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Abstract 

Chromosomal inversions are structural variants where a segment 

changes its orientation. Chromosomal inversions reduce homologous 

recombination, producing different haplotypes in standard and inverted 

chromosomes. As a result, they influence adaptation and selection and 

play a role in susceptibility to human diseases.  

Inversions can be studied using experimental and bioinformatic methods. 

SNP array data can be used to call inversion genotypes by using 

haplotype differences between inverted and standard chromosomes. 

However, these methods are not optimized for large cohorts (thousands 

of individuals from existing databases such as dbGaP or UK Biobank). 

Also, current methods can only genotype inversions with two haplotypes 

and the inversion calling is difficult to be harmonized among cohorts. 

Finally, it is recognized that chromosomal inversions affect gene 

expression and DNA methylation. However, there are no accurate 

methods to globally assess the effect of inversions on local gene 

expression or DNA methylation. 

The main aim of this thesis is to develop new robust and scalable 

methods and bioinformatic tools to study the phenotypic and functional 

effects of chromosomal inversions by overcoming the existing 

limitations. To this end, I have developed a new method to genotype 

chromosomal inversions that can be used in large cohorts, inversions 

with multiple haplotypes and that uses reference haplotypes allowing 

the integrative analysis of multiple cohorts. Second, I have implemented 

a multivariate method based on redundancy analysis to study the effects 

of chromosomal inversions on local DNA methylation and gene 
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expression. Then, I applied both methods to study the role of 

chromosomal inversions in two groups of complex diseases: 

neurodevelopmental disorders and cancer. Finally, I developed a new 

method to study how chromosomal inversions affect recombination 

patterns. This method is extendable to any genomic regions containing 

subpopulations with different recombination patterns, allowing 

associating these subpopulations to phenotypic traits. 
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Resumen 

Las inversiones cromosómicas son variantes estructurales donde un 

segmento de ADN cambia su orientación. Las inversiones cromosómicas 

reducen la recombinación homóloga y producen diferentes haplotipos en 

los cromosomas estándar e invertidos. Como resultado, influyen en la 

adaptación y la selección y desempeñan un papel en la susceptibilidad a 

las enfermedades humanas. 

Las inversiones se pueden estudiar con métodos experimentales y 

bioinformáticos. Los datos de SNP array se pueden usar para determinar 

genotipos de inversión mediante el uso de diferencias de haplotipos 

entre cromosomas invertidos y estándares. Sin embargo, estos métodos 

no están optimizados para grandes cohortes (con miles de individuos, 

como dbGaP o UK Biobank). Además, los métodos actuales solo pueden 

genotipar las inversiones con dos haplotipos y la clasificación es difícil de 

armonizar entre cohortes. Finalmente, se conoce que las inversiones 

cromosómicas afectan la expresión génica y la metilación del ADN. Sin 

embargo, no existen métodos precisos para evaluar globalmente el 

efecto de las inversiones en la expresión génica local o la metilación del 

ADN. 

El objetivo principal de esta tesis es desarrollar nuevos métodos robustos 

y escalables así como herramientas bionformáticas para estudiar los 

efectos fenotípicos y funcionales de las inversiones cromosómicas, 

superando las limitaciones existentes. Con este fin, he desarrollado un 

nuevo método para genotipar las inversiones cromosómicas que se 

puede usar en grandes cohortes, con inversiones con múltiples 

haplotipos y que utiliza haplotipos de referencia que permite el análisis 
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conjunto de múltiples cohortes. En segundo lugar, he implementado un 

método multivariante basado en el análisis de la redundancia para 

estudiar los efectos de las inversiones cromosómicas en la metilación del 

ADN y la expresión génica locales. A continuación, he aplicado ambos 

métodos para estudiar el papel de las inversiones cromosómicas en dos 

grupos de enfermedades complejas: trastornos del neurodesarrollo y 

cáncer. Finalmente, he desarrollado un nuevo método para estudiar 

cómo las inversiones cromosómicas afectan los patrones de 

recombinación. Este método es aplicable a cualquier región genómica 

que contenga subpoblaciones con diferentes patrones de recombinación, 

lo que permite asociar estas subpoblaciones a rasgos fenotípicos. 



Preface | xiii 

Preface 

This thesis was written at Barcelona Institute for Global Health (ISGlobal), 

between September 2015 and January 2019, and it was supervised by Dr. 

Juan Ramon González. This work consists on a compilation of 4 scientific 

publications (1 published, 3 under review) co-authored by the PhD 

candidate. This is in agreement with the procedures of the PhD program 

in Biomedicine, organized by Department of Experimental and Health 

Sciences of the Universitat Pompeu Fabra.  

The present thesis contributed to: (1) develop new methods to study the 

phenotypic and functional effects of chromosomal inversions; (2) 

propose new associations between chromosomal inversions and human 

diseases; (3) study the effect of chromosomal inversions on 

recombination patterns; (4) open and discuss future research directions 

to study the phenotypic and functional effects of chromosomal 

inversions.  

 





 

 

Table of contents 

Acknowledgements ................................................................................... vii 

Abstract ...................................................................................................... ix 

Resumen ..................................................................................................... xi 

Preface ..................................................................................................... xiii 

1 General Introduction ......................................................................... 1 

Chromosomal inversions ....................................................................... 2 

Chromosomal inversions define different subpopulations ............... 4 

Methods to study chromosomal inversions .......................................... 7 

Direct methods .................................................................................. 8 

Indirect methods ............................................................................. 12 

Functional impact of chromosomal inversions .................................... 16 

Evolutionary biology ........................................................................ 16 

Human diseases ............................................................................... 17 

Functional genomics effects ............................................................ 19 

2 Datasets ........................................................................................... 21 

3 Hypotheses ...................................................................................... 25 

4 Objectives ........................................................................................ 29 

5 scoreInvHap: new method to genotype inversions ........................ 33 

6 Redundancy Analysis in omic datasets ............................................ 99 

7 Inversions and cancer prognosis ................................................... 147 



 

 

8 recombClust: inversions and recombination patterns .................. 189 

9 General Discussion ........................................................................ 243 

New methods to study chromosomal inversions .............................. 245 

scoreInvHap framework ................................................................ 245 

New applications of scoreInvHap framework ............................... 249 

Regional Omic Analyses ................................................................. 251 

Chromosomal inversions studied in this thesis ................................. 251 

New possible effects of chromosomal inversions ............................. 253 

recombClust ....................................................................................... 256 

10 Conclusions .................................................................................... 259 

List of abbreviations ............................................................................... 263 

References .............................................................................................. 267 

Annex I: PhD portfolio ............................................................................ 289 

 

 



 

 

 

1 General Introduction



 

2 | General Introduction 

Chromosomal inversions 

Chromosomal inversions are chromosomal rearrangements were a DNA 

sequence changes its orientation (Figure 1). They were discovered by 

Sturtevant in 1921 in Drosophila [1] and, since then, they have been 

found in all genomes, including mammals [2–5], insects [6–8]; plants [9] 

or bacteria [10]. We can describe inversions using different criteria. A 

classical criterion classifies inversions with respect the inclusion of the 

centromere in: pericentric, include the centromere; and paracentric, do 

not include the centromere (Figure 1). We can also classify inversions 

with criteria used for genetic variants: (1) polymorphic (common in the 

population) and sporadic (present in few related individuals); (2) 

recurrent (commonly appearing) and non-recurrent (rare and ancestral 

events); (3) germinal (heritable as it is present in germinal cells) and 

somatic (not heritable as it is not found in germinal cells).  

 

Figure 1: Chromosomal inversion classification with respect to centromere 
inclusion. First chromosome exemplifies the original sequence. Paracentric 
inversions do not include the centromere and preserve the chromosome 
shape. Pericentric inversions include the centromere and change the 
chromosome shape.  

Chromosomal inversions are commonly generated by Non-Allelic 

Homologous Recombination (NAHR) [11]. NAHR is a subtype of 

homologous recombination. Homologous recombination consists on the 

cross-over of homologous chromosomes and the exchange of genetic 
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content. Thus, homologous recombination generates new chromosomes 

containing a mixture of parental genetic content, increasing the genetic 

variability. In NAHR, the cross-over happens between two non-allelic 

regions. In order to generate a chromosomal inversion, NAHR should 

happen between two inverted segmental duplications (SD) of the same 

chromatid. Inverted SDs are regions with more than 90% sequence 

identity with opposite orientations. When inverted SDs produce a cross-

over and the cross-over is solved by NAHR, the region between the SDs 

changes its orientation generating a chromosomal inversion (Figure 2). 

This mechanism explains why we find a great number of inversions 

flanked by inverted SDs [12–14]. Other mechanisms to generate 

chromosomal inversions are methods to repair DNA such as Non-

Homologous End Joining (NHEJ) [15]; or Microhomology-Mediated Break-

Induced Replication Model (MMBIR) [16]. 

 

Figure 2: Chromosomal inversion generation by NAHR. Two proximal inverted 
segmental duplications (SD) can produce a cross-over. The cross-over 
resolution by NAHR results in the change of orientation of the region between 
the SD. Adapted from [17] 
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Chromosomal inversions define different subpopulations 

Chromosomal inversions affect homologous recombination in meiosis. 

During meiosis, sister chromosomes cross-over between homologous 

regions. If an individual has an inversion in only one chromosome (i.e. it 

is inversion heterozygous), the inversion region cannot properly pair. 

Consequently, one chromosome should twist to pair the other 

chromosome, resulting in the formation of an inversion loop [18]. The 

inversion loop pairs the inversion region of both chromosomes, but the 

chromosomes generated by homologous recombination typically contain 

aberrations. In paracentric inversions, one recombinant has a deletion in 

the inversion region and the other has a deletion in the terminal region 

(Figure 3). For pericentric inversions, the recombinant chromosomes 

have the same terminal region in both extremes (Figure 4). These 

aberrant chromosomes lead to non-viable zygotes, so we observe a 

reduction of standard and inverted recombinants in the global 

population.  
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Figure 3: Meiosis in individuals heterozygous for paracentric inversions. 
Recombinant chromosomes results in a chromosome without centromere 
(acentric) and a chromosome with two centromeres due to a di-centric bridge. 
The acentric chromosome is lost during division and the breakage of the 
dicentric breaks results in two chromosomes containing deletions (Original-
Locke-CC:AN). 
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Figure 4 Meiosis in individuals heterozygous for pericentric inversions.  
Recombinant chromosomes have two copies of one telomeric region (A and D 
in the figure) and no copies of the other. (Original-Locke-CC:AN) 

As inversion recombinants are reduced, there is no genetic exchange 

between standard and inverted chromosomes. Thus, standard and 

inverted chromosomes can be considered two isolated populations that 

evolve independently. Populations that evolve independently 

accumulate different alleles and have different allele combinations. This 

hypothesis has been tested in inv8p23.1, a human chromosomal 

inversion in chromosome 8, where standard and inverted chromosomes 

have different mutations [19] and different allele combinations reflected 

in the recombination patterns [20]. 
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Methods to study chromosomal inversions 

There are different experimental and bioinformatic methods to study 

chromosomal inversions, which can be grouped in direct and indirect 

methods. Direct methods are based on detecting changes in the DNA 

sequence and follow three main strategies: microscopy, molecular 

biology and sequencing (Table 1). Indirect methods search signatures on 

the DNA sequence generated by the inversion, such as extended 

haplotypes or perturbations of linkage disequilibrium (LD) patterns 

(Table 2). 

Table 1: Summary of direct methods to study chromosomal inversions. General 
methods can discover new inversions while targeted can only genotype 
previously known inversions.  

Method Type Strengths Limitations 

Microscopy    

  G-banding General Good accuracy 
Low throughput 
Restricted to big 
inversions 

  FISH Targeted Good accuracy 
Low throughput 
Restricted to big 
inversions 

Molecular 
biology 

   

  PCR Targeted 
High throughput 
Good resolution 

Fail for inversions 
flanked by large 
segmental duplications 

  Optical 
mapping 

General Good resolution Low throughput 

Sequencing    

  Paired-End  General High throughput 

Restricted to small 
inversions 
Fail for inversions 
flanked by large 
segmental duplications 

  Long reads General Good resolution Cost 

  Strand seq General Good resolution Cost 
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Table 2: Summary of indirect methods to study chromosomal inversions. 
General methods can discover new inversions while targeted can only 
genotype previously known inversions.  

Direct methods 

MICROSCOPY 

In microscopy methods, chromosomes are stained and observed with the 

microscope. Then, the presence of an inversion is detected due to 

changes in the expected staining pattern. There are two main staining 

methods: Giemsa and fluorescence in situ hybridization (FISH). Staining 

by Giemsa generates bands on the chromosomes, called G-banding 

karyotype, which are specific of each chromosome. Large chromosomal 

inversions affect G-banding karyotype, so alterations in the G-banding 

karyotype can be used to detect chromosomal inversions [21, 22]. FISH 

consists on designing fluorescent probes complementary to a genomic 

region. FISH can be used to detect chromosomal inversions using two 

Method Type Strengths Limitations 

Haplotypes    

  Tag SNPs Targeted 
Reuse data 
Enable association 
studies 

Restricted to 
polymorphic and non-
recurrent inversions  
Sensitive to genotyping 
errors 

  Clustering Targeted 
Reuse data 
Enable association 
studies 

Restricted to 
polymorphic and non-
recurrent inversions  
Classification is not 
standard  

LD patterns 
alteration 

   

  inveRsion General 

Discovery of 
candidate regions 
harboring 
inversions 

Restricted to 
polymorphic and non-
recurrent inversions 
Low accuracy of 
individual classification  
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probes with two different colors in two alternative configurations  

(Figure 5): (1) both probes are placed inside the inversion region and we 

check their orientation with respect to the chromosome [23]; (2) one 

probe is placed inside and the other outside the inversion region and we 

check the distance between the probes [24]. 

