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Abstract

The recent technological advancements and market trends are causing an interesting

phenomenon towards the convergence of the high-performance and the embedded

computing domains. Critical real-time embedded systems are increasingly concerned

with providing higher performance to implement advanced functionalities in a pre-

dictable way.

OpenMP, the de-facto parallel programming model for shared memory architec-

tures in the high-performance computing domain, is gaining the attention to be used

in embedded platforms. The reason is that OpenMP is a mature language that al-

lows to efficiently exploit the huge computational capabilities of parallel embedded

architectures. Moreover, OpenMP allows to express parallelism on top of the current

technologies used in embedded designs (e.g., C/C++ applications). At a lower level,

OpenMP provides a powerful task-centric model that allows to define very sophisti-

cated types of regular and irregular parallelism. While OpenMP provides relevant

features for embedded systems, both the programming interface and the execution

model are completely agnostic to the timing requirements of real-time systems.

This thesis evaluates the use of OpenMP to develop future critical real-time embed-

ded systems. The first contribution analyzes the OpenMP specification from a timing

perspective. It proposes new features to be incorporated in the OpenMP standard

and a set of guidelines to implement critical real-time systems with OpenMP. The

second contribution develops new methods to analyze and predict the timing behavior

of parallel applications, so that the notion of parallelism can be safely incorporated

into critical real-time systems. Finally, the proposed techniques are evaluated with

both synthetic applications and real use cases parallelized with OpenMP.

With the above contributions, this thesis pushes the limits of the use of task-

based parallel programming models in general, and OpenMP in particular, in critical

real-time embedded domains.
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Chapter 1

Introduction

“Be less curious about people and more curious about ideas.”

— Marie Sk lodowska-Curie

The possible applications of embedded systems have increased drastically over

the past years. Nowadays, embedded computing systems are ubiquitous in our daily

life, becoming mainstream in mobile phones, medical devices, automobiles, airplanes,

satellites, etc. According to Crystal Market Research, the global embedded systems

market was worth $132.50 billion in 2012 and is expected to reach approximately

$254.87 billion by 2022 [1]. This increase is due to the fact that embedded systems

are evolving to include general purpose and high-performance computing techniques

in their designs. The intention is to cope with the performance requirements of mod-

ern systems, hence converging the high-performance and the embedded computing

domains. As a result, embedded systems are able to implement more complex func-

tionalities to support advanced features.

In the automotive industry, for instance, 90% of new components are driven by

electronics [2], used for infotainment, safety, and engine control among others. Ad-

vanced Driver Assistance Systems (ADAS), such as automatic lane keeping and smart

cruise control, are the standard on a number of current vehicles. And there are still

plenty of opportunities to consider, from new in-vehicle infotainment software to au-

tonomous driving. Consequently, the trend in future automotive architectures designs

is to merge several single functionality microcontrollers, based on electronic control

units (ECUs), into a few more powerful parallel platforms, reducing cabling and cool-

ing provision, mass and space requirements, etc.
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1. INTRODUCTION

This trend is already observed in top providers of automotive chips across the

globe, including NXP Semiconductors, Infineon Technologies, Renesas Electronics

Corporation, STMicroelectronics and Texas Instruments. But also many other big

industries like Google, NVIDIA or Intel R© have recently invested significantly in future

autonomous driving systems. As an example, Intel R© acquired Mobileye, a leader

company in computer vision-based autonomous driving technology, for $15.3 billion

[3]. Overall, this trend is moving the traditional high-performance computing (HPC)

and personal computer (PC) markets to a second position, being embedded systems

the main contributor to the semiconductor industry revenue.

1.1 Critical Real-Time Embedded Systems

Critical Real-Time Embedded Systems (CRTES) are in charge of controlling funda-

mental parts of a device, e.g., the engine management system in a car, or the flight

control system in an airplane. CRTES are used for a wide range of purposes where a

failure to meet a requirement may lead to a catastrophic effect. In this context, the

criticality of the system may relate to safety, security, mission or business aspects of

the system. For instance, a failure may cause someone to get injured, an unacceptable

loss of sensitive data or money, or a reduction on the quality of the service provided

by the system.

History has shown examples where errors in critical systems caused the loss of

a huge amount of money, and even lives, as well as the embarrassment of famous

organizations such as the European Space Agency (ESA). As an example, one of the

most famous mission failures, which resulted in a loss of more than $370 million, was

the Ariane 5 rocket launch in 1996 [4]. An integer overflow caused a deviation from

the rocket flight path, which ended up in an explosion, only about 40 seconds after

being launched.

In order to avoid these type of situations (and also those less dramatic), CRTES

must provide strong evidence on its correct functional and timing behavior, meaning

that the system must guarantee that it operates correctly in response to its inputs,

and that operations are performed within a predefined amount of time. To do so,

the development of CRTES has to fulfill requirements given by safety standards, like

the ISO26262 [5] in automotive, the DO-178C [6] in avionics or the IEC61511 [7]

in the process industry. A number of software and hardware design principles and
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1.2 Timing Analysis of Parallel CRTES

requirements are listed in these standards to guarantee the successful behavior of the

system. This thesis focuses on guaranteeing the correct timing behavior of CRTES.

1.1.1 The use of parallel architectures to implement CRTES

Like any other embedded system, CRTES are increasingly concerned with providing

more functionalities that require higher performance, challenging the capabilities of

current embedded platforms. As an example, NVIDIA or ARM predict that advanced

driver assistance systems will require at least 100x more compute performance by 2024

compared to 2016 systems [8] [9].

In order to satisfy the increasing computational power requirements of those new

functionalities, CRTES industries introduced a higher number of processing units in

their products. However, this rapidly increased the computational elements used,

with a clear impact on power consumption, size, weight and cost. As an example, the

number of ECUs in a car increased to as much as 150 ECUs in 2015 [10]. For this

reason, nowadays there is a clear evolution from architectures dedicated to a single

functionality (like the ECUs) to parallel and heterogeneous architecture technologies,

that may deal with this need for higher performance, while maintaining competitive

costs. In addition, the trend is to integrate multiple functionalities into one domain or

vehicle control unit in order to reduce the number of ECUs. Some examples include

multi-core and many-core fabrics, GPUs, FPGA, etc. These parallel architectures are

being appreciated, and now in high demand across various industry verticals.

1.2 Timing Analysis of Parallel CRTES

Timing guarantees are crucial in CRTES because it must be guaranteed that all

operations finish within a predefined amount of time, i.e., in real-time terminology, all

real-time tasks must meet their deadlines. To do so, a two-step verification procedure

is needed to check whether the timing requirements of a system are satisfied. Firstly,

it is of great importance to derive trustworthy and tight Worst-Case Execution Time

(WCET) estimates for each real-time task [11]. The WCET represents an upper

bound on the execution time of a task. Secondly, these WCET estimates are used

for real-time scheduling which, based on the urgency of tasks (e.g., fixed priority,

deadline), prioritizes their execution, and considering their interaction within the

platform, determines if, in the worst possible scenario, the system meets the timing
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(a) Single-core platform.

𝑪𝒐𝒓𝒆 𝟏 

𝒕𝒊𝒎𝒆 

𝑪𝒐𝒓𝒆 𝟐 

𝑻𝒂𝒔𝒌 𝟏 𝑻𝒂𝒔𝒌 𝟐 𝑻𝒂𝒔𝒌 𝟑 

(b) Multi-core platform.

Figure 1.1: Scheduling problem of a real-time system, sequential real-time tasks.

constraints or not. This thesis focuses on the latter step, i.e., on real-time scheduling,

that must provide two features: (1) an algorithm for ordering the use of the available

resources (mainly the computing units or CPUs); and (2) a method to predict the

worst-case behavior of the system when the scheduling algorithm is applied. This

thesis aims to provide Response Time Analysis (RTA) [12] techniques to compute

the worst-case response time of each task which, if compared to the task’s deadline,

confirms if the timing requirements of the system are met.

While the scheduling problem for single-core platforms has been widely investi-

gated for decades, producing a considerable variety of publications and applications,

there are still many open problems regarding the scheduling analysis of systems run-

ning on a parallel platform. Certainly, the scheduling analysis becomes drastically

more complex for multi-core platforms. The sequential execution implies that the ac-

cess to physical resources is implicitly serialized, so, for instance, two tasks can never

cause a contention for a simultaneous memory access. However, this is not the case in

parallel architectures. Predicting the behavior of a real-time system running on such

architectures involves considering the worst-case execution time of tasks, also analyz-

ing the interference when accessing shared resources. This complicates the analysis

when considering the more complex hardware of a multi-core platform, compared to

a single-core.

Figure 1.2 illustrates the evolution of the real-time scheduling problem. Tra-

ditional real-time systems (Figure 1.1a) consider a set of concurrent tasks running

sequentially on a single-core platform. With the incorporation of multi-core architec-

tures, these concurrent tasks run simultaneously (i.e., in parallel) in the same platform

(Figure 1.1b).
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1.2.1 Parallel Programming in CRTES

The complexity of the scheduling problem increases even more when considering par-

allel programming models and heterogeneous architectures. The sporadic directed

Acyclic Graph (DAG) scheduling model [13] has been recently introduced in the real-

time literature to address the problem of modeling parallel work and applying schedul-

ing techniques to verify its timing constraints. This thesis tackles the challenge of

combine the use of HPC parallel programming models and the DAG scheduling model,

to predict the timing behavior of parallel computation in real-time systems.

In the context of parallel architectures for CRTES, parallel programming mod-

els are of paramount importance for exploiting the computation capabilities of such

architectures, while providing better programmability. In other words, parallel pro-

gramming models may offer developers the abstraction level required to program

parallel applications, while hiding the platform complexities. Besides performance

and programmability, portability is also an essential property that parallel program-

ming models can offer, not only across platforms but also across different inputs and

calling contexts.

Overall, parallel computing is fundamental to enhance the efficiency of parallel

architectures. Several approaches coexist with such a goal, and these can be grouped

as follows [14]:

1. Hardware-centric models aim to replace the native platform programming with

higher-level, user-friendly solutions, but still attached to a given hardware tech-

nology, e.g., Intel R© TBB [15] and NVIDIA R© CUDA [16]. These models focus

on tuning an application to match a chosen platform, which makes their use

neither a scalable nor a portable solution.

2. Application-centric models deal with the application parallelization from design

to implementation, e.g., OpenCL [17]. Although portable, these models may

require a full rewriting process to accomplish productivity.

3. Parallelism-centric models allow users to express typical parallel constructs in

a simple and effective way, and at various levels of abstraction, e.g., POSIX

threads [18] and OpenMP [19]. This approach allows flexibility and expressive-

ness, while decoupling design from implementation.

Among the vast amount of parallel programming models available, OpenMP has

proved to be advantageous for many reasons. In the next section, we describe the
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most relevant benefits of OpenMP in general, and also the particular reasons for

considering OpenMP to implement CRTES.

1.2.2 Why OpenMP?

OpenMP [20], the de-facto standard for shared memory parallel programming in

HPC, has been already considered as a candidate to parallelize real-time embedded

systems [21]. As an example, OpenMP is supported in embedded parallel and hetero-

geneous platforms, for instance, the Texas Instruments Keystone II [22] [23] [24] and

the Kalray Massively Parallel Processor Array (MPPA) [25], processors that target

the automotive and the avionics industries. Also the timing predictability properties

of OpenMP have been exposed in different research works [26] [27]. Originally focused

on a thread-centric model to exploit massively data-parallel and loop-intensive ap-

plications, the latest specifications of OpenMP have evolved to a task-centric model

that enables very sophisticated types of fine-grain and irregular parallelism, as well

as support for heterogeneous architectures.

When comparing OpenMP with other parallel programming models, different eval-

uations demonstrate that OpenMP delivers tantamount performance and efficiency to

that provided by highly-tunable models such as TBB [28], CUDA [29] and OpenCL

[30]. Moreover, OpenMP has different advantages over low-level libraries such as

Pthreads [31]: on the one hand, it offers robustness without sacrificing performance

[32] and, on the other hand, OpenMP does not lock the software to a specific number

of threads. Another important benefit is that the code can be compiled as a single-

threaded application just disabling support for OpenMP, thus easing debugging, and

so programmability.

Overall, the use of OpenMP presents three main advantages. First, an expert

community has been constantly reviewing and augmenting the language for the past

20 years. Second, OpenMP is widely implemented by several chip and compiler ven-

dors from both the high-performance and the embedded computing domains (e.g.,

GNU, Intel R©, ARM, Texas Instruments, IBM, Gaisler, NVIDIA), increasing porta-

bility among multiple platforms. Third, OpenMP provides great expressiveness due

to years of experience in its development; the language offers several directives for

parallelization and fine-grain synchronization, along with a large number of clauses

that allow it to contextualize concurrency and heterogeneity, providing fine control

of the parallelism.
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Figure 1.2: Scheduling problem of a real-time system, parallel real-time tasks.

Interestingly, the structure and syntax of the OpenMP tasking model have cer-

tain similarities with the sporadic DAG scheduling model [26]. Moreover, a recent

real-time scheduling technique, the limited preemptive scheduling [33], resembles the

OpenMP execution model approach. However, the sporadic DAG model under the

limited preemptive scheduling approach has not been addressed yet. This thesis ad-

vances the current state of the art regarding the response time analysis of the parallel

DAG model, also in combination with the limited preemptive scheduling technique.

Figure 1.2 illustrates the scheduling problem of parallel real-time tasks, modeled as

DAGs. Concretely, this thesis analyzes the timing behavior of: (1) a single parallel

real-time task scheduled in a multi-core platform (Figure 1.2a); (2) a set of parallel

real-time tasks, to implement a complete real-time system, scheduled in a multi-core

platform (Figure 1.2b); and (3) a single real-time task partially executed in an accel-

erator device, i.e., targeting heterogeneous architectures (Figure 1.2c).

Considering OpenMP in real-time systems does not only imply the study of new

scheduling techniques. Given its non “real-time nature”, the OpenMP specification

includes some particular features and characteristics whose impact on the timing con-

straints of real-time systems needs to be investigated. Moreover, there are a number

of design and integration implications that must be taken into account. Therefore,

this thesis also studies the concrete implications, in both the OpenMP specification
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and its runtime implementations, of using OpenMP to parallelize and implement

real-time systems.

1.3 Thesis Contributions

This thesis advances the current state of the art towards the safe adoption of OpenMP

in critical real-time systems. From a timing analysis perspective, based on the simi-

larities between the DAG model and the OpenMP tasking model, this thesis builds

the response time analysis upon which the timing requirements of parallel DAG-based

real-time systems are guaranteed. The proposed timing analysis techniques are not

exclusive to OpenMP, but they can be also applied to any other task-based parallel

programming model, provided that the DAG model is used to represent the parallel

work.

The main contributions of this thesis and the corresponding published articles in

which the contributions were presented (see Section 1.5 for the complete list), are

summarized as follows:

1. Timing characterization of the OpenMP specification to implement and paral-

lelize real-time systems.

1.1. Analyze the timing and scheduling features of the OpenMP specification,

identifying the similarities with current real-time scheduling practices; pro-

pose new features to be incorporated in the OpenMP specification; and

provide a set of guidelines to implement real-time systems with OpenMP

(publication number 5).

1.2. Analyze the features and constraints of the OpenMP tasking model that

must be taken into account for the timing analysis of OpenMP applications

(publication number 1).

1.3. Extend the DAG model to support heterogeneous computing, being com-

patible with the OpenMP accelerator model (publication number 4).

2. Development of response time analysis to provide evidence on the satisfaction

of the timing constraints of DAG-based real-time systems.

2.1. Develop a response time analysis for a single DAG-based real-time task,

compatible with the OpenMP tasking model (publication number 1).
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Figure 1.3: Thesis contributions and organization.

2.2. Develop a response time analysis for a real-time system composed of DAG-

based parallel real-time tasks, under limited preemptive scheduling (pub-

lications number 2 and 3).

2.3. Develop a response time analysis for a DAG-based real-time task support-

ing heterogeneous computing, and compatible with the OpenMP acceler-

ator model (publication number 4).

3. Study the timing behavior of real uses cases and demonstrate the validity of the

proposed timing analysis techniques, considering two task-based programming

models: a real-time system implemented and parallelized with OpenMP, and

an AUTOSAR automotive application.

1.4 Thesis Organization

Figure 1.3 shows an overview of the contributions of the thesis, and how the document

is organized. The number included in the blue squares of the Figure corresponds to

the chapter number associated to each block.

The rest of this document is organized as follows: Chapter 2 presents the back-

ground, including the foundations of real-time systems, scheduling techniques and
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the OpenMP API for parallel programming, the system model, and the experimental

setup considered in this thesis. Chapter 3 presents the guidelines to implement real-

time systems with OpenMP, and the analysis of the timing features of the OpenMP

specification (contribution 1.1). Chapter 4 shows the study regarding the timing

characterization and the response time analysis of the OpenMP tasking model (con-

tributions 1.2 and 2.1). Chapter 5 introduces the response time analysis of DAG-

based real-time systems under the limited preemptive scheduling (contribution 2.2).

Chapter 6 presents the evaluation with real use cases (contribution 3). Chapter 7

introduces the timing characterization and the response time analysis of a DAG task

supporting heterogeneous computing (contributions 1.3 and 2.3). Finally, Chapter 8

presents the conclusions and impact of this thesis, as well as the future work.

1.5 List of Publications

The list of publications that the research of this thesis has produced is presented

below.

1. Maria A. Serrano, Alessandra Melani, Roberto Vargas, Andrea Marongiu,

Marko Bertogna and Eduardo Quiñones. Timing Characterization of OpenMP4

Tasking Model. In proceedings of the International Conference on Compilers,

Architecture, and Synthesis for Embedded Systems (CASES). Amsterdam, The

Netherlands. October, 2015. c© 2015 IEEE.

2. Maria A. Serrano, Alessandra Melani, Marko Bertogna and Eduardo Quiñones.

Response-Time Analysis of DAG Tasks under Fixed Priority Scheduling with

Limited Preemptions. In proceedings of the Design, Automation and Test in

Europe Conference and Exhibition (DATE). Dresden, Germany. March, 2016.

c© 2016 ACM.

3. Maria A. Serrano, Alessandra Melani, Sebastian Kehr, Marko Bertogna

and Eduardo Quiñones. An Analysis of Lazy and Eager Limited Preemption

Approaches under DAG-based Global Fixed Priority Scheduling. In proceed-

ings of the 20th International Symposium on Real-time Distributed Computing

(ISORC). Toronto, ON, Canada. May, 2017. c© 2017 IEEE.

4. Maria A. Serrano and Eduardo Quiñones. Response-Time Analysis of DAG

Tasks Supporting Heterogeneous Computing. In proceedings of the 55th Design
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1.5 List of Publications

Automation Conference (DAC). San Francisco, CA, USA. June, 2018. c© 2018

ACM/IEEE.

5. Maria A. Serrano, Sara Royuela and Eduardo Quiñones. Towards an OpenMP

Specification for Critical Real-time Systems. In proceedings of the 14th Interna-

tional Workshop on OpenMP (IWOMP). Barcelona, Spain. September, 2018.

c© 2018 Springer.

Some of the contributions of this thesis have been also published in two chapters

of the book High-Performance and Time-Predictable Embedded Computing, Luis M.

Pinho, Eduardo Quiñones, Marko Bertogna, Andrea Marongiu, Vincent Nelis, Paolo

Gai, Juan Sancho (Editors), River Publishers, 2018. Concretely, in:

• Maria A. Serrano, Sara Royuela, Andrea Marongiu and Eduardo Quiñones.

Predictable Parallel Programming with OpenMP. Chapter 3 (pp. 33-62).

• Paolo Burgio, Marko Bertogna, Alessandra Melani, Eduardo Quiõnes and Maria

A. Serrano. Mapping, Scheduling, and Schedulability Analysis. Chapter 4 (pp.

63-112).

Finally, the list presented below contains other publications that, although do not

constitute a contribution of this thesis, are related to it.

• Roberto E. Vargas, Sara Royuela, Maria A. Serrano, Xavier Martorell and

Eduardo Quiñones A Lightweight OpenMP4 Run-time for Embedded Systems.

In proceedings of the 21st Asia and South Pacific Design Automation Conference

(ASP-DAC). Macau (China), January, 2016.

• Alessandra Melani, Maria A. Serrano, Marko Bertogna, Isabella Cerutti,

Eduardo Quiñones and Giorgio Buttazzo. A Static Scheduling Approach to

Enable Safety-Critical OpenMP Applications. In proceedings of the 22nd Asia

and South Pacific Design Automation Conference (ASP-DAC). Chiba, Japan.

January, 2017.

• Sara Royuela, Alejandro Duran, Maria A. Serrano, Eduardo Quiñones and

Xavier Martorell. A Functional Safety OpenMP for Critical Real-Time Embed-

ded Systems. In proceedings of the 13th International Workshop on OpenMP

(IWOMP). New York, NY, USA. September, 2017.
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Chapter 2

Background, System Model and

Experimental Setup

“The greatest enemy of knowledge is not ignorance,

it is illusion of knowledge.”

— Stephen Hawking

This chapter presents the terminology and background that constitute the basis

upon which we have developed the work presented in this thesis. In particular, this

chapter introduces basic concepts about real-time scheduling, including the way real-

time workload is modeled and the type of tests and analysis to provide evidence on

the timing behavior of a system. The sporadic DAG tasks model is deeply described

as it is used in this thesis to represent the parallelism exposed by real-time tasks.

Also, this chapter presents the key aspects of OpenMP used in this thesis, as well as

the previous works that motivate the use of OpenMP in real-time systems. Finally,

this chapter also introduces the experimental setup used along this thesis. Concretely,

it describes the algorithms and tools to generate the DAG tasks used to evaluate the

techniques proposed in this thesis.

With the purpose of being more concrete, the work related to this thesis is pre-

sented in a dedicated section within the chapters that describe the contributions of

this thesis.
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2. BACKGROUND, SYSTEM MODEL AND EXPERIMENTAL
SETUP

2.1 Real-Time Scheduling

This thesis investigates the use of parallel programming models in general, and

OpenMP in particular, in CRTES. The timing behavior of these systems should be

analyzable. This implies the necessity of verifying the timing behavior of the system

before execution time. Real-time scheduling theory targets this requirement, pro-

viding (1) the algorithms to manage the available shared resources in a predictable

manner, and (2) the analytical methods to verify the timing constraints imposed by

the system. The former, known as scheduling algorithms, take into account the prop-

erties of the system, for instance, urgency of tasks, and given the available processors

(or any other resource), organize the execution of the tasks. The latter, known as

schedulability analysis or tests, take the set of tasks and a given scheduling algorithm,

and verify prior to system run time that all deadlines will be met.

In real-time scheduling, it is also fundamental to represent the system under anal-

ysis. A system model or real-time tasks model represents and describes the properties

of the real-time tasks.

2.1.1 Real-time tasks modeling

Any real-time scheduling framework must refer to specific assumptions and a way of

representing the tasks of a system. Typically, CRTES are represented as a set of re-

current (sporadic or periodic) and independent [34] real-time tasks T = {τ1, τ2, ...τn}.
Each real-time task is said to be recurrent because its execution is repeatedly trig-

gered either by an internal clock or by the occurrence of an external event, e.g., the

arrival of new data from a sensor. Each execution of a real-time task is known as

job; a task generates a potentially infinite sequence of jobs. The time at which a job

is triggered is known as release time. Moreover, a recurrent task may be periodic, if

there is an exact inter-arrival time between two consecutive jobs, or sporadic, if there

is a minimum, but not a maximum, inter-arrival time between jobs. Since the periodic

behavior is one of the possible behaviors of a sporadic system, real-time scheduling

theory usually considers sporadic real-time systems. Tasks are independent in the

sense that the runtime behavior of a task should not depend upon the behavior of

other tasks.
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Figure 2.1: Representation of a sequential real-time task τi = 〈Ci, Ti, Di〉, as considered
by the three-parameter sporadic tasks model.

2.1.1.1 Sequential real-time tasks model

Traditionally, the three-parameter sporadic tasks model [35] is used to characterize a

real-time system composed of sequential real-time tasks. Tasks are sequential in the

sense that each job is assumed to represent a single thread of computation, which

may execute upon at most one processor at any time instant. Each real-time task τi

is represented as the tuple 〈Ci, Ti, Di〉, where:

• Ci is the Worst-Case Execution Time (WCET) of the task, i.e., an estimation

of the longest possible execution time of τi.

• Ti is the period, or the minimum inter-arrival time between two consecutive jobs

of τi.

• Di is the relative deadline, which defines the time at which τi must finish after

its release time.

Based on the relation between Di and Ti, a task-set T can be classified as follows:

(1) in a implicit deadline task system, the relative deadlines are equal to the periods,

i.e., Di = Ti, for all the tasks τi ∈ T ; (2) in a constrained deadline task system, the

relative deadline of each task is not larger than the task’s period, i.e., Di ≤ Ti, for

all τi ∈ T ; and (3) in an arbitrary deadline task system, there is no specific relation

between the relative deadline and the period of each task.

Figure 2.1 shows a graphical representation of a real-time task, as considered by

the three-parameter sporadic tasks model. Concretely, it shows two jobs of a real-time

task τi, within a constrained deadline system.

The three-parameter sporadic tasks model enables to represent and exploit the

inherent concurrency of a multi-core or many-core processor platform. Sequential

real-time task-sets exploit parallelism at system level, because several sequential real-

time tasks can execute at the same time, in different cores.

15



2. BACKGROUND, SYSTEM MODEL AND EXPERIMENTAL
SETUP

(a) Fork-join model. (b) Parallel synchronous
task model

(c) Sporadic DAG task
model

Figure 2.2: Representation of parallel real-time task models.

2.1.1.2 Parallel real-time tasks model

In recent years, the complexity of real-time tasks has significantly increased to in-

corporate advanced functionalities. With the increasing performance demand and

the newest highly-parallel embedded architectures used in critical real-time systems,

the number and variety of available cores have increased significantly. This is the

case for instance, of the Kalray MPPA platform, featuring a fabric of 256 cores [25].

Therefore, it is reasonable and necessary to exploit fine-grain parallelism within each

real-time task.

The first parallel real-time tasks model proposed was the fork-join model [27],

where each real-time task is represented as an alternating sequence of parallel (fork)

and sequential (join) segments (see Figure 2.2a). Later, this model was enhanced by

the parallel synchronous task model [36] [37], which allows consecutive parallel seg-

ments with an arbitrary degree of parallelism (see Figure 2.2b). Still, synchronization

is enforced at every segment’s boundary. The sporadic Directed Acyclic Graph (DAG)

tasks model [13] generalizes the two previous models (see Figure 2.2c). This model

represents each real-time task as a directed acyclic graph, which allows to represent

both structured and unstructured parallelism.

Overall, parallel real-time tasks models allow to exploit coarse-grain and fine-grain

parallelism at both system and task levels. This thesis focuses on the sporadic DAG

tasks model, which is described in detail in the next section.

2.1.2 System model: the sporadic DAG tasks model

The sporadic DAG scheduling model has been introduced to characterize the parallel

execution of real-time tasks. A real-time system is composed of n DAG tasks T =

{τ1, · · · , τn}. Each real-time task τk ∈ T is represented as a DAG Gk = (Vk, Ek).

Vk = {vk,1, . . . , vk,nk
} is the set of nodes, being nk = |Vk| the total number of nodes.
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𝑣𝑘,2(4) 

𝑣𝑘,1(2) 𝑣𝑘,3(6) 

𝑣𝑘,4(3) 

𝑣𝑘,5(3) 

𝑣𝑘,6(5) 

𝑣𝑘,7(2) 

𝑣𝑘,8(0) 

Figure 2.3: Real-time DAG task example. Nodes are labeled with WCET in
parenthesis.

Each node vk,i ∈ Vk represents a sequential operation or sub-task, and is characterized

by its worst-case execution time (WCET), denoted by Ck,i. Ek ⊆ Vk × Vk is the set

of edges representing precedence constraints or dependencies between nodes in Vk. If

(vk,1, vk,2) ∈ Ek, then node vk,1 must complete before node vk,2 can begin its execution.

We use the following nomenclature to describe particular nodes in the DAG:

• Source node. A node with no incoming edges.

• Sink node. A node with no outgoing edges.

• Direct predecessor node. If (vi, vj) ∈ E, then vi is a direct predecessor node of

vj.

• Direct successor node. If (vi, vj) ∈ E, then vj is a direct successor node of vi.

• Sibling node. If (vi, vj) ∈ E and (vi, vk) ∈ E, then vj is a sibling node of vk and

vice versa.

• Predecessor node. vi is a predecessor of another node vj if there exists a path

in the DAG where vi appears before vj.

• Successor node. vi is a successor of another node vj if there exists a path in the

DAG where vj appears before vi. It is said that vi is reachable from vj.

Without loss of generality, each DAG is assumed to have exactly one source node,

denoted by vsourcek , and one sink node, denoted by vsinkk . If this is not the case,

a dummy source/sink node with zero WCET can be added to the DAG, with edges

to/from all the original source/sink nodes. Figure 2.3 depicts an example of a parallel

real-time DAG task τk, composed of eight nodes Vk = {vk,1, . . . , vk,8} (labeled with

their corresponding WCET in parenthesis), and nine edges representing precedence

constraints. vk,1 ≡ vsourcek is the source node, and vk,8 ≡ vsinkk is the (dummy) sink

node (with WCET equal to 0).
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Similarly to the three-parameter sporadic tasks model, each task τk releases an

infinite sequence of jobs with a minimum inter-arrival time (period) of Tk time-units.

When a task τk is released at time t, all sub-tasks in Vk are ready to execute whenever

precedence constraints are fulfilled. All sub-tasks are expected to finish before time

t+Dk, being Dk the relative deadline of τk.

The sporadic DAG tasks model defines a chain or path as a sequence of nodes

λk = (vk,i, vk,j, . . . , vk,l) such that each pair of consecutive nodes in λk, (vk,i, vk,j), is

an edge in Ek. The length of this chain, denoted by len(λk), is the sum of the WCETs

of all its nodes.

Definition 1. The critical path of a DAG task τk, denoted by λ∗k, is the chain in the

DAG with the largest length.

Definition 2. The length of a DAG task τk, denoted by len(Gk) or len(λ∗k), is the

length of the critical path of τk.

Notice that len(Gk) corresponds to the minimum amount of time needed to safely

execute the task τk on a sufficiently large number of processors. len(Gk) can be

computed in linear time in the number of nodes and the number of edges in Gk by

first obtaining a topological sorting1 of the nodes of the graph and then running a

straightforward loop over all the nodes in topological sorting.

Definition 3. The volume of a DAG task τk, denoted by vol(Gk), is the sum of all

WCETs of its nodes, i.e.,

vol(Gk)
def
=

∑
vk,i∈Vk

Ck,i

This value corresponds to the worst-case execution time needed to execute the

DAG task sequentially on a dedicated single-core platform.

Definition 4. The utilization of a task τk, denoted by Uk, is the ratio of its volume to

its period; the utilization of the task-set T , denoted by UT , is the sum of the utilization

of all tasks, i.e.,

Uk
def
=

vol(Gk)

Tk
; UT

def
=

n∑
k=1

Uk

In the example of Figure 2.3, the length of the task τk is len(Gk) = 15, given by

the path λ∗k = (vk,1, vk,3, vk,6, vk,7, vk,8), and its volume is vol(Gk) = 21.

1The topological sorting (or topological order) [38] is such that if there is an edge from node u to
node v in the DAG, then u appears before v.
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T Set of DAG tasks m Number of cores

UT Utilization of T n Number of DAG tasks in T
τk k-th DAG task in T Gk DAG representation of τk

Vk Set of nodes in Gk Ek Set of edges in Gk

vk,i i-th node (sub-task) of Vk (vk,i, vk,j) Edge between nodes i and j

vsourcek Source node of Vk vsinkk Sink node of Vk

nk = |Vk| Number of nodes in Vk Ck,i WCET of the i-th node

λk Any chain/path of τk λ∗k Critical path of τk

len(λk) Length of λk len(Gk) Length of τk (or length of λ∗k)

vol(Gk) Volume of τk Uk Utilization of τk

Tk Period of τk Dk Relative deadline of τk

Table 2.1: System model notation.

Computing platform model. This thesis considers parallel architectures, and the

number of processors in the platform, the type of these processors and if they have

different computing capabilities must be completely specified.

For the most part of this thesis, real-time DAG tasks are executed upon a multi-

processor platform composed of m identical cores. Thus, each processor in the plat-

form has the same computing capabilities as every other processor. This platform

model is used interchangeably to refer to a multi-core, a many-core or a multiproces-

sor. Moreover, the terms core, processor and thread interchangeably refer to a single

hardware computing unit. The last chapter of this thesis considers an heterogeneous

architecture composed of a host m-core processor and an accelerator device.

Table 2.1 summarizes the notation described in this section. Notice that the subscript

k in the parameters associated to a task τk can be omitted whenever the reference to

the task is clear in the discussion.

2.1.3 Schedulability problem: the response-time analysis

Given a real-time system, we are interested in finding a schedule that allows to meet

the timing constraints of the system, given by the deadline of all the jobs of all the

real-time tasks. If it is the case, the system is said to be feasible.

Definition 5. Feasibility. A real-time system is said to be feasible upon a spec-
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ified platform if there exists a schedule that meets all timing constraints for all the

collections of jobs that could legally be generated by the task system.

As an example, since len(Gk) represents the minimum amount of time needed

to execute a DAG task τk, a necessary condition for the feasibility of such task τk

is len(Gk) ≤ Dk. Considering a set of real-time tasks, and given the platform and

system model considered in the previous section, a simple necessary condition for the

feasibility of the real-time system is UT ≤ m.

However, feasibility is a very general property as it merely requires that a correct

schedule exists, but it may not always be possible to construct such a schedule.

Therefore, it is not sufficient to know if a real-time system is feasible; in addition, it

is fundamental to know, prior to run time, if the timing constraints will be met. This

is known as the schedulability problem.

Definition 6. Schedulability problem. Given a set of sporadic real-time tasks and

a scheduling algorithm upon a specified platform, the schedulability problem finds if

all the potentially infinite jobs generated by the system meet their deadlines using the

given scheduling algorithm.

The idea behind the schedulability problem (also known as schedulability test) is

to determine, given a scheduling algorithm and the task-set representation, the worst

case behavior of the system, and check if the timing constraints previously defined are

met. However, predicting the behavior of a multiprocessor system is not trivial and

requires a significant computing effort. To simplify the analysis, it is often necessary

to consider pessimistic assumptions.

In order to determine, at each point in time, which task should be executed, real-

time tasks typically have a priority assigned. Therefore, a higher priority task should

have the preference to execute. Moreover, for the most part of this thesis, we focus

on preemptive scheduling, in which a task can be preempted while it is executing (in

favor of a higher priority task, for instance), being later resumed.

A well-known schedulability test is the Response Time Analysis (RTA) [12]. It is

based on the computation of the worst-case response time of each task in the system.

Definition 7. Worst-Case Response Time. Given a real-time task τk, its worst-

case response time, denoted by Rub
k , is the longest interval between the release time

and the completion of all its jobs.
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Figure 2.4: Overview of the response time analysis of a medium priority task.

The worst-case response time of a task τk can be longer than the actual worst-case

execution time of the task due to interference and blocking times. The interference

is the time spent executing higher priority tasks while τk is ready and waiting to

execute. The blocking time is the time spent executing lower priority tasks, while

τk is ready and waiting to execute. Also preemptions, i.e., context switches, cause

overheads that may delay the execution of a task.

Figure 2.4 shows an example of the response time of a task. It considers that

the task of interest has medium priority and that there exist two other tasks with

higher and lower priority. The three tasks run in a single-core processor for simplicity.

The task is first blocked by the lower priority task. Then, the high priority task is

released and the medium priority task is preempted, suffering interference. Overall,

the response time of the task considers not only its execution time but also the

interference due to the higher priority task and the blocking time due to the lower

priority task.

Since the exact interference and blocking times suffered by each task is difficult to

compute when considering multiprocessor systems, the response time analysis applied

to such systems computes an upper bound of the interference and blocking times.

The timing constraints are met whenever the worst-case response time of each

real-time task in the system is less than or equal to the task’s deadline. Therefore, a

set of real-time tasks is said to be schedulable under a given scheduling algorithm if

the following condition holds for all tasks τk ∈ T : Rub
k ≤ Dk.
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2.2 The OpenMP Parallel Programming Model

OpenMP (Open Multi Processing) is an Application Programming Interface (API) for

expressing parallelism in C/C++ and Fortran programs for shared-memory processor

architectures. OpenMP provides a very convenient abstraction layer by means of a set

of constructs and directives, described in the OpenMP specification, to define parallel

regions and synchronization operations. The constructs and directives are processed

by the compiler and executed by the runtime, which implements the parallel OpenMP

functionalities.

Initial versions of OpenMP, up to version 2.5 [39], implemented a thread-centric

model with a shared-memory space. It was limited to a standard fork-join type of par-

allelism to exploit massively data-parallel and loop-intensive applications, enforcing

a rather structured parallelism. In this model, OpenMP threads work as an interme-

diary for physical processors, hence the specification somehow exposes the underlying

resources.

From version 3.0 [40], OpenMP has evolved to a task-centric model that enables

very sophisticated types of fine-grain, both structured and unstructured, parallelism.

The OpenMP tasking model allows the programmer to define explicit tasks2 and the

data dependencies existing among them. An OpenMP task is a unit of work, specified

by an instance of executable code and its data environment. At run-time, tasks

are executed by OpenMP threads, being the programmer oblivious of the physical

resources. This allows to effectively exploit the performance capabilities of parallel

architectures while hiding their complexity to the programmer.

Versions 4.0 [41] and 4.5 [20] of OpenMP include support for heterogeneous ar-

chitectures through a host-centric accelerator model. This model considers a parallel

heterogeneous architecture composed of a host processor and one or more acceler-

ator devices (e.g., a FPGA, GPU or DSP fabric). The host device is the one in

charge of offloading code and data to the accelerator device and collecting the results.

