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Abstract 

 

To ensure the quality of an information system, it is essential that the conceptual 
schema that represents the knowledge about its domain and the functions it has to 
perform is semantically correct. 

The correctness of a conceptual schema can be seen from two different perspectives. 
On the one hand, from the point of view of its definition, determining the correctness of 
a conceptual schema consists in answering to the question "Is the conceptual schema 
right?". This can be achieved by determining whether the schema fulfills certain 
properties, such as satisfiability, non-redundancy or operation executability. 

On the other hand, from the perspective of the requirements that the information 
system should satisfy, not only the conceptual schema must be right, but it also must be 
the right one. To ensure this, the designer must be provided with some kind of help and 
guidance during the validation process, so that he is able to understand the exact 
meaning of the schema and see whether it corresponds to the requirements to be 
formalized. 

In this thesis we provide an approach which improves the results of previous 
proposals that address the validation of a UML conceptual schema, with its constraints 
and operations formalized in OCL. Our approach allows to validate the conceptual 
schema both from the point of view of its definition and of its correspondence to the 
requirements.   

The validation is performed by means of a set of tests that are applied to the schema, 
including automatically generated tests and ad-hoc tests defined by the designer. All 
the validation tests are formalized in such a way that they can be treated uniformly, 
regardless the specific property they allow to test. 

Our approach can be either applied to a complete conceptual schema or only to its 
structural part. In case that only the structural part is validated, we provide a set of 
conditions to determine whether any validation test performed on the schema will 
terminate. For those cases in which these conditions of termination are satisfied, we also 
provide a reasoning procedure that takes advantage of this situation and works more 
efficiently than in the general case. This approach allows the validation of very 
expressive schemas and ensures completeness and decidability at the same time. 

To show the feasibility of our approach, we have implemented the complete 
validation process for the structural part of a conceptual schema. Additionally, for the 
validation of a conceptual schema with a behavioral part, the reasoning procedure has 
been implemented as an extension of an existing method. 

 



 

 

 



 i 

Contents 
 

1 Introduction ..........................................................................................................1 

1.1 Conceptual Modeling in UML................................................................2 
1.2 The Need for Validation..........................................................................5 
1.3 Reasoning on the Structural Schema .....................................................7 

1.3.1 Is the Structural Schema Right? ..................................................................7 
1.3.2 Is It the Right Structural Schema? ..............................................................8 

1.4 Reasoning in the Presence of Operations..............................................8 
1.5 Previous Work ........................................................................................10 

1.5.1 On Validating the Structural Schema ......................................................10 
1.5.2 On Validating a Conceptual Schema with Operations..........................13 

1.6 Contributions of this Thesis ..................................................................16 
1.6.1 Validating the Structural Part of the Schema..........................................17 
1.6.2 Validating the Schema with its Behavioral Part .....................................19 
1.6.3 Reasoning on the Schema..........................................................................20 

2 Basic Concepts....................................................................................................23 

2.1 Basic Concepts on Conceptual Modeling............................................23 
2.2 Basic Concepts on the Logic Formalization ........................................24 

3 Validation of  the Structural Schema.............................................................27 
3.1 Translating a UML Conceptual Schema into Logic ...........................28 

3.1.1 Translation of a UML Class Diagram ......................................................29 
3.1.2 Translation of OCL Integrity Constraints................................................31 

3.2 Validation Tests ......................................................................................36 
3.2.1 Is the Structural Schema Right? ................................................................36 
3.2.2 Is It the Right Structural Schema? ............................................................41 

4 A Reasoning Procedure for the Structural Schema .....................................47 
4.1 Dealing with Decidability .....................................................................49 

4.1.1 The Dependency Graph.............................................................................51 
4.1.2 Determining the Decidability....................................................................54 

4.2 Reasoning in the Case of Decidability .................................................58 
4.2.1 Goal Satisfaction .........................................................................................58 
4.2.2 Integrity Maintenance................................................................................59 

5 Validation of a Conceptual Schema with Operations ................................67 
5.1 Semantics of Operation Contracts........................................................68 

5.1.1 The Extended Interpretation .....................................................................71 
5.1.2 The Strict Interpretation.............................................................................76 
5.1.3 More on the Strict and Extended Interpretations ...................................77 
5.1.4 Discussion....................................................................................................80 

5.2 Translating a UML Conceptual Schema into Logic ...........................82 
5.2.1 Deriving Instances from Operations ........................................................83 
5.2.2 Constraints Generated ...............................................................................89 



 ii 

5.3 Validation Tests ......................................................................................89 
5.3.1 Is the Conceptual Schema Right? .............................................................90 
5.3.2 Is It the Right Conceptual Schema?..........................................................95 

5.4 A Reasoning Procedure .........................................................................96 
5.4.1 Variable Instantiation Patterns .................................................................97 
5.4.2 A Sample Execution ...................................................................................99 

6 Tool Implementation ......................................................................................103 
6.1 Architecture...........................................................................................103 
6.2 Translation Component.......................................................................106 
6.3 Decidability Component .....................................................................107 
6.4 Reasoning Component ........................................................................109 

7 Related Work ....................................................................................................111 
7.1 Non-UML Approaches ........................................................................112 
7.2 UML Approaches .................................................................................114 

8 Conclusions.......................................................................................................119 
References ............................................................................................................123 
Appendix A..........................................................................................................127 
Appendix B ..........................................................................................................133



 1 

111 

Introduction 

An information system performs three main functions (Boman, Bubenko et al. 1997): 

- Memory: To maintain a consistent representation of the state of a domain. 

- Informative: To provide information about the state of a domain. 

- Active: To perform actions that change the state of a domain. 

In order to perform its functions, an information system needs general knowledge 
about its domain, as well as knowledge about the functions it has to perform. In the 
information systems field, this knowledge is called conceptual schema (Olivé 2007). 

The purpose of conceptual modeling is to determine and formally define the 
conceptual schema of an information system, which must include all relevant static and 
dynamic aspects of its domain (ISO/TC97/SC5/WG3 1982). The part of a conceptual 
schema that deals with static aspects is called the structural schema, and the part that 
deals with dynamic aspects is called the behavioral schema. 

The structural schema defines the state of the domain that must be represented in 
order that the system performs the memory function. A structural schema consists of a 
taxonomy of entity types together with their attributes; a taxonomy of relationship 
types among entity types; and a set of integrity constraints over the state of the domain, 
which define conditions that each state of the information base must satisfy.  

An information system maintains a representation of the state of a domain in its 
information base (IB). The state of the IB is the set of instances of the entity and 
relationship types defined in the conceptual schema. The integrity constraints of the 
structural schema guarantee the consistency of the IB. 

The content of the IB changes due to the execution of operations. A behavioral 
schema contains a set of operations and the definition of their effect on the IB, that is, 
the changes they make on the IB when they are executed. This knowledge is usually 
defined by the preconditions and postconditions of the operations. A precondition 
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expresses a condition that must be satisfied when the call to the operation is done. A 
postcondition expresses a condition that the new state of the information base must 
satisfy. The execution of an operation results in a set of one or more structural events to 
be applied to the IB. Structural events are elementary changes on the content of the 
information base, that is, insertions or deletions of instances. 

1.1 Conceptual Modeling in UML 

In the last years, the UML (Unified Modeling Language) (OMG 2007) has become a de 
facto standard in conceptual modeling.  

This language provides several diagrams for the different stages of information 
systems development, and only some of them are useful to define a conceptual schema. 
In particular, the analysis class diagram is used to define the entity types and 
relationship types of the structural schema (called classes and associations in UML, 
respectively), together with some integrity constraints that can be expressed 
graphically.  

A complete conceptual schema must include the definition of all relevant integrity 
constraints (ISO/TC97/SC5/WG3 1982). Then, those constraints that cannot be expressed 
graphically, must also be expressed in UML by means of any general-purpose language. 
According to (Warmer and Kleppe 2003), we assume they are specified in the OCL 
(Object Constraint Language) (OMG 2006). 

Operation contracts are the basic component of the behavioral schema, since they are 
the ones that specify which are the effects of operations, and the conditions needed so 
that the operation can be executed. 

 

Fig. 1. A structural schema for the domain of Employees and their assignment to Departments 



 3 

 

Fig. 2. Textual integrity constraints of the schema in Figure 1, expressed in OCL. 

Operation contracts consist of a precondition and a postcondition, that can be 
expressed in OCL. OCL is a declarative language and, as such, it expresses conditions 
that some state of the IB must satisfy. In particular, preconditions specify the conditions 
that the IB must fulfill so that the operation can be executed, and postconditions 
describe the state of the IB after the effect of the operation is applied. 

Figure 1, 2 and 3 show a complete UML conceptual schema, which we will use 
throughout this document. Textual integrity constraints and operation contracts are 
specified in OCL. 

In Figure 1 we show its structural part. It consists of a UML class diagram with five 
classes (Department, Employee, its subclass Boss, WorkingTeam and the association class 
Member), together with their attributes, and five associations (WorksIn, Manages, 
WorksFor, Audits and, again, Member). Moreover, there are some graphical cardinality 
constraints specified (for instance, the cardinality 1 of Department states that an 
employee must work exactly in one department). 

Integrity constraints 

1. context Department inv UniqueDep: 

Department.allInstances()->isUnique(name) 

2. context Employee inv UniqueEmp: 

Employee.allInstances()->isUnique(name) 

3. context WorkingTeam inv UniqueTeam: 

WorkingTeam.allInstances()->isUnique(name) 

4. context Department inv MinimumSalary: 

self.minSalary > 1000 

5. context Department inv CorrectSalaries: 

self.minSalary < self.maxSalary 

6. context Department inv ManagerIsWorker: 

self.worker->includes(self.manager) 

7. context Department inv ManagerHasNoSuperior: 

self.manager.superior->isEmpty() 

8. context Boss inv BossIsManager: 

self.managed-dep->notEmpty() 

9. context Boss inv BossHasNoSuperior: 

self.superior->isEmpty() 

10. context Boss inv SuperiorOfAllWorkers: 

self.employee->includesAll(self.managed-dep.worker) 

11. context WorkingTeam inv InspectorNotMember: 

self.employee->excludes(self.inspector) 

12. context Member inv NotSelfRecruited: 

self.recruiter<>self 

13. context WorkingTeam inv OneRecruited: 

self.member->exists(m|m.recruiter.workingTeam=self) 
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Fig. 3. The behavioral schema corresponding to the structural schema of Figures 1 and 2 

The OCL constraints in Figure 2 provide the class diagram with additional 
semantics. There are three key constraints (UniqueDep, UniqueEmp and UniqueTeam), 
one for each class. The constraint MinimumSalary states that the minimum salary to be 
paid to all the employees working in the department must be greater than 1000, and 
CorrectSalaries guarantees that the minimum salary of a department is lower than its 

Operation that creates a new department with name d-name, minSal and maxSal 

Op: newDept(d-name: String, minSal, maxSal: Real, managerName: 

String, managerSal: Real) 
Pre:  

Post: Department.allInstances()-> exists(d | d.oclIsNew() and 

d.name=d-name and minSalary=minSal and maxSalary=maxSal 

and Employee.allInstances()->exists(e | e.oclIsNew() and 

e.name=managerName and e.salary=managerSal and 

d.manager=e)) 

Operation that removes the department dep 

Op: removeDept(dep: Department) 

Pre:  
Post: Department.allInstances()->excludes(dep) 

Operation that creates a new employee and assigns him/her to the department dep 

Op: hire(e-name: String, sal: Real, dep: Department) 

Pre:  

Post: Employee.allInstances()-> exists(e | e.oclIsNew() and 

e.name=e-name and e.salary=sal and e.working-dep=dep)  

Operation that classifies the employee emp as an instance of Boss, in case he is not a manager 

Op: promote(emp: Employee, phone: String) 
Pre: emp.managed-dep->isEmpty() 

Post: emp.oclIsTypeOf(Boss) and emp.oclAsType(Boss).phone=phone 

Operation that removes the employee emp, as long as he is not assigned to a department  

Op: fire(emp: Employee) 
Pre: emp.working-dep->isEmpty() 

Post: Employee.allInstances()->excludes(emp) 

Operation that, if some department exists, creates a new working team and associates it to 
the inspector insp 

Op: newTeam(t-name: String, insp: Employee) 
Pre: Department.allInstances()->notEmpty() 
Post: WorkingTeam.allInstances()-> exists(t | t.oclIsNew() 

and t.name = t-name and t.inspector = insp)  

Operation that makes the employee emp, optionally recruited by the member rec, become a 
member of the working team team 

Op: newMember(emp:Employee,team:WorkingTeam,rec:Member) 
Pre:  
Post: Member.allInstances()->exists(m|m.oclIsNew() and  

m.employee=emp and m.workingTeam=team and m.recruiter=rec) 
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maximum salary. The constraint ManagerIsWorker states that the manager of a 
department must be one of its workers. Note that this constraint could be expressed 
graphically by means of a subset (see chapter 2). Constraint ManagerHasNoSuperior 
guarantees that the manager of a department does not work for any other employee. 
The constraint BossIsManager guarantees that a boss is the manager of some department. 
The next constraint, BossHasNoSuperior, states that a boss does not work for any other 
employee. The constraint SuperiorOfAllWorkers states that the workers of a department 
managed by a boss must work for that boss. The next one, InspectorNotMember ensures 
that an employee cannot audit a working team if he is one of its members. The 
constraint NotSelfRecruited prevents a member of a working team from recruiting 
himself and, finally, OneRecruited guarantees that each working team has at least one 
member recruited by another member of the same team. 

The behavioral part of this conceptual schema can be found in Figure 3. It includes 
seven operation contracts that specify the only changes that can be performed on the 
information base. As can be drawn from its name, the operation newDept creates an 
instance of Department with its corresponding manager, and removeDept deletes the 
indicated instance of Department. The operation hire creates an employee and assigns it 
to a department, the operation promote classifies an employee as an instance of Boss,  
and the operation fire removes an employee. There are also two operations about 
working teams, newTeam, that creates an instance of WorkingTeam, with its 
corresponding inspector, and newMember, which assigns an employee to a working team. 

1.2 The Need for Validation 

The conceptual schema shown in Figures 1, 2 and 3 is syntactically correct according to 
the UML and OCL metamodels. However, this does not ensure that it can be 
successfully populated, let alone that it correctly represents the intended domain. In 
order to guarantee the semantic correctness of a schema and, thus, to ensure the quality 
of the final application, it is necessary to provide the designer with some kind of help to 
answer questions like: can all the classes and associations of the schema be populated? 
are there any redundant constraints? are any constraints missing? is it possible to 
execute all the operations defined? is the schema actually representing the information 
needed? does it include all the operations required? 

Quality problems of information systems have mostly been addressed in the later 
phases of the development process. In particular, several validation and verification 
techniques such as testing, debugging and program verification have been proposed.  

However, while it is true that quality can be understood in terms of usability, 
reliability or efficiency, and these properties can mostly be determined by means of the 
final product, there are other quality factors that do not only depend on the 
implementation. In fact, the quality of an information system is largely determined 
early in the development cycle, i.e. during requirements specification and conceptual 
modeling. Moreover, errors introduced at these stages are usually much more 
expensive to correct than errors introduced during design or implementation. Thus, it is 
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desirable to prevent, detect and correct errors as early as possible in the development 
process, by assessing the correctness of the conceptual schemas built. In fact, this goal 
has been included in the research agenda to achieve conceptual-schema centric 
development, a grand challenge of information systems research (Olivé 2005). In 
particular, it should be possible to test and verify conceptual schemas at least to the 
same extent that has been achieved in software. This is especially important nowadays, 
given that the process of transforming a conceptual schema into a design or 
implementation can be, at least partially, automated. 

The correctness of a conceptual schema can be seen from two different points of 
view. From an internal point of view, determining the correctness of a conceptual 
schema corresponds to answering to the question “Is the conceptual schema right?” 
There are some typical properties that can be automatically tested to determine this 
kind of correctness, such as satisfiability of the schema, liveliness of its classes and 
associations, non-redundancy of its constraints or executability of its operations.  

On the other hand, from an external point of view, correctness refers to the accuracy 
of the conceptual schema regarding the user requirements (Adrion, Branstad et al. 
1982), and it corresponds to determining whether “Is it the right conceptual schema?”. 
Testing whether a schema is correct in this sense may not be completely automated, 
since it necessarily requires the intervention of the designer. Nevertheless, it is desirable 
to provide the designer with a set of tools that assist him during the validation process 
(Bubenko 1986). 

Due to the high expressiveness of the combination of the UML and OCL languages, 
checking the (internal or external) correctness of a UML conceptual schema manually 
becomes a very difficult task, especially when the set of textual constraints is large. For 
this reason, it is desirable to support the designer in validating a conceptual schema. 

Several proposals deal with the validation of the structural part of ER and UML 
conceptual schemas, determining for example their satisfiability (Brucker and Wolff 
2006; Hartmann 2001; Lenzerini and Nobili 1987) or allowing the designer to check if a 
given state is consistent according to the constraints defined in the schema (Gogolla, 
Bohling et al. 2005). However there are a few proposals that take the behavioral schema 
into account in the validation process (Costal, Teniente et al. 1996; Díaz, Paton et al. 
1998; Formica and Frank 2002; Leuschel and Butler 2008), none of them dealing with 
UML schemas with general OCL constraints and operations. Additionally, none of the 
existing methods is able to check both the internal and the external correctness of a 
schema. 

The goal of this thesis is to validate a UML conceptual schema, with general 
constraints and operations formalized in OCL, from both points of view. In particular, 
we provide the designer both with a set of tests that are automatically drawn from the 
schema in order to check its internal correctness, and with the ability to perform general 
user-defined validation tests to assess its external correctness. Both kinds of correctness 
can be tested either on the structural part or taking into account also the behavioral 
part.  
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1.3 Reasoning on the Structural Schema 

In this section we exemplify the kind of tests that can be performed on the structural 
part of a conceptual schema to determine its correctness. In section 1.3.1 we explain the 
kinds of reasoning that can be performed on the definition of the schema, while in 
section 1.3.2 we will see how reasoning can be used to validate that the schema satisfies 
the user requirements.  

1.3.1 Is the Structural Schema Right? 

Correctness of a conceptual schema can be understood from de point of view of its 
structure, regardless the user requirements. This kind of correctness can be determined 
by reasoning on the definition of the conceptual schema, without taking the domain or 
the requirements of the system into account. For this reason, the question of whether a 
schema is right, i.e. correctly defined, can be answered in a completely automatic way 
by performing several tests, which are, in turn, automatically drawn from the schema 
without the intervention of the designer. That is, the process of testing the internal 
correctness of the schema is completely automated, since the tests are automatically 
defined and executed, and the answers provided directly determine the correctness 
without having to be interpreted by the designer. We may note, however, that when 
some error is found, the designer must decide how it must be fixed, since several valid 
solutions may exist. 

We will illustrate our explanations by means of sample states of the IB corresponding 
to the schema in Figures 1 and 2, denoted by sets of instances of the classes and 
associations of the schema. For example, an employee named Peter will be represented 
by employee(peter). Similarly, the fact that Peter works in the sales department will be 
denoted by worksIn(peter, sales), which represents an instance of the association WorksIn. 
For the sake of clarity, we omit the attributes in those tests that are not affected by them. 

There are some typical properties that can be checked on a schema but, as will be 
seen in section 1.5.1, the one mostly approached has been satisfiability, also known as 
consistency in the literature.  

A schema is satisfiable if there is a non-empty state of the IB in which all its integrity 
constraints are satisfied.  

For instance, consider the structural schema of Figure 1. This schema can be 
populated with an instance of Employee, who necessarily has to work in a Department 
according to the cardinality constraint 1 in the role working-dep of the association 
WorksIn. Additionally, according to the constraint ManagerIsWorker, the department 
must have a manager that is one of its workers. There is no need to populate the 
association WorksFor or the class WorkingTeam, since they are not required in order to 
have a valid instance of Employee. Thus, a sample state proving satisfiability is one in 
which an employee works in a department and he is its manager at the same time:  
{employee(john), worksIn(john,sales), department(sales), manages(john,sales)}. Thus, this 
schema is satisfiable. 
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However, this does not mean that the schema is completely correct, since there may 
be some classes or associations that are never populated in any of the valid instances of 
the schema. This will be discussed in chapter 3.  

1.3.2 Is It the Right Structural Schema?   

From an external point of view, correctness refers to the correspondence of the 
knowledge represented in the schema with the user requirements. This can be 
determined by means of validation techniques, which aim at checking whether the 
schema properly reflects what the user needs from the application to be developed. 
Rather than using informal techniques, such as building a prototype which shows the 
behavior of the application, a better option is for example to animate the specification 
itself and see whether the results of the animation correspond to the ones expected. 

As an example, although the schema of Figures 1 and 2 is satisfiable, it may not 
specify what the designer intended. For instance, the designer may be interested to 
know whether the schema ensures that the salary of all the employees is greater than 
the minimum salary of their corresponding departments. The following state, which is 
admitted by the previous schema, shows that this is not the case: {employee(mary, 500), 
worksIn(mary, iT), manages(mary, iT), department(iT, 1000, 1500)} .  

The reason is that, although there are constraints that ensure the correctness of the 
values of the attributes minSalary and maxSalary of Department, a constraint that relates 
the attribute salary of Employee with those of Department is missing. The designer may 
not realize of this mistake by testing the internal correctness of the schema, since this 
flaw has to do with its correspondence to the domain. 

This kind of tests are the ones that help the designer to guarantee that the schema 
really specifies what he or she intended, so the correctness of the schema cannot be 
automatically determined from the result obtained. The designer will determine it once 
he has seen the result of the tests, by checking whether they correspond with his 
knowledge about the domain. 

1.4 Reasoning in the Presence of Operations 

In this section we explain the reasoning tasks that can be performed in the presence of 
operations and how they affect the properties satisfied by the structural schema. We 
illustrate how the importance of taking the behavioral schema into account in the 
validation.  

The behavioral schema contains a set of system operations and the definition of their 
effect on the IB. System operations specify the response of the system to the occurrence 
of some event in the domain, viewing the system as a black box, and they define the 
only changes that can be performed on the IB (Larman 2004). 
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An operation is defined by means of a precondition, which expresses a condition that 
must be satisfied when the call to the operation is done, and a postcondition, which 
expresses a condition that the new state of the IB must satisfy.  

The operation contracts in Figure 3 belong to the behavioral schema corresponding 
to the structural schema in Figures 1 and 2. Each contract describes the changes that 
occur in the IB when the operation is invoked. According to the strict interpretation of 
operation contracts, which is explained in chapter 5, preconditions need not be 
responsible for guaranteeing the satisfaction of integrity constraints. In this sense, it is 
assumed that constraints are checked at the end of each execution and the operation is 
rejected in case some constraint is violated. This is why possible violations of integrity 
constraints are not prevented in the preconditions of our contracts.  

Reasoning on the structural schema of Figure 1 alone, it can be determined that it is 
satisfiable, as we have seen in  section 1.3.1. For instance, the following state of the IB in 
which an employee works in a department and he is its manager at the same time 
proves the satisfiability of the class diagram, with its graphical and OCL constraints:  
{employee(john), worksIn(john,sales), department(sales), manages(john,sales)}.  

However, the fact that the structural part of a conceptual schema is correct does not 
necessarily imply that the whole conceptual schema also is. That is, when we take into 
account that the only changes admitted are those specified in the operations of the 
behavioral schema, it may happen that the properties fulfilled by the structural schema 
alone are no longer satisfied.  

In our example, although it is possible to find instances of Department satisfying all 
the constraints as we have just seen, there is no operation that successfully populates 
this class. The operation newDept seems to have this purpose, but it never succeeds since 
it does not associate the new department with an Employee by means of the association 
WorksIn, which violates the minimum cardinality of the role worker. As a consequence, 
since an Employee must be assigned to one Department according to the cardinality 
constraint 1..* in the role working-dep of WorksIn, there can not exist any instance of 
Employee either. Then, we have that this schema can never be populated using the 
operations defined and, although the structural part of the schema is semantically 
correct, the complete conceptual schema is not.  

Also, when dealing with operations, additional validation tests can be performed, 
namely applicability and executability of each operation (Costal, Teniente et al. 1996). 
To illustrate these properties, let us consider the operation fire of Figure 3, which deletes 
the indicated Employee. As can be seen, the precondition of this operation requires the 
existence of at least an employee that does not work in any department, which is not 
possible according to the cardinality constraint 1 of working-dep. This means that this 
operation is not applicable, that is, it can never be executed because it is impossible to 
satisfy its precondition. Thus, in our example, the designer should avoid this erroneous 
situation by, for instance, removing the precondition or changing the cardinality 
constraint of working-dep to 0..1.  
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Although an operation is applicable, it may never be successfully executed because it 
always leaves the IB in an inconsistent state. For instance, let us consider the following 
additional operation, which removes the assignment of an employee to his department: 

Op: deassign(emp: Employee) 
Pre:  

Post: emp.working-dep.worker->excludes(emp) 

This operation is applicable by definition, since its empty precondition is always 
satisfied. However, the postcondition removes the instance of the association WorksIn 
between the employee emp and the only department to which emp is assigned. Since this 
operation neither replaces the assignment of the employee by creating a new instance of 
WorksIn linking emp to another department, nor deletes the employee, the result is that, 
after the execution of this operation, there is always an instance of employee that is not 
assigned to any department, violating the cardinality constraint 1 of working-dep. This 
means that the execution of this operation will always be rejected because it is 
impossible to satisfy its postcondition and the integrity constraints at the same time. 
This is another undesirable situation that the designer should avoid by modifying either 
the structural schema (changing the cardinality constraint of working-dep to 0..1) or the 
behavioral one (linking the employee to another department or deleting the employee). 

1.5 Previous Work 

1.5.1 On Validating the Structural Schema 

In this section we review how correctness has been addressed in conceptual modeling, 
regarding the validation of the structural part of a conceptual schema. We have 
classified the most relevant approaches that do not deal with the behavioral schema into 
two categories. The first one includes methods and tools to reason on conceptual 
schemas that are not specified in UML (ER schemas, deductive databases, logic), 
whereas the second group includes those methods and tools that approach correctness 
in UML conceptual schemas. As will be seen, none of the methods is able to determine 
external correctness, since all of them deal with typical reasoning tasks such as 
satisfiability. Additionally, only the last method commented considers general 
constraints, but it renounces to completeness. 

Non-UML Approaches 

Some reasoning tasks have been addressed in ER conceptual schemas, the most popular 
one being satisfiability of cardinality constraints. 

Usually, methods for ER schemas report whether the structural part of the schema is 
satisfiable, and use a more restrictive notion of satisfiability. Classically, satisfiability of 
a schema admits that a schema is satisfiable if there exists an instance of the schema 
(possibly empty) satisfying all integrity constraints. However, this is not sufficient for 
cardinality constraints and, in particular, for databases, and introduce the notion of 
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strong satisfiability, which ensures that there is at least one fully populated instance of 
the schema satisfying all the constraints. Strong satisfiability was introduced in 
(Lenzerini and Nobili 1987), and their approach to determining strong satisfiability 
consists in reducing the problem to solving a linear inequality system. This system is 
defined from the set of relationships and cardinality constraints of the schema. Then, a 
schema is strongly satisfiable if and only if there are solutions for its associated 
inequality system. An application of these results to UML schemas is shown in (Maraee 
and Balaban 2007). 

The same problem is addressed in (Hartmann 1998), which determines strong 
satisfiability of a schema by means of a graph-theoretic approach. This time, the kind of 
constraints considered are int-cardinality constraints (Thalheim 2000), which are more 
general than traditional ones, since they allow gaps in the sets of permitted 
cardinalities. 

The same method is used in (Hartmann 2001), but this time it serves more specific 
purposes. Given a cardinality constraint set S, the method can find superfluous entities, 
i.e. entities whose population is empty in every instance of the schema satisfying S, and 
determine which is the minimal subset of constraints that causes a schema not to be 
satisfiable. 

Another problem is approached in (Bowers 2003), which is the detection of 
potentially redundant associations in an ER schema. The method is based this time in 
adjacency matrixes, but is expensive and incomplete, since some types of redundancy 
involving more than one relationship between two entities cannot be detected. 

Finally, (Vigna 2004) presents an approach in the context of web-based database 
administration systems, where the only changes that can be applied to an IB are local 
modifications: insertions/deletions of an entity and all its relationships, or 
insertions/deletions of a single relationship. This work determines whether all the 
instances of a schema are mutually reachable using only the local modifications 
mentioned. In case they are all mutually unreachable, then it means that the schema is 
incorrect for his purposes. 

 In the context of Object-Oriented schemas, (Bekaert, Van Nuffelen et al. 2002) define 
how an EROOS schema can be automatically translated into ID-Logic, which is an 
integration of first-order logic and logic programming. Once the schema is translated, 
general integrity constraints can be manually added to the ID-logic schema, and a 
general solver is used to reason on the schema. In particular, the reasoning task 
performed is scheduling, which consists in trying to achieve a goal specified by the user 
in a populated IB. For instance, assume an instance of the schema of Figure 1 consisting 
of an employee Mary assigned to a department Sales, and a goal to achieve that is 
having Mary also assigned to another existing department IT. In this case, this goal 
cannot be satisfied due to the cardinality constraint of the association WorksIn.  

In (Formica 2003), a decidable method for checking finite satisfiability of Object-
Oriented database schemas, based on a graph-theoretic approach, is provided. Schemas 
are defined by means of the language TQL*, an object-oriented language aimed at 
modeling the structural aspects, including some kinds of constraints, of object-oriented 
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database schemas. The method can only deal with cardinalities, as well as a specific 
class of constraints, defined by means of a navigation path, a comparison operator and a 
constant.  

A common drawback of all these methods is that none of them takes general 
integrity constraints into account. Additionally, these approaches are aimed at checking 
only some specific properties regarding the internal correctness of the schema. 

UML Approaches 

Some popular approaches to reason on UML class diagrams are based on Description 
Logics. Description Logics (DLs) are a family of formalisms for knowledge 
representation, based on first-order logic. In the last years, DLs have gone beyond their 
traditional scope in Artificial Intelligence area to provide new alternatives and solutions 
to many topics in the database and conceptual modeling areas (Borgida 1995; Borgida 
and Brachman 2003; Borgida, Lenzerini et al. 2003; Calvanese, Lenzerini et al. 1998; 
Lenzerini 1999). In DLs, reasoning is emphasized as a central service: it allows to infer 
implicitly represented knowledge from the knowledge explicitly contained in the 
knowledge base.  

The applications of DLs and their reasoning facilities to data modeling and 
management are expressing the structural part of the conceptual schema and expressing 
and evaluating queries. Additionally, its inference mechanism can be used to determine 
some properties of the structural schema, such as satisfiability, liveliness or class 
subsumption. 

DLs are a knowledge representation formalism, and one usually assumes that a 
system should always answer the queries of a user in reasonable time, which is not 
guaranteed by first-order logic. Decidability and complexity of the inference problems 
depend on the expressive power of each specific DL. On the one hand, very expressive 
DLs are likely to have inference problems of high complexity, or may even be 
undecidable. On the other hand, DLs with efficient reasoning procedures may not be 
expressive enough to represent the knowledge required by a real application. 

An approach to reasoning on UML class diagrams is to translate them to DLs and 
then use current standard DL-based reasoning systems on them. An essential condition 
to guarantee decidability is the disallowance of general OCL constraints, which indeed 
are very important in conceptual modeling. In addition to this important limitation, 
every particular DL has its own restrictions, and even the most expressive ones are far 
below UML as far as expressiveness is concerned.  

An important approach in this direction is (Berardi, Calvanese et al. 2005), which 
deals with a limited form of cardinality constraints (only of attributes or binary 
associations with an association class), as well as disjointness and covering constraints 
in hierarchies. The approach followed in this work is to translate a UML structural 
schema into ALCQI, and then use one of the existing reasoners to check satisfiability, 
liveliness, class subsumption and implicit consequence. The complexity of this DL is 
exponential, but the reasoning tasks still remain decidable. However, its expressive 
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power is not sufficient for data modeling since, it doesn't allow key constraints, 
functional dependencies or associations with more than two participants. 

The schemas dealt in (Fillottrani, Franconi et al. 2006) are a bit more expressive, since 
they can contain key constraints and inclusion and exclusion dependencies, in addition 
to cardinality, disjointness and covering constraints as in the work previously 
commented. However, the reasoning tasks performed are only class or association 
subsumption and inference of cardinality constraints. 

One of the most recent works in this area is (Cadoli, Calvanese et al. 2007). The 
approach consists in encoding such UML class diagrams as a constraint satisfaction 
problem, and then perform finite model reasoning, i.e. check whether a class is forced to 
have either zero or infinitely many instances. To solve the resulting constraint 
satisfaction problems the authors use existing off-the-shelf tools. In this case, the 
constraints handled are again cardinality, disjointness and covering constraints. 
However, the UML class diagrams considered do not contain attributes, association 
classes or n-ary associations which, in addition to the lack of general constraints, are 
very important limitations. 

1.5.2 On Validating a Conceptual Schema with Operations 

In this section we review the previous work on validating conceptual schemas with a 
behavioral part. As will be seen, most of the approaches are able to validate that the 
preconditions and postconditions are correct, in the sense that they guarantee the 
applicability and executability of the operations. However, they do not consider the 
operations in the reasoning, which means that the results of the tests may report as 
valid states of the IB that are impossible to reach according to the changes defined by 
the operations. 

Non-UML Approaches 

Although considering the behavioral schema is not very common in practice, an 
interesting example in the context of deductive databases is (Díaz, Paton et al. 1998), 
which shows how the system would behave according to its specification by executing 
the model. If an unexpected outcome arises, the system helps the designer with 
explanations such as the ones of (Olivé and Sancho 1996). However, some structural 
features, such as class hierarchies, integrity constraints and derivation rules, have not 
been addressed in this work. 

Another idea for the animation of a conceptual schema can be found in (Oliver and 
Kent 1999), which consists in determining all the valid states resulting from the 
application of an operation to an initial state. Here, the operation is defined 
declaratively, by means of a precondition and a postcondition in OCL. 

