Fig. 4.6. As Algorithm 1 does not take the
geographical location of nodes and the physical distance between them into account,
the controllers can be placed near each other (see Fig. 4.6(a)) and the shortest path
between controllers and switches can be overlapped. Hence, there are some controllers
that manages high loads and the diameter of their tree networks are greater than the others
e.g., the tree subnetwork created by controller 35 in GA1 manages 14 switches and its
diameter is 6, whereas controller 34 only manages 4 switches and the tree subnetwork
has a diameter equal to 2 (see Table 4.2). Similar results were found for the placement
for controllers for the GLBc and GHCc SDN topologies (Fig. 4.6(b) and Fig. 4.6(c),



CHAPTER 4. ROBUSTNESS IN MULTILAYER NETWORKS 114

(a) GA1

(b) GLBc

(c) GHCc

Figure 4.6: Controllers placement for Internet2 AL2S in each SDN topology
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respectively) where the controllers are also geographically close and are unbalanced.
In the SDN modeling proposed in this work, the load balancing is not considered

as a mandatory constraint. Thus, in the resulting SDN models it is assumed that each
controller must have enough capacity to handle the loads introduced by the switches
managed. The unbalanced controllers may have influence in the control plane latency
underlying the generation of control messages and the execution of control operations
[164]. It is important to note the control plane latency not only depends of the controllers
load, but also depends on other factors such as the physical distance between a controller
and the switches, the communication protocols and the congestion of the physical links
that interconnects controllers and switches. Although the models studied are not fully
realistic, they capture other essential constraints in the design of the SDN networks such
as the number of controllers and the switch-to-controller distance.

4.5.4 Robustness measurements in SDN architectures under targeted
attacks

In this section, the network robustness of the resulting SDN architecture (GA1) after
executing Algorithm 1 is studied in the cascading failure model explained in Section 4.3.2.
In order to show the efficacy of the proposed algorithm to improve the robustness of
SDN architectures under targeted attacks, the robustness of GA1 is compared with the
robustness of the GLBc and GHCc networks. In the failure model, the percentage of nodes
removed (P) from the GSS network ranges from 1% to 20% based on a sequential targeted
attack by betweenness centrality (bc). Figure 4.7 illustrates the robustness analysis of the
three SDN architectures under a sequential targeted attack by bc.

In Fig. 4.7 it can be seen that the GA1 SDN network (see curve GA1) is more robust
to sequential targeted attacks by bc than the GLBc and GHCc networks (see curves GLBc
and GHCc, respectively). This result is because the GA1 controllers are the last to be
attacked, whereas the GLBc and GHCc controllers has a great probability to be removed
in the first percentages of failures. In the range of 1% and 3% of P, network connections
of GA1 (see curve GA1 in Fig. 4.7) are dramatically reduced to 54% and for the GLBc
and GHCc networks to 51% (see curves GLBc and GHCc in Fig. 4.7). When P ranges
from 3% to 8%, the network robustness of GA1 is better than the robustness of the GLBc
and GHCc networks for approximately 3% plus of network connections.

For P ≥ 9%, the network connections for the three SDN topologies are reduced
to 10% and the robustness of the GA1 and GLBc networks begin to exhibit a similar
behavior. Moreover, in Fig. 4.7 it can be seen that GLBc is more robust than GHCc when
P is between 6% and 15% (see curves GLBc and GHCc, respectively). For P > 15%,
the robustness of the three SDN topologies are similar and the networks are completely
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Figure 4.7: Robustness analysis of SDN architectures under targeted attacks

disconnected when P reaches 20%. Therefore, Fig. 4.7 illustrates how the robustness of
an SDN network generated by Algorithm 1 is improved when the most dangerous targeted
attack in their switch-to-switch network occurs.

Another interesting result can be found by comparing the robustness of the Internet2
ASL2 network in the single network scenario (see curve INTERNET2 SE Bc in Fig. 4.5)
and the SDN scenario (see curve GA1 in Fig. 4.7). Internet2 ASL2 always is more
robust in the single network scenario for different values of P. This result is because in
the simulated failure model, an attack on the nodes that support the SDN controllers can
cause a higher loss of connections.

4.6 Discussion and lessons learned

The results demonstrate how Algorithm 1 provides a procedure to mitigate the impact of
targeted attacks in SDN networks. It requires three input parameters: 1) a switch-switch
network (GSS), 2) the number of controllers (κ), and 3) the maximum distance between
controllers and switches (δ ). Based on the critical parts of a switch-switch network (GSS)
to a targeted attack, Algorithm 1 selects as best placements for controllers the switches
that are the least vulnerable to attack, i.e., those nodes with the lowest probability of being
selected in the first percentage of failures of the targeted attack.

By comparing the robustness of the SDN network resulting from executing Algorithm

1 (GA1) with the two SDN topologies selected as study case (GLBc and GHCc), the
GA1 network is the most robust. Hence, for the most dangerous targeted attack, the
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vulnerability of an SDN network can be reduced when Algorithm 1 is used to generate a
SDN topology. This is because the least vulnerable nodes where controllers are placed
are removed in the last percentages of failures. Thus, the GA1 network maintains
more network connections than other SDN topologies by increasing of the percentage
of removed nodes (P).



Chapter 5

Robustness measurements in
region-based interdependent networks:
review and new proposals

In region-based interdependent networks, interconnection between critical infrastructures
usually is established through nodes that are spatially close, generating a geographical
interdependency. Previous work has shown that in general, region-based interdependent
networks are more robust with respect to cascading failures when the interconnection
radius (r) is large. However, to obtain a more realistic model, the allocation of interlinks
of a region-based interconnected model should consider other factors. In this chapter, an
enhanced interconnection model for region-based interdependent networks is presented.
The model proposed introduces a new strategy for interconnecting nodes between two
geographical networks by limiting the number of interlinks. Preliminary simulation
results have shown that the model yields promising results to maintain an acceptable
level in network robustness under cascading failures with a decrease in the number of
interlinks.

5.1 Introduction

Nodes and links that characterize transportation networks are embedded either in
two-dimensional or in three-dimensional space [137, 165, 166]. For example,
telecommunication networks, water supply, transportation networks, power grids, and
oil and gas distribution networks are embedded in the two-dimensional surface of the
earth [166], i.e., each node in the networks has a spatial coordinate given by longitude
and latitude. Usually, these critical infrastructures are referred to as spatially embedded
networks or geographical networks where the spatial distribution of nodes is relevant in
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order to establish a connection between pairs [165, 166]. Consequently, the geographical
location of nodes influences both the cost associated with the length of links as well as
the topological structure of these networks [165]. Thus, geographical constraints have
a significant impact on network properties and must be considered when modeling real
transportation networks [167].

