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Abstract

A prominent feature of the dynamics of large neuronal networks are the
synchrony-driven collective oscillations generated by the interplay be-
tween synaptic coupling and synaptic delays. This thesis investigates the
emergence of delay-induced oscillations in networks of heterogeneous
spiking neurons. Building on recent theoretical advances in exact mean
field reductions for neuronal networks, this work explores the dynam-
ics and bifurcations of an exact firing rate model with various forms of
synaptic delays. In parallel, the results obtained using the novel firing
rate model are compared with extensive numerical simulations of large
networks of spiking neurons, which confirm the existence of numerous
synchrony-based oscillatory states. Some of these states are novel and
display complex forms of partial synchronization and collective chaos.
Given the well-known limitation of traditional firing rate models to de-
scribe synchrony-based oscillations, previous studies greatly overlooked
many of the oscillatory states found here. Therefore, this thesis provides
a unique exploration of the oscillatory scenarios found in neuronal net-
works due to the presence of delays, and may substantially extend the
mathematical tools available for modeling the plethora of oscillations
detected in electrical recordings of brain activity.

Keywords: mathematical neuroscience, oscillations, synaptic kinetics,
time delays, synchronization, neural population, firing rate, population
model, spiking neurons, quadratic integrate-and-fire, coupled oscillators,
mean-field, Wilson-Cowan model.
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Resum

Una caracterı́stica fonamental de la dinàmica d’una xarxa neuronal és
l’emergència d’oscil·lacions degudes a sincronització. L’origen d’aques-
tes oscil·lacions és molt sovint degut les interaccions sinàptiques i als
seus retards temporals inherents. Aquesta tesi analitza la emergència
d’oscil·lacions produı̈des per retards sinàptics en xarxes neuronals he-
terogènies. A partir de troballes recents en teories de camp mig per
xarxes neuronals, aquest treball explora la dinàmica i les bifurcacions
d’un model de rate amb diferents tipus de retards sinàptics. En paral·lel
els resultats obtinguts mitjançant el nou model de rate són comparats
amb simulacions numèriques de grans xarxes neuronals. Aquestes simu-
lacions confirmen l’existència de nombrosos estats oscil·latoris produı̈ts
per sincronització. Alguns d’aquests estats són nous i mostren formes
complexes de sincronització parcial i de caos col·lectiu. Gran part d’a-
questes oscil·lacions han estat àmpliament ignorades a la literatura, degut
a la limitació dels models tradicionals de rate per descriure estats amb
un alt nivell de sincronització. Aixı́ doncs aquesta tesi ofereix una ex-
ploració única dels possibles escenaris oscil·latoris en xarxes neuronals
amb retards sinàptics, i amplia significativament les eines matemàtiques
disponibles per a la modelització de la gran diversitat d’oscil·lacions
neuronals presents en les mesures elèctriques de l’activitat cerebral.
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Introduction