For instance, assume the structural schema of Figure 1, considering that the 
cardinality constraint that forces an employee to be assigned to a department has been 
eliminated. Assume also an information base in which there is an instance e of Employee 
assigned to an instance d of Department. Then, given the contract for the operation fire 
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specified in Figure 2, the execution of fire(e) to such information base can result in two 
different states, both of them satisfying the postcondition, i.e. without e being assigned 
to d: one still having instance e of Employee and the other in which e has been deleted 
from the information base. 

Then, this validation approach allows to detect ambiguous or erroneous 
specifications of operation contracts by means of animation, since the designer can 
simulate the results of executing an operation on a certain IB and see whether they are 
the expected. This approach does not allow to automatically determine the correctness 
of a schema, since it only works on a populated IB and is not able to search for new 
instances that satisfy the desired properties. 

In (Formica and Frank 2002) the problem of determining the consistency of an object-
oriented specification is addressed. The structural schema is expressed in a textual 
language similar to Description Logics, but with some differences: it includes typing of 
attributes and does not support inheritance (subsumption). The kind of behavioral 
schema considered is by means of statecharts, which specify intra-object behavior. This 
means that they specify the behavior of an entity, but not the operations that can be 
performed on the whole conceptual schema. The kind of consistency checked is related 
to the integrity constraints that affect that entity and the conditions on the transitions of 
its associated statechart. In this way, they can detect inconsistencies like the fact that a 
transition can never be performed because it is impossible that some object satisfies the 
necessary conditions in order to execute it. However, this work has important 
expressive limitations. For instance, as well as the lack of inheritance, the constraints 
that can be expressed can only compare attribute values with constants, and not with 
other attributes. 

Despite being normally used to represent and reason only on the structural schema, 
the Description Logics concepts can also be used to express preconditions and 
postconditions, in combination with a fragment of the Situation Calculus (Baader, Lutz 
et al. 2005). This combination provides expressiveness in the specification of actions, 
while guaranteeing decidability. With this formalism, properties regarding the 
correctness of operations (their applicability and executability) can be checked. 

The Alloy language and analyzer (MIT 2006) provide interesting validation 
capabilities for more expressive schemas by searching for examples of the tests specified 
by the designer. In this case, the expressiveness of the structural schema and of the 
constraints are not limited. Additionally, operations can be specified and their 
preconditions and postconditions can be checked manually, that is, the designer asks 
for examples satisfying the precondition before the execution of the operation or 
satisfying the postcondition once it has been executed, but does not consider them 
when performing the tests on the structural schema. This means that an unreachable 
state may be reported as valid when, in fact, it is not with the operations given. 
Additionally, since the search space must be limited by the user, failure to find an 
example does not necessarily mean that one does not exist. 

As can be seen, from the approaches to reason on non-UML schemas, Alloy is the 
only one that is expressive enough for the conceptual schemas we consider. However, 
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its incompleteness and the fact that it does not consider the meaning of operations 
during the validation process, are important limitations. 

UML Approaches 

One of the first approaches to check satisfiability of UML schemas with operations is 
(Dupuy, Ledru et al. 2000). The schemas considered cannot contain n-ary associations. 
General constraints are handled, but they must be expressed in Z instead of OCL, which 
is the language recommended by the UML to formalize constraints and operations. 
Besides checking satisfiability of the structural part of the schema, operations to insert, 
delete and update the instances of each class or association are automatically generated. 
These operations are guaranteed to be applicable and executable according to the Z 
constraints specified in the schema. However, operations are not taken into account 
when determining the satisfiability of the schema. 

An interesting tool to validate UML/OCL conceptual schemas is USE (Gogolla, 
Büttner et al. 2007), which allows to test if a given instantiation is accepted by the 
schema taking into account the OCL constraints. Preconditions and postconditions can 
also be validated, but the execution of the operation has to be simulated manually, 
inserting and deleting instances of the model, and then asking the tool to test whether 
the instantiation satisfies the postcondition. The instantiations must be manually 
provided, and a consequence of this is incompleteness, since the tool only checks 
whether the given instantiations are accepted by the schema and the constraints, but 
does not invent new instances that could be accepted while the ones given alone are 
not. Moreover, it cannot validate that the schema accepts an IB containing a subset of 
information defined declaratively. 

An approach to reason on UML/OCL schemas is HOL-OCL (Brucker and Wolff 
2006). The method uses a theorem prover to determine some properties on the schema, 
such as equivalence of two integrity constraints, and applicability and executability of 
operations. The theorems to be proved are defined in terms of the meta-model and, 
thus, it is not possible to check whether a certain instantiation is accepted by a schema 
or which is the sequence of operations that leads to a certain state. 

There is another approach to reason on UML conceptual schemas, this time 
annotated with OCL constraints, that is based on translating the structural schema into 
a constraint satisfaction problem (Cabot, Clarisó et al. 2008; 2009). With this approach, 
several properties of the schema can be tested in order to check its internal correctness. 
In order to do this, the domain of each attribute must be made finite, which leads to 
incompleteness: failure to find an IB satisfying a certain property does not mean that 
one does not exist with other values beyond the specified bounds. Regarding the 
behavioral schema, some properties regarding the correct definition of the operations, 
such as applicability, executability or precondition redundancy, can be tested. 

We may note that all the UML approaches that consider the behavioral part have an 
important common drawback. None of them takes into account the definition of 
operations when determining whether a state is accepted or not by the schema. This 
means that they may report as valid a state satisfying all the constraints but that is 
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impossible to construct using the operations defined in the schema. This also damages 
the results obtained when testing the correctness of operations themselves, since the 
states satisfying certain properties (for instance, a state satisfying the precondition when 
testing the applicability of an operation) may not be reached using the operations 
defined. Moreover, they cannot automatically construct the sequence of operations 
resulting in a certain state.  

An exception is an approach that belongs to the Rodin project. It combines UML-B 
(Snook and Butler 2006) and ProB (Leuschel and Butler 2008), the former to represent 
the schema and translate it into the B language, and the latter to validate it by 
animation. One of its drawbacks is that UML-B only accepts a subset of the UML that is 
suitable for translation into B, which is defined through an ad-hoc profile. Moreover, 
constraints and operations must be directly expressed in B by the designer. In contrast, 
our models can be expressed in standard UML and OCL, which are the languages most 
commonly used in conceptual modeling. Regarding the animation process, the 
operations handled by ProB must incorporate the semantics of the constraints, which 
are checked after the simulated execution. On the contrary, our approach is able to deal 
with constraints as such, taking care of maintaining them while constructing the sample 
state. Additionally, ProB requires that the state space is made finite by enumerating the 
values to be used in the animation. Since the fact that a property does not hold for those 
values does not mean that it can never hold, completeness is not guaranteed by this 
approach. 

1.6 Contributions of this Thesis 

The goal of this thesis is to propose a method to validate both the structural and the 
behavioral parts of a UML conceptual schema. The structural part is defined by means 
of a UML class diagram and a set of constraints formalized in OCL, while the 
behavioral part consists of a set of operations, defined by means of operations contracts 
also formalized in OCL.  

Two kinds of tests can be made on a conceptual schema using our method. On the 
one hand, our method can check the internal correctness of the schema by automatically 
verifying whether it satisfies a set of desirable properties. Some of these properties 
correspond to well-known reasoning tasks such as schema satisfiability, class liveliness 
or redundancy of integrity constraints, while others are an original contribution of this 
thesis. In short, these additional automatically generated tests allow to check whether 
the cardinalities of associations and the disjointness and covering constraints in 
hierarchies are correctly defined. 

On the other hand, to check the external correctness of the schema, we provide the 
designer with a set of tests that can be automatically generated from the schema, as well 
as with the ability to ask any questions to see whether certain situations are accepted by 
the conceptual schema.  
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Roughly, our approach consists in automatically translating the UML schema with 
its OCL constraints and operations into a logical representation. Once this translation is 
done, we are able to perform the validation tests. We express all of them (the ones to 
check internal correctness and the ones to check the external correctness of the schema) 
in terms of checking the satisfiability of a derived predicate. In this way, for each 
validation test to be performed, a derived predicate (with its corresponding derivation 
rule) that formalizes the desired test is defined. With this input, together with the 
translated schema itself, any satisfiability checking method that is able to deal with 
negation of derived predicates can be used to validate the schema.  

Our approach to reasoning is aimed at constructing an IB which shows that a certain 
property holds. That is, an IB where both the particular condition to be tested and all 
the integrity constraints in the schema are satisfied. In this way, our method can 
uniformly deal with all the validation tests. 

It is well known that the problem of reasoning with integrity constraints in its full 
generality, as we want to do, is undecidable since general constraints can cause the 
schema to have an infinite number of models (or consistent IBs). Then, two different 
approaches can be followed, either based on decidable procedures for certain restricted 
kinds of constraints or limited domains, or based on semidecidable procedures for 
highly expressive constraints. Since we do not want to renounce to completeness, nor to 
a high expressiveness of constraints, we take a mixture of both directions. Once we have 
translated the UML schema with its OCL constraints into logic, we provide a set of 
conditions that, in case they are satisfied by the schema, guarantee that the schema does 
not have any infinite model, which implies that any reasoning task performed on it will 
terminate. The novelty of our approach lies in admitting a high expressiveness of the 
constraints, for which decidability is not guaranteed, and then determine whether 
termination can be ensured for each particular schema. 

The conditions to determine decidability are not applicable to the behavioral part of 
the schema. In this case, the reasoning is performed after the translation of the schema 
into logic, without knowing a priori whether it will terminate.  

In the following subsections we outline the different steps of our method, that is, the 
translation of the schema into logic, which depends on whether the behavioral schema 
is considered or not, the determination of the decidability of reasoning, which can only 
be checked on the structural schema, and the reasoning procedure, which is common 
for both cases.   

1.6.1 Validating the Structural Part of the Schema 

Before reasoning on the schema to check the desired properties, the schema must be 
translated into logic (Queralt and Teniente 2006a). When we want to validate the 
structural schema alone, we can also check whether the problem of reasoning on the 
particular schema to be validated is decidable (Queralt and Teniente 2008a). Once this 
has been done, the reasoning is performed as explained in section 1.6.3. 
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Translating the Schema into Logic 

When validating the structural schema alone, classes, attributes and associations are 
represented in logic by means of basic predicates. Classes are translated into unary 
predicates, attributes into binary predicates and associations become predicates of their 
same arity. For instance, in the example of Figure 1, classes Employee and Department 
become employee(E), employeeName(E,N) and department(D), departmentName(D,N), and 
the binary association WorksIn is represented by worksIn(E,D). 

The OCL constraints of the schema are translated into formulas in denial form, 
which represent conditions that must not be satisfied by any state of the IB. For 
instance, the constraint BossHasNoSuperior is translated into:  

←boss(E) ∧ worksFor(S,E) 

which means that it is not possible that an instance e of Boss exists such that there is 
an employee s that is his superior. 

The graphical constraints of the schema, such as cardinality and taxonomic 
constraints (disjoint and complete), also need to be translated into this kind of conditions.  

A class diagram also has a set of implicit constraints that need to be taken into 
account in the logical representation of the schema to preserve the semantics of the 
original one. For example, since UML is an object-oriented language, each instance has 
an internal object identifier (OID) which uniquely differentiates two instances, even 
though they are externally equivalent. Thus, additional constraints are needed in the 
logical representation to guarantee that two instances of the schema do not have the 
same OID. In the example of Figure 1 we need to specify the following constraint: 

←employee(X) ∧ department(X) 

As well as OIDs, the implicit constraints we can find in a class diagram are: 

- In class hierarchies, an instance of a subclass must also be an instance of the 
superclass. 

- In associations or association classes, an instance of the association must link 
instances of the classes that define the association. 

- In association classes, there cannot exist several instances linking exactly the 
same instances. Note that this is also true for associations without an association 
class, but an additional constraint is not needed in this case, since predicates 
representing n-ary (n>=2) associations have exactly n terms that can not be 
identical in two different instances of the predicate. 

In section 3.1 the translation is explained in detail. 

Determining Decidability 

The logic representation of the schemas obtained from the translation of a UML schema 
with its OCL constraints has a specific structure. In particular, it has only one level of 
derivation, that is, derived predicates are never defined by other derived predicates. To 
satisfy this restriction, although OCL constraints can include the operations includes, 



 19

includesAll, notEmpty, exists and one, these specific operations cannot be 
recursively combined in an OCL expression. 

This mild syntactical restriction allows us to determine whether any reasoning task 
performed on the schema will terminate. To do this, we provide a set of conditions that 
guarantee that the schema does not have any infinite model, which means that 
reasoning on the schema will always terminate. Our approach consists in constructing a 
graph from the set of constraints of the schema that shows the existing dependencies 
between them, and then study the cycles in the graph to determine the absence of 
infinite models, as we will see in section 3.2. 

1.6.2 Validating the Schema with its Behavioral Part 

In order to validate a complete conceptual schema, we must take into account that the 
only changes that can be performed on the IB are those defined in the operations of the 
behavioral schema. For this reason, the translation into logic is different from the 
previous case (Queralt and Teniente 2008b). Now, since the resulting translation is more 
expressive than before, we are not able to determine the decidability, so the reasoning is 
performed immediately after the translation, as explained in section 1.6.3, without 
knowing whether it will always terminate. 

Translating the Schema into Logic 

Validation tests that consider the structural schema alone are aimed at checking that an 
instantiation fulfilling a certain property and satisfying the integrity constraints can 
exist. In this case, classes, attributes and associations can be translated into base 
predicates that can be instantiated as desired, as long as integrity constraints are 
satisfied, in order to find a state of the IB that proves a certain property (Queralt and 
Teniente 2006a). 

However, when considering also the behavioral schema, the population of classes 
and associations is only determined by the events that have occurred. In other words, 
the state of the IB at a certain time T is just the result of all the operations that have been 
executed before t, since the instances of classes and associations cannot be created or 
deleted as desired. For instance, according to our schema in Figure 1 and the operations 
defined, Mary can only be an instance of Employee at a time T if the operation hire has 
created it at some time before T and the operation fire has not removed it between its 
creation and T. 

For this reason, it must be guaranteed that the population of classes and associations 
at a certain time depends on the operations executed up to that moment. To do this, we 
propose that operations are the basic predicates of our logic formalization, since their 
instances are directly created by the user. Classes and associations will be represented 
by means of derived predicates instead of basic ones, and their derivation rules will 
ensure that their instances are precisely given by the operations executed. Although we 
assume a strict interpretation of operation contracts, our method could correctly handle 
also those operations specified under an extended interpretation, by defining an 
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alternative translation of the schema into logic that incorporates this extended 
semantics (Queralt and Teniente 2006b). 

The complete translation of a schema, with its operations specified in OCL, will be 
explained in section 4.2. 

1.6.3 Reasoning on the Schema  

For those cases in which the conditions of termination are satisfied, although any 
theorem prover or reasoning method can be used knowing that any reasoning task 
performed on the schema will terminate, we provide a reasoning procedure that always 
terminates and works more efficiently than in the general case. We outline it here, and 
will be explained in detail in section 3.3. 

The procedure consists of two different steps: goal satisfaction and integrity 
maintenance. 

As we mentioned, we formalize the satisfaction of each test in terms of checking the 
satisfiability of a derived predicate. This derived predicate is the goal to attain in the IB 
constructed by our procedure. One of the most difficult tasks is the assignment of 
concrete values to the variables appearing in the goal in order to construct the sample 
IB. Each possible choice defines a different alternative that satisfies the goal, i.e. a 
different sample IB. 

We use Variable Instantiation Patterns (VIPs) (Farré, Teniente et al. 2005) for this 
purpose. These VIPs guarantee that the number of sample IBs to be considered is kept 
finite, by taking into account only those variable instantiations that are relevant for the 
schema, without losing completeness. That is, the VIPs guarantee that if a solution is not 
found by instantiating the variables in the goal using only the constants they provide, 
then no solution exists.  

Once we have determined the set of facts that satisfies the goal to attain, the problem 
of reasoning on the schema can be reduced to that of integrity maintenance (Moerkotte 
and Lockemann 1991). Note that, in fact, we know that the property checked will be 
satisfied if the IB resulting from the previous step does not violate any constraint of the 
schema. If this is not the case, we must look for additional base facts (i.e. repairs) that 
make the sample IB being constructed fulfill all constraints.  

Unfortunately, we may not rely on existing integrity maintenance methods to 
perform this activity. On the one hand, some methods like (Console, Sapino et al. 1995; 
Lobo and Trajcevski 1997) can only handle restricted types of integrity constraints 
which do not cover the kind of constraints we obtain as a result of the translation of the 
conceptual schema into logic. On the other hand, most methods do not provide an 
appropriate treatment to the existential variables that appear in the integrity constraint 
definition (Ceri, Fraternali et al. 1994; Decker, Teniente et al. 1996; Mayol and Teniente 
2003; Schewe and Thalheim 1999). The general approach of these methods when 
instantiating an existential variable is either asking for a value from the user at run-time 
or assigning an arbitrarily chosen value of the corresponding data type. This is not 
suitable when using integrity maintenance for reasoning since only a few of the possible 
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alternatives (just one in most cases) would be taken into account to repair a violated 
constraint. Therefore, this approach does not guarantee the completeness of the result 
since the impossibility to find a sample IB would not necessarily imply that the tested 
property does not hold. To our knowledge, the most appropriate method to perform the 
kind of integrity maintenance we require is the CQC-Method (Farré, Teniente et al. 
2005). However, and in addition to the drawback that it is a semidecision procedure, the 
CQC-Method has important efficiency limitations. Thus, we need to build a new 
reasoning procedure, which can take advantage both of the dependency graph and the 
characterization of the logic formulas obtained from our schemas to work efficiently. 
Since the graph shows the interactions between the constraints, it provides the order in 
which they should be maintained.  

There are some cases in which our reasoning procedure cannot be used, in particular, 
when the structural schema has some infinite model, or when the schema is more 
expressive than required to determine the absence of infinite models. This happens 
when the constraints contain certain combinations of OCL operations, as we have seen, 
or when we want to validate also the behavioral part. In these cases, any reasoning 
method can be used to test the correctness of the schema, but this time termination will 
not be ensured. Our approach consists in using the CQC-Method, which is the most 
suitable one to deal with the expressiveness of our constraints since, in these cases, its 
decidability and efficiency drawbacks cannot be overcome. However, it has been 
necessary to extend it so that it can correctly handle the operations. 

 

After reviewing some basic concepts in chapter 2, we explain in chapter 3 our 
approach to validate the structural part of a conceptual schema. Here we formalize the 
translation from UML and OCL into logic, and provide a set of tests to check both the 
internal and the external correctness of the structural schema. 

In chapter 4, the reasoning procedure for the structural schema is detailed. We 
explain our approach to determine whether reasoning on a given schema will always 
terminate, and then propose an algorithm to perform the validation in this case. 

Chapter 5 is devoted to the validation of schemas including the behavioral part. We 
formalize the semantics of operations and our approach to validation, which is similar 
to the one proposed for the structural schema. The reasoning procedure and its 
implementation in this case are based on an existing method. 

In Chapter 6 we show a prototype that implements the validation of a structural 
schema, from its translation into logic to the execution of the validation tests. 

The previous work introduced in section 1.5 is analyzed in depth in Chapter 7. Here 
we provide a detailed comparison of previously existing approaches and show how this 
thesis contributes to the validation of conceptual schemas, with and without operations. 

Finally, in Chapter 8 we expose our conclusions and point out further research 
directions based on this thesis. 

The method presented in this thesis has been in part published in (Queralt and 
Teniente 2006a; 2006b; 2008a; 2008b). 
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222 

Basic Concepts 

In this chapter we provide definitions to the concepts we use throughout the document. 
It is divided into two sections, in section 2.1 we define those concepts regarding 
conceptual modeling of information systems, assuming that the reader is familiar with 
the syntax of UML class diagrams and OCL constraints. In section 2.2 we define the 
logic concepts underlying our method. 

2.1 Basic Concepts on Conceptual Modeling 

The conceptual schema of an information system must include all relevant static and 
dynamic aspects of its domain (ISO/TC97/SC5/WG3 1982). The part of a conceptual 
schema that deals with static aspects is called the structural schema and the part that 
deals with dynamic aspects is called the behavioral schema. 

The structural schema consists of a taxonomy of entity types together with their 
attributes, a taxonomy of relationship types among entity types, and a set of integrity 
constraints. An information system maintains a representation of the state of a domain 
in its information base (IB). The state of the IB is the set of instances of the entity types 
and relationship types defined in the structural schema. The integrity constraints define 
conditions that each state of the IB must satisfy. Those constraints can have a graphical 
representation or can be defined through a particular language. 

Without loss of generality, the only graphical constraints we consider as such are 
cardinalities and disjointness and covering constraints in hierarchies, due to their 
widespread use. Since we deal with general OCL, we assume that other graphical 
constraints (such as subset or xor) are expressed textually (Gogolla and Richters 2002).  

We would like to remark that, as can be seen in chapters 3 and 5, our method is able 
to deal with n-ary associations, with and without association classes, disjointness and 
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covering constraints in hierarchies and attribute cardinalities, despite they do not 
appear in the running example. 

The behavioral schema contains a set of operations, which define the only changes that 
can be made on the IB. The effect of each operation on the IB is specified by an 
operation contract. An operation contract is defined by a precondition, which expresses a 
condition that must be satisfied when the call to the operation is made, and a 
postcondition, which expresses a condition that the new state of the IB must satisfy. The 
content of the IB changes as a result of the execution of the operations specified in the 
behavioral schema. Changes in the state of the IB are defined by a set of one or more 
structural events to be applied that are drawn from the preconditions and 
postconditions of the operation contracts. 

2.2 Basic Concepts on the Logic Formalization 

This section sets the formal background required for the technical development of 
the rest of this document. In particular, we recall some basic concepts and notation of 
deductive databases.  

Throughout the document, a, b, c, a1, b1,… are constants. The symbols X, Y, Z, X1, Y1, 

… denote variables. Sets of constants are denoted by  ā, b̄, c̄, ā1, b̄1, ..., and X̄, Ȳ, Z̄, X̄1, … 
denote sets of variables. Predicate symbols are p, q, r, p1, q1, … A term is either a variable 
or a constant. If p is a n-ary predicate and T1, …, Tn are terms, then p(T1, …, Tn) is an 

atom, which can also be written as p(T̄) when n is known from the context. An atom is 
ground if every Ti is a constant. An ordinary literal is defined as either an atom or a 

negated atom, i.e. ¬ p(T̄). A built-in literal has the form of A1 ω A2, where A1 and A2 are 
terms. Operator ω is either <, ≤, >, ≥, = or ≠. 

A normal clause has the form 

A ← L1 ∧ … ∧ Lm with m ≥ 0, 

where A is an atom and each Li is a literal, either ordinary or built-in. All the 
variables occurring in A, as well as in each Li, are assumed to be universally quantified 
over the whole formula. A is often called the head and L1 ∧ … ∧ Lm is the body of the 
clause. 

A set of normal clauses is called a normal program. The definition of a predicate symbol 
r in a normal program P is the set of all clauses in P that have r in their head. 

Terms, literals and the syntactic structures made of them, such as rule bodies, whole 
rules or facts, are expressions. If E is an expression, then constants(E) and variables(E) are 
the sets containing the constants and variables, respectively, occurring in E. 

A substitution θ is a set of the form {X1/T1, …, Xn/Tn}, where each variable Xi is unique 
and each term Ti is different from Xi. The term Ti is called a binding for Xi. θ is called a 
ground substitution if each Ti is a ground term, that is, a constant. 
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Let E be an expression and θ = {X1/T1, …, Xn/Tn} a substitution. Then Eθ, the instance 
of E by θ, is the expression obtained from E by simultaneously replacing each 
occurrence of the variable Xi in E by the term Ti. 

A fact is a normal clause of the form: p(ā) ←, where p(ā) is a ground atom. The fact p(ā) 
← may also may be denoted by p(ā). 

A deductive rule is a normal clause of the form:   

p(T̄) ← L1 ∧ … ∧ Lm with m ≥ 1 

where p is the derived predicate defined by the deductive rule. 

A condition is a formula of the (denial) form:      

← L1 ∧ … ∧ Lm             with m ≥ 1 

which states a condition that cannot hold. 

A database schema S is a tuple (DR, IC) where DR is a finite set of deductive rules and 
IC is a finite set of conditions. Literals occurring in the body of deductive rules and 
conditions in S are either ordinary or built-in. The predicate symbols in ordinary literals 
range over the extensional database (EDB) predicates, which are the relations that will be 
stored directly in the database, and the intensional database (IDB) predicates, which are 
the relations defined by the deductive rules in DR. EDB predicates cannot be derived. 
Conditions in IC define the integrity constraints of the schema S. 

Deductive rules as well as conditions are required to be safe, that is, every variable 
occurring in the head or in negated or built-in atoms of their body must also occur in an 
ordinary positive literal of the same body.  

For a database schema S = (DR, IC), a database state, database instance, or just database, 
D is a tuple (E, S) where E is an EDB, that is, a set of ground facts about EDB predicates. 
DR(E) denotes the whole set of ground facts about EDB and IDB predicates that are 
inferred from a database state D = (E, S). DR(E) corresponds to the fixpoint model of DR 
∪ E.  

A database D violates (does not satisfy) a condition ← L1 ∧ … ∧ Ln if there exists a 

ground substitution θ such that D ⊨ (L1 ∧ … ∧ Ln)θ. In other words, when {L1θ, …, Lnθ} 
⊆ DR(E). A database D is consistent, or sound, when it violates no condition in IC.
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333 

Validation of  

the Structural Schema 

The structural part of a conceptual schema, or structural schema, is defined by means 
of a UML class diagram (OMG 2007), with its graphical constraints, and a set of user-
defined constraints, which can be specified in any language. According to (Warmer and 
Kleppe 2003), we assume they are formalized in OCL. 

Under the concept of Validation we include two kinds of reasoning tests. On the one 
hand, there are those tests devoted to determining whether the conceptual schema is 
correctly defined, in the sense that it allows, for instance, creating instances of all its 
classes and associations, or that it does not include any redundancies among 
constraints. These tests, which can be performed without any knowledge about the 
domain, are sometimes referred to as verification, and correspond to answering to the 
question  Is the structural schema right? 

On the other hand, the fact that a conceptual schema is correctly defined in the sense 
explained above, does not necessarily imply that it correctly represents the domain. 
Thus, it is necessary to perform additional tests to ensure the correctness of a schema 
from the point of view of its correspondence to the requirements. This is usually known 
as validation, which aims to answer the question Is it the right structural schema? 

Roughly, our approach consists in automatically translating the UML structural 
schema, with its OCL constraints, into a logical representation, as explained in section 
3.1. In section 3.2 we formalize the tests that can be performed on a structural schema, 
to determine both its internal and external correctness.  
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Once the translation is done and the tests are defined, we are ready to reason on the 
schema, both to determine whether it is right, and whether it is the right one. Our 
reasoning procedure for both kinds of tests will be seen in chapter 4. 

3.1 Translating a UML Conceptual Schema into Logic 

In this section we propose a set of rules that, applied to a UML class diagram and a set 
of OCL constraints, result in a set of first-order formulas that represent the structural 
schema. The subset of first-order logic considered does not provide functions; and rules 
and conditions are required to be safe, that is, every variable occurring in their head or 
in atoms of their body that are negated or built-in must also occur in an ordinary 
positive literal of the same body. 

We will explain first how to obtain the formulas for the class diagram, taking into 
account its implicit and graphical constraints. Later, we propose a translation for the 
user-defined OCL constraints. The complete logic representation of the schema can be 
found in the Appendix A.  

To illustrate the translation of a UML structural schema, with its constraints specified 
in OCL, we will use a subset of the example in Figures 1 and 2. In particular, we omit 
the information about working teams, so the simplified schema is as shown in Figures 4 
and 5. 

 

Fig. 4. Subset of the running example showing only Employees and Departments 

Due to the logical representation we use as a target of our translation, the OCL 
operations that can appear in all the OCL expressions we consider are those that result 
in a boolean value. Exceptions are select and size that, despite returning a collection 
and an integer, can also be handled by our method. Additionally, those OCL operators 
that can only be used in preconditions or postconditions of operations, namely 
oclIsNew and @pre, are neither considered when dealing with the structural schema 
alone. 
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Fig. 5. Integrity constraints corresponding to the fragment of the schema in Figure 4. 

3.1.1 Translation of a UML Class Diagram 

A UML class diagram is translated into a set of first-order formulas according to the 
following rules. 

Translation of Classes 

For each class C not being an association class we define a unary predicate c, where its 
term represents the internal object identifier (OID).  

For example, the class Employee is translated into a predicate employee(E). 

Translation of Attributes, Associations and Association Classes 

 Let R be an association between classes C1,...,Cn. If R is not an association class, we 
define a base predicate r(C1,...,Cn). Otherwise, if R is an association class we define a 
base predicate r(R,C1,...,Cn). Although it is not strictly necessary, we also include an OID 
r so that all classes can be treated uniformly. 

For example, the association WorksIn that relates Employees and Departments is 
translated into the predicate worksIn(E,D). 

Attributes can be regarded as binary associations between a class C and a datatype. 
Then, for each attribute ai in C we define a binary predicate cAi(C,Ai). Note that, since 

Integrity constraints 

1. context Department inv UniqueDep: 

Department.allInstances()->isUnique(name) 

2. context Employee inv UniqueEmp: 

Employee.allInstances()->isUnique(name) 

3. context Department inv MinimumSalary: 

self.minSalary > 1000 

4. context Department inv CorrectSalaries: 

self.minSalary < self.maxSalary 

5. context Department inv ManagerIsWorker: 

self.worker->includes(self.manager) 

6. context Department inv ManagerHasNoSuperior: 

self.manager.superior->isEmpty() 

7. context Boss inv BossIsManager: 

self.managed-dep->notEmpty() 

8. context Boss inv BossHasNoSuperior: 

self.superior->isEmpty() 

9. context Boss inv SuperiorOfAllWorkers: 

self.employee->includesAll(self.managed-dep.worker) 
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several classes can have an attribute with the same name, we need to use the class name 
in the definition of the predicates representing attributes. 

For example, the attribute name of Employee is translated into employeeName(E,N). 

Translation of implicit and graphical constraints 

First of all, we must guarantee that there cannot exist two instances with the same OID. 
This is already guaranteed for instances of the same class, since they are represented by 
unary predicates. Then, we must define rules to prevent the existence of two literals of 
different predicates with the same OID, defining the following constraint for each pair 
of predicates not representing classes in the same hierarchy: 

← c1(X) ∧ c2(X) 
According to this rule, we must define the following constraint in our example: 

← employee(X) ∧ department(X) 

Class hierarchies also require the definition of a set of constraints to guarantee that 
an instance of each subclass Csubi is also an instance of its superclass Csuper. This is done 
by means of the rule: 

← csubi(C)  ∧ ¬csuper(C) 

In the example, the hierarchy of employees requires the following constraint: 

 ← boss(E) ∧ ¬employee(E) 

Moreover, additional rules are sometimes required to guarantee that an instance of 
the superclass is not an instance of several subclasses simultaneously (disjoint 
constraint), or that an instance of the superclass is an instance of at least one of its 
subclasses (complete constraint). Then, for each pair of subclasses Csubi , Csubj we define a 
constraint stating that an instance cannot belong to both of them simultaneously: 

 ← csubi(C) ∧ csubj(C) 

 and another one stating that an instance of Csuper must belong to at least one of the 
Csubi. To do this we need a derived predicate isKindOfCsuper, with a rule for each Csubi: 

← csuper(C) ∧ ¬isKindOfCsuper(C) 
isKindOfCsuper(C)← csubi(C) 

Another set of constraints is needed to guarantee the implicit constraint that an 
instance of an association can only relate existing instances of the classes that define it. 
Then, for each association R, being or not an association class with OID r, represented 
by the predicate r([R,],C1,...,Cn), we define the following constraint for each Ci: 

 ← r([R,],C1,...,Cn) ∧ ¬ci(Ci) 

In our example, the association WorksIn requires the addition of the rules: 

← worksIn(E,D) ∧ ¬employee(E) 
←worksIn(E,D) ∧ ¬department(D) 
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Similarly, we must define constraints to guarantee that the first term of a predicate 
representing an attribute corresponds to an instance of the class to which the attribute 
belongs. In our example: 

←employeeName(E,N) ∧ ¬employee(E) 
←bossPhone(E,P) ∧ ¬boss(E) 
← departmentName(D,N) ∧ ¬department (D) 

Additionally, for the definition of association classes, we must guarantee that there 
are not several instances of an association class having the same value in the terms 

defining the instance. Then, if R is an association class, defined by classes C1,...,Cm, we 
define the following constraint: 

 ← r(R1,C1...Cm) ∧ r(R2,C1...Cm) ∧ R1<>R2 

Finally, let min..max be a cardinality constraint attached to an attribute or to a class Ci 
in an association R defined by classes C1,...,Cn. If min>0 we must add the following 
constraint:  

← c1(C1) ∧...∧ ci-1(Ci-1) ∧ ci+1(Ci+1) ∧ ... ∧ cn(Cn) ∧ ¬minR(C1,...,Ci-1,Ci+1,...,Cn) 
minR(C1,...,Ci-1,Ci+1,...,Cn) ←  r([R1,]C1,...,Ci-1,Ci1,Ci+1,...,Cn) ∧ ...  

