Automated Deduction with Built-in Theories

Completeness Results

and
Constraint Solving Techniques

Tesi doctoral presentada al
Departament de Llenguatges i Sistemes Informatics
de la Universitat Politécnica de Catalunya

per a optar al grau de
Doctor en Informatica

per
Guillem Godoy Balil

sota la direccio del doctor
Robert Nieuwenhuis

Barcelona, 1 de setembre de 2001

Aquesta tesi fou llegida el dia 11 de octubre de 2001, davant el tribunal de tesi
format per

— Dr. Fernando Orejas (President)
- Dr. Albert Rubio (Secretari)
— Dr. Harald Ganzinger

~ Dr. Hubert Comon

- Dr. Salvador Lucas

T ot(2Y
Juoous 6w | T

Acknowledgments

Agraeixo a en Roberto tota la ajuda que m’ha prestat al llarg d’aquests anys de
tesi, el tracte de companyerisme que ha tingut amb mi, i la seva paciéncia infinita
(o arbitrariament gran). Igualment agraeixo tota la ajuda i el companyerisme que
m’han donat la resta de persones relacionades amb el departament, com ’Albert,
la Cristina, el Miquel (o Mikuel) el Mateu (espero emboscada), el Jose Miguel i en
Josep.

Agraeixo el recolcament de la meva familia, I’Anna, el Jesus, ’Oscar i el Jesuset.
Pero també, per la seva amistat al llarg d’aquests anys, a moltes altres persones,
com a la Rosa, ’Anna i la Ndria (de també paciéncia infinita); a ’Alex, 1’Oriol,
I’Oscar i en Kapdou; a I’Omer i en Ferran; al Manel, el Jaume i el David.

Along the last five years, this work has been partially supported by the ESPRIT
Basic Research Action CCL-II, ref. WG # 22457. and the Spanish CICYT project
HEMOSS ref. TIC98-0949-C02-01, and by Departament d’Uuniversitats, Recerca i
Societat de la Informacié de la Generalitat de Catalunya.

Contents

1 Introduction and Outline

1.1 Paramodulation.
1.1.1 Knuth-Bendix completion
1.1.2 Ordered paramodulation for general clauses
1.1.3 Selection strategies 0.
1.1.4 Paramodulation with constrained clauses
1.1.5 Paramodulation with built-in equational theories
1.1.6 Basic paramodulation with built-in equational theories
1.1.7 Symbolic constraint solving e e e e e e

1.2 Overview of this Thesis
1.2.1 Paramodulation with non-monotonic orderings
1.2.2 Knuth-Bendix completion
1.2.3 Completeness of arbitrary selection strategies
1.2.4 Paramodulation with built-in abelian groups
1.2.5 Ordering constraints for built-in abelian semigroups, monoids

and Broups i e e e e e e e e e e e
1.2.6 Directions for furtherresearch,

2 Basic Concepts and Notation

2.1 Terms and (rewrite) relations
22 Termorderings i i v it e e e
2.3 Equality clauses and Herbrand interpretations S e e
2.4 Constraints and constrained clauses
2.5 Inference Systems. i

3 The Model Generation Technique

3.1 A simple inference system for ground Horn clauses
3.2 [Extending the ordering to literals and clauses

O 3~ v Ww

10
11
i1
12
12
13
13

14
14

17

17
19
21
21
22

23

ii

CONTENTS

3.3 Generating the interpretation 25
3.4 Completeness for thegroundcase 26
3.5 Non-equality predicates 28
3.6 Clauses with variables 29
3.7 Completeness without constraint inheritance 31
3.8 Generalclauses e e e e 33
3.9 Selection of negative equations L. 35
3.10 Completeness with constraint inheritance 36
Paramodulation with Non-Monotonic Orderings 41
4.1 Introduction o . v i it it i e e e e 41
4.2 Some properties of ground TRS and orderings 42
4.3 West orderingsin practice o 0oL, 44
4.3.1 Semantic pathorderings 44
4.3.2 Non-monotonic E-compatible orderings 45

4.4 Paramodulation withequations 45
4.5 A slightly stronger paramodulationrule 47
46 TheHorncase 49
4.7 Generalclauses i e e 51
4.8 Redundancy and constraints 55
49 Conclusions e e 56
Knuth-Bendix completion 59
5.1 Introduction i 59
5.2 A theoretical procedure oL 60
5.3 Practical procedures L. o e 61
Completeness of Arbitrary Selection Strategies 63
6.1 Introduction i i 63
6.2 The transformationmethod 65
6.3 Completeness proof L 67
6.4 Application to paramodulation with non-monotonic orderings 73
6.5 Conclusions e e e 74
Paramodulation with Built-in Abelian Groups 75
7.1 Introduction e e 75
7.2 Basicnotlons e e e e e e 78

7.3 Ground Horn Case o o i v i i e e e e e e e 80

CONTENTS 1

7.3.1 Completeness for the ground Horncase 81
7.3.2 Selecting negative literals 83
7.3.3 Deciding the satisfiability of sets of ground clauses 83

7.4 Inference rules for clauses with variables 84
7.4.1 Left premises of direct AG-superposition e e 85
7.4.2 Left premises of inverse AG-superposition 86
7.4.3 Right premises for direct AG-superposition 87
7.4.4 Right premises for inverse AG-superposition 88
7.4.5 AG-superpositionrules. 88

7.5 Completeness for a simple subcase 90
7.6 Completeness for Arbitrary Hornclauses 97
7.6.1 Model generation oL 98

7.7 GeneralClauses o ittt it e 109
7.8 Extensions. i it e e e e 109
8 Ordering Constraints for Built-in Abelian Groups 111
8.1 Introduction. e 111
8.2 Basic Definitions 0 0 oo 113
8.3 Constraint Solving o o o 115
84 FRPOconstraints i v, 118
8.4.1 The splitting transformation 119
8.4.2 Diophantinesystems 122
8.4.3 Deciding the satisfiability of FRPO constraints 123

85 ACO-RPO Constraints v v i i v .. 125
8.6 AG-RPO Constraints. oo v v v it i i e et et e o 126
8.6.1 Onlyunarysymbols, 127
8.6.2 Arbitrary arities L o oo 137

8.7 Hardness i e e 137
8.8 Other kindsof constraints 138
9 Directions for Further Research 141
9.1 Open problems from Chapter4,.. 141
9.2 Open problems from Chapter 5 141
9.3 Open problems from Chapter6 B 142
9.4 Open problems from Chapter 7 143

9.5 Open problems from Chapter 8 144

CONTENTS

Chapter 1

Introduction and Outline

Automated deduction techniques in first-order logic with equality are applied in
many subfields of mathematies and computer science, like (constraint) logic and
functional programming, synthesis and verification of hardware and software, secu-
rity of communication, data bases and knowledge-based systems or computational
linguistics.

Hence it is not surprising that during the last decade the field has seen im-
portant progress in the development of new theoretical insights, like new inference
systems, stronger completeness results, and complexity and decidability issues. Most
of this research has focussed on paramodulation calculi with ordering and equality
constraints, built-in equational theories and/or redundancy elimination techniques.

In this thesis, several new contributions are described concerning automated
deduction with built-in theories. Some fundamental new completeness results are
obtained, and new constraint solving techniques for enhancing the efficiency of the
inference systems are developed.

In this chapter, first the area is introduced in an informal way, based on [NRO01],
with emphasis on the intuitive background of the different techniques. After this
informal introduction, the structure of this thesis is outlined.

1.1 Paramodulation

Paramodulation originated as a development of resolution [Rob65], one of the main
computational methods in first-order logic (see [BG0la]). Robinson showed that
resolution together with factoring is refutation complete, that is, the empty clause
will eventually be inferred by systematically enumerating all consequences of an
unsatisfiable set of clauses by (binary) resolution:

CVA Dv-B
(CvVv D)o

if 0 = mgu(A, B)

4 CHAPTER 1. INTRODUCTION AND OUTLINE
where mgu(A, B) denotes a most general unifier of 4 and B, and factoring:

CVAVB

—(—C,'W)T' ifo= mgu(A, B)

For dealing with the equality predicate ~ by resolution, one can specify it by
means of the following congruence azioms &:

ST~z (reflezivity)
Ty Y~z (symmetry)
reyAy~z YT~z (transitivity)

P A AT Yy = f(Z1, e 20) 2 f(Y1y -, Un) (monotonicity-I)
I AN AT Y
AP(zy,...,2n) = P(y1,.--,Yn) (monotonicity-1I)

In fact the monotonicity axioms are axiom schemes: one monotonicity-I axiom
is required for each non-constant n-ary function symbol f, and, similarly, one
monotonicity-II axiom for each predicate symbol P. A set S of clauses is satis-
fiable in first-order logic with equality if, and only if, SUE is satisfiable in first-order
logic without equality!.

However, resolution and factoring inferences with £ tend to cause the genera-
tion of too many (mostly unnecessary) new clauses. Therefore, Robinson and Wos
explored another possibility. They tried to avoid the need for specifying equality by
treating it as part of the logical language, i.e., directly considering first-order logic
with equality. This requires the design of dedicated inference rules, like paramodu-
lation [RW69)]:

CVsct D

(CV D, o if o = mgu(s, D|p)

where D/, is the subterm of D at position p, and D[t], denotes the result of replacing
in D this subterm by ¢{. Paramodulation, together with resolution and factoring, was
proved refutation complete, under the presence of the reflexivity axiom and certain
tautologies called the functional reflezivity axioms

flzy, . o zn) = f(T1y. .., Zn)

for every n-ary function symbol f of the alphabet. Later on, Brand [Bra75] proved
that the functional reflexivity axioms were unnecessary, as well as paramodulation
into variables, that is, paramodulations where D|, is a variable. However, even

'Note that there is no logical equivalence. First-order logic (FOL) with equality has more
expressive power: for instance, in FOL with equality the clause £ ~ a V z = b expresses that the
cardinality of models is at most two, which cannot be expressed in FOL without equality.

1.1. PARAMODULATION 5

under these restrictions, paramodulation is difficult to control: unless additional re-
finements are considered, it quickly produces a large amount of unnecessary clauses,
expanding the search space excessively.

The strengths and weaknesses of paramodulation have led to fruitful theoretical
research on paramodulation-based theorem proving, and a large number of exper-
iments with paramodulation have been performed at the Argonne group by Wos,
Overbeek, Henschen and others (see, e.g., [Wos88, Wos96] for references), and espe-
cially by McCune with his provers Otter [McC94] and EQP [McC97a] and his recent
automated proof of the Robbins conjecture [McC97¢c, McC97b].

1.1.1 Knuth-Bendix completion

An important tool in paramodulation is the use of term orderings for restricting
the number of inferences. Paramodulation is in fact based on Leibniz’ law for re-
placement of equals by equals. Now the basic idea of ordered paramodulation is to
only perform replacements of big terms by smaller ones, with respect to the given
ordering >.

This is precisely the idea of (ordered) rewriting. Let us consider now unit equa-
tions: we address word problems of the form E |= u ~ v, where F is a set of equations
and % ~ v is another equation. Assume that > is a reduction ordering on terms
(see Chapter 2 for the precise definitions). A term ¢ is rewritten in one step with an
equation ! >~ r (or, equivalently, » ~ [) of E by replacing a subterm lo of t by ra, for
some substitution o such that lo > ro. For example, let E consist of the equations
plus(0,z) ~ z and plus(s(z),y) ~ s(plus(z,y)). Denoting each step by —g (and
assuming the steps agree with »>), we have

plus(s(s(0)), 5(0)) =& s(plus(s(0),5(0))) =& s(s(plus(0,(0)))) =& s(s(s(0)))

This (ordered) rewrite relation terminates: starting from some finite term ¢, after
a finite number of steps a normal form (i.e., a term that cannot be rewritten any
further) is obtained.

Now let —% denote zero or more of these steps (i.e., = is the reflexive-transitive
closure of the relation —g). A set of equations E is called confluent w.r.t. the
given > if, whenever s =% u and s =% v, there is some ¢ such that v —% ¢ and
v =% t. It is not difficult to see that then every term has a unique normal form.
Furthermore, rewriting is then a decision procedure for deduction in the theory of
E, since E |= s =t if, and only if, s and t have the same normal form?.

The first instances of ordered paramodulation appeared in Knuth-Bendiz com-
pletion [KB70]. Roughly, a completion procedure attempts to transform a given

?More precisely, one rewrites the ground Skolemisations of s and ¢, and > is required to be total
on such ground terms.

6 CHAPTER 1. INTRODUCTION AND OUTLINE

set of equations into an equivalent confluent one. A crucial step of the transforma-
tion process is the computation of critical pairs between equations. A critical pair
is an equation obtained by superposition, the restricted version of paramodulation
in which inferences only involve left hand sides of possible rewrite steps, i.e., only
the big terms (w.r.t. >) are considered. During the completion process equations
are simplified by rewriting, and tautologies, i.e., equations of the form s ~ s, are
removed.

Note that, since the word problem is not decidable in general, a finite confluent
E cannot always be obtained. In Knuth and Bendix’ original procedure this could
be due to failure® or to non-termination of completion. For completely avoiding
failure, ordered or unfailing completion was introduced [Lan75, HR87, BDP89].

This leads to complete theorem provers for equational theories E, since for every
valid equation a rewrite proof will be found after a finite number of steps of the
(possibly infinite) completion procedure. Moreover, if the process terminates, it
produces a confluent system for ordered rewriting. For improving the efficiency
and for reducing the number of cases of non-termination of completion, numerous
additional simplification methods and critical pair criteria for detecting redundant
inferences have been developed [BDH86, Pet90, MN90, Bac91, BD94, CNNR98].
Indeed, nowadays completion has become the method of choice for most state-of-
the-art equality reasoning systems.

1.1.2 Ordered paramodulation for general clauses

Extending the notion of critical pair, completion procedures were developed for
going beyond unit equations. For instance, for obtaining confluent sets for rewrite
relations like conditional and clausal rewriting, completion procedures were designed
for transforming sets of conditional equations (definite Horn clauses with equality,
i.e., of the form s; ~ t; A ... As, > ¢, = s ~t) [Kap84, JW86, KRI1, Gan91], or
restricted equality clauses [NO90)].

The generalization of this kind of completion procedure to full first-order clauses
with equality required the development of more powerful proof techniques for es-
tablishing completeness. Using the transfinite semantic tree method Hsiang and
Rusinowitch [HR91] proved the refutation completeness of ordered paramodulation,
while Bachmair [Bac89] applied an extension of the so-called proof ordering tech-
nique for obtaining similar results.

By means of their model generation proof method, similar to other forcing tech-

3Failure could occur because Knuth and Bendix considered rewriting with a terminating set
of uni-directional rules, instead of ordered rewriting {(applying equations in whatever direction
agrees with the given reduction ordering, as explained here). Hence in their view equations had
to be oriented into terminating rules, which fails if an equation like the commutativity axiom

f(z,y) ~ f(y, =) appears.

1.1. PARAMODULATION 7

niques developed by Zhang [Zha88] and Pais and Peterson [PP91], Bachmair and
Ganzinger [BG90, BG94b] proved the completeness of an inference system for full
first-order clauses with equality, based on strict superposition: paramodulation in-
volving only maximal (w.r.t. the ordering) terms of maximal equations of clauses.
Such superposition-based inference systems, as well as the model generation method,
are explained in detail in Chapter 3 of this thesis.

1.1.3 Selection strategies

A crucial way for reducing the search space in automated deduction are the so-
called selection strategies. In such strategies the possible inferences between clauses
are restricted to the ones involving selected literals. This selection can be done in
several different ways. The mazimal (or ordered) strategies for a given atom ordering
can of course also be seen examples of selection strategies. For example, in a maximal
resolution strategy, a (ground) inference between AVC and ~AV D is performed only
if A is larger in the given atom ordering than all other atoms in C and D. Another
well-known selection strategy is the so-called eager negative selection strategy, where
in each clause a single negative literal is selected whenever there is any. This leads
to the so-called positive strategies (positive unit strategies in the Horn case) because
always the left premise of each (resolution or paramodulation) inference is a positive
(unit) clause. These strategies are usually easier to prove complete, but sometimes
they are not very efficient, because, roughly speaking, one enumerates all solutions
of its conditions before using the positive information of a clause (as discussed in
[Der91]). In [BG94b] is is shown that for ordered paramodulation and superposition,
it is complete to select in a clause an arbitrary non-empty subset of its negative
literals.

1.1.4 Paramodulation with constrained clauses

The advantages of constrained formulae are nowadays widely recognized in the con-
text of logic programming. The first ideas for specific applications to paramodulation-
based theorem proving were given in [Pet90, KKR90]. The semantics of a clause C
with a constraint T, written C' | T, is simply the set of all ground instances Co of
C such that o is a solution of T. For example, if = denotes syntactic equality of
terms, the constrained clause P(z) | = f(y) A y>a denotes* all ground atoms
P(f(t)) such that t is greater than a in the given term ordering >. Hence if T is
unsatisfiable then C | T is a tautology.

*Note that > and = are used as syntax in the constraint language. Their semantics will be a
given term ordering > and a given congruence (usually syntactic equality of terms) that depend on
the context.

8 CHAPTER 1. INTRODUCTION AND OUTLINE

In [KKR90] ordered paramodulation inference rules were expressed for the first
time by explicitly formulating the ordering and equality restrictions of the inferences
by constraints at the formula level. This gives:

Cvs~t|T D|T
CVD[t,|TAT A s=D|, A OC

where T and T’ are the constraints inherited from the premises, the equality con-
straint s = D|, stores the unification restriction, and OC is an ordering constraint
of the form s>t A ... encoding the ordering restrictions imposed by this inference.
However, the completeness results of [KKR90] were limited since they required to
enumerate the solutions of the constraints and propagate (i.e., apply) these solutions
to the clause part.

Constraints are closely related to the so-called basic strategies, where no infer-
ences need to be computed on subterms generated in unifiers of ancestor inference
steps (like its counterpart in E-unification, called basic narrowing [Hul80]). It is
clear that if such an inference system with inherited constraints is applied without
propagation, then it is basic: the inferences only take place on the clause part C
of a formula C | T , and no unifiers are ever applied to C, since the unification
restrictions are simply stored in the constraint part T o '

Nieuwenhuis and Rubio [NR92a, NR95] showed that, in the context of super-
position, indeed propagation of the equality constraints is not needed, thus proving
the completeness of basic superposition. By using closure substitutions, which play
the role of equality constraints, the same results were obtained independently by
Bachmair and others [BGLS92, BGLS95), giving additional refinements based on
term selection rules and reder orderings. These developments took place indepen-
dently of much earlier work in Russia by Degtyarev [Deg79], who used conditional
clauses (which can in fact be seen as clauses with syntactic equality constraints)
for describing a form of basic paramodulation without ordering restrictions (see also
[DV86]).

In [NR92b] it is shown that by inheriting as well the ordering constraints one
can restrict the search space even further without losing completeness. In [LS93]
equality, disequality and irreducibility constraints are applied for obtaining more
powerful redundancy methods in basic equational completion. Finally, in [NR95] the
use of constraints in theorem proving procedures is put in a more general framework
based on the notion of constraint inheritance strategies. The main idea in all these
strategies is that the ordering and equality restrictions of the inferences can be kept
in constraints and inherited between clauses. If some inference is not compatible with
the required restrictions, applied to the current inference rule and to the previous
ones, then the inference can be blocked. Therefore, for taking advantage of the
constraints, algorithms for constraint satisfiability checking are required.

1.1. PARAMODULATION 9

1.1.5 Paramodulation with built-in equational theories

In principle, the aforementioned paramodulation methods apply to any set of clauses
with equality, but in some cases special treatments for specific equational subsets of
the axioms are preferable. On the one hand, some axioms generate many slightly
different permuted versions of clauses, and for efficiency reasons it is many times
better to treat all these clauses together as a single one representing the whole class.
On the other hand, special treatments can avoid non-termination of completion
procedures, like with f(a,b) ~ c in the presence of associativity and commutativity
axioms for f. Also, some equations like the commutativity axiom are more naturally
viewed as “structural” axioms (defining a congruence relation on terms) rather than
as “simplifiers” (defining a reduction relation). This allows one to extend completion
procedures in order to deal with congruence classes of terms instead of single terms,
i.e., working with a built-in equational theory E, and performing rewriting and
completion with special F-matching and E-unification algorithms.

Early results on paramodulation and rewriting modulo E were given by Plotkin
[Plo72], Slagle [Sla74] and Lankford and Ballantine [LB77] and eztended E-rewriting
was defined by Peterson and Stickel [PS81]. Several E-completion procedures for the
equational case were developed e.g. in [LB77, Hue80, PS81, Jou83, JK86, BD89].
Special attention has always been devoted to the case where E includes axioms
of associativity and commutativity (AC), which occur very frequently in practical
applications, and are well-suited for being built in due to their permutative nature.

The generalization of these E-completion techniques to full first-order clauses
with equality has been studied in e.g. [Pau92, Wer92, RV95, BG94a], usually with
particular treatments for the AC case. Paramodulation modulo E then becomes
roughly the following rule, which has one conclusion for each o in Ug(s, D|p), a
minimal complete set of E-unifiers of D|, and s:

CVs~t D
(CV D[t],)o

Note that in general there is no unique most general E-unifier for a given E-
unification problem, and that new variables may appear: for example, if f is an
AC-symbol, then f(z,a) and f(y,b) have the two AC-unifiers 0y = {z — b,y — a}
and g3 = {z — f(b,2),y— f(a,2)}. '

Another well-known equational theory that is interesting for being built in is the
one of abelian groups (AG). Paramodulation with built-in abelian groups has been
investigated by many authors [Che86, Zha93, Mar94, Mar96, GW96, Wal98, Wal99,
Stu98). This is not surprising since abelian groups are of course ubiquitous in many
applications of (semi-)automated reasoning. But building in AG is also attractive
for at least two more reasons.

for all unifiers o in Ug(s, Dy)

10 CHAPTER 1. INTRODUCTION AND OUTLINE

On the one hand, due to the fact that diophantine equation solving is easier
in the integers than in the natural numbers, AG unification is easier than AC and
AC1 unification. If all free symbols are constants, then there is one single most
general AG unifier and the decision problem is polynomial, whereas for AC and
AC1 the decision problems are NP-complete, and for AC there are exponentially
many unifiers. Although with arbitrary free symbols the decision problem is NP-
complete in all three cases, AG unification behaves better in practice. Also the
number of unifiers is usually much smaller and not doubly exponential as for AC
(see [BS93, BS01] for surveys on these results).

Another aspect that makes building-in AG attractive is called symmetrization
(e.g., by Le Chenadec in [Che86]): modulo abelian groups (4, —,0), every ground
equation can be written as u + ...+ u ~ t, where u is greater (w.r.t. the given term
ordering ») than the summands in ¢t. As we will see, this allows one to restrict infer-
ences to this maximal summand and to avoid the prolific inferences with extended
equations that appear in the AC case.

1.1.6 Basic paramodulation with built-in equational theories

For an equational theory E, the number of E-unifiers of two terms may be large.
For instance, the cardinality of a minimal complete set of AC-unifiers is doubly
exponential in general [Dom92] (in a sense, this is also an upper bound [KN92]).
Hence a single E-paramodulation inference can generate a large number of new
clauses.

Therefore, equality constraints become extremely useful in this context. In con-
strained E-paramodulation, instead of E-unifying the terms, the unification problem
is stored in the constraint. Hence in the constrained superposition inference rule the
semantics of the symbol ‘=’ in the equality constraint s = D|, becomes E-equality.
Dealing with a constrained clause C' | s =t can be much more efficient than having
n clauses Cp,...,Cy,, one for each E-unifier of s and ¢, since many inferences are
computed at once, and each inference generates one single conclusion. Furthermore,
computing E-unifiers is not needed. A clause C with an E-equality constraint T
can be proved redundant by means of efficient (sound, but possibly incomplete)
methods for detecting unsatisfiable T'. If C is the empty clause, a contradiction has
been derived if, and only if, the constraint part T is satisfiable, and hence in this
case refutation completeness requires a semi-decision procedure for detecting these
contradictions. Such a procedure exists for every finite E.

The completeness of such a fully basic strategy for the AC-case (combined with
ordering constraints) was first proved in [NR94, NR97], although the first results on
(almost basic) constrained deduction methods modulo AC were reported in [Vig94].
The basicness restriction is considered to “have been a key strategy” by McCune
[McC97¢] in his celebrated AC-paramodulation-based proof of the Robbins problem.

1.2. OVERVIEW OF THIS THESIS 11

1.1.7 Symbolic constraint solving

Equality constraints are also known as unification problems, since they generalize
the notion of unification, which usually consists in solving one single equation. Due
to the large amount of applications of unification in automated deduction, logic
programming and, in general, in symbolic computation, equational constraints have
been used in many different applications. Hence for this topic here we refer to [BS01]
for a detailed survey.

Concerning ordering constraints, apart from the applications to pruning the
search space in automated theorem proving, they are useful in many other con-
texts like proving termination of term rewrite systems or confluence of ordered term
rewrite systems [CNNR98]. Some applications of ordering constraints to ordered
strategies in theorem proving gave rise to the distinction between fixed signature
semantics (solutions are built over a given signature F) and extended signature
semantics (new symbols are allowed to appear in solutions) [NR92b].

The satisfiability problem for ordering constraints was first shown decidable for
fixed signatures when > is a total LPO [Com90] or a total RPO [JO91]. For ex-
tended signatures, decidability was shown for LPO in [NR95] and for RPO in [Nie93].
Regarding complexity, NP algorithms for LPO (fixed and extended signatures) and
RPO (extended ones) were given in [Nie93]. Recently, an NP algorithm has been
given as well for RPO under fixed signatures in [NRV99]. For the AC-RPO order-
ing of [RN95], decidability was shown in [CNR95]. NP-hardness of the satisfiability
problem is known, even for one single inequation, for all these cases [CT94]. A
new family of algorithms, for full RPO and both semantics, has been introduced
recently in [NR99]. These algorithms are based on a new notion of solved form,
where properties of orderings like transitivity and monotonicity are taken into ac-
count. They are simple and, since guessing is minimised, more efficient. For the
Knuth-Bendix Ordering (KBO), frequently used in automated reasoning systems,
recently constraint solving algorithms have been given as well [KV00, KV01].

1.2 Overview of this Thesis

In this section the contents of the different chapters of the thesis are outlined.

After this introduction, in Chapter 2 we formally introduce the basic concepts
and notations, and in Chapter 3 the model generation technique is introduced.

12 CHAPTER 1. INTRODUCTION AND OUTLINE
1.2.1 Paramodulation with non-monotonic orderings

Chapter 4 is the first one introducing new results: it is shown that ordered paramod-
ulation is also complete when orderings with less requirements are used. The main
idea is the following.

All the proof techniques for ordered paramodulation that were mentioned in the
previous section, the transfinite semantic tree method [HR91], the proof ordering
method [BDH86, BD94}, and the model generation method [BG94b)}, require a well-
founded, monotonic ordering on ground terms, i.e., a reduction ordering. Moreover,
this reduction ordering must be total on the set of ground terms (or extendable to
a total one). But in many practical situations these requirements are too strong.
For example, for efficiency reasons one may want to use an ordering that cannot
be extended to a total one, like f(a) >~ f(b) and ¢(b) > g(e), for whick a and b
must be uncomparable in any monotonic extension of >. Another typical situation
is deduction modulo built-in equational theories E, where the existence of a total
E-compatible reduction ordering is a very strong requirement. In fact, for many E
such orderings cannot exist. For instance, when E contains an idempotency axiom
f(z,z) = z, then if s > ¢, by monotonicity one should have f(s,s) > f(s,t), which
by E-compatibility implies s > f(s,t) and hence non-well-foudedness.

In Chapter 4 of this thesis we introduce techniques for dropping the monotonicity
requirement that open the door to deduction modulo many more classes of equational
theories. The only properties required for > are well-foundedness and the subterm
property. Our results are given there for paramodulation with general first-order
clauses with eager selection of negative literals. This solved a well-known open
problem, e.g. at the RTA list of open problems [RTAO01] since 1995. The only
properties required for > are well-foundedness and the subterm property. Part of
the results given in this chapter have been published at the LICS’99 conference
[BGNR99].

1.2.2 Knuth-Bendix completion

In Chapter 5 of this thesis we present a fundamental new result concerning Knuth-
Bendix completion: we describe the first practical Knuth-Bendix completion pro-
cedure that finds a convergent TRS for a given set of equations E and a (possibly
non-totalizable) reduction ordering > whenever it exists. This was a well-known
open problem (e.g., on the RTA list of open problems since its creation in 1991).
Note that being a reduction ordering is the minimal possible requirement on >, since
a TRS terminates if, and only if, it is contained in a reduction ordering. Part of the
results given in this chapter have been published as well at the LICS’99 conference
[BGNR99].

1.2. OVERVIEW OF THIS THESIS 13

1.2.3 Completeness of arbitrary selection strategies

For first-order Horn clauses without equality, resolution is complete with an arbi-
trary selection of one single literal in each clause ([dN96], Theorem 6.7.4). For Horn
clauses with built-in equality, i.e., paramodulation-based inference systems, the sit-
uation is far more complex. In [Lyn97] some positive and negative results are given
for the case where a total reduction (well-founded, monotonic) ordering on ground
terms is given. Then arbitrary selection strategies are compatible with superposi-
tion. Also conditions for eliminating redundant clauses are given in [Lyn97], and
counter examples indicating the limitations for doing so. For example, in certain
circumstances the elimination of tautologies can lead to incompleteness.

In Chapter 6 of this thesis we prove a more general result for Horn clauses with
equality: if a paramodulation-based inference system is complete with eager selec-
tion of negative equations and, moreover, it is compatible with equality constraint
inheritance (like, in particular, it happens for superposition), then it is complete
with arbitrary selection strategies.

A first application of this result is the one for paramodulation with non-monotonic
orderings of Chapter 4, where the completeness of strategies different from eager neg-
ative selection was left open. Here we show that those results are compatible with
equality constraint inheritance and hence with the basic strategy, thus further re-
stricting the search space. Therefore, our result is applicable, and we obtain the
completeness of the same inference system but with arbitrary selection strategies.
Part of the contents of this chapter has been published as well at the ICALP’2001
conference [BGO1b].

1.2.4 Paramodulation with built-in abelian groups

In Chapter 7 we introduce a new technique for paramodulation with built-in abelian
groups (AG). Compared with previous approaches, the technique we introduce in
this chapter is simpler, and no inferences with the AG axioms or abstraction rules
are needed. This is the first approach where abelian groups are fully built-in in this
sense. Furthermore, AG-unification is used instead of the computationally more ex-
pensive unification modulo associativity and commutativity. Due to the simplicity
and restrictiveness of our inference system, its compatibility with redundancy no-
tions and constraints, and the fact that standard term orderings like RPO can be
used, we believe that our technique will become the method of choice for practice,
as well as a basis for new theoretical developments like logic-based complexity and
decidability analysis. For example, we obtain a very simple direct decision procedure
for the satisfiability of ground clause sets modulo abelian groups. Part of the con-
tents of this chapter has been published as well at the LICS’2000 conference [GN00),
whose results have been further developed in the journal version (GNO1b].

14 CHAPTER 1. INTRODUCTION AND OUTLINE

1.2.5 Ordering constraints for built-in abelian semigroups, monoids
and groups

In Chapter 8 we introduce a uniform technique providing the first constraint solving
algorithms for a class of ordering constraints used when dealing with built-in abelian
semigroups, monoids and groups.

As mentioned in Section 1.1.4 of this introductory chapter, ordered strategies
and ordering constraint inheritance can be used without loosing completeness with
built-in algebraic theories E, like AC [NR97, Vig9d4] or AG [GNG0]. An additional
advantage of constraints in this context is that in each inference only one conclu-
sion is generated, instead of one conclusion for each E-unifier. But, probably due
to the lack of adequate orderings and constraint solving algorithms, these ideas
have not been put into practice yet. For example, McCune found his well-known
AC-paramodulation proof of the Robbins conjecture [McC97c¢] by still computing
complete sets of AC-unifiers, and adding one new equation for each one of them
(although heuristics were used to discard some of the unifiers).

Indeed, of the many, rather complex, AC-compatible reduction orderings that
have been defined in the literature, only for the AC-RPO ordering of [RN95] a
constraint solving algorithm exists [CNR95]. But, unfortunately, this algorithm is
far from practical due to its conceptual and computational complexity, and moreover,
it only deals with extended signature semantics. '

However, in many practical cases one has to deal with only one single associative
and commutative symbol, and then a simple version of the RPO on flattened terms,
which we will call FRPO, fulfills all requirements. The same FRPO can be used as
an ingredient for an AG-compatible reduction ordering AG-RPO that satisfies all
necessary requirements, by using it to compare AG-normal forms of ground terms.
Finally, it turns out that an ACO-compatible ordering AC0-RPO is obtained in a
similar way by considering normal forms w.r.t. the rule 2 + 0 — z.

In Chapter 8 of this thesis we give NP algorithms for these RPO-based orderings
for abelian semigroups, abelian monoids and abelian groups. We believe that the new
techniques will lead to reasonably efficient practical algorithms for these orderings,
and give new insights for the development of constraint solving methods over fixed
signatures for other E-compatible orderings. Part of the contents of this chapter has
been published as well at the LICS’2001 conference [GN01a).

1.2.6 Directions for further research

This research is far from closed. In Chapter 9 of this thesis we outline a number of
interesting open questions, as well as ideas for the implementation of some of the
results that have been obtained. Most of these directions for further work could lead
to a PhD. thesis on themselves, and are hence outside the scope of this thesis. For

1.2. OVERVIEW OF THIS THESIS 15

example, for some possible extensions of the results of Chapters 4 and 5, counter
examples to their completeness exist, but for others, concerning weaker orderings or
more powerful redundancy notions, the compleness remains open.

16

CHAPTER 1.

INTRODUCTION AND OUTLINE

Chapter 2

Basic Concepts and Notation

Here we introduce the main basic tools used: terms, rewriting, term orderings, first-
order equality clauses and equality Herbrand interpretations. Most (if not all) of
our definitions are the ones of [NRO1].

2.1 Terms and (rewrite) relations

Let F be a signature, a (finite) set of function symbols with an arity function
arity: F — IN and let X’ be a set of variable symbols. Function symbols f with
arity(f) = n are called n-ary symbols (when n = 1, one says unary and when
n = 2, binary). If arity(f) = 0, then f is a constant symbol. The set of first-order
terms over F and X, denoted by T(F, X), is the smallest set containing X’ such that
f(t1,. .. tn) isin T(F, X) whenever f € F, arity(f) = n, and ty,...,t, € T(F,X).
Similarly, 7(F) is the set of variable free or ground terms. Note that T(F) = (
if there are no constant symbols in F. As usual, along this thesis it is therefore
assumed that there is at least one constant symbol in F.

A position is a sequence of positive integers. If p is a position and ¢ is a term, then
by t|, we denote the subterm of t at position p: we have t|y =t (where A denotes the
empty sequence) and f(t1,...,tn)|ip =tilp if 1 < ¢ < n (and is undefined if 7 > n).
We also write t[s], to denote the term obtained by replacing in t the subterm at
position p by the term s. For example, if ¢ is f(a, g(b, h(c)),d), then t|221 = ¢, and
t{dle.2 = f(a,g(b,d),d}. We say that a a variable (or function symbol) z occurs (at
position p) in a term ¢ if ¢|, is (rooted by) z. By vars(t) we denote the set of all
variables occurring in ¢. If ¢ is a term of the form f(t,...,t,), then we define top(t)
to be the function symbol f. The syntactic equality of two terms s and ¢ will be
denoted by s = ¢.

A substitution o is a mapping from variables to terms. It can be extended
to a function from terms to terms in the usual way: using a postfix notation, to

17

18 CHAPTER 2. BASIC CONCEPTS AND NOTATION

denotes the result of simultaneously replacing in ¢ every £ € Dom(o) by zo. Here
substitutions are sometimes written as sets of pairs & — ¢, where z is a variable and
t is a term. For example, if o is {z — f(b,y),y — a}, then g(z,y)o is g(f(b,y),a)
(this example illustrates the simultaneous replacement: applying o “from left to
right” yields g(f(b, a),a), which is not the intended meaning).

A substitution o is ground if its range is T(F). Unless stated otherwise, we will
assume that ground substitutions o applied to a term ¢ are also grounding, that is,
vars(t) C Dom(c), and hence to is ground. A term t matches a term s if so = ¢ for
some o. Then ¢ is called an instance of s.

A term t is unifiable with a term s if so = to for some substitution ¢. Then o
is called a unifier of s and t. Furthermore, a substitution o is called a most general
unifier of s and t, denoted mgu(s,t), if so = to, and for every other unifier 8 of s
and t, it holds that sf = soo’ = tf = too’ for some o', that is, roughly, if every
other unifier 8 is a particular instance of . We sometimes speak about the mgu of
s and t because it is unique up to variable renaming (see [BS01] for details and for
unification algorithms computing mgu’s).

A multiset over a set S is a function M:S — IN. The union and intersection of
multisets are defined as usual by My U Mz(z) = M;(z) + Ma(z), and My N My(z) =
min(M;(z), Mz(z)). We also use a set-like notation: M = {a, a,b} denotes M(a) =
2, M(b) =1,and M(z) =0forz # aand z #Z b. A multiset M is empty if M(z) =0
forall z € S.

If = is a binary relation, then ¢« is its inverse, ¢ is its symmetric closure, =+
is its transitive closure and —* is its reflexive-transitive closure. We write s —' ¢ if
s —* t and there is no ¢’ such that t — t'. Then ¢t is called irreducible and a normal
form of s (w.r.t.). The relation — is well-founded or terminating if there exists no
infinite sequence s; — s — ... and it is confluent or Church-Rosser if the relation
+* o —™ is contained in =* o «*. It is locally confluent if &« o — C —* o . By
Newman’s lemma, terminating locally-confluent relations are confluent. A relation
— on terms is monotonic if s — ¢ implies u[s], — u[t], for all terms s, ¢ and u
and positions p. A congruence is a reflexive, symmetric, transitive and monotonic
relation on terms.