The brain is a fascinating and intriguing functional structure, arguably
the most complex organ of the human body. It drives our behavior and,
at the same time, it regulates, controls and oversees the functioning of
our body. The characterization of brain anatomical and physiological
properties continually requires the joint effort of researchers from diverse
fields of science.
The pioneering experiments of Santiago Ramon y Cajal in the late XIX
century first identified the brain as a network of discrete unitary cells (the
neurons), that interconnect among each other at clefts called synapses.
Together with Camillo Golgi, who earlier developed the staining tech-
nique used in Cajal’s experiments, Ramon y Cajal was awarded the Nobel
prize in medicine in 1906. His discoveries established the fundamentals
of the theory known as Neuron doctrine, which is still the base of modern
neuroscience.
From a physiological standpoint, electricity was known to play a fun-
damental role in the functioning of the nervous system since Galvani’s
experiments on the sciatic nerve of frogs in the late XVIII century. Gal-
vani’s discovery of ”animal electricity” lead later on to the discovery
of the action potential, and to the conduction properties of the nervous
system. The action potentials constitute the fundamental chunks of in-
formation that neurons exchange. These spike-like events coordinate the
cooperative action of myriades of neurons, determining the substrate for
the complex tasks that our brain needs to accomplish. Understanding
the mechanisms of such complex and sophisticated machine continually
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required the joint effort of experimental and theoretical research. Experi-
mental evidence inspires new theories, that in turn help designing new
experimental paradigms, on which theoretical predictions shall be tested.
The cardinal tool employed in theoretical neuroscience is mathematical
modeling. Mathematical models have been for centuries a key element
of physical sciences, providing an invaluable tool for testing theories
and make predictions about the behavior of a given physical system.
An early attempt of building a neurophysiologically relevant mathemat-
ical model is attributed to Lapicque (Lapique, 1907). In the early XX
century, Lapique built a simple phenomenological model of a neuron,
now commonly known as integrate-and-fire neuron, to describe nerve
excitation. A detailed comprehension and description of action potential
generation, came in the mid XX century: in 1952, Hodgkin and Huxley
published their studies on the conduction properties of the squid giant
axon, presenting the first mathematical model accurately describing the
physiological processes leading to action potential generation (Hodgkin
and Huxley, 1952). The Hodgkin-Huxley model can still be considered
the canonical model to describe single neurons dynamics. Although
with different degrees of biophysical detail, the integrate-and-fire and the
Hodgkin-Huxley model both describe single neurons dynamics.
In parallel, researchers developed a different type of descriptions, usu-
ally called firing rate models. Firing rate models are phenomenological
descriptions of the collective, coarse-grained activity of large popula-
tions of neurons (Wilson and Cowan, 1972; Freeman, 1975). This type
of description is particularly desirable in neuroscience. It is often hy-
pothesized that brain function relies on population, rather than single
neuron coding. A illuminating example comes from the visual system:
feature-selective nearby neurons in the visual cortex often display similar
coding properties (Hubel and Wiesel, 1963), suggesting the population
coding hypothesis. Key for this type of modeling are the assumptions
of relatively homogeneous neurons’ properties (as e.g. similar feature
tuning curves in the visual systems), and of some degree of redundancy
in single neurons’ coding.
Firing rate models have two main great advantages: thanks to their
simplicity, they allow for mathematical analysis; additionally, they are
computationally very efficient. For these reasons, they rapidly became a
standard tool to investigate both the computational principles underlying
brain functions and the collective dynamics of neuronal populations.
Still, traditional firing rate models have two major limitations which limit
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their range of applicability in neuroscience. First, firing rate models do
not generally represent proper mathematical reductions of the underlying
network of spiking neurons but rather are heuristic. As such there is in
general no precise relationship between the parameters in the traditional
firing rate model and those in the full network of spiking neurons, and
there is no clear link between the macroscopic states of the network with
the microscopic dynamics of the constituent neurons. Second, these
models are not accurate in describing the dynamics of collective states
where a significant fraction of the neurons fires spikes in synchrony. Syn-
chronous firing has been suggested to be the mechanism responsible for
the generation of large scale neuronal oscillations, the rhythmic patterns
ubiquitous in electrical recordings of brain activity (Buzsáki, 2006). Net-
works of spiking neurons may engage in synchronous firing in several
circumstances, either due to exogenous factors (e.g. transient external
inputs), or to endogenous characteristics of the circuit, as the presence of
significant synaptic delays.

In this dissertation, we will investigate the synchrony-based oscilla-
tions that emerge in networks of spiking neurons due to the presence of
synaptic delays. We will employ a novel firing rate model recently de-
rived for networks of so called quadratic integrate-and-fire (QIF) neurons
(Montbrió et al., 2015). We will illustrate that the novel firing rate model
properly describes the dynamical regimes that emerge in networks of
synaptically-coupled spiking neurons, including synchrony-based oscilla-
tions.