∧ r([Rmin,]C1,...,Ci-1,Cimin,Ci+1,...,Cn) ∧  
∧ Ci1<> Ci2 ∧ ... ∧ Ci1<> Cimin ∧ ... ∧ Cimin-1<>Cimin 

And if max < *, the following constraint is needed: 

← r([R1,]C1,...,Ci-1,Ci1,Ci+1,...,Cn) ∧ ... ∧  
r([Rmax+1,]C1,...,Ci-1,Cimax+1,Ci+1,...,cn) ∧ Ci1<>Ci2 ∧ ...  
∧ Ci1<>Cimax+1 ∧ ... ∧ Cimax<>Cimax+1 

As an example, we must define the following constraint to guarantee the lower 
multiplicity of class Employee in the association WorksIn: 

← department(D) ∧ ¬oneWorker(D) 
oneWorker(D)← worksIn(E,D) 

And we also have to define the following one due to the upper multiplicity of 
Department in the same association: 

← worksIn(E, D1) ∧ worksIn(E, D2) ∧ D1<> D2 

For attributes, if no multiplicity is specified in the class diagram, it is assumed that 
they are single-valued and not optional. Then, in our example we need the constraints:  

←employee ∧ ¬oneEmployeeName(E) 

oneEmployeeName(E) ← employeeName(E,N) 

←employeeName(E,N1) ∧ employeeName(E,N2) ∧ N1<>N2 

Analogous constraints are needed for phone in Boss and name in Department. 

3.1.2 Translation of OCL Integrity Constraints 

We perform the translation of OCL integrity constraints into first-order logic in two 
steps. First, we transform each OCL expression into an equivalent one expressed in 
terms of the operations select and size. Both select and size are OCL operations 
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that apply to collections of elements, select returns the subset of the collection that 
satisfies a condition, and size returns the number of elements in the collection. The 
aim of this transformation is to reduce the number of OCL constructs to be translated, 
so that a uniform treatment can be applied to all constraints in order to obtain the 
corresponding logic formulas.  

Simplification of OCL operations 

The first step in the translation process consists in the reduction of the number of OCL 
operations that appear in the constraints. Table 1 shows the OCL operations we 
consider, and gives their equivalent simplified expressions. These translations are 
iteratively applied until the only OCL operations that appear in the expression are 
select and size.  

Table 1. Equivalences of OCL operations 

Original expression Equivalent expression with select and size 

source->includes(obj) source->select(e | e=obj)->size()>0 
source->excludes(obj) source->select(e | e=obj)->size()=0 
source->includesAll(c) c->forall(e| source->includes(e)) 
source->excludesAll(c) c->forall(e| source->excludes(e)) 
source->isEmpty() source->size()=0 
source->notEmpty() source->size()>0 
source->exists(e | body) source->select(e | body)->size()>0 
source->forall(e | body) source->select(e | not body)->size()=0 
source->isUnique(e | body) source->select(e |source->select(e2 | e <>e2 

and e2.body = e.body))->size()=0 
source->one(e | body) source->select(e | body)->size()=1 
source->reject(e | body) source->select(e | not body) 

As an example we give the simplified form of ManagerIsWorker in our example:  
context Department inv ManagerIsWorker: 

self.worker->select(e |e = self.manager)-> size() > 0 

Notice that if a department could have many managers (and we still wanted all of 
them to be workers of the same department) the expression obtained from the 
simplification would have been different, since the operation includesAll would 
appear instead of includes in the original OCL expression. 

Translation of OCL invariants into logic 

Once simplified, an OCL invariant has the following form:  
context C inv: path-exp->select(e| body)->size() opComp k 

where C is a class,  path-exp is a sequence of navigations through associations, 
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opComp is a comparison operator <, >, = or <> and k is an integer not lower than zero1.  

The translation of the simplified OCL invariants into logic depends on the specific 
operator after size(). We are going to see first how to translate the navigation defined 
by path-exp and the translation of the select operation. The select expression does not 
necessarily appear in the simplified OCL invariant, in which case it is not translated. 

Tr-path(path-exp). Let path-exp = obj.r1...rn[.att] be a path starting from an instance obj 
of a class C, or from a call to the allInstances operation on C, navigating through roles r1 
to rn and, optionally, ending with the access to an attribute. Let C(obj) be the literal 
resulting from the translation of the class to which obj belongs, and Ri(obji-1, obji,...) be 
the literals corresponding to the association between roles ri-1 and ri, and C2 be the 
class where the attribute att is defined. Then, this navigation path is translated into logic 
by means of the clause:  

c(Obj) ∧ r1(Obj,Obj1,....) ∧ ... ∧ rn(Objn-1, Objn,...) [∧ c2(Objn) ∧ c2Att(Objn, Att)] 

For instance, the navigation self.worker appearing in constraint ManagerIsWorker 
will be translated into department(D) ∧ worksIn(E,D). 

Tr-select(e| body). We provide here the translation of a select expression in its most 
simplified and usual form, where body = path1 opComp  path2. In this case, the select 
operation is translated into: 

Tr-path(path1) ∧ Tr-path(path2) ∧ Obj1 opComp Obj2 

where Obj1 and Obj2 are the objects obtained as a result of the navigation paths path1 
and path2, respectively. Note that if any of the paths is a constant or e, then it must not 
be translated.  

For instance, the translation of the expression select(e| e=self.manager) 
appearing in the simplified OCL invariant of the constraint ManagerIsWorker will be 
translated into department(D) ∧ manages(E2,D) ∧ E=E2. 

The body of a select operation can also contain, recursively, other select and 
size operations, that is,  

body = path-exp->select(e| body)->size() opComp k  
where the select operation may not appear, and then it is not translated. We define 

the translation in terms of the translation of path-exp and the select operation as 
follows, depending on opComp, when opComp is <, > or =: 

a) obj.r1... rn-1.rn -> select(e| body)-> size() < k  
becomes 

 Tr-path(obj.r1... rn-1) ∧ ¬aux(e,...,em,c) 

aux(e,...,em,c)←  Tr-path1(rn) ∧ Tr-select1(e| body)  

∧ … ∧ Tr-pathk(rn) ∧ Tr-selectk(e| body) 

                                                           
1 When ≤k or ≥k appear in the original invariant and k is an integer greater than 0, they are 

translated into <k+1 and >k-1. Those cases in which k is equal to 0 do not represent valid 
constraints and, thus, they are not taken into account. 
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b) obj.r1... rn-1.rn -> select(e| body)-> size() > k  

becomes 

Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body) 
∧ … ∧ Tr-pathk+1(rn) ∧ Tr-selectk+1(e| body) 

c) obj.r1... rn-1.rn -> select(e| body)-> size() = k  

becomes 

Tr-path(obj.r1... rn-1)  ∧ Tr-path1(rn) ∧ Tr-select1(e| body) 

∧ … ∧ Tr-pathk(rn) ∧ Tr-selectk(e| body) ∧ ¬aux(e,...,em,c)  

aux(e,...,em,c) ← Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body) 

∧ … ∧ Tr-pathk+1(rn) ∧ Tr-selectk+1(e| body) 
where the variables e,...,em needed by each Aux predicate correspond to the 
iteration variables of all the select operations in which the translated body is 
included, and c represents the contextual object.  

Each translation Tr-path or Tr-select may be performed several times depending on 
the constant k. Each of the Tr-pathi or Tr-selecti expressions refers to the same 
translation but with different variables for those terms not coming from the translation 
of obj.r1...rn-1.  

As an example, consider the OCL simplified invariant of constraint 
SuperiorOfAllWorkers:  

context Boss inv SuperiorOfAllWorkers:  

self.managed-cat.worker-> select(e | self.employee->  

select(e2 | e2=e)->size()=0)->size()=0 

applying the translation c) above we obtain, as a translation of the inner select: 

Tr-path(self) ∧ ¬aux(e,b) 
aux(e,b)← Tr-path(self) ∧ Tr-path(employee) ∧ Tr-select(e2| e2=e) 

and, after translating paths and selects, we get the following fragments of formulas: 

boss(B) ∧ ¬aux(E,B) 
aux(E,B) ← boss(B) ∧ worksFor(B, E2) ∧ E2=E 

Translation of an OCL invariant. Let path-exp=obj.r1...rn-1.rn. Depending on the 
comparison operator, we define the translation of an OCL invariant in terms of the 
translation of the path expression (Tr-path) and the select (Tr-select) as follows: 

a) context C inv:  
obj.r1... rn-1.rn -> select(e| body)-> size() < k  

becomes 

 ← c(C) ∧ Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body) 
∧ … ∧ Tr-pathk(rn) ∧ Tr-selectk(e| body) 

b) context C inv:  
obj.r1... rn-1.rn -> select(e| body)-> size() > k  

becomes 

← c(C) ∧ ¬aux(C) 
aux(C) ← Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body) 
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∧ … ∧ Tr-pathk+1(rn) ∧ Tr-selectk+1(e| body) 

c) context C inv:  
obj.r1... rn-1.rn -> select(e| body)-> size() = k  

becomes 

← c(C) ∧ ¬aux(C) 
aux(C) ← Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body) 

∧ … ∧ Tr-pathk(rn) ∧ Tr-selectk(e| body) 
← c(C) ∧ Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body) 

∧ … ∧ Tr-pathk+1(rn) ∧ Tr-selectk+1(e| body) 

d) context C inv:  
obj.r1... rn-1.rn -> select(e| body)-> size() <> k  

becomes 

← c(C) ∧ Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body) 
∧ … ∧ Tr-pathk(rn) ∧ Tr-selectk(e| body) ∧ ¬aux(C) 

aux(C) ← Tr-path(obj.r1... rn-1) ∧ Tr-path1(rn) ∧ Tr-select1(e| body) 
∧ … ∧ Tr-pathk+1(rn) ∧ Tr-selectk+1(e| body) 

Each translation Tr-path or Tr-select may be performed several times depending on 
the constant k. Each Tr-pathi or Tr-selecti expressions refer to the same translations but 
with different variables for those attributes not coming from obj.r1... rn-1. Clearly, 
the previous formalization becomes much simpler in the usual cases where k is 0 or 1. 

Intuitively, we may see that the translation of each OCL invariant defines a denial 
stating that a given situation cannot hold. The first part of each denial includes the logic 
representation of the path leading to the collection of instances to which the select and 
the size operations are applied. The second part, the one defined by the subindexes 1 to 
k, is required to guarantee that the cardinality of the set of elements that fulfill the select 
condition satisfies also the required comparison. 

As an example, consider the simplified invariant of constraint ManagerIsWorker:  
context Department inv:  

self.worker -> select(e| e=self.manager)-> size() > 0 

applying the translation b) above we obtain2: 

← department(D) ∧ ¬aux(D) 
aux(D) ← Tr-path(self) ∧ Tr-path(worker) ∧ Tr-select(e| e=self.manager) 

and, after translating paths and selects, we get the following formulas which force all 
departments to have at least one worker who is also a manager. 

← department(D) ∧ ¬aux(D) 
aux(D) ← department(D) ∧ worksIn(E,D) ∧ manages(E2,D) ∧ E=E2 

It may also happen that the original expression does not include any OCL operation. 
Then the constraint has not been simplified and has the form: 

context C inv: path-exp opComp value 

                                                           
2 Note that, since k=0, the translation of the select and the path must be performed only once.  
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where value is either a constant or another navigation path. The translation of these 
invariants into logic is: 

← c(C) ∧ Tr-path(path-exp) ∧ Tr-path(value) ∧ Obj1 invOpComp Obj2 

where Obj1 and Obj2 are the objects obtained as a result of the navigation path(s) 
path-exp and value. The  new comparison operator invOpComp corresponds to the 
inverse of the original (that is, if opComp is > then invOpComp is ≤, and so on). Notice 
that if value is a constant then it must not be translated.  

3.2 Validation Tests 

Our approach to validation is aimed at providing the designer with different kinds of 
tests that allow him to assess the correctness of the conceptual schema being defined.  

We express all the tests in terms of checking the satisfiability of a derived predicate. 
In this way, for each validation test to be performed, a derived predicate (with its 
corresponding derivation rule) that formalizes the desired test is defined.  

We illustrate our approach using the translation of our example obtained as 
explained in the previous section (Appendix A). 

3.2.1 Is the Structural Schema Right? 

Those tests devoted to check the internal correctness of the schema can be automatically 
defined. Automatic tests can be performed without the designer intervention and allow 
checking the internal correctness of the schema by means of answering to the question 
is the structural schema right?. Some of them correspond to well known reasoning tasks 
(such as schema satisfiability), while others correspond to additional properties that  
can be automatically drawn from the definition of each conceptual schema. 

For all of them, the fact that the test is not satisfiable necessarily indicates that the 
schema has some kind of flaw. The way of repairing the errors found cannot be 
automatically provided, since there are several alternatives that depend on the domain 
being modeled and, thus, the designer must decide which solution has to be adopted. 

Satisfiability of a Schema 

A schema is satisfiable if there is a non-empty state of the IB in which all its integrity 
constraints are satisfied.  

To perform this test, we need to define a derived predicate such that it is true when 
the schema is satisfiable, that is, if it is possible to populate at least one of its classes and 
associations. For each class classi  and association assocj of the schema, we need to define 
the following rules:  

sat ← classi(X) 

sat ← associationj(Y1,...,Yn) 
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That is, the derived predicate sat will be true if the schema admits an instance of a 
certain class or association. 

To check the satisfiability of the structural schema in Figure 1, we need to formalize 
this test as follows:  

sat ← department(D) 
sat ← employee(E) 
sat ← boss(E) 
sat ← workingTeam(T) 
sat ← manages(E,D) 
sat ← worksIn(E,D) 
sat ← worksFor(E,E2) 
sat ← audits(E,T) 
sat ← member(M,E,T) 
sat ← hasRecruited(M,M2) 

As explained in section 1.3.1, this schema is satisfiable, as shown by the following 
sample instantiation: 

{employee(john), worksIn(john,sales), department(sales), manages(john,sales)} 

In order to have a valid instance of Employee, we also need at least an instance of the 
association WorksIn due to the cardinality constraint 1 of working-dep. This requires an 
instance of Department which, in turn, needs a manager due to the cardinality constraint 
1 in the association Manages. According to the constraint ManagerIsWorker, this manager 
must be one of the employees working in the department.  

There is no need to populate the association WorksFor or the class WorkingTeam, since 
they are not required in order to have a valid instance of the schema.  

Other solutions may exist, consisting in populating other classes or associations that 
are not populated in the sample instantiation obtained. However, a single solution is 
required to prove the satisfiability of the schema. 

Liveliness of a Class or Association 

Even if a schema is satisfiable, it may turn out that some class or association is empty in 
every valid state. Liveliness of classes or associations determines if a certain class or 
association can have at least one instance. 

In this case, the derived predicate that formalizes this test must be defined as follows, 
where element(X1,...,Xn) is the class or association for which liveliness is to be tested: 

livelyElement ← element(X1,...,Xn) 

Classes Employee and Department of the schema in Figure 1, as well as the associations 
WorksIn and Manages are lively, since there exists at least a state satisfying all the 
constraints in which they are populated. This is proven by the same sample 
instantiation obtained when testing the satisfiability of the schema. 

Let us see if the rest of classes and associations of the schema are lively too. For 
instance, to test the liveliness of the association WorksFor, we should test: 
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livelyWorksFor ← worksFor(X,Y) 

As a result we obtain that there is at least a state in which it is not empty, which 
consists in an employee that works for another one, both of them working in the same 
department and the superior employee being the manager of the department. For 
example {worksFor(mary, john), employee(mary), employee(john), worksIn(mary, sales), 
worksIn(john, sales), department(sales), manages(mary, sales)}. 

In contrast, if we reason on the liveliness of Boss, we see that to have an instance of 
Boss we need that he or she is the superior of all the workers of the department 
managed by that boss (constraint SuperiorOfAllWorkers). A state satisfying this condition 
would be one in which a boss does not manage any department, but this is prevented 
by the constraint BossIsManager. Another way of satisfying this condition would be a 
state in which the department managed by the boss does not have workers, but the 
constraint ManagerIsWorker forces each department to have at least a worker, its 
manager. Then, the only option is to have a boss that manages a department and that all 
the workers of that department (including the boss himself) are subordinates of that 
boss. But this is impossible according to the constraint ManagerHasNoSuperior and, 
therefore, the class Boss is not lively, which may not be easy to see at first sight. 

When eliminating either of these constraints, a state fulfilling the rest of conditions 
can be found and Boss becomes lively. For instance, if we remove BossIsManager we can 
obtain a state in which the boss works in a department but is not a manager. Since every 
department must have a manager, it is another employee the one who manages the 
department: {boss(john), employee(john), worksIn(john,sales), department(sales),  
manages(mary,sales), worksIn(mary,sales), employee(mary)}. 

Regarding the liveliness of the class WorkingTeam, it can be seen that a working team 
requires at least three employees (an inspector and a member, which cannot be the 
inspector according to the constraint InspectorNotMember, and a third employee that 
recruits the member in order to satisfy the constraints OneRecruited and 
NotSelfRecruited). Thus, a valid instantiation of this class, together with the required 
associations Member, Audits and HasRecruited is: 

{ workingTeam(team1), audits(mary,team1), member(m1,john,team1),  

member(m2,peter,team1), hasRecruited(john,peter), employee(mary), employee(john),  

employee(peter), worksIn(mary,sales), worksIn(john, sales), worksIn(peter, sales),  

manages(mary, sales), department(sales)} 

Redundancy of an Integrity Constraint 

An integrity constraint is redundant if integrity does not depend on it, that is, if the 
states of the IB it does not allow are already prevented by the rest of constraints.  

The fact that a constraint is redundant does not necessarily imply that the schema is 
erroneous. Nevertheless, redundancies make the modifiability of the schema more 
difficult and error prone since, when a requirement changes, the designer must take 
care of modifying every constraint affected. This can also lead to inconsistencies if the 
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corresponding requirement is not modified in all the constraints in which it appears. 
Additionally, redundant constraints may derive in inefficiencies of the final product if 
they are directly translated into an implementation. 

Intuitively, an integrity constraint is redundant if there is no IB state in which it is 
violated. Hence, proving redundancy could involve looking for an infinite number of 
states. Therefore, it is more appropriate to search for the lack of redundancy. A 
constraint is not redundant if there is at least an IB state in which it is violated.  

Thus, to check whether a constraint ic of a schema is redundant, it must be removed 
from the schema and test the satisfiability of the following predicate. This predicate 
may be automatically defined for each constraint ic in the logic formalization of the 
schema, which includes the textual, graphical and implicit constraints: 

nonRedundantIC ← ic 

If this predicate is satisfiable, then the constraint ic is not redundant. Otherwise, ic is 
redundant. 

For instance, we can test whether the constraint BossHasNoSuperior is not redundant: 

nonRedundantBossHasNoSuperior ← boss(B) ∧ worksFor(S,B) 

That is, we can try to build a state where nonRedundantBossHasNoSuperior holds. 
Intuitively, this consists in a state in which the constraint BossHasNoSuperior is violated 
while the rest are not, that is, a state in which there is a boss that has a superior. 
However, this is not possible since a boss must be the manager of some department 
(constraint BossIsManager). Additionally, the constraint ManagerHasNoSuperior prevents 
the manager of a department from having a superior and thus, the constraint 
BossHasNoSuperior can never be violated and can be eliminated from the schema. 

There are other redundancies in this example, for instance between a graphical and 
an OCL constraint. In particular, ManagerIsWorker implies that a department must have 
at least a worker, since it must have a manager and he must be one of its workers. At 
the same time, the cardinality constraint 1..* of Employee in the association WorksIn 
already forces the existence of at least a worker in each department. This redundancy is 
detected by the following test: 

nonRedundantCardinality ← department(D) ∧ ¬oneWorker(D) 

oneWorker(D) ← worksIn(E,D)  

Similarly, the constraint 1..* of Employee in the association Member is entailed by the 
fact that a working team must have at least one member recruited by another member 
of the same team (constraint OneRecruited). 

However, redundancies involving cardinalities may not be eliminated, since 
generalizing them may damage the understandability of the schema. 

Automatically Generated Tests 

In addition to the typical tests just reported, there are other situations in which it is clear 
that there is some mistake in the definition of the schema, despite having successfully 
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passed all the previous tests. These situations correspond to states that are potentially 
admitted by the class diagram but, however, are prevented by the constraints.  

Some of such tests can be drawn from the concrete schema to be validated, and are 
an original contribution of this thesis, following the ideas suggested by model-based 
testing approaches (Utting and Legeard 2006). Note, however, that we can already 
determine these situations at the conceptual schema level while, in general, model-
based testing requires an implementation of the software system to execute the tests. 

For instance, a cardinality constraint may be defined with an upper bound greater 
than 1 but, however, the rest of constraints force that a single instance can be related to 
each instance at the other end. This may mean that some constraint should be removed 
or that the cardinality constraint is too general and should be modified. A set of 
additional possible tests is defined in the following. 

Test 1: Maximum cardinality. This test shows us whether it is possible to have as many 
instances as specified by the maximum cardinality max associated to the same instances 
at the other association ends. The general formalization for n-ary associations is: 

maxCardAssoc ← assoc([A1], P1,...,Pi1,...,Pn) ∧ ... ∧ assoc([Amax],P1,...,Pimax,...,Pn) ∧  

   Pij<>Pik  

for each j<>k between 1 and max, where the OID A is needed when Assoc is an 
association class, P1,...,Pn  are the participants and Pi  is the participant with the 
cardinality to be checked. 

Test 2: Minimum cardinality. When we have a cardinality constraint with a lower 
bound = 0, this test shows whether it is possible that an instance(s) at the other end(s) 
does not participate in the association 

minCardAssoc ← assoc([A1],P1,...,Pi1,...,Pn) ∧ ... ∧ assoc([Amin],P1,...,Pimin,...,Pn) ∧  

   ¬assoc([Amin+1], P1,...,Pimin+1,...,Pn) ∧ Pij<>Pik 

for each j<>k between 1 and min+1 representing a participant of Assoc, where Pi is the 
participant with minimum cardinality to be checked. 

Test 3: Incomplete hierarchy. If hierarchy is specified as {incomplete}, we can check if it 
is really such, that is, if an instance may only belong to the superclass. Otherwise, it 
should be specified as {complete}, or some other constraint should be removed or 
modified. 

incompleteSuperclass ← superclass(X) ∧ ¬subclass1(X) ∧ ... ∧ ¬subclassn(X) 

Test 4: Overlapping hierarchy. If hierarchy is specified as {overlapping}, we can check 
if it is really such, that is, if an instance may belong more than one subclass 
simultaneously. Otherwise, it should be specified as {disjoint}, or some other constraint 
should be removed or modified. For each pair i, j of subclasses: 

overlappingSuperclass ← subclassi(X) ∧ subclassj(X) 

Note that all these tests correspond to situations admitted by the schema and do not 
imply that the schema is ill-defined, since an IB satisfying all the graphical and textual 
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constraints can be found. However, they warn the designer that some graphical 
constraints should be strengthened or that some textual constraints should be 
weakened, so that the graphical part corresponds to the textual one. 

3.2.2 Is It the Right Structural Schema? 

Although there are some tests that can be executed without the intervention of the 
designer, as we have seen in the previous subsection, the validation process is not fully 
formalizable. The reason is that validating a conceptual schema consists in checking if it 
correctly specifies the requirements, which are not usually formalized. This means that 
it is desirable to help the designer to analyze the schema so that he can decide whether 
it represents the intended domain.  

Thus, during the validation process and once the internal correctness is ensured by 
the previous tests, the designer will need to check the external correctness of the 
schema. Again, this task can be partly automated by generating additional tests that 
check other kinds of properties.  

After the hints given by the automatically generated tests, the designer may finalize 
the validation process by defining his own tests and comparing the obtained results to 
those expected according to the requirements, in order to do an exhaustive validation of 
the schema. 

Automatically Generated Tests 

There are some validation tests that can be automatically drawn from the schema under 
validation, that help the designer to find potentially undesirable situations. For 
instance, when a schema contains a recursive association, such as WorksFor and 
HasRecruited in our example, it may be interesting to test whether it is reflexive, that is, 
if an instance of the association can relate the same instance of the associated class. This 
is a useful test since, in many cases, recursive associations are not reflexive and, thus, a 
textual constraint is needed in order to prevent that an instance is associated to itself, 
which the designer may have overlooked.  

In our schema, we could test whether an employee can be superior of himself by 
means of the association WorksFor, using the following test: 

reflexiveWorksFor ← worksFor(X,X) 

If the predicate reflexiveWorksFor is satisfiable, it means that an employee can work 
for himself in our schema. If we execute this test in our schema, the result is as follows: 
{worksFor(mary,mary), employee(mary), department(sales), worksIn(mary,sales), 
employee(john), manages(john,sales), worksIn(john, sales)} 

This sample instantiation proves that an employee may work for himself, as long as 
he is not a manager, due to the constraint ManagerHasNoSuperior. Now the designer 
should decide whether this correctly represents the domain. If not, the following 
constraint should be added to the schema: 

context Employee inv: self.superior <> self  
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We have another recursive association in our schema, so we will also test whether it 
is reflexive: 

reflexiveHasRecruited ← hasRecruited(X,X) 

This time, the predicate reflexiveHasRecruited is not satisfiable, which means that the 
association is not reflexive. The reason is that the constraint NotSelfRecruited prevents a 
member from recruiting himself. 

There are other typical constraints that usually appear in conceptual schemas, which 
have been formalized in (Costal, Gómez et al. 2008). Following the classification of 
constraints provided in this paper, we will formalize automatic tests that can be useful 
to check whether a constraint is missing in our schema, knowing that it is a constraint 
that usually appears in practice. In the following, we formalize some tests that can 
provide interesting information to the designer. Additional tests of interest can be 
defined in a similar way. 

Test 5: Irreflexive constraint. If a recursive association can relate the same instance, 
then an irreflexive constraint may be missing. This test can be defined for each recursive 
association in the schema, as we have already seen in the example. 

reflexiveAssoc ← assoc([A],X,X) 

where A is the OID needed in case assoc is an association class. 

If the predicate is satisfiable and the designer decides that the constraint is missing, 
then the following constraint, as formalized in (Costal, Gómez et al. 2008), should be 
added to the schema: 

context A inv: self.r
1
 -> excludes(self) 

where r1 is one of the roles of the recursive association assoc. This information can 
also be automatically provided to the designer. 

The same can be done for the following tests: 

Test 6: Identifier constraint. If a class admits several valid instances with the same 
value in all its attributes, then an identifier constraint may be needed to state the set of 
attributes that uniquely identify each instance. Note that this constraint may not be 
required in certain domains, since objects may not be externally distinguishable, so the 
designer must decide whether he wants to add the constraint. This test can be generated 
for each class of the schema, as long as it is not an association class or a subclass, since 
in these cases their identifiers are already known. 

non-uniqueClass ← class(X) ∧ class(Y) ∧ X<>Y ∧ attr1(X,V) ∧ attr1(Y,V) ∧ ... 

... ∧ attrn(X,W) ∧ attrn(Y,W) 

Applying this test to the classes in our schema, we can see that the predicate non-
uniqueClass is not satisfiable by any of them, since all the classes have their identifiers. 
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When the same two classes are related by two different associations, some kind of 
restriction may be imposed on the instances found at both ends. Let C and D be the 
classes related by the associations R and S. Then the following tests can be defined: 

Test 7: Path inclusion. If c is an instance of C, the set of instances of D related to c by 
means of R is a subset of the set of instances of D related to c by means of S, or the other 
way around. 

not-inclusionRS ← r([R],C,D) ∧ ¬inS(C,D) 
inS(C,D) ← s([S],C,D) 

not-inclusionSR ← s([S],C,D) ∧ ¬inR(C,D) 
inR(C,D) ← ([R],C,D) 

where R and S are the OIDs needed in case the corresponding association is an 
association class. Note that the derivation rules will not be needed when OIDs are not 
present, so the rules will be simpler in this case: 

not-inclusionRS ← r(C,D) ∧ ¬s(C,D) 

not-inclusionSR ← s(C,D) ∧ ¬r(C,D) 

These predicates are satisfiable when an instance of one of the associations that does 
not belong to the other one can exist. This will help the designer to decide whether a 
path inclusion constraint is needed and, in case it is, in which direction. 

In our schema, we can define this test for the associations WorksIn and Manages, and 
for Audits and Member. 

not-inclusionWorksInManages ← WorksIn(E,D) ∧ ¬Manages(E,D) 

In this case the predicate is satisfiable as proved by the following example: 
{worksIn(mary, sales), employee(mary), department(sales), employee(john), manages(john, 
sales), worksIn(john, sales)}, which shows that Mary works in Sales, but the manager of 
this department is another employee. 

non-inclusionManagesWorksIn ← Manages(E,D) ∧ ¬WorksIn(E,D) 

This time the predicate is not satisfiable, which means that it is impossible that an 
employee manages a department without working in it. This is due to the constraint 
ManagerIsWorker which, in fact, defines an inclusion constraint between these two 
associations, so the designer will probably find that the schema is correct in this sense. 

Regarding the other pair of associations we can perform the tests: 

not-inclusionAuditsMember ← audits(E,T) ∧ ¬inMember(E,T) 
inMember(E,T) ← member(M,E,T) 

not-inclusionMemberAudits ← member(M,E,T) ∧ ¬audits(E,T) 

In this case, both predicates are satisfiable, so the designer may want to add some 
constraint, if the two paths are not restricted in any other way. Before making the 
decision, we will see the following kind of path comparison constraint. 
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Test 8: Path exclusion. If c is an instance of C, the set of instances of D related to c by 
means of R excludes the set of instances of D related to c by means of S. In this case, 
only one test is needed: 

not-exclusionRS ← r([R],C,D) ∧ s([S],C,D) 

It does not make sense to perform this test on WorksIn and Manages, since they are 
already constrained by a path inclusion. Thus, we will test Audits and Member:  

not-exclusionAuditsMember ← audits(E,T) ∧ member(M,E,T) 

This predicate is not satisfiable due to the constraint InspectorNotMember, which is in 
fact an exclusion constraint. Thus, this constraint is not missing, neither an inclusion on 
these two paths. 

User-defined Tests 

As a last step in the validation process, the designer can define his own tests in the form 
of derived predicates, as the ones we have generated automatically. In this way, he will 
be able to cover those requirements that cannot be taken into account by the automatic 
tests. For instance, an interesting question could be “Can an employee's salary be lower 
than the minimum salary of its department?”. Obviously, the answer should be 
negative, but we must check if this is so according to the schema. The designer will 
have to formalize the derivation rule:  

correctSalary ← employeeSalary(E,S) ∧ worksIn(E,D) ∧  

departmentMinSalary(D,M) ∧ S<M 

A possible result for this test could be: 

{employee(mary), employeeSalary(mary,500), worksIn(mary, it), manages(mary, it), 
departmentMinSalary(it, 1000)} 

which shows that an employee's salary can be lower than his department's minimum 
salary according to the schema. This means that a textual constraint to restrict the salary 
of employees must be defined. 

Similarly, one could test the schema by explicitly giving a sample instantiation to be 
checked. A question we could ask is whether a given employee, in this case Mary, can 
recruit himself in some team: 

selfRecruiting ← member(m1, mary, team1) ∧ member(m2, mary, team2) ∧  

   hasRecruited(m1, m2) 

A possible answer is: 

{member(m1, mary, team1), member(m2, mary, team2), hasRecruited(m1, m2),   (1) 

 

employee(mary), team(team1), team(team2),      (2) 

department(sales), worksIn(mary, sales), manages(mary, sales),     (3) 

employee(susan), audits(susan, team1), audits(susan,team2),    (4) 

worksIn(susan, sales),        (5) 
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employee(peter), worksIn(peter, sales),      (6) 

member(m3, peter, team1), member(m4, peter, team2),     (7) 

hasRecruited(m1, m3), hasRecruited(m2, m4)}     (8) 

Since the answer includes the definition of the derived predicate to be tested (1), it 
shows that this situation is accepted by the schema. In addition to the given instances, 
additional ones have had to be added in order to satisfy all the constraints. In particular, 
the referential constraints (2), the cardinality constraints of working-dep and manager (3), 
where the same employee Mary can be used according to the constraint 
ManagerIsWorker, the cardinality constraint of inspector (4), that forces to create at least a 
new employee that is not a member of the teams according to the constraint 
InspectorNotMember, which must work in a department according to the cardinality of 
working-dep (5), and yet another employee with its department (6), which must be 
created to satisfy the constraints OneRecruited and NotSelfRecruited, ensuring that each 
team has at least a member recruited by another member of the same team (7) and (8). 

However, this situation is possibly what the constraint NotSelfRecruited intended to 
prevent. Although the constraint is present in the schema, it is not correctly defined in 
OCL, and this test has been useful to find this erroneous formalization. The reason is 
that the constraint is defined on members, stating that a member cannot be recruited by 
the same instance of member. However, two different instances of member can 
correspond to the same employee, and it should be the employee the one that cannot 
recruit himself. Thus, the correct definition in OCL should be: 

context Member inv: self.recruiter.employee <> self.employee 

Note that providing explicit values when formalizing a test is only useful when it is a 
counterexample, that is,  when we want to check whether a certain situation is accepted 
by the schema when it should be not. In other words, if the previous test selfRecruiting 
had failed, this would not guarantee that no employee can recruit himself, since the test 
only ensures it for the employee mary. 
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444 

A Reasoning Procedure for 

the Structural Schema 

As we have seen in the previous chapter, the validation of a schema consists in the 
definition and execution of a set of tests in terms of the logic formalization of the 
schema. Since OCL in its full expressiveness leads to undecidability, the tests performed 
on the result of its translation into logic may not terminate, because the constraints can 
force the schema to have models with an infinite number of instances.  

At this point, knowing that the problem we want to solve is undecidable, some 
decisions must be taken. On the one hand, we have the option to limit the values that 
instances can take, or the total number of instances that a model can have. However, 
this implies renouncing to completeness, which we do not find acceptable. 

Another possibility is to restrict the expressiveness of the input schema, for example 
disallowing general constraints, in order to ensure decidability. This is neither a valid 
option for us, since our aim is to validate a UML schema with OCL constraints, as 
expressive as possible. 

Finally, the third possibility consists in allowing general constraints, but without 
guaranteeing termination in order to be complete. This option seems theoretically 
better, but a procedure that may not terminate is not very useful in practice.  

Thus, since we do not want to renounce to completeness, neither to a high 
expressiveness of the constraints, and we want a procedure that is applicable in 
practice, we do not strictly follow neither of these directions. Once we have translated 
the UML structural schema with its OCL constraints into logic, and previously to 
reasoning on it, we determine whether it is possible to perform any test with the 
guarantee that it will terminate. That is, we admit an expressiveness of the constraints 
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for which decidability is not guaranteed, but then we determine whether termination 
can be ensured for each particular schema defined.  

