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Abstract

UNESCO codes: 120321, 220209, 250118
The research of this paper-based dissertation is focused on Global Ionospheric Maps

(GIM) generation and assessment. In summary, the novelty and thematic unity in this works
relies on four different but complementary topics:

• Defining a systematic procedure to validate and quantify the quality of GIMs based on
independent data sources or techniques.

• Applying this methodology to not only the GIMs computed at UPC, but also to most
of the currently open accessible GIMs inside the scientific community.

• Including newly available Global Navigation Satellite Systems (GNSS) data to the
processing of UPC’s GIMs.

• Assessment and distribution also of real-time GIMs. As a result, also a first combined
real-time GIM has been implemented.

More in detail, my first contribution has been to the definition of a complete GIM
validation procedure. This procedure is based on two methods: direct VTEC (Vertical Total
Electron Content) altimeter and GNSS difference of slant TEC (Total Electron Content), both
of them giving complementary information of the GIM performance. The main advantage
of using satellite altimeter data is the fact that we are using a truly independent information
source with regard to the input data used for GIM generation. This allows assessing the TEC
from a entirely different point-of-view, fully different and independent to any error that may
affect GNSS systems and its processing. The second technique, relies on using the same type
of input data but in this case from permanent GNSS stations not participating in the GIM
generation. The main advantages of this second technique is twofold: first, it allows to asses
the GIMs on land; and second its a low latency direct assessment of the GIM, given a more
direct information about the processing and interpolation done with the GNSS input data.

Afterwards, a second contribution has been to use the previously defined methodology
to validate all the GIMs generated by the International GNSS Service (IGS) Associated
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Analysis Centers (IAAC), and some other candidates to join them, for a more than a full
solar cycle (starting from end of 2001 to beginning of 2017). As a side result, it is also
demonstrated that while the time interval of the GIM has little influence on its overall quality,
the interpolation technique used by the IAACs has an important role. Finally, this work also
lead to the acceptance of the previously mentioned IAAC candidates since it demonstrated
the good quality of their GIMs.

Another contribution has been, as part of the European GRC project, improving the
currently in production UPC’s TOMION (TOMographic IONospheric) software used to
generate the UQRG (UPC’s rapid GIM) map. The software input source data was restricted
to GPS L1 and L2. Now it allows processing all current frequencies available for GPS,
Galileo and Beidou. This software has been internally tested for some specific days with
the previously explained altimeter method giving results with improved quality for specific
combinations of GNSS systems and frequencies. Using this work flow but focused on single
frequency processing, a last article was published analysing the ionospheric footprint of the
solar eclipse over North America during 2017.

Finally, another contribution has been to improve the data acquisition and distribution
system for the real-time GIM generation processing chain. Furthermore, as part of UPC
contribution to the Real Time Ionospheric Monitoring Working Group (RTIM-WG) of
the International Association of Geodesy (IAG) and following the previously explained
methodology, an assessment of the GIMs generated by the members of this sub-commission
have been performed. As a result of all these efforts, UPC has been leading inside the IGS
frame, and made a first implementation, of a new real-time combined map.



Resum

Codis UNESCO: 120321, 220209, 250118
La recerca realitzada en aquesta tesis en format compendi d’articles està enfocada en

la generació i validació de mapes ionosfèrics globals (GIM, del anglès Global Ionospheric
Maps). En resum, la novetat i unitat temàtica d’aquesta tesis està basada en quatre temes
diferents però complementaris:

• Definició d’un procediment sistemàtic per validar i quantificar la qualitat dels GIMs
basada en fonts de dades o tècniques independents.

• Aplicar aquesta metodologia no només als GIMs generats a UPC, sinó també a la resta
de GIMs d’accés obert actualment existent dintre la comunitat científica internacional.

• Incloure en el processat per generar els GIMs de UPC dades de les noves constel·lacions
GNSS (del anglès Global Navigation Satellite Systems) disponibles.

• Validació i distribució també dels GIMs en temps real. Com a conseqüència, també
s’ha aconseguit generar un primer GIM combinat en temps real.

Més en detall, la meva primera contribució va ser definir un procediment complet de
validació de GIM. Aquest procediment està basat en dos mètodes: obtenció directa del
contingut vertical total d’electrons (VTEC, del anglès, Vertical Total Electron Content) a
partir de dades d’altimetria i per diferencies del contingut total d’electrons (TEC, del anglès
Total Electron Content) inclinat de dades GNSS. Els dos donen informació complementaria
de la qualitat dels GIM. L’avantatge principal d’utilitzar dades de satèl·lits altimètrics és que
és una font de dades completament diferent de les que s’utilitzen per la generació dels GIMs.
Aquest fet ens permet verificar el TEC des d’una perspectiva diferent, plenament independent
de qualsevol font d’error que pugui afectar al propi sistema GNSS o el seu processat. El
segon mètode, es basa en la mateix tipus de dades que s’utilitzen pel càlcul dels GIM però
en aquest cas amb dades d’estacions permanent GNSS no involucrades en la generació dels
GIMs a avaluar. L’avantatge principal d’aquest segon mètodes és doble: primer, permet
avaluar el GIM sobre els continents; i segon, permet fer la anàlisis directa de baixa latència
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del GIM, a més a més donant informació directa sobre el processat i la interpolació aplicada
sobre les dades GNSS.

Seguidament, la meva segona contribució va ser utilitzar la metodologia prèviament
definida per validar tots els GIM generats per part dels centres d’anàlisis associats al Servei
Internacional de GNSS (IGS, del anglès International GNSS Service) i altres centres candidats
a unir-se a IGS, per més d’un cicle solar (des de finals del 2001 fins al inici del 2017). Com
a resultat secundari, també va permetre demostrar que per una banda l’interval temporal
dels GIM té poca influencia sobre la seva qualitat global, però per altra banda la tècnica
d’interpolació emprada per part dels centres te un impacte molt important. Finalment, aquest
article va portar a l’admissió d’aquests candidats prèviament mencionats a centres d’anàlisis
associats a IGS donat que es va demostrar la bona qualitat dels seus GIMs.

Una altra contribució important va ser, com a part del projecte europeu GRC, millorar el
software TOMION (TOMographic IONospheric) de UPC, actualment en producció generant
el GIM UQRG (GIM ràpid de UPC). Aquest software només permetia utilitzar dades de
GPS L1 i L2. Les millores realitzades durant aquesta tesis permeten processar totes les
freqüències actualment existent de GPS, Galileo i Beidou. El software ha estat internament
validat per certs dies específics amb el mètode explicat prèviament d’altimetria millorant
els resultats en comparació a la versió anterior per certes combinacions de constel·lacions
GNSS i freqüències. Utilitzant aquesta nova metodologia de processat aplicada a una sola
freqüència, un últim article va ser publicat analitzant l’empremta ionosfèrica de l’eclipsi
solar sobre Amèrica del nord durant el 2017.