However, many modern critical infrastructure networks depend on one another
to function [16]. For instance, telecommunication networks play a vital role in
supporting the control, monitoring, connectivity and data transportation services of a
number of critical infrastructures. Thus, the interconnection between the nodes of these
critical infrastructures and telecommunication networks is usually carried out under
geographical constraint, i.e., the spatial proximity between nodes to be interconnected.
This region-based interconnection model generates a geographical interdependency [1],
where two nodes, i and j, located in two separate networks are interconnected if the
distance (di j) between them is less than or equal to a given radius (r) [38, 120, 168,
169]. Due to such interconnections, failures that occur in one infrastructure can directly
or indirectly affect the other and impact large regions with catastrophic consequences
[2, 4]. Therefore, network topologies, the geographic locations of nodes and their
interdependency relationships have a huge impact on how robust interdependent networks
are designed and maintained.

In contrast to the one-to-one interconnection studied in previous work [16],
region-based interdependent networks exhibit a one-to-multiple nodal correspondence,
i.e., one node in one network can depend on an arbitrary number of nodes in the other
network [120]. In [120] it has been shown that in terms of the functional Largest Mutually
Connected Component (LMCC), a region-based interdependent network is more robust
with respect to cascading failures when r is large. This is because with the increase
of r, a node tends to have more interconnection nodes which, in turn, will decrease
the probability of that node failing as result of the failures of its interconnection nodes.
However, the region-interconnection models proposed in [38, 120, 137, 168, 170, 171]
only consider the distance between nodes to establish the interlink, whereas in most
real scenarios, interlink allocation in region-based interdependent networks should be
controlled with additional factors in order to mitigate other issues introduced by the
large number of interlinks in each r for example, high deployment cost of interdependent
networks or exceeding the capabilities of the nodes to be interconnected.

In [31] the critical number of interlinks beyond which any further inclusion does
not enhance the algebraic connectivity (λ2) of an interdependent network is highlighted.
Therefore, controlling the number of interlinks in geographically interdependent networks
is likely a valuable design feature in order to reduce the deployment cost and not to exceed
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node capabilities. Unlike prior efforts, the major contributions of this chapter are: 1)
proposing a new strategy for interconnecting nodes between two geographical networks
by limiting the number of interlinks and 2) analyzing the impact of limiting the number
of interlinks has on the robustness of region-based interdependent networks against
cascading failures. As a study case, we focused on interdependent telecommunication
networks because they can represent the interconnection of two network operators or
can refer to multilayer telecommunication networks which is a particular interdependent
network [121]. Moreover, in this chapter we consider the vulnerability analysis of
each network to a certain type of targeted attack to determine the influence the new
region-based interconnection model has on the robustness of the resulting interdependent
network.

The remainder of this chapter is organized as follows: Section 5.2 presents the
relevant research in robustness of region-based interdependent networks. Section 5.3
describes the proposed interconnection model for region-based interdependent networks
and cascading failure process in interdependent networks. Section 5.4 presents the
topologies of the networks to be interconnected and discusses the impact limiting the
number of interlinks has on the robustness of region-based interdependent networks to
cascading failures. Finally, Section 5.5 provides discussion and lessons learned.

5.2 Review of robustness measurements in region-based
interconnected networks

In the literature, most of the studies about robustness of interdependent networks have
been focused on real or artificial networks in which geographical constraints are not
considered (see Table 3.1). However, critical infrastructures are embedded either in
two-dimensional or three-dimensional space, and the nodes in each network might be
interdependent with nodes in other networks [168]. These interconnected networks are
referred to as interdependent spatially embedded networks, but when the geographical
distance between nodes to be interconnected is considered as a constraint, these can
also be called region-based interdependent networks. An example of region-based
interdependent networks are the routers in a backbone telecommunication network that
are distributed among different regions of a country and dependent on regional power
grids for power supply. In the same way, every substation in a power grid sends data and
receives control signals to/from the nearest router [108]. Due to the interdependency
between these critical infrastructures, a random failure or a targeted attack can lead
to cascading failures which imply service disruptions that affect thousands of people,
multiple communities, entire countries, or just one company [4, 16].
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The vulnerability of interdependent networks modeled as the interconnection of two
embedded lattice network have been studied in [17]. Bashan et al. [17] have found that
in embedded lattice systems, as opposed to non-embedded systems, there is no critical
dependency and any small fraction of interdependent nodes q leads to an abrupt collapse
as a result of cascading failures. The parameter q represents the fraction of nodes in one
network that depend on nodes in the other network [17]. If there is no restriction on
the length of the dependency links, then any fraction of dependency leads to a first-order
transition (qc = 0). Therefore, the extreme vulnerability of very weakly coupled lattices
is a consequence of the critical exponent describing the percolation transition of a single
lattice [17]. However, the length of interlinks is considered to be a relevant aspect to
interconnect the nodes located in two separate transportation networks. Thus, in other
studies a geographical constraint, which is based on the spatial proximity between the
nodes, has been considered to interconnect networks [38, 120, 168, 169].

In [168] cascading failures when two square lattice networks placed on the same
Cartesian plane are interconnected have been studied. In this interdependent network,
each node in a network is connected with one, and only one, node in the other network,
randomly chosen within a certain radius r from the corresponding node in each network,
thus generating full dependency (q = 1). The parameter r represents the maximum
distance a node in one network receives support from a node in another network. Li
et al. [168] have shown the existence of a phase transition phenomena when the length of
the dependency links r changes, i.e., the critical percolation threshold ρc increases linearly
with r to reach a maximum for r = rc and is characterized by a second-order transition
[168]. Furthermore, interdependent networks embedded in Cartesian space become most
vulnerable when the distance between interconnected nodes is in the intermediate range,
which is much smaller than the size of the system [168].

In the more realistic cases, region-based interdependent networks have partial
dependency (0< q≤ 1). In [38] the relationship between rc and q on the specific dynamics
of cascading failures in such systems has been studied. In [38] a similar result to [168]
was found for any finite value of q with a larger rc as q decreases. Danziger et al. [38] have
also studied the dynamics at the percolation threshold pc for varying r and q. Below rc

the system undergoes a continuous transition similar to standard percolation [38], while
above rc there are two distinct first-order transitions for finite or infinite r, respectively
[38]. The transition for finite r is characterized by node failures spreading through the
system while the infinite r corresponds to a non-spatial cascading failure similar to the
case of random networks [38].

The robustness of interdependent networks modeled as a Random Geometric Graph
(RGG) [172] has been studied by Zhang et al. [171] and Wang et al. [120]. In this model,
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the networks to be interconnected are spatially embedded on the same two-dimensional
space, i.e., nodes are geographically distributed. Then, a node in one network will be
interconnected with all the nodes in the other network within the radius r, thus, generating
a one-to-multiple interconnection. On one hand, Zhang et al. [171] have obtained
analytical upper bounds on the percolation thresholds of the interdependent RGGs, above
which a positive fraction of nodes are functioning. Moreover, if the node densities are
above any upper bound on the percolation thresholds, then the interdependent RGGs
remain percolated after a geographical attack [171]. On the other hand, Wang et al.
[120] have not only studied interdependent RGGs but have also considered a relative
neighborhood graph as the interconnection model. Results have shown that as a function
of the Largest Mutually Connected Component (LMCC), an interdependent network is
more robust by increasing the interconnection radius r. In addition, in [120] the derivative
of the LMCC as a new robust metric has been proposed. This metric quantifies the damage
to networks that is triggered by a small fraction of failures, significantly smaller than the
fraction at the critical threshold, and corresponds to the collapse of the whole network
[120].