This is possible since the logic representation of the schemas obtained from the 
translation of a UML schema with its OCL constraints has a specific structure. In 
particular, it has only one level of derivation in most cases, that is, derived predicates 
are never defined by other derived predicates. To guarantee that there is exactly one 
level of derivation in the schema, and thus be able to apply our approach, we impose a 
restriction on the OCL expressions that the schema can contain. In particular, although 
the OCL constraints can include the operations includes, includesAll, notEmpty, 

exists and one, these specific operations (or their equivalent expressions) cannot be 
recursively combined in an OCL expression. 

For instance, the OCL constraints included in our example:  

context Boss inv SuperiorOfAllWorkers: 

self.employee->includesAll(self.managed-dep.worker) 

context WorkingTeam inv OneRecruited: 

self.member->exists(m|m.recruiter.workingTeam=self) 

are allowed, since they do not have nested combinations of the operations 
mentioned. Also, other constraints combining OCL operations are allowed. For 
example, the following constraint meaning that each working team must have at least a 
member that is not a manager, is accepted by our method: 

context WorkingTeam inv: 

self.employee->exists(e|e.managed-dep->isEmpty()) 

Or the following one, stating that there is at least a working team entirely composed 
by bosses: 

context WorkingTeam inv: 

WorkingTeam.allInstances()->exists(t|t.employee->  

forall(e|e.oclIsTypeOf(Boss))) 

Or, finally, this other constraint stating that all the employees that manage some 
deptarment have recruited some member of a working team:  

context Department inv: 

Department.allInstances().manager->forall(e|e.member-> 

exists(m|m.recruiter.employee=e)) 

However, the following ones are not accepted in our approach, since they contain 
forbidden combinations of OCL operations.  

context WorkingTeam inv: 

self.employee->exists(e|e.managed-dep->notEmpty()) 

context WorkingTeam inv: 

WorkingTeam.allInstances()->exists(t|t.employee->  

exists(e|e.oclIsTypeOf(Boss))) 

Our approach to check the decidability of reasoning on a given schema that satisfies 
this restrictions is detailed in section 4.1. 
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After determining the decidability, any theorem prover or reasoning method that is 
able to deal with our logic formulas can be used. If the conditions of termination are 
satisfied, then it is guaranteed that any reasoning task performed on the schema will 
terminate. Otherwise, it may happen that the reasoning tasks performed do not provide 
a result in finite time. 

However, despite being able to use an existing procedure to reason on the schema, 
we provide a new procedure that always terminates and works more efficiently than in 
the general case. This procedure takes advantage both of the fact that termination is 
guaranteed, and of the known structure of the logic formalization obtained from the 
translation. The reasoning procedure is proposed in section 4.2. 

4.1 Dealing with Decidability 

Since our approach to validate a schema consists in building a sample state of the IB 
that satisfies a certain property, we can say that this task will terminate as long as all the 
sates of the IB admitted by the schema are finite. Then, any sample IB that can be built 
to prove a property will have a finite number of instances and, thus, the construction 
will always terminate. 

In this section we present our approach to determine whether any reasoning task 
performed on a schema will terminate. We provide a set of conditions that guarantee 
that the schema does not have any infinite model. In this way, any theorem prover or 
reasoning method could be used knowing that any reasoning task performed on the 
schema will terminate. 

The constraints defined in the schema (both the ones obtained from the translation of 
the UML class diagram, and those explicitly defined by the designer as OCL 
constraints) are the ones that cause a constructive reasoner to add new facts to the 
sample IB under construction. It may happen that a constraint is violated as a result of 
repairing another one, so we must analyze the interactions between constraints in order 
to determine whether any sequence of violations is finite. 

To do this, we obtain a graph from the set of constraints of the schema that shows the 
dependencies between them. We formalize the construction of the dependency graph 
for a given schema in section 4.1.1, and in section 4.1.2 we explain how to use this graph 
to determine the absence of infinite models in a given schema. 

Throughout this section we will use the schema in Figures 6 and 7, corresponding to 
the subset of the running example regarding working teams. For the sake of simplicity, 
we have omitted all the attributes. 

As can be seen in Figure 6, each WorkingTeam is related to an Employee, which is its 
inspector, and to a set of employees that are its Members. Each member has been 
recruited at most by another member (the recruiter). The textual constraints in Figure 7 
impose that the inspector of a working team cannot be one of its members, and that 
each team must have at least one member recruited by another member of the same 
team different from himself. 
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Fig. 6. Subset of the running example showing only employees and working teams 

 

 

Fig. 7. Integrity constraints corresponding to the fragment of the schema in Figure 6. 

The translation of this schema into logic results in the following rules, which have 
been obtained according to the translation defined in the previous section. For the sake 
of understandability, we have simplified the logic representation of the schema 
obtained from the automatic translation. In particular, we have omitted the implicit 
constraints regarding OIDs, since they do not affect the results of the decidability 
analysis. Additionally, we have simplified some of the logic expressions obtained from 
the automatic translation of OCL constraints, in such a way that the resulting 
expression is equivalent to the original one.  

For instance, the translation of the OCL constraint InspectorNot Member provided by 
our implementation is: 

← workingTeam(T) ∧ audits(E,T) ∧ member(M,E,T)  

instead of: 

← audits(E,T) ∧ member(M,E,T)  

as can be seen in constraint 12 below. In our example, these constraints are 
equivalent, since the term T of audits and member will always correspond to a 
workingTeam due to constraints 1 and 3. Thus, the literal workingTeam(T) is not needed in 
the body of this constraint. 

Integrity constraints 

1. context WorkingTeam inv InspectorNotMember: 

self.employee->excludes(self.inspector) 

2. context Member inv NotSelfRecruited: 

self.recruiter<>self 

3. context WorkingTeam inv OneRecruited: 

self.member->exists(m|m.recruiter.workingTeam=self) 
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Some of the rules use derived predicates in their definitions, which are needed in 
order to make all of the conditions safe (see the Basic Concepts chapter). Conditions 1 to 6 
correspond to the referential constraints of associations. In this case, since all 
associations are binary, two such constraints are needed for each of them (one 
constraint for each association end). Condition 7 specifies that there cannot be two 
instances of Member relating the same Employee and WorkingTeam, which is an implicit 
constraint of association classes. Conditions 8 to 11 are the cardinality constraints of 
associations (the upper and lower bounds of inspector in the association Audits, the 
lower bound of Employee in the association Participant, and the upper bound of recruiter 
in HasRecruited). Finally, conditions 12 to 14 are the translation of the textual OCL 
constraints. We have ommitted those constraints needed to guarantee the uniqueness of 
OIDs, since they do not affect the study of decidability, in order to keep the graph as 
simple as possible. 

1. ← audits(E,T) ∧ ¬ workingTeam(T) 

2.  ← audits(E,T) ∧ ¬ employee(E) 

3.  ← member(M,E,T) ∧ ¬ workingTeam(T) 

4.  ← member(M,E,T) ∧ ¬ employee(E) 

5.  ← hasRecruited(M,R) ∧ ¬isMember(M) 

isMember(M) ← member(M,E,T) 

6.  ← hasRecruited(M,R) ∧¬isMember(R) 

7.  ← member(M,E,T) ∧  member(M2,E,T)  ∧ M≠M2 

8.  ← workingTeam(T) ∧ ¬oneInspector(T) 

oneInspector (T) ← audits(E,T) 

9.  ← audits(E,T) ∧ audits(E2,T) ∧ E≠E2 

10.  ← workingTeam(T) ∧ ¬oneMember(T) 

oneMember(T) ← member(M,E,T) 

11.  ← hasRecruited(M,R) ∧ hasRecruited(M2,R) ∧ M≠M2 

12.  ← audits(E,T) ∧ member(M,E,T) 

13.  ← HasRecruited(M,M) 

14.  ← workingTeam(T) ∧¬oneRecruited(T) 

oneRecruited(T) ← member(M,E,T) ∧ hasRecruited(M,R) ∧ member(R,E2,T) 

4.1.1 The Dependency Graph 

As seen in chapter 2, a condition consists of a set of positive literals, a set of negative 
literals and a set of built-in literals. Positive literals are the ones that may violate the 
constraint, whereas negative literals repair the constraint in case it is violated or, in 
other words, avoid violation in case that all the positive literals hold in the EDB. 
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Definition 4.1. A literal p(X̄ ) is a potential violation of a condition ic if it appears 
positively in its body. We denote by V(ic) the set of potential violations of the condition 
ic. 

For example, V(ic1) = {audits(E,T)} since the existence of a fact audits(a,b) in the EDB 
causes the violation of ic1 if the EDB does not contain the fact workingTeam(b). 

Definition 4.2. Given a condition ic, there is a repair Ri(ic) for each negative literal ¬Li in 

the body of ic. If Li is base then Ri(ic)= {Li}, otherwise Ri(ic) = { p1(X̄ 1),..., pn(X̄ n) }, where 

each pj(X̄ j) is a literal that appears positively in the body of the derivation rule that 
defines Li. 

Each repair of a condition gives an alternative way to avoid its violation. A condition 
has alternative repairs if it is of the form: 

← p(X̄ 1) ∧ ¬ q(X̄ 2) ∧ ¬ r(X̄ 3) 

where R1= { q(X̄ 2)} and R2 = { r(X̄ 3)}, or of the form: 

← p(X̄ 1) ∧ ¬ r(X̄ 2) 

r(X̄ 3) ← s(X̄ 4) ∧ t(X̄ 5) 

r(X̄ 3) ← v(X̄ 6) 

where R1={ s(X̄ 4), t(X̄ 5)} and R2 = {v(X̄ 6)} 

In our example, all conditions have a single repair. For instance, the repair of 
condition 1 is R(ic1) = {workingTeam(T)}, and the repair of condition 14 is R(ic14) = 
{member(M,E,T), hasRecruited(M,R), member(R,E2,T)}. There are some constraints, such as 
ic7, that cannot be repaired once they are violated, unless their potential violations are 
removed from the EDB.  

In the proposed approach, the set IC of constraints of a schema is associated with a 
directed graph G, that we call dependency graph. This graph shows, for each condition ici 

of the schema, which conditions may be violated as a result of each possible repair of ici. 

Definition 4.3. A dependency graph G is a graph such that each vertex corresponds to a 
condition ici of the schema. There is an arc from ici to icj, labeled Rk(ici), if there exists a 

predicate p such that p(X̄ ) ∈ Rk(ici) and p(Ȳ) ∈ V(icj). 

Note that G is sometimes a multigraph, since two different repairs of a condition ici 

may lead to the violation of a same other condition icj.  

Figure 8 depicts the dependency graph built from the conditions of our example. For 
the sake of clarity, conditions 5 and 6 have been collapsed in a single vertex, since the 
predicates belonging to their sets of potential violations and repairs coincide. For 
instance, it can be seen that the repair of conditions ic5 and ic6 can violate ic4, ic7, ic3 
and ic12, since the predicate Member, which is a repair for conditions ic5 and ic6, belongs 
to their sets of potential violations.  

However, not all the arcs that appear in the graph represent the violation of the 
condition in the terminal vertex when repairing the initial one. Sometimes, the existence 
of an arc means the opposite: that the repair of the condition in the initial vertex 
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guarantees the non-violation of the condition in the terminal vertex. We say this kind of 
arcs are superfluous. Examples of superfluous arcs, which are depicted with dashed lines 
in Figure 8, are the ones between conditions ic1 and ic8. When ic1 is violated due to the 
insertion of a fact audits(a,b) in the EDB, the insertion of the corresponding repair 
workingTeam(b) guarantees that ic8 is fulfilled. Similarly, when the first to be violated is 
ic8 because of the presence of a fact workingTeam(b), the violation is repaired by the 
insertion of audits(a,b), which guarantees the satisfaction of condition ic1. 
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4 

1. Forum(F)

2. Participant(P,F,U)

3. Moderates(F,U)

4. Participant(P,F,U), HasInvited(P,I), Participant(I,F,U2)

Fig. 8. Dependency graph. Superfluous arcs are dashed, and cycles are highlighted. 

Formally, an arc ri from the constraint ici to icj is superfluous when V(icj) = riθ  and 
there is some repair Rk(icj) such that Rk(icj) = V(ici)θ, where θ is a unifier of the sets 
V(ici)∪ri and V(icj)∪Rk(icj) that assigns a different term to each distinct variable. This 
guarantees that icj is never violated after the repair of ici, since although the facts added 
by ri potentially violate icj , this condition is always satisfied because its repair also 
belongs to the EDB. Thus, once these superfluous arcs are identified, they can be left 
aside since they indicate the ending of any sequence of repairs. 

Let C = (ic1 r1 ... icn rn icn+1 = ic1) be an alternating sequence of vertices and arcs that 
define a cycle in a dependency graph G. The existence of C implies that the repair ri of a 
condition ici may violate other conditions whose repairs could violate ici again. 

As can be seen in Figure 8, there are two cycles in our dependency graph, defined by 
the conditions (ic3 ic14) and (ic3 ic14 ic5/6). Since each constraint has a single repair, an 
enumeration of vertices suffices to identify each cycle. Note that the existence of 
superfluous arcs significantly reduces the number of cycles in the dependency graph. 
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4.1.2 Determining the Decidability 

Our approach to reasoning is aimed at constructing a database state which shows that a 
certain property holds. That is, a sample EDB where both the particular condition that 
defines the reasoning task and all the integrity constraints in the schema are satisfied. 
Therefore, our approach requires to perform integrity maintenance when trying to build 
such a sample EDB. 

It can be seen that the constraints that form a cycle in a dependency graph are the 
only reason for the existence of infinite models. Clearly, a condition that does not 
belong to a cycle will not cause an infinite sequence of repairs, since it will not be 
violated again when it has been maintained once for a certain set of facts. On the 
contrary, constraints that belong to cycles can be violated a potentially infinite number 
of times, since once they have been maintained, the same facts inserted by the repairs 
may cause new violations and new repairs, which can result in an infinite model. Then, 
if we can identify which are the cycles that do not cause an infinite sequence of 
violations, we can determine whether a schema is suitable to perform any reasoning 
task in finite time. 

In this section we study the cycles of the dependency graph to ensure that the 
process of integrity maintenance does not loop forever. To do this, we provide a set of 
theorems that allow to discard the presence of infinite models in the constraints that 
define each cycle. When all the models of a cycle of constraints are finite we call it a 
finite cycle. 

A first condition that guarantees that a cycle is finite is that it includes a constraint 
whose violation requires facts that are not inserted in the EDB by some repair in the 
same cycle. This implies that the cycle will not lead to an infinite sequence of repairs, 
since there is necessarily a condition in the cycle that will not be violated at some time. 
This is formalized in theorem 4.4. 

Theorem 4.4. A cycle C = (ic1 r1 ... icn rn icn+1 = ic1) is a finite cycle if 
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Intuitively, since the union of repairs of the conditions in the cycle is a proper subset 
of the union of potential violations, at least one potential violation of a constraint icj in 
the cycle is an EDB predicate which is not updated during maintenance of the rest of the 
constraints. Therefore, since the set of facts in the sample EDB at the beginning of the 
process is finite, icj may always be violated only a finite number of times. 

An example is the following set of constraints, which define a cycle since the repair 
of the first one is a potential violation of the second, and viceversa: 

← p(X) ∧ q(X) ∧ ¬r(X) 

← r(X) ∧ ¬aux(X) 

aux(X) ← p(Y) ∧ Y ≠ X 
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In this example, the potential violation q(X) in the first condition is not added by the 
repair of the second one. Thus, even when the first constraint is violated because p(X) ∧ 
q(X) holds in the EDB for some X, the repairs of the second condition may only lead to 
new violations of the first one a finite number of times (one for each fact q(a) contained 
in the initial EDB when the process of maintaining the previous costraints started). 

A cycle may be finite although it does not satisfy the previous condition. Examples 
can be found such that all the facts that are potential violations are created inside the 
cycle and, however, the cycle is not potentially infinite. An example is the cycle (ic3 ic14 
), which does not satisfy the previous condition but is finitely satisfiable. For instance, 
when a member(a,b,c) is added to the EDB, ic3 requires the insertion of workingTeam(c) 
which, in turn, violates ic14. In order to repair this violation, the facts member(a2,b2,c), 
hasRecruited(a2,a3) and member(a3,b3,c) may be inserted, but they will never violate ic3 
again, since the workingTeam(c) required by member(a2,b2,c) and member(a3,b3,c) is 
already in the EDB. This situation is formalized in theorem 4.6. 

Definition 4.5. A variable x is free in a repair Ri(ic) if x ∈ variables(Ri(ic)) and x ∉ 
variables(V(ic)). 

Theorem 4.6. A cycle C = (ic1 r1 ... icn rn icn+1 = ic1) is a finite cycle if ∀i, 1 ≤ i ≤ n, ∀p 
such that p(X1,...,Xm) ∈ ri and p(Y1,...,Ym) ∈ V(ici+1), ∀k, 1 ≤ k ≤ m, Xk is free in ri ⇒ Yk ∉ 
variables(ri+1). 

Intuitively, free variables in a repair are the source of infinity since they propagate 
the violations to new objects other than the ones that initially violated the constraints in 
the cycle. The previous condition guarantees that the free variables in the repair of the 
first constraint are not propagated by the repair of the second constraint. Since such a 
condition is required for each two consecutive constraints, it is guaranteed that the cycle 
will not loop forever since no new objects will be infinitely introduced by the repairs. 

Applying this condition to the cycle consisting of ic3 and ic14 we can conclude that it 
is a finite cycle, since the objects added by ic14 (the free variables in its repair) do not 
appear in the repair of ic3, which means that the new objects are not propagated in the 
cycle. 

There are two other cycle in our example, defined by the constraints (ic14 ic5 ic3 ) and 
(ic14 ic6 ic3 ), that do not satisfy the previous condition. However, these cycles are not 
infinite, since the free variables in ic14 are propagated by ic5/ic6 but not by ic3, which 
means that the new facts do not cause a new violation of ic14.  

We propose another theorem to identify this kind of cycles, which determines 
whether all the constraints of a cycle are violated at most once. 

Definition 4.7. Let C = (ic1 r1 ... icn rn icn+1=ic1) be a cycle in G, where each ri 

corresponds to some repair Rj(ici). Let V(ici) = { p1(X̄ 1),..., pm(X̄ m) }. Then,  
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where θ1 is a substitution that bounds a distinct constant to each variable, each θk = θj 

∪ θ'j is one of the t possible substitutions such that Facts(ici-1) ⊨ (p1(X̄ 1),..., pm(X̄ m))θj and 
θ'j assigns a new constant to each variable X such that X ∈ variables(ri) and X ∉ 
variables(V(ici)) if θj ≠ ∅, otherwise θk = ∅.  

Theorem 4.8. C is a finite cycle if, for each possible starting ici, ∃k, 1 ≤ k ≤ n, such that 
Facts(ick) = Facts(ick+1). 

Intuitively, for each i>1, the set Facts(ici) extends the set Facts(ici-1) by taking into 
account the repairs required to satisfy ici. Therefore, the condition Facts(ick) = Facts(ick+1) 
guarantees that the constraint ick+1 is not violated and, hence, the maintenance of the 
constraints in the cycle will not loop forever. 

The previous results allow us to determine whether reasoning on a given conceptual 
schema will always terminate. Note, however, that this set of theorems is not complete 
due to the undecidability of this problem. 

As an example of infinite cycle, we show the application of our approach to the 
classic ER schema shown in Figure 9 (Lenzerini and Nobili 1987). 

Applying the same translation rules as in the case of UML, the logic representation of 
this schema is: 

1. ← b(X) ∧ a(X) 
2. ← r(A,B) ∧ ¬a(A) 
3. ← r(A,B) ∧ ¬b(B) 
4. ← q(A,B) ∧ ¬a(A) 
5. ← q(A,B) ∧ ¬b(B) 
6. ← a(A) ∧ ¬minV(A) 

minV(A) ← r(A,B) 
7. ← r(A,B) ∧ r(A,B2) ∧ B ≠ B2 
8. ← b(B) ∧ ¬minU(B) 

minU(B) ← r(A,B) 
9. ← a(A) ∧ ¬minZ(A) 

minZ(A) ← q(A,B) ∧ q(A,B2) ∧ B ≠ B2 
10. ← q(A,B) ∧ q(A2,B) ∧ A ≠ A2 
 

 

Fig. 9. A schema not finitely satisfiable 

The dependency graph corresponding to this schema is shown in Figure 10. It has 
two cycles: the one defined by the constraints ic4 - ic9, and the other by ic2-ic9-ic5-ic8. 
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Fig. 10. Dependency graph. Cycles are highlighted, and superfluous arcs are dashed. 

According to Theorem 4.4, the cycle ic4-ic9 is not finite, since the union of the 
potential violations of all the constraints in the cycle coincides with the union of 
potential repairs. The same happens with the cycle ic2-ic9-ic5-ic8. 

If we apply Theorem 4.6 to the cycle ic4-ic9, we obtain that this cycle is finite. The 
reason is that constraint ic4 does not contain free variables (Definition 4.5), and the free 
variables in constraint ic9 are not propagated to the repairs of ic4.  

However, according to the same theorem, the cycle ic2-ic9-ic5-ic8 is not finite, since 
the free variables in ic9 (the ones corresponding to the second term of the predicate q) 
are propagated by the repairs of ic5. 

Thus, we must apply Theorem 4.8 in order to try to determine finiteness of this cycle. 
This consists in simulating a sequence of repairs of the constraints belonging to the 
cycle. We start by forcing the violation of ic2, and then we apply the repairs of the next 
constraints in the cycle: 

Facts(ic2) = {r(1,2), a(1)} 

Facts(ic9) = {r(1,2), a(1), q(1,3), q(1,4)} 

Facts(ic5) = {r(1,2), a(1), q(1,3), q(1,4), b(3), b(4)} 

Facts(ic8) = {r(1,2), a(1), q(1,3), q(1,4), b(3), b(4), r(5,3), r(6,4)} 

Facts(ic2) = {r(1,2), a(1), q(1,3), q(1,4), b(3), b(4), r(5,3), r(6,4), a(5), a(6)} 

If we do the same starting by any other constraint, we will obtain a similar result. 
Thus, according to Theorem 4.8, this cycle is not finite, since after having repaired all 
the constraints in the cycle, the set of Facts keeps growing. Intuitively, it can be seen that 
the constraints of this cycle will be violated infinitely, since the last facts added (a(5) and 
a(6)) require two new additions of predicate q and so on. 
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Hence, we cannot say that the cycle ic2-ic9-ic5-ic8 is finite and, thus, we cannot 
ensure that reasoning on this schema will always terminate. 

4.2 Reasoning in the Case of Decidability 

Once we have determined that all the models of a conceptual schema are finite (as it 
happens in our example), we can take advantage of the characterization of the logic 
formulas obtained from our UML and OCL schemas to define a reasoning procedure 
that works more efficiently than in the general case.  

Several reasoning tasks have been considered in the literature (Baader, Calvanese et 
al. 2003; Brucker and Wolff 2006; Formica 2002; Hartmann 2001; Lenzerini and Nobili 
1987), such as satisfiability (i.e. checking whether the schema admits a non-empty state 
that satisfies all the constraints), liveliness of a predicate (i.e. determining whether a 
certain class or association can have at least one instance) or reachability of partially 
specified states (i.e. assessing whether certain goals conceived by the designer may be 
satisfied). In general, each reasoning task can be formulated in terms of a particular goal 
to attain. 

A well-known approach to deal with this problem is to define methods whose 
purpose is to construct a database state (i.e. an EDB) for which the tested property 
holds. That is, a sample EDB where both the particular goal to attain and all the 
integrity constraints in the schema are satisfied. In this way, these methods can 
uniformly deal with all reasoning tasks.  

In this section we propose a new reasoning procedure based on this approach. We 
divide it in two different steps: goal satisfaction and integrity maintenance. These steps are 
defined in sections 4.2.1 and 4.2.2, respectively. 

4.2.1 Goal Satisfaction 

Our method is aimed at building a sample EDB which proves that the schema fulfills a 
specific property defined in terms of a certain goal G to attain. We assume that G is a 
conjunction of (positive and negative) literals corresponding to EDB predicates and 
built-in literals; which suffices to handle schema satisfiability, predicate liveliness and 
reachability of partially specified states (Queralt and Teniente 2006a). 

The first step of our method determines the EDB facts that are required to satisfy G 
without taking into account whether they violate any integrity constraint. Positive 
literals in G define facts that are necessarily required to satisfy G while negative literals 
in G identify facts that the sample EDB under construction must not contain. Built-in 
literals state conditions over the values that the variables of positive and negative 
literals in G may take.  

One of the most difficult tasks is the assignment of concrete values to the variables 
appearing in G in order to construct the sample EDB. Each possible choice defines a 
different alternative that satisfies G, i.e. a different sample EDB. We use Variable 
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Instantiation Patterns (VIPs) (Farré, Teniente et al. 2005) for this purpose. These VIPs 
guarantee that the number of sample EDBs to be considered is kept finite, by taking into 
account only those variable instantiations that are relevant for the schema, without 
losing completeness. I.e. the VIPs guarantee that if a solution is not found by 
instantiating the variables in the goal using only the constants they provide, then no 
solution exists. VIPs are selected according to the syntactic properties of the schema 
considered in each test: 

1. The Simple VIP: for schemas without negation and integrity constraints. 

2. The Negation VIP: for schemas with negation and/or integrity constraints. 

3. The Dense Order VIP: for schemas with order comparisons over a dense 

domain (e.g. real numbers). 

4. The Discrete Order VIP: for schemas with order comparisons over a discrete 

domain (e.g. integer numbers). 

In our example, the appropriate VIP is the Negation VIP, since the schema has 
negation and integrity constraints, but not order comparisons. With this VIP, each 
variable of the fact to be included in the EDB is instantiated either with a previously 
used constant or with a new one. For instance, assume that p(X) must be instantiated 
and that the only constant used up this moment is 0. Then, according to this VIP, the 
only relevant instantiations are p(0) and p(1). 

Step 1: Goal Satisfaction. Formally, the set EDB of facts required to satisfy G and the 
set UnwEDB of facts that EDB may never include to fulfill the tested property are 
obtained as stated in definition 4.9. There is a different alternative EDB for each possible 
substitution θ provided by the corresponding VIP. 

Definition 4.9. Let G = ←p1(X̄ 1) ∧ ... ∧ pn(X̄ n) ∧￢q1(Ȳ 1) ∧ ... ∧ ¬qm(Ȳm)  ∧ b1 ∧ ... ∧ bs, 

where pi, qj  are base predicates and bk are built-in literals. 

Let θ be one of the possible ground substitutions obtained via an instantiation of 
variables(G) and such that ∀i, 1 ≤ i ≤ s, biθ evaluates to true. Then, 

– The set of facts required to satisfy G is EDB ={p1θ,...,pnθ} 

– The set of facts unwanted to satisfy G is UnwEDB ={ q1θ,...,qmθ } 

As an example, assume that the designer wants to check the liveliness of the 
association Audits in the conceptual schema of Figure 1. Audits will be lively if the goal 
G = ← audits(E,T) succeeds for some instantiation. Applying the step 1 of our method 
we will obtain two different EDBs that satisfy G according to the Negation VIP: EDB1 = 
audits(0,0) and EDB2 = audits(0,1). 

4.2.2 Integrity Maintenance 

Once we have determined the set of EDB facts that satisfies the goal G to attain, the 
problem of reasoning on the schema may be reduced to that of integrity maintenance 
(Moerkotte and Lockemann 1991). Note that, in fact, we already know that the property 
checked will be satisfied if the EDB resulting from Step 1 does not violate any constraint 
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of the schema. If this is not the case, we must look for additional base facts (i.e. repairs) 
that make consistent the sample EDB being constructed. 

Unfortunately, as explained in section 1.6.3, we may not rely on existing integrity 
maintenance methods to perform this activity. To our knowledge, the most appropriate 
method to perform the kind of integrity maintenance we require is the CQC-Method 
(Farré, Teniente et al. 2005). However, it is a semidecision procedure with efficiency 
limitations that make questionable its use in practical situations.  

Thus, we need to build a new reasoning procedure, which can take advantage both 
of the dependency graph and the characterization of the logic formulas obtained from 
our schemas to work efficiently. Since the graph shows the interactions between the 
constraints, it provides the order in which they should be maintained. In principle, all 
constraints in the graph must be considered for maintenance since all of them may be 
violated by the EDB obtained as a result of Step 1. Vertices with no incoming arcs or 
whose incoming arcs have already been maintained are selected with priority so that a 
constraint is not considered until all the constraints that may violate it have already 
been maintained. 

An integrity constraint ic must be repaired if its potential violations hold in the 
sample EDB. Maintenance of ic results in the inclusion of its repairs in  the sample EDB 
being constructed. Note that ic may be violated by several different instantiations of its 
potential violations. Each of them gives raise to different repairs to be added in the 
EDB. For instance, if EDB = {..., audits(e1,t1), audits(e1,t2), audits(e2,t3), ...} and constraint 
ic1 has to be repaired at this moment, the facts to be added to EDB are {workingTeam(t1), 
workingTeam(t2), workingTeam(t3)}. 

If a constraint with an empty set of repairs is violated, the sample EDB being 
constructed must be discarded since it is impossible to make it satisfy such a constraint. 

The process of integrity maintenance is formalized as follows. Note that we also use 
the VIPs to assign concrete values to the existential variables that appear in the repairs 
of a constraint. Backtracking must be performed each time that the sample EDB under 
construction reaches a situation where the selected ic can not be repaired. Such 
backtracking involves considering a different repair of one of the constraints that has 
been maintained before ic. 

Step 2: Integrity Maintenance. Let ic = ←p1(X̄ 1) ∧ ... ∧ pn(X̄ n) ∧￢q1(Ȳ 1) ∧ ... ∧ ¬qm(Ȳm)  ∧ 

b1 ∧ ... ∧ bs be the condition selected for maintenance from the dependency graph, where 
pi, qj are base predicates and bk are built-in literals. Let EDBi be the set of required facts 
at that moment. Let EvalV(ic) and EvalR(Ri(ic)) be the set of built-in literals that appear 
in the body of ic and in the body of the rule from which Ri(ic) is obtained, respectively. 
Then EDBi+1 is computed as follows, where each θk = θj ∪ θ'j is a substitution such that 
EDBi ⊨ (V(ic) ∧ EvalV (ic))θj and θ'j is one of the possible substitutions obtained from an 
instantiation of all the variables in variables(Ri(ic)) \ variables(V(ic)) such that 
EvalR(Ri(ic))θ'j evaluates to true, if θj ≠ ∅ , otherwise θk = ∅: 
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if Ri(ic) = ∅ and EDBi  ⊨  (p1(X̄ 1) ∧ ... ∧ pn(X̄ n) ∧ b1 ∧ ... ∧ bs)θj 

then error (ic cannot be repaired) 
else  

EDBi+1 = i

t

k

ki EDBicR ∪
=
U

1

)( θ  

if ∃qj ∈ UnwEDB such that qj ∈ EDBi+1 
then error (ic cannot be repaired) 

Figure 11 shows an execution of the integrity maintenance step of our method for 
one of the EDBs obtained in Step 1. Each row in the figure shows the integrity constraint 
being maintained (as selected through the order defined by the dependency graph) and 
the additions to the EDB required to repair the constraint, if any. A row contains several 
constraints when none of them is violated by the EDB under construction. As a result of 
the execution, our method obtains a sample EDB which confirms that the association 
Audits is lively. 

The Step 1 consists in the addition of a fact audits(0,1), which corresponds to one of 
the alternatives provided by de VIP. If no consistent EDB can be found with this 
instantiation, the other alternative (audits(0,0)) should be selected. 

The constraint ic1 is selected first since it is the only vertex with no incoming arcs in 
the graph. It is violated since V(ic1)= audits(E,T) holds in the EDB with substitution θj 
={E/0, T/1}. Then, since R(ic1)=workingTeam(T), the repair workingTeam(1) is added to the 
sample EDB to ensure that it does not violate ic1. 

The next constraint to be selected is ic10 since all its only predecessor (ic1) has 
already been maintained. Similarly, it is violated since V(ic10)=workingTeam(T) holds in 
the EDB with substitution θj={T/1}. Since R(ic10)=member(M,E,T), the fact 
participant(2,3,1) is added to the sample EDB since we assume that the substitution 
obtained is θ'j ={M/2, E/3}.  

The rest of alternative substitutions provided by the VIP, are θ'j ={M/0, E/0}, θ'j 
={M/0, E/1}, θ'j ={M/0, E/2}, θ'j ={M/0, E/3}, θ'j ={M/1, E/0}, θ'j ={M/1, E/1}, θ'j ={M/1, 
E/2}, θ'j ={M/1, E/3}, θ'j ={M/2, E/0}, θ'j ={M/2, E/1}, θ'j ={M/2, E/2}, that is, the 
combinations corresponding to the use of all the existing constants (0 and 1) plus a new 
one (2) for the variable M, and all the existing constants (0, 1 and 2) plus a new one (3) 
for the variable E. This alternatives will be used in case the current derivation fails. The 
alternative chosen in this example is the first that leads to a successful derivation, which 
is the first one in which member has the OID 2, different from the ones used up to now 
for other classes, and employee has the OID 3, also different from the ones used for other 
classes and different from 1, which would violate the constraint ic12. 

