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Resum

El cervell humà és un òrgan de gran complexitat l’activitat del qual es

desenvolupa en múltiples escales, tant espacials com temporals. Es creu

que la unitat computacional del cervell és la neurona, una cèl·lula altament

especialitzada que té com a funció rebre, processar i transmetre informació.

A nivell microscòpic, les neurones es comuniquen les unes amb les altres

per potencials d’acció. Aquests es poden observar experimentalment in vivo

per mitjà de tècniques de gran precisió que només poden tenir en compte

un nombre relativament reduït de cèl·lules i interaccions, i que es poden

modelar matemàticament de diverses maneres. Altres tècniques tracten

amb grans grups de neurones a escala mesoscòpica, o columnes corticals,

i detecten l’activitat mitjana de la població neuronal; en aquest cas també

abunden els models teòrics que intenten reproduir aquests senyals.

Malgrat que està ben establert que hi ha una intercomunicació entre les

escales microscòpica i mesoscòpica, relacionar una escala amb una altra

no és gens trivial. Les derivacions analítiques de models mesoscòpics a

partir de xarxes microscòpiques es basen en suposicions que no sempre

es poden justi�car. A part, tradicionalment hi ha hagut una frontera de

ix



separació entre els analistes clínics que processen senyals neuronals amb

�ns mèdics (i que sovint usen tècniques molt invasives i/o costoses), i la

comunitat teòrica que modelitza aquests senyals, per a qui el repte més gran

és caracteritzar els paràmetres que governen els models perquè aquests

s’acostin el més possible a la realitat.

Aquesta Tesi té com a objectiu, per una banda, fer un pas més a caracteritzar

la relació entre les escales microscòpica i mesoscòpica d’activitat cerebral,

i, per l’altra, establir ponts entre els punts de vista experimental i teòric

del seu estudi. Ho aconseguim amb un algoritme d’assimilació de dades, el

�ltre de Kalman desodorat (UKF, de les sigles en anglès), que ens permet

combinar informació de diverses procedències (microscòpica/mesoscòpica o

experimental/teòrica). El resultat és una comprensió més àmplia del sistema

estudiat que la que haurien permès les fonts d’informació per separat.

La Tesi està organitzada de la següent manera. El capítol 1 comença amb

una breu re�exió sobre la metodologia cientí�ca actual i les seves motivacions

subjacents (segons l’autora). El segueixen els capítols del 2 al 4, que introdueixen

i posen en context els conceptes que s’exposen a la resta del treball.

El capítol 5 aborda el problema de la relació entre l’escala microscòpica

i la mesoscòpica. Tot i que existeixen diverses derivacions d’equacions

mesoscòpiques partint de models de xarxes neuronals, sovint es basen en

suposicions fràgils que no es compleixen en situacions més complicades.

Aquí utilitzem l’UKF per assimilar la sortida de xarxes microscòpiques en

un model mesoscòpic simple i estudiar diverses situacions dinàmiques.

Els resultats mostren que la manera que el �ltre de Kalman gestiona les

incerteses del model compensa les pèrdues d’informació pròpies de les

derivacions analítiques de models mesoscòpics.
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Els capítols 6 i 7 tracten la combinació de dades experimentals del cervell

amb models de masses neurals que descriuen la dinàmica de grups de

neurones. Concretament, estenem el model de Jansen i Rit d’una columna

cortical amb un model del cap, el qual ens permet fer servir dades extracranials

no invasives. Amb això estimem l’estat del sistema i un paràmetre d’interès

de possible rellevància en l’estudi clínic d’afeccions com l’epilèpsia.

En el capítol 6 fem servir dades in silico per provar l’UKF en diversos escenaris

dinàmics: conjunts de paràmetres que causen comportaments diferents en

les columnes corticals, diferents nivells de soroll de mesura i dues modalitats

de transmissió d’informació; tot això comparant dades intracranials simulades

amb simulacions d’electroencefalogrames (EEG). En totes les situacions

estudiades, l’estimació extracranial és sempre superior, en velocitat i precisió,

a l’estimació intracortical, encara que els elèctrodes intracorticals són molt

més propers a la font de l’activitat que els elèctrodes de la superfície cranial.

Suggerim que això pot ser causat per la visió més completa del còrtex que

es pot obtenir amb el conjunt d’elèctrodes extracranials. Aquesta idea ve

reforçada pels resultats observats amb elèctrodes extracranials individuals

treballant de manera independent, que apunten a la sensibilitat espacial de

les mesures.

En el capítol 7 alimentem el model de Jansen i Rit amb dades experimentals

de l’EEG d’un pacient epilèptic; l’objectiu és estimar un paràmetre signi�catiu

que governa l’evolució dinàmica del sistema, de nou amb l’UKF. L’estimació

de l’estat és precisa i el paràmetre es veu afectat pels canvis de règim,

especialment (però no exclusivament) per les convulsions.

Aquests resultats són prometedors a l’hora d’utilitzar l’assimilació de dades

per superar les diverses carències de les tècniques de modelització cerebral.
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Per una banda, la in�uència mútua entre estructures a escala microscòpica

i a escala mesoscòpica es pot caracteritzar millor, gràcies a tècniques de

�ltrat que permeten esquivar les habituals limitacions analítiques. Això

dóna com a resultat una millor comprensió de l’estructura i funció cerebrals.

Per una altra banda, fusionar dades experimentals d’EEG amb els models

matemàtics del cervell existents ens pot permetre determinar les dinàmiques

subjacents dels senyals �siològics que tenim disponibles, a la vegada que

millorem els nostres models amb informació individual de cada pacient.

Aquests algoritmes augmentats tenen potencial per a un ampli espectre

d’aplicacions en el camp de les neurociències, des d’interfícies cervell/ordinador

�ns a tota mena d’usos en medicina personalitzada com el diagnòstic precoç

de malalties neurodegeneratives, la predicció de crisis convulsives o la

monitorització de la rehabilitació postisquèmica o posttraumàtica, entre

molts altres.
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Abstract

The human brain is a highly complex organ whose activity spans multiple

scales, both spatial and temporal. The computational unit of the brain

is thought to be the neurone, a highly specialised cell whose purpose is

to receive, integrate and transmit information. At the microscopic level,

neurones communicate with each other via action potentials. These may be

observed experimentally in vivo by means of highly precise techniques

that can take into account only a small number of these cells and their

interactions, and can also be modelled mathematically in a variety of ways.

Other techniques consider large groupings of neurones in the mesoscale,

or cortical columns, and detect the averaged activity of a cell population;

theoretical models that aim to reproduce these signals also abound.

Although it is known that there is an interplay between the microscopic

and mesoscopic scales, the problem of relating one scale to another is

far from being trivial. Analytical derivations of mesoscopic models from

microscopic networks are based on sets of assumptions that are not always

justi�ed. Also, traditionally there has been a separation between the clinically

oriented analysts who process neural signals for medical purposes—and
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who often use highly invasive and/or costly techniques—, and the theoretical

modelling community, where it is often a challenge to characterise the

parameters that govern the activity of a given model.

This Thesis aims to lay bridges both between the microscopic and mesoscopic

scales of brain activity, and between the experimental and theoretical angles

of its study. This is achieved via a data assimilation algorithm, namely, the

unscented Kalman �lter (UKF), which allows us to combine knowledge from

di�erent sources (microscopic/mesoscopic and experimental/theoretical).

The outcome is a stronger understanding of the system under study than

each of the sources of information could provide separately by themselves.

The Thesis is organised as follows. Chapter 1 starts with a brief re�ection

on the current methodology in Science and its underlying motivations,

as perceived by the author. This is followed by chapters 2 to 4, which

constitute an introduction to the concepts discussed in the remainder of

the chapters and places them in their context.

Chapter 5 tackles the problem of the microscopic and mesoscopic scales

and their interrelationship. Although several e�orts have been made to

derive mesoscopic equations from models of microscopic networks, they

are based on assumptions that may not hold in more complicated scenarios.

We use the UKF to assimilate the output of microscopic networks into a

simple mesoscopic model and study a variety of dynamical situations. Our

results show that the way the Kalman �lter handles model uncertainties

compensates for the loss of information that is common in analytical derivations

of models in the mesoscale.
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Chapters 6 and 7 address the combination of experimental data with neural

mass models that describe the dynamics of neurone groupings. More speci�cally,

we extend Jansen and Rit’s model of a cortical column with a model of the

head, which allows us to use non-invasive extracranial data. With this,

we estimate the state of the system and a parameter of choice that may be

relevant in the clinical study of conditions such as epilepsy.

In chapter 6 we use in silico data to test the UKF under a variety of dynamical

conditions: di�erent parameter sets that cause di�erent behaviours in

the cortical columns, di�erent levels of measurement noise, and di�erent

modalities of information transmission, comparing simulated intracranial

data with simulated EEG. In every situation, extracranial estimation is

always superior in speed and quality to intracortical estimation, even

though intracortical electrodes are much closer to the source of activity

than electrodes placed on the skull. We suggest that this is due to the more

complete picture of the cortex that is visible with the set of extracranial

electrodes. This is reinforced by the results of single extracranial electrodes

working independently, which point to the spatial sensitivity of the measurements.

Chapter 7 feeds experimental EEG data of an epileptic patient into Jansen

and Rit’s model; the goal is to estimate the parameters that govern the

dynamical behaviour of the system, again with the UKF. The estimation

of the state closely follows the experimental data, while the parameter

shows sensitivity to the changes in brain regimes, especially (but not only)

to seizures.

These results all show promise for using data assimilation to address the

several shortcomings of brain modelling techniques. On the one hand, the

mutual in�uence of neural structures at the microscopic and the mesoscopic
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scales on each other may become better characterised, by means of �ltering

approaches that bypass common analytical limitations, resulting in improved

modelling techniques that will enable us to further our understanding of

brain structure and function. On the other hand, fusing experimental EEG

data with the existing mathematical models of the brain may enable us

to determine the underlying dynamics of observed physiological signals,

and at the same time to improve our models with real, patient-speci�c

information. The potential of these enhanced algorithms spans a wide

range of brain-related applications, from brain-computer interfaces to all

manner of uses in personalised medicine, including early diagnosing of

neurodegenerative diseases, seizure prediction, and monitoring of rehabilitation

from trauma and strokes, to name but a few.
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Introduction
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Flower in the crannied wall,

I pluck you out of the crannies,

I hold you here, root and all, in my hand,

Little �ower—but if I could understand

What you are, root and all, and all in all,

I should know what God and man is.

Alfred Lord Tennyson

1
A brief philosophical re�ection

The above poem is among the densest passages in the English literature, as

measured in depth per written line. Its main idea is that a detailed study of

the parts that constitute a being would bring us closer to understanding a

higher or transcendent entity. The poet stands in front of a dry dead wall

and �nds a �ower growing in a perhaps unexpected place. He picks the

�ower and examines the whole entity, seeing for the �rst time the root as

well as the �ower, and hypothesises that understanding the �ower would

give him the knowledge of God. To me, this idea of understanding the
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whole (and more) from the sum of its parts seems to be also the history

of every major undertaking in human cognissance, and therefore also the

backbone of Neuroscience.

When the poet plucks the �ower from the nook where it was growing, he

isolates it from its usual environment; the root becomes visible and with

it, a better picture of the �ower in its wholeness is obtained. Or is it? The

roots are no longer in contact with the soil: we cannot observe the uptake

of water and minerals, or the amazing process of photosynthesis; it is true,

however, that we could not see these things before, while the �ower was

in the cranny, either. But then, the stem can no longer sway with the wind

now; much less can a passerby enjoy the �ower’s scent, or the bees drink

its nectar. Do not these things constitute the �ower’s being too? And its

purpose, and the very reason for its existence? And we could see them,

when the �ower was still in its little crack.

A recognized fact which goes back to the earliest times is that every living organism

is not the sum of a multitude of unitary processes, but is, by virtue of interrelationships

and of higher and lower levels of control, an unbroken unity. When research, in the

e�orts of bringing understanding, as a rule examines isolated processes and studies

them, these must of necessity be removed from their context. In general, viewed

biologically, this experimental separation involves a sacri�ce. In fact, quantitative

�ndings of any material and energy changes preserve their full context only through

their being seen and understood as parts of a natural order.

(Walter Hess)

I believe the same sacri�ce is being made in the study of the brain, and

indeed, in the whole of modern Medicine and Biology. The reductionist and

materialistic views that have pervaded Science since the Age of Enlightment

(sic?) have become the status quo, and I fear that this very view is behind

some of today’s greatest scienti�c failures. Indeed, it is probably not questioned

that what we know, in the rational and scienti�c sense of the word, is
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necessarily limited by the experimental techniques available (Stevenson

and Kording, 2012; Yuste, 2015); but then, all we may actually experiment

with is systems out of their context:

A good physiological experiment like a good physical one requires that it should

present anywhere, at any time, under identical conditions, the same certain and

unequivocal phenomena that can always be con�rmed.

(Johannes Peter Müller)

Furthermore, much as we would like to deny it, I will venture that we

readily accept experimental results only when they conform to an accepted

theoretical framework—which also, in turn, shapes the very experiments!

One only sees what one looks for. One only looks for what one knows.

(Johann Wolfgang von Goethe)

Unfortunately, this makes us stuck in an intellectual rut of sorts. While

we can be happy there are no more trephinations or lobotomies, no more

seizure therapy or insulin shocks (Faria, Jr., 2013), we don’t think twice

about �ooding brains with weird chemicals that wreak havoc (Albrecht

et al., 2014; Bahrick, 2008; Fergusson et al., 2005; Hibel et al., 2007; Miele

et al., 2017; Moore et al., 2010; Nasrallah et al., 1986), playing with things

we do not fully understand (Bushara, 2005; de la Monte and Wands, 2008;

Fisher and Fisher, 1996; Lacasse and Leo, 2005; Molina et al., 2009; Moreno

et al., 2007), and seeking cures without re�ecting on causes. (The latter

of which, in my opinion, is especially tragic.) I hope that, somewhere in

the future, drugging toddlers with psychotropic medications (Zito et al.,

2000) will be considered at least as barbaric—by the mainstream, that is—as

shoving an ice pick through someone’s eye socket. It is actually not even

working; one need only review the statistics for the incindence of mental

illness to quickly see that orthodox psychiatric medicine isn’t taking us
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anywhere nice (CDC Statistics for Autism; NIMH Statistics for Mental

Illness; Statistics for Dementia; Xu et al., 2018).

I’m not lost for I know where I am. But however, where I am may be lost.

(Winnie the Pooh)

For many people, myself included, the human being is body, soul and

spirit, and the isolation and disconnection of any of these systems from

the others may result, depending on our object and purpose, in a crippling

lack of information that can render the whole endeavour perfectly useless. I

started this Thesis with lofty hopes that it would have some sort of clinical

and social repercussion—the initial dream was to improve our diagnostic

capabilities for neurodegenerative diseases. However, I fear that if it is a

step at all, it is probably in the wrong direction—or at least, in a direction

that will not serve people in the way that is most relevant.

All this is not to say, however, that any e�ort to know more with the resources

we have available, even (and especially!) in Neuroscience, is futile. We

probably just need a little perspective. If we do keep in mind that all models

are wrong (Schi�, 2012, Chapter 8), that we now know that much of what

was known before is wrong (and therefore that much of what we know

now may also be wrong—why not?), and that anything short of x-raying

a whole human being from a superior dimension will be isolating and

reducing systems to a potentially disabling degree, we will doubtless be

more cautious with what we think we do know, and with what we do about

it. We want to know, we need to know, and we need to seek the answers we

naturally crave. That is why the poet plucked the �ower.

But perhaps, if the poet dwelt a little more on the thought of God, he would

more easily come to know what the �ower is.
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Those who have dissected or inspected many

[bodies] have at least learnt to doubt; while others

who are ignorant of anatomy and do not take the

trouble to attend it are in no doubt at all.

Giovanni Battista Morgagni

2
Physiological basis of brain modelling

F

ew systems known to man are more complex in their con�guration

and operation than the human brain. Cerebral dynamics are an incredibly

complicated and excellently coordinated dance in which all participants

must do just the right thing, in the right place, and at the right time. This

section presents an overview of the anatomy and physiology of the brain

and the basis of its electrical functioning, along with a description of some

conditions that seemingly arise when there is an anomaly.
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2.1 Neural signalling

The ground-breaking neuroanatomical work of Santiago Ramón y Cajal

As often happens with other

theories, and following the

re�ections in chapter 1, we

have heard the neurone

doctrine being called by a

learned scientist in the �eld

"the greatest punishment

Neuroscience has ever faced".

Again as with other theories,

time will tell.

brought forth, around the turn of the 20th century, the establishment of the

neurone doctrine, basically reducing cerebral activity to being originated

in the group of discrete cells that the nervous system is supposed to be and

based on the interactions thereof. The discovery of electron microscopy in

the 1950s consolidated this belief and to date it remains one of the cornerstones

of modern neuroscience (López-Muñoz et al., 2006). However right or

wrong this may be, we are in no place to venture a judgement; in this

Thesis we conform to this pattern of thought for the remainder of the work.

The basic unit of neural processing is thought to be the neuron. Neurones

have a soma, or body, which contains the dendritic arbour that receives

incoming signals from other cells, and the nucleus. This then travels down

the axon, a very variably long projection, that in turn connects to the

receptors of other cells, most commonly the dendrites of other neurones,

by means of synapses. (There are an estimated three times more glial

cells (Purves et al., 2004) with supportive functions that have a great in�uence

on brain activity, to the point of bidirectionally communicating with neurones

and acting as a third element in the synapse (Perea and Araque, 2010; Perea

et al., 2009). Nevertheless, the models we consider here do not take glia into

account.)

The neurone is delimited by the membrane, which is impermeable to water

molecules and ions and contains gated pores, the ion channels, whose

selective permeability is a fundamental characteristic of the cell’s electrical

function. These ion channels can be either opened or closed to permit the
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passage of certain ions, the most important of which are sodium, potassium,

magnesium, calcium, and chloride. The activity of ion channels can depend

on several factors, but the passage of ions through them tends to diminish

the concentration gradient. However, ion pumps, which are also key constituents

of the membrane, forcefully pump certain ions and molecules against the

concentration gradient.

The activity of the neuronal membrane and its channels and pumps result

in a di�erence of voltage across the membrane, the membrane potential.