The OpenMP specification incorporates easy-to-use device constructs to define the

offloaded code, and data clauses to express data directionality when moving data

to/from the device memories.

2Notice the difference between real-time tasks and OpenMP tasks. We define their relationship
in Chapter 3.
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2.2.1 The OpenMP tasking model

An OpenMP program starts with an implicit task 3 surrounding the whole program.

This implicit task is executed by a single thread, called the initial OpenMP thread,

which runs sequentially.

When the thread encounters a parallel construct, it creates a new team of

threads, composed of itself, as the master thread, and M − 1 additional threads

(M can be specified with the num threads clause). Each individual OpenMP thread

executes the region inside the parallel construct, by means of an implicit task.

When a thread encounters a master construct, it creates an implicit task that will be

executed by the master thread of the team. Similarly, the single construct defines

a block that will be executed by one thread of the team (not necessarily the master

thread). The other threads in the team, which do not execute the single block, wait

at an implicit barrier at the end of the single construct unless a nowait clause is

specified.

When a thread encounters a task construct, a new explicit task is created, con-

sisting of all code within the task region (C/C++ Fortran code block). The OpenMP

specification defines the following tasks:

• Child task. A task is a child task of its generating task region.

• Sibling tasks. Tasks that are child tasks of the same task region.

• Descendant task. A task that is the child task of a task region or of one of its

descendant task regions.

Additionally, we define:

• Parent task. The task region encountering a task construct.

• Predecessor task. A task that is the parent task of a task region or of one of its

predecessor task regions.

When an explicit task is created, it can be assigned to one of the threads in

the current team for immediate or deferred execution, based on additional clauses:

depend, if, final and untied.

• The depend clause forces sibling tasks to be executed in a given order based on

dependencies defined among data items. A task that cannot be executed until

its task dependencies are fulfilled is a dependent task.

3An implicit task is not created by the programmer but by the runtime; tasks created by the
programmer using the task construct are commonly referred to as explicit tasks.
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• The if clause makes the new task to be undeferred, meaning that it must be

executed by a thread of the team, suspending the current task region until the

new task completes.

• Similarly, the final clause makes all descendants of the new task to be included,

meaning that they must execute immediately by the encountering thread.

• The untied clause makes the new generated task not being tied to any thread

and so, in case it is suspended, it can later be resumed by any thread in the

team. By default, OpenMP tasks are tied to the thread that first starts their

execution. Hence, if such tasks are suspended, they can later only be resumed

by the same thread.

Moreover, OpenMP defines some clauses that allow to specify the data-sharing

attributes of the variables in the task construct:

• private: specifies that the variables are private to the task.

• firstprivate: specifies that the variables are private to the task, and initializes

each of them with the value that the corresponding original variable has when

the task construct is encountered.

• shared: specifies that the variables are shared among tasks.

The completion of a subset or all explicit tasks bound to a given parallel region

may be specified through the use of synchronization constructs, e.g., the taskwait

and the taskgroup constructs. The taskwait construct specifies a wait on completion

of child tasks of the current task. The taskgroup specifies a wait on completion of

child tasks of the current task and their descendant tasks. All tasks are guaranteed

to have completed at the implicit barrier at the end of the parallel region, as well as

at any other explicit barrier construct. The barrier construct (from the thread-

centric model) specifies an explicit barrier where all threads of the team must complete

execution before any of them is allowed to continue execution beyond the barrier.

Listing 2.1 shows an OpenMP program example. The code enclosed in the

parallel construct at line 1 defines a team of M threads. The single construct

at line 3 is used to specify that only one of the threads in the team has to execute the

block between brackets in lines 4 and 19, denoted as T0. When the thread executing

T0 encounters the task constructs at lines 6, 14 and 17, new tasks T1, T3 and T4 are

generated. Any thread of the team can execute these tasks as soon as the data de-

pendencies are resolved. For instance, T4 will not start its execution until T1 finishes
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1 #pragma omp parallel num threads(M)
2 {
3 #pragma omp single nowait / / T0
4 {
5 part00
6 #pragma omp task depend(out:x) / / T1
7 {
8 part10
9 #pragma omp task / / T2

10 { part20 }
11 part11
12 }
13 part01
14 #pragma omp task / / T3
15 { part30 }
16 part02
17 #pragma omp task depend(in:x) / / T4
18 { part40 }
19 }
20 }

Listing 2.1: Example of an OpenMP program (tasking model).

because there exists a data dependency (T1 produces variable x and T4 consumes it).

Moreover, the thread executing task T1 creates task T2. All tasks are guaranteed to

have completed at the implicit barrier at the end of the parallel region at line 20. As

an example of predecessor and descendant tasks, predecessor tasks of T2 are T0 and

T1, and the descendant tasks of T0 are T1, T2, T3 and T4.

2.2.2 The OpenMP accelerator model

The OpenMP accelerator model incorporates several Device Constructs to create

target regions and execute them in an accelerator device. The execution model is

host-centric meaning that the host device (on which the OpenMP program begins

execution) offloads target regions to target devices. When a target construct is

encountered, a new target task is generated. An initial thread on the device starts

the execution of the target task. If the accelerator device does not exist or the

implementation does not support it, all the target regions associated with that device

are executed on the host. Parallelism can be exploited within the target device

through the parallel construct.

Some of the clauses that can be added to a target construct are the following:

• if: along with an expression which, if evaluates to false, specifies that the target

task is executed in the host.
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1 int i;
2 float p[D], v1[D], v2[D];
3 ...
4 #pragma omp target map(to: v1, v2) map(from: p)
5 {
6 for (i=0; i<D; i++)
7 p[i] = v1[i]*v2[i];
8 }
9 ...

Listing 2.2: Example of an OpenMP program (accelerator model).

• device: specifies the accelerator device identifier.

• map: specifies how variables are mapped between the data environments in the

host and the device.

• nowait: allows the region in the host to continue its execution, not being nec-

essary to wait for the device to finish its execution.

• depend: similarly to the task construct, allows to define data dependencies

between target tasks and tasks executed in the host.

• firstprivate and private: similarly to the task construct, allows to define

data-sharing attributes.

Listing 2.2 shows an example [42] of an OpenMP program using the accelerator

model. It implements a simple loop over an array (lines 6-7) that may be executed

in an accelerator device. The map clause controls the data movement of the variables

v1, v2 and p to/from the memory device.

2.2.3 OpenMP tasks scheduling

The OpenMP API defines task scheduling points (TSP) as points in the program

where the encountering OpenMP task can be preempted, and the hosting thread can

be rescheduled to a different task. As a result, TSPs divide task regions into task

parts (or simply parts) executed uninterrupted from start to end. The example shown

in Listing 2.1 identifies the parts in which each task region is divided. For instance,

T0 is composed of part00, part01 and part02.

As defined in the OpenMP specification, TSPs occur upon (1) explicit tasks cre-

ation; (2) implicit and explicit tasks completion; (3) explicit synchronization points

such as taskwait directives and taskgroup directives; (3) implicit barriers; (4) the
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taskyield directive, in which the current task can be suspended in favor of the exe-

cution of a different task; and (5) target regions creation and different points during

the data movement between host and accelerator.

2.3 Considering OpenMP in Real-time Systems

The use of parallel programming models like OpenMP in real-time systems involves

many challenges to assure that software satisfies both functional and non-functional

requirements. OpenMP has been already considered as a convenient interface to

describe real-time applications and deal with two features that are mandatory in

such restricted systems: timing analysis and functional safety.

2.3.1 Timing analysis: the OpenMP-DAG

From a timing perspective, there is a significant amount of work considering the time

predictability properties of OpenMP. Both, the fork-join and the parallel synchronous

task models, were firstly considered to characterize and analyze the timing guarantees

of the OpenMP thread-centric model [27]. However, the OpenMP tasking model

seems to be more suitable to define fine-grain, both structured and unstructured

parallelism. Vargas et al. [26] presented a first attempt to link the sporadic DAG

tasks model and the OpenMP tasking model. They studied how to construct an

OpenMP task graph that contains enough information to allow the use of real-time

DAG scheduling models, from which timing guarantees can be derived.

Despite the current OpenMP specification lacks any notion of real-time semantics,

the structure, syntax and execution of an OpenMP program, based on the tasking

model, have certain similarities with the DAG tasks model. Vargas et al. presented

the OpenMP-DAG as the DAG task representation of an OpenMP program. More-

over, the compilation techniques for automatically derive the OpenMP-DAG from an

OpenMP application have been also presented [43] [44].

Thus, the execution of a task part in the OpenMP program resembles the execu-

tion of a sub-task (node) in a DAG task, for which WCET estimation can be derived.

Edges in the DAG model can be used to represent OpenMP semantics: (1) synchro-

nizations through the depend clause, which forces tasks not to be scheduled until all

its predecessors have finished; (2) implicit and explicit synchronizations, for instance,

through the taskwait construct; (3) the if and final clauses, which make the gen-
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Figure 2.5: OpenMP-DAG corresponding to the OpenMP program in Listing 2.1.

erating task to be suspended until the new generated task completes execution; (4)

TSPs; and (5) control flow constraints (defined by the sequential execution of task

parts from the same OpenMP task). All edges express precedence constraints.

As an example, Figure 2.5 illustrates the OpenMP-DAG corresponding to the

OpenMP program presented in Listing 2.1. Tasks parts, abbreviated to pij, define

the nodes. For instance, the task region executed within the single construct, T0, is

composed of three parts or nodes p00, p01 and p02, which are sequentially executed.

The creation of the OpenMP tasks T1, T2, T3 and T4 defines the edges (p00, p10),

(p10, p20), (p01, p30) and (p02, p40). Moreover, the data dependency between tasks

T1 and T4 define the edge (p11, p40). Finally, the implicit barrier at the end of the

parallel construct defines the edges at the end of each OpenMP task T0 to T4.

2.3.2 Functional safety

This thesis focuses on the timing and scheduling requirements of OpenMP to be con-

sidered in real-time systems. However, from a functional safety perspective, OpenMP

has been already considered as a convenient candidate to implement real-time sys-

tems.

Recent works study the functional verification of OpenMP programs, demonstrat-

ing the benefits of using OpenMP in real-time embedded systems, even though some

features and restrictions must be addressed [45]. Based on the potential of existent

correctness techniques for OpenMP, both at compile time [46, 47, 44] and run time

[48, 49] levels, it could be introduced in safe languages such as Ada [50, 51, 52],

widely used to implement safety-critical systems. The Ada Rapporteur Group is cur-
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rently considering the introduction of OpenMP into Ada [53] to exploit fine-grain

parallelism. The functional correctness of OpenMP is out of the scope of this thesis.

2.4 Experimental Setup

In order to evaluate the effectiveness of the techniques proposed in this dissertation,

we face the problem of generating a large number of DAG-based task-sets with differ-

ent characteristics. To do so, a mechanism to randomly generate synthetic DAG tasks

(section 2.4.1) and task-sets with different parameters (section 2.4.2) has been devel-

oped and implemented in MATLAB R©. Section 2.4.3 demonstrates how our algorithm

can be used to obtain the DAG representation of a real OpenMP application.

2.4.1 Synthetic DAGs generation

An algorithm to randomly generate synthetic DAG tasks has been developed, based

on the simulation environment presented in [54].

A DAG task is recursively created by expanding it in each iteration, either to a

single node, or to a new parallel sub-graph. Sub-graphs consist of a source node,

a sink node, and a random number of parallel branches, further expanded in the

successive iterations. The recursive procedure finishes when one of these situations

occurs:

1. all branches of the parallel sub-graph are expanded to single nodes;

2. a maximum number of nodes, given by maxnodes, is reached; or

3. a maximum recursion depth, given by maxdepth, is reached.

The probabilities that control if a branch is expanded to a single node or to a parallel

sub-graph are pterm and ppar, respectively (subject to the relation pterm + ppar = 1).

The maximum number of branches of parallel sub-graphs is maxpar. Based on this

value, whenever a given branch is expanded to a new parallel sub-graph, the new

number of branches is uniformly selected in [0,maxpar]. An additional parameter

pdep ∈ [0, 1] is used to add edges between non-connected nodes4 so that unstructured

parallelism is represented. Notice that if pdep > 0, transitive edges5 may be created in

4A pair of nodes u, v are non-connected if there is no path from u to v, and no path from v to u.
5An edge (u, v) is transitive if v can be reached from u following an alternative path, for instance

(u,w) and (w, v).
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the DAG. Finally, the WCET of each node is uniformly selected as a positive integer

in the interval [CMin, CMax].

Algorithm 1 presents the pseudo-code implementation of the synthetic DAG task

generation tool. In order to facilitate the explanation of the algorithm, Figure 2.6

presents a graphical representation of the recursive iterations needed to randomly

generate a DAG task, assuming the following input global parameters: pterm = 0.4

(thus, ppar = 0.6), pdep = 0.1, maxpar = 4, maxdepth = 5 and maxnodes = 30.

The algorithm starts with the function RANDOM DAG that

1. initializes the set of nodes V with the source v1 and sink v2 nodes (line 2);

2. initializes the set of edges E to empty (line 3);

3. randomly selects the number of parallel branches par in the interval [0,maxpar];

as maxnodes could be reached, the minimum between maxpar and the current

number of nodes allowed to be created, maxnodes − |V |, is selected (line 4);

4. initializes the variable nds that stores the number of nodes that, at least, will

be created, i.e., the current number of nodes, |V |, in addition to the number of

branches that will be created, par, with at least one node per branch (line 5);

5. continues the DAG task generation by calling the recursive function EXPAND TASK

(line 6); and

6. randomly adds extra edges to the set E by calling the function EXTRA EDGES

(line 7).

This algorithm considers two variables to count the number of nodes: nds and |V |.
The reason is that |V | considers the current number of nodes already created and nds

considers the nodes that, at least, will be created (given the number of branches, i.e.,

the par variable) in the successive iterations of the loop in line 13. The final number of

nodes created will depend on the value of the random numbers within each iteration.

Figure 2.6a shows the results of the first part of the function RANDOM DAG, before

calling to EXPAND TASK. It assumes that par is set to 3, and so 3 parallel sub-graphs,

represented as dashed ovals, will be further expanded in the successive iterations of

the algorithm. Consequently, nds is equal to 5.

The function EXPAND TASK recursively expands each of the par branches. It

proceeds as follows: if there are no branches to create (par = 0), an edge between

current source and sink nodes is created (line 11), otherwise it iterates over each

branch (line 13) and
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Algorithm 1 Generate random DAG G = (V,E)

Global: pterm: Probability of a branch to be a terminal node
pdep: Probability of adding an edge between non-connected nodes
maxpar: Maximum number of branches of each parallel sub-graph
maxdepth: Maximum recursion depth of the DAG task
maxnodes: Maximum number of nodes of the DAG task

1 function random dag return (V,E)
2 V ← {v1, v2}
3 E ← ∅
4 par ← random([0, min(maxnodes − |V |,maxpar)])
5 nds← |V |+ par
6 (V,E)← expand task(V , E, v1, v2, maxdepth − 1, par, nds)
7 E ← extra edges(V , E)
8 end function
9 function expand task(V , E, vsource, vsink, depth, par, nds) return (V,E, nds)

10 if par == 0 then
11 E ← E ∪ (vsource, vsink)
12 else
13 for each i ∈ [1, par] do
14 j ← |V |+ 1
15 p← random([0, 1])
16 if (p ≤ pterm) ‖ (nds == maxnodes) ‖ (depth == 0) then
17 V ← V ∪ {vj}
18 E ← E ∪ (vsource, vj) ∪ (vj , v

sink)
19 else
20 V ← V ∪ {vj , vj+1}
21 E ← E ∪ (vsource, vj) ∪ (vj+1, v

sink)
22 parS ← random([0, min(maxnodes − (nds+ 1),maxpar)])
23 nds← nds+ 1 + parS
24 (V,E, nds)← expand task(V,E, vj , vj+1, depth− 1, parS, nds)
25 end if
26 end for
27 end if
28 end function
29 function extra edges(V , E) return E
30 for each vi ∈ |V | do
31 for each vj ∈ |V | do
32 if non connected(vi, vj) && (random([0, 1]) ≤ pdep) then
33 E ← E ∪ (vi, vj)
34 end if
35 end for
36 end for
37 end function
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(a) RANDOM DAG (par = 3, nds = 5).
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(b) EXPAND TASK: recursive iter. 1
(parS = 2, nds = 8).
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(c) EXPAND TASK: recursive iters. 2
(parS = 2, nds = 11), 3 & 4.
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(d) EXPAND TASK: recursive iters. 2
(parS = 3, nds = 15), 5, 6 & 7.
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(e) EXPAND TASK: recursive iter. 1
(parS = 2, nds = 18).
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(f) EXPAND TASK: recursive iters. 8, 9
(parS = 1, nds = 20) & 10.

EXTRA EDGES.

Figure 2.6: Recursive random DAG generation.
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1. enumerates the new node, by giving the j value (line 14); (2) randomly computes

p ∈ [0, 1] which, compared to pterm, determines if the branch is a single node

(p ≤ pterm) or a parallel sub-graph (p > pterm) (line 15);

2. if p ≤ pterm, or maxnodes or maxdepth have been reached, then a new single node

vj is created (line 17) and also its edges from current source and sink nodes

(line 18);

3. otherwise, a new parallel sub-graph is created. For this new sub-graph:

3.1. vj and vj+1 will be the new source and sink nodes (line 20);

3.2. edges to the current source and sink nodes are created (line 21);

3.3. the new number of parallel branches parS is randomly selected in the

interval [0,maxpar], again unless maxnodes can be reached (line 22);

3.4. variable nds is updated to the nodes already considered plus the extra

node vj+1 of the current parallel subgraph and the parallel branches of the

recursive parallel sub-graph (line 23);

3.5. the parallel sub-graph is further expanded (line 24).

Figures 2.6b to 2.6f show an example of the recursive iterations of the function EX-

PAND TASK.

• Figure 2.6b shows the first recursive iteration:

– The first branch is further expanded to a new parallel sub-graph, delimited

by nodes v3 and v4, with two new branches (parS = 2 and nds = 8).

• Figure 2.6c shows:

– The recursive iteration 2: a branch is further expanded to a new parallel

sub-graph, delimited by nodes v5 and v6, with two new branches (parS = 2

and nds = 11).

– Since the maximum recursion depth 3 has been reached, the recursive

iterations 3 and 4, expand these two branches to single nodes v7 and v8,

respectively.

• Similarly, Figure 2.6d shows:
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– Back to recursive iteration 2, the second branch is further expanded to

a new parallel sub-graph, delimited by nodes v9 and v10, with two new

branches (parS = 3 and nds = 15).

– Since maxdepth = 3, recursive iterations 5, 6 and 7, expand these three

branches to single nodes v11, v12 and v13, respectively.

• Figure 2.6e shows, back to recursive iteration 1:

– The second branch is expanded to a single node v14 because p ≤ pterm.

– The third branch is further expanded to a new parallel sub-graph p > pterm,

delimited by nodes v15 and v16, with two new branches (parS = 2 and

nds = 18).

• Figure 2.6f shows:

– The recursive iteration 8: the first branch is expanded to a single node v17.

– The recursive iteration 9: the second branch is further expanded to a new

parallel sub-graph, delimited by nodes v18 and v19, with only one new

branch (parS = 1 and nds = 20). Since the maximum recursion depth 3

has been reached, the recursive iteration 10 expands this branch to a single

node v20.

Finally, the function EXTRA EDGES includes additional edges into the set E. It is

a simple procedure that iterates over all pair of nodes, vi ∈ V (line 30) and vj ∈ V
(line 31). If vi and vj are non-connected, and based on the probability pdep (line 32),

a new edge (vi, vj) is created (line 33). Figure 2.6f shows an example of the result of

this function. An additional edge between nodes v13 and v16 is created.

Although not included in Algorithm 1, the MATLAB implementation of the DAG

task generation tool also assigns a WCET to each node in V , as a random integer in

the set [CMin, CMax].

2.4.2 Parametrized task-sets generation

Based on the synthetic DAG task generation tool presented in the previous section,

a task-set composed of n DAG tasks is built. Given a number of cores m, this allows

to evaluate the scheduling policies at system level. We consider two methods to
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randomly generate task-sets: with a target utilization UT , or with a target number

of tasks n.

Task-sets with a target utilization. Given a fixed number of cores m, task-

sets with a target utilization UT is generated. The total number of DAG tasks n

is randomly selected in the interval [nmin, nmax]. To do so, an iterative procedure is

implemented based on the following steps:

1. Generate a random DAG task Gk = (Vk, Ek).

2. Compute len(Gk) and vol(Gk).

3. Randomly select the period Tk as an integer in the interval[
vol(Gk)

UT /nmin
,
vol(Gk)

UT /nmax

]
.

As a result, the utilization Uk of each DAG task is selected in the interval[
UT
nmax

, UT
nmin

]
.

4. Set the deadline Dk considering the implicit deadline case, i.e., Dk = Tk.

The system utilization UT is accumulatively computed at the end of each iteration.

The iterative procedure finishes whenever the desired utilization is exceeded. Then

the period of the last task is increased so that the exact system utilization is reached.

Task-sets with a target utilization and number of tasks. Similarly, given a

fixed number of cores m and a fixed system utilization UT , task-sets with a target

number of tasks n are generated. In this case, the procedure is identical to the one

described before, except that nmin = nmax = n. As a result, all the DAG tasks have

the same utilization Uk.

Table 2.2 summarizes the notation described in this section.

2.4.3 Synthetic DAG tasks and OpenMP applications

It may seem that the synthetic generation tool, presented in Section 2.4.1, creates

DAG tasks with a structured fork-join parallelism. However, the use of the pdep

parameter, as well as the transitive edges, allow also to represent and characterize

the unstructured parallelism that can be expressed with the OpenMP tasking model.
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pterm Probability of a branch to be expanded to a node

ppar Probability of a brach to be expanded to a parallel sub-graph

pdep Probability of adding an edge between non-connected nodes

maxpar Maximum number of branches of a parallel sub-graph

maxnodes Maximum number of nodes of any random DAG task

maxdepth Maximum recursion depth when creating a random DAG task

(maxdepth × 2 + 1 represents the maximum number of nodes in λ∗k)

CMin Minimum WCET Ck,i of any node in a DAG task

CMax Maximum WCET Ck,i of any node in a DAG task

nmin Minimum number of DAG tasks n of any task-set

nmax Maximum number of DAG tasks n of any task-set

Table 2.2: Experimental setup notation.

As an example, we show how it is possible to obtain the OpenMP-DAG of a real

OpenMP application with the methodology presented in Algorithm 1. The Cholesky

factorization [55] is a useful application for efficient linear equation solvers and Monte

Carlo simulations. Moreover, Cholesky can also be used to accelerate Kalman filter,

implemented in autonomous vehicle navigation systems to detect pedestrians and

bicycle positions [56]. The Cholesky factorization is the classical application that

exploits unstructured parallelism and so perfectly fits the OpenMP tasking model.

The most representative function of this application can be found in Appendix B.3.

Figure 2.7 shows the Task Dependency Graph (TDG) of the Cholesky application,

as obtained from the source code by the compiler technique presented by Royuela in

her PhD dissertation [57], when setting the variable NB = 4. The TDG is the graph-

ical representation, similar to a DAG, of the OpenMP tasks and the synchronizations

among them. Each node is labeled with a number that unambiguously identifies

it. Each color represents a different OpenMP task construct, hence red, light green,

purple and blue nodes correspond to the task constructs in lines 9, 12-13, 18-20 and

23-24, of the code in Appendix B.3, respectively.

Figure 2.8 shows the graphical representation of Algorithm 1 operations which

provide the Cholesky OpenMP-DAG. Certainly, the input parameters are not relevant

for this purpose, but we can establish a lower bound: pterm > 0, pdep > 0, maxpar ≥ 3,

maxdepth ≥ 3 and maxnodes ≥ 20.
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Figure 2.7: Cholesky TDG.

• Figure 2.8a shows:

– The RANDOM DAG function, which creates the source and sink nodes, 17

and 65, respectively, and starts the recursive procedure (par = 3 and

nds = 5).

– The EXPAND TASK function, recursive iteration 1, where the first branch

is further expanded to a new parallel sub-graph, delimited by nodes 210

and 116, with three new branches (parS = 3 and nds = 9).

– The EXPAND TASK function, recursive iteration 2, where the first branch
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Figure 2.8: Cholesky OpenMP-DAG generation.
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is further expanded to a new parallel sub-graph, delimited by nodes 212

and 164, without new branches (parS = 0 and nds = 10).

– The EXPAND TASK function, recursive iteration 3, where only the edge

(212, 164) is created, because par equals to 0.

• Figure 2.8b shows the EXPAND TASK function:

– Back to recursive iteration 2, where the second branch is further expanded

to a new parallel sub-graph, delimited by nodes 467 and 162, without new

branches (parS = 0 and nds = 11).

– Recursive iteration 4, where only the edge (467, 162) is created.

– Back to recursive iteration 2, where the third branch is further expanded

to a new parallel sub-graph, delimited by nodes 723 and 114, with a new

branch (parS = 1 and nds = 13).

– Recursive iteration 5, where the branch is expanded to a terminal node

419.

• Similarly, Figure 2.8c shows the EXPAND TASK function:

– Back to recursive iteration 1, the second branch is further expanded to

a new parallel sub-graph, delimited by nodes 82 and 98, with two new

branches (parS = 2 and nds = 16).

– Recursive iteration 6, expands the first branch to a new parallel sub-graph,

delimited by nodes 84 and 33, without new branches (parS = 0 and nds =

17).

– Recursive iteration 7, where only the edge (84, 33) is created.

– Back to recursive iteration 6, the second branch is expanded to a terminal

node 403.

• Figure 2.8d shows the EXPAND TASK function:

– Back to recursive iteration 1, the third branch is expanded to a new parallel

sub-graph, delimited by nodes 146 and 49, with only a new branch (parS =

1 and nds = 19).

– Recursive iterations 8 expands the branch to a new parallel sub-graph,

delimited by nodes 148 and 100, without new branches (parS = 0 and

nds = 20).
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– Recursive iteration 9, where only the edge (148, 100) is created.

• Figure 2.8e shows in red the additional edges created by the EXTRA EDGES

function.

As a result, if the dashed light-blue edges (162, 116), (98, 65) and (49, 65) are

ignored, we obtain the TDG shown in Figure 2.7. These edges can be ignored because

they are transitive edges, and the execution order imposed by them is honored by

alternative edges. As an example, the execution order imposed by the edge (98, 65)

is honored by the edges (98, 100), (100, 49) and (49, 65). Nevertheless, the response

time analysis provides the same results for a DAG with and without transitive edges.
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Chapter 3

Developing Critical Real-Time

Embedded Systems with OpenMP

“A ship in port is safe; but that is not what ships are built for.”

— Grace Murray Hopper

The similarities between the DAG tasks model and the OpenMP tasking model al-

low, as shown in previous Section, to parallelize real-time tasks based on the OpenMP

tasking model, and to represent their execution as a DAG. This chapter analyzes the

use of OpenMP to implement critical real-time embedded systems. We also focus on

the design implications and the scheduling decisions to efficiently exploit fine-grain

parallelism within real-time tasks and concurrency among them. The goal is twofold:

(1) to use OpenMP to represent the recurrence of real-time tasks, and to exploit

parallelism at system and tasks levels, and (2) to extend the OpenMP specification

to incorporate the missed properties that are common in real-time systems. And all

this while guaranteeing the timing behavior of the system, according to current real-

time practices. We also evaluate three available OpenMP runtime implementations

to show their strengths and limitations when targeting real-time systems.

3.1 The OpenMP Tasking Model to Implement

Critical Real-Time Embedded Systems

This section analyzes the use of the OpenMP tasking model to implement critical

real-time embedded systems, from two different perspectives: (1) how to efficiently
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1 / / τ1
2 void RT_task_1 ()
3 {
4 for (...) {
5 #pragma omp task
6 ...
7 }
8 }

1 / / τ2
2 void RT_task_2 ()
3 {
4 #pragma omp task
5 ...
6 #pragma omp task
7 ...
8 }

...

1 / / τn
2 void RT_task_n ()
3 {
4 #pragma omp task depend(out:x)
5 ...
6 #pragma omp task
7 ...
8 #pragma omp task depend(in:x)
9 ...

10 }

Listing 3.1: Example of real-time tasks parallelized with OpenMP.

exploit parallelism within real-time tasks and among them, and (2) how to express

the recurrence of real-time tasks.

3.1.1 Parallelizing real-time systems

In critical real-time systems, the scheduler plays a key role as it must be guaranteed

that all real-time tasks execute before their deadline. To do so, real-time schedulers

implement the following features (presented in Section 3.2): (1) tasks priorities, which

determine the urgency of each real-time task to execute (e.g., the smaller priority

value, the more urgent task); (2) preemption strategies, which determine when a real-

time task can be temporarily interrupted if, for instance, a more urgent task is ready

to execute; and (3) allocation strategies, which determine the computing resources

(cores) in which tasks can execute.

The first approach that one might consider to develop a real-time system with

OpenMP is to implement each real-time task of the system as an independent OpenMP

application, i.e., each using its own instance of the OpenMP runtime, as considered in

previous works [26, 43]. In order to illustrate this approach, first consider the example

of a set of real-time tasks {τ1, τ2, . . . τn}, as shown in Listing 3.1. Then, Listing 3.2

shows the parallelization strategy of a real-time system in which each real-time task
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1 / / τ1 : OpenMP −DAG1

2 void main()
3 {
4 #pragma omp parallel
5 #pragma omp single nowait
6 {
7 RT_task_1 ();
8 }
9 }

1 / / τ2 : OpenMP −DAG2

2 void main()
3 {
4 #pragma omp parallel
5 #pragma omp single nowait
6 {
7 RT_task_2 ();
8 }
9 }

...

1 / / τn : OpenMP −DAGn

2 void main()
3 {
4 #pragma omp parallel
5 #pragma omp single nowait
6 {
7 RT_task_n ();
8 }
9 }

Listing 3.2: Example of real-time system implemented as independent OpenMP
applications.

τi ∈ T is independently encapsulated within an OpenMP application. However, this

approach presents a fundamental problem: the OpenMP parallel environment be-

comes a black box for a common scheduler, which can not control how the resources

are used internally by each real-time task. For instance, TSP are not exposed to the

common scheduler. Therefore, a different approach must be considered.

In order for the scheduler to have full control over the execution of the real-time

tasks (and their parallel execution), the complete task-set must be included within a

single parallel environment, i.e., a single OpenMP application. To do so, one option

is to exploit nested parallel regions, i.e., to enclose the real-time tasks, each defining

its own parallel region, within an outer parallel region. In this case, the OpenMP

framework manages two scheduling levels: one in charge of scheduling the real-time

tasks (outer parallel region), and another one in charge of scheduling the parallel

execution within each real-time task (inner parallel regions). Listing 3.3 shows an

example of a real-time system where each real-time task τi ∈ T (as shown in Listing

3.1) is encapsulated within an OpenMP parallel region. However, this solution is,

again, not valid as the first-level scheduler cannot control the parallel execution of

each real-time task. In this case, the team of threads of each real-time task is a black

box for the first-level scheduler.
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1 #pragma omp parallel
2 #pragma omp single nowait
3 {
4 #pragma omp parallel / / τ1 : OpenMP −DAG1

5 #pragma omp single nowait
6 {
7 RT_task_1 ();
8 }
9 #pragma omp parallel / / τ2 : OpenMP −DAG2

10 #pragma omp single nowait
11 {
12 RT_task_2 ();
13 }
14 ...
15 #pragma omp parallel / / τn : OpenMP −DAGn

16 #pragma omp single nowait
17 {
18 RT_task_n ();
19 }
20 }

Listing 3.3: Example of real-time system implemented as a single
OpenMP application with nested parallel regions.

The control of the OpenMP threads executing each of the real-time tasks is key to

implement the real-time scheduling mechanisms over the whole parallel execution. To

do so, we propose to define a common team of OpenMP threads to execute all the real-

time tasks. In this approach, a single real-time scheduler will be in charge of scheduling

both, the OpenMP tasks implementing the real-time tasks (with an associated priority

given by the priority clause), and the nested OpenMP tasks implementing the

parallel execution of each real-time task. Interestingly, this approach enables the

scheduler to use the priority clause associated to the task construct to determine the

priority of each real-time task (see Section 3.2). Listing 3.4 shows the implementation

of a real-time system in which each real-time task τi ∈ T (as shown in Listing 3.1) is

encapsulated within an OpenMP task, and parallelized with nested OpenMP tasks.

A taskwait synchronization construct must be included at the end of each real-time

task τi since the OpenMP task implementing τi cannot finish until the nested OpenMP

tasks finish their execution.

Notice the overlapping use of the term “task”. According to this approach, a

real-time task (represented as a DAG task) is implemented as an OpenMP task and

parallelized with nested OpenMP tasks.
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1 #pragma omp parallel
2 #pragma omp single nowait
3 {
4 #pragma omp task priority(p1) / / τ1 : OpenMP −DAG1

5 {
6 RT_task_1 ();
7 #pragma omp taskwait
8 }
9 #pragma omp task priority(p2) / / τ2 : OpenMP −DAG2

10 {
11 RT_task_2 ();
12 #pragma omp taskwait
13 }
14 ...
15 #pragma omp task priority(pn) / / τn : OpenMP −DAGn

16 {
17 RT_task_n ();
18 #pragma omp taskwait
19 }
20 }

Listing 3.4: Example of real-time system implemented as OpenMP
nested tasks (with a common team of threads).

3.1.2 Implementing recurrent real-time tasks in OpenMP

Despite the suitability of the OpenMP tasking model to implement critical real-time

systems based on DAG scheduling models, OpenMP lacks an important feature: the

notion of recurrence. Real-time tasks can be either periodic or sporadic, triggered by

an event, e.g., an internal clock or a sensor.

With the objective of including recurrence in the OpenMP execution model, we

propose to incorporate a new clause, named event, associated to the task construct.

This clause enables to define the release time of the OpenMP tasks implementing

real-time tasks. The syntax of the event clause is as follows:

#pragma omp task event(event-expression)

where only if event-expression evaluates to true, the associated OpenMP task is cre-

ated. This expression represents the exact moment in time1 at which the real-time

task release occurs, or the condition of the external event to occur and release a new

job of the associated real-time task. The task is released whenever the expression is

true, and the expression shall evaluate to false after the task creation. Interestingly,

this new event clause would allow to unequivocally identify which OpenMP tasks

1Real-Time Operating Systems (RTOS) provide time management mechanisms and timers to
determine the release time or deadline of real-time tasks.
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implement real-time tasks, differentiating them from the OpenMP tasks used to par-

allelize each real-time task. The real-time system implemented in Listing 3.4 must

therefore include the event clause associated to each task construct at lines 4, 11

and 19.

However, the event clause is not enough to state the synchrony between the event

that triggers a real-time task and the actual execution of that task. In languages such

as Ada, which are intrinsically concurrent, events are treated at the base language

level, thus an Ada task triggering an event will launch an entry (a functionality)

of a different task [58]. But OpenMP is defined on top of C, C++ and Fortran,

languages intrinsically sequential2, that do not typically provide these kind of features.

Following, we analyze three different approaches to associate the occurrence of an

event and the execution of a real-time task in OpenMP:

• Managed by the base language: a simple approach would use the base language

to implement an infinite control loop containing the set of real-time tasks with

their corresponding events and priorities. In Listing 3.4, this loop could wrap

lines between 4 and 27. Then, the creation of the OpenMP real-time tasks

could be managed by the event clause. This solution however renders one

thread useless, executing the control loop.

• Managed by the operating system: based on the previous approach, the thread

executing the control loop may be freed at the end of each iteration, and the

operating system may return the thread to the control loop in a period of time

shorter than the minimum period of a task (ensuring no job is missed).

• Managed by the OpenMP API : a different approach would be implementing the

concept of persistent task [59] in the OpenMP API, pushing the responsibility

for checking the occurrence of an event to the OpenMP runtime.

While this chapter focuses on the analysis of the OpenMP specification, a deeper

evaluation of the most suitable solution to implement recurrence is of paramount

importance to promote the use of OpenMP in critical real-time environments. This

evaluation is out of the scope of this thesis and remains as a future work.

2C++11 introduced multi-threading support, adding features to define concurrent execution.

46



3.2 Real-Time Scheduling Features in the OpenMP Task Scheduler

3.2 Real-Time Scheduling Features in the OpenMP

Task Scheduler

One of the most important components of critical real-time systems is the real-time

scheduler, in charge of assigning the execution of real-time tasks to the underlying

computing resources. The real-time scheduler behavior must conform to the schedul-

ing policy considered in the schedulability analysis, so that it can be guaranteed that

all tasks execute before their deadline. In the context of real-time systems, when

several tasks are considered, scheduling algorithms are normally priority driven [60],

i.e., real-time tasks (or jobs) have a priority assigned and the preference to execute

is given to the higher-priority tasks. Hence, the scheduler is allowed to interrupt

(preempt) a running task if a more urgent (higher priority) task is ready to execute.

The preempted task can later resume its execution. Moreover, scheduling algorithms

place additional restrictions as to where tasks are allowed to executed. Therefore,

real-time schedulers are commonly classified based on (1) task priorities, (2) preemp-

tion strategies and (3) migration strategies.

3.2.1 Priority-driven scheduler algorithms

There exist several priority-based scheduling algorithms, which are classified based

on the restrictions on how to assign priorities to real-time tasks [34]:

• In Fixed Task Priority (FTP) scheduling, each real-time task has a unique fixed

priority. For instance, the Rate-Monotonic (RM) scheduling algorithm estab-

lishes the priorities based on the period Ti, i.e., tasks with smaller periods have

greater priority.

• In Fixed Job Priority (FJP) scheduling, different jobs of the same real-time task

may have different priority. For instance, the Earliest Deadline First (EDF)

scheduling algorithm establishes the priorities based on the deadline Di, i.e.,

jobs with earlier deadlines have greater priority.