The percolation of a Network of Networks (NoN) made up of interdependent spatially
embedded networks has been analyzed in [170]. This work considers both dependency
links restricted to a maximum Euclidean length r and unconstrained dependency links
(r = ∞). Shekhtman et al. [170] have found that for treelike networks of networks
(composed of n networks) rc significantly decreases as n increases and rapidly (n ≥ 11)
reaches its limiting value of 1. For cases where the dependencies form loops, such as
in random regular networks, there is a certain fraction of dependent nodes, qmax, above
which the entire network structure collapses even if a single node is removed [170]. The
value of qmax decreases quickly with m, the degree of the random regular network of
networks. Results have also shown the extreme sensitivity coupled geographical networks
have and emphasize their susceptibility to sudden collapse [170].

In [173] interdependent networks in which each node has links in multiple networks
and requires connectivity in each layer to function has been studied. Furthermore,
the connectivity links in each layer have lengths exponentially distributed with the
characteristic length ζ [173]. Thus, high values of ζ reflect weak spatiality and low
values reflect strong spatiality. In this region-based interdependent model, percolation
exhibits first or second-order transitions, depending on the characteristic length of the
connectivity links. Thus, longer links make a multilayer network more vulnerable, which
contrasts with the increase in robustness in a single-layer for larger connectivity links
[173]. When ζ is longer than a certain critical value, ζc, abrupt, discontinuous transitions
take place, while for ζ < ζc the transition is continuous, indicating that the risk of abrupt
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collapse can be eliminated if the typical link length is shorter than ζc [173].
Region-based interdependent networks are also vulnerable to geographical localized

attacks, such as terrorist attacks or natural catastrophes, which damage all nodes within
a given radius rh from a random location in the network [137, 174]. Berezin et al. [137]
have studied the impact localized attacks have on interdependent networks in which a
node in one network is interconnected with one, and only one, node randomly chosen in
the other network if they are within the radius r. Results have shown that a localized attack
can cause substantially more damage than an equivalent random attack in interdependent
square lattices networks [137]. Furthermore, for a broad range of parameters (average
nodal degree 〈k〉 and r), interdependent networks are metastable and are qualitatively
different from the stable and unstable phases known to percolation theory [137]. In
metastable systems, there is a critical damage size with radius rc

h defining the potential
risk of localized attacks on spatially embedded networks. Thus, if the interdependent
network if subjected to a localized attack larger than a critical size, a cascading failure
emerges which, in turn, leads to a complete system collapse [137]. The robustness
of interdependent networks against localized attacks where dependency links are no
longer than connectivity links has been analyzed in [174]. Vaknin et al. [174] have
found a metastable zone where a localized attack larger than a critical size rc

h induces a
nucleation transition as a cascade of failures spreads throughout the system, leading to its
collapse. Moreover, localized attacks in these multiplex systems can induce a previously
unobserved combination of random and spatial cascades [174].

In summary, although most previous studies have focused on measuring the
robustness of independent networks against multiple failures, only a small number of them
addressed geographic constraints. Table 5.1 presents a comparison of the relevant results
concerning robustness measurements in region-based interdependent networks. As can
be seen in most of the previous work, the interconnection model for spatially embedded
or geographical networks considers the distance of interlinks as being important design
constraint and the LMCC as the robustness metric. Moreover, these works are focused on
identifying the behavior of the percolation threshold in the context of cascading failures
generated by random failures or localized attacks. Therefore, the following research
objectives will be covered in the remainder of this chapter:

• The region-interconnection models proposed in previous studies only consider the
distance between nodes to establish interlinks. However, interlink allocation in
region-based interdependent networks should be controlled with additional factors
in order to mitigate other issues produced by the large number of interlinks in each
radius r. Thus, controlling the number of interlinks in region-based interdependent
networks is likely a valuable design feature in order to reduce the deployment cost
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of interdependent networks and not to exceed the capabilities of the nodes to be
interconnected. Unlike previous research, a new strategy for limiting the number of
interlinks between two geographical networks is proposed.

• Region-based interdependent networks have exhibited high vulnerability to
cascading failures due to the elimination of a small fraction of nodes in one
network may lead to catastrophic consequences for the whole system. Hence, in
this work the impact limiting the number of interlinks has on the robustness of
region-based interdependent networks against cascading failures is also analyzed.
As a study case, we focused on interdependent telecommunication networks in
which nodes are placed in a two dimensional space, i.e., nodes are geographically
distributed. Furthermore, in this chapter we consider the vulnerability analysis of
each network to a certain type of targeted attack to determine the influence the
new region-based interconnection model has on the robustness of the resulting
interdependent network.
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Table 5.1: Comparison of relevant results about robustness measurement in region-based interdependent networks

Author Network model Interconnection type Triggered event Results

Bashan et al. [17] Interconnected spatially
embedded lattice networks

One-to-multiple Random failure Any small fraction of interdependent nodes q leads to an abrupt collapse resulting from
cascading failures.

Li et al. [168] Interconnected spatially
embedded square lattice
networks

One-to-one Random failure The critical percolation threshold ρc increases linearly with r to reach a maximum for
r = rc and is characterized by a second-order transition.

Danziger et al. [38] Interconnected spatially
embedded square lattice
networks

One-to-multiple Random failure The transition phase of percolation for finite r is characterized by node failures spreading
through the system while the infinite r corresponds to a non-spatial cascading failure
similar to the case of random networks.

Zhang et al [171] Random Geometric
Graphs (RGG) for
interdependent spatially
embedded networks

One-to-multiple Random failure Above the upper bounds of the percolation thresholds in interdependent EGGs, a positive
fraction of nodes are functioning.

Wang et al [120] ER-ER network through
RGG and relative
neighborhood graph

One-to-multiple Random failure As a function of the Largest Mutually Connected Component (LMCC), an interdependent
network becomes more robust by increasing in the interconnection radius r. The LMCC,
as a new robust metric, quantifies the damage of networks that is triggered by a small
fraction of failures.

Shekhtman et al.
[170]

Network made up of
interdependent spatially
embedded networks

One-to-multiple Random failure The rc significantly decreases as n increases and for a certain fraction of dependent nodes
the entire network structure collapses even if only a single node is removed.

Continue on the next page
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Table 5.1: Comparison of relevant results about robustness measurement in region-based interdependent networks

Author Network model Interconnection type Triggered event Results

Danziger et al. [173] Multilayer interdependent
networks

One-to-multiple Random failure Percolation threshold exhibits first or second-order transitions, depending on the
characteristic length of the connectivity links. Moreover, longer links make a multilayer
network more vulnerable to cascading failures.

Berezin et al. [137] Interconnected spatially
embedded square lattice
networks

One-to-one Random failure and
localized attack

A localized attack can cause substantially more damage than an equivalent random attack
in interdependent square lattices networks.