Typically, the resting membrane potential is about –65 mV, the intracellular

medium being more negative than the outside. Changes in the membrane

potential (brought about by the activity of other cells, by the presence of

neurotransmitters or by changes in ionic concentrations) may cause the cell

to �re an electric action potential, or spike, down its axon, eventually acting

on a downstream neurone (or neurones) and possibly causing them to react

in turn. Spikes are an all-or-nothing event; the di�erences in the input

intensity will not alter the strength of an action potential, although it might

change the rate at which the neurone �res. It is interesting to note that

synapses act stochastically and their reliability is highly variable (Branco

and Staras, 2009); this is a complicating factor when attempting to model

networks of neurones at a single-cell level (see section 3.2).

2.2 Cortical columns

In the very midst of the heated discussion between proponents and detractors

of the neurone doctrine, Brodmann already suggested in 1909 that it is cell

groupings, not individual cell types, that are responsible for any cortical

function (Brodmann and Garey, 2006). Vernon Mountcastle suggested in
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1957, after his experiments with the cat’s somatic sensory cortex, that "the

elementary pattern of organisation in the cerebral cortex is a vertically

oriented column or cylinder of cells" (Mountcastle, 1957), a �nding that

Hubert and Wiesel con�rmed with further experiments two decades later

(Hubert and Wiesel, 1977).

Since then, the existence of such entities in the cerebral cortex as neuronal

clusters grouped in the vertical (or, rather, radial) direction is not questioned.

The actual de�nition of what a cortical column is, and the relationship

between structure and function, are nevertheless a matter of debate. Also,

to date it is unexplainable why a columnar structure does exist (Goodhill

and Carreira-Perpiñán, 2002). Neurones within a cortical column will

be intrinsically connected in the vertical dimension and share similar

connections to and from remote regions; so much appears to be under

consensus (Horton and Adams, 2005).

However, anatomical considerations make classi�cation very di�cult;

whereas some structures appear to be clearly visible and distinguishable (de

Nó, 1949), other cases show fuzzy and overlapping boundaries. Furthermore,

the de�nition of columns at di�erent scales, due in part to the existence

of radial cell units observed during cerebral development, has contributed

to further confuse the issue, bringing additional concepts like mini– and

macrocolumns into play (Buxhoeveden and Casanova, 2002; Horton and

Adams, 2005; Rakic, 2008). Finally, some authors, e.g. Szentágothai (1978),

have proposed the cortical column as a theoretical concept, albeit based on

experiments, considering it a module of a constant diameter of 200–300 µm.

Two years later, a highly in�uential work was published, in a similar line,

that suggested that the structure of the neocortex was more uniform than
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had been thought previously (Rockel et al., 1980). Although this study was

fraught with problems at every level (Rakic, 2008), many liked this idea for

its simplicity, since the uniformity of the neocortex across modalities as

well as during expansion brings forth other deeper and more philosophical

implications that, for some reason, always seem attractive, such as that the

di�erences between human and animal neocortices are merely quantitative,

or that the specialisation of cytoarchitectonic areas is just due to input from

the periphery (Rakic, 2008).

To this date, cortical columns, as de�ned under anatomical considerations,

have failed to serve as a unifying principle to relate structure to function.

However, the idea of groupings of neurones (functional or not) is still a

useful concept and is attracting both basic research and applied e�orts

in innovative directions, e.g. a project that maps all the cortical columns

with brain-computer interfaces in view (Goebel, 2016). In this Thesis, we

consider a cortical column as described by Mountcastle (1978, 1997), namely,

a cluster of neurones with a set of common characteristics that is about

300–600 µm wide in diameter, and which acts as a processing and distributing

unit that links a number of inputs to a number of outputs via overlapping

internal processing chains (Mountcastle, 1997).

2.3 Measuring brain activity

Electricity is a very important component of cerebral activity, and even

though this has been implicitly accepted for several centuries, in medical

practices such as the application of electric eels to help with migraine (Koehler

and Boes, 2010), it wasn’t until the 18th century that the concept of bioelectricity

was more explicitly and systematically studied, most famously by Luigi
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Galvani with his experiments on neuromuscular stimulation (Malmivuo

and Plonsey, 1995). Towards the end of the 19th century, Caton (1875) was

the �rst to record the electric activity of a brain, and his work, if not the

discovery of the electroencephalogram itself, is at least its precursor. A

few decades later, Berger (1933) recorded alpha waves in the �rst human

electroencephalogram. Other technologies, such as electrocorticography or,

less related conceptually, BOLD-fMRI—whose biological basis had also been

lain in the 19th century (Mosso, 1880; Roy and Sherrington, 1890)—, made

their clinical debut only decades later (Jasper, 1941; Ogawa et al., 1990), thus

adding to the wide array of brain imaging techniques available today.

2.3.1 Electroencephalography

The electroencephalogram, or EEG from now on, measures the electric

activity that is detectable by electrodes placed on the scalp. Most of the

signal is thought to come from the post-synaptic potentials of groups

of similarly oriented pyramidal neurones

As more information about

glia is uncovered, it is

hypothesised that even they

too play a role in the signal

detected by EEG (Marcuse

et al., 2016).

, which induce currents in the

extracellular matrix with a potential �eld strong enough to be measurable

(Marcuse et al., 2016; Silva, 2011). EEG detects mostly currents very near the

skull, since the sources that are located deeper in the brain are very di�cult

to detect and discern (Klein and Thorne, 2006).

The setup for an EEG recording involves a set of electrodes placed on a

subject’s scalp, with their number and position usually decided by an

international standard (Klem et al., 1999); an amplifying unit to allow to

display the signal on a computer screen, since the signal on the scalp is

of the order of microvolts; an A/D converter; and a visualising and/or

recording device. The electrodes may be placed in one of two montages.
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Bipolar recordings link successive electrodes to one another in such a

manner that the voltage of one electrode is compared to that of the adjacent

electrodes (see �gure 2.1); the di�erence between the potentials measured

at the two electrodes forms a channel. In referential recordings, however,

the voltage of a scalp electrode is compared to one referential electrode,

usually on the ear and sometimes on the vertex (the highest point of the

skull); here, the channel is formed by the di�erence between the electrode

under consideration and the reference.

Figure 2.1 Focal activity

and its corresponding

traces as seen with a

bipolar montage (above)

and a referential montage

(below). Adapted from

Marcuse et al. (2016).
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In both montages—in actual fact, the two modalities are complementary—

an electroencephalogram can show oscillations whose frequency, spatial

distribution, shape, and pattern point to di�erent neurological states and

conditions. According to their frequency, neural oscillations may be classi�ed

into four groups: gamma (38–42 Hz), beta (13–38 Hz), alpha (8–13 Hz), theta

(4–8 Hz), and delta (0.5–4 Hz). The alpha frequency is the most studied, and

it is associated to a restful, relaxed state; it is visible on an EEG as sinusoidal

waves with a typical peak-to-peak amplitude of 50 µV (Teplan, 2002). Beta,

theta, gamma and delta waves di�er in amplitude and pathophysiological

meaning and relevance, and will not be discussed here.

Of interest in an EEG are very sharp waves, or spikes. They arise suddenly

from the background, with a duration of 20–70 ms, and their upward slope

is typically steeper than the downward slope; they are usually followed by

a low-voltage slow potential of about 200 ms, and after that the baseline

is re-established. See �gure 2.2 for several examples. Spikes are almost

always associated to epileptiform discharges, and this and other similar

considerations make EEG a very valuable tool in the diagnosis and monitoring

of epilepsy (Marcuse et al., 2016).

The second feature of EEG of interest for this Thesis is phase reversal.

Phase reversal is very useful in detecting potential �elds, and it can be

visible using the bipolar montage; see �gure 2.1 for a clear visualisation

of the concept. Where there is a local activity focus, and considering a

three-electrode chain for this example (in upper panel of the the �gure,

Fp2, F8 and T8), the subtraction of the (more negative) signal from the focus

(electrode F8) minus the background signal (electrode Fp2) will result in a

downward de�ection; however, the following electrode in the chain, T8, will

14



be at a similar potential to the �rst electrode, Fp2, and the subtraction will

result in an upward de�ection, thus placing the focus of activity under the

second electrode. With a referential montage, the focus would be localised

under the electrode that yields the signal with the most amplitude (lower

panel of �gure 2.1).

Figure 2.2 Several

examples of spike

discharges in a rat EEG.

Reproduced integrally from

White et al. (2010).

Electroencephalography

is used to monitor coma,

alertness and brain death;

to �nd damaged areas

(for example, following

a stroke or trauma); to

investigate sleep disorders;

to locate and study epileptic

foci; to test and monitor

drug e�ects, including

anticonvulsants and

anaesthesia; and in other

medical and research

applications (Bickford,

1987). It is extremely non-invasive, relatively inexpensive and especially

fast (both in the sense of processing measurements with speed and

having very good temporal resolution); its main drawbacks are the lack

of spatial resolution (due to volume conduction and to the translation of a

three-dimensional structure of activity into a two-dimensional array) and

the obscurement of the signal (due to the direction of the electrical �eld, the

physical distance and tissues between electrode and focus of activity, and

several artifacts) (Chong et al., 2007).
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The EEG oscillations in many clinical scenarios may be modelled by means

of di�erential equations (Babajani-Feremi and Soltanian-Zadeh, 2010;

Hashemi et al., 2014; Kuhlmann et al., 2016; Sotero et al., 2007). Indeed, this

is an important aspect in this Thesis, in view of assimilating experimental

data into theoretical models (see Mesoscopic models, section 3.2).

2.3.2 Electrocorticography

Electrocorticography (ECoG) is also called intracranial electroencephalography

and is in essence very similar to EEG, the main di�erence being that the

electrodes are not placed on the skull, but directly on the exposed surface

of the brain. This makes it a highly invasive technique, since it necessarily

requires a craniotomy to implant the electrodes. Electrodes may be implanted

on or under the dura mater, either mounted on a �exible frame (which

allows to use multiple electrodes simultaneously) (Schuh and Drury, 1997)

or individually. Of special interest are depth electrodes, which, in adequate

conditions, can measure action potentials (Ulbert et al., 2001).

ECoG shares with EEG the nature of the signals they record and their

origin. However, where EEG has little spatial resolution due to the attenuation

of the bone, ECoG is more advantageous in this sense; this makes it an

especially indicated tool for the localisation of both epileptogenic zones and

functional areas to avoid during surgery. Indeed, it is for this purpose that

its use was pioneered in the 1950s by Jasper and Pen�eld (1954).

Electrocorticography signals may be simulated by means of mathematical

models, in the same manner as EEG. Indeed, this Thesis is heavily inspired

on the work of Freestone et al. (2013b), who used ECoG data to estimate

the parameters of a neural mass model with the aim of tracking brain states
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in a personalised manner. Another exciting perspective is using ECoG as a

recording technique for applications in brain-computer interfaces (Shenoy

et al., 2008). The next chapter reviews some of the most well-known models

used to reproduce physiological measurements, with a special emphasis on

EEG and ECoG.
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...[the brain] is very big and complicated and made

of stu� that dies when you poke it around.

Geo�rey Hinton

3
Modelling cerebral activity

T

here are many problems in neuroscience that warrant a mathematical

approach. Only recently, however, have computational techniques been

advanced enough to make whole-brain modelling feasible—to a certain

extent.

In 1907, Louis Lapicque studied the excitability of nerves and developed a

model that would later serve as the basis for the integrate-and-�re model

of neuronal membranes (Brunel and van Rossum, 2007; Lapicque, 1907).
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Nevertheless, the fathers of computational neuroscience are considered

to be Alan L. Hodgkin and Andew F. Huxley, who won the Nobel prize in

1963 for their description of the action potentials of the giant squid axon in

1952 (Hodgkin and Huxley, 1952).

However, although modelling has a strong component in both of these

signi�cant developments, the use of computational methods wasn’t promoted

until Wilfrid Rall used mathematics to defend how strongly synaptic currents

a�ect the processing of the synaptic input in the soma (Rall, 1959, 1962).

The opposition he had to deal with is very interesting to consider, as it

highlights two important problems that modern neuroscience has faced

since its inception. On the one hand, the experimental techniques available

have inevitably shaped our understanding of brain dynamics for many

decades (Yuste, 2015). This is problematic, especially because experimental

evidence is often rejected if it doesn’t conform to orthodox theories. On

the other hand, the general scepticism of experimentalists towards the

usefulness of computational approaches to neuroscience (and, indeed,

to biomedicine in general) opens a wide gap between theory and clinical

application that is still to be bridged—to which end this Thesis is but a

small e�ort.

3.1 Microscopic models

Microscopic models reproduce the dynamics of single cells or, even at a

greater level of detail, the dynamics of ion channels in their membranes (Hille,

2001) (the latter lie out of the scope of this work). Communication between

neurones is based on electrical impulses called action potentials, or spikes.

These come into a cell and are then transformed into a sequence of output
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spikes. Spikes are all almost indentical to one another and are an all-or-nothing

type of response; as a consequence, neuronal computations are based on the

inter-spike intervals, rather than on the spikes themselves. The emission of

a spike depends not only on the incoming information from other neurones,

but also on the membrane potential and by other elements such as heat,

stretching, and the presence of ligands, all of which a�ect the ion channels

and their permeability (Purves et al., 2004).

Microscopic models can be highly realistic biologically, but this comes at a

considerable computational expense. In e�orts to reduce the computational

burden while still preserving a reasonable amount of biological plausibility,

there are many simpli�ed models that have been in use for decades. The

following sections provide an overview to some of the most relevant.

3.1.1 Integrate-and-fire model

As mentioned previously, Louis Lapicque’s work in 1907 established a

precedent for what would later become the integrate-and-�re model of

a neurone. Despite the fact that the model is often attributed to him, in

reality the model as we know it was de�ned in the 60s, and the �rst papers

to mention the name integrate-and-�re appeared in the 70s (Brunel and van

Rossum, 2007; Knight, 1972a,b), with earlier work done in 1936 (Hill, 1936).

The integrate-and-�re model basically describes a passive patch of membrane

as an RC circuit, where an input current eventually causes the membrane

potential to reach a speci�ed threshold. This short-circuits the membrane

resistance and ellicits a spike followed by a reset and a refractory period,

after which the membrane may charge again (Sterratt et al., 2011). Equation 3.1
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shows the integrate-and-�re model. This equation comes from solving the

di�erential equation for the membrane potential V:

V = Em + RmI(1 – e
–

t

τm ) (3.1)

In this equation, V is the membrane potential, Em is the reset potential (to

which the membrane is reset after a spike), Rm is the membrane resistance,

I is the total current input, and τm is the membrane time constant (the

product of the membrane resistance Rm and the membrane capacitance).

The integrate-and-�re model falls in class I, according to Hodgkin’s classi�cation

by neural excitability

Hodgkin pioneered the study

of bifurcation mechanisms of

excitability and identi�ed two

groups: class I, where action

potentials may be generated

on a low frequency depending

on the strength of the applied

current, and class II, where

spikes are generated within a

frequency band that is

relatively independent of

changes in the intensity of the

applied current (Izhikevich,

2007).

(Izhikevich, 2007). It has many variants that add

realism to its behaviour (Fourcaud-Trocmé et al., 2003; Gerstner and Kistler,

2002; Hansel and Mato, 2000; Koch, 1999; Latham et al., 2000). Overall, it is

a relatively simple model and fast to implement, which makes it especially

useful for simulating large networks.

3.1.2 Hodgkin-Huxley model

The Hodgkin-Huxley model describes the action potential of a neurone

and originated from the authors’ careful observations of the giant squid

axon (Hodgkin and Huxley, 1952). It merited the Nobel Prize in 1963 and is

still to date one of the most important tools in computational neuroscience.

In this model, the membrane acts as a capacitance C and voltage-dependent

electrical conductances represent voltage-gated ion channels. One formulation

(Rabinovich et al., 2006) follows:
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CV̇(t) = g
L

[V
L

– V(t)] + gNam(t)
3
h(t) [VNa – V(t)] + gKn(t)

4
(V

K
) – v(t) + I

(3.2)

ṁ(t) =

m∞ (V(t)) – m(t)

τm (V(t))

(3.3)

ḣ(t) =

h∞ (V(t)) – h(t)

τ
h

(V(t))

(3.4)

ṅ(t) =

n∞ (V(t)) – n(t)

τn (V(t))

, (3.5)

where V(t) is the membrane potential; m(t), h(t), and n(t) are empirical

variables that describe the activation and inactivation of the ionic conductances;

and I is an external current. The steady-state values of m∞, h∞, and n∞,

which are the conductance variables, depend on the voltage in a nonlinear

fashion.

3.1.3 Morris-Lecar and FitzHugh-Nagumo models

The Morris-Lecar model (Morris and Lecar, 1981) is also a widely used and

well-known microscopic model that is derived from experiments on the

barnacle giant muscle �ber. Despite the fact that it is only two-dimensional,

it is capable of reproducing a wide array of oscillating states and can simulate

both class I and class II neurones (see page 22), all of which make it one of

the most popular microscopic models available. It is a conductance-based

model, comparable to the Hodgkin-Huxley model, except that its dimensionality

is lower while still reproducing a similar array of behaviours.
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This model reproduces the oscillatory behaviour of the membrane potential

of a nerve cell with respect to the activation of the ion channels in the

membrane. It reduces the voltage dynamics to being dependent on Ca
2+

,

by means of an instantaneously responding voltage-sensitive conductance,

for excitation; and K
+
, with a delayed voltage-dependent conductance, for

recovery. The initial model accounted for Ca
2+

ion dynamics; however,

a set of safe assumptions were made that allowed to simulate the entire

set of two-dimensional oscillation phenomena that had been observed

experimentally without this third variable. The �nal model therefore relies

on two variables: the membrane potential, V, and the recovery variable,

N—the fraction of open K
+

channels—, as presented in the following equations:

CV̇(t) = I – g
L

(V(t) – V
L
) – g

Ca
M∞ (V(t)) (V(t) – V

Ca
) – g

K
N (V(t) – V

k
)

(3.6)

Ṅ(t) = λ
N

(V(t)) (N∞ (V(t)) – N(t)) , (3.7)

where

M∞ (V(t)) =

1

2

(
1 + tanh

(
V(t) – V1

V2

))
(3.8)

N∞ (V(t)) =

1

2

(
1 + tanh

(
V(t) – V3

V4

))
(3.9)

λ
N

(V(t)) = λ
N

cosh

(
V(t) – V3

2V4

)
(3.10)

In these equations, I is the applied current; g
L
, g

Ca
and g

K
are leak, Ca

2+

and K
+

conductances, respectively; λ
N

(V) and λ
N

are the rate constant

and maximum rate constant for K
+

channel opening, respectively; M∞(V)
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and N∞(V) are the fractions of open Ca
2+

and K
+

channels at steady state,

respectively; V1 and V3 are the potentials at which M∞ = 0.5 mV and

N∞ = 0.5 mV, respectively; and V2 and V4 are reciprocals of slope of

voltage dependence of M∞ and N∞, respectively.