Outline of the thesis

In this thesis, we will extensively analyze a firing rate model recently
derived for networks of QIF neurons, that we call QIF firing rate equa-
tions (QIF-FRE). The model is exact, meaning that it can be rigorously
mathematically derived from the underlying network of spiking neurons.
Employing the QIF-FRE thus has the unique advantage of allowing for
an extensive comparison of the macroscopic mean-field dynamics with
the single neuron properties.
Specifically, we will consider the effect that synaptic delays (in forms of
fixed delays and synaptic filters) have on the macroscopic dynamics of
the QIF-FRE, and therefore on the dynamics of the underlying network
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of spiking neurons. We will focus on the deterministic, noiseless aspects
of the dynamics. The results are expected to hold as long as the system
is in the so called mean-driven regime, i.e. low noise case. The central
questions addressed with this dissertation may be summarized as follows:

• How do synaptic delays shape the dynamics of large networks
of spiking neurons? Can synaptic delays produce self-sustained
collective oscillations? If so,

– What is the mechanism generating these oscillations?

– Are the oscillations robust to neuronal heterogeneity?

• How does the microscopic dynamics of the neurons relate to the
collective mean-field dynamics?

• How do the exact QIF-FRE relate to traditional firing rate equa-
tions?

Specifically, Chapter 1 serves as a background for the rest of the
Thesis. We first review some relevant concepts on neuronal modelling,
and then illustrate several examples of network of spiking neurons where
synchronous firing emerges as a consequence of synaptic delays. Com-
paring these results with an analysis of the corresponding traditional rate
equations, we demonstrate that generally traditional rate models fail to
capture synchronous states induced by synaptic delays. Finally, we intro-
duce the firing rate model employed throughout the thesis, the QIF-FRE.

In Chapter 2, we analyse the effect of first order synaptic kinetics on
the QIF-FRE. We show that the QIF-FRE, at variance with traditional
rate models, correctly capture the synchrony-induced macroscopic os-
cillations that arise in networks of inhibitory neurons with first order
synaptic kinetics. We analytically determine the parameter region of
stable self-sustained oscillations, and show that the QIF-FRE also qual-
itatively capture the dynamics of networks of biophysically detailed
conductance-based model neurons. Lastly, we study the limit of slow
synaptic kinetics, and determine a relation between the QIF-FRE and the
traditional Wilson-Cowan-like firing rate equations.
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Chapter 3 is devoted to the study the role of fixed delays on the QIF-
FRE. We extensively analyze the system dynamics, which includes syn-
chronous, partially synchronous and chaotic regimes, for both identical
and heterogeneous populations of QIF neurons. We identify a novel three-
frequency modulated partially synchronous state, and study its transition
into chaos. We then explore the relation among the microscopic and the
collective dynamics, particularly in the non-trivial partially synchronous
and chaotic regimes. Finally, we compare the dynamics of the QIF-FRE
to the corresponding traditional rate model with delays.

Chapter 4 serves as a preliminary study bridging Chapter 2 and Chapter
3. We consider the simultaneous effect of fixed delays and synaptic kinet-
ics on the QIF-FRE, illustrating by analyzing the oscillatory instabilities
of the model that it is mainly the fixed time delay that determines the
system dynamics. Then, we compare the dynamics of the QIF-FRE with
that of the corresponding version of the traditional firing rate equations.

In the final chapter, Conclusions and discussion, we summarize the main
contributions of this dissertation, and illustrate some possible future di-
rections of investigation.
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CHAPTER 1

Synchronization in networks of spiking
neurons with synaptic dynamics

This chapter serves as a background and introduction to the following
chapters of this thesis. We briefly discuss some concepts of synchroniza-
tion, and models of neuronal and synaptic dynamics. Then, we show
some examples of synchronous dynamics in networks of spiking neurons
induced by synaptic delays. We then compare the network dynamics with
the corresponding (heuristic) firing rate description. Finally, we introduce
the firing rate equations that we will employ in the following chapters of
the dissertation.