 

Figure 5: Design of FISH probes to detect chromosomal inversions. 
Chromosomes containing the inversion are marked with an arrow. A) Two 
probes placed inside the inversion region. We observe a change of order of the 
probes in the inverted chromosomes. B) One probe inside the inversion. We 
observe that probes are separated in standard chromosomes and close in 
inverted chromosomes. Adapted from [2] 

These techniques differ in their application, as G-banding karyotype can 

discover new inversions while FISH can only test the presence of a 

previously defined inversion in an individual. Thus, these techniques are 

complementary, using G-banding to define the inversion region and FISH 

to confirm the inversion status of the individuals. These methods are 

very accurate to genotype inversions so they are used in the clinical 

setting to diagnose inversions in patients [23, 24]. However, they have 

very low resolution and they are restricted to large inversions, in the 

order of megabases. In addition, these techniques are not scalable to 

infer chromosomal inversions in cohorts, preventing their use in 

association studies.  
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MOLECULAR BIOLOGY 

Molecular biology techniques are used to manipulate and study DNA 

molecules. Two molecular biology techniques can be used to infer the 

inversion status of an individual: polymerase chain reaction (PCR) and 

optical mapping. PCR amplifies a DNA segment enclosed by primers, 

short sequences designed by the user. PCR can be used to detect 

inversions by designing primers around an inversion breakpoint for 

standard and inverted chromosomes. PCR only amplifies short fragments 

(around 1Kb), so primers designed for standard chromosomes only work 

in standard chromosomes and the same apply for inverted 

chromosomes. Thus, homozygous standard individuals only amplify the 

fragment of standard primers, homozygous inverted individuals only 

amplify the fragment of inverted primers and inversion heterozygous 

amplify both fragments [8, 25, 26]. Inversion PCR (iPCR), a modification 

of basic PCR, was designed to improve chromosomal inversions detection 

[27]. In optical mapping, DNA strands are stretched and cut using a 

restriction enzyme. Then, the length of the resulting DNA fragments is 

measured to create a restriction map (Figure 6). Inversions produce the 

reversion of fragment lengths in a region, so this alteration in fragment 

lengths can be used to detect inversions. This approach has been 

extensively used in bacteria [10, 28, 29]. 
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Figure 6: Optical mapping explanation. From Fong Chun Chan and Kendric 
Wang [30] 

Molecular biology techniques have higher resolution and can detect 

short inversions, in the order of kilobases. PCR is cheap so it is potentially 

scalable to genotype inversions with known breakpoints. However, PCR 

does not work for inversions surrounded by segmental duplications 

larger than the segment amplified by PCR. On the other hand, optical 

mapping can be used for inversion discovery and it is not affected by 

segmental duplications but it is not scalable to its use in large cohorts.  

SEQUENCING 

Finally, some sequencing methods, i.e. techniques to get the DNA 

sequence of an individual, can also be used to detect inversions. The 

most common sequencing technique is paired-end sequencing. In pair-

end sequencing, the DNA is broken in short fragments of 350-500 bp 

(base pairs) and we get the sequence of the fragments ends. These short 

sequences, called reads, measure between 100-150 bp and are mapped 

to a reference genome. In regions where our sample genome is equal to 

the reference genome, reads are mapped in a distance close to the DNA 

fragment and in opposite strands. If this region contains an inversion, 
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both reads will be mapped to the same strand and to a distance higher 

than the DNA fragment. Different software tools detect anomalies in 

read mapping to infer structural variants including inversions. For 

instance, Delly [31], Pindel [32] and SoftSV [33] have been used to detect 

inversions in humans [34, 35], highlighting the structural variant calling in 

the 1000 Genomes Project [36]; and in other species [37, 38]. In the 

recent years, a new generation of sequencing methods fragments the 

DNA in bigger fragments (50-80 Kb). These methods improve the 

detection of structural variants [39] and a algorithm (VALOR: variation 

using long range information) has been specifically designed to detect 

chromosomal inversions from this data [40]. Finally, a technique based 

on sequencing single chromatid strands (strand-seq or single-cell DNA 

template strand sequencing) has also been applied to detect human 

chromosomal inversions [41]. 

Paired-end sequencing can be used to genotype large cohorts and this 

data is available for a big number of public studies. However, paired-end 

sequencing can only detect short inversions, as it is limited by the short 

DNA fragments. In addition, paired-end sequencing cannot detect 

inversions flanked by inverted repeats larger the DNA fragments. The 

other two methods seem promising tools, but their cost might be still 

high for their application in association studies.  

Indirect methods 

Indirect methods use the effects of chromosomal inversions on genetic 

sequence to genotype chromosomal inversions. Indirect methods follow 

two strategies: search differences in mutation content or perturbation of 

linkage disequilibrium patterns.  
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MUTATION CONTENT  

Different bioinformatics methods exploit differences in mutation content 

to genotype chromosomal inversions. The simplest approach is searching 

for a variant having different alleles in standard and inverted 

chromosomes. The more commonly used variants are Single Nucleotide 

Polymorphism (SNPs), variants of one base with a frequency higher than 

1% in the population. A SNP that differentiates standard and inverted 

chromosomes is called a tag SNP for this inversion. Tag SNPs have been 

used to study the human inversions inv17q21.31 [42, 43], inv8p23.1 [23], 

inv19p12 [44] and inv16q23.1 [45], as well as to infer inversion 

frequencies in pool sequencing in Drosophila melanogaster [46, 47]. 

Nonetheless, this approach has two main drawbacks: (1) the correlation 

between the inversion and the tag SNP might be weaker when more 

individuals are considered [2]; (2) tag SNPs might be only tag the 

inversion in a given population. 

Clustering methods are an extension of tag SNPs. Clustering methods run 

a reduction of dimensionality technique (e.g. Principal Component 

Analysis -PCA- or MultiDimensional Scaling -MDS-) on the all the SNPs 

included in the inversion. If standard and inverted chromosomes differ in 

their mutation content, a PCA/MDS generates three clusters in the first 

two components of the inversion region SNPs. These clusters map to 

inversion genotypes, with the side clusters having inverted and standard 

homozygous and the middle cluster the inversion heterozygous, as they 

are a 1:1 mixture of inverted and standard homozygous. This method 

was theoretically defined by Ma and Amos [48] and implemented in a set 

of R scripts called PFIDO (phase free inversion detection operator) [19]. 

PFIDO was optimized for the human inversion inv8p23.1 and included all 

the steps, from running a MDS on SNP genotypes to apply the clustering. 
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A similar algorithm was later implemented in the R package invClust [49], 

which can also account for individuals' genetic ancestry, a factor that 

confounds the clustering.  

Clustering methods are readily applicable to hundreds of samples and 

can reuse SNP data from previous Genome Wide Association Studies 

(GWAS), i.e. studies associating hundreds of thousands of SNPs to a 

disease or phenotype. Therefore, clustering methods have been 

successfully used in different association studies in humans [49, 50]. 

Nonetheless, clustering methods have some limitations. First, clustering 

methods are restricted to polymorphic and non-recurrent inversions with 

differentiated haplotypes. Second, some inversions generate more than 

three clusters, such as the human inversion inv16p11.2 [51] or the zebra 

finch inversion TguZ [52], violating one assumption of the clustering 

methods. Third, clustering methods require an external validation to map 

the individual clusters to the real inversion genotypes, requiring further 

harmonization steps in multi-centric studies. Finally, existing clustering 

methods are not computationally efficient to be used in cohorts with 

thousands of individuals. 

LINKAGE DISEQUILIBRIUM PATTERNS ALTERATION 

Another approach to detect inversions is searching for perturbations in 

the linkage disequilibrium (LD) patterns. LD is the non-random 

association between the alleles of a pair of SNPs. LD is inversely 

associated with recombination rates, as homologous recombination 

shuffles the alleles, and with the distance between SNPs, as closer SNPs 

have less points of homologous recombination. If there is an inversion, 

close SNPs in the reference genome are distant in the inverted 

chromosomes while distant SNPs in the reference genome are close in 
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the inverted. Thus, if we define four SNP blocks around the inversion 

breakpoints (Figure 7): 

 Standard chromosomes: LD between blocks around the same 

breakpoint is high and low between blocks of different 

breakpoints 

 Inverted chromosomes: the LD between blocks around the same 

breakpoint is low and high between blocks of different 

breakpoints. 

The inversion model [53] states that, if a population contains a 

polymorphic inversion, the population LD between blocks can be 

modeled as a mixture of standard and inverted subpopulations. The 

inversion model was implemented in inveRsion, a R package that scans 

the genome to detect regions potentially containing inversions [54] and 

used to define chromosomal inversions in cod [55–57]. However, 

inveRsion has low accuracy genotyping individuals. Finally, notice that no 

method uses differences in recombination patterns between inverted 

and standard chromosomes to detect inversions. 
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Figure 7: inversion model based on linkage disequilibrium alterations. bp1 and 
bp2 represent the inversion breakpoints. The arrows indicate the orientation 
of the inversion fragment with respect the reference genome. A, B, C and D are 
the four blocks of SNPs defined by the inversion model. In the standard 
chromosomes, A and B are close and A and C are distant. Thus, LD between A 
and B is high and while LD between A and C is low. In inverted chromosomes, 
A and B are distant while A and C are close. Thus, LD between A and B is low 
while LD between A and C is high.  

Functional impact of chromosomal inversions 

Evolutionary biology 

Chromosomal inversions have been traditionally considered as 

recombination modifiers in evolutionary biology as they reduce 

heterozygous recombinants. Chromosomal inversions influence three 

evolutionary phenomena (reviewed by Kirkpatrick in [58] and [59]):  

(1) adaptation, (2) speciation and (3) formation of sexual chromosomes.  

Chromosomal inversions encapsulate alleles associated with adaptation 

in the different chromosome configurations. Thus, good allelic 

combinations fostering adaptation to different environments are 

preserved from recombination. The role of chromosomal inversions in 

adaptation has been described in honeybees [60] and monekyflowers 

[61] and in the climatic clines of Drosophila melanogaster [47].  
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Chromosomal inversions can capture and generate genes producing 

reproductive isolation and they prevent the breakage of gene 

combinations producing reproduction isolation. Eventually, this process 

leads to the formation of different species. Speciation due to 

chromosomal inversions has been proposed as a theoretical model [62], 

and as the mechanism of the differentiation between Drosophila 

persimilis and Drosophila pseudoobscura [63] and the reproductive 

isolation in Boechera stricta [64]. 

Finally, mammal sexual chromosomes were generated due to 

chromosomal inversions [65]. Ancestrally, sex was not defined by 

chromosome content. One chromosome accumulated male-specific 

genes (proto Y).  Different chromosomal inversions in proto Y captured 

these genes to reduce recombination with proto X. Finally, there was 

almost no recombination between proto X and proto Y and proto Y 

accumulated mutations and degraded to form current Y chromosome. 

Human diseases 

Chromosomal inversions can participate in human diseases through 

three mechanisms: (1) generation of new DNA sequences; (2) influencing 

NAHR; (3) or through haplotypic differences.  

A chromosomal inversion can break an existing gene or create a new 

fusion gene. In both cases, chromosomal inversions have a big impact on 

fitness and inversions that produce these changes tend to be rare. On 

one hand, chromosomal inversions that disrupt genes are associated 

with Duchenne muscular dystrophy and mental retardation [66], 

Hermansky-Pudlak syndrome [67], haemophilia A [26, 68], 

phosphoglucomutase 1 deficiency [69] or intellectual disability [70].  On 

the other hand, chromosomal inversions that create new fusion genes 

are associated with cancer susceptibility and progression [71–77], 
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highlighting a recurrent inversion in chromosome 16 that defines a 

subtype of leukemia (see a revision in [78]). 

Chromosomal inversions modify NAHR in the inversion region. On one 

hand, inversion heterozygous might favor some rearrangements 

between inverted and standard chromosomes during meiosis that are 

not possible in homozygous standard or inverted individuals. These 

rearrangements typically consist on deletions that are transmitted from 

inversion heterozygous parents to their children. Different chromosomal 

inversions are associated with diseases through this mechanism, such as 

inv17q21.31 and 17q21.31 microdeletion syndrome [79], 7q11.21 and 

Williams syndrome [80, 81], 15q11.13 and Angelman syndrome [82], 

5q35 and Sotos syndrome [83] or inv8p23.1 and developmental delay 

and congenital heart effects [84]. On the other hand, chromosomal 

inversions block NAHR between sister chromosomes in mitosis. In 

mitosis, NAHR between sister chromosomes can produce a region of loss 

of heterozygosity (LOH), where both chromosomes have the same 

genetic content. This mechanism can recover a mutation causing a 

disease that is only present in one of the chromosomes. Mutations 

producing severe congenital ichthyosis can be reverted through this 

mechanism, thus, inversions heterozygous have worse prognosis for this 

disease [24]. 