The Morris-Lecar model allows to reproduce several dynamic behaviours

by altering its parameters, thus generating di�erent types of stability. Also,

because the parameterisation is relatively simple, one may use the model

to build networks of coupled oscillators and describe collective oscillations

whose behaviour depends on the coupling.

The FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al., 1962) is

related to the Morris-Lecar model, in the sense that it is a conductance-based

model and a simpli�cation of the Hodgkin-Huxley model to a 2D space:

ẋ = x – cx
3

– y – I (3.11)

ẏ = x + by – a, (3.12)

where x(t) is the membrane potential, y represents fast currents, I is an

external current, and a, b, and c are chosen to allow the model to spike (Rabinovich

et al., 2006). The FitzHugh-Nagumo model contains the van der Pol oscillator

when a = b = 0.

3.1.4 Microscopic neural networks

Microscopic neural networks are formed by connecting microscopic models

of neurones to one another by transmitting the output signal of one neurone

as the input signal to another. Mostly, the signal is the presence or the

absence of an action potential (Stepanov, 2011); however, whether it is
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the timing of action potentials or the �ring rate of neurones which encodes

information is still unknown. The presence of connections adds an important

element of complexity, as there are many aspects that further complicate

�nding a good compromise between biological realism and mathematical

tractability (Cessac and Viéville, 2008). Indeed, the analysis of a single

neurone cannot always be easily extended to a network: whether or not

to position neurones in space; the quantity of units and connections, or

its scaling; the nature of these connections and their number, as well as

their distribution (i.e. resulting in sparse, local or small-world networks);

the presence of delays in the communication; and the variability in the

properties or characteristics of each unit, these aspects must all be considered

in the construction of a neural network. Moreover, in some cases the simpli�cations

in the model may by themselves induce e�ects not observed in the real

system (Cessac and Viéville, 2008), adding to the di�culty.

However big the obstacles, modelling networks of neurones plays a crucial

role in understanding the transmission of information and the emergent

characteristics of cerebral circuits, especially through their dynamical

features (such as the synchronisation between di�erent populations, or the

presence and in�uence of noise). Experimental data reveal how microscopic

properties of neural populations shape the processing of information in

local networks, and at the same time how the behaviour of networks at a

larger scale in�uences local populations (Guigon et al., 1994; Panzeri et al.,

2015; Wright and Liley, 1996). We are especially interested in integrating

and relating the knowledge from both scales of operation for a comprehensive

global understanding of brain dynamics (see section 3.3).
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3.2 Mesoscopic models

Although microscopic networks are currently the most realistic modelling

tool we possess, modelling circuits of more than a few dozens of neurones

and their interconnections can be computationally expensive to a prohibitive

degree. Also, there is much yet to be learnt about the properties of neurones,

their placing, and how they interact with each other, not to mention the

activity and in�uence of non-neuronal glia (Araque and Navarrete, 2010;

Perea and Araque, 2010; Perea et al., 2009). Additionally, non-deterministic

factors a�ect brain interactions (Branco and Staras, 2009), to the point

where any model is inevitably inexact, and often very much so.

Mesoscopic models use concepts from statistical physics to average out

large clusters of neurones and model them at a population level, with a

single set of parameters describing the dynamics of the neuronal ensemble (Deco

et al., 2008). This is especially useful in the context of imaging, where the

available technologies—e.g. electroencephalography, magnetoencephalography

or functional magnetic resonance imaging—re�ect the collective activity

of large groups of neurones. Neural mass models, a type of mesoscopic

models, do not account for the spatial dimension (see Other approaches,

section 3.2.2), but focus on temporal e�ects. Section 3.3, Bridging the gaps,

describes in greater detail the relationship and derivation of mesoscopic

formulations from microscopic models.

Although the concept of a neural mass was introduced in the 70s, it was

earlier, in the work of Beurle (Beurle, 1956) and then Gri�th (Gri�th,

1963, 1965) that the �rst studies involving assemblies of neurones in the

mesoscale were conducted. These works did not account for refractoriness
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or recovery and neither did they consider any inhibitory components;

therefore, they were not very relevant from a physiological point of view (Liley

et al., 2012), but they did serve as an important precedent for the more exact

models that were to come. Wilson and Cowan proposed what was probably

the �rst neural mass model in 1972 (Wilson and Cowan, 1972), even though

they did not use this name themselves. Their model introduced a sigmoidal

function to encode the �ring rate of the neural mass and de�ned a series of

excitatory and inhibitory interactions between spatially de�ned populations

of neurones, both of which innovations were crucial and have been retained

by future models (Liley et al., 2012). Further work by Amari (Amari, 1975,

1977) and Freeman (Freeman, 1975) advanced these e�orts with di�erent

mathematical approaches.

3.2.1 Jansen-Rit model

Most early models assumed that the e�ects of synaptic activity are directly

felt at the soma (Liley et al., 2012) (except for Freeman (1975)). However,

it was found experimentally that the cellular membrane potential peaks

and decays in a second-order response to incoming synapses (Kandel

et al., 2000), which was later referred to as post-synaptic potential (PSP).

Lopes da Silva et al. (1974) and van Rotterdam et al. (1982) were the �rst to

explicitly include PSPs in the formulation of a mean �eld model. Jansen and

Rit extended and systematically investigated the model for its behaviour

under parameter changes (Jansen and Rit, 1995; Jansen et al., 1993). It is

their studies which present the formulation used in this thesis, and from

now on we refer to it as the Jansen-Rit model—the fairness of which is not a

subject of debate in these pages.
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Jansen and Rit’s model simpli�es the neuronal diversity of a cortical column

in three interacting populations: pyramidal neurones, excitatory interneurones,

and inhibitory interneurones. The larger pyramidal population excites both

groups of interneurones, which in turn feed back into the pyramidal cells.

The pyramidal population is also driven by excitatory noise from distant

areas of the brain and by neighbouring columns. (Please see section A.1 on

page 113 for the equations of the model and more details.) As with earlier

neural mass models, the activity of the cortical column is conducted with

two transformations: the �rst relates the average density of incoming action

potentials into an average post-synaptic membrane potential and takes the

form of a second-order di�erential equation; the second converts the net

average membrane potential of the population into an average �ring rate,

and is described by a sigmoid function.

As has been mentioned previously in section 2.3.1, Electroencephalography,

electrical activity detected by the electrodes on the scalp in an EEG is

thought to be originated by the weighted sum of the averaged membrane

potential of the pyramidal cells. In this Thesis, we have chosen the Jansen-Rit

model as our tool for reproducing the EEG for its ability to reproduce

alpha-like waves and epileptiform spikes.

3.2.2 Other approaches

As has been mentioned in the previous sections, neural mass models are far

from being the only modelling tool available in the mesoscopic scale. The

�rst mesoscopic models took the spatial dimension into account (Beurle,

1956; Gri�th, 1963, 1965), and therefore fall into the category of neural

�elds; in fact, neural masses can be regarded as a special case of neural
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�elds in which conduction times tend to zero (Pinotsis and Friston, 2014).

Because of the spatial dimension of neural �elds, there are interesting

theoretical possibilities of study, perhaps the most notorious of which is

pattern formation (Amari, 1975, 1977). Also, the practical applications of

neural �eld models are highlighted in recent and past research on brain

imaging (Freestone et al., 2011a; R.G.Abeysuriya and P.A.Robinson, 2016;

Wijeakumar et al., 2017), full brain modelling (Spiegler and Jirsa, 2013),

neural plasticity (P.K.Fung and Robinson, 2013; P.K.Fung et al., 2013), vision

(Adorján et al., 1999; Salmon and Trappenberg, 2008; Wang et al., 2012),

pathological states of the brain (Müller et al., 2017), and robotics (Fard et al.,

2015; Oubbati et al., 2006).

In the context of data assimilation in brain modelling, and especially inferring

connectivity, a notorious tool is dynamic causal modelling (Friston et al.,

2003; Stephan et al., 2010). Dynamic causal modelling uses Bayesian model

comparison to infer the coupling parameters that characterise the connectivity

between di�erent brain regions. These brain regions consist of neural

populations that are intrinsically connected and also coupled externally

to other regions, and may be described by any model that is biologically

plausible and su�cient to describe population phenomenology (Beharelle

and Small, 2016). Although it was initially aimed at fMRI BOLD (Havlicek

et al., 2015; Stephan and Roebroeck, 2012), later on it was extended to

modelling evoked responses with EEG and MEG (David et al., 2005, 2006;

Kiebel et al., 2008) using in this case, interestingly, Jansen and Rit’s model.

Other e�orts include the study of seizures (Jedynak et al., 2017; Papadopoulou

et al., 2016), using large scale models (Lee et al., 2006), neural �elds (Moran

et al., 2013; Pinotsis et al., 2012), a scale-bridging model using laminar
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recordings (Pinotsis et al., 2017), and combination with cross-spectral

density analysis of electrophysiological recordings (Moran et al., 2009).

3.3 Bridging the gaps

Perhaps one of the properties of brain activity that makes it the hardest

to decipher is that it operates on di�erent scales: temporally, from the

milliseconds a spike takes (Berry et al., 1997) to circadian rhythms and

a lifetime of memories (Buhusi and Meck, 2005); and spatially, from the

nanometric neurotransmitters to the brainwaves generated by clusters of

neurones, to functional areas that encompass several square centimetres (Purves

et al., 2004). Relating these scales to each other, or "bridging the gaps", is a

basic undertaking when attempting to build a consistent and self-contained

picture of brain dynamics. Because the most relevant models for our work

�t either in the microscopic or the mesoscopic category, from now on we

will refer solely to these two scales and to the relationship between them.

Although it is entirely possible to build a mesoscopic model that is exclusively

phenomenological in its inception, i.e. that aims solely to reproduce the

dynamics of those time traces obtained by brain imaging

Although this holds true for

many or most mesoscopic

models, Jansen and Rit’s

model does feature parameters

with biological meaning.

, such a model will

mostly fail in its interpretation of the underlying physiology of the system

that originated these time traces. In our view these models might have

great theoretical interest, but probably have no direct or immediate clinical

application, whereas most microscopic models are often directly derived

from experiments and their parameters respond to concrete biological

magnitudes. It is for this reason that we believe that relating these two

scales of brain activity is of paramount importance.
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The models that have been hitherto discussed all contain, in some measure,

more or less implicit information as to where they are situated both in the

temporal and spatial scales. Therefore, any e�ort towards relating two types

of models (e.g. mesoscopic to microscopic) will necessarily deal with these

two aspects. Essentially, the challenge lays in relating discrete events that

take place in milliseconds from cell to cell (neuronal spikes) to continuous

waves of activity that may span multiple seconds and are the result of the

collective activity of tens of thousands of cells.

In their thorough and exhaustive review, Deco and others (Deco et al.,

2008) apply the mean-�eld approach to describe an ensemble of spiking

neurones with the Fokker-Planck equation, which results in the so-called

ensemble density models; in the special case where the description of the

ensemble density models is summarised with a single number, a neural

mass model is obtained. Faugeras and others (Faugeras et al., 2009) derive

a mean-�eld model from an ensemble of spiking neurones (Dayan and

Abbott, 2001; Gerstner and Kistler, 2002) by assuming that the mean of

the sigmoids of the membrane potentials of each cell in a population is

the same as the sigmoid of the mean. This is a very strong assumption but

it holds true when the synaptic strength from one population to another

remains constant. Another caveat of this derivation is that the microscopic

membrane potential and the mesoscopic result of a group of neurones �ring

together, the synaptic voltage, are essentially considered to be equivalent,

which is, at best, a somewhat unjusti�ed assumption.

Rodrigues et al. (2010) considered two di�erent assumptions when relating

a neural mass model and a conductance-based microscopic model

Conductance-based models of

neurones are based on an

equivalent electric circuit. The

most famous example is

Hodgkin and Huxley’s model

of the giant squid axon

(Hodgkin and Huxley, 1952).

. On

the one hand, they considered membrane and synaptic temporal scales
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as separate, for which two assumptions are needed that are contradicted

by experimental evidence: namely, that the synaptic activity varies on a

much slower scale than that of the voltage, and that the driving forces

are constant for all channels. On the other hand, they considered equal

membrane and synaptic temporal scales using Freeman’s model (Freeman,

1975), where the precise meaning of the voltage is actually unspeci�ed

(which is related to the derivation by Faugeras et al. (2009) already discussed).

Additionally, they assumed that intracellular activity is proportional to

extracellular activity.

In a more recent work, Zandt et al. (2014) introduce a neural mass model

that explicitly includes microscopic dynamics by calculating the population

�ring rate from the single cell dynamics. This work has the explicit aim

of modelling pathophysiology and is therefore brought forth with the

intention of corresponding to experimental results. This allows to empirically

justify and relax a di�cult assumption, namely, that the time scales of

�uctuating input currents to a neurone and its instantaneous �ring rate

are reasonably similar.

It is interesting to note that, as well as the bottom-up approaches hitherto

presented—those which derive mesoscopic models of collective behaviour

from microscopic descriptions of single cells—, some e�orts have been

made in the opposite direction, i.e. by attempting to eludidate microscopic

characteristics from mesoscopic signals (Hadjipapas et al., 2009). The merit

of all these works is undoubtable; however, more experimental work, together

with the appropriate theoretical frameworks, are needed to relate scales of

brain dynamics and operation on a more solid and undisputable foundation.
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3.4 Head model

One of the main contributions of this Thesis is the use of multichannel

extracranial data to obtain information about the neuronal populations

inside the brain (using data assimilation). To that end, the output of the

neural mass models must be transferred outside of the head to resemble

EEG signals detected by electrodes on the skull.

This transformation is mediated by a lead �eld matrix (Mosher et al., 1999),

which builds on the basic idea of calculating the electric potential caused by

a dipole source (Buzsáki et al., 2012) on a three-layer isotropic hemisphere

of radius 1 (Ary et al., 1981; Zhang, 1995) that represents the three main

tissues that impact brain activity readings (brain, skull, and scalp). The

lead �eld matrix also contains information about the geometry of the

problem (e.g., locations of cortical columns and electrodes) and about the

electrophysiology of the head (e.g., conductivities of the di�erent tissues).

Please see section A.2 in appendix A for the equations of the head model.

As has already been discussed, the use of dynamical equations to mimic

any aspect of brain function is always subject to a compromise between

computational feasibility and biological realism. Combining models with

experimental data may help in improving the quality and applicability of

these e�orts. This is made possible by data assimilation, which is discussed

in the following chapter.

34



...since all our measurements and observations

are nothing more than approximations to the

truth, the same must be true of all calculations

resting upon them, and the highest aim of

all computations made concerning concrete

phenomena must be to approximate, as nearly

as practicable, to the truth.

Carl Friederich Gauss

4
Data assimilation and Kalman �ltering

D

ata assimilation is defined as a technique which combines observed

data with the output of a theoretical model to produce the best possible

estimate of an evolving dynamical system. It has a long and exciting

history that started in the �eld of the geosciences, speci�cally in meteorology

as an aide for numerical weather prediction. In this �eld, data assimilation

is mostly needed to produce the best possible estimate of the system to

set the initial conditions for the weather forecasting model. In contrast, in

engineering a data assimilation algorithm is most often used for tracking
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and estimating the state of the system in real time. This is an important

di�erence that has shaped the evolution of the techniques in the two di�erent

�elds. Kalman �ltering is perhaps the most widely known data assimilation

technique, as its applications span �elds so diverse as economics, navigation,

climate studies, etc.; so much so that it is widely regarded as one of the

greatest advances of the 20th century, and certainly the most important

contribution to modern systems and control theory.

4.1 Overview of data assimilation methods

Before the advent of data assimilation algorithms, observations were directly

inserted into the model of the system, and the experience and intuition of

experts was of paramount importance. Panofsky (1949) is credited with the

�rst objective analysis of a weather map for numerical weather prediction.

This was followed by the work of Bergthórsson and Döös (1955) and Cressman

(1959), who developed the �rst method in four-dimensional data assimilation.

Four-dimensional data

assimilation, or 4DDA, takes

time into account as the 4th

dimension, in contrast to

methods in the 3DDA family.

Speci�cally, they proposed successive corrections to the dynamical model

by weighing the observation according to its in�uence and its distance

to the expectation. Nudging methods (Hoke and Anthes, 1976; Kistler,

1974), also referred to as Newtonian relaxation, appeared two decades

later. Nudging is reminiscent to the direct insertion of observations used

earlier, and is based on adding a term that "nudges" the dynamics of a model

towards the observed values by means of tuning parameters. These two

approaches, successive corrections methods and nudging, are mainly of

historical interest and almost out of use (Kalnay, 2003).

To be fair, however, it is Gauss (1809) who should be credited for the �rst

recorded attempt at assimilating observed measurements into a dynamical
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model, while determining the orbit of Ceres. He stated that the best estimate

for the values that characterised the motion of the satellite were those most

probable, de�ning them with the following condition: "...the most probable

value of the unknown quantities will be that in which the sum of the squares

of the di�erences between the actually observed and the computed values

multiplied by numbers that measure the degree of precision is a minimum"

(Gauss, 1809). Legendre independently arrived to similar results in 1806, and

both their names are associated to the development of what later would be

known as least squares estimation.

Most data assimilation techniques currently in use aim to minimise a cost

function derived from a multivariate Gaussian distribution, such as

J(x
i
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1
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)

)
, (4.1)

where the �rst term is related to the distance between the model projection

xf

i
—the theoretical knowledge of the system—and the estimate x

i
of the

state of the system, and the second term measures the distance between

the model projection and the observations y
i
. The matrices P and R are

covariance matrices that measure the error of the estimate and that of the

measurement, respectively.