Finalment, una altre contribució va ser millorar el mètode d’adquisició i distribució del
sistema de processat del GIM en temps real. És més, com a part de la contribució de la
UPC, és va realitzar una validació dels GIMs generats pels participants del grup de treball de
monitorització en temps real de la ionosfera (RTIM-WG, del anglès Real Time Ionospheric
Monitoring Working Group) de l’associació internacional de geodèsia (IAG, del anglès
International Association of Geodesy) seguint la metodologia anteriorment citada. Com a
resultat d’aquestes tasques la UPC ha liderat i implementat un nou mapa combinat en temps
real. en el marc de IGS.
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Chapter 1

Introduction

1.1 GNSS Scope

Global Navigation Satellite Systems (GNSS) have an ever growing impact on large and
heterogeneous sectors of human society. Its initial application as positioning has been largely
overcome by other new and challenging scientific and commercial applications. In the sci-
entific area, it is used in different applications like atmospheric sounding (Hernández-Pajares
et al., 1999), space weather monitoring (Orus et al., 2007) and earthquake detection (Sagiya,
2004). As commercial application it can both be used as a precise clock, like in power grid
management, and as a precise positioning system, which was its initial application. But even
so, the ever better quality of the GNSS signals and understanding of the disturbances affecting
them, is still opening new commercial application such as precise farming (Hernandez et al.,
2017b). In summary, being able to correctly determine and understand the different delays
affecting the GNSS signals is of great importance to different areas of interest.

In brief, in this section, I will make a short introduction about the signals, delays and
basic terms related to GNSS.

1.2 GNSS history

The first navigation systems that can be called truly global date back to the late 1950s and
early 1960s, still during the Cold War. Both the USA and Soviet Union developed similar
systems, although only for military use. It was first in the 1967 that the USA made publicly
available to civilians the TRANSIT system, precursor of GPS. It is interesting to notice that
already on this first system the ionosphere was detected as an important error source for
positioning. Hence, this first system already was transmitting at two different frequencies
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to allow cancelling out its contribution. This feature has been later inherited to all modern
GNSS constellations.

GPS initial operating capability was in December 1993 and fully operational at June
1995, starting the era of modern GNSS. It was originally developed for military use, but
soon it was made also accessible for civilian use, although with some reduced accuracy. The
second GNSS constellation to appear was GLONASS, developed by Rusia. Even when both
were working in similar frequency ranges, the modulation schema used were not compatible.

In the current decade, other two GNSS constellations appeared: BeiDou (2012), from
China, and Galileo, from the European Union. Galileo is still not considered fully operational
although it has enough satellites already to allow navigation. It is expected to reach full
operational capabilities along 2019 (Teunissen and Montenbruck, 2017).

1.3 GNSS constellations

Nowadays we can find the following four GNSS systems, sorted by initial service date (Teun-
issen and Montenbruck, 2017):

Global Positioning System (GPS) Property of the USA.

Globalnaja Nawigazionnaja Sputnikowaja Sistema (GLONASS) Property of Russia.

BeiDou Navigation Satellite System (BDS) Property of China.

Galileo Property of the European Union.

There are other regional satellite-based navigation systems, like QZSS (from Japan) and
IRNSS (India).

GNSS systems have some common features but still are different in the details. For
instance, all GNSS systems follow in some way the International Atomic Time (TAI) as a
reference. But while GPS and Galileo has an offset, related to the leap seconds of its datum
origin, of 19 seconds, BeiDou has an offset of 33 seconds. In this section we make a short
review of their most important parameters.

1.3.1 Frequency band

In Figure 1.1, we can see the frequency allocation of the different signals transmitted by the
different GNSS systems. All of them transmit at the L-band, from 1 GHz to 2 GHz, and
using a right-handed circularly polarized waves. The L-band has the advantage of having a
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Figure 1.1 GNSS frequency bands: GPS bands in grey, GLONASS bands in orange, Galileo
in blue and BeiDou in green (from Teunissen and Montenbruck (2017)).

moderate atmospheric attenuation while keeping the antenna size at an acceptable size. Also,
circular polarization is preferred over linear polarization to limit the losses caused by antenna
orientation mismatch.

Since the different satellites of the different constellations use the same medium for
the propagation, multiple access techniques needs to be used by them. GPS started using
Code Division Multiple Access (CDMA) techniques, while GLONASS used Frequency
Division Multiple Access (FDMA). Even so, the new GLONASS satellites are also changing
to CDMA, as do all the new GNSS systems (BeiDou and Galileo).

GNSS orbits

GPS, GLONASS and Galileo are based on a constellation of satellites at Medium Earth Orbit
(MEO), around 20000 km of height (Figure 1.2). Using this height allows having an orbital
period of between 11 hours 16 minutes for GLONASS up to 14 hours and 5 minutes for
Galileo. The only deviation is BeiDou, which has a combination of MEO, Geosynchronous
Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites to improve coverage
for the Asian continent area. It is also worth to mention that the inclination of the other
constellations is also slightly different to improve the coverage of the different countries
owning the respective GNSS system.

Another parameter of interest for certain applications, as we will see later in this dis-
sertation, is the repeatability period of the constellation geometry. This period is the time
it takes for a certain receiver to see the same satellite at the exactly same relative position.

GNSS system GPS Glonass Galileo BeiDou (MEO)
Sidereal days 1 8 10 7

Table 1.1 Repeatability period of the different constellation geometry
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Figure 1.2 Comparison of orbital height and time between different GNSS constellations
(from Wikimedia Commons (2018)).

Since this time is related with the Earth rotation, it is commonly given in sidereal days,
which is the time required for the Earth to make a full rotation with regards to fixed stars. A
sidereal day is approximately 23 hours, 56 minutes and 4 seconds. In Table 1.1 (Teunissen
and Montenbruck, 2017) we list the the repeatability period of the different constellation
geometry.

1.4 Measurements and error sources

The basic measurement made in GNSS is the apparent propagation time τ required by a
GNSS signal to propagate from a given satellite to a receiver. Ideally, if we multiply this
time by the propagation speed of the signal, the speed of light, we would expect to obtain the
true distance between them. But, there are a lot of corrections we need to take into account
in this measurement to find the true geometric distance. Therefore, the basic measurement
made by the receivers is known as pseudodistances.

There are two basic measurement done by the receivers:
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• Pseudorange (P): is the measure of the difference between the receiver clock reading
at signal reception and satellite clock time at signal transmission multiplied by the
speed of light in the vacuum.

• Carrier-phase (L): is an accumulated measure of the phase of the incoming carrier
signal expressed in units of cycles of this carrier signal. The carrier phase advantage
is that it reflect changes with a much higher precision than the pseudorange. But, in
exchange, it includes an unknown number of integer carrier cycles due to the Doppler
effect and the receiver and transmitter phase instrumental delays. And, if at some point
the signal tracking is lost (cycle slip) this value is reset.

These two previous measurements can be described by the following equations, taking
into account its error sources:

P j
k,i = ρ

j
i + c(dti −dt j)+ rel j

i +T j
i + I j

k,i +K j
k,i +M j

k,i + ε
j

k,i (1.1)

L j
k,i = ρ

j
i + c(dti −dt j)+ rel j

i +T j
i − I j

k,i +B j
i +ωk +M j

k,i + ε
j

k,i (1.2)

where:

• j refers to the satellite, i to the receiver and k to the frequency. This notation will be
used along the entire dissertation.