Vakin et al. [174] Interconnected spatially
embedded square lattice
networks

One-to-multiple Localized attack There is a metastable region in which only attacks with a radius larger than rc
h are

propagated, through cascading failures, in the entire system rendering it non-functional.
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Figure 5.1: Enhanced interconnection model in region-based interdependent networks

5.3 Enhanced region-based interconnection model and
failure model

In order to generate an enhanced region-based interconnection model, interlink allocation
should be controlled by considering factors additional to the geographical constraint. This
chapter proposes a new region-based interconnection model in which a node i in network
G1 and a node j in network G2 can be interconnected if 1) the distance di j between
them is less than or equal to a given radius r and 2) the number of interlinks for nodes i

and j do not exceed a given percentage for limiting the number of interlinks (φ1 and φ2,
respectively). Our new strategy for interlink allocation is based on dividing the nodes in
both networks into subsets in accordance with a certain nodal property. Thus, the model
prevents φ1 and φ2 being exceeded for any node in G1 and G2, respectively.

The proposed region-based interconnection model is illustrated in Fig. 5.1, where
the nodes in G1 are represented by filled circles and the nodes in G2 are represented
by unfilled circles. For each node i in G1, there is a set of nodes in G2 that can be
interconnected if the conditions 1) and 2) are satisfied. Consequently, in contrast to [120],
an enhanced interconnection model for limiting the number of interlinks in region-based
interdependent networks is generated. The remainder of this section presents the proposed
region-based interconnection model in detail and describes the failure model involving
cascading failures.
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5.3.1 Interconnection model for limiting number of interlinks in
region-based interdependent networks

Consider two undirected networks G1 (S,U) and G2 (T,V ), each with a set of nodes (S,T )
and a set of links (U,V ) respectively. Denote N1 and N2 as the number of nodes in G1

and G2, respectively, and L1 and L1 as the number of links in G1 and G2, respectively.
When G1 and G2 interact, a set of bidirectional interlinks I joining the two networks is
introduced. Consequently, an interdependent network is defined as G(N,L) = (S∪T,U ∪
V ∪ I) [31].

In the region-based interconnection model previously proposed in [120], the entry bi j

in the interconnection matrix B12 is determined by the geographical location of nodes of
G1 and G2 networks. Let (xi,yi) and (x j,y j) denote the spatial coordinates for nodes i

and j, then, bi j= 1 if the Euclidean distance di j between node i in G1 and node j in G2 is
smaller than a given threshold r, otherwise bi j = 0. This link pattern generates a random
geometric graph with a one-to-multiple interdependency model [120]. The Euclidean
distances di j is given by:

di j =
√
(xi− x j)2 +(yi− y j)2 (5.1)

In the random geometric graph, a node i in G1 can depend on an arbitrary number
of nodes in G2 that is no greater than N2, and vice versa [120, 171, 172]. When
the distance between two nodes is considered as the unique interconnection constraint,
some issues are evidenced. Specifically, the nodes in one network can have many
interlinks from the other network, thus incurring high deployment cost. Note that
the cost can be related to the economic investment required to construct an interlink.
For instance, in the case of interdependent networks constructed by power grids and
telecommunication networks, a new interlink has an associated deployment cost as a
function of the cable length. Additionally, nodes in each network have limited capabilities
to interconnect to a fixed number of nodes, and so the network’s extension requires
additional investments. Therefore, limiting the number of interlinks between the nodes in
two networks contributes to keeping the deployment cost under control and adjusting to
the operator’s budget.

Let us define the new factor to be considered to limit the number of interlinks in
region-based interdependent networks. For G1, this factor is denoted as φ1 and is given
by:

φ1 =
η1

N2
×100%, (5.2)

where η1 ≤ N2 is the maximum number of nodes from G2 that each node in G1 can
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interconnect to and N2 is the number of nodes in G2. Analogously, the limit of interlinks
(φ2) for nodes in G2 can be calculated analogous to (5.2). Therefore, the maximum
number of interlinks that each node in G1 and G2 can interconnect to is controlled by
φ1 and φ2.

As part of our proposal, the nodes in G1 (G2) are divided into µ1 (µ2) subsets of nodes,
each with a maximum of η1 (η2) nodes. Subsets of nodes are a key aspect to controlling
the allocation of a specific number of interlinks to each node. The number of nodes in a
subset is directly related to the capacity of the nodes and the functionality performed by
nodes in each network. For instance, in a fixed broadband access architecture, a subset
of nodes in the access network can be interconnected to a subset of nodes in the core
network. Moreover, a core network can support the interconnection of a limited number
of access nodes. Without loss of generality, a subset of nodes in a network can group
nodes with similar properties or randomly. Then, the nodes of a subset in G1 will be
interconnected to the nodes of a subset in G2 if the distance is less than or equal to the
radius (r). As the number of nodes in each subset is limited, the number of interlinks in
each node can be kept under control.

Let us consider that the nodes in G1 are divided into µ1 subsets of nodes, where µ1 is
given by:

µ1 =

round(N2
η1
), if φ1 < 50%

2, if φ1 ≥ 50%
(5.3)

Similarly, the nodes in G2 are divided into µ2 subset of nodes, where µ2 is given by:

µ2 =

round(N1
η2
), if φ2 < 50%

2, if φ2 ≥ 50%
(5.4)

Let ai denote the property value of node i ∈ G1. Then, nodes in G1 are ordered
according to ai, i.e., a1 ≥ a2 ≥ ...≥ ai−1 ≥ ai ≥ ai+1 ≥ ...≥ aN1−1 ≥ aN1 . Moreover, let
ΓSg denote the ordered set of nodes previously defined in G1. If ΓS1,ΓS2, ...,ΓSµ1

represent
the subsets of ΓS, then, ΓS =

⋃µ1
g=1 ΓSg , and ΓSg is given by:

ΓSg =

{i : (g−1)×η2 < i≤ g×η2}, if g < µ1

{i : (g−1)×η2 < i≤ N1}, if g = µ1

, (5.5)

where i represents the i− th element in ΓSg and g ∈ {1,2, ...,µ1}. Similarly, let c j denote
the property value of node j ∈ G2. Then, nodes j ∈ G2 are ordered according to c j, i.e.,
c1 ≥ c2 ≥ ... ≥ c j−1 ≥ c j ≥ c j+1 ≥ ... ≥ cN2−1 ≥ cN2 . Additionally, let ΓTh denote the
ordered set of nodes previously defined in G2. If ΓT1,ΓT2 , ...,ΓTµ2

are subsets of ΓT , then,
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ΓT =
⋃µ2

H=1 ΓTh , and ΓTh is given by:

ΓTh =

{ j : (h−1)×η1 < j ≤ h×η1}, if h < µ2

{ j : (h−1)×η1 < j ≤ N2}, if h = µ2

, (5.6)

where j represents the j− th element in ΓTh and h ∈ {1,2, ...,µ2}
Let us define Bφ as an N1×N2 interconnection matrix, whose entries or elements are

bφi j = 1 if nodes in the subset ΓSg are connected to nodes in the subset ΓTh for g = h,
otherwise bφi j = 0. Accordingly, the Bφ matrix defines which nodes in the networks can
be interconnected and establishes the limit for the number of interlinks that each node in
the networks can handle. Thus, each node in G1 or G2 will have a maximum of η1 or η2

interconnected nodes, respectively.
Finally, let us redefine the dependency matrix B12, whose entries are b ji = 1 if di j ≤ r

and bφi j = 1, otherwise bi j = 0. Note that the new B12 matrix captures the interconnection
conditions 1) and 2) proposed in this chapter and thus the new interdependency matrix
B, which is given by the equation (3.2), can be generated. Therefore, the nodes in each
geographical or spatial network will interconnect with a limited number of interlinks,
consequently improving the model defined in [120]. For simplicity, in this chapter we
consider that G1 and G2 have the same number of nodes (N1 = N2) and that all the nodes
in the interdependent network have the same limit of interlinks (φ1 = φ2). Therefore, each
network has µ1 = µ2 subsets of nodes with a maximum number of nodes η1 = η2.