This can be done with a large variety of algorithms, depending on the

application and the tradition of the �eld. However, most fall in two categories,

sequential and variational (Lorenc, 1986). Sequential algorithms involve

direct algebraic solutions of equation 4.1 (see, e.g., Aldrich (1997) or Kalman

(1960)); variational algorithms, in contrast, solve it by a numerical minimisation

(Sasaki, 1970).
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4.1.1 Sequential algorithms

This group contains some of the techniques that are most used in control

and signal engineering, namely optimal interpolation and its variants

and derivatives. Optimal interpolation is a minimum variance estimator,

�rst introduced and named by Gandin (1965), although the technique

goes back to Kolmogorov et al. (1941) and Wiener (1949). The Kalman

�lter (Kalman, 1960) was developed in the late 50s and the early 60s by

Rudolf Emil Kálmán, whose main contribution was the use of the state

space approach to correct Wiener’s input-output formulation of the statement

and solution of the problem (Kalman, 1960). (Because the Kalman �lter is

the algorithm of choice for data assimilation in this Thesis, it is discussed

in more depth in sections 4.2.3 and 4.2.1, as well as in appendix B.) One

of the most relevant di�erences, compared to optimal interpolation, is

that optimal interpolation uses a �xed model error covariance estimate,

whereas the Kalman �lter uses an evolving model error covariance estimate.

The Kalman �lter is, in its linear form, the best linear unbiased estimate,

provided that the model and observation errors are both zero-mean, and it

is one of the best known examples of recursive Bayesian estimation.

Although the Kalman �lter is optimal for linear problems, there are many

applications that warrant a nonlinear approach. Section 4.2.2 reviews

those of the most interest for this Thesis. The engineering community

has traditionally favoured the use of sequential algorithms, especially

that of Kalman �lters—and probably because of Kalman �lters—, with the

exception of the ensemble Kalman �lter (Evensen, 1994), which from its

inception belongs mostly in the �eld of the geosciences.
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4.1.2 Variational algorithms

Variational algorithms numerically approximate the solution to equation 4.1

by iteration, thus minimising some measure of the distance to the observations

in the presence of a dynamical constraint (Lorenc, 1986). 3D-Var, or 3-dimensional

variational assimilation, can be proven to be algebraically equivalent to

optimal interpolation, provided the cost function is that in equation 4.1

(Kalnay, 2003; Lorenc, 1986); however, because the methods of solution

are di�erent, the results are also di�erent, and 3D-Var is the method of

choice in many weather prediction centres because of the improved quality

of the numerical forecasts. However, it does have some major drawbacks,

perhaps the largest of which is the fact that model errors are assumed to be

constant over time, thus ignoring the "error of the day"—when day-to-day

variability in the forecast error is approximately as large as the average

error. Kalman �ltering (above) does update the forecast error covariance

with each iteration, but its use is not feasible in large systems due to computational

constraints. 4-dimensional variational assimilation, or 4D-Var (Courtier

and Talagrand, 1987; Talagrand and Courtier, 1987; Thepaut and Courtier,

1991), considers updates in the forecast error, albeit implicitly; the fourth

dimension is time, and the observations are assimilated over a time window

(Le Dimet and Talagrand, 1986), and not one at each iteration sequentially,

as is done with the previously presented methods. This approach has

been very successful, but its implications result in computational costs

that are unrealistic for most weather forecasting centres in both its two

variants: strong constraint (which assumes the model error is zero) and

weak constraint (which accounts for model imperfections).
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4.1.3 Particle filters

Particle �lters use a set of particles (or samples) to represent the probability

density function, rather than using a function over state space; therefore,

they are suited to estimating the state of nonlinear dynamic systems. Particle

�lters represent a whole class of algorithms that have sampling and recursive

Bayesian estimation in common; however, what is referred to as the particle

�lter, also called sequential Monte Carlo �lter (SMC �lter), is an algorithm

proposed by Gordon et al. (1993)—who built on the work of Stewart and

McCarty (1992)—to e�ectively bootstrap a set of samples from the actual

distribution in order to approximate the probability density function. The

SMC �lter can be used in highly nonlinear situations and parallelisation is

easy. Furthermore, the estimation error converges to zero as the number

of particles drawn approaches in�nity (Simon, 2006). One of the major

drawbacks of the �lter, however, is the computational e�ort involved in

using many particles.

The unscented Kalman �lter (UKF) and the ensemble Kalman �lter both fall

in the category of particle �lters, if we take the term in the more generalistic

sense. However, one of the main strengths of the UKF is that the particles

(known as sigma points) are chosen deterministically, and therefore a �xed

and smaller number of them are needed, which lightens the computational

load (see section 4.2.2 and Simon (2006)). In the ensemble Kalman �lter, the

ensembles are the "particles" that condense the statistical information of

the state without the need to store �rst- and second-order moments in what

would be unfeasibly large matrices (Fearnhead and Künsch, 2018)
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4.1.4 Final remarks

The list of available data assimilation algorithms is very long and includes

several variants of the Kalman �lter, as well as other approaches, such as

H∞ �lters (Khargonekar and Nagpal, 1989). A complete and exhaustive

review of these methods is out of the scope of this work. Much research

is currently being directed towards developing hybrid methods of the

ensemble Kalman �lter and the variational methods, to bring together the

strengths of both (Lorenc, 2003; Penny, 2017).

Even though these hybrid methods are being developed, they are still used

mainly by the climate science community. In the previous paragraphs we

have hinted at the wide gulf there exists between the signal processing and

control engineering community and the geosciences (Roth et al., 2015), and

this is indeed highlighted by the fact, for example, that Kálmán’s seminal

paper from 1960 isn’t even cited in Evensen’s �rst development of the

ensemble Kalman �lter (Evensen, 1994). Also, the nomenclature in the

di�erent �elds is di�erent (see table 4.1). However, a better communication

between the two disciplines would result in a more fruitful and e�cient

outcome while choosing between available techniques for a given situation.

Especially, we believe that large scale problems in neuroscience would

surely bene�t from the consideration of variational and ensemble approaches.

As has been mentioned already, the unscented Kalman �lter is the algorithm

that has been employed for the data assimilation problems in this Thesis.

Our choice is defended not only by technical considerations on the superiority

of the technique (see section 4.2.2), but also because much of the existent

research on which the present work is inspired (Freestone et al., 2011b;
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Table 4.1 Concepts in

data assimilation and their

nomenclature in di�erent

�elds of application.

Engineering Geosciences Definition

A priori estimation Forecast Projection through the model
of the state at the previous
time step

A posteriori estimation Analysis Corrected estimate a�er
considering observation

Model Background Knowledge of the system
independent of observations

Kuhlmann et al., 2016) uses the UKF. This is not to mention that �ltering is

so far the method of choice for data assimilation in neuroscience (Freestone

et al., 2014a; Hamilton et al., 2013, 2014; Li et al., 2016; López-Cuevas et al.,

2015; Shan et al., 2015), variational methods having been used very sparsely

(Moye and Diekman, 2018).

4.2 The Kalman filter

4.2.1 Description and equations of the Kalman filter

The Kalman �lter is essentially an e�cient computational solution of the

recursive least-squares method—it aims to minimise the mean square error

of the estimated values. It considers two basic elements, the state of the

system and the measurement thereof, due to the state space formulation of

the problem:

xk = Φxk–1 + wk–1 (4.2)

zk = Hxk + vk (4.3)
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Equation 4.2

Note that the Kalman �lter

does not assume these

processes to be Gaussian, but

rather, the �lter is optimal if

they are.

describes the state of the system, and equation 4.3 relates

the measurement to the state. The state transition Φ and the observation

H matrices are assumed to be constant in time. w and v are white noise

sequences, independent of each other, and assumed to be Gaussian with

known covariance.

Derivation

The following is one of many derivations of the �lter (Sorenson, 1970). It

has been chosen for its succintness and proximity to Kalman’s conceptualisation

of the algorithm. It presents the problem in the state-space approach, and

uses the least-squares approach to minimise the error in the estimate.

At any time instant k, the estimate of the signal

sk = Hkxk, (4.4)

given the estimated state x̂k|k (which reads "the state estimate given the

state at time k), is expressed as

ŝk|k = Hkx̂k|k. (4.5)

To minimise the mean-square error, the orthogonality principle known

as the Wiener-Hopf equation must be satis�ed; this states that the error

in the estimate must be orthogonal to the measurement data (Sorenson,

1970). Therefore, we write x̂k|k—that is, the estimate of the state x at the

time instant k given the state at the time k—as the linear combination of the

predicted estimate and the residual. Then the mean-square estimate is

The Kalman �lter is a

recursive extension of the

Wiener �lter to non-stationary

stochastic problems.
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x̂k|k = Φx̂k–1|k–1 + Kk

[
zk – HΦx̂k–1|k–1

]
, (4.6)

where the second term is the residual.

The matrix K, which is the gain matrix (also known as the Kalman factor),

is chosen, to minimise the mean-square error, E

[
(x̂k – x̂k|k)

T
(xk – xk|k)

]
:

Kk = Pk|k–1H
T
(
HPk|k–1H

T
+ R
)

, (4.7)

where R re�ects the measurement error. Pk|k–1 is the predicted estimate

error covariance:

Pk|k–1 = E

[(
xk – x̂k|k–1

)(
xk – x̂k|k–1

)
T

]
= ΦPk–1|k–1Φ

T
+Q, (4.8)

where Q is a measure of the model error. Finally, Pk|k is the estimate error

covariance:

The covariance P satis�es the

Riccati equation, which has

important implications as to

the observability and

controllability of the system.

Pk|k = E

[(
xk – x̂k|k

)(
xk – x̂k|k

)
T

]
= Pk|k–1 – KkHPk|k–1. (4.9)

Equations 4.6 to 4.9 are essentially the Kalman �lter. There are several

other ways of obtaining the Kalman �lter equations. Another very common

derivation uses Bayesian statistics, in which posterior probability is used

to determine the most likely cause for a �awed measurement (Barker

et al., 1995; Brown and Hwang, 2012); yet another very intuitive approach

combines the Gaussian distributions of model output and measurement to

reach a better estimate (Faragher, 2012; Maybeck, 1979).
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The linear Kalman filter

The following equations 4.10 to 4.14 contain a more usual and practical

form of the Kalman �lter, commonly used to implement the algorithm. The

linear Kalman �lter is the base for the other more complex versions, which

still share its chief characteristics.

x̂–k = Φx̂k–1 (4.10)

P–k = ΦPk–1Φ
T

+ Q (4.11)

Kk = P–kH
T
(
HP–kH

T
+ R
)

–1

(4.12)

x̂k = x̂–k + Kk
(
zk – Hx̂–k

)
(4.13)

Pk = (I – KkH)P–k (4.14)

There are two steps to every iteration (or every time instant k) of the Kalman

�lter: the a priori step, before incorporating the measurement (marked with

the superindex
–
), and the a posteriori step, which adds the information of

the observation. The a priori estimate x̂–k is calculated by projecting the

state at the previous iteration x̂k–1 through the state transition function

Φ, and therefore merely takes into account the theoretical knowledge of

the system (i.e. the model). The a posteriori estimate, however, incorporates

the measurement zk to obtain a corrected �nal estimate x̂k for the current

time iteration, by comparing with the estimation of the state projected

onto the measurement space, Hx̂–k. Pk, Q and R are estimate, model and

measurement covariance error matrices, respectively. The Kalman gain
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K, which is key to the performance of the �lter, integrates the knowledge

about the precision of both model and sensors to weigh the residual

(
zk – Hx̂–k

)
.

4.2.2 Nonlinear versions and the unscented Kalman filter

In the very same paper where Kalman presented his �lter he recognised

the better adequacy of nonlinear �lters to certain tasks, but he stated,

textually, "At present, however, little or nothing is known about how to obtain

(both theoretically and practically) these nonlinear �lters" (Kalman, 1960).

Nevertheless, he probably missed the important work of Stratonovich, who

by that time had developed a nonlinear �lter deriving partial di�erential

equations for the a posteriori probability density function, based on his

theory of conditional Markov processes (Stepanov, 2011; Stratonovich, 1959).

When the �lter was being used for the �rst time, it was quickly seen that

most of its applications would feature some kind of nonlinearity. The most

popular nonlinear version of the Kalman �lter is the extended Kalman �lter,

which was developed at NASA at the centre in which Kalman himself had

worked (Smith et al., 1962). The extended Kalman �lter linearises about

the mean at each time step with a local Taylor expansion, and therefore

uses the Jacobian matrix much as one would use the matrix of a linear

transfer function. This is the most well known, well researched and widely

used nonlinear �lter (Julier and Uhlmann, 2004), but it has two important

drawbacks: �rst, the Jacobian matrix must be calculated (if it exists) and

hard-coded into the algorithm; second, the �rst-order approximation at

every time step of the nonlinear function often causes the �lter to diverge

in very little time, as this assumption does not hold well in the presence of

severe nonlinearities.
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The next most popular nonlinear Kalman �lter is probably the

The somewhat esoteric term

unscented has, in reality, a

very simple explanation: late

one evening, while alone in

his lab, Je�rey Uhlmann saw a

men’s deodorant on

someone’s desk and thought it

was the perfect absurd,

abstract and distant name for

his new development (Je�rey

Uhlmann, 2016).

unscented

Kalman �lter (UKF) (Julier and Uhlmann, 2004; van der Merwe and Wan,

2000). This is the �lter that has been used in this thesis. The UKF deals

with the nonlinearity using the unscented transform (UT), which was

invented by Je�rey Uhlmann, and which is based on the idea that it is

easier to approximate a probability distribution than it is to approximate

an arbitrary nonlinear function or transformation (Uhlmann, 1994). At

each time step, therefore, the UKF propagates a set of deterministically

chosen points through the nonlinear transformation and recovers the

statistical information of the distribution from these (instead of attempting

to propagate the statistical information of the distribution directly). Figure 4.1

illustrates the idea behind the propagation of the state through a nonlinearity

from di�erent approaches. In the �rst column, multiple samples are drawn

from the distribution to approximate its statistical information. This is the

approach used in particle �lters (see section 4.1.3). The second column

illustrates how, in the extended Kalman �lter, the linearisation approach

is often insu�cient to handle the transmission of information through

a nonlinearity. Finally, the third column shows how projecting a set of

points through the nonlinearity allows to recover the information with

fewer points than particle �lters (hence, less computational e�ort) and more

faithfully than the EKF.

The UKF has been shown to be superior to the extended Kalman �lter

in several ways. It is more precise, as it captures up to the second-order

moment of the state distribution; more stable, as the UT can handle higher

nonlinearities; and still computationally e�cient, at a computational complexity

of O(L
3
) (where L is the dimension of the state) (Julier and Uhlmann, 2004;
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Figure 4.1 The unscented

transform and how it

compares to the approach

of the extended Kalman

�lter. Reproduced

integrally from van der

Merwe and Wan (2001).

van der Merwe and Wan, 2000). For a detailed formulation of the UKF, see

section B.1 in appendix B.

There are several other nonlinear versions of the Kalman �lter that will not

be discussed here. For reference, the reader is invited to see van der Merwe

and Wan (2001) for the square-root unscented Kalman �lter; Arasaratnam

and Haykin (2009) for the cubature Kalman �lter; and Evensen (1994) and

Gillijns et al. (2006) for the ensemble Kalman �lter.

4.2.3 Kalman filtering in neuroscience

The application of Kalman �ltering to problems in neuroscience is relatively

new; it is only recently that e�orts have been made to bridge the gap that

has traditionally existed between experimental measurements of brain

states and characteristics, and theoretical models of the system (Hamilton
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et al., 2013, 2014, 2016). However, data assimilation algorithms and their

application to neuroscience have met with fair success. The Kalman �lter

has been used on microscopic problems to estimate neurone membrane

dynamics (Moye and Diekman, 2018), with corresponding mathematical

contributions to the �ltering technique (Lankarany et al., 2014; Rigatos,

2014). At the mesoscopic level, much work has been done integrating

experimental recordings into neural mass models (Aram et al., 2015; Freestone

et al., 2011a, 2013a,b); this has many clinical applications, such as tracking

of brain states in anaesthetised individuals (Bojak and Liley, 2005; Kuhlmann

et al., 2016), monitoring (Nguyen et al., 2017) and control (Cao et al., 2015)

of epileptic seizures, and estimation of e�ective brain connectivity during

seizures (Freestone et al., 2014b).

Nevertheless, the approach used in these works has one major drawback,

and that is the use of highly invasive intracortical data. The problem of

inferring brain states from extracranial data, or the inverse problem, goes

back long in time and has been researched extensively (Brookes et al., 2008,

2009; Caune et al., 2014; Gotman, 2003; Haufe et al., 2011; Lamus et al., 2012;

Lehnertz et al., 2001; Verhellen and Boon, 2007; Whittingstall et al., 2003).

The solutions that have been found are greatly useful for adding valuable

information and constraints to data assimilation approaches that seek to

estimate brain states from exclusively extracranial information. Also, there

are theoretical models that translate intracranial signals onto extracranial

recordings (this is known as the forward problem) (Mosher et al., 1999;

Zhang, 1995), which is fundamental when comparing extracranial and

intracranial information.
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This work aims to relate extracranial measurements to states and characteristics

of the brain, which are obviously intracranial. The possibilities of this

approach seem, at present, endless and of enormous importance: among

others, developing stimulation devices (Blankertz et al., 2011; Chi and

Snyder, 2012; Helbling et al., 2015; Kringelbach et al., 2007; Perlmutter and

Mink, 2006; Sadaghiani et al., 2010; Turi et al., 2012; Wagner et al., 2007),

contributing to automatic biometric-based user recognition systems (Campisi

and Rocca, 2014; Hema et al., 2008), tracking changes in brain dynamics

due to aging (Anokhin et al., 1996; Nelson et al., 2010; Yang et al., 2017),

monitoring the evolution of disease (Soekadar et al., 2015; Yoo, 2017), tracking

the evolution of brain states during motor imagery-control (Zich et al.,

2015), task-switching control (Phillips et al., 2014), e�cient control of

epilepsy (Shan et al., 2016), improving performance in brain-machine

interface tasks (Del R. Millán et al., 2008; Kao et al., 2015; Sussillo et al.,

2016), detecting and controlling transcranial brain stimulation (Krause

et al., 2013), and rehabilitation tasks (Aram et al., 2015; Stephan et al., 2015).