The method proceeds then with ic14, since its only predecessor at this moment is ic3, 
which belongs to its same cycle. Its other predecessor is ic1, which has already been 
maintained. The violation of ic14 requires considering two additional repairs whose 
concrete values have also been obtained via the application of a VIP.  
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 Selected 

constraint(s) 
Additions to the EDB 

{audits(0,1)} 

ic1 

ic13, ic11, ic5, ic6, ic3, ic8 

ic14 

{workingTeam(1)} 

{hasRecruited(2,4), member(4,5,1)} 

Step 2 

Step 1 

ic2 {employee(0)} 

ic9, ic7 

ic4 {employee(3), employee(5) } 

ic12 

Sample EDB 
{audits(0,1), workingTeam(1), member(2,3,1), 

hasRecruited(2,4), member(4,5,1), employee(0), 

employee(3), employee(5)} 

ic10 {member(2,3,1)} 

 

Fig. 11. An execution that proves that Audits is lively 

Note that the rest of alternatives different from hasRecruited(2,4) fail due to some 
constraint. In particular hasRecruited(2,0), hasRecruited(2,1) and hasRecruited(2,3) use 
existing OIDs in employee, workingTeam and member for a new instance of member, 
which is not allowed, and hasRecruited(2,2) violates the constraint ic13. The same 
happens with member(4,5,1), since the facts member(4,0,1), member(4,1,1), member(4,2,1) 
and member(4,4,1) do not guarantee the uniqueness of OIDs. On the other hand, 
member(4,3,1) violates ic7, since member(2,3,1) already belongs to the EDB. Thus, the only 
successful alternative is member(4,5,1). 

The next constraints to be considered according to the graph are ic11, ic13, ic5, ic6 
and ic3, all of them successors of ic14 and currently with a single predecessor, and ic8, 
whose predecessor is ic3, which has just been checked. None of these constraints is 
violated by the current EDB, so no facts are added. Since ic3 has not been violated and, 
thus, not repaired, there is not need to check ic14 again, despite being successor of ic3 in 
the cycle. 

The next step takes ic2, successor of ic8, which is violated by the first fact inserted, 
audits(0,1). The repair consists in adding employee(0) to the EDB.  
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The next constraint, ic9, which has no repairs, is not violated since the EDB only 
contains an instance of the predicate audits, so the maintenance continues with ic7, 
which is neither violated.  

The only constraints that remain to be treated are ic4 and ic12, which have no active 
predecessors at this moment. We take for example ic4, which is violated by the facts 
member(2,3,1) and member(4,5,1). To repair these violations, two new facts, 
corresponding to the employees required by each instance of member, are added in the 
EDB. 

The last constraint to be considered is ic12, which is not violated. Since all the 
constraints have already been checked and successfully repaired when necessary, the 
execution ends, and the EDB constructed provides an example that demonstrates the 
property checked, i.e. the liveliness of the association Audits. The EDB is {audits(0,1), 
workingTeam(1), member(2,3,1), hasRecruited(2,4), member(4,5,1), employee(0), employee(3), 
employee(5)}. Note that seven additional facts have been added to the EDB to ensure that 
it does not violate any integrity constraint. 

Let us see now an unsuccessful execution of the method, that is, an execution that is 
not able to provide a sample EDB satisfying the goal and, thus, demonstrates that such 
a goal is impossible to reach according to the structural schema defined. The test we 
want to perform is  

auditorAndMember ← audits(0,1) ∧ member(M,0,1) 

that is, we want to check whether it is possible that an employee that audits a team 
also belongs to it. This is not possible according to ic12, so let us see how the method 
realises of this. 

As can be seen in Figure 12, the step 1 consists in placing a set of facts satisfying the 
goal G = ← audits(0,1) ∧ member(M,0,1) in the EDB. The alternatives provided by the VIP 
to instantiate the variable M are 0, 1 and 2. Since OIDs 0 and 1 correspond to an 
employee and a team, respectively, the only possibility is to instantiate the OID M of the 
member with the value 2. 

The constraints will be considered in the same order as in the previous example, 
since the sequence of violations is very similar. The alternatives of instantiation are very 
similar too, so we will not explain them in the same detail.  

The first constraint to be considered is ic1, which adds the fact workingTeam(1) to the 
EDB. 

The next one is ic10, that this time is not violated since a member of the working 
team 1 already belongs to the EDB. As in the previous example, ic14 is violated and 
needs an instance of hasRecruited and another instance of member to be repaired. Again, 
we choose the right alternative to instantiate both predicates, in order not to violate any 
other constraint. 

The next violation is of ic2, which requires the addition of an employee in the EDB, 
given by audits(0,1). The last repairs also imply the addition of employees according to 
ic4. 
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 Selected 

constraint(s) 
Additions to the EDB 

{audits(0,1), member(2,0,1)} 

ic1 

ic13, ic11, ic5, ic6, ic3, ic8 

ic14 

{workingTeam(1)} 

{hasRecruited(2,3), member(3,4,1)} 

Step 2 

Step 1 

ic2 {employee(0)} 

ic9, ic7 

ic4 {employee(1), employee(4) } 

ic12 error (ic12 cannot be repaired) 

ic10 

Fig. 12. An execution that proves that auditorAndMember is not satisfiable. 

The last constraint to be considered is ic12, which is violated by the facts in the EDB 
and cannot be repaired. Thus we have to reconsider the last alternative taken. The only 
alternative instantiation possible is in the repair of ic14, where hasRecruited(3,2) could 
have been considered instead of hasRecruited(2,3). However, it is easy to see that the 
result is exactly the same. Thus, since there are neither other alternative repairs for any 
of the constraints, nor other successful instantiations provided by the VIPs to be 
considered, we can conclude that the goal G is unsatisfiable. 

To evaluate our efficiency improvement regarding integrity maintenance, we 
compare how many integrity constraints are checked in the CQC Method and in our 
integrity maintenance step. Let N be the number of integrity constraints and R the 
number of repairs needed to obtain a solution. Then, we have that the CQC Method will 
check in average (N/2)*R+N constraints to ensure that the solution is valid. We assume 
that the CQC will need to check again half of the constraints (i.e. N/2) for each repair. 

Our integrity maintenance step will check exactly N constraints if the dependency 
graph has no cycles. If all the cycles in the graph satisfy theorems 4.6 or 4.8 (and do not 
satisfy theorem 4.4), at most N+K constraints will be checked, where K is the number of 
constraints that belong to cycles, since each such constraint is considered at most twice. 

The number of constraints we will check when a cycle satisfies theorem 4.4 is more 
difficult to establish because it depends on the contents of the IB before repairing the 
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constraints in the cycle. In this kind of cycles, the number of constraints considered is 
N+K*S, where S is the number of times that the constraints in the cycle are checked.  

Thus, the number of constraints considered by our procedure in the worst case is 
N+K*R, which coincides with the worst case of the CQC Method. Note, however, that 
our worst case only happens when all the constraints of the schema belong to cycles 
satisfying theorem 4.4. 
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555 

Validation of a Conceptual 

Schema with Operations 

In this chapter we explain our approach to the validation of a complete conceptual 
schema. This does not mean to check separately which properties are fulfilled by the 
structural part, as explained in chapter 3, and which ones are satisfied by the behavioral 
part. Since the operations defined in a schema specify the only changes that can be 
performed on the IB, the structural part cannot be validated independently of them. 
Thus, as well as checking properties of the operations, such as applicability and 
executability, validating the behavioral part of a schema also means taking into account 
the operations defined when determining which properties are fulfilled by the 
structural part.  

When taking the behavioral schema into account in the validation, it is essential to 
establish how operation contracts must be interpreted, in order to infer which are the 
changes they make on the IB. There are two alternative semantics of operation contracts, 
the strict interpretation and the extended interpretation, which are discussed in section 5.1. 
As will be seen, the strict interpretation provides several advantages over the extended 
one and, thus, we choose the strict interpretation for our operation contracts. 

In section 5.2 we explain how to incorporate the semantics of operations in the logic 
formalization of the schema, so that we can ensure that the only changes allowed are 
those specified by the operations.  

In section 5.3 we formalize and exemplify a set of reasoning tests that can be 
performed on a complete conceptual schema. Some of them correspond to properties of 
the complete conceptual schema, taking into account the meaning of operations, while 
others are specific to validate the correct definition of operations. 
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Finally, in section 5.4 we explain how the existing CQC Method has been extended 
and used to validate a conceptual schema with operations. 

5.1 Semantics of Operation Contracts 

Operation contracts define the effect of an operation on the IB. They consist of a 
precondition¸ which expresses a condition that the IB and the parameters must satisfy 
when the call to the operation is made, and a postcondition, which expresses a condition 
that the IB must satisfy after the application of the operation.  

The execution of an operation results in a set of one or more structural events to be 
applied to the IB. A structural event is an elementary change in the population of an 
entity type or a relationship type, i.e. the creation, deletion or modification of instances 
of a given type. The precise number and meaning of structural events depend on the 
conceptual modeling language used. In this paper, we assume the following kinds of 
structural events: 

- Entity insertion: creates a new instance of an entity type 
insert(EntityType(attribute1,...,attributen)) 

- Entity deletion: deletes an instance of an entity type 
delete(EntityType(instance)) 

- Entity generalization: an instance is moved from an entity type to its supertypes  
generalize(instance, EntityType) 

- Entity specialization: an instance is moved from an entity type to one of its 
subtypes 

specialize(instance, EntityType(attribute1,...,attributen)) 
- Relationship insertion: links a set of instances of entity types. When the 

relationship type is an association class, values for its attributes must be 
indicated 

newLink(RelationshipType(participant1,...,participantn, [attr1,...,attrn])). 
- Relationship deletion: deletes a link between a set of instances 

deleteLink(RelationshipType (participant1,...,participantn) 
- Attribute update: changes the value of an attribute 

update(EntityType(instance, attribute, value)) 
More complex events can be expressed in terms of these ones. For instance, an entity 

migration can be specified as an entity generalization and an entity specialization. 

The application of a set of structural events to a state IB of the information base 
results in a new state IB’. Given a state of the information base IB, there are several sets 
of structural events that lead to new states satisfying an operation postcondition. Of 
these, we are only interested in the minimal ones. A set S of structural events is minimal 
if no proper subset of S is also a set of structural events that satisfies the postcondition. 
This is the way in which we deal with the frame problem (Borgida, Mylopoulos et al. 
1995). 
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As we will see, the particular semantics given to an operation contract determines 
the set of structural events to be applied to the information base when the operation is 
executed. 

In addition to preconditions and postconditions, integrity constraints play an 
important role in the definition of the semantics of operation contracts, since every 
operation can assume that the integrity constraints are true when it is entered and must 
in return ensure that they are true on its completion (Hoare 1972). Previous work on 
conceptual modeling has provided precise definitions for integrity constraints and 
definitions for preconditions and postconditions, but sometimes without explicitly 
establishing a clear relationship between them. Thus, little attention has generally been 
paid to the precise semantics of operation contracts, in terms of how the satisfaction of 
integrity constraints is guaranteed after each operation is executed. 

In many proposals, integrity constraints are kept separated from the discussion of 
operation contracts when, in fact, they determine the way contracts are specified. In 
some studies, definitions are given for integrity constraints and for preconditions and 
postconditions, but the implications that constraints have on the way operation 
contracts are specified is not really discussed (Martin and Odell 1999; Pressman 2004; 
Rumbaugh, Jacobson et al. 2004; Wieringa 1998). In one chapter, it is even stated 
explicitly that integrity constraints are not included in the discussion of preconditions 
and postconditions for the sake of simplicity (Larman 2004). All of these approaches 
make clear that integrity constraints must hold before and after every operation 
execution. However, they do not define whether the operation must guarantee 
consistency by repairing the information base or by rejecting the operation when a 
violation occurs. 

In contrast, the relationship between operation contracts and integrity constraints is 
clearly established by some authors (D'Souza and Wills 1998; Meyer 1997; Olivé 2004). 
According to them, the state of the information base generated by the execution of an 
operation must satisfy both the postcondition and the integrity constraints every time 
the precondition is satisfied. This means that each operation is responsible for 
recovering the consistency of the information base when this is lost during execution of 
the operation. As we will see, this semantics corresponds to our extended interpretation 
of operation contracts, and as we will discuss, involves several drawbacks from the 
point of view of the characteristics of good software specification. 

Finally, this relationship has been disputed when it deals with the specification of 
business rules (Devos and Steegmans 2005). In that analysis, the authors concluded that 
preconditions, postconditions and invariants should not be offered as concepts in 
object-oriented analysis and, thus, two new special kinds of constraints (class and event 
constraints) must be introduced to model business rules. In this paper, we show that a 
strict interpretation of operation contracts allows successful use of preconditions, 
postconditions and invariants in conceptual modeling, without the need for 
consideration of new concepts. 

We have analyzed the traditional semantics of operation contracts, which we call 
extended interpretation, and show that it has important drawbacks in terms of the 
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desirable properties of software specifications. To solve these problems we propose a 
different way of specifying contracts, called strict interpretation. The main difference 
between them lies in the way operation postconditions and integrity constraints are 
guaranteed, which has an impact on the desirable properties of operation contracts.  

Given an information base IB and an operation Op, the semantics of Op defines the 
conditions under which Op can be applied and the new IB’ obtained as a result of 
applying Op to IB. Since there is a one to one correspondence between each operation 
and the operation contract specifying its behavior, we will use the two terms 
interchangeably. Taking this into account, in the following subsections we formalize 
and discuss both interpretations.  

In short, a strict interpretation assumes a passive behavior of operations, since it 
prevents an operation from being applied if an integrity constraint is violated (although 
both its preconditions and postconditions are satisfied). In contrast, an extended 
interpretation entails reactive behavior of operations, since it must ensure that integrity 
constraints are satisfied whenever they are violated, so that the operation will always be 
applied if its precondition is satisfied.  

In this section we use a variation of the example, shown in Figure 13, that does not 
include any semantic flaws in order to focus on the different interpretations of 
operation contracts. This time the schema includes a classifictation of Employees, which 
can be either Junior or Senior, that are grouped into WorkingTeams.  

 

Fig. 13. New example about Employees and Working Teams 

The behavioral schema of this example is not shown here because the formalization 
of its operation contracts depends on the particular semantics assumed. The operations 
will appear during the formalization and discussion of the different semantics. 

{disjoint,  
complete} 

Integrity constraints 

- Employees are identified by name 

- Working Teams are identified by name 

- A member cannot recruit himself 
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5.1.1 The Extended Interpretation 

An operation contract states that if the conditions specified in the precondition are 
satisfied, then the state described in the postcondition is guaranteed, together with the 
integrity constraints specified in the schema (Meyer 1992). In other words, satisfaction 
of the precondition always implies satisfaction of the postcondition and the integrity 
constraints. We will call this extended interpretation, since integrity constraints are 
considered as clauses implicitly added to the postcondition, i.e. it is the responsibility of 
the operation to ensure satisfaction not only of the postcondition but also of the 
integrity constraints of the schema. 

Let IB and IB’ be states of the information base. Let Op(IB, IB’) denote that IB’ is the 
result of applying an operation Op on IB. Let Pre and Post be the precondition and 
postcondition of Op respectively. Let IB’ = S(IB) denote that IB’ is obtained as a result of 
applying all the structural events in S to IB. Let S, S2 and S3 be sets of structural events 
and S be the minimal set that satisfies Post when applied to IB3. Let IC be the set of 
integrity constraints defined in the conceptual schema.  

Definition 4.1: Extended Interpretation of an operation Op 

∀ IB, IB’ such that Op(IB, IB’), the following four conditions hold: 

a) IB ⊨ Pre ∧ IC 
b) IB’ = S2(IB) and S ⊆  S2 

c) IB’ ⊨ Post ∧ IC 

d) ¬∃ S3, S ⊆  S3 ⊂  S2 such that S3(IB) ⊨ Post ∧ IC 
Intuitively, the first condition states that the transition is only possible if IB satisfies 

Pre and it is consistent. The second condition asserts that to obtain IB’ at least the 
structural events in S must be applied. However, it does not rule out the application of 
additional structural events to IB. The third condition requires IB’ to satisfy Post and to 
be consistent. Finally, the fourth condition states a minimality condition on S2 in the 
sense that there is no proper subset of S2 that satisfies Post and IC. 

An extended interpretation allows for several different sets of structural events Si to 
be applied to IB, provided that all of them include at least the events in S and satisfy the 
minimality condition. The additional structural events in Si must be such that they 
guarantee that no constraint is violated in the resulting state, even though some of them 
were violated by the events in S. Clearly, if S itself does not violate any constraint there 
is no need to consider additional structural events. 

We will use the operation newWorkingTeam, aimed at creating an instance of 
WorkingTeam, to illustrate that the previous definition formalizes the traditional 
meaning of a contract. The contract shown in Figure 14 specifies this operation. 

Here, S={insert(WorkingTeam(name))} is sufficient to satisfy the postcondition of 
newWorkingTeam(name), since it is the only structural event that causes IB' to satisfy the 
postcondition. 

                                                           
3 Exceptionally, several minimal sets S can exist but only in those cases in which some kind of 
random behavior is desired. In that case, any of them can be arbitrarily chosen. 
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Op: newWorkingTeam(name: String) 
Pre: --there is no other team with the same name 

not WorkingTeam.allInstances() → exists(tt.name=name)  
Post: --a new instance t of WorkingTeam, identified by  

--name is created 
WorkingTeam.allInstances()->exists(t | t.oclIsNew() and 
t.name = name) 

Fig. 14. Contract for the operation newWorkingTeam 

We will now show the conditions under which newWorkingTeam can be applied to IB 
and the new IB’ arising from the application of newWorkingTeam according to the 
extended semantics. Two different situations must be distinguished, depending on the 
contents of IB:  

1. IB does not contain any working team identified by name. In this case: 
− Condition a) is guaranteed, since Pre is satisfied and IB is consistent. 
− b) states that IB’ = S2(IB) and S ⊆  S2, i.e. any information base resulting from 

applying a set S2 of structural events that contains 
S={insert(WorkingTeam(name))} will satisfy this condition. 

− c) states that IB’ must imply both the postcondition (this is always true since 
it is satisfied by S) and all integrity constraints. Under the assumption that a 
working team with the same name does not already exist, no integrity 
constraint can be violated by the application of S, so S = S2 in this case. 

− Condition d) is also satisfied, since there is no subset of S2 = 
{insert(WorkingTeam(name))} satisfying Post. 

2. IB contains a working team identified by name. In this case, the operation will 
not be executed, since its precondition is not satisfied and condition a) of 
Definition 4.1 does not hold. 

In summary, according to an extended interpretation the semantics of the operation 
newWorkingTeam is such that if IB does not contain any working team identified by name 
then the operation leads to the insertion of a new working team, with the specified 
name. Otherwise, the operation will not be applied and IB will remain unchanged. 

However, we see an important drawback in the previous operation contract. The 
problem is that its precondition is redundant, since the same aspect of the specified 
system (two working teams with the same name cannot exist) is already guaranteed by 
the uniqueTeam constraint. Non-redundant conceptual schemas provide several 
advantages regarding desirable properties of software specifications and ease of design 
and implementation, such as conciseness, modifiability and consistency (Costal, Sancho 
et al. 2002). 

To avoid redundancy in the specification of the operation newWorkingTeam we 
should define an operation contract like the one shown in Figure 12 but with an empty 
precondition, as shown in Figure 15. 

Assuming an extended interpretation of the previous operation contract, we obtain 
the following behavior. Since the postcondition has not changed, the set S will be the 
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same as before, S={insert(WorkingTeam(name))}. We distinguish the same two relevant 
situations depending on the contents of IB. 
Op: newWorkingTeam(name: String) 
Pre:   
Post: --a new instance t of WorkingTeam, identified by  

--name is created 
WorkingTeam.allInstances()->exists(t | t.oclIsNew() and 
t.name = name) 

Fig. 15. Non-redundant contract for operation newWorkingTeam 

1. IB does not contain any team identified by name. In this case the behavior is the 
same as in the contract shown in Figure 12. Hence, IB’ is obtained by inserting a 
working team with name into IB. 

2. IB contains a working team wt identified by name: 
− a) is guaranteed. 
− b) states that any IB’ resulting from applying a set S2 , S ⊆ S2, of structural 

events that contains S will satisfy this condition. 
− c) states that IB’ must imply both the postcondition and all integrity 

constraints. Since S itself violates the first integrity constraint, S2 must be a 
superset of S.  

− d) states that S2 must be minimal. Adding either delete(WorkingTeam(wt)) or 
update(WorkingTeam(wt, name, newName)) to S is sufficient both to satisfy this 
condition and repair the previous violation, where newName is different from 
all the existing names of working teams. 

In summary, according to the semantics of the non-redundant operation contract for 
newWorkingTeam based on an extended interpretation, if IB does not contain a team 
identified by name the operation results in the application of the structural event 
insert(WorkingTeam(name)). Otherwise, if IB contains a working team wt identified by 
name, it results in the application of S2 = S ∪ {delete(WorkingTeam(wt))}, or S2 = S ∪ 
{update(WorkingTeam(wt, name, newName))} in order to satisfy the postcondition and 
repair the violation.  

Besides having undesired collateral effects, the previous operation contract admits 
two different sets of structural events to be applied to IB. In addition to the events in S, 
one of them deletes the existing working team with the same name, while the other 
changes the name of the already existing instance (note that both of them satisfy both 
Post and IC). Clearly, both alternatives correspond to completely different business 
rules and random behavior of this operation is not acceptable. 

This is a clear example of how assuming an extended interpretation may lead to 
ambiguous contracts. The problem is that, as stated in the IEEE Recommended Practice 
for Software Requirements Specifications (SRS) (Various Authors 1998), a good SRS 
must be unambiguous in the sense that each requirement, and in particular the ones 
stated in the operation contracts, must have a unique meaning. 

There are two possible ways to avoid ambiguity that depend on the expected 
behavior of the operation. One possibility is to strengthen the operation precondition to 
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ensure that no integrity constraint violation will be produced, in case the designer 
wants the operation to be rejected if there is a constraint violation, as in the contract in 
Figure 14. Clearly, this is the intended behavior of this operation, that is, if a working 
team with the same name already exists, the operation should not be applied . 

The problem is that this way of avoiding ambiguity results in a redundant operation 
precondition. As mentioned, despite being acceptable, this situation would not follow 
suggested good practices for conceptual modeling (Costal, Sancho et al. 2002). 

In contrast, if the designer wants the operation to recover the consistency of the 
information base, the solution to avoid ambiguity is to explicitly state how to repair 
integrity constraint violations in the operation postcondition. This could be done in the 
previous example by choosing one of the two possible ways to repair the constraint 
violation (i.e. either to delete the working team with the same name or to rename it) and 
specifying the corresponding OCL expression in the operation postcondition. 

Besides the explicit integrity constraints, either graphical or textual, a structural 
schema also includes several constraints that are implicit in its specification, for 
instance, that an association class does not have two different instances defined by the 
same instances of the participants.  

In the previous example, we have seen how the textual constraints must be 
guaranteed by the precondition. In what follows, we illustrate how implicit and 
graphical constraints must also be taken into account when specifying an operation 
contract under an extended interpretation. To this end, let us consider the following 
operation newMember, which registers a new member in a team and associates it to a 
recruiter.  

Fig. 16. Contract for the operation newMember 

The first precondition, which ensures that the member we are going to create does 
not already exist, is needed because of the implicit constraint in associations stating that 
an association cannot have duplicated instances. The second precondition prevents the 
violation of the cardinality constraint stating that a team must have at least 5 members. 
Finally, the third precondition guarantees that the constraint notSelfRecruited will not be 
violated after satisfying post. 

Op: newMember(emp:Employee, team:WorkingTeam, rec:Member) 

Pre: --the employee emp does not already belong to the team 

team.employee->excludes(emp) 

--the team does not already have 5 members 

team.employee->size()<5 

--the recruiter rec is not the member we are going to  

--create 

rec.employee<>emp or rec.workingTeam<>Team 

Post: Member.allInstances()->exists(m|m.oclIsNew() and  

m.employee=emp and m.workingTeam=team and 

m.recruiter=rec)  
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Now, S={newLink(Member(emp,team)), newLink(HasRecruited(rec,newMember))}, where 
newMember is the instance of the association class Member created by 
newLink(Member(emp,team)), is sufficient to satisfy the postcondition of newMember, since 
it is the minimal set of structural events that causes IB' to satisfy the postcondition. 

Following the same reasoning as in the previous cases, when the IB previous to the 
execution of the operation satisfies all the preconditions, the operation results in the 
creation of an instance of member with the given parameters. Otherwise, the operation 
is not applied. 

Notice that, to obtain this behavior, we have needed to add preconditions that are 
redundant with constraints, either textual (third precondition), graphical (second 
precondition) or implicit constraints (first precondition). Again, trying to remove them 
has undesirable consequences. 

We will start analyzing the first precondition. Assume that it is removed, so the 
relevant situations we need to study are the following, assuming in both cases that the 
rest of preconditions are satisfied:  

1. The employee emp is not a member of team in IB: 
− Condition a) is guaranteed, since Pre is satisfied and IB is consistent. 
− b) states that IB’ = S2(IB) and S ⊆  S2, i.e. any information base resulting from 

applying a set S2 of structural events that contains 
S={newLink(Member(emp,team)), newLink(HasRecruited(rec,newMember))} will 
satisfy this condition. 

− c) states that IB’ must imply both the postcondition (this is always true since 
it is satisfied by S) and all integrity constraints. Since the same member does 
not already exist, no integrity constraint can be violated by the application of 
S, so S = S2 in this case. 

− Condition d) is also satisfied, since there is no subset of S2 = S satisfying Post. 

2. The employee emp is already a member of team in IB: 
− a) is guaranteed. 
− b) states that any IB’ resulting from applying a set S2 of structural events that 

contains S will satisfy this condition. 
− c) states that IB’ must imply both the postcondition and all integrity 

constraints. Since the same member m already belongs to the IB, it is 
impossible to satisfy the postcondition, that is, to add emp as a new member 
of team, and the integrity constraints, in particular the uniqueness of the 
instances of an association. Thus, since no additional events can be added to 
repair this violation, this condition can never be satisfied.   

In summary, according to an extended interpretation, the first precondition of the 
contract in Figure 16 cannot be removed despite being redundant, since this would 
cause the operation to be unapplicable when the IB already contains the same member. 

  The same happens when removing the third one, since it is impossible to satisfy 
simultaneously both the postcondition and the constraint notSelfRecruited when the new 
member to be created is exactly the recruiter rec. Finally, removing the second 
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precondition leads to an unexpected and random behavior, as happens in the contract 
of Figure 15. 

It can therefore be concluded that assuming the extended interpretation forces 
redundancy of operation contracts, either in the precondition or in the postcondition. 

5.1.2 The Strict Interpretation 

To solve the problem of redundancy caused by the extended interpretation, we propose 
an alternative way to understand operation contracts. This interpretation prevents the 
application of the operation when an integrity constraint is violated during execution. 
We call this approach strict interpretation, since the operation needs only be responsible 
for satisfying the postcondition and does not address the integrity constraints. This 
approach is formalized in Definition 4.2. 

Let IB and IB’ be states of the information base. Let Op(IB, IB’) denote that IB’ is the 
result of applying an operation Op on IB. Let Pre and Post be the precondition and 
postcondition of Op, respectively. Let IB’ = S(IB) denote that IB’ is obtained as a result of 
applying all the structural events in S to IB. Let S be the minimal set of structural events 
that satisfies Post when applied to IB. Let IC be the set of integrity constraints defined in 
the conceptual schema. 

Definition 4.2: Strict Interpretation of an operation Op 

∀ IB, IB’ such that Op(IB, IB’), the following three conditions hold:  

a) IB ⊨ Pre ∧ IC 
b) IB’ = S(IB) 

c) IB’ ⊨ Post ∧ IC 
As in Definition 4.1, the first condition states that there is a transition from an 

information base IB to an information base IB’ as a result of applying an operation Op 
only if IB satisfies Pre and it is consistent (i.e. it satisfies all integrity constraints). 
Moreover, according to the second condition, IB’ is obtained exactly as a result of 
applying the minimal set S of structural events that satisfies Post to IB. Finally, the third 
condition requires IB’ to satisfy Post (always true according to b)) and to be consistent. If 
any of the conditions do not hold, Op is not applied to IB. 

Notice that the resulting state will always be consistent, since integrity constraints 
were satisfied before the operation and they will always be satisfied at the end. If the 
execution of the operation does not violate any of the integrity constraints, then they are 
already guaranteed. On the other hand, if the execution violates any of them, the 
operation is rejected and the state remains unchanged. 

An example is provided by the conditions under which the non-redundant contract 
of newWorkingTeam as specified in Figure 15, can be applied to IB and the new IB’ 
resulting from its execution according to the strict interpretation. Recall that 
S={insert(WorkingTeam(name))} is the minimal set of structural events that satisfies the 
postcondition. We distinguish the same two situations as before depending on the 
contents of IB: 
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1. IB does not contain any working team identified by name: 
− a) is guaranteed. 
− b) states that IB’ = S(IB). 
− IB’, as obtained according to b), satisfies c) since S necessarily satisfies the 

postcondition and applying S to IB never violates any integrity constraint. 

2. IB contains a working team identified by name: 
− a) is guaranteed. 
− b) states that IB’ = S(IB), i.e. IB’ is obtained by inserting a working team with 

name into IB 
− c) is not satisfied since IB’ will always violate the second integrity constraint.  

Thus, newWorkingTeam cannot be applied in such an IB since it is impossible to 
satisfy all conditions required by a strict interpretation. 

In summary, according to a strict interpretation the semantics of the operation 
newWorkingTeam is such that if IB does not contain any working team identified by name 
then the operation results in the application of the structural event 
insert(WorkingTeam(name)). Otherwise, the operation will not be applied since it leads to 
the violation of an integrity constraint. Clearly, this is the intended behavior of this 
operation and it has been obtained without the need to specify a redundant 
precondition. 

Also, it can be seen that if all the preconditions of the contract in Figure 16 are 
removed, its semantics under a strict interpretation is as expected, that is, the same as 
that of the redundant contract under an extended interpretation. The non-redundant 
contract that should be specified under a strict interpretation is shown in Figure 17. 

Fig. 17. Non-redundant contract for the operation newMember 

5.1.3 More on the Strict and Extended Interpretations 

As we have just seen, the strict interpretation solves the problem of redundancy in 
contracts in those cases in which the intended behavior of an operation is to avoid 
execution if it is about to violate an integrity constraint. However, in some specific 
situations, the designer's intention is not to reject the operation but to apply it while still 
maintaining the consistency of the information base. In those cases, an extended 
interpretation may be better. The next example is useful to illustrate this situation.  

If we want to define an operation upgradeEmployee aimed at promoting junior 
employees, we can specify the operation contract in Figure 18. 

According to a strict interpretation, the minimal set of structural events that satisfies 
Post is S={specialize(e, Senior), generalize(e, Junior)}. Then, according to Definition 4.2, IB' 
is obtained from IB by inserting e as an instance of Senior and removing it from Junior. 

Op: newMember(emp:Employee, team:WorkingTeam, rec:Member) 

Pre:  

Post: Member.allInstances()->exists(m|m.oclIsNew() and  

m.employee=emp and m.workingTeam=team and 

m.recruiter=rec)  
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Note that this operation always results in a state IB' that satisfies both the postcondition 
and the integrity constraints.  
Operation: upgradeEmployee(e:Junior) 
Pre:  
Post: --the employee e becomes an instance of Senior  

--and ceases to be an instance of Junior 

e.oclIsTypeOf(Senior) and not e.oclIsTypeOf(Junior) 

Fig. 18. Contract for the operation upgradeEmployee 

Clearly, the previous semantics is the one expected for the operation 
upgradeEmployee. However, the postcondition of the contract explicitly states that e must 
no longer be a junior employee. Moreover, the class diagram already includes the 
condition that if e is Senior (as also enforced by the contract postcondition) it may not be 
Junior (because of the disjointness constraint). Thus, we could argue that the same 
behavior would be achieved by removing not e.oclIsTypeOf(Junior) from the 
postcondition, as shown in Figure 19. 

Operation: upgradeEmployee(e:Junior) 
Pre:  
Post: --the employee e becomes an instance of Senior 

--and ceases to be an instance of Junior 

e.oclIsTypeOf(Senior) 

Fig. 19. New contract for the operation upgradeEmployee 

The problem is that a strict interpretation of the contract would never allow the 
operation upgradeEmployee to be applied, since the information base resulting from 
inserting e as a senior employee (the minimal set of structural events that would now 
satisfy the postcondition) would always violate the disjointness constraint. Hence, a 
strict interpretation requires not e.oclIsTypeOf(Junior) to be explicitly stated in the 
operation postcondition.  

An extended interpretation does not involve the same drawback since we do not 
need to specify in the postcondition of upgradeEmployee that e is no longer junior. The 
reason is that the reactive behavior of an extended interpretation when a constraint is 
violated will be sufficient to detect that this change is also required without the need to 
state it explicitly. 

Thus, according to Definition 4.1, the semantics of the contract in Figure 19 when an 
extended interpretation is assumed is as follows:  

− a) is guaranteed. 
− b) states that IB’ = S2(IB) and S ⊆  S2, S={specialize(e, Senior)}.  
− Note that the application of S alone would violate the disjointness constraint of the 

Employee specialization. Then, according to c), S2 must be a superset of S.  
− The minimal superset of S that satisfies both Post and IC is S2 = S ∪ {generalize(e, 

Junior)}.  
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Thus, the previous contract always requires the application of two structural events: 
{specialize(e, Senior), generalize(e, Junior)}. However, only one of them is explicitly stated 
in the postcondition. 

The previous example shows that there are some specific situations in which an 
extended interpretation is not ambiguous without the need to specify additional 
information in the operation contracts. In this example, a disjointness constraint is 
violated, and since the only possible way to repair it is by deleting e as a junior 
employee, no ambiguity exists at all. In general, the extended interpretation of an 
operation contract will not be ambiguous when all integrity constraints that are violated 
by the execution of the operation only allow for a single repair. 

Summarizing, the main differences between strict and extended interpretations lie in 
the way integrity constraints are enforced. When there is no violation of integrity 
constraints, the semantics of a given operation contract is equivalent in both 
interpretations. In this case, the new state of the information base is always obtained by 
applying the minimal set S of structural events that satisfy the operation postcondition. 
However, if the violation of a constraint occurs when the structural events in S are 
applied, the semantics of the contract depends on the chosen interpretation. 