Figure 5.2 presents two geographical networks being interconnected by employing
the interconnection proposal described in this section. As can be seen in Fig. 5.2, both
networks have N1 = N2 = 9 nodes and each node in G1 and G2 can support until φ1 =

φ2 = 30% of nodes from the other. According to what has been described above, nodes
in both networks are divided into µ1 = µ2 = 3 subsets, each one with a maximum of
η1 = η2 = 3 nodes. Then, the Bφ matrix is generated with the subsets ΓSg and ΓTh .
Finally, the interlinks between the nodes from G1 and G2 (dashed lines) are established if
di j ≤ r and bφi j = 1.

The percentage to limit the number of interlinks (φ ) can be tuned by network
administrators according to capabilities of nodes (i.e.,maximum number of clients per
server) or budgets constraints. In practice, these features are important factors to
define the number of interlinks that a node can interconnect. Moreover, in the design
of interdependent critical infrastructures with geographical constraints (i.e.,radius r),
limiting the number of interlinks have high value in order to maintain the network
performance under control due to the interconnections between networks do not exceed
the capacity of the nodes.
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Figure 5.2: Subsets for limiting the number of interlinks in region-based interdependent
networks

5.3.2 Algorithm description for enhancing a region-based
interconnection model

Algorithm 2 summarizes the interconnection model proposed to limit the number of
interlinks in region-based interdependent networks. Algorithm 2 requires two networks
(G1 and G2) to be interconnected, the percentage for limiting the number of interlinks (φ1

and φ2) and the radius (r). The output of Algorithm 2 is a dependency matrix B12 with
the conditions 1) and 2) previously described. As can be seen, Algorithm 2 calculates
the maximum number of nodes that a node can interconnect to (Lines 1 and 2) and the
number of subsets (Lines 3 and 4). Then, the nodes are grouped in subsets according to
one property (Lines 5 and 6). The interconnection matrix (Bφ12), in which each node in G1

(G2) has a maximum of η1 (η2) interconnected nodes (Line 7) is generated. Finally, the
interdependency matrix B12 is generated by considering the distance constraint for a given
r and the Bφ matrix (Lines 8 to 19). Thus, an enhanced region-based interconnection
model is defined for interconnecting the G1 and G2 networks and the interdependency
matrix B, which is given by the equation (3.2), can be generated from the resulting B12

matrix.
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Algorithm 2: Interconnection model for limiting the number of interlinks in
region-based interdependent networks

Data: two geographical networks (G1 and G2), limit for number of interlinks (φ1
and φ2) and radius (r)

Result: dependency matrix B12
1 η1 = round(φ1N2/100)
2 η2 = round(φ2N1/100)
3 µ1 = round(N1/η2)
4 µ2 = round(N2/η1)
5 ΓSg ← getSubsetNodes(S,µ1,η2,nodal property)
6 ΓTh ← getSubsetNodes(T,µ2,η1,nodal property)
7 Bφ ← getBφ Matrix(ΓSg,ΓTh,η1,η2,µ1,µ2)

8 for all i ∈ S do
9 for all j ∈ T do

10 di j =
√
(xi− x j)2 +(yi− y j)2

11 if di j ≤ r and bφi j == 1 then
12 bi j = 1
13 end
14 else
15 bi j = 0
16 end
17 end
18 end
19 return B12
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5.3.3 Cascading failure process in interdependent networks

Consider a region-based interdependent network G generated from the model proposed in
this chapter. When a random fraction of the nodes in G1 fails, a cascading failure process
is induced. We assume the node i in network G1 is functional if a) at least one of its
interconnected nodes in network G2 is operative, and b) the node i belongs to the giant
component of the functional nodes in network G1 [122]. Due to interdependency, the
failed nodes in G1 spread failures in G2. As the assumptions a) and b) are also applied to
the node j in network G2, the failed nodes in G2 spread failures back into G1, and so on.
The cascading failures continue until no more nodes fail. The remaining set of functional
nodes is referred to as the Largest Mutually Connected Component (LMCC):

LMCC =
n1 +n2

N1 +N2
, (5.7)

where n1 and n2 are the number of nodes that belong to the giant component of the
functional nodes in G1 and G2, respectively, when the assumptions a) and b) are satisfied.
The cascading failures described in this section can occur in real scenarios such as power
grid blackouts [108] and disruptions in economic networks [175]. Note that [120] also
considered the case in which a node in G1 is functional if all of its interconnected nodes
in G2 are operational. Under that condition, in some cases, having more interconnected
links makes the region-based interdependent network less robust. However, this case is
outside the scope of this chapter. Algorithm 3, based on the model proposed by [19], is
used to simulate a cascading failure process from an initial failure:

Algorithm 3: Cascading failure process in region-based interdependent
networks

Data: two geographical networks (G1 and G2) and an interconnection matrix B12
Result: functional largest connected components in G1 and G2 networks

1 Remove the fraction p of initial failed nodes in network G1
2 Identify the largest component n1 in G1
3 Remove the s nodes in G1 not in n1
4 Remove the t nodes in G2 not linked to n1
5 Identify the largest component n2 in G2
6 Remove the s nodes in G2 not in n2
7 Remove the t nodes in G1 not linked to n2
8 If s > 0 then repeat from line 2
9 return The final functional largest components n1 and n2
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Table 5.2: Nodes distribution in G1 and G2 according to interlink limits

φ1 = φ2 µ1 = µ2 η1 = η2

10% 10 5
25% 4 12
50% 2 25
75% 2 37

100% 1 50

5.4 Simulation results and discussion

In this section, the topologies to be interconnected according to the proposed region-based
interconnection model are described. Moreover, the impact limiting the number of
interlinks has on the robustness of region-based interdependent network is analyzed.

5.4.1 Topologies for region-based independent networks

The region-based interdependent networks considered as the study case represent two
backbone telecommunication networks being interconnected with bidirectional interlinks.
The random connection property of a backbone telecommunications network is modeled
using an Erdös-Rényi (ER) random graph with a Poisson nodal degree distribution. This
indicates that most nodes have approximately the same number of links close to the
average nodal degree [46].