An equation is a multiset {s,t}, denoted s ~ ¢t or, equivalently, t ~ s. A rewrite
rule is an ordered pair (s,t), written s — ¢, and a set of rewrite rules R is a rewrite
system (sometimes we will also write such rules as s = ¢ to avoid confusion with the
arrow — of clauses in sequent notation). The rewrite relation with R on 7(F, &),
denoted —p, is the smallest monotonic relation such that lo —g roforalll - r e R
and all 0. If s —p t then we say that s rewrites into t with R. We say that R is
terminating, confluent, etc. if —p is. A rewrite system R is called convergent if it
is confluent and terminating. It is not difficult to see that then every term ¢ has a
unique normal form w.r.t. =g, denoted by nfp(t), and s =t is a logical consequence

2.2. TERM ORDERINGS 19

of R (where R is seen as a set of equations) if and only if nfg(s) = nfr(¢). Sometimes
the congruence relations (on 7(F)) <% (or &%) are denoted by R* (E*) or =g (=p).

2.2 Term orderings

A (strict partial) ordering > is a transitive and irreflexive binary relation. An
ordering > on terms is stable (or closed) under substitutions if s > ¢ implies so > to
for all s, ¢t and o it fulfills the subterm property if u[s], > s for all s, v and p # A.
It is total on T (F) if for all s and t in T(F), either s=tors>tort > s;jif =isa
congruence different from syntactic equality, we speak about totality up to =.

A rewrite ordering is a monotonic ordering stable under substitutions; a reduction
ordering is a well-founded rewrite ordering, and a simplification ordering is a rewrite
ordering with the subterm property.

The following properties are not difficult to check: a reduction ordering total
on T(F) is necessarily a simplification ordering on T (F); by Kruskal’s theorem,
simplification orderings are well-founded (for finite, fixed-arity signatures); and a
rewrite system R is terminating if and only if all its rules are contained in a reduction
ordering >, i.e., I = r for every I = r € R (in fact, then —} is itself & reduction.
ordering). ' '

Let > be an ordering on terms and let = be a congruence relation. Then > is
called compatible with = if ' = s>t =t/ implies ' > ¢t/ for all s,8',t and t'. If E is
a set of equations, then > is called E-compatible if it is compatible with =g Note
that if > is E-compatible, s =gt implies s ¢ t and t ¥ s.

Let > be an ordering on terms and let = be a congruence relation such that >
is compatible with =. Then these relations induce relations on tuples and multisets
of terms as follows.

The lezicographic (left to right) extension of » with respect to = is the relation
>'% on n-tuples of terms defined by:

{1y, 8n) >lez (try. . tn) I sy =t1,..., 861 = tk—1 and sk > &

for some & in 1...n. It is well-known that, if > is well founded, so is >‘e=.
The multiset ertension of = is defined as the smallest relation == on multisets
of terms such that § == @ and

SU{s}==S'U{t}ifs=tAS==5

The multiset extension of > with respect to = is defined as the smallest ordering
> (or >,u) on multisets of terms such that

MU{s}» NU{t;,..,tpx}if M==Nand s> ¢; foralliel...n

20 CHAPTER 2. BASIC CONCEPTS AND NOTATION

Sometimes the notation »> is used without explicitly indicating which is the con-
gruence =. In these cases = is assumed to be the syntactic equality relation = on
terms. If > is well founded on S, so is >~ on finite multisets over S [DM79).

A way to define suitable orderings for practical purposes (like termination proving
or automated deduction) is to construct them directly from a well-founded prece-
dence, an ordering >z on JF. This is done in the so-called path orderings, like
the lezicographic path ordering (LPO) or the recursive path ordering (with status)
(RPO) [KL80, Der82).

Let > r be a precedence and let F be the disjoint union of two sets lez and mul,
the symbols with lexicographic and multiset status, respectively. By =41 we denote
the equality of ground terms up to the permutation of direct arguments of symbols
with multiset status: f(s1,...,5m) =mut 9(t1,...,ts) if f = g and hence m = n,
and Sp(j) =mu ti for 1 < i < n and where 7 is a permutation of 1...n which is the
identity if f € lex.

In this setting, RPO is defined as follows: s >4, 2 if z is a variable that is a
proper subterm of s or else s = f(s1...5,) >rpo t = g(t1...tm) if at least one of the
following conditions holds:

® S >rpot OF S; =y t, for some i € {1...n}
o f>rg,and s >,p tj, forall jin {1...m}
¢ f=g (and hence n=m) and f € mul and {sy,...,5.} P rpo {t1,.--,tn}

e f =g (and hence n=m) and f € lez, (s1,...,5n) >-’,‘;f, (t1y .. ytn), and 8 >rpo
t;, for all jin {1...n}

where >’r§,f, and >-,p, are, respectively, the lexicographic and multiset extensions of
>rpo With respect to =pu.

The lezicographic path ordering (LPO) is defined as the particular case of an
RPO where F = lez, i.e., where all symbols have a lexicographic status.

It is known that RPO is a reduction ordering on T (F,X’), which is moreover
total on 7T (F) up to = (and hence in case of LPO, total up to =) if > r is total
on F [KL80, Der82].

LPQ’s are useful for extending reduction orderings > that are total up to a
congruence = (like RPO is total up to =;u), to reduction orderings total up to =.
This extension is obtained by a lexicographic combination »; whose first component
is >, and whose second component is a total LPO >, that is, s - ¢ if either s > ¢
or s=1tand s >ipo L.

It is not difficult to see that RPO is C-compatible (C for commutativity) if
commutative symbols have multiset status, but it is not AC-compatible.

2.3. EQUALITY CLAUSES AND HERBRAND INTERPRETATIONS 21
2.3 Equality clauses and Herbrand interpretations

A clause is a pair of finite multisets of equations I' (the antecedent) and A (the
succedent), denoted by I' = A. We sometimes use a comma in clauses to denote the
union of multisets or the inclusion of equations in multisets; for example, we write
s~t, T, IV = Ainstead of {s ~ tJUTUIY — A. Clausesey,...,e, = €],...,¢, are
sometimes (equivalently) written as a disjunction of equations and negated equations
—e1V...V=e, Ve V... Ve, Hence, the e; are called the negative equations, and
the e the positive equations, respectively, of the clause.

A clause I' =+ A is called a Horn clause if A contains at most one equation. The
empty clause O is a clause I' = A where both I' and A are empty. A positive (resp.
negative) clause is a clause I' — A where I (resp. A) is empty, and a unit clause is
a clause with exactly one literal.

We will use all aforementioned notions and notations defined for terms ¢, like ¢|,,
t[s]p, vars(t), to, etc., as well for equations and clauses in the expected way. For
example, a term u occurs in a clauseI' > Aif t ~s € T'UA and t|, ~ u for some
position p.

Let R be a set of ground equations (or rewrite rules). Then the congruence ¢}
defines an equality Herbrand interpretation I: the domain of I is T(F), each n-ary
function symbol f of F is interpreted as the function f; where fy(t1,...,t,) is the
term f(t1,...,tn), and where the only predicate ~ is interpreted by s ~ t if s &% t.
The interpretation I defined by R in this way will be denoted by R*. We write
s=1teIif s ft. I satisfies (is a model of) a ground clause I' — A, denoted
IET 5> A fI2TorINA #Q. The empty clause O is hence satisfied by no
interpretation. I satisfies a non-ground clause C if I satisfies all ground instances of
C. I satisfies a set of clauses S, denoted by I = S, if it satisfies every clause in S. A
clause C is a logical consequence of (or C follows from) a set of clauses S, denoted
by S = C, if C is satisfied by every model of S.

2.4 Constraints and constrained clauses

An (ordering and equality) constraint is a quantifier-free first-order formula built
over the binary predicate symbols > and = relating terms in T(F,X’). Regarding
semantics, the constraints are interpreted in 7(F), and = is interpreted as some
congruence =, on T (F) (like syntactic equality or AC-equality) and > is interpreted
as a given reduction ordering > on ground terms that is total up to =.. Hence a
solution of a constraint T is a ground substitution ¢ with domain vars(T) and such
that T'o evaluates to true for the given =, and . If a solution for T exists, then T
is called satisfiable. If every ground substitution with domain vars(T) is a solution
of T then T is a tautology.

22 CHAPTER 2. BASIC CONCEPTS AND NOTATION

A constrained clause is a pair C | T where C is a clause and T is a constraint.
A ground instance of C | T is a ground clause Co where o is a solution of T.
The semantics of C | T is the set of all its ground instances. Hence, by definition,
an interpretation I satisfies C | T if I = Co for every ground instance Co of
C | T . Therefore, clauses with unsatisfiable constraints are tautologies. A clause
C | T is the constrained empty clause, denoted as well by O, if C is empty and
T is satisfiable. Constrained clauses C | T where T is a tautology are sometimes
denoted by C, omitting the constraint part T.

2.5 Inference Systems

A logical inference is a step by which from a multiset of zero or more constrained
clauses (the premises) a new constrained clause (the conclusion) is obtained. An
inference rule R

alin...Ch| T,

DT if condition

is (a finite representation of) the set of inferences where from the multiset of clauses
of the form {C; | Ty ... Cn | Tn} one can infer D | T if condition holds. One
such an inference is called an inference by R. An inference system I is a set of
inference rules. An inference by Z is an inference by one of the rules of Z. We will
frequently consider inference rules where premises or conclusions have constraints
that are tautologies and hence these constraints are omitted.

An inference rule R is correct if, for all inferences by R, the conclusion is a
logical consequence of the premises, and an inference system is correct if all its rules
are correct. A set of constrained clauses S is closed under 7 if for every inference by
Z with premises in S, the corresponding conclusion is in S. T is refutation complete
if O € S for every unsatisfiable set of constrained clauses S closed under Z. All
inference systems in the remainder of this thesis are easily proved correct, and we
will focus on completeness.

Chapter 3

The Model Generation
Technique

In this chapter, we introduce the model generation method, Bachmair and Ganzinger’s
standard technique for establishing the completeness of ordered paramodulation cal-
culi [BG94b). We dedicate an independent chapter to this technique because it will
be used several times in this thesis. This introduction of the model generation
technique has been adapted from [NRO1].

3.1 A simple inference system for ground Horn clauses

Here start with a simple example on ground Horn clauses. Note that if C | T is a
constrained clause where C is ground and T is satisfiable, then it is equivalent to
C | T where T denotes a tautological constraint. Hence while dealing with ground
clauses constraints will be omitted.

In the following, let >¢ be a given total reduction ordering on 7 (F), and let
s = t denote s >tV s = t. The inference system G for ground Horn clauses with

23

24 CHAPTER 3. THE MODEL GENERATION TECHNIQUE

equality is the following:
superposition right:
slp=lL1l>gr, s> t,and
if [>g u for all u occurring in I, and
s »¢ v for all v occurring in T

M= l~r '—ss~t
I\ = s[r],~¢

superposition left:
slp=1,l>gr, s> t, and

if > ufor all u occurring in IV, and
s =¢ v for all v occurring in ', A

IMsl~r Is~t—= A
['\T,srlp~t—= A

equality resolution:
Fsx~s— A

TS A if s> vfor all v occurring in I', A

Let us remark that the equality resolution rule is named after the fact that it
encodes a resolution inference with the reflexivity axiom of equality z ~ z,

It is sometimes said that in the superposition rules the inferences take place with
the term ! on the term s, and that the inference involves s and I. Note that in G,
superposition right inferences involve only terms s and ! that are strictly mazimal in
their respective premises, that is, they are bigger w.r.t. > than all other occurrences
of terms in these premises. Superposition left takes place also with strictly maximal
terms, but on (possibly non-strictly) mazimal terms (that is, they are larger than
or equal to all terms in their premise).

3.2 Extending the ordering to literals and clauses

In order to prove the refutation completeness of G we first define the following total
ordering >. on ground clauses. If C is a clause

81 = 81, .eeySn =8, 2ty =t ..t =1,
then we define ms(C) as the multiset:
{{51,51,51, 51}, -+ {Sny Sny Sy Su }y {t1, £}y - - o {tmy Em }}

Finally, let . be the ordering on clauses defined by comparing these expressions

by the two-fold multiset extension of >, that is, C >, D if ms(C)(>mut)mums(D).

The result is a total ordering on ground clauses!.

'Roughly, ». compares the multisets of all equations occurring in the clauses, but where in
addition terms occurring negatively have slightly more weight than the ones occurring positively; in
fact, in order to make . total on ground clauses, the information of which equations are positive
and which ones are negative has to be present anyway.

3.3. GENERATING THE INTERPRETATION 25
3.3 Generating the interpretation

Now we come to the key to the model generation method. Our aim is to prove the
completeness of G. We do this by showing that, if S is a set of ground Horn clauses
closed under G and O ¢ S, then S is satisfiable. The satisfiability proof of S is of
a constructive nature: first, an equality Herbrand interpretation will be built, and
second, it will be shown that this interpretation is a model of S.

We now informally explain the first part. The interpretation we build will be
the congruence R* induced by a set of ground rewrite rules R, where each rule in R
has been generated by some clause of S (hence the name “model generation”). The
generation process of R is defined by induction on >.. Each clause C in S generates
a rule or not, depending on the set R¢ of rules generated by clauses D of S with
C >. D (and on the congruence R{; induced by Rc). These ideas are formalised as
follows:

Definition 2 (Model generation) Let C' be a clause in S. Then Gen(C) = {I{ = r},
and C is said to generate the rule [= r, if, and only if, C is of the form I' =+ [~ r
and the three following conditions hold:

1. Rg = C,
2. I =g r and | »; u for all u occurring in T
3. lis irreducible by R¢

where Rc = Ug,.,p Gen(D). In all other cases Gen(C) = 0. Finally, R denotes
the set of all rules generated by clauses of S, that is, R = Upes Gen(D).

Let us analyse the three conditions. The first one states that a clause only
contributes to the model if it does not hold in the partial model built so far and
hence we are forced to extend this partial model. The second one states that a
clause can only generate a rule ! = r if [is the strictly maximal term of the clause.
The third condition, stating that [is irreducible by the rules generated so far, is,
together with the second one, the key for showing that R is convergent, from which
the completeness result quite easily follows:

Lemma 3 For every set of ground clauses S, the set of rules R generated for S is
convergent (i.e., confluent and terminating). Furthermore, if R}, = C then R* = C
for all ground C.

Proof: Evidently, R is terminating since ! ¢ r for all its rules I = r. To prove
confluence, it suffices to show local confluence, which in the ground case is well-
known (and easily shown) to hold if there are no two different rules = r and

26 CHAPTER 3. THE MODEL GENERATION TECHNIQUE

I' = r’ where I’ is a subterm of [. This property is fulfilled: clearly when a clause
C in S generates I = r, no such I’ = r' is in R¢; but if I’ = r' is generated by a
clause D with D >, C then, by definition of >., we must have I’ =3 | and hence !
cannot be a subterm of [either.

To show R{ k= C implies R* |= C, let C be I' — A, and assume Ry = C. If
R = A then R* = A since R D R¢. Otherwise, RG = I'. Then R* [£ T follows
from the fact a term t occurring negatively in a clause is bigger than the same ¢
occurring positively: all rules in R\ R¢ are generated by clauses bigger than C, and
hence have left hand sides that are too big to reduce any term occurring in I'. Since
R is convergent this implies R* & T O

3.4 Completeness for the ground case
Theorem 4 The inference system G is refutation complete for ground Horn clauses.

Proof: Let S be a set of ground Horn clauses that is closed under G and such that
O ¢ S. We prove that then S is satisfiable by showing that R* is a model for 5. We
proceed by induction on >, that is, we derive a contradiction from the existence of
a minimal (w.r.t.) clause C in S such that R* }~ C. There are a number of cases
to be considered, depending on the occurrences in C of its maximal term s, i.e., the
term s such that s =4 u for all terms » in C (s is unique since > is total on T(F)):

1. s occurs only in the succedent and C is I' = s ~ s. This is not possible since

R £ C.

2. s occurs only in the succedent and C'is I' = s ~ ¢t with s £ ¢. Since R* [C,
we have R* D T' and s ~ t ¢ R*, i.e., C has not generated the rule s = t. This
must be because s is reducible by some rule | = r € Ro. Assume [= r has
been generated by a clause C’ of the form IV — I ~ r. Then there exists an
inference by superposition right:

INMosl~r P> s~t
I',T' = s[r]p ~t

whose conclusion D has only terms u with s »; », and hence C =, D. More-
over, D is in S and R* £ D, since R* D TUIY and sr], ~ ¢t ¢ R* (since
otherwise s[l], ~ t € R*). This contradicts the minimality of C.

3. s occurs in the antecedent and C is I',s ~ s — A. Then there exists an
inference by equality resolution:

Ns~s— A
r—-A

3.4. COMPLETENESS FOR THE GROUND CASE 27

for whose conclusion D it holds that C >, D. Moreover, Disin S and R* }£ D,
which is a contradiction as in the previous case.

4. s occurs in the antecedent and Cis I',s ~ ¢t = A with s > t. Since R* }£ C,
we have s ~ t € R* and since R is convergent, s and ¢ must have the same
normal forms w.r.t. R, so s must be reducible by some rule [= r € R. Assume
[= r has been generated by a clause C’ of the form IY — I ~ r. Then there
exists an inference by superposition left:

IMal~r Dslllp~t— A
I',T,s[rlp~t— A

for whose conclusion D it holds that C >, D. Moreover, D isin S and R* }£ D,
which again contradicts the minimality of C.]

The following example shows how the rewrite system R changes during a closure
of a set of ground clauses and that, although for the intermediate sets the obtained
R* is not a model, the R* obtained for the closed set is a model.

Example 5 Consider the lexicographic path ordering generated by the precedence
f>ra>rb>rc>rd The following table shows in the left column the ground
Horn clauses (sorted with respect to the ordering) at each closure step, in which the
first one is the initial set, and in the right column the set R corresponding to each
intermediate set. The maximal term of every clause is underlined and the subterms
of the clauses involved in the inference are framed.

28 CHAPTER 3. THE MODEL GENERATION TECHNIQUE

S R
— .~..d
f(dy~d — ax~b ¢ = d
= f(c]) ~d
- e¢~d
- |f(d)|~d c = 3
— d =
@:d — ax~b 1(d)
- __(__cl:d
- c~d
d~d — a=~b c = d
— _f;(_fi_)_zd a = b
fld)~d — axb fd) = d
- _Jf_(c_):d

Let us conclude this section with a remark on additional ordering restrictions.
In superposition left as well as in equality resolution, it is possible to strengthen
the conditions in such a way that only one negative literal becomes eligible for
inferences. For example, in superposition left on an equation s =~ ¢, one can require
that ¢ > ¢/ for all equations s ~ ¢/ in T', that is, we use the maximal equation rather
than just the maximal term; if two equations have the same maximal terms, we
compare the other terms. Similarly, in equality resolution we can require s > t’ for
all equations s ~ t’ in I'. In the inference system for general clauses (see Section 3.8)
we have included these restrictions, since such comparisons between equations are
needed there anyway. We did not consider them for G for simplicity reasons, and
also because by means of selection of negative equations we will be able to obtain
stronger results in a simpler way (see Section 3.9).

3.5 Non-equality predicates

In this framework, equality can be considered to be the only predicate, since for every
other predicate symbol p, (positive or negative) atoms p(¢; ...¢,) can be expressed
as (positive or negative) equations p(t; ...t) ~ true, where true is a new special
symbol, and where p is considered as a function symbol rather than as a predicate

3.6. CLAUSES WITH VARIABLES 29

symbol. Note however that, in order to avoid meaningless expressions in which
predicate symbols occur at proper subterms one should adopt a two-sorted type
discipline on terms in the encoding.

It is easy to see that this transformation preserves satisfiability. Very roughly:
one can “translate” the interpretations such that a ground atom is true in a Herbrand
interpretation I if and only if in the equality Herbrand interpretation I’ over the
modified signature the term p(t; ...t,) is congruent to true. Be we remark that two
ground atoms that are false in I need not be in the same congruence class of I'.

After this satisfiability preserving transformation, ordered resolution (ground)
inferences of the form:

I A I'd— A
I'T—s A

if AsgI"and 4>, T,A.

become a special case of superposition left:

IV — A~ true A~ true > A
[V, T, true ~ true = A

combined with equality resolution (or sxmphﬁca.tlon as we will see) for eventually
eliminating the trivial equation true ~ true. S :

For efficiency reasons it is convenient to make frue small in the ordering. Some-
times it is also useful to take into account that p is a predicate symbol when handling
the ordering restrictions. For example, in orderings like RPOQ, if the predicate sym-
bols p are bigger in the precedence than function symbols then p >x ¢ implies
p(t1, .., tn)0 =ipo q(S1,. .., 5m)o for all ground o.

3.6 Clauses with variables

Up to now, in this chapter we have only dealt with ground clauses. If we consider
that a non-ground clause represents the set of all its ground instances?, a refutation
complete method for the non-ground case would be to systematically enumerate
all ground instances of the clauses, and to perform inferences by G between those
instances. But fortunately it is possible to perform inferences between non-ground
clauses, covering in one step a possibly large number of ground inferences. We now
adapt G according to this view. '
For example, at the ground level, in the superposition right inference

slp=1,1>gr,s>gt, and
if !¢ ufor all u occurring in IV, and
s »¢ v for all v occurring in I’

IM=sl~r ' 9s~t
I',T = s[r], ~t

?By Herbrand’s theorem, considering only the ground instances preserves satisfiability; in fact,
this is a consequence of (the proof of) Theorem 11.

30 CHAPTER 3. THE MODEL GENERATION TECHNIQUE

we required s|p and ! to be the same term. At the non-ground level, this becomes a
constraint s|, = [on the possible instances of the conclusion, that is, the conclusion
is a constrained clause D | T . Hence if the conclusion is D |s|, = IA ..., the
instances Do for which s|,0 # lo are not created. The same is done for the ordering
restrictions. For instance, instead of requiring ! > r as a condition of the inference,
it becomes part of the constraint of the conclusion, excluding those instances Do
of the conclusion that correspond to ground inferences between instances of the
premises for which /o >y ro does not hold:

Maslx~r st
T o s[rlp~t |slp=l A I>r A s>t A...

Note that here we have written the inference rule without constraints in its premises,
since at this point we are only interested in the constraints that are generated in
this concrete inference.

This inference rule can be further restricted with the additional condition stating
that the inference is not necessary if s|, is a variable. This shows that, by working
on the non-ground level, certain inferences between ground instances of the premises
turn out to be redundant: at the non-ground level we do not perform, for an instance
with o, the inferences inside o (also called inferences below variables), that is, on
positions so|, where s|,y is a variable for some prefix p’ of p.

Note that, as usual, it may be necessary to rename variables in the premises in
order to avoid name clashes: the premises C and D are assumed to fulfill vars(C)N
vars(D) = §.

Now we define the inference system H for non-ground Horn clauses, writing s >T
as a shorthand for the constraint s>wu; A s>v; A...A s>u, A s>v, i
is a multiset of equations {u; >~ vy,...,u, > v,} (and similarly, we write s > T for
s2uy A s>2vp AL A s>u, A s2up):

superposition right:
IMal~er T osot
T slrlp~t |slp=l A I>r A IS A s>t A s>T

superposition left:
MM—l~r Is~t-—> A
Dyslrlp~>t— A |slp=l A I>r A I>TY A s>t A s2T,A

equality resolution:
Fisxt—o A
F—-A |s=t A s>T,A

where in both superposition rules s|, is required not to be a variable.

3.7. COMPLETENESS WITHOUT CONSTRAINT INHERITANCE 31

Example 6 Consider the lexicographic path ordering generated by the precedence
h>ra»x f>rg>rb. In the following inference

g(z) =z = f(e,2) ~ f(z,2) — h(f(a,9(y)) ~ h(y)
g(z) ~z = h(f(z,2)) = h(y) | fla,z)=F(a,9(y)) A h(f(a,9(y))>h(y) A
fla,z)> f(z,2) A fa,z)>9(z) A fla,z)>z

the constraint of the conclusion is satisfiable: using the properties of the ordering
and solving the unification problem, the constraint can be simplified into

z=g(y) A a>z

which has, for instance, the solution {y — b,z — g(b)}.

On the other hand, the following inference is not needed

= f(z,z) ~ f(a,2) = fl9(y),2) > h(2)
= fla,z) = h(z) | flz,2)=f(g9(y),2) A flg(y),2)>h(2) A
f(z,2)> f(a,z)

since the constraint of the conclusion has no solution; it can be simplified to

z=g(y) A z=2z A y>h(z) A z>a

which implies y > h(g(y)). Note that the equality constraint and the ordering
constraint considered separately are both satisfiable but their conjunction is not. O

Let us also remark that, at the non-ground level, several terms in a premise
C may be involved in paramodulation inferences; for a term t it may be the case
that for some ground instances Co the term to is the maximal one, and for other
instances it is not.

3.7 Completeness without constraint inheritance

There are several possible treatments for the constrained clauses generated by the
inference system H. The classical view is to deal only with unconstrained clauses.
Conclusions of the form C | s = tAOC , for some ordering constraint OC, are then
immediately converted into Co where o = mgu(s,t). This strategy will be called
here H without constraint inheritance, in contrast with other possibilities which will
be introduced later on.

Of course, the clause C'o has to be generated only if the constraint s =t AOC is
satisfiable in 7(F), where = is interpreted as the syntactic equality relation =, and
> as the given reduction ordering >. If > is the lexicographic path ordering (LPO)
the satisfiability of such constraints is decidable [Com90, Nie93]. But traditionally

32 CHAPTER 3. THE MODEL GENERATION TECHNIQUE

in the literature weaker approximations by non-global tests are used; for example,
inference systems are sometimes expressed with local conditions of the form r ¥ I
when in our framework we have [> r as a part of the global constraint OC. Note that
such weaker approximations do not lead to unsoundness, but only to the generation
of unnecessary (for completeness) clauses.

In the following, we call a set of (unconstrained) Horn clauses S closed under H
without constraint inheritance if Do € S for all inferences by H with premises in S
and conclusion D | s = tAOC such that s = tAQC is satisfiable and ¢ = mgu(s, t).

Theorem 7 The inference system H is refutation complete without constraint
inheritance for Horn clauses.

Proof: Let S be a set of Horn clauses closed under H without constraint inheritance
such that O ¢ S. The proof is very similar to the one for G: we exhibit a model
R* for S. We proceed again by induction on >, but now the role of the ground
clauses in the proof for G is played by all ground instances of clauses in S, and the
generation of rules in R from these ground instances is the same as for G. Now we
derive a contradiction from the existence of a minimal (w.r.t. ;) ground instance
Co of a clause C in S such that R* |~ Co. The cases considered are the same ones
as well, again depending on the occurrences in Co of its maximal term so.

The only difference lies in the lifting argument, which is the same in all cases and
is hence analyzed here for only one of them: C is ', s >t = A and so »; to. Since
R* £ Co, we have so ~ to € R* and since R is convergent, so must be reducible
by some rule lo = ro € R, generated by a clause C’ of the form I' — [~ r. (Note
that, since we assume that there are no name clashes between the variables of C' and
C’, we can consider that the instances of C and of C’ under consideration are both
by the same ground ¢.) Now we have so|, = lo, and there are two possibilities:

An inference. s|, is a non-variable position of s.
Then there exists an inference by superposition left:

Maler [,s~t—= A
I Tslrlpt = A |slp=l Al>r A>T A s>t As>T A

whose conclusion D | T has an instance Do (i.e., o is a solution of T') such that
Co =, Do, where R* | Do, contradicting the minimality of Co.

Lifting. s|, is a variable z for some prefix p’ of p.

Then p = p' - p” for some p”, and zo|p is lo. Now let o’ be the ground substitution
with the same domain as ¢ but where zo’ = zo[ro], and yo' = yo for all other
variables y. Then R* |£ Co’ and Co >, Co’, contradicting the minimality of Co.
O

3.8. GENERAL CLAUSES 33
3.8 General clauses

In this section general clauses are considered, i.e., clauses that may have several
equations in their succedents. For this purpose, the inference system H is adapted.
In order to restrict the amount of inferences to be performed, it is desirable to
preserve the property of # that for each ground clause (or instance) C, only one
literal of C is involved in superposition inferences with C. Since now the maximal
term of C may occur in more than one equation in the succedent, it is decided
that among these equations the one whose other side is maximal will be used. This
leads to the notion of maximal and strictly maximal equations in C. In order to
express maximality and strict maximality of equations as constraints, we use the
following notation. The constraint gr(s ~ t, A) expresses that the equation s ~ ¢,
i.e., the multiset {s,t}, is strictly greater, w.r.t. the multiset extension of >, than
all equations u ~ v in A. For each u ~ v this condition s ~ ¢t > u ~ v can be
expressed for instance by the constraint:

s>u A (s>v Vt>v) V s>v A (s>u V itdu) V

t>u A (s2v Vt>v) V t>v A (s2u V t>u)
Similarly, the constraint greg(s ~ t, A) expresses that s ~t »> u~vforall u ~ v
in A. The full inference system I for general clauses is

superposition right:
Mo l~r A Fas~t A
I'T—=srl,~t, A | slp=I A
I>r A>T A gr(l=rA) A
s>t A s>T A gr(s~t,A)

superposition left:
Molx~r A [s~t—a A
ITyslrlp~t = ALA | slp=1 A
I>r A>T A gr(l=r,A)) A
s>t A greq(s~t,TUA)

equality resolution:
Dsxt— A
A | s=t A greg(s~t,TUA)

equality factoring:
Fas~tsd~t A
Pitxt' 9 s~t' A |s=s A s>t As>T A greg(s~t,AU{s' ~t'})

where as in the Horn case in both superposition rules s|, is not a variable.

34 CHAPTER 3. THE MODEL GENERATION TECHNIQUE

Here the superposition rules and the equality resolution rule play the same role
as their counterparts in the inference system H. The equality factoring rule is
new. Intuitively, it expresses that, if s and s’ are syntactically equal, and t and ¢/
are semantically equal, then the two equations in the succedent express the same
information, and one of them can be omitted.

Example 8 Consider the lexicographic path ordering generated by the precedence
f >7 g >x h and the following inference by superposition right

— g(2) =~ h(2) = f(g(2),y) = g(z), flg9(=) y) =y
= f(h(z),y) 2 9(z), f(g(=),y) =y | g(z)=g(2z) A g(2) > h(z) A
flg(z),y) > g(z) A
gr(f(g(z),y) = g9(2), {f(9(z),y) = y})

where gr(f(g(z),y) ~ g(z), {f(g9(z),y) ~ y}) can be simplified into g(z) > y. Now,
simplifying the rest of the constraint, the conclusion of the inference can be written
as

= f(h(2),y) 2 g(2), flg(z)y)~y | z=2 A g(z) >y

Below an overview of the new aspects for the completeness proof of Z with respect
to H is given. For simplicity, only the ground case is considered; lifting to clauses -
with variables is analogous to what was done for . First, a new condition is added
in the generation of the rewrite system R for a set of clauses S, and the second
condition is adapted in order to select the strictly maximal positive equation that
produces the rule:

Definition 9 Let S be a set of ground clauses and let C be a clause in S. Then
Gen(C) = {l = r}, and C is said to generate the rule I = r, if, and only if, C is of
theform ' -+ I~ r, A and

1. R ¥EC

2. 0gr, > T,andl~r > u~vforallu~vin A
3. lis irreducible by R¢

4. R fer~t forevery I~t' € A

where Rc = Ug,.p Gen(D). In all other cases Gen(C) = 0. Finally, R denotes
the set of all rules generated by clauses of S, that is, R = Upegs Gen(D).

The proof of Lemma 3 can be easily adapted to show that here again R is
convergent and that if R, = C then R* = C. In a very similar way, it can be shown
that the new conditions force clauses generating rules to have only one positive
literal satisfied by the interpretation:

3.9. SELECTION OF NEGATIVE EQUATIONS 35

Lemma 10 If a clause C of the form I' = | ~ r, A generates the rule [= r then
R* =T and R* £ A.

Theorem 11 The inference system Z is refutation complete for general clauses.

Proof: Since lifting is done as for #, here we only extend the proof for the ground
case G. There is one additional case due to the new conditions for generating rules
in R. The other cases of the proof for G are straightforwardly adapted by using
lemma 10 to show that the conclusion of the required inference is not satisfied by
the model.

The new case is: C is of the form I' = s ~ t, A, with s > ¢, and s ~ ¢t is
maximal in A, and it has not generated a rule because there is an equation s ~ ¢’ in
A such that R; =t >~ t' (note that this case includes also the case in which s >~ ¢
is maximal in A, but not strictly maximal).

Then, with A = s~ ¢/, A/, there exists an inference by equality factoring

P sctst A
ittt st/ A

whose conclusion D is such that C >, D and R* &£ D, contradicting the minimality
of C. m]

3.9 Selection of negative equations

The inference system Z includes strong ordering restrictions: roughly, a superpo-
sition inference is needed only if the terms involved are maximal sides of maximal
equations in their respective premises, and even strictly maximal in case they occur
in positive equations. But more constraints can be imposed. If a clause C has a
non-empty antecedent, it is possible to arbitrarily select exactly one of its negative
equations. Then completeness is preserved even if C' is not used as left premise of any
superposition inference and the only inferences involving C are equality resolution
or superposition left on its selected equation.

The inference system S (for selection) for general clauses is defined to consist of
the four rules of inference system I where for all premises of the inference rules no
negative equation has been selected, plus the following two additional rules, where
the selected equations have been underlined:

36 CHAPTER 3. THE MODEL GENERATION TECHNIQUE

superposition left on a selected equation:
VM l~r A Msxt— A
I'T's[rlpt > AA | slp=I A
I>r A>T A gr(l~r,A) A s>t

equality resolution on a selected equation:
Ds~t—o A
oA | s=t

where, as usual in superposition rules, s|, is not a variable.

Note that an adequate selection strategy gives us a strictly more restrictive
inference system: among the set of maximal negative equations, just select one
of them, and select no equation if this set is empty. It is clear that in the inference
system Z all maximal equations of the antecedent are eligible for superposition left
or equality resolution, whereas in S only the selected one is eligible.

The intuition behind selection is, roughly, that a clause with negative equations
does not need to contribute to the deduction process until its whole antecedent
has been proved from other clauses, and in particular one can require the selected
equation to be proved first.

In practice one can select for example always a maximal equation (under some ar-
bitrary ordering) of the antecedent. Selecting always a negative equation, whenever
there is one, leads in the Horn case to the so-called positive unit literal strategies,
that is, the left premise of superposition inferences is always a positive unit clause
[Der91, NN91]. For general clauses eager selection leads to positive strategies, where
the left premise is always a positive clause, i.e., it has only positive literals. Adapt-
ing the proof of completeness of Theorem 11 to this framework with selection is an
easy exercise: it suffices to consider that clauses with selected equations generate no
rules.

3.10 Completeness with constraint inheritance

Here we consider sets of constrained clauses, rather than unconstrained ones, as in
the previous sections. For simplicity, we deal with the Horn case only.

Definition 12 A set of constrained Horn clauses S is closed under H with con-
straint inheritance if D | TiA. . AT As = tAOC isin S whenever Cy | Ty ,...,Cn | Ty
are clauses in S and there is an inference by H with premises Cy,...,C, and con-
clusion D | s = t AOC such that the constraint 1) A ... AT, As =t AOC is
satisfiable.

3.10. COMPLETENESS WITH CONSTRAINT INHERITANCE 37

This strategy is incomplete in general: the closure under H with constraint
inheritance of an unsatisfiable set of constrained Horn clauses needs not contain the
empty clause.

Example 13 Let > be the lexicographic path ordering where @ >x b. Consider
the following unsatisfiable clause set S:

1. —a~b
2. —)P(:B) I:v::a
3. P -

S is clearly closed under H with equality constraint inheritance, since no inferences
by H that are compatible with the constraint of the second clause can be made.
We have a > b and hence the first clause could only be used by superposing a on
some non-variable subterm, while superposition left (i.e., resolution) between 2 and
3 leads to a clause with an unsatisfiable constraint ¢ = a Ab = z. However, S does
not contain the empty clause. This incompleteness is due to the fact that the usual
lifting arguments, like the ones in Theorem 7, do not work here, since they are based
on the existence of all ground instances of the clauses. Note that this is not the case
here: the only instance of the second clause is P(a), whereas the lifting argument in
Theorem 7 requires the existence of the instance P(b). m]

Fortunately, the strategy is complete for what we will call well-constrained sets
of clauses, which turn out to be adequate for many practical situations. A key
idea in this context is the following (quite intuitive) notion of irreducible ground
substitution. Let R be a ground rewrite system contained in the given ordering >
(that is, { > r for all rules | = r of R). A ground substitution ¢ is reducible by
R if zo is reducible by R for some z € Dom(0o); if there is no such z then o is
irreducible. Furthermore, if S is a set of constrained clauses, then irredg(S) is its
set of irreducible instances, that is, the set of ground instances Co of clauses C' | T
in S such that o is a solution of T and zo is irreducible by R for all z € vars(C).

Definition 14 A set of constrained clauses S is well-constrained if either there are
no clauses with equality predicates in S or else for all R contained in > we have
irredp(S)URE S.

Example 15 (Example 13 continued) The clause set S of the previous example is
not well-constrained: if R is {a = b} then the instance P(a) of the second clause
is not a logical consequence of irredp(S) U R (in fact, the second clause has no
irreducible instances for this R). o

38 CHAPTER 3. THE MODEL GENERATION TECHNIQUE

Let us give some more intuition behind the definition of well-constrained sets.
For clauses without equality predicates, the situation is clear: all such sets are well-
constrained (this is why logic programming without equality is compatible with
arbitrary constraint systems).

Now let us consider clause sets S including equality predicates. First, note that
if S is a well-constrained set, so is its closure w.r.t. any sound inference system,
since the property of well-constrainedness is preserved under the addition of logical
consequences. Second, it is not difficult to see that if all clauses in S have only
tautologic constraints then S is well-constrained: every instance Co is either in
irredp(S), or else o is reducible by R. Then o can be reduced into a “normal form”
o', where Co’ is in irredg(S), and we have irredp(S)UR = Co.

But there are other non-trivial examples of well-constrained sets.

Example 16 Let > be the lexicographic path ordering where g >x a >r f > b.
Then, constrained clauses like g(z,z) ~ b | a > = may appear in well-constrained
sets, since the variable z is not “lower bounded”: as for unconstrained clauses, for
all o the term zo can be reduced into a “normal form” zo’, where g(zo’,z0") ~ b is
in trredr(S), and hence we have irredp(S)U R = g(z0o,z0). Here g(z,z) ~bla>=z
denotes the infinite set of clauses of the form g(f"(b), f*(b)) ~ b for n > 0, that is,
g(b,) = b, g(f(b), f(B)) = b, g(F(F(b)), F(f(B)) = b... Note that such (in this
case even non-regular) tree languages cannot be captured by standard first-order
clauses. O

Furthermore, it will become clear from the completeness proof below that the
notion of well-constrained clause could be modified in order to capture more cases
by not considering all R contained in >, but only those R whose rules could be
generated in the model generation technique applied to the given clause set. Then,
one can know in advance that certain (e.g., constructor) terms will be irreducible
w.r.t. such B. Here we have not done this in order to keep the definition of well-
constrainedness simple.