Finally, inverted and standard chromosomes have different alleles which 

modify the susceptibility of suffering a disease. For instance, haplotypes 

in inv8p23.1 are associated with system systematic lupus [85, 86], 

neuroticism [50], autism [87], schizophrenia [87] and underweight [49]; 

haplotypes in inv17q21.31 are associated with Parkinson [88–91], 

neurodegenerative tauopathies [42, 92], Alzheimer [93], neuroticism 

[50], autism [87], schizophrenia [87] and response to corticosteroids [94]; 
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haplotypes in inv16p11.2 are associated with asthma and obesity [51] 

and haplotypes in inv16q23.1 are associated with chronic pancreatitis 

[45]. 

Functional genomics effects 

Omic data consists on biological measures reflecting the state of a tissue.  

Omic data is useful to propose mechanisms to explain the effect of 

genetic variants on phenotypic traits. Two common omic data are 

becoming routinely assessed in genetic studies: (1) transcriptomic that 

measures the expression of all the genes in a tissue or cell; (2) 

epigenomics that measures DNA methylation, that is, whether cytosines 

in CG pairs (CpG) contain a methylation group. DNA methylation is an 

epigenetic mechanism, i.e. chemical DNA modifications that influence 

gene regulation.  

Polymorphic chromosomal inversions affect both transcriptome (gene 

expression) and epigenome (DNA methylation). Different polymorphic 

inversions have been associated with changes in gene expression in 

humans. The clearest example is inv17q21.31, which affects the 

expression of genes located in the inversion region in blood [42, 95, 96] 

and brain [89, 95, 97–100]. This inversion has also trans-effects in blood 

[42]. Other inversions affecting local gene expression in blood or 

lymphoblastoid lines are inv8p23.1 [23], inv16p11.2 [51] and inv19p12 

[44]. Inversion inv16q23.1 affects regional gene expression in pancreatic 

tissue or acinar cells. Regarding DNA methylation, inv17q21.31 has been 

associated with changes in regional and global DNA methylation in blood 

[42]. 

Studies associating chromosomal inversions with omic data have some 

limitations. First, most studies genotyped inversions using tag SNPs, a 

technique sensitive to discrepancies between a single allele and the 
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inversion status. Second, the analyses were conducted associating each 

gene or CpG to inversion genotypes and they do not provide an overall 

estimate of the effect of chromosomal inversions in the inversion region. 

Therefore, a new approach is required to overcome these limitations.  



 

 

2 Datasets
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This thesis has been carried out using data from publicly available 

projects. In the following lines, I will briefly describe these projects. 

1000 GENOMES 

The goal of the 1000 Genomes project was finding the genetic variation 

present in different human worldwide populations [101]. To this end, 

they included 2,504 individuals from 26 populations from 5 continental 

groups (Africa, Europe, East Asia, South Asia and America). They included 

these 26 populations to have a good representation of global human 

variation, to have power to detect rare variants and prioritizing 

populations already included in genetic studies. They extracted blood 

samples to produce lymphoblastoid cell lines and they applied three 

genotyping techniques: (1) low coverage whole genome sequencing; (2) 

deep exome sequencing and (3) SNP arrays. From these data, they 

detected 88 million variants, including 84.7 million SNPs, 3.6 million 

indels (short insertion and deletions) and 60 thousand structural variants. 

All these variants were phased using data from first degree-relatives. The 

1000 Genomes project produced a global overview of human genetic 

variation and has provided reference haplotype to impute SNPs, which 

has increased the power in GWAS. In addition, the project cell lines are 

available to apply other genotyping techniques, such as those previously 

described to study chromosomal inversions.  

THE CANCER GENOME ATLAS  

The goal of The Cancer Genome Atlas (TCGA) was to characterize the 

genetic and molecular changes associated with cancer. TCGA was a 

collaborative project between two US institutions: National Cancer 

Institute (NCI) and National Human Genome Research Institute (NHGRI). 

TCGA studied 33 types of cancer from more than 11,000 patients from 
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USA and Canada. Samples were provided by collaborating hospital and 

research centers. Inclusion and exclusion criteria varied depending on 

the cancer study but all individuals had, at least, one tumor tissue sample 

and one normal tissue sample, either from blood or from the same 

tumor tissue. TCGA generated six different omic data types: (1) SNP 

arrays, used to measure SNPs, CNVs (Copy Number Variants) and LOH 

(Loss of Heterozygosity); (2) DNAseq, DNA sequencing to detect 

mutations and structural variants; (3) RNAseq, gene expression 

measured using sequencing; (4) miRNAseq, miRNA measured using 

sequencing; (5) DNA methylation using microarray; (6) Reverse-phase 

protein array (RPPA), measure of protein expression. TCGA project has 

provided new insights in cancer biology and a better definition of cancer 

subtypes using molecular markers [102].  

THE GENOME-TISSUE EXPRESSION  

The Genome-Tissue Expression (GTEx) project, lead by the US National 

Institute of Health (NIH), aims to associate genetic variants with gene 

expression in different tissues. GTEx includes data from 714 donors, 

recently died people who donated tissues for the project, recruited in 

different American centers [103]. Donors having cancer, drug abuse, 

recent infectious diseases or other medical conditions were excluded 

from the analyses. Each donor contributed with 53 different tissues that 

resulted in 10,361 total tissue samples, after removing samples with low 

RNA quality or histological alterations. Genotypes and gene expression 

data from GTEx is publicly available allowing novel analyses of the 

genetic regulation of gene expression.  
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PUBLIC REPOSITORIES 

I have also used other genetic data from two public repositories: dbGAP 

(Database of Genotypes and Phenotypes) and EGA (European Genome 

Archive). Both repositories are databases of genetic and phenotypic data, 

containing data from previously published GWAS. Although their main 

focus is on genetic data (SNP array or sequencing data), they also contain 

gene expression or DNA methylation data. dbGAP belongs to the US NIH 

and contains 1,178 studies, while EGA belong to EBI (European 

Bioinformatic Institute) and CRG (Centre for Genomic Regulation) and 

hosts 1,735 studies. 



 

 

 

3 Hypotheses
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Chromosomal inversions inhibit recombination in heterozygous 

individuals. Consequently, standard and inverted chromosomes evolve 

independently and accumulate genetic differences. We can use these 

differences to infer inversion status in large cohorts. In addition, standard 

and inverted chromosomes also differ in their recombination patterns, 

information that can also be used to call inversion genotypes.  

Chromosomal inversions influence gene regulation in the inversion 

region. In particular, they modify gene expression and DNA methylation 

in different tissues. Changes in the transcriptome and epigenome are 

associated with phenotypic variability. Therefore, chromosomal 

inversions can play a role in complex diseases such as cancer or 

neurodevelopmental disorders among others. 
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The aim of the thesis is to develop new robust and scalable methods and 

bioinformatic tools to investigate the phenotypic and functional 

consequences of chromosomal inversions. I also aim to elucidate the role 

of chromosomal inversions in complex diseases by using these new tools. 

Therefore, the specific objectives of this thesis are: 

 Objective 1: to improve detection of chromosomal inversions

using genotype data allowing the analysis of inversions with

multiple haplotypes and the analysis of multiple studies on the

same disease.

 Objective 2: to develop a method to study how chromosomal

inversions changes methylation or gene expression in the

inversion region

 Objective 3: to associate chromosomal inversions with complex

diseases, in particular, neurodevelopmental disorders and cancer

 Objective 4: to study the effect of chromosomal inversions on

recombination patterns





5 scoreInvHap: new 
method to genotype 
inversions
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In this chapter, I describe scoreInvHap, a new method to genotype 

chromosomal inversion based on SNP data. scoreInvHap can use data 

from different sources (Whole genome sequencing or WGS, SNP 

microarray, exome sequencing) and easily harmonizes classification 

between datasets. Consequently, scoreInvHap can be applied in multi-

center studies to elucidate the effect of chromosomal inversions on 

complex diseases.  

Ruiz-Arenas C, Cáceres A, López-Sánchez M, Tolosana I, Pérez-
Jurado L, González JR. scoreInvHap: Inversion genotyping for 
genome-wide association studies. PLoS Genet. 2019 Jul 1;15(7). 
DOI: 10.1371/journal.pgen.1008203

https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008203
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Supplementary Dataset 

scoreInvHap_Sup_Dataset.csv: Inversion genotypes of the 20 inversions 

included in scoreInvHap for the European individuals of 1000 Genomes. 

Available under request. 





6 Redundancy Analysis in 
omic datasets
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In this chapter, I describe the implementation of Redundancy Analysis to 

omic data in MEAL. With MEAL, we can obtain a global estimate of the 

association between DNA methylation or gene expression and 

chromosomal inversions in the inversion region.  

Redundancy Analysis allows improved detection of 

methylation changes in large genomic regions

Ruiz-Arenas C, González JR. Redundancy analysis allows improved 

detection of methylation changes in large genomic regions. BMC 

Bioinformatics. 2017 Dec 14;18(1). DOI: 10.1186/

s12859-017-1986-0

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1986-0


7 Inversions and 
cancer prognosis
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In this chapter, I associate two common inversions (inv17q21.31 and 

inv8p23.1) to cancer prognosis in TCGA and I use omic data to propose a 

biological mechanism linking the inversion to cancer prognosis.  

Common polymorphic inversions at 17q21.31 and 

8p23.1 associate with cancer prognosis 

Ruiz-Arenas C, Cáceres A, Moreno V, González JR. 
Common polymorphic inversions at 17q21.31 and 
8p23.1 associate with cancer prognosis. Hum 
Genomics. 2019 Nov 21;13(1). DOI: 10.1186/
s40246-019-0242-2

https://humgenomics.biomedcentral.com/articles/10.1186/s40246-019-0242-2




8 recombClust: inversions 
and recombination 
patterns
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In this chapter, I present recombClust, a method to partition 

chromosomes by recombination patterns. I apply recombClust to 

chromosomal inversions to study whether recombination patterns differ 

between inverted and standard chromosomes, both in simulated 

inversions and in two common human inversions (inv17q21.31 and 

inv8p23.1).  

Identification of chromosome subpopulations by 

recombination differences 

Authors: Carlos Ruiz-Arenas, Alejandro Cáceres, Marcos López, 

Josefa González, Juan R. González 

(In preparation) 



192 | recombClust 

Abstract 

Chromosomal subpopulations are characterized by specific mutation 

content or by singular allelic combinations of common variants. While 

mutation-based methods are typically used to infer the genetic 

substructure in a population, methods based on allelic combinations 

remain to be proposed. We developed recombClust, a method that uses 

SNP data to classify chromosomes according to their recombination 

patterns within a genomic region. We showed that recombClust is able to 

identify chromosomes with an inverted region under multiple ancestries. 

We used recombClust to detect and validate a recombination 

substructure leading to four distinct chromosome groups within 1q21.1, 

the largest genomic region associated to breast cancer. We observed 

that the four chromosome alleles associated with the gene expression of 

multiple genes across numerous tissues, and that one chromosome allele 

associated stronger to breast cancer than any of the SNPs in the region. 

Our results showed that the chromosome substructure that is associated 

to differences in allele combinations can help to explain functional and 

phenotypic differences between individuals.  
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Introduction 

Chromosomal subpopulations emerge when differences in mutation 

content or in allele combinations accumulate. Both types of genetic 

differences have been widely observed in species from different taxa, 

including humans [101, 176], Drosophila melanogaster [177, 178] or 

maize [179, 180]. Content differences are acquired by subpopulations’ 

divergence in mutation quantity and frequency [101] while differences in 

allele combinations are derived by variations in the recombination 

patterns between common mutations [176]. Specific mutations and 

allele combinations can segregate within chromosomal segments that 

are affected by structural variants, like translocations and inversions, as 

they block recombination when heterozygous [181]. As such, differences 

in both mutation content and allele combinations can be intertwined as 

shown, for instance, for the human inversion at 8p23.1 [19, 20], 

challenging the assessment of their relative contributions to 

subpopulation differences. A problem that is primarily challenged by the 

lack of specific methods to infer chromosome subpopulations from 

differences in allele combinations. 

Chromosomal subpopulations generate large phenotype diversity helping 

adaptation [55, 56, 104, 182, 183]. Subpopulations are typically detected 

by their differences in mutation content. A common approach is to 

perform reduction of dimensionality analyses, such as multidimensional 

scaling (MDS) or principal component analysis (PCA), on single nucleotide 

polymorphisms (SNPs) to identify clusters in the population. The 

approach is extensively used on genome-wide data to define human 

ancestry [184] as well as to infer chromosomal subpopulations 

associated with the inversion of a genomic region [48]. By contrast, 
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detection of population substructure based on differences in 

recombination patterns has not yet been performed. Therefore, in this 

work we propose a method lo leverage differences in recombination 

patterns within a genomic region to classify chromosomes into groups. 

The method, recombClust, comprises two steps. First, it detects the 

presence of points in a chromosome segment where only a fraction of 

chromosomes recombined and, second, it tests whether the observed 

chromosome groups are consistent across the detected points. We thus 

demonstrate that chromosomal subpopulations that differ in allelic 

combinations can be identified from differences in recombination 

patterns, given by different recombination points, and offer the method 

as a computationally efficient tool, compatible with Bioconductor’s 

packages and implemented for usual data formats, such as the variant 

call format (VCF). 

We tested the performance of the method with numerous simulations. 