• ρ
j

i is the true distance between satellite and receiver.

• c(dti −dt j) is the error due to clock differences between satellite and receiver.

• rel j
i the relativistic effect due to space-time curvature.

• T j
i is the tropospheric delay (neutral atmosphere).

• I j
k,i is the ionospheric delay.

• K j
k,i is the instrumental delay, which is the addition of two terms coming from the

receiver and the satellite transmitter.

• M j
k,i is the multipath (e.g. signal reflections) related error.

• B j
i is the phase ambiguity, including the integer number of unknown carrier cycles

related to the first tracking instant and the instrumental phase delays.

• ωk is the antenna wind-up effect.
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• ε
j

k,i are other unmodeled delays.

In Table 1.2 (Hernandez et al., 2005) we summarize typical values for GPS of the
previous error sources.

Error source Positioning error Error source Positioning error
Clock difference < 300 km Relativistic effect < 13 m
Ionospheric delay 2 to 50 m Tropospheric delay 2 to 10 m
Phase ambiguity Centimetres to kilometres Instrumental delay Centimetres to meters
Multipath Centimetres to decimetres Wind-up Below one wave-length

Table 1.2 Typical values of GPS error sources

1.5 Ionospheric delay

This PhD. thesis is focused on the ionosphere. The ionosphere is the atmospheric layer that
goes from approximately 1000 km down to 50 km. In this region, the extreme ultraviolet and
x-ray emissions from the Sun causes the ionization of neutral molecules and atoms, hence
increasing the presence of free electrons and generating the ionospheric plasma (Figure 1.3).
The internal dynamics of this plasma are very complex and strongly coupled with the
magnetosphere and the solar activity. Therefore, the day and night cycle, the eleven years
solar cycle or fluctuations in the Earth magnetic field among other, may produce changes
up to 50 % in the electron density of the ionosphere (Teunissen and Montenbruck, 2017).
Further information about this can be found in section 2.2.1.

In the previous section, we were considering that the signal path from satellite to receiver
was travelling in vacuum, but for receivers on ground or low-orbit this is obviously not true.
Furthermore, the atmosphere is not homogeneous and hence the signal suffers from refraction
while travelling through it. To quantify this change, first we need to take into account the
refractive index n, defined as:

n =
c
v
=

√
εµ

ε0µ0
(1.3)

where c is the speed of light in vacuum, v is the speed of the signal in the given medium, ε

and µ are respectively the electric permittivity and magnetic permeability in the medium
and ε0 and µ0 are respectively the electric permittivity and magnetic permeability in vacuum.
Hence, the refractive index can be directly related to the electric properties of the the medium.

Therefore, we can distinguish two regions with regards to the atmospheric delay: the
ionosphere and the troposphere. There is one fundamental reason to do this distinction.
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Figure 1.3 Vertical structure of the electron density of the ionosphere (right) in comparison
with the neutral atmosphere temperature (left) and solar radiation penetration depths (middle),
from Teunissen and Montenbruck (2017).

The troposphere, also called neutral atmosphere in this context, can be considered a non-
dispersive medium. This means that its refractive index is independent of the frequency of
the signal. For the ionosphere this is not true.

For GNSS, if we want to translate the refractive index to the time τ it takes for the signal
to travel from satellite to receiver we can use the following equation:

τ =
1
c

∫ r

s
n(l)dl (1.4)

and the delay with respect to the vacuum is then:

∆τ =
1
c

∫ r

s
(n(l)−1)dl (1.5)

Since the code and carrier have different frequencies, the refractive index for them at the
ionosphere is also different. Furthermore, it can be related to the group and phase velocity of
the electromagnetic wave.

np =
c
vp

ng =
c
vg

(1.6)
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where np is the carrier refractive index (related to the carrier-phase pseudorange) and ng is
the group refractive index (related to the code pseudorange). Both indices are related via:

ng = np + f
dnp

d f
(1.7)

As a first order approximation in SI units (Markowitz, 1973), we can relate the carrier-
phase np refractive index to the free electron content using:

np = 1− 40.3ne

f 2 (1.8)

where ne is the total electron content (TEC) along the path of the wave and f is the wave
frequency. It is important to notice that the higher order ionospheric terms only contribute up
to a 0.1 % of the total (Hernández-Pajares et al. (2014)). If we replace in (1.7) the previous
expression, we find that the group refractive index is:

ng = 1+
40.3ne

f 2 (1.9)

Hence, we can see that the refraction index for group and carrier are equal of magnitude
but with different sign. This is the reason why in (1.1) and (1.2) the value related to the
ionosphere is the same but with different sign.

As noted before in (1.4), the ionospheric delay is proportional to the Total Electron
Content along the path of the signal between receiver and satellite, also known as Slant Total
Electron Content (STEC), hereinafter written as S in the following equations.

S =
∫ r

s
nedl (1.10)

The STEC is commonly expressed in TEC units (TECU) which are equivalent to
1016e−/m2. In this sense, 1 TECU corresponds to approximately a 16.2 cm delay for
GPS L1. Using the STEC, S, we can rewrite (1.5) in terms of it as follows:

∆τ =
40.3S j

i
c f 2 (1.11)

And we can get the relation between the ionospheric delay at two different frequencies
as:

I j
m,i =

40.3STEC
f 2
m

=
f 2
n

f 2
m

I j
n,i (1.12)
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Since the STEC depends on satellite and receiver position, the vertical total electron
content (VTEC, written as V in the following equations) is the value commonly distributed
instead to correct the ionospheric delay in precise positioning. The VTEC, analogous to the
STEC, can be defined as the integral of the electron density in a vertical columnar cylinder
of unit area:

V =
∫

nedh (1.13)

As seen in Figure 1.3, this implies reducing the vertical 3D in a much simpler equivalent
2D distribution. In this sense, a typical shell at an effective height of 450 km is adopted
for the VTEC maps. These maps, when they cover a global scale are known as Global
Ionospheric Maps (GIMs). The International GNSS Service (IGS, see Dow et al. (2009)),
through its International Associated Analysis Centers (IAAC), is providing this kind of maps
as open products since 1998 (Hernández-Pajares et al., 2009b).

Finally, to obtain the ionospheric delay in length units from the externally obtained VTEC,
a simple method is to apply an obliquity factor to account for the increase of the electronic
content among the path for lower elevations, i.e. for the corresponding STEC:

I =
1

cosz′
40.3V

f 2 (1.14)

where z′ is the zenith angle of the satellite with regards to the so-called ionospheric pierce
point, which is the point where the line-of-sight vector between satellite and receiver crosses
the ionospheric thin shell of the VTEC. For more details, see section 19.3 of Teunissen and
Montenbruck (2017).