The refutation completeness of H for well-constrained clause sets S can now be
established by applying a simple variant of the model generation technique. Before
we give the formal proof, let us explain the main ideas. Let S be a set of well-
constrained clauses that is closed under H with equality constraint inheritance, and
assume DO ¢ S. As always, we show that then S is satisfiable by generating a rewrite
system R for S (in a similar way as before) and then proving that R* |= S.

For this purpose, we first show that R* |= irredg(S) like in Theorem 7, but
where the lifting case never needs to be applied (since we only consider the set of
irreducible instances of S). Once we have R* |= irredr(S), then also R* |= S, since
of course R* = R and by well-constrainedness of S (where well-constrainedness is
required only with respect to the particular R that has been generated) we have

3.10. COMPLETENESS WITH CONSTRAINT INHERITANCE 39

irredp(S) U R |= S (note that if there are no equality literals in S then irredg(S)
coincides with S).

Theorem 17 The inference system H is refutation complete with constraint in-
heritance for well-constrained sets S of Horn clauses.

Proof: Let S be closed under H with equality constraint inheritance. Again we
build a model R* for S whenever O ¢ S. As said, we prove that R* = irredp(S),
which implies R* |= S by well-constrainedness.

We build R as for Theorem 7, but now.only the irreducible (w.r.t. R¢) instances
of S contribute to its construction: a ground instance C of the foom I' =+ [~ r in
irredp.(S) generates the rule [= r of R if the usual conditions (i), (ii) and (iii)
apply.

Now again we derive a contradiction from the existence of a minimal (w.r.t. >.)
ground instance Co € irredg(S) for some C' | T € S, where o is a solution of T,
such that R* (& Co. Again we consider several cases, depending on the occurrences
in Co of its maximal term so. Let us analyse only the case where C'isT',s ~t =5 A
and so > to. Since R* [~ Co, we have R* |= so ~ to, and hence the term so is
reducible by some rule lg = ro € R, generated by an instance C'c of some C' | T, |
where C’ is of the form IV — [~ r. : ’

Now we have so|, = lo, and, since ¢ is irreducible by R, the only possibility
is now that s|, is a non-variable position of s. Then there exists an inference by
superposition left:

M—alxr C,s~t— A
'\ Tys[rlp~t = A |slp=l Al>r A>T A s>t A s2TA

whose conclusion has an instance Do where o is a solution of T A T’ A sl,=
I ANl>r A>T A s>t A s>T,A such that Co >, Do and where
R* = Do. Furthermore, Do € irredp(S): indeed zo is irreducible by R for all
variables ¢ € vars(D). This is clearly the case if z € vars(C). For z € C’, there
are two cases: if z = [then z ¢ vars(D) since lo > ro,IVo; if £ £ [then zo is
irreducible w.r.t. R¢r by construction of R, and hence also w.r.t. R, since for all
rules I’ = ' € R\ R¢r we have I’ =; lo ¢ zo and hence such rules cannot reduce
zo. Altogether, this contradicts the minimality of Co. m|

40

CHAPTER 3. THE MODEL GENERATION TECHNIQUE

Chapter 4

Paramodulation with
Non-Monotonic Orderings

Up to now, all existing completeness results for ordered paramodulation require the
term ordering > to be well-founded, monotonic and total(izable) on ground terms.
For several applications, these requirements are too strong, and hence weakening
them has been a well-known research challenge. :

In this chapter we introduce a new completeness proof technique for ordered
paramodulation where the only properties required on > are well-foundedness and
the subterm property. The technique is a relatively simple and elegant application of
some fundamental results on the termination and confluence of ground term rewrite
systems (TRS).

4.1 Introduction

All main techniques for proving the completeness of paramodulation-based infer-
ence systems, like the transfinite semantic tree method [HR91], the proof ordering
method of [BDH86, BD94] and the model generation method [BG94b] explained
in Chapter 3, rely at some point on the requirement that the term ordering > is
well-founded, monotonic and total (or extendable to a total ordering) on ground
terms.

But, as said, in many practical situations these requirements are too strong.
A typical situation is deduction modulo built-in equational theories E, where the
existence of a total E-compatible reduction ordering is a very strong requirement.
For example, the existence of such an ordering for the case where E consists of
associativity and commutativity (AC) properties for some symbols remained open
for a long time, and, once it was found, it triggered quite a number of results, like the
decidability of the ground AC-word and -unification problems. Unfortunately, for

41

42 CHAPTER 4. PARAM. W. NON-MONOTONIC ORDERINGS

many E such orderings cannot exist. For instance, when E contains an idempotency
axiom f(z,z) = z, then if s > t, by monotonicity one should have f(s,s) > f(s,t),
which by E-compatibility implies s > f(s,t) and hence non-well-foundedness.

In this chapter we introduce techniques for dropping the monotonicity require-
ment that, among other applications, open the door to deduction modulo many
more classes of equational theories. The only properties required for > are well-
foundedness and the subterm property. This solves a well-known open problem (e.g.
at the RTA list of open problems [RTA01] since 1995).

Our technique (given in Sections 4.2 to 4.7) is a variant of the model genera-
tion technique, with the main difference that the termination of the ground rewrite
system R that defines the model is not a consequence of the ordering. Instead, ter-
mination of R follows from other properties. In one of the settings treated here, it
follows from the irreducibility, w.r.t. R itself, of the right hand sides of all rules of R;
in another setting, if R is contained in a well-founded ordering > with the subterm
property, its termination follows from the irreducibility of the right hand sides at
non-topmost positions only. Since each terminating TRS R induces a reduction (i.e.,
well-founded, monotonic) ordering —%, we can then use induction on (an extension
of) this reduction ordering for proving the main completeness results. These results
are given here for paramodulation with general first-order clauses with eager selec-
tion of negative literals (see Chapter 3). In Chapter 6 we analyze strategies with
selection of positive literals. In Section 4.8 we shortly mention the applicability of
techniques for redundancy elimination and constraint inheritance in the context of
these techniques (in Chapter 6 constraint inheritance in this setting is considered in
more detail). Finally, in Section 4.9 we give some counterexamples indicating the
limitations for some of the extensions.

4.2 Some properties of ground TRS and orderings

Let us recall from Chapter 2 that a (strict partial) ordering on T'(F, X)) is an ir-
reflexive transitive relation ». It is'a reduction ordering if it is well-founded and
monotonic, and moreover, it is stable under substitutions: s > t implies so > to for
all substitutions o. It fulfils the subterm property if =2 >, where > denotes the
strict subterm ordering,.

Definition 18 A west ordering is a well-founded ordering on T'(F) that fulfils the
subterm property and that is total on T(F) (it is called west after well-founded,
subterm and total).

Not all well-founded orderings on terms can be extended to west orderings, even
if they do not contradict the subterm property. For example, if a >; f(b) and

4.2. SOME PROPERTIES OF GROUND TRS AND ORDERINGS 43

b >, f(a), then, if = is (>1 U D)*, we get a = f(b) = b > f(a) > a. But every well-
founded ordering can be totalized [Wec91], and hence every well-founded ordering
satisfying the subterm property can be extended to a west ordering. We also have
the following:

Lemma 19 Every reduction ordering >, can be extended to a west ordering.

Proof: Let »,, be (>, U >)*. Then »,, is well-founded. We will derive a contra-
diction from the existence of an infinite sequence s; >,5 S2 >y ... With 5; minimal
w.r.t. >=,. By monotonicity of >, we have that s{t] > ¢ >, u implies s[t] >, s[u] > u,
i.e. the relations commute in this direction. Now since > is well-founded there should
be some sy in the sequence which is the first one such that sg >, sk41, and hence
by applying the commutation property we can re-arrange the sequence obtaining
an infinite sequence sy >y 8 >rs .. .Sk >rs Sk41 >=rs ... fOL SOmMe 85, ..., sy, which
contradicts the minimality of s;. g

Lemma 20 Let R be a ground TRS such that for all rules ! — r in R the term r
is irreducible by R. Then R is terminating,. : T

Proof: Assume R is non-terminating. Then there exists an infinite rewrite sequence
t1 =R t2 =g ... It is easy to extract an infinite subsequence s; —p s3 =g ... of
it where there is at least one rewrite step s; =g si+;1 at the topmost position, i.e.,
where s; =1 and s;+; = r for some rule ! = r in R. But then s;4, is irreducible by
R, contradicting the infiniteness assumption.]

Lemma 21 Let >~ be a west ordering, and let R be a ground TRS such that, for
alll - rin R, ! » r and r is irreducible by R at non-topmost positions. Then R is
terminating.

Proof: If R is non-terminating there is an infinite sequence s; =g s =g ... with
at least one rewrite step s; =g si+1 at the topmost position, i.e., where s; = [and
Si+1 = r for some rule { — r in R. But then s;3; —r Si+2 —r ... is an infinite
sequence with steps only at topmost positions, where s;31 > si+2 > ... contradicting
the well-foundedness of ». a

Finally we will also use the following well-known results on orderings:

Lemma 22 ({DJ90]) If R is a terminating TRS then —} is a reduction ordering.

44 CHAPTER 4. PARAM. W. NON-MONOTONIC ORDERINGS
4.3 West orderings in practice

In practical applications (theorem provers, implementations of Knuth-Bendix com-
pletion) the west ordering > can be defined and dealt with in different ways.

One possibility is that an approximation of > is available by a non-total ordering
>~y on terms with variables such that s >, ¢ implies so > to for all ground o (e.g.,
when >, is a reduction ordering of which > is an extension, as in Lemma 19). Then,
inferences with ordering restrictions like lo@ > ro# for some ground substitution 8
can be proved redundant by showing that ro =, lo. Indeed, the actual west ordering
need not always be really built for application purposes. It suffices for completeness
that it exists, and for practice that a reasonably good approximation is available.

We now mention two general-purpose techniques for defining > such that in
practice it can be used or approximated efficiently.

4.3.1 Semantic path orderings

The recursive path ordering with status (RPO, [Der82]) (which includes the lezico-
graphic path ordering, LPO), is a well-known, easy to implement, general-purpose
ordering for deduction purposes. It is a reduction ordering that is total on ground
terms. It compares the head symbols of the terms (with a precedence ordering on
the function symbols), and then recursively it applies a (sometimes lexicographic or
multiset) comparison on the arguments. Since RPO is monotonic and includes the
subterm relation, it cannot prove termination of rules like f(f(z)) = f(g9(f(z))), be-
cause the term g(f(z)) is larger than its subterm f(z), and hence, by monotonicity,
f(g(f(z))) will always be larger than f(f(z)).

The semantic path ordering (SPO, [KL80]) is a well-known powerful general-
ization of the RPO, where the precedence on function symbols is replaced by any
(well-founded) underlying (quasi-)ordering involving the whole term rather than
only its head symbol. This makes the ordering much more powerful. In fact, for
every terminating TRS R there is some SPO that includes —%. SPO includes the
subterm relation, but it is not monotonic in general. In fact, it can handle rules like
f(f{z)) = f(g(f(z))). The price to be paid is that for proving termination of TRS
by an SPO, one needs to prove in an ad-hoc way its monotonicity for contexts of
rule instances, that is, for all terms s and ¢ such that s rewrites to ¢t by R in one
step.

Since the results of this chapter imply that for deduction by ordered paramodu-
lation monotonicity is not needed, and any SPO can be extended to a west ordering,
SPO is an interesting candidate for these purposes. Furthermore, in Chapter 5 of
this thesis we will show that if R is a convergent TRS for some set of equations F,
and —} is included in a west ordering (like an SPO), then unfailing Knuth-Bendix
completion on E with this west ordering will compute this R.

4.4. PARAMODULATION WITH EQUATIONS 45

4.3.2 Non-monotonic E-compatible orderings

As mentioned in the beginning of this chapter, an important bottleneck for defining
deduction techniques modulo built-in equational theories E is to find the required
total (up to E-equal ground terms), E-compatible reduction ordering. But if the
monotonicity requirement can be dropped, this becomes a much simpler task.

Let us consider as an example such an ordering for the case where E consists of
associativity and commutativity (AC) properties. The AC-compatibility of such an
ordering > means that s =,c 8’ = t =, t' implies s’ > t'. It is easy to check whether
two ground terms are AC-equal by using their flattened forms: a term s can be
flattened by removing all AC-operators f that are immediately below another f. For
example, if f and g are AC-operators, then the term h(f(f(a,a), f(b,9(c,g(d,e)))))
is flattened into h(f(a, a,b, g(c,d,e))). Two terms are AC-equal if, and only if, their
flattened forms are equal up to permutation of arguments of AC-operators.

Therefore, when trying to define total AC-compatible orderings, the first idea
that comes to mind is to apply general-purpose orderings on the flattened forms of
the terms to be compared, like an RPO where AC-symbols have multiset status. But
the resulting ordering may not be monotonic: if f is an AC-operator that is larger
than g, then f(a,a) will be larger than g(a, a), but f(g(a,a),a) will be larger than
f(a, f(a,a)), because the latter term becomes f(a,a,a) after flattening.. However,
it is not difficult to see that one obtains an AC-compatible west ordering from this
simple approach. ‘

4.4 Paramodulation with equations

In this section we introduce part of our ideas for the purely equational case. Dealing
with this simple case first is useful not only for explanation purposes, but also
because its results will be used in Chapter 5 on Knuth-Bendix completion. In the
following, let > be a given west ordering.

Definition 23 The inference rule of (equational) ordered paramodulation with re-
spect to > is:
l~r s~t
(slrlp = t)o

where 0 = mgu(s|p,!), the most general unifier of s|, and [, where s|, is not a
variable, and [is maximal in its premise, that is, for some ground substitution 6, it
holds that lo8 > rod.

As said, the usefulness of the ordering restrictions in practical applications de-
pends on the way the west ordering - is given. For example, if only an approximation

46 CHAPTER 4. PARAM. W. NON-MONOTONIC ORDERINGS

is given by a non-total ordering >, on terms with variables such that s >, t implies
so > to for all ground o, then the inference is not needed if, for instance, ro >, lo.

We now define, by induction on »,,4, a ground TRS Rg generated by a set of
equations E:

Definition 24 Let E be a set of equations. An instance e of the form [~ r of an
equation in E generates the rule I — r if

1. I > r,and
2. !l and r are irreducible by R,

where R, is the set of rules generated by all instances d of equations in E such that
e »mu d. We denote by Rg the set of rules generated by all ground instances of E.

The previous construction is similar to the one of [BG94b] we explained in detail
in Chapter 3, but here the rules are oriented only by a (possibly non-monotonic) west
ordering. Hence the termination of Rg has to be ensured otherwise, and therefore
we require not only the left hand sides to be irreducible, but also the right hand
sides.

Property 25 Let F be a set of equations. Then for all rules ! — r in Rg we have

1. r is irreducible by Rg
2. lis irreducible by Rg \ {{ = r}

Proof: For the first property, by construction, if an instance e generates | — r, the
term r is irreducible by R.. Since [> r, and > is irreflexive and fulfils the subterm
property, clearly | — r itself does not reduce r either. Finally, for every rule I’ — r/
generated by an instance d with d >, e, we must have I’ > [and hence I’ > r
which implies that I’ cannot be a subterm of r either.

For the second property, by construction, if an instance e generates [— r, then
the term [is irreducible by R.. Now, as before, for every rule I’ — r’ generated by
an instance d with d >, € we must have [’ > [. Since I’ must be irreducible by Ry
which contains { — r we have I’ # [, and hence !’ = [, which implies that !’ cannot
be a subterm of [. g

Lemma 26 For every set of equations E, the ground TRS R, is convergent.

Proof: Termination follows by Property 25.1 and Lemma 20. For confluence, since
Rpg is terminating, by Newman’s lemma we only need to show that Rg is locally
confluent, which holds by Property 25.2. a

4.5. A SLIGHTLY STRONGER PARAMODULATION RULE 47

Theorem 27 Let F be a set of equations closed under ordered paramodulation
with respect to a west ordering >. Then R} = E.

Proof: Since Rg is terminating, by Lemma 22 it follows that —->§E is a reduction
ordering. We now proceed by induction on the well-founded ordering on ground
equations (—-)EE)muz, denoted in the remainder of this proof by »~pg. A contradiction
is derived from the existence of a minimal w.r.t. > ground instance e of the form
so =~ to of an equation s ~ t in E such that RE }~ e. Since R} F e, the equation
e is not a tautology of the form u ~ u, and hence one its sides is strictly larger
w.r.t. the (total) ordering > than the other one. Moreover, again since Ry [~ e, the
equation e has not generated any rule of Rg. This must be because either so or to
is reducible by R.. Then there exists some equation [~ r that has generated a rule
lo — ro reducing so or to. We consider the case where so is reducible; the other
one is analogous. Now we have so|, = lo, and there are two possibilities:

(1) An inference: s|, is a non-variable position of s.

Then there exists an inference by ordered paramodulation:

I~r s~t
(slrlp = t)0

whose conclusion has an instance d of the form (s[r], ~ t)o, such that e g d and
R% ¢ d, contradicting the minimality of e. Note that this inference satisfies the
ordering constraints of ordered paramodulation, since lo > ro.

(ii) Lifting: s|y is a variable z for some prefix p’ of p.

Then p = p' - p” and zo|yw is lo. Now let o’ be the ground substitution with the
same domain as o but where zo’ = zo[ro],» and yo’ = yo for all other variables y.
Then R} }£ so’ =to’ and eo >p eo’, contradicting the minimality of e. a

4.5 A slightly stronger paramodulation rule

In the proof of termination of Rg (lemma 26) we can as well use lemma 21 instead of
lemma 20. More precisely, we only need the right hand sides of the rules in Rg to be
irreducible at non-topmost positions (instead of being completely irreducible). Due
to this observation, we can restrict our paramodulation rule avoiding its application
at topmost positions of small sides of equations. Then we obtain the following strict
ordered paramodulation rule:

Definition 28 The inference rule of (equational) strict ordered paramodulation
with respect to > is:
I~y st

48 CHAPTER 4. PARAM. W. NON-MONOTONIC ORDERINGS

where o0 = mgu(s|p,), the most general unifier of s}, and I, where s|, is not a
variable, and [is maximal in its premise, and if p = A then s is also maximal in its
premise, that is, for some ground substitution 4, it holds that o8 >~ ro8, and, if
p = A then we also have sof = tof.

Now to prove theorem 27, we slightly modify Definition 24, the generation of
RE, obtaining the following variant of it:

Definition 29 Let E be a set of equations. An instance e of the form [~ r of an
equation in E generates the rule [— r if

1. 0%,
2. 1 is irreducible by R, and

3. r is irreducible by R, at non-topmost positions.

where R, is the set of rules generated by all instances d of equations in E such
that e >4 d. In the remainder of this section, we denote by Rg the set of rules
generated by all ground instances of E.

We can now adapt Property 25, and prove it analogously. From this property,
lemma 26 holds as before but using lemma 21 to conclude termination. -

Property 30 Let E be a set of equations. Then for all rules [— r in Rg we have
1. r is irreducible by Rg at non-topmost positions.

2. 1 is irreducible by Rg \ {{ — r}.

Now we adapt the proof of Theorem 27 for the strict ordered paramodulation
rule.

Theorem 31 Let E be a set of equations closed under strict ordered paramodu-
lation with respect to a west ordering ». Then R} |= E.

Proof: As in Theorem 27, we proceed by induction on the well-founded ordering
on ground equations >pg, deriving a contradiction from the existence of a minimal
w.r.t. »pg ground instance e of the form so ~ to of an equation s >~ ¢t in E such that
R}, I~ e. Since so cannot be equal to to, we assume w.l.o.g. that so > to.

The equation e has not generated any rule because so is reducible by R, or to is
reducible by R, at a non-topmost position. Then there exists some equation [>~ r
that has generated a rule lo — ro, which reduces so or to. The case where so is
reducible is analogous as in Theorem 27. For the other case we have to(, = lo, for
some position p # A. If p is below a variable position in ¢ then we apply the same

4.6. THE HORN CASE 49

lifting argument as in Theorem 27, and otherwise, since p # A, we can conclude
as well by the existence of an ordered paramodulation inference with a smaller
conclusion. a

This strict ordered paramodulation rule of Definition 28 will be adapted for the
Horn case and the case of general clauses in Sections 4.6 and 4.7 respectively, and
the non-strict one of Definition 23 will be used to obtain the results on unfailing
Knuth-Bendix completion in Chapter 5.

4.6 The Horn case

In this section we generalise the results of the previous section to Horn clauses. In
the following inference system it is assumed that in each clause with a non-empty
antecedent one of these negative equations, the one that is written underlined, has
been selected (see Chapter 3 and [BG98]). In the Horn case this leads to positive
unit strategies (and in the non-Horn case to positive strategies): left premises of
paramodulations are unit clauses, and the only inferences involving non-unit clauses
are equality resolution or paramodulation left on its selected equation.

Definition 32 The inference system H for Horn clauses with réépect to the west
ordering »~ is defined as follows:

paramodulation right:
—l~r - s>t
= (s[r]p >~ t)o

where o = mgu(l, s|p)

paramodulation left:
—lr Ms~t— A
(T, s[rlp~t = A)o

where o = mgu(l, s|p)

equality resolution:
Is~t— A

——&F_‘—j—A-)—a— where ¢ = mgu(s, t)

where moreover in both paramodulation rules s|, is not a variable, ! is maximal in

its premise, and if p = A then s is also maximal in its premise, that is, for some

ground substitution 8, it holds that lo8 > rof, and, if p = A then also sof ~ to#.

Definition 33 Let S be a set of Horn clauses. We denote by Es the subset of all
positive unit clauses in S, thatis, Es ={s~t | - s~t € S}, and we denote by
Rs the set of rules generated by Eg as in Definition 29 (i.e. Rs = Rg,).

50 CHAPTER 4. PARAM. W. NON-MONOTONIC ORDERINGS

The following constructions follow the same lines as the model generation method
explained in Chapter 3. We now use multiset extensions for lifting orderings > on
terms to orderings on equations and clauses. Let C be a ground clause, and let
emul(s ~ t) be {s,t} if s ~ t is a positive equation in C, and {s,s,t,t} if it is
negative. Then, if > is an ordering, we define the ordering >, on (occurrences of)
ground equations in a clause by e > €’ if emul(e) =, emul(e’). Similarly, >, on
ground clauses is defined C =, D if mse(C) (>mut)mut mse(D), where mse(C) is
the multiset of all emul(e) for ocurrences e of equations in C.

Theorem 34 (refutation completeness of # for Horn clauses)
Let S be a set of Horn clauses closed under H. Then O € S if, and only if, S is
unsatisfiable.

Proof: The left to right implication is trivial. For the other one, let S be a set
of clauses closed under H such that O ¢ S. As in Theorem 27, we proceed by
induction on >2s, which will be denoted in the remainder of this proof by >g. This
ordering is monotonic where needed (see the cases below) and well-founded. Again
it is proved that R% is a model of S by deriving a contradiction from the existence of
a minimal w.r.t. >pg ground instance C of a clause in S such that Ry [£ C. Since Eg
is closed under strict ordered paramodulation, by Theorem 31, we have RS = Es,
and therefore C' cannot be a positive unit clause. Two cases have to be considered:

1. C is an instance I'o, sg ~ to — Ao of a clause I', s >t — A, where so = to.
Then there is an inference by equality resolution

Is~t—= A
(= A)d

whose conclusion has an instance D of the form I'c =+ Ao such that C »=p D
and moreover, D is in S and R} [~ D, which is a contradiction.

2. C'is an instance 'o,s0 >~ to — Ao of a clause I',s >~ ¢t — A, where, w.l.o.g.,
so = to.

Then, since R £ C, we have R} |= so ~ to, and, since Rg is convergent, there
must be a rewrite proof of so =~ tg by Rgs, that is, so and to must rewrite
into the same normal form by Rs. This implies that either to is reducible
at a non-topmost position or else so is reducible. (Note that it cannot be
the case that the only possible reduction step on so ~ to is at the topmost
position of to. By such a step, a new term ¢’ is obtained with to > t’ and ¢/
again irreducible at non-topmost positions; since so > to, such a sequence of
topmost steps on to can never produce so).

4.7. GENERAL CLAUSES 51

Then either the lifting argument applies like in Theorem 27, or else there is
an inference by paramodulation left:

iy Dsxto A
(L, s[rlp~t — A)d

whose conclusion has an instance D of the form (I', s[r], >~ t = A)o such that
C »r D and R% £ D, which is a contradiction. o

4.7 General clauses

Now we consider general clauses. As for the Horn case, we consider that in each
clause with a non-empty antecedent one of its negative equations, the one that is
written underlined, has been selected.

Definition 35 The inference system Z with respect to the given west ordering >
is defined as follows:

paramodulation right:
—»>lrA s>t A
(= s[rlp~t,A,A)o

where o =mgu(l, s|p)

paramodulation left:
—l~r,A T,sxt— A
(Tyslrlp~t = A, Ao

where o =mgu(l, s|p)

equality resolution:
Misxt— A
2 oo e t
By where o =mgu(s,t)
equality factoring:
Ss~t, s~ A
(txt 5 s>t A)o

where o =mgu(s, s')

where in both paramodulation rules s|, is not a variable. The ordering restrictions
are as follows:

In paramodulation right, [is strictly maximal in [~ r, and [~ r is the strictly
maximal equation in its premise, and if p = A, then s is strictly maximal in s =~ ¢
and s ~ t is the strictly maximal equation in its premise. Formally: for some ground
substitution 6 it holds that lo8 > rof and (I ~ r)of >, eof for all equations e in
A, and if p = A, then sof > tof and (s ~ t)g0 > ecl for all equations e in A’.

52 CHAPTER 4. PARAM. W. NON-MONOTONIC ORDERINGS

In paramodulation left, [is strictly maximal in [~ r, and | ~ r is strictly
maximal in its premise, and if p = A, then s is strictly maximal in s ~ ¢.

Finally, in equality factoring, s is strictly maximal in s ~ ¢ and s ~ ¢ is maximal.

Definition 36 Let S be a set of clauses. An instance C of the form — [~ r, A of
a clause in S generates the rule [— r if

cEC,
I>r,and (I ~r) >, e for all equations e in A,
! is irreducible by R,

r and A are irreducible at non-topmost positions by R¢

ook W

R} |=r o~ t for no equation I ~ ¢ in A.

where R¢ is the set of rules generated by all instances D of clauses in S such that
C »¢ D. In the remainder of this section, we denote by Rg the set of rules generated
by all ground instances of S.

Again we have the following property which implies convergence of Rs.

Property 37 Let S be a set of clauses. Then for all rules I -3 r in R we have
1. r is irreducible by Rg at non-topmost positions.

2. lis irreducible by Rg\ {l — r}.
Lemma 38 Let S be a set of clauses. Then the ground TRS Rg is convergent.

Lemma 39 Let S be a set of clauses. If —+ [o~ r, A is an instance C of a clause in
S that generates the rule [— r in Rg, then RS [A.

Proof: We first prove that if R |= s ~ ¢ for ground s and ¢ that are irreducible
at non-topmost positions and such that s = ¢, then no rules with left hand sides
greater than s (w.r.t. >) are used in the rewrite proof. We proceed by induction on
the size of s ~ ¢t w.r.t. >,u. The first step can only apply at topmost position of s
or t. If it is on ¢ then we obtain s ~ r, where ¢t — r is the applied rule in Rg, and
hence s > t » r, by definition of Rg, and r is irreducible at non-topmost positions
by Property 37. 1, and then we can conclude by induction hypotheses. Otherwise,
we obtain r o t, where s — r is the applied rule in Rg, and hence as before s > r
and r is irreducible at non-topmost positions. If r = t we are done, and otherwise if
r =t ort > r we can conclude by induction.

Now, assume s ~ t is a ground equation in A with a rewrite proof using Rs and
such that s > ¢t. The rules generated by clauses D with D >, C cannot be used,

4.7. GENERAL CLAUSES 53

since they have left hand sides greater than ! and hence greater than s w.r.t. >, and
s and t are irreducible at non-topmost positions. But since Ry = s ~ t the rule
! — r is used. Hence s =1 and s ~ t rewrites into r =~ ¢, to which [-+ r cannot be
applied any more, which contradicts the last condition of Definition 36. O

We now introduce a well-founded ordering > g that will be used in the proof of
Theorem 43. In contrast to the Horn and equational cases, it does not coincide with
+
=5
Rg

Definition 40 Let S be a set of clauses. By »pg we denote the smallest transitive
relation such that s>-pt whenever (i) s =% ¢t or (i) s > ¢t or (iii) s and ¢ are
irreducible at non-topmost positions w.r.t. Rg and s > ¢.

The ordering g fulfils the following properties wrt. Rs.

Property 41 Let S be a set of clauses. Then for all ground terms s and ¢ s.t. s is
irreducible at non-topmost positions and s> gt we have

1.s>t

2. t is irreducible at non-topmost positions

Proof: If s>-pt by case (ii) or (iil) it trivially holds. Otherwise, s = pg; 51 —Rs
... —*Rg Sn —*Rg t. Since s is irreducible at non-topmost positions and, by prop-
erty 37.1, all right hand sides of rules in Rg are irreducible at non-topmost positions,
all steps in the sequence are at topmost positions, which implies on one hand that ¢
is irreducible at non-topmost positions, and on the other, by definition of Rg, that
> 81 > ... Sq > L.]
Lemma 42 Let S be a set of clauses. Then —)ES is a reduction ordering and >p
is well-founded.

Proof: Since Rg is a terminating TRS, —)ES is a reduction ordering by Lemma 22.
Now assume > g is not well-founded. Since (—-)I"i s U >)t is well-founded by Lemma 19,
there is also some such infinite sequence t;, >g t2 >gr t3>gr... starting with case
(ili): where t; and t, are irreducible w.r.t. Rs at non-topmost positions and t; > ts.
Then, by Property 41, t3, t4 etc, are all irreducible at non-topmost positions, and
t1 > t2 > t3... w.r.t. the well-founded west ordering >, which is a contradiction. O

Theorem 43 (refutation completeness of Z for general clauses)
Let S be a set of clauses closed under 7 with respect to a west ordering >. Then
O € S if, and only if, S is unsatisfiable.

54 CHAPTER 4. PARAM. W. NON-MONOTONIC ORDERINGS

Proof: We prove that if O ¢ S then RY is a model of S by induction on (>g)c, which
is a well-founded ordering on clauses. In the following, we (ambiguously) write >~p
for terms, equations and clauses instead of >R, (>Rr)e and (>gr). respectively. We
derive a contradiction from the existence of a minimal w.r.t. > ground instance C
of a clause in S such that R§ £ C.

1. We first consider the case where C' is an instance with o of a positive clause
— s~ t,A, where so ~ to is strictly maximal with respect to =, in C and w.Lo.g.
so > to. Since R% (& C, we know C has not generated any rule due to one of the
following reasons:

la. to is reducible by R¢ at a non-topmost position. Then there exists some clause
— | ~ r,A’ in S whose instance C' with C' ». C’ generates the rule lo — ro
reducing to.

If, for some prefix p’ of p, the term t|, is a variable z, then the same lifting
argument as in proof of Theorem 27 applies.

Otherwise, t|, is a non-variable subterm of ¢, and there exists an inference by
paramodulation right:

—~l~r A st A
(= s~ tr]p, A, A)0

whose conclusion has an instance D of the form (— s =~ t[r],, A, A’)o such that
by Lemma 39 R§ ¢ D. This contradicts the minimality of C since C'-grD for
the following reasons: mse(C) = mse(A) U { {so,to} } and mse(D) = mse(A) U
{ {so,to[ro]p} }Umse(A’). Then we need to prove that {so,to}> gy {so,to[rolp}
and (so ~ to)>pgeo for all equations e in A’. The first one holds since, by mono-
tonicity of ——)}’is, we have to[lo],>-gto[ro],. For the second one, we have lo > uo
for all terms u in A’, and since they are also irreducible at non-topmost positions,
we have lo »g uo. Furthermore to>pglo, since to > lo, which implies to>pguo for
all terms u in A’, and hence we can conclude.

1b. so is reducible by Rc and case la. does not apply. Then we argue as in the
previous case by lifting or an inference in s whose conclusion has an instance D of
the form (= s[r], ~ t,A, A')o, contradicting the minimality of C. Here C'>~gD
if p # A as in the previous case. If p = A then (so =~ to)>pgeo for all equations
e in A’: since C ». C', and so ~ to is the strictly maximal equation of C, we
have (so ~ to) =, (lo ~ ro) =, eo, and since all these equations are irreducible at
non-topmost positions, (s ~ to)=pgeo.

1c. An equation uo ~ vo in A is reducible by R¢ at a non-topmost position. The
proof is like case la.

1d. None of the previous cases applies and A is of the form s’ ~ ¢/, A’ where
so = s'o and R% |= to ~ t'o, that is, the last condition of Definition 36 fails. Then

4.8. REDUNDANCY AND CONSTRAINTS 55
there exists some inference by equality factoring

s>t s ~t A
(t~t 5 s~t, A"

whose conclusion has an instance D such that Rg = D. This contradicts the min-
imality of C: since so, to, and t'c are irreducible at non-topmost positions, and
s'o > to and s'o >~ t'o, we have C~grD.

2. If C is an instance with ¢ of —» s ~ t, A, where so ~ to is maximal but not
strictly maximal with respect to >, in C, then condition 2 of Definition 36 fails. If
so ~ to is reducible at non-topmost positions, then the same reasoning as in case
la. applies. Otherwise, the proof of case 1d. applies.

3. If C is an instance with o of a clause I', s ~ t = A, where so = to, we conclude,
as in the proof of Theorem 34, by equality resolution.

4. If C is an instance with o of a clause I's ~ ¢t — A, where so # to. Then
R% |= so ~ to. Then, since Rs is convergent, there is a rewrite proof for so ~ to.
W.l.o.g. assume so > to. This implies that either so is reducible or to is reducible
at a non-topmost position (otherwise the only possible reduction step is at the top
of to and a new term t’ is obtained with to > t' and ¢ again irreducible except at
the top; since so > to, a sequence of topmost steps on to can never produce so).
Then, as before, either the lifting argument applies or there is an inference by
paramodulation left (we only develope the case where the step takes place in s):

—l~r A [sxt— A
T srp=t— A, A)0

whose conclusion has an instance D of the form (T, s{r], ~t — A, A’)o such that
% P D. This is a contradiction as before, since also here C'-rD for the following
reasons: we have so D> lo and hence so »p lo. We also have lo>pgro, and lo ~
ro>-pruo =~ vo for all equations u ~ v in A’ and hence
{SO’, so,to, t0}>’Rmul{laa ra’}*Rmul{uav ‘UO‘}. =

4.8 Redundancy and constraints

In this section we shortly mention the applicability of techniques for redundancy
elimination and constraint inheritance in the context of this chapter.

There are standard ways for uniformly covering simplification and deletion tech-
niques that are compatible with refutation completeness by notions of redundancy
for inferences and clauses, where saturation amounts to the closure under Z up to
redundant inferences.

56 CHAPTER 4. PARAM. W. NON-MONOTONIC ORDERINGS

In the setting of this chapter, there is an important difference, however, because
two different orderings are considered. The inferences are computed w.r.t. the west
ordering >, and the completeness proof uses the reduction ordering >pg. Unfortu-
nately, redundancy should hence be defined w.r.t. »pg, which is unknown during
the saturation process. But in many cases it is clear that »pg can be sufficiently
approximated. For example, practical redundancy notions like tautology deletion or
subsumption are (trivially) correct w.r.t. any >pg.

Ordered paramodulation is a very adequate inference rule for dealing with con-
strained clauses and the basic strategy. These ideas are directly applicable here:
subterms created by unifiers of inferences on ancestors can be blocked for inferences,
and in our setting this is true also for proper subterms of the term ro (which are
irreducible by Rg in our proof) in the conclusions of paramodulation inferences.

4.9 Conclusions

One may wonder whether more restrictive inference systems could be complete as
well. But a number of negative results have been obtained, which are best described
by the following counterexamples.

Example 44 Inferences on non-maximal positive atoms are needed: if the incon-
sistent set S consists of the clauses

— P(b,b), P(a,b)
P(b,b), P(a,b) —

—ac~b

with a west ordering > where ¢ > b and P(b,b) » P{a,b), then the only other
possible inference produces the tautology P(a,b) — P(a,b).

Example 45 Also inferences on small sides of positive equations are needed: if the
inconsistent set S consists of the clauses

—a~b
— g(b) ~ g(g(a))
z~g(z) —

with a west ordering >~ where a > b and g(b) > g(g(a)), then the only other possible
inferences produce clauses of the form b ~ ¢"(b) — and b~ g"(a) — for n > 1.

4.9. CONCLUSIONS 57

Example 46 Also inferences on small sides of negative equations are needed: if
the inconsistent set of clauses S is

—a~b

f(z,z) = f(a,b)
with a west ordering > where f(a,a) > f(a,b)and f(b,b) > f(a,b), then S is closed.

Example 47 [Lyn97] For arbitrary selection strategies, these techniques are in-
compatible with tautology deletion. Consider the set

1. — P(c,b,b)
2. P(c,¢,b),P(c,b,c) mb~c

3. P(c,4,) = P(,y,)
4. P(z,y,y) = P(z,z,y)
5. P(c,c,c) —

This clause set is inconsistent: from 1. and 3. we get P(c, b, c), and from 1. and 4.
we get P(c,c,b); these two atoms together with 2. produce b ~ ¢, which gives the
empty clause with 1. and 5. But the empty clause cannot be obtained by ordered
paramodulation on non-tautology clauses with an ordering where b > ¢, and where
always the positive literals are selected (except in clause 5., which has none). In
fact, the only new clauses obtained are tautologies.

58

CHAPTER 4. PARAM. W. NON-MONOTONIC ORDERINGS

Chapter 5

Knuth-Bendix completion

In this chapter a well-known open problem concerning the Knuth-Bendix completion
procedure is solved. It was posed by N. Dershowitz and J-P. Jouannaud on the RTA
list of open problems [RTA01] since its creation in 1991.