In particular, we applied the method on simulated regions with 

chromosomal inversions, using the coalescent simulator invertFREGENE 

[109], to demonstrate that recombClust correctly detects inversion status 

from recombination patterns. We then used recombClust, on SNP data 

from the 1000 Genomes Project [185], to compare the calling from 

recombination patterns and from mutation differences of the well 

characterized human inversions at 8p23.1 and 17q21.31. Finally, we also 

applied recombClust to reveal a recombination substructure within 

1q21.1, the largest region associated with breast cancer observed in a 

large genome-wide association study (GWAS) meta-analysis [186], and 

we studied the functional and phenotypic associations of the underlying 

chromosomal subpopulation.     
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Material and Methods 

recombClust description 

We proposed a method to classify chromosomes according to the allele 

combinations that are allowed by different recombination patterns. 

Consider a situation where two recombination patterns are latent in the 

chromosome population generating two chromosome subpopulations in 

a given genomic region (Figure 1). A first subpopulation of chromosomes 

comprises those that have recombined at any of three given points 

within the region, and a second subpopulation comprises those that have 

recombined at any of two other points. In this case, we can see, for 

instance, that while two specific haplotypes G1 and H1 are compatible 

with the recombination pattern 1, they are maximally different in 

mutation content at each variant. In addition, H1 is more similar in 

mutation content to H2 than G1 is to H1, despite H1 and H2 belonging to 

different recombination subpopulations. In this work, we proposed the 

method recombClust that first identifies points in a genomic segment in 

which only a fraction of chromosomes have recombined and, second, it 

computes a consensus  classification of chromosomes across all detected 

points, separating the population of chromosomes according to different 

recombination patterns along the segment.     
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Figure 1: Representation of two chromosomal subpopulations with different 
recombination patterns in a genomic segment. Lines represent the possible 
chromosomes present in population 1 (blue) and population 2 (red). Each SNP 
has two alleles (A and B) and is labeled with a number. Recombination points 
are placed between SNPs where A and B alleles are joined by a line. G1 and H1 
are two possible chromosomes from population 1 and H2 is one of the possible 
chromosomes from population 2. The dotted box contains a recombination 
point present in population 1 but not in population 2.  
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Detection of recombination points in chromosome 

subpopulations.  

The first step of recombClust is the identification of points where only a 

fraction of chromosomes have recombined. Recombination breaks the 

linkage disequilibrium (LD) between a pair of genetic markers. However, 

recombination may be restricted between subpopulations of 

chromosomes in a given genomic region, for instance, by the presence of 

a chromosomal rearrangement that suppresses the recombination with 

the chromosomes that do not have it. In those situations, different 

recombination points may arise at different locations in each 

subpopulation, where the LD of variants across the point may be 

completely broken in one subpopulation while remaining high for the 

other. Therefore the entire population across such recombination points 

is a mixture of chromosomes, some with very high LD and others with 

very low LD.  

Using SNP phased data, we can detect the presence of a recombination 

point for only a subpopulation of chromosomes, modeling the likelihood 

that the subpopulation highly recombined at the point (recomb) while 

the rest remained in complete LD (linkage) (Figure 2A). The likelihood is 

given by a mixture of two latent chromosome subpopulations (A and B). 

In the first subpopulation, we model the existence of a recombination 

point that lies in the sequence interval between a pair of SNP blocks  

(i=1, 2) of length  . Phased SNP alleles are encoded by 0 or 1, the 

haplotype of a chromosome at block i is a random variable denoted 

          and the haplotype of the joint blocks is the random variable 

given by the concatenation of the block variables          . Under 

this model, the recombination completely breaks the LD between the 
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SNP blocks  

(r2 = 0) in the recomb subpopulation and therefore    and    are 

statistically independent. Therefore, the probability that a chromosome 

is observed with haplotype     in a population under recombination is: 

                       
                        

(1) 

given the haplotype frequencies    and   . 

For the second chromosome subpopulation, we consider that there is no 

recombination and we model the SNP blocks to be in complete LD (r2 = 

1). For the chromosomes in the linkage subpopulation,    and    are 

completely linked.    can be unambiguously mapped to    (       ). 

Under this model, the probability of observing haplotype     is: 

 
                       

                   

           
  (2) 

where   are the frequencies of   .  

We define the mixture model with two components, following equations 

(1) and (2). The model represents a chromosome population with a 

mixture of recomb and linkage subpopulations with proportion  . We 

therefore assume that the probability of observing a chromosome with 

haplotype     is 

                              

                        
                             

(3) 

where    and    are the frequencies of haplotypes    and    in the 

recomb subpopulation,    is the haplotype frequencies of    in the 

linkage subpopulation, where   is the function linking    to   .  

Given a set of   independent chromosomes (        ), we denote 

the random variable for the joint blocks over all chromosomes as 
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   and therefore the likelihoods of observing the 

data     under the recomb, linkage and mixture models are: 

 
                               

     
        

 

   

 (4) 

 

                           

 

   

    
     

        (5) 

                           

          

 

   

    
     

                
(6) 

We use the estimated models’ likelihoods to test whether the mixture 

model is the best fit to the data and thus to detect the presence of a 

recombination point in a subset of chromosomes. The parameters for the 

recomb and linkage models are estimated by a maximum likelihood. In 

particular,   ,    and   are determined by their empirical frequencies. 

The function   is defined using a greedy algorithm which sequentially 

pairs each observed   , in decreasing order by their frequency, with the 

   for which the observed frequency of     is maximum and has not 

been previously paired.  
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Figure 2: RecombClust definition. A) Recomb-mixture model definition. Colors 
represent two main haplotypes. In the chromosome subpopulation on the left, 
there is recombination between the blocks, and chromosomes have all 
possible allele combinations between the SNP blocks (illustrated in 
geometrical figures). Whereas, for the population on the right, there is no 
recombination and the chromosomes have only two possible combinations 
between SNP blocks. Ind P denotes the chromosome P of the population. The 
Recomb-mixture model contains a mixture of the two models. B) Chromosome 
classification. Recomb-mixture model is applied to all pairs of SNP blocks in a 
given region. A consensus classification between all selected Recomb-mixture 
models is computed by running a PCA on the classification probabilities. 
Finally, chromosomes are clustered on groups with similar recombination 
patterns.  
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The mixture model parameters are determined using an Expectation-

Maximization (EM) algorithm. For each chromosome, we define a hidden 

variable         . This variable indicates if the chromosome belongs to 

the recomb or the linkage subpopulations. The EM algorithm updates the 

model parameters iteratively maximizing the expectation of the data. 

Given the parameters of the model  ,                 , we define the 

probability that chromosome k belongs to the linkage subpopulation, 

                  
    . Similarly, the probability that individual   

belongs to the recomb subpopulation given   is                

   
    . For each   the probability of belonging to any subpopulation is 1 

and, therefore,                  . In each step of the EM algorithm, 

we find the value of    that maximizes: 

         
 

                     
    

             

 

   

               
    

    
            

(7) 

 

We therefore update the mixture likelihood by   given by:   

          
 

                                 (8) 
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 (10) 

 
  
        

  

          
             

 

   

 (11) 

  

We estimate haplotype frequencies   ,   , and    in close form using 

Lagrange multipliers, following Sindi et al. [53]. In particular, we obtain  
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(12) 

 

Where       and       are the probabilities that a chromosome in the 

population belongs to the linkage or the recomb subpopulations  

(               
   ;                

   ). We determine the 

function    with the actualized parameters using the same procedure 

than for  ’. The final    is such that its square root difference with the 

previous estimate is lower than machine precision. In addition, for 

numerical stability we set the zero in equation 2 to 10-5. 

We then assess if the point, flanked by the SNP blocks, has a credible 

recombination in a subpopulation of chromosomes by testing whether 

the mixture model is the best model for the data as compared with the 

recomb and the linkage models separately. We compare all three models 

using the Bayesian Information Criteria (BIC) and choose the mixture 

model when [187]: 

                                          (13) 

 

In addition, we considered that the most robust mixture models for a 

positive detection of a recombination point and for chromosome 

classification were those for which their  estimated  frequencies   ,   , 

and    converged near the observed ones and, therefore, the chi-squared 

test between observed and estimated frequencies was not significant. 

When a robust model was observed, a recombination point was called 

and the classification of chromosome k in the recomb subpopulation was 

given by      > 0.5.  
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Clustering of chromosomes into different recombination 

patterns  

A recombination pattern is a set of recombination points in which only a 

fraction of chromosomes have recombined. In the second step of 

recombClust, a consensus clustering is performed on all the 

recombination points detected over a genomic region to determine 

whether individual chromosomes are consistently classified into different 

recombination patterns given by multiple recombination points. 

Therefore, to detect recombination points for a subpopulation of 

chromosomes across the region, recombClust first extensively fits the 

mixture model between numerous 2-SNP blocks, which do not overlap 

and are at a maximum distance of 100 Kb [188]. For each model with 

substantial evidence of having a recombination point in a subset of 

chromosomes, the method computes the probability that the 

chromosomes belong to a recombination group. Finally, recombClust 

produces a consensus classification of the chromosomes by clustering 

the first principal component of the group probabilities across all 

recombination points (Figure 2B). The method is implemented in the R 

package, recombClust (https://github.com/isglobal-brge/recombClust), 

which accepts haplotype data from VCF files.  

Performance of recombClust to detect recombination points 

and recombination patterns 

We evaluated the performance of the mixture model to detect a single 

recombination point in a chromosome subpopulation using simulated 

datasets, computing the ability to detect the point and the accuracy in 

chromosome classification. We produced diverse synthetic datasets. The 
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reference data consisted on pairs of SNP-blocks flanking a recombination 

point, with 2 SNPs per block on 1000 chromosomes. The blocks had 

intermediate LD between the SNPs, and SNP allele frequencies were 

selected at random between 0.55 and 0.95. To evaluate the performance 

of the mixture model to correctly classify a subpopulation of 

chromosomes with a recombination point, we simulated a population 

(RA+LB) with a mixture of subpopulations A and B with high 

recombination (RA) and high linkage (LB), respectively. Under this 

scenario, we changed the mixture frequency, the linkage between the 

SNPs within a block, and the frequency of the reference SNP alleles to 

evaluate the model robustness.  

To evaluate the performance of the mixture model to detect a 

recombination point in a subpopulation of chromosomes, we produced 

various population mixtures (Table 1). In the first set, no mixture was 

present and chromosomes belong to a single population A with high 

recombination (RA), intermediate linkage (MLA) and high linkage between 

blocks (LA). In the second set, we produced populations with different 

types of mixtures that included: 1) the target scenario, where one 

subpopulation was under high recombination and the other with high 

linkage between blocks (RA+LB); 2) both subpopulations under high 

recombination (RA+RB); 3) both subpopulations with high LD (LA+LB); 4) 

both subpopulations with intermediate linkage (MLA+MLB) and 5) one 

subpopulation in intermediate and the other in high linkage (MLA+LB). 

Note that populations A and B differ in allele frequency, so populations 

with a mixture of two populations with the same model (RA+RB, LA+LB and 

MLA+MLB) are different from a single population.  
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Table 1: Simulated scenarios for the mixture of two chromosome groups A and 
B with differences in recombination history at a given point. The chromosomal 
subpopulations differ in the linkage between two blocks of two SNPs flanking 
the recombination point. Scenarios correspond to high recombination for 
population A and B (RA and RB), intermediate linkage (MLA and MLB) and high 
linkage (LA and LB) and their possible mixtures. The mixture model targets 
scenario RA+LB in bold face. 

Scenario 
Chromosome 

mixture 
Between Block LD 

Population A 
Between Block LD 

Population B 

RA  No r
2
 = 0, D’ = 0 - 

MLA No r
2
 < 1, D’ = 1 - 

LA No r
2
 = 1, D’ = 1 - 

RA+LB Yes r
2
 = 0, D’ = 0 r

2
 = 1, D’ = 1 

RA+RB Yes r
2
 = 0, D’ = 0 r

2
 = 0, D’ = 0 

LA+LB Yes r
2
 = 1, D’ = 1 r

2
 = 1, D’ = 1 

MLA+MLB Yes r
2
 < 1, D’ = 1 r

2
 < 1, D’ = 1 

MLA+LB Yes r
2
 < 1, D’ = 1 r

2
 = 1, D’ = 1 

We also evaluated the performance of classifying the chromosomes 

under different recombination patters using simulated inversions. As 

inversion polymorphisms produce chromosomal subpopulations that 

differ in their recombination patterns, we tested the ability of 

recombClust to detect inversion status in simulated inversions. We 

simulated an inversion of 800 Kb and a frequency of 20% using 

invertFREGENE [109] to evaluate the mixture model at different 

recombination points. We varied the inversion length (from 50 Kb to 1 

Mb) and inversion frequency (from 0.1 to 0.9) to evaluate the overall 

recombClust performance to call the inversion status of the 

chromosomes. Each combination of frequency and length was run 100 



 

206 | recombClust 

times. In all simulations, we used the default values of invertFREGENE 

parameters (recombination rate: 1.25 × 10-7, mutation rate: 2.3 × 10-7).  

Human inversions 

We studied the extent to which inversion polymorphisms can be better 

characterized by allele combinations rather than mutation differences 

among the SNPs within the inversion. We therefore used recombClust to 

classify inversion status of chromosomes for the two best characterized 

human inversions, which are found at 8p23.1 (chr8:8055789-11980649, 

hg19) and 17q21.31 (chr17:43661775-44372665, hg19). We used SNP 

phased data from the 1000 Genomes project [185]. We inferred the 

individuals’ inversion genotypes with recombClust and compared it with 

those obtained with invClust [49], a reference method to determine the 

inversion status based on mutation differences. We compared both 

inversion callings with experimental inversion genotypes available in the 

inversion repository invFEST [107]. 