• In Dynamic Priority (DP) scheduling, there are no restrictions on the manner

priorities are assigned, i.e., the priority of each job may change between its

release time and its completion. For instance, the Least Laxity (LL) scheduling

algorithm assigns the priorities based on the laxity of a job, which at any instant
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in time, is defined as its deadline minus the sum of its remaining processing time

and the current time.

In OpenMP, the priority(priority-value) clause associated to the task construct

can be used to represent the priority of real-time tasks for the FTP scheduling. The

priority-value is a non-negative numerical scalar expression. A higher numerical value

indicates a higher priority. However, the OpenMP specification (version 4.5) states

that “the priority clause is a hint for the priority of the generated task [..] Among

all tasks ready to be executed, higher priority tasks are recommended to execute before

lower priority ones. [...] A program that relies on task execution order being deter-

mined by this priority-value may have unspecified behavior”. As a result, the current

behavior of the priority clause does not guarantee the correct priority-based execu-

tion order of real-time tasks. Therefore, the development of OpenMP task schedulers

in which the priority clause truly leads the scheduling behavior is essential for real-

time systems. Moreover, the priority-expression value defined at real-time task level

must be inherited by the corresponding child tasks implementing parallelism within

each real-time task. By doing so, the OpenMP task scheduler can preempt the inner

OpenMP tasks exploiting parallelism of low priority real-time tasks in favor of inner

OpenMP tasks exploiting parallelism of higher priority real-time tasks.

Regarding the implementation of EDF and LL schedulers, a new clause, named

deadline, associated to the task construct is needed. This clause will enable to de-

fine the deadline of the real-time task upon which EDF and LL schedulers are based.

We define the syntax of the deadline clause as follows:

#pragma omp task deadline(deadline-expression)

where the deadline-expression is the expression that determines the time instant at

which the OpenMP task must finish. Similarly to the priority clause, the deadline-

expression associated to an OpenMP task implementing a real-time task must be in-

herited by all its child tasks. This allows the scheduler to identify those OpenMP tasks

with the farthest deadline, and preempt them to assign the corresponding OpenMP

threads to those tasks with the closest deadline.

Listing 3.5 shows an example of an OpenMP real-time system, when the scheduler

is EDF or LL, and so the deadline clause is required. Real-time tasks τ1, τ2...τn have

a deadline and an event associated to them. All child tasks inherit the deadline of

the OpenMP parent task, for instance, for the OpenMP real-time task τ1, OpenMP
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1 #pragma omp parallel
2 #pragma omp single nowait
3 {
4 while(1) {
5 #pragma omp task deadline(D1) event(e1) / / τ1 : OpenMP −DAG1

6 {
7 #pragma omp task depend(out:x) / / T1
8 { ... }
9 #pragma omp task / / T2

10 { ... }
11 #pragma omp task depend(in:x) / / T3
12 { ... }
13 #pragma omp taskwait
14 }
15 #pragma omp task deadline(D2) event(e2) / / τ2 : OpenMP −DAG2

16 { ... }
17 ...
18 #pragma omp task deadline(Dn) event(en) / / τn : OpenMP −DAGn

19 { ... }
20 }
21 }

Listing 3.5: OpenMP real-time system desig for a deadline-based scheduler.

tasks T1, T2 and T3 inherit the deadline D1. Notice that, compared to a fixed task

priority scheduler, the only difference is that the deadline clause would be replaced

by a priority clause. The deadline clause is not compatible with the priority

clause, if both are meant for determining the priority of a task for different scheduling

algorithms. However, the deadline may be compatible with a fixed task priority

scheduler, if timing correctness is addressed (as an upper bound of the response time

of the task).

3.2.2 Preemption strategies

Preemptive scheduling permits a task executing upon any processor to be interrupted

by the scheduler, and to be resumed at a later point in time. There are several

preemption strategies that can be considered in real-time systems:

• In non-preemptive scheduling [61], preemption is completely forbidden, i.e., jobs

are executed until completion, without interruption. This strategy achieves

higher degree of predictability, at the cost of higher blocking times and blocking

effects to higher-priority tasks. For instance, a high priority task τ may have

access to less cores than available/needed, if there exists a lower priority task

running and having an execution time longer than τ ’s deadline.
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• By contrast, in fully-preemptive scheduling [62], a job can be preempted at any

point of its execution, if a higher priority real-time task becomes ready. In this

case, higher-priority tasks does not suffer blocking times, but lower priority tasks

suffer a possibly high number of preemptions. This may lead to prohibitively

high context switch overheads, cache related preemption and migration delays,

and network contention costs [63], which may degrade the schedulability of the

system and potentially cause deadline misses. Moreover, accurately accounting

for preemption delays is very difficult (if not impossible) due to the potentially

“infinite” preemption points, i.e., at any execution point of the task.

• A midway alternative is the limited preemptive scheduling [33] in which some

restrictions are placed upon the occurrence of preemptions. The limited pre-

emptive scheduling with Fixed Preemption Points approach allows preemptions

only at predefined locations within the real-time task, which divides it into

fixed non-preemptive regions (NPR). Limited preemptive scheduling has been

proposed as an effective scheduling scheme that allows to reduce the number of

preemptions of lower priority tasks, compared to the fully preemptive schedul-

ing, while also reducing the blocking time to higher priority tasks, compared to

the non-preemptive scheduling, thus improving schedulability. Moreover, with

the limited preemptive scheduling model, a tighter analysis of the preemption-

related overhead is possible and the preemption overhead may be significantly

reduced by an optimized placement of preemption points [64].

Figure 3.1 shows an example of the three scheduling strategies presented above.

In order to facilitate the explanation, two sequential real-time tasks are scheduled in

a single core. Moreover, the implicit deadline case is considered, so arrows represent

the release time of a given job, and the deadline of the previous job. Figure 3.1a

shows the non-preemptive scheduling scheme: when the high priority task is released,

at time instants t1 and t3, the low priority task is running. Therefore, the high

priority task waits until time instants t2 and t4, when the low priority task completes.

However, at time instant t5, the low priority task must wait for the high priority task

to complete its execution at t6, since it is released (and starts executing) before. In

this case, both high and low priority tasks may suffer blocking times and interference,

respectively. Figure 3.1b shows the fully-preemptive scheduling scheme: as soon as

the high priority task is released, at time instants t1 and t3, the low priority task is

preempted. It resumes as soon as the high priority task finishes, at t2 and t4. In the
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𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 

𝐻𝑖𝑔ℎ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡𝑎𝑠𝑘 

𝐿𝑜𝑤 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡𝑎𝑠𝑘 

𝑡4 𝑡1 𝑡3 𝑡2 𝑡6 𝑡5 𝑡𝑖𝑚𝑒 

(a) Non-preemptive scheduling.

𝑡4 𝑡𝑖𝑚𝑒 

𝐻𝑖𝑔ℎ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡𝑎𝑠𝑘 

𝐿𝑜𝑤 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡𝑎𝑠𝑘 

𝑡1 𝑡3 𝑡2 𝑡6 𝑡5 

(b) Fully-preemptive scheduling.

𝐻𝑖𝑔ℎ 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡𝑎𝑠𝑘 

𝐿𝑜𝑤 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑡𝑎𝑠𝑘 

𝑡4 𝑡1 𝑡3 𝑡2 𝑡5 𝑡7 𝑡6 𝑡𝑖𝑚𝑒 

(c) Limited preemptive scheduling with fixed preemption points.

Figure 3.1: Preemption strategies in a single core.

last high priority task release, there is no preemption since it starts executing before,

but still, the low priority task suffers interference from time instant t5 till t6. In this

case, high priority tasks never suffer blocking times, but only low priority tasks suffer

interference. Finally, Figure 3.1c shows the limited preemptive scheduling scheme: in

this case, the low priority task has one fixed preemption point (dashed lines). When

the high priority task is released at time instant t1, the preemption point has already

passed and so the high priority task must wait for the low priority task to complete

at t2. However, when the high priority task is released again at time instant t3, it

waits only until the preemption point of the low priority task is reached, at t4. Then,

the low priority task resumes as soon as the high priority one completes, at t5. The

same as in the non-preemptive and fully preemptive schemes, when the low priority

task is released at t6, it must wait for the high priority task to finish.
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OpenMP and the limited preemptive scheduling.

Interestingly, the OpenMP tasking model implements the limited preemptive strategy.

The OpenMP API specifies that OpenMP tasks can be suspended (preempted) only

at task scheduling points (TSPs), dividing the task into multiple non preemptive

task part regions. Accordingly, the OpenMP runtime can preempt OpenMP tasks at

TSPs, and assign its corresponding threads to a different OpenMP task based on the

priorities. Therefore, we can establish a one-to-one correspondence between NPRs

in the limited preemptive scheduling and task parts in the OpenMP specification,

which are represented as nodes (sub-tasks) in the OpenMP-DAG. It is worth noting

that OpenMP provides the taskyield construct, which allows the programmer to

explicitly define additional TSPs. However, regarding task scheduling points, the

OpenMP API states that “the implementation may cause it to perform a task switch”

and regarding the taskyield clause, “the current task can be suspended in favor of

execution of a different task”. This means that an implementation is not forced to

suspend a task in favor of another one in any case, not even if there is a higher priority

task ready to execute (see evaluation in section 3.3). However, in real-time scheduling

a TSP must be evaluated, meaning that if a higher priority task is ready at that point,

the lower priority task must be preempted. Therefore, limited preemptive OpenMP

schedulers must implement the evaluation of each TSP occurrence when targeting

real-time systems.

Interestingly, this laxity in the OpenMP specification, which establishes that

threads are allowed to, but not forced to suspend a task at TSPs, supports the

implementation of non-preemptive scheduling. By simply disabling the suspension

of tasks at those points, the OpenMP scheduler would be non-preemptive. In fact,

for sequential real-time tasks, this is the default preemption strategy, since there are

no implicit TSPs. In this case, it is worth noting that the taskyield construct also

allows the implementation of the limited preemptive strategy in sequential real-time

tasks.

Finally, OpenMP does not support the implementation of fully-preemptive schedul-

ing strategies because that would require the runtime to preempt the execution of

OpenMP tasks at any point of its execution, causing the implementation to be non-

compliant. In any case, as we stated above, fully-preemptive scheduling can cause

high preemption overheads, which degrade the predictability of the system.
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3.2.3 Allocation and migration strategies

Based on the restrictions as to where real-time tasks are permitted to execute, there

exist two scheduling schemes [34]:

• Global scheduling allows jobs from real-time tasks to execute upon any core.

Jobs are dynamically allocated to cores, based on runtime information, such as

the state of the platform (e.g., computing and communication resources avail-

able), the set of ready tasks, or the location of input data. Real-time tasks

are allowed to migrate between cores, so that a preempted job can resume its

execution in a core different to the one it started.

• Partitioned scheduling allows each job of a real-time task to execute only upon

the core to which it has been mapped. Jobs are statically allocated to cores at

design time, with the objective of increasing the predictability. Ideally, an anal-

ysis of the real-time tasks execution times and the available resources, provides

a task-to-core mapping that minimizes the response time of the overall system.

• Hybrid allocation strategies, which allows a real-time task to be scheduled only

on a subset of the available cores, have been proposed as well [65]. There

exists an interesting approach, based on the hybrid allocation, called federated

scheduling [66] in which some tasks are statically assigned to a group of cores

and some others are globally scheduled.

Although the OpenMP API does not specify anything about allocation strategies,

current OpenMP runtime implementations are based on dynamic allocation. How-

ever, the OpenMP tied tasking model (the default one) limits the implementation of

global schedulers since tasks are tied to the thread that started its execution, i.e.,

migration of tied tasks is not allowed. This is not the case of untied tasks, that can

be resumed by any thread in the team. A deeper analysis of the timing implications

of the OpenMP tied and untied tasking models is presented in chapter 4.

OpenMP task to OpenMP thread Mapping

With the objective of increasing time predictability, most of the real-time schedulers

consider a direct mapping between real-time tasks and cores. This includes two

conditions: (1) threads are mapped to cores in a one-to-one manner, and (2) threads

are not allowed to migrate between cores.
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OpenMP threads are an abstraction of the computing resources upon which OpenMP

tasks execute. In this thesis, we propose the use of a single team of threads to execute

all the tasks of the system (see Section 3.1.1). This enables the real-time scheduler to

have full control over the execution of OpenMP tasks over threads. However, OpenMP

threads are further assigned to the operating system threads, hardware threads and

cores, referred to as places in OpenMP. As a result, other levels of scheduling exist,

out of the control of the OpenMP scheduler.

Fortunately, the OpenMP specification provides mechanisms to fulfill the two

conditions stated above. On one hand, the requires directive, provisionally defined

in the proposal of the OpenMP version 5.0 specification [67], allows to specify “the

features an implementation must provide in order for the code to compile and execute

correctly”. This may be useful to express the minimum number of cores that the

target architecture must provide to guarantee a one-to-one mapping, as required

by the system. On the other hand, OpenMP defines the bind-var internal control

variable, together with the proc bind clause, which allow to control the binding of

OpenMP threads to cores. Both enable to define different thread-affinity policies.

Finally, the place-partition-var internal control variable controls the list of places

available.

Overall, an OpenMP framework intended to implement a critical real-time system

must obey the following constraints:

1. place-partition-var := cores, so that each OpenMP place corresponds to a single

core;

2. bind-var := close, so that OpenMP threads are consecutively assigned to places

(forbidding threads migration between places). Once OpenMP threads are as-

signed to cores, this affinity must not be modified. Therefore, the proc bind

clause must be forbidden or ignored.

Moreover, we propose to use the requires directive along with the ext min cores

clause and an integer value, to determine the minimum number of threads (and so,

cores) necessary to correctly execute the system.
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3.3 Evaluation of Current OpenMP Runtime Im-

plementations

This thesis focuses on the analysis of the timing and scheduling behavior of OpenMP,

and not on the efficient implementation of the runtime. However, to better understand

the support that current OpenMP implementations have to develop CRTES, this

section evaluates how priorities and preemptions are treated in three widely used

OpenMP runtime implementations.

3.3.1 Experimental setup

Runtimes. We test three runtime implementations of the OpenMP version 4.5,

provided by GCC 8.1 [68], Intel C++ 18.0.3 [69] and Nanos++ [70].

Performance monitoring tools. We use two instrumentation libraries to obtain

the traces of the OpenMP executions: (1) Extrae [71], that captures the information

of the performance of parallel applications, and generates traces in files, and (2)

Paraver [72], a performance visualization and analysis tool that uses Extrae traces.

Application. Listing 3.6 shows the synthetic application implemented to properly

exercise the features we want to test. Three simple real-time tasks, τ1, τ2 and τ3, are

created with low, medium and high priority, respectively. τ1 includes an explicit TSP

by means of the taskyield construct. Therefore, according to the limited preemptive

scheduling strategy, τ1 is divided into two non-preemptive task parts. Sequential real-

time tasks and two threads have been considered for simplicity. Current OpenMP

implementations only support dynamic allocation and global scheduling.

3.3.2 OpenMP execution traces: limited preemptive schedul-

ing and the priority clause.

Critical real-time systems must honor the priority of each task because it determines

preeminence of some tasks over others. Moreover, in the limited preemptive strategy,

tasks must be preempted at preemption points in favor of ready tasks of higher

priority. Therefore, knowing the execution time of each task part, the expected

behavior during three iterations of the OpenMP real-time system presented in Listing
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1 #pragma omp parallel
2 #pragma omp single nowait
3 {
4 while (1) {
5 #pragma omp task untied priority(1) / / τ1
6 {
7 part11();
8 #pragma omp taskyield
9 part12();

10 }
11 part01();
12 #pragma omp task untied priority(2) / / τ2
13 { part21(); }
14 #pragma omp task untied priority(3) / / τ3
15 { part31(); }
16 part02();
17 }
18 }

Control loop τ1 Low priority task τ2 Medium priority task τ3 High priority task

part01() Task part part11() Task part part21() Task part part31()

part02() Task part part12()

Listing 3.6: OpenMP real-time system example for the evaluation of current runtimes.

𝑡𝑖𝑚𝑒 

𝑇ℎ𝑟𝑒𝑎𝑑 1 

𝑇ℎ𝑟𝑒𝑎𝑑 2 

𝑡1 𝑡2 𝑡6 𝑡7 𝑡11 𝑡12 𝑡3 𝑡4 𝑡5 𝑡8 𝑡9 𝑡10 𝑡13 𝑡14 𝑡15 

Figure 3.2: Expected behavior of the OpenMP real-time system in Listing 3.6.

3.6 is shown in Figure 3.2. Green blocks represent the execution of the code within the

single construct (part01 and part02) in thread 1, blue blocks represent the execution

of τ1 (task parts part11 and part12), red blocks represent the execution of τ2 (part21)

and yellow blocks represent the execution of τ3 (part31). τ1, τ2 and τ3 execute in

thread 2. Blue, red and yellow arrows denote the time instants at which tasks τ1, τ2

and τ3 are ready, respectively.

τ1 gets first the idle thread 2, at time instants t1, t6 and t11, because it is created

before the higher priority tasks τ3 and τ2. At time instants t2, t7 and t12, the highest

and medium priority tasks, τ3 and τ2, are created. As a result, when τ1 reaches its

task scheduling point, defined by the taskyield, at time instants t3, t8 and t13, it is
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preempted and the highest priority task τ3 starts its execution. When τ3 finishes, at

time instants t4, t9 and t14, τ2 and the second task part of τ1 are ready to execute.

Since τ2 has higher priority, it starts its execution. Finally, when τ2 finishes, at time

instants t5, t10 and t15, τ1 can resume its execution.

The execution traces of three iterations of the source code presented in Listing

3.6 are shown in Figure 3.3a for Nanos++, Figure 3.3b for GCC 8.1, and Figure 3.3c

for Intel C++ 18.0.3. The observed behavior in Nanos++ is exactly as expected.

Nevertheless, it is worth mentioning that the behavior is different if tasks are tied,

i.e., if there is no untied clause associated to the #pragma omp task. In this case, τ2

does not execute immediately after τ3 finishes. Instead, τ1 resumes its execution. The

reason is that, at this point, τ1 is tied to a thread and this prevails over the priority.

In GCC and Intel, the behavior is exactly the same, and contrary to what is

expected based on the priorities of the tasks. Neither the preemption point of τ1

nor the priorities of τ3 and τ2 are honored. Instead, τ1 is executed uninterruptedly

from beginning to end, i.e., both task parts are executed consecutively. Also, τ2 is

executed before τ3, even though τ3 has higher priority than τ2. This execution order

is established by the task creation order in a FIFO manner.

Overall, the runtime behavior in the three cases is correct with respect to the

OpenMP v4.5 specification. The reasons are: (1) the taskyield construct is defined

such that the executing task “can”, but it is not forced to, be suspended in favor of any

other task; and (2) the priority directive is only a “hint” for the priority of tasks.

Although current OpenMP runtimes are not ready to support the development and

execution of critical real-time systems, Nanos++ already implements some of the

fundamental features needed by critical real-time systems. This is not the case of

GCC 8.1 nor Intel C++ 18.0.3.

3.4 Related Work

The performance requirements of advanced embedded critical real-time systems en-

tails a booming trend to use multi-core, many-core and heterogeneous architectures.

A recent work [73] describes the challenges of parallel real-time systems, and provides

an overview of the research conducted by authors. They investigate a scheduling

system for parallel applications (OpenMP-based, for instance) in real-time systems

and a fault-tolerant approach which provides resilience against hardware faults on
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(a) Nanos++

(b) GCC 8.1

(c) Intel C++ 18.0.3

Figure 3.3: Execution traces of the OpenMP real-time system in Listing 3.6

application level.

OpenMP has been already considered to cope with the performance needs of

embedded real-time systems [74, 21]. In this context, OpenMP has been analyzed

regarding two features that are mandatory in such restricted systems: timing analysis

and functional safety.

From a timing perspective, there is a significant amount of work considering the

time predictability properties of OpenMP. Despite the fork-join model was firstly

considered [27], the tasking model seems to be more suitable given its capabilities

to define fine-grain, both structured and unstructured parallelism. For this reason

several works [26, 75, 76], included the next chapter of this thesis, studied the OpenMP

tasking model and its similarities with the sporadic DAG scheduling model. From a

functional safety perspective, as seen in Section 2.3.2, OpenMP is also considered as

a convenient candidate to implement real-time systems.

Finally, as embedded systems usually have tight constraints regarding resources

such as memory (e.g., the Kalray MPPA has 2MB shared memory [25]), different ap-

proaches for developing lightweight OpenMP runtime systems coexist [43, 77]. These
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studies are meant to efficiently support OpenMP in such constrained environments.

For instance, the memory used at runtime is reduced when the task dependency graph

of the applications is statically derived.

3.5 Summary

OpenMP is a solid candidate to address the performance challenges of critical real-

time embedded systems. However, OpenMP was originally intended for a different

purpose than such systems, for which guaranteeing the correct output is as important

as guaranteeing it before the deadline. In this chapter, we evaluate the use of the

OpenMP tasking model to develop and execute critical real-time embedded systems.

The OpenMP tasking model has been shown to have similarities with the sporadic

DAG-based scheduling model, upon which many critical real-time systems are based

on, e.g., AUTOSAR [78], used in automotive systems. We focus on the design impli-

cations and the scheduling decisions to efficiently exploit fine-grain parallelism within

real-time tasks and concurrency among them, while guaranteeing the timing behavior

according to current real-time practices.

Concretely, we propose the use of a single team of threads to implement and

execute both concurrent real-time tasks and the parallelism within them. Two new

clauses, event and deadline, are proposed to allow the implementation of recurrent

real-time tasks and deadline-based schedulers, respectively. Moreover, we analyze

some important features already provided in the OpenMP API: the priority clause

and the TSPs. We conclude that the behavior of these two features, as defined in the

OpenMP API, is not conforming to the expected behavior of real-time schedulers.

In both cases, the clause must be a prescriptive modifier, instead of a hint (the

case of the priority clause) or a possibility of occurrence (the case of TSPs). It

must be guaranteed that, at each preemption point (i.e., at each TSP), if there is a

high priority task ready, the running task is suspended in favor of the high priority

task. This behavior is required to implement limited preemptive scheduling, the

most suitable preemptive strategy for OpenMP real-time systems. Overall, correctly

addressing all these features in the specification is of paramount importance to enable

the use of OpenMP in critical real-time embedded systems.
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Chapter 4

Timing Characterization of the

OpenMP Tasking Model

“El ayer querella, añora y el mañana condiciona, en cambio,

vivo el instante antes de después, después de antes, el eterno presente”1

— David Mart́ınez Álvarez (Rayden)

Originally focused on a thread-centric model to exploit massively data-parallel and

loop-intensive types of applications, OpenMP has evolved to a task-centric model

which enables very sophisticated types of fine-grain and unstructured parallelism.

The OpenMP tasking model, introduced in version 3.0 [40], allows the programmer

to define explicit tasks as independent units of parallel work. Moreover, from version

4.0 [41], OpenMP defines an accelerator model that, coupled with the tasking model,

enables to efficiently offload computation to specialized accelerator devices. These two

models allow to effectively utilize parallel architectures, while hiding their complexity

to the programmer.

Several practical issues have been addressed by the OpenMP language committee

when designing the tasking model specification, considering simplicity of use, com-

patibility with the existing specification and performance, as the main metrics of

interest [79]. However, the requirements for the co-existence of a legacy thread-based

execution model and a new task-based execution model led to conflicting needs for

choosing the default settings. Unfortunately, none of the considered design choices

took time predictability into account, as this is traditionally not a relevant metric in

1English translation: “Yesterday hurts, longs for and Tomorrow conditions, instead, I live the
moment before the afterwards, after the previous one, the eternal present.”
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the HPC domain. The aim of this chapter is to revisit such design choices, as found

in the OpenMP specification version 4.0, introducing timing predictability as a new

key metric of interest.

4.1 The OpenMP Tasking Model

As seen in Section 2.3, the OpenMP tasking model has been already considered

as a firm candidate to be adopted in critical real-time systems. On the one hand,

the execution model of OpenMP tasks resembles the real-time sporadic DAG tasks

model [26, 43]. On the other hand, functional safety has been also considered in

OpenMP [57] as a key element in critical real-time systems. Moreover, the previous

chapter analyzes the scheduling features that must be addressed in the specification

of OpenMP to safely target critical real-time embedded systems.

This section analyzes the OpenMP tasking model, identifying the issues that affect

the timing analysis.

4.1.1 From the thread-centric to the task-centric model

Up to specification version 2.5, OpenMP assumed a thread-centric execution model.

The programmer could determine the thread in which a code segment was execut-

ing, with the OpenMP routine omp get thread num(). Following the single program,

multiple data (SPMD) programming paradigm, the programmer was also allowed to

explicitly perform different works on different threads, based on their id. Moreover,

the programmer could assign private storage to the thread (marking the target vari-

ables with the threadprivate directive) that persisted across executions of different

parallel regions.

The tasking model (with the associated task construct) was first introduced in

OpenMP specification 3.0. The OpenMP tasking model provides programmer with

a very convenient abstraction of parallelism, being the runtime in charge of schedul-

ing tasks to threads. Version 4.0 of the OpenMP specification introduced advanced

features to express dependencies between tasks.

However, for backward compatibility reasons, both models need to coexist in the

OpenMP specification. This leads to conflicting needs for choosing the default set-

tings. Probably the most notable example of a “trade-off” design choice between

the old (thread-centric) and the new (task-centric) specification is the distinction be-
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tween tied and untied tasks. In state-of-the-art tasking programming models, e.g.,

Cilk [80], there are points in the execution of a program where a thread can suspend

the execution of the current task and switch to another task. The suspended task

can resume execution on a different thread, if available. This execution model imple-

ments a work-conserving policy, which ensures that no thread remains idle if there

is work to be done. Ultimately, this behavior guarantees an efficient exploitation of

a parallel architecture and facilitates the timing characterization of parallel execu-

tion (see Section 4.2 for further details). Unfortunately, the thread-centric nature of

OpenMP exposes a number of issues if migration of a task from one thread to another

is allowed. To give a few examples:

• work-sharing among threads based on the thread id, at the core of classic

OpenMP programming practices (up to version 2.5), would break the semantics

of the program;

• mutually-exclusive code regions (e.g., critical construct) could result in dead-

lock scenarios, as critical section locks are owned by threads;

• private data to a thread (e.g., threadprivate variables) should also migrate

with the task, which is neither easy nor efficient to implement.

As a solution to the problem, the OpenMP specification states that, by default, an

OpenMP task must be tied to the thread which started its execution. Tied tasks

cannot migrate to a different thread when the task is suspended, even if there are idle

threads available. Moreover, the OpenMP specification defines an extra restriction,

known as the task scheduling constraint 2 (TSC 2), that does not allow tied tasks

to be scheduled in threads in which other non-descendant tied tasks are suspended.

Overall, the tied tasking model results in a non work-conserving task scheduling

approach. A knowledgeable programmer can specify a work-conserving approach by

using untied tasks, which are allowed to resume execution on a different thread when

suspended. As it always happens in OpenMP, the programmer takes responsibility

for guaranteeing correct execution of the program. As a result, the use of the default

tied tasking model may have serious implications on the predictability of the timing

behavior of OpenMP applications, a fundamental property to apply OpenMP in real-

time systems.

The remaining of this section analyzes the behavior of the tied and untied task

models, from a scheduling and timing analyzability point of view. Next sections
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describe the impact that such models have on the capability of our analysis to provide

precise and tight timing guarantees.

4.1.2 OpenMP task-to-thread scheduling

In OpenMP, the execution of tasks explicitly generated by the task construct is

assigned to one of the threads in the team, subject to the thread’s availability to

execute work. Thus, execution of a new task could be immediate or deferred according

to task scheduling constraints (TSCs) and thread availability. Moreover, threads are

allowed to suspend an executing task at task scheduling points (TSPs) in order to

execute a different task.

Section 2.2.3 describes the TSPs, which divide task regions into task parts and

lead the OpenMP-DAG creation. However, TSPs and TSCs have certain implications

when timing analysis is considered since the run-time scheduling of tasks may be

different to what the schedulability analysis considers.

4.1.2.1 Task Scheduling Constraints

When a thread encounters a TSP, it can begin or resume the execution of a task,

provided that a set of task scheduling constraints (TSC ), as defined in Section 2.11.3

of the OpenMP specification [41], are fulfilled:

TSC 1: An included task must be executed immediately after the task is created.

TSC 2: Scheduling of new tied tasks is constrained by the set of task regions that are

currently tied to the thread, and that are not suspended in a barrier region.

If this set is empty, any new tied task may be scheduled. Otherwise, a new tied

task may be scheduled only if it is a descendant task of every task in the set.

TSC 3: A dependent task shall not be scheduled until its task data dependencies are

fulfilled.

TSC 4: When a task contains an if clause and its associated condition evaluates to

false, the task is executed immediately if the rest of the TSC s are met.

Am OpenMP program relying on any other TSC or performing a different action

when a TSP is encountered is non-conforming2.

2An OpenMP conforming program is that which follows all rules and restrictions of the OpenMP
specification.
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1 for (i=0; i < N; i++) {
2 #pragma omp task / / T1
3 {
4 foo();
5 #pragma omp critical
6 {
7 bar();
8 #pragma omp task / / T2
9 foobar ();

10 }
11 }
12 }

Listing 4.1: Example of an OpenMP program
using synchronization constructs.

TSC 2 may considerably reduce the number of threads available to tied tasks,

impacting on both performance and timing predictability. Next section explains the

reason of such a design choice.

4.1.2.2 Understanding TSC 2

TSC 2 prevents tied task from being scheduled in threads in which other non-

descendant tied tasks are suspended. This inhibits the runtime from incurring in

a deadlock situation when the critical synchronization construct is used within a

task [79]. The critical construct is a synchronization mechanism inherited from

the thread-centric model that defines a region that can be exclusively executed by a

single thread at a time. The reason of the deadlock situation is because the owner

of the lock is a thread and not a task, but the critical region may be within task.

Hence, if the task is re-scheduled to a different thread, it will not have access to the

corresponding lock.

Listing 4.1 shows an example in which the critical construct is used within a

task. The example creates as many T1 and T2 task instances as for-loop iterations.

When the thread executing the first instance of T1 enters the critical section, the

thread obtains the lock so that no other thread can access it. However, the execution

of this task instance of T1 can be suspended when reaching the TSP at line 8 (task

construct T2) and so its thread could be assigned to a different task. If the same

thread starts executing another instance of T1, it would eventually reach the critical

section again, but this time, it would not be able to enter it as this thread already

has the lock. This leads to a deadlock situation in which the thread has the lock due

to the first instance of T1 and, at the same time, is blocked in the critical section due

65



4. TIMING CHARACTERIZATION OF THE OPENMP TASKING
MODEL

to the second instance of T1. Notice that the critical construct does not imply a

TSP, so that the thread is stalled in the second T1 task instance. In order to avoid

this situation, the OpenMP specification defines the TSC 2, which prevents the same

thread from executing any tied task that is not descendant of T1. Note that T2 is a

descendant task of T1 and so the thread executing T1 is allowed to execute T2.

When untied tasks are used, the responsibility of the utilization of critical sections

or thread-specific information lies on the programmer.

4.1.2.3 Task Scheduling Algorithms

When a task encounters a TSP, the program execution branches into the OpenMP

runtime system, where task-to-thread schedulers can: (1) begin the execution of a task

region bound to the current team or (2) resume any previously suspended task region

bound to the current team. The order in which these two actions are applied is not

specified by the standard. An ideal task scheduler will schedule tasks for execution in

a way that maximizes concurrency while accounting for load imbalance and locality

to facilitate better performance. Current runtime implementations of OpenMP are

based on two main task scheduling policies [81]:

BFS (Breadth-First Scheduling). When a task is created, it is placed into a pool

of tasks and the encountering thread continues the execution of the parent task.

Tasks placed in that pool can then be executed by any available thread from

the team. Due to TSC 2, when a tied task is suspended in a TSP, it is placed

into the private pool of tasks associated to its thread. Untied tasks instead are

queued into a pool of tasks accessible by all threads in the team. Access to these

pools can be LIFO (i.e., last queued tasks will be executed first) or FIFO (i.e.,

oldest queued tasks will be executed first). Threads will always try to schedule

first a task from their local pool. If it is empty then they will try to get tasks

from the team pool. An example of BFS is shown in [82].

WFS (Work-First Scheduling). New tasks are executed immediately after they

are created by the parent’s thread, suspending the execution of the parent task.

When a task is suspended in a TSP, it is placed in a thread local pool that can

be accessed in a LIFO or FIFO manner. When looking for tasks to execute,

threads will look into their local pool. If it is empty, they will try to steal work

from other threads. When stealing from another thread pool, to comply with

OpenMP restrictions, tied tasks cannot be stolen from its associated thread.
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The Cilk scheduler [80] belongs to this family. In particular, it is a WFS where

access to the local pool is LIFO, tries to steal the parent task first and otherwise

steals from another thread pool in a FIFO manner.

WFS tends to obtain better performance results than BFS due to two reasons [81]:

(1) the WFS strategy tries to follow the serial execution path hoping that if the

sequential algorithm was well designed, it will lead to better data locality; and (2) it

also has the property of minimizing space. The reason is that in a BFS strategy all

tasks coexist simultaneously since all child tasks are created before executing them.

On the contrary, WFS creates the same number of tasks, but fewer tasks have to

exist at the same time because they are executed immediately after they are created.

However, OpenMP implementations typically use BFS due to the tied tasks default

restriction: if WFS is implemented, when a tied task Ti creates a child tied task

Ti+1, this one starts its execution in Ti’s thread. Then, Ti is suspended and it cannot

resume its execution until Ti+1 finishes or suspends in a TSP because it is tied to a

thread. Therefore, WFS turns a parallel program with tied tasks into a sequential

execution, as will be shown in Section 4.4.1.

Overall, TSC 2 and the semantics of tied tasks prevent the implementation of

work-conserving schedulers. We discuss in the next section the implications that the

tied and untied models have on the timing analysis of task-based OpenMP applica-

tions.

4.2 The Schedulability Problem of an OpenMP

application

Once the OpenMP-DAG of an OpenMP application is derived, as shown in Section

2.3.1, the problem of schedulability reduces to the problem of determining whether

the DAG can be scheduled on the available threads to complete within a specified

relative deadline D.

The OpenMP specification is agnostic to the task-to-thread scheduling imple-

mented by the runtime. It is therefore the responsibility of the runtime developer to

implement the most suitable scheduler for the OpenMP system, guaranteeing that

the TSCs are fulfilled.

In high-performance systems, the main goal of task-to-thread schedulers is to

maximize the occupancy of threads. In real-time systems, the main goal is not only
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maximizing the use of resources but also to provide timing guarantees. Consider-

ing global scheduling, the use of work-conserving schedulers facilitates the timing

characterization of parallel execution.

Definition 8. Work-conserving scheduling. A scheduling algorithm is work-

conserving if the following situation does never occur in the system: (1) there exists

a ready task awaiting execution and (2) there exists at least one idle thread.

For work-conserving schedulers, the problem of determining the schedulability

of an OpenMP-DAG has a strong correspondence with the makespan3 minimization

problem of a set of precedence constrained nodes (or OpenMP task parts) on identical

processors (or OpenMP threads in a team), which is known to be strongly NP-hard

by a result of Lenstra and Rinnooy Kan [83]. However, the Graham’s List Scheduling

algorithm [84], which can be implemented in polynomial time complexity, provides

an approximation of 2 − 1
m

for this problem, being m the total number of threads

in a team. This means that this algorithm is able to produce for any input task

graph a value of the makespan that is at most 2 − 1
m

times the optimal one. The

List Scheduling algorithm simply maps tasks to available threads in a team without

introducing idle times if not needed, i.e., it implements a work-conserving scheduling

algorithm.

For real-time systems, the use of work-conserving schedulers in the the OpenMP

runtime implementations seems to be the best option. Current OpenMP runtime

implementations already incorporate work-conserving schedulers, i.e., BFS and WFS.

Unfortunately, the TSC 2 and the execution semantics of tied tasks force these

schedulers not to be work-conserving. On the one hand, TSC 2 forbids a new tied

task to be scheduled to a thread where it is not a descendant of all the other suspended

tied tasks already assigned to this thread. This may potentially reduce the number

of threads in the team that can be assigned to new tied tasks. On the other hand,

tied task parts cannot migrate when the task is resumed and its corresponding thread

is being used by another descendant tied task or an untied task. These constraints

impose extra conditions on the schedulability analysis of OpenMP programs.

This is not the case of the execution semantics of untied tasks, which are not

subject to TSC 2, and so parts of the same task are allowed to execute on different

threads i.e., when a task is suspended, the next part to be executed can be resumed

3The makespan of a set of precedence constrained nodes is defined as the total length of the
schedule (i.e., response-time) of the collection of nodes.
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on a different thread. Hence, the execution model of untied tasks allows BFS and

WFS to be work-conserving.

Overall, the additional requirements imposed by the use of tied tasks suggest

devising distinct timing characterizations for the two types of OpenMP tasks, i.e.,

tied and untied. Hence, in the rest of this chapter we analyze both types of tasks to

characterize their timing behavior, outlining the major challenges posed by the use

of tied tasks in a real-time domain.

4.3 Schedulability Analysis of Untied Tasks

The untied clause allows a task to be executed in any thread and, in case it is

suspended, to be resumed by any thread in the team. In other words, the task

can freely migrate across threads during its execution. This flexibility in the task

allocation is exploited at the analytical level in order to derive a direct solution to

the schedulability problem.

Given an OpenMP-DAG, as derived in Section 2.3.1, we build upon the result in

[84] to derive a response-time upper bound of an OpenMP-DAG composed of untied

tasks, by considering that each task part represents a sequence of operations that can

be executed in one of the available threads as soon as all its three types of depen-

dencies have been fulfilled (control flow, TSP creation/resume and synchronizations).

Whenever more parts than available threads are ready to be executed, any alloca-

tion order is possible, provided that the scheduling strategy remains work-conserving.

This is the case of BFS and WFS strategies.