5.1 Introduction

As explained in Subsection 1.1.1 of Chapter 1, the aim of the Knuth-Bendix com-
pletion procedure is to build a convergent rewrite system R for a given a set of
equations E and an ordering > on terms. In fact, all current state-of-the-art the-
orem provers in pure equational logic, like Waldmeister [HBVL97)], are based on
variations of the Knuth-Bendix completion procedure. When given an ordering >
that can be extended to a total reduction ordering on ground terms, this procedure
is complete in the sense that it always finds a (possibly infinite) convergent TRS
R, logically equivalent to E, contained in ». This is very useful for automatically
proving that an equation s ~ ¢t follows from a set of equations F, because after a
finite number of steps of such a procedure always a TRS R is reached by which a
rewrite proof for s ~ ¢ exists.

But a rewrite system already terminates if > is only a reduction ordering (in
fact, a rewrite system terminates if, and only if, it is contained in a reduction
ordering). Hence a very natural (frequently asked) question is: what happens if we
apply completion with a given desirable orientation by a reduction ordering that
cannot be extended to a total one, like f(a) — f(b) and ¢(b) — g¢(a), for which
a and b must be uncomparable in any monotonic extension? Here this question is
answered affirmatively: by a careful further analysis of our technique, we obtain the
first practical Knuth-Bendix completion procedure that finds a convergent TRS for
a given set of equations F and a (possibly non-totalizable) reduction ordering >
whenever it exists. Note that for arbitrary reduction orderings it does not always

59

60 CHAPTER 5. KNUTH-BENDIX COMPLETION

exist: in each E-congruence class there should be a single minimal element. For
example, if E = {a ~ b, a >~ c} then one of a, b or ¢ should be smaller than the other
two. ’

In this chapter, E denotes a set of equations and >, a reduction ordering on
T(F,X). Then a convergent TRS for E and », is a convergent TRS, logically
equivalent to F, and such that [>, r for all its rules I — r. The problem we deal
with is finding a convergent TRS for the given E and >, whenever it exists, and
find it in finite time if it is finite.

5.2 A theoretical procedure

It is not difficult to devise a procedure of theoretical nature, i.e., without much
practical value, for finding a convergent TRS for F and »,. The idea is to sys-
tematically enumerate all equational consequences of F, say sy ~ t;,82 ~ t,... If
a finite convergent TRS R exists, there exists some (probably huge) ¢, such that
R is contained in (the orientations of) a subset of {s; =~ t;,...,s; ~ t;}. One can
find this R by periodically checking during the enumeration process whether (i) the
subset R of orientable (with »,) rules of {s; >~ t;,...5; =~ t;} is confluent and (ii)
whether R entails E. The confluence of R can be decided by checking joinability of
all its critical pairs. After this, entailment of F can be decided by rewriting.

The following lemma states that, after enumerating 7 equational consequences of
E, it is not necessary to check for confluence of the orientations for each subset of
{s1 ~ t1,...,8 =~ t;}, but that it suffices to consider the orientations of the whole
set {s; >~ ¢y,...,8; = t;}, because unnecessary rules do not destroy convergence.

Lemma 48 Let E be a set of equations, let >, be a reduction ordering on T'(F, X),
and let R be a convergent TRS for E and >,. Let R’ be any set of rules [— r such
that { =, r and E =1~ r. Then RU R’ is a convergent TRS for E and >,.

Proof: Clearly all critical pairs between rules in R U R’ are logical consequences of
E. Since R is a convergent TRS for E, all these critical pairs have rewrite proofs by
R, i.e., they are joinable. Hence RU R’ is a convergent TRS for E and »,. a

The TRS R found in this way may not be minimal, that is, it may have some
proper subset R’ that is also a convergent TRS for E and ., but such a minimal
TRS always exists, and it can be effectively computed from a finite R:

Lemma 49 ([DMT88]) For every convergent TRS its unique canonical! version
can be obtained by interreducing it by (i) normalizing all right hand sides and then
(ii) removing all rules whose left hand sides are reducible by other rules.

!Unfortunately, the word canonical is sometimes also used as equivalent of convergent.

5.3. PRACTICAL PROCEDURES 61
5.3 Practical procedures

Regarding practically useful procedures, Devie showed that for left- and right linear
E (i.e., no variable occurs more than once in a side of an equation) standard Knuth-
Bendix completion finds R [Dev90]. For the general problem, the previously existing
procedures still relied on the enumeration of all equational consequences (see e.g.,
[Dev92]).

In the following, R will denote the canonical TRS for E and >, (we assume R
exists), and we denote by Ry the canonical TRS for gnd(R), the set of all ground
instances of rules of R.

The following lemma strengthens the uniqueness result of [DMT88] to TRS in-
cluded in a west ordering, but only for the ground case:

Lemma 50 Let > be a west ordering, and let R; and Ry be interreduced TRS
over T'(F), both included in >, and such that R} = R3. Then Ry = Rj3.

Proof: Consider the rule ! — r in (R; U Rp) \ (R; N Ry) with minimal ! w.r.t.
>. Assume wlo.g. ! = r € Ry. Since R} ! ~ r and hence R} = [~ r and
R, is convergent, there must be a rewrite proof by R, for | ~ r. But, since R, is
interreduced, r and all strict subterms of [are irreducible w.r.t. Ry, and hence also’
w.r.t. Ry, since any rule reducing them has a lhs smaller than ! w.r.t. . Hence there
is a rule I — r/ in Ry. But then r’ and r are both irreducible by Ry and Ry Er o~ r'.
This implies that r and r’ are the same term, contradicting the assumption that
I—=r ¢ Rs. O

In the following we rely on some definition given in Chapter 4. We consider the
ordered equational paramodulation rule given in Definition 23 w.r.t. a west ordering
> extending >, and the ground TRS Rg as in Definition 24. Then, by Property 25,
for all rules ! — r in Rg we have that | > r, that r is irreducible by Rg and that !
is irreducible by Rg\ {l - r}.

Lemma 51 Let E’ be the closure of £ under ordered equational paramodulation
w.r.t. a west ordering > extending >,. Then Ry = Rg:.

Proof: By Theorem 27 we have Ry, = E’, and hence Ry, | E, and hence E* = Ry,
since all rules in Ry are logical consequences of E. Furthermore, we clearly have
E* = R* = R}, and hence R} = Rf,. We also have B; C -, C >, and Rgr C .
Therefore, since both are interreduced we conclude by Lemma 50 that Rg = R,. O

Now we come to the main theorem of this chapter. It says that R is a subset
of the closure of E under the inference rule of ordered paramodulation (which we
recall here from Definition 23):

62 CHAPTER 5. KNUTH-BENDIX COMPLETION

where o = mgu(s|p,!) and s|, is not a variable, and with ordering restrictions saying
that the inference is not needed if ro >, lo (or, more generally, that the inference
is needed only if lof > rof for some ground substitution 8, where > is the west
ordering extending >.).

Theorem 52 Let E' be the closure of F under equational ordered paramodulation
w.r.t. a west ordering > extending >,. Then E' D R.

Proof: W.l.o.g. assume there are sufficiently new constants in F that do not occur
in E or R. Let I — r be an arbitrary rule in R. We prove that | ~ r € E’. Let
o be the ground substitution replacing each variable with a distinct new constant.
Then lo — ro is in gnd(R) and also in Ry: since R is interreduced, r is irreducible
w.r.t. R (and hence ro by gnd(R)), and ! is irreducible w.r.t. R\ {{ = r} (and
hence lo by gnd(R) \ {lo — ro}). If lo = ro is in R, and by the previous lemma
Ry, = Rgy, then lo — ro is in Rgs. Since the new constants do not occur in E, if
lo = ro € Rgy, then some I’ ~ ' is in E’, and lo = I'f¢ and ro = r'fc for some
6. We conclude by showing that 6 is the identity substitution: there is no equation
' =~ ' that strictly subsumes a rule in R; otherwise, the rewrite proof by R of I’ ~ r/
would apply some rule different from ! — r, which would then also reduce I — r,
contradicting [— r € R. =]

In Chapter 9 some interesting research directions are given concerning Knuth-
Bendix completion with (non-totalizable) reduction orderings.

Chapter 6

Completeness of Arbitrary
Selection Strategies

A crucial way for reducing the search space in automated deduction are the so-called
selection strategies: in each clause, the subset of selected literals are the only ones
involved in inferences. For first-order Horn clauses without equality, resolution is
complete with an arbitrary selection of one single literal in each clause [dN96]. For
Horn clauses with built-in equality, i.e., paramodulation-based inference systems,
the situation is far more complex.

In this chapter we show that if a paramodulation-based inference system is com-
plete with eager selection of negative equations and, moreover, it is compatible with
equality constraint inheritance, then it is complete with arbitrary selection strate-
gies. A first important application of this result is the one for paramodulation wrt.
non-monotonic orderings, which was left open in Chapter 4.

6.1 Introduction

As explained in Chapters 1 and 3, a crucial way for reducing the search space
in automated deduction are the so-called selection strategies. In such strategies
the possible inferences between clauses are restricted to the ones involving selected
literals. This selection can be done in several different ways. Well-known examples of
selection strategies are the mazimal (or ordered) strategies for a given atom ordering.
For example, in a maximal resolution strategy, a (ground) inference between AV C
and AV D is performed only if A is larger in the given atom ordering than all other
atoms in C and D. Another well-known selection strategy is the so-called eager
negative selection strategy, where in each clause a single negative literal is selected
whenever there is any. This leads to the so-called positive strategies (positive unit
strategies in the Horn case) because always the left premise of each (resolution or

63

64 CHAPTER 6. COMPLETENESS OF ARBITRARY SELECTION

paramodulation) inference is a positive (unit) clause. These strategies are usually
easier to prove complete, but sometimes they are not very efficient, because, roughly
speaking, one enumerates all solutions of its conditions before using the positive
information of a clause (as discussed in [Der91]).

For first-order Horn clauses without equality, resolution is complete with an arbi-
trary selection of one single literal in each clause ([dN96], Theorem 6.7.4). For Horn
clauses with built-in equality, i.e., paramodulation-based inference systems, the sit-
uation is far more complex. In [Lyn97] some positive and negative results are given
for the case where a total reduction (well-founded, monotonic) ordering on ground
terms is given. Then arbitrary selection strategies are compatible with superposition
(that is, paramodulation involving only maximal sides of equations). Also condi-
tions for eliminating redundant clauses are given in [Lyn97], and counter examples
indicating the limitations for doing so. For example, in certain circumstances the
elimination of tautologies can lead to incompleteness.

In this chapter we obtain a more general result for Horn clauses with equality,
namely that, if a paramodulation-based inference system is complete with eager se-
lection of negative equations and, moreover, it is compatible with equality constraint
inheritance (like, in particular, it happens for superposition), then it is complete with
arbitrary selection strategies.

Our completeness result is based on transformations of proof trees. Its general-
ity allows us to obtain directly the completeness of arbitrary selection strategies for
other inference systems, apart from the one of superposition with total reduction
orderings. A first important application of our result is the one for paramodulation
with non-monotonic orderings of Chapter 4, where the completeness of strategies
different from eager negative selection was left open. There, techniques for dropping
the monotonicity requirement were introduced, with the only properties required for
the ordering being well-foundedness and the subterm property. However, the infer-
ence system of Chapter 4 still required the eager selection of negative equations. In
Section 6.4 we show that those results are compatible with equality constraint inher-
itance and hence with the basic strategy, thus further restricting the search space.
Therefore, our transformation method is applicable, and we obtain the completeness
of the same inference system but with arbitrary selection strategies.

The structure of the chapter is the following. In Section 6.2 we present our
transformation method for proofs, and in Section 6.3 we give our main result on
completeness of arbitrary selection strategies. In Section 6.4 we apply this new
technique to the case of the inference system of Chapter 4. Finally, in Section 6.5
we give some conclusions.

6.2. THE TRANSFORMATION METHOD 65
6.2 The transformation method

In the following we deal with inference systems that are based on some selection
strategy. A selection strategy is a function from ground clauses to non-empty sets of
literals, such that the selected literals for a clause appear in the clause. An inference
between two ground clauses is allowed only if the literals involved in the inference
are selected. As usual, a non-ground inference represents all its ground instances
fulfilling the required conditions. In our case, a non-ground inference is allowed only
if, for some ground instance of the inference, the involved literals are selected.

Our hypothesis in this section is that we have at hand a paramodulation-based
inference system N for first-order Horn clauses, which is compatible with equality
constraint inheritance and complete with a concrete strategy with eager selection of
negative equations. Let A consist of the following inference rules:

paramodulation right:

=l~r| T —s~t| T,
= slrlp>t|slp=IATIAT;

if sl g &

paramodulation left:

—“lxr|T Dsxt— A | T,
Dislrlp~t = Alslp=IATI AT,

ifslp gX

equality resolution:

D)sxt—> AT
F>A|ls=tAT

where the equations written underlined must belong to the set of selected literals.
Here = is interpreted as the syntactic equality relation = when dealing with in-
stances. That is, we forbid those instances of the conclusion that correspond to
ground inferences between instances of the premises for which the constraints do
not hold. .

Our aim is to prove completeness of the following inference system A, which is a
modification of A allowing an arbitrary selection strategy where a single arbitrary
literal is selected in each ground clause:

paramodulation right:

Iy =lor|Ty Tyosct|Th
FI,FZ—)S[T‘]pﬁt'Slp:l/\Tl/\Tg

ifslp g X

66 CHAPTER 6. COMPLETENESS OF ARBITRARY SELECTION

paramodulation left:

Fl—-)lﬁ.‘rlTl I‘g,s:t—>A|T2
Pl,Pg,s[r]pzt—)A|s|p=l/\T1/\T2

ifslpg X

equality resolution:

Msxt—- AT
F>Als=tAT

In order to prove the completeness of A we will proceed as follows. Assume
S is a set of constrained clauses that is closed under .A. Furthermore, let P be
a proof by A deriving the empty clause from S. Then we will show that if P is
non-trivial, i.e., it has more than zero steps, then there exists another proof by N
from S of the empty clause with a smaller number of steps. By induction on this
proof transformation process, it follows that the empty clause belongs to S.

Let S be a set of constrained clauses and let C | T be a constrained clause that
is in the closure of § wrt. M. Then, as usual, the proof by N of C | T from S can
be expressed as a tree rooted by C' | T, and whose leaves are in S. Now assume T is
satisfiable, and let o be a ground solution of 7. Furthermore, o can be taken such .
that its domain contains all variables ocurring in the proof. Therefore we can deal
with ground proofs where the constraints are replaced by their solution o (where a
ground substitution o itself is seen as an equality constraint): by a (ground) N -proof
P of C | o from S we mean a proof tree by A, whose nodes are clauses of the form
D | o, and whose leaves are clauses D' | ¢ where D' | T’ isin S and ¢ = T"'. By
steps(P) we refer to its number of proof steps (or, equivalently, to its number of
non-leaf nodes). The following is an example of an A/-proof.

Example 53
z~a—-bxc|lz=a
—“c~alz=a —b~c|lz=a
—b~alz=a

When dealing with A-proofs, we will frequently speak about its rightmost leaf
(x>~ a—b~c|z=ain the example), its rightmost inner node (= b~ c| 2z = a),
its rightmost step (the inference obtaining - b~c|z=afromz ~a = b~ c|
z = a), and its rightmost path (the nodes z ~a = b~c|z=a, 2 b~c|z=aq,
—b~a|z=a)

An N-proof is called antecedent elimination of T if its rightmost leaf is of the
form I' = A | o, its root is — A | ¢, and no node on its rightmost path is obtained
by a paramodulation-right step. In the given proofs, the substitution part | o of the
clauses is omitted in order to improve readability.

6.3. COMPLETENESS PROOF 67
6.3 Completeness proof

Lemma 54 (fusion lemma) Let P, and P, be two antecedent elimination A-proofs
of I'y and I'; respectively.

Then for an arbitrary A, there exists an antecedent elimination N -proof P such
that its rightmost leaf is I'y,I'ys = A. Moreover, steps(P) = steps(Py) + steps(F),
and every non-rightmost leaf of P is a non-rightmost leaf of P, or of P;.

In the following, the A-proof P built as in the previous lemma will be called the
fusion of P; and Ps.

Lemma 55 (separation lemma) Let P be an antecedent elimination N-proof of
Iy, Do

Then, there exist two antecedent elimination N-proofs P; and P, of T'y and I';
respectively. Moreover steps(P) = steps(P;) + steps(P;), and all the non-rightmost
leaves of P, or of P, are non-rightmost leaves of P.

Proof: We give a proof of the fusion lemma that uses the separa,tlon lemma, and
vice versa, resulting in a combined proof by induction.

1. (Proof of the fusion lemma, assuming the separation lemma is true for M-proofs
with a number of steps less than or equal to steps(P;) + steps(Pz))

If I'; and 'y are empty, then the result is trivial. Otherwise, we analyse which
equations are selected in the clause I'1,I'; = A. Wlog. suppose A selects an
equation e in I';. We take I'y = I'j,e. We now apply the separation lemma to
P, and then we have two AN -proofs P;; and P, that are antecedent eliminations
of I'{ and e respectively. Moreover, steps(Py) = steps(Py1) + steps(Pi2) and every
non-rightmost leaf of P); or of P2 is a non-rightmost leaf of P;. Now, we consider
different cases depending on which kind of N-inference is the rightmost step of Py5.

la. If it is an equality resolution then it is of the form:

e— A
— A,

It does not matter for us which is A.. Observe that in this case steps(Py2) = 1,
and hence steps(Py1) + steps(P) + 1 = steps(Py) + steps(P,). Then we can apply
induction hypothesis to P;; and P, to obtain an antecedent elimination A-proof P’
of = A s.t. its rightmost leaf is I'|,I'; — A. Moreover, steps(P’) = steps(Py1) +
steps(P;), and every non-rightmost leaf of P’ is a non-rightmost leaf of P;; or of P,
and then of P, or of P,. Now we create P by inserting in the rightmost leaf of P’
the A -inference:

68 CHAPTER 6. COMPLETENESS OF ARBITRARY SELECTION

I"’l,g,l"z — A
F'l,rz - A

And then P satisfies the desired conditions.

1b. If the rightmost step of P;, is a paramodulation left inference, then it is of the
form:

— A3 e— A
el = A,

Let P23 be the subproof of Pi; rooted by — Ajz. And let P, be like P,
but where Pjp3 and the rightmost leaf are removed. The rightmost leaf of Py, is
¢ = A, and steps(Py2) = steps(Pi23) + steps(P];) + 1. Every non-rightmost
leaf of P{, is a non-rightmost leaf of Pj2, and then of P;. We have steps(Pyy) +
steps(P[y) + steps(P,) < steps(P;) + steps(P,). Then we can apply twice the
induction hypothesis to Pj;, Pj;, and P, to obtain an antecedent elimination N-
proof P’ of = A s.t. its rightmost leaf is I'},¢/,T'2 — A. Moreover, steps(P’) =
steps(Pyy) + steps(P];) + steps(P,), and every non-rightmost leaf of P’ is a non-
rightmost leaf of Py; or of Pj, or of P,, and then of P, or of P,. Now we create P
by inserting in the rightmost leaf of P’ the M-inference

—A; ThelaoA
T, ¢ T, — A

and inserting Pj3 above — Aj. Then, P satisfies then the desired conditions.

2. (Proof of the separation lemma, assuming the fusion lemma is true for pairs of
N-proofs s.t. the sum of their steps is less than steps(P))

If 'y or Ty is empty then the result is trivial. Otherwise suppose wlog. that the
selected equation e in I'1,I'; — A isin I';. We take I'y = I'{, e. Then there are two
cases to be considered, depending on what kind of inference is the rightmost step of
P.

2a. If it is an equality resolution, then it is of the form:

P,l’§9F2_>A
F,I,FQ“')A

Let P’ be like P but where this step is removed. We have steps(P’) +1 =
steps(P). Therefore we can apply induction hypothesis to P’ and, then, there exist
P| and P; s.t. they are antecedent elimination of I'{ and I'y respectively. More-
over, their non-rightmost leaves are non-rightmost leaves of P’, and then of P, and
steps(P]) + steps(P2) = steps(P'). Consider now the following A-inference:

6.3. COMPLETENESS PROOF 69

e— A
- A

It can be seen as an A -proof with only one step. It is an antecedent elimination
proof of e, that we name P.. Now observe that, since I'; is not empty, we have
steps(P;) > 1, and then steps(P]) + steps(P.) < steps(P). Therefore we can apply,
inductively, the fusion lemma to P| and P, obtaining an antecedent elimination
N-proof Py of '}, e, that is I';. Every non-rightmost leaf of P, is a non-rightmost
leaf of P|, and then, of P; and steps(P,) = steps(P]) + steps(P.) = steps(P{) + 1.
Therefore steps(P) = steps(Py) + steps(Pz).

2b. If the rightmost step of P is a paramodulation left inference, then, it is of the
form:

— Az I',e,Ta = A
/1,6',1-‘2 = A

Let P; be the subproof of P rooted by — Ajz. Let P’ be like P but where
P; and the rightmost leaf are removed. The root of P’ is I',¢/,I'; — A, and
steps(P) = steps(P’) + steps(P;) + 1. We can apply induction hypothesis on P/,
two times, and obtain three antecedent elimination A'-proofs P{, Per and P, of T},
¢’ and T'; respectively, s.t. all their non-rightmost leaves are non-rightmost leaves of
P', and then of P. Moreover, steps(P’) = steps(P]) + steps(P.r) + steps(Pz). Now
we create P by inserting in the rightmost leaf of P, the inference

— A3 e— A
e =5 A

and inserting P; above — Aj. Observe that every non-rightmost leaf of P, is a
non-rightmost leaf of P, since it is a non-rightmost leaf of P, or a leaf of P;. We
have steps(P) = steps(P]) + steps(P.) + steps(P2). Now, since I'; is not empty,
we have steps(P,) > 1, and then steps(Py) + steps(P.) < steps(P). Therefore, we
can apply the fusion lemma to P{ and P, obtaining P, an antecedent elimination
N-proof of '}, e, that is I';. Moreover, their non-rightmost leaves are non-rightmost
leaves of P| or of P, and then of P. Furthermore steps(P;) = steps(P{)+steps(F.).
Therefore steps(P) = steps(Py) + steps(Pz). O

Lemma 56 Let P be a AV-proof that is antecedent elimination of I'. Then, for all
A, there exists an antecedent elimination M-proof P’ such that its rightmost leaf is
I' =+ A. Moreover, steps(P) = steps(P').

Proof: By applying the fusion lemma to P and the empty proof we obtain the
desired P’. ad

70 CHAPTER 6. COMPLETENESS OF ARBITRARY SELECTION

Lemma 57 (general fusion lemma) Let P; be an antecedent elimination N -proof
of I';. Let P, be an ANV -proof of — A with rightmost leaf I's — A, (therefore a
subtree in its rightmost path is antecedent elimination, i.e. the antecedent I'; is
eliminated in P, but after this elimination, some paramodulation right inferences
can be made on the rightmost path).

Then there exists an AM-proof P of — A such that its rightmost leaf is T'y, 'y —
Az. Moreover steps(P) = steps(P,) + steps(Pz), and every non-rightmost leaf of P
is a non-rightmost leaf of P, or of P;.

Proof: Let P, be the antecedent elimination AN-proof on the rightmost path of
P;. Let P; be like P; but where Py is removed. Note that the rightmost leaf of
P} is = A3, and P; can be obtained by inserting P2; on the rightmost path of Pj.
Moreover steps(P;) = steps(P3) + steps(Py1). Now, since Py and Py are antecedent
eliminations, by the fusion lemma we have there exists P’ s.t. it is an antededent
elimination of I'y UT';, steps(P’) = steps(P;) + steps(Pz;) and all the non-rightmost
leaves of P’ are non-rightmost leaves of P; or of Py (and then of P2). Moreover,
the root of P’ can be chosen to be — A, maintaining these conditions. Then the
rightmost leaf of P’ is Iy, s — A;. Now let P be the A -proof formed by inserting
P' on the rightmost leaf of P;. Then P satisfies all the conditions we are looking
for.]

Lemma 58 (general separation lemma) Let P be an N-proof of — A such that
its rightmost leaf is 'y, I's — A/,

Then, there exist two A -proofs P, and P, such that P; is an antecedent elim-
ination proof of I'y and P, is an N -proof of = A with rightmost leaf 'y — A’
Moreover steps(P) = steps(Py) + steps(P2), and all the non-rightmost leaves of P
or of P, are non-rightmost leaves of P.

Proof: Let P;; be the subtree in the rightmost path of P that is an antecedent
elimination of I';,[';. We have that Py, is a proof of =+ A’. Let Pj be like P
but removing Py from it. We have that the rightmost leaf of P} is — A’ and
steps(P) = steps(P;) + steps(Pp;). Now we apply the separation lemma to Pz; and
we obtain a proof P, that is an antecedent elimination of I'y, and a proof Pj, that is
an antecedent elimination of I'; and, by lemma 56, we can assume that its rightmost
leaf is 'y — A’. Now we define P, to be like P} but inserting Py, in its rightmost
leaf. Then P; and P, satisfy the required conditions. o

Lemma 59 Let S be a set of clauses closed under .4, and let P be an A/-proof of
— A from §.

Then there exists an antecedent elimination A-proof P’ of — A from S whose
rightmost leaf is of the form I' — A, where steps(P’) < steps(P) and, if " is non-
empty, then A is non-empty and its equation is the selected one in I' — A by
A.

6.3. COMPLETENESS PROOF 71

Proof: We will proceed by induction on steps(P). Let the rightmost leaf of P be
of the form I'; = A;. There are several cases to be considered:

0. If I'; and A; are both empty, then P has no steps and P’ can be P itself.

1. One of the selected equations of I'y — A; by A is A;. We consider two possibil-
ities depending on whether some paramodulation right inference is made or not on
the rightmost path of P.

1a. In the case that no paramodulation right inference is made on the rightmost path
of P, we have that A and A, coincide and P is antecedent elimination. Therefore
the P’ we are looking for is directly P.

1b. Suppose now there are some paramodulation right inferences on the rightmost
path of P. Then the highest one is of the form:

— Aq —)Al
- Aj

Let P, be the subproof rooted by — A;. It is an antecedent elimination M-
proof. Let P2 be the subproof rooted by — Aj;. Let P; be like P, but where P;
and P, are removed (the rightmost leaf of P is — Ag). Then we have steps(P) =
steps(Py) + steps(P;) + steps(P3) + 1. By applying induction hypothesis to P, we
obtain an antecedent elimination A-proof P} of — A; from S s.t. its rightmost leaf
is of the form I'; = Ag, where A; is selected by A, and steps(P;) < steps(Pz). If we
apply the fusion lemma to P} and P;, we obtain an antecedent elimination A-proof
Py of = Aj, where its rightmost leaf is I'y, Ty — Ag, and steps(Py) = steps(Py) +
steps(Py) < steps(P,) + steps(P;). Now let Ps be the A -proof formed by P, and
where above its rightmost leaf we insert Py. We have — A in the root of Ps, and
steps(Ps) = steps(Ps) + steps(Py) < steps(P3) + steps(Py) + steps(Py) < steps(P)
and the rightmost leaf of Ps is I';,I'; — A3. Moreover, every non-rightmost leaf of
Ps is from S: all the non-rightmost leaves of P; are from S, and, since Py is the
fusion of P} and Py, then, its non-rightmost leaves are from S too. But also, the
rightmost leaf of Ps is from S, since the next inference is a .4-inference from S:

Fz—)_@_z. Fl—"él
PQ,FI—)A;;

Then the N-proof P’ we are looking for is the one obtained by applying the
induction hypothesis to Ps.

2. Assume now that I'y is of the form I'yy, e and e is a selected equation of I'; — A,
by A. We apply the general separation lemma to P and we obtain two A -proofs P,
and P; s.t. P; is an antecedent elimination proof of e and P, is an A-proof of = A

72 CHAPTER 6. COMPLETENESS OF ARBITRARY SELECTION

with rightmost leaf I'y; — A;. Moreover steps(P) = steps(P,) + steps(P), and all
the non-rightmost leaves of P; or of P, are non-rightmost leaves of P.

We distinguish two cases depending on wether the rightmost step of P; is an
equality resolution or a paramodulation left inference on e:

2a. If it is an equality resolution step, it is of the form:

€~
—

Then P, consists in only this step, and we have the A-inference
e = A
Pll — A]

and hence I'y; = A; is in S. Therefore the A/-proof P’ we are looking for is the one
obtained by applying the induction hypothesis to P;.

2b. If the rightmost step of P; is a paramodulation left inference, it is of the form:

— A3 e—
e -

Let P; be the subproof of P; rooted by — Ajz. Let P| be like P; but where
the subproof P; and the rightmost leaf are removed (the rightmost leaf of P is
¢’). Note that all the non-rightmost leaves of P| are clauses from S. We have
steps(Py) = steps(Ps)+ steps(P{)+1. We apply induction hypothesis to Ps, and we
obtain an antecedent elimination N -proof P§ of — Aj from S s.t. its rightmost leaf
is of the form I's — Ajz, where A3 is selected by A. Now, we apply the fusion lemma
to P} and P], and we get an N-proof P s.t. is antecedent elimination of I's, ¢/,
and steps(Ps) = steps(P3) + steps(P{). Applying now the general fusion lemma
to Py and P; we obtain an N-proof Ps s.t. its rightmost leaf is T'yy,€’,T'3 — Ay,
steps(Ps) = steps(Pj) + steps(Py) + steps(P,) < steps(P) and all the non-rightmost
leaves of Ps are non-rightmost leaves of P§ or of P| or of P, and, hence, from S.
But also the rightmost leaf of Ps is a clause from S, since the next inference is an
A-inference from S:

I3 =>As Tp,e— A
I3, 11,6 = Ay

Therefore the N -proof P’ we are looking for is the one obtained by applying the
induction hypothesis to Ps. o

Theorem 60 (Completeness theorem) Let Sg be an unconstrained set of clauses,
and let S be the closure of Sy under A. If Sy is unsatisfiable, then O € S.

6.4. APPLICATION TO PARAMODULATION WITH NON-MONOTONIC ORDERINGST?

Proof: By completeness of A there is an A -proof of O from S. Then, applying
lemma 59 to the case where A is empty gives us a trivial AN -proof of O, since A can
not be selected by A and, hence, I' must be empty. Consequently O € S. o

6.4 Application to paramodulation with non-monotonic
orderings

Here we prove the refutational completeness of the inference system presented in
[BGNR99] with added equality constraint inheritance, for the case of Horn clauses.

Definition 61 A west-ordering is a well-founded ordering on T'(F) that fulfils the
subterm property and that is total on T'(F) (it is called west after well-founded,
subterm and total).

For a given a west ordering 5>, the inference system J for Horn clauses with
equality is (selected equations are written underlined):

paramodulation right:

=l~r|T) —s>t|Ty
= slrlp>t|slp=IATIAT,

if s|p € & and lo > ro for some ground substitution o which is a solution of
Slp :l/\Tl /\Tz.

paramodulation left:

= l~r|Ty Nset— A | T
Dyslrlp~t =2 Alslp=IATT AT,

if s|p € & and lo > ro for some ground substitution ¢ which is a solution of
slp =IATy AT,

equality resolution:

st AT
> A|ls=tAT

The following theorem can be proved according to the standard model generation
techniques explained in Chapter 3.

Theorem 62 The inference system J with equality constraint inheritance is refu-
tationally complete for first-order Horn clauses.

74 CHAPTER 6. COMPLETENESS OF ARBITRARY SELECTION

We can use our result of theorem 60 for proving the completeness of a modifica-
tion JA of the inference system J. In JA any strategy selecting a single (positive
or negative) equation in each clause is allowed. Note that this new result is not
an immediate consequence of theorem 60. The reason is that for right and left
paramodulation there is an ordering restriction lo > ro, and, for explanatory rea-
sons, we did not consider this kind of restrictions in the definition of A/. But in
the proof transformation from A to .A one uses a given substitution o that satisfies
all the constraints. This also holds in the case of a proof tree by J and, more-
over, this o satisfies all the required restrictions lo > ro appearing in it. Hence the
transformation process works exactly in the same way.

Theorem 63 The inference system J.A with equality constraint inheritance is
refutationally complete for first-order Horn clauses.

6.5 Conclusions

In this chapter we have shown that if a paramodulation-based inference system is
complete with a concrete strategy with eager selection of negative equations and,
moreover, it is compatible with equality constraint inheritance, then it is complete
with arbitrary selection strategies.

Therefore we have generalized the result in [Lyn97] about refutation complete-
ness of arbitrary selection strategies for superposition. Moreover, the generality of
our proof transformation method allows us to obtain directly the completeness of
arbitrary selection strategies for other inference systems. We have shown that the
results of Chapter 4 for paramodulation with non-monotonic orderings are compat-
ible with equality constraint inheritance, thus further restricting the search space
and allowing arbitrary selection strategies.

We have also generalized, in a sense, the result in [dN96] for Horn clauses without
equality, about completeness of resolution with an arbitrary selection of one single
literal in each clause.

In [BG94b] standard methods for proving compatibility with redundancy elim-
ination techniques are given, by which, roughly, a clause is redundant if it follows
from smaller clauses. These notions are not applicable to our proof transformation
technique. But this is not surprising, since by these standard techniques all tautolo-
gies are redundant, which is not the case here. Some kind of tautologies have to be
kept in order to preserve completeness in the case of arbitrary selection strategies,
as shown by the counter example from [Lyn97] that was given in Example 47 of
Chapter 4.

Chapter 7

Paramodulation with Built-in
Abelian Groups

In this chapter, a new technique is presented for superposition with first-order clauses
with built-in abelian groups (AG). Compared with previous approaches, it is simpler,
and AG-unification is used instead of the computationally more expensive unification
modulo associativity and commutativity. Furthermore, no inferences with the AG
axioms or abstraction rules are needed; in this sense this is the first approach where
AG is completely built in.

7.1 Introduction

As explained in previous chapters, it is crucial for the performance of a deduction
system that it incorporates specialized techniques to work efficiently with certain
theories, since a naive handling of their axioms leads to an explosion of the search
space. Perhaps the most important example of this is paramodulation, an inference
rule specialized to equality in the context of resolution-based systems. Essentially,
paramodulation builds the congruence axioms in inside the inference system.

Another well-investigated line of research concerns building-in equational the-
ories inside paramodulation and resolution-based systems. Some axioms generate
many slightly different permuted versions of clauses, and for efficiency reasons it is
many times better to treat all these clauses together as a single one representing
the whole class, i.e., to work with a built-in equational theory F, and performing
deduction with specialized F-matching and E-unification algorithms.

Early results on paramodulation modulo E were given by Plotkin [Plo72], Slagle
[Sla74] and Lankford and Ballantine [LB77] and eztended E-rewriting was defined
by Peterson and Stickel [PS81]. Special attention has always been devoted to the
case where E includes axioms of associativity and commutativity (AC), which occur

75

76 CHAPTER 7. BUILT-IN ABELIAN GROUPS

very frequently in practical applications, and are well-suited for being built in due
to their permutative nature. Note that in general there is no unique most general
E-unifier for a given E-unification problem, and that new variables may appear: for
example, if f is an AC-symbol, then f(z,a) and f(y,b) have the two AC-unifiers
o1 ={z~ b,y a} and o3 = {z — f(b,2),y— f(a,z2)}.

Resolution modulo F is relatively simple: there exist general completeness results
for resolution with constraints, which essentially say that completeness is preserved
when unification is replaced by E-unification. The reason is that resolution infer-
ences, which take place at the atom level, do not interfere with the built-in equational
theories, which affect only the term level, and hence lifting can still be done (see
[NRO1}). Unfortunately, for paramodulation this is far from true, and for each built-
in theory special inference rules have to be designed and their completeness proved.

Paramodulation with built-in abelian groups (AG) has been investigated by
many authors [Che86, Zha93, Mar94, Mar96, GW96, Wal98, Wal99, Stu98]. This is
not surprising since abelian groups are of course ubiquitous in many applications of
(semi-Jautomated reasoning. But building-in AG is also attractive for at least two
more reasons. 3

On the one hand, due to the fact that diophantine equation solving is‘éasier in the
integers than in the natural numbers, AG unification is easier than AC and AC1 (i.e.,
abelian monoid) unification. If all free symbols are constants, then there is one single
most general AG unifier and the decision problem is polynomial, whereas for AC
and AC1 the decision problems are NP-complete, and for AC there are exponentially
many unifiers. Although with arbitrary free symbols the decision problem is NP-
complete in all three cases, AG unification behaves better in practice. Also the
number of unifiers is usually much smaller and not doubly exponential as for AC
(see [BS93, BS01] for surveys on these results).

Another aspect that makes building-in AG attractive is called symmetrization
(e.g., by Le Chenadec in [Che86]): modulo abelian groups (+, —, 0), every ground
equation can be written as u + ...+ u ~ t, where the summand u is greater (w.r.t.
the given term ordering >) than the summands in t. As we will see, this allows one
to restrict inferences to this maximal summand and to avoid the prolific inferences
with extended equations that appear in the AC case.

Symmetrisation is also exploited in Marché’s framework for Knuth-Bendix com-
pletion of unit equations with built-in theories (ranging from AC to commutative
rings) [Mar94, Mar96). His completion procedure decides the ground word problem
modulo AG by building a finite convergent rewrite system. However, his procedure
is not refutation complete for equations with variables: in many cases it fails since
it cannot handle symmetrisation at the non-ground level.

Full first-order clauses are considered by Ganzinger and Waldmann in [GW96,

7.1. INTRODUCTION 77

Wal97], where symmetrisation is also central. This work focusses not on AG, but on
the more general theory of cancellative abelian monoids. It applies AC1 unification
and abstraction rules, which, roughly, turn clauses like CV f(s) @ tintoCVz %
sV f(z) ~ t, where = is a new variable; this of course increases the number of
possible inferences on f. By specialising to torsion-free divisible abelian groups,
AC-unification and inferences into variables can be avoided, but abstraction remains
necessary [Wal98, Wal99].

In Stuber’s work on paramodulation for abelian groups represented as integer
modules [Stu98], symmetrization is again crucial, but AG unification is not applied.
Instead, AC unification is used, and hence paramodulation inferences with the AG
axioms on the remaining clauses are needed. For example, refuting a clause like
f(=b+ z + a) # f(0) requires inferences with the AG axioms, instead of directly
finding the contradictory instance b — a for z by AG-unification. Technically, even
for the ground case, his inference rules and proofs are rather involved. In Stuber’s
PhD. Thesis [Stu99], proofs for the ground case are given in a uniform framework
for AG and several other commutative theories.