1.6 GNSS combinations

1.6.1 Ionosphere free combination

As already explained before, historically, the ionospheric delay was difficult to assess and
hence the GNSS satellite were, and still are today, emitting signals at more than one frequency.
Hence, using (1.1), (1.2) and (1.12), the so-called ionospheric free-combinations (PC for
the pseudorange and LC for the carrier-phase) can be made to remove the effect of the
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ionosphere:

PC j
i ≡

f 2
1 P j

(1,i)− f 2
2 P j

(2,i)

f 2
1 − f 2

2

= ρ + c(dti −dt j)+ rel j
i +T j

i

+
1

f 2
1 − f 2

2
{ f 2

1 (K
j

1,i +M j
1,i + ε

j
1,i)− f 2

2 ((K
j

2,i +M j
2,i + ε

j
2,i)}

(1.15)

where the corresponding instrumental delays are defined as zero for actual P1 and P2 GPS.

LC j
i ≡

f 2
1 L j

(1,i)− f 2
2 L j

(2,i)

f 2
1 − f 2

2

= ρ
j

i + c(dti −dt j)+ rel j
i +T j

i +B j
i

+
1

f 2
1 − f 2

2
{ f 2

1 (ω1 +M j
1,i + ε

j
1,i)− f 2

2 (ω2 +M j
2,i + ε

j
2,i)}

(1.16)

On the other hand, if we only have single-frequency observations, the GRAPHIC com-
bination can be used instead. The GRAPHIC combination (OGPH) takes advantage of
the opposite of the sign between carrier-phase and pseudorange present at the ionospheric
dependency:

O j
GPH,i(t)≡

1
2
(P j

k,i(t)+L j
k,i(t))

= ρ
j

i + c(dti −dt j)+ rel j
i +T j

i +

1
2
(K j

k,i +B j
i +ωk +M j

k,i +M j
P,k,i +M j

L,k,i + ε
j

P,k,i + ε
j

L,k,i)

(1.17)

where Pk and Lk are the pseudorange and carrier phase at a given frequency fk respectively
and both in length units, j refers to the satellite and i is the receiver. The other terms are
the same than defined at equations 1.1 and 1.2. As we can see in this way we get rid of
the ionospheric effect but in exchange we add all the noise sources of carrier phase and
pseudorange, although divided by a factor two. Specially relevant is that we now have also
the phase ambiguity and the pseudorange multipath present, which needs to be estimated in
positioning applications. But the ambiguity, along an arc of observation, can be considered
constant.
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1.6.2 Ionospheric combination

For applications where the focus is on the ionosphere instead, for dual frequency receivers
we can perform the ionospheric combination (also called geometric free combination) for
pseudorange (PI) and carrier-phase (LI) using equations (1.1), (1.2) and (1.11):

PI j
i ≡ P2 −P1

= 40.3(
1
f 2
2
− 1

f 2
1
)STEC j

i

+(K j
2,i −K j

1,i)+(M j
2,i −M j

1,i)+(ε
j

2,i − ε
j

1,i)

(1.18)

LI j
i ≡ L1 −L2

= 40.3(
1
f 2
2
− 1

f 2
1
)STEC j

i

+(B j
2,i −B j

1,i)+(m j
2,i −m j

1,i)+(ω
j

2,i −ω
j

1,i)+(ε
j

2,i − ε
j

1,i)

(1.19)

The order of the frequencies sub-index between (1.18) and (1.19) is inverted to take into
account the different sign of the ionospheric delay between carrier-phase and pseudorange.

If we only have single-frequency observations, we can perform an equivalent combination
to the previously explained GRAPHIC, the so-called iono-GRAPHIC (IG) combination:

I j
GPH,i(t)≡

1
2
(P j

k,i(t)−L j
k,i(t))

= I j
k,i(t)

+
1
2
(K j

1,i −B j
1,i −ω

j
k,i +M j

k,i −m j
k,i + ε

j
k,i)

(1.20)

Again, as happens with the GRAPHIC combination, IGPH also suffers from an increase
in noise sources which includes the carrier-phase ambiguity.

1.7 Global Ionospheric Maps

Global Ionospheric Maps have been computed and openly provided in the frame of IGS
since June 1998 (Hernández-Pajares et al., 2009b). They contain the worldwide distribution
of the VTEC with a typical spatial resolution of 5◦×2.5◦ and 2 hours temporal resolution.
The GIMs are typically estimated from a hundred of worldwide permanent GNSS receivers,
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gathering thousands of dual-frequency observations. Depending on the latency of these GIMs
they can be classified as real-time (RT), with a latency less than 15 min; rapid, with a latency
of up to one day; and final, with a typical latency between one and two weeks. The traditional
way to distribute them has been through the IONEX format (Schaer et al., 1998). More
recently, for the real-time GIMs, the Networked Transport of RTCM via Internet Protocol
(NTRIP) has a specific message for the distribution of ionospheric information. Also, instead
of using the longitude and latitude grid as does the IONEX files and sending directly the
VTEC information, this message contains the spherical harmonics coefficients of the GIM
instead. The advantage of using the spherical harmonics is that the bandwidth needed to
transmit the information is minimized, but this comes in exchange with a certain loss of
information.

Different estimation techniques have been developed by different ionospheric analysis
centres, in particular for the slant-to-vertical mapping, with the general assumption of a
common worldwide effective height or, alternatively, a tomographic description (Hernández-
Pajares et al., 1999)) and an associated new mapping function (Lyu et al., 2018). Regarding
the very important aspect of interpolation, different techniques are used, like the spherical
harmonic expansions (Schaer, 1999), and combined with generalized trigonometric series
functions (Li et al., 2015), Spline (Mannucci et al., 1998) and Kriging (Orús et al., 2005). A
more detailed comparison of the different methods can be found at Hernández-Pajares et al.
(2017)



Chapter 2

Summary of the work performed

The present chapter summarizes the main contributions obtained in the context of my Ph.D.
study. Most of the results presented in the following sections have been validated by the
international scientific community through the assessment of papers published in peer-
reviewed journals and international conference proceedings. A selection of quality indexes
for each journal can be found in Chapter 3 and the original manuscripts are appended at
Chapter 5.

2.1 GIM validation methodology

The first important step performed has been to define a GIM assessment methodology. The
importance of this step is double: first, to assess the relevance of the changes made to the
internal GIM computation methodology and second, to compare in a fair way the performance
of the different IAACs GIM.

From an internal point-of-view, the interest of this work was for the following reasons:

• Optimization of different computation parameters, like for example the input data
sampling rate or the required station coverage density. Both parameters have an
important impact to the computational effort required, hence impacting in the resource
usage and latency of the generated maps. It is therefore important to use the minimum
required number while keeping the GIM degradation at an acceptable level.

• Incorporation of new GNSS signals. The first version of the UPCs GIM computation
software (TOMION) did only use GPS data. Due to the current increase of available
GNSS systems, which means at least an increase in the reliability of the software
depending on them, it was of large interest to include other GNSS systems data.
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Having a well defined methodology is, in this sense, critical to validate that this step
was really providing better maps.