These, to name but a few, are all important �elds that will be greatly advanced

with a successful algorithm that infers brain dynamics from non-invasive

recordings.

The introduction to this Thesis has aimed to describe some basic concepts

related to brain function, the e�orts that have been made to describe it

with mathematical models, and how experimental data may be used in

conjunction with these to increase our knowledge and to develop novel and

important applications. The following part shows some results we have

obtained in this direction.
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Part II

Results
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The brain highlights what it imagines

as patterns; it disregards contradictory

information. Human nature yearns to

see order and hierarchy in the world.

It will invent it where it cannot �nd it.

Benoît Mandelbrot

5
Matching mesoscopic and microscopic

neural dynamics with Kalman �ltering

In chapter 3 we have introduced two scales of operation in the brain, microscopic

and mesoscopic, and have brie�y reviewed the e�orts made to relate them

to one another (section 3.3). Indeed, the brain operates at multiple temporal

and spatial scales, and current experimental techniques show di�erent

aspects of cerebral activity in di�erent scales in both the temporal and

spatial dimensions. Multi-neurone recordings o�er information about both
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the temporal and the spatial dimensions, which allows to infer a neurone

circuit and the functional connections between its elements (Berényi et al.,

2014), with the caveat that recordings at a neuronal scale, which have

been studied extensively, do not take higher structures into consideration.

Imaging techniques, such as two-photon imaging and functional magnetic

resonance imaging, have good spatial resolution (the former at a neuronal

level and the latter with brain regions), but have poor temporal precision.

This limits their ability to describe the dynamical changes produced at their

measuring scale in detail. Finally, measures of neural mass activity, such as

EEG or magnetoencephalography, have a high temporal resolution while

capturing the averaged activity of large groups of neurones, but lack spatial

precision and cannot discern the location of individual neurones and their

spike timing (Panzeri et al., 2015). These all allow to discern healthy brain

activity from pathological presentations and have been extensively studied

and used in both research and clinical settings.

The wide array of available dynamic models of brain activity necessarily

re�ects the experimental stage (Yuste, 2015). Microscopic models can be

very detailed, some to the point of describing compartments in neuronal

dentrites (Ermentrout and Terman, 2010), and all focusing on the neurone

as the basic computation unit of the brain. However, the diversity of neuronal

types and the rich complexity of their connectivity patterns greatly di�cult

the task of modelling the whole brain at this level, not to mention that it

is still not clear how information is encoded within the neurone’s action

potentials (Dayan and Abbott, 2001; Middleton et al., 2003; Shimokawa

et al., 1999; Vargas-Irwin et al., 2010). Several dynamic features such as

noise (Mainen and Sejnowski, 1995), excitation and inhibition coupling,

and transmission delays have played an essential role in explaining the
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variability of synchronisation responses and the stability of di�erent dynamical

states in large networks (Hansel and Mato, 2001; Hansel et al., 1995; Roxin

et al., 2005). While these features add realism to the dynamics of models,

they also pose an additional complicating factor, as they must be properly

tuned to re�ect the experimentally observed behaviours.

Moreover, attempts at modelling full brain dynamics with networks of

individual networks have shown emergent properties that arise from the

interactions among anatomical and dynamic processes, such as the sensitivity

to changes in individual neurones, the emergence of activity waves, and the

functional connectivity on di�erent scales (Izhikevich and Edelman, 2008).

This suggests that, in order to model full brain dynamics with neuronal

networks, it is necessary to understand how the brain operates at the

mesoscopic scale also (Panzeri et al., 2015), and some e�orts have been

directed this way, by Hagen et al. (2016), for instance.

As well as a better understanding of brain dynamics in the mesoscale, it

would also be helpful to improve our understanding of the relationship

between the microscopic scale and the mesoscopic. In section 3.3 we have

given an overview on the di�erent approaches that have been taken to

derive mesoscopic models from microscopic networks, and the simpli�cations

and assumptions that must be made. In this chapter we propose the use of

Kalman �ltering as a way to bypass these approximations and we study

simple situations, in which the standard assumptions are valid, and more

complex situations in which they are not.

To this end, we have generated data with a series of microscopic neural

networks, �rst in a trivial situation in which the neurones are uncoupled,

and next in more complicated situations where normal derivation of mesoscopic
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models fails. We have used the uncoupled con�guration to �t the sigmoidal

function that relates the average �ring rate and the average input synaptic

current for each population (see section 5.3). Finally, we have �tted the

mesoscopic model to the data generated with the microscopic networks in

a variety of interesting situations, and studied the relationship between the

output of the two scales.

5.1 Synaptic current

Neurones in the network are coupled with synapses. Even though their

dynamical evolution can be very complex, here we work with simpli�ed

current-base synapses (Graham et al., 2011):

I
(e,i)

(t) =

∑
t
(e,i)

s

Î

(e,i)

exp

(
–

t – t
(e,i)

s

τsyn

)
, (5.1)

where the action potentials, or spikes, arrive a times t
(e,i)

s either from a

Poissonianly distributed spike train (Burkitt, 2006) or from the presynaptic

neurones coupled to the cell under consideration. The current may be

excitatory, I
e
(t), or inhibitory, I

i
(t). Upon the arrival of a spike, the excitatory

current I
e
(t) increases by a factor of Î

e

, and after that time instant, t
e

s
, this

contribution to the total current decreases exponentially with a time constant

τsyn. This behaviour is analogous in the inhibitory case, except that the

current is negative and not positive.
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5.2 Mesoscopic model

To model the dynamics of the neurones at a mesoscopic scale, we consider

again an excitatory population and an inhibitory population coupled as

described in equation 5.1 and following, for the derivation, Faugeras et al.

(2009). Taking into account the previous considerations regarding the

average �ring rate, we arrive to the following equations for the average

synaptic input current for the excitatory population Ie and the average

synaptic input current for the inhibitory population I
i
:

dIe

dt

=

–Ie

τsyn

+ J
ee

S(Ie) – J
ei

S(I
i
) + J

e,ext
λe (5.2)

dI
i

dt

=

–I
i

τsyn

+ J
ie

S(Ie) – J
ii
S(I

i
) + J

i,ext
λ

i
, (5.3)

where the subscripts e and i refer to the excitatory and the inhibitory

populations, respectively. The J
ab

terms are the synaptic weights and λx

are the external Poissonian �ring rates injected to the populations. We

consider the shape of the post-synaptic potentials to be identical for both

populations (equation 5.1) and described by the time constant τsyn. This

set of equations, with the appropriate choice of the coupling constants J
ab

,

may produce oscillatory dynamics. However, the local interaction �eld

may cause the system to become non-Markovian and, to be rigourous, the

evolution in time of the microscopic models should be integrated over its

complete history. However, the above equations disregard this memory

term. We propose that the use of Kalman �ltering may account for this loss

of information.
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5.3 Fi�ing the sigmoid function

At the microscopic scale, the response of the neurones in the network

to the incoming spikes determines the post-synaptic potential (PSP) of

the neurones. The resulting input drives the dynamics of the neurone:

when the current is large enough, spikes are ellicited whose rate depend

on the magnitude of the input current. For instance, the �ring rate of an

integrate-and-�re neurone is given by

f(I) =

1

τr – τm ln(1 –
θIF

RmI
)

. (5.4)

Zandt et al. (2014) have shown that for a network of active/inactive cells

that receive the same input, and whose voltage thresholds follow a Gaussian

distribution, the average �ring rate of the network can be approximated as a

sigmoidal function:

S(V) =

fmax

1 + e
r(V0–V)

. (5.5)

As a matter of fact, this behaviour has been often assumed in neural mass

models (see, for example, Jansen and Rit’s model of a neural mass, page 113).

However, the characterisation of the conditions in which the network

behaves this way has been addressed in several studies, which put limits

to the validity of the approximation (Amit and Tsodyks, 1991; Kilian and

Siegelmann, 1996; Roxin et al., 2011).

Indeed, it is not possible to obtain a sigmoidal curve for the average �ring

rate if the individual f-I curves of each neurone (which show the average
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�ring rate versus the input current) are anything more complicated than a

step function. As this is the case with the integrate-and-�re model, using

a sigmoid to approximate the average �ring rate is not rigorously correct

(Kuhn et al., 2002). However, it is the approach that is commonly used, and

in our work, the Kalman �lter allows us to overcome this simpli�cation

by correcting this wrong information with the rest of the state measured

at the mesoscopic scale (that is, the average synaptic current). Figure 5.1,

which shows the reasoning made by Zandt et al. (2014), justi�es their

approximation by �tting a sigmoid curve to a distribution of 5000 Heaviside

functions centred around V0 = 10 and with a standard deviation σ = 2.

Figure 5.1 Approximation

of the sigmoid function

made in Zandt et al. (2014).

This curve is the result

of 5000 step functions of

height FR and centred

in V0 with a Gaussian

standard deviation σ.

The average of these

5000 curves (solid line)

is �tted to a sigmoid

fuction (grey dots). The

approximation of a sigmoid

to average the �ring rates

of the cells in a network

is valid only if the �ring

response of the cells is a

step function; however, this

is the standard approach in

most cases and we aim to

address its shortcomings in

this work with the UKF.
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For our �rst case, the uncoupled network in a stationary situation, we have

�tted a sigmoid with 10 realisations of the network for each value of the

average �ring rate λ (here, λe = λ
i

= λ). We show the result in �gure 5.2.
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Figure 5.2 Estimated

sigmoid function for the

uncoupled network.
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5.4 Uncoupled network of integrate-and-fire neurones

The �rst situation considers a simple network of non-interactive neurones,

the so-called Freeman’s KO sets. This network consists of an excitatory

and an inhibitory population. The input to the neurones comes from spikes

that follow a Poisson distribution and which cause the synaptic current

to increase, followed by an exponential fall. Given the stochasticity of the

incoming signal, the current of each neurone is di�erent and somewhat

erratic, as seen in �gures 5.3 and 5.4. As can be seen in the plots, once the

system has reached a stationary state, at around t = 100 ms, we decrease

the value of λx, upon which change the system evolves towards a new

stationary state. The parameters that con�gure the network are subject
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to variability to mimic real-life behaviours more faithfully; their nominal

values are shown in table 5.1.

Table 5.1 Parameters of

the uncoupled microscopic

neural network. In order

to attain the desired

variability, the nominal

values shown here are

multiplied by a factor

of (1 + X), where X is

a random number that

introduces some variability

(in percentage). These

parameters are used in

our simulations unless

otherwise speci�ed.

Parameter Description Value

τm Membrane time constant 5 ms

Rm Membrane resistance 25 kΩ

θ
IF

Threshold potential 20 mV

Em Membrane reset potential –10 mV

τr Refractory period 5 ms

Î

e

Maximum excitatory current 1 µA

Î

i

Maximum inhibitory current 1 µA

τsyn Synaptic time scale 5 ms

Figure 5.3 Raster plots for

the uncoupled network.

The above plot shows the

Poissonian inputs to the

network and below is the

�ring of the uncoupled

network. Here, and

hereafter, blue is for the

excitatory population and

red is for the inhibitory.
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In such an uncoupled network, the synaptic responses of the neurones

are trivial and are determined exclusively by J
x,ext

λxτsyn, the Poissonian

external input, and the dynamics of the synapses described in equation 5.1.

There is a non-obvious relationship between J
x,ext

and Î

x

(equation 5.1),

mediated by the value of λx. There is no presence in the mesoscopic equation
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Figure 5.4 Temporal

evolution of the synaptic

current of the excitatory

and inhibitory neurones in

the uncoupled network

for one realisation in

which the excitatory and

inhibitory Poissonian �ring

rates are λx = 2 ms
–1

during the �rst 100 ms.

At t = 100ms, they

are reduced to 2/3 ms
–1

.

The dark solid blue (red)

line shows the average

synaptic current for all

the excitatory (inhibitory)

neurones. The shaded

blue (red) area shows the

standard deviation of the

synaptic currents of all

the excitatory (inhibitory)

neurones in the network.

The synaptic current

of only one excitatory

(inhibitory) neurone is

shown in light blue (red) as

an example.
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of the sigmoidal terms (see equations 5.2 and 5.3); therefore, for any microscopic

model that has the same synaptic response to the Poissonian input we will

obtain the same dynamics—an uncoupled network will allow us to infer

only its synaptic response. However, for each value of the synaptic current

we may obtain an average response �ring rate (see �gure 5.3, below plot).

This enables us to characterise the response of the network (i.e. to de�ne its

characteristic sigmoid function) by means of the relationship between the

values of Isyn and the external input to the network, and those of λx.

We de�ne Xx = J
x,ext

λx (see 5.2 and 5.3). We performed a preliminary �tting

with the unscented Kalman �lter (UKF) in this uncoupled situation to show

how we may obtain information from the network through the mesoscopic

model. Firstly, we estimated the terms Xe and X
i

of the mesoscopic model

by the average synaptic currents shown in �gure 5.4. We then used the

Rauch-Tung-Striebel smoother on the estimates, wherewith we obtained

a smoother version of Xx versus time. With this, we solved equations 5.2
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and 5.3 without the sigmoid terms, with which we obtained Ix(t), shown in

the following �gures 5.5 and 5.6:

Figure 5.5 Estimated Xx

before smoothing (light

coloured lines) and after

smoothing (dark coloured

lines). This is the input to

the mesoscopic model.

0 25 50 75 100 125 150 175 200
t [ms]

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

X e
,i 

[
A/

m
s]

Filtered Xe

Filtered Xi

Smoothed Xe

Smoothed Xi

The pink and purple lines in �gure 5.6 are the result of solving equations 5.2

and 5.3 without the sigmoid term and with the values for Xx found with the

UKF. The good correspondence between these two magnitudes, which

should be the same for a correct mesoscopic model, show the validity

of the algorithm in a simple case, which serves as the basis for the more

complicated problems that follow.

5.5 Coupled networks

As mentioned previously, the validity of the sigmoidal approximation to

the average �ring rate of a network has been contended. In the following
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Figure 5.6 Original

average synaptic currents

of the network (blue and

red) and the solution of

the mesoscopic model

(equations 5.2 and 5.3) for

the input, Xx, represented

by the dark coloured lines

shown in �gure 5.5. The

good correspondence

between the curves show

the validity of this process.
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sections we address this question using Kalman �ltering in more complicated,

non-stationary conditions.

5.5.1 Randomly coupled network

In this section we repeat the process we outlined in section 5.4 with a

coupled network. In this case, the excitatory population is coupled to

the inhibitory in a way that there is a 20% probability that an excitatory

neurone will be connected to an inhibitory neurone. The input to the

network is a Poissonian spike train with �ring rates λe = 2/3 ms
–1

and

λ
i

= 2 ms
–1

.

For this network, as for the previous one, we �tted the mesoscopic model

(equations 5.2 and 5.3) to the output of the network using the UKF. This

resulted in a set of estimated parameters for the mesoscopic network. Then,
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we used these parameters to simulate the system with the mesoscopic

equations and compared the output with the microscopic data.

Figure 5.7 Synaptic

current of the neurones

in the randomly coupled

network. The dark solid

blue (red) line shows

the average synaptic

current for all the

excitatory (inhibitory)

neurones. The shaded

blue (red) area shows the

standard deviation of the

synaptic currents of all

the excitatory (inhibitory)

neurones in the network.

The synaptic current

of only one excitatory

(inhibitory) neurone is

shown in light blue (red) as

an example.
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Figure 5.7 shows the synaptic currents in the randomly coupled network

and the estimated values after �ltering. The estimation proves to be accurate

even though this network is coupled.

Figure 5.8 shows the estimated Xx terms X
ei

, which we de�ne as X
ei

= J
ei

fmax

(see equation 5.5). Finally, in �gure 5.9 we can see the good correspondence

between the output of the microscopic network and the simulation with the

mesoscopic equations with the estimated parameters.

The results we have obtained in this section are similar to those in the

previous section, in that we have been able to �nd, with the UKF, a set

of parameters for the mesoscopic model that adequately characterise the

activity of the microscopic network. However, in this particular case, the

relevance of the result is higher. In a coupled network, the presence of

local interactions makes the system non-Markovian, which is not taken
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Figure 5.8 Estimated Xx

and Xei for the randomly

coupled network.
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Figure 5.9 Original

average synaptic currents

of the coupled network

(dark blue and red) and the

solution of the mesoscopic

model represented (light

blue and red).
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into account in the derivation of the mesoscopic equations. Yet, as we

hypothesised in section 5.2, the UKF makes up for this loss of information.

Seeing that the resulting set of parameters is able to characterise the model

in a way that follows the network so closely, we can see that they encode

this additional complexity implicitly.

5.5.2 Coupled network with Lorenzian input

In this new scenario we maintain the same coupling parameters as in the

previous network. However, the external input to the network are time

traces for the normalised x and y variables of the Lorenz model, shown in

�gure 5.10. This input has been normalised to �t within a range for which

the behaviour of the network is most stochastic.

Figure 5.10 Variables of

the Lorenz model (x and

y) that feed the network.

In here they have been

scaled to force the network

to the maximum possible

stochasticity.
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Figure 5.11 Synaptic

current of the neurones

in the coupled network

with Lorenzian input.

The dark solid blue (red)

line shows the average

synaptic current for all

the excitatory (inhibitory)

neurones. The shaded

blue (red) area shows the

standard deviation of the

synaptic currents of all

the excitatory (inhibitory)

neurones in the network.

The synaptic current

of only one excitatory

(inhibitory) neurone is

shown in light blue (red) as

an example.
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As in the previous section, �gure 5.11 shows the synaptic currents of the

network: their variability, their average value, and the current associated

to one neurone as an example. The stochasticity in the external input is

translated in the form of a highly noisy behaviour of the cells.

Figures 5.12 and 5.13 show the estimates obtained with the UKF. Figure 5.12

shows the X parameters we estimate from the microscopic network—which,

as a reminder, are the products of the �ring rate and the coupling parameter

in each given case. These parameters are then used to forward simulate the

mesoscopic system, with the results observed in �gure 5.13.