We derive an upper-bound on the response-time, denoted by Rub, of an OpenMP

program composed of untied tasks and represented as an OpenMP-DAG G. Such a

bound can be computed starting from the proof of the 2− 1
m

approximation bound in

[84], in conjunction with some additional considerations. Here, we first establish two

lower-bounds on the minimum makespan Ropt of an OpenMP program, which will be

useful to derive an upper-bound on its response-time.

Proposition 1.

Ropt ≥ 1

m

∑
υi∈V

Ci =
1

m
vol(G). (4.1)

Proposition 2.

Ropt ≥ max
λ∈G

∑
υi∈λ

Ci = len(G). (4.2)
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Equation (4.1) trivially follows from the fact that the total amount of work should

be executed on m threads, while Equation (4.2) is obtained by noticing that parts

belonging to a chain must be executed sequentially. This is true for any chain of the

OpenMP-DAG, and in particular for its longest one, i.e., its critical path.

We now review the proof in [84] to derive the approximation bound of List Schedul-

ing on the minimum makespan of a generic set of precedence-constrained nodes (task

parts), which applies to OpenMP-DAGs with untied tasks as well.

Theorem 1. Graham’s List Scheduling algorithm gives a 2− 1
m

approximation for the

makespan minimization problem of a set of precedence-constrained nodes expressed by

means of a task graph G, scheduled on m identical processors (or threads).

Proof. Let υz be the node in G that completes last, and tz its starting time. Let υz−1

be the predecessor of υz that completes last. By the precedence relation between the

two nodes, we have that tz ≥ tz−1+Cz−1. Proceeding in this way until a node without

predecessors is reached, we construct a particular chain of nodes λ = (υ1, . . . , υz). The

fundamental observation that must be made is that, between the completion time

ti +Ci of each node of λ∗, and the starting time of the next node, all threads must be

busy, otherwise node υi+1 would have started earlier. The same applies to the time

interval between 0 and t1. Note also that some node belonging to λ is executing at

every time instant when not all the threads are busy.

The response-time of the OpenMP-DAG, denoted by R, is given by the sum of

the time instants when some of the threads are idle and the time instants when all

the threads are busy. The former contribution cannot exceed len(λ), while the latter

cannot exceed 1
m

(vol(G) − len(λ)), since the total amount of workload executed in

such time slots is no more than vol(G)− len(λ). Hence,

R ≤ len(λ) +
1

m
(vol(G)− len(λ)) . (4.3)

Now, by combining Equations (4.1), (4.2) and (4.3) and reordering the terms, we

obtain:

R ≤ len(λ) +
1

m
(vol(G)− len(λ)) = len(λ) +

1

m
vol(G)− 1

m
len(λ) ≤

≤ Ropt +Ropt − 1

m
Ropt =

(
1− 1

m
+ 1

)
Ropt =

(
2− 1

m

)
Ropt
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Equation (4.3) cannot be directly used as an upper-bound to the response-time

of the OpenMP-DAG, because the chain λ is not known a priori. However, a simple

upper-bound can be found for Equation (4.3) by upper-bounding the length of the

chain λ with the length of the critical path λ∗, as it is longer than any possible chain

in the OpenMP-DAG. The following lemma formalizes this result4.

Lemma 1. An upper-bound on the response-time of an OpenMP-DAG composed of

untied tasks is given by Rub:

Rub = len(G) +
1

m
(vol(G)− len(G)) (4.4)

Proof. The upper-bound Rub simply follows from Equation (4.3) by definition of crit-

ical path and by considering that 1 ≥ 1
m

. More explicitly:

R ≤ len(λ) +
1

m
(vol(G)− len(λ)) =

(
1− 1

m

)
len(λ) +

1

m
vol(G) ≤

≤ len(λ∗) +
1

m
(vol(G)− len(λ∗)) = len(G) +

1

m
(vol(G)− len(G))

Factor 1
m

(vol(G)− len(G)) is known as the self-interference (or intra-task inter-

ference) i.e., the interference contribution of the task itself to the critical path. The

result of Lemma 1 suggests that, whenever an OpenMP program is composed of

untied tasks, a timing analysis can be easily performed by checking Equation (4.4)

against the relative deadline D of the OpenMP-DAG.

4.4 Impact of Tied Tasks on Scheduling

The execution semantics of the tied task model, presents some conceptual difficulties

that significantly affect the complexity of the schedulability problem.

Tied tasks are constrained by TSC 2, which reduces the number of available

threads for the execution of new tied tasks. Also due to the fact that tied tasks must

always resume on the same thread where they started executing. Overall, these two

constraints impact both performance and timing analyzability.

4The response time upper bound has been proposed in collaboration with Alessandra Melani.
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4.4.1 Reduction of available threads

This section analyzes the implications of using tied tasks from a schedulability point

of view. In particular, we compute the number of threads available to a new task due

to TSC 2, and the number of tasks that can prevent another task from resuming its

execution in its thread. In this way, we demonstrate that the tied task execution model

results in a non-conserving policy, and explain why analyzing tied tasks under current

scheduling algorithms without introducing unacceptable pessimism is prohibitive, or

at least conceptually very difficult to achieve.

The rest of this section analyzes these two scenarios assuming a generic scheduling

approach, denoted by GenS, and the breadth-first and work-first schedulers. GenS

represents that a concrete scheduling policy has not been specified. For the BFS and

WFS strategies, a FIFO policy (see Section 4.1.2.3) has been considered. Notice that

the possible scheduling solutions derived by BFS and WFS strategies are included in

GenS. The OpenMP program in Listing 4.2 (and its corresponding OpenMP-DAG in

Figure 4.1) is used to illustrate the explanation.

4.4.1.1 Number of threads available to a new OpenMP tied task

The number of available threads to a new tied task may be reduced because other

tied tasks suspended in a TSP prevent the new tied task from being scheduled in the

same thread. According to TSC 2, the new tied task can be scheduled to a thread in

which other tied tasks are suspended only if it is a descendant of all the tasks tied to

this thread. In the extreme case, a new tied task could even not start its execution

despite existing available threads in the team. Hereunder, we consider basic notions

of set theory to derive the number of tasks affecting the effective number of threads

available to new tied tasks, for each considered scheduling solution.

GenS. Given an OpenMP task Ti and a generic scheduling strategy GenS, we define

BlockCTi(GenS) as the set of potential tasks that may prevent Ti from executing on

the same threads in which they are suspended:

BlockCTi(GenS) = (T \ {Ti} \DesTi \ PreTi \DDepTi) ∩ TSPTgens, (4.5)

where T is the set of all OpenMP tasks, DesTi is the set of descendant tasks of Ti,

PreTi is the set of predecessor tasks of Ti, DDepTi is the set of tasks that depends
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1 #pragma omp parallel
2 #pragma omp single nowait { / / T0
3 part00

4 #pragma omp task / / T1
5 depend(out:x)
6 { part10

7 #pragma omp task / / T2
8 { part20 }
9 part11

10 #pragma omp taskwait
11 part12

12 }
13 part01

14 #pragma omp task / / T3
15 depend(in:x)
16 { part30

17 #pragma omp task / / T4
18 { part40 }
19 #pragma omp taskwait
20 part31

21 }
22 part02

23 #pragma omp task / / T5
24 { part50

25 #pragma omp task { / / T6
26 part60

27 #pragma omp task / / T7
28 { part70

29 #pragma omp task / / T8
30 { part80 }
31 #pragma omp taskwait
32 part71

33 }
34 part61

35 #pragma omp task / / T9
36 { part90 }
37 part62

38 }
39 part51

40 #pragma omp taskwait
41 part52

42 }
43 #pragma omp taskwait
44 part03

45 }

Listing 4.2: Example of an OpenMP
program using tasking model.

Figure 4.1: OpenMP-DAG corresponding
to the OpenMP program in Listing 4.2.

on Ti and TSPTgens is the set of tasks with at least one TSP (e.g., contain a task

or a taskwait construct) and so, can suspend their execution. DDepTi considers (1)

the set of tasks with data dependencies, through depend clauses, to or form Ti; and

(2) the descendant tasks of this set, if a synchronization dependency exists (e.g., a
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T TSPTgens

{T0, T1, T2, T3, T4, T5, T6, T7, T8, T9} {T0, T1, T3, T5, T6, T7}

Ti DesTi PreTi DDepTi BlockCTi(GenS)

T0 {T1, T2, T3, T4, T5, T6, T7, T8, T9} ∅ ∅ ∅
T1 {T2} {T0} {T3, T4} {T5, T6, T7}
T2 ∅ {T0, T1} {T3, T4} {T5, T6, T7}
T3 {T4} {T0} {T1, T2} {T5, T6, T7}
T4 ∅ {T0, T3} {T1, T2} {T5, T6, T7}
T5 {T6, T7, T8, T9} {T0} ∅ {T1} or {T3}
T6 {T7, T8, T9} {T0, T5} ∅ {T1} or {T3}
T7 {T8} {T0, T5, T6} ∅ {T1} or {T3}
T8 ∅ {T0, T5, T6, T7} ∅ {T1} or {T3}
T9 ∅ {T0, T5, T6} ∅ {T1, T7} or {T3, T7}

Table 4.1: Sets to compute the number of threads available to new tied tasks (generic
scheduling approach), for the example in Figure 4.1.

taskwait).

Only parallel tasks can simultaneously be suspended in different threads. There-

fore, only parallel tasks can simultaneously prevent a new tied task Ti from executing

on the threads in which they are suspended. This means that, if BlockCTi = {Tj, Tk},
but Tj cannot execute in parallel with Tk, then BlockCTi = {Tj} or BlockCTi = {Tk}.

In other words, BlockCTi contains the set of tasks that are not descendant or

predecessor of Ti, that do not depend on Ti, and that can be suspended in a TSP.

The descendant tasks of Ti have not been created yet at the point Ti is created, hence

we can neglect them. Similarly, the dependent tasks of Ti and their descendant tasks

are not considered because they have to wait until Ti completes to start executing.

Also, the predecessor tasks of Ti can be neglected because, according to TSC 2, Ti

can be scheduled in the threads of all its predecessor tasks.

Table 4.1 shows, for the example in Figure 4.1, the sets T and TSPTgens, the sets

DesTi, PreTi andDDepTi, for each task Ti, and the computed values ofBlockCTi(GenS).

Consider task T1 as an example: DesT1 is equal to {T2} because T1 creates T2; PreT1

equals to {T0} because T0 creates T1; and DDepT1 is equal to {T3, T4} because T3

and its descendant task T4 have a data dependency relationship with T1: T3 due to

the depend clause, and T4 due to the taskwait in T3. As a result, BlockCT1(GenS)
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is equal to {T5, T6, T7}, and so these tasks can suspend their execution and block a

thread that T1 could not use. In the case of task T5, BlockCT5 equals to {T1} or

{T3} because there is a data dependency between T1 and T3 and then, both tasks are

executed sequentially, T3 after T1. Therefore, only T1 or T3 may be simultaneously

suspended in a thread, which will not be available for executing T5.

BFS. When considering the BFS strategy (and a FIFO policy), BlockCTi(BFS) is

defined as follows:

BlockCTi(BFS) = BlockCTi(GenS) \ SAftTi =

= ((T \ {Ti} \DesTi \ PreTi \DDepTi) ∩ TSPTbfs) \ SAftTi,
(4.6)

where BlockCTi(GenS) is the set defined in Equation (4.5) and SAftTi is the set of

sibling (and their descendant) tasks starting their execution after Ti, according to the

FIFO policy. In other words, in order to compute BlockCTi(BFS), it is necessary

to remove the tasks that start executing after Ti from BlockCTi(GenS). SAftTi

includes only the tasks for which the execution order is known prior to run-time.

TSPTbfs is different from TSPTgens because the TSPs defined at task creations are

not considered in BFS. The reason is that the parent task is not suspended when it

creates a child task, but rather it continues its execution in the same thread. The

same consideration regarding the parallel tasks applies for BlockCTi(BFS).

Table 4.2 shows, for the example in Figure 4.1, the new set TSPTbfs and for each

task Ti, the extra sets SAftTi needed for computing the values of BlockCTi(BFS).

As an example, it is guaranteed that T5 starts executing after T1 (T5 ∈ SAftT1), since

T1 is created before and hence, it enters first the FIFO queue. However, whether T2,

a descendant task of T1, starts executing before or after T5 is unknown (T2 /∈ SAftT5
and T5 /∈ SAftT2). Moreover, although T3 is created before T5, it is not possible

either to know if T3 executes before T5 (T3 /∈ SAftT5 and T5 /∈ SAftT3), because

there exists a data dependency between T3 and T1 that affects the order in which T3

can be executed. T3 becomes ready only when T1 completes, and weather T5 starts

executing before or after T1 finishes, is unknown. For the task T1, the computed

BlockCT1(BFS) equals to ∅ because, according to the BFS policy, T5, T6 and T7

are created after T1 ({T5, T6, T7} ∈ SAftCTi) and T6 never suspends its execution

(T6 /∈ TSPTbfs).
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TSPTbfs

{T0, T1, T3, T5, T7}

Ti SAftCTi BlockCTi(BFS)

T0 ∅ ∅
T1 {T3, T4, T5, T6, T7, T8, T9} ∅
T2 ∅ {T5, T7}
T3 ∅ {T5, T7}
T4 ∅ {T5, T7}
T5 ∅ {T1} or {T3}
T6 ∅ {T1} or {T3}
T7 {T9} {T1} or {T3}
T8 ∅ {T1} or {T3}
T9 ∅ {T1, T7} or {T3, T7}

Table 4.2: Sets to compute the number of threads available to new tied tasks (BFS
approach), for the example in Figure 4.1.

WFS. Finally, in case of the WFS strategy, the set BlockCTi(WFS) is empty,

because all tasks Ti start executing immediately after their creation in the parent

task thread:

BlockCTi(WFS) = ∅. (4.7)

Overall, the cardinality5 of the sets BlockCTi(GenS) and BlockCTi(BFS) deter-

mines the maximum number of idle threads which will not be available to execute a

new tied task Ti when it is created. In the worst case, all these threads will be blocked

by suspended tasks due to the TSC 2. In case of the WFS strategy, even if tied task

can also block threads, when a new task Ti is created, it executes in the parent task

thread. Hence, |BlockCTi(WFS)| = 0. In any case, it is also necessary to consider

the constraints a tied task has to resume its execution. Next section analyzes this

situation.

4.4.1.2 At resumption time

When a suspended tied task Ti is ready to resume, it may not restart its execution,

even though there may be idle available threads. The reason is that the thread

to which Ti is tied to could be executing another task. This situation occurs only

when Ti has been suspended in a TSP and, at resumption time, another predecessor,

descendant or untied task is executing in the thread. There may be other idle threads

5The cardinality of a set A, expressed as |A|, is a measure of the number of elements of the set.
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Ti BlockRTi(GenS) and BlockRTi(WFS) BlockRTi(BFS)

T0 {T1, T2, T3, T4, T5, T6, T7, T8, T9} {T7, T8, T9}
T1 {T0, T2} ∅
T3 {T0, T4} ∅
T5 {T0, T6, T7, T8, T9} {T7, T8, T9}
T6 {T0, T5, T7, T8, T9} —

T7 {T0, T5, T6, T8} {T0, T5}

Table 4.3: Tasks that may block threads at resumption time for each task
Ti ∈ TSPTgens in Figure 4.1.

but the task cannot resume its execution because it is tied to its thread.

GenS. Given a GenS strategy and an OpenMP task Ti ∈ TSPTgens, we define

BlockRTi(GenS) as the set of potential tasks that may prevent (block) Ti from re-

suming its execution in the thread to which Ti is tied to:

BlockRTi(GenS) = DesTi ∪ PreTi ∪ uT, (4.8)

where DesTi is the set of descendant tasks of Ti, PreTi is the set of predecessor tasks

of Ti and uT is the set of untied tasks. BlockRTi(GenS) contains only predecessor

and descendant tasks of Ti and all the untied tasks because, due to TSC 2, while Ti

is suspended, only these tasks can be scheduled to the same thread that executes Ti.

Therefore only these tasks can prevent Ti to resume its execution.

Second column of table 4.3 shows, for the example in Figure 4.1, the computed

values for the sets BlockRTi(GenS), for all tasks Ti ∈ TSPTgens. The sets DesTi

and PreTi shown in Table 4.1, are needed to compute BlockRTi, as well as the set

uT , which in this example equals to the empty set (uT = ∅). Hence, given task T0,

BlockRT0(GenS) contains all its descendant tasks because all of them can be sched-

uled in the same thread and prevent T0 from resuming its execution. For the rest of

tasks, descendant and predecessor tasks are considered to compute BlockRTi(GenS).

BFS. When considering the BFS strategy, to compute BlockRTi(BFS) it is neces-

sary to discard from BlockRTi(GenS) the tasks that cannot block Ti’s thread when

it resumes execution, considering that:

1. TSPs upon task creation do not suspend the execution of Ti, by definition of the
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BFS strategy, i.e., after the creation of a child task, Ti continues the execution.

That is, as considered in the previous section, TSPTbfs 6= TSPTgens.

2. When Ti may suspend in a TSPs upon a task synchronization construct (a

taskwait, taskgroup, or a barrier construct), only the descendant tasks not

affected by the synchronization can block Ti’s thread. If any other descendant

task is executing on Ti’s thread, then Ti is not ready to resume its execution

but waiting for this task to complete.

3. The thread executing Ti may be blocked by Ti’s predecessors only if they have

a taskyield construct, or a task synchronization construct that does not affect

Ti.

Third column of table 4.3 shows, for the example in Figure 4.1, the computed

values for the sets BlockRTi(BFS) for all tasks Ti ∈ TSPTbfs (T6 is not considered).

AS an example, given task T0, we analyze independently each TSP in which T0 can

be suspended, this is the taskwait at line 43 in Listing 4.2. Then, we remove all child

tasks (and recursively, the descendant tasks) that are involved in this taskwait, i.e.,

task T1 (and recursively its child task T2 due to another synchronization construct

at line 10), task T3 (and similarly T4) and task T5 (and similarly T6 but not its de-

scendants T7, T8 and T9 because there is no synchronization dependency with T6).

As a result, only tasks T7, T8 and T9 compose the set BlockRT0(BFS). Given task

T1, T0 is not considered in BlockRT1(BFS) since the TSP of T0 is a taskwait in

which T1 is involved. T2 is not considered either because it is involved in the syn-

chronization construct (taskwait) of T1. Similar situations occur when computing

BlockRT3(BFS), BlockRT5(BFS) and BlockRT7(BFS).

WFS. In the case of WFS strategy, given an OpenMP task Ti ∈ TSPTgens, the set

BlockRTi(WFS) is equal to BlockRTi(GenS) since the scheduling strategy does not

impose any extra condition that reduces the number of tasks that may block a thread

when Ti resumes its execution.

WFS is particularly affected when tied tasks are implemented, because the parallel

execution turns into a sequential execution. When any task Ti is created, it starts

its execution in the thread that was executing the parent task. Therefore, the parent

task is suspended and it cannot resume its execution in another thread because it is

tied to its thread. On the contrary, if Ti is suspended in a TSP (not a task creation)

and Ti’s parent task resumes its execution, then Ti is blocked because of its parent
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task.

Overall, the analysis done in this section demonstrates that, given a task Ti ready

to resume its execution, the tasks in the sets BlockRTi may be blocking the thread

to which Ti is tied to. There may be idle threads but the tied model prevents Ti to

execute on these threads.

4.4.2 Issues on the timing characterization of tied tasks

The reasoning about the computation of BlockCTi and BlockRTi suggests that de-

riving schedulability results when tied tasks are involved is extremely challenging,

unless very pessimistic assumptions are made. More specifically, in Section 4.3 we

have leveraged the work-conserving policy implied by the use of untied tasks to de-

rive a timing analysis simply based on three quantities: (1) the critical path length

of the OpenMP-DAG; (2) the volume of the OpenMP-DAG; and (3) the available

number of threads m. The response time analysis considers the critical path plus the

interference of the rest of the OpenMP-DAG evenly distributed among the available

threads.

However, when considering the non-work-conserving scenario induced by tied

tasks, deriving such an accurate analysis is not as easy as for untied tasks, due to

multiple reasons:

1. It is not correct to compute the critical path of the task graph as a whole, but

rather a critical path reaching the end of each task in the OpenMP-DAG, since

it is important to compute the different time offsets after which each task can

start executing. In fact, since each task has its own descendant and precedence

relationships, the corresponding BlockCTi and BlockRTi sets will be different,

suggesting to carry out a per-task timing analysis.

2. The interference contribution for a tied task cannot be considered as evenly

distributed. Specifically, it is necessary to differentiate the interference contri-

bution before the task starts, which can be accounted for as evenly distributed

on the threads being blocked due to BlockCTi, and the interference suffered by

the task at each of its TSPs, which includes the full contribution of the set of

tasks BlockRTi.

3. The critical path reaching the end of a task Ti may include parts of other tasks

that can have different descendant relationships with respect to Ti. This makes
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really hard to identify which tasks may actually interfere with Ti without in-

troducing unacceptable pessimism in the analysis. In order to have an intuitive

feeling of the problem, consider again the example given in Figure 4.1, where

all task parts have unitary WCETs. Here, task T3 has a data dependency with

T1, hence it cannot start executing until T1 has finished. When computing the

critical path reaching the end of T3, we immediately observe that it is not sim-

ply composed of tasks that are predecessors of T3, but also by parts of T1 and

T2 p10, p11 and p20 (that are not predecessors of T3). Hence, the interference

imposed on critical task parts of T3 cannot simply be estimated based on the

descendant relationships of T3 (i.e., by the knowledge of BlockRT3), but should

take into account those of all the tasks involved, which hugely complicates the

analysis.

4. From the analytical point of view, computing an upper-bound on the response-

time of a tied task Ti would require to assume the worst-case scenario in which

all the tasks that can be suspended simultaneously at the creation point of Ti

are indeed suspended, inhibiting Ti to execute on the corresponding threads tied

to these tasks. Therefore, besides knowing the maximum number of tasks that

could be suspended at the time of Ti’s creation due to TSC 2 (i.e., BlockCTi),

we should provide an upper-bound on the maximum time the suspended tasks

would take before being resumed.

Overall, the above considerations confirm that a timing analysis for tied tasks

under the considered scheduling algorithms, besides being conceptually very difficult

to achieve, would require to address sources of inherent complexity that would lead to

unacceptably pessimistic response-time bounds. As a result, the makespan of the task

graph may undergo large variations depending on the allocation of newly generated

tasks, leading in few cases to resource under-utilization and undesirable idleness of

some threads as shown in the next section.

Interestingly, based on the work presented in this chapter, Sun et al. [75] propose

a new algorithm to schedule OpenMP task systems composed of tied tasks. Based

on this new scheduling algorithm, which avoids tying too much workload to the same

thread, they provide a response time analysis for tied tasks.
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1 #pragma omp parallel
2 num threads(4) {
3 #pragma omp single { / / T0
4 part00

5 #pragma omp task { / / T1
6 part10

7 #pragma omp task { / / T2
8 part20

9 #pragma omp task { / / T3
10 part30

11 #pragma omp task / / T4
12 { part40 }
13 #pragma omp taskwait
14 part31

15 }
16 #pragma omp taskwait
17 part21

18 }
19 #pragma omp taskwait
20 part11

21 }
22 part01

23 #pragma omp task { part50 } / / T5
24 part02

25 #pragma omp task { part60 } / / T6
26 part03

27 #pragma omp task { part70 } / / T7
28 part04

29 }}

Listing 4.3: Example of an OpenMP program
leading to a pessimistic scheduling of tied tasks.

Figure 4.2: OpenMP-DAG
corresponding to the OpenMP

program in Listing 4.3.

4.4.3 Platform under-utilization

As previously observed, the use of tied tasks encompasses their suspension and re-

sumption only by the same thread that first started their execution. This may lead to

platform under-utilization problems, reducing the number of threads working, even if

there are tasks ready to execute. We refer as m∗i to the minimum number of threads

available to task Ti at the time of its creation. Since not all threads may be available

to a task when it is created, it follows that the interference suffered from other tasks

cannot be considered to be evenly distributed across all threads, but only on m∗i ≤ m

threads.

Theorem 2. The minimum value of m∗i is 2, for any task graph comprising tied

tasks.

Proof. The statement can be demonstrated by the two following points: (i) providing
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a configuration where m∗i = 2, and (ii) showing that no configuration can be produced

with 0 ≤ m∗i < 2.

(i) There exists a scenario where m∗i = 2. Consider the OpenMP program illus-

trated in Listing 4.3 (and its corresponding OpenMP-DAG in Figure 4.2). Suppose

that the program must be executed on m = 4 threads and that the allocation on the

available threads is as shown in Figure 4.3a. Tasks T1, T2 and T3 must wait for their

first-level descendants to finish, due to the taskwait directives. Then, if task parts

p04 and p40 have a very long execution time, there is a long time interval where T5,

T6 and T7 cannot execute on threads 2 and 3, although they are idle, due to TSC 2.

T5, T6 and T7 can only be scheduled in threads 1 and 4 which are used by tasks T4

and T0, respectively. Therefore, T5, T6 and T7 cannot start their execution until they

finish and such a time interval can be arbitrarily long depending on the WCET of

task parts p04 and p40.

(ii) There is no configuration such that m∗i = 0 or 1. It cannot be m∗i = 0 because

this would mean that all m threads contain tasks simultaneously suspended in a TSP,

but then none of them would make progress (i.e., a deadlock occurs). In this case, no

new task can be created, hence the blocking due to TSC 2 cannot be experienced.

Analogously, it cannot be m∗i = 1. By contradiction, assume m∗i = 1. This

means that when task Ti is released, m − 1 threads are not available to it due to

TSC 2, i.e., m− 1 threads are blocked by tasks that are not predecessors of Ti. Such

m − 1 tasks must be suspended in a TSP, and cannot continue executing because

some of their synchronization constraints are not fulfilled. This can only happen

when some task must wait for its first-level descendants, due to a taskwait or an

if clause that evaluates to false. The semantics of the synchronization constraints

implies that there cannot be any synchronization arrow that traverses multiple levels:

synchronization arrows can either connect siblings in the case of data-dependencies,

or first-level descendants (childs) to their parent task, in the case of taskwait or if

clause. As a result, it follows that the m− 1 tasks must belong to m− 1 contiguous

descendant levels [lx, lx+m−2]. Therefore, the task that generates Ti must belong to

li, being either i ≤ x − 1 or i ≥ x + m − 1. In the case i ≤ x − 1, a contradiction

is reached, because each of the m threads executes at least one task, but the task

belonging to x + m − 2 has no descendant, hence there is no reason why it should

be suspended in a TSP. If instead i ≥ x + m − 1, then the task that generates Ti is

descendant of all the other m − 1 tasks, and the same holds for Ti. This facts also
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(a) Pessimistic BFS example with tied tasks

(b) WFS (LIFO) with tied tasks

(c) BFS example with untied tasks

Figure 4.3: Scheduling alternatives of the program in Listing 4.3.

imply a contradiction because TSC 2 comes into play only when the generated task

is not descendant of the other ones. In conclusion, there is no situation such that

m∗i = 1, proving the theorem.

Therefore, we define m∗i as:

m∗i = max(2,m− |BlockCTi|), (4.9)

where |BlockCTi| is the maximum number of tasks that may block threads which Ti

could not use at its creation time due to TSC 2. As we consider all potential cases,
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this number of tasks can be greater than the total number of threads, m. Therefore,

m − |BlockCTi| may be negative, but it is proven by Theorem 2 that the minimum

value of m∗i is 2. Hence, in this case, an accurate timing analysis should identify

which tasks compose this subset in the worst-case, since only a subset of the tasks

composing BlockCTi will subtract threads to the considered task. However, when tied

tasks are involved, it is absolutely non-trivial to identify the scenario that maximizes

the interference imposed on Ti. This is another subtle reason (in addition to those

listed in Section 4.4.2) that explains why devising a timing analysis for tied tasks is

a computationally-intensive and overly pessimistic process.

Figure 4.3 illustrates possible scheduling of the OpenMP program in Listing 4.3 In

particular, Figure 4.3a shows a case of resource under-utilization implied by the use

of tied tasks considering BFS: if all the nested tasks are scheduled in different threads

before T5, T6 and T7, and being part04 and part40 very time-consuming, then the

execution of tasks T5, T6 and T7 is postponed even if threads 2 and 3 are idle (striped

areas) but tied to tasks T1 and T2. Figure 4.3b shows the scheduling considering WFS

(LIFO): as already noted, WFS turns into a sequential execution when implementing

tied tasks. Notice that in this figure task parts p40, p50, p60, p70 and p04 are less time-

consuming only for the sake of space-saving. If the clause untied is added to all the

tasks in the program in Listing 4.3, we observe that the breadth-first scheduling of

these untied tasks, illustrated in Figure 4.3c, determines no platform under-utilization

beyond program limitations. WFS will result in a similar scheduling for untied tasks.

4.5 Related Work

The OpenMP language committee presented a comparison between the thread-centric

and the task-centric models, exposing the design choices done in the tasking model due

to conflicts with the thread-centric model [79]. These decisions include the definition

of tied and untied tasks, data-sharing clauses and scheduling constraints. Duran et

al. [81] performed an evaluation of different scheduling policies using the Nanos++

runtime system [70], and analyzed the differences existing between tied and untied

tasks for an average performance point of view. However, none of these works take

time predictability into account.

OpenMP has been already considered as a convenient interface to describe real-

time applications to deal with parallel task models in multiprocessor systems. The
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earliest parallel task models proposed to represent OpenMP parallel applications are

the fork-join model [27] and the parallel synchronous model [85] [37]. These works

consider the OpenMP thread-centric model. Vargas et al. firstly considered the DAG

task model to represent OpenMP applications parallelized with the tasking model

[26]. The authors studied how to construct an OpenMP task graph which contains

enough information to allow the application of real-time DAG scheduling models,

from which timing guarantees can be derived.

Unfortunately, besides the increasing expressiveness provided by existing real-time

parallel task models, all of them neglect the real semantics of the OpenMP execution

model and bypass the functionality of the runtime system. Instead, the purpose of the

work presented in this chapter is to demonstrate that the OpenMP tasking model can

be applied to real-time systems if work-conserving schedulers, such as BFS and WFS,

are used. We present the first scheduling analysis of an OpenMP-DAG composed of

untied tasks. Based on this work, Sun et al. [75] presented an interesting work that

addresses the scheduling analysis of an OpenMP-DAG composed of tied tasks. The

authors provide a new scheduling algorithm and develop two response time bounds

for the new algorithm, whose difference is a trade-off between simplicity and analysis

precision.

4.6 Summary

OpenMP is a firm candidate to address the performance challenges of critical real-

time systems. However, OpenMP was originally intended for a different purpose than

critical real-time systems, for which guaranteeing the correct output is as important

as guaranteeing it within a predefined time window. In this chapter, we evaluate

the use of OpenMP in critical real-time systems. We take into account the timing

constraints of such systems by considering the use of the sporadic DAG tasks model,

used in real-time systems for providing timing guarantees of parallel applications.

Concretely, we analyze from a timing perspective the two tasking execution models

existing in OpenMP, tied and untied. The existence of these two models results

from the coexistence of the thread-centric and task-centric models, for backward

compatibility reasons. The considerations drawn in this chapter suggest that using

tied tasks inside time-critical applications is not recommendable. The reason is the

inherent pessimism that underlies the timing analysis of such tasks and the conceptual

85



4. TIMING CHARACTERIZATION OF THE OPENMP TASKING
MODEL

difficulties behind the construction of an accurate schedulability test. On the other

hand, we have shown that a simple schedulability analysis of OpenMP programs is

possible whenever untied tasks are involved. This definitely suggests that the use of

untied tasks is preferable for parallel applications in the real-time context, since it

allows to exploit a parallel execution model in a predictable way.
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Chapter 5

Response Time Analysis under the

Limited Preemptive Scheduling

“Nunca el tiempo es perdido.”1

— Manolo Garcia

Previous chapters demonstrate the convenience of using OpenMP to parallelize

computationally intensive functionalities of critical real-time systems. One of the

main reasons is given by the similarities between the OpenMP tasking model and some

features widely used in the real-time community: the sporadic DAG tasks model and

the limited preemptive scheduling strategy. Despite there is plenty of literature about

the DAG scheduling model on the one hand, and the limited preemptive scheduling

on the other hand, the current state of the art does not consider the sporadic DAG

scheduling model under the limited preemptive scheduling strategy.

Chapter 3 (Section 3.2.2) provides a first analysis about the similarities of the ex-

ecution model of OpenMP tasks and the limited preemptive scheduling. This chapter

presents a novel response time analysis for DAG-based real-time systems under the

limited preemptive scheduling strategy. The set of real-time tasks is scheduled under

global fixed priority scheduling, i.e., each real-time task has a unique given priority,

and is allowed to execute on any of the available cores.

This new analysis is key to predict the timing behavior of critical real-time systems

implemented with OpenMP. Besides its applicability to OpenMP, this analysis can

also be applied to other parallel computing models, as long as the real-time tasks are

represented as DAG tasks.

1English translation: “Never the time is lost.”
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5.1 Limited Preemptive Scheduling

The limited preemptive scheduling approach has been proposed as an effective schedul-

ing scheme that reduces preemption-related overheads of the fully preemptive ap-

proach while constraining the amount of blocking of the non-preemptive approach

[33] (see Section 3.2.2 in Chapter 3 for further details). In the limited preemptive

scheduling with fixed preemption points, preemptions can only take place at certain

points during the execution of a task, dividing its execution into non-preemptive

regions (NPR).

5.1.1 Extending the system model

The system model presented in Section 2.1.2 must be extended to incorporate the

particularities of the limited preemptive scheduling and the priorities of the tasks.

According to this model, each task τk of the system is represented as a DAG Gk =

(Vk, Ek). Vk is the set of nodes, that now represent non-preemptive regions (NPRs)

as defined by the limited preemptive scheduling. Therefore a DAG task can only

be preempted at node’s boundaries, being qk = |Vk| − 1 the number of potential

preemption points of τk. Ek is the set of edges.

Under a fixed task priority scheduling algorithm, real-time tasks are ordered ac-

cording to their decreasing unique priority, i.e., τi has a higher priority than τj if

i < j. For each real-time task τk ∈ T , the sets hp(k) and lp(k) are identified as

the sets of real-time tasks with higher and lower priorities than τk, respectively. In

this chapter, we consider a sporadic task system with constrained relative deadline

Dk ≤ Tk. Tasks τk ∈ T are globally scheduled on a platform composed of m identical

cores.

5.1.2 Similarities with the OpenMP tasking model

As seen in Chapter 2, the OpenMP API defines the task scheduling points (TSPs)

as points in the program where the encountering OpenMP task can be suspended

(preempted), being the executing thread rescheduled to a different task. As a result,

OpenMP tasks are divided into task parts, that are represented as nodes in the

OpenMP-DAG.

If we apply a direct mapping between OpenMP threads and cores, as considered
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High priority task 𝜏1 

Medium priority task 𝜏2 

Low priority task 𝜏3 

𝑃𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑜𝑛  
𝑝𝑜𝑖𝑛𝑡 

𝑃𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑜𝑛  
𝑝𝑜𝑖𝑛𝑡 

𝑙𝑜𝑤𝑒𝑟  𝑝𝑟𝑖𝑜𝑟𝑦 
𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 

- ℎ𝑖𝑔ℎ𝑒𝑟  𝑝𝑟𝑖𝑜𝑟𝑦 
𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

- 

Figure 5.1: Example of limited preemptive scheduling for three sequential tasks.

in Chapter 3 (see Section 3.2.3), the execution model for the OpenMP tasking model

resembles the limited preemptive scheduling. There is a direct correspondence be-

tween nodes in the OpenMP-DAG (task parts) and NPRs in the limited preemptive

scheduling. That is, given an OpenMP-DAG, preemptions are only allowed at task

parts’ boundaries.

5.2 Response Time Analysis

When considering a set of tasks globally scheduled under the limited preemptive

strategy, they can suffer (1) higher-priority interference and (2) lower-priority blocking

times (also called lower-priority interference). The reasons are: (1) a ready task waits

for the higher priority tasks to finish their execution and (2) the execution of a task

cannot be suspended until a preemption point is reached, so a ready high priority

task may have to wait for one, or more, running lower priority tasks to finish their

execution. As we will see in Section 5.2.2, the number of running tasks of lower

priority that a given task must wait depends on the limited preemptive scheduling

strategy.

Figure 5.1 shows a simple example of limited preemptive scheduling for three

sequential tasks, τ1, τ2 and τ3 (in decreasing priority order), running on an single

core. The task of interest is τ2, which has a higher priority task τ1 and a lower

priority task τ3. As a result, τ2 suffers lower-priority blocking time from its release

time until τ3 reaches a preemption point. Moreover, since τ1 is released while τ2 is

running, τ2 must suspend its execution at its preemption point, until τ1 finishes its

execution, suffering higher-priority interference.

Therefore, the response time upper bound presented in Chapter 4 (Section 4.3) for

a single DAG task (with only intra-task interference), must be extended to consider
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a DAG-based task-set under limited preemptive scheduling (with both intra-task and

inter-task interference). The response time analysis must incorporate the inter-task

interference, given by both the higher-priority and the lower-priority interference. As

a result, the response time upper bound of each task τk of a DAG-based task-set,

under limited preemptive global fixed priority scheduling is computed as:

Rub
k ← len(Gk) +

1

m

(
vol(Gk)− len(Gk)) +

1

m

(
Ihpk + I lpk ) (5.1)

where len(Gk) is the length of the critical path, vol(Gk) is the volume of the task,

Ihpk denotes the higher-priority interference factor and I lpk denotes the lower-priority

interference factor. In the next sections, we describe how to compute a valid upper

bound for these two factors. The schedulability of the system is checked by comparing

Rub
k ≤ Dk for all the real-time tasks τk ∈ T .