In order to analyze the impact the model proposed has on the robustness of
interdependent networks against cascading failures, the Largest Mutually Connected
Component (LMCC) is measured in 100 interdependent telecommunication networks.
Each backbone telecommunication network to be interconnected is modeled as an ER

random graph with N1 = N2 = 50 nodes and the average nodal degree (〈k〉) equal to 6.
The nodes in each network are placed uniformly in a two-dimensional square of the size
Z = 1 i.e., each node in the G1 and G2 networks has as spatial coordinates (x,y), where
0≤ x≤ 1 and 0≤ y≤ 1. The interconnection link pattern between a pair of ER graphs is
conditioned by a given radius r, i.e., a geographical constraint. The number of interlinks
in each node is limited by a given percentage φ .

The number of subset (µ1,µ2) and the maximum number of nodes that a node in
G1 and G2 can interconnect with (η1,η2) are presented in Table 5.2. For instance, when
φ = 25%, this is considered as the design constraint and, as such, the nodes in each
network are divided into µ1 = µ2 = 4 subsets. Then, for a given radius r, it is expected
that each node in G1 and G2 will have a maximum of 12 interlinks. Note that from the



CHAPTER 5. ROBUSTNESS IN REGION-BASED INTERDEPENDENT 135

initial percentages, φ1 and φ2, the number of subsets (µ1 and µ2) can be calculated. Thus,
from the number of subset, a network administrator is able to control nodes capacity
in function of the number of interlinks that they can interconnect. Other relation can
be found when the network administrator knows the maximum number of interlinks (η1

and η2) that nodes in each network can support. In consequence, the number of subsets
can be estimated in order to apply the model proposed in this paper. However, this last
consideration requires that the execution of the Algorithm 2 starts from Line 5.

As was described in subsection 5.3.1, a nodal property is also required to define how
nodes in each network can be grouped. In the study case considered in this chapter, node
vulnerability to failures is selected as the property with which to group the nodes into
subsets. In most real scenarios, the vulnerability of nodes to failures can be estimated from
the historical failure database of their Operation Support Systems (OSS). However, given
the difficulty of obtaining access to real data, centrality metrics could be used to measure
the importance of nodes for the network connectivity under some failure scenarios [54].
Previous analysis has revealed that backbone telecommunication networks modeled as ER

are highly vulnerable to a sequential targeted attack based on nodal betweenness centrality
(bc) (see Chapter 3).

Figure 5.3 depicts a robustness analysis of the backbone telecommunication networks
under targeted attacks when networks are not connected to other. The networks’
robustness is quantified as a function of the Average Two-Terminal Reliability (AT T R)
metric [4]. As can be seen in Fig. 5.3, the telecommunication networks considered
in this work exhibit high vulnerability to a sequential targeted attack by bc. Whereas,
the networks are more robust to a simultaneous targeted attack by bc and sequential
or simultaneous targeted attacks based on degree centrality (dc). Consequently, node
vulnerability in each ER network could be quantified by their bc values i.e., the higher the
betweenness centrality of node is, the higher the node’s vulnerability is.

5.4.2 Analyzing the impact limiting the number of interlinks has on
the robustness of region-based interdependent networks

To investigate the impact the region-based interconnection model has on the robustness
of interdependent networks against cascading failures, the Largest Mutually Connected
Component (LMCC) metric is measured when a fraction of nodes is removed. In
the failure scenario considered in this chapter, nodes in the network G1 are removed
(according to their vulnerability to a sequential targeted attack by bc) until the percentage
of removed nodes (P) is reached. Removing the nodes in G1 leads to a cascading failure
process as described in Section 5.3.3.

Although several region-based interdependent networks can be generated by varying
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Figure 5.3: Robustness analysis of backbone telecommunication networks (N1 = 50 and
〈k〉= 6) in a single scenario.

the radius and the limit of number of the interlinks, the two scenarios considered as case
studies are:

• Scenario 1: The radius (r) is fixed to 0.2 and the limit for the number of interlinks
(φ ) ranges from 25% to 100%. This scenario can represent a real situation in which
a telecommunication network operator has a geographical area limited by a radius
r and is interested in controlling the number of interlinks to other infrastructures.

• Scenario 2: The number of interlinks is limited to 25% and r is varied from 0.1 to√
2. This scenario can be used by a telecommunication network operator who has a

certain capacity in their network, but wants to restrict its coverage area to a certain
radius r to interconnect to fewer number of nodes from other infrastructures.

Both scenarios are replicated in 100 interdependent networks. The robustness
analysis presented in this section is the average of the LMCC results measured in these
interdependent networks.

5.4.2.1 Scenario 1: Robustness analysis in region-based interdependent networks
against variations in the limit of interlinks (φ )

In this scenario, the radius (r) to interconnect the G1 and G2 networks is fixed to 0.2.
Then, for a given limit in the number of interlinks (φ ), the LMCC of an interdependent
network is measured when a fraction of nodes (P) is removed in the G1 network. Figure
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(a) (b)

Figure 5.4: Robustness analysis in region-based interdependent networks (r = 0.2)
versus variations in the limit of interlinks (φ ) a) Largest Mutually Connected Component
(LMCC) as a function of the removed nodes (P) b) number of interlinks as a function of
φ .

5.4(a) depicts that for a given φ the LMCC first decreases almost linearly with the increase
of the fraction of removed nodes (P ≤ 35%). Later, the LMCC dramatically decreases
until the networks are completely disconnected. Networks with the highest slope in their
LMCC curves are those that have less φ . This is because with the decrease of φ , nodes
in the G1 and G2 networks are divided into more subsets (µ1 and µ2, respectively) which
decreases the probability for interconnecting a large number of nodes. Consequently, a
node has fewer interconnected nodes and its failure probability is increased thanks to the
failures of its interconnected nodes.

Also note that in Fig. 5.4(a) there is a zone (P ≤ 20%) in which the robustness of
interdependent networks for a given φ is similar to the robustness reached by a network
modeled according to [120] with r = 0.2 and without limiting the number of interlinks
(GRG). Moreover, in this zone all networks exhibit a high level of robustness against
cascading failures (LMCC > 0.8). For example, when 20% of the nodes are removed
from G1 and after the cascading failure process, LMCC = 0.89 for φ = 100% and 0.81 for
φ = 10%. However, for P > 20%, there are more differences between the LMCC values
reached by the networks with φ ≤ 25% and the network GRG. However, in the case of
networks with φ ≥ 50%, their robustness remains near to that achieved by GRG until P≤
40%. Therefore, for some P values, our model is able to maintain the LMCC in values
near those achieved by [120] when the number of interlinks is limited to a certain value of
φ . In Table 5.4 is presented the numerical values for the average and standard deviation
(avg± StDev) of the LMCC measurements in region-based interdependent networks (r
= 0.2) versus variations in the limit of interlinks (φ ). These values allow to determine
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Table 5.3: LMCC measurements in region-based interdependent networks (r = 0.2)
versus variations in the limit of interlinks (φ )