We summarize in Table 2 how (in addition to the intended behavior of the operation) 
the treatment of integrity constraints should be specified in a contract, depending both 
on the interpretation chosen and whether we want the operation to be rejected or 
applied when the events in S violate an integrity constraint.  

Table 2. Avoiding violation of integrity constraints 

 Reject the operation Apply the operation 

Strict Nothing else needs to be done Specify how to satisfy the constraints in Post 

Extended Add redundant checks to Pre Specify how to satisfy the constraints in Post 
 (if the contract is ambiguous) 

On the one hand, under a strict interpretation the violation of a constraint means that 
the operation is not applied and, thus, the information base remains unchanged. 
Consequently, no redundant checks are needed in the precondition. A strict 
interpretation of the contract for newWorkingTeam in Figure 15 serves as an example of 
this situation. Alternatively, if we do not want the operation to be rejected, its 
postcondition must explicitly state how to satisfy the constraints after execution of the 
operation. This can be seen in the contract for upgradeEmployee in Figure 18. 

On the other hand, under an extended interpretation, the operation may be applied 
even though some constraint is violated by S, and the new state of the information base 
is obtained by applying a set of structural events S’, a superset of S, that guarantees that 
no constraint is violated. Note that S’ is unique as long as there is a single way to 
guarantee the constraints, as just shown with a disjointness constraint violation. If S’ is 
not unique the operation contract is ambiguous. To avoid ambiguities, we must specify 
the way to preserve consistency in the postcondition (as must be made in a strict 
interpretation).  
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Alternatively, if we want to maintain consistency by rejecting the operation, its 
precondition must include redundant checks to ensure that execution of the operation 
does not violate the constraints. An example of this situation can be found in the 
contract for the operation newWorkingTeam specified in Figure 14. 

5.1.4 Discussion 

We have compared strict and extended interpretations from the point of view of the 
relevant characteristics of a good software requirements specification (SRS) (Various 
Authors 1998; Davis 1993). As recommended there, we assumed an unambiguous 
operation contract specification. In general, this is always true in a strict interpretation, 
since deterministic behavior is usually desired. Regarding the extended interpretation, 
in this section we will concentrate on those situations in which non-ambiguity is 
achieved by strengthening either the operation pre- or postcondition, since this is the 
most frequent case in practice. 

Completeness 

An SRS is complete if it includes the definition of the responses of the software to all 
possible classes of input data in all possible classes of situations. From this point of 
view, both approaches can be considered complete. An extended interpretation avoids 
erroneous execution of an operation by means of its precondition, while a strict one 
assumes that the response to undesired situations is the rejection of the changes made 
by the operation. Moreover, when the precondition is not satisfied, both approaches act 
in the same way, by rejecting the operation. 

For instance, understanding the operation newWorkingTeam (see Figure 14) from the 
point of view of an extended interpretation, we always obtain a defined result when the 
precondition is satisfied, which is exactly the one specified in the postcondition (a new 
working team with the specified name is created) plus the additional changes, if any, 
required to satisfy all integrity constraints. 

Understanding newWorkingTeam from the point of view of a strict interpretation (see 
Figure 15), we have two kinds of results when the precondition holds. In those cases in 
which no integrity constraint is violated, the resulting state of the information base is 
the one specified in the postcondition, as occurs with an extended interpretation. On the 
other hand, when an integrity constraint is violated, newWorkingTeam is rejected and the 
information base remains unchanged. 

Consistency 

An SRS is consistent if, and only if, no conflict occurs between subsets of individual 
requirements described within it. 

Although neither of the approaches leads directly to an inconsistent specification, a 
strict interpretation facilitates having a consistent one while an extended interpretation 
is more prone to the specification of conflicting requirements. The reason is that, since 
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integrity constraints are sometimes specified both in the structural schema and as 
preconditions of operations in the behavioral schema, they can be in contradiction and, 
therefore, lead to an inconsistent specification. 

For instance, it will be more difficult to keep the specification of newMember 
consistent with the operation contract specified in Figure 16 than with the contract in 
Figure 17. The reason is that, for example, we could easily have specified in the 
precondition that  

team.employee->size()<=5  

instead of  
team.employee->size()<5 

This would be clearly inconsistent with the cardinality constraint of Employee in the 
association Member, which forces a team to have at most 5 members. 

Verifiability 

An SRS is verifiable if, and only if, every requirement stated therein is verifiable. A 
requirement is verifiable if, and only if, there exists some finite cost-effective process 
with which a person or machine can check that the software product meets the 
requirement. 

Unlike the previous criterion, verifiability is more easily achieved with an extended 
interpretation. Although both approaches allow the verification of the software product, 
this process can become more complicated when a strict interpretation is assumed due 
to the dispersion of the requirements that affect an operation. 

For example, to verify the correct behavior of the operation newWorkingTeam as 
defined in Figure 15, we must also take into account the integrity constraint 
uniqueWorkingTeam. However, taking the contract in Figure 14, no additional 
information is needed in order to verify it. 

Modifiability 

An SRS is modifiable if, and only if, its structure and style are such that any changes to 
the requirements can be made easily, completely, and consistently. Modifiability 
generally requires that an SRS is not redundant. 

In the case of modifiability, an extended interpretation is again more prone to errors 
due to the necessary duplication of integrity constraints in the preconditions. When 
changing a requirement, it is easy to forget to change it in every precondition in which 
it appears, and this can lead both to inconsistencies and to wasting more time. 

Assume that a requirement changes and we want to increase the maximum number 
of members in a team, for example 10. In this case, the cardinality constraint must be 
changed in the class diagram in order to express this requirement. Moreover, with an 
extended interpretation we will also have to modify the precondition of the operation 
newMember (see Figure 16) stating again the same condition in order to be consistent, 
and ensure that the same is done in every contract affected by the change. However, 
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with a strict interpretation, we do not need to make any additional changes, since 
requirements stated by integrity constraints are only stated in the structural schema. 

Much less frequently, we find a similar drawback when the postcondition already 
specifies how to maintain a certain integrity constraint. This drawback is shared by both 
approaches. On the one hand, a strict interpretation always needs to specify this 
reactive behavior in the postcondition, while on the other, an extended interpretation 
requires doing the same to guarantee that there is only one possible reaction to the 
violation of each integrity constraint. 

Conciseness 

Given two SRS for the same system, each exhibiting identical levels of all the qualities 
mentioned previously, the SRS that is shorter is also better. 

Taking conciseness into account, it is clear that the strict interpretation approach 
helps to obtain shorter specifications, since each integrity constraint is specified in 
exactly one place. This can easily be seen by comparing the contracts in Figures 16 and 
15. It is clear that both of them have the same meaning, while the one in Figure 17, in 
addition to being correct under a strict interpretation, is shorter. 

Summary 

The following table summarizes the discussion in this section. Rows correspond to 
desirable properties of a good software requirements specification, while columns refer 
to the interpretations we have defined in this paper. The symbol � in a cell denotes the 
appropriateness of the corresponding interpretation to achieve the property. 

As we can see, completeness is achieved in both interpretations, while consistency, 
modifiability and conciseness are easier to achieve in a strict interpretation, and 
verifiability in an extended one. For this reason, we can conclude that in general terms a 
strict interpretation of operation contracts provides several advantages over an 
extended one in conceptual modeling. 

Table 3. Comparison of the approaches 

 Extended interpretation Strict interpretation 

Completeness � � 
Consistency  � 
Verifiability �  
Modifiability  � 
Conciseness  � 

5.2 Translating a UML Conceptual Schema into Logic 

Validation tests that consider the structural schema alone are aimed at checking that an 
instantiation fulfilling a certain property and satisfying the integrity constraints can 



 83

exist. In this case, classes, attributes and associations can be translated into base 
predicates that can be instantiated as desired, as long as integrity constraints are 
satisfied, in order to find a state of the IB that proves a certain property, as we have seen 
in chapter 3. 

However, if we want to include the behavioral schema in the validation, we must 
guarantee that the population of classes and associations is determined by the execution 
of operations. In other words, the state of the IB at a certain time t is just the result of all 
the operations that have been executed before t, since the instances of classes and 
associations cannot be created or deleted as desired. That is, an instance i exists at time t 
if, and only if, some operation has created it at some time before t, and no operation has 
removed it between its creation and t.  

To guarantee that the population of classes and associations depends on the 
operations executed, we propose that operations are the basic predicates of our logic 
formalization, since their instances are directly created by the user. Classes and 
associations will be represented by means of derived predicates instead of basic ones, 
and their derivation rules will ensure that their instances are precisely given by the 
operations executed. Due to the advantages seen in the previous section, we assume a 
strict semantics of operations in the translation. However, the extended semantics could 
also be handled by our approach, as long as it incorporated in the translation process. 

5.2.1 Deriving Instances from Operations 

Classes and associations are represented by means of derived predicates whose 
derivation rules ensure that their instances are given by the occurrence of operations, 
which are the base predicates of our formalization of the schema.  

To simplify the definition of the derivation rules, we have modified the translation of 
our previous proposal (Queralt and Teniente 2006a). In particular, instead of defining 
separate predicates for each attribute of a class, we add them as terms of the predicate 
representing the class, as long as their cardinality is 1, since the life of their instances 
coincides with that of the instances of the class to which they belong. We also need to 
add a term t, representing the time in which an instance exists.  

For instance, the predicate representing the class Employee is, according to this new 
translation: 

employee(E,Name,Salary,T)  

instead of 

employee(E) 

employeeName(E,Name) 

employeeSalary(E,Salary) 

As will be seen, this change simplifies the derivation of the instances from the 
operations. 

Also, for the same reason, in class hierarchies we define the superclass as derived 
from the instances of its subclasses. That is, instead of adding constraints in order to 
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ensure that an instance of a subclass also belongs to the superclass, we define a 
derivation rule ensuring that when an instance of a subclass exists, then the 
corresponding instance of the superclass also does. 

For instance, the translation of the subclass Boss will be: 

boss(E,Name,Salary,Phone,T) 

and the following rule will ensure that bosses are also employees: 

employee(E,Name,Salary,T) ← boss(E,Name,Salary,Phone,T) 

Moreover, for each operation op with parameters P1,...,Pn defined in the schema, the 
following base predicate is defined: 

op([O1,..., Om], P1,...,Pn, T) 

where the term T represents the time in which the operation occurs, and each Oi  

represents the OID of an instance created by the operation op. 

For example, the predicate representing an occurrence of the operation newDept(d-
name: String, minSal, maxSal: Real, managerName: String, managerSal: Real)  is 

newDept(D, DName, Min, Max, E, MgrName, MgrSal, T) 

where D and E are the OIDs of the department and the employee created by the 
operation, T is the occurrence time of the operation, and the rest of terms correspond to 
the parameters defined in its signature. 

Then, an instance of a predicate p representing a class or association exists at time t if 
it has been added by an operation at some time t2 before t, and has not been deleted by 
any operation between t2 and t. Formally, the general derivation rule is:  

p([P,],P1,...,Pn,T) ← addP([P,]P1,...,Pn,T2)  

∧ ¬deletedP(Pi,...Pj,T2,T) ∧ T2≤T ∧ time(T) 
deletedP(Pi,...,Pj,T1,T2) ← delP(Pi,..,Pj,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

where P is the OID (Object Identifier), which is included if p is a class. Pi,...,Pj are the 
terms of p that suffice to identify an instance of p according to the constraints defined in 
the schema. In particular, if p is a class (or association class), P=Pi=Pj.  

The predicate time indicates which are the time variables that appear in the derived 
predicate we are defining. As well as the predicates representing operations, time is a 
base predicate since its instances cannot be deduced from the rest of information in the 
schema. 

Predicates addP and delP are also derived predicates that hold if some operation has 
created or deleted an instance of p at time T, respectively. They are formalized as 
follows. 

Let op-addPi be an operation of the behavioral schema, with parameters Par1,...,Parn 
and precondition prei  such that its postcondition specifies the creation of an instance of 
a class or association p. For each such operation we define the following rule:  

addP([P,]Pari,...,Park,T) ← op-addPi([P,]Par1,...,Parm,T)  

∧ prei(Tpre) ∧ Tpre=T-1 ∧ time(T) 
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where Pari,..,Park are those parameters of the operation that indicate the information 
required by the predicate p, that is, terms corresponding to the attributes of P, and T is 
the time in which the operation occurs. The literal prei(Tpre) is the translation of the 
precondition of the operation, following the same rules used to translate OCL integrity 
constraints explained in section 3.1. Note that, since the precondition must hold just 
before the occurrence of the operation, the time Tpre of all its facts is T-1. If some of the 
parameters corresponds to the OID of an object, then the existence of this object must 
also be guaranteed at Tpre. Thus, this condition will be added as a precondition in the 
translation.  

Similarly, for each operation op-delPi(Par1,...,Parn,T) with precondition prei  that deletes 
an instance of p we define the derivation rule: 

delP(Pari,...Parj,T) ← op-delPi(Par1,...,Parn,T) ∧ prei(Tpre) ∧ Tpre=T-1 ∧ time(T) 

where Pari,...,Parj are those parameters of the operation that identify the instance to be 
deleted. Thus, if p is a class or association class, delP will have a single term in addition 
to T, which corresponds to the OID of the deleted instance. 

To completely define the above derivation rules for each predicate representing an 
element of the structural schema, we need to know which OCL operations of the 
behavioral schema are responsible for creating or deleting its instances. For our 
purpose, we assume that operations create instances with the information given by the 
parameters or delete instances that are given as parameters. A single operation can 
create and/or delete several instances. We are not interested in query operations since 
they do not affect the correctness of the schema. 

Several OCL expressions can be used to specify that an instance exists or not at 
postcondition time. For the sake of simplicity, we consider a single way to specify each 
of these conditions, since other OCL expressions with equivalent meaning can be easily 
rewritten in terms of the ones we consider. Under this assumption, we define the rules 
to identify the creation and deletion of instances in OCL postconditions:  

R1. An instance c(I,A1,...,An,T) of a class C is added by an operation if its postcondition 
includes the OCL expression:  
C.allInstances()-> exists(i| i.oclIsNew() and i.attri=ai)  

or the expression: 
i.oclIsTypeOf(C) and i.attri=ai  

where each attri is a single-valued attribute of C.  

R2. An instance c(I,P1,...,Pn,A1,...,Am,T) of an association class C is added by an operation 
if its postcondition includes the OCL expression:  
C.allInstances()-> exists(i| i.oclIsNew() and i.part1=p1 and 

... and i.partn=pn  and i.attr1=a1 and ... and i.attrm=am)  

or the expression: 
i.oclIsTypeOf(C) and i.part1=p1 and ... and i.partn=pn  and 

i.attr1=a1 and ... and i.attrm=am  

where each parti is a participant that defines the association class, and each attrj is a 
single-valued attribute of C. 
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R3. An instance r(C1,C2,T)  of a binary association R between objects C1 and C2, with 
roles role-c1 and role-c2 in r is added by an operation if its postcondition contains the 
OCL expression: 
ci.role-cj = cj, if the multiplicity of role-cj is at most 1  
or the expression: 
ci.role-cj-> includes(cj), if the multiplicity of role-cj is greater than 1.  
This rule also applies to multi-valued attributes. Creation or deletion of instances of 
n-ary associations with n>2 cannot be expressed in OCL unless they are association 
classes, which are considered in the previous rule. 

R4. An instance c(I,A1,...,An,T) of a class C is deleted by an operation if its postcondition 
includes the expression:  
Cgen.allInstances()->excludes(i)  
or the expression:  
not i.oclIsTypeOf(Cgen)  
where Cgen is either the class C or a superclass of C. 

R5. An instance c(I,P1,...,Pn,A1,...,Am,T) of an association class is deleted by an operation 
if its postcondition includes the expression:  
C.allInstances()->excludes(i)  
or the expression:  
not i.oclIsTypeOf(C) 
or if any of its participants (P1,...,Pn) is deleted. 

R6. An instance r(C1,C2,T) of a binary association R between objects C1 and C2, with 
roles role-c1 and role-c2 in r is deleted by an operation if its postcondition includes 
the OCL expression:  
ci.role-cj ->excludes(cj) 

or if any of its participants (C1 or C2) is deleted. 

According to these rules, class hierarchies are considered as follows. Let Super be the 
superclass of a hierarchy, and Sub be a subclass. When an instance of Super is explicitly 
created in a postcondition, the translation guarantees the creation of an instance only in 
the superclass. On the contrary, when an instance of Sub is created in a postcondition, 
the translation ensures the creation of this instance both in Sub and Super, since it is not 
possible that an instance belongs to a subclass and not to its superclass. This is achieved 
by the derivation rule that we have defined, stating that an instance of a subclass 
implies the existence of the same instance in the superclass. 

Regarding deletions, if an instance of Sub is deleted in a postcondition, it is deleted 
only fromo Sub in our translation, since it may belong only to Super. In contrast, when 
an instance of Super is deleted, it must be deleted also from all the subclasses to which it 
belongs, although it is not explicitly stated in the postcondition.  

For instance, according to the previous translation rules, the class Employee of our 
example will be represented by means of the clauses:  

employee(E,Name,Sal,T) ← addEmployee(E,Name,Sal,T2)  
∧ ¬deletedEmployee(E,T2,T) ∧ T2≤T ∧ time(T) 

deletedEmployee(E,T1,T2) ← delEmployee(E,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 
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where E corresponds to the unique OID required by every instance of a class. In turn, 
addEmployee and delEmployee are derived predicates whose definition depends on the 
operations of the behavioral schema that insert and delete instances of the class 
Employee. The operation hire creates an instance of employee(E,N,S,T) according to R1, 
since its postcondition includes the expression Employee.allInstances()-> 
exists(e| e.oclIsNew() and e.name=e-name and e.salary=sal and 

e.working-dep=dep). The last equality indicates the creation of an instance of the 
association WorksIn according to R3. Since the operation newDept also creates an 
instance of Employee, there are two derivation rules for addEmployee: 

addEmployee(E,Name,Sal,T) ← hire(E,Name,Sal,Dep,T)  

∧ department(Dep,DName, MinSal, MaxSal,Tpre)  

∧ Tpre = T-1 ∧ time(T) 

addEmployee(E,Name,Sal,T) ← newDept(D,N,Min,Max,E,Name,Sal,Tpre)  

∧ Tpre = T-1 ∧ time(T) 

The first rule corresponds to the operation hire. Since this operation has a parameter 
corresponding to an instance of Department, a literal ensuring that the corresponding 
department exists at Tpre is needed. The second rule corresponds to the operation 
newDept, which does neither have any precondition, nor any object as a parameter. 

The operation hire also creates an instance of the association WorksIn, so we also 
include the following rule in our logic formalization of the schema: 

addWorksIn(E,Dep,T) ← hire(E,Name,Sal,Dep,T)  

∧ department(Dep,DName, MinSal, MaxSal,Tpre)  

∧ Tpre = T-1 ∧ time(T) 

which belongs to the derivation of the predicate worksIn(E,D,T). 

We also need to find which operations are responsible for deleting instances of 
Employee in order to specify the derivation rule of delEmployee. The operation fire is the 
only one that deletes instances of Employee according to R4, since it includes the OCL 
expression Employee.allInstances()->excludes(emp). Now the precondition 
is not empty, and requires that the employee to be deleted does not belong to any 
department. This operation has an instance of Employee as a parameter, so the 
derivation rule in this case is: 

delEmployee(E,T) ←fire(E,T) ∧ employee(E,N,S,Tpre) ∧ ¬hasDep(E,Tpre)  

∧ Tpre = T-1 ∧ time(T) 

hasDep(E,T) ← worksIn(E,D,T) ∧ time(T) 

That is, in addition to the literal fire(E,T) corresponding to the operation, and the 
literal ¬hasDept(E,Tpre) corresponding to the precondition, the literal employee(E,N,S,Tpre) 
ensuring that E exists at precondition time is added since the first term of the predicate 
fire corresponds to an instance of employee, which must exist in order to execute the 
operation. 
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According to R5 and R6, all the instances of the associations in which the deleted 
employee may participate must also be deleted, since they cannot exist without one of 
its participants. Thus, the following rules are also generated, that will be used in the 
derivation rules of the corresponding associations. They derive the deletion of all the 
affected associations when an instance of Employee is deleted: 

delWorksIn(E,D,T) ← delEmployee(E,T) ∧ worksIn(E,D,Tpre) ∧ Tpre =T-1 ∧ time(T) 

delManages(E,D,T) ← delEmployee(E,T) ∧ manages(E,D,Tpre) ∧ Tpre =T-1 ∧ time(T) 

delWorksFor(E,E2,T) ← delEmployee(E,T) ∧ worksFor(E,E2,Tpre) ∧ Tpre =T-1 ∧ time(T) 

delWorksFor(E2,E,T) ← delEmployee(E,T) ∧ worksFor(E2,E,Tpre) ∧ Tpre =T-1 ∧ time(T) 

delAudits(E,W,T) ← delEmployee(E,T) ∧ audits(E,W,Tpre) ∧ Tpre =T-1 ∧ time(T) 

delMember(M,T) ← delEmployee(E,T) ∧ member(M,E,W,Tpre) ∧ Tpre =T-1 ∧ time(T) 

That is, for each association Assoc in which the class Employee participates, we add a 
derivation rule delAssoc, defined by the occurrence of a deletion of Employee, and also by 
an additional literal that determines which instances of Assoc must be deleted, which 
are the ones in which the employee E participates at time Tpre. In this example, note that, 
since the association WorksFor is recursive, two rules are needed: one for the case in 
which the deleted employee is the superior, and another for the rest of employees. Note 
also that, since Member is an association class, its OID is used instead of its participants 
in the head of the rule. 

Additionally, according to R4, since Boss is a subclass of Employee, the deletion of an 
employee E implies also the deletion of this employee as an instance of Boss if E also 
belongs to this subclass. Thus, the following rules must be added: 

delBoss(E,T) ← delEmployee(E,T) ∧ time(T) 

Since this subclass Boss does not participate in any association, no additional rules 
are needed. In case there was an association Assoc with the class Boss as a participant, 
we should add the corresponding rule to delete the instances of Assoc when delBoss 
occurs, in the same way as we have done with all the associations of Employee. 

A modification can be regarded as a deletion followed by an insertion and, thus, no 
specific derived predicates are needed to deal with them. To exemplify the migration of 
an instance from one subclass to another, as happens in the operation upgradeEmployee 
specified in Figure 18, assume that employees can be classified either as junior or senior, 
and that we have also specific operations to create instances of these subclasses 
(hireJunior and hireSenior, respectively). We omit all the attributes for the sake of 
simplicity. Then, the translation of this hirarchy is: 

junior(E,T) ←  addJunior(E,T2) ∧ ¬deletedJunior(E,T2,T) ∧ T2≤T ∧ time(T) 

deletedJunior(E,T1,T2) ← delJunior(E,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

addJunior(E,T) ← hireJunior(E,T) ∧ time(T) 

delJunior(E,T) ← upgradeEmployee(E,T) ∧ time(T) 

delJunior(E,T) ← fire(E,T) ∧ time(T) 
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senior(E,T) ← addSenior(E,T2)  ∧ ¬deletedSenior(E,T2,T) ∧ T2≤T ∧ time(T) 

deletedSenior(E,T1,T2) ← delSenior(E,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

addSenior(E,T) ← hireSenior(E,T) ∧ time(T) 

addSenior(E,T) ← upgradeEmployee(E,T) ∧ time(T) 

delSenior(E,T) ← fire(E,T) ∧ time(T) 

That is, an instance of Junior is deleted if the employee is fired or is promoted to 
senior. This means that an additional derivation rule of the predicate delJunior is 
required. Similarly, a new instance of Senior exists if it is hired or if some junior 
employee is upgraded to senior, which implies the definition of an additional 
derivation rule for addSenior. The operation upgradeEmployee, which deletes an instance 
of Junior and adds an instance of Senior, appears in the definition of both new rules. 

5.2.2 Constraints Generated 

Since events cannot happen simultaneously, we need to define constraints to guarantee 
that two operations cannot occur at the same time. As usual, constraints are expressed 
as formulas in denial form, which represent conditions that cannot hold in any state of 
the IB. Therefore, for each operation o with parameters P1,...,Pn we define the following 
constraint for each parameter Pi: 

← o(P11,...,Pn1,T) ∧ o(P12,...,Pn2,T) ∧ Pi1 <> Pi2 

And for each pair o, o2 of operations we define the constraint: 

 ←o(P1,...,Pn,T) ∧ o2(Q1,...,Qm,T) 

In our example, newTeam(W,N,I,T) requires the constraints: 

 ←newTeam(W,N,I,T) ∧ newTeam(W2,N2,I2,T) ∧ W <> W2 

 ←newTeam(W,N,I,T) ∧ newTeam(W2,N2,I2,T) ∧ N <> N2 

 ←newTeam(W,N,I,T) ∧ newTeam(W2,N2,I2,T) ∧ I <> I2 

and, for each other operation of the schema, a constraint like: 

 ←newTeam(W,N,I,T) ∧ newDept(D,N2,Min,Max,E,MgrN,MgrS,T) 

Moreover, the constraints of the UML structural schema are also translated into this 
kind of formulas. The set of constraints needed is exactly the one resulting from the 
translation of the structural schema (Queralt and Teniente 2006a), but now they are 
defined in terms of derived predicates instead of basic ones. 

The complete translation of the behavioral part of our example can be found in the 
Appendix B. 

5.3 Validation Tests 

As when validating the structural schema alone, our approach to validation consists in 
providing the designer with a set of tests that allow to assess the correctness of the 
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conceptual schema. However, now they take into account both the structural and the 
behavioral parts of the schema. Additionally, some new tests regarding the correct 
definition of operations appear in order to ensure, for example, that each operation can 
be successfully executed or that it does not have any redundant preconditions. 

As before, we express all the tests in terms of checking the satisfiability of a derived 
predicate. However, the sample instantiations resulting from the tests will be different, 
since they will be composed of the basic predicates we have now in our formalization, 
which correspond to instances of operations. For example, a sample instantiation 
obtained from the validation of the structural schema was composed of instances of 
classes and associations:   

{employee(john), department(sales), ...} 

Now the sample instantiations will be a sequence of operation calls that leads to a 
valid state, since operations are the base predicates. The term representing the 
occurrence time of operations gives the order in which the operations must be executed 
to be successful. The instances of classes and associations can be obtained from this 
result by means of their derivation rules: 

{newDept(sales,..., 1), hire(john,..., 2), ..., time(1), time(2), ...} 

For the sake of clarity, those terms representing OIDs are omitted in the sample 
instantiations.  

5.3.1 Is the Conceptual Schema Right? 

In this section we review some of the tests aimed at checking the internal correctness of 
the schema. The definition and formalization of the properties to be checked 
(satisfiability of the schema, liveliness of a class or association and the rest of 
automatically generated validation tests) is exactly the same as when the structural 
schema alone is validated. However, the new translation of the schema, now taking into 
account the behavioral part, ensures that the only changes allowed are those defined in 
the operations specified. 

We exemplify this validation by re-executing some of the tests performed on the 
structural schema, to show how they results change when considering the operations. 
Also, we define some new tests formalizing additional properties, such as applicability 
and executability (Costal, Teniente et al. 1996), to check the correctness of the operations 
themselves. 

Satisfiability of a Schema 

As when taking into account only the structural part of the schema, a complete schema 
is satisfiable if there is a non-empty state of the IB in which all its integrity constraints 
are satisfied. In the presence of operations, this means checking whether they allow 
creating at least a non-empty valid instantiation. 

As before, the formalization of the test is as follows, for each classi  and associationj in 
the schema, now taking into account the new translation of classes: 
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sat ← classi(X,...,T) 

sat ← associationj(X,...,T) 

The difference is that, with the new logic formalization of the schema that considers 
operations, each classi  and associationj is, in turn, a derived predicate defined by the rules 
explained in the previous section. This restricts the cases in which the schema is 
satisfiable to those instantiations that can be obtained by means of the operations and 
satisfy the integrity constraints at the same time. 

For this reason, although the structural part of the schema of our example is 
satisfiable on its own, it is not satisfiable when taking the operations into account.  

The instantiation obtained when checking the satisfiability of the structural schema 
is:  

{employee(john), worksIn(john,sales), department(sales), manages(john,sales)} 

However, this state cannot be created with the operations given, since the operation 
that creates Employees requires an existing instance of Department to be executed. But a 
department can never exist, since the operation newDept, that should create a new 
department, does never succeed because the cardinality constraint 1..* in worker is 
always violated after its execution. Since it is impossible to create Employees and 
Departments, the classes Boss (subclass of Employee)  and WorkingTeam (that requires at 
least two Employees) will also be always empty, as well as all the associations of the 
schema. This means that the schema is not satisfiable at all with the operations defined. 

To repair this erroneous specification of the schema, several corrective actions can be 
taken. On the one hand, we can weaken the constraints of the structural schema so that 
the operations we have defined are successful. In particular, we can change the 
constraint 1..* of worker to simply * and remove the constraint ManagerIsWorker. In this 
way, which implies that departments can be created before knowing which employees 
are assigned to them, the behavioral schema does not have to be modified. 

On the other hand, we can leave the structural schema as is, and define the 
operations in such a way that they guarantee the constraints after execution. For 
example, the operation newDept, as well as creating a department with its 
corresponding manager, can also be responsible for assigning this manager as a worker 
at the same time, which is the minimum required in order to satisfy all the constraints: 

Op: newDept(d-name: String, minSal, maxSal: Real,  

managerName: String, managerSal: Real) 
Pre:  

Post: Department.allInstances()-> exists(d | d.oclIsNew() and 

d.name=d-name and minSalary=minSal and maxSalary=maxSal 

and Employee.allInstances->exists(e | e.oclIsNew() and 

e.name=managerName and e.salary=managerSal and d.manager=e 

and d.worker->includes(e))) 

Fig. 20. Revised contract for the operation newDept 

With this new operation contract instead of the initial one, the following sample 
instantiation proves that the schema is satisfiable: 

{newDept(sales, 1500, 2500, john, 1500, 1)} 
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The execution of this operation will derive in the following IB: 

{department(sales, 1500, 2500,1), employee(john, 1500,1), worksIn(john, sales,1),  

manages(john, sales,1)} 

The corrective action taken will depend on what the designer considers is the best 
option according to the domain to be represented. 

Liveliness of a Class or Association 

We will check now the liveliness of the class WorkingTeam, which proved to be lively in 
our structural schema. The test we must execute is: 

livelyWorkingTeam ← workingTeam(X, Name, T) 

We can see that it is not possible to create an instance of WorkingTeam with the 
operations defined in Figure 3. The reason is that the only operation that can create 
teams is, again, not correctly defined. 

The opertion newTeam creates an instance of WorkingTeam and assigns an existing 
Employee as its inspector. However, each working team requires at least one member, 
that cannot be the same inspector, and this is not considered in the operation. Note that 
an operation newMember, which assigns employees to teams, exists but, however, the 
cardinality constraint 1..* fo member is always violated after the execution of newTeam. 

Assume, then, that the cardinality constraint 1..* of Member is changed to *. This does 
not solve the problem, because the OCL constraint OneRecruited still forces that each 
working team has at least one member. So the solution that requires less changes in the 
structural schema is to redefine the contract of newTeam, similarly to what has been 
done with newDept in Figure 20, but taking into account that we need to create at least 
two members in order to satisfy the constraint OneRecruited. 

As can be seen, this operation is rather strange, since it creates not only a team with 
its inspector and a member, but also another member to recruit the first one. In view of 
this, probably the best option would be to remove or modify the constraint 
OneRecruited, since it forces to specify a quite unusual behavior in order to satisfy it. 

 

 

 

Fig. 21. Redefinition of the operation newTeam 

Automatically Generated Tests 

When dealing with operations, we can apply the same automatically generated tests 
that we have defined for the structural schema. However, the results can be different 

Op: newTeam(t-name: String, insp: Employee, member: 

Employee, recruiter: Employee) 

Pre: Department.allInstances()->notEmpty() 

Post: WorkingTeam.allInstances()-> exists(t | t.oclIsNew() 

and t.name = t-name and t.inspector = insp and 

t.member->exists(m | m.oclIsNew() and 

m.employee=member and recruiter.member->exists(r | 

r.oclIsNew() and r.working-team=t and  

m.recruiter=r)))  
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from those obtained in that case. Now this kind of tests detect situations that are 
potentially admitted by the class diagram but that are prevented either by the 
constraints, as before, or by the operations defined. 

For instance, we will apply the Test 1, defined in section 3.2.1 to our recursive 
association HasRecruited, in order to test whether the operations allow to create as many 
instances as stated by its maximum cardinality, specified as *. Since this maximum 
cardinality is undetermined, we will test if it is possible that an employee has recruited 
at least two other members: 

maxCardHasRecruited ← hasRecruited(M,M2,T) ∧ hasRecruited(M,M3,T) ∧ M2≠M3 

This predicate is not satisfiable with our operations since, as can be seen from the 
operation contracts, it is impossible to create such an instantiation: the only operation 
that populates this association is newTeam, but only uses members that are created in 
the same operation, so an existing member can never recruit another one and, thus, the 
maximum number of possible recruitments is one per member. This means that this 
element of the structural schema has been overlooked when defining the behavior, so 
an additional operation with this purpose should be added. 

If we apply now the Test 2 to the association Member we will be able to see that, in 
fact, the minimum cardinality of employee is greater than 1 according to the operations: 

minCardMember ← member(M,E,W,T) ∧ ¬anotherOne(E,W,T) 

anotherOne(E,W,T) ← member(M2,E2,W,T) ∧ E≠E2 

The absence of a sequence of operations satisfying minCardMember shows that the 
conceptual schema does not admit teams with a single member and, therefore, that the 
cardinality constraint of employee is in fact stronger according to the instances really 
provided by the operations. 

Applicability of an Operation 

An operation is applicable if there is a state where its precondition holds. This property 
can be formalized as follows, for an operation O with precondition pre: 

applicableO ← pre(T) 

If the predicate applicableO is not satisfiable, then de operation can never be applied. 