5.2.1 Higher-priority interference

Melani et al. [54] considered a fully-preemptive scheduler in which DAG tasks only

suffer interference from higher priority tasks. The reason is that a low priority task

is preempted as soon as a higher priority task is ready to execute. They compute the

higher-priority interference Ihpk as the amount of time, in the worst case, during which

each higher priority task executes, hence, being task τk pending and not executing.

The computation of Ihpk and therefore, the response time analysis, is based on

the notion of problem window, in which Ihpk is computed considering a time interval

named window of interest. Then higher-priority interference contribution of each

interfering task τi in the problem window is divided between carry-in job, body jobs,

and carry-out job, where:

• The carry-in job is the first instance of τi that is part of the problem window.

It is released before the window of interest and has the deadline within it.

• The carry-out job is the last instance of τi executing in the problem window. It

is released within the window of interest and has the deadline after it.

• All other instances of τi are named body jobs.

The following Lemma, rephrased from [54], provides a valid upper bound for Ihpk

by taking, for each task in hp(k), the densest possible packing of parallel nodes i.e.,

the volume, given a problem window of length Rub
k .
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Figure 5.2: Worst-case workload of a task τi in a window on length t.

Lemma 2 (From [54]). An upper-bound on the higher-priority interference of a task

τk in a window of length Rub
k is given by

Ihpk ≤
∑

i∈hp(k)

Wi(R
ub
k ) (5.2)

where

Wi(t) =

⌈
t+Rub

i − vol(Gi)/m

Ti

⌉
vol(Gi) (5.3)

Wi(t), represented in Figure 5.2, is the maximum workload of an interfering task

τi in a window of length t. It happens when (i) the volume of the higher priority

task τi is evenly divided among all m cores; (ii) the carry-in job executes as late as

possible, i.e., close to its worst-case response time which is upper-bounded by Rub
i ;

and (iii) later instances execute as soon as possible, i.e., when they are released with

the minimum inter-arrival time. By considering a full contribution of both carry-

in and carry-out instances, the lemma follows. The corresponding Lemma V.1 in

[54] does not consider a full carry-out contribution, but only the share that fits the

considered problem window. However, we found that such a tighter estimation does

not improve the analysis, since the response-time iteration will always continue until

a full carry-out instance is considered. This observation allowed us to simplify the

formula without introducing pessimism.

Since Rub
k is needed to compute Rub

k , the response time analysis is an iterative

procedure: the initial window of interest of a task τk is Rub
k = len(Gk) + 1

m

(
vol(Gk)−

len(Gk)
)
, for which Ihpk (equation 5.2) and I lpk (equation in the next section) are

computed. Then, a new window of interest Rub
k is iteratively computed by equation 5.1

until a fixed point is reached. Moreover, the response time upper bound is computed

for all the real-time tasks in decreasing priority order, i.e., starting from the highest

priority task τ1, for which Ihp1 = 0. The reason is that, for computing Ihpk for the
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(a) Eager approach (b) Lazy approach

Figure 5.3: Limited preemptive scheduling of sequential tasks τ1, τ2, τ3 and τ4 on a
2-core processor.

rest of tasks τk, k > 1, the response time upper bound of the higher priority tasks

Rub
i , i < k must be previously computed (see equation 5.3).

5.2.2 Lower-priority interference

Under the limited preemptive scheduling, we consider two approaches that lead to

different values of the lower-priority interference.

• The eager approach, where a high priority task preempts the first lower priority

executing task that encounters a preemption point.

• The lazy approach, where a high priority task waits until the lowest priority

executing task reaches a preemption point.

Figure 5.3 shows an example of the eager and lazy approaches for a system com-

posed of four sequential tasks executing on two cores. The priority order of these

tasks, from higher to lower, is: τ1, τ2, τ3, τ4. Assume that tasks τ3 and τ4 are already

executing when τ1 and τ2 are released at time instant t1. Under the eager preemp-

tion approach (Figure 5.3a), τ1 starts executing as soon as the lower priority task

τ3 reaches a preemption point, which occurs at time instant t2. Similarly, task τ2

starts the execution at time instant t3 when the next lower priority task τ4 reaches a

preemption point. Under the lazy approach instead (Figure 5.3b), τ1 waits until τ4,

the lowest priority running task, reaches a preemption point at time t3. Notice that,

another low priority task, τ3, reached a preemption point before, at time instant t2,

but it has not been preempted because it was not the lowest priority executing task.

Hence, task τ2 is further blocked by τ3 until τ3 reaches its next preemption point at

time instant t4.

Given these two approaches, to compute an upper bound on the lower-priority

interference, it is necessary to identify:
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1. The situations in which a priority inversion may occur, i.e., when a task is

blocked while other lower priority tasks are executing. As noted in previous

works addressing global limited preemptive schedulability analysis [86, 87], a

task may be blocked before the beginning of its execution by lower priority

tasks that already started executing, and it may also suffer additional priority

inversions due to later lower priority instances.

2. The amount of blocking time for each of the priority inversions, i.e., how much

time a task is blocked by lower priority instances.

To understand why a task may be blocked by lower priority tasks after it started

executing, consider a task-set composed of sequential tasks, with eager preemptions.

In this setting, a task τk may start executing along with one or more lower priority

instances τi>k. If a higher priority task is released, τk may be preempted if it is the first

task reaching a preemption point, even if it is not the lowest priority executing task.

This causes τk to be preempted, while lower priority tasks τi>k continue executing,

leading to a priority inversion. This situation lasts until one of the running tasks τi>k

reaches a preemption point and so τk can resume its execution. In Figure 5.3a, τ3

suffers lower-priority interference after it started executing between time instants t2

and t3.

When considering DAG-based task-sets, this scenario becomes more complex.

This is due to the parallelism exposed by DAG tasks, which may dynamically vary

depending on which portion of the DAG is being executed. Hence, a DAG task τk

may experience lower-priority blocking, even without being preempted by higher pri-

ority tasks. This occurs when τk requires additional cores to fork two or more parallel

nodes. If cores are busy executing lower priority instances, τk experiences blocking

time on the forked nodes until lower priority instances reach a preemption point.

Figure 5.4 shows an example of this scenario. We consider a system composed

of two DAGs, only τ1 and τ2 from Figure 5.4a (τ3 is not considered here), executing

on m = 2 cores. τ1 has higher priority than τ2. All nodes of τ1 and τ2 have unitary

WCET, except node v2,1 with C2,1 = 2. Despite task τ1 is the highest priority task,

it may be blocked by τ2 after τ1 starts its execution. This scenario is shown in Figure

5.4b. The two tasks start executing at the same time instant t1. When v1,1 finishes,

only one of the forked nodes, v1,2, is scheduled at time instant t2, while v1,3 is blocked

by the lower priority task τ2 executing on the other core.

Overall, the worst-case scenario for lower-priority interference occurs (1) when a
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𝑣3,2 

𝑣3,1 

𝑣3,3 𝑣3,5 

𝑣3,4 

𝑣3,6 

𝝉𝟑 

𝑣3,9 

𝑣3,8 

𝑣3,10 

𝑣3,11 

𝑣3,7 

𝑣1,2 

𝑣1,1 𝑣1,3 
𝑣1,4 

𝑣2,2 𝑣2,1 

𝝉𝟏 

𝝉𝟐 

(a) Task-set composed of three DAG tasks. (b) Scheduling of tasks τ1 and τ2.

Figure 5.4: Example of DAG task-set under limited preemptive scheduling.

task τk is released, if all the m cores are executing lower priority tasks, and (2) after τk

starts executing, if it is blocked by lower priority tasks each time a priority inversion

occurs. In this case, at most m − 1 lower priority tasks may be executing (since τk

is running in the other core [87]). Therefore, the lower-priority interference I lpk is

computed as:

I lpk = ∆k,m + pk(R
ub
k )×∆k,m−1 (5.4)

where pk(R
ub
k ) is an upper-bound on the number of additional priority inversions

suffered by τk during its response time after it starts executing, and ∆k,m and ∆k,m−1

are upper-bounds on the lower-priority blocking time, when τk is released (on the

source node, or first NPR) and after it starts executing (on the rest of nodes or

NPRs), respectively. The values of these three factors depend on the selected limited

preemptive scheduling approach. Sections 5.3 and 5.4 present how these factors must

be computed for the eager and lazy approaches. Before that, the next section presents

how to compute the number of additional cores requested by a DAG task after it

starts executing. This factor is needed to compute the number of additional priority

inversions.

5.2.2.1 Additional core requests

With the objective of identifying the number of additional priority inversions that a

DAG task τk may suffer after starting its execution, we introduce the new parameter

swk.

Definition 9. swk is the maximum number of core requests that a DAG task τk

additionally needs after starting its execution.
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swk identifies all the points at which a priority inversion may occur after τk starts

executing. To better understand the reasoning behind this definition, consider the

example in Figure 5.4a, where a DAG-based task-set composed of three tasks is

represented. For the first task τ1, sw1 = 1 because one additional core is required

when node v1,1 forks nodes v1,2 and v1,3. For task τ2, sw2 = 0 because it does not

require additional cores after it starts executing. Finally, sw3 = 4 because τ3 requires:

(i) 1 additional core when node v3,1 forks nodes v3,2 and v3,3 (sw3 = 1); (ii) 2 additional

cores when node v3,3 forks nodes v3,4, v3,5 and v3,6 (sw3 = 1+2); and (iii) 1 additional

core when node v3,8 forks nodes v3,9 and v3,10 (sw3 = 1+2+1 = 4). Notice that, even

though τ3 may occupy three cores when nodes v3,4, v3,5 and v3,6 are ideally executed

in parallel, two out of these three cores are freed before executing v3,8. Therefore, we

need to account again for an additional core when v3,8 forks nodes v3,9 and v3,10.

It is important to distinguish between the additional core requests needed by

τk, and accounted by swk, and the number of forks, the total forked nodes, or the

maximum degree of parallelism. Notice that for task τ3, the number of forks is 3 (after

nodes v3,1, v3,3 and v3,8), the total forked nodes are 7 (nodes v3,2, v3,3, v3,4, v3,5, v3,6,

v3,9 and v3,10), but sw3 = 4. In this case, by coincidence, sw3 equals the maximum

degree of parallelism of τ3 (nodes v3,4, v3,5, v3,6 and v3,2 or v3,7 may run in parallel).

However, for task τ1, sw1 = 1 but the maximum degree of parallelism is 2.

5.2.2.2 Computing the number of additional core requests

To compute swk it is required not only to account, for each node, the number of direct

successors minus one, but also to consider the edges that prevent a group of direct

successors to execute in parallel. For instance, if an extra edge would exist between

nodes v3,4 and v3,5 of τ3 (Figure 5.4a), only one additional core, instead of two, is

required at this point.

Algorithm 2 computes the exact value of swk
2. It takes as input the DAG G =

(V,E) and, for each node vi ∈ V the sets DSucc(vi) and DPred(vi), which are the

sets of direct successors and direct predecessors of vi, respectively. The algorithm

iterates over all the nodes in V . At each iteration the number of additional cores

required after the execution of vi is initialized to its maximum possible value: the

number of direct successors of vi minus 1 (line 5). In the second loop, the algorithm

iterates over all vi’s direct successors vj ∈ DSucc(vi), to check if a core has already

2Notice that subscript k is omitted in the algorithm for simplicity.
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Algorithm 2 Additional core requests caused by a DAG task.

Input: G = (V,E): DAG task
DSucc(vi) ∀ vi ∈ V : Direct successors of vi
DPred(vi) ∀ vi ∈ V : Direct predecessors of vi

Output: sw

1 function additional cores
2 sw ← 0
3 N ← {}
4 for each vi ∈ V do
5 cores← |DSucc(vi)| − 1
6 for each vj ∈ DSucc(vi) do
7 if vj ∈ N then
8 cores← cores− 1
9 else

10 if DSucc(vi) ∩DPred(vj) 6= φ then
11 cores← cores− 1
12 end if
13 N ← N ∪ {vj}
14 end if
15 end for
16 sw ← sw +max(0, cores)
17 end for
18 end function

been accounted for the execution of vj (line 7), or if there is an edge between vj

and any of its sibling nodes (line 10). In both cases the number of additional cores

required decreases by one. Then, the vj is added to N (line 13) to keep track of the

nodes that have been already considered for accounting additional cores. Finally, sw

is updated with the additional cores required after the execution of vi (line 16). This

algorithm has quadratic complexity in the number of nodes.

swk is required to compute the number of additional priority inversions pk that,

along with the blocking time factors ∆k,m and ∆k,m−1, lead to the computation of an

upper bound on the lower-priority interference. In the following sections we provide

the equations and algorithms to compute the lower-priority interference to any DAG

task scheduled under the eager or lazy limited preemptive approaches.

5.3 Eager Preemption Analysis

This section presents how to compute the number of priority inversions pk, and the

lower-priority blocking times ∆k,m and ∆k,m−1, suffered by a task τk under the eager
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limited preemptive scheduling.

5.3.1 Number of priority inversions

Under the eager approach, the first lower priority task to reach a preemption point is

preempted, even if it is not the lowest priority running task. That is, when a highest

priority task is ready to execute (or requests additional cores), the first lower-priority

task τk running that reaches a preemption point, is preempted. As a result, τk can

suffer lower-priority interference, i.e., a priority inversion may occur, not only before

starting its execution, but also at later preemption points. Moreover, with a DAG

task model, τk may also suffer lower-priority interference when it requires one or more

additional cores for executing its forked nodes.

The next lemma provides an upper bound on the number of higher priority in-

stances that may be released within the scheduling window of a job of a task τk.

Lemma 3. In any time interval of length t, a job of task τk may be preempted by

higher priority tasks at most hk times:

hk(t) =
∑

τi∈hp(k)

⌈
t+Rub

i

Ti

⌉
(1 + swi) (5.5)

where hp(k) is the set of tasks with higher priority than τk, R
ub
i is the response time

upper-bound of task τi, Ti is the period of τi and swi is the number of additional cores

requested by τi after it starts executing.

Proof. Assume the job of τk is released at time t0 = 0. During a time interval of length

t, each higher priority task τi can be released at most
⌈
t+Rub

i

Ti

⌉
times. Following the

definition of swi in the previous section, it descends that the number of cores requests

(and so potential preemptions of τk) by a single instance of τi is at most 1 + swi: one

when τi is released plus swi after it starts executing. If we consider all the higher

priority tasks in hp(k), the lemma simply follows.

To determine the number of additional priority inversions experienced by τk un-

der the eager approach, after it starts executing, the following lemma identifies the

conditions under which this situation occurs.

Lemma 4. Under the limited preemptive eager approach, a DAG task τk that al-

ready started executing, may experience additional priority inversions (and then lower-

priority blocking times) only if all the following conditions are simultaneously satisfied:
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1. τk encounters a preemption point.

2. A higher priority task is released or τk requires additional cores to fork nodes.

3. There are lower priority tasks being executed.

Proof. Condition (1) guarantees that, following the limited preemptive scheduling

model, a task cannot be preempted within the execution of a node (NPR). Condition

(2) follows from the observation that a task cannot be preempted by a lower priority

instance; therefore, in order for τk to experience blocking from other lower priority

running instances, it must either be preempted by a higher priority task or require

additional cores to fork new nodes. Condition (3) is trivially derived by noticing that

no lower-priority blocking may be experienced without lower priority instances being

executed.

Lemma 4 allows to upper-bound the number of additional priority inversions for

the eager approach as follows.

Lemma 5. Under the limited preemptive eager approach, in any time interval of

length t, an upper bound on the number of priority inversions that a DAG task τk

may additionally experience after starting its execution is

peagerk (t) = min
(
qk, swk + hk(t),

∑
∀τi∈lp(k)

⌈
t+Rub

i

Ti

⌉
× |Vi|

)
(5.6)

Proof. Condition (1) in Lemma 4 ensures that the number of additional priority

inversions cannot exceed the number of potential preemption points of the task τk,

i.e., qk. Condition (2) provides an upper bound given by the number of preemption

requests from higher priority instances during a time interval of length t i.e., hk(t) (see

Equation 5.5) plus the number of additional core requests by τk in fork operations swk.

Finally, condition (3) allows deriving one last upper bound given by the number of

nodes of the lower priority tasks that may be released within the considered scheduling

window of length t
(∑

∀τi∈lp(k)

⌈
t+Rub

i

Ti

⌉
× |Vi|

)
. Given that the three conditions must

be satisfied, a minimum operation between the three bounds provides the final upper

bound.

5.3.2 Blocking time

Under the eager approach, the worst case scenario that must be considered to compute

the lower-priority blocking time factors is:
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• ∆eager
k,m , when τk is released, all the m cores are running lower priority tasks.

• ∆eager
k,m−1, after τk starts executing, when a priority inversion occurs, m− 1 cores

are running lower priority tasks (since τk is running in the other core).

In both cases, the first lower priority task τi ∈ lp(k) reaching a preemption point will

be preempted. Therefore, the lower-priority blocking time factors ∆eager
k,m and ∆eager

k,m−1

must consider the m and m− 1 longest (with higher WCET) nodes, respectively.

Thekkilakattil et al. [87] compute these factors for task-sets composed of sequen-

tial tasks, considering first the set of the longest nodes of each lower priority task and

then, the sum of the m or m− 1 longest nodes of this set:

∆eager
k,m =

∑ m
max
τi∈lp(k)

(
max

1≤j≤|Vi|
Ci,j

)
∆eager
k,m−1 =

∑ m−1
max
τi∈lp(k)

(
max

1≤j≤|Vi|
Ci,j

)
(5.7)

where max1≤j≤|Vi|Ci,j denotes the longest node of task τi and
∑

maxmτi∈lp(k) and∑
maxm−1τi∈lp(k) denote the sum of the m and m− 1 longest values (of max1≤j≤|Vi|Ci,j)

among all tasks τi ∈ lp(k), respectively.

However, this analysis does not hold for task-sets composed of DAG tasks, because

multiple nodes from the same task can execute in parallel. Therefore, there may be

two nodes of the same task with longer WCET than two nodes from different tasks.

Next subsections present two methods to compute the lower-priority blocking time in

DAG-based task-sets.

5.3.2.1 Blocking time impact of the longest nodes

The easiest way of deriving the lower-priority blocking time factors is to account for

the m and m− 1 longest nodes among all the lower priority tasks:

∆eager
k,m =

∑ m
max
τi∈lp(k)

(
m

max
1≤j≤|Vi|

Ci,j

)
∆eager
k,m−1 =

∑ m−1
max
τi∈lp(k)

(
m−1
max

1≤j≤|Vi|
Ci,j

)
(5.8)

where maxm1≤j≤|Vi|Ci,j and maxm−11≤j≤|Vi|Ci,j denote the m and m − 1 longest nodes of

task τi, respectively, and
∑

maxmτi∈lp(k) and
∑

maxm−1τi∈lp(k) denote the sum of the m

and m− 1 longest nodes among all tasks τi ∈ lp(k), respectively

Despite its simplicity, this strategy is pessimistic because it considers that the
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Figure 5.5: Example of a set of lower priority DAG tasks, lp(k). Each node is labeled
with its WCET Ci,j in parenthesis.

longest m and m− 1 nodes among all the lower priority tasks can execute in parallel,

regardless of the precedence constraints defined in the DAG.

5.3.2.2 Blocking time impact of the longest parallel nodes

The edges (precedence constraints) in the DAG determine the maximum level of

parallelism a task may exploit on m cores, which in turn determines the amount of

blocking time impacting on higher priority tasks. This information must therefore be

incorporated in the analysis to better upper-bound the lower-priority interference. To

do so, we propose a new analysis method that incorporates the precedence constraints

among nodes, as defined by the edges in the DAG, to compute the blocking time.

Given a task τk, our analysis derives the blocking time of lp(k) over τk by comput-

ing new ∆eager
k,m and ∆eager

k,m−1 factors in a three-step process: (1) identify the worst-case

workload of each task in lp(k) when executing on 1 to m cores; (2) compute the overall

worst-case workload of lp(k) for all possible execution scenarios ; and (3) select the

scenario that maximizes the blocking time.

In order to facilitate the explanation of the three steps, consider the Figure 5.5

which shows an example of a set lp(k), composed of four DAG tasks {τ1, τ2, τ3, τ4},
executed on a m = 4 core platform. The nodes (NPRs) of τi ∈ lp(k) are labeled as

vi,j, with their WCET (Ci,j) in parenthesis.

Step 1. Identify the worst-case workload for all the tasks in lp(k) when executing

on 1 to m cores.

Definition 10. Worst-case workload. The worst-case workload µi[c] of a task τi

executing on c cores is the sum of the WCET of the c longest nodes that can execute
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c µ1[c] µ2[c] µ3[c] µ4[c]

1 C1,6 or C1,8 = 3 C2,2 = 4 C3,1 = 6 C4,1 or C4,4 = 5

2 C1,6 + C1,7 = 5 C2,2 + C2,3 = 7 C3,3 + C3,4 = 7 C4,4 + C4,3 = 9

3 C1,6 + C1,4+ 0 C3,3 + C3,4 + C3,2 = 9 C4,4 + C4,3+

+C1,5 = 6 or C3,3 + C3,4 + C3,5 = 9 +C4,5 = 12

4 C1,2 + C1,3+ 0 C3,2 + C3,3 + C3,4+ 0

+C1,4 + C1,5 = 5 +C3,5 = 11

Table 5.1: Worst-case workload µi[c] of each task τi, i = {1 . . . 4} shown in Figure 5.5,
when executing on c = {1, . . . ,m} cores.

in parallel.

This step computes an array µi[c], c = {1, . . . ,m}, for all the tasks τi ∈ lp(k).

Each element µi[c] is computed as follows:

µi[c] =
∑ parallel

max
c
{Ci,j} (5.9)

where
∑

maxparallelc is the sum of the c longest nodes of τi that can execute in parallel,

maximizing the interference when using c cores. To this aim, the sum must consider

the edges of τi’s DAG to determine which nodes can actually execute in parallel.

Table 5.1 shows the array µi[c] for each of the tasks τi shown in Figure 5.5 for

c = {1, . . . ,m}. For example, the worst-case workload occurs when nodes v4,3 and v4,4

execute in parallel, with an overall impact of µ4[2] = 9 time units. τ2 has a maximum

parallelism of 2, so µ2[3] = 0 and µ2[4] = 0.

Appendix A.1 presents an algorithm and the Integer Linear Programming (ILP)

formulation to derive µi[c]. The algorithm computes, for each node of τi, the set of

nodes from the same task that can potentially execute in parallel with it (quadratic

complexity). The ILP formulation takes this information as input and computes µi[c],

i.e., the combination of c parallel nodes of τi that provides the worst-case sum of their

WCET.

Step 2. Compute the overall worst-case workload of lp(k) for all possible execution

scenarios.

Definition 11. Execution scenarios. The set of different execution scenarios

em = {s1, s2, ...sp(m)} for a given number of cores m is given by the integer partitions
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sp ∈ e4 |sp| Execution scenario description

s1 = {1, 1, 1, 1} 4 4 tasks, each running on 1 core

s2 = {2, 2} 2 2 tasks, each running on 2 cores

s3 = {2, 1, 1} 3 1 task running on 2 cores, and 2 tasks on 1 core each

s4 = {3, 1} 2 1 task running on 3 cores, and 1 task on 1 core

s5 = {4} 1 1 task running on 4 cores

Table 5.2: Set of execution scenarios e4 = {s1, s2, s3, s4, s5}.

of m, being p(m) = |em| the total number of integer partitions3. A given execution

scenario sl ∈ em, l = 1 . . . p(m) represents the number of tasks |sl| running on the m

cores and how the cores are occupied by these tasks.

Given that m represents the number of cores, it corresponds to a relatively small

integer. Therefore, despite its complexity, we can find efficient ways to compute both

em and p(m) in the literature [88]. Table 5.2 shows the set of execution scenarios

assuming m = 4 cores, i.e., e4. The total number of execution scenarios is p(4) = 5.

Definition 12. Overall worst-case workload. The overall worst-case workload

ρk[sl] of a set of tasks lp(k) executing on m cores, is the maximum time used for

executing this set according to a given execution scenario sl ∈ em.

This step computes all the execution scenarios sl ∈ em and then, the overall worst-

case workload ρk[sl] for each execution scenario. Each element ρk[sl] is computed as

follows:

ρk[sl] =
∑ sl

max
|sl|
{µi} (5.10)

where
∑

maxsl|sl| is the sum of the |sl| values of µi that fits in the scenario sl and

maximizes ρk[sl].

Table 5.3 shows the array ρk[sl] for each execution scenario sl ∈ em, l = 1 . . . p(m)

presented in Table 5.2. It considers the array µi[c] shown in Table 5.1. For instance,

the overall worst-case workload of s3, ρk[s3] = 19 is given when τ4 executes on 2 cores

(µ4[2] = 9), and τ2 and τ3 execute on 1 core each (µ2[1] = 4 and µ3[1] = 6).

3In number theory and combinatorics, the integer partition of a positive integer m is the way of
writing m as a sum of positive integers. Two sums that differ only in the order of their summands are
considered the same partition. The total number of integer partitions p(m) can be computed with
the pentagonal number theorem from the Euler’s formulation: p(m) =

∑
q(−1)q−1p(m−q(3q−1)/2),

where the sum is over all nonzero integers q (positive and negative)[88].
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sl ρk[sl]

s1 = {1, 1, 1, 1} µ1[1] + µ2[1] + µ3[1] + µ4[1] = 18

s2 = {2, 2} µ2[2] or µ3[2] + µ4[2] = 16

s3 = {2, 1, 1} µ4[2] + µ2[1] + µ3[1] = 19

s4 = {3, 1} µ4[3] + µ3[1] = 18

s5 = {4} µ3[4] = 11

Table 5.3: Overall worst-case workload ρk[sl] of tasks within the set lp(k) for each of
the scenarios sl ∈ e4.

Appendix A.2 presents an ILP formulation to compute ρk[sl] as given by Equation

5.10. It takes as input the worst-case workload µi[c], c = {1, . . . ,m}, for all the tasks

τi ∈ lp(k), as computed in the previous section.

Step 3. Select the scenario that maximizes the lower-priority blocking time.

Finally, given the overall worst-case workload ρk[sl] for each scenario sl ∈ em, the

lower-priority blocking factors for a given task τk can be computed as the maximum

overall worst-case workload among all scenarios:

∆eager
k,m = max

sl∈em
ρk[sl]

∆eager
k,m−1 = max

sl∈em−1
ρk[sl] (5.11)

where maxsl∈em and maxsl∈em−1 provide the maximum overall worst-case workload

among all the executing scenarios in em and em−1, respectively.

5.3.2.3 Comparing the eager blocking time factors

Given the set lp(k) shown in Figure 5.5, Table 5.4 presents the lower-priority blocking

time factors ∆eager
k,m and ∆eager

k,m−1, using the pessimistic but easy-to-compute approach

presented in Section 5.3.2.1 (named LP-eager-max), and the optimal but computa-

tionally intensive approach presented in Section 5.3.2.2 (named LP-eager-ilp).

On one side, ∆eager
k,m for LP-eager-max is given by the sum of the m longest nodes

among all lower priority tasks, i.e., ∆eager
k,4 = C3,1 + C4,1 + C4,4 + C2,2 = 20. By

contrast, ∆eager
k,m for LP-eager-ilp is given by the maximum ρk[sl] from Table 5.3, i.e.,

∆eager
k,4 = maxsl∈e4 ρk[sl] = max(ρk[s1], ...ρk[s5]) = 19. The pessimism added by the

LP-eager-max eager approach comes from the fact that nodes v4,1 and v4,4 cannot
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Equation 5.8 (LP-eager-max) Equation 5.11 (LP-eager-ilp)

∆eager
k,4 20 19

∆eager
k,3 16 15

Table 5.4: Lower-priority blocking factors for a given task τk.

be executed in parallel. Similarly, ∆eager
k,3 = 16 according to LP-eager-max, while

∆eager
k,3 = 15 according to LP-eager-ilp.

Overall, for this small task-set, the deeper analysis provided by the LP-eager-ilp

approach computes a tighter estimation of the lower-priority blocking factors. This

comparison is further analyzed in the evaluation Section 5.5.

5.4 Lazy Preemption Analysis

This section presents how to compute the number of priority inversions pk, and the

lower-priority blocking times ∆k,m and ∆k,m−1, suffered by a task τk under the lazy

limited preemptive scheduling.

5.4.1 Number of priority inversions

Under the lazy approach, preemption is delayed until the lowest priority running

task reaches a preemption point. That is, when a highest priority task is ready to

execute (or requests additional cores) if there are several lower priority tasks running,

the lowest priority task τk is preempted when it reaches a preemption point. As a

result, τk can suffer lower-priority interference, i.e., a priority inversion may occur,

before starting its execution. At later preemption points τk does not suffer additional

priority inversions (because in case of being preempted, τk is the lowest priority task

as there is no lower priority running tasks to interfere) unless additional cores are

required to fork nodes.

Figure 5.6 shows an example of the lazy approach when considering a DAG-based

task-set composed of four tasks τ1, τ2, τ3 and τ4, in decreasing priority order (Figure

5.6(a)), scheduled on m = 3 cores (Figure 5.6(b)). We assume that tasks τ2, τ3 and

τ4 are executing its first node when the highest priority task τ1 is released at time

t1. Under the lazy approach, τ1 starts executing the first node v1,1 when the lowest

priority running task τ4 reaches a preemption point at time t2. At time t3, nodes v1,2
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𝑣1,2 
𝑣1,1 

𝑣1,3 
𝑣1,4 

𝑣2,2 𝑣2,1 𝑣4,1 

𝝉𝟏 

𝝉𝟐 𝝉𝟑 𝝉𝟒 

𝑣3,1 

(a) Task-set composed of four DAG tasks. (b) Scheduling on a 3-core processor.

Figure 5.6: Scheduling of a DAG-based task-set under the lazy approach.

and v1,3 are ready to start executing, but only the core in which v1,1 is being executed

is available to start executing v1,2. As a result, the lower priority tasks τ2 and τ3

block the execution of the node v1,3. The reason is that, at time instant t3, τ1 forks

two parallel nodes, requesting one additional core. At time instant t4, τ2 reaches a

preemption point, but since it is not the lowest priority task running, it continues the

execution. Meanwhile, node v1,3 of τ1 is still blocked, until τ3 reaches a preemption

point at time instant t5. Overall, when considering DAG-based task-sets, a task τk

may suffer priority inversion not only on the first node before it starts executing, but

also when requesting additional cores to execute the rest of nodes.

To determine the number of additional priority inversions experienced by τk un-

der the lazy approach, after it starts executing, the following lemma identifies the

conditions under which this situation occurs.

Lemma 6. Under the limited preemptive lazy approach, a DAG task τk, that al-

ready started executing, may experience additional priority inversions (and then lower-

priority blocking times) only if all the following conditions are simultaneously satisfied:

1. τk encounters a preemption point.

2. τk requires additional cores to fork nodes.

3. There are lower priority tasks being executed.

Proof. Similarly to Lemma 4, condition (1) guarantees that, following the limited

preemptive scheduling model, a task cannot be preempted within the execution of a

node. Condition (2) follows from the observation that τk can only be preempted by

a higher priority task, but if it is the case, τk is the lowest priority running task, and

then there are not other lower priority instances running and blocking τk. However,

if τk requires additional cores to fork new nodes, all cores may be occupied by lower
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priority tasks blocking τk. Condition (3) is trivially derived by noticing that no

lower-priority blocking may be experienced without lower priority instances being

executed.

Lemma 6 allows to upper-bound the number of additional priority inversions for

the lazy approach as follows:

Lemma 7. Under the limited preemptive lazy approach, in any time interval of length

t, an upper bound on the number of priority inversions that a DAG task τk may

additionally experience after starting its execution is

plazyk (t) = min
(
swk,

∑
∀τi∈lp(k)

⌈
t+Rub

i

Ti

⌉
× |Vi|

)
(5.12)

Proof. Condition (2) in Lemma 6 provides an upper bound on the number of addi-

tional priority inversions given by the number of additional cores requests swk (see

Definition 9). Condition (3) provides an upper bound given by the number of nodes

of the lower priority tasks that may be released within the considered scheduling win-

dow of length t
(∑

∀τi∈lp(k)

⌈
t+Rub

i

Ti

⌉
× |Vi|

)
. Condition (1) trivially follows since the

number of potential preemption points is greater than the number of additional core

requests, i.e., qk > swk. To demonstrate it, consider a DAG task with a node that

forks m different nodes. In this case, qk = m while swk = m−1 as the core executing

the first node can execute one of the forked nodes. Given that the three conditions

must be satisfied, a minimum operation between the two bounds provides the final

upper bound.

5.4.2 Blocking time

Marinho et al. [89] estimated the worst-case blocking time due to lower priority tasks

when considering a system composed of sequential tasks, under the lazy preemption

strategy.

Figure 5.7 illustrates an example of the worst-case blocking time scenario gener-

ated by lower priority tasks. Concretely, it considers a task-set composed of eight

sequential tasks τ1, ..., τ8 (in decreasing priority order) running on m = 4 cores. As-

sume that lower priority tasks τ5, τ6, τ7 and τ8 are already executing on the processor,

when the higher priority tasks τ1, τ2, τ3 and τ4 are simultaneously released at time

instant t1. The first task to be preempted is τ8 (the lowest priority task) at time
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Figure 5.7: Worst-case lower-priority blocking suffered by τ4 under the lazy approach
(sequential tasks).

instant t2, when a preemption point is reached, and so the highest priority ready task

τ1 can start its execution. In the worst case scenario, task τ7 reaches a preemption

point at time instant t2 − ε in which the lowest priority task τ8 is still executing.

Therefore, τ7 continues executing (an so blocking τ2) until its next preemption point

is reached at time instant t3, when τ2 can start executing. Subsequently, in the worst-

case situation, τ6 reaches a preemption point, just before the preemption point of τ7

is reached at time instant t3, blocking τ3 until time instant t4. Finally, τ4 is able to

start its execution at time t5. Overall, the worst-case blocking time that task τ4 can

suffer is equal to (t2− t1)×4+(t3− t2)×3+(t4− t3)×2+(t5− t4)×1. In general, an

upper bound of the maximum blocking time is computed by adding the longest node

of the set lp(k) multiplied by m, the second longest node from the lp(k) multiplied

by m− 1, the third longest node from the lp(k) multiplied by m− 2, and so on, until

the m-th longest node from lp(k) is considered.

This scenario can be directly applied to this work. Under the lazy approach, the

worst case scenario that must be considered to compute the lower-priority blocking

time factors is:

• ∆lazy
k,m , when τk is released, all the m cores are running lower priority tasks and

m− 1 higher priority tasks are ready but not running. The worst case scenario

explained in Figure 5.7 applies to this situation.

• ∆lazy
k,m−1, after τk starts executing, when a priority inversion occurs, m− 1 cores

are running lower priority tasks (since τk is running in the other core) and

m− 2 higher priority tasks are ready but not running. The worst-case scenario

explained in Figure 5.7 applies to this situation, but considering m− 1 instead

of m cores.

Therefore, the lower-priority blocking time factors can be computed as Marinho
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et al. did (ADS blocking estimation 2 [89]):

∆lazy
k,m =

m∑
l=1

Ql
k × (m− l + 1)

∆lazy
k,m−1 =

m−1∑
l=1

Ql
k × (m− l) (5.13)

where Ql
k denotes the lth longest node of all the nodes of all the tasks in the set lp(k).

∆lazy
k,m estimates the lower-priority blocking time by considering that the worst-case

interference is obtained when the longest node, of all the nodes, of all the tasks in the

set lp(k) is accounted for m times (assuming the lowest priority for this task), the

second longest node is added up m−1 times (assuming the second lowest priority for

this task), etc., until the mth longest node is reached, which is only considered once.

∆lazy
k,m−1 is similarly computed until the (m− 1)th longest node is reached.

5.5 Experimental Results

This section evaluates the response time analysis of the limited preemptive scheduling

approach presented in this chapter, for both strategies, eager and lazy. The evaluation

considers the following metrics:

1. Schedulability ratio, i.e., a percentage of schedulable task-sets, when varying

the overall system utilization and number of tasks.

2. Number of priority inversions considered by the response time analysis, as com-

puted in Equations 5.6 and 5.12.

3. Number of preemptions that actually occur when deploying the system using a

scheduling simulator.

4. Impact of the interference and blocking times from higher priority and lower

priority tasks, respectively, over the response time.

Concretely, we evaluate the response time analysis of the lazy strategy, labeled as

LP-lazy, and the eager strategy, for which two methods have been presented to com-

pute the blocking time, labeled as LP-eager-max and LP-eager-ilp. Moreover, the lim-

ited preemptive scheduling strategies are compared against an ideal fully-preemptive

scheduling (labeled as FP-ideal). In fully-preemptive scheduling, the impact of lower
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priority tasks is null (I lpk = 0). Therefore, the fully-preemptive response time anal-

ysis always performs better than the limited preemptive scheduling. However, it is

important to remark that the performance of a real fully-preemptive approach in

which the preemption overheads is included in the analysis may significantly decrease

compared to limited preemptive scheduling. Accurately accounting for preemption

overheads in fully-preemptive is very difficult (if not impossible) since the execution

of each task can be preempted at any time instant. Preemption overheads in the

case of limited preemptive scheduling have neither been considered. Nevertheless, a

safe upper bound could be easily computed by multiplying the maximum number of

preemptions a task may suffer qk by the maximum time required for a context switch.

As explained in Section 5.2.1, the response time upper bound of a task-set is

computed starting from the highest priority τ1 to the lowest priority task τn. There-

fore, given a task τk, the response time upper bound of its lower priority tasks

Rub
i ,∀τi ∈ lp(k), is not computed yet when needed for the computation of peagerk

or plazyk (see equations 5.6 and 5.12). As a result, we consider Di as a safe upper

bound of Rub
i (if Di is greater than Rub

i then the task-set is not schedulable) when

computing peagerk or plazyk .

5.5.1 Experimental setup

All the experiments presented in this section consider the algorithms to randomly

generate task-sets composed of DAG task, presented in 2.4. The concrete values used

for the DAG tasks generation are:

• Probabilities of a branch to be expanded to a single node or to a parallel sub-

graph, pterm = 0.4 and ppar = 0.6, respectively.