Given the great stochasticity of the system, and bearing in mind the limitations

of the analytical derivations of mesoscopic models we have already discussed,

it is remarkable that the mesoscopic model is able to reproduce the activity

of the network so accurately. Indeed, it is hardly possible that any analytical

development be capable of translating the evolution of a network that is

excited by chaos modulating a stochastic probability distribution, into a set
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Figure 5.12 Estimated Xx

and Xei for the coupled

network with Lorenzian

input.
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Figure 5.13 Original

average synaptic currents

of the coupled network

with Lorenzian input

(dark blue and red) and the

solution of the mesoscopic

model (light blue and red).
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of two simple mesoscopic equations. However, using the UKF we have been

able to �nd a set of parameters that faithfully captures these dynamics to

the point of closely reproducing them.

5.5.3 Scale-free network

Figure 5.14 Coupling

matrix for the scale-free

network. The �st 80 cells

both to the right and to

the top represent the

excitatory neurones, which

are followed by the 20

cells that represent the

inhibitory neurones.

The �nal situation we consider in this chapter is a scale-free network with

a Poissonian input of a spike train with �ring rates λe = 2/3 ms
–1

and

λ
i

= 2 ms
–1

. The assumption made by Zandt et al. (2014), that the average

�ring rate of the network becomes a sigmoidal function for a network

of active/inactive cells that receive the same input and whose voltage

thresholds follow a Gaussian distribution (see section 5.3), is often used

in practice. However, this is providing the coupling of the network follows a

uniform and predictable pattern. In this last section we test our algorithm to
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see if the results are valid even in this case of hierarchical coupling (whose

matrix is shown in �gure 5.14).

Figure 5.15 Estimated

Xx, Xee, and Xei for the

scale-free network.
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The synaptic currents of the network are not shown here as they are similar

to those in the �rst coupled network (see �gure 5.7). However, �gures 5.15

and 5.16 are of great interest. Again, these �gures show the parameters that

have been estimated with the unscented Kalman �lter for the mesoscopic

equations with data from the microscopic network (�gure 5.15), and the

forward simulation of the mesoscopic model using these parameters, and

how it conforms to the microscopic data (�gure 5.15).

These results show that, even in the absence of the conditions in which

analytical derivations of mesoscopic models may hold in practice, a set of

parameters may be found that allow mesoscopic equations to describe the

behaviour of a neural network.
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5.6 Conclusions

Taken as a whole, this chapter describes how we have used Kalman �ltering

to overcome the analytical limitations even in very stochastic dynamics and

with non-uniform coupling patterns. Thus we have �lled in the inevitable

loss of information that is always present in mathematical simpli�cations

when trying to represent the activity of tens (or thousands) of neurones in

a single dynamic equation. While we have met with considerable success

in this theoretical study, on the other hand it could be thought it is hardly

surprising, since the very mesoscopic model we use to �t the data from

the network is itself derived from the microscopic network model. Indeed,

�tting a mesoscopic model to the activity of a group of real neurones, for

instance, is far from being trivial. The following two chapters describe our

e�orts in this direction.

Figure 5.16 Original

average synaptic currents

of the scale-free network

(dark blue and red) and the

solution of the mesoscopic

model (light blue and red).
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There is always much to be said for not attempting

more than you can do and for making a certainty

of what you try. But this principle, like others in life

and war, has its exceptions.

Sir Winston Churchill

6
Extracranial estimation of neural mass

model parameters in silico

F

itting data with Kalman filtering to neural mass models shows

promise in several contexts and applications (Freestone et al., 2011b;

Kuhlmann et al., 2016); however, the most important limitation of

this approach as of now is that the appropriate experimental recordings

are usually intracranial. This chapter describes an attempt at extending
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the current methodologies with a head model, thus allowing to compare

between the output of neural masses and simulated EEG signals (see �gure 6.1).

Even though the quality of the experimental measurements at the scalp

might be, in general, worse than the intracranial recordings, an EEG can

always be measured from several positions. This allows to obtain measurements

for patients without intracranial implants and also to compensate the

potentially low quality of the data by having many recordings at the same

time. Besides, the spatial distribution of the electrodes on the scalp allows

the information arriving from the whole cortex to be available during the

assimilation process. In order to address these strengths and weaknesses

of the scalp recordings with respect to intracranial measurements, we have

analysed situations where assimilation with only intracortical recordings

may be wanting. This is the case, for instance, when diverse dynamical

regimes coexist due to large di�erences in control parameters in the cortical

columns, or when �ne changes of the parameters make the discrimination

di�cult. While the �nal goal is to use real experimental data, here we have

explored the limitations and advantages of our approach using in silico data

in very well controlled conditions.

To this end, we have generated three sets of simulated EEG data to explore

the capabilities of the unscented Kalman �lter with our extended model.

While the number of neural masses ant their location are the same in all

three analysed situations, the datasets di�er in the coupling between them

(see �gure 6.2 for the di�erent coupling motifs) and the parameters that

govern their activity. We use three sources, which provides a considerable

spatial and temporal richness in the resulting signals, while keeping the

system reasonably simple and still biologically plausible (Cantero et al.,
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2009; Richards, 2004). For details on the generation of the data, including

the locations of the dipoles and the standard parameters of the model, see

appendix A.

Figure 6.1 Extracranial

data generation and

illustration of Ary’s model

of the head. The upper left

plot shows the simulated

time trace of a cortical

column, while the upper

right plot shows the in
silico measurements that

would thereby be obtained.

Figure 6.1 provides an illustration of the problem under consideration. The

cortical columns (light and dark red arrows) are all driven by a noisy input

coming from the rest of the brain and sensory stimuli. The signal from the

cortical columns (top left panel) is then transferred to the skull by means

of the lead �eld matrix, after which it is corrupted with Gaussian noise to

simulate electrode readings from EEG (top right panel; the electrodes are

shown as grey and black rectangles). These are then used to estimate the

amplitude of the excitatory post-synaptic potentials—the parameter A in

equations A.4 to A.6 (appendix A).
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In this drawing, rq is the distance from the origin to the cortical column

under consideration; re is the distance from the origin to the electrode; and

d is the distance from the cortical column to the electrode (see section A.2

in appendix A). The placement of the arrows here is for illustration purposes

only; in our study, the cortical columns are placed on the surface of the

brain, close to the skull.

6.1 Three unidirectionally coupled cortical columns

Figure 6.2 The two cortical

column motifs used in this

chapter. Unidirectionally

coupled cortical columns

have no back�ow, and

bidirectionally coupled

columns are coupled

all-to-all.

For the �rst study, the cortical columns

were coupled unidirectionally (panel (a)

of �gure 6.2), as described in Liu and Gao

(2013). The parameters were set to standard

values (Jansen and Rit, 1995) for the three

cortical columns, except for the �rst column,

in which A1 was set to 3.58 mV to bring it

into a hyperexcitable regime, in which spikes

are driven by the noise present in the system.

This �rst hyperexcitable column causes a spiking cascade in the other two

columns. With this study, we aimed to compare how extra- and intracranial

electrodes perform in the case of a behaviour being induced by an input

from another column, and not by the column’s own set of parameters.

The upper panels of �gure 6.3 show the intracortical and extracranial

estimations of A for the three cortical columns. The solid lines show the

averages of the 50 realisations of the estimation, and the shadowed areas

indicate the standard deviation. The estimation for A1 of the �rst column

converges to its correct value, with both the intra- and extracortical approaches.
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Figure 6.3 Intracranial

and extracranial �ttings

with propagated excitation

along unidirectionally

coupled cortical columns

(panel (a) of �gure 6.2).
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This was to be expected, since the �rst cortical column receives no inputs

from other elements of the system: information �ows unidirectionally

because of the way the cortical columns are coupled (Liu and Gao, 2013). In

contrast, the intracortical estimations for cortical columns 2 and 3 converge

to values signi�cantly higher than their actual value of 3.25 mV. We conjecture

that this is caused by the spiking of these two cortical columns, which as

mentioned above is due to the in�uence of cortical column 1. Multi-channel

extracranial information, however, allows to see the complete picture of

the coupled cortical columns and treat them as a single composed system,

contrary to the partial picture obtained from the information provided by

the single intracranial recordings.

The lower panels of �gure 6.3 show the estimation of the state. The �rst

cortical column has a random spiking activity, due to the increased value

of A and the presence of noise (Grimbert and Faugeras, 2006). Because of
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the architecture of the coupling, cortical column 1 causes cortical columns

2 and 3 to spike also, when otherwise they would have simply �uctuated

around their resting level. With the exception of cortical column 1 (because

it has no input from other cortical columns), the �lter shows great e�cacy

when the estimation is extracranial, but performs poorly in the case of

intracortical estimation.

6.2 Three bidirectionally coupled cortical columns: coarse

parameter estimation

In this second dataset, the three cortical columns are located as in the

previous section (Richards, 2004), but coupled bidirectionally (panel (b)

of �gure 6.2). However, for this study the maximum amplitudes of the

excitatory PSPs were set to A1 = 4.25 mV, A2 = 10.00 mV, and A3 =

3.25 mV (the other values being set to standard values). These values were

chosen to cause the three cortical columns to be in very di�erent dynamical

regimes: cortical column 1 operates in a spiking regime; cortical column 2

oscillates with alpha frequency but with an amplitude similar to that of

the spikes; and cortical column 3 oscillates in a more standard regime, as

described in Jansen and Rit (1995). Our aim here was to study how the �lter

performs in an extreme situation, in which the dynamics of the columns are

widely di�erent from one another. We intended to explore the outcome of

estimating with single extracranial electrodes as well as the complete set,

and to compare with intracranial single-channel estimation. To this end, we

will add two di�erent noise levels to the data generated by the model.
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6.2.1 Moderate intracortical measurement noise

The extracranial data for this study were corrupted with a measurement

Gaussian noise of zero mean and standard deviation 100 mV; the intracortical

data were corrupted with a measurement noise of standard deviation 5 mV

in order to maintain similar levels of signal-to-noise ratio.

Figure 6.4 Intracranial

and extracranial �ttings

for coarse parameter

estimation in the case

of bidirectional coupling

(panel (b) of �gure 6.2).
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Figures 6.4 and 6.5 show the performance obtained using the simulated

data from a set of extracranial electrodes compared to using individual

intracortical electrodes for each cortical column. In this case we show

the 50 realisations of each �ltering, without showing the average. The

upper panels show the estimation of A for each cortical column and the

lower panels show the estimations of the observed states. The intracortical

parameter estimations do not approximate the target value very well. In

particular, the estimations of A for cortical column 2 converge to three

di�erent values depending on the initial conditions. The state estimation
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follows the actual state of the system closely only for cortical column 1.

The situation is very di�erent with extracranial electrodes, where all 50

realisations of the estimations converge with much more precision and

speed to the correct values for both state and parameters (with the exception

of A2, which still tends to lower values in a very small quantity of the

realisations). Again, extracranial performance is better, in general, than

in the intracortical case.

6.2.2 High intracortical measurement noise

Here the amount of noise in the intracortical data was set to the same

value as the noise in the extracranial data: the intracortical measurements

were corrupted with Gaussian noise of mean 0 and standard deviation

100 mV—about an order of magnitude higher than the noise in the previous

study—, while the noise in the extracranial measurements has standard

deviation 100 mV.

Figure 6.5 Intracranial

and extracranial �ttings

for coarse parameter

estimation, with a higher

amount of intracortical

measurement noise.
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The upper panels of �gure 6.5 show the estimation of the excitatory post-synaptic

potentials for each cortical column and the lower panels show the estimations

of the observed states. Extracranial estimations of the parameters are also

faster and more accurate than intracortical estimations, more markedly

so in this case. As to the state, in this more extreme case, the intracortical

estimation does not mimic the evolution of the system in any way even

though the value of R (the measurement error covariance matrix) was

tuned to re�ect the increase in measurement noise.

6.2.3 Using one single extracranial electrode

With the same dataset we aimed to investigate the outcome of analysing

each extracranial electrode individually (Freestone et al., 2014a), as opposed

to using the complete subset as until now. Therefore we studied each

electrode separately to estimate the state and parameters of the complete

system, with 50 realisations of the estimation for each electrode. By doing

so, we show that the quality of the estimations is strongly dependent on the

relative positions of sources and electrodes.

In Figs. 6.6 to 6.8 we present the results for the estimation of parameter A

of each of the three cortical columns separately. The histograms show the

distribution of the 50 estimations of A using each electrode, placed in the

respective position of the electrode in question. Vertical coloured lines in

the histograms mark the value of the three A parameters being estimated

(one in each �gure). The histograms show a strong dependence on space of

the quality of the estimations. As a general trait, the estimations are better

when the electrodes are near the cortical column whose value of A is being
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estimated, whereas the more distant electrodes show a wider distribution of

�nal values for the parameter.

In �gure 6.6 the distribution of the estimations of A1 are shown. The distributions

tend to be narrowest in the vicinities of the cortical column whose A value

is being estimated. However, it is noteworthy that the histograms obtained

from the observations in distant electrodes tend to group not around the

actual value of A1 = 4.25 mV (red vertical line), but of A3 = 3.25 mV (blue

vertical line). This result suggests that the algorithm is unable to distinguish

the origin of the EEG activity when sources and electrodes are distant from

each other.

Figure 6.7 shows the results of the estimation of A2 = 10.00 mV (actual

value shown by vertical green lines), revealing wider distributions in general,

which indicates a stronger dependence on initial conditions. Although it is

true that the electrodes near cortical column 2 (solid green circle) perform

better in estimating A for that column, the di�erence with more distant

electrodes is not as large as for the estimates of A for cortical column 1 and

cortical column 3.

Finally, �gure 6.8 shows the performance of each electrode when A3 =

3.25 mV is being estimated (actual value shown by vertical blue lines in the

�gure). Interestingly, even the electrodes located at the far left of the �gure

lead to a good estimate of A with narrow distributions in the histogram,

comparable to that coming from the electrodes in the far right, which are

closer to column 3 and could therefore be expected to provide a much more

accurate estimation.
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Figure 6.6 Distribution

of 50 realisations of A

estimations for cortical

column 1 (solid red circle)

from a single electrode (red

bars). The red, green and

blue lines correspond to the

actual values of A1, A2 and

A3, respectively.

While the estimations arising from single electrodes are reasonably accurate

in some cases, using the complete set of 15 electrodes invariably yields

better results. This is because, in Kalman �ltering, combining many sources

of information always improves the �nal estimation, even if some of the

sources are inaccurate or incomplete (Schi�, 2012).
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Figure 6.7 Distribution

of 50 realisations of A

estimations for cortical

column 2 (solid green

circle) from a single

electrode. The red, green

and blue lines correspond

to the actual values of A1,

A2 and A3, respectively.

6.3 Three bidirectionally coupled cortical columns: fine

parameter estimation

In the previous section, the value of A of one of the cortical columns was

much larger than the other two, as the aim was to generate widely di�erent

dynamics in each column. We now consider the same coupling motif, but

with values of the A parameter that are much closer together in value: A1 =

3.58 mV, A2 = 3.25 mV, and A3 = 3.10 mV. (The rest of the parameters
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Figure 6.8 Distribution

of 50 realisations of A

estimations for cortical

column 3 (solid blue circle)

from a single electrode.

The red, green and blue

lines correspond to the

actual values of A1, A2 and

A3, respectively.

were set to standard values (table A.1).) The purpose of this test was to

ascertain whether the �lter could di�erentiate between parameters with

smaller di�erences in value—this ability is very important if we expect to

use the technique in clinical applications.

As seen in �gure 6.9, the estimations of the amplitude of the excitatory

post-synaptic potentials of the three cortical columns are shown after

averaging over 50 realisations (solid lines); the shadowed areas indicate
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Figure 6.9 Extracranial

�t with parameters close

together in value.
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the standard deviation. The estimation of the parameters is fairly accurate,

which gives hope towards employing the technique in clinical scenarios.

6.4 Conclusions

In order to compare the performance of the extra- and intracranial approaches

to Kalman �ltering, we have analysed three di�erent cortical column con�gurations,

each using one of the two motifs shown in �gure 6.2. Where relevant, two

di�erent types of estimations have been used: intracranial and extracranial.

Intracranial estimation uses simulated data that would have hypothetically

been obtained from electrocorticography, that is, using a single intracortical

electrode, and is estimated with the data provided by a single location—in

other words, the direct output of Jansen and Rit’s model. Extracranial
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estimation, on the other hand, employs simulated data originated from

in silico EEG recordings, using several electrodes placed on the skull, and is

implemented here with the projection on the head of the model output.

The �rst study considered here involves three columns that are coupled

unidirectionally with no back�ow. The �rst cortical column is made hyperexcitable

by increasing the excitatory post-synaptic potential to A1 = 3.58 mV;

this cortical column causes the second cortical column and, indirectly, the

third, to modify their behaviour by inducing spiking. For the intracranial

estimations, single intracortical electrodes measured the evolution of the

three cortical columns independently; for the extracranial estimations, 15

extracranial electrodes were used simultaneously. Applying the Kalman

�lter to the extracranial data provided a good estimation of the A parameters

and of the dynamical state of the model; the intracortical measurements,

however, yielded mixed results. The estimation for cortical column 1 was

accurate, whereas for cortical columns 2 and 3 the estimation of A was

above the target value and very close to the estimation for cortical column 1

(see orange dashed lines in �gure6.3). The estimation of the dynamical state

of cortical columns 2 and 3 was also worse than the estimation for cortical

column 1. We attribute this to the fact that columns 2 and 3 are excited

by column 1, which spikes due to a higher value of A. As a consequence,

when independently evaluated using the intracranial information, the

estimation is higher than the actual value. Therefore we suggest that one

intracranial electrode provides only a partial view of the system, and thus

cannot capture the behaviours of all three cortical columns and the interactions

between them; the use of many electrodes provides a more complete view

of the system.
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Next we considered a situation in which the dipoles were coupled bidirectionally

in an all-to-all con�guration. The A parameters were chosen such as to

cause di�erent dynamic behaviours in the cortical columns. Three types of

�tting via Kalman �ltering were performed, using (i) independent intracortical

recordings of single cortical columns, (ii) the complete subset of 15 extracranial

electrodes, and (iii) single extracranial electrodes. The intracortical data

were corrupted with two di�erent levels (medium and high) of measurement

noise. For both cases, the multi-electrode extracranial estimation surpasses

the intracortical results in both speed of convergence and quality. The

di�erence, however, is more marked in the presence of higher measurement

noise in the intracortical recordings.