A simple example can be seen in the operation contract of fire in Figure 3, which 
deletes the indicated employee emp.  

Op: fire(emp: Employee) 
Pre: emp.working-dep->isEmpty() 

Post: Employee.allInstances()->excludes(emp) 

However, the precondition of this operation requires that emp does not work in any 
department, which is not possible due to the cardinality constraint 1 of working-dep. 
Thus, this operation is not applicable, that is, it can never be executed because its 
precondition can not be satisfied. This means that, probably, this precondition should 
be removed. 
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Executability of an Operation 

Although an operation is applicable, it may never be successfully executed because it 
always leaves the IB in an inconsistent state. Thus, another interesting property to be 
checked is the executability of an operation. An operation is executable if it can be 
executed at least once, that is, if there is a state where its postcondition holds, together 
with the integrity constraints, and such that its precondition was also true in the 
previous state. 

To illustrate this property, let us consider the contract of the operation removeDept in 
Figure 3: 

Op: removeDept(dep: Department) 

Pre:  
Post: Department.allInstances()->excludes(dep) 

This operation is applicable, since its precondition can be satisfied, but the 
postcondition removes a department, which necessarily has some worker according to 
the cardinality constraint 1..* of worker. Since this operation does not remove the 
employees that work in the department, the resulting state of the IB will always violate 
the cardinality constraint 1 of working-dep for all the employees that were assigned to 
dep before the execution of the operation. This means that this operation will always be 
rejected because it is impossible to satisfy its postcondition and the integrity constraints 
at the same time. 

An additional example can be seen with the operation promote, also in Figure 3: 
Op: promote(emp: Employee, phone: String) 
Pre: emp.managed-dep->isEmpty() 

Post: emp.oclIsTypeOf(Boss) and emp.oclAsType(Boss).phone = phone 

The precondition indicates that the employee to be promoted must not be the 
manager of any department. Since it is possible to find an employee that is not a 
manager, this operation is applicable. However, after the application of promote the 
constraint BossIsManager is always violated, so this operation is not executable. 
Probably, the best option would be to change the precondition to  

emp.managed-dep->notEmpty() 

In this way, the intuitive semantics of the operation is that only employees that are 
managers can be promoted. 

To check executability, an additional rule has to be added to the translation of the 
schema to record the execution of the operation. In this case, if executedO is satisfiable, 
then O is executable: 

executedO ← o(P1,...,Pn,T) ∧  pre(Tpre) ∧ Tpre = T-1 

In our example, we would define this rule for all the operations of the schema. For 
instance, the rules corresponding to the operations that we have just discussed are: 

executedRemoveDept ← removeDept(D,T) 

executedPromote ← promote(E,P,T) ∧ ¬isManager(E,Tpre) ∧ Tpre=T-1 

isManager(E,T) ← manages(E,D,T) 
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If the predicate representing the operation can be successfully inserted, that is, it is 
possible to satisfy all the constraints defined when deriving its effects, then an instance 
of the corresponding executedO will exist, which proves that the operation can be 
executed. 

Redundancy of a Precondition 

This test consists in checking whether the preconditions of the operations are really 
necessary, that is, they are not already guaranteed by the rest of the schema. This is 
tested by trying to find a state of the IB that violates a precondition. If this is not 
possible, the precondition is unnecessary. This test can be defined for each precondition 
pre of each operation. 

redundantPre ← pre(T) 

As an example, see the precondition of newTeam¸ which states that a department 
must exist in order to create an instance of WorkingTeam.  

Op: newTeam(t-name: String, insp: Employee, member: 

Employee, recruiter: Employee) 

Pre: Department.allInstances()->notEmpty() 

Post: WorkingTeam.allInstances()-> exists(t | t.oclIsNew() 

and t.name = t-name and t.inspector = insp and 

t.member->exists(m | m.oclIsNew() and 

m.employee=member and recruiter.member->exists(r | 

r.oclIsNew and r.working-team=t and m.recruiter=r)))  

This is always true, since a team requires an inspector and two members, which must 
necessarily work in a department. Thus, we can remove this precondition and the 
behavior of the schema remains unchanged, while its modifiability is increased. 

5.3.2 Is It the Right Conceptual Schema? 

Once we know that the conceptual schema is right, we may wonder whether it is the 
right schema in the sense that it satisfies the requirements of the domain. As happens in 
the validation of the structural schema, some of the tests to check the external 
correctness can be automatically generated. Additionally, our approach allows also 
testing whether a certain desirable state that the designer may envisage is acceptable or 
not according to the schema, this time taking into account the operations defined. Such 
state may be defined either by means of a set of instances that classes and associations 
should contain at least; or by a derived predicate, which defines it declaratively.  

In both cases, either for the automatically generated or the user-defined tests, once a 
test is executed, the designer should compare the obtained results to those expected 
according to the requirements and apply modifications to the conceptual schema if 
necessary. 

The validation process works in the same way as explained for the structural schema. 
The same tests, both the automatically generated and the user-defined, can be applied 
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to the complete schema, possibly with different results. In the following we exemplify it 
by means of some additional user-defined tests. 

An interesting question that has not been answered yet is “May an employee recruit a 
member for a team to which he does not belong?.” To test this situation, the designer should 
define the rule:  

recruiterNotMember ← hasRecruited(R,M,T) ∧ member(M,E,W,T)  

∧ ¬isMember(R,W,T) 

isMember(R,W,T) ← member(R,E,W,T) 

In this case, recruiterNotMember is satisfiable, as shown by the sample instantiation: 

{newDept(sales, 1500, 2500, john, 1000, 1), hire(mary, 1500, sales, 2),  

hire(susan, 1500, sales, 3), newTeam(team1, mary, susan, john, 4),  

newTeam(team2, john, mary, susan, 5), hire(peter, 1500, sales, 6),  

newMember(peter, team1, maryInTeam1, 7)} 

That is, Mary is the inspector of team1 and belongs only to team2. However, she has 
been able to recruit peter to team1, where she does not belong. This probably does not 
correspond to the reality, since it would be reasonable that recruitments are made 
within a team. Thus, the conceptual schema should forbid a member to recruit another 
one in a different team by defining an additional constraint in the structural schema or 
by strengthening the precondition of the operation newMember. 

In our case, probably the best option would be to modify the constraint OneRecruited 
so that it ensures, not only that at least one of the members of each team is recruited by 
another member in the same team, but also that all the members are recruited by 
members of the same team. This means, in fact, removing OneRecruited and adding the 
following constraint instead: 

context Member inv CorrectRecruitments: 

self.member->forall(m| m.workingTeam = self.workingTeam) 

 

A side effect of this change is that the operation newTeam can be also simpler, since 
now a team only requires a single member to be created.  

By studying the results of the previous tests, and with his knowledge about the 
requirements of the system to be built, the designer will be able to decide if the schema 
is correct, and perform the required changes if not. 

5.4 A Reasoning Procedure 

When we incorporate the behavior of operations in the translation of the schema, 
several levels of derivation appear. A limitation of the reasoning procedure that we 
have developed to validate the structural schema is that it may only be applied when 
the logic formalization of the schema has at most one level of derivation. Thus, this 
procedure cannot be used to validate a complete conceptual schema with operations. 
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As a consequence, in this case we are not able to ensure that any reasoning task will 
terminate, and we have to use an already existing method to perform the tests. The 
most appropriate method to perform the kind of integrity maintenance we require is the 
CQC-Method (Farré, Teniente et al. 2005). However, this method has had to be 
extended in order to incorporate a correct treatment of the time component of our 
atoms.  

The CQC Method is a semidecision procedure for finite satisfiability and 
unsatisfiability. This means that it always terminates if there is a finite example or if the 
tested property does not hold. However, it may not terminate in the presence of 
solutions with infinite elements.  

Roughly, the CQC Method is aimed at constructing a state that fulfills a goal and 
satisfies all the constraints in the schema. The goal to attain is formulated depending on 
the specific reasoning task to perform. In this way, the method requires two main 
inputs besides the conceptual schema definition itself. The  goal to attain, which must be 
achieved on the state that the method will try to construct; and the set of constraints to 
enforce, which must not be violated by the constructed state.  

Then, to check if a certain property holds in a schema, this property has to be 
expressed in terms of an initial goal to attain (G0) and the set of integrity constraints to 
enforce (F0), and then ask the CQC Method to attempt to construct a sample IB to prove 
that the initial goal G0  is satisfied without violating any integrity constraint in F0.  

This means that, to perform our validation tests, we need to provide the CQC 
Method with the formalization of our schema, i.e. the derived predicates that represent 
classes and associations, the set of constraints of the schema as F0 and the derived 
predicate formalizing the validation test to perform as G0. 

5.4.1 Variable Instantiation Patterns 

The CQC Method performs its constraint-satisfiability checking tests by trying to 
build a sample state satisfying a certain condition. For the sake of efficiency the method 
tests only those variable instantiations that are relevant, without losing completeness. 
The method uses different Variable Instantiation Patterns (VIPs) for this purpose 
according to the syntactic properties of the schema considered in each test. The key 
point is that the VIPs guarantee that if the variables in the goal are instantiated using 
the constants they provide and the method does not find any solution, then no solution 
exists.  

The VIP in which we are interested is the discrete order VIP. In this case, the set of 
constants is ordered and each distinct variable is bound to a constant according to either 
a former or a new location in the total linear order of constants maintained. The value of 
new variables is not always static (i.e. a specific numeric value), it can be a relative 
position within the linear ordering of constants. These are called virtual constants. For 
instance, in the ordering of constants {1, d, 6}, d is a virtual constant such that 1<d<6. 
Then, its possible absolute values are 2 to 5. It may happen that the goal succeeds or 
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fails without the need for further instantiations, and in this case d will never be bound 
to a concrete value. 

To correctly instantiate the variables representing occurrence times that we have 
introduced in our translation of the conceptual schema, it has been necessary to add a 
temporal VIP. This new VIP has some similarities with the discrete order VIP, since they 
both deal with discrete values, order comparisons and negation, but it extends it to be 
able to bind a constant, either virtual or static, with its immediate successor. This is 
needed because our derivation rules require that preconditions hold exactly in the time 
immediately previous to the postcondition, not at any time before the postcondition. 
Then, we use a separate set of constants, with its own ordering, to deal with variables 
representing event times and we instantiate them with our temporal VIP. 

For instance, assume we are attempting to derive an Employee which must hold at 
time d, being d a virtual constant and {1, d, 5} our set of temporal constants. According 
to the definition of the operation hire, which creates new employees, a department must 
exist at time d-1. Thus, since 1<d<5, the time variable of the corresponding instance of 
Department must be instantiated either with 1 or with a virtual constant f, f=d-1. So, the 
relevant sets of constants are {[1, d], 5} and {1,[f, d],5}, where constants between brackets 
are tied so that no new constant can be ever placed between them. 

The temporal VIP is formalized as follows. A variable instantiation step performs a 
transition from (T  ∅ KTi) to (∅ θ KTi+1) that instantiates the temporal variable T 
according to one of the VIP-rules, where θ is a ground substitution of T and KTi is the 
set of temporal constants. Let di denote virtual constants, ci denote static constants and ki 

denote either static or virtual constants, and let Gc be the current goal. The temporal VIP 
consists of the VIP-rules of the discrete order VIP, extended by the following rules, that 
apply when instantiating a temporal constant T such that T = ki -1, ki∈KTi:  

Tmp1. θ = T /cprev and KTi+1=KTi, where cprev=csuc-1, {csuc,cprev}⊆KTi, {T=csuc-1}∈Gc 

Tmp2. θ = T /k and KTi+1 = KTi, where {k, ksuc} ⊆ KTi, {T =ksuc-1}∈Gc, there is no constant 
kprev such that k<kprev<ksuc and k is tied to ksuc in KTi+1. 

Tmp3. θ = T /cnew and KTi+1 = KTi ∪ {cnew}, where cnew=csuc-1, cnew∉KTi, csuc∈KTi, {T =csuc-
1}∈Gc, there is no dprev tied to csuc in KTi, and there is no cprev ∈ KTi such that cprev < 
csuc and |{di | di ∈ KTi  and cprev < di < csuc}| < |csuc - cprev| -1. 

Tmp4. θ =  T /dnew and KTi+1 = KTi ∪ {dnew}, where dnew∉KTi, dsuc∈KTi, {T =dsuc-1}∈Gc, there 
is no dprev tied to dsuc in KTi, dnew is tied to dsuc in KTi+1 and there are no ci, cj ∈ KTi  
such that ci < dsuc < cj, there is no cm with ci < cm < cj and |{di | di ∈ KTi  and ci < di < 
cj}| < |cj – ci| -1. 

These rules mean that, when instantiating a temporal variable, the following relevant 
values must be tried. On the one hand, all the values provided by the discrete order VIP 
must be considered as alternatives to instantiate T: 

- each one of the already existing constants 

- a new virtual constant that is lower than all the existing ones 

- a new virtual constant that is lower than the minimum static constant so far 
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- a new virtual constant between all the existing constants, in case it fits, i.e. there 
is a gap of at least 1 element between two consecutive constants 

- a new virtual constant that is greater than the maximum static constant so far 

- a new virtual constant that is greater than all the existing ones 

Additionally, the values provided by the temporal VIP must be also considered: 

- if ki is static and ki-1 belongs to KTi, T is be instantiated with ki-1 (Tmp1) 

- if ki is virtual, or if it is satic and it is tied to a virtual predecessor in KTi, T is 
instantiated with its tied predecessor (Tmp2) 

- if ki is static and is not tied to its predecessor in KTi, if the value ki-1 fits in KTi, T is 
instantiated with this value, which is added to KTi+1 (Tmp3) 

- if ki  is virtual and is not tied to its predecessor in KTi, if a new virtual constant 
dnew fits in KTi, T is instantiated with dnew, which is tied to ki  in KTi+1 (Tmp4) 

5.4.2 A Sample Execution 

In the following we explain a sample execution of our extended CQC Method. The test 
consists in checking the liveliness of Employee, once the operation newDept has been 
redefined according to the contract in Figure 20. Recall that this contract specifies that 
newDept creates an instance d of Department, together with an Employee e, as well as 
instances of the associations Manages and WorksIn between d and e in order to satisfy all 
the constraints.  

Since we assume this new definition of the operation, the following rule to derive an 
instance of WorksIn has to be added to the translation of the original schema: 

addWorksIn(E,D,T) ← newDept(D,N,Min,Max,E,EN,ES,T) ∧ time(T) 

The rest of the rules used in the example are defined in Appendixes A and B. 

Figure 22 shows the steps needed to satisfy the goal. 

The first goal to be achieved is an instance of the predicate employee. This is a derived 
predicate that is unfolded in the second step, by placing the body of its only derivation 
rule as the current goal (see Appendix B). The first literal of this body is selected in 
order to be treated. It corresponds also to a derived predicate that can be obtained in 
two different ways according to its derivation rules:  

addEmployee(E,Name,Sal,T) ← hire(E,Name,Sal,Dep,T) ∧  

department(Dep,DName, MinSal, MaxSal,Tpre) ∧  

Tpre = T-1 ∧ time(T) 

addEmployee(E,Name,Sal,T) ← newDept(D,N,Min,Max,E,Name,Sal,T) ∧ time(T) 

We assume that the second rule is chosen, which will obtain the employee (a 
manager) by creating a new department. 

Now, the literal newDept is selected. Since it is a base predicate, the goal will be 
satisfied if an instantiation of this predicate is added to the sample IB using the VIPs. 
We have chosen an instantiation that will lead to an IB satisfying all the constraints. In 
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particular, we have given the value 0 to the terms representing the OID and the 
attribute name of the class Department, the value 1001 to the minimumSalary in order to 
satisfy the constraint MinimumSalary, and the value 1002 to the maximumSalary so that 
the constraint CorrectSalaries is not violated. Regarding the parameters representing 
attributes of the manager employee that is created, an 1 is assigned to the OID so that it 
is different from the one of the department, and the value 0 is given both to the name 
and the salary of the employee. Finally, the temporal variable is also instantiated with a 
0, meaning that this operation occurs at time 0. 

 Current 

Goal 

Additions 

to the sample IB 

{newDept(0,0,1001,1002,1,0,0,0)} 

← employee(E,N,S,T) 

← addEmployee(E,N,S,T2) ∧ 
¬deletedEmployee(E,T2,T) ∧ T2≤T ∧ time(T) 

← newDept(D,ND,Min,Max,E,N,S,T2) ∧ time(T2) ∧  
¬deletedEmployee(E,T2,T) ∧ T2≤T ∧ time(T)  

← time(0) ∧ ¬deletedEmployee(1,0,T) ∧  
0≤T ∧ time(T)  

{time(0), time(1)} 

← ¬deletedEmployee(1,0,1) 

[ ] 

Fig. 22. Goal satisfaction 

In the next step, this instantiation is propagated to the rest of variables in the goal, 
and the literals selected to be treated are the ones corresponding to the time predicates. 
The temporal variable T must be instantiated so that it satisfies the conditions in the 
goal, and the value 1 is chosen. 

The time predicates are added to the IB, and the part of the goal that remains to be 
satisfied consists in a negative literal which, in fact, is not achieved by means of 
additions to the IB, but by guaranteeing that the IB does not satisfy the fact 
deletedEmployee(1,0,1). It is clear that this fact does not hold in our IB since, according to 
its derivation rules: 

deletedEmployee(E,T1,T2) ← delEmployee(E,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

delEmployee(E,T) ← fire(E,T) ∧ employee(E,Name,Sal,Tpre) ∧ ¬hasDep(E,Tpre)  

∧ time(T) 
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it requires an instance of the predicate fire, which does not belong to our sample 
instantiation. Thus, the goal has been achieved.  

However, we must guarantee that all the constraints of the schema are satisfied by 
the sample IB. Figure 23 shows an example of how the constraints of the schema are 
guaranteed. We illustrate this process by means of the integrity constraint: 

←department(D,N,Min,Max,T) ∧ ¬oneEmployee(D,T) 

oneEmployee(D,T) ← worksIn(E,D,T) 

which corresponds to the  cardinality constraint 1..* of the association WorksIn.  

 

Conditions to ensure 

←department(D,N,Min,Max,T) ∧ ¬oneEmployee(D,T) 

←addDepartment(D,N,Min,Max,T2) ∧ ¬deletedDepartment(D,T2,T) ∧ T2≤T  
∧ time(T) ∧ ¬oneEmployee(D,T) 

←newDept(D,N,Min,Max,E,MgrN,MgrS,T2) ∧ time(T2) ∧ 
 ¬deletedDepartment(D,T2,T) ∧ T2≤T ∧ time(T) ∧ ¬oneEmployee(D,T) 

← ¬deletedDepartment(0,0,T) ∧ 0≤T ∧ time(T) ∧ ¬oneEmployee(0,T) 

← ¬deletedDepartment(0,0,1) ∧ ¬oneEmployee(0,1) 
 

Fig. 23. Condition satisfaction 

In the following, we omit the column showing the additions to the sample IB, since 
no new fact is added. 

This second part of the process aims at ensuring that the IB constructed in the 
previous phase does not contain a department without any employee.  

In the first step, the predicate department is going to be treated, by replacing it by its 
derivation rule: 

department(D,Name,Min,Max,T) ← addDepartment(D,Name,Min,Max,T2) ∧ 

¬deletedDepartment(D,T2,T) ∧ T2≤T ∧ time(T) 

as shown in the second row of the figure. In turn, addDepartment is unfolded in the next 
step, according to its only derivation rule: 

addDepartment(D,N,Min,Max,T) ← newDept(D,N,Min,Max,E,MgrN,MgrS,T)  

∧ time(T) 

Now, the selected literal corresponds to the operation newDept, which is unified with 
the facts included in the IB, in particular with {newDept(0,0,1001,1002,1,0,0,0)}. This 
instantiation is propagated to the rest of the rule, and the literal time(T) is selected, since 
it is the only positive one. It is also unified with the facts in the IB, and we show here 
the result for T=1.  
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In the last step, the condition states that it is not possible that the IB does neither 
entail deletedDepartment (0,0,1) nor oneEmployee(0,1), i.e., the IB must entail 
deletedDepartment (0,0,1) or oneEmployee(0,1). Thus, we return to the Goal Satisfaction 
phase in order to ensure that this new goal is satisfied, as shown in Figure 24. Note that 
only one of the literals in the condition is placed as a goal, since in case that the IB 
entails just one of them, then the condition is satisfied and the execution ends 
successfully. 

 

 

Current Goal 

← oneEmployee(0,1) 

←worksIn(E,0,1) 

← addWorksIn(E,0,T) ∧ ¬deletedWorksIn(E,0,T,1) ∧ T≤1 ∧ time(1) 

← newDept(0,N,Min,Max,E,EN,ES,T) ∧ time(T) ∧ ¬deletedWorksIn(E,0,T,1) ∧ T≤1 

← ¬deletedWorksIn(1,0,0,1) 

[ ] 

Fig. 24. Second phase of Goal Satisfaction 

The predicate oneEmployee in the initial goal corresponds to the existance of an 
instance of WorksIn with the department 0, as can be seen in the second step. The third 
step consists in the unfolding of the predicate worksIn according to the translation of the 
schema: 

worksIn(E,D,T) ← addWorksIn(E,D,T2) ∧ ¬deletedWorksIn(E,D,T2,T)  

∧ T2≤T ∧ time(T) 

Now the first literal is selected, and is unfolded according to the rule that we have 
added to repair the erroneous specification of the operation. 

The predicate newDept is unified with the IB and time literals in the goal are also 
satisfied. What remains to be treated is a negative literal, which will be considered as a 
condition to ensure. We do not show this new consistency derivation, but intuitively it 
can be seen that the deletedWorksIn(1,0,0,1) does not hold in the IB, since the only 
operation that belongs to it is newDept, which does not belong to the derivation rules of 
deletedWorksIn.  

Thus, the condition and the goal are satisfied, so we can conclude that Employee is 
lively. The IB constructed contains a sequence of operations that leads to such a state: 

{newDept(0,0,1001,1002,1,0,0,0)} 
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666 

Tool Implementation 

In order to prove the feasibility of our approach, we have built a prototype that 
implements our method to validate the structural part of a conceptual schema. We have 
also implemented the reasoning procedure for the behavioral part as an extension of a 
Prolog implementation of the CQC Method, which is not shown in this chapter.  

The input of our prototype to validate the structural schema is a UML class diagram, 
specified in Poseidon®, and a text file containing the OCL constraints. Then, the 
structural schema is automatically translated into logic, the decidability of reasoning is 
determined and, finally, the user is able to introduce the logic formalization of the tests 
to be performed, in case that reasoning on the schema results to be decidable. The tool 
answers to each test either with a sample instantiation satisfying the test, if possible, or 
with a negative answer if the test is not satisfiable. 

We will use the example discussed in chapter 4 in order to illustrate how the user can 
validate a structural schema using our implementation. The steps to be followed are: 

1. Specify the schema using Poseidon (see Figure 25), and the OCL constraints in a 
text file (Figure 26) 

2. The logic representation of the schema is obtained (Appendix A) 

3. The dependency graph is shown, together with the results of the analysis of 
decidability (Figures 30 and 31) 

4. Perform the validation tests desired 

6.1 Architecture 

We have implemented the prototype of our method within the EinaGMC project (UPC 
and UOC 2008), which is being developed by the Conceptual Modeling Group (GMC) 
from the Technical University of Catalonia (UPC) and the Open University of Catalonia 
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(UOC). The aim of this project is to build an advanced environment to work with 
conceptual schemas specified in UML and OCL. 

 

Fig. 25. The schema introduced in Poseidon 

 

Fig. 26. The OCL constraints corresponding to the schema in Figure 25 

The core of EinaGMC is a Java library that implements the UML 2.0 (OMG 2007) and 
OCL 2.0 (OMG 2006) metamodels. Since a conceptual schema is an instantiation of these 
metamodels, the core of EinaGMC provides a set of Java objects and primitives that 
allow to manipulate the model (see Figure 27). In this context, by extending the 
EinaGMC core we can develop applications related to conceptual modeling in a Java 
framework. 

The input UML and OCL schema of the EinaGMC is represented in XMI (XML 
Metadata Interchange). XMI is an OMG standard based on XML that intends to provide 
a standard way to exchange metadata by means of XML documents. In particular, it can 
be used to represent UML schemas.  
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UML/OCL Metamodels
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Instance

EinaGMC Core

 

Fig. 27. EinaGMC Core 

Since the XMI files generated by each different CASE tool are usually not compatible, 
the EinaGMC implements its own XMI. Thus, the files generated by the tools must be 
transformed to the EinaGMC XMI. Currently, a translator between Poseidon XMI and 
the XMI of EinaGMC is available, so the input models of our tool must be specified in 
Poseidon. However, there are some UML constructs that cannot be introduced in 
Poseidon, such as n-ary associations. Thus, in some cases, the EinaGMC XMI file has to 
be manually modified so that it represents the model to be validated. 
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Fig. 28. General architecture of our tool 

The general architecture of our tool is shown in Figure 28. As can be seen in the 
figure, the input of the tool consists in a UML schema specified in Poseidon, together 
with a text file containing the OCL specification of the constraints. This input is loaded 
as an instance of the classes in the EinaGMC core, which allows to manipulate them. 
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Our translation component is responsible for transforming the UML and OCL model 
into an instance of a logic metamodel, so that our method can be implemented using a 
logic representation of the schema. The decidability component is in charge of 
determining the decidability of reasoning on the particular schema to be validated and, 
finally, the reasoning component allows the user to perform the validation tests. 

6.2 Translation Component 

The translation component is aimed at expressing the UML and OCL schema, loaded as 
an instance of the EinaGMC core, as an instance of the logic metamodel in Figure 29. 

This metamodel represents that a schema consists in a set of NormalClauses 
representing integrity constraints (IC) and derivation rules (DR), a set of Atoms and 
their definitions (AtomDef). The class AtomDef (which includes information about the 
predicate that it represents and its number of terms, among others) is used as a template 
to create atoms of a certain kind. Thus, there is an instance of AtomDef for each 
predicate of the schema. 

 

Fig. 29. Logic metamodel 

A NormalClause may have an Atom as a head, and is composed by a set of Literals, 
which can be either BuiltInLiterals or OrdinaryLiterals. Built-in literals contain the 
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comparison operator and the two terms compared, whereas ordinary literals 
correspond to an atom, which can be either negated or not (attribute isTrue). 

Thus, once we have the schema loaded as an instance of this metamodel, we are able 
to manipulate it in order to implement the different steps of our method. 

Additionally, this component returns a file containing the logic representation of the 
schema, which is included in the Appendix A. 

6.3 Decidability Component 

Once the schema is loaded as an instance of the logic metamodel, the decidability 
component is able to construct the dependency graph and analyze it in order to 
determine whether all the instances of the schema have a finite number of elements. 

The dependency graph obtained from the constraints of the schema is shown in 
Figure 30. Superfluous arcs are omitted, and the cycles detected are grouped into nodes 
representing subgraphs. In this way, the reasoning component is able to order the 
repair of constraints so that each of them is treated the minimum number of times 
possible, as will be explained in the next section. 

 

Fig. 30. Dependency graph obtained from the integrity constraints 
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As can be seen, this graph has more vertices and arcs than the one shown in section 
4.1 (Figure 8). The reason is that in the automatic translation of the schema, constraints 
to ensure the uniqueness of OIDs are added, which where omitted in the explanation of 
chapter 4 for the sake of clarity. Additionally, the automatic translation of some OCL 
constraints introduces some literals that were also simplified in the example. This 
additional literals increase the number of potential violations of some constraints. For 
instance, the translation of the OCL constraint InspectorNot Member provided by our 
implementation is: 

← workingTeam(T) ∧ audits(E,T) ∧ member(M,E,T)  

instead of: 

← audits(E,T) ∧ member(M,E,T) 

This simplification made in the explanation does not modify the results of the tests, 
since both logic representations are equivalent in our example (the term T of the 
predicates audits and member will always correspond to a workingTeam according to the 
referential constraints of the associations and, thus, workingTeam(T) is not needed in the 
logic formalization of the constraint). 

This implies that the graph is more complicated, but the results of the cycle analysis 
are the ones expected. The results obtained as an output of this step can be seen in 
Figure 31.  

As can be seen in the figure, four cycles are found. For each cycle, the repairs that 
cause the violation of the following constraint in the cycle are shown. For instance 
WorkingTeam(10,16) means that the repair workingTeam(X) of the constraint 10 obtained 
in the translation is a potential violation of constraint 16, which is the successor of 10 in 
the cycle. 

 

Fig. 31. Results obtained from the analysis of the graph 

Cycles 1, 2 and 4 correspond to the cycles explained in section 4.1. Cycle 2 
corresponds to (ic3 ic14), while cycles 1 and 4 correspond to the cycles (ic3 ic14 ic5) and 
(ic3 ic14 ic6). The additional Cycle 3, which is also found finite, is due to the literals 

Cycle 1: Finite   

WorkingTeam(10,16) 

WorkingTeam, Member, HasRecruited(16,3) 

Member(3,10) 

   

Cycle 2: Finite 

WorkingTeam(10,16) 

WorkingTeam, Member, HasRecruited(16,10) 

   

Cycle 3: Finite    

WorkingTeam, Member, HasRecruited(16,16) 

 

Cycle 4: Finite    

  WorkingTeam(10,16) 

  WorkingTeam, Member, HasRecruited(16,4) 

  Member(4,10) 
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added in the automatic translation of the schema and corresponds to a recursive arc in 
the constraint ic14, since the predicate WorkingTeam is a potential violation that also 
belongs to its repair. 

6.4 Reasoning Component 

If the results obtained from the previous component determine that all the cycles found 
in the graph are finite, then the user is able to perform his tests with the guarantee that 
all of them will terminate. Currently, the tests must be introduced by the user according 
to the logic representation of the schema obtained from the translation component. 
However, our aim is to provide the user with a more intuitive interface, so that some 
tests are automatically executed without the need to specify them. Additionally, we also 
plan to provide the user with the ability of defining his own tests without need to be 
aware of the logic formalization of the schema.  

The first step performed by the reasoning procedure is the initialization of the graph, 
which consists in marking all the nodes (and the subgraphs representing cycles) as not 
visited. 

Then, the method starts with the Goal Satisfaction step, which consists in adding to 
the EDB under construction the positive literals of the goal, instantiated using one of the 
alternatives provided by the VIPs. After that, the Integrity Maintenance step must be 
performed as follows. 

Using the order provided by the graph, the first constraint (node) to be considered is 
selected. The selection criteria is as follows: 

1. the node is not visited 

2. the node has no antecessor 

3. the node has no antecessors that have not been visited yet, if the node does not 
belong to a cycle 

4. if the current node belongs to a cycle, that is, if the node is a subgraph, the 
following node to be treated must also belong to the same subgraph, unless all 
the nodes belonging to the cycle have been already visited 

When the node to be considered is selected, the treatment of the node consists in 
checking whether the corresponding constraint is violated by the current EDB:  

- If it is not violated, the node is marked as visited, and the following node must 
be selected according to the selection criteria 

- If it is violated, one of the possible repairs is chosen and applied, using one of 
the alternatives provided by the VIPs if the repair contains free variables. The 
successors of the node that are reached according to the repair applied are 
marked as not visited and, finally, the node is marked as visited and the 
following one is selected according to the criteria. 

The procedure ends when all the nodes of the graph are marked as visited, which 
means that an EDB proving the test has been built. Otherwise, if all the alternatives 
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provided by the VIPs and possible repairs have been taken, and some constraint cannot 
be successfully repaired the result is that the property tested cannot be satisfied. 

In the following we show the results obtained when checking some of the tests that 
we have explained throughout de document. The constants used in the example 
constructed are always real numbers in order to facilitate the implementation. 
However, this does not affect the results of the tests. 

We will try to check whether the associations Audits and Member require some kind 
of path inclusion or path exclusion constraint. 

The first test corresponds to Test 7 to check path inclusion: 

not-inclusionAuditsMember ← audits(E,T) ∧ ¬inMember(E,T) 
inMember(E,T) ← member(M,E,T) 

The result is: 
 Test: audits(E,T), ¬inMember(E,T) 

 Answer: Satisfiable 

 Facts: Audits(1,0), WorkingTeam(0), Employee(1), 

  Member(2,3,0), HasRecruited(2,4), 

  Member(4,5,0), Employee(3), Employee(5) 

 Time: 1281 ms 

Since an example has been found corresponding to the tested property, the meaning 
is that there is no path inclusion constraint in these associations.  

If we now execute Test 8 to check path exclusion: 

not-exclusionAuditsMember ← audits(E,T) ∧ member(M,E,T) 

the result is: 
 Test: audits(E,T), member(M,E,T) 

 Answer: Unsatisfiable 

 Time: 67172 ms 

That is, the test is unsatisfiable, which means that a constraint disallowing that the 
same instances of Employee and WorkingTeam are linked by both associations alredy 
exists.  

Although our method allows that the tests are specified using constants instead of 
variables, note that in many cases this is not useful to check whether the schema 
satisfies or not a certain property. For instance, if we had executed the following test 
instead of the previous one:  
 Test:    audits(0,1), member(2,0,1)  

 Answer:  Unsatisfiable 

 Time:    3078 ms 

the result obtained is the same (the property is unsatisfiable), but the tests do not 
have the same meaning. The former ensures that the same pair of instances of Employee 
and WorkingTeam, whichever they are, cannot belong to both associations, while the 
latter only ensures this for the pair Employee(0) and WorkingTeam(1). This means that 
other instances, for example Employee(2) and WorkingTeam(1), may belong to both 
associations. As can be seen, the time spent in the execution of the second test is much 
lower, since the method does not have to guarantee that the property does not hold for 
any of the possible combinations of instances, but only for the given one.  
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777 

Related Work 

In this chapter we review the previous work on reasoning and validation of conceptual 
schemas. A brief explanation of each approach is included in section 1.5. However, here, 
we compare them in detail with our method, regarding the desirable properties that an 
approach of this kind should have. 

We classify the approaches into those that deal with languages that are not UML and 
those that reason or validate schemas specified in UML. In both cases, we include a 
table with the following structure.  