Here we apply a variant of Bachmair and Ganzinger’s model generation technique
(see Chapter 3 and [BG94b]), where the model is defined by rewriting, modulo as-
sociativity and commutativity of 4, with the well-known convergent rewrite system -
R,¢ for AG, plus a set of ground rewrite rules R that consists of symmetrised rules
u4...4+u — t and their inverse version —u — u+...") 4+u—t. Hence > has to be
an AC-compatible reduction ordering orienting these rules, which can be fulfilled by
simple general-purpose orderings like RPO (this was already mentioned by Marché).
This gives relatively simple completeness proofs for full first-order ground clauses.
From our results it is easy to obtain a decision procedure for the satisfiability of
arbitrary sets of ground clauses modulo AG.

For completely building-in AG at the non-ground level, and hence avoiding all
inferences with the AG axioms by applying AG-unification, the main problem is: how
to lift, to inferences on non-ground clauses C, the rewrite steps with R U R, on
ground instances Co? The steps with R indeed become inferences, but for the steps
with R4s this is precisely what we want to avoid. The key ideas to our solution are
roughly as follows. We keep non-ground clauses C fully simplified w.r.t. R, (which
is a cheap and useful simplification anyway). Furthermore, in the completeness
proofs we consider instances with reduced! substitutions o (extending some ideas
from the basic superposition approach [NR95, BGLS95]). Some steps with R,¢
may then still be needed in Co at the frontier between C and o. But a careful
analysis of these steps reveals that they can be covered by considering inferences
with AG-unification on adequate subterms.

'In the preliminary version of this work, [GNO0O], we used a different notion of irreducibility. In
this chapter the definitions are more intuitive and we obtain shorter and simpler proofs.

78 CHAPTER 7. BUILT-IN ABELIAN GROUPS

Our AG-superposition inference rules have strong ordering restrictions implying
that inferences only need to involve the maximal summands of the clause. This
generalises standard superposition: summands play the role of terms.

Due to the simplicity and restrictiveness of our inference system, its compatibility
with redundancy notions and constraints, and the fact that standard term orderings
like RPO can be used, we believe that our techniques will become the method of
choice for practice. On the theoretical side, we expect that our techniques and
results will also lead to logic-based decidability and complexity results, along the
lines of, e.g., [BG96, Nie96, Nie98, GMV99, GAN99, Wal99].

This chapter is structured as follows. After the basic notions and notation given
in Section 7.2, in Section 7.3 we introduce our techniques for the simple case of
ground Horn clauses, and show that this can be used for deciding the satisfiability
of set of general ground clauses modulo AG. Sections 7.4, 7.5 and 7.6 are the core of
this chapter. There, the ideas of the ground case are extended to Horn clauses with
variables. This is again extended to general clauses with variables in Section 7.7.
Finally, in Section 7.8 we give conclusions and mention some optimizations.

7.2 Basic notions

We use the standard notation and terminology of Chapter 2. Furthermore, we use
the following terminology for positions p and ¢ in a term ¢: we say that p is (strictly)
below q if ¢ is a (proper) prefix of p, and then g is (strictly) above p. Similarly, p is
beside g (or disjoint with g) if no one is a prefix of the other. We also say that p is
below a function symbol f in ¢t if t|g is headed by f for some ¢ above p, and then p
is immediately below f if p is ¢.1 for some natural number <.

The rewrite system R, consists of the following five rules:

z+0 = =z
-tz — 0
~-(~z) = =
-0 = 0
—(e+y) = (-2)+(-y)

By AG we denote the set of seven equations consisting of these five rules (seen as
equations) plus AC, the associativity and commutativity axioms for 4. By =,¢ and
= ,¢ we denote the corresponding congruences on terms. In this chapter, rewriting
with a set of rules R is always considered modulo AC, that is, when writing —p, we
mean the relation =,¢c g =.c. We denote by nfg(t) the normal form of a term ¢
by rewriting with R, and instead of writing nfg, .(t) we sometimes write AG-nf(t).
By free function symbols we mean symbols different from 4, — and 0.

7.2. BASIC NOTIONS 79

We sometimes write terms with + in infix notation, without parenthesis. For
example, +(a, +(+(b,), d)) is written a+ b+ c+d. But we remark that this is only
done at the notation level (and terms are not considered to be in flattened form as
in other approaches). A summand is a term u headed by a free symbol. We write
nu as a shorthand for u+..." +u, and —nu as a shorthand for (—u) +...") +(—u),
and a — b as a shorthand for a + (-b).

In this chapter, we assume that > is a well-founded strict ordering on terms
satisfying:

1. > is AC-compatible, that is, ' =,cs > t =, t' implies s’ >t/

2. > is total up to =,¢ on the set of ground terms, that is, for all ground terms
sand t, we have s - tort > sor s =,¢t.

3. > orients all rules of R ¢, that is, [> r for every rule | = r of R ¢

4. » is monotonic on ground terms, that is, for all ground terms s, t and u, we
have u[s]p > u[t], whenever s >t

One way to build such an ordering > is to simply use the recursive path ordering
(RPO) [Der82}, applied to the terms to be compared in flattened form w.r.t. 4. This
flattening consists of removing all operators + that are immediately below another
+. For example, +(a, +(f(+(a,+(b,c))), ¢)) becomes +(a, f(+(a, b, ¢)), c), which
can also be written a + f(a + b+ ¢) +c. Note that in the flattened form of a term ¢,
denoted by b(t), different occurrences of + can have different arities (but all greater
than 1).

Lemma 64 Let > be defined by: s > t if b(s) >,po D(t), where >,,, is an RPO
with a total precedence > such that f > — >x 4+ > 0 for all free symbols f and
where all symbols have a lexicographic status, except +, whose status is multiset.
Then > fulfils the aforementioned requirements.

Definition 65 A ground equation nu =~ njv; + ...+ ngt; in normal form w.r.t.
R, is said to be in reductive form if n > 0, the n; are non-zero integers, and u
and the v; are summands with u > v;. The (logically equivalent w.r.t. AG-models)
inverse reductive form of this equation is ~u ~ (n ~ 1)u — nyvy; — ... — NkUL.

For every equation s = t, its reductive form can be obtained by normalising
s+ (=t) ~ 0 w.r.t. R ¢ into nyu; + ...+ ngur =~ 0 where, say, u; is the maximal
summand, and then, if n; is positive, the reductive form is nqyu; >~ —ngug—. . .~nrug;
otherwise, it is —nju; ~ naug + ...+ ngur. Note that the unary minus operator —
is overloaded in our notation since it is applied as well to coefficients (but remember
that coefficients are not part of our logical language but just a shorthand in our
notation).

80 CHAPTER 7. BUILT-IN ABELIAN GROUPS

Example 66 If a = b > c then the equation (—a) + c+ 0 + (—(~¢)) + (-b) ~
(=¢) + a+ b+ 0 is equivalent to (—a) + (—a) + ¢+ c+ ¢+ (=b) + (—b) ~ 0, written
shortly —2a + 3¢ — 2b ~ 0, and becomes in reductive form 2a ~ 3c — 2b, and in
inverse reductive form —a ~ a — 3¢+ 2b. o

Example 67 Equations in reductive form can be adequately used as terminating
rewrite rules. Assume we have a > b > ¢ and the equation (in reductive form)
3a >~ —b+c. It can be applied either as it is, or in its inverse form —a ~2a+b—c.

For example, 4a is AG-equivalent by this equation to —2a—2b42c. Let us prove
it by rewriting both terms into their respective normal forms. On the one hand, by
simply applying the equation to three of its four a’s, 4a rewrites into the normal
form @ — b+ ¢. On the other hand, by applying the inverse form, —2a — 2b + 2¢
rewrites into —a ~ 2b 4 2¢ + 2a + b — ¢ which simplifies with R, into a — b+ c.

Note that normal forms w.r.t. both ways of rewriting with such equations nu ~
v will always have a positive number of u’s between 0 and n — 1, and that the
inverse kind of steps is not needed if n = 1. The two ground inference rules of AG-
superposition that are given below in fact correspond to these two ways of rewriting.
O

7.3 Ground Horn Case

Here we first introduce part of our techniques on the simple subcase of ground Horn
clauses. We assume all equations in clauses to be eagerly maintained in reductive
form, and moreover we assume negative equations 0 % 0 to be removed eagerly from
all clauses.

Definition 68 The inference rules for ground AG-superposition are as follows:

CVvnu~r Dlnu],
CV D[r]p

direct AG-superposition:

CVnucr D[-u],
CVD[(n-1u—-r]

tnverse AG-superposition: ifn>1

where D|, denotes a subterm of D modulo AC, that is, each D’|, is such a subterm
if D=4¢c D'

The ordering restrictions of AG-superposition are such that inferences are needed
only if they take place with the strictly maximal summand and on a maximal sum-
mand (that is strictly maximal if it occurs in a positive equation), that is, denoting
by s = C the fact that s > ¢ for every summand ¢ occuring in C, these inferences
are needed only if:

7.3. GROUND HORN CASE 81

1. u > C (and remind that, by expression in reductive form, also u > r)
2. s> D' whenever D is D'V ms ~ ¢t (in reductive form) with D|, in ms

3. s = D' whenever D is D’V ms # t (in reductive form) with D|, in ms

Note that hence inverse AG-superposition is needed only on proper subterms of
summmands s since in an (in)equation in reductive form the term —u cannot occur
elsewhere.

7.3.1 Completeness for the ground Horn case

The following definition follow the same lines as the model generation method ex-
plained in Chapter 3. We now use multiset extensions for lifting the ordering > on
terms to orderings on ground equations (in reductive form) and clauses in the usual
way.

Definition 69 Let C be a ground clause, and let emul(s ~ t) be {s,t}if s~tisa
positive equation in C, and {s, s, ¢,t} if it is negative. Then we define the ordering >,
on (occurrences of) ground equations in a clause by e >, € if emul(e) >mu emul(e’).
Similarly, >, on ground clauses is defined C >, D if mse(C) (>mul)mu mse(D),
where mse(C) is the multiset of all emul(e) for ocurrences e of equations in C.

Lemma 70 Let C and D be ground clauses. If D is the reductive form of C' then
C*.D.

Proof: Let u be the maximal summand of an equation s ~ ¢ occurring (positively
or negatively) in C. If u does not occur in the reductive form of s ~ ¢, i.e., it has
been cancelled out, then the reductive form is smaller. Otherwise the reductive form
of s > ¢t is of the form nu ~ r where u > r. If —u occurs in s ~ ¢ then again nu ~r
is smaller. Otherwise s ~ t is of the form nu + s’ ~ t and nu ~ r is smaller (if s’ is
non-empty) or equal (if s’ is empty). O

We now show how to construct a model for sets S of ground Horn clauses closed
under ground AG-superposition and where O ¢ S (note that this implies the refu-
tation completeness of ground AG-superposition). As usual (see [BG94b]), in order
to construct the model we will generate a set of rewrite rules Rg by induction on
>=c. But here the model will contain as well the rules of R g, and, as said, all rules
will be applied modulo AC.

Definition 71 Let S be a set of ground Horn clauses in reductive form, and let C
be a clause in S of the form C'V nu ~ r. Then C generates the rule nu — r if the
following three conditions are satisfied:

82 CHAPTER 7. BUILT-IN ABELIAN GROUPS
1. (RcUAG)* -C
2.u>randu>C
3. nu is irreducible by R¢

where Rc is the set of rules generated by clauses of S smaller than C w.r.t. »..
Furthermore, if C generates nu — r with n > 1, in addition C generates its inverse
form —u — (n — 1)u — r. The set of all rules generated by clauses in S is denoted

by Rs.
We now state an essential result: RgU R ,¢ is convergent modulo AC.

Lemma 72 Let S be a set of ground Horn clauses in reductive form.
RsU R, is terminating and confluent modulo AC on ground terms.

Proof: All rules in RsUR 4 are oriented w.r.t. >, and hence RgUR ¢ is terminating
for rewriting modulo AC, since > is AC-compatible, well-founded, and monotonic on
ground terms. Confluence is a consequence of the following facts. By construction
of Rs, for all ground rules I = r in Rg, the term [is irreducible by the ground
rules in Rg\ {{ = r}. Furthermore, R . is well-known to be confluent. Finally, the
(extended) critical pairs between R, and Rgs are easily shown to be joinable (this
is a bit long and tedious, so we omit this part here). o

Theorem 73 AG-superposition is refutation complete for ground Horn clauses.

Proof: Let S be a set of ground Horn clauses (whose equations are in reductive
form) such that S is closed under AG-superposition and O ¢ S. We prove that
then S is satisfiable by exhibiting an AG-model I for S, where I is the equality
Herbrand interpretation defined as the congruence on ground terms generated by
RsU AG. Note that, since Rs U R 4¢ is terminating and confluent, I |= s =~ t if, and
only if, s =k UR, o RsuR. b+ Ve proceed by induction on -, that is, we derive
a contradiction from the existence of a minimal (w.r.t. >.) clause D (in reductive
form) of S such that I | D.

Let s be the maximal summand in D. Then D is either of the form D'V ms ~ ¢t
with s = D’ (a), or else it is D'V ms % t with s = D’ (b). We first show that in
both cases ms is reducible by Rs.

(a) Since I }£ D, it has generated no rule of Rs. According to Definition 71, this
can only be because ms is reducible by Rp. (b) Since I }£ D, we have I |= ms ~ t.
Therefore ms and ¢ is joinable by RgUR ¢, and since ms > ¢, the maximal side ms,
which is in normal form w.r.t. R4, has to be reducible by Rs. The rule reducing

7.3. GROUND HORN CASE 83

ms has been generated by a clause of the form C' V nu ~ v, and there exists an
inference by (direct or inverse) AG-superposition

Cvi~r D[],
CV Djrlp

where I £ C V D[r], and D is larger w.r.t. >, than C V D[r],, and therefore,
by Lemma 70, also larger than the reductive form of C V D[r],, contradicting the
minimality of D. a

7.3.2 Selecting negative literals

It is easy to see that our inference rules remain complete with selection of negative
literals (see, e.g., [BG94b]), where it is assumed that in each clause with a non-empty
antecedent one of its negative equations has been selected. In the Horn case this
leads to positive unit strategies (and in the non-Horn case to positive strategies): all
left premises of AG-superpositions are positive unit clauses, and the only inferences
involving non-unit clauses are AG-superpositions on the selected negative equation.
The following result is a simple modification of the previous one; it is immediate if
we define Rg such that only unit clauses generate rules: o N

Theorem 74 AG-superposition with selection is refutation complete for ground
Horn clauses.

7.3.3 Deciding the satisfiability of sets of ground clauses

From our results it is not difficult to obtain a decision procedure for the satisfiability
of arbitrary sets of ground clauses modulo AG.

For the Horn inference system with selection, each inference of [~ r on a clause
D produces a smaller clause D’. Furthermore, D is a logical consequence (mod-
ulo AG) of the smaller clauses [~ r and D', i.e., D has become redundant in the
sense [BG94b]. In our procedure such redundant clauses can be removed with-
out loss of completeness (redundant clauses never generate any rules, and in the
proof of the completeness theorem, they are never the smallest counter example;
see, e.g., [BG94b] for details). Hence, if after each inference the maximal premise
D is removed, the procedure remains complete, and at each inference the clause
set decreases w.r.t. the multiset extension of the ordering and hence the process
terminates, thus deciding satisfiability.

A decision procedure for the satisfiability of sets of arbitrary ground clauses
modulo AG can be obtained by first transforming into Horn clauses (where SUC' V
A1 V...V A, is split into the disjunction of sets S; of the form SUC V A;; then S
is satisfiable if some of the S; is).

84 CHAPTER 7. BUILT-IN ABELIAN GROUPS

Theorem 75 AG-superposition with selection decides the satisfiability of sets of
ground clauses modulo AG.

7.4 Inference rules for clauses with variables

In this section, we adapt the inference system in order to deal with equality con-
strained clauses with variables, where constraints are conjunctions of equalities s = ¢.
As usual, the semantics of a constrained clause C | T is the set of its ground in-
stances, that is, the ground instances Co such that T'o evaluates to true if = is
interpreted as =,;. Then o is called a solution for T. The empty clause with a
constraint T is hence a contradiction, denoted simply by O, if, and only if, T0 is
true for some ground 4.

Very roughly, the following is needed for lifting our completeness results from
the ground case to equality constrained clauses with variables. If for clauses Cy | T}
and C; | T there is an inference between ground instances

Cla Czd’
D

then there exists an inference by the non-ground version of the inference rules

Gy, GlT
DT

such that D is a ground instance of D’ | T'.

As we will see in Section 7.5, for completeness it suffices to be able to do this
only for instances with ¢ of Cy and C, that are, in some technically rather involved
sense, irreductble with respect to Rg, where Rg is the set of rules generated in a
way similar to the previous section (but now by ground instances of clauses).

Definition 76 An equation s =t is in one-sided form if it is of the form e ~ 0
where e is in normal form w.r.t. R ¢.

Note that each equation has two (AG-equivalent) one-sided forms: for example,
z+y— 2z ~0is equivalent to —z — y + 2 ~ 0. In the following, we assume that all
equations in clauses are kept in one-sided form. Unless explicitly stated otherwise,
it does not matter which one of the two. Furthermore, for all substitutions o, we
assume w.l.0.g. that z¢ is in normal form w.r.t. R, for all z.

In order to define the non-ground inference rules, we now analyse for each in-
ference rule how their premises have to be expressed. For simplicity, we omit the
constraints, since they do not matter at this point; let us only remark that the
amount of possible inferences can be further restricted in many different ways by
checking their compatibility with the constraints.

7.4. INFERENCE RULES FOR CLAUSES WITH VARIABLES 85

7.4.1 Left premises of direct AG-superposition

Intuitively, our aim is the following. Let C be a clause with a positive equation
e ~ 0, and assume a ground instance Co of it generates a rule nu — r with n > 0,
and Co is the left premise of an AG-superposition. Then for the non-ground case
we have to be able to express e ~ 0 as s ~ ¢ such that the terms so and to have,
respectively, nu and r as normal forms w.r.t. R,¢, and then perform the inference
with AG-unification between s and the corresponding subterm of the right premise.
Orienting e ~ 0 as s ~ t in this way may require to split the variables of e into two
parts:

Example 77 Consider the clauses ¢ + 2z ~ b and f(4a) # f(a + b — 2¢), where
a > b > c. Assume that, for the instance where z = a + ¢, the equation a + 2z ~ b
generates the rule 3a — b — 2¢c. Then there exists a ground inference

3a—>b—2c f(4a) % fla+b-2c)
fla+b—2¢c)# fla+b— 2c)

applied to three of the a’s in f(4a), where the conclusion in reductive form becomes
0 # 0 and hence the empty clause.

To cover this inference at the non-ground level, z has to be split into y (which,
roughly, will contain the maximal summands in zo) and z (for the remaining sum-
mands). Hence a + 2z ~ b can be oriented as a + 2y ~ b — 2z. Then there is a
non-ground inference

a+2y~b~2z f(da) % f(a+b—2¢c)
fla+b-22)% fla+b—2¢)

unifying a + 2y with three of the a’s in f(4a). AG-unifying both sides of the conclu-
sion (which will be another inference rule; see below) detects the instance where z is
¢; the corresponding instance has a reductive form 0 % 0 and hence the contradiction
is found. a

Definition 78 Let e be a term of the form nys) + ... 4 npsp +miz; + ...+ mgz,
where the s; are non-variable summands, the z; are variables, and the n; and m;
are non-zero integers. By splitting each z; into two new variables. y; and z;, and
splitting the summands into two disjoint sets, the equation e =~ 0 can be written as
an equivalent equation s ~ ¢ of the form

n1S1+ ..ot nkSk My .o MY X N1 Sk41 = oo~ NpSp — M2 — ... — Mg2,

In the following, we call each such an equation s >~ t an orientation for e ~ 0 and
we call the corresponding constraint 7 of the form

1= taAN AzZg=Yg+ 2

86 CHAPTER 7. BUILT-IN ABELIAN GROUPS

the splitting constraint for this orientation.

It is not difficult to see that this notion of orientation fulfils what we wanted:
if eo ~ 0 generates a rule nu — r then indeed for some orientation s ~t of e ~ 0
and some extension of ¢ in order to include the y; and 2;, the terms so and to have,
respectively, nu and r as normal forms w.r.t. R,;. This we will see in detail in the
completeness proofs.

Of course, the fewer orientations have to be considered for a given equation e ~ 0,
the fewer inferences will be performed, which is better for efficiency in practice.
Indeed, a little more careful analysis reveals that a large number of optimizations
are possible. In Section 7.8 we will mention some of them. It is also important for
efficiency to exploit the unifiability and ordering restrictions as the strongest possible
filters to avoid redundant inferences with such orientations s 2~ t. For example,
apart from the unification restrictions of the inference itself, where s is unified with
a subterm of the right premise, in the above orientation we can add s; = ... = si to
the constraint; in particular, this means, e.g., that if eis f(...)+g(...) + ..., then
no orientation s ~ ¢ is needed where both summands headed with f and g are in
the left hand side s. In Section 7.8 the problem of checking the ordering restrictions
is addressed. o - ‘

Note that this notion of orientation does not depend on which one of e ~ 0 or
—e ~ () we consider as the one-sided form, and that the non-deterministic aspect of
orientation is the guess of a subset sy ...sg of the (non-variable) summands (where
the guess is constrained by the requirement that all of them are AG-unifiable and
by the requirements on).

7.4.2 Left premises of inverse AG-superposition

Example 79 Consider a > b > ¢ and the clauses f(—a+ b+ ¢) % f(a — ¢) and
2z ~ b. With the instance z — a — ¢, the second equation becomes 2a ~ b+ 2c.
At the ground level, there exists an inference with inverse AG-superposition which
produces f(a —c¢) # f(a —c). At the non-ground level, z is split into y + 2, and the
inference is performed with —y ~ y+ 2z — b, and we obtain f(a+c+2z) % f(a-c).
From this, by AG-unification the instance z — —c is found and the empty clause is
obtained. a

Definition 80 Let e (or —e) be a term of the form z; + ...+ z, + v, where v
contains only negative variables and (positive or negative) summands, and let ¢’ be
e but where every occurrence of z; at top-level position has been replaced by y; — z;,
where y; and z; are new variables. The splitting constraint 7is x; = y; —21A...Az, =
Yn — 2. Hence €’ is of the form y; — 2y + ...+ ¥y — 20 + V.

7.4. INFERENCE RULES FOR CLAUSES WITH VARIABLES 87

Then, if € is of the form s+ ¢ where s is a positive summand, then —s ~ ¢" is
an inverse orientation for e ~~ 0 with splitting constraint r.

Furthermore, if €' is of the form w + €” where w is a variable (i.e., w is some
Yi), then —w; ~ wy +€” is an inverse orientation for e ~ 0 with splitting constraint
TAW= w; + ws.

Finally, if €’ is of the form —w 4+ €” where w is a variable, but none of the z;,
then w; ~ —w; + €” is an inverse orientation for e ~ 0 with splitting constraint
TAW = wy + wy.

The splitting of the variable w in the second case of inverse orientation is the
one illustrated by the previous example. Example 86 shows the necessity of the
splittings of the constraint 7.

7.4.3 Right premises for direct AG-superposition

Example 81 Consider a > b > ¢, the left premise 3a ~ b, and the right premise
f(2z,z) # f(a+ b+ 2c,2a+ c). With the instance {z — 2a + c}, the right premise
is f(4a + 2¢,2a + ¢) # f(a + b+ 2¢,2a + ¢) which gives in one ground inference
fla+b+2¢,2a+c¢) # f(a+ b+ 2¢,2a+ ¢), which in reductive form is 0 % 0.

Now the question is: how can we, at the nonground level, perform the inference
into the term 227 (which is the term ¢ in the definition below). By splitting z into -
only the two variables y and z, one gets f(y+y+z+2,y+2) % f(a+b+2¢,2a+¢),
for which the ground inference cannot be lifted: it is impossible to split y+y+z+2
into t; 4 to such that ¢j0 is 3a, and tz0 is a + 2¢ for some .

As we will see, by splitting z into three variables y, ¥/, and z, lifting is always
possible. In our example, then one gets f(2y+2y'+2z, y+y'+2) # f(a+b+2¢,2a+c),
where 2y + 2y’ + 2z is split into 2y + v’ and y’ + 2z (these are the terms t; and ¢,
in the definition below). Then an AG-unifier of 3¢ and 2y + y’ instantiates y and
y' with a, and the conclusion of the non-ground inference is f(a + b+ 22,2a + 2) %
f(a+b+2¢c,2a+c), which by one more AG-unification, where z is instantiated with
¢, becomes 0 % 0. O

Definition 82 Let ¢t be a non-variable subterm of e in a literal e @ O or e £ 0
where ¢ is not immediately below an AG-symbol and the head symbol of ¢ is free or
+. W.lo.g., let t be of the form)

N8y + ...+ npSp + My + ...+ Mgzg + ¢’

where all s; are summands, all x; variables, all n; and m; are positive coefficients,
and t' contains only negative summands and variables.
Then t; -+ ¢3 is a splitting for t if ¢; is a term whose head symbol is free or 4 of
the form
kisy 4+ .. 4 kpsp+muy + oA mgyg Ly -+ gy

88 CHAPTER 7. BUILT-IN ABELIAN GROUPS

where 0 < k; < n; and 0 < [; < m;, and ¢, is

(m1—ky)sy+ .o+ (np — kp)sp+ myzy + ...+ mgzg + iy + ..+ Lyp +
where I} is 0 if I; is 0 (i.e., then z; is split only into two parts y; and z;), and I} is
m; — l; otherwise. Again we denote by 7 the corresponding splitting constraint.

As before, other restrictions apply; for example it is also not necessary to consider
ty of the form y; + y; (i.e., if m; is 1).

7.4.4 Right premises for inverse AG-superposition

Definition 83 Let ¢t be a non-variable subterm of e in a literal e ~ Q or e £ 0
where t is not immediately below an AG-symbol.

If ¢t is of the form —s + t/, where s is a summand, then ¢; + ¢, is an inverse
splitting for t with empty splitting constraint 7 if ¢; is —s and ¢; is ¢'.

If t is of the form —z +1t', where z is a variable, then ¢, +t; is an inverse splitting
for tif ¢t; is —y and t3 is —z 4+ t/, and the splitting constraint 7 is 2 =y + z.

7.4.5 AG-superposition rules

Based on the notions of orientations and splittings defined in the previous sub-
sections, we are now ready to define the inference system for Horn clauses with
variables.

Definition 84 In the left premise C VI =~ r of the direct AG-superposition rule
below, it is assumed that the actual clause is C'Ve ~ 0 and that ! ~ r is an orientation
of e ~ 0. Similarly, in the right premise, D[t +t2], denotes that D|, is a non-variable
term ¢ that is not immediately below an AG symbol, with a splitting ¢; + ¢2. In the
same way, for the inverse AG-superposition rule, they denote inverse orientations
and splittings. In all cases, 7 is the conjunction of the splitting constraints of the two
premises. The inference system H consists of the following three rules for constrained
clauses:

direct AG-superposition:

CVi~r|T Dty +tp | T
CVD[r+t]p |TAT' Al =t AT

inverse AG-superposition:

CVI’.‘_’T‘IT D[t1+t2]plT’
CVD[T+t2]pIT/\TI/\l:t1AT

7.4. INFERENCE RULES FOR CLAUSES WITH VARIABLES 89

AG-zero-instance:

CVe#o0|T
Cl|TAe=0

The ordering restrictions of the superposition rules are the ones corresponding to
the ground rules. More precisely, a direct (or inverse) superposition with premises
Ci1 | Ty and C; | Tz and conclusion D | T is needed if, for some solution 8 of T,
there is a ground direct (resp. inverse) inference between the reductive forms of C,0
and C,0, and with conclusion Df. The AG-zero-instance rules can be restricted to
maximal equations of the clause.

In the following sections, we will prove the refutation completeness of this in-
ference system. But let us first illustrate some of the limitations and technical
difficulties when dealing with constrained clauses, by means of an example taken
from [NRO1]. Note that in such examples where only free symbols occur, AG-
superposition boils down to normal superposition.

Example 85 Consider the unsatisfiable clause set, with the ordering as in Lemma
64 basedon f>ra>rb>ra

1. a~b
2. f(z)~clz=a
3. f(b)#ec

No inferences that are compatible with the constraint of the second clause can be
made (a superposition inference between 2 and 3 leads to a clause with an unsatisfi-
able constraint £ = a Ab = z). This incompleteness is due to the fact that the usual
lifting arguments for superposition (see [NR01]) do not work here, since they are
based on the existence of all ground instances of the clauses; in this case, it requires
an instance f(b) ~ c of clause 2, which does not exist. This example also shows that
one cannot deal with arbitrary initial constraints. For constrained clauses, the alter-
native technique for lifting is based on the notion of irreducible instances [NRO1]. In
this chapter we extend this idea of irreducible substitution. It becomes technically
more complex due to the built-in properties of AG (example 91 gives an idea of it).
0

Example 86 In this example it is shown how the inference system performs and
also the need of the splitting of variables in the right premise of inverse AG-
superposition is illustrated. Consider the clause f(z) % f(—a)V z + 3a ~ 0. With
the instance {z — —a}, the negative equation in reductive form is 0 ~ 0. The
positive equation is 2a ~ 0, which may generate the two rules 2¢ — 0 and —a — a.
If one wants to refute f(—3a) % f(a), then the inverse rule has to be used. Indeed,

90 CHAPTER 7. BUILT-IN ABELIAN GROUPS

with —a — a, the term f(—3a) rewrites into f(—2a + a), which is f(—a), which
rewrites into f(a).

Now we want to perform, at the non-ground level, the ground refutation cor-
responding to these two rewrite steps. Assume that, at the non-ground level, we
consider the orientation —a ~ 2a + z, i.e., without the additional splitting of z as
explained in definition 80. Then, by the corresponding inverse AG-superposition
inference we obtain f(z) % f(-a) V f(z) # f(a). If one adds constraints forcing
a to be the maximal summand in the clause f(z) % f(~a) V2 + 3a ~ 0 and such
constraints are inherited, then no substitution different from {z — —a} is possible
(such constraints can be handled with the methods presented in Chapter 8. Now,
one would want to do a new inference on z, but in A no inferences below variables
are computed. So this shows the need of a splitting of z into y — z in an inverse
AG-superposition inference.

Indeed, if we do this additional splitting, the orientation becomes ~a ~ 2a+y—z.
Then the instance under consideration is extended such that {y — 0,2z ~— a}, and
the obtained clause is f(z) % f(—a)V f(y — z) # f(a), with the splitting constraint
z =y — 2. Now, it is possible to do the second inverse AG-superposition inference
(the one corresponding to the second rewrite step with —a — @). Applying —a on
—z, one obtains f(z) £ f(~a)V f(z') % f(-a)V f(y+2a+y - 2') 2 f(a) (here, the
z of the left premise is renamed into z’) with the splitting constraint z’ = y' - 2/,
and extending the substitution {y’ — 0,2’ — a}. With this substitution, all these
equations are of the form 0 ~ 0, and three AG-zero-instance inferences give us the
desired refutation. O

7.5 Completeness for a simple subcase

For explanation purposes, in this section we consider the simpler subcase where
all free symbols are constants. Hence this is assumed in all results of this section.
It is interesting to observe that in this subcase the inference rule of inverse AG-
superposition is not needed.

As said before, we will deal with instances with ground substitutions o of clauses
C that are in some sense irreducible with respect to Rg, where Rg is the set of rules
generated in a way similar to how it was done for the ground case in the previous
section.

Example 87 Let s be a term and o a substitution, both in normal form w.r.t.
R ,s. Then still so needs not be in normal form w.r.t. R,e.

For example, if sis —z + y + a, zo is a + b, and yo is b, then —zo is AG-equal
to —a + (—b) and so in AG-normal form is 0. O

7.5. COMPLETENESS FOR A SIMPLE SUBCASE 91

Example 88 The problems illustrated in Example 85 still occur in this simple case
where all free symbols are constants. Again with the ordering a > b > ¢, consider

l. ax~b
2. btz~clz=a
3. 2b#c
No inferences are possible on this unsatisfiable set. a

Definition 89 Let C be a clause, let ¢ be a term, let o be a substitution in AG-
normal form, and let R be a ground TRS.

The pair (¢,0) is irreducible w.r.t. R if for all variables z occurring in ¢, the
term zo is irreducible w.r.t. R3~% where u is the maximal (w.r.t. >) summand of
AG-nf(to).

The pair (C,0) is irreducible w.r.t. R if (e,o) is irreducible w.r.t. R for all
equations e >~ 0 of C.

Note that the notion of irreducibility for (C, o) does not depend on which one-
sided form e ~ 0 is considered. o 1 ,

We now adapt the notion of rule generation to the non-ground case. Instead of
by ground clauses in reductive form, now the rules are generated by the reductive
forms of instances Co of clauses C' | T of S, where (C, o) is irreducible:

Definition 90 Let S be a set of constrained Horn clauses, let C' | T be a clause
in S with a ground instance Co, and let G be the (ground) reductive form of Co,
where G is of the form G’ V nu ~ r. Then G generates the rule nu — r if the
following four conditions are satisfied:

1. (ReUAG)' G

2. u>rand u>G'

3. nu is irreducible by Rg

4. (C,0) is irreducible w.r.t. Rg.

where Rg is the set of rules generated by reductive forms of instances of clauses of
S that are smaller than G w.r.t. >.. Furthermore, for each generated rule nu — r
with n > 1, in addition the rule —u — (n — 1)u — r is generated. The set of all rules
generated by clauses in S is denoted by Rs.

In the remainder of this section Rg always denotes the ground TRS generated
for a given S as in the previous definition.

92 CHAPTER 7. BUILT-IN ABELIAN GROUPS

Example 91 This example illustrates how the application of generated rules cor-
respond to inferences at the non-ground level. It also shows why the irreducibility
notion is more complicated than the standard one of superposition with constraints
of [BGLS95] and [NR95], where, roughly speaking, one simply imposes that for every
variable z the term zo has to be irreducible w.r.t. the rewrite system R.

Consider the equation e ~ 0 of the form 2z —2a—2b+c ~ 0 where a > b > ¢, and
the substitution o such that zo is a+b. We have that ec ~ 0is 2a+2b—2a—2b+c ~ 0,
and its reductive form is ¢ ~ 0. The corresponding orientation at the non-ground
level is ¢ =~ 2a + 2b — 2z. Due to this instance the rule ¢ = 0 may be generated.
Later on, the rule b — 0 may be generated too, due to other equations. The variable
z with the substitution o is reducible by such a rule 4 - 0. So with the standard
notion of irreducibility, rules generated later on could reduce the substitution of
clauses generating smaller ones. Therefore this classical notion is not adequate in
our context. Roughly speaking, we need to allow such big summands that are
cancelled out to be reducible.

Indeed, with the notion used here, the one of Definition 89, we will see in
Lemma 92 that zo will be irreducible w.r.t. all generated rules with maximal sum-
mand smaller than or equal to —c. And indeed this irreducibility is preserved in the
conclusions of inferences. Assume we want to refute 2¢ + y % 0, where yo is 0 with -
the rule ¢ — 0. Observe that (2¢ + y, o) is irreducible w.r.t. the generated R. At
the non-ground level, the reduction with ¢ — 0 corresponds to an inference with the
orientation ¢ ~ 2a 4+ 2b — 2z, and the resulting clause is ¢+ 2a 4+ 2b— 2z +y # 0.
Observe that (¢ + 2a + 2b — 2z + y, 0) is irreducible w.r.t. R, since the maximal
summand of AG-nf(+2a+ 2b—2z0) is c. Here, some constraints can be added, like
for example ¢ > 2a + 2b — 2z. Such constraints can be handled with the methods
presented in Chapter 8. In this case, the only possible solution ¢ is zo =a+b. O

The following lemma shows that our notion of orientation for left premises of
direct AG-superposition fulfills the requirements.

Lemma 92 Let C | T be a clause whose instance Co with reducive form C, gen-
erates the rule nu — r.

Then there exists an orientation /; ~ r; of the positive equation e ~ 0 of C,
and some extension of ¢ in AG-normal form satisfying the splitting constraint of the
orientation, and AG-nf(l10) = nu and AG-nf(ry0) = r. Furthermore, all variables
z in r; satisfy that zo is irreducible w.r.t. RE’".

Proof: W.lo.g., let e be of the form k121 + ...+ kpzp, + ku + v where the k; and
k are (possibly zero) integers, the z; are variables, and v is the (possibly 0) sum of
constants different from u. Now consider the orientation of e 2~ 0 into I; ~ r; where

ll=k1y1+...+kpyp + ku

7.5. COMPLETENESS FOR A SIMPLE SUBCASE 93

r=-kizg—...—kpzp — v
i.e., where each z; has been split into y; + 2;. Furthermore, consider the extension
of o where y;0 consists of all (positive or negative) u in z;0, and z; is the sum of
the remaining constants, that is, if ;0 =,¢0 m;u + v; where « does not occur in v;,
then y;0 = myu and 2;0 = v;. Note that in v; constants larger or smaller than u
may appear, but not u itself.

Then AG-nf(ly0) = nu and AG-nf(ryo) = r. It remains to be shown that every
variable z; in ry satisfy that zo is irreducible w.r.t. Rg"". We know that (e, o) is
irreducible w.r.t Rc,, i.e., z;0 is irreducible w.r.t. Rg:". Then, since z;o is a sum
of constants that already appear in z;0, we have that z;o is irreducible w.r.t. Ra_“.
m]

Note that in this case where all free symbols are constants, for a given clause
with positive equation e ~ 0 there are at most two orientations /; ~ r;: one where
the maximal constant symbol of e (if there is any) is in /1, and another one where
there is no constant symbol at all in {; (if there is any variable in e).

Lemma 93 Let e be a term such that (e, o) is irreducible w.r.t. Rs, and let ec ~ 0
in reductive form be mu =~ v. Furthermore, let nu — r be.a rule in Rgs with
1<n<m. C e R .

Then there exists a splitting e; + e; of e and an extension of o in AG-normal
form satisfying the corresponding splitting constraint, and (e; + e2)o =, eo and
€10 =g nu. Moreover, all variables z in e satisfy that zo is irreducible w.r.t. Rg_“.

Proof: For every variable z; in e, w.l.o.g. we have z;0 =4¢o m;u + v; where u does
not occur in v;, and where m; > 0 because (e, o) is irreducible w.r.t. Rg (which
contains nu — r and hence if n > 1 also —u = (n — 1)u —r).