From the point-of-view of the IGS ionospheric community, it was interesting to have
a methodology to be able to compare the large diversity of existing GIM computation
methodologies. Also, new institutes have started producing new GIMs and hence were not
included in the combined IGS GIM. And since the combined IGS GIM is mostly based on
the fair assessment of the consistency and accuracy of the individual GIMs, it was of interest
to make an assessment including both.

The key points on which this methodology is based are:

• Independent: The GIM assessment methodology includes other data types directly
related to the TEC but not included in GIM computation. Furthermore, when the data
type is the same, it does not use the same data source.

• Well established: The methodology uses well-defined and established techniques from
previous works, avoiding the risk of including undefined bias or not having quality
data providers.

• Global coverage: The methodology is able to assess the quality of the GIM at a global
scale and not only at some regions. This allow to compare the GIMs at both high
developed and inhabited regions, with usually lots of input data, and places like the
Earth poles or the oceans, where the number of input data sources is scarce, if any.

The methodology presented in Hernández-Pajares et al. (2017) hence is based on two
techniques:

• VTEC altimeter: Dual-frequency altimeters, such a TOPEX and the JASON satellites,
providing a direct measure of the VTEC below them. The altimeter is of special
interest since it is not used in current GIM computation. Its downsides are that it does
not include the topside electron content (which is usually much smaller than the GIM
discrepancies and hence can be neglected) and that it only provides coverage over
oceans. But the later can be also considered an advantage, since we are analysing
the performance of the GIMs in a more difficult place, usually further away from
permanent station. This kind of measurements are still a bit noisy, hence a sliding
window smoothing of 16 seconds data is applied to bring the standard deviation error
down to 1 TECU.
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• dSTEC GPS: Comparison with the STEC variation along a phase-continuous trans-
mitter–receiver arc above the horizon with regards to its STEC at maximum elevation
obtained from permanent GPS stations. This method provides accuracies better than
0.1 TECU. It is a variation of the one used since 1998 for ranking, weighting and com-
bining the GIMs of IGS centres. Hence, it is a well-established method. Furthermore,
we are explicitly filtering out the stations involved in the computation of any GIM
being assessed. This ensures that we are performing an independent assessment.

Finally, in this work, the methodology was applied to a set of 26 permanent GPS receivers
located on islands. Afterwards, a comparison of both results was carried out, demonstrating
the correlation of both methods. This correlation is a further evidence that both data are
providing information about the same physical quantity, the TEC.

2.2 Assessment

The previous defined methodology of dSTEC and dual-frequency altimeter assessment was
used to analyse the GIMs of the IAAC and new IAAC candidates from end of 2001 to
beginning of 2016. The results were published in Roma-Dollase et al. (2018b).

A first part of this paper, provided by the co-authors of the different institutes, explains
their methodology for the GIM computation. In Table 2.1, extracted from the paper, a
summary of the different GIMs is shown. We can see that there are two main methodologies
for the computation: spherical harmonics and tomographic interpolation. Another interesting
aspect, is that the DCBs are usually estimated at the same time as the VTEC. The only IAAC

Figure 2.1 Daily altimeter mean VTEC during a whole solar cycle
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Table 2.1 Summary of the different GIMs assessed.

GIM
ID

Method DCB Com-
putation

Shell
Model

Start
Date

Ref.

IGSG Weighted Mean Combined Com-
bined

1998.4 Hernández-Pajares
et al. (2009a)

CODG Spherical Harmonics Same time
as VTEC

Modi-
fied
2-D

1998.4 Schaer (1999)

ESAG1 Spherical Harmonics Same time
as VTEC

2-D 1998.4 Feltens (2007)

JPLG Three-shell Model Same time
as VTEC

3-D 1998.4 Mannucci et al.
(1998)

UPCG Tomographic with
splines

From
VTEC

3-D 1998.4 Hernández-Pajares
et al. (1999)

UQRG,32 Tomographic with kri-
ging

From
VTEC

3-D 2011 Orús et al. (2005)

CASG Spherical Harmonics and
Generalized Trigonomet-
ric Series

Same time
as VTEC

2-D 2016 Li et al. (2015)

EMRG3 Spherical Harmonics Same time
as VTEC

2-D 1998.4,
2015.3

Ghoddousi-Fard
(2014)

WHRG3 Spherical Harmonics and
Inequality-constrained
Least Squares

Same time
as VTEC

2-D 2016 Zhang et al. (2013)

WHUG Spherical Harmonics and
Inequality-constrained
Least Squares

Same time
as VTEC

2-D 2016 Zhang et al. (2013)

that doesn’t follow this approach, since it uses a tomographic approach based on carrier
phase data only, is UPC. In this case first the GIM is calculated and afterwards the DCBs are
estimated from the VTEC data.

As previously mentioned, the assessment covers an almost 14 year time span. From
the altimeter daily mean VTEC, the solar cycle and seasonal oscillations are observable
(Figure 2.1). This ensures that the assessment will not cover only a specific time span where

1A 3D multi-layer assimilation model is currently under development by ESA.
2The time interval of UQRG is fifteen minutes, in contrast with the other GIMs which have a time interval

of two hours.
3UQRG, EMRG and WHRG are rapid GIMs with a latency of less than two days, in contrast with the other

final GIMs which have a latency about one week.
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(a) Newer IAACs (b) IAACs since 1998

Figure 2.2 Daily standard deviation of the VTEC difference regarding altimeter VTEC
measurements. UQRG and IGSG has been plotted on both figures for a common reference.

the conditions may be more favourable to one of the GIMs, at the contrary, it covers very
different ionospheric level periods.

2.2.1 Dual-frequency altimeter results

The results of the assessment can be seen in Figure 2.2. As a first result, it can be seen that
the error of the GIMs is also dependent of the solar activity cycles. This was already expected
due to the increase of the mean global TEC value. On periods of a more calm ionosphere,
the error goes down to 2 TECUs, while on higher level periods it can rise up to 10 TECUs,
depending on the GIM used.

Table 2.2 summarizes the VTEC-altimeter results for the full period and for a shorter time
span, common for all the GIMs compared. The results shows that the new IAAC candidates
perform from this analysis similarly than the classical IAACs.

2.2.2 dSTEC-GPS results

The dSTEC-GPS, as required in the previously defined methodology, was done over a
common set of stations not used in the GIM computation of any of the IAACs. Since this was
not feasible to be done for the entire time span, the two solstice and two equinox days of 2015
were used (days 082, 146, 280 and 330). The mean value of the dSTEC root mean square
(RMS) relative error per stations was used for the analysis. Finally, these stations’ mean
values were interpolated to make easier to see the spatial distribution of the error (Figure 2.3).

A degradation of the GIM quality for high latitude and low latitude (in coincidence with
the equatorial anomaly) can be seen. This degradation is expected to be related to the higher
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Table 2.2 Summary of the GIMs assessment vs +190 millions of altimeter VTEC measure-
ments, including an overall period of up to almost 5000 days and a common period of 21
days.