Recombination substructure in a susceptibility locus for 

breast cancer 

We ran recombClust in the 0.2Mb region 1q21.1 between 

chr1:145.55Mb-145.75Mb (hg19) which contains the largest LD block 

with significant SNPs associated with breast cancer, as observed in a 

large GWAS meta-analysis [186]. The GWAS results do not indicate 

clearly towards a causal SNP and, in addition, no inversion or structural 

variation has been reported that could explain the association of the 

entire block with breast cancer. We, therefore, tested whether the 

chromosomes in the region presented a recombination substructure that 

could underlie the associations.  
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We analyzed four independent studies to validate the chromosome 

substructure in the region: The breast cancer case-control GWAS study 

CGEMS (dbGAP accession: phs000147.v3.p1)[110], the breast cancer 

samples from The Cancer Genome Atlas (TCGA) project [189, 190], the  

European individuals from the 1000 Genomes project, and the Genotype-

Tissue Expression (GTEx) project [103]. For CGEMS data and TCGA, we 

imputed SNPs from chromosome 1 on Michigan server [118], using HRC 

r1.1 2016 as reference panel and EAGLE v.2.3 to phase which returned 

phased haplotypes, and computed the LD (R2) between SNPs in region 

and the chromosome subpopulation genotypes using snpStats [191]. In 

TCGA, we selected the individuals classified as European by peddy [118] 

with a probability higher than 0.9. In GTEx, we phased chromosome with 

SHAPEIT [192] and we also selected European individuals with peddy. In 

the recombClust analysis, we included SNPs with a MAF > 0.05 and 

performed the consensus clustering across the detected points with a 

hierarchical clustering on the first two PCs of the chromosome 

subpopulation probabilities. Chromosome subpopulation genotypes 

were computed by coding chromosome subpopulations as alleles and 

testing Hardy-Weinberg equilibrium using SNPassoc [193].  

We studied whether the chromosome genotypes were associated with 

gene expression and phenotype differences between individuals. We 

evaluated the association with gene expression in multiple tissues using 

GTEx data, using the gene raw counts from recount2 [194]. For each 

tissue, we removed genes with less than 10 counts in more than 90% of 

the samples. We tested the association between the chromosome alleles 

and gene expression, applying limma [128] to log2CPM values obtained 

with voom [157]. We included sex, platform, top three genome-wide 

principal components and variables from PEER as covariates. We also 
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tested the transcriptomic effect of the interaction between the 

chromosome subpopulation genotypes and 26 SNPs (MAF > 0.1) in the 

region. Finally, in the case-control study, CGEMS (1,145 cases and 1,142 

controls), we studied the association between the chromosome 

subpopulation genotypes and cancer status, adjusting for age and 

genome-wide PCs.  

Results 

We developed and implemented recombClust to classify chromosomes 

into different recombining groups across multiple recombination points 

within a genomic region. The method comprises two steps. First, it 

detects recombination points where only a fraction of chromosomes 

have recombined, and then it classifies chromosomes into 

subpopulations based on a consensus clustering across the detected 

points.  

Detection of recombination points in a chromosome 

subpopulation  

The detection of a recombination point in a subpopulation of 

chromosomes was given by the observation of a robust mixture model, 

as defined in the Methods section. The mixture model tests whether the 

chromosomes of a population can be classified in two subpopulations (A 

and B) defined by the presence of a recombination point in one 

subpopulation but not in the other.  We first evaluated the accuracy of 

the mixture model to classify individual chromosomes in a target 

scenario, (RA+LB) in Table 1, where one subpopulation had maximum 

recombination and the other maximum linkage. We observed that the 
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mixture model was more accurate in calling chromosomes from the 

recombining subpopulation than those at high linkage (Supplementary 

Note). We also observed that the model was robust under different 

parameters of initialization, LD between the SNPs composing the blocks 

or the genetic divergence between the subpopulations (Supplementary 

Note).  

We evaluated the performance of the mixture model to detect a 

recombination point in a subpopulation of chromosomes between two 

SNP blocks, using the synthetic datasets described in Table 1. In 

particular, we tested whether the model correctly identified the 

scenarios in which only one chromosome subpopulation had a 

recombination point between the SNP blocks. Scenarios with detectable 

recombination points were selected from those mixture models with 

lowest BIC and robust fitting, and compared with their simulated values. 

As expected, we confirmed that the model was optimal for the target 

scenario (RA+LB) (Figure 3). In addition, the model completely discarded 

points with no mixture and whose chromosomes where all in complete 

recombination (RA) or high linkage (RL). Nonetheless, we observed that 

the model detected points with no mixture under intermediate linkage 

(MLA) or under more complex mixtures. This observation can be 

explained by the fact that the mixture model considers the ideal case 

where two subpopulations are either in complete linkage or full 

recombination. In reality, intermediate linkage values and mixtures are 

expected, where the model still detects a significant mixture signal. Note, 

however, that the final aim of recombClust is to consistently classify 

chromosomes across the several points that constitute a recombination 

pattern within an extended genomic region and, therefore, inaccuracies 
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at individual points are expected to cancel out when considering strong 

consistency over large regions. 

 

 

Figure 3: Performance of the Recomb-mixture model in simulated scenarios. 
Fitting of the mixture model that assumes a mixture of chromosomal 
subpopulations A and B, where chromosomes in A are under maximum 
recombination (R) and chromosomes in B under maximum linkage (L) in a 
single recombination point. Scenarios are described in Table 1, where 
chromosomal populations where created with and without mixture and 
chromosomal subpopulations were characterized by maximum recombination, 
intermediate linkage (ML) and maximum linkage. The figure shows the 
proportion of scenarios detected by the model with significant mixture of the 
type RA + LB under all scenarios. The mixture model is clearly optimal for the 
correct scenario, while it also detects some positive signal in others.   
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Classification of chromosome subpopulations across 

multiple recombination points 

recombClust performs a consensus clustering of multiple mixture models 

at numerous recombination points. To test the accuracy of the method 

to identify subpopulations of chromosomes with different recombination 

patterns across multiple points, we simulated two subpopulations of 

1000 chromosomes, each with five different recombination points under 

a RA+LB scenario (Table 1). From the identified recombination points, we 

performed consensus clustering using a k-means algorithm on the first 

PC of the chromosome classification probabilities across all mixture 

models. We thus observed a neat separation of the chromosome 

subpopulations (Figure 4A), which we did not observed for the first two 

PCs across all simulated SNPs, confirming that the model selected 

recombination substructure and allele combinations rather than 

mutation differences between chromosomes. 
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 Figure 4: recombClust accuracy for detecting subpopulations with different 
recombination patterns. A) Comparison between using recombination or 
mutation data in a simulated population. The simulated population contained 
a mixture of two subpopulations (A and B) with different recombination 
patterns; 5 different recombination points were simulated for each 
subpopulation under a RA(B) + LB(A)  scenario. A-left) PCA for the chromosome 
classification at 10 different recombination points of a simulated chromosome 
population. The figure shows a clear separation of the subpopulations based 
on different recombination patterns at multiple recombination points. A-right) 
PCA for the genotype values showing that the separation based on mutation 
differences between the subpopulations is not neat. B) The figure shows the 
accuracy for the predicted chromosome classification into inversion status as 
obtained by recombClust for 9,000 simulated inversions at a given size (1000 
simulations at 9 different inversion frequencies). The figure shows the mean 
accuracy and standard error. The accuracy is high but drops with the inversion 
length for values lower than 100Kb. 
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Classification of inversion status based on recombination 

differences 

Inversion polymorphisms differ in the recombination patterns inside the 

inverted region. We therefore asked the extent to which the inversion 

status of chromosomes can be inferred by recombination differences, 

using recombClust. We evaluated the performance of the method using 

the coalescent simulator of inversions invertFREGENE. We first tested the 

performance of the mixture model to classify chromosomes into 

recombining groups at different recombination points across the 

inversion and then we tested the accuracy of recombClust to call 

inversion status.   

To first test the accuracy of chromosome classification at single 

recombination points, we simulated an 800 Kb inversion at 20% 

frequency. We fitted the mixture model across multiple points in the 

inverted region, detecting the points were recombination occurred only 

in inverted or standard chromosomes. We evaluated the accuracy of 

each robust model, corresponding to a detected recombination point, to 

classify chromosomes into the inverted status. We observed that the 

mixture models had median specificity of 1 and a median sensitivity of 

0.89 across all the recombination points detected. We observed that LD-

based SNP pruning and SNP block size can affect the accuracy in 

chromosome classification (Figures S1-S2). However, the chromosomes 

were clearly separated by inversion status under all conditions  

(Figures S3-S4).  

We then evaluated the accuracy of recombClust to classify the inversion 

status across all recombination points by performing a consensus 

clustering based on the k-means clustering of the first PC of all mixture 
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model classifications. We simulated inversions with different lengths and 

frequencies. We observed high accuracy in inversion calling (Figure 4B), 

in particular, greater than 90% for inversions larger than 0.25MB. As 

expected, accuracy for short inversions was lowered as they presented 

fewer recombination points. recombClust’s accuracy was stable for 

inversion frequencies within the range (0.2, 0.8) (Figure S5) and did not 

correlate with inversion’s age (r = 0.02, p-value = 0.19) (Figure S6). 

Overall, we confirmed that recombClust was able to call the inversion 

status of chromosomes from their recombination patterns.  

Recombination differences improves classification of human 

inversions across multiple ancestries 

We compared the recombClust calling of human inversions at 8p23.1 and 

17q21.31, based on recombination differences, with the calling produced 

by mutation differences. We first observed that within inv-8p23.1, most 

SNP pairs closer than 100Kb showed high differences in LD between 

inversion and standard chromosomes (Figure S7). The observation is in 

line with reported differences in recombination patterns between 

inversion status [20], suggesting that recombination differences can be 

used to infer inv-8p23.1 genotypes.   

Using recombClust in the European samples of the 1000 Genomes 

Project, we searched for recombination points in either the standard or 

inverted chromosomes. We tested if the inferred chromosome 

subpopulations matched experimental inversion status as reported in 

invFEST and compared the results with invClust, a standard method for 

inversion calling based on mutation differences between chromosomes. 

We found that recombClust separated inverted and standard 

chromosomes, based on the k-means clustering on the first PC of the 
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mixture model’s probabilities of detected recombination points  

(Figure S8). As the first PC, clearly showed two clusters, individuals’ k-

means classification was highly accurate with respect to the experimental 

inversion-alleles (Table 2). In inversion 8p23.1, some chromosomes from 

heterozygous samples lied between the clusters likely affected by 

phasing errors. We observed that invClust also classified inversion 

genotypes accurately (Table 2). These results show that recombination 

substructure can be reliably used to call inversion status at 8p23.1 and 

17q21.31 in Europeans in addition to mutation differences, as detected 

by invClust. 

Table 2: Classification accuracy of two human inversions in European 
individuals of the 1000 Genomes project. recombClust shows that 
experimental inversion status of chromosomes can be classified from 
differences in recombination patterns, in addition to differences in mutations, 
mainly detected by invClust. 

 Inversion status recombClust invClust 

inv-8p23.1 

All 1.000 1.000 

Inv/Inv 1.000 1.000 

Std/Inv 1.000 1.000 

Std/Std 1.000 1.000 

inv-17q21.31 

All 0.993 0.998 

Inv/Inv 1.000 1.000 

Std/Inv 0.987 1.000 

Std/Std 0.996 0.996 

We then compared the inversion calling between recombClust and 

invClust for all the individuals in the 1000 Genomes Project, testing the 

performance of recombClust under multiple ancestries [49]. We first 

observed a lower number of detected recombination points than for the 

European individuals, which could be caused by the large variability in 

the ancestry of the data (Table S1). For the two inversions, we observed 

that classification accuracy was strongly affected by individuals’ ancestry 
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(Table 3). Thus, both methods had high accuracy for all ancestries except 

African (Table 3). Asians showed moderate accuracy for inv-8p23.1. 

Table 3: Classification accuracy of recombClust and invClust for two inversions 
on multiple ancestries, from the 1000 Genomes Project. Accuracy estimates 
are reported in each 1000 Genomes superpopulation. recombClust 
classification showed equal or greater accuracy than invClust for the 
chromosome classification of experimentally validated inversion alleles. None 
of the AMR individuals had inversion genotypes for inversion inv-8p23.1 so 
they are not reported. EUR: European, AFR: African, AMR: American, EAS: East 
asia.  

 Ancestry N recombClust invClust 

inv-8p23.1 

All 80 0.700 0.688 

EUR 34 1.000 1.000 

AFR 20 0.250 0.250 

EAS 26 0.654 0.615 

inv-17q21.31 

All 1142 0.885 0.800 

EUR 425 0.988 0.988 

AMR 190 0.916 0.911 

AFR 238 0.538 0.134 

EAS 289 1.000 1.000 

We inspected the first two PC components of the mixture model 

prediction across inv-8p23.1 and inv-17q21.31, for all ancestries  

(Figure 5), and observed multiple clusters, in which chromosomes 

segregated both by inversion status and ancestry. Similar clustering has 

been observed for mutation differences in these inverted regions [49]. 