Therefore, since eo >~ 0 in reductive form is mu ~ v, and m > n, we can assume
that e >~ 0 (in one of its one-sided forms) is of the form

k1$1+...+k‘pl’p + ku + ¢ ~0

where k > 0, €' is the (possibly 0) sum of the remaining constants and variables,
and {z1,...,2p} is a minimal set of variables with positive coefficients k; such that
kymy + ...+ kpmp + k > nor, if k is negative, kymy + ...+ kpmp > n.

Now we distinguish three possible situations:)

1. k> n, and hence p is 0. Then some splitting of the form

eq1 = nu
e2 = (k—n)u + ¢
fulfils the requirements. Note that (ez, o) is irreducible w.r.t. Rg since e has

the same variables as e and the maximal summand of AG-nf(ez0) is smaller
than or'equal to u, the maximal summand of AG-nf(ec).

94

CHAPTER 7. BUILT-IN ABELIAN GROUPS

2. n>k>0. Then kymy+...+kpmp+k > n > koma+...+kymp+k (the latter

relation by minimality of the set {zy,...,zp}). Now let [be n — (kama+ ...+
kpmp+ k), i.e., intuitively, [is the number of u’s we need from the kym, u’s in
z10. We assume that | mod k, is not 0 (the case of | mod k; = 0 is analogous
and the diferences are commented below). Now let m' be ! div ky, let k' be
! mod ki, and consider the splitting

e1r= ku + kiy + Ky + koo + ...+ kpyp
€y = (kl—k')y'+k12 + kozy ..+ kpzp + ¢

where every z; is split into y; + 2;, except for z; that is split into y+ 3’ + z (if
I mod k, is 0 then the variable y’ is not needed in the splitting and z is split
into y + 2) and let yo be m'u, let y'o be u, let.zo be (m; — m’ — 1)u+ vy, and
for iin 2...p, let y;0 be m;u, and let z;0 be v;. This fulfils the requirements,
and, for similar reasons as in Lemma 92 we have that every variable z in e,
satisfies that 2o is irreducible w.r.t. RE—".

. k<0. Then kymy + ...+ kpmp > n > kamy + ...+ kpmp. As in the previous

case, assume that | mod ky is not 0, and let [be n —komo+. ..+ kpmy, let m’
be ! div ky, let k' be | mod ky, and consider the splitting

e1r= kwy + Ky + ko ..+ kpyp
€y = (kl—k,)y'+k12 + k222+...+kpzp + ku + €

and let yo be m'u, let y'o be u, let 20 be (my — m’ — 1)u+ vy, and for ¢ in
2...p, let y;0 be m;u, and let 2;0 be v;. This fulfils the requirements, and,
for similar reasons as in Lemma 92, every variable z in e, satisfies that zo is
irreducible w.r.t. Rg"“. O

The proof of the previous lemma reveals that the definition of splitting of right

premises (Definition 82) could be made more restrictive. Indeed this is possible, thus
reducing the number of inferences that need to be considered. In fact, the following
more restrictive definition is also adequate for the general case handled in the next
section, where we consider arbitrary free symbols. We decided to give Definition
82 as it is because it is simpler, but here we give the more restrictive alternative
(it can be skipped by all readers except the ones interested in implementing these
techniques in the most optimized way).

Let ¢t be a non-variable subterm of e in a literal e ~ 0 or e % 0 where ¢ is not

immediately below an AG-symbol and the head symbol of ¢ is free or +. W.lo.g.,
let ¢ be of the form

n181+...+npsp+m1x1+...+mq:cq+t'

7.5. COMPLETENESS FOR A SIMPLE SUBCASE 95

where all s; are summands, all z; variables, all n; and m; are positive coeflicients,
and t' contains only negative summands and negative variables.

We choose a subset of the s;, say {s;...s} with p' < p, and a subset of the
z;, say {Z1,...,2¢} with ¢’ < g. The case where the subset of summands is empty,
the subset of variables contains only z; and m; is 1 is not accepted (no inferences
in variables are permitted). If (i) the subset of variables is empty, we choose a
summand in {s;...sy}, say s, and a number n} < n;. Otherwise, if (ii) the subset
of variables is non-empty we choose one of those variables, say z; and a number
m'l < mg.

In case (i), t; + t2 is a splitting for t if t; and ¢, are of the form:

nySy+ ...+ By Sy

(n1 = n1)s1 + Nprg1Sprpr oo+ NpSp + M1Ty + ...+ Mgzq + ¢
respectively. In case (ii), split every variable z; of {z2,...,z¢} into y; + z. If (ii.1)
mj is 0, then split z; into y; + 21, and otherwise, if (i1.2) m{ is not 0, then split z,
into y; +y; + 21. In case (ii.1), t; +¢2 is a splitting for t if ¢; and ¢, are of the form:

N18y + ...+ AptSpMayy + ...+ Mgryy + t

/
Npr41Spigl -« -+ NpSp + M2y + ..o+ Mgrzgr + Mg 1 Tgrgr + ...+ Mgzg + 2

respectively. In case (ii.2), ¢; + t2 is a splitting for t if ¢; and ¢, are of the form:
n181+ ...+ RSy + m'ly; +mays + ...+ myYy + ¢

/ !
Npip1Spigl « o FNpSp+ (M —m) Y +mrz1+. . g 2g+mgp1Tepr+. . A mzg+t

respectively.

Theorem 94 #H is refutation complete for constrained Horn clauses where all free
symbols are constants and the initial set of clauses has only empty constraints.

Proof: In fact, we will show that in this case where all free symbols are constants,
no inferences by inverse superposition are needed. Let S be the closure under H of a
set of Horn clauses Sy without constraints, and assume 0O ¢ S. Again we prove that
then the equality Herbrand interpretation I defined as the congruence on ground
terms generated by Rg U AG is an AG-model for S. But now this is done in two
steps. Let Irr,(S) denote the set of ground instances Co of C' | T in S such that
(C,0) is irreducible w.r.t. Rg.

1. First, it is proved that I |= Irp.(S), in a very similar way as for the ground
case, by deriving a contradiction from the existence of such a Co whose re-
ductive form is minimal w.r.t. .. This is done in detail below.

96 CHAPTER 7. BUILT-IN ABELIAN GROUPS

2. Second, from I |= Irp (S) it follows that I = S for the following reasons. For
each ground instance Co of a clause C | T in Sp, consider another instance
Co' of C, where zo' is the normal form w.r.t. Rg of zo for every variable z
of C. Since T is empty (as Sp has no constraints), Co’ is also an instance of
So. It is also in Irgp(So), since (C, o’} is obviously irreducible. Since So C S
and I | Irp(S) we have I |= Irp,(Sp) and hence I |= Co’, which implies
I = Co, and hence we also have I k= Sp. But since Sp = S, this gives us
IES.

We now prove the first part. Let C, be the minimal, w.r.t ., reductive form of
some Co in Irp(S) that is an instance of a clause C | T¢ such that I |~ C,.

If C, is a disjunction of literals of the form 0 2 0, then an inference by AG-zero-
instance applies to any one of these literals, eliminating it, and its conclusion has a
smaller false counter example.

Otherwise, as in the ground case (the proof of Theorem 73), let s be the maximal
summand in C,. Then C, is either of the form C} V ms ~ t with s = C/, or else it
is Cl Vms #t with s = C.. Then C is of the form C'Ve ~ 0 or C'V e % 0, where
the reductive forms of C’ and eo ~ 0 are C! and ms ~ ¢ respectively.

As in Theorem 73, in both cases ms is reducible by Rgs. Since all free symbols
are constants, the rule reducing ms must be of the form ns — r, with m > n > 1.
This rule has been generated by the reductive form D, of an instance Do of a clause
D |Tp. Let D be of the form D'Ve' ~0.

Then by Lemma 92 there exists an orientation [; ~ r; of ¢’ ~ 0 and an extension
of o preserving AG-equality such that AG-nf(ly0) is ns and AG-nf(r,o) is r, and
such that every variable z in r) satisfies that zo is irreducible w.r.t. R'Sf'“.

Furthermore, by Lemma 93, there exists a splitting e; + e; of ¢ and a new
extension of o (here we assume as usual that both clauses C' and D contain diferent
variables and that the splittings in them are done also with diferent variables) that
is AG-preserving such that (e1 + e2)0 =46 €0, and e;0 =44 ns, and where every
variable z in e, satisfies that zo is irreducible w.r.t. RE"“.

Now, since every variable z of r; +e; satisfies that zo is irreducible w.r.t. RE'",
and since the maximal summand of AG-nf((ry + €1)0) is smaller than or equal to
u, it holds that (ry + e;, o) is irreducible w.r.t. Rg.

Now, the following inference exists:

D’Vll’;"rllTD C'V€]+€220|TC
C'Vri+ea~0|TpATcAl=¢e AT

Its conclusion belongs to S, since S is closed under #, and it has an instance with
o that contradicts the minimality of C,. O

7.6. COMPLETENESS FOR ARBITRARY HORN CLAUSES 97
7.6 Completeness for Arbitrary Horn clauses

In this section we drop the restriction that all free symbols are constants. All
definitions and proofs that are needed for this purpose follow the same intuition as
what was done in the constants-only case, but several aspects become technically a
bit more involved.

Example 95 This example shows that in the presence of arbitrary free symbols
a more refined notion of irreducibility than the one of Definition 89 is needed. We
continue with Example 91, and consider new problems due to the non-constant
symbols. Suppose we have a unary symbol f bigger than a, b and ¢, and an equation
f(¢) ~ 0. It is reducible with the rule ¢ — 0, that, at the non-ground level is
¢ — 2a + 2b — 2z, with the substitution {z — a + b}. By the corresponding direct
AG-superposition inference we obtain f(2a + 2b — 22) >~ 0. At the ground level it
is of the form f(0) ~ 0. Observe that f(0) > zo, and hence, zo would be reducible
by a rule with left hand side b, that is smaller than the maximal summand of the
equation. For this reason, we need a more complex notion of irreducibility, where
the irreducibility of a variable z in an AG-context is only necessary for summands
in zo that are smaller than or equal to the maximal reducible summand of such an.
AG-context, and not to the maximal summand in the equation. . . - .. O

The following definitions are parameterized by the given rewrite system R, and
we always denote (possibly with subindices) terms by s, ¢, u, v, positions by p,q and
variables by z,y, z.

We first define irreducibility for pairs (s,) where sis a term and o a substitution,
both in normal form w.r.t. R ;. Then still s¢ needs not be in normal form w.r.t.
R 4, because the following two kinds of steps may be applicable: (i) if = is a variable
occurring imediately below a — in s and zo is headed by 4+, then this — is “moved
inwards”; (ii) after this, some “complementary” pairs u and —u’ below the same +
are cancelled if u and u' are summands with u =4¢ u'.

Definition 96 Let s be a ground term, and let R be a ground TRS. We define
mazredp(s) to be the maximal summand u such that either:

o AG-nf(s) is of the form nu + v and nu = r € R;
In this case we say that u is determined by a top-level positive reduction.

e AG-nf(s) is of the form —u + v, and —u — r € R;
Then u is determined by a top-level negative reduction.

o AG-nf(s) is of the form v 4 v or —u + v and u is reducible at non-top-level by
R;
Then u is determined by a non-top-level reduction.

98 CHAPTER 7. BUILT-IN ABELIAN GROUPS

Definition 97 Let s be a term and let o be a substitution, both in normal form
w.r.t. R4¢, and let R be a ground TRS.

The pair (s, o) is called recursively irreducible w.r.t. R if the following conditions
hold. Let u be mazredgr(so).

1. for all z such that s is of the form z + s, and all summand v with » > v and
such that zo is of the form mv + v/, if u is determined by a top-level negative
reduction, then either v > v and mv is irreducible w.r.t. R, or v is 4 and
m is positive; otherwise (top-level positive or non-top level reduction) mv is
irreducible w.r.t. R.

2. for all z such that s is of the form —z 4 s', and all summand v with u > v and
such that zo is of the form muv + v/, if u is determined by a top-level negative
reduction, then either « > v and mv is irreducible w.r.t. R, or vis u; otherwise
(top-level positive or non-top level reduction) muv is irreducible w.r.t. R.

3. for all ¢ of the form f(¢y,...,¢,) such that AG-nf(so) is of the form t + v or
—~t 4+ v and u > AG-nf(to), each (¢;,0) is recursively irreducible w.r.t. R.

Definition 98 Let s be a term, let u be a summand, and let o be a substitution, -
both in normal form w.r.t. R, let C be a clause, and let R be a ground TRS.

The pair (s, o) is called (u »)-irreducible (resp. (u »)-irreducible) w.r.t. R if the
following conditions hold.

1. for all such that s is of the form z + s’ or ~z + s, and all summand v with
u > v (resp. u > v) and such that zo is of the form mv + v/, the term mv is
irreducible w.r.t. R.

2. for all t of the form f(t1,...,tn) such that AG-nf(so) is of the form ¢ + v or
—t 4+ v and u > AG-nf(to), each (t;,0) is recursively irreducible.

If u is the maximal summand of AG-nf(so) w.r.t. >, then, we simply say that
the pair (s,) is irreducible w.r.t. R.

The pair (C, o) is irreducible w.r.t. R if (e, 0) is irreducible for all its equations
e ~ 0 (note that this notion does not depend on which one of the two possibilities
of writing the equation like e ~ 0 is chosen).

7.6.1 Model generation

As in the case where all free symbols are constants, which was explained in Sec-
tion 7.5, now the AG-model induced by R is built. Again the rules are generated,

7.6. COMPLETENESS FOR ARBITRARY HORN CLAUSES 99

exactly as in Definition 90 of Section 7.5, by the reductive forms of instances Co of
clauses C | T of S, where (C, o) is irreducible. But now the notion of irreducibility is
according to Definition 98. The main theorem of this section says that H is refuta-
tion complete for constrained Horn clauses if the initial set of clauses has only empty
constraints. Its proof follows the same arguments as its analogous of the constants-
only case, Theorem 94. Lemma 106 finds, for a given term that is reducible by R,
a context inside it where the maximal summand is reducible at the top. This gives
us an inference at the ground level. Lemmas 107, 108, 109 and 110 justify that
there exist orientations and splittings at the non-ground level corresponding to the
inference at the ground level. This new inference at the non-ground level has to
satisfy some conditions of irreducibility that are justified by Lemmas 113, 115 and
116.

Lemma 99 Let u be the maximal summand in AG-nf(so), let R; be a rewrite
system and let Ry be a rewrite system with left hand sides of the form nw or —w,
where n > 0 and w is a summand such that w > u. Let (s,o) be recursively
irreducible w.r.t. R;.

Then, (s, o) is recursively irreducible w.r.t. R U Rs.

Proof: We prove it by induction on the size of s. Let v be mazredg, (so). Observe
that > v. Since u is the maximal summand of AG-nf(sc), and for all the w,
we have that w >~ u, then mazredg,ur,(so) is v. Moreover, the sets RF™Y and
(R1UR2)*™" coincide for any m. Therefore, the conditions of recursive-irreducibility
for variables z such that s is of the form z + s’ or —z + &' are satisfied. Let s be
of the form t + s’ or —t + &', for a summand ¢t of the form f(¢y,...,%,), and such
that v = AG-nf(to). Then, we have that v > AG-nf(t;0). Therefore, for all the w,
we have that w is greater than the maximal summand in AG-nf(t;c). By induction
hypothesis, (t;, o) is recursively irreducible w.r.t. By U R,. a

Lemma 100 Let u be the maximal summand in AG-nf(sc), let R; be a rewrite
system and let R, be a rewrite system with left hand sides of the form nw or —w,
where n > 0 and w is a summand. Let v be a ground summand in AG-normal form
such that v > u and (s, 0) is (v >)-irreducible w.r.t. R;. .
If all such w satisfy that w > v, then, (s,0) is (v >)-irreducible w.r.t. R; U Rs.
If all such w satisfy that w > v, then, (s,o) is (v >)-irreducible w.r.t. Ry U R,.

Proof: We only prove the first statement (the second one is analogous). Observe
that the sets R;""’ and (R; U R,)3™ coincide for any m. Therefore, the conditions
of (v *)-irreducibility for variables z such that s is of the form z + s’ or —z + &'
are satisfied. Let s be of the form t 4+ s’ or —t + &', for a summand ¢ of the form
f(t1,...,t,), and such that v = AG-nf(to). Then, we have that v = AG-nf(t;o).

100 CHAPTER 7. BUILT-IN ABELIAN GROUPS

Therefore, for all the w, we have that w is greater than the maximal summand in
AG-nf(t;o). By Lemma 99, (t;,0) is recursively irreducible w.r.t. Ry U Ra. a

Lemma 101 If, as in the definition of R, the reductive form Cred of Co generates
the rules nu — r and —u — (n — 1)u — r, then (C, o) is irreducible not only w.r.t.
RCred, but w.r.t. R\ {nu - r, —u — (n—1)u—r}. Moreover, if e ~ 0 is a negative
equation of C, then (e, o) is irreducible w.r.t. R.

Proof: Let e ~ 0 be an equation of C. Let R€™*? be the set of rules generated by
reductive forms bigger than Cred w.r.t. .. Then, RC*? is of the form ;¢ {niu; —
ri, —u; = (n; — 1)u; — r;}. All these u;’s are larger than the maximal summand of
AG-nf(eo). Moreover, if e ~ 0 is a negative equation, u is larger than the maximal
summand AG-nf(ec). By applying Lemma 100 with R°"*¢ and RC"4 U {nu —
r,—u — (n — 1)u — r} for negative equations, the lemma follows. O

Lemma 102 Let s be a term of the form s; + s3. Let (s,0) be (u =)-irreducible
(resp. (u »)-irreducible) w.r.t. R, for a given summand u. Then, (s1,0) and (s;,0)
are (u »)-irreducible (resp. (u »>)-irreducible) w.r.t. R'.

Lemma 103 Let s be a term of the form s; + sz. Let (s,0) be recursively irre-
ducible w.r.t. R'. Let mazredg(so) > mazredgr(s;o). - :
Then, (s1,0) is recursively irreducible w.r.t. R'.

Lemma 104 Let (s,0) be (u >)-irreducible (resp. (u >)-irreducible or recursively
irreducible} w.r.t. R. Let s be of the form (i) nz + ¢ or (ii) —nz + s. Let z,
and z, be variables not in s such that zy0 and z,0 are in AG-normal form, and
(71 + x2)0' =aco 0.

Then, we have that (i) (nzy + nze + &, 0) or (i) (—nz, — nze + ¢, 0) is (u >=)-
irreducible (resp. (u >)-irreducible or recursively irreducible) w.r.t. R.

Lemma 105 Let (s,0) be (u >)-irreducible w.r.t. R. Let s be of the form nz 4 5'.
Let zo be (i) vy +...+Um —v1 —...— Vg, 0Or (ii) ug +...+ U, or (ili) —vy —...—vp,
where the u; and v; are summands. Let z; and z; be variables not in s. Let 2,0 be
Uy + ...+ Uy in cases (i) and (ii), and 0 otherwise. Let 290 be vy + ...+ v in cases
(i) and (iii), and 0 otherwise.

Then, we have that (nz; — nzy + §',0) is (u >)-irreducible w.r.t. R.

Proof: Since s’ is a subsum of s and z,0 is a subsum of zo, the only doubt for
reducibility is what happens with z90. If 290 is of the form muv; + v’ for some v;
such that u > vj, then zo is of the form —muv; +v”. Since (s, o) is (u >)-irreducible,
v; 1s irreducible w.r.t. R, and no rule with left-hand-side —v; nor v; appears in R,
and hence, a term of the form n'v; is not a left-hand-side of a rule of R. Hence,
such variables z, satisfy the conditions for irreducibility, and (nz; — nzy + §',0) is
(u >)-irreducible w.r.t. R. m]

7.6. COMPLETENESS FOR ARBITRARY HORN CLAUSES 101

Lemma 106 Let t be a term in AG-normal form and reducible by R. Then, there
exists an AG-context ' of ¢, and a summand u such that u is mazredgr(t’) by
top-level reduction.

Proof: This can be proved by induction on the size of t. The term ¢ by itself is an
AG-context of ¢t. Let v be mazredp(t). If it is by top-level reduction, then, u is v,
and we are done. Otherwise, it is by non-top-level reduction, and then, v is of the
form f(vi,...,vs), and one of the v; is reducible. Then, by induction hypothesis,
this v; contains the ¢’ and u satisfying the required condition. |

Lemma 107 Let the reductive form Cred of Co generate the rule nu — r'.

Then there exists an orientation [~ r of the positive equation e 2~ 0 of C, and
an extension of o satisfying the splitting constraint of the orientation, such that
AG-nf(lo) is nu, AG-nf(ro) is v/, and (r, o) is (u >)-irreducible w.r.t. R.

Proof: By Lemma 101, (e, o) is irreducible w.r.t. R\ {nu = r,—u = (n — L)u—-r}.
In fact, it is (u »)-irreducible w.r.t. R\ {nu = r,—u = (n — 1)u — r}, since u is
the maximal summand of AG-nf(ec). Observe that AC-changes in the substitution
do not affect irreducibility. Hence we can suppose that z;o is of the form (i) l;u, or
(i1) liu + v;, or (iii) v;, for all variables z; in e, where v; has no ocurrences of u at
top-level position. Let ¢’ be the result of replacing each ocurrence of z; at top-level
position by y; + 2;, where y; and z; are new variables. Let o be extended such that
yio is lyu (in cases i and ii) or 0 (in case iii), and z;0 is 0 (case i) and v; otherwise.
By Lemma 104, (¢/,0) is (u »)-irreducible w.r.t. R\ {nu - r,—u— (n —)u —r}.

Now, we may write €’ as ! + I/, for terms [and !’ such that [contains all the
yi, and all the summands ¢ at top-level position in €' such that AG-nf(to) is u;
and !’ contains all the z;, and the rest of the summands. By Lemma 102, (!/,0) is
(u >)-irreducible w.r.t. R\ {nu = r,—u > (n — D)u - r}.

We have that AG-nf(lo) is nu, and AG-nf(I'c) is AG-nf(—r’). Moreover, if I’
is of the form z + " or —z 41", and zo is of the form mv + v’ for some summand
v with > v, then, necessarily u > v, due to the way we have extended o to the
variables in I’. Therefore, muv is irreducible w.r.t. R, because it is irreducible w.r.t.
{nu > r,~u— (n —1)u —r}, and w.r.t. R\ {nu = r,—~u — (n — 1)u — r}, since
(I'y0) is (u ¥)-irreducible w.r.t. R\ {nu = r,—u— (n - L)u—r}. .

Furthermore, if I’ is of the form ¢ + I or —t 4 1", for some summand t of the
form f(t1,...,t,) such that v > AG-nf(to), we have that v > AG-nf(t;o), and, by
Lemma 99, (¢;, o) is recursively irreducible w.r.t. R.

Therefore, (I, 0) is (u >)-irreducible w.r.t. R. And, if we take r as AG-nf(-1'),
(ryo) is (u »)-irreducible w.r.t. R. a

Lemma 108 Let the reductive form Cred of Co generate the rule —u — (n —
Du—r'.

102 CHAPTER 7. BUILT-IN ABELIAN GROUPS

Then there exists an orientation [~ r of the positive equation e ~ 0 of C, and
an extension of o satisfying the splitting constraint of the orientation, such that
AG-nf(lo) is —u, AG-nf(ro) is (n — 1)u — r/, and (r, o) is (u >)-irreducible w.r.t.
R. Moreover, for all z such that r is of the form z + s, we have that zo is not of the
form —u+ .

Proof: By Lemma 101, (e, o) is irreducible (in fact (u »)-irreducible) w.r.t. R\
{nu = r,—u = (n — 1)u — r}. This implies that if ¢ is of the form z + e; or
~z + ey and 20 is of the form mv 4 v’ for some summand v with v = v, then
mv is irreducible w.r.t. R\ {nu = r,—u — (n — 1)u — r}, and, in fact, w.r.t. R.
Additionally, if e is of the form t 4¢3 or —t + €5 for some summand ¢ of the form
f(t1,...,ts) such that u > AG-nf(tc), we have that (¢;, o) is recursively irreducible
w.r.t. R\ {nu = r,—~u — (n—1)u —r}. But observe that, since u > AG-nf(t;0), by
Lemma 99, (¢;,0) is recursively irreducible w.r.t. R. Alltogether this implies that
(e,0) is (u »)-irreducible w.r.t. R.

Let us consider now a certain variable z that appears in e at top-level positive
variable position. AC-changes in the substitution do not affect irreducibility. Hence
we can assume that zo is of the form (i) v, or (ii) v+ w, or (iii) w, where v (resp. w)
contains only positive (resp. negative) summands at their top-level positions. Let €’
be the result of replacing each ocurrence of z at top-level positive variable position
by y — z, where y and z are new variables. Let o be extended such that yo is v (in -
cases i and ii) or 0 (in case iii), and zo is 0 (case i) and AG-nf(—w) otherwise. By
Lemma 105, (¢’, o) is (u >)-irreducible w.r.t. R. We can repeat this process with all
the variables in e at top-level position. Let the resulting term be €’. Again, (€/,0)
is (u >)-irreducible w.r.t. R.

Since AG-nf(e'o) is nu — r, either (i) e’ is of the form z + €” for some variable
z and zo is of the form u + €"” or u, or (ii) € is of the form —z + €”, and z0 is of
the form —u + €’ or —u, or (jii) €’ is of the form t + ¢ for some summand ¢ such
that'to =44 u.

In case (i), we replace this occurrence of z by 1 + z2, where z; and z, are new
variables, and we extend ¢ such that z,0 is u, and z,0 is " or 0, depending on the
case. By Lemma 104, we have that (z; + 23 + €”,0) is (u >)-irreducible w.r.t. R.
By Lemma 102 (2, + €”,0) is (u >)-irreducible w.r.t. R. Therefore —z; ~ z + ¢
is an orientation that satisfies the required conditions.

Case (ii) is identical to case (i), but now, the obtained orientation is z; ~ —z; +
e’.

In case (iii), by Lemma 102, we have that (e, o) is (u >)-irreducible w.r.t. R.
Therefore —t ~ €” is an orientation that satisfies the required conditions. O

Lemma 109 Let nu — r’ be a rule of R. Let (s,0) be (i) irreducible or (ii)
recursively irreducible w.r.t. R. Let AG-nf(so) be of the form nu + s'. Let u be in
case (i) the maximal summand of AG-nf(sc), or in case (ii) mazredg(so).

7.6. COMPLETENESS FOR ARBITRARY HORN CLAUSES 103

Then, there exists a splitting s; + s2 of s, and an extension of o satisfying the
corresponding splitting constraint, such that (s; + sq)o =4 so, and sy0 is nu, and
(s2,0) is (u >)-irreducible w.r.t. R.

Moreover, in case (i), the maximal summand of AG-nf(s,0), and, in case (ii),
the summand mazredgp(sz0), is smaller than or equal to u w.r.t. >.

Proof: From our hypothesis, it follows that (s,o) is (v >)-irreducible w.r.t. R
(observe that for the case (ii) u is not determined by top-level negative reduction).
Moreover, if s is of the form —z+¢, then « is not of the form —u+t'. Since AG-nf(so)
is nu+ ', these n u’s can not be provided by negative variables at top-level position.
Thus s has to be of the form myz; + ...+ mqzq + ni1ts + ... + nptp, + s, where
the m; and n; are positive, AG-nf(t;o) is u for i in 1...p, and z;0 is of the form
kiu+v; for iin 1...q with positive k;, and my xky +...+mgxkg+n1+...7n, > n.
Moreover, such z; and ¢; can be chosen to satisfy the following conditions: the z;
and ¢; do not appear in s”, and p is maximal (i.e. if ¢ is not 0, that is there is at
least one chosen variable z;, then no summand ¢ such that s” is of the form ¢ + 5"’
satisfies to =4q u), and ¢ is minimal (i.e. by eliminating one variable, say z;, we
have that mo* ko +...+mgxkg+n;+...4+n, < n). The case where pis 0 and g is
1 and m, is 1 is not possible, since z;0 cannot contain more than n ~1 u’s, because
it would be reducible w.r.t. R, contradicting the (u >)-irreducibility of (s, o).

For facility of explanations, we assume that my xky +...+mg*kg+n1 +...7n,
is exactly n. Other situations are treated analogously, by doing the corresponding
additional splittings as explained in Lemma 93.

Now, we split every z; into y; + z;, where y; and 2; are new variables, and o is
extended such that y;o is k;u, and z;0 is v;. Thanks to Lemma 104, the obtained
term is (u >=)-irreducible w.r.t. R. It may be written s; + s;, where s; contains
all the ¢; and all the y;, and sy contains the rest of summands and variables. The
AG-normal form of sy0 is nu, and of syo is ¢, and s, + s is a splitting for s. By
Lemma 102, (s2,0) is (u =)-irreducible w.r.t. R.

Moreover, in case (i), the maximal summand of AG-nf(sz0), and, in case (ii),
the summand mazredgr(sy0), is smaller than or equal to u w.r.t. >. Observe that,
ommiting the summand u, the AG-normal forms of s¢ and s;o coincide. |

Lemma 110 Let n > 1 and -« — (n — 1)u — ' be a rule of R. Let (s,0) be
recursively irreducible w.r.t. R. Let AG-nf(so) be of the form —u + s'. Let u be
mazredp(so).

Then, there exists a splitting s; + s2 of s, and an extension of ¢ satisfying the
corresponding splitting constraint, such that (sy + s2)o =ag so, and sy0 is —u, and
(s2,0) is (u »)-irreducible and recursively irreducible w.r.t. R. Moreover, we have
that u = mazredg(sq0).

104 CHAPTER 7. BUILT-IN ABELIAN GROUPS

Proof: From our hypothesis, it follows that (s,o) is (u >)-irreducible w.r.t. R.
Moreover, if s is of the form z + s”, then zo is not of the form —u 4 s”’. Since
the AG-normal form of so is —u + &, then, either (i) s is of the form —v + ¢ for
some summand v such that AG-nf(vo) is u, or (ii) s is of the form —z + ¢t for some
variable z such that zo is of the form u + s or u.

In case (i), we may take —v as s;, and ¢ as s2. Then s; + s2 is a splitting for s,
and u > mazredg(sz0).

In case (ii), we may split z into z; + x5, for new variables z, and z3, and extend
o such that z10 is u and z,0 is s or 0, depending on the case. By Lemma 104,
—z1 — 29+t is (u >)-irreducible and recursively irreducible w.r.t. R. We may take
—z as sy, and —za+t as s;. Then s;+s; is a splitting for s, and u > mazredr(sy0).

In both cases, by Lemmas 102 and 103, we have that (s, 0) is (u >)-irreducible
and recursively irreducible w.r.t. R. a

Lemma 111 Let ¢t be a summand. Let (¢ + s,0) be recursively irreducible w.r.t.
R. Let AG-nf(to) be smaller than or equal to mazredp((t + s)o) w.r.t. >. Let ¢/
be a summand such that (t/,0) is recursively irreducible w.r.t. R, and AG-nf(to) >
AG-nf(t'o).

Then, (AG-nf(t' + s), o) recursively irreducible w.r.t. R.

Proof: Let u be mazredr((t + s)o). After replacing ¢ by ¢/, this maximal reducible
summand does not increase. Moreover, if u is mazred(t’' + so), then it is due to the
same reason as before (top-level positive reduction, or top-level negative reduction or
non-top-level reduction). Except for ¢/, the variables and summands that appear in
AG-nf(t'+s) at top-level position are the same ones that appear in ¢+ s at top-level
position, and with the same sign. Therefore, the conditions for irreducibility are
satisfied for the variables at top-level position. But also for ¢/, since it is recursively
irreducible w.r.t. R. o

Lemma 112 Let (s, o) be recursively irreducible w.r.t. R. Let ¢ be an AG-normal
form of so. Let p be an AG-context position in ¢ such that ¢|, is reducible w.r.t. R.
Then there exists an AG-context position ¢ in s such that so|, =4¢g tlp, and
(slqy 0) is recursively irreducible, and for all term r, sr]yo =ag t[ro]p.
Moreover, let (r, o) be recursively irreducible w.r.t. R, and let ¢[, > AG-nf(ro).
Then (AG-nf(s[r]y), o) is recursively irreducible w.r.t. R.

Proof: This is proved by induction on the size of s. In the case where pis A, ¢ is A,
and all the results are obvious. Therefore, suppose that p is not A. Then, p is of the
form p'.p", where t|,y is a summand of the form f(t1,...,t,) at the AG-context A.
Let u be ma:z:red(t). Since t|, is reducible, we have that u > t|,»>. An AG-context
of t[, is reducible, and therefore there is an ¢ such that ¢; is reducible, and p is of
the form p'.i.p".

7.6. COMPLETENESS FOR ARBITRARY HORN CLAUSES 105

Since t is an AG-normal form of so, we have that, either (i) s is of the form
z+s or —z+ ¢, and z0 is of the form t|y 4+ " or —t|,r + s”; or (ii) s is of the form
v+ s’ for some summand v such that vo =4 t|py and t is of the form t|y + t; or
(iii) s is of the form —v + s’ for some summand v such that vo =4¢ t| and ¢ is of
the form —t|y +t'.

In case (i), zo is of the form mt|, + s”, and t|,y is reducible at non-top position
by R, and mazredp(t) > t|y, but t|, cannot be mazredr(t) by top-level reduc-
tion (observe that for the rules nu — r of R such u’s are irreducible at non-top
by R). Altogether this contradicts the hypothesis of recursive-irreducibility, and
therefore, only cases (ii) and (iii) are possible. In fact, we consider only case (ii),
since case (iii) is analogous. The summand v has to be of the form f(vy,...,vy),
and v;0 =4¢ t;. By induction hypothesis, there exists an AG-context position ¢’
in v; such that violy =aq tilpw, and for all term r, vi[r]lyo =4¢ t{ro]ym. More-
over, if (r, o) is recursively irreducible w.r.t. R, and t|, >~ AG-nf(ro), we have that
(AG-nf(vi[r]y), o) is recursively irreducible w.r.t. R. Moreover,

(f(v1y..., AG-nf (vi[r]g’), vn), 0) is recursively irreducible w.r.t. R. Finally, by
Lemma 111, (f(v1,..., AG-nf(vi[r]y), vn) + &, 0) is recursively irreducible w.r.t. R.
m|

Lemma 118 Let (s, o) be irreducible w.r.t. R. Let ¢t be an AG-normal form of so.
Let p be an AG-context position in ¢ different from A such that ¢|, is reducible w.r.t.
R.

Then there exists an AG-context position ¢ in s different from A, such that
slqo =4c tlp, and (s|q,0) is recursively irreducible, and for all term r, s[r],0 =4¢
t[rolp.

Moreover, let (r, o) be recursively irreducible w.r.t. R, and let t|, = AG-nf(ro).

Then (AG-nf(s[r]q), o) is irreducible w.r.t. R.

Proof: The proof is analogous to the previous one, except for the fact that, instead
of doing induction, it refers to the previous lemma, and that we need a modification
of Lemma 111 for dealing with irreducible pairs instead of recursively irreducible
pairs w.r.t. R. =

Lemma 114 Let (s,0) be (u >)-irreducible w.r.t. R.

If mazredp(so) is smaller than or equal to u, then (s, o) is recursively irreducible
w.r.t. R.

If the maximal summand of AG-nf(sc) is smaller than or equal to u, then (s, 0)
is irreducible w.r.t. R.

Proof: Direct by applying the definition. g

106 CHAPTER 7. BUILT-IN ABELIAN GROUPS

Lemma 115 Let (r,0) be (u >)-irreducible w.r.t. R. Let (¢, o) be (u »=)-irreducible
w.r.t. R.

Then, (AG-nf(r +t), o) is (u >)-irreducible w.r.t. R.

Additionally, suppose that mazredg((r+t)o) is smaller than or equal to u w.r.t.
>. Then (AG-nf(r 4 t), o) is recursively irreducible w.r.t. R.

Moreover, if the maximal summand of AG-nf((r + t)o) is smaller than or equal
to u, then (AG-nf(r 4 t), o) is irreducible w.r.t. R.

Proof: Observe that r and t are in AG-normal form. Therefore, the AG-normal
form of r + t is obtained by eliminating some summands at the AG-context A, by
the inverse rule. If AG-nf(r 4+ t) is of the form z + s or ~z + s, then, either r or
t is of the form z + &' or —z + &', and, therefore, 20 satisfies the corresponding
requirements. If AG-nf(r 4+ t) is of the form v+ s or —v + s for a given summand
v = f(v1,...,0s) such that u = AG-nf(vo), then, either r or ¢ is of the form v + '
or —v + &/, and hence such a v satisfies the corresponding requirements. Therefore
(AG-nf(r +1t),0) is (u >=)-irreducible w.r.t. R.

The rest of the proof is a direct consequence of Lemma 114. a

Lemma 116 Let n > 1, and —u — (n — 1)u — r’ be a rule of R Let AG’-nf(ra)
be (n - 1)u —r'. ‘

Let (r,o) be (u >)-1rreduc1ble w.r.t. R, and if r is of the form z + s, then, zo is
not of the form —u +¢'.

Let (¢, 0) be (u >)-irreducible, and recursively irreducible w.r.t. R, and AG-nf(to)
is not of the form u + §'.

Let mazredg(to) be smaller than or equal to u w.r.t. >.

Then, (AG-nf(r + t), o) is recursively irreducible w.r.t. R.

Proof: Since r and ¢ are in AG-normal form, the AG-normal form of r-t is obtained
by eliminating some summands at the AG-context A, by the inverse rule.

Observe that, since AG-nf(ro)is (n—1)u—r', and AG-nf(to) is not of the form
u+¢', it holds that AG-nf((r +t)o) is of the form mu + s” or s, where s does not
contain u’s at the AG-context A, and m is negative, or positive but smaller than n.

If m is positive, or AG-nf((r+t)o is of the form s”, then, mazredg((r+t)o)is a
certain v smaller than u w.r.t. >, and (AG-nf(r+t),0) is (v >=)-irreducible w.r.t. R,
since both (r,0) and (¢, o) are (u »)-irreducible. By Lemma 114, (AG-nf(r +t),0)
is recursively irreducible w.r.t. R.

From now on, we assume that AG-nf((r + t)o) is of the form mu + s, for a
given negative m. In this case, AG-nf(to) contains more than n — 1 negative u’s,
and hence mazredg(tc) and mazredr(r + to) has to be u by top-level negative
reduction.