In all these cases, the representation of the dynamical state of the three

cortical columns using the complete set of 15 extracranial electrodes nicely

matched the actual dynamical state, contrary to the limited match obtained

using single intracranial or extracranial recordings. The results for the

single electrodes show a signi�cant in�uence of space on the quality of the

estimations, in the sense that estimations of electrodes close to the source

are relatively accurate, and electrodes further away from the source might

not allow to discriminate the source of the information correctly, or might

completely fail to represent the system.

Finally, we considered the situation of an identical cortical column con�guration

—in terms of situation and coupling—to the previous one, except for the

values of the excitatory post-synaptic potentials of the cortical columns.

This dataset was �ltered only extracranially, with the purpose of evaluating

the �lter’s ability to discriminate parameter values within narrower ranges.

The results in this case were also reasonably good, even though the real
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values of the parameter were much closer to one another, which makes data

assimilation more challenging.

Even though the results shown here are better when considering extracranial

electrodes, the method has, of course, limitations. For instance, the head

model introduces new parameters which should be realistic. The use of

Jansen’s model, while being a very standard choice in the �eld, is not

mandatory and could be substituted by others. There several alternatives

to Ary’s head model too. The succesful application of the method with

di�erent combinations of these models will, for sure, guide researchers to

choose which models are more suitable for the theoretical description of the

mesoscale in the brain. Even though the exploration of the dynamics for the

di�erent neural mass models or of the di�erent head models might be worth

exploring in future works, it lays outside of the scope of this work.

Taken as a whole, our results show that, independently of the need to

explore more realistic situations, extracranial EEG recordings constitute

a good candidate to be used together with neural mass models and Kalman

�lters, provided the method is extended with a head model. With its management

of the noise in the system and the necessary and of the inherent simpli�cations

in neurological models, the Kalman �lter is an appropriate tool for tackling

the challenges of brain data processing. Applications of the method presented

here will certainly appear in the �eld of brain-machine interface, long-term

tracking for early diagnosis of degenerative diseases, or short-term tracking

during rehabilitation of traumas and strokes. Using non-invasive techniques

in these processes widens the applications of Kalman-based data assimilation

methods in neuroscience. However, the succesful application of the method
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in each of these �elds will require further research. In the next chapter we

describe our preliminary e�orts to apply this method to real EEG measurements.
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The strongest arguments prove nothing

so long as the conclusions are not

veri�ed by experience. Experimental

science is the queen of sciences and the

goal of all speculation.

Roger Bacon

7
Data assimilation of extracranial EEG

observations into neural mass models

In the previous chapter we have combined in silico data with neural mass

models under very well controlled conditions. This was done in order to

study the performance of the unscented Kalman �lter (UKF) with this

type of data and its applicability and potential. However, the ultimate

goal in mind is to use the algorithm in real life situations with data from

electrophysiological signals. In the following pages we take the results from
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chapter 6 a step further to assimilate real EEG data into Jansen and Rit’s

neural mass model.

7.1 Description of the dataset

We used a publicly available dataset that was collected by a team of investigators

from the Children’s Hospital Boston and the Massachussetts Institute of

Technology (Goldberger et al., 2000; Shoeb, 2009). The dataset consists

of EEG recordings from 22 paediatric subjects with intractable seizures;

these were obtained after their medication was withdrawn to characterise

their seizures and assess their elligibility for surgery. We chose dataset

chb01_03 for our study because it features a seizure towards the end of

the segment, after two apparently di�erent dynamic regimes. This dataset

contains 23 signals, one for each of the channels in the International 10-20

System (Malmivuo and Plonsey, 1995) (see �gure A.1 on page 120). Figure 7.1

shows the time trace belonging to the �rst channel, FP1-F7 (chosen arbitrarily),

as an illustration of the evolution of the time traces. The signal shows a

change in regime from t = 1800 s onwards, followed by a seizure, which

occurs between t = 2996 s and t = 3036 s.

7.2 EEG data filtering

For this dataset, a larger number of cortical columns was warranted, given

the signi�cant di�erence in predictibility of experimental data. Therefore,

we considered 21 dipole sources in place of the 3 cortical columns described

in chapter 6, and located them under the electrodes. The parameter we

chose to study was the amplitude of the excitatory post-synaptic potential,
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Figure 7.1 Signal from

channel FP1-F7. A change

in regime can be seen

at around t = 1800 s

precluding a seizure,

which takes place between

t = 2996 s and t = 3036 s.

or A (see table A.1 on page 116), following the work presented in the previous

chapter. The data were run through the UKF as described in section B.2.2 of

appendix B, yielding the estimation presented in �gure 7.2.

Figure 7.2 Estimations

of A, the excitatory

post-synaptic potential,

for all 21 cortical columns.

The fact that the estimations of the parameters stabilise to a given value

after some time, and that they are sensitive to changes in dynamical regimes,
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may be considered a success of the UKF at �tting the EEG to Jansen and

Rit’s model. This is reinforced by the fact that the state estimations are

fairly accurate. Figure 7.3 shows the state estimations calculated with the

�lter and projected onto measurement space, which allows to compare with

the data; this good correspondence shows that the estimation is satisfactory.

Figure 7.3 Comparison of

the projected state estimate

and the experimental data.

The close correspondence

is an indicator of good �lter

performance.

A striking feature can be observed in �gure 7.2, and that is that several of

the parameter estimations group together and stabilise to similar values.

Figure 7.4 shows the locations of the cortical columns that are responsible

for this behaviour. The most distinct groups are colour-coded, and the

cortical columns whose parameters fall in a certain group have been coloured

accordingly. We use an image of the electrode layout because for this study

we placed a cortical column under each of the electrodes for the forward

modelling in the �lter (see section B.2.2).

The �gure shows a surprising symmetry in the positions of the cortical

columns whose parameters stabilise at similar values. This may be due
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Figure 7.4 Locations of the

cortical columns whose

parameter A falls into

the most distinct groups,

colour-coded according

to the group to which

the parameter belongs.

A striking symmetry is

observed.
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in part to the symmetric disposition of the cortical columns. Surprisingly,

however, the fact that cortical columns are in the same scalp region doesn’t

result in parameters with similar estimated values, but quite the opposite

(see, for instance, the blue and yellow groups). There is also the possibility

of this being an artifact.

Unoubtedly, much remains to be done in this direction, as these are only

very preliminary results. However, the possibility of using real EEG data in

combination with neural mass models opens the door to multiple applications

—mostly in medical technology—and exciting new lines of research.
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Part III

Conclusions
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"The time has come," the Walrus said,

"To talk of many things:

Of shoes—and ships—and sealing-wax—

Of cabbages—and kings—

And why the sea is boiling hot—

And whether pigs have wings."

Lewis Carroll

8
Discussion

The human brain is a wondrously complex structure that is responsible

for enabling us to operate at many levels. Mathematical modelling has a

long and rich trajectory as an aid to understanding brain structure and

its related function, and undoubtedly this history is thickly dotted with

successes; however, it is also faced with the intrinsical challenges involved

in attempting to describe any aspect of reality with mathematical equations,

and especially one so fraught with unknowns as the brain.
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Indeed, the brain has hitherto resisted absolute reduction and quanti�cation

at all scales. Precise knowledge of the function and components of nervous

cells has yielded single neurone models such as the integrate-and-�re

model, or the Hodgkin-Huxley model, which have been central to Neuroscience

to understand many principles of neural communication. However, the

brain is a superior structure that is probably best understood as a network,

and we are far from being able to detail the characteristics of all the neural

and the so-called auxiliary species (which might be more central than we

currently imagine), not to mention their relationships to one another and

the emergent behaviours their couplings may bring forth. Indeed, at the

present moment the very mechanisms of neural communication haven’t

been completely elucidated.

However, modern imaging techniques allow us to detect signals in the

mesoscopic scale that average over large groupings of neurones, resulting

in a mass signal that disregards or lumps together much of the microscopic

uncertainty. These mesoscopic signals may also be modelled by means of

mathematical equations, where the greatest challenge is the characterisation

of the parameters that govern their behaviour. Observations of the brain

inevitably lie in the realm of phenomenological measures whose underlying

mechanisms may not always be well known.

In this work we have used data assimilation in an attempt to bypass these

limitations and, at the same time, bring together the best of two worlds.

By fusing mathematical descriptions of brain function with experimental

recordings we hope to overcome the limitations of both purely theoretical

speculation, on the one hand, and of real-world data in which it may be

hard to �nd a pattern or generalisation, on the other hand.
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We have done this by means of two distinct studies: in the �rst (chapter 5),

we have aimed to overcome the existing limitations in bridging two scales

of operation in the brain: microscopic (single-cell level) and mesoscopic

(cortical columns that are used to describe electrophysiological data). In the

second study we have seeked to improve existing neural mass models by

assimilating both in silico (chapter 6) and in vivo (chapter 7) electroencephalography

(EEG) observations into them. In both cases we have used the unscented

Kalman �lter (UKF), a tool that is particularly suited to nonlinear dynamics

in complex systems. The following sections discuss the results obtained in

the three relevant chapters.

8.1 Matching mesoscopic and microscopic neural dynamics

using Kalman filtering

In this �rst study we aimed to use the UKF to lay bridges between microscopic

scales of brain description and mesoscopic equations that describe the

averaged behaviour of the whole network. To attain this, we �rst described

the dynamics of an uncoupled microscopic network. These depend solely

on the dynamics of the synapses, characterised by exponential functions,

and on the external Poissonian spike trains input to the network. Then

we used the UKF to feed microscopic data into a mesoscopic model and

estimate parameters that govern its activity. We judged the capabilities of

the �lter to capture information by how well the behaviour of the microscopic

neural network was reproduced by the mesoscopic model (using the estimated

parameters mentioned).
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Secondly, we studied three di�erent situations in which the network is

coupled. The �rst was randomly coupled; it was the simplest case of all

three, and the UKF provided a set of parameters that described the system

well. The second and third scenarios pushed the algorithm to situations

where the common assumptions for the derivation of mesoscopic equations

do not hold: feeding the network with very stochastic input from the

Lorenz model, and a scale-free coupling that removes all possible uniformity.

Even in these situations there is good correspondence between the output

of the mesoscopic model and that of the microscopic network.

This shows that the �lter is capable of surmounting the obstacles in dynamical

situations in which the analytical descriptions proposed so far cannot be

considered. However, it must be considered that these results are purely

theoretical, and that real-life data complicate matters to an extent not so

easily surmountable, even by the Kalman �lter.

8.2 Extracranial estimation of neural mass model

parameters in silico

This goal of this study was to test the possibilities of the �lter and the

complete algorithm under well controlled conditions. To this end, we

generated three sets of data of di�erent dynamical properties and explored

how well the �lter performed at estimating the state and a targeted parameter.

The �rst test was for a set of three cortical columns coupled unilaterally,

with no back�ow. The parameter con�guration of the �rst column only

was chosen to display hyperexcitability; the rest were set to the standard

con�guration. The in�uence of the �rst column caused the second and
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third columns to spike when they wouldn’t have otherwise. The �lter was

then run on each column individually, mimicking electrocorticography

(ECoG), and then on the complete set of columns from the scalp, imitating

EEG signals. In the �rst case, single estimation of the �rst column yielded

good results, but the second and third did not. We hypothesise that the

�lter performed well for the �rst column because it received no in�uence

from the rest of the system. Similarly, the poor results for the second and

third columns may have been caused by the fact that their behaviour was

in�uenced not by their own parameters, but by other elements in the

network not accounted for by the �lter. In the second case, the estimation

with simulated EEG data gave good results for state and parameter of all

the cortical columns. From the previous paragraph it follows that this is

probably due to simultaneously taking into account the complete system

as a whole, which provides a complete picture of the behaviour of all the

elements and the interactions between them.

The second study used three bidirectionally coupled dipoles with di�erent

parameter con�gurations that resulted in very di�erent dynamical behaviours.

We used simulated intracortical data for each of the cortical columns (with

two di�erent levels of measurement noise), extracranial data with the

complete set of electrodes, and then we studied the performance of each

electrode independently. As before, extracranial estimation with the complete

set of electrodes greatly improves the results of intracranial estimation,

especially in the presence of high measurement noise; additionally, the

results obtained from using each of the electrodes on its own show a marked

in�uence of space and location on the quality of estimations, in the sense

that electrodes close to the source of activity provide a good estimation of
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the parameters, whereas those far from the source fail to discriminate the

origin of the observed activity, or fail to represent the system altogether.

Lastly, we considered a third situation in which the cortical column con�guration

was identical to the previous one, except that values of the estimated parameters

were within a much narrower range. The �lter, however, provided a reasonably

good estimation even though the parameters were closer together in value,

which makes data assimilation more challenging. This gives hope to the

applicability of this algorithm to clinical scenarios, in which it may be

useful to discriminate between more similar numerical values.

8.3 Data assimilation of extracranial EEG observations into

neural mass models

After testing the performance of the unscented Kalman �lter with in silico

data, the natural continuation was to apply the same algorithm to experimental

data. The data we chose feature diverse dynamic regimes, the most notable

of which are episodes of epileptic convulsions. The goal here was to obtain

a reasonable estimation of the state and of one chosen parameter.

We were able to tune the �lter in a way in which we obtained a good �t of

the estimation to the data. The parameter estimate stabilises to a given

value but is sensitive to changes in regime, varying to correctly adjust.

Although these are very preliminary results and warrant further e�orts,

they are highly promising and their potential applicability spans a wide

range of medical and research developments.
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Taken as a whole, our work shows that the unscented Kalman �lter is

of extraordinary value in current open problems in the study of brain

dynamics. We have used it with success to bridge gaps and join information

from di�erent sources (microscopic/mesoscopic and experimental/theoretical).

On the one hand, we have been able to characterise the relationship between

neural structures at the microscopic and the mesoscopic scales. Our �ltering

approaches allow us to bypass common analytical limitations, overcoming

the obstacles posed by the loss of information in current derivations of

mesoscopic models. On the other hand, we have studied the possibilities

of applying the UKFto EEG data and shown that we may also assimilate

experimental EEG data to existing mathematical models of the brain. This

may enable us to determine the underlying dynamics of observed physiological

signals, and at the same time to improve our models with real, patient-speci�c

information. The potential of these enhanced algorithms spans a wide range

of brain-related applications, from brain-computer interfaces and other

related research to all manner of uses in personalised medicine, including

early diagnosing of neurodegenerative diseases, seizure prediction, and

monitoring of rehabilitation from trauma and strokes, to name but a few.
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One never goes further than when they

do not know where they are going.

Johann Wolfgang von Goethe

9
Perspectives

This Thesis has built upon the foundations laid down in previous e�orts

involving data assimilation and models of the brain. As the �rst main

contribution, it introduces the use of the unscented Kalman �lter to study

the interaction between the microscopic and the mesoscopic scales of brain

modelling, and to bypass some shortcomings in the analytical derivation of

mesoscopic model equations from microscopic neural network models.

The other most signi�cant outcome is the assimilation of extracranial,

non-invasive experimental data from electroencephalography into neural
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mass models that imitate the dynamics of cortical columns. Both e�orts

aimed to bridge existing gaps between di�erent approaches to the study of

the brain and its function. However, they are far from being complete and

have opened several interesting possibilities that we would like to explore

in the future.

Firstly, we plan to submit the results outlined in chapters 5 for publication.

Secondly, another open question that deserves our immediate attention

is the preliminary work that has been described in chapter 7. We hope to

further explore the database and estimate other meaningful parameters,

such as B, the inhibitory post-synaptic potential amplitude, and p, the

external input.

The in silico study of the capabilities of the UKF would be greatly improved

with a makeover of the algorithm. Ary’s model of the head, while enabling

us to compare the output of Jansen and Rit’s model with actual experimental

data, is obviously a gross simpli�cation of the physiology and shape of the

skull and other tissues. Also, although our choice of Jansen and Rit’s model

has been justi�ed in the corresponding sections, it is far from being the only

suitable model. Subsequent work on the �lter will doubtlessly consist of

investigating other possibilities for our neural mass model and our model of

the head. Also, we hope to improve the speed with which the �lter perfoms

its calculations; to this end, we will study other alternatives to the UKF and

make our code more e�cient.

Moreover, we also plan to improve the neural mass model so that it is

capable of forward-simulating events observed in clinical EEG, such as

phase opposition, for instance. This would make our algorithm more valuable

in medical applications. An immediate consequence of the results drawn
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from chapter 7 would be to attempt early seizure prediction. Although this

has received considerable attention from the machine-learning community,

we propose that a model-based algorithm would have its own value and

would therefore be worth developing.

Finally, another exciting possibility of estimating parameters from EEG

data is source localisation, or the resolution of the inverse problem. This

is an ill-posed problem that has attracted much attention for its clinical

relevance, and we feel our approach might be a valuable complement to the

techniques that already exist. For this application, as for the previous one,

collaboration with neurologists and imaging specialists will be essential;

we plan to seek such collaborations in the near future as a key step in the

further development of our research.
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A
In silico data generation

A.1 Jansen and Rit’s model of a neural mass

The dynamics of each neural mass rely on two di�erent transformations.

The �rst converts the average density of incoming action potentials into

an average post-synaptic membrane potential (excitatory or inhibitory). It

takes the form of a second-order di�erential equation for excitatory inputs,

ẍe(t) + 2aẋe(t) + a
2
xe(t) = Aa ue(t), (A.1)
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and for inhibitory inputs,

ẍ
i
(t) + 2bẋ

i
(t) + b

2
x

i
(t) = Bb u

i
(t), (A.2)

where u
e,i

(t) and x
e,i

(t) are the input and output of the transformations,

respectively, A and B are the amplitudes of the excitatory and inhibitory

post-synaptic potentials, and a and b are the lumped representations of the

sums of the reciprocal of the time constant of the passive membrane, and all

other spatially distributed delays in the dendritic network.

The second transformation converts the net average membrane potential

of the population, v, into an average �ring rate, and is described by the

following sigmoid function:

Sigm(v) =

2e0

1 + e
r(v0–v)

(A.3)

where e0 is the maximum �ring rate of the population, r controls the slope

of the sigmoid, and v0 is the post-synaptic potential for which a 50% �ring

rate is obtained.