Up to more than 1 Solar Cycle, within 21 common days, within

days 180, 2001 to 007, 2016 117, 2015 to 007, 2016

GIM # days Std. Dev. Rel. Error Std. Dev. Rel. Error

Id. / TECU % / TECU %

IGSG 4927 3.9 19.9 4.6 21.1

CODG 4934 4.3 22.0 4.8 21.8

ESAG 4926 5.3 26.6 5.6 25.5

JPLG 4912 4.1 21.2 4.8 21.9

UPCG 4925 3.9 19.7 4.2 19.1

CASG 4914 3.9 20.9 4.6 21.1

EMRG 255[*] (4.8) (26.2) 5.9 26.5

WHRG 4416 4.6 24.8 5.5 25.0

WHUG 42[**] (5.9) (26.9) 5.5 25.0

UQRG 3063 3.6 17.8 3.6 16.3
([*] For the newest period of EMRG product submission to IGS only, days 117-365, 2015;

[**] Very limited sample)

ionospheric variability in these regions. Furthermore, also a higher error can be seen on most
GIMs at the Southern Hemisphere. This is most probably due to the lower availability of
receivers in this region.

2.2.3 Conclusions

The results of this paper showed the GIM accuracy and its evolution over a large time span.
Furthermore, an important side results for the IGS community, was that it shows that the new
centres providing GIMs have an accuracy similar to the classical IAACs. This has allowed
including these GIMs to the combined IGS GIM, allowing an increase in reliability, accuracy
and community around the IGS GIM.
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Figure 2.3 Map approximating the spatial distribution of dSTEC relative error for classical
IGS GIMs (left hand column, for IGSG, CODG, ESAG, JPLG and UPCG from top to bottom)
and new GIMs (right hand one, for CASG, EMRG, UQRG, WHRG andWHUG from top to
bottom). Color red represents an error of 100% and dark blue of 0%
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2.3 Improvements towards a multi-GNSS GIM

Another important work developed during this thesis have been updating the current TOMION
(Tomographic Ionosphere model) software, responsible of the generation of UPCs GIMs.
The previous version of TOMION was using only GPS data. It was considered due to the
scientific interest to make TOMION capable of using other GNSS data, specially in case of
Galileo data. The updated TOMION software is being useful as well in new and on-going
projects such as the Galileo Reference Centre (GRC) project, lead by GMV, which will
provide information of the Galileo status to the the European GNSS Agency (GSA, formerly
Galileo Supervisor Authority).

To minimize the maintenance and keep the large heritage from TOMION, the approach
selected was to modify the input data of the different GNSS systems in such a way that the
core software of TOMION was kept intact. Furthermore, it was decided that there should be
always the option to fine tune which constellations, frequencies and signals may be used.

Taking all this into account, it was decided that the best approach will be to modify the
input data in such a way that for TOMION all the input data will look like GPS data and that
its constellation has grown up to 100 satellites. This was done adding an offset to the satellite
identifier of all constellation except to GPS. Since currently Glonass still uses FDMA in
some satellite (in contrast with all the other GNSS constellations which are CDMA), it was
currently discarded, since it will imply changes to the core functions of TOMION. Hence,
the current offsets implemented are 32 for Galileo and 64 for Beidou.

In summary, the following changes were implemented in TOMION:

• Definition of a new variable, both for GIM and DCBs generation, to select the constel-
lation, frequency and signal. It is important to notice that TOMION is based on the
dual-frequency ionospheric combination LI (Eq. 1.19). Hence, this variable defines
both frequencies and signals from the same constellation. It was decided that it will
be a list and the syntax of its entries will be in the format E_L1_L5A_C_Q, where
the first letter refers to the constellation, the second and third field separated by the
underscore are the two frequencies to combine and the four and five field, which are
optional, tells the signals from the corresponding frequency. In case this last fields are
not defined, all signals from the frequency will be used. These behaviour, specially
for the computation of the DCBs, is not recommended but is kept to reproduce the
previous behaviour of TOMION.

• Use of the new RINEX version 3 files. TOMION was only capable of processing
RINEX v2 files. But the RINEX v2 standard was only defined taking into account
GPS and Glonass. Still, some files which may also include Galileo may be found, but
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this may have been insufficient to generate a GIM only from Galileo data, which was
considered to be necessary. In this sense, and since at some point the multiconstellation
RINEX files needs to be splited in one file for every constellation data they contain,
the gfzrnx software from GFZ Potsdam Nischan (2016) was decided to be used.
This software allows doing all this steps at once: filter constellation and signals and
conversion from RINEX version 3 to version 2.

• Usage of the new multi-constellation broadcast ephemerides file (BRDM). TOMION
was using BRDC navigation files. But, similarly to RINEX v2, these files only include
GPS ephemerides data, we needed to change the input navigation files to BRDM. As
before, these files are later converted to multiple BRDC files, one for each constellation.

• The generated RINEX v2 and BRDC files for each constellation are the processed
separately to compute the different combinations the same way we processed the GPS
data but with the appropriate frequencies. Then, before the tomographic computation
begins, all of them are merged applying the offset to each specific satellite identifier and
scaled to the LIL1−L2 combination. This way, we have a file with all the observations in
the same units as the original TOMION LI combination and with a number of satellites
that can go up to 100.

• Due to the increase in stations and constellations it was considered important to
parallelize the input processing. In this sense, the GNU Parallel software (Tange,
2018) was used. The results is that for a similar number of stations (but a larger
constellation), were the original TOMION version required more than 20 hours, the
current version only requires 5 hours.

An in-depth assessment of the new multi-GNSS TOMION is still required, but first results
show that the resulting GIM using Galileo only data has a lower bias compared to GPS, while
the standard deviation is similar. For Beidou, it is not currently feasible to generate a GIM
due to the low number of receivers and satellites. Still, the combined GPS and Galileo map
shows an improvement in both bias and, although in a almost negligible degree, standard
deviation. Furthermore, using both constellations allows having a much larger set of stations
and observations, hence not only affecting accuracy, but also improving the reliability and
global coverage.

Finally, a more thorough testing was done for the DCBs computed with this methodology.
The results show a good agreement with the DCBs computed by DLR (Fig. 2.4), with a mean
difference below 0.1 ns for most satellites and below 1 ns for common permanent stations.
The error bars provided by TOMION are very pessimistic, but this was already the case for
the previous version.
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2.4 Sidereal Day Filtered Ionospheric Graphic Combina-
tion

In the last paper, Hernández-Pajares et al. (2018), the previously explained multi-GNSS
procedure was used to validate a new observable combination. This new combination,
called sidereal days ionospheric graphic (δ Ig), may be specially useful for using single-
frequency receivers for ionospheric sounding. δ IG is an evolution of the previously introduced
ionospheric GRAPHIC combination (1.20). But in this case we take advantage that, taking
into account the repeatability period of the different GNSS constellations (Table 1.1), for a
permanent station (or any static receiver) the terms related to the geometry and other that can
be considered constant between measurements, cancel out when computing the difference.
The only remaining terms are:

δ IG
j
i (t) =

K
f 2 M j

i (t) ·δV j
i (t)+

1
2

(
−λ1δN j

1,i +δν
j

1,i(t)
)

(2.1)

where K is a constant with value 40.3 m3 /s2 (Hernández-Pajares et al., 2011), f is the
frequency of the signal, M is the mapping function, δV is the VTEC difference, λ is the
wavelength of the signal, δN is the difference between the cycles from the continuous arc
measurement and δν is the thermal noise difference of the measurements. The term related
to the cycles can be calibrated, and in the paper two different methods are explained in depth.