If AG-nf(r +1t) is of the form z + s and zo is of the form kv + v’ for a given
summand v with u > v, then, either r or t is of the form z + s;. In both cases, if

7.6. COMPLETENESS FOR ARBITRARY HORN CLAUSES 107

u > v, then, since both (r,0) and (¢,0) are (u »)-irreducible, we have that kv is
irreducible w.r.t. R. Therefore assume that zo is of the form ku+v’ (i.e. v is u), and
then, for satisfying the recursive-irreducibility conditions it is enough to show that
k is positive. If r is of the form z + sy, by our hypothesis k is positive. If ¢ is of the
form z + sy then, k is positive due to the fact that (¢,) is recursively irreducible,
and u is mazredg(to) determined by top-level negative reduction.

If AG-nf(r +1t) is of the form —z + s, and zo is of the form kv + v’ for a given
summand v with u > v, then, either r or ¢ is of the form = + s;. In both cases, if
u > v, then, since both (r,0) and (¢,0) are (u »)-irreducible, we have that kv is
irreducible w.r.t. R. Otherwise, if v is u, the recursive-irreducibility conditions for
such —z + s and kv are satisfied trivially.

If AG-nf(r+t) is of the form v+s or —v+s for a given summand v = f(vy,...,vs)
such that u > AG-nf(vo), then, either r or t is of the form v+ s’ or —v + §'. Since
both (r, o) and (¢, o) are (u >)-irreducible, it holds that all the (v;, o) are recursively
irreducible w.r.t. R. a

Theorem 117 #H is refutation complete for constrained Horn clauses if the initial
set of clauses has only empty constraints.

Proof: This proof is analogous to the one for Theorem 94.- The dlferences are in
how it is proved that I |= Irpy(S). ~ ?

Let Cred be the minimal, w.r.t ., reductive form of some Ca in IrRS(S) that
is an instance of a clause C | T¢ such that I }& Cred.

If Cred is a disjunction of literals of the form 0 % 0, then an inference by AG-
zero-instance applies to any one of these literals, eliminating it, and its conclusion
has a smaller false counter example.

Otherwise, as in the ground case (the proof of Theorem 73), let s be the maximal
summand in Cred. Then Cred is either of the form Cred V ms ~t with s = Cred’
(a), or else it is Cred' V ms % t with s > Cred' (b). As in Theorem 73, in both
cases ms is reducible by R. Then, by Lemma 106 there exists an AG-context s’
that is a subterm of ms, and a summand u such that u is mazredgr(s’) by top-level
reduction. Therefore, a rule in R of the form nu — r' or —u — (n — 1)u — ' reduces
§', and it has to be nu — r' if s’ is ms; and moreover, no rule with left-hand-side
blgger reduces s'.

Therefore, C is of the form C'Ve ~ 0 or C'Ve % 0, where ms—t is an AG-normal
form of eo.

The rule reducing ms — t (at the AG-context ms —t or in an AG-context inside
s), has been generated by the reductive form Dred of an instance Do of a clause
D | Tp. Let D be of the form D'V d ~ 0. Now, we distinguish two cases:

e (a) If the rule reducing ms is nu — r’, then, by Lemma 107, there exists
an orientation ! ~ r of d ~ 0 such that AG-nf(lo) is nu and AG-nf(ro)

108 CHAPTER 7. BUILT-IN ABELIAN GROUPS

is r’. Moreover, (r,0) is (u *)-irreducible w.r.t. R. Now, we analyse two
possibilities:

- (a.1) If ¢’ is ms, then s is u, and AG-nf(ec) is mu — t, for m > n.
Moreover, is the maximal summand of ms — ¢t and (e, o) is irreducible
w.r.t. R. By Lemma 109, there exists a splitting e; + es of e such that
(e1 + e2)0 =4¢ €0, and e;0 is nu, and (ep,0) is (u »)-irreducible w.r.t.
R, and the maximal summand of AG-nf(e20) is smaller than or equal to
u. By Lemma 115, (AG-nf(r + e2),0) is irreducible w.r.t. R. Now, the
following inference exists:

D'vi~r|Tp C'Ver+e ~0|T¢
C'Vr+ea~0|TpANTcAl=¢e AT

Its conclusion belongs to S, since S is closed under H, and it has an
instance with o contradicting the minimality of Cred.

— (a.2) If ¢ is inside s, i.e. (ms — t)|, is s’ for some position p below some
s, then, by Lemma 113, there exists an AG-context position ¢ in e such
that elqo =46 ¢, and (e|q, o) is recursively irreducible w.r.t. R, and for
all term r”, e[r"],0 =ag (ms—t)[r"o],. Moreover, if (r”, o) is recursively
irreducible and ' > AG-nf(r"c), then, (e[r"]q, o) is irreducible w.r.t. R.
Now, we will obtain the concrete r” that is interesting for us. Denote
elg by €. Observe that €’ is recursively irreducible w.r.t. R, and s’ is of
the form nu + s”, and mazredp(s’) is u. By Lemma 109, there exists a
splitting e} + €} of e’ such that (e] + e})o =4¢ €0, and €}o is nu, and
(€5, 0) is (u »)-irreducible w.r.t. R, and mazredr(eo) is smaller than or
equal to u. By Lemma 115, (AG-nf(r + e3), o) is recursively irreducible
w.r.t. R. This AG-nf(r + €],) is the r” we wanted. Now, the following
inference exists:

D'vixr|Tp C'Vele)+ €], ~0]|Tc
C'Velr+e]q=0|TpATcAl=€{ AT

Its conclusion belongs to S, since S is closed under H, and it has an
instance with ¢ contradicting the minimality of Cred.

e (b) If the rule reducing ms is —u — (n — 1)u — r’, then, the contradiction of
the minimality of Cred follows, now, from Lemmas 108, 113, 110, and 116; in
a similar way to case (a.2). a

7.7. GENERAL CLAUSES 109
7.7 General Clauses

The inference system is extended to non-Horn clauses in the standard way, with
(equality) factoring, which in the ground case is:

CVnuxrVauc~r

AG-factoring: CVrZrVnue~r

with the ordering restrictions that u is the maximal summand in the clause, which
does not appear in a negative equation, and where nu ~ r is maximal w.r.t. »..
For the non-ground case, the two equations involved have to be oriented as the
left premises of AG-superposition (note that if both orientations require to split a
certain variable z, then it needs to be split only once). Let us denote by Z the rules
of # (with the same ordering restrictions as the factoring rule) plus this additional
rule. By a relatively standard adaptation of the rule generation with respect to the
Horn case (i.e., as for standard superposition, see [BG94b]), we obtain the following:

Theorem 118 The inference system Z is refutation complete for general clauses.

7.8 Extensions

We now very briefly comment on a few aspects that have not been treated yet in
this chapter.

Our completeness proofs are compatible with the notions for redundancy and
saturation as in the basic framework [NR95, BGLS95]. Note that, by dealing with
constrained clauses, no AG-unifiers are computed. Instead, the unification problems
are stored in the constraints and a constrained clause C' | T is redundant if T is
unsatisfiable. Apart from the well-known basicness restriction, an additional ad-
vantage is that only one conclusion is generated, instead of one conclusion for each
AG-unifier[Vig94, NR97].

Checking the ordering restrictions in our framework is different from the usual
situation. Instead of checking whether, say, for given terms s and ¢, there exists some
ground o such that so >, to, we need to check whether this holds after normalising
both sides by R,g, that is, whether AG-nf(so) »,po AG-nf(tc).. Deciding the
satisfiability of such constraints is NP-complete, as we will see in Chapter 8. One can
also add information to the constraint language defined in that chapter for stating
that if nys; + ...+ myy; + ... is the left hand side of an orientation (Definition 78)
then all s; are equal and all summands in the y; are equal to these s;.

It is also possible to find sufficient conditions for ruling out redundant infer-
ences without fully deciding satisfiability. In practice, for efficiency reasons, such
approximations are used as well for standard superposition. Neither soundness nor
completeness require to actually decide ordering constraints.

110 CHAPTER 7. BUILT-IN ABELIAN GROUPS

Example 119 Suppose s is f(f(0) —z) and t is z. It is easy to see that so >,po to
for all 0. But if o is {z — f(0)}, both terms normalise w.r.t. R, into f(0). o

The fact that ordering restrictions are checked after normalisation w.r.t. R,q
complicates optimisations related to the analysis of the so-called shielded variables
of a clause C, that is, variables that occur below a free symbol in C.

Example 120 In the context of [GW96, Stu98], shieldedness of variables like z in
the clause f(z — f(a)) # 0V 2z ~ b allow one to conclude that 2z cannot contain the
maximal summand of Co for any o and hence 2z need not be used as left premise
in any inference. In our case, the instance where zo is f(a) may generate the rule
2f(a) — b, and hence we can rule out the inferences only for other instances. Similar
optimisations apply to right premises. O

Also other shieldedness-related optimisations can be used. For example, let e >~ 0
be an equation of a clause C' where e is of the form s+ nyz; + ...+ ngzr ~ 0 and
the distinct variables z; do not occur elsewhere in s orin C. If n; = 1 (or n; = —1)
for some 1, then such an equation e ~ 0 collapses the theory: s+ x ~ 0 implies
s+ (—s+t) ~ 0 and hence t ~ 0 for every t. Hence one can assume that any such a
clause CVs+z =~ 0 is eagerly replaced by C. This can be combined with the fact that
e ~ 0 is logically equivalent modulo AG to s + nz ~ 0, where n = gcd(ny,..., k)
and z is a new variable.

Chapter 8

Ordering Constraints for
Built-in Abelian Groups

We have mentioned in previous chapters that it is crucial for the performance of
ordered resolution or paramodulation-based deduction systems that they incorpo-
rate specialized techniques to work efficiently with standard algebraic theories E.
Essential ingredients for this purpose are term orderings that are E-compatible, for .
the given E, and algorithms deciding constraint satisfiability for such orderings. -

In this chapter we introduce a uniform technique providing the first such al-
gorithms for some orderings for abelian semigroups, abelian monoids and abelian
groups, which we believe will lead to reasonably efficient techniques for practice.

Our algorithms are in NP, and hence optimal, since in addition we show that,
for any well-founded E-compatible ordering for these E, the constraint satisfiability
problem is NP-hard even for conjunctions of inequations.

8.1 Introduction

As we have mentioned already several times in this thesis, for the performance of
ordered resolution or paramodulation-based deduction systems it is essential to use
specialized techniques dealing efficiently with standard algebraic theories F, like
abelian semigroups (AC, for associative and commutative) abelian monoids (AC0),
or abelian groups (AG). We have seen that essential ingredients for this purpose are
reduction (i.e., well-founded and monotonic) orderings > on ground terms that are
E-compatible for the given E, i.e., s=g s > t' =gt implies s > ¢, and algorithms
deciding the satisfiability of ordering constraints for such orderings. Such ordering
constraints are used to express ordered strategies in automated deduction at the
formula level [KKR90]. This allows one to reduce the search space by inheriting the
ordering restrictions while keeping completeness [NR95, NRO1].

111

112 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

Let us recall here that an ordering constraint is a quantifier-free first-order for-
mula built over terms in T'(F, X’) and over the binary predicate symbols ‘=" and
*>’, These constraints are interpreted over the domain of ground terms, where =
and > are interpreted, respectively, as a congruence & and a reduction ordering >
such that > is total up to =, i.e., for all ground terms s and ¢ either s >~ t or ¢t > s
or t &~ s. Hence a solution of a constraint C' is a substitution o with range T'(F)
and whose domain is the set of variables of C such that Co evaluates to true when
interpreting = as &~ and > as »>. Then we say that o satisfies C.

The first practical applications of ordering constraints gave rise to the distinction
between fized signature semantics (solutions are built over a given signature F), and
ertended signature semantics (new symbols are allowed to appear in solutions). The
latter semantics is in some cases easier to check, and is used in applications like
the computation of saturated sets of ordering constrained clauses that can be used
for deduction with other clauses containing arbitrary new (e.g., Skolem) symbols,
but it is less restrictive and hence less powerful for refutational theorem proving.
The satisfiability problem for ordering constraints was first shown decidable for the
well-known recursive path orderings (RPO) introduced by N. Dershowitz [Der82],
for fixed signatures [Com90, JO91] and extended ones [NR95, Nie93]. NP algorithms
(fixed and extended signatures) were given in [Nie93, NRV99]. For the Knuth-Bendix -
ordering (KBO) these results have only recently been obtained in [KV00, KV01].

Ordered strategies and ordering constraint inheritance can be used without loos-
ing completeness with built-in algebraic theories E, like AC [NR97, Vig94] or AG
[GNOO]. An additional advantage of constraints in this context is that in each infer-
ence only one conclusion is generated, instead of one conclusion for each E-unifier.
This can have dramatic consequences. For example, there are more than a million
unifiers in mguac(f(z, z, z), f(y1, Y2, Y3, ya)). But, probably due to the lack of ade-
quate orderings and constraint solving algorithms, these ideas have not been put into
practice yet. For example, McCune found his well-known AC-paramodulation proof
of the Robbins conjecture [McC97c] by still computing complete sets of AC-unifiers,
and adding one new equation for each one of them (although heuristics were used
to discard some of the unifiers).

Indeed, of the many, rather complex, AC-compatible reduction orderings that
have been defined in the literature, only for the AC-RPO ordering of [RN95] a
constraint solving algorithm exists [CNR95]. But, unfortunately, this algorithm is
far from practical due to its conceptual and computational complexity, and moreover,
it only deals with extended signature semantics.

However, in many practical cases one has to deal with only one single associative
and commutative symbol, and then a simple version of the RPO on flattened terms,
which we will call FRPO, fulfills all requirements. The same FRPO can be used as
an ingredient for an AG-compatible reduction ordering AG-RPO that satisfies all

8.2. BASIC DEFINITIONS 113

requirements of [GN0O], by using it to compare AG-normal forms of ground terms.
Finally, it turns out that an ACO0-compatible ordering AC0-RPO is obtained in a
similar way by considering normal forms w.r.t. the rule z + 0 — z.

Here we introduce a uniform technique providing the first constraint solving al-
gorithms for fixed signature semantics for AC compatible orderings. More precisely,
we give NP algorithms for FRPO-based orderings for abelian semigroups (FRPO it-
self), abelian monoids (AC0-RPO) and abelian groups (AG-RPO). We believe that
the new techniques will lead to reasonably efficient practical algorithms for these
orderings, and give new insights for the development of constraint solving methods
over fixed signatures for other E-compatible orderings.

This chapter is structured as follows. After the basic definitions of Section 8.2, in
Section 8.3 we give some initial assumptions on the constraints. These assumptions
simplify matters and are easy to enforce. Then we introduce the crucial notion of
segments. Section 8.4 is on pure FRPO constraints. Then, after explaining the
relatively simple extension to AC0-RPO in Section 8.5, in Section 8.6 we deal with
the technically more complex part of the chapter, namely the techniques for AG-
RPO.

It is obvious that the satisfiability problems we deal with are NP-hard, because
as subcases they include the AC, ACO and AG-unifiability problems which are all”
NP-hard. As a consequence, since our algorithms are in NP, they are optimal,
and the problems are NP-complete. But one may wonder whether there exists any
ordering at all for these E such that at least the satisfiability problem for positive
conjunctions of inequations (by which one cannot always encode unification) is in
P. In Section 8.7, we answer this question negatively: we show that for any well-
founded total E-compatible ordering for each one of these E, the problem is NP-hard
even for conjunctions of positive inequations.

8.2 DBasic Definitions

In this chapter we consider terms built over variables and the symbols of F U
{+,—,0}, where +, — and 0 are not in F. The symbols of F will be called free
symbols. In the following, (possibly sub- or super-indexed) symbols z, y, and z will
always denote variables, symbols s, ¢t and u will denote terms, and f and ¢ will
denote symbols of F, i.e., free symbols. A term u is called a summand if it is headed
with a free symbol. It is a top-level summand of all terms of the form « or u+ ¢ or
—u+t.

114 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

As seen in chapter 7, the rewrite system R4 consists of the following five rules:

z+0 = =z
-z+z —= 0
—(-2) = =
-0 = 0
~(@+y) = (-2)+(-v)

By AG we denote the set of seven equations consisting of these five rules (seen as
equations) plus AC, the associativity and commutativity axioms for +. By Ry we
mean the set {z + 0 — z} of only the first rule, and by ACO we mean AC U Ry.

By =g we denote the congruence on terms generated by a set of equations E. In
this chapter, rewriting with a set of rules R is always considered modulo AC. For
instance, when writing —g ., we mean the relation =,c —g 16 =ac- By nfp(s) we
denote a normal form w.r.t. R of a term s. Each term s has a unique (up to =,¢)
normal form w.r.t. Rag; see, e.g., [Mar96].

Furthermore, as usual, terms will always be (eagerly) considered in flattened form
w.r.t. AC. As seen in chapter 7, this flattening consists of removing all operators +
that are immediately below another +. For example, the term +(a, +(f(+(a, +(b,¢))), ¢))
becomes +(a, f(+(a, b, ¢)),c). Note that in the flattened form of a term ¢, denoted
by flat(t), different occurrences of + can have different arities (but all greater than
1). Usually, the symbol + will be written in infix notation: e+ b+ ¢, and terms like
(—a) + (—b) are written as —a —b. A term of theform 21 +...4+Zpn—y1 — ... — Ym,
with n +m > 0 will be called a sum of variables.

Definition 121 Let > be a precedence and assume mul = {+}. The RPO on
flattened terms, denoted by FRPQ, is defined as follows:

S > sepo t if flat(s) =, flat(t).

Example 122 FRPO is not monotonic in general. If + > a > b then b+b >, a
but e + a > 0+ b+ a. Also, if a > + > f then f(a) + f(a) >;mpo f(f(a)) but
fla) + f(f(a)) > ;o fla) + fl(a) + f(e). Similar non-monotonicities occur in the
presence of more than one AC symbol.]

However, we have the following result. It is not used elsewhere in this chapter,
but we give it here for showing the applicability of FRPO in practice:

Property 123 [BP85] If + is the only AC symbol and either + is the smallest
symbol in the precedence, or else only the smallest constant is smaller than +, then
FRPO is an AC-compatible reduction (i.e., monotonic and well-founded) ordering
on ground terms that is total up to =,¢.

8.3. CONSTRAINT SOLVING 115

Definition 124 The AC0-RPO and AG-RPO orderings are defined as follows. Let
s and t be two ground terms. We define:
S >acorpo if nfpy(s) > rrpo nfR, (2)
and
8 »agrpo £ A nfR,(S) = repe MR, ()

The following results are stated here again only for showing that AC0-RPO and
AG-RPO are also useful for practical applications like [GN00]. They are not difficult
to prove (see also [GNO0]).

Property 125 ACO0-RPO is a total ACO-compatible reduction ordering on ground
terms in normal form w.r.t. —p, if + is the only AC symbol and the precedence is
of the form ...> + > 0.

Property 126 AG-RPO is a total AG-compatible reduction ordering on ground
terms in normal form w.r.t. =g, if + is the only AC symbol and the precedence
isof theform...>—->+>0.

In the following, we will consider these precedences, and also in the FRPO case
0 denotes the smallest constant symbol.

8.3 Constraint Solving

We now present a first transformation of our initial constraint C into a (a disjunction
of) so-called linear systems S. After this, we will see that such S can be assumed to
satisfy certain further useful assumptions. This transformation and the assumptions
are independent of which one of the three orderings we deal with is considered. In
later sections further ordering-specific assumptions will be introduced.

Definition 127 A linear system S is a constraint of the form
=t = Sy DD Tn=th = =k,

where {zy,...,2,} = vars(S), and all ¢; ; are distinct non-variable terms.

We denote by =g the equivalence relation on terms with variables generated by
the equalities in S. Each subconstraint of the form z;=t;;=...=t;, is called an
equivalence class. By >g we denote the smallest strict ordering relation on terms
with variables that is compatible with =g and containing the inequalities of S.

116 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

Lemma 128 [Com90, Nie93]

Independently of whether FRPO, AC0-RPO or AG-RPO is considered, each
constraint C can be transformed into a finite disjunction of linear systems such that
C is satisfiable if and only if one of the linear systems is.

The proof of the previous lemma is an easy consequence of the fact that one
can consider all different linear orderings with = and > on all terms that are sides
of relations of C. It is easy to see that for each such a linear ordering S, either C
follows from the relations of S (i.e., all solutions of S are solutions of C), or else C
is incompatible with it (i.e., no solution of S is a solution of C).

In order to obtain exactly one variable in each equivalence class, it suffices to
insert a new (existentially quantified) variable in each equivalence class without any
variables, or to merge two equal variables into one if necessary (merging of equal
variables, which will be done more often in this chapter, can be recorded separately
if one wants to reconstruct a solution for the original constraint rather than to decide
its satisfiability).

Similarly, in what follows we will make some more assumptions.

8.3. CONSTRAINT SOLVING 117
Definition 129 The global assumptions about a linear system S

Ty=t1=. .=tk D> D> I =l 1= Sk,
are as follows:

Al. 0 1is in the rightmost class, i.e., 0 is t,, ; for some z.

A2. Each t;; is either a sum of variables, or 0, or of the form f(yi,...,¥m).

A3. Sis of the form z =t > S’, where ¢t is headed with a free symbol or 0.

A4. Each equivalence class contains at most one term headed with a free symbol.
A5. If some t;; is headed with a free symbol, then ¢; ; >5 z for all z in ¢; ;.

A6. If f(y1,---,Ym) >s5 9(21,-..,2) and g > f, then
¥i 2s g(z1,...,2) for some i in 1...m.

AT If f(y1,-. - Um) >s f(21,...,2m) for then either
Yi 25 f(z1,...,2m) for some i in 1...m or else (yi,.w..,ym) >f§?_(z;,...,zm).

A8. If s >5t where s is a sum of variables and ¢ is headed with some freeé symbol,
then z >g t for some variable z in s.

Lemma 130 Independently of whether FRPO, AC0-RPO or AG-RPO is consid-
ered, each linear system S can be transformed into a finite disjunction of linear
systems Sy,..., Sy, satisfying the global assumptions and such that S is satisfiable
if and only if one of the S; is.

Similarly to Lemma 128, the previous lemma is based on the fact that some
additional terms can be inserted in S as well (while keeping a linear system).

For Al, one can guess that the smallest variable is 0 or that 0 is below the
smallest variable. For A2, one can insert as well all subterms headed with free
symbols and the direct subterms of such terms. Then one can replace the non-
variable arguments t of all terms by the variable z with z =g t. For A3, any
constraint ; = ¢1; = ...=1t1, > S can be transformed, by adding an additional
leftmost equivalence class, into z¢o = f(0,...,0,21) > 21 =t =...=t1 4 > 5,
by taking f as the minimal non-constant function symbol in F. Once assumptions
Al-A3 have been imposed, by the definitions of the orderings, assumptions A4-A8
either hold or else the constraint is necessarily unsatisfiable.

We now introduce the notion of segment, which is again common to the algo-
rithms for FRPO, AC0-RPO, and AG-RPO constraints.

118 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

Definition 131 A segment T of a linear system S is a subsequence of S of the
form

zo=tlo1=...=lok, > T1=t11=... =k > ... > Ta=ty1=...=tak,

where ¢k, is headed by a free symbol, and t,, ., is 0 or headed by a free symbol,
and all other ¢; ; are sums of variables.

The variables z1,...,2, (note: not zp) are said to be the variables defined in T,
and their occurrences as single variables in their equivalence classes are called their
definitions.

8.4 FRPO constraints

We now treat the case of the AC-compatible FRPO-ordering. Some additional spe-
cific assumptions are needed that do hold for FRPO, but not for all three orderings
dealt with in this chapter.

Definition 132 The FRPO assumptions about a linear system S
ni=tha=.s =g >0 D> In=th =0 =ik,
are the global assumptions plus the following two additional ones:

AC1. If some t;jisyy + ...+ ym then t; ; >syi forall iin 1...m.

AC2. In no equivalence class there is a term headed with + and another one headed
with a free symbol.

As before, for all linear systems satisfying the global assumptions, the FRPO as-
sumptions either hold or else the constraint is necessarily unsatisfiable w.r.t. FRPO:

Lemma 133 Any linear system S that fulfills the global assumptions and that is
satisfiable w.r.t. FRPO also fulfills the FRPO assumptions.

Example 134 Let the constraint C be f(z +2) >y A z > f(z). One way of
linearly ordering its terms with > and =isy = f(z+2) > f(z) > z+z>z=2=0.
Enforcing the FRPO assumptions, by adding new variables w; and w, for the classes
of f(z) and z + z respectively, and merging z and z, it becomes y = f(w2) > wy =
f(z) > wy = z+2 > 2 = 0. However, it is in contradiction with our initial constraint
C. Another linear ordering is f(z +2) >z +2z > z=y > f(z) > z = 0, which
becomes w; = f(wz) > wpa =2z +y >y > w3 = f(z) > z = 0. This linear system
satisfies all FRPO assumptions and it is not in contradiction with C. m]

8.4. FRPO CONSTRAINTS 119

8.4.1 The splitting transformation

Due to the FRPO assumptions, each segment is of the form
To=8 > Iy =t1,l =.. -:tl,kx > ... Il),"-‘-‘-t,"l =.. ."—:t,',k'- > Tip1=t

In such a segment T, every variable occurring in some t; ; is defined either in T itself
or in some other segment to the right of T. Now our aim is to transform S in such a
way that the latter kind of variables are removed from T, i.e., such that all variables
occurring in some ¢; ; of such a segment are defined in the segment itself. This
transformation preserves satisfiability, but we will not give the proof here because
Lemma 143 below gives a simpler and more direct proof of the main result needed,
namely that the original system is satisfiable if, and only if, the diophantine system
for some of its split systems is satisfiable.

As a result of this splitting transformation, terms f(vy,...,v,) where the v; are
sums of variables may appear in S, and hence assumption A2 will not hold anymore
after the transformation.

The idea of the transformation is as follows. Let ¢ be some arbitrary solution
of S, let z and y be variables defined in T, such that y is the variable defined in
the equivalence class immediately below the one where z is defined. Then zo >,,,,
YO = 4rp0 to. Therefore, for at least one of the top-level summands u of zo we have
u > to. Hence, if U, is the sum of all top-level summands u of zo with u > to, and
u, is the (possibly empty) sum of the smaller ones, then zo is of the form U, + u,
or of the form U,. Similarly, yo can be of the form Uy + u, or U,. Furthermore,
either (i) U, > Uy, or else (ii) U, = Uy, u, is non-empty, and either u, is empty or
uz > uy. In case (i), we say that zo >,,,, yo due to the “large” summands, and
in the case (ii) due to the “small” summands. According to these ideas, S will be
transformed by the following transformation.

Definition 135 Let S be a linear system satisfying the FRPO assumptions. The
following splitting transformation for S treats one segment T° at the time, segment
by segment from left to right. The last segment (i.e., the rightmost one, which is of
the form z,, = 0) needs no treatment. One can assume, inductively, that in every
segment T’ to the left of T, all variables that appear not below a free symbol in 7’
are defined in T” itself, and moreover, due to assumptions A5 and AC1, no variable
defined in T” appears in a segment to the right of 7. After treating each segment T,
the FRPO assumptions (as well as the definition of linear constraints) are assumed
to be imposed eagerly in the segments to the right of T (otherwise, some of the steps
of the transformation may not make sense).
Let T be a segment in S of the form:

=5 > =t =...=hk >...> Ti=ti1=... =g > Tip1=t

120 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

and assume the transformation has already been applied to all segments left 6f T in
S. Then the splitting transformation for T consists of the following steps:

1. Guess a subset of split variables of {z;...z;} such that whenever z =5 y; +
...+ yx, then z is split if, and only if, at least one of the y; is split or defined
in a segment to the right of T (intuitively, z is split if it is guessed to have at
least one “small” summand).

2. If z is a split variable, then introduce two new variables X and z’, and every-
where in S replace z by X + z’. In this case we say that z is split into X + 2’
(intuitively, the X is for the large summands and the z’ for the small ones). If
z is a non-split variable of {zo...z4+1}, replace z everywhere in S by a new
variable X. These replacements are needed not only in this segment, but also
to the left of it, since these variables may appear in some term of the form
f(v1,...,v,) where the v; are sums of variables.

3. After this, the equivalence classes e in T are either of the form Vi+4v; =
.e. = Vi +uvg or of the form Vi =...=V}, where the V; are either sums of
upper case variables or terms headed with free symbols, and the v; are sums
of lower case variables and variables defined in segments to the right of T (all .
summands contain at least one upper case variable thanks to assumptions A8
and AC1). If e is such an equivalence class, we denote by F the equivalence
class V; = ...= V; and by €’ the class v; = ... = v; (if it exists for). Then
we can write T as eg > e; > ... > ;41 and we can guess, for each relation
e; > e;j+1 Whether (i) it is due to the large summands or (ii) to the small ones
(note that case (ii) applies only if € is non-empty).

According to these guesses, replace T' by the new segment 7"

Eq > EI# ...#E;+1

where the relations # stand for > or = depending on the guesses made, and
insert each e} in some segment to the right of T', adding it to an existing
equivalence class or creating a new one, in such a way that, whenever E; =1
Ejy1, either € > e, or ¢}, does not exist.

Note that the previous splitting transformation does not increase the number of
segments of S and only a polynomial number of variables are split: each variable
can only lead to k splittings, where & is the number of segments.

Example 136 (Example 134 continued) Let us apply the splitting transformation
to the result wy = f(wz) > wa=2z+y >y > wz = f(z) > z = 0 of Example 134.
First we treat the leftmost segment w; = f(wy) > wy =z +y > y > wsz = f(z).

8.4. FRPO CONSTRAINTS 121

The possible variables to be split are w; and y. We guess to split only w; into
W2 + w), obtaining wy = f(We+wh) > Wo+why =z+y >y > ws = f(z).
Now, for the relation W, + wj > y we guess Wy = y. After removing wj from
this segment and inserting it, for example, in the equivalence class of 0, we obtain
wy = f(y+2z) >y > ws= f(z) >z =0. For the segment w3 = f(z) >z =0no
splitting is needed. O

Let us now analyze the assumptions that can be made about the transformed
systems.

Definition 137 Let S be a linear system. Two sums of variables X; + ...+ X,
and Y; +...4 Y, are compared by segments in S, denoted X + ...+ Xp >4egq(s)
Y, + .+ Y, if:

1. All X; are defined in different segments of S
2. All Y; are defined in different segments of S
3. {X1,.., Xa} > {V3,..., Y}

Note that, if the elements of each set are written in decreasing order w.r.t. >g,
then point 3. of the previous definition is equivalent to {X1,..., X} D {Y1,.--, Y}
or (Xy,...,Xn) >%% (Y1,...,Yn). In fact, this latter equivalent notion is the one
that will be dealt with in the proofs below.

Now consider a relation ¢ >g y in S, and assume that S’ is obtained from
S by the splitting transformation. Then, each occurrence of a term f(z) in S
becomes in S’ a term of the form f(X + X'+ X" +...), and similarly, f(y) becomes
f(Y +Y'+Y"+...); furthermore, the sums X + X'+ X" +...and Y +Y'+Y"+...
are compared by segments in S5’

According to this, consider the following new assumptions. They are basically
needed because as a result of the splitting transformation, terms f(vy,...,v,) where
the v; are sums of variables may appear in S, and also because some stronger state-
ments about the ordering can be made after the splitting transformation:

Definition 138 The split FRPO assumptions on a linear system S
Ty=tyg=...=tig > .0 > In=ta1=...=tn,
are the FRPO assumptions where A2, A6 and A7 are reformulated as follows:

A2'. Each t;; is either a sum of variables, or 0, or of the form f(vy,...,v,) where
the v; are sums of variables.

122 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

A6’ If f(viy...y) >s g(wy,...,wg) and g > f, then = >5 g{wy,...,wx) for

some z in f(vy,...,Um).
AT. X f(v1y...,0m) >s f(wy,...,wn) then either

z >s f(wy,..., wn) for some variable z in f(vy,...,vn), or else

(viy-+ vy Um) >ii§s($) (w1y. ..y W).
Lemma 139 Let S be a linear system satisfying the FRPO assumptions, and let
S1,. .., Sy be the (disjunction of) linear systems resulting from the possible splitting

transformations on S. Then each S; satisfies the split FRPO assumptions.

Hence in what follows we can assume that, after the splitting transformation, we
deal with linear systems satisfying the split FRPO assumptions.

8.4.2 Diophantine systems

We are now ready for defining the system of diophantine equations and inequations
Dg for a linear system S. Later on we will see that the variables of Dg are inter-
preted over the positive natural numbers, and that the symbol + in Dg is of course
interpreted correspondingly.

Definition 140 Let S be a linear system satisfying the split FRPO aﬁéﬂmptions. 5
The system of diophantine equations and inequations Dg for S is the set of all
equations and inequations such that for every segment in S of the form
Tp=s5 > 1=t =...=hg > .02 Tistii=00 =ty > Tip1 =t
the following equations and inequations are in Dg:
L2y >z, 22> 23, ...y Zi> Tiy

2. zj=tjx, foralljinl...sandallkin1...k;

3. the equation z;4; = 1.

Example 141 (Example 136 continued) The system of diophantine equations for
wy=fly+z)>y>wz=f(z) >z=0is
=1 y>wy wyg=1 z=1

We obtain a solution @ for it by defining yf = 2. Below we will see that from each
such a 8 one can build a solution o for the linear system from right to left. We have
zo = 0 and hence wzo = f(0). Now for each variable v with v8 = n, we define
vo = t+ .. + ¢, where t is the summand at the lower end of its segment; e.g.,
we define yo to be f(0) + f(0). Finally, we have wyo = f(f(0) + f(0) + 0). If one
desires to reconstruct the solution for the original constraint of Example 134: wjo
is 0, and zo is f(0) + £(0).]

8.4. FRPO CONSTRAINTS 123

8.4.3 Deciding the satisfiability of FRPO constraints

The following simple result will be used below when solving ordering constraints on
multisets of several elements as multisets over a single element:

Lemma 142 Let C be a set {ey,..., €0} with an ordering > where e, > ... > eo.
Then for any decreasing sequence of finite multisets over C

Mo s ... M,

there exists a weighting function f : C — AN from C into the natural numbers, with
f(eg) = 1 such that
F(Mo) > 00> F(Mm)

where the extension to multisets F of f is defined F({a;...,ax}) = fla1) + ...+
flak)-

Proof: Let k be [Mo| + ...+ |My|. Then, for instance, the function f(e;) = k'
fulfills the requirements. a

Lemma 148 Let S;...S,, be the resulting systems of applying the splitting trans-
formation to a linear system S. Then S is satisfiable for FRPO if, and only if, some
Dyg; is satisfiable in the positive natural numbers. o ’

Proof: <=: Assume Dy is satisfiable for some S’ in {S; ...Sn}. Let 8 be a solution
for Dg. We can inductively build a solution & for S’ as follows. For each segment
T in S’ of the form

Tog=8 > $1=t1,1:---=t1,k1 >0 =t ==ty > Tipr =t

assume a (partial) solution o has already been defined for the linear system consisting
of all segments to the right of T. Then, for the variables z; defined in T, we define
z;0 to be to +...") 4 to where n = z;0 (note that if T is the rightmost segment,
then t is 0). By construction of Dg/, o satisfies all equality relations in S’, that is,
uo =,¢ vo for all u and v with v =g v. Furthermore, it also satisfies the relations
L0 > prpo €410 With j in {1...7} for such segments T'.

Hence it only remains to be checked that o satisfies so >,,,, T10."We know that
o is a solution for all relations between terms strictly to the right of s. One shows
that so >,,,, t'c, where t’ is any term to the right of s. This is done inductively
from right to left.

The result is trivial if ¢’ is 0, since s is of the form f(vy,...,v,) and f > 0. If ¢/
is a sum of variables, then, by construction of ¢, t'c is of the form nt"o, where t" is
the rightmost term in the segment of t’. By the induction hypothesis so »>,,,, t"o,
and hence so »>,,,, t'o, since f > +. Otherwise, let ¢’ be of the form g(wy, ..., wy,)
where the w; are sums of variables. We distinguish three cases:

124 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

1. f > g. By assumption A5, every variable y occurring in the term g(wy, . .., wy,)
appears to the right of it, and by the induction hypothesis, so >, yo for
such y. Therefore, so > .5, g(w1, ..., wn)o follows by definition of RPO since

f>g>+.

2. g > f. By assumption A6’, z >5 g(wy,..., W) for some variable z in s, and
hence zo >,,,, g(wy, ..., Wnm)o. Since z is a proper subterm of s, we have that
SO > trpo £0, and 8O > .5, g(W1, ..., wn)o follows by transitivity.

3. f = g. By assumption A7’ either z >g f(w1,...,w,) for some variable z
in f(vi,...,0n), or else (vy,...,0,) >ls?;;a(5) (wi,...,wy). In first case we
conclude in a similar way as for the case ¢ > f. For the second case, note
that v; >,eqs(5) wi implies v;o >,,,, w;o because v; and w; are of the form
Y1+ ... and 2 + ... respectively, and there exists some k such that y; = 2;
forall jin 1...k~ 1, and Y >3 21 if 2z exists, and for all [> k we have that
2z appears in segments to the right of the one where y; is defined, and hence,
YkO > frpo 2k0 + Zk410 + ... (remember that + has multiset status, and that,
by the induction hypothesis, o satisfies all the relations to the right of s).

Furthermore, by assumption A5 and the induction hypothesis, we have so »,,,,
yo for every variable y in any of the w;, and since f > +, we have that
SO > rpo Wio. Altogether this implies so >, f(wy,...,wn)o.

Once we have a solution o for S’ of this kind (i.e., where each zo is a sum of to’s,
where ¢ is the lower extreme of the segment where z is defined), it can be extended
to a solution for S by recursively defining zo to be Xo + 2’ for each splitting of
a variable z into X + z'.

==: Assume S is satisfiable. Now we prove that Dg is satisfiable as well for some S’
in {S;...Sn}. Let o be a solution of S. Let S’ be the system obtained by applying
the splitting transformation according to o, that is, if z is defined in a segment T
of S of the form

Tp=8 > =l =...=lhg >...> zi=t1=...=ly > Tif1=t

then z is split into X + z’ if zo contains some summand smaller than to; we pro-
ceed similarly for the other guessings, and o is extended conveniently for the new
variables. The extended substitution o is a solution for S’. Moreover, in a segment
of S’ like the previous one, for all jin {1...¢+ 1} we have that z o contains only
top-level summands greater than or equal to to.

Now let C' = {ug,...,u,} be all the different top-level summands of these vari-
ables, where Uy, > ;10 Un—1 ™ frpo - - > srpo %o and ug is to. Every zjo and tj;0 can
be seen as a multiset of these summands (the multiset of its top-level summands).