However, differences in allele combinations revealed differences 

between the chromosomal substructure of the inversions. For inv-

17q21.31, we observed multiple clusters that mapped to the inversions 

status but not to ancestral differences, while for inv-8p23.1, ancestry 

subgroups were observed within each inversion status. These 

observations confirmed that that clusters identified in the first PCs of the 

mixture model predictions can be interpreted as non-recombining 

chromosome groups that differ in ancestry or inversion status, or other 
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unobserved factors that suppress recombination between the groups, 

such as copy number variants likely segregating the standard 

chromosomes at 17q21.31 [113]. 

 

 
Figure 5: Identification of chromosomal subpopulations from different 
ancestries in two inverted regions. The figures show the first two PCA 
components for the all mixture model predictions at numerous recombination 
points across inv-8p23.1 and inv-17q21.31, computed for all 1000 Genomes 
ancestries. Chromosomes are clearly separated by inversion status (Std, Inv) 
and ancestry. For inv-8p23.1 clear ancestral groups are identified within 
inversion status whereas ancestry is mixed within each inv-17q21.31 status. 
Colored points indicate experimentally validated observations of inversion 
status and ancestry.  
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A recombination substructure in 1q21 strongly associates 

with breast cancer susceptibility  

We applied recombClust in a 0.2Mb region at 1q21.1 containing 

numerous SNPs associated with breast cancer. While no structural 

variation has been detected in the region that can account for the large 

association across the block, we aimed to determine if chromosomes in 

the region could be classified in different recombination groups and if 

the groups conferred a higher risk compared with any of the individual 

SNPs. We therefore run recombClust across the region in four 

independent SNP datasets and observed a reproducible 4-cluster pattern 

in the first two PCs of the chromosome probabilities (Figure 6A). We 

performed a hierarchical clustering on the first two PCs and defined 

chromosome alleles by allele frequency (freq allele 1: 0.39, freq allele 2: 

0.36, freq allele 3: 0.20, freq allele 4: 0.05), observing that allele 2 was 

not in Hardy-Weinberg equilibrium (p-value: 3.7x10-3). We also applied a 

MDS analysis to the breast cancer dataset from the case-control CGEMS 

study to partition the population using mutation differences. Although 

we observed clusters that correlated with recombClust classification, 

several groups emerged (Figure S9) showing that mutation differences 

substantially differed from the classification derived from recombination 

patterns. We run recombClust in 10q26.13, another susceptibility locus 

with a causal SNP candidate for breast cancer risk where no chromosome 

substructure was expected. As expected, we could not identify a 

recombination substructure in 10q26.13 (Figure S10); suggesting the 

peculiarity of the recombination pattern of 1q21.1 against other 

susceptibility locus of breast cancer.    
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We then studied whether the identified chromosomal subpopulations 

affected the expression of nearby genes using the GTEx data for multiple 

tissues. While we did not find any differential expression of genes with 

the chromosome alleles in breast tissue, we observed that all 

chromosome subpopulations changed the gene expression in multiple 

genes across different tissues (Figure 6B). In particular, chromosome 

subpopulations 1 and 2 had effects on numerous genes and tissues. We 

also tested whether the chromosome alleles modulated the eQTL effect 

of SNPs in the region. We observed that the interaction between 

rs56110740 and chromosome allele 2 was significantly associated with 

the expression of PDKZ1 in transverse colon (Figure 6C). These 

observations suggest a functional role of the recombination substructure 

at 1q21.1 and a possible modulation of eQTL effects. 

We finally tested the associations between the different chromosome 

alleles and breast cancer status, and compared them with the 

associations for all the SNPs in the region. We therefore analyzed the 

case-control CGEMS study. We found a significant association between 

chromosome allele 4 and cancer (OR: 1.62, p-value: 5x10-4) that was 

more significant than any other SNP association in the region (Table 4, 

Figure 6D). The significance of the association was of the same order of 

magnitude than those found for rs144778858 and rs116124754. 

Interestingly, these SNPs were not included in the recombination 

patterns detected by recombClust and were not in LD with allele 4  

(R2= 0.27). Consequently, rs144778858 and rs116124754 are unlikely to 

drive the association between chromosome allele 4 and breast cancer.  In 

addition, we did not see any tag SNPs for the allele 4 that suggests the 

existence of an unobserved chromosome rearrangement or process that 

suppresses recombination between the allele 4 and the other 
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chromosomes. While none of the structural variant reported in the 1000 

Genomes project was associated with the chromosome alleles, we finally 

noted that this region has suffered numerous reconstructions between 

different builds of the reference genome.  

Table 4: Top SNP associations with breast cancer for the CGEMS study in the 
1q21.1 locus. SNPs in bold face were used to derive the recombination 
substructure of the region. 

SNP Chr Position 
Effect 
Allele OR (95% CI) p-value 

Allele 4 1 - - 1.62 (1.23-2.15) 5.34 x10
-4

 

rs144778858 1 145573536 C 1.93 (1.32-2.82) 7.27x10
-4

 

rs116124754 1 145574977 T 1.93 (1.32-2.82) 7.27x10
-4

 

rs10797655 1 145633187 T 1.19 (1.05-1.33) 4.70x10
-3

 

rs6424379 1 145555653 C 1.18 (1.05-1.33) 6.45x10
-3

 

rs882210 1 145732946 C 1.43 (1.09-1.89) 1.14x10
-2

 

rs10399658 1 145686437 A 1.16 (1.03-1.30) 1.49x10
-2

 

rs28841052 1 145616867 T 1.15 (1.02-1.29) 1.88x10
-2

 

rs116746633 1 145679352 G 2.21 (1.14-4.29) 1.93x10
-2

 

rs4970860 1 145619411 A 1.15 (1.02-1.29) 2.04x10
-2

 

rs12735609 1 145643945 G 1.15 (1.02-1.29) 2.04x10
-2
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Figure 6: Chromosome subpopulations identified from recombination 
differences within 1q21.1, a susceptibility locus for breast cancer. A) PCA for 
the chromosome classification at multiple recombination points across the 
region, as implemented in recombClust. Hierarchical clustering was applied to 
identify four chromosome clusters, which were validated across four 
independent studies. B) Effects of chromosome alleles on gene expression 
across multiple tissues. The figure shows numerous eQTL effects of the 
chromosome alleles, particular for the most common alleles 1 and 2.  
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C) Modulation of the effect of rs56110740 on PDK1 expression by chromosome 
allele 2. Allele 2 Het.: Individuals heterozygous for allele 2. Allele 2 Hom.: 
Individuals homozygous for allele 2.  D) Chromosomal allele 4, defined by 
middle cluster in figure A was tested for association with breast cancer. The 
dotted line shows p-value for the association. Points show individual SNP 
associations with breast cancer across the region. SNPs in red were selected by 
recombClust for classifying the chromosomes into different recombining 
groups; SNPs in blue were excluded. The figure shows that the association of 
chromosome allele 4 with breast cancer is more significant than any of the SNP 
associations.  

Discussion 

We proposed an analysis method based on SNP data that identifies 

subpopulations of chromosomes that differ in their recombination 

patterns. Recombination differences, given by the distribution of 

recombination points along a chromosome segment, are evident in 

subpopulations of different ancestry [176] or in subpopulations that have 

rearrangements that suppress recombination between chromosomal 

groups [20]. Our method addresses the, yet unasked, question of 

whether chromosomal subpopulations can be identified from latent 

differences in recombination patterns within a population. The existence 

of such chromosomal subpopulations may thus provide evidence about 

unobserved recombination modifiers, such as chromosomal 

rearrangements.  

Population substructure is commonly detected from mutation 

differences between the chromosomes, that is, the amount of their 

allelic mismatch [48], typically obtained by the clustering of the first 

principal components of SNP genotypes [48, 49, 184]. By contrast, 

differences in recombination patterns are based on the differences in the 

combination of common alleles that are present in each chromosomal 

subpopulation and, as such, they constitute a different source of genetic 
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divergence. We observed that meaningful differences in recombination 

patterns between chromosomes can be inferred but are limited to 

regions greater than 0.1Mb, as shorter regions are not likely to contain 

enough recombination points [117]. While errors in the phasing of 

chromosomes can also limit our observations, we found two cases in 

which the chromosome subpopulations derived from mutation and 

recombination differences differed. First, we observed that chromosome 

subpopulations derived from recombination differences improved the 

mutation-based calling of human inversions at 17q21.31. The increased 

accuracy can be explained because the appearance of new allele 

combinations is more frequent than the emergence of new alleles [195].  

Second, we observed that four robust chromosome subpopulations were 

detected in the 1q21.1 susceptibility locus for breast cancer [186], where 

large number of subpopulations were found based on mutation 

differences. In particular, we observed that a chromosome 

subpopulation showed higher association with breast cancer that any of 

the SNPs in the 1q21.1, suggesting that the causal variant could be other 

than a SNP [196, 197]. These results indicate that singular combination of 

alleles could either be an important source for explaining the 

associations or it could signal the presence of an unobserved causal 

process that acts as a recombination modifier. In this context, our 

method, recombClust, can be used to further investigate the extent to 

which recombination substructure can help to explain genome-wide 

associations.  

Other important questions that follows are how common is the presence 

of chromosomal subpopulations derived from recombination 

substructure and whether it correlates with selection signals. Some 

methods scan the genome to detect regions of significant population 
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differentiation due to genetic structure. A common approach is to 

identify genomic regions subjected to selection based on the genetic 

distance (Fst) between populations [198, 199] which has been 

successfully applied to different species and taxa [200–202]. In terms of 

inversions, another approach is to detect LD differences between 

chromosomal subpopulations across breakpoints to infer regions where 

inversions may be present [54]. Similarly, recombClust can be extended 

to scan the genome and test whether the detected signal correlates with 

inversion or Fst genomic signals. In particular, regions with strong 

chromosome clustering given by recombClust could shade light into 

regions with early genetic divergence. 

recombClust is the first method to detect chromosome subpopulations 

based on allele combinations. It can be used to call inversion 

polymorphisms yet its main advantage is the detection of regions where 

suppression of recombination is likely at place. In particular, the method 

can provide evidence of unobserved structural variants that may underlie 

the associations of numerous SNPs in large LD blocks, as typically 

reported in GWASs. As such, the method can be applied to large amounts 

of public GWAS data, available from repositories like dbGAP.  

Availability 

The datasets analyzed were derived from the following public domain 

resources: 

 1000 Genomes project phase 3: project web page 

(http://www.internationalgenome.org/) 

 The Cancer Genome Atlas (TCGA): dbGAP authorized access 

(accession code: phs000178.v10.p8) 

http://www.internationalgenome.org/
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 The Genotype-Tissue Expression (GTEx) Project: dbGAP authorized 

access (accession code: phs000424.v7.p2) 

 Cancer Genetic Markers of Susceptibility (CGEMS): dbGAP authorized 

access (accession code: accession number phs000147.v3.p1) 

recombClust is available in Github (https://github.com/isglobal-

brge/recombClust).  
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Supplementary Figures 

 

Figure S1: Models accuracy for different SNPs pruning. Each boxplot includes 
only those block-pairs belonging to mixture population. SN: sensitivity; SP: 
specificity; NPV: negative predictive value; PPV: positive predictive value.  
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Figure S2: Models accuracy for different block sizes. Each boxplot includes only 
those block-pairs belonging to mixture population. SN: sensitivity; SP: 
specificity; NPV: negative predictive value; PPV: positive predictive value. 
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Figure S3: PCA of chromosome probabilities for different SNP prunings. Each 
point represents a phased chromosome. Phased chromosomes are colored 
based on inversion status (black: standard, grey: inverted).   
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Figure S4: PCA of chromosome probabilities for different block sizes. Each 
point represents a phased chromosome. Phased chromosomes are colored 
based on inversion status (black: standard, grey: inverted).   
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Figure S5: recombClust accuracy for different inversion frequencies. Accuracy is 
the proportion of phased chromosomes correctly classified. Each boxplot 
includes 500 simulations.  
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Figure S6: recombClust accuracy for different inversion ages. Accuracy is the 
proportion of phased chromosomes correctly classified. Each point is the 
accuracy of an independent simulation.  
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Figure S7: Distribution of LD difference between inverted and standard 
chromosomes and SNPs-distance in inv8p23.1. X-axis is the absolute difference 
between the LD of a SNP pair in inverted chromosomes versus standard 
chromosomes. SNP pairs are binned by their R2 difference and by the distance 
between SNPs. Columns show the distance distribution of pairs with similar LD 
difference.  
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Figure S8: PCAs of chromosome probabilities for inv8p23.1 and inv17q21.31 in 
European samples of 1000 Genome Project. Chromosomes with known 
inversion genotype are colored (green: standard, blue: inverted).  

 
Figure S9: Genotypes’ MDS in target region 1q21.1 from CGEMS study. 
Individuals are colored based on the cluster classification from recombClust.  
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Figure S10: PCAs of chromosome probabilities in target region 10q26.13 in 
CGEMS study. Individuals are not colored as they do not form clear clusters.  
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Supplementary Tables 

Table S1: Summary of models selected 

  
Selected Models Total Model tested Percentage 

Simulation 

No Pruning 248123 360527 68.82 

R2 > 0.6 16373 30039 54.51 

R2 > 0.4 9172 17384 52.76 

R2 > 0.2 2584 5555 46.52 

European Samples 
inv8p23.1 5118 20479 24.99 

inv17q21.31 1961 4664 42.05 

All Samples 
inv8p23.1 81465 555616 14.66 

inv17q21.31 3550 17904 19.83 

 

 



 

recombClust | 237 

Supplementary Note: Evaluation of LD-mixture model 

on simulated data 

First, we evaluated the LD-mixture model performance in a general 

setting. LD-mixture model had higher specificity (mean SP: 0.85) and 

predictive positive value (mean PPV: 0.90) than sensitivity  

(mean SN: 0.64) and negative predictive value (mean NPV: 0.74)  

(Figure N1). Thus, LD-mixture model has few false positives: a 

chromosome detected as recomb is very likely to belong to recomb 

population. We also tested the effect of initializing the EM algorithm with 

two   values (   = 0.05 and    = 0.95) to account for converge problems. 