This technique has been applied to detect the ionospheric footprint of the total solar
eclipse over North America happened during the 21th of August, 2017. One multi-GNSS
and nine GPS permanent station data were also compared in order to detect the solar eclipse
footprint. The equivalent results, with Galileo-only and GPS-only respectively, can be seen
in Fig. 2.5. The VTEC depletion during the eclipse can be clearly seen, even for the Galielo

Figure 2.4 DCBs comparison between the values provided by DLR and computed with the
new TOMION version
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(a) VTEC difference for the GPS receivers (b) VTEC difference for SCUB receiver

Figure 2.5 VTEC difference with regards to one sidereal day for the GPS receivers and 10
sidereal days for the SCUB receiver.

data of the GNSS receiver where instead of one sidereal day ten have been used due to the
repeatability period of hte Galileo constellation.

Finally, in the paper some other interesting factors which may affect the δ IG combination
have been analysed, like the possible corrections of cycle-slips and, most interesting due to
its cost and availability, the usage of a mass market receiver in both high and low latitude
situations. It concludes that the proposed combination is fully compatible with the usage of
this kind of receivers with a similar performance as with high end geodetic dual-frequency
receivers.

2.5 Real-Time GIMs

2.5.1 Data acquisition

To improve the quality of the real-time maps produced at UPC it was necessary to update
the number and distribution of the permanent stations from which data was fetched. The
real-time GNSS data is commonly distributed using the NTRIP protocol. This protocol
defines three levels:

• Server: the server streams data to a caster. This data can be, for example, observables
from a GNSS receivers or clock corrections to be send to precise-positioning users.

• Caster: gets the data streams from the different servers and allows accessing them by
the users. It also implements authentication to allow only accessing the data by the
users with the right credentials.
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• Client: connects to a caster and gets the data from the different mount-points (e.g., the
servers) of interest by the user.

In our case, since we only wanted to get the observables data from permanent stations,
we only needed a NTRIP client. As it is free of charge and its widespread usage, we decided
to use the BKG’s NTRIP Client (BNC) software.

Afterwards, the following step was searching the Internet to increase the number of
NTRIP casters we had access. Then, an XML file was written with all casters we had access
and the authentication information to them. Then, a python script was created to classify all
the station available through the casters and generate a final configuration file for the BNC
software.

To classify the mount-points we had access through the casters, the BNC software is
run in batches with a set of them. This is done to avoid stability problems with BNC due
to the high amount of mount-points (currently more than 1500). Afterwards, the output
produced is analysed to classify the mount-points that have least time gaps. Then, the
most reliable stations are selected verifying that no other previous selected station is below
a threshold distance. The distance between them is calculated following a great circle
approximation. This distance is configurable but, from previous studies, it is required to be
around 450 km (Valls-Moreno, 2008). Furthermore, the results of the classification is stored
in a file, in such a way that in following runs these results are included scaled by a time
related factor. This allows that in case that a station is in the current moment not available,
for instance due to maintenance, but in the past was highly reliable, may be still included. All
these options are fully configurable, or even can be fully disabled, depending of command
line arguments given to the tool. In Figure 2.6, we can see an example of the resulting map
of selected stations.

Finally, the full data acquisition chain was improved to make it more reliable and stable.
This system has been stable for months, even correctly restarting itself at system booting
after power cuts.

2.5.2 Assessment

A similar methodology defined by the GIMs generated with post-processing information was
applied to assess some real-time and near real-time GIMs. The real-time GIMs compared
where the ones produced by UPC, the Centre National d’Etudes Spatiales (CNES) and the
Chinese Academy of Science (CAS). Only one near real-time GIM was included, the one
computed by the Technische Universität München (TUM). To compare the performance of
these GIMs with the post-processing ones, also the post-processing GIM computed by UPC
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Figure 2.6 Real-time stations map

and the IGS combined GIM were included in the assessment. The full results were published
in (Roma Dollase et al., 2016).

They show that in places like Europe, where a dense real-time station network is present,
the performance of some of the real-time GIMs is similar to the post-processing GIMs. But
at a global scale, the performance of the post-processing GIMs is almost two times better for
both the altimeter and dSTEC test.

2.5.3 Distribution

The standard way of distributing the VTEC information in real-time is using RTCM message
1264. This VTEC information is provided using a spherical harmonics cosine and sine
expansion (Eq. 2.2).

V T EC(Φpp,λpp) =
N

∑
n=0

min(n,M)

∑
m=0

(Cnm cosmλs +Snm sinmλs)Pnm sinΦpp (2.2)

where N and M are the degree and order respectively of the spherical harmonics, Cnm the
cosine coefficients, Snm the sine coefficients, λs mean sun fixed longitude phase shifted by
2 h of the ionospheric pierce point for the layer modulo 2π , λpp longitude of ionospheric
pierce point for the layer, Φpp geocentric latitude of ionospheric pierce point for the layer
and Pnm the fully normalized associated Legendre functions.
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The main problem we found with this message is that the standard limits the maximum
order and degree to 16. In Figure 2.8 we can see the effect of using different order and
degrees. For instance, when using order and degree of eight, the Southern Hemisphere
anomaly peak separation has completely disappeared. For order and degree 16, the map
visually reproduces correctly the original IONEX file, but it can be appreciated some extra
smoothing at some areas. Using the UQRG (UPC’s rapid GIM) IONEX files for a set of a
few days, we did the same process again and computed the RMS difference to the original
map (Figure 2.7). All this results were presented at Hernandez et al. (2017b).

Taking into account these results we decided to use the maximum possible order and
degree defined by the standard. Then, an NTRIP server was created again based on the
BNC software. Another python script continuously computes the hash of the latest URTG
(UPC’s real-time GIM) IONEX file. When the hash changes, the script reads the latest map
present and computes the sine and cosine spherical harmonics coefficients of the GIM. If the
conversion is successful, the internal stored map is updated. This is done to avoid problems
reading a truncated file. Afterwards, this internal map is send via TCP to an instance of
the BNC software in RTNET format. The BNC then connects to an internal NTRIP caster
running inside UPC premises and externally accessible. It is planned in a near future to send
this data direct to the IGS real-time products caster.

Figure 2.7 RMS of the error for a group of maps expanded for a different number of order
and degrees
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2.5.4 Combined real-time GIM

UPC has been leading the effort inside IGS with success to generate a combined real-time
GIM. The current process consist of two main parts: a first data acquisition software and
a second weighting and combining software. The data acquisition software is, due to the
experiences already previously explained in this section, based on the BNC software. The
BNC software currently acquires the real-time GIMs of UPC, CNES and Wuhan University.
Then, another script converts the different spherical harmonics map in separated IONEX
files and also generate some other files with meta-data information required by the following
processing step. The weight of the GIMs is done using the normalized inverse of the squared
RMS error obtained by the dSTEC test of 20 receivers. The combination is done then directly
applying this weight on the different GIMs and adding them. The resulting combined map
was assessed against the VTEC-altimeter test and frequently shows a better performance
than the different original GIMs. This results were shown at Roma-Dollase et al. (2018a).