8.5. ACO-RPO CONSTRAINTS 125

By Lemma 142 there exists a function f : C — A such that its extension F to
multisets satisfies F(z10) > ... > F(2;310), and F(z;410) = f(u) = 1. More-
over, since z;0 and t;;o are the same multiset, if ¢;; is of the form z; + ...+ z;,
then F(zjo0) = F(tjio) = F(zj0)+ ...+ F(zj0). Therefore, the assignment
z;0 = F(zjo) satisfies the equations of Dgs corresponding to T O

Theorem 144 The satisfiability problem for FRPO constraints is in NP.

Proof: Generating one of the linear systems S of the disjunction equivalent to C
consists of a polynomial number of guessings of the relations between all the subterms
in C, and the size of S is polynomial w.r.t. the size of C. The splitting transformation
consists of a polynomial number of guessings. By Lemma 143, S is satisfiable if and
only if there exists a sequence of guessings, in the splitting transformation, giving a
linear system S’, such that Dg is satisfiable. Checking whether Dg is satisfiable is
again in NP [Sch87]. a

8.5 ACO0-RPO Constraints

In this section we consider AC0-RPO constraints over arbitrary signatures of the
form ...> f > 4+ > 0. Observe that all terms of the form 0+ ...+ 0 are equivalent
to 0 in this setting and that hence the second smallest term w.r.t. the ordering ACO0-
RPO is f(0,...,0). Therefore we can add, w.l.o.g., an additional assumption to our
linear systems, in particular because otherwise assumption AC1 does not hold.

ACO All linear systems S are of the form S’ > z = f(y,...,y) > y = 0 and no term
of the form ¢ 4+ y occurs in S. This is obtained by removing y in such terms.

With this additional assumption, one can check that the whole rest of the steps
described in the previous section directly suffice for ACO-RPO constraints. Minor
details are that, during the splitting process, the new assumption AC0 has to be
preserved, and hence no small variables resulting from a splitting can be inserted in
the rightmost segment. Moreover, in the diophantine system it is not necessary to
create the equations corresponding to the rightmost segment.

Observe that the basic idea of the splitting process is that solutions for the linear
system are transformed into new solutions where, at every segment, the variables
that appear in it contain only top-level summands of this segment. Therefore, 0
does not appear in segments that are not the rightmost one, and hence everything
behaves like in the FRPO case, again solving the diophantine equations over the
positive natural numbers. This gives us the following result.

Theorem 145 The satisfiability problem for AC0-RPO constraints is in NP.

126 CHAPTER 8. ORDERING CONSTRAINTS FOR AG
8.6 AG-RPO Constraints ‘

In this section we consider AG-RPO constraints over arbitrary signatures of the
form...>->+>0.

Let us first consider some examples over the signature f > ¢ > — > + > 0 where
f is unary and e is a constant.

Example 146 The smallest terms over this signature in increasing order w.r.t. >
are:

0, a, a+a, ata+a, ...,—a, a—a,e—a—a, ..., f(0), f(0)+a

f(0)+a+a, ..., f(0)—a, f(0)—a—a, ..., f(O)+£(0), f(0)+f(0)+a, ..., —f(0)
where —a is the smallest limit ordinal w, f(0) is 2w, f(0) — a is 3w, f(0) + f(0) is
4w, - f(0) is w?, and f(a) is 2w2. m]

Example 147 We have f(f(a)) > f(a — f(0) + f(a — a)) since
fr4(f(f(a))) = f(f(a)) »rrPo f(a) = nfg,.(fla— f(0) + fla-a))). O

Example 148 Terms can be smaller than their subterms: o =z > f(z— f(a)) if
zo = f(a), since nfp,;(f(a))=f(a) »Frro f(0)=1fp,(f(f(a)-f(a)))- o

As we have seen in the previous example, a linear constraint such that z appears
to the right of the segment where it is defined may be satisfiable (hence assumption
AC1 will not be made in this section). Similarly, the following example shows us
that terms headed with f may become equal to terms headed with + or — (and
hence assumption AC2 is also not considered in this section).

Example 149 o | z—y= f(2) if we have zo= f(a)+ f(a), yo=f(a), zo=a. O

Another difficulty to be taken into account is that, after the splitting transfor-
mation, contrarily to what happened in the previous sections, a solution for a linear
constraint may need more than one different top-level summand for some segments:

Example 150 Suppose that we have a signature of the form f > — > + > 0
where f is unary. Then the smallest terms are ordered like:

0, £(0), f(0)+£(0), f(O)+f(0)+f(0), ...,

—£(0), —F(0)-£(0), ~F(0)=F(O)=~F(0), ..., F(F(0).

The linear constraint f(f(0)) > —2 > z > y > —y > f(0) is unsatisfiable: since we
need to satisfy y > —y, necessarily yo is a sum of negative f(0)’s. Therefore zo is
of the form —f(0) — ... — f(0), with some more negative f(0)’s. But then —z > z
is not satisfied by o.

However, the linear constraint f(f(f(0))) > -2z > 2z > y > —y > f(0) has the

solution o where yo = —f(0) — f(0) and zo = f(f(0)) + f(f(0)). It has no solution
where yo and zo are built from one single summand. O

8.6. AG-RPO CONSTRAINTS 127

8.6.1 Only unary symbols

For explanation purposes, in this subsection we first solve the problem under the
restriction that all the non-constant function symbols have arity one. Our signature
isoftheform ... > h>¢; > ...> ¢ > — > + > 0, where h is the smallest
non-constant function symbol, i.e., all the ¢; are constants.

Example 151 We have the following ordering on summands (from which the or-
dering on ground terms is easily derived). If | = 0 then the smallest summands are,
in increasing order: h(0), h(h(0)), h(R(0) + h(0)),...If [# O then the smallest
summands are, in increasing order: ¢, ..., ¢, h(0), h(a), h(a+ca), h(a+
¢+ a), ... These summands will be denoted by sum,, sumg, sums, .

The successor summand of a summand of the form h(s) is h(s + suml) if s is
not of the form s’ — sum,, and h(s — sum;) otherwise. The successor summand of a
summand f(s) with f > h is always h(f(s)). We write succsumy(u) to denote the
k-th successor summand of u.

Assumptions for the linear systems.

As before, we generate a disjunction of linear systems, and . apart from the global
assumptions, we need the following;:

Definition 152 The AG-RPO aséumptions for a linear system S consist of the
global assumptions plus the following two additional ones:

AG1. All the constants ¢; and the terms sum;, sums and h(0) appear in S, and in
the correct order.
The segment between sum, and sum; will be called the base segment.

AG2. Sisof theform S’ > ¢=...=sum; > y=...=0 and no term of the form t+y
occurs in S.

Assumption AG?2 is a modification of assumption ACQ: in the class of 0, sums
of variables defined to the left of it may appear; in a solution for the system, these
variables will contain summands that cancel each other out.

In this setting, a sum of variables is a sum of positive and negative variables,
and all assumptions have to be interpreted accordingly. For example, assumption
A8 implies that no term of the form —z is in a segment to the left of the segment
where z is defined. If —z appears in a segment to the right of the one where z is
defined, we have a case of unsatisfiability not detected by our assumptions. But the
splitting transformation and the check of solutions of the diophantine system detect
this case and other additional ones.

128 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

The splitting transformation.

The splitting transformation is essentially as for FRPO but it is technically more
complex. Hence the reader should understand first the FRPO case. Before giving
the formal definitions, let us first provide some intuition behind the differences with
the FRPO case.

Firstly, note that when it is guessed that some relation is due to the small
summands, the small terms cannot be inserted in the class of 0, because adding 0
to a term does not make it larger w.r.t. AG-RPO. Therefore also no splitting of
variables in the base segment is done.

Another difference with the FRPO case is that after splitting and removing small
variables from a segment T, some variables defined in T could appear to the right
of T. To avoid this, we need to associate some equations to a segment T during the
splitting transformation of T. These equations are of the form M = 0, where M
is a sum of positive and negative variables defined in T. These equations are not
inserted in the linear system, but they are kept because they will produce part of
the diophantine system.

Let M denote such a sum of (upper case) variables defined in 7', and let m denote
a sum not containing any of these variables. Let s be a term in some equivalence
class to the right of T', and suppose that s is of the form M + m (no term of the
form f(M + m) of f(M) can appear due to assumption A5). Then, in any solution
o, the term Mo must be equivalent to 0. Therefore, for each such s, the part M is
removed from s, and M = 0 becomes an associated equation of T'. If the part m of
s is empty, then s is replaced by the variable of the class of 0.

Finally, for simplicity reasons, we want the rightmost class of each T to be of
the form ¢ = ¢t. This can be accomplished as follows. Assume that after splitting
thisclassis ¢ = T) +¢t] = ... = T, + tI, = t, where the T; are the “large” sums,
i.e., the sums of the (positive and negative) variables defined in 7. Then the class
ty = ... =t} necessarily has to be equal to 0, and hence the T;’s can be removed
and added as z — T; = 0 to the associated equations of T. The class t] = ...=1¢],
will be inserted in the class of 0, although the later transformations of the segments
where the variables of the ¢; (and their splittings) are defined will turn these ¢; into
associated equations of those segments.

By processing the segments in this way, from left to right, when we arrive to the
segment containing the class of 0, it is of the form 2 = sum; > z = 0, since no other
variables can appear in this segment.

Definition 153 Let S be a linear system satisfying the AG-RPO assumptions. The
following splitting transformation for S treats one segment T at the time, segment
by segment from left to right. The rightmost segment (the one ending with 0) needs
no treatment.

8.6. AG-RPO CONSTRAINTS 129

After treating each segment T, the AG-RPO assumptions (as well as the defini-
tion of linear constraints) are assumed to be imposed eagerly in the segments to the
right of T'.

One can assume, inductively, that in every segment 7' to the left of T, all
variables that appear not below a free symbol in 7" are defined in 7" itself, and that
no variable defined in 7" appears in a segment to the right of 7. Also inductively,
one can assume that in such segments 7", every class containing a term headed with
a free symbol is of the form z = f(s) where s is a sum of variables. Let T be:

To=s > =t =...=bg > ... > =tii1=...=lik

> Tip1=tip11=" . =gk, =t

and assume the transformation has already been applied to all segments left of T
in S. Then the splitting transformation for T in the AG-RPO case consists of the
following steps:

1. If T is not the base segment, guess a subset of split variables of {z; ...z;} such
that every sum in the class of a split variable contains either a spht varlable
or a variable not defined in S.
(Note that this point is different from the FRPO case; in a class z = y+ P here S
it makes sense to split y and z while not splitting z: there can exist solutions
o where the small summands of yo and zo cancel each other out.)

2. If z is a split variable, then introduce two new variables X and z', and every-
where in S replace z by X 4 z’. If z is a non-split variable of {zo...2i41},
replace z everywhere in S by a new variable X.

(Note that in segments left of T' this affects only terms of the form f(v), due
to the induction hypothesis. In segments right of T it does not affect terms
headed with free symbols, due to assumption A5).

3. After this, the equivalence classes e in the segment are either of the form
X4z =v=...=v; or of the form X = v;=...=v. For each v; there are
sums V; and v] such that v; =4¢ Vi + v} and V is the sum of all upper case
variables of v;.

If e is such an equivalence class, we denote by E theclass X =V = ... =V}
and by e’ either the class 2’ = v = ...=v} or 0 = v} = ... = v} depending
on whether the corresponding variable z has been split or not. Then we can
write T as eg > €1 > ... > €;41 and we can guess, for each relation e; > €;4
whether (i) it is due to the large summands or (ii) (only if «; is split) to the
small ones. According to these guesses, replace T by the new segment T":

Eo > E1# ... # Eiy

130 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

where the relations # stand for > or = depending on the guesses made. Insert
each € in a segment to the right of T, adding it to an existing equivalence
class (that will be the class of 0 iff z; is not split) or creating a new class, in
such a way that, whenever E; =1/ Ej41, either e; > e, or €, does not
exist.

4. Let s be a term in an equivalence class to the right of T, and suppose that s is
of the form M + m or M, where M is a sum of positive and negative variables
defined in T, and m does not contain any of these variables. Each such s is
replaced by m, or the variable in the class of 0 if the part m of s is empty, and
M = 0 becomes an associated equation of T'.

5. Now the rightmost class of T is of the form 2 =Ty = ... =T, = t, where all
the T; are the “large” sums, i.e., the sums of the positive and negative variables
defined in T. Replace this class by z = t, and add the equations ¢ — T; = 0 as
associated equations of T'.

Asin the FRPO case, after the splitting transformation assumptions A2, A6 and
AT can be assumed to have been reformulated into A2, A6’ and A7’ respectively,
and a new assumption is satisfied as well:

Definition 154 The split AG-RPO assumptions about a linear system S are the
AG-RPO assumptions where A2, A6 and A7 have been reformulated into A2', A6’
and A7’ as in the split FRPO assumptions (Definition 138) plus the following addi-
tional assumption:

AG3. For all terms f(v) in S, where v is a sum of variables, no two variables in v
appear in the same segment.

Lemma 155 Let S be a linear system satisfying the AG-RPO assumptions, and let
S1,...,Sn be the (disjunction of) linear systems resulting from the possible splitting
transformations on S. Then each S; satisfies the split AG-RPO assumptions.

Hence in what follows we can assume that, after the splitting transformation, we
deal with linear systems satisfying the split AG-RPQO assumptions.

Example 156 Let us consider the signature h > — > + > 0. Suppose during the
splitting transformation, just after splitting the variables of the leftmost segment,
we obtain:

z=h(z3) > 23 > 22> 1 > 2o =T3-T2~T1+Y2—Y1—Y1 = h(y1) >

Y3 =z~ —To+Y2+y1 > Y2 > y1 > h(w) > w=0.

8.6. AG-RPO CONSTRAINTS 131

At this point, if we assume that this splitting of variables has been done according
to a solution o, then, all the z;0 contain top-level summands bigger than or equal
to h(y1)o, and all the y;o contain top-level summands smaller than h(y;)o. Since
(z3—z2—21+Y2—y1—y1)o must coincide with h(y;)o, the summands below the y;o’s
must cancel each other out, i.e. (y2—y; —y;)o must be 0. Therefore, continuing the
process according to this solution, we remove y2—y; —y; from the sum z3—-z2-z,+
y2—y1 — Y1, and add it to the class of 0, obtaining:

zZ= h(xa) S>DIT3D>Te>T] >Lg=2A3—T2—T1 = h(yl) >

Y3 =2e—21—To+P+y1 > > > h(w) >w=y-n-y=0
Now, in order to leave the treated segment in a normalized form z¢ = h(y;), we
remove the 23 —-z9—12; and we add zg—z3+22+2; = 0 to the set of associated
equations of this segment.

Finally, since the term z2—2; —zo+y2+y; is to the right of h(y;), and hence
it must contain only summands smaller than h(y;)o, we have to force the z;’s to
cancel each other out. We remove r9—2;—1¢ and we add z9—2;—2¢ = 0 to the
associated equations of the leftmost segment. Note that this is a different treatment
with respect to what was done with y,—y; —y; before. But remember that the aim
is to remove variables of the treated segment from the other segments to the right
of it. In fact, this yo—y; —y; added to the class of 0 will be removed from this class .
when the next segment is treated, since none of the y;’s is defined in the rightmost
segment.

After finishing the treatment of the leftmost segment we obtain:

z=h(z3) > 3> 22 > 21 > zo=h(y1) >

Ys=yo+u1 > y2 > Y1 > h(w) > w=yr—y1—y1 =0
and the associated equations zg—2z3+2z9+2z1 =0 and z9—2z;—2¢ = 0. 0

Diophantine equations.

Example 150 shows that now in solutions more than one summand may be needed in
a single segment. But only a certain small number of summands play an important
role in the comparisons of a segment. These summands will be called the decisive
ones.

Example 157 If a > b > ¢, in the inequation a+a+a+b+b+c > a+at+a—c—c—c
the summand b will be called the decisive summand, since it is the largest sumand
that appears in both terms with a different number of occurrences. Note that in
each comparison there is exactly one decisive summand. |

Definition 158 Let s be a term and u a summand. The number of occurrences of
u in s (notation #(wu, s)) is the integer n such that s =4 nu+s’, where u is not a
top-level summand of s'.

132 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

Example 159 We have #(a, f(a+b)—a~a) =-2. o

Definition 160 Let s and ¢ be two ground terms such that s > ¢. The decisive
summand of the inequation s > t is the top-level summand u such that, for all
summands v with v >,,,,, 4, we have #(v,s) = #(v,t), and either (i) #(u,s) >
#(u,t) > 0 or (i) #(u,s) < #(u,t) and #(u,s) < 0.

Definition 161 Let S be alinear system satisfying the split AG-RPO assumptions,
and let T be a segment in S of the form

Zo=s > 1=l 1=...=hk >...> Zi=t1=...=lig > Tipn=t

Let o be a solution of S.

Then the number ndec for this ¢ and T is the cardinality of dec(T'o) U {to},
where dec(T'0) is the set of decisive summands in the inequations z;0 > ;410 with
i>0

For given T and a solution o, the number ndec is, roughly, the number of different
summands that are decisive in some comparison of the segment. Since there is at
most one decisive summand per comparison, when ¢ is unknown one can guess ndec
to be between 1 and i4-1. There are some cases of segments where it must be exactly
1, which is when we know that for all solutions ¢ we have so = succsum,(to), i.e.,
that so is the successor summand of to:

e sis some c; and ¢ is ¢y, OF
e tis ¢, and sis h(0), or
e {is sumy and s is sumg, or

e tis headed with some f with f > h and sis A(z).

Definition 162 Let S, T and o be as in the previous definition. In the following,
the elements of dec(To) U {to} are denoted (and ordered) by Undec ™agrpo - + + >agrpo
Uy.

Intuitively, if the splitting has been done according to o, then, for such S, T
and o, always to is u;. Once the splitting transformation has been applied to S,
we can define a system of diophantine equations and inequations Dg for S. For
a segment T as the one in the previous definitions, in the definition of Dg below,
for every variable z; with 1 < j < ¢+ 1, ndec integer variables z;1,...,Z; ndec
are created; intuitively, these variables represent the number of occurrences of each
decisive summand in z;. For the segments where ndec is 1, the variable name z; is
used as well for the corresponding integer variable.

8.6. AG-RPO CONSTRAINTS 133

Example 163 Consider f > h > — > 4+ > 0 and suppose that after the splitting
transformation we have:

zg=h(wi+z2) > we=—ws > ws > wg=—w3z > W3 > Wr=-wW >

wy = f(23) >

zz=h(z3) > ya=-y3 > y3 > y2=-y1 > y1=h(z2) >

22=h(.’l:1) >IT3>Te> I =h(zl) > z1=0
Now we want to find a solution o such that for every variable it contains only
summands greater than or equal to the rightmost term of the segment where it
is defined. We may guess that the number of decisive summands for the leftmost
segment is 3. Therefore, we need to guarantee that at least two summands between
h(wi+2z2)o and f(z3)o exist. Note that the only situations where not enough room
might be available between two such terms s and ¢ occur when s is a (k-th) successor
summand of £. It is analyzed in Example 151 when this can happen. For example,
the successor summand of f(z3)o is h(f(23))o and the next one is h(f(23)+h(0))o.
Since z7 is a variable in the base segment (and hence z30 necessarily is of the form
sumy + ...+ sum; or —sumy — ...— sumy, where in this signature sum; is h(0}),
we need z,0 to be greater than or equal to 2(0)+A(0) in order to make sure that
there is enough room between h(w;+2z2)o and f(z3)o. This illustrates the need of
adding to the diophantine system either an equation of the for{n' T3 2.2 or one of
the form z, < 0, since —h(0) is greater than any sum of positive 2(0)’s. . - '

Later on, we may guess that the number of decisive summands for the segment
zz3=h(z3) > ya=—Y3 > yz3 > Y2=-y1 > y1 =h(z3) is 2. We need to guarantee that
there exists at least one summand between h(z3)o and h(z2)o. Observe that z3 and
z, are defined in the base segment. If we guess 220 to be A(0)+.. +#(0), then either
z30 is also of the form h(0)+...+h(0) with at least two more h(0)’s than 240, or
z30 is of the form —h(0)—...—h(0). If we guess that 290 is —h(0)—...—h(0), then
z30 also has to be —h(0)—...—h(0), but with at least two more —h(0)’s than zy0. O

Definition 164 Let S be a linear system satisfying the split AG-RPO assumptions,
and let T be a segment in S of the form

Zo=85 > 1=l 1=...Ttig > ... > Ti=t1=...=tjg > T =t

with associated equations ¢; =0,...,q = 0.

The following equations are added to the system Dg in order to express for which
inequation which decisive summand is decisive, and whether it decides positively or
negatively:

1. For each j between 1 and ¢, we guess which index summand k between 1 and
ndec is the decisive one for the inequation z; > z;4. Now, for all ¥’ > k
we add the equation x4 = T34 4. In order to decide the way in which the
k-th summand is decisive, we guess adding either (i) z;x > zjux > 0 or (ii)
Tik < Tk and x5 < 0.

134 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

2. Let t';,, be the result of replacing in t;; every variable z;; by z; k, that is,
the integer variable corresponding to the k-th decisive summand (with this
replacement, we are transforming a term into an expression with integer vari-
ables). Now in order to make sure that the number of occurrences of the k-th
summand at each side of the equalities coincides, add z;x = tf' p, for all j in
{1...4},and all kin {1...ndec}, and all lin {1...k;}. We proceed identically
with the associated equations.

3. We add z;11,1 = 1, and for all k in {2...ndec} we add z;3 1 = 0.

We now impose some more diophantine equations ensuring that, in a solution
o, there will be enough space for the decisive summands between so and to, when
ndec > 1 (as illustrated in Example 163). Assume ndec > 1 and let y and z always
denote variables defined in the base segment: '

4. If s is of the form h(y+s') and ¢ is of the form h(z+s'), it has to be guessed
whether one adds either the equations (i) y > 2+ndec and z > 0, or the
equations (ii) y < z—ndec and z < 0, or the equations (iii) y < 0 and 2 > 0
(in these equations y and z are the integer variables corresponding to the term
variables with the same name defined in the base segment).

5. If s is of the form h(y+s') and ¢ is of the form h(s'), there is another choice
between the equation (i) y > ndec, and the equation (ii) y < 0.

6. If s is of the form h(z:1+y) and t is of the form f(t), either the equation (i)
y > ndec — 1 or (ii) y < 0 is added. O

Constraint Solving.

Lemma 165 Let S be a linear system satisfying the AG-RPO assumptions. Let
D, ...D,, be the diophantine systems generated from all the linear systems satisfying
the split AG-RPO assumptions obtained by applying the splitting transformation
to S. Then S is satisfiable if, and only if, some D; is satisfiable over the integers.

Proof: =: As for the AC case, assuming that S is satisfiable by some substitution
o, we find some S’ resulting from a splitting transformation of S according to o,
and some extension of ¢ that is a solution of S’; and, moreover, given a segment T
of S’ of the form

To=s > =t 1=...Thg >...> L=t 1=...=tjr > Tq=t

for all jin {1...4+1} we have that all the ;0 contain only summands greater than
or equal to to.

8.6. AG-RPO CONSTRAINTS 135

Consider the set C = {uj,...,u,} including to and all the different top-level
summands of these variables that are decisive in some inequation z;0 >, 510,
for some j in {1,...,1}, and where n >.grpo - - - ™agrpo 1. Let D’ be the diophantine
system obtained from S’ by doing the guessings according to o: the chosen ndec is
precisely the cardinality n of C for such segments T, and the chosen index for the
generated equations from the inequation z; > z 3 is k if ug is the decisive summand
in ;0 >,5p0 Tin0, etc. Now, if for such segments T' we assign #(ux, zjo) to each
variable z;, then we obtain a solution for D’.

<=: Assume that some guessed Dg is satisfiable for some S’ resulting from a
splitting transformation of S. Let 8 be a solution for Dgr. We can inductively build
a solution o for S’ as follows. For each segment T in S of the form

To=8 > 1=t 1=...=hk >...> Ti=tii1=...=ik > Tp=t

assume that a (partial) solution o has already been defined for the linear system
consisting of all segments to the right of T. Then to is already defined. Let ndec
denote the guessed ndec for T. Now, for all j in {1,...,i+1} we define zjo to be the
sum containing z ;.6 times the summand succsumy(to) for each k in {1,..., ndec},
and no other summands.

By construction of the diophantine system of equations, o satisfies all equality
relations in S’, and all the relations z; >,;.,, ;1 With jin {1,..., 4} for this segment
T, and hence it only remains to be checked that ¢ satisfies so >,;,.,, T10. This is
done by distinguishing six cases:

1. All cases where ndec is 1.
Then so is greater than a sum of positive or negative to’s, and then it is greater

than z0.

2. s and t are of the form h(s’) and h(t'), respectively, and T is not the base
segment.
By assumption A7/, either (a) ¢ >s h(t’) for some variable z in &', or (b)
8" >4egs(s) t'- In case (a), by assumption AG3, this variable z is the only one
in ¢’ satisfying >g h(t’). Therefore, no summand in zo is canceled out in s'o,
and hence A(8)0 = ugrpo H(TO) >agrpo TO Zagrpo R(t')o. In case (b), s’ and ¢’ are
of the form y; +. .. and z;+... respectively, and there exists some k such that
y; = z;j forall j < k, and yr >s 2 if 2; exists, and all the z; with j > k appear
in segments to the right of the one where yy is defined. In fact, all the y;’s are
in different segments, and the same for all the z;’s. Therefore, no summands
in §'o cancel each other out, and the same for the summands in ¢'o, and hence
8'0 > 4gepo t'0, and yro contains the decisive summand in this comparison. If yi
is not defined in the base segment, then h(s')o > .., succsumy(h(t')o) for all
natural numbers [, and we conclude since 0 is a sum of positive and negative

136

CHAPTER 8. ORDERING CONSTRAINTS FOR AG

summands of this form. Assume now that yj is defined in the base segment.
If 2 does not exist, then either the equation (i) yx > ndec, or the equation
(1) yx < 0 has been added to the diophantine system. In both cases, by the
induction hypothesis, A(s')g > ,rpo sSucesumy(h(t’)o) for all Iin 1...ndec—1,
and since z;0 is a sum of positive and negative summands of this form, we
conclude again. If z exists, then either the equations (i) yx > zx+ndec and
2 > 0, or the equations (ii) yr < 2z —ndec and zx < 0, or the equations
(ili) yx < 0 and 2z > 0 have been added to the diophantine system, and by
analogous arguments we conclude again.

. s and t are of the form f(s') and g(t'), respectively, with ¢ > f > h.

Then, by assumptions A6’ and AG3, exactly one variable z in s’ is defined
in this segment. Therefore the summands in 2o do not cancel out with other
summands in s'o, and hence f(s')0 >,prp0 T = 4prpo 9(t')0. Moreover, f(s')o
is bigger w.r.t. AG-RPO than any sum of positive and negative summands of
the form h(g(t')+sum;+...+sum;)o, and hence f(s')o >, p T10.

. s and t are of the form h(s’) and f(t'), respectively.

Then, by assumptions A6’ and AG3, exactly one variable z in s is defined in
this segment. If z is not 24, then o =, f(')o+f(t/)o. Note that f(t')o+
f(t')o is the smallest sum of positive and negative summands succsum;(f(t')o)
(with I > 0) that is neither f(t')o nor 0.

Since the summands in zo do not cancel out with any summands in §'o,
we have that h(s'0) =.,me A(f(t)o+ f(t')o), and since h(f(t')o+ f(t')o) is
greater than any term of the form h(f(t')+sum;+...+sum;)o we have that
80 >agrp0 £10, that is a sum of positive and negative summands of such a form.
Assume now that z is z;4,. Then s is of the form h(z41+s") . If s” contains
some variable not defined in the base segment, since the variables in s” are not
canceled out when applying o, we have that s”¢ is bigger than any term of the
form sum+ . stsum;. For similar reasons, h(s')o > ,,.po 10, since z;0 is asum
of positive and negative summands of the form A(z1+sumy+...+sum;)o or
ziy10. Assume now that s is of the form h(z;+y), where y is a variable defined
in the base segment. Then either the equation (i) y > ndec—1, or the equation
(i) y < 0 has been added to the diophantine system. In both cases, by the
induction hypothesis, yo > ..., sumi+.. ndec=1) 4 sum;. Since z,0 is a sum of
positive and negative summands smaller than h(zg;+sum; .. ."d”'l)—{—sum})o,
and the summands in (z;+y) do not cancel each other out, we have s >,,,,,
ZT10.

. s and t are of the form f(s') and f(t'), respectively, for f > h.

If s’ contains some variable defined in T, we proceed as in previous cases.
Otherwise, assume that no variable in s’ is defined in T. By assumption A7’

8.7. HARDNESS 137

and the induction hypothesis we have that s’ >,,,,, t'c. Therefore f(s')o is
greater than any summand of the form h(f(t')+sum;+...+sum;)o, and we
conclude again.

6. sis of the form f(s') and ¢ is headed with h or with some g such that f > g.
If some variable in s’ is defined in this segment, we proceed as in previous cases.
Then, assume that no variable in s’ is defined in the segment T'. It suffices to
show that so >,,,p. to, since automatically we obtain so >,,,, succsumg(to)
for all natural numbers k. What we do is proving that so »~,,,,, t'c, where
t' is either t or any other term to the right of ¢, and it is done inductively
from right to left. Clearly so is bigger than 0, all the ¢;, and all the zo for
variables z in the segments delimited by some ¢j. If ¢’ is headed by h or ¢’
such that f > ¢/, we obtain so »,,,,, t'o inductively. If ¢’ is headed by f,
we obtain s >, t'c as in previous case. If ¢ is headed by ¢’ such that
g’ > f, then, some variable z in ¢’ is defined in a segment to the left of ¢/ in
S’, but to the right of ¢, and no other variable in s is defined in this segment
(no cancellation is possible). Therefore we obtain so >,,,,, t'c inductively.
If ¢ is a sum of variables y; +...+yr* — Ykt —. .. — Yk, then, every y;o is a
sum of positive and negative summands of the form succsum;(t"c), for some
t" that, by the induction hypothesis, satisfies so >,,:,, t"a.- Moreover, since
s is headed by f with f > h, we have so >,,mp, succsumy(t”c). Therefore,
80 > agrpo (n+-. Y% —Yep—-..—y)o.

This o can be extended to a solution for S analogously to the FRPO case. O

Theorem 166 The satisfiability problem for AG-RPO constraints restricted to
signatures with free symbols of arity 0 or 1 is in NP,

8.6.2 Arbitrary arities

The extension to arbitrary signatures is obtained by proceeding analogously to the

AC case. What has to be taken into account is that sucesumy(f(s1,...,sk)) is
h(0,...,0, f(s1,---,5k)), and]

succsumy (h(s1,...,5%)) is h(sy, ..., sktsumy) if s is not of the form s'—sum,, and
h{sy,...,sx—sum;) otherwise.

Theorem 167 The satisfiability problem for AG-RPO constraints is in NP.

8.7 Hardness

Obviously, the satisfiability problems we deal with are NP-hard, because as subcases
they include the AC, ACO and AG-unifiability problems. But one may wonder

138 CHAPTER 8. ORDERING CONSTRAINTS FOR AG

whether there exists any ordering at all for these E such that at least the satisfiability
problem for positive conjunctions of inequations (by which one cannot always encode
unification) is in P. Here we answer this question negatively (by reducing 1-in-3-sat
with only positive literals), even if monotonicity of the ordering is not required.

Theorem 168 Let E be AC, ACO, or AG, and let > be any arbitrary well-founded
E-compatible ordering on ground terms that is total up to =g Then the constraint
satisfiability problem for » and =g is NP-hard even for constraints that are con-
junctions of positive inequations.

Proof: By reducing 1-in-3-sat with only positive literals. We build a conjunction
Cp that is satisfiable if, and only if, the 1-in-3-sat problem P is satisfiable. Let
t3, t2 and t; be the three smallest ground terms w.r.t. > such that t3 > ¢ > ;.
Furthermore, let min(E) and maz(F) denote the minimal and maximal term (w.r.t.
>), respectively, of the set E = { t;+¢t;+t1, ti+ta+tz, ta+ta+ta }.

Now, for each variable z; in P, we add an inequation t3 > z; to Cp, forcing z;
to be either ¢; or t3. Furthermore, for each clause in P of the form z; V z; V zi, we
force exactly one of its three variables to be t;, by forcing z;4+z;+zx to be t1+t;+t5:

o if min(E) > t;+t1 413, then add min(E) > z;+z;+z.
o if t;+t1+t2 > maz(F), then add z;+z;+2zx > maz(E).

o Otherwise, add v > z;+zj+zr > v, where u is the smallest term in F larger
than ¢;+t;+12, and v is the largest term smaller than ¢, +¢; +¢2. m]

8.8 Other kinds of constraints

Our algorithms for dealing with equality and ordering constraints are also extendable
to other kind of constraints that are very useful for the applications of Chapter 7.
Let us explain how. In our algorithms, for each variable z the number of differ-
ent summands at top-level position that appear in the generated solution for z is
guessed. Moreover, in some cases it is guessed if such a summand appears positively
or negatively. All these guessings can be restricted by additional constraints of the
form “the variable z contains only one different summand”, or of the form “the
variable z contains exactly one summand that is negative”, or “all the variables of
the sum z +y— z contain only one different summand, the same one for all of them”.
By doing the guessings adequately to such new constraints, the generated solution
will satisfy them, and the diophantine system will be satisfiable if and only if there
exists a solution for the set of constraints including the new ones.

Such constraints are useful in an inference system like the one for abelian groups
presented in Chapter 7. For example, as we saw in that chapter, in such an inference

8.8. OTHER KINDS OF CONSTRAINTS 139

system equations of the form e ~ 0 are oriented into logically equivalent ones s =t
where s contains summands and variables, and the only accepted substitutions for
such variables are the ones such that all of these variables contain one different
summand, and the same one for all of them. This summand also has to coincide
with the rest of summands in s when applying a substitution (that is a solution).
Additionally one wants all summands that do not cancel each other out in ¢ to be
smaller than the summand appearing in s. The techniques of Chapter 7 can be
combined with the ones presented here for obtaining an efficient inference system
for abelian groups.

	TGGB00001.pdf
	TGGB00002.pdf
	TGGB00003.pdf
	TGGB00004.pdf
	TGGB00005.pdf
	TGGB00006.pdf
	TGGB00007.pdf
	TGGB00008.pdf
	TGGB00009.pdf
	TGGB00010.pdf
	TGGB00011.pdf
	TGGB00012.pdf
	TGGB00013.pdf
	TGGB00014.pdf
	TGGB00015.pdf
	TGGB00016.pdf
	TGGB00017.pdf
	TGGB00018.pdf
	TGGB00019.pdf
	TGGB00020.pdf
	TGGB00021.pdf
	TGGB00022.pdf
	TGGB00023.pdf
	TGGB00024.pdf
	TGGB00025.pdf
	TGGB00026.pdf
	TGGB00027.pdf
	TGGB00028.pdf
	TGGB00029.pdf
	TGGB00030.pdf
	TGGB00031.pdf
	TGGB00032.pdf
	TGGB00033.pdf
	TGGB00034.pdf
	TGGB00035.pdf
	TGGB00036.pdf
	TGGB00037.pdf
	TGGB00038.pdf
	TGGB00039.pdf
	TGGB00040.pdf
	TGGB00041.pdf
	TGGB00042.pdf
	TGGB00043.pdf
	TGGB00044.pdf
	TGGB00045.pdf
	TGGB00046.pdf
	TGGB00047.pdf
	TGGB00048.pdf
	TGGB00049.pdf
	TGGB00050.pdf
	TGGB00051.pdf
	TGGB00052.pdf
	TGGB00053.pdf
	TGGB00054.pdf
	TGGB00055.pdf
	TGGB00056.pdf
	TGGB00057.pdf
	TGGB00058.pdf
	TGGB00059.pdf
	TGGB00060.pdf
	TGGB00061.pdf
	TGGB00062.pdf
	TGGB00063.pdf
	TGGB00064.pdf
	TGGB00065.pdf
	TGGB00066.pdf
	TGGB00067.pdf
	TGGB00068.pdf
	TGGB00069.pdf
	TGGB00070.pdf
	TGGB00071.pdf
	TGGB00072.pdf
	TGGB00073.pdf
	TGGB00074.pdf
	TGGB00075.pdf
	TGGB00076.pdf
	TGGB00077.pdf
	TGGB00078.pdf
	TGGB00079.pdf
	TGGB00080.pdf
	TGGB00081.pdf
	TGGB00082.pdf
	TGGB00083.pdf
	TGGB00084.pdf
	TGGB00085.pdf
	TGGB00086.pdf
	TGGB00087.pdf
	TGGB00088.pdf
	TGGB00089.pdf
	TGGB00090.pdf
	TGGB00091.pdf
	TGGB00092.pdf
	TGGB00093.pdf
	TGGB00094.pdf
	TGGB00095.pdf
	TGGB00096.pdf
	TGGB00097.pdf
	TGGB00098.pdf
	TGGB00099.pdf
	TGGB00100.pdf
	TGGB00101.pdf
	TGGB00102.pdf
	TGGB00103.pdf
	TGGB00104.pdf
	TGGB00105.pdf
	TGGB00106.pdf
	TGGB00107.pdf
	TGGB00108.pdf
	TGGB00109.pdf
	TGGB00110.pdf
	TGGB00111.pdf
	TGGB00112.pdf
	TGGB00113.pdf
	TGGB00114.pdf
	TGGB00115.pdf
	TGGB00116.pdf
	TGGB00117.pdf
	TGGB00118.pdf
	TGGB00119.pdf
	TGGB00120.pdf
	TGGB00121.pdf
	TGGB00122.pdf
	TGGB00123.pdf
	TGGB00124.pdf
	TGGB00125.pdf
	TGGB00126.pdf
	TGGB00127.pdf
	TGGB00128.pdf
	TGGB00129.pdf
	TGGB00130.pdf
	TGGB00131.pdf
	TGGB00132.pdf
	TGGB00133.pdf
	TGGB00134.pdf
	TGGB00135.pdf
	TGGB00136.pdf
	TGGB00137.pdf
	TGGB00138.pdf
	TGGB00139.pdf
	TGGB00140.pdf
	TGGB00141.pdf
	TGGB00142.pdf
	TGGB00143.pdf
	TGGB00144.pdf
	TGGB00145.pdf