Low    had higher SP (Δmean = 0.08, p-value < 2.2·10-16) and PPV  

(Δmean = 0.04, p-value < 2.2·10-16) and lower SN (Δmean = -0.07,  

p-value < 2.2·10-16) and NPV (Δmean = -0.03, p-value < 2.2·10-16)  

(Figure N1).  

Second, we evaluated the performance of LD-mixture model using 

simulated datasets with different features. We investigated if the LD 

between the SNPs that compose the blocks (intrablock LD) affected the 

model's performance. Model’s performance was penalized by the 

number of blocks in intermediate linkage (SP: -0.05, p-value < 2·10-16;  

SN: -0.02, p-value < 2·10-16; PPV: -0.03, p-value < 2·10-16; NPV: -0.02,  

p-value < 2·10-16) and the number of blocks in linkage (SP: -0.10,  

p-value < 2·10-16; SN: -0.01, p-value < 2·10-16; PPV: -0.07,  

p-value < 2·10-16; NPV: -0.02, p-value < 2·10-16). (Figure N2). Blocks in 

intermediate linkage or linkage contain less SNP combinations than 

blocks in recomb, so the LD-mixture model has less information to 

differentiate the mixture populations. We next tested how genetic 



 

238 | recombClust 

divergence between the populations affected the LD-mixture model 

performance (Figure N3). In general, median values of the SN, SP, NPV 

and PPV where higher than 0.93. However, simulations without genetic 

divergence had lower SN (median: 0.54) and NPV (median: 0.68) and 

simulations with the maximum divergence had lower SP (median: 0.85) 

and PPV (median: 0.86). A possible explanation is that when both 

populations have the same genetic content, the most frequent SNP-

blocks for recomb and linkage population are the same. In this situation, 

LD-mixture model will assign chromosomes having these combinations of 

blocks to linkge population, increasing the number of false negatives 

(chromosomes from recomb population classified as linkage) and 

reducing SN and NPV. Finally, we tested how the mixture proportions 

affected the LD-mixture model's performance. Proportion of recomb 

population was positively correlated with SP (r=0.56, p-value < 2·10-16) 

and NPV (r=0.47, p-value < 2·10-16) and negatively correlated with SN (r=-

0.59, p-value < 2·10-16) (Figure N4). Median PPV was independent of the 

proportion of recomb population and was higher than 0.9 in all 

simulations. These results also support that LD-mixture model has a low 

rate of chromosomes from linkage population classified as recomb, 

independent of mixture proportion. 
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Figure N1: Model accuracy for different values of   .    is the initial value of 
the mixture parameter   in the LD-mixture model. Each boxplot contains 5400 
simulations. SN: sensitivity; SP: specificity; NPV: negative predictive value; 
PPV: positive predictive value.  
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Figure N2: Model accuracy for different intrablock LD. X-axis is the number of 
blocks with linkage, i.e. one SNP can be mapped to the other. SN: sensitivity; 
SP: specificity; NPV: negative predictive value; PPV: positive predictive value.  



 

recombClust | 241 

 

Figure N3: Model accuracy for different genetic distances between 
populations. Genetic distance is the number of SNPs having a different major 
allele between the populations. SN: sensitivity; SP: specificity; NPV: negative 
predictive value; PPV: positive predictive value. 
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Figure N4: Models accuracy for difference in LD population proportion. X-axis 
is the proportion of chromosomes in the mixed dataset that belong to the 
recomb population. Each proportion was simulated 400 times. SN: sensitivity; 
SP: specificity; NPV: negative predictive value; PPV: positive predictive value.  
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In the following lines, I will discuss the main topics addressed in this 

doctoral thesis that includes: the new methods to study chromosomal 

inversions, the inversions studied in this thesis, the effects of those 

inversions in complex diseases and the role of inversions on 

recombination.  

New methods to study chromosomal inversions 

In chapters 5 and 6, I propose two bioinformatic methods to study the 

phenotypic and functional effects of chromosomal inversions. These 

methods contribute to two different fields: inversion association studies 

and regional omic analyses.  

scoreInvHap framework 

In chapter 5, I propose a new framework to run association studies with 

chromosomal inversions based on scoreInvHap. Two current approaches 

have been used to perform association studies: one fully bioinformatic 

and another including experimental data along with tag SNPs. 

In the fully bioinformatic approach, the inversion genotypes are inferred 

using clustering methods, such as invClust [49], in the same dataset used 

to perform the association. Clusters are mapped to inversion status by 

frequency (i.e. the most frequent cluster is the standard) or by 

comparing the cluster haplotypes with the reference genome. Then, 

inferred inversion genotypes are used to perform the association study. 

The main limitation of this approach is the lack of a clear link between 

the haplotypes defined by the clusters and the inversion status. Thus, 

this approach does not guarantee that the inferred inversion genotypes 

correlate with the true inversion status, as discussed in an association 

study of inversions and psoriasis [112] or in the association study of 

region 15q24.2 [203]. In addition, this approach has been applied in 
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regions where an inversion was only predicted by bioinformatic methods, 

such as inveRsion [54] or the method of Ma and Amos [48], but not 

confirmed with any direct method. Consequently, the correlation 

between the cluster classification and inversion status is more unclear.  

The second approach has three main steps. First, inversion genotypes are 

inferred in a discovery dataset using direct methods such as PCR. Second, 

inversion genotypes are used to find tag SNPs. Third, tag SNPs are used 

to infer inversion genotypes in a big dataset to perform association 

studies. This approach was used to study the human inversion inv19p12 

[44]. The main limitation of this approach is the use of tag SNPs to 

perform association studies as: (1) inversions with multiple haplotypes 

might not have tag SNPs; (2) tag SNPs are specific of a population [204], 

potentially leading to wrong classifications; (3) tag SNPs are not included 

in many microarrays, preventing the reutilization of GWAS data [204]. 

I propose a new framework to genotype inversions based on scoreInvHap 

by combining the strengths of both approaches. In scoreInvHap 

framework, inversion genotypes are obtained from direct methods, such 

as PCR or sequencing. Then, we use the inversion-haplotype model to 

define the haplotypes that map to the inversion status. The inversion-

haplotype model helps us building scoreInvHap references to infer 

inversion genotypes in other datasets. Consequently, scoreInvHap 

incorporates the strengths of both methods: association between 

haplotypes and true inversion status in a discovery dataset along with 

high-throughput inversion genotyping using all inversion SNP. 

Although the inversion-haplotype model is not essential to build 

scoreInvHap references, it plays a key role in the scoreInvHap framework. 

The inversion-haplotype model determines whether an inversion 

contains differentiated haplotypes. Thus, the inversion-haplotype model 
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can prioritize those inversions that could be genotyped using indirect 

methods, to focus the genotyping using direct methods. Experimental 

inversion genotypes will further discard those inversions do not comply 

with the inversion-haplotype model. The inversion-haplotype model 

helped us discarding some inversions described by Antonnaci and 

colleagues [2] that have experimental inversion genotypes but not a clear 

haplotype structure. Nonetheless, the inversion-haplotype model 

considers haplotypes ranging the whole inversion and may miss shorter 

haplotypes. For instance, the inversion-haplotype model did not detect 

the previously described subhaplotypes of inv8p23.1 [19] and 

inv17q21.31 [205], which were defined using few SNPs. The inversion-

haplotype model might also discard inversions that can be inferred using 

tag SNPs but that do not contain extended haplotypes.  

scoreInvHap limitations come from its dependence on inversion 

haplotypes. Thus, scoreInvHap can only classify polymorphic and non-

recurrent chromosomal inversions. Rare inversions do not produce 

enough changes in the genetic sequence and recurrent inversions do not 

have haplotypes specific of an inversion status. scoreInvHap also works 

better for long inversions, as they contain more SNPs that form distinct 

haplotypes. Finally, scoreInvHap references can be limited to one 

population, requiring their recomputation before applying scoreInvHap 

to a different population. Note that a chromosomal inversion might only 

comply with the inversion-haplotype model in a given population, so a 

chromosomal inversion might only be inferred using scoreInvHap in a this 

population but not in others.  

Current version of scoreInvHap includes references for 20 human 

inversions, which can be genotyped in any dataset from a European 

population. Nonetheless, scoreInvHap can be extended to genotype 
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more human inversions in more human populations. To this end, two 

different lines of research are proposed. First, scoreInvHap framework 

can be applied to the inversions reported in invFEST database [107] and 

by Sanders and colleagues [41] to increase the number of chromosomal 

inversions genotyped. Sanders and colleagues reported several 

polymorphic inversions longer than 10 Kb, which seem good candidates 

to contain differentiated haplotypes. Second, scoreInvHap framework 

should be applied to our set of 20 inversions in populations other than 

European, extending the study of chromosomal inversions to these 

populations. Finally, scoreInvHap framework can also be applied to other 

genomes, such as Drosophila Melanogaster, to foster the study of 

chromosomal inversions in other species. 

In this work, I used the European individuals of 1000 Genomes project to 

check the inversion-haplotype model and to build the references. I highly 

recommend using 1000 Genomes project data to build scoreInvHap 

references for European population by two reasons. First, individuals 

from 1000 Genomes project have cell lines available in public 

repositories, which can be used to genotype the inversions using direct 

methods. Second, European individuals from 1000 Genomes project 

come from 5 different populations, so we expect that they represent 

most of the genetic variance in Europe. Indeed, 1000 Genomes has been 

used to define the genetic traits of European populations, so scoreInvHap 

references should also be applicable to any European population. 

However, none of the European populations from 1000 Genomes project 

comes from Eastern Europe. Genetic differences between western and 

eastern European populations have been previously reported [206], 

although they only explained 0.15% of the total genetic variance. Thus, 

we expect that observed genetic differences between European 
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individuals do not compromise our scoreInvHap references in East 

Europe populations, but further research is needed to confirm this end.   

New applications of scoreInvHap framework 

scoreInvHap enables new strategies to associate chromosomal inversions 

to diseases. First, scoreInvHap allows reanalyzing most genetic datasets 

from EGA and dbGAP. Large inversions can be directly genotyped from 

WGS (Whole Genome Sequencing), WES (Whole Exome Sequencing) or 

SNP array data, while short inversions can be genotyped from WGS and 

from after imputation of SNP array data. The reanalysis of these datasets 

dramatically reduces the multiple tests performed, from millions of SNPs 

to 20 inversions, increasing the statistical power to find new associations. 

Second, scoreInvHap framework facilitates analyzing datasets with partial 

access, as scoreInvHap only requires few thousand of SNPs to genotype 

our 20 inversions. Thus, scoreInvHap reduces the amount of data shared 

and eases collaborations with other cohorts. For instance, UK Biobank is 

a big prospective cohort from United Kingdom [207] that contains 

500,000 individuals with genetic and exposure data. Although 

researchers can access to UK Biobank genetic data under request, they 

can only access few thousand SNPs at a time, which is enough for 

scoreInvHap to genotype all our inversions.    

Third, scoreInvHap enables the incorporation of chromosomal inversions 

in current collaborative meta-analysis in genetic epidemiology. Recently, 

different consortia of genetic cohorts have been established. Two 

examples are the Early Growth Genetics (EGG) consortium [208] and the 

EArly Genetics and Lifecourse Epidemiology (EAGLE) consortium [209], 

consortia that aim to study the effects of genetic variants on growth and 

childhood, respectively. In these consortia, an analyst runs the analysis in 

each cohort and sends the results to a leading group, who meta-analyze 
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the results from the cohorts. These cohorts usually have genetic data 

from SNP array, which is imputed to homogenize the cohorts. These 

meta-analyses largely increase the sample size so they have more power 

to find new associations. scoreInvHap has the potential to be included in 

these analyses, either alone or in parallel to SNP associations. In the 

latter, the simultaneous analysis of SNPs and chromosomal inversions 

help the interpretation of the results. An example of this approach is the 

association of inversions inv8p23.1 and inv17q21.31 with neuroticism 

[50]. An initial meta-analysis showed that regions 8p23.1 and 17q21.31 

contained a high number of SNPs associated with neuroticism, while 

additional analyses showed that these associations were due to 

inv8p23.1 and inv17q21.31, helping to interpret the initial GWAS 

findings. 

Fourth, an alternative to collaborative meta-analyses is DataSHIELD 

[210], a software infrastructure to run integrative analyses from different 

cohorts without sharing data. DataSHIELD infrastructure consists on 

cohort servers, with the cohort data, and a client server, which is 

accessed by the user to run the analyses. The client server asks the 

cohort servers to perform different computations. Cohort servers only 

send summarized data to the client server and never individual data, so 

the data does never leave the cohort server and the user can never 

access the private data. The client server integrates all the summarized 

data and returns the same result that would be obtained if analyzing all 

the data together, having more statistical power than a meta-analysis. 