The following equations de�ne Jansen and Rit’s model for each cortical

column i:

ẍ
i

0
(t) + 2aẋ

i

0
(t) + a

2
x

i

0
(t) =Aa Sigm[x

i

1
(t) – x

i

2
(t)], (A.4)
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j
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2
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+ C2 Sigm[C1x
i

0
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 , (A.5)
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ẍ
i

2
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i

2
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2
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2
(t) =Bb

(
C4 Sigm[C3x

i

0
(t)]

)
, (A.6)

where C1 to C4 are connectivity constants that govern the interactions

between populations, p(t) is a noisy external input, and the summation

term includes the delayed input from other coupled cortical columns. The

connectivity constant k modulates the strength of the coupling, K is the

adjacency matrix, and τ ij
is the delay with which column i receives the

signal of column j. Table A.1 provides the descriptions and values of these

parameters.

The presence of additional dipoles in the brain, and its in�uence on the

sources of study, is accounted for in the stochastic external input to the

sources (p(t), see equation A.5):

p(t) = p
0

+ ξ(t), (A.7)

where p
0

= 200 s
–1

and ξ(t) is Gaussian white noise (Gardiner, 2004) of zero

mean and correlation 〈ξ(t)ξ(t
′
)〉 = 2εδ(t – t

′
) (Garcia-Ojalvo and Sancho, 1999).

At the extracranial level, the other sources also a�ect the �nal EEG signal,

as well as the di�erent tissues (brain, skull, scalp, and even hair). This is

modelled by adding Gaussian noise with zero mean and standard deviation

100 mV (unless otherwise stated) to the simulated EEG.
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Table A.1 Description

and default values of the

parameters for the system

of neural masses. Here,

PC refers to pyramidal

cells, EI to excitatory

interneurones, II to

inhibitory interneurones,

EPSP to excitatory

post-synaptic potential,

and IPSP to inhibitory

post-synaptic potential.

Par. Description Value

A EPSP amplitude 3.25 mV

B IPSP amplitude 22.00 mV

a Rate constant for the excitatory population* 100 s
–1

b Rate constant for the inhibitory population* 50 s
–1

C1 Strength of synaptic connections from PC to EI 135

C2 Strength of synaptic connections from II to PC 108

C3 Strength of synaptic connections from PC to II 33.75

C4 Strength of synaptic connections from EI to PP 33.75

e0 Maximum firing rate of the population 2.5 s
–1

v0 Mean threshold of the population 6 mV

r Steepness of the sigmoidal transformation 0.56 mV
–1

k Coupling constant 10

K Adjacency matrix K
ij

= 1, i 6= j;
K

i,j
= 0, i = j

τ Delay Varies with distance
(Pons et al., 2010)

p External input 200 s
–1

*Lumped representation of the sum of the reciprocal of the time constant of

passive membrane and all other spatially distributed delays.

A.2 Ary’s model of the head. Equations

Ary’s model of the head reproduces the behaviour of a spherical head

comprised by three layers, which correspond to three di�erent tissues

(brain, skull, and scalp). The following equations show the potential V
e,i

on an electrode e, located at re

e (Jurcak et al., 2007), caused by the dipole

qi
(t) = x

i
(t)q̂i

generated by the cortical column i, located at ri

q and oriented

as q̂i
(where x

i
(t) is the output x

i

1
– x

i

2
of Jansen and Rit’s model). In these
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equations, e = 1, . . . , Ne, where Ne is the total number of electrodes, and

i = 1, . . . , N
d
, where N

d
is the total number of dipoles.

V
e,i

(re

e; ri

q,qi
) u v

1
(re

e;µ1ri

q, ρ1qi
) + v

2
(re

e;µ2ri

q, ρ2qi
) + v

3
(re

e;µ3ri

q, ρ3qi
),

(A.8)

v
1
(re

e; ri

q,qi
) =

(
(c

e,i,1

1
– c

e,i,1

2
(re

e · ri

q))ri

q + c
e,i,1

2
(r

i

q
)
2re

e

)
· qi

, (A.9)

v
2
(re

e; ri

q,qi
) =

(
(c

e,i,2

1
– c

e,i,2

2
(re

e · ri

q))ri

q + c
e,i,2

2
(r

i

q
)
2re

e

)
· qi

, (A.10)

v
3
(re

e; ri

q,qi
) =

(
(c

e,i,3

1
– c

e,i,3

2
(re

e · ri

q))ri

q + c
e,i,3

2
(r

i

q
)
2re

e

)
· qi

. (A.11)

In these expressions,

c
e,i,s

1
=

1

4πσs
(r

i

q
)
2

(
2

de,i · ri

q

(d
e,i

)
3

+

1

d
e,i

–

1

r
e

e

)
,

c
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2
=

1

4πσs
(r

i

q
)
2

(
2

(d
e,i

)
3

+

d
e,i

+ r
e

e

reΓ(re

e, ri

q)

)
,

Γ(re

e, ri
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e,i

(
r
e

e
d

e,i
+ (r

e

e
)
2

– (ri

q · re

e)

)
.

(A.12)

Table A.2 Values of the

Berg parameters for the

three layers (Ary et al.,

1981; Berg and Scherg,

1994).

Parameter Layer 1 Layer 2 Layer 3

Tangential conductivity σs 1.0 0.0125 1.0

Berg parameter ρs 0.9901 0.7687 0.4421

Berg parameter µs 0.0659 0.2389 0.3561

The tangential conductivity of each layer is represented by σs
(Ary et al.,

1981) and ρs and µs are the Berg parameters relative to it (Berg and Scherg,

1994) (see table A.2). The parameter de,i
= re

e – ri

q is the relative position
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of the electrode e under consideration with respect to the position of the

dipole i.

A.3 Numerical solver: Heun algorithm

The numerical solver used to generate the in silico time series was the Heun

algorithm (Toral and Colet, 2014) with a time step of ∆t = 1 ms. The length

of the data is 100 s in all cases. Using the Heun algorithm together with

Eqs. A.4 to A.6 to update the state variables and the lead �eld matrix (in

order to get the potential in the electrodes of the scalp in Eqs. A.8 to A.12),

we generate the required map to apply Kalman �ltering in Eqs. 4.2 and 4.3.

The following equations implement the stochastic Heun algorithm used to

update x
k
:

x
k+1

= x
k

+

1

2

(F (x
k
) + F (x̃

k
)) ∆t +

1

2

∑
(g (x

k
) + g (x̃

k
)) X

k
, (A.13)

x̃
k

= x
k

+ F (x
k
) ∆t + g (x

k
) X

k
. (A.14)

Where g(...), together with equation A.7, introduces the noise term in equation A.5

and is zero for Eqs. A.4 and A.6. In X
k

=

√
2ε∆tγ, γ are gaussianly distributed

random numbers with zero mean and unit variance. At di�erent instants of

time, these random numbers are independent from one another.

A.4 Data generation and design of the experiments in chapter 6

Here we describe the generation of the data for chapter 6 and the design

of the study. Three di�erent in silico datasets were generated, using Jansen

and Rit’s neural mass model (section A.1). We simulated both electrocorticography
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(, intracortical) and electroencephalography (EEG, extracranial) readings,

using Ary’s model (section A.2) additionally in the latter case. The series

were generated numerically using Heun’s algorithm (section A.3).

Table A.3 Cartesian

coordinates of the dipoles

used throughout the study.

The origin of coordinates is

the centre of the perimeter

of the head.

x y z

dipole 1 0.1688 0.2242 0.2597

dipole 2 0.3766 -0.8520 0.2597

dipole 3 0.6622 -0.2242 -0.1948

All datasets used the same

locations for the cortical

columns (Richards, 2004), as

seen in table A.3. The electrodes

were placed using a subset of the

equidistant layout, a standard

layout for EEG (Easycap, 2018)

illustrated in �gure A.1. The strength of the coupling was set at a medium

value so that the cortical columns have a visible e�ect on one another

without fully synchronising behaviours and locking their dynamics

(between k = 5 and k = 10), and the con�gurations of the couplings

are as shown in �gure 6.2. Table A.1 shows representative values for the

parameters used in all analyses unless otherwise speci�ed. We focus on

estimating the amplitudes A of the EPSPs of the di�erent cortical columns,

and therefore we choose values for these amplitudes that produce signals

that re�ect various dynamic regimes that we wish to explore. (The rest of

the parameters were �xed to their standard values (Jansen and Rit, 1995;

Jansen et al., 1993), as described in table A.1.)

A.4.1 Three unidirectionally coupled cortical columns

For the �rst study, the cortical columns were coupled unidirectionally

(panel (a) of �gure 6.2), as described in Liu and Gao (2013). The parameters

were set to standard values Jansen and Rit (1995) for the three cortical
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columns, A2 = A3 = 3.25 mV, except for the �rst column, in which A1

was set to 3.58 mV to make it hyperexcitable. Additionally, the three cortical

colums had p
0

= 90 s
–1

and ε = 2 s
–1

. The coupling constant was set to the

value of k = 10.

Figure A.1 61-channel

equidistant layout. Adapted

from Easycap (2018).

The measurements were corrupted with Gaussian noise of mean 0 and

standard deviation 5 mV for intracortical measurements and standard

deviation 100 mV for extracranial measurements.
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A.4.2 Three bidirectionally coupled cortical columns: coarse parameter

estimation

The three cortical columns are located as in the previous section, but coupled

bidirectionally (panel (b) of �gure 6.2). Additionally, the maximum amplitudes

of the excitatory PSPs were set to A1 = 4.25 mV, A2 = 10.00 mV, and

A3 = 3.25 mV. The external input p(t) for each of the three cortical columns

was set using p
0

= 200 s
–1

and ε = 100 s
–1

. The coupling constant was set to

k = 5.

Moderate intracortical measurement noise

The intracortical measurements were corrupted with Gaussian noise of

mean 0 and standard deviation 5 mV, while the noise in the extracranial

measurements has standard deviation 100 mV.

High intracortical measurement noise

The intracortical measurements were corrupted with Gaussian noise of

mean 0 and standard deviation 100 mV—about an order of magnitude

higher than the noise in the previous study—, while the noise in the extracranial

measurements has standard deviation 100 mV.

A.4.3 Three bidirectionally coupled cortical columns: fine parameter

estimation

The three cortical columns are coupled bidirectionally (panel (b) of �gure 6.2).

The maximum amplitudes of the excitatory PSPs were set to A1 = 3.58 mV,

A2 = 3.25 mV, and A3 = 3.10 mV. The coupling constant was set to k = 5.

The values for p(t) remain p
0

= 200 s
–1

and ε = 100 s
–1

.
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B
Filtering

B.1 The unscented Kalman filter. Equations

The unscented Kalman �lter (UKF) is a predictor-corrector algorithm that

estimates the state and parameters at a given time step k in two phases. The

�rst one predicts the state based solely on the dynamical information of the

system, i.e., the model. The second incorporates a measurement with which

to correct the �rst estimation. Table B.1 presents the symbols used in this

Thesis for the variables of the Kalman �lter.
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Table B.1 Variables of the

unscented Kalman �lter.

Par. Description

x̂ state estimate

x̂– a priori state estimate

Σ sigma points

X∗ transformed sigma points

X redrawn sigma points (van der Merwe and Wan, 2001)

Υ sigma points projected to measurement space

y– estimated measurement

z measurement

f model of the system

H observation model

n state size

λ scaling parameter

α primary scaling factor

β secondary scaling factor

κ tertiary scaling factor

W
m weight vector for the mean

W
cov weight vector for the covariance

P state covariance estimate

P– a priori state covariance estimate

Pyy predicted measurement covariance

Pxy state-measurement cross-covariance

Q state error covariance*

R measurement error covariance*

K Kalman gain

*To set the matrices Q and R—which reflect the quality of measurement
and model, and which crucially a�ect the output of the filter—, we used our
knowledge of the characteristics of the data to fix an initial guess (Liu and
Gao, 2013), then adjusted it to meet performance criteria.

The �rst step of the algorithm involves computing the expectation of the

state and of the state covariance at time instant k + 1, known as the a priori
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estimation. For this we use a numerical implementation (using Heun’s

solver) of our dynamical equations, e.g. Jansen and Rit’s model of a cortical

column (Jansen and Rit, 1995; Jansen et al., 1993).

The nature of the nonlinearities of this model prevents us from using a

simple linearisation approach to propagating the statistics of the state

variables across the transformation. Therefore, we incorporate the unscented

transform (UT) in our formulation of the Kalman �lter, which, instead

of attempting to propagate a distribution through the nonlinearity, �rst

propagates a series of deterministically chosen points through the nonlinearity

and then recovers the statistical information of the distribution from these.

The a priori estimation of the state, x̂–k, is obtained as follows, beginning

with the calculation and projection of the 2n + 1 (where n is the state size)

sigma points,

Σk–1,0 = x̂k–1

Σk–1,i = x̂k–1 +

(√
(n + λ)Pk–1

)
i

, i = 1,...,n

Σk–1,i = x̂k–1 –

(√
(n + λ)Pk–1

)
i–n

, i = n + 1,...,2n

(B.1)

where Pk–1 is the estimated state covariance matrix for the previous time

step. The square root of this matrix is well-de�ned, and can be calculated

e�ciently via a Cholesky decomposition (van der Merwe and Wan, 2001).
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This continues with the condensation of the projected sigma points into the

a priori state estimate:

X∗
k|k–1 = f(Σk–1) (B.2)

x̂–k =

2L∑
i=0

W
m

i
X∗
i,k|k–1 (B.3)

P–k =

2L∑
i=0

W
cov

i
[X∗

i,k|k–1 – x̂–k][X∗
i,k|k–1 – x̂–k]

T
+ Q (B.4)

where Q is the state error covariance and Wm
and Wcov

are the weight

vectors, de�ned as

W
m

0
=

λ

n + λ

W
cov

0
=

λ

n + λ
+ 1 – α2

+ β

W
m

i
= W

cov

i
=

1

2(n + λ)

, i = 1,...,2n

(B.5)

In equations B.1 and B.5, α, β and κ are scaling factors, and λ, which is

crucial to guarantee a positive semi-de�nite covariance matrix P, is calculated

as λ = α2
(n + κ) – n. The primary scaling factor α determines the spread

of the sigma points around the mean and is set at 0.001, it being usually set

between 0.001 and 1 (van der Merwe and Wan, 2000) and chosen according

to the quality of the resulting estimation. The secondary scaling factor

β contains prior information about the distribution of x; for Gaussian

distributions, its optimal value is 2. Finally, κ, the tertiary scaling parameter,

is set to 0, as is a usual practice (van der Merwe and Wan, 2000).
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We now use a measurement to correct the state estimation, which implies

the mapping of the a priori estimate onto the measurement space for comparison.

In our case, this transformation is a linear matrix H that relates the state of

the cortical columns to an EEG reading (see section A.2 in appendix A for

details). The sigma points Σ
k|k–1

are projected into the measurement space

(van der Merwe and Wan, 2001)

Υk|k–1 = H[Σk|k–1] , (B.6)

from which the estimation of the measurement, ŷ–k, is calculated:

ŷ–k =

2L∑
i=0

W
m

i
Υi,k|k–1 (B.7)

The second step of the algorithm corrects the a priori estimation of state

and covariance by using the information available from the most recent

measurement. The impact of the measurement is determined by the Kalman

gain Kk, which essentially expresses the level of con�dence on the accuracy

of the model and the level of noise in the data.

Pykyk =

2L∑
i=0

W
cov

i
[Υi,k|k–1 – ŷ–k][Υi,k|k–1 – ŷ–k]

T
+ R (B.8)

Pxkyk =

2L∑
i=0

W
cov

i
[Xi,k|k–1 – x̂–k][Υi,k|k–1 – ŷ–k]

T
(B.9)

Kk = Pxkyk P–1

ykyk (B.10)

x̂k = x̂–k + Kk(zk – ŷ–k) (B.11)

Pk = P–k – Kk Pykyk KT

k (B.12)
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where Pykyk is the predicted measurement covariance, Pxkyk is the state-measurement

cross-covariance, R is the measurement error covariance, and zk is the

measurement for the current time step.

B.2 Application of the filter

B.2.1 In silico EEG data

For each of the experiments in chapter 6 we conducted 50 realisations of

each estimation for the complete state vector, with di�erent initial conditions;

all the �gures show averages of the 50 estimations, unless otherwise speci�ed.

The initial conditions for state and parameter estimations were randomly

generated with a normal distribution of zero mean and unit variance; the

parameters, however, were constrained to deviate no more than 90% of their

actual value as an initial assumption.

The noise covariances Q and R were chosen according to the best knowledge

of the system and of the noise corrupting the data. Therefore, Q was set

to contemplate the incoming noise to each dipole, i.e. it was set to a null

matrix except for the term corresponding to the equation that contains

the input p(t) (see equation A.5 on page 114 and Garcia-Ojalvo and Sancho

(1999)). The matrix R was set to 1000I mV
2
. (In practice, in most applications

of the Kalman �lter, the matrix R is fairly easy to set with the knowledge

of the measurement precision as a starting point. However, in real life

applications Q is often set by trial and error.)
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B.2.2 Real EEG data

After �ltering in silico EEG data, real data were used in chapter 7. Instead

of the three dipoles used in chapter 6, here we place one cortical column

under each of the 21 electrodes that are used for data collection (Goldberger

et al., 2000; Shoeb, 2009) and we position them according to the theoretical

coordinates of the electrodes in the International 10-20 System (see �gure B.1).

In this case, only one realisation of each set of initial conditions was conducted

due to the size of the problem. The initial conditions for the state are random

numbers between -0.5 and 0.5, while the initial conditions for the parameters

were set to their nominal value in Jansen and Rit’s model unless otherwise

speci�ed.

Figure B.1 The

International 10-20 system

of electrode layout on the

scalp (Klem et al., 1999).
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The noise covariances Q and R were set heuristically with the output of the

�lter as the indicator for good performance. Our targets were, on the one

hand, smooth and stable estimates of the parameters and, on the other hand,

a good correspondence between the measurements and the projected state

estimates.

The process noise covariance Q was given values similar to those described

in the previous section; additionally, because we are dealing here with real

data, we added diagonal terms of value 10
–6

for the rest of the equations

for the state, and of 10
–9

for the terms in the diagonal corresponding to the

parameters. This was done to give more freedom for the �lter to adjust to

experimental data while constraining it to �nd parameters with as stable

a value as possible. The measurement noise covariance matrix was set to

R = 10
–2I µV

2
.
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