• Probabilities of adding extra edges, pdep = 0.1.

• Maximum number of branches of a parallel sub-graph, maxpar = 6.

• Maximum recursion depth, maxdepth = 3.

• The WCET of each node varies in the interval [Cmin, Cmax] = [1, 100].

Given the complexity of the technique presented in Section 5.3.2.2, we consider

two different experiment sizes, in terms of number of DAG tasks within each task-set

(n) and number of nodes of each DAG task (maxnodes):

• Small DAG task-sets: maxnodes = 30 and n < 10.
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• Large DAG task-sets: maxnodes = 50 and n < 50.

The evaluation is carried out for different numbers of cores, concretely, for m = 2,

4, 8 and 16. Finally, for each experiment, we generate 500 DAG task-sets and consider

the implicit deadline case (Dk = Tk).

The schedulability analysis for all the scheduling approaches, and the algorithm

2 presented in Section 5.2.2.2 have been implemented in MATLAB R©. The ILP for-

mulations presented in Appendix A have been coded and solved with the IBM ILOG

CPLEX Optimization Studio [90].

The evaluation of the response time analysis introduced in this chapter, consider-

ing real use-cases, is presented in Chapter 6.

5.5.2 Schedulability analysis

This section evaluates the schedulability ratio given by the response time analysis

presented in Section 5.2, and used for the fully-preemptive and the limited preemptive

scheduling. In case of the fully-preemptive scheduling, the lower-priority interference

is null, I lpk = 0. In case of the limited preemptive scheduling, the lower-priority

interference I lpk is computed using Equation 5.4, for which the blocking time factors

and the number of priority inversions are computed following Sections 5.3 and 5.4,

for the eager and lazy approaches, respectively.

5.5.2.1 Evaluation of the two methods to compute the eager blocking

time factors

This section evaluates the two methods proposed to compute the impact of lower

priority tasks when considering the eager strategy. These two methods for computing

the blocking time are LP-eager-max and LP-eager-ilp, presented in Sections 5.3.2.1

and 5.3.2.2, respectively.

Figure 5.8 shows the percentage of schedulable task-sets, composed of small DAG

tasks, i.e., Small DAG task-sets, when varying the total system utilization UT , for

m = 4, m = 8 and m = 16 cores. In all cases, LP-eager-ilp and LP-eager-max per-

form very similar, decreasing the schedulability ratio as the utilization of the system

increases. The difference between both techniques is that LP-eager-max considers as

lower-priority interference the nodes with maximum WCET, but that may not exe-

cute in parallel. LP-eager-ilp instead, selects only the nodes that can actually execute
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Figure 5.8: Percentage of schedulable Small DAG task-sets as a function of UT .

in parallel.

Figure 5.8a shows the case in which m = 4 cores are considered, ranging the

utilization UT from 0.25 to 2.5. Both approaches are able to schedule nearly all the

task-sets until the utilization reaches 1. From this point on, the performance of LP-

eager-ilp and LP-eager-max drop, e.g., when UT = 1.5, the schedulability ratio is 39%

and 33% for LP-eager-ilp and LP-eager-max, respectively. The schedulability ratio is

0% when the utilization is equal to 2. Figure 5.8b shows the schedulability ratio when

m = 8 cores, ranging UT from 0.5 to 3.5. Assuming UT = 1.5, the schedulability ratio

is 70% and 48% for LP-eager-ilp and LP-eager-max, respectively. Finally, Figure 5.8c

shows the schedulability ratio when m = 16 cores, ranging UT from 0.5 to 4.5. In this

case, the trend is maintained; when UT = 2, the schedulability ratio is 72% and 30%

for LP-eager-ilp and LP-eager-max, respectively. As the number of cores increases,

the difference between LP-eager-ilp and LP-eager-max is higher because a higher

number of nodes must be selected to compute the interference, being LP-eager-ilp

more accurate in the selection.

In order to have a better understanding of the response time analysis performance,
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Figure 5.9: Percentage of schedulable Small DAG task-sets as a function of the number
of tasks n ∈ [2, 10].

given a fixed value of the system utilization, UT = 1.5, Figure 5.9 presents the per-

centage of schedulable Small DAG task-sets when varying the total number of tasks

n from 2 to 10, for m = 4 (Figure 5.9a), m = 8 (Figure 5.9b) and m = 16 (Figure

5.9c) cores. As shown before, for a given number of tasks, the schedulability rate in-

creases as the number of cores increases. However, what is remarkable in this figures

is that the performance of the response time analysis increases as the number of tasks

increases, conforming to the intuition that scheduling a large number of light tasks

(with low individual utilization) is easier than scheduling fewer heavy tasks (with high

individual utilization). This is the case of both schedulability tests, LP-eager-max

and LP-eager-ilp, that achieve the same rate, around 100% when n ≥ 6.

ILP Complexity. Regarding the ILP complexity, we measure the execution time

of the response time analysis of the LP-eager-ilp approach on an Intel(R) Xeon(TM)

CPU 5148 at 2.33GHz. Table 5.5 shows the average execution time (in seconds)

of the schedulability test of a task-set. We consider different task-sets and system

configurations, as shown in Figure 5.9: varying the number of tasks n ∈ [2, 10]; varying

the number of cores m = 4, 8 or 16; and assuming a system utilization UT = 1.5.
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n

m 2 4 6 8 10

4 1.2528 5.6357 8.0497 13.535 18.971

8 13.348 45.477 56.504 76.652 95.452

16 23.703 124.55 166.16 249.42 453.00

Table 5.5: Average execution time (seconds) of the LP-eager-ilp schedulability test of a
Small DAG task-set.

The ILP complexity makes the schedulability test of a task-set to take, in average,

up to 18 seconds, 95 seconds and 7.5 minutes, when considering m = 4, m = 8 and

m = 16 cores, respectively.

5.5.2.2 Comparing limited preemptive and fully-preemptive scheduling

This section evaluates and compares the two proposed limited preemptive approaches

LP-eager-max and LP-lazy, and a fully-preemptive approach FP-ideal when consid-

ering Large DAG task-sets. Given the complexity of the ILP solver to compute the

LP-eager-ilp solution, and the similar performance of LP-eager-max and LP-eager-ilp

when the number of tasks increases, we only consider the LP-eager-max approach in

the rest of this evaluation section.

Figure 5.10 shows the percentage of schedulable Large DAG task-sets, n ∈ [30, 50],

when varying the task-set utilization UT . Figure 5.10a shows the results for m = 4,

ranging UT from 1 to 3.5. When UT = 2.25, the percentage of schedulable task-sets

is 100%, 93% and 81% for FP-ideal, LP-eager-max and LP-lazy, respectively. Figure

5.10b shows the results for m = 8, ranging UT from 1 to 7. When UT = 2, the

percentage of schedulable task-sets is 100%, 99% and 33% for FP-ideal, LP-eager-

max and LP-lazy, respectively. Finally, Figure 5.10c shows the results for m = 16,

ranging UT from 1 to 14. When UT = 2, the percentage of schedulable task-sets is

100%, 99% and 0% for FP-ideal, LP-eager-max and LP-lazy, respectively.

As expected, the FP-ideal dominates the limited preemptive approaches since only

the interference caused by higher priority tasks is considered in FP-ideal. Regarding

the limited preemptive approaches, LP-eager-max dominates the LP-lazy approach.

Interestingly, and contrary to the intuition, for a given UT , the LP-lazy approach

achieves less schedulability rate as the number of cores increases. The reason is that

the blocking factor for the lazy approach dominates the response time analysis adding
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Figure 5.10: Percentage of schedulable Large DAG task-sets as a function of UT .

huge pessimism, which increases with the number of cores. Next section describes

this phenomenon in detail, by analyzing each of the factors needed to compute the

lower-priority interference.

Given a fixed value for the system utilization UT = 2.5, Figure 5.11 shows the

percentage of schedulable Large DAG task-sets when varying the number of tasks n

from 2 to 50 (in steps of 4), and considering m = 4, m = 8 and m = 16 cores (Figures

5.11a, 5.11b and 5.11c, respectively).

Intuitively, the schedulability rate should increase as the number of tasks increases

because, as shown in the previous section, scheduling a large number of light tasks is

simpler than scheduling fewer heavy tasks. This trend is observed for the FP-ideal

and LP-eager-max strategies, for which the schedulability ratio is around 100% for

task-sets composed of 50 DAG tasks. However, for the LP-lazy strategy, the lower-

priority interference, I lpk , hugely increases as the number of cores increases, resulting

in a very pessimistic response-time analysis, in which no task-set can be scheduled,
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Figure 5.11: Percentage of schedulable Large DAG task-sets as a function of the
number of tasks n ∈ [2, 50].

even with an utilization of 2.5 in a 16-core processor. As an example, when the

number of tasks is 30, the LP-lazy strategy is able to schedule 33%, 0.8% and 0% of

task-sets, for m = 4, 8 and 16 cores, respectively. By contrast, LP-eager-max is able

to schedule 48%, 82% and 87% of task-sets, for m = 4, 8 and 16 cores, respectively.

This phenomenon is also detailed in the next section.

5.5.3 Impact of priority inversions and preemptions

This section evaluates the number of priority inversions peagerk and plazyk considered

by our response time analysis, and the actual number of preemptions occurring at

system deployment. Moreover, the interference generated by higher priority and lower

priority tasks, Ihpk and I lpk , respectively, is also analyzed. All experiments consider

Large DAG task-sets, with an overall task-set utilization of 2.5.

Figure 5.12 compares the number of additional priority inversions considered by
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Figure 5.12: Number of additional priority inversions and maximum number of
preemption points, as a function of the number of tasks n ∈ [2, 50] (Large DAG task-sets).

the response time analysis of the LP-eager-max and LP-lazy strategies i.e., peagerk and

plazyk , computed by Equations 5.6 and 5.12, and the maximum number of preemptions

a task may suffer, i.e., qk, when varying the number of tasks from 2 to 50 (in steps

of 4). Notice that qk also represents the maximum number of additional priority

inversions a task τk may suffer after it starts its execution.

As expected, Figure 5.12 confirms that the response time analysis of the eager

approach considers a higher number of additional priority inversions than the lazy

approach, being very close to the maximum number of preemptions. The reason is

that in the eager approach, lower-priority blocking can come from (1) higher priority

tasks preemptions at the end of each node while there are lower priority tasks running,

and (2) the request of additional cores to fork new parallel nodes (see Lemma 4).

Under the lazy approach instead, only fork operations can generate blocking from

lower priority tasks (see Lemma 6). In fact, in most cases, peagerk is given by qk except

for (1) the highest priority task, for which peagerk = swk because hk = 0 and swk < qk,

and (2) the lowest priority task, for which peagerk = 0 since there are no lower priority

tasks causing blocking. The impact of these two tasks is shown in Figure 5.12, in the

small difference between qk and peagerk . In most cases, plazyk is given by swk, except for

the lowest priority task, for which plazyk = 0 for the same reason than in LP-eager-max.

Such a trend is also observed when simulating the execution of the Large DAG

task-sets. Figure 5.13 shows the observed preemptions when executing the task-sets
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Figure 5.13: Observed preemptions as a function of the number of tasks n ∈ [2, 50]
(Large DAG task-sets).

in a scheduling simulation running for 105 time units (in which task are released

multiple times), varying the number of DAG tasks from 2 to 50 (in steps of 4),

and considering m = 4, m = 8 and m = 16 cores (Figures 5.13a, 5.13b and 5.13c,

respectively). In this case, a fully-preemptive scheduling strategy has been considered

as well, for comparison purposes.

As expected, the limited preemptive eager approach generates more preemptions

than the lazy approach. Clearly, the number of preemptions in both cases decreases as

more cores are available for the same number of tasks. In case of the fully-preemptive

scheduling strategy, the number of preemptions is much higher than the limited pre-

emptive, since more scheduling opportunities exist (resulting in a higher schedulabil-

ity rate, as shown in Section 5.5.2.2). However, this would (seriously) complicate the

response time analysis if preemption overheads would be included, as the points at

which tasks are preempted are unknown.

Despite LP-eager-max enforces a higher number of priority inversions compared
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Figure 5.14: Average higher-priority and lower-priority interference as a function of the
number of tasks n ∈ [2, 50] (Large DAG task-sets).

to LP-lazy, as shown in Figures 5.12 and 5.13, LP-eager-max results in a better

schedulability ratio in the response time analysis, as shown in Figure 5.10. The

reason for this is explained in Figure 5.14, which shows the interference due to higher

priority and lower priority tasks, when varying the number of tasks n ∈ [2, 50], and

considering m = 4, m = 8 and m = 16 cores (Figures 5.14a, 5.14b and 5.14c,

respectively). Concretely, the figure shows the absolute value (in time units) of the

contribution of I lpk and the sum of Ihpk + I lpk to the response time analysis of both

LP-eager-max and LP-lazy, and the contribution of Ihpk to the response time analysis

of FP-ideal.

The interference factor due to lower priority tasks I lpk for the LP-lazy and the LP-
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eager-max approaches is almost equivalent when m = 4 cores. However, the difference

between the factor I lpk of both approaches drastically increases as the number of cores

increases. In case of m = 16 cores, I lpk for the LP-lazy approach becomes the dominant

factor in the response time. Regarding the higher-priority interference Ihpk , it is alike

computed for FP-ideal, LP-eager-max and LP-lazy (see Equation 5.2). However, the

factor Ihpk for the LP-lazy approach is always worse than for LP-eager-max, which

in turn, is worse than for FP-ideal. The reason is that Ihpk is computed considering

the window of interest in which higher priority tasks can interfere, i.e., the response

time upper bound, which is iteratively computed by Equation 5.1. As I lpk for LP-lazy

or LP-eager-max increases, the window of interest increases as well, impacting on

Ihpk . Overall, factors ∆lazy
k,m and ∆lazy

k,m−1, used for the computation of I lpk for the LP-

lazy approach, add huge pessimism to the response time upper bound, increasing the

window of interest and negatively impacting on the system schedulability of LP-lazy,

as shown in the previous section.

5.6 Related Work

The DAG model allows to represent each parallel real-time task as a directed acyclic

graph. Baruah et al. [13] first introduced the scheduling problem for a unique DAG

task, and showed that the problem “is computationally intractable, but amenable

to efficient approximate solution”. They provide schedulability tests for determining

whether a given DAG task can be scheduled by earliest deadline first (EDF) to always

meet the deadlines for all jobs on a specified number of processors. The global EDF

scheduling problem of multiple DAG tasks was studied by Bonifaci et al. [91]. Other

works that proposed different global EDF schedulability tests are [92][93][94][92]. The

partitioned [95] or the federated [66] scheduling approaches for DAG tasks have also

been studied. Moreover, conditional DAG tasks [96][54][97][98] have been considered

to enrich the parallel task model with control-flow information. Finally, Fonseca et

al. [99] provide a response time analysis for DAG tasks scheduled by partitioned fixed

priority scheduling.

Despite the significant amount of work on parallel task models, none of the existing

works investigates the potential of combining the limited preemptive framework with

the current schedulability analysis for DAG task-systems. The potential of limited

preemptive scheduling schemes has been mostly investigated in the case of task-sets
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composed of sequential tasks. We refer to [33] for an exhaustive survey on the limited

preemptive scheduling framework in a single-core scenario. We analyze the limited

preemption with fixed preemption points, but other techniques have been proposed:

(1) preemption thresholds scheduling [100], where the preemption of a task is allowed

only when the priority of the arriving task is higher than a priority level (threshold),

that is assigned to each task; and (2) deferred preemptions scheduling [101], where

each task specifies the longest interval that can be executed without being preempted.

Optimized preemption point placement techniques [64] [102] have also been proposed

to reduce the cost of preemption related overheads incurred by a task. These works

propose methods for placing suitable preemption points in each task in order to

maximize the chances of finding a schedulable solution. Interestingly, similar methods

could be exploited for task-sets composed of DAG tasks, in particular, the OpenMP

taskyield construct would allow to place such optimal preemption points. This is

not considered in this thesis but remains as a future work.

In a multi-core system, schedulability analysis have been developed under both the

lazy and eager approaches. In the former strategy, an analysis based on link-based

scheduling has been proposed by Block et al. [103]. Under link-based scheduling,

any newly-released higher priority task is linked to the processor where the lowest

priority running task is executing, and can preempt it only when the lowest priority

task encounters a preemption point. A response time analysis targeting global fixed

priority scheduling with eager preemptions has been proposed by Davis et al. [86],

under the assumption that each sequential task has a single final non-preemptive

region (the rest of the task is fully-preemptive). This work also showed that an

appropriate choice of the length of this region can improve schedulability. Moreover,

the authors showed that the limited preemptive approach under global fixed priority

scheduling with eager preemptions is incomparable to that with lazy preemptions.

The reason is that, for sequential tasks, there is a trade-off between the blocking time

of lazy preemptions and the number of preemptions of the eager approach. In this

chapter, we demonstrate that such trade-off does not exist for task-sets composed of

DAG tasks, for which the blocking time factors of the lazy strategy is very pessimistic.

Marinho et al. [89] encompasses tasks with multiple non-preemptive regions and a

lazy approach but it mostly provides an analysis of blocking effects. A complete

schedulability analysis in the case of eager preemptions and multiple NPRs for task-

sets composed of sequential tasks has been proposed by Thekkilakattil et al. [87].

120



5.7 Summary

5.7 Summary

This chapter provides a response time analysis for DAG-based task-sets under global

fixed priority limited preemptive scheduling. Given the limited preemptive scheduling

strategy, two different approaches have been analyzed: eager and lazy. In case of a

higher priority task becomes ready, the former selects the first lower priority running

task to reach a preemption point as the one being preempted; the latter selects the

lowest priority running task to be preempted whenever it reaches a preemption point.

We show the necessary conditions under which DAG tasks may experience lower-

priority interference for both approaches. Concretely, we formally proved which are

these conditions and compute (1) the number of priority inversions a task may suffer

and (2) the lower-priority blocking time. As a result, we derive a novel response time

analysis for DAG-based task-sets scheduled under the eager or lazy limited preemptive

scheduling.

Finally, we evaluate and compare the response time analysis for the eager and

lazy approaches with randomly generated task-sets. Our analysis demonstrates that,

despite the eager approach generates a higher number of priority inversions, the block-

ing factor of the lazy approach dominates the response time upper bound. Therefore,

contrary to what has been demonstrated when considering sequential task-sets, the

limited preemptive lazy scheduling approach has been proven to be a very inefficient

scheduling strategy when task-sets composed of DAG tasks are considered, and so

not suitable for parallel execution.

Overall, we advance the state of the art to provide a response time analysis for

DAG-based task-sets under global fixed priority limited preemptive scheduling. Given

the similarities between the OpenMP tasking model and the DAG tasks model under

limited preemptive scheduling, this work allows to provide timing guarantees to real-

time systems parallelized with OpenMP, provided that such scheduling strategy is

supported.
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Chapter 6

DAG-based Parallel Real-Time

Systems: Two Real Use Cases

“I tore myself away from the safe comfort of certainties through my

love for truth - and truth rewarded me.”

— Simone de Beauvoir

This chapter applies the response time analysis presented in previous chapters to

two real use cases. We first consider a real-time system composed of several inde-

pendent OpenMP applications that we integrate together. Secondly, we consider an

AUTomotive Open System ARchitecture (AUTOSAR) application, from the auto-

motive domain: a diesel engine management system (EMS).

6.1 Real-Time Tasks Parallelized with OpenMP

This section evaluates the response-time analysis of three real and independent ap-

plications parallelized with OpenMP, and integrated within a single real-time system

conforming the strategy presented in Chapter 3 (Section 3.1.1). Given the reticence of

the industry to provide real use cases, we experiment with three different applications

that do not necessarily conform a real system but help us to test our proposed timing

analysis techniques. Concretely, we consider a pre-processing sampling application

for infra-red H2RG detectors, from the space domain, a pedestrian detector and a

cholesky factorization, both useful in the automotive domain to support advanced

vehicle functionalities.
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getCoAddedFrame 

1. detectSaturation 

2. subtractSuperBias 

3.nonLinearityCorrection 

4. subtractPixelTopBottom 

5. subtractPixelSides 

6. detectCosmicRay 

7. LinearLeastSquaresFit 

calculateFinalSignalFrame 

#of  

readouts 

Figure 6.1: Stages of the pre-processing sampling application.

We first describe the applications and the implemented parallelization strategies.

Then, we present the methodology to extract the DAG and the experimental setup.

Finally, we present the timing analysis for each application individually, i.e., running

in isolation, considering the response time analysis presented in Chapter 4, and for the

real-time system, i.e., running concurrently, considering the response time analysis

presented in Chapter 5. In both cases, we compare the results with the average and

maximum observed execution time in a real platform.

6.1.1 Description of the OpenMP applications

This section presents the three C/C++ applications considered and the implemented

parallelization strategy.

6.1.1.1 Pre-processing sampling for infra-red detectors

The pre-processing sampling application for the infra-red H2RG detectors (provided

by Airbus Defense and Space and developed by the European Space Agency (ESA)

under a GPL license), is planned to be used in the Euclid spacecraft, whose objective

is to better understand the geometry of dark energy and dark matter by measuring

the red-shift of galaxies at varying distances from Earth.

Figure 6.1 illustrates the description of this application. It processes frames of

2048 × 2048 pixels, provided by the H2RG sensor, through seven stages. It also

includes an extra stage, getCoadedFrame, that simulates the acquisition of a given

number of readouts from the H2RG sensor frame into a 2048x2048 array structure.
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Figure 6.2: DAG of the pre-processing sampling application when BS = 512 (190
nodes).

In this case, we consider two readouts of the sensor. Since this stage is a simulation

we do not consider it into the parallelization strategy. Moreover, we assume that

the sensor data acquisition overlaps with the computation that processes a previously

acquired frame. The last stage, calculateFinalSignalFrame, is a final stage to compute

the metrics and provide the results that summarize the previously computed frames.

Parallelization strategy. We parallelized the pre-processing sampling application

following a wave-front strategy, in which the frame is divided into blocks, of size
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BS×BS, and being potentially processed in parallel. Therefore, the computation of

each frame block for each stage is potentially assigned to an OpenMP task. The data

dependencies existing among the different stages are defined by the depend clause.

The source code of the most representative function of this application, that includes

the OpenMP directives, is shown in Appendix B.1.

Figure 6.2 shows the resultant DAG of the pre-processing sampling application

when BS = 512, i.e., when the frame is divided into 16 blocks. The numbers in

the legend correspond to the lines of the source code where the OpenMP task or

taskwait directive start (see Appendix B.1). Also the colors shown in Figure 6.1

correspond to the color of the nodes implementing the stages. The first frame (from

the first readout of the sensor) is processed by the tasks represented as nodes 41 to

81. Similarly, the nodes starting after node 81 process the second frame (from the

second readout), except the last “row of green nodes” that represent the final stage.

Nodes 41, 45, 81 and 85 represent the taskwait constructs.

6.1.1.2 Pedestrian detector

Probably, one of the most popular pedestrian detectors is the Histograms of Ori-

ented Gradients (HOG) feature descriptor (or simply HOG descriptor), trained with

a Support Vector Machine (SVM) approach [104]: A HOG feature descriptor is a

data structure used to encode the digital image of an object (in our case a pedes-

trian) independently of modest changes in viewing conditions, e.g., changes in scale,

orientation, contrast. The descriptor counts occurrences of gradient orientation in

localized portions of the image, and it is based on global features (rather than a col-

lection of local features) to describe pedestrians. A SVM is a type of machine learning

algorithm used, in this case, to classify pedestrians based on HOG descriptors.

The pedestrian detector uses a sliding detection window (64× 128 pixels) that is

moved around the input image to be analyzed. For each detection window, a HOG

descriptor is computed and processed by the SVM, which classifies it as “a pedestrian”

or “not a pedestrian”. The HOG descriptor of a given window is computed by further

dividing the window into cells (8×8 pixels) and overlapping blocks (2×2 cells). Figure

6.3 shows an example of the divisions made to an input image.

Our implementation of the parallel pedestrian detector is based on the computa-

tion of the HOG descriptor included in the open-source VLFeat library [105].

126



6.1 Real-Time Tasks Parallelized with OpenMP

Block  2 

Block  1 Cells 

Input image Sliding Windows 

Figure 6.3: Pedestrian detector description: divisions in the input image.

Parallelization strategy. Given a Full HD input image divided into blocks, the

computation of NBLOCKS × NBLOCKS blocks is assigned to an OpenMP task.

Since blocks can overlap, the depend clause is used to define the dependencies among

tasks, i.e., if the four cells of a block are processed, an overlapping block only processes

the non-common cells (see Figure 6.3). As a result, the parallelization follows a

wavefront strategy, meaning that the computation of block (x, y) depends on blocks

(x−1, y), (x, y−1) and (x−1, y−1). The OpenMP task computing the last block of

a sliding window, also computes the final HOG descriptor and compares it with the

reference SVM. The source code of the most representative function of the pedestrian

detector, that includes the OpenMP directives, is presented in Appendix B.2.

Figure 6.4 shows the resultant DAG of the person detector when NBLOCKS =

20, i.e., when each OpenMP task processes 400 blocks. In this case, the number of

nodes in the DAG is 84. The number in the legend correspond to the lines of the

source code where the OpenMP task directives are included (see Appendix B.2).

6.1.1.3 Cholesky factorization

The Cholesky factorization [55] is an useful function commonly used for efficient

linear equation solvers and Monte Carlo simulations. Cholesky can also be used to

accelerate Kalman filters, implemented in autonomous vehicle navigation systems to

detect objects positions and compute trajectories. The application processes a matrix

of 4096 × 4096 real floating-point numbers, using the Intel Math Kernel Library to

compute the matrix factorization.
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Figure 6.4: DAG of the pedestrian detector when NBLOCKS = 20 (84 nodes).

Parallelization strategy. The parallelization approach considered for this applica-

tion, divides the matrix into NB×NB blocks. Similarly to the previous applications,

the computation of each matrix block is assigned to an OpenMP task. The data de-

pendencies between blocks are defined by the depend clause. As NB increases, the

number of OpenMP task increases as well, since there are more blocks to process.

However, the task granularity decreases as NB increases, since the size of each block

becomes smaller. The source code of the most representative function of this appli-

cation, that includes the OpenMP directives, is presented in Appendix B.3.

Figure 6.5 shows the DAG representation of the cholesky factorization when NB =

8, i.e., when the matrix is divided into 64 blocks. The number in the legend correspond
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Figure 6.5: DAG of the cholesky factorization application when NB = 8 (120 nodes).

to the lines of the source code where the OpenMP task directives start (see Appendix

B.3).

6.1.2 Extraction of the DAG task

The DAG representations of the three OpenMP applications (as the examples shown

in Figures 6.2, 6.4 and 6.5) have been statically obtained from the source code of

each application, with a compiler technique [57], implemented in Mercurium [106].

At runtime level, the DAG is also used to execute OpenMP tasks while honoring their

dependencies. The scheduler follows the statically derived DAG, instead of using the

depend clauses (already analyzed by the compiler) [43]. This feature in the runtime

is implemented on top of the GNU libgomp library [68] included in GCC version 5.4.0

(labeled as libgomp* ). Mercurium and libgomp* also provide a trace utility to get
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the execution time of the OpenMP tasks, task parts and the runtime overhead.

These methods are used to compute the WCET of each node by taking the highest

execution time observed of the corresponding OpenMP task running in isolation.

Then, a safety margin of 60% is added, which is a common industrial practice to

obtain WCET values, relying on software simulation and testing, and reinforcing by

the application of safety margins [107].

6.1.3 Experimental setup

In order to evaluate the response time analysis of each OpenMP application is isola-

tion, and being executed concurrently as a part of a real-time system, we compare the

results with the average and maximum observed execution times in a real platform.

To do so, we consider two different OpenMP runtime implementations: libgomp* and

Nanos++ [108]

The reason of also using Nanos++ is that, as seen in Chapter 3, libgomp does

not implement the priorities and the TSPs as required by the fixed priority limited

preemptive scheduling approach presented in Chapter 5.

As seen in previous chapter, the response time analysis have been implemented

in MATLAB R©. The experiments run in an Intel Xeon Platinum 8160 CPU with 24

cores, which operates at 2.10GHz. This platform is mainly used in the HPC domain.

The reason of using it rather than an embedded platform is twofold: (1) it allows

us to explore up to a higher number of cores; and (2) it supports OpenMP runtime

implementations, i.e., libgomp and Nanos++, with all the required features (depend,

priority clause, etc.). As a drawback, the variability of the execution time of the

applications is higher than in an embedded platform. It remains as a future work the

evaluation of our response time analysis in a parallel embedded architecture.

6.1.4 Individual timing analysis

This section presents the timing analysis of the three applications running in isola-

tion. We compute for each application (1) the response time upper bound Rub, as

provided by Equation 4.4 in Chapter 4; (2) the average execution time when run-

ning sequentially, i.e., when OpenMP directives are ignored; and (3) the average and

maximum observed execution time when running in parallel. The average and maxi-

mum observed execution times have been computed for libgomp* and nanos++. The
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Figure 6.6: Individual timing analysis when m = 16.

reason is that, as explained in the previous section, the WCET of each node in the

DAG has been computed considering the execution time in libgomp*, while the final

system uses nanos++. Therefore, we compare the execution times for libgomp* and

nanos++ and, as shown in the next sections, the WCET estimations obtained with

libgomp* remains valid when executing the applications in Nanos++.

Figure 6.6 shows the Rub, the average sequential and parallel execution times,

and the maximum observed parallel execution times (in ms), when varying the num-

ber of nodes of the DAG of the three applications, the pre-processing sampling, the

pedestrian detector and the cholesky factorization (Figures 6.6a, 6.6b and 6.6c, re-

spectively). The number of nodes, i.e., the number of OpenMP task instances, is

determined by the block size BS in case of the pre-processing sampling, the number

of blocks NBLOCKS in case of the pedestrian detector, and the total number of

blocks NB in case of the cholesky factorization. The figures show the results when

the number of cores used is m = 16. Similar trends have been observed when the

number of cores is m = 4 and 8.
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First of all, the figures show the improved performance of the parallel version of

these application with respect to the sequential version. Concretely, the performance

increases as the number of nodes in the DAG increases, because more parallelism is

exploited. In average, the best speedup factors are 6x, 13x and 8.7x, for the pre-

processing sampling, the pedestrian detector and the cholesky factorization, with

libgomp* and obtained when the number of nodes is 193, 3603 and 1543, respectively.

In case of nanos++, this values are 6x, 12.7x and 11.6x, when the number of nodes

is 193, 3603 and 819, respectively.

When comparing the average and maximum observed execution times in libgomp*

and nanos++, both provide similar performance (the results in libgomp* are not

always visible in the figures since the curves overlap with the results in nanos++).

Depending on the number of nodes, the difference between the average execution

time in libgomp* and nanos++ is between the range [−0.3%, 7.74%], [−24%, 0.25%],

and [12%, 28%], for the pre-processing sampling, the pedestrian detector and the

cholesky factorization, respectively. The positive values means that nanos++ is better

than libgomp* and, since the WCET estimations consider the maximum observed

execution time, nanos++ is safely covered by the analysis of libgomp*. In case of the

pedestrian detector, the negative value of −24% means that libgomp* is better than

nanos++, but it is found for the highest value of the number of nodes 8043, when

the performance in both cases starts to decrease. When the number of nodes is 3603

(and the best performance is observed in both libgomp* and nanos++) the difference

decreases up to −10%. This small percentage is safely covered by the safety margin.

Notice also the small difference between the average and the maximum observed

execution times. The reason is that the applications execute in isolation, so the

variation in the timing behavior is small. When the best performance is observed,

the maximum observed time increases 57%, 5% and 15% over the average time, in

libgomp* for the pre-processing sampling, the pedestrian detector and the cholesky

factorization, respectively. In nanos++ these values are 1.4%, 5% and 5%, respec-

tively.

Finally, the response time analysis provides a safe upper bound Rub for the max-

imum observed execution times. When the best performance is considered, the max-

imum observed execution time represents 63%, 35% and 80% over the response time

upper bound in libgomp*, for the pre-processing sampling, the pedestrian detector and

the cholesky factorization, respectively. In nanos++ these values are 50%, 38% and
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52%, respectively. These values indicate the actual system utilization, which provides

an overview of the resources overestimation that is common in real-time systems due

to the required timing guarantees.

6.1.5 Timing analysis of an OpenMP real-time system

In this section we present the timing analysis when integrating the three OpenMP

applications as a unique real-time system. We evaluate the eager limited preemptive

scheduling approach as implemented in nanos++. To the best of our knowledge,

there is no implementation of a lazy limited preemptive scheduler in any OpenMP

implementation, and OpenMP does not support a fully-preemptive execution model.

Hence, with the objective of comparing the eager and lazy limited preemptive schedul-

ing and the fully-preemptive scheduling, we also present the results of a simulation.

6.1.5.1 System configuration

For the system integration, it is required to consider a DAG configuration for each

application, i.e., the number of nodes, that we selected based on two criteria: (1)

the performance of the application and (2) the performance of the response time

analysis. Thus, the DAGs with 193, 1299 and 819 nodes have been considered, for

the pre-processing sampling, the pedestrian detector and the cholesky factorization,

respectively. In case of the pre-processing sampling and the cholesky factorization,

these values correspond to the best performance of the application in isolation for

nanos++, as seen in the previous section. In case of the pedestrian detector, we

select the DAG with 1299 nodes instead of 3603, because both configurations provide

similar performance, but a higher number of nodes in the DAG imposes more lower

priority interference, as the number of potential preemption points is higher. This

would lead to a worse response time upper bound.

Similar criteria have been considered to assign priorities to each real-time task,

also considering that, as seen in the previous chapter, the lower priority interference

is the dominant factor in the response time analysis. The pre-processing sampling is

the highest priority task since it has nodes in the DAG with high WCET, compare

to the rest of nodes in the system. Since this nodes would be considered in the lower-

priority interference if the pre-processing sampling would have lower priority than any

other task, this would lead to pessimistic response time upper bounds. In case of the

pedestrian detector and the cholesky factorization, the latter has a smaller volume,
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1,705 ms vs 734 ms, so we assign to the cholesky factorization the lowest priority, so

that it does not suffer lower priority interference. Finally, the deadline, and period,

of each application is 410 ms, 780 ms and 400 ms, for the pre-processing sampling,

the pedestrian detector and the cholesky factorization, respectively. Overall, the

utilization of the system is computed as:

UT =
vol(Gpre)

Tpre
+
vol(Gped)

Tped
+
vol(Gcho)

Tcho
=

722

410
+

1, 705

780
+

734

400
= 5.78

The analysis is performed for the execution of the real-time system during 18

s. During this time, the pre-processing sampling, the pedestrian detector and the

cholesky factorization, are released 44, 24 and 46 times, respectively.

6.1.5.2 Eager limited preemptive scheduling

Figure 6.7 shows the response time upper bound Rub
k , the deadline Dk, and the average

and maximum observed execution times (in ms), when varying the number of cores

available for executing the system, for the pre-processing sampling, the pedestrian

detector and the cholesky factorization (Figures 6.7a, 6.7b and 6.7c, respectively).

The real-time system is not schedulable, i.e., Rub
k > Dk when the number of cores

is low. As expected, the response time upper bound (and the average and maximum

observed execution time) decreases, in all the cases, as the number of cores increases,

being the system schedulable when the number of cores is m ≥ 16.

Figures show the increasing difference between the deadline and the response time

upper bound, as the priority of the applications decreases (even though the y-axis are

in different logarithmic scale for each application). For instance, when m = 4, the

difference between Dk and Rub
k represents the 32%, 92% and 99.9% of Rub

k , for the

pre-processing sampling, the pedestrian detector and the cholesky factorization, re-

spectively. The reason is that tasks with lower priority experience higher interference.

In case of the cholesky factorization, not even the average execution time is below

the deadline when m = 4, meaning that, in average, all the deadlines are missed.

When the number of cores is m = 16, the average execution time of each appli-

cation increases 22%, 11% and 18% with respect to the average execution time in

isolation, for the pre-processing sampling, the pedestrian detector and the cholesky

factorization, respectively. In case of the response time upper bound, it increases
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Figure 6.7: Timing analysis of the OpenMP applications within the real-time system,
under eager limited preemptive scheduling (y-axis in logarithmic scale).

63%, 72% and 78%, due to the impact that both the higher and lower priority tasks

interference have on the computation of Rub
k .

When the system is schedulable, i.e., for m ≥ 16, the maximum observed time

represents up to 32%, 14% and 45%, over the response time upper bound Rub, for

the pre-processing sampling, the pedestrian detector and the cholesky factorization,

respectively. Similarly to the individual timing analysis, these values indicates the

actual system utilization of the platform.

6.1.5.3 Comparing eager, lazy limited preemptive and fully preemptive

scheduling

Similarly to the execution of the system in a real platform, the simulation considers

18 ms of execution, during which the pre-processing sampling, the pedestrian detector
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Time (ms)

Infra-red Pedestrian Cholesky

(193 nodes) (1299 nodes) (819 nodes)

Dk = Tk 410 780 400

LP-eager-max

Rub
k 374.50 635.84 197.52

Max. 114.56 129.47 142.29

(Avg.) (112.18) (116.93) (66.54)

LP-lazy

Rub
k 3,419.25 1,234.02 580.58

Max. 117.57 128.93 142.24

(Avg.) (112.43) (116.80) (66.50)

FP-ideal

Rub
k 136.99 207.45 167.41

Max. 111.52 127.04 142.52

(Avg.) (111.52) (84.73) (54.39)

Table 6.1: Response time analysis and scheduling simulation maximum observed and
average time when m = 24.

and the cholesky factorization, are released 44, 24 and 46 times, respectively.

Table 6.1 shows the response time upper bound Rub
k , and the maximum observed

and average execution time of the scheduling simulation, for each application and for

the three scheduling strategies, LP-eager-max, LP-lazy and FP-ideal, when m = 24.