DataSHIELD relies on implementing standard statistical algorithms using 

summarized data, so scoreInvHap could be adapted to be included in this 

infrastructure. To do so, cohort servers should contain imputed 

genotyped data and then run scoreInvHap in each private server. The 
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inversion genotypes will be temporary stored in the cohort server to run 

an association analysis with the desired outcome. Thus, only the results 

of the association will be returned to the client server, preserving the 

integrity of the data.  

Finally, scoreInvHap can be used in a future to design microarrays to 

diagnose chromosomal inversions. As previously mentioned, scoreInvHap 

needs few thousand SNPs to genotype all our inversions, so a SNP 

microarray could contain all the SNPs needed to genotype all our 

inversions with scoreInvHap. SNP microarray could be a quick and easy 

way to screen inversions to detect individual susceptibility to different 

diseases. In a latter step, chromosomal inversions detected with 

scoreInvHap could be further validated using direct methods, to get a 

more robust diagnosis.   

Regional Omic Analyses 

In chapter 6, I described RDA, a new approach to get an overall estimate 

of the effect of chromosomal inversions in regional gene expression or 

DNA methylation. As RDA codes the inversion genotypes in a linear 

model, it can incorporate inversion genotypes from any approach and 

using any genetic model. RDA provides a standardized measure of the 

effect, R2, so it enables comparing the effect between different 

inversions or between inversions and other factors, such as phenotypic 

variants (e.g. age or sex) or exposures (e.g. smoking). Finally, RDA also 

allows testing the combined effect of different variables at the same time 

and other complex models, such as interactions.  

Chromosomal inversions studied in this thesis 

The 20 chromosomal inversions included in this thesis are polymorphic 

and non-recurrent. I obtained the experimental genotypes needed to 
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build the scoreInvHap references from invFEST and 1000 Genomes 

project. As a result, most inversions are shorter than 10Kb. However, our 

inversions might not be representative of the human polymorphic 

inversions. For instance, Giner-Delgado studied 45 polymorphic 

inversions from invFEST using PCR [204]. Although her inversions had 

similar length than our subset, she found that most inversions were 

recurrent so the haplotypes were not specific of an inversion status.   

Nonetheless, our 20 inversions are good candidates to explain genetic 

effects in complex diseases. Non-recurrent chromosomal inversions 

preserve the allelic combinations, which are associated with adaptation. 

Thus, non-recurrent chromosomal inversions are potentially associated 

with adaptation. In addition, genetic variants involved in adaptation are 

likely to be involved in complex diseases. For instance, components of 

type 2 immune response pathway are subjected to positive selection in 

primates but cause asthma in humans [211]. Our chromosomal 

inversions might also participate in complex diseases through a similar 

mechanism.  

In our subset, most chromosomal inversions generate more than two 

haplotypes. Several hypotheses can be proposed to explain this 

phenomenon. First, standard or inverted chromosomes might contain 

additional structural variants, which would block recombination between 

chromosomes with the same inversion status. This hypothesis was 

proposed to explain the three haplotypes of inv16p11.2 [51]. Second, 

inversions with multiple haplotypes might be complex inversions, where 

a big inversion event is followed by a short internal inversion event. Thus, 

we will have three types of chromosomes: fully standard, fully inverted 

and half standard and half inverted. This hypothesis was proposed to 

explain the rearrangements in 22q11.2 [212]. Finally, short inversions 
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might lack recombination points. The average distance between 

recombination hotspots in the human genome is 122 Kb [117], which is 

larger than most of our inversions. Thus, inversions shorter than this 

distance might not have recombination points and the mutations history 

alone can produce different haplotypes [117]. Further research is needed 

to elucidate the mechanism generating the different haplotypes in our 

inversions, which will help to better understand the evolution and 

structure of our chromosomal inversions. 

New possible effects of chromosomal inversions 

In this thesis, I have run different association studies with chromosomal 

inversions. On one hand, I have replicated an association between 

chromosomal inversions and schizophrenia [87] and I have found new 

possible associations with breast cancer and cancer prognosis. Some 

strengths of these studies are the inclusion of exome sequencing data to 

replicate the results from GWAS and the simultaneous evaluation of 20 

chromosomal inversions. On the other hand, I was unable to replicate a 

previous association of chromosomal inversions with autism [87]. A 

possible reason is that the studies were run in different populations (UK 

vs USA). 

I tested four different genetic models in our association studies: additive, 

dominant, recessive and overdominant. Interestingly, I only found some 

associations when coding the inversions using a genetic model other 

than the additive. Our approach contrasts with previous studies with 

chromosomal inversions, which only tested the additive model, 

suggesting that some effects of chromosomal inversions might have been 

underreported. One exception is the association between inv17q21.31 

and taoupathies by Li and colleagues [42], who tested the dominant and 
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the recessive models. Our chromosomal inversions can affect 

phenotypes through all the four genetic models. On one hand, our 

chromosomal inversions have different alleles between inverted and 

standard chromosomes, which justifies the use of additive, dominant and 

recessive genetic models (models commonly evaluated in SNPs) to 

characterize chromosomal inversions effects. On the other hand, 

chromosomal inversions are structural variants and they can also affect 

phenotypes through rearrangements in heterozygous individuals. This 

mechanism justifies the use of the overdominant model, where 

heterozygous individuals have different risk than the homozygous. 

Although there is some evidence supporting this model, such as the 

association between inversion and ichtyosis prognosis [24] or between 

inversions and cancer prognosis in chapter 7, further studies are needed 

to confirm biological mechanism supporting these observations. Finally, 

the low number of inversions evaluated allowed us testing the four 

different models, which might not be feasible in a typical GWAS assessing 

millions of variants.  

A limitation of our studies is that most associations were only reported in 

a single population. Data from TCGA and GTEx comes from North 

American individuals, while data from autism, schizophrenia and breast 

cancer came from the UK. Although I restricted the associations to 

individuals presenting European ancestry, we do not know whether 

these associations are valid in other European populations and, in 

particular, in Spanish individuals. For instance, I observed a lower effect 

of inv17q21.31 in colorectal progression in the Spanish cohort compared 

to TCGA, suggesting a different effect of the inversion in different 

populations. Therefore, further replication of the associations reported in 

this thesis is required. Another limitation of our studies is the reduced 
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information about individual features (e.g. socio-economical status) or 

environmental exposures (e.g. smoking or diet). Although these variables 

are likely to influence the associations between chromosomal inversions 

and diseases, I could not include them in our models.  

scoreInvHap can return the subhaplotypes in chromosomal inversions 

with multiple haplotypes, but I run all the associations using the inversion 

genotypes. By using inversion genotypes, I included positional effects in 

the association and simplified the analyses, as only one allele is 

considered at a time. In addition, inversion haplotypes are more likely to 

be tagged by a SNP than inversion status, so associations between 

haplotypes and diseases might have been captured by previous GWAS 

studies. However, specific haplotypes can also cause phenotypic effects, 

as shown by the association between subhaplotypes of inv17q21.31 and 

Parkinson [89]. Therefore, in new studies, inversion haplotypes should 

also be considered to evaluate whether the haplotypes or the inversion 

cause the phenotypic effects.  

I report in this work an association between inv17q21.31 and changes in 

gene expression and DNA methylation in other chromosomes. Although 

there is no a clear biological mechanism to explain this effect, other 

studies have found effects of inv17q21.31 in other chromosomes. 

inv17q21.31 was observed to affect recombination in other 

chromosomes [173], and Li and colleagues also found changes of DNA 

methylation and gene expression in other chromosomes [42]. However, 

the genes and CpGs modified by the inversion in our study are not 

consistent with those found by Li and colleagues. These discrepancies 

can be explained by the differences between the studies: we are using a 

different population (colorectal patients vs healthy subjects), a different 

tissue (colorectal tumor tissue vs peripheral blood) and a different 
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genetic model (overdominant vs dominant and recessive). All in all, 

bigger samples sizes and more studies are required to confirm the effects 

of inv17q21.31 in other chromosomes.  

recombClust 

In chapter 8, I presented recombClust, a new method to partition 

chromosomes by differences in recombination patterns. I applied 

recombClust to chromosomal inversions in simulations and in real data 

and I found that standard and inverted chromosomes can be 

differentiated using recombination patterns. These results confirm and 

extend the previous observation of Alves and colleagues, who showed 

that individuals from different ancestries but with the same inversion 

status for inv8p23.1 had similar recombination patterns [20].  

As scoreInvHap, recombClust is limited to polymorphic and non-recurrent 

inversions. In addition, recombClust relies on detecting recombination 

points, so it only works for inversions larger than 100Kb. All in all, 

recombClust is not well suited for chromosomal inversions classification, 

as it is only able to classify a small subset of inversions. However, chapter 

8 shows that analysis of recombination patterns might lead to different 

than results analyses based exclusively on genotypes. Consequently, a 

combination of both approaches might give new insights into inversion 

history and structure. 

Finally, I observed that recombClust can detect chromosomal sub-

populations not caused by chromosomal inversions. These 

subpopulations might be produced by other genetic elements (e.g. 

translocations) and might be linked to adaptation or selection. Sub-

populations include different alleles and different combinations of 

alleles, so they can potentially explain better phenotypic traits than 
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single SNPs. In addition, some chromosomal sub-populations cannot be 

tagged by single SNPs, so their effects have not been reported in existing 

GWAS. All in all, further studies of chromosome sub-populations are 

needed to know how common they are and their influence in phenotypic 

traits.  
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The main conclusions of this thesis are outlined below: 

 scoreInvHap is a new robust and scalable method to genotype 

chromosomal inversions from genotype data. 

 scoreInvHap outperforms current methods to genotype 

chromosomal inversions: 

o scoreInvHap classification is easily harmonized between 

different datasets  

o scoreInvHap can be applied in cohorts with thousands of 

individuals 

o scoreInvHap allows running association studies to new 

inversions and including new data sources 

 Redundancy analysis enables studying the overall effect of 

chromosomal inversions on regional DNA methylation and gene 

expression. 

o Redundancy analysis allows comparing the effect on DNA 

methylation and gene expression between different 

chromosomal inversions and between a chromosomal 

inversion and other factors. 

 Combination of scoreInvHap and redundancy analysis allows 

discovering new functional effects of chromosomal inversions. 

o The inverted haplotype of inv17q21.31 protects from 

suffering schizophrenia. 

o Inv8p23.1 and inv17q21.31 are new candidate genetic 

risk factors of cancer prognosis. 

o The effect of inv17q21.31 on colorectal cancer prognosis 

might be mediated by DNA methylation. 

 Chromosomal inversions generate different recombination 

patterns between standard and inverted chromosomes 



 

262 | Conclusions 

 recombClust is a new method to partition a population of 

chromosomes in subpopulations of chromosomes with similar 

recombination patterns 

o recombClust successfully recovered inversion status from 

recombination patterns. 

o Chromosomal subpopulations detected by recombClust 

can have stronger phenotypic effects than individual 

SNPs. 
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List of abbreviations 

AGP: Autism Genome Project  

BBC: British Birth Cohort  

BIC: Bayesian Information Criteria 

bp: base pairs  

BRCA: breast invasive carcinoma 

CGEMS: Cancer Markers of Susceptibility 

CNV: Copy Number Variant 

CpG: CG pairs 

CPMs: Counts Per Million 

COAD: colon adenocarcinoma 

CRG: Centre for Genomic Regulation 

dbGaP: Database of Genotypes and Phenotypes 

DEG: Differentially Expressed Genes 

DMP: Differentially Methylated Probe 

DMR: Differentially Methylated Region 

DNAseq: DNA sequencing 

EBI: European Bioinformatic Institute 

EGA: European Genome Archive 

EM: Expectation-Maximization 

ER: Estrogen Receptor 

eQTL: expression Quantative Trait Loci 

FISH: fluorescence in situ hybridization 

GDC: Genomic Data Commons 

GTEx: The Genome-Tissue Expression project  

GWAS: Genome Wide Association Studies 
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HER2: human epidermal growth factor receptor 2 

iPCR: Inversion PCR 

LD: linkage disequilibrium 

LIHC: liver hepatocellular carcinoma 

LOH: loss of heterozygosity 

LUAD: lung adenocarcinoma 

LUSC: lung squamous cell carcinoma 

MAF: Minor Allele Frequency 

MDS: MultiDimensional Scaling 

miRNAseq: sequencing of miRNA 

MMBIR: Microhomology-Mediated Break-Induced Replication Model 

NAHR: Non-Allelic Homologous Recombination 

NBD: National Blood Service 

NCI: National Cancer Institute 

NHEJ: Non-Homologous End Joining 

NHGRI: National Human Genome Research Institute 

NIH: National Institute of Health 

NPV: negative predictive value  

PCA: Principal Component Analysis 

PCR: polymerase chain reaction 

PPV: positive predictive value 

R2: R-squared 

RDA: redundancy analysis 

READ: rectum adenocarcinoma 

SN: sensitivity  

SP: specificity  

STAD: stomach adenocarcinoma 

RNAseq: sequencing of RNA 
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RPPA: Reverse-phase protein array  

SD: segmental duplications 

SNP: single nucleotide polymorphisms 

SSC: Simon Simplex Collection  

SVA: Surrogate Variable Analysis 

TCGA: The Cancer Genome Atlas 

VCF: variant call format 

WES: Whole Exome Sequencing 

WGS: Whole genome sequencing 
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