1.1 Synchrony and neuronal oscillations

Synchronization is a ubiquitous natural phenomenon. In Biology, exam-
ples include the synchronous flashing of fireflies, the unison chirping of
crickets, the synchronous firing of pacemaker cells in the heart, and of
circadian neurons in the suprachiasmatic nucleus of the brain (Strogatz,
2003). Synchronization is a simple illustration of emergent collective
behavior, where a congregation of elements concur to produce a collec-
tive effect. Importantly, the emergence of this macroscopic order is a
self-organization process: fireflies, circadian neurons, or any other oscil-
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latory system engaged in a synchronous rhythm, just adjust their intrinsic
rhythms one with respect to the others, thanks to their mutual interactions
(Pikovsky et al., 2001).
In neuroscience, synchronization has often been related to the oscilla-
tions observed in electrical recordings of neural activity (Buzsáki, 2006).
Norbert Wiener was among the firsts to propose a relation among brain
oscillations and synchronization. Wiener was investigating the alpha
rhythm emerging in human EEG recordings, an oscillation that was at-
tracting increasing attention since it was observed for the first time a few
decades earlier by Hans Berger (Berger, 1929). Wiener hypothesized that
this rhythm might originate from a population of synchronizing neural
oscillators (Wiener, 1961). Even though not providing much evidence
supporting the hypothesis (apart from a power spectrum that has never
been replicated), Wiener studies have certainly the merit of raising much
interest in biological oscillators (Strogatz, 1994). Besides alpha waves,
electrical recordings of brain activity reveal the presence of oscillations
with a wide range of frequencies (Buzsáki and Draguhn, 2004). These
rhythms appear at different spatial scales, from LFP recordings of few
hundreds of neurons, to EEG and MEG recordings of larger cortical areas
(Wang, 2010). Brain oscillations have been implicated in several brain
functions, such as perceptual binding (Von der Malsburg and Schneider,
1986; Gray et al., 1989; Engel and Singer, 2001), information processing
and transfer (Fries, 2005; Palmigiano et al., 2017; Rohenkohl et al., 2018),
attention (Fries et al., 2001), and memory (Fell et al., 2001; Axmacher
et al., 2006; Fell and Axmacher, 2011).

1.1.1 Modeling Synchronization
From a mathematical standpoint, the first attempt to understand the
emergence of biological rhythms in terms of mutual synchronization
of populations of oscillators is due to Wiener’s studies of alpha waves
(Wiener, 1961). However Wiener’s approach, based on Fourier integrals,
was not successful, and turned out to be a dead end (Strogatz, 2000).
A proper mathematical formulation of the ideas introduced by Wiener
was later developed by Arthur Winfree (Winfree, 1967). Winfree as-
sumed that, in the weak coupling regime, an oscillator could be described
only by a phase variable, assuming the oscillations’ amplitude to remain
constant. Additionally, the oscillator’s response to perturbations (for
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instance induced by the interaction with other oscillators) should depend
on its phase, introducing the concept of phase response curve. Kuramoto,
with an elegant mathematical formulation, further simplified Winfree’s
model, obtaining a model where interactions depend only on the phase
differences between oscillators (Kuramoto, 1975, 1984). Thanks to its
mathematical tractability, the Kuramoto model soon became the standard
tool to investigate synchronization transitions in populations of coupled
oscillators in several different setups, for a review see (Acebrón et al.,
2005). Interestingly, it predicts the qualitative structure of the power
spectrum shown by Wiener to support his hypothesis (Strogatz, 1994).
The Kuramoto model has been widely employed to investigate the emer-
gence of neuronal rhythms (Breakspear et al., 2010; Cabral et al., 2011;
Ton et al., 2014; Villegas et al., 2014; Petkoski et al., 2016), with recent
theoretical advances (Montbrió and Pazó, 2018).
However, despite retaining some of the fundamental features, it has two
important limitations when applied to model neuronal dynamics:

• Neurons are excitable units, not self-sustained oscillators. Rhyth-
mic firing is elicited only by sufficiently strong incoming inputs.