Notice that the scheduling simulation considers the WCET of each node in the

DAGs, instead of the actual execution time in a real platform. Moreover, the maxi-

mum observed and average execution times of the simulation are computed consider-

ing all the times the different tasks are released within the simulation interval. In case

of the eager strategy, we compare the maximum observed execution time obtained

in the real platform and the simulator. When the m = 24, the maximum observed

execution time in the simulator increases 1.3%, 34% and 36%, over the real maxi-

mum observed time, for the pre-processing sampling, the pedestrian detector and the

cholesky factorization, respectively.

Table 6.1 confirms the conclusion reached in Chapter 5, for the synthetic DAG

task-sets (Section 5.5). The response time analysis of the LP-eager-max strategy

clearly outperforms the LP-lazy approach. The system is not schedulable under LP-

lazy strategy, that adds huge pessimism over the average and maximum observed

simulated times. Thus, the maximum observed simulated time represents only 3%,
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Infra-red Pedestrian Cholesky

(193 nodes) (1299 nodes) (819 nodes)

LP-eager-max 0 287 935

LP-lazy 0 245 928

FP-ideal 0 231 1,418

Table 6.2: Preemptions during a 18 ms simulation when m = 24.

10% and 24% of the Rub
k , for the pre-processing sampling, the pedestrian detector and

the cholesky factorization, respectively. In case of the LP-eager-max strategy, this

percentage increases up to 30%, 20% and 72%.

As also shown in previous experiments, the FP-ideal strategy outperforms the LP-

eager-max, representing the average execution time in the simulator the 81%, 40%

and 32% of the Rub
k for the FP-ideal strategy, for the pre-processing sampling, the

pedestrian detector and the cholesky factorization, respectively. However, while the

average and maximum observed execution times are similar for the three scheduling

strategies, the number of preemption points (not considered in the response time up-

per bound) increases in the fully-preemptive with respect to the limited-preemptive

scheduling. Table 6.2 shows the number of preemptions that each application ex-

periments in the scheduler simulator of the LP-eager-max, LP-lazy and FP-ideal

strategies. While the difference between the LP-lazy and LP-eager is small, the FP-

ideal significantly increases the number of preemptions, being almost 500 more for the

cholesky factorization being in 18 ms. Besides the difficulties of properly accounting

for the preemptions in the response time analysis of a fully-preemptive scheduling

strategy, this would significantly degrade the average and maximum observed execu-

tion times in a real platform.

6.2 Automotive Use Case

The response time analysis presented in Chapter 5 can be also applied to any other

task-based parallel model than OpenMP. Therefore, this section evaluates the re-

sponse time analysis of an AUTomotive Open System ARchitecture (AUTOSAR)

application: a diesel engine management system (EMS). This system has been pro-

vided by DENSO Deutschland GmbH, a leading supplier of automotive technology.
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6.2.1 Description of the EMS DAG-based task-set

AUTOSAR is a standardized system software architecture upon which automotive

applications are built and executed [78]. An AUTOSAR application is composed of

a set of functions, named runnables, that communicate among them through well-

defined communication methods. Runnables, that can be executed periodically or

triggered by an interrupt, are grouped into AUTOSAR tasks, which are the unit of

scheduling (UoS) of the AUTOSAR Operating System. The nature of AUTOSAR ex-

ecution model fits very well the system model considered in this thesis: an AUTOSAR

task can be modeled as a DAG task, as proposed in [109, 110, 111], where nodes

correspond to runnables and edges correspond to communication methods among

runnables. Runnables are executed uninterruptedly, defining preemption points at

runnable boundaries.

An EMS is a typical automotive application, that controls the amount of fuel

and the fuel injection times, which are fundamental for the smooth revolution of the

engine. The amount of fuel and when it is injected depends on the state and the

rotation speed of the engine, which changes continuously during its operation. The

EMS is composed of eleven AUTOSAR tasks, that are periodically time-triggered,

and a crank-angle task, that is triggered based on position of the crankshaft. The

periodic tasks have periods (and implicit deadlines) of 1, 4, 5, 8, 16, 20, 32, 64, 96, 128

and 1024 ms, and the crank-angle triggered task has a period that varies depending

on the revolutions of the engine, being the minimum period equal to 1.25 ms, and

then as considered in the analysis. Overall, the EMS is composed of twelve DAG

tasks comprised of roughly 1,200 runnables (nodes).

Denso provided the DAG representations of the EMS application, instead of the

source code of the system. The WCET estimates of nodes (Ck,i), given in CPU cycles,

were computed with a static timing analysis tool OTAWA [112, 113], which models

a generic multi-core processor architecture. Concretely, a 4-core, 8-core or 16-core

processor setup with private per-core scratchpads for instructions and write-through

data caches. For all processor configurations, cores are connected through a tree NoC

to the on-chip RAM memory. The impact of interferences due to the access to shared

processor resources is not considered in the WCET computation. The approach

presented in this thesis is independent of the multi-core processor architecture and

the timing analysis method, so other architectures and tools can be used to compute

the WCET estimates of runnables.
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(a) m = 4 cores
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(b) m = 8 cores
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(c) m = 16 cores
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Figure 6.8: Percentage of schedulable tasks from the EMS AUTOSAR application as a
function of the CPU frequency.

The period of each DAG task, also provided by the supplier, is in milliseconds

while the WCET of the nodes is in CPU cycles. Therefore, in order to evaluate the

EMS application under different utilization scenarios, we range the CPU frequency.

Hence, the processor frequency is used to derive the timing value (in ms) of the

WCET. Increasing the CPU frequency is equivalent to decrease the overall task-set

utilization. For instance, when a processor operates at 250 MHz, the overall EMS

utilization equals to 0.57; 4 GHz corresponds to a system utilization of 0.03.

6.2.2 Schedulability analysis

This section evaluates the response time analysis for the two limited preemptive

scheduling strategies, eager and lazy, LP-eager-max and LP-lazy, respectively, and

compared them with an ideal fully preemptive strategy FP-ideal.

Figure 6.8 shows the percentage of schedulable tasks when ranging the CPU fre-

quency from 250 MHz to 4 GHz and considering a 4-core, 8-core and 16-core processor

(Figures 6.8a, 6.8b and 6.8c, respectively). The trend shown in these figures is similar
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to the one observed in the experimental results of previous chapter, when considering

synthetic DAG tasks: LP-eager-max outperforms LP-lazy in all cases, and FP-ideal

outperforms the LP-eager-max, as the blocking impact of low-priority tasks is not

considered. LP-lazy cannot schedule the EMS application in any processor frequency

configuration, except assuming a 4-core processor operating at 4 GHz. The pessimism

added by the LP-lazy approach increases as the number of cores increases, resulting

in the counter-intuitive result where the schedulability decreases as the number of

cores increases, as also shown with the randomly generated DAG task-sets. Instead,

under the LP-eager-max approach, the EMS application is schedulable when the CPU

frequency is equal or higher than 1.75 GHz, 1.25 GHz and 750 MHz for a 4, 8 and

16-core configuration, respectively (with an overall utilization of 0.08, 0.11 and 0.2).

As expected, the schedulability increases as the number of cores increases.

Overall, from this experiment, we demonstrate that the conclusion reached in

previous chapter for synthetic DAG task-sets is also valid for this automotive case

study. The response time analysis provided by the eager limited preemptive schedul-

ing strategy (LP-eager-max) clearly outperforms the lazy approach.

6.3 Summary

This chapter aims to check the viability of the response time analysis presented in

this thesis, with real parallel applications. We evaluate (1) a real-time system imple-

mented with OpenMP, where tasks can only be preempted at task scheduling points,

and (2) an AUTOSAR application, where tasks can only be preempted at runnable

boundaries. Interestingly, these two execution models are compatible with the limited

preemptive scheduling strategy widely used in real-time systems.

Our analysis confirms the huge pessimism of the lazy limited preemptive schedul-

ing, which provides an intractable response time upper bound. However, the eager

limited preemptive scheduling provides a more efficient response time analysis, with

an acceptable system utilization, even considering the over estimation of the resources,

an ordinary practice in critical real-time systems.

The evaluation presented in this chapter allows us to comprehend that more re-

liable techniques and more realistic systems must be considered. From a timing

analysis perspective, analysis techniques are needed to consider parallel execution,

specially to compute the WCET of parallel applications. This is not an easy task,
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6.3 Summary

which still relies on safety margins even when considering single core architectures.

However, adapted methods could provide tighter estimations. From an implemen-

tation perspective, specific OpenMP runtimes targeting real-time systems must be

implemented to also evaluate embedded architectures.

We also conclude that the choice of the best system configuration in terms of

parallelism granularity, real-time tasks’ priorities, number of cores, system utiliza-

tion, etc., becomes a trade off between performance of each real-time task and the

interference imposed and suffered by other tasks. Moreover, this trade-off affects, not

only to the response time analysis, but also to the deployment of the system in a

real platform. As a future work remains the consideration of other factors, like the

preemptions overhead, and the analysis of a real industrial system, not always easy

to obtain.

Overall, our response time analysis can be directly applied to a real-time system

implemented and parallelized with OpenMP. Moreover, our analysis also applies to

other tasking models, such as AUTOSAR, widely used to design automotive applica-

tions.
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Chapter 7

Response Time Analysis

Supporting Heterogeneous

Computing

“Ideas do not last long. We must do something with them.”

— Santiago Ramón y Cajal

Parallel and heterogeneous hardware architectures are becoming mainstream in

the embedded domain to cope the increasing performance requirements. These ar-

chitectures integrate low power general-purpose multi-cores (known as host) with

dedicated accelerator devices like many-cores, DSP fabrics, GPUs or FPGAs. Some

examples are the NVIDIA Tegra X1 [114], the Texas Instruments Keystone II [22],

the Kalray MPPA [25] or the Xilinx UltraScale [115]. The use of parallel program-

ming models is fundamental to effectively exploit the huge performance capabilities

of these architectures.

OpenMP incorporates a host-centric accelerator model, coupled with the tasking

model, used to efficiently offload code and data to accelerator devices. This is a

very common design implemented by many processor vendors in which a low power

general-purpose multi-core host processor is coupled with a dedicated accelerator

device such as Application-Specific Integrated Circuits (ASICs), Graphics Processing

Units (GPUs) or Digital Signal Processing (DSP) fabrics. Interestingly, OpenMP

is being adopted in some heterogeneous architectures targeting embedded systems.
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As an example, the TI keystone II and the Kalray MPPA support OpenMP in its

software development kit [23][25].

This chapter extends the response time analysis introduced in Chapter 4 to sup-

port heterogeneous computing. Under this scenario, the workload offloaded into the

accelerator device does not cause any interference on the parallel workload executed

in the host, and vice versa. Our analysis takes this into account and identifies the por-

tion of the DAG that can potentially execute in parallel with the offloaded workload.

Then, DAG transformation techniques are used to guarantee the overlap between the

computation on the host and the device. As a result, an interference reduction can

be safely incorporated into the response time analysis.

7.1 Heterogeneous System Model

7.1.1 Extending the system model

In order to incorporate heterogeneous computing in our response time analysis, we

need first to extend the system model presented in Chapter 2 (Section 2.1.2). We

consider a host-centric accelerator model in which the host (m cores) is responsible

for offloading code and data to a single accelerator device, and collecting results.

The system model considered in this Chapter is composed of a real-time task τ ,

represented as a DAG G = (V,E). Nodes in V represent sub-tasks, and edges in

E represent precedence constraints. The DAG task model is extended to include

a special node, representing the workload executed in the accelerator device. This

node is named offloaded node, denoted by vOff , and characterized by its WCET COff ,

which corresponds to the worst-possible execution time of the offloaded workload into

the accelerator device. We consider that the overhead due to code and data transfers

between host and device, is included in the host and offloaded nodes.

In the new system model supporting heterogeneous computing, vol(G) represents

the WCET of the DAG task when executing on a single core in the host and the

accelerator, assuming that host and accelerator cannot execute in parallel. len(Gk)

corresponds to the minimum amount of time needed to execute the task assuming a

sufficiently large number of cores in the host.
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1 #pragma omp parallel
2 #pragma omp single nowait / / T1
3 {
4 v11
5 #pragma omp task / / T2
6 depend(out:A)
7 { v21 }
8 v12
9 #pragma omp target nowait

10 depend(in:A,out:B)
11 map(to:A, from:B)
12 {
13 vOff / / Device Workload
14 }
15 v13
16 #pragma omp task / / T3
17 { v31 }
18 #pragma omp task / / T4
19 depend (in:B)
20 { v41 }
21 v14
22 }}

Listing 7.1: Example of an OpenMP
program using task and target constructs.

𝒗𝑶𝒇𝒇 

𝑣12 

𝑣13 

𝑣14 

HOST DEVICE 

𝑻𝟏 

𝑻𝟒 

𝑣41 

𝑣11 𝑻𝟐 

𝑣21 

𝑻𝟑 

𝑣31 

𝑫𝒂𝒕𝒂 𝒅𝒆𝒑𝒆𝒏𝒅𝒆𝒏𝒄𝒊𝒆𝒔 
𝑪𝒐𝒏𝒕𝒓𝒐𝒍 𝒇𝒍𝒐𝒘 
𝑻𝑺𝑷 𝒄𝒓𝒆𝒂𝒕𝒊𝒐𝒏  

Figure 7.1: Heterogeneous
OpenMP-DAG corresponding to the

program in Listing 7.1.

7.1.2 Including the accelerator model in the OpenMP-DAG

OpenMP incorporates an advanced host-centric accelerator model, coupled with the

tasking model, in which the host is responsible for orchestrating the execution on the

host, and also on the device accelerator. This model is supported by the #pragma

omp target directive, that defines the code to be offloaded, and the data-mapping

clauses to express directionality when moving data to/from the device memories (see

Section 2.2.2).

Listing 7.1 shows an example of an OpenMP program using the tasking and accel-

erator models. The execution of the program starts on the host, where the parallel

construct creates the team of OpenMP threads (line 1) and the single construct

specifies that only one thread executes the associated block of code (line 2). When

this thread encounters the task constructs at lines 5, 16 and 18, it creates the associ-

ated OpenMP tasks that can be executed by any thread in the team. Similarly to the

task construct, when the thread executing T1 encounters the target construct (line

9), the code included within the target vOff is offloaded1 to the accelerator device,

1In OpenMP, the target task can also be executed in the host if all the devices are busy (or do
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transferring the data specified in the data(to:) clause to the memory of the accelera-

tor. The clause data(from:) specifies the data to be transferred from the memory of

the accelerator to the host memory, once the execution completes. Therefore A must

be copied to the accelerator memory and B must be copied-back from the accelerator

memory. The clause nowait specifies that the execution in the host can continue once

the code and data have been offloaded (asynchronous model2). Finally, the depend

clause can also be used to define the data dependencies existing between tasks and

targets. Hence, T2 generates the variable A that is consumed by vOff . Therefore, the

target defers its execution until T2 finishes. Similarly, vOff generates the variable B

that is consumed by T4, making T4 wait until vOff finishes.

Incorporating these features of the OpenMP accelerator model into the OpenMP-

DAG is straightforward, if we differentiate the nodes that execute in the host from

those that execute in the device. We define the Heterogeneous OpenMP-DAG as the

DAG representation of an OpenMP program using the tasking and accelerator models.

Figure 7.1 shows the corresponding heterogeneous OpenMP-DAG of the program

shown in Listing 7.1. It shows the task or target creation precedence constraints

between nodes of T1 and nodes v21, v31, v41 and vOff ; the control-flow dependencies

between nodes of T1; and the data dependencies existing between v21, vOff and v41.

We distinguish between host and offloaded nodes by showing different shapes for these

nodes: circle for the host nodes and square for the offloaded node. The nowait clause

prevents the existence of an edge between nodes vOff and v13.

7.2 Impact of Heterogeneous Computing on the

Response-Time Analysis

This section analyzes the impact that heterogeneous computing has on the response

time analysis. To do so, we first describe the homogeneous response time analysis,

and then, evaluate the implications of offloading a node to the accelerator device.

Finally, we present an algorithm to transform the DAG representation of a real-time

task, which allows to properly compute its response time upper bound.

not exist). However, we assume that vOff is executed in the device since only one target task and
an available device are considered in our model.

2By default, OpenMP implements a synchronous model in which the execution of the task en-
countering the target is blocked till the execution in the device finishes.
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7.2.1 Starting point: homogeneous computing

We denoted as Rhom the response time upper bound of a DAG task τ running on m

homogeneous cores, which can be computed as (from Equation 4.4 in Chapter 4):

Rhom(τ) = len(G) +
1

m

(
vol(G)− len(G)

)
(7.1)

where len(G) is the length of the DAG task, and vol(G) its volume. The factor
1
m

(
vol(G) − len(G)

)
upper-bounds the self-interference i.e, the interference contri-

bution from the task itself to its critical path. In order to verify the schedulability

of task τ , the result provided by Equation 7.1 must be compared with τ ’s relative

deadline D, i.e., Rhom(τ) ≤ D.

7.2.2 Towards heterogeneous computing

Clearly, heterogeneous computing reduces the actual interference compared to homo-

geneous computing, as the offloaded node does not occupy resources in the host.

However, this interference reduction in the host may not imply a reduction of the

response time upper bound, as the precedence constraints defined in E may defeat

heterogeneous benefits.

In order to illustrate this phenomenon, consider the DAG task τ shown in Figure

7.2a composed of six nodes v1, . . . v5, vOff (with WCET shown in parenthesis). The

critical path is {v1, v3, v5} (or {v1, v4, vOff , v5}), being len(G) = 8. Assuming m = 2,

the self-interference factor is 1
2

(
18 − 8

)
= 5. As a result, the response time upper

bound is Rhom(τ) = 13. Since vOff does not execute in the host (see Figure 7.2b), one

might subtract its contribution to the self-interference factor, being Rhom(τ) = 11.

However, the subtraction of COff from the self-interference factor does not guar-

antee a trustworthy response time upper bound, because vOff may not necessarily

execute in parallel with the nodes running in the host. Figure 7.2c shows an alter-

native (and valid) scheduling in which all cores in the host remain idle while vOff is

running. In this case, the actual response time is 12, which is higher than the reduced

response time upper bound computed above, Rhom(τ) = 11.

Overall, the DAG portion that potentially executes in parallel with the offloaded

node (and so reducing the interference) is not guaranteed to actually execute in parallel

with it. Next section analyzes how to guarantee the parallel execution of the workload

in the host and the offloaded node, so that the self-interference factor can be safely
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(a) Heterogeneous DAG task

(b) Best case scheduling

(c) Worst case scheduling

Figure 7.2: Scheduling example of an heterogeneous DAG task. c© 2018 IEEE.

reduced.

7.2.3 Safe self-interference reduction.

In order to safely reduce the self-interference factor, it is first necessary to guarantee

that there is enough workload to be executed in the host in parallel with vOff . To

do so, we propose an algorithm that: (1) identifies the portion of the DAG that may

potentially execute in parallel with vOff , named GPar = (V Par, EPar), and (2) adds

a synchronization point to guarantee that GPar and vOff actually execute in parallel.

Figure 7.3a shows the proposed transformation applied to the DAG presented in

Figure 7.2a. An extra synchronization point between nodes v4 and v2, v3, guarantees

that vOff and {v2, v3} execute in parallel. Figure 7.3b shows the scheduling of the

transformed DAG. Synchronization forces v1 and v4 to be scheduled first, avoiding

the scheduling scenario shown in Figure 7.2c.

Clearly, this strategy may impact on the average performance of the tasks because:

(1) the critical path can potentially enlarge (e.g., the length of the transformed DAG

in Figure 7.3a is 10 instead of 8 in the original DAG) and (2) the potential parallelism

is reduced due to the synchronization point (e.g., in Figure 7.3a, v4 can not longer be

executed in parallel with v2 and v3). Interestingly, our experiments with randomly

generated DAG tasks demonstrate the opposite effect when the offloaded workload is
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(a) Transformed DAG (b) Scheduling of the transformed DAG

Figure 7.3: Transformation of the heterogeneous DAG task in Figure 7.2a. c© 2018
IEEE.

large enough (see Section 7.4.2). The reason is that, ensuring the parallel execution

of GPar and vOff avoids scheduling scenarios in which the offloaded node is running

while the host processor remains idle, as shown in Figure 7.2c.

Next section introduces the algorithm to transform the DAG representation of

the task, upon which a trustworthy response-time analysis supporting heterogeneous

computing can be derived.

7.2.4 DAG transformation algorithm

The algorithm presented in this section considers a new restriction included in the

DAG model. The transitive edges do not exist in the DAG, i.e., if (v1, v2) ∈ E and

(v2, v3) ∈ E, then (v1, v3) /∈ E. This restriction does not limit the representativeness

or the parallelism of real-time tasks, as it is just a property of the DAG. An easy

algorithm can be used to remove transitive edges if the DAG representation of a

real-time task includes them.

Given a DAG task G = (V,E) with an offloaded node vOff ∈ V , Algorithm 3:

1. identifies the sub-DAG GPar = (V Par, EPar) that includes all the nodes execut-

ing in the host, which can potentially execute in parallel with vOff ;

2. generates a transformed DAG G′ = (V ′, E ′), equivalent to G, that includes a

new synchronization node, denoted by vsync, with WCET Csync = 0. vsync is

introduced just before vOff and GPar, so that vsync guarantees that vOff and

GPar execute in parallel.

In order to facilitate the explanation of the algorithm, consider the example shown

in Figure 7.4 . Figure 7.4a shows the original DAG G, in which the synchronization
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Algorithm 3 Transform Heterogeneous DAG τ ⇒ τ ′

Input: G = (V,E): Original heterogeneous DAG
Output: G′ = (V ′, E′): Transformed heterogeneous DAG

GPar = (V Par, EPar): sub-DAG with all the nodes parallel to vOff

1 function transform dag
2 Pred(vOff )← compute pred(vOff )
3 Succ(vOff )← compute succ(vOff )
4 V ′ ← V ∪ {vsync}
5 E′ ← E
6 directPred← ∅
7 for each (vi, vOff ) ∈ E′ do
8 directPred← directPred ∪ {vi}
9 E′ ← E′ ∪ {(vi, vsync)} \ {(vi, vOff )}

10 for each (vi, vj) ∈ E′ do
11 if vj 6= vsync then
12 E′ ← E′ ∪ {(vsync, vj)} \ {(vi, vj)}
13 end if
14 end for
15 end for
16 E′ ← E′ ∪ {(vsync, vOff )}
17 for each vi ∈ {Pred(vOff ) \ direcPred} do
18 for each (vi, vj) ∈ E′ do
19 if vj /∈ Pred(vOff ) then
20 E′ ← E′ ∪ {(vsync, vj)} \ {(vi, vj)}
21 end if
22 end for
23 end for
24 V Par ← V \ Pred(vOff ) \ Succ(vOff )
25 for each (vi, vj) ∈ E do
26 if vi ∈ V Par and vj ∈ V Par then
27 EPar ← EPar ∪ {(vi, vj)}
28 end if
29 end for
30 end function

point to be included is represented with a dashed red line. Figure 7.4b shows the

resultant DAG G′, including the new synchronization node vsync (represented as a

red square node), and GPar (surrounded by a blue dashed line).

Next, we describe the different phases of the algorithm:

Initialization. The algorithm first computes Pred(vOff ) (line 2), that is the set of

predecessor nodes of vOff (nodes from which vOff can be reached), and Succ(vOff )
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(a) Original DAG G = (V,E) (b) Transformed DAG G′ = (V ′, E′)

Figure 7.4: Heterogeneous DAG task transformation τ ⇒ τ ′. c© 2018 IEEE.

(line 3), that is the set of successor nodes of vOff (nodes reachable from vOff ). Then,

the algorithm initializes V ′, which includes all the original nodes in V plus the syn-

chronization node vsync, and E ′, which includes all the edges in E (lines 4 and 5). A

local variable directPred is used to store vOff ’s direct predecessors3 (line 6).

Loop over vOff ’s direct predecessors. The first part of the algorithm (line 7)

iterates over vOff ’s direct predecessors, denoted by vi. At each iteration, the algorithm

(1) adds vi to directPred, (2) adds an edge from vi to the extra synchronization node

vsync and (3) removes (vi, vOff ) edge. In Figures 7.4a and 7.4b this loop operates over

nodes v8 and v9 to remove their edge with vOff and to add new edges with the new

node vsync (green edges). The nested loop in line 10 updates the edges between vi

and vi’s successors (parallel nodes to vOff ) since they are now vsync’s successors. In

Figures 7.4a and 7.4b this loop removes (v8, v11) and adds (vsync, v11), see black edges.

In line 16 a new edge between the extra synchronization node vsync and the offloaded

node vOff is added. This corresponds to the yellow edge (vsync, vOff ) in Figure 7.4b.

Loop over other vOff ’s predecessors. The second part of the algorithm (line

17) iterates over all the nodes vi from which vOff can be reached, except its direct

predecessors. Then, a nested loop is used to check if vi’s successors, denoted by vj,

are parallel to vOff in line 19. If this is the case, then vj is now a vsync’s successor

3If (vi, vj) ∈ E then vi is a direct predecessor of vj .
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instead of a vi’s successor (line 20). Notice that, since transitive edges do not exist,

it is not required to check if vj is in Succ(vOff ) to determine if vj is parallel to vOff .

In Figures 7.4a and 7.4b, these nested loops are used to remove edges (v1, v2) and

(v3, v7) and to add (vsync, v2) and (vsync, v7), see pink edges.

Creating GPar. Finally, the parallel sub-DAG GPar is created. It contains all the

parallel nodes to vOff (line 24) and the corresponding edges involving these nodes

(line 27). In Figure 7.4b, GPar is surrounded by a dashed blue line.

7.3 Response-Time Analysis of Heterogeneous DAG

Tasks

In this section we extend the response time analysis presented in Equation 7.1 to

support heterogeneous computation. Our analysis is based on the transformed DAG

task τ ′ in which GPar and vOff are guaranteed to execute in parallel. This allows to

safely reduce the self-interference factor, being the new response time upper bound

more accurate than Rhom.

Figure 7.5a shows the generic structure of a transformed DAG task τ ′ and Figures

7.5b and 7.5c present the two only scheduling possibilities. That is, since there is

a synchronization node vsync before the execution of GPar and vOff , there are two

possibilities:

1. the response time upper bound of GPar, denoted as Rhom(GPar) 4, is bigger or

equal than the offloaded workload COff (see Figure 7.5b); or

2. COff is bigger than Rhom(GPar) (see Figure 7.5c).

From this execution conditions, the following theorem considers three possible

execution scenarios, in order to derive a new response time analysis supporting het-

erogeneous computing:

Theorem 3. Consider an heterogeneous DAG task τ ′, with the following restrictions

in its DAG representation G′ = (V ′, E ′): vOff ∈ V ′; there if an identified sub-DAG

GPar, containing the nodes parallel to vOff ; vsync ∈ V ′ (Csync = 0); there exists an

edge in E ′ between vsync and all the source nodes of GPar; and (vsync, vOff ) ∈ E ′. The

4Rhom(GPar) is computed with Equation 7.1. Notice that, for simplicity, the input is a DAG
structure GPar instead of a task τ .

152



7.3 Response-Time Analysis of Heterogeneous DAG Tasks

(a) Generic heterogeneous DAG.

(b) Scheduling scenarios 1 and 2.2.

(c) Scheduling scenario 2.1.

Figure 7.5: Scheduling possibilities of a generic heterogeneous DAG task. c© 2018 IEEE.

following three execution scenarios must be considered to compute the response time

upper bound of τ ′:

• Scenario 1. vOff does not belong to the critical path.

Rhet(τ ′) = len(G′) +
1

m

(
vol(G′)− len(G′)− COff

)
(7.2)

• Scenario 2.1. vOff belongs to the critical path and COff ≥ Rhom(GPar).

Rhet(τ ′) = len(G′) +
1

m

(
vol(G′)− len(G′)− vol(GPar)

)
(7.3)

• Scenario 2.2. vOff belongs to the critical path and COff ≤ Rhom(GPar).

Rhet(τ ′) = len(G′)−COff+len(GPar)+
1

m

(
vol(G′)−len(G′)−len(GPar)

)
(7.4)

Proof. The generic structure of a DAG task τ ′ is shown in Figure 7.5a. The synchro-

nization node vsync (Csync = 0) guarantees that GPar and vOff start their execution

at the same time (tsync, as shown in Figures 7.5b and 7.5c).

In case of Scenario 1, represented in Figure 7.5b, since vOff does not belong to

the critical path, there exists at least one path in GPar whose length is greater than

COff , i.e., len(GPar) > COff . Therefore, Rhom(GPar) = len(GPar) + 1
m

(
vol(GPar) −

len(GPar)
)

must be greater than COff , and so tPar > tOff (see Figure 7.5b) is always
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true. As a consequence, COff does not generate interference that may increase the

response time of τ ′ and it can be safely subtracted from the self-interference factor,

as done in Equation 7.2.

In case of Scenarios 2.1 and 2.2, since vOff belongs to the critical path, none of

the nodes in GPar belong to it and so they contribute to the self-interference factor.

In the former scenario, represented in Figure 7.5c, COff is greater (or equal) than

Rhom(GPar), then tPar ≤ tOff and so GPar cannot generate interference that may

increase the response time of τ ′. Hence, its complete workload vol(GPar) can be safely

subtracted from the self-interference factor, as done in Equation 7.3. In the latter

scenario, represented in Figure 7.5b, COff is smaller (or equal) than Rhom(GPar), and

so tOff ≤ tPar. Therefore, even though vOff belongs to the critical path, it does not

dominate the response time of τ ′, but GPar does instead. In this case, we can safely

replace COff by Rhom(GPar) in the critical path. Since the contribution of GPar is

also considered in the self-interference factor, vol(GPar) can be subtracted from it, in

order not to count twice for it. By replacing the mentioned terms and subtracting

vol(GPar) we obtain:

Rhet(τ) = len(G′)− COff +RG(GPar) +
1

m

(
vol(G′)− len(G′)− vol(GPar)

)
= len(G′)− COff + len(GPar) +

1

m

(
vol(GPar)− len(GPar)

)
+

1

m

(
vol(G′)− len(G′)− vol(GPar)

)
By simplifying the terms, Equation 7.4 follows.

It is important to remark that scenarios 2.1 and 2.2 are equivalent when COff =

Rhom(GPar). Hence, if starting from Equation 7.4 we replace COff by Rhom(GPar) =

len(GPar) + 1
m

(
vol(GPar)− len(GPar)

)
, we rapidly reach Equation 7.3.

Theorem 3 allows to provide a response-time upper bound to DAG-based real-time

tasks supporting heterogeneous computing.

7.4 Experimental Results

This section evaluates the proposed response time analysis supporting heterogeneous

computing (see Theorem 3) and compares it with respect to the baseline homogeneous

response time analysis (see Equation 7.1). Moreover, in order to evaluate the accuracy
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of the proposed response time analysis, we compare it with respect to the minimum

makespan provided by the ILP formulation presented in Appendix C.

7.4.1 Experimental setup

All the experiments presented in this section consider randomly generated DAG tasks,

as presented in the experimental setup in Chapter 2 (Section 2.4.1). In order to include

a vOff node in the DAG task, the Algorithm 1, presented in Section 2.4.1, has been

modified as follows: (1) par is randomly selected in the interval [1,min(maxnodes −
|V |,maxpar)] (line 4), i.e., the interval starts in 1 instead of 0 because at least, one

extra node must be created, the offloaded node vOff ; (2) once the DAG task is

created (line 6), and additional edges are included in the DAG (line 7), the vOff node

is randomly selected among all nodes in the DAG (except the source and sink nodes).

As a consequence, the maximum number of nodes must be greater than, or equal to

3, maxnodes ≥ 3 (source and sink nodes, and vOff ).

The concrete values used for the DAG tasks generation are:

• Probabilities of a branch to be expanded to a single node or to a parallel sub-

graph, pterm = 0.5 and ppar = 0.5, respectively.

• Probabilities of adding extra edges, pdep = 0. Otherwise, transitive edges could

be included in the DAG.

• The WCET of each node varies in the interval [Cmin, Cmax] = [1, 100].

• COff varies in the interval [1, CMAX
Off ], being CMAX

Off a percentage (up to 60%) of

DAG’s volume.

• Moreover, we consider two types of heterogeneous DAG tasks:

1. Small DAG tasks, with maxnodes = 100, maxpar = 6 and maxdepth = 3,

used for the ILP solution not capable of dealing with larger tasks.

2. Large DAG tasks, with maxnodes = 400, maxpar = 8 and maxdepth = 5.

The evaluation is carried out for different numbers of cores in the host, i.e., m = 2,

4, 8 or 16. For each experiment, we generate 100 heterogeneous DAG tasks for each

target value of COff .

155



7. RESPONSE TIME ANALYSIS SUPPORTING HETEROGENEOUS
COMPUTING

C
Off

 (% over vol(=))
5 10 15 20 25 30 35 40 45 50

%
 c

ha
ng

e 
of

 = 
w

.r
.t 
='

-15

-10

-5

0

5

10

15

20

25

m=2
m=4
m=8
m=16

(a) |V | ∈ [100, 250]

C
Off

 (% over vol(=))
5 10 15 20 25 30 35 40 45 50

%
 c

ha
ng

e 
of

 = 
w

.r
.t 
='

-15

-10

-5

0

5

10

15

20

25

m=2
m=4
m=8
m=16

(b) |V | ∈ [250, 400]

Figure 7.6: Percentage change of the average execution time of τ w.r.t. τ ′.

7.4.2 Impact of the DAG transformation

This section evaluates the impact that the extra synchronization point vsync has on

the average performance of the transformed DAG task τ ′, with respect to the original

DAG task τ . To do so, we simulate the execution of the original and transformed

DAG tasks, assuming the breadth-first scheduler implemented in GOMP, the OpenMP

implementation in the GNU GCC Compiler [68].

Figure 7.6 shows the percentage change5 of the average execution time of τ with

respect to τ ′, when varying the offloaded workload COff with respect to τ ’s volume,

from 0.1% to 50%. This experiment considers m = 2, 4, 8 and 16 cores and a number

of nodes |V | ∈ [100, 250] (Figure 7.6a) and |V | ∈ [250, 400] (Figure 7.6b). Since both

figures show similar results, we focus our explanation in Figure 7.6a.

As expected, adding a synchronization node vsync has a negative impact on the

average performance of τ ′, compared to τ , when COff represents a small portion

of DAG’s volume (less than 11%, 10.5%, 8% and 6.5% for m = 2, 4, 8 and 16,

respectively). The reason is that an extra synchronization point limits the parallelism.

This negative impact increases as the number of cores increases, since the DAG task

cannot exploit the increasing resources available to exploit parallelism. When COff

represents 1% of the DAG’s volume, τ is 2.2% faster than τ ′ for m = 2, and 13%

faster for m = 16.

Surprisingly, when COff increases the trend is inverted; τ results 19.2% slower than

5The percentage change computes the relative change of two values from the same variable; in
our case the average execution time.
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|V | ∈ [100, 250] |V | ∈ [250, 400]

τ ′ over τ %COff τ ′ over τ %COff

m = 2 19.2% 39.6 22.5% 34.7

m = 4 15.8% 25 19.7% 21.2

m = 8 10.3% 14.9 15.1% 12.2

m = 16 4.3% 9.7 8.62% 7.3

Table 7.1: Maximum percentage change of the average execution time of τ w.r.t. τ ′.

τ ′ for m = 2 when COff represents the 39.6% of DAG’s volume, and 4.3% slower for

m = 16 when COff represents the 9.7%. The reason is that vsync guarantees that the

host processor is not idle while executing vOff (see Figure 7.2c). Table 7.1 shows the

maximum average performance benefit of τ ′ over τ , and the value of COff for which

it was observed, for each value of m and for both intervals of |V |. The performance

benefit of vsync decreases as m increases because the self-interference factor has less

impact as the number of cores increases (see Theorem 3).

The exact same trend is observed in Figure 7.6b, that shows the results for a

different interval for the number of nodes, |V |. Comparing Figures 7.6a and 7.6b

demonstrate that, as the number of nodes increases, the peak benefit of the DAG

transformation is higher, and this peak is reached when the percentage of offloaded

workload is smaller. Also, the degradation for small values of COff is smaller as the

number of nodes increases.

Finally, it is worth noting that for higher values of COff , the difference between

τ and τ ′ performance seems to decrease. However, the absolute difference remains

constant. As COff increases it becomes the dominant factor in τ and τ ′ execution

times and so both equally increase as well. The trend of the percentage of an absolute

difference with respect to an increasing time is to decrease.

7.4.3 Accuracy of the response time analysis

This section analyzes the accuracy of Rhet (Equations 7.2, 7.3, 7.4) and Rhom (Equa-

tion 7.1) with respect to the minimum makespan of a heterogeneous DAG task. To

do so, we have developed an ILP model, presented in Appendix C, that computes

such a minimum makespan, i.e., the minimum time interval needed to execute a given

heterogeneous DAG task on m cores and a device. The ILP formulation has been

coded and solved with the IBM ILOG CPLEX Optimization Studio [90].
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Figure 7.7: Increment of Rhom(τ) and Rhet(τ ′) w.r.t. the minimum makespan of τ .
Notice that x-axes are different.

Given the ILP complexity, we only consider different subsets of Small DAG tasks

for which the ILP solver is able to provide an optimal solution in less than 12 hours.

Figure 7.7 shows the increment of the response time upper bound provided by

Rhom(τ) and Rhet(τ ′) with respect to the minimum makespan of τ computed by the

ILP solver, when varying COff with respect to τ ’s volume. We evaluated 2, 4, 8 and

16 cores (Figures 7.7a, 7.7b, 7.7c and 7.7d, respectively).

When COff represents less than 5% of vol(τ), Rhet(τ ′) is around 23%, 40%, 54%

and 57% higher than the minimum makespan for m = 2, 4, 8 and 16, respectively.