P [%] φ = 10% φ = 25% φ = 50% φ = 75% φ = 100%

0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

5 0.963 ± 0.01 0.973 ± 0.009 0.981 ± 0.008 0.978 ± 0.007 0.982 ± 0.007

10 0.909 ± 0.016 0.939 ± 0.01 0.944 ± 0.013 0.949 ± 0.009 0.954 ± 0.01

15 0.862 ± 0.016 0.9 ± 0.014 0.908 ± 0.01 0.912 ± 0.015 0.923 ± 0.009

20 0.81 ± 0.019 0.835 ± 0.02 0.867 ± 0.013 0.875 ± 0.009 0.894 ± 0.008

25 0.761 ± 0.013 0.765 ± 0.024 0.827 ± 0.013 0.84 ± 0.012 0.864 ± 0.011

30 0.709 ± 0.02 0.695 ± 0.016 0.781 ± 0.016 0.781 ± 0.02 0.828 ± 0.012

35 0.637 ± 0.028 0.63 ± 0.024 0.72 ± 0.021 0.714 ± 0.024 0.785 ± 0.015

40 0.537 ± 0.044 0.532 ± 0.037 0.633 ± 0.039 0.632 ± 0.03 0.725 ± 0.03

45 0.354 ± 0.054 0.387 ± 0.051 0.519 ± 0.032 0.532 ± 0.044 0.645 ± 0.023

50 0.226 ± 0.03 0.244 ± 0.033 0.332 ± 0.043 0.394 ± 0.047 0.48 ± 0.041

55 0.14 ± 0.023 0.122 ± 0.031 0.235 ± 0.017 0.244 ± 0.05 0.374 ± 0.026

60 0.09 ± 0.016 0.082 ± 0.01 0.167 ± 0.033 0.136 ± 0.024 0.283 ± 0.041

65 0.047 ± 0.017 0.051 ± 0.014 0.092 ± 0.013 0.065 ± 0.024 0.168 ± 0.026

70 0.012 ± 0.006 0.013 ± 0.013 0.065 ± 0.01 0.023 ± 0.006 0.11 ± 0.018

confidence intervals from the LMCC measurements in the 100 interdependent networks.
On other hand, as can be seen in Fig. 5.4(b), the number of interlinks is

under the maximum number of interlinks reached by the GRG network for φ < 100%
(compare the dashed line GRG and the blue bars G). This result is due to the strategy
proposed in this chapter whereby the nodes in the G1 and G2 networks are divided
into subsets, with a maximum number of nodes η1 and η2, respectively. Thus, our
new region-based interconnection model guarantees that the number of interlinks in
region-based interdependent networks is maintained below the limit φ . For instance,
when φ = 75%, the maximum number of interlinks in the interdependent networks is
159. Although this value is not exactly 75% of the maximum number of interlinks, it is
below the limit of interlinks considered to be a design constraint.

5.4.2.2 Scenario 2: Robustness analysis in region-based interdependent networks
against variations in radius (r)

In this scenario, the interdependent telecommunication networks are the result of
interconnecting the G1 and G2 networks by limiting the interlinks (φ ) to 25% and varying
the radius (r). The Largest Mutually Connected Component (LMCC) as a function of the
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(a) (b)

Figure 5.5: Robustness analysis in region-based interdependent networks (φ = 25%)
versus variations in radius (r) a) Largest Mutually Connected Component (LMCC) as a
function of removed nodes (P) b) number of interlinks as a function of r.

fraction of removed nodes from the G1 network is shown in Fig. 5.5(a). Although the
number of interlinks is limited to 25%, Fig.5.5(a) shows that region-based interdependent
networks better resist cascading failures because of a major number of interlinks when
the r is large. This result is to be expected as the nodes in the G1 and G2 networks tend
to be more probable to interconnect to a greater number of nodes as a wide geographical
area is defined by a larger radius r. For example, when 20% of the nodes are removed
from G1 and after the cascading failure process, LMCC = 0.90 for r = 1.2 and 0.83 for
r = 0.2.

Additionally, Fig. 5.5(a) depicts a zone (P ≤ 20%) in which the robustness of
region-based interdependent networks for a given radius r remains near to the robustness
of a network modeled according to [120] where r =

√
2 and the number of interlinks is not

limited (GRG). In this zone, all region-based interdependent networks have the LMCC >

0.8. As the percentage of removed nodes in G1 increases, the networks modeled with our
new proposal maintain similar robustness levels until P ≤ 40%. Consequently, limiting
the number of interlinks to a certain percentage φ tends to control interlink allocation
against increases in radius r. Thus, our proposal based on subsets is effective in limiting
the number of interlinks in region-based interdependent networks. Table 5.4 shows the
numerical values for the average and standard deviation (avg± StDev) of the LMCC

measurements in region-based interdependent networks (φ = 25%) versus variations in
radius (r). With these values it is possible to determine confidence intervals from the
LMCC measurements in the 100 interdependent networks.

Regarding the number of interlinks, Fig. 5.5(b) shows that for a given radius r our
model generates interdependent networks where the interlinks are around 25% of the
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Table 5.4: LMCC measurements in region-based interdependent networks (φ = 25%)
versus variations in radius (r)

P [%] r = 0.2 r = 0.4 r = 0.6 r = 0.8 r = 1 r =
√

2

0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

5 0.973 ± 0.019 0.984 ± 0.007 0.984 ± 0.004 0.985 ± 0.003 0.985 ± 0.003 0.985 ± 0.003

10 0.939 ± 0.025 0.957 ± 0.011 0.959 ± 0.005 0.96 ± 0.004 0.96 ± 0.004 0.96 ± 0.004

15 0.9 ± 0.033 0.924 ± 0.014 0.93 ± 0.009 0.933 ± 0.005 0.934 ± 0.005 0.934 ± 0.005

20 0.835 ± 0.036 0.868 ± 0.022 0.886 ± 0.016 0.899 ± 0.01 0.903 ± 0.006 0.903 ± 0.006

25 0.765 ± 0.038 0.781 ± 0.022 0.795 ± 0.022 0.811 ± 0.018 0.82 ± 0.013 0.821 ± 0.011

30 0.695 ± 0.032 0.719 ± 0.017 0.718 ± 0.017 0.718 ± 0.017 0.718 ± 0.017 0.718 ± 0.017

35 0.63 ± 0.056 0.67 ± 0.028 0.678 ± 0.03 0.68 ± 0.03 0.68 ± 0.03 0.68 ± 0.03

40 0.532 ± 0.078 0.596 ± 0.046 0.623 ± 0.043 0.629 ± 0.044 0.629 ± 0.044 0.629 ± 0.044

45 0.387 ± 0.132 0.47 ± 0.1 0.526 ± 0.073 0.546 ± 0.057 0.553 ± 0.052 0.556 ± 0.052

50 0.244 ± 0.139 0.322 ± 0.11 0.369 ± 0.082 0.396 ± 0.06 0.408 ± 0.055 0.412 ± 0.055

55 0.122 ± 0.126 0.207 ± 0.1 0.275 ± 0.068 0.313 ± 0.042 0.326 ± 0.031 0.33 ± 0.028

60 0.082 ± 0.101 0.141 ± 0.098 0.223 ± 0.079 0.281 ± 0.045 0.303 ± 0.025 0.308 ± 0.018

65 0.051 ± 0.081 0.098 ± 0.077 0.191 ± 0.074 0.251 ± 0.054 0.282 ± 0.032 0.291 ± 0.025

70 0.013 ± 0.026 0.043 ± 0.049 0.121 ± 0.071 0.18 ± 0.061 0.213 ± 0.06 0.224 ± 0.055

maximum reached by each network GRG (compare light blue and dark blue bars).The
reason is because, independent of the selected radius (r), the model proposed in this
chapter restricts the number of nodes that a node in the G1 and G2 networks can
interconnect with to η1 and η2, respectively. For example, when r = 0.6, the maximum
number of interlinks in the interdependent networks is 390, and the number of interlinks
per node is 4 on average. Consequently, for some P values our model yields promising
results for maintaining network robustness under cascading failures by reducing the
number of interlinks.