The column Structural limitations indicates those elements of the language under 
consideration, apart from integrity constraints, that are not supported by the approach. 

Constraints handled specifies the kinds of constraints, which can be either graphical or 
textual, that are taken into account in the approach.  

In Kind of reasoning we can see whether the approach is aimed at checking the 
internal or the external correctness of the schema, that is, whether it tests only structural 
properties of the schema or the designer is able to specify his own ad-hoc tests using his 
knowledge about the domain. 

In the column Definition of behavior we indicate whether the behavioral schema is 
taken into account in some way. 

The column Reasoning with behavior shows whether the definition of the behavior is 
taken into account, in the sense that the only changes that can be made on the IB are 
those specified in the behavioral schema. 

The column Complete states whether the approach is such that when an example for a 
property exists, it will always be found.  

Finally, in the column Decidable we can see if the approach guarantees termination in 
all the executions of the tests. 
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7.1 Non-UML Approaches 

Table 4 includes those approaches dealing with validation and reasoning on schemas 
that are not specified in UML. We classify them in those that use ER and those that use 
other languages.  

As can be seen in the table, the only approach that does not have any structural 
limitations is Alloy (MIT 2006), that uses a language similar to logic to specify the 
schemas. The rest of ER and non-ER approaches have some expressive limitation in 
order to guarantee completeness and decidability. The elements most commonly 
discarded are association classes, n-ary associations and subtyping, which are very 
important in UML schemas, especially when they are used for conceptual modeling, 
since schemas should be as expressive as possible. Thus, we find that the absence of 
these elements represents an important drawback for those approaches that do not 
consider them. 

Another expressive feature are the Constraints handled. All the ER approaches, as well 
as (Baader, Lutz et al. 2005; Bekaert, Van Nuffelen et al. 2002; Formica 2003), are able to 
deal with the cardinality constraints. (MIT 2006) also considers them, since it can handle 
any kind of constraints that can be expressed in logic. Despite being so necessary in 
databases, we can see in the table that only the ER approach (Hartmann 2001) is able to 
deal with identifier (key) constraints, as well as (MIT 2006), since it deals with general 
constraints. (Baader, Lutz et al. 2005; Bekaert, Van Nuffelen et al. 2002) are the only 
approaches that deal with hierarchies and, thus, consider disjointness and covering 
constraints. Another kind of constraints are those that restrict the value of an attribute 
by means of some comparison operator, considered in (Formica 2003; Formica and 
Frank 2002).  

Regarding the Kind of reasoning performed, all the ER approaches, as well as (Formica 
2003; Formica and Frank 2002) only perform some specific tests to check internal 
correctness, the one most commonly addressed being satisfiability. (Baader, Lutz et al. 
2005) also allows to test only internal correctness, this time regarding the correct 
definition of operations. In particular, the reasoning tasks that can be performed 
correspond to our definitions of applicability and executability of operations.  

There are three methods that allow to test the external correctness (Bekaert, Van 
Nuffelen et al. 2002; Díaz, Paton et al. 1998; MIT 2006). (Bekaert, Van Nuffelen et al. 
2002) is able to answer to the tests provided by the designer, but only on a semi-
populated IB, since the method is not able to invent new values for the attributes. This 
means that, in some cases, it will not be able to find the example required and its 
answer will be that the tested property cannot be satisfied when, in fact, it may be with 
other values or by creating new instances. This is why this approach is not Complete.  
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Only four approaches take the behavior into account in some way. In (Formica and 
Frank 2002) the behavior is defined by means of statecharts, whereas (Baader, Lutz et al. 
2005; Díaz, Paton et al. 1998) and (MIT 2006) specify the behavior by means of operation 
contracts. Only (Díaz, Paton et al. 1998) considers that the only changes allowed in a 
state of the IB are those specified by the operations and takes it into account when 
performing the validation, which means that the other two approaches may report as 
valid a state that is unreachable with the operations given. 

Finally, as well as (Bekaert, Van Nuffelen et al. 2002) as we have seen, there is 
another approach that is not Complete (MIT 2006). This method is able to invent new 
instances but within a range of values specified by the user in order to guarantee 
termination. This means that, although a sample IB satisfying a certain property may 
exist, the method may not find it if it is beyond the bounds specified.  

Thus, (MIT 2006) is the only approach that does not have any structural limitations 
and is able to deal with any kind of constraints, specified by means of a general logic 
expression. However, it is aimed at checking only the external correctness of the 
schema. Additionally, it has two important drawbacks. First, it does not take into 
account the meaning of operations in the validation process. Second, its lack of 
completeness represents a very important limitation, since when the method is not able 
to find an example of a certain property it cannot be guaranteed that one does not exist. 

On the other hand, the only approach that considers the operations in the validation 
has important expressive limitations, since it cannot deal with subtyping and does not 
consider any kind of constraint. Moreover, it is aimed at checking only the external 
correctness by executing the models, so it cannot automatically detect semantic flaws 
such as satisfiability. 

7.2 UML Approaches 

In Table 5 we find those methods dealing with the reasoning and validation of UML 
conceptual schemas. We have classified them into two categories: the ones based in 
Description Logics (DL), and those using other approaches. The method proposed in 
this thesis belongs to this last group.  

The basic idea of the DL approaches consists in translating a UML schema into a DL 
and then reason on this formalization, either by means of ad-hoc algorithms or using 
existing off-the-shelf reasoning tools. As can be seen from the table, none of the DL 
approaches deals with the behavioral part of the schema. Decidable DLs, which are the 
ones used in these approaches, are expressive enough to express any structural element 
of a UML schema (classes, attributes, class hierarchies, n-ary associations...) and also 
allow some kinds of constraints still guaranteeing termination.  

The typical reasoning tasks performed in the DL approaches are those to check the 
internal correctness of the schema (satisfiability of the schema, liveliness of a class or 
association, class subsumption...). This can be done in finite time taking into account 
cardinality, disjointness and covering constraints, and without any structural limitation 
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(Berardi, Calvanese et al. 2005; Fillottrani, Franconi et al. 2006). Additionally (Fillottrani, 
Franconi et al. 2006) allows other kinds of constraints that must be expressed in a 
specific view definition language, not in OCL. The expressiveness is more limited in 
(Cadoli, Calvanese et al. 2007), since attributes, association classes and n-ary 
associations are not considered. The difference with the other DL approaches lies in the 
reasoning task performed, which consists in checking whether a class can be populated 
with a finite number of instances, which is a specific kind of satisfiability more 
interesting by its practical applicability.  

Among the rest of UML approaches, the one that deals with more expressive 
schemas is (Cabot, Clarisó et al. 2008), since it is the only one that does not have any 
structural limitations and considers general OCL constraints. The rest of them, despite 
being able to deal with any kind of constraints, they do not consider association classes 
nor n-ary associations. From these ones, in (Brucker and Wolff 2006; Gogolla, Büttner et 
al. 2007) constraints are specified in OCL, whereas in (Dupuy, Ledru et al. 2000) they 
must be expressed in the Z language, and in (Snook and Butler 2006) constraints must 
be specified in B. We consider that this is a drawback, since OCL is the language 
recommended to formalize the constraints in UML schemas. 

Regarding the behavioral schema, in (Brucker and Wolff 2006; Cabot, Clarisó et al. 
2009; Dupuy, Ledru et al. 2000; Gogolla, Büttner et al. 2007), operations are specified by 
means of declarative contracts, with their preconditions and postconditions specified in 
OCL, while in (Snook and Butler 2006) operations are procedural and specified in the B 
language. All these approaches are able to test that the operations defined are 
applicable and executable, but none of them considers that the changes specified by the 
operations are the only ones allowed when checking the properties satisfied by the 
schema (satisfiability, liveliness...). Thus, a property can be reported as valid when, in 
fact, it is impossible to satisfy using the operations defined. We have seen several such 
examples in chapter 5. This also damages the results obtained when testing the 
applicability of operations, since the state that satisfies a precondition may not be 
obtained by means of the operations of the behavioral schema and, thus, the result of 
the test is not reliable. Additionally, operations are specified according to an extended 
semantics which, as discussed in section 5.1, has several drawbacks regarding 
modifiability, consistency and conciseness, derived of the required redundancy between 
preconditions and integrity constraints.  

Completeness is not guaranteed by (Cabot, Clarisó et al. 2008; Gogolla, Büttner et al. 
2007; Leuschel and Butler 2008), since they restrict the domains of the variables in order 
to guarantee decidability and they may fail to find an existing solution. On the contrary, 
(Brucker and Wolff 2006; Dupuy, Ledru et al. 2000) are complete but, in change, they do 
not guarantee termination in all cases.  
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Summarizing, and as happens with the non-UML approaches, the UML ones have 
three main drawbacks. The first one is that, in order to guarantee decidability, some of 
them renounce either to expressiveness by disallowing certain constructs or constraints, 
or to completeness by requiring finite domains. On the other hand, the methods that are 
not decidable, also disallow some UML constructs, such as n-ary associations or 
association classes.  

The second drawback is that all of them are able to perform only one kind of 
reasoning, either to check the internal or the external correctness of the schema, but not 
both. 

Finally, the third drawback, also shared by all the approaches dealing with behavior 
in some sense, is that the semantics of operations is not taken into account in the 
validation, thus reporting as valid states that are, in fact, impossible to construct. 

As a conclusion, we can say that our  method overcomes the limitations we find in 
the previous approaches. In this way, our work represents a significant contribution to 
the field of validation and reasoning on UML and OCL schemas, with and without 
operations. 

In particular, the expressiveness of the schemas that can be handled by our method is 
very high, which is one of our main goals. We can deal with any structural element of 
UML class diagrams that is useful in conceptual modeling, and also with general OCL 
constraints. However, we are not able to deal with those OCL expressions that include 
arithmetic operations, since they cannot be expressed in the logic representation we use 
to reason. This is why we have marked this cell with an asterisk.  

As far as the kind of reasoning is concerned, our approach is the only one that, using 
a single method, is able to check any internal property (satisfiability, liveliness, non-
redundancy) and also any ad-hoc test that the designer may wish in order to check the 
correspondence of the schema with the requirements.  

Additionally, among the UML approaches dealing with operations, ours is the only 
one that takes into account the concept of operation by only allowing the changes 
specified in them in order to construct the sample IBs.  

Our approach is also complete, which we find essential, and besides, we can 
guarantee decidability in many cases, as we have seen in section 4.1. The fact that our 
method is not decidable in all cases is the reason for the asterisk in this cell. However, it 
is worth to note that we identify the cases in which the reasoning may not terminate, so 
the designer is aware of this fact before performing the tests on each particular schema.
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888 

Conclusions 

To ensure the quality of an information system, it is essential that the conceptual 
schema that represents the knowledge about its domain and the functions it has to 
perform is semantically correct. 

The correctness of a conceptual schema can be seen from two different perspectives. 
On the one hand, from the point of view of its definition, determining the internal 
correctness of a conceptual schema consists in answering to the question "Is the 
conceptual schema right?". This can be achieved by determining whether the schema 
fulfills certain properties, such as satisfiability, non-redundancy or operation 
executability. 

On the other hand, from the perspective of the requirements that the information 
system should satisfy, not only the conceptual schema must be right, but it also must be 
the right one. In order to determine this external correctness, the designer must be 
provided with some kind of help and guidance during the validation process, so that he 
is able to understand the exact semantics of the schema and see whether it corresponds 
to the requirements to be formalized. 

Both kinds of correctness have been addressed in the literature. However, current 
methods and tools can be improved in several ways.  

From the point of view of the expressiveness they can deal with, the most expressive 
approaches do not guarantee termination of the reasoning procedure. In contrast, those 
that guarantee termination, only allow some predefined constructs in the conceptual 
schema, or fail to detect certain erroneous situations. 

Regarding the validation of conceptual schemas with a behavioral part, the fact that 
only the changes defined in the operations can be performed is not taken into account 
by most approaches.  
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In this thesis we have presented an approach to help the designer in the validation of 
a complete UML conceptual schema, with general constraints and operations 
formalized in OCL. Our approach allows to validate the conceptual schema both from 
the point of view of its definition and of its correspondence to the requirements.   

To guarantee the internal correctness of a schema, a set of tests is provided. Some of  
the tests correspond to well-known properties whereas others, which are an original 
contribution of this thesis, are automatically generated from the concrete schema to be 
validated. 

To check the external correctness, some additional tests are automatically provided 
to the designer. Moreover, the designer can define his own tests in order to complete the 
validation process.  

All the validation tests are formalized in such a way that they can be treated 
uniformly, regardless the specific property they allow to test. 

Our approach can be either applied to a complete conceptual schema or only to its 
structural part. In case that only the structural part is validated, we provide a set of 
conditions to determine whether any validation test performed on the schema will 
terminate. For those cases in which these conditions of termination are satisfied, we also 
provide a reasoning procedure that takes advantage of this situation and works more 
efficiently than in the general case. This approach allows the validation of very 
expressive schemas and ensures completeness and decidability at the same time. 

When the schema contains operations, or when the conditions of termination are not 
guaranteed, any reasoning procedure that is able to deal with negation of derived 
predicates can be used to perform the validation tests we have formalized. The 
formalization of the complete schema ensures that a test is satisfied only if the tested 
property is reachable using the operations defined.  

In order to show the feasibility of our approach, we have built a prototype that 
implements the complete validation process for a structural schema. Additionally, for 
the validation of a conceptual schema with a behavioral part, we have extended the 
implementation of an existing reasoning procedure so that it can correctly deal with 
operations. 

As a conclusion, we have provided an approach which improves the results of 
previous proposals to validate both the internal and the external correctness of a 
conceptual schema, with or without operations. The validation is performed by means 
of a set of tests that are applied to the schema, including automatically generated tests 
and ad-hoc tests defined by the user. The expressiveness allowed for the schema to be 
validated is high, and our reasoning procedure is complete for a conceptual schema 
with operations, and also decidable for the structural part.  

As further work to be started from this thesis, the efficiency of our reasoning 
procedure can be addressed. Since our procedure is efficient only for those schemas for 
which the reasoning is found decidable, a direct research direction to be followed is to 
improve the efficiency of our method for the rest of schemas. In particular, this includes 
the schemas containing operations. Additionally, the efficiency in the validation of the 
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structural schema can also be increased to some extent, for instance by considering the 
conditions specified by those constraints that cannot be repaired when trying to find a 
solution. 

Also, we believe that we can increase the number of conditions that allow 
determining the decidability of reasoning on a schema. In this way, a larger number of 
schemas can be benefited from our more efficient algorithm that can be used in these 
cases.  

We would also like to extend our results to increase the expressiveness of the 
conceptual schemas to be validated. On the one hand, we could minimize the 
restrictions on the OCL expressions we can deal with. On the other hand, we plan to 
extend our approach so that it can deal with derived information defined in the 
conceptual schema. 

Another interesting direction to follow is to extend our reasoning procedure so that it 
can provide explanations of the problems found in the schema. To help the designer to 
fix an error detected in the schema, it is useful to provide him with the cause of that 
error, which consists in the set of constraints that are responsible for the non-satisfaction 
of the property being tested. 

Finally, since our algorithm constructs sample instantiations to prove the desired 
properties, it could also be extended in order to generate test data to be used when 
validating the final implementation of the specification. 

Regarding technological issues, the implementation of the translation of a complete 
conceptual schema with operations remains to be done. Also, we would like to develop 
a tool that integrates the complete validation process of a conceptual schema, with and 
without operations, with an interface that proactively provides interesting information 
to the designer and facilitates the definition of the user-defined tests. 
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Appendix A  

We provide here the whole translation of the example in Figures 1 and 2, according to 
the method explained in section 3.1.  

Translation of classes and associations 

department(D) 

departmentName(D,Name) 

employee(E) 

employeeName(E,Name) 

boss(B) 

bossPhone(B,Phone) 

worksIn(E,D) 

manages(E,D) 

worksFor(E1,E2) 

workingTeam(T) 

audits(E,T) 

member(M,E,T) 

hasRecruited(R,M) 

Constraints for OIDs 

←employee(X) ∧ department(X) 

←employee(X) ∧ workingTeam(X) 

←employee(X) ∧ member(X,E,T) 

←department(X) ∧ workingTeam(X) 

←department(X) ∧ member(X,E,T) 

←workingTeam(X) ∧ member(X,E,T) 

Constraints for hierarchies 

←boss(E) ∧ ¬employee(E) 
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Referential constraints for associations 

←worksIn(E,D) ∧ ¬employee(E) 

←worksIn(E,D) ∧ ¬department(D) 

←manages(E,D) ∧ ¬employee(E) 

←manages(E,D) ∧ ¬department(D) 

←worksFor(S,E) ∧ ¬employee(S) 

←worksFor(S,E) ∧ ¬employee(E) 

←audits(E,T) ∧ ¬employee(E) 

←audits(E,T) ∧ ¬workingTeam(T) 

←member(M,E,T) ∧ ¬employee(E) 

←member(M,E,T) ∧ ¬workingTeam(T) 

←hasRecruited(R,M) ∧ ¬isMember(R) 

←hasRecruited(R,M) ∧ ¬isMember(M) 

isMember(M) ← member(M,E,T) 

Constraints for uniqueness of association classes 

←member(M,E,T) ∧ member(M2,E,T) ∧ M<>M2 

Constraints for association cardinalities 

←department(D) ∧ ¬oneEmployee(D) 

oneEmployee(D) ← worksIn(E,D) 

←employee(E) ∧ ¬oneDepartment(E) 

oneDepartment(E) ← worksIn(E,D) 

←worksIn(E,D1) ∧ worksIn(E,D2) ∧ D1<>D2 

←department(D,N) ∧ ¬oneManager(D) 

oneManager(D) ← manages(E,D) 

←manages(E1,D) ∧ manages(E2,D) ∧ E1<>E2 

←manages(E,D1) ∧ manages(E,D2) ∧ D1<>D2 

←worksFor(S1,E) ∧ worksFor(S2,E) ∧ S1<>S2 

←workingTeam(T) ∧ ¬oneInspector(T) 

oneInspector(T) ← audits(E,T) 

←audits(E,T) ∧ audits(E2,T) ∧ E<>E2 

←workingTeam(T) ∧ ¬oneMember(T) 

oneMember(T) ← member(M,E,T) 

←hasRecruited(R,E) ∧ hasRecruited(R2,E) ∧ R<>R2 
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Referential constraints for attributes 

←departmentName(D,N) ∧ ¬department(D) 

←departmentMinSal(D,M) ∧ ¬department(D) 

←departmentMaxSal(D,M) ∧ ¬department(D) 

←employeeName(E,N) ∧ ¬employee(E) 

←employeeSalary(E,S) ∧ ¬employee(E) 

←bossPhone(B,P) ∧ ¬boss(B) 

←workingTeamName(T,N) ∧ ¬workingTeam(T) 

Constraints for attribute cardinalities 

←department(D) ∧ ¬oneDepartmentName(D) 

oneDepartmentName(D) ← departmentName(D,N) 

←departmentName(D,N1) ∧ departmentName(D,N2) ∧ N1<>N2 

←department(D) ∧ ¬oneDepartmentMinSal(D) 

oneDepartmentMinSal(D) ← departmentMinSal(D,M) 

←departmentMinSal(D,M1) ∧ departmentMinSal(D,M2) ∧ M1<>M2 

←department(D) ∧ ¬oneDepartmentMaxSal(D) 

oneDepartmentMaxSal(D) ← departmentMaxSal(D,M) 

←departmentMaxSal(D,M1) ∧ departmentMaxSal(D,M2) ∧ M1<>M2 

←employee(E) ∧ ¬oneEmployeeName(E) 

oneEmployeeName(E) ← employeeName(E,N) 

←employeeName(E,N1) ∧ employeeName(E,N2) ∧ N1<>N2 

←employee(E) ∧ ¬oneEmployeeSalary(E) 

oneEmployeeSalary(E) ← employeeSalary(E,S) 

←employeeSalary(E,S1) ∧ employeeSalary(E,S2) ∧ S1<>S2 

←boss(B) ∧ ¬onebossPhone(B) 

onebossPhone(B) ← bossPhone(B,p) 

←bossPhone(B,P1) ∧ bossPhone(B,P2) ∧ P1<>P2 

←workingTeam(T) ∧ ¬oneWorkingTeamName(T) 

oneWorkingTeamName(T) ← workingTeamName(T,N) 

←employeeName(E,N1) ∧ employeeName(E,N2) ∧ N1<>N2 
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OCL constraints 

context Department inv UniqueDep:  

Department.allInstances()->select(d| Department.allInstances()->select(d2 | d<>d2 and 
d2.name=d.name))->size()=0 

←department(D) ∧ departmentName(D,N) ∧ department(D2) ∧ 

 departmentName(D2,N2) ∧ D<>D2 ∧ N2=N 

 

context Employee inv UniqueEmp:  

Employee.allInstances()->select(e| Employee.allInstances()->select(e2 | e<>e2 and 
e2.name=e.name))->size()=0 

←employee(E) ∧ employeeName(E,N) ∧ employee(E2) ∧ employeeName(E2,N2) ∧  

 E<>E2 ∧ N2=N 

 

context WorkingTeam inv UniqueTeam:  

WorkingTeam.allInstances()->select(t| WorkingTeam.allInstances()->select(t2 | t<>t2 
and t2.name=t.name))->size()=0 

←workingTeam(T) ∧ workingTeamName(T,N) ∧ workingTeam(T2) ∧  

workingTeamName(T2,N2) ∧ T<>T2 ∧ N2=N 

 

context Department inv MinimumSalary : 

self.minSalary > 1000 

←department(D) ∧ departmentMinSal(D,M) ∧ M<=1000 

 

context Department inv CorrectSalaries: 

self.minSalary < self.maxSalary 

←department(D) ∧ departmentMinSal(D,Min) ∧ departmentMaxSal(D,Max) ∧  

Min>=Max 

 

context Department inv ManagerIsWorker:  

self.worker->select(e | e=self.manager)->size()>0 

← department(D) ∧ ¬aux1(D) 

aux1(D) ← department(D) ∧ worksIn(E,D) ∧ manages(E2,D) ∧ E=E2 
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context Department inv ManagerHasNoSuperior:  

self.manager.superior->size()=0 

←department(D) ∧ manages(E,D) ∧ worksFor(S,E) 

 

context Boss inv BossIsManager:  

self.managed-dep->size()>0 

←boss(B) ∧ ¬aux2(B) 

aux2(B) ← boss(B) ∧ manages(B,D) 

 

context Boss inv BossHasNoSuperior:  

self.superior->size()=0 

← boss(B) ∧ worksFor(S,B) 

 

context Boss inv SuperiorOfAllWorkers:  

self.managed-dep.worker->select(E | self.employee->select(E2 | E2=E)->size()=0) 

->size()=0 

←boss(B) ∧ manages(B, D) ∧ worksIn(E, D) ∧ ¬aux3(E,B) 

aux3(E,B) ← boss(B) ∧ worksFor(B, E2) ∧ E2=E 

 

context WorkingTeam inv InspectorNotMember: 

self.employee->select(e | e=self.inspector)->size()=0 

←workingTeam(T) ∧ member(M,E,T) ∧ audits(I,T) ∧ E=I 

 

context Member inv NotSelfRecruited: 

self.recruiter<>self 

←member(M,E,T) ∧ hasRecruited(R,M) ∧ R=M 

 

context WorkingTeam inv OneRecruited: 

self.member->select(m | m.recruiter.workingTeam=self)->size()>0 

←workingTeam(T) ∧ ¬aux4(T) 

aux4(T) ← workingTeam(T) ∧ member(M,E,T) ∧ hasRecruited(R,M) ∧ member(R,E2,T) 
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Appendix B 

Translation of the behavioral part of the schema, as explained in section 5.2, according 
to the operation contracts specified in Figure 3. We do not include here the translation 
of the strcutrual schema, which is similar to the one included in the Appendix A, but 
taking into account now that the predicates representing classes also include terms 
representing their attributes. 

Base predicates 

newDept(D,Name,Min,Max,E,MgrN,MgrS,T) 

removeDept(D,T) 

hire(E,Name,Sal,Dept,T) 

fire(E,T) 

newTeam(W,Name,Insp,T) 

newMember(M,Emp,WorkT,Rec,T) 

time(T) 

Deriving instances from operations 

 

Employee 

employee(E,Name,Sal,T) ← addEmployee(E,Name,Sal,T2) ∧ 
¬deletedEmployee(E,T2,T) ∧ T2≤T ∧ time(T) 

deletedEmployee(E,T1,T2) ← delEmployee(E,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

addEmployee(E,Name,Sal,T) ← hire(E,Name,Sal,Dep,T) ∧  

department(Dep,DName, MinSal, MaxSal,Tpre) ∧  

Tpre = T-1 ∧ time(T) 

addEmployee(E,Name,Sal,T) ← newDept(D,N,Min,Max,E,Name,Sal,T) ∧ time(T) 

delEmployee(E,T) ← fire(E,T) ∧ employee(E,Name,Sal,Tpre) ∧ ¬hasDep(E,Tpre) ∧  

Tpre=T-1 ∧ time(T) 

hasDep(E,T) ← worksIn(E,D,T) ∧ time(T) 
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Boss 

boss(E,Name,Sal,Phone,T) ← addBoss(E,Name,Sal,Phone,T2) ∧ 
¬deletedBoss(E,T2,T) ∧ T2≤T ∧ time(T) 

deletedBoss(E,T1,T2) ← delBoss(E,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

addBoss(E,Name,Sal,Phone,T) ← promote(E,Phone,T) ∧  

employee(E,Name,Sal,Tpre) ∧ ¬isManager(E,Tpre) ∧  

Tpre = T-1 ∧ time(T) 

isManager(E,T) ← manages(E,D,T) ∧ time(T) 

delBoss(E,T) ← delEmployee(E,T) ∧ time(T) 

 

Department 

department(D,Name,Min,Max,T) ← addDepartment(D,Name,Min,Max,T2) ∧ 

¬deletedDepartment(D,T2,T) ∧ T2≤T ∧ time(T) 

deletedDepartment(D,T1,T2) ← delDepartment(D,T) ∧ T>T1 ∧ T≤T2 ∧  

time(T1) ∧ time(T2) 

addDepartment(D,Name,Min,Max,T) ← newDept(D,Name,Min,Max,E,MgrN,MgrS,T) 

 ∧ time(T) 

delDepartment(D,T) ← removeDept(D,T) ∧  

department(D,Name,Min,Max,Tpre) ∧ Tpre=T-1 ∧ time(T) 

 

WorksIn 

worksIn(E,D,T) ← addWorksIn(E,D,T2) ∧ ¬deletedWorksIn(E,D,T2,T) ∧ T2≤T ∧ time(T) 

deletedWorksIn(E,D,T1,T2) ← delWorksIn(E,D,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

addWorksIn(E,D,T) ← hire(E,Name,Sal,D,T) ∧  

department(D,DName, MinSal, MaxSal,Tpre) ∧  

Tpre = T-1 ∧ time(T) 

delWorksIn(E,D,T) ← delEmployee(E,T) ∧ worksIn(E,D,Tpre) ∧ Tpre =T-1 ∧ time(T) 

delWorksIn(E,D,T) ← delDepartment(D,T) ∧ worksIn(E,D,Tpre) ∧ Tpre =T-1 ∧ time(T) 

 

Manages 

manages(E,D,T) ← addManages(E,D,T2) ∧ ¬deletedManages(E,D,T2,T) ∧  

T2≤T ∧ time(T) 

deletedManages(E,D,T1,T2) ← delManages(E,D,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

addManages(E,D,T) ← newDept(D,DName,MinS,MaxS,E,MgrN,MgrS,Tpre) ∧  

Tpre = T-1 ∧ time(T) 
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delManages(E,D,T) ← delEmployee(E,T) ∧ manages(E,D,Tpre) ∧ Tpre =T-1 ∧ time(T) 

delManages(E,D,T) ← delDepartment(D,T) ∧ manages(E,D,Tpre) ∧ Tpre =T-1 ∧ time(T) 

 

WorkingTeam 

workingTeam(W,Name,Insp,T) ← addWorkingTeam(W,Name,Insp,T2) ∧  
T2≤T ∧ time(T) 

addWorkingTeam(W,Name,Insp,T) ← newTeam(W,Name,Insp,T) ∧  

employee(Insp,InspName, Sal, Tpre) ∧ Tpre = T-1 ∧ time(T) 

 

Audits 

audits(Insp,W,T) ← addAudits(Insp,W,T2) ∧ ¬deletedAudits(Insp,W,T2,T) ∧  

T2≤T ∧ time(T) 

deletedAudits(Insp,W,T1,T2) ← delAudits(Insp,W,T) ∧  

T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

addAudits(Insp,W,T) ← newTeam(W,Name,Insp,T) ∧  

employee(Insp,InspName, Sal, Tpre) ∧ Tpre = T-1 ∧ time(T) 

delAudits(E,W,T) ← delEmployee(E,T) ∧ audits(E,W,Tpre) ∧ Tpre =T-1 ∧ time(T) 

 

Member 

member(M,Emp,WorkTeam,T) ← addMember(M,Emp,WorkTeam,T2)  

∧ ¬deletedMember(M,T2,T) ∧ T2≤T ∧ time(T) 

deletedMember(M,T1,T2) ← delMember(M,T) ∧ T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 

addMember(M,Emp,WorkTeam,T) ← newMember(M,Emp,WorkTeam,Rec,T) ∧ 

   employee(Emp,EmpName, Sal, Tpre) ∧  

workingTeam(WorkTeam,WTName,Tpre) ∧  

Tpre = T-1 ∧ time(T) 

delMember(M,T) ← delEmployee(E,T) ∧ member(M,E,W,Tpre) ∧ Tpre =T-1 ∧ time(T) 

 

HasRecruited 

hasRecruited(Rec,Mem,T) ← addHasRecruited(Rec,Mem,T2) ∧  

    ¬deletedHasRecruited(Rec,Mem,T2,T) ∧ 

T2≤T ∧ time(T) 

deletedHasRecruited(Rec,Mem,T1,T2) ← delHasRecruited(Rec,Mem,T) ∧  

T>T1 ∧ T≤T2 ∧ time(T1) ∧ time(T2) 
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addHasRecruited(Rec,Mem,T) ← newMember(Mem,Emp,WT,Rec,T) ∧ 

   employee(Emp,EmpName, Sal, Tpre) ∧  

workingTeam(WT,WTName,Tpre) ∧ Tpre = T-1 ∧ time(T) 

delHasRecruited(Rec,Mem,T) ← delMember(Rec,T) ∧  

hasRecruited(Rec,Mem,Tpre) ∧ Tpre =T-1 ∧ time(T) 

delHasRecruited(Rec,Mem,T) ← delMember(Mem,T) ∧  

hasRecruited(Rec,Mem,Tpre) ∧ Tpre =T-1 ∧ time(T) 

Constraints generated 

← newDept(D,N,Mi,Ma,T) ∧ newDept(D2,N2,Mi2,Ma2,T) ∧ D<>D2 

← newDept(D,N,Mi,Ma,T) ∧ newDept(D2,N2,Mi2,Ma2,T) ∧ N<>N2 

← newDept(D,N,Mi,Ma,T) ∧ newDept(D2,N2,Mi2,Ma2,T) ∧ Mi<>Mi2 

← newDept(D,N,Mi,Ma,T) ∧ newDept(D2,N2,Mi2,Ma2,T) ∧ Ma<>Ma2 

← removeDept(D,T) ∧ removeDept(D2,T) ∧ D <>D2 

← hire(E,N,S,D,T) ∧ hire(E2,N2,S2,D2,T) ∧ E<>E2 

← hire(E,N,S,D,T) ∧ hire(E2,N2,S2,D2,T) ∧ N<>N2 

← hire(E,N,S,D,T) ∧ hire(E2,N2,S2,D2,T) ∧ S<>S2 

← hire(E,N,S,D,T) ∧ hire(E2,N2,S2,D2,T) ∧ D<>D2 

← fire(E,T) ∧ fire(E2,T) ∧ E<>E2 

← newTeam(W,N,I,T) ∧ newTeam(W2,N2,I2,T) ∧ W<>W2 

← newTeam(W,N,I,T) ∧ newTeam(W2,N2,I2,T) ∧ N<>N2 

← newTeam(W,N,I,T) ∧ newTeam(W2,N2,I2,T) ∧ I<>I2 

← newMember(M,E,W,R,T) ∧ newMember(M2,E2,W2,R2,T) ∧ M<>M2 

← newMember(M,E,W,R,T) ∧ newMember(M2,E2,W2,R2,T) ∧ E<>E2 

← newMember(M,E,W,R,T) ∧ newMember(M2,E2,W2,R2,T) ∧ W<>W2 

← newMember(M,E,W,R,T) ∧ newMember(M2,E2,W2,R2,T) ∧ R<>R2 

← newDept(D,N,Mi,Ma,T) ∧ removeDept(D2,T) 

← newDept(D,N,Mi,Ma,T) ∧ hire(E,N2,S,D2,T)  

← newDept(D,N,Mi,Ma,T) ∧ fire(E,T)  

← newDept(D,N,Mi,Ma,T) ∧ newTeam(W,N2,I,T)  

← newDept(D,N,Mi,Ma,T) ∧ newMember(M,E,W,R,T)  

← removeDept(D,T) ∧ hire(E,N,S,D,T) 

← removeDept(D,T) ∧ fire(E,T) 

← removeDept(D,T) ∧ newTeam(W,N,I,T) 

← removeDept(D,T) ∧  newMember(M,E,W,R,T) 



 137 

← hire(E,N,S,D,T) ∧ fire(E2,T) 

← hire(E,N,S,D,T) ∧ newTeam(W,N,I,T) 

← hire(E,N,S,D,T) ∧  newMember(M,E2,W,R,T) 

← fire(E,T) ∧ newTeam(W,N2,I,T) 

← fire(E,T) ∧  newMember(M,E2,W,R,T) 

← newTeam(W,N,I,T) ∧ newMember(M,E,W2,R,T) 