• Neurons interact in an all-or-none fashion. Kuramoto-like inter-
actions continuously depend on the phase difference among the
oscillators, while neurons interact via pulse-like signals, the action
potentials.

These characteristics are considered in the more biophysically-realistic
models that we briefly discuss in the next section.

1.2 Modeling collective neuronal dynamics
Building mathematical models of any physical or biological system re-
quire a careful compromise between the degree of detail and the complex-
ity of the model. An extremely detailed model might take into account
exceptionally well all the details of the physical system under analysis,
but also rapidly become so complex to be almost impossible to analyze.
Certainly, the degree of detail we wish to include in our model also de-
pends on the scope of our analysis.
Modeling neuronal dynamics also requires a compromise between greater
biophysical detail and feasible analysis. If the aim is describing the col-
lective activity of a large neuronal population two strategies might be
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employed. The dynamics of each single cells can be described (with a cer-
tain degree of detail), resulting in a quite complex and high-dimensional
model for the whole network–possibly also containing equations for the
synaptic transmission. Alternatively, the network might be described by
some average, ”macroscopic”, quantity (as we shall see in the following,
the firing rate) in analogy to what is typically done e.g. in thermodynam-
ics. As to the single neurons dynamics, a plethora of alternative models
have been developed, ranging from biophysically detailed models to sim-
plified phenomenological descriptions of integrate-and-fire type (Dayan
and Abbott, 2001). Similarly, synaptic processing can be modeled with
different degrees of details, as we will see later in this section. In the
following we further discuss the different classes of models mentioned
above.

1.2.1 Spiking neuron models
The stereotypical neuronal signals are the action potentials, pulse-like
events of rapid depolarization and subsequent hyperpolarization of the
membrane voltage of the cells. The classical model of action potential
generation, the Hodgkin-Huxley model, is a four-dimensional system
of differential equations that describe the subthreshold dynamics of the
membrane potential, together with sodium and potassium channels kinet-
ics (Hodgkin and Huxley, 1952). Thanks to its biophysical realism, it
can faithfully account for experimental data on the electrical properties
of excitable cells. Alternatively to biophysical models, phenomenologi-
cal models of action potential generation were developed, the so called
integrate-and-fire models. Here, only the basic electrical properties of the
cell membrane are retained. The simplest (and also earliest) example of
such models was proposed by Lapique (Lapique, 1907), that introduced
what is nowadays known as leaky integrate-and-fire (LIF) neuron . The
LIF neuron describes the cell with a linear differential equation for the
membrane voltage, constructed in analogy with an RC circuit with a
leakage current (Dayan and Abbott, 2001). A simple generalization of
the LIF model of the integrate-and-fire class is the quadratic integrate-
and-fire neuron (QIF) (Ermentrout and Kopell, 1986; Izhikevich, 2007)
that captures the qualitative behavior of the frequency-current curve of
a larger family of more realistic models (i.e. of Hodgkin-Huxley-type).
The loss of biophysical detail of integrate-and-fire models compared to
Hodgkin-Huxley-type models is compensated by the simplified descrip-
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tion, facilitating more efficient numerical implementation and mathemati-
cal insights.