Figure 2.8 Effect of using different spherical harmonics order and degree expansion on
UQRG map for day of the year 148 and year 2017. From top left to bottom right: original
map, map using order and degree of 8, map using order and degree of 16 and map using
degree 64 and order 32.





Chapter 3

Quality Indexes

This chapter is aimed at providing evidence of the quality of the research developed in the
context of my Ph.D. study. The work supporting this thesis has been presented to a number of
international conferences and peer-reviewed journals, where experts have provided valuable
comments that have improved the quality and clarity of the research. The list of papers and
conference proceedings can be found in the following sections.

3.1 Peer-reviewed Journals

• Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A., García-Rigo, A., and
Orús-Pérez, R. (2017). Methodology and consistency of slant and vertical assessments
for ionospheric electron content models. Journal of Geodesy, 91(12):1405–1414

• Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A., Kotulak, K., Ghoddousi-
Fard, R., Yuan, Y., Li, Z., Zhang, H., Shi, C., Wang, C., Feltens, J., Vergados, P.,
Komjathy, A., Schaer, S., García-Rigo, A., and Gómez-Cama, J. M. (2018b). Consist-
ency of seven different GNSS global ionospheric mapping techniques during one solar
cycle. Journal of Geodesy, 92(6):691–706

• Hernández-Pajares, M., Roma-Dollase, D., Garcia-Fernàndez, M., Orus-Perez, R.,
and García-Rigo, A. (2018). Precise ionospheric electron content monitoring from
single-frequency gps receivers. GPS Solutions, 22(4):102

The importance of each journal where the research has been published is proven in
Table 3.1, by means of presenting the latest Impact Factor (IF) and quartile available at the
time of writing this dissertation, according to Thomson Reuters. As we can see, all the
previous listed journals are in the first quartile.
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Journal ISSN Quartile Impact Factor 5 year Impact Factor
J Geod 0949-7714 Q1 4.633 4.409

GPS Solut 1080-5370 Q1 4.727 4.767
Table 3.1 Journal information and ranking in its category based on the IF.
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Chapter 4

Conclusions and future work

The present chapter brings together the conclusions achieved in this dissertation. In addition,
future research work in progress are explained.

4.1 Conclusions

The first major accomplishment within the framework of my Ph.D. thesis was my contribution
to the definition and validation of a truly independent, well established approach, using
different source input data and applicable to a global scale GIM validation methodology.
This methodology is based on two techniques: VTEC-altimeter data and dSTEC GPS data.
The VTEC-altimeter data comparison allows assessing the GIM versus a fully independent
input data with a very good coverage far away from the GNSS permanent station data (over
oceans) usually used by GIMs. On the other hand, the dSTEC GPS test, has much higher
accuracies and has, with slight modifications, a long history in GIMs validation. But since the
input data is the same type used usually for GIMs computation, special care must be taken to
not use the same station. If not done in this way, we will be assessing the residual modelling
error of the GIM instead of the VTEC error on a larger scale, making all further comparison
unfair with regards to other GIMs that didn’t make use of this station input data. Finally, this
two techniques were proven to provide correlated results of TEC. This was done comparing
the dSTEC-GPS on a set of receivers on islands with altimeter data of the surrounding ocean
waters.

The second major point was, in collaboration with the IAACs, to apply the previous
methodology on the different GIMs provided by IGS, the combined IGS GIM and new
institutes who wanted to join the IGS effort on GIM generation. The first part of this study
summarizes the state-of-art GIM computation techniques currently used by the international
scientific community. Afterwards, the VTEC-altimeter test is applied starting from end
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of 2001 to beginning of 2016. This larger period, where TOPEX, JASON and JASON-2
altimeter data was used, allows observing the global TEC variation due to the Solar cycle and
seasonal effects. Hence, the error of GIMs have been assessed in very different environmental
conditions, resulting in errors as low as 2 TECUs on calm periods and as high as 10 TECUs
on higher activity periods and depending on the GIM used. Finally, the dSTEC tests was
done for the data of 50 permanent receivers globally distributed for the two equinox and
solstice days of 2015. Afterwards, the mean results were interpolated for the entire globe,
allowing an assessment of the spatial distribution of the GIMs performance. The results
show that the error is higher at mid and high latitude, as expected with the higher ionospheric
activity in this regions, and in the Southern Hemisphere, probably due to the large areas
present there without enough permanent stations.

Another major effort was updating the already existing TOMION software to allow using
multi-GNSS data and not only GPS data as until then. This was successfully accomplished
for Galileo and Beidou, allowing even generating GIMs using Galileo only data. The new
feature was used in demonstrating the potential extension of the capabilities of the new
sidereal day filtered ionospheric GRAPHIC combination, in the detection of the Solar eclipse
footprint of the 21th of August 2017 over North America. In this last paper, we show that
this combination may be specially useful for using single-frequency receivers for precise
ionospheric sounding.

Finally, in the frame of the real-time GIM computation, two major developments have
been done. First, the data acquisition software was fully rewritten to automatically classify
and select the best current set of available stations. Second, a new VTEC distribution system
was implemented to send the URTG map over NTRIP. This two new capabilities, plus our
large experience in GIMs validation, were then successfully applied to the effort lead by
UPC to create a first combined real-time map in the frame of IGS.

4.2 Future work

The post-processing TOMION software has been successfully updated to allow using multi-
GNSS data, but it is still pending to include equivalent changes to the real-time processing
software. The data acquisition software of the real-time software is already capable but
currently deactivated until the full processing chain is ready. On the other hand, the new
long name convention adopted by the IGS real-time casters, requires also defining a new
methodology to identify unmistakably but being compatible with the old processing structure.
Finally, the changes in the TOMION software require also an in-depth long term assessment,
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specially to validate the expected performance improvement of a GIM using Galileo data,
which might also deserve publication in another paper.

A new DCB computation methodology has been also implemented, specially useful for
GNSS constellation with a low number of available satellites and/or permanent stations. The
current method used by TOMION discards all stations that lack data of some of the satellites,
reducing considerably the amount of data available for systems like Beidou, which currently
still has a small number of satellites and stations. This new method needs to be further tested
and later being included inside TOMION.

Finally, a first real-time combination between the real-time GIMs generated by the
CNES, CAS and UPC has been implemented and validated. Still, the weighting system
currently implemented may allow some improvement and different possible techniques has
been identified which still need to be implemented and assessed. Specially promising may
be generating directly the weight in spherical harmonics. This will allow a much more
effective way to combine the maps coefficients directly, without the need of first converting
the maps to IONEX and then back to spherical harmonics, which is the current real-time
GIMs dissemination format.
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