5.5 Discussion and lessons learned

The interconnection strategy proposed in this chapter has proven to be effective in
guaranteeing the number of interlinks in region-based interdependent networks is
maintained under a certain limit φ . This is due to the fact for a given φ the nodes to
be interconnected have been divided into subsets (µ1, µ2), each with a maximum number
of nodes (η1, η2). Results indicate that in some scenarios (P ≤ 20%) the robustness for
a given φ has been maintained at levels close to those reached by [120] (LMCC ≥ 0.80).
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This is a relevant outcome because compared to the critical threshold at which LMCC

equals zero, quantifying the impact of a small percentage of node failures (P) is essential
for network providers to prevent networks from collapsing.

The two scenarios that have been analyzed in this chapter represent some situations in
which the model proposed can be applied by network providers. Results have shown the
robustness behaviour for region-based interdependent networks under cascading failures.
In the first case, by limiting the coverage area to a certain radius r and varying the number
of interlinks (φ ), a region-based interdependent networks is more robust against cascading
failures when φ is increased. Meanwhile, in the second case, by limiting the number of
interlinks to a certain φ and varying the radius r, the robustness increases for large values
of r. In both cases, the results are because with the increase in the number of interlinks, a
node tends to be less likely to fail from the failures of its interconnection nodes.



Chapter 6

Conclusions and future work

This chapter summarizes the main contributions of this doctoral dissertation, discusses
the main issues and proposes the research lines for future work.

6.1 Summary and conclusions

• In Chapter 2, a robustness analysis of 15 real telecommunication networks under
multiple failure scenarios (random and targeted attacks) was carried out. Through
this analysis the common topological properties that can be used to group networks
with similar robustness behavior were identified. Results have shown that the subset
of real telecommunication networks more robust under targeted attacks have high
values of average nodal degree (〈k〉), low values of average shortest path length (〈l〉)
and diameter (D), while the subset of the least robust networks have the opposite
results for 〈k〉, 〈l〉 and D. Similar to previous studies, for disassortative networks
(r < 0) simultaneous targeted attacks by nodal degree centrality is the most effective
method of degrading a network. However, we have also demonstrated that in
sequential targeted attacks by nodal betweenness centrality, assortative networks
(r > 0) are more vulnerable.

• Chapter 3 analyzed the performance of interdependency matrices in mitigating
the propagation of targeted attacks in interdependent networks; specifically, the
interconnection of two telecommunication networks, and a power grid connected
to a telecommunications network. Through this analysis, novel methods to
interconnect different interdependent networks in order to improve their robustness
levels under target attacks have been presented. The interlink patterns are based
on the vulnerability of nodes in the case of the most dangerous targeted attack
for each of these networks. To achieve the least impact on one network when

142
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the most dangerous targeted attack is launched on the interconnected network,
it is recommended to interconnect the two networks using the low centrality
interdependency matrix (BLC). Furthermore, interconnecting networks via high
centrality interdependency matrix (BHC) or random interdependency matrix (BRA)
is not recommended because of high impact targeted attacks have on networks.
These results may help network administrators to identify the vulnerabilities
of interdependent networks in order to plan and design more robust critical
infrastructures.

• The scenarios studied in Chapter 3 yield interesting insights with regard to the
propagation of targeted attacks in the interdependent networks. An interesting
result is when the two networks are interconnected by a link model based on
the BHC matrix, a simultaneous targeted attack based on degree centrality on the
power grid causes exactly the same damage to the telecommunications network
as a simultaneous targeted attack based on betweenness centrality in a single
network scenario. However, when the two infrastructures are interconnected via
the BRA matrix, a targeted attack on one of the networks propagates randomly in the
other network. Whereas in the case of interconnection of two telecommunication
networks by a BHC matrix, the impact of a sequential targeted attack by betweeneess
centrality in one of the networks generates an effect similar to a simultaneous
targeted attack by betweeneess centrality in the other.

• In Chapter 4, a Software Defined Network (SDN) was considered as a multilayer
telecommunication network. Through this approach, a robust design of SDN
architecture to maintain an acceptable level of service in the face of targeted attacks
has been presented. This new proposal has been focused on identifying exactly what
the critical parts of the physical network are to find the best controller placements.
By comparing the robustness of the SDN network resulting from our proposal with
the robustness of two SDN topologies generated in previous works, our proposal
has shown a better performance in the case of targeted attacks. These results have
shown the importance of identifying the critical parts of networks in order to design
more robust networks and mitigate the impact targeted attacks in SDN have.

• In Chapter 5, an enhanced interconnection model in region-based interdependent
networks was proposed. In contrast to previous work, a new strategy based
on subsets of nodes has been proposed to limit the number of interlinks in
interdependent networks. The proposed region-based interconnection model has
considered a percentage to limit the number of interlinks (φ ) as a new key
factor for interconnecting two geographically distributed networks. Moreover, the
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impact limiting the number of interlinks has on the robustness of region-based
interdependent networks against cascading failures has been evaluated. Results
have shown that for a given radius r, an interdependent network is more robust
against cascading failures when φ is increased. Furthermore, for a given φ , a
region-based interdependent network is more robust for large values of r. These
results are due to the nodes have more interconnected nodes that reduce their
probability to fail in a cascading failure process.

6.2 Future work

There are several research lines for future work as a result of this thesis:

• A more in-depth study focused on the relationship between robustness metrics
under multiple failure scenarios. This would allow to identify those properties of
the networks which must be strengthened to maintain desirable network robustness
to be identified.

• The most important nodes in the power grid can be identified and ranked based
on their electrical properties that lead to large-scale failures. Then, their network
robustness can be evaluated based on this new metric. Research would also study
other strategies for mitigating the impacts of targeted attacks on the robustness of
interdependent networks.

• In the design of SDN topologies, the geographical placement of nodes and the
physical distance between them can be taken into account to distribute the controller
placements over the network. Thus, the controller load and the physical distance
controller-switch can be reduced. Furthermore, Algorithm 1 can be analyzed in
others scenarios where finding the best locations in a network is a key design
aspect to improving the network robustness. For example data centers placement or
hierarchical controller placement.

• The proposed region-based interconnection model can be studied in other
interdependent networks and validated with real-world data. Moreover, an
in-depth cost-benefit analysis of limiting the number of interlinks in region-based
interdependent networks can be carried out.

• Optimization strategies to limit the number of interlinks can be considered in
order to interconnect two geographical networks and maximize network robustness.
Additionally, the heuristic algorithm (Algorithm 2) presented in this thesis can be
improved by including other constraints such as the cost and capacity of interlinks.
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