1.2.2 Synaptic processing

To model a neuronal network, we must additionally properly describe
neuronal interactions. This is particularly relevant for synchronous and
oscillatory dynamics, since the synaptic time course is known to play a
fundamental role in generating oscillations– see e.g. (Wang and Buzsáki,
1996; Brunel and Wang, 2003).
There are two main types of synaptic interactions: chemical synapses,
and gap junctions (or electrical synapses). In the following, we discuss
the main characteristics of chemical interactions, as this will be the type
of interaction considered in this thesis *.
Chemical synapses filter the action potentials, transmitting them from
the axon of the presynaptic neuron to the dendrites of the postsynaptic
neuron. The transmission takes place at the synaptic cleft with a series of
complex biochemical processes. The ionic currents due to the incoming
action potential in the presynaptic neuron interact with specific proteins
at the presynaptic terminal, releasing neurotransmitters in the extracel-
lular medium. The neurotransmitters bind to the chemical receptors at
the postsynaptic terminal, resulting in the opening of the ionic channels
producing an influx of ions in the postsynaptic neuron (the postsynaptic
current).
Several detailed mathematical models have been developed that faith-
fully describe this complex sequence of biochemical processes, see e.g.
(Destexhe et al., 1998). These models accurately describe the kinetics of
the chemical reactions involved, and fit patch-clamp experimental data
extremely well. However, they are quite complex, and therefore are often
simplified in terms of phenomenological models (Roth and van Rossum,
2009). Typically, the whole synaptic transmission process is reduced to
two main stages: the release of neurotransmitter in the synaptic cleft, and
the opening and closing of postsynaptic ion channels. The neurotransmit-
ter release is modeled as a brief pulse of neurotransmitter concentration
that follows the presynaptic action potential (Destexhe et al., 1998). The
pulse typically is delayed, producing a brief latency in the postsynaptic

*The effects of gap junction coupling on the model presented in this thesis are
analyzed in (Pietras et al., 2019).
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Figure 1.1: Sketch of the time course of the postsynaptic current elicited by
a pre-synaptic action potential. Solid blue line: instantaneous rise synapses.
Dashed blue line: alpha synapses.

response (Markram et al., 1997; Bartos et al., 2001; Angulo et al., 1999).
The kinetics of the ion channels, or the fraction of open channels, have
a rising and decaying phase. The time course of the fraction of open
channels following a presynaptic spike is commonly taken to be a double
exponential, with two time constants characterizing the opening and clos-
ing phase of the process. Often, the two time constants are assumed to be
equal, resulting in the so called alpha synapses (Roth and van Rossum,
2009). For certain types of synapses, the rising phase is much faster than
the decaying phase, so that it is reasonable to assume an instantaneous
opening followed by an exponential decay. An illustration of these two
types of synaptic time course is shown in Fig. 1.1. The solid blue line
corresponds to the approximation of instantaneous opening of the chan-
nel (instantaneous rise synapses), while the dashed blue line to alpha
synapses. The arrival of a presynaptic action potential (at t = 0) elicits a
response after a latency (delay) D.
The general shape of the postsynaptic current following a presynaptic

action potential is then a delayed double exponential, characterized by
three time scales: the latency, the rising time, and the decaying time
constants.
To investigate the synchronization properties of neuronal populations
then typically we are at face with the study of high-dimensional networks
of synaptically-coupled spiking neurons. As discussed so far, the net-
work constituents can be either biophysically-detailed models (e.g. the
Hodgkin-Huxley model), or more idealized models (of integrate-and-fire
type). Synaptic interactions can be as detailed as describing all bio-
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chemical processes occurring at the synaptic cleft, or just one or two
phenomenological differential equations. Either way, any study aiming
at investigating collective phenomena in large neuronal networks has to
deal with an extremely high number of equations (few thousands neurons
for each cubic millimeter of brain tissue), rendering the analysis of the
system extremely complex.