This pessimism however decreases as COff increases, being around 1% when COff

represents more than 56%, 40%, 23% and 15% of vol(τ), for m = 2, 4, 8 and 16,

respectively. The reason is that COff becomes the dominant factor of Rhet(τ ′) and so

GPar is not relevant any more (see Figure 7.5c).

Rhom(τ) provides more accurate results than Rhet(τ ′) when COff represents less

than 9%, 9%, 11.4% and 8.8% of vol(τ) for m = 2, 4, 8 and 16, respectively. The
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reason of this trend, as also shown in Section 7.4.2, is that vsync impacts negatively

on both, average and upper bound response time. This trend however is inverted

when COff increases, and so Rhet(τ ′) provides more accurate results than Rhom(τ).

For instance, when Rhet(τ ′) provides a response time only 1% higher or less than the

minimum makespan, Rhom(τ) is around 20% higher, for all the cores configuration.

7.4.4 Homogeneous vs. Heterogeneous

This section further compares the accuracy of our response time analysis Rhet(τ ′),

with respect to Rhom(τ), considering Large DAG tasks, with up 400 nodes.

Figure 7.8 shows the percentage change of Rhom(τ) with respect to Rhet(τ ′), when

varying COff with respect to vol(τ) from 0.1% to 50%. This experiment consid-

ers a host processor featuring m = 2, 4, 8 and 16 cores, and a number of nodes

|V | ∈ [100, 250] (Figure 7.8a) and |V | ∈ [250, 400] (Figure 7.8b). Following the same

trend observed in the previous section, our response time analysis Rhet(τ ′) improves

over Rhom(τ), when considering Large DAG tasks. This improvement increases as

COff increases due to self-interference factor reduction. Rhom only outperforms Rhet

for small values of COff due to the negative impact of the synchronization point. Con-

cretely, for |V | ∈ [100, 250] this occurs when COff represents less than 1.6%, 4.2%,

5.2% and 5.6% over vol(τ) for m = 2, 4, 8 and 16, respectively. For |V | ∈ [250, 400]

this occurs when COff represents less than 1%, 2.1%, 3.1% and 3.4% over vol(τ) for

m = 2, 4, 8 and 16, respectively. Notice that, as m increases the benefit of Rhet(τ ′)

is smaller, because the self-interference factor is divided by m (see Equations 7.2 to

7.4).

The maximum benefit observed is the following: when |V | ∈ [100, 250], Rhom(τ) is

66%, 54.7%, 41% and 27.4% higher than Rhet(τ ′) for m = 2, 4, 8 and 16, respectively;

when |V | ∈ [250, 400], Rhom(τ) is 79.6%, 70.6%, 58% and 42.5% higher than Rhet(τ ′)

for m = 2, 4, 8 and 16, respectively. Results presented in Figure 7.8 correspond to

an average response time upper bound over all generated DAG tasks. However, the

maximum observed difference between Rhom(τ) and Rhet(τ ′), when |V | ∈ [100, 250],

is 92.6%, 82.4%, 67.6% and 50.4% for m = 2, 4, 8 and 16, respectively. When

|V | ∈ [250, 400], these values are 95%, 88.2%, 76.1% and 60%.

In order to better understand the benefits brought by Rhet(τ ′), it is important

to understand the execution scenarios presented in Theorem 3. Figure 7.9 shows

the occurrence percentage of the execution scenarios, when varying the percentage of
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Figure 7.8: Percentage change of Rhom(τ) w.r.t. Rhet(τ ′).
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Figure 7.9: Percentage of scenarios occurrence, |V | ∈ [100, 250].

COff over vol(τ) from 0.1% to 50%. The number of nodes |V | is randomly selected in

[100, 250] (similar trends are observed when |V | ∈ [250, 400]). This experiment also

considers a host processor featuring m = 2, 4, 8 and 16 cores (Figures 7.9a, 7.9b, 7.9c

and 7.9d, respectively).

Scenario 1 is the dominant one when the percentage of COff over vol(τ) is less than

5%. This scenario corresponds to the case in which vOff does not belong to the critical
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path and therefore, is independent of m. From that point on, scenario 2.2 becomes

more relevant as vOff belongs to the critical path, but COff is still smaller than the

response time of GPar. When COff becomes higher that Rhom(GPar), occurrences of

scenario 2.1 increase. As m increases, occurrences of scenario 2.1 start to increase

earlier because higher parallelism can be exploited in the host, and so Rhom(GPar)

becomes smaller.

Interestingly, the intersection of scenarios 2.1 and 2.2, i.e., when COff = Rhom(GPar)

(and so Equations 7.3 and 7.4 are equivalent), results in the maximum benefit of Rhet

with respect to Rhom (shown in Figure 7.8a). This occurs when COff is 33%, 22%,

15% and 11% over vol(τ) for m = 2, 4, 8 and 16, respectively. The reason is that, in

this particular case, utilization of both host and device is maximized, i.e., there are

less idle times.

7.5 Related Work

When considering heterogeneous architectures, real-time tasks have been traditionally

modeled as self-suspending tasks, i.e., tasks that contains a region which is executed

in an external device. The execution of the task is suspended until the completion of

the external operations in the device.

Most of the published work considers that self-suspended tasks are scheduled on

a uniprocessor platform and utilizes a device to accelerate part of the execution.

Unfortunately, it has been shown that many previous works concerning the analysis

of self-suspending tasks are flawed. Chen et al. [116] presented a complete review of

self-suspending tasks theory and an explanation of the existing misconceptions.

When considering multiprocessor architectures, Liu and Anderson [117] analyzed

self-suspending task systems and proposed a schedulability test for global earliest-

deadline-first (EDF) scheduling. The schedulability test by Liu et al. [118] considers

partitioned scheduling for harmonic tasks with suspensions, which have periodic job

arrivals. Chen, Huang and Liu [119] studied global rate-monotonic scheduling of dy-

namic self-suspending tasks, and proposed a utilization-based schedulability analysis.

Finally, Biondi et al. [120] designed a framework to support real-time systems on

FPGAs and provide a response time analysis to verify the schedulability of a set of

tasks with software parts and hardware accelerated functions.

161



7. RESPONSE TIME ANALYSIS SUPPORTING HETEROGENEOUS
COMPUTING

7.6 Summary

This chapter presents a novel response time analysis supporting heterogeneous com-

puting. It allows to verify the schedulability of a DAG task that offloads part of its

computation to an accelerator device. To do so, we first identify the portion of the

DAG running in the host (named GPar) that can potentially execute in parallel with

the workload offloaded to the device (named vOff ). Secondly, we propose a DAG

transformation to guarantee the parallel execution of GPar and vOff . Our response

time analysis is built upon this transformation.

Interestingly, besides the timing guarantees provided, this DAG transformation

also results in higher average performance when the offloaded workload represents

more than 10% of the DAG’s volume. The reason is that the probability of a schedul-

ing scenario in which the host processor is idle waiting for the device to finish, is

reduced.

Our results reveal that the proposed heterogeneous response time analysis signif-

icantly outperforms the homogeneous presented in Section 4.3 (up to 80% in average

and 95% observed) when COff is large enough (more than 5% of the task volume).

Moreover, for small DAG tasks (up to 100 nodes), we demonstrate that our response

time upper bound is comparable to the minimum makespan derived with an ILP

solution.

Overall, the benefit of using a specific response time analysis for heterogeneous

architectures has been demonstrated. This benefit is higher for (a) a small number of

cores in the host processor and (b) larger DAG tasks. Moreover, the heterogeneous re-

sponse time analysis is favorable when the portion of workload executed in the device

is sufficiently large, which complies with the heterogeneous computing philosophy.

The work presented in this chapter facilitates the use of the OpenMP accelerator

model into real-time systems, to support heterogeneous architectures. However, it

remains as future work the support for multiples regions within the tasks that can

be offloaded to a device (or multiple devices), and the analysis when several hetero-

geneous DAG tasks are considered within a real-time system.
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Chapter 8

Discussion

“I never am really satisfied that I understand anything; because,

understand it well as I may, my comprehension can only be an

infinitesimal fraction of all I want to understand.”

— Ada Lovelace

8.1 Conclusions

Critical real-time embedded systems are increasingly implementing advanced func-

tionalities that require more powerful computing platforms to provide higher perfor-

mance, while guaranteeing the predictability requirements of the system. Parallel

computing is fundamental to achieve the required level of performance, and parallel

programming models are of paramount importance to exploit the huge computa-

tional capabilities of current and future parallel embedded architectures targeting

real-time systems. This is a challenging task that requires a real convergence of high-

performance and embedded domains, impacting at all levels of the design flow and

execution stack.

This thesis tackles the use of the OpenMP task-based parallel programming model

to develop future critical real-time embedded systems. Concretely, this thesis ana-

lyzes the time predictability properties of the OpenMP tasking and accelerator mod-

els. OpenMP was created for a very different purpose than implementing real-time

applications. However, its syntax and execution model have certain similarities with

real-time formalisms, such as the DAG scheduling model, that could make it a good

candidate to fill the existing gap between: a convenient programming model for paral-
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lel embedded architectures and the scheduling analysis techniques required to provide

timing guarantees.

We first present an analysis of the OpenMP specification that shows the benefits

and implications of developing and parallelizing real-time systems with OpenMP. We

propose a set of implementation guidelines and OpenMP extensions to support the

timing and scheduling requirements of real-time tasks, like the notion of recurrence or

the need for priorities. We conclude that OpenMP is an excellent candidate to develop

critical real-time systems, although some modifications on the OpenMP specification

must be specifically addressed to guarantee the timing behavior of the system.

Then, we provide a deeper analysis of concrete features of the OpenMP tasking

model, the tied and untied tasks and their scheduling constraints, that directly im-

pact on the timing predictability of the real-time tasks. We provide a schedulability

analysis for the untied tasking model, and show the difficulties of deriving timing

guarantees for the tied model. We conclude that the use of untied tasks is preferable

for parallel applications in the real-time context.

Moreover, we show the similarities between the OpenMP execution model and

the limited preemptive scheduling strategy. Therefore, we extend the current state

of the art on the schedulability analysis for the sporadic DAG tasks model under the

limited preemptive scheduling. We develop a novel response time analysis considering

two well-known variants of this scheduling strategy, eager and lazy. We evaluate the

proposed analysis with synthetic workloads and conclude that the eager approach

provides better schedulability results, being the lazy approach very inefficient. This

also demonstrates that specific methodologies must be developed when considering

parallel execution in real-time systems, since a totally different conclusion was reached

when considering task-sets composed of sequential tasks, for which eager and lazy are

incomparable strategies. The reason is that there are task-sets composed of sequential

tasks for which eager fits better than lazy, and vice versa.

We also demonstrate the usability of our response time analysis with real use

cases, an AUTOSAR application and a real-time system implemented and parallelized

with OpenMP. We evaluate the systems and reinforce the conclusions obtained with

synthetic workloads. Moreover, we further demonstrate the effectiveness of using

OpenMP in real-time systems, as timing guarantees can be provided.

Finally, we provide a response time analysis for a restricted model when hetero-

geneous architectures are considered. This analysis targets the OpenMP accelerator
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model, used to efficiently offload the most computationally intensive functionalities

to accelerator devices. Our analysis considers an OpenMP application with a single

offload operation. Our evaluation with synthetic DAG tasks let us conclude that the

proposed analysis clearly outperforms the response time analysis for homogeneous

architectures. Moreover, a DAG transformation, required for the analysis, leverages

an average execution time improvement, since idle times in the host are avoided.

Overall, we envision a promising future in the adoption of OpenMP in critical

real-time systems. As a proof of concept, the next section presents the impact of this

thesis, which demonstrates the interest of both the academia and the industry, on

this topic.

8.2 Impact

The work done in this thesis is having an impact, not only within the BSC, but also

in the international community.

This thesis contributed to the European FP7 project Parallel Software Framework

for Time-Critical Many-core Systems (P-SOCRATES) (http://p-socrates.github.io/)

[21], which developed methodologies and tools for implementing time-predictable

high-performance applications. The characterization of the OpenMP tasking model,

and the response time analysis was key to analyze the timing predictability properties

of the use cases considered in the project.

Moreover, the contributions and results of this thesis opened new research lines

in the distributed computing domain. This is the case of the European Horizon 2020

projects, Edge and Cloud Computation: A Highly Distributed Software for Big Data

Analytics (CLASS) (2018-2020) [121] and A Software Architecture for Extreme-Scale

Big-Data Analytics in Fog Computing Ecosystems (ELASTIC) (2018-2021). Both

aim to develop novel software architectures to efficiently distribute data and process

mining along the compute continuum (from edge to cloud resources), while providing

sound real-time guarantees imposed by automotive (CLASS) and railway (ELASTIC)

systems. The response time analysis techniques developed in this thesis will be used

for two purposes: (1) provide timing guarantees to the parallel computation in the

edge nodes, and (2) characterize the timing behavior of the distributed computation,

which will be implemented with a task-based framework, COMPSs [122].

The work conducted in the scope of this thesis had also an impact on three
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industrial projects. The first project, Increasing the Guaranteed Performance in

Many-core Heterogeneous Architectures, (2016-20017), with the participation of BSC

and DENSO AUTOMOTIVE Deutschland GmbH (Germany), investigated parallel

programming models, scheduling and timing estimation techniques to obtain high-

performance and tight response-time bounds of parallel computation for automotive

Advanced Driver Assistance Systems (ADAS). The second project, Parallel Program-

ming Models for Space Systems (2015-2016), was a contract with the European Space

Agency (ESA), BSC and Evidence Srl (Italy). This project aimed to study the

benefits of using the OpenMP tasking model in space systems in order to improve

performance speed-up and increase programmability, while still providing timing ana-

lyzability. The third industrial project, High Performance Parallel Payload Processing

for Space (HP4S) (2018-2019), with the participation of BSC, Airbus Defense and

Space (France, UK), and the ESA, aims to further evaluate the use of OpenMP in

architectures that will be qualified to be used in the space domain in a short term. In

all these projects, the timing analysis techniques targeting OpenMP and developed in

this thesis, were or are fundamental to motivate the use of OpenMP in these domains.

The research conducted in this thesis towards the adoption of OpenMP in real-time

systems also promoted a Master and a PhD student within the BSC, and enrolled

in the Universitat Politècnica de Catalunya, to continue this research. They will

investigate further timing-related issues, and runtime and compiler implementation

requirements for adopting OpenMP in real-time systems.

Finally, this research line is having a significant impact in the OpenMP language

committee. This work has been presented to the OpenMP architecture review board

(ARB), motivating the creation of a discussion group to tackle real-time aspects in

the OpenMP specification. We are currently defining the new features to be included

in the OpenMP specification to allow the development of critical real-time systems.

8.3 Future Work

The research work conducted in this thesis poses the basis for further research on

timing analysis techniques focused on OpenMP. Below, we describe the main future

research lines that emanate from this thesis.

The most immediate action, which already started, is the discussion within the

OpenMP language committee to address real-time features in the OpenMP specifi-
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cation. Usability and expressiveness factors, or implementation issues must be con-

sidered for this research line. Interestingly, the event clause, and an event-driven

model, are being considered as a useful feature, not only for the real-time community,

but also for the HPC community.

An important and challenging research line is to consider and evaluate more real-

istic systems. This includes platforms, runtime implementations, compilers, analysis

tools, use cases, etc. Fortunately, the industry is more and more interested in this

topic, as seen in the previous sections, and this facilitates the access to real software

and hardware setups.

When considering heterogeneous architectures, the work presented in this thesis

must be extended to consider a more flexible model. The final goal is to study the

interaction of a set of real-time tasks when accessing concurrently to one or more

accelerator devices.

In our view, this thesis offers an excellent source for future works to explore the

opportunities that parallel programming models offer to real-time systems, and how

current parallel models can be extended to fulfill the needs of real-time systems.
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Appendix A

Eager Limited Preemptive

Blocking Time Factors

Section 5.3.2.2 presents a technique to compute the blocking time of lower priority

tasks under the eager limited preemptive scheduling strategy. This appendix presents

the algorithm and ILP formulations to compute the needed factors: (1) the worst-

case workload generated by each lower-priority task τi (i.e., µi, see Equation (5.9)),

and (2) the overall worst-case workload of lower-priority tasks for each execution

scenario sl ∈ em (i.e., ρk[sl], see Equation (5.10)). The former can be computed at

compile-time for each task, and is independent from the task-set; the latter requires

the complete task-set knowledge, and is computed at system integration time. The

last section of this appendix describes the complexity of these algorithms, and the

total complexity to compute the lower priority blocking time for this technique.

A.1 Worst-case workload of τi executing in c cores

µi[c] represents the worst-case workload of a task τi executing in c cores, and is

determined by the sum of the WCET of the c longest nodes of τi that can execute

in parallel (see Definition 10 in Chapter 5). This is computed in two steps: (1) we

identify for each node, the set of nodes that can execute in parallel with it; and (2) we

compute the worst case blocking time when different number of cores are considered.
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Algorithm 4 Parallel nodes of τ

Input: G = (V,E): DAG task
TopolOrder: Topological order of G
Sibling(vj), ∀vj ∈ V : Set of sibling nodes of vj
Succ(vj), ∀vj ∈ V : Set of successor nodes of vj
Pred(vj), ∀vj ∈ V : Set of predecessor nodes of vj

Output: Par(vj),∀vj ∈ V : Set of nodes parallel to vj

1 function parallel npr
2 for each vj ∈ V do
3 Par(vj)← ∅
4 for each vl ∈ Sibling(vj) do
5 if (vj , vl) /∈ E and (vl, vj) /∈ E then
6 s← Succ(vl) \ Succ(vj)
7 Par(vj)← Par(vj) ∩ {{vl} ∪ s}
8 end if
9 end for

10 end for
11 for each vj ∈ TopolOrder do
12 for each vl ∈ Pred(vj) do
13 p← Par(vl) \ Pred(vj)
14 Par(vj)← Par(vj) ∪ p
15 end for
16 end for
17 end function

A.1.1 Computing the set of parallel nodes

Given the DAG Gi = (Vi, Ei), Algorithm 4 computes, for each node vi,j ∈ Vi, the set

of nodes in Vi that can execute in parallel with vi,j. Notice that the i subscript has

been omitted.

The algorithm takes as input the DAG representation of the task τ , i.e., G =

(V,E), the topological order of G, and for each node vj, the sets: (1) Sibling(vj),

the nodes that have a common predecessor with vj, (2) Succ(vj), the nodes reachable

from vj and (3) Pred(vj), the nodes from which vj can be reached. The algorithm

computes for each vj ∈ V , the set Par(vj), that contains the nodes that can execute

in parallel with vj.

The algorithm iterates two times over all the nodes in V . The first loop (lines

2-10) adds to Par(vj) the set of sibling nodes vl that are not connected to vj by an

edge, and the nodes reachable from vl, i.e., Succ(vl), discarding those connected to
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Figure A.1: Example of DAG task.

vj by an edge. The second loop (lines 11-16), which traverses V in topological order,

adds to Par(vj) the set of nodes Par(vl), previously computed, being vl a predecessor

node of vj. From Par(vl), we discard the predecessor nodes of vj.

As an example, consider the node v1,3 of the DAG task τ1 shown in Figure A.1. The

first loop iterates over the sibling nodes v1,2, v1,4 and v1,5. None of them is connected to

v1,3 by an edge, so they are included in Par(v1,3). The first loop also considers the sets

Succ(v1,2) = {v1,6, v1,8}, Succ(v1,4) = {v1,7, v1,8} and Succ(v1,5) = {v1,7, v1,8}. The

algorithm discards from Succ(v1,2) the nodes {v1,6, v1,8}, since they are successors of

v1,3 and can not be executed in parallel. This is not the case of node v1,7 ∈ Succ(v1,4),
which is included in Par(v1,3). Hence, we obtain Par(v1,3) = {v1,2, v1,4, v1,5, v1,7}. The

second loop does not add new nodes to Par(v1,3) because the unique predecessor node

of v1,3 is v1,1, and Par(v1,1) = ∅. However, when the second loop iterates over node

v1,7, the two sets Par(v1,4) and Par(v1,5) are considered, since v1,4, v1,5 ∈ Pred(v1,7).

Then, nodes v1,2, v1,3 and v1,6 are included in Par(v1,7), since none of them belongs

to Pred(v1,7).

A.1.2 Worst-case workload of parallel nodes in c cores

This section presents an ILP formulation to compute µi[c], i.e., for any task τi, the

sum of the c longest nodes in Vi that, when executed in parallel in c cores, generate

the worst-case workload.

Input parameters

1. c, the number of cores used by τi.

2. vi,j ∈ Vi, the nodes of τi.

3. Ci,j, the WCET of each node.
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4. IsPari,j,k ∈ (0, 1), a binary variable that takes the value 1 if vi,j and vi,k can

execute in parallel, 0 otherwise.

Problem variables

1. bj ∈ (0, 1), a binary variable that takes the value 1 if vi,j is one of the selected

parallel node, 0 otherwise.

2. bj,k = bj ∧ bk, bj,k ∈ (0, 1), j 6= k, an auxiliary binary variable.

Constraints

1. Only c nodes can be selected:

|Vi|∑
j=1

bj = c

2. The selected nodes can execute in parallel:

|Vi|∑
j=1

|Vi|∑
k=j+1

bj,kIsPari,j,k = c

3. This is an auxiliary constraints used to model the logical and :

bj,k ≥ bj + bk − 1; bj,k ≤ bj; bj,k ≤ bk

Objective function. The objective function aims to maximize the WCET of the

c nodes that can execute in parallel, i.e.,

max

|Vi|∑
j=1

Ci,jbj

A.2 Overall worst-case workload of lp(k) under the

execution scenario sl

ρk[sl] represents the overall worst-case workload generated by the set of lower priority

task lp(k) under the execution scenario sl ∈ em (see Definition 12 in Chapter 5). This

section presents an ILP formulation to compute ρk[sl].
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Parameters

1. lp(k), the set of lower priority tasks.

2. m, the number of available cores.

3. sl ∈ em, the execution scenario.

4. µi[c], ∀τi ∈ lp(k), ∀c = 1 . . .m, the worst-case workload of parallel nodes of τi

executing in c cores.

Problem variable

1. wci , a binary variable that takes the value 1, when µi[c] contributes to the overall

worst-case workload, 0 otherwise.

Constraints

1. The number of tasks contributing to the overall worst-case workload must be

equal to the size of the execution scenario:

m∑
c=1

∑
∀τi∈lp(k)

wci = |sl|

2. A task can be considered at most in one execution scenario:

∀τi ∈ lp(k),
m∑
c=1

wci ≤ 1

3. For each number of cores considered in sl, there exist at least one µi[c] that is

selected: ∑
∀τi∈lp(k)

wci ≥ 1, c ∈ sl

4. The sum of number of cores considered is m:

m∑
c=1

∑
∀τi∈lp(k)

wci · c = m
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Objective function. The objective function aims to maximize worst-case workload

contribution of the tasks τi ∈ lp(k) in the execution scenario, i.e.,

max
m∑
c=1

∑
∀τi∈lp(k)

wciµ
c
i

A.3 Complexity

Algorithm 4 requires to specify for each node in Vi the sets Sibling, Succ and Pred,

that can be computed in quadratic time on the number of nodes. Similarly, the

complexity of Algorithm 4 is quadratic on the size of the DAG task, i.e., O(|Vk|2).
The ILP formulation to compute µi[c] is performed for each task (except for the

highest-priority one), and the number of cores ranges from 2 to m (when c = 1, µi[1] =

max1≤j≤qi+1
Ci,j), hence the complexity cost is O(nm) · O(ilpA). It is important to

remark that Algorithm 4 and the ILP that computes µi[c] are executed for each task,

and are independent of the task-set and the system where they execute.

ρk[sl] is computed for the execution scenarios em and em−1, and for each task τk

(except for the lowest-priority task τn), hence the complexity cost is: O(n · p(m)) ·
O(ilpB) + O(n · p(m − 1)) · O(ilpB). The cost of solving both ILP formulations is

pseudo-polynomial, if the number of constraints is fixed [123]. Our ILP formulations

have fixed constraints, with a function cost of O(ilpA) and O(ilpB) depending on |Vk|
and (m · n), respectively.

Therefore, the cost of computing ρk[sl] for em dominates the cost of other opera-

tions; hence, the complexity of computing the lower-priority blocking time is pseudo-

polynomial in the number of tasks and execution scenarios, i.e., cores.
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Appendix B

Benchmarks Source Code

This appendix contains the source code of the most representative function of the

OpenMP applications used for the experimental evaluation in Section 6.1 of this the-

sis. Concretely, section B.1 presents a pre-processing sampling application for infra-

red H2RG detectors, from the space domain. Sections B.2 and B.3 present to different

application but both useful in the automotive domain to support advanced vehicle

functionalities: a pedestrian detector and a cholesky factorization, respectively.

B.1 Pre-processing for infra-red detectors

1 void preProcessingFixedPoint ()
2 {
3 initialization ();
4 #pragma omp parallel
5 #pragma omp single nowait
6 {
7 INT32BIT groupNumber =1;
8 int i=0, j=0;
9 for (groupNumber =1; groupNumber <= numberOfGroupsPerExposure;

10 groupNumber ++)
11 {
12 #pragma omp taskwait
13 for (i=0; i < DIM_Y; i++) {
14 for (j=0; j < DIM_X; j++) {
15 #pragma omp task firstprivate(i, j) \
16 depend(in: currentFrame[i][j]) \
17 depend(in: saturationLimit) \
18 depend(inout: saturationFrame[i][j])
19 detectSaturation(currentFrame[i][j], saturationLimit ,
20 saturationFrame , i, j);
21 }
22 }
23 for (i=0; i < DIM_Y; i++) {
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24 for (j=0; j < DIM_X; j++) {
25 #pragma omp task firstprivate(i, j) \
26 depend(in: biasFrame[i][j]) \
27 depend(inout: currentFrame[i][j])
28 subtractSuperBias(currentFrame[i][j], biasFrame , i, j);
29 }
30 }
31 for (i=0; i < DIM_Y; i++) {
32 for (j=0; j < DIM_X; j++) {
33 #pragma omp task firstprivate(i, j) \
34 depend(in: coeffOfNonLinearityPolynomial) \
35 depend(inout: currentFrame[i][j])
36 nonLinearityCorrectionPolynomial(currentFrame[i][j],
37 coeffOfNonLinearityPolynomial , i, j);
38 }
39 }
40 #pragma omp taskwait
41 for (j=0; j < DIM_X; j++) {
42 #pragma omp task firstprivate(j) depend(in: dummy)
43 subtractReferencePixelTopBottom(currentFrame[i][j], j);
44 }
45 #pragma omp task depend(inout: dummy)
46 subtractReferencePixelSides(currentFrame[i][j]);
47 for (i=0; i < DIM_Y; i++) {
48 for (j=0; j < DIM_X; j++) {
49 #pragma omp task firstprivate(i, j, groupNumber) \
50 depend(in: dummy) \
51 depend(in: currentFrame[i][j]) \
52 depend(in: sumXYFrame[i][j]) \
53 depend(in: sumYFrame[i][j]) \
54 depend(inout: offsetCosmicFrame[i][j]) \
55 depend(inout: numberOfFramesAfterCosmicRay[i][j])
56 detectCosmicRay(currentFrame[i][j], sumXYFrame , sumYFrame ,
57 offsetCosmicFrame , numberOfFramesAfterCosmicRay ,
58 groupNumber , i, j);
59 }
60 }
61 for (i=0; i < DIM_Y; i++) {
62 for (j=0; j < DIM_X; j++) {
63 #pragma omp task firstprivate(i, j, groupNumber) \
64 depend(in: currentFrame[i][j]) \
65 depend(in: offsetCosmicFrame[i][j]) \
66 depend(in: saturationFrame[i][j]) \
67 depend(inout: sumXYFrame[i][j]) \
68 depend(inout: sumYFrame[i][j])
69 progressiveLinearLeastSquaresFit(currentFrame[i][j],
70 sumXYFrame , sumYFrame , offsetCosmicFrame ,
71 saturationFrame , groupNumber , i, j);
72 }
73 }
74 }
75 for (i=0; i<DIM_Y; i++) {
76 for (j=0; j < DIM_X; j++) {
77 #pragma omp task firstprivate(i, j) \
78 depend(in: sumXYFrame[i][j]) \
79 depend(inout: sumYFrame[i][j])
80 calculateFinalSignalFrame(sumXYFrame , sumYFrame ,
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81 numberOfGroupsPerExposure , i, j);
82 }
83 }
84 }
85 }

Listing B.1: C/OpenMP implementation of the pre-processing sampling application.

B.2 Pedestrian detector

1 vl_float * vl_bsc_hog (vl_float const * image ,
2 vl_size width , vl_size height ,
3 Locations ** winDetected)
4 {
5 int bx, by;
6 VlHog * self = vl_hog_new ();
7 #pragma omp parallel
8 #pragma omp single nowait
9 {

10 int nblocks = NBLOCKS;
11 for (by = 0 ; by < HOG_HEIGHT -1; by=by+NBLOCKS) {
12 for (bx = 0 ; bx < HOG_WIDHT -1; bx=bx+NBLOCKS) {
13 if (by == 0 && bx == 0) {
14 #pragma omp task firstprivate(by ,bx) \
15 depend(out: hog[by+nblocks -1][bx+nblocks -1])
16 {
17 int tby , tbx;
18 int ubx = bx+NBLOCKS , uby = by+NBLOCKS;
19 for (tby = by ; tby < uby; tby++) {
20 for (tbx = bx ; tbx < ubx; tbx++) {
21 if ((tby < HOG_HEIGHT -1) && (tbx < HOG_WIDHT -1))
22 vl_bsc_compute_block (self , image , tby , tbx);
23 }
24 }
25 }
26 } else if (by == 0 && bx != 0) {
27 #pragma omp task firstprivate(by,bx) \
28 depend(in: hog[by+nblocks -1][bx -1]) \
29 depend(out: hog[by+nblocks -1][bx+nblocks -1])
30 {
31 int tby , tbx;
32 int ubx = bx+NBLOCKS , uby = by+NBLOCKS;
33 for (tby = by ; tby < uby; tby++) {
34 for (tbx = bx ; tbx < ubx; tbx++) {
35 if ((tby < HOG_HEIGHT -1) && (tbx < HOG_WIDHT -1))
36 vl_bsc_compute_block (self , image , tby , tbx);
37 }
38 }
39 }
40 } else if (by != 0 && bx == 0) {
41 #pragma omp task firstprivate(by,bx) \
42 depend(in: hog[by -1][bx+nblocks -1]) \
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43 depend(out: hog[by+nblocks -1][bx+nblocks -1])
44 {
45 int tby , tbx;
46 int ubx = bx+NBLOCKS , uby = by+NBLOCKS;
47 for (tby = by ; tby < uby; tby++) {
48 for (tbx = bx ; tbx < ubx; tbx++) {
49 if ((tby < HOG_HEIGHT -1) && (tbx < HOG_WIDHT -1))
50 vl_bsc_compute_block (self , image , tby , tbx);
51 }
52 }
53 }
54 } else {
55 #pragma omp task firstprivate(by,bx) \
56 depend(in: hog[by -1][bx+nblocks -1]) \
57 depend(in: hog[by+nblocks -1][bx -1]) \
58 depend(in: hog[by -1][bx -1]) \
59 depend(out: hog[by+nblocks -1][bx+nblocks -1])
60 {
61 int tby , tbx;
62 int ubx = bx+NBLOCKS , uby = by+NBLOCKS;
63 for (tby = by ; tby < uby; tby++) {
64 for (tbx = bx ; tbx < ubx; tbx++) {
65 if ((tby < HOG_HEIGHT -1) && (tbx < HOG_WIDHT -1))
66 vl_bsc_compute_block (self , image , tby , tbx);
67 }
68 }
69 }
70 }
71 }
72 }
73 }
74 vl_hog_delete(self);
75 *winDetected = windows;
76 return &features [0][0][0][0];
77 }

Listing B.2: C/OpenMP implementation of the pedestrian detector application.

B.3 Cholesky factorization

1 void cholesky_blocked(const int ts , double* Ah[NB][NB])
2 {
3 #pragma omp parallel
4 #pragma omp single nowait
5 {
6 double (*AhDep )[NB][NB] = (double (*) [NB][NB])Ah;
7 int k, i, j, l;
8 for (k = 0; k < NB; k++) {
9 #pragma omp task depend(inout:AhDep[k][k])

10 omp_potrf (Ah[k][k], ts , ts);
11 for (i = k + 1; i < NB; i++) {
12 #pragma omp task depend(in:AhDep[k][k]) \
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13 depend(inout:AhDep[k][i])
14 omp_trsm (Ah[k][k], Ah[k][i], ts, ts);
15 }
16 for (l = k + 1; l < NB; l++) {
17 for (j = k + 1; j < l; j++) {
18 #pragma omp task depend(in:AhDep[k][l]) \
19 depend(in:AhDep[k][j]) \
20 depend(inout:AhDep[j][l])
21 omp_gemm (Ah[k][l], Ah[k][j], Ah[j][l], ts, ts);
22 }
23 #pragma omp task depend(in:AhDep[k][l]) \
24 depend(inout:AhDep[l][l])
25 omp_syrk (Ah[k][l], Ah[l][l], ts, ts);
26 }
27 }
28 }
29 }

Listing B.3: C/OpenMP implementation of the cholesky factorization.
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Appendix C

Minimum Makespan for

Heterogeneous DAG Tasks

In this appendix we present an ILP formulation that computes the minimum time

interval needed to execute a given heterogeneous DAG task on m cores and a device.

It provides a node-to-core mapping so that the heterogeneous DAG task makespan

is minimized. The purpose of this ILP is to evaluate the accuracy of the response

time analysis presented in Chapter 7. The ILP has been built upon the formulation

presented in [76], which provides the minimum makespan of an OpenMP-DAG taking

into account some OpenMP specification features.

Input parameters

1. m: Number of cores available for execution.

2. G = (V,E): DAG task.

3. Off : Index number of the node vOff , that represents the workload offloaded

to the device.

4. sink: Index number of the node vsink, the sink node of the heterogeneous DAG

task.

5. source: Index number of the node vsource, the source node of the heterogeneous

DAG task.

6. Ci,∀i = 1 . . . |V |: WCET of the nodes.

7. succi,j ∈ (0, 1),∀vi ∈ V, ∀vj ∈ V : Binary variable representing precedence

constraints. It equals to 1 if node vj is a direct successor of node vi, i.e., if

(vi, vj) ∈ E , 0 otherwise.
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Problem variables

1. yi,k ∈ (0, 1),∀vi ∈ V, ∀k = 1 . . .m: Binary variable that is equal to 1 if node vi

is executed on core k, 0 otherwise.

2. ti, ∀vi ∈ V : Integer variable representing the starting time of node vi.

3. ai,j,∀vi ∈ V, ∀vj ∈ V : Auxiliary binary variable that is equal to 1 if node vi

executes before vj.

Initial assumptions

1. The source node of the heterogeneous DAG task must start executing at time

0, i.e., tsource = 0.

Constraints

1. vOff node is executed in the device. Therefore, none of the m available cores of

the host executes it:

yOff,k = 0, ∀k = 1 . . .m

2. Each node (except vOff node) is executed only by one core of the host:

m∑
k=1

yi,k = 1, ∀vi ∈ V, i 6= Off

3. Precedence constraints are fulfilled:

succi,j · (ti + Ci) <= tj, ∀vi ∈ V, ∀vj ∈ V

4. The execution of different nodes in the same core must not overlap, i.e., if two

nodes are executed by the same core then, either one finishes before the other

begins, or vice versa:

(yi,k = 1 ∧ yj,k = 1)⇒ (ti + Ci ≤ tj ∨ tj + Cj ≤ Ci),

∀vi ∈ V, ∀vj ∈ V, ∀k = 1 . . .m

This constraint can be written as:

ti + Ci ≤ tj +MC · (3− ai,j − yi,k − yj,k)
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tj + Cj ≤ ti +MC · (2 + ai,j − yi,k − yj,k),

∀vi ∈ V, ∀vj ∈ V, ∀k = 1 . . .m,

i 6= j, i 6= Off

where MC is an arbitrarily large constraint. In order to be safe, we set MC =

|V | ×max{Ci,∀vi ∈ V } .

Objective function. The objective function aims to minimize the starting time of

the sink node of the heterogeneous DAG task, i.e.,

min tsink

tsink + Csink represents the minimum makespan.
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[55] Nerma Bašcelija. Sequential and parallel algorithms for cholesky factorization

of sparse matrices. Mathematical Applications in Science and Mechanics, 2013.

36, 127

190



BIBLIOGRAPHY

[56] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren

Kammel, J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, et al. To-

wards fully autonomous driving: Systems and algorithms. In IEEE Intelligent

Vehicles Symposium (IV), pages 163–168, June 2011. 36
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[89] José Marinho, Vincent Nélis, Stefan M Petters, Marko Bertogna, and Robert I

Davis. Limited pre-emptive global fixed task priority. In Proceedings of the 34th

Real-Time Systems Symposium (RTSS), December 2013. 106, 108, 120

[90] IBM ILOG. Cplex optimization studio, 2014. URL: http://www-01.ibm.com/

software/commerce/optimization/cplex-optimizer. 110, 157

[91] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and An-

dreas Wiese. Feasibility analysis in the sporadic DAG task model. In Proceedings

of the IEEE 25th Euromicro Conference on Real-Time Systems (ECRTS), July

2013. 119

[92] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and

Christopher D Gill. Parallel real-time scheduling of DAGs. IEEE Transactions

on Parallel and Distributed Systems, 25(12):3242–3252, December 2014. 119

[93] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Analysis of global

EDF for parallel tasks. In Proceeding of the 25th Euromicro Conference on

Real-Time Systems (ECRTS), July 2013. 119

194

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer


BIBLIOGRAPHY

[94] Sanjoy Baruah. Improved multiprocessor global schedulability analysis of spo-

radic DAG task systems. In Proceedings of the IEEE 26th Euromicro Conference

on Real-Time Systems (ECRTS), July 2014. 119
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