1.2.3 Firing rate models
Researchers alternatively formulated a different class of models, that
rather than focusing on the dynamics of single neurons, focus on the
average collective activity of local neuronal population. This class of
models describes the activity of a neuronal population (a localized portion
of brain tissue, containing a few thousands neurons) via (few) collective
variables. In the second half of the XX century, several authors explored
the possibility of modeling the dynamics of neuronal circuits via their
population firing rate, the fraction of active neurons at a given instant in
time (Beurle, 1956; Griffith, 1963; Anninos et al., 1970; Amari, 1971,
1972). The turning point in the field came with the work of Wilson and
Cowan (Wilson and Cowan, 1972, 1973), that with an elegant mathemati-
cal formulation derived two nonlinear coupled differential equations for
the mean activity of local excitatory and inhibitory populations. In their
beautiful 1972 paper, Wilson and Cowan outline the assumptions that
underlie the model equations. The properties of local neuronal pools must
be homogeneous, and most of the arguments exploited are the standard
arguments of mean-field formulations in statistical physics. A particu-
larly relevant assumption underlying the model is that neuronal spiking is
uncorrelated, i.e. absence of spike-to-spike correlations. Neurons are as-
sumed to fire spikes asynchronously, and spike-correlations are neglected.
Wilson Cowan-type models usually undergoes the name of firing rate
models, as they describe each neuronal population via its (population)
average firing rate. Throughout the thesis, we will also refer to this class
of models as heuristic firing rate equations (H-FRE).

In its simplest form, the H-FRE for one recurrently coupled popula-
tion (excitatory or inhibitory) is the following:

τmṘ = −R + Φ(I), (1.1)

where R is the firing rate of the population, τm the time constant of the
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rate dynamics, and I the input current. The time constant τm is related
to the time coarse-graining procedure that was originally employed to
derive Eq. (1.1). It can be interpreted as the neuronal membrane time
constant, as long as fast transients in the rate dynamics are discarded
(Gerstner, 2000). The function Φ is the transfer function of the neuronal
population. In the original formulation of Wilson and Cowan the transfer
function Φ determines the fraction of active neurons given an input I
at stationarity. It is of sigmoidal shape, with an expansive nonlinearity
at low rates and a saturation at high rates (Wilson and Cowan, 1972).
Alternatively, the function Φ can be interpreted as the frequency-current
(f-I) curve of single cells, i.e. the neurons’ stationary firing rate response
to applied inputs. In the latter case, unless an explicit refractoriness
is imposed in the neuronal model, the f-I curve does not saturate. In
subsequent analysis, unless otherwise specified, we adopt the f-I curve*

Φ(I) =
1√

2πτm

√
I +
√
I2 + ∆2. (1.2)

Depending on the form of the synaptic current, the model Eq. (1.1) may
show a rich dynamical repertoire, including multistability between high
and low activity states and oscillations (Kilpatrick, 2015). In Comment
1.2.1 we briefly review the dynamics of model Eq. (1.1) in its simplest
setting of one recurrently coupled population with instantaneous synaptic
kinetics.

Comment 1.2.1: Analysis of H-FRE with instantaneous synaptic
kinetics

A Wilson-Cowan equation for a recurrently coupled population with
instantaneous synapses can be written as

τmṘ = −R + Φ(Θ + JτmR), (1.3)

where Θ is the constant mean external input current and J the strength
of recurrent coupling. In this simple case, the only stationary so-
lutions of Eq. (1.3) are fixed points. Imposing Ṙ = 0, we find the

*A plot of this function for several values of parameter ∆ is shown in Fig. 1.4.
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implicit equation for the fixed points:

R∗ = Φ(Θ + JτmR∗). (1.4)

Depending on parameters values, the fixed point condition may give
one or multiple solutions– see left panel of Fig. 1.2. Linearization
around the fixed point gives the characteristic equation:

λ = −1 + τmJΦ′, (1.5)

where Φ′ is the derivative of the transfer function with respect to its
argument, evaluated at the fixed point. Setting λ = 0, we find the
loci of a stationary (saddle node) bifurcation of the fixed points in
parametric form:

(Θ, J)SN =
[
−π2r2 − 3∆2/(2πr)2, 2π2r + ∆2/

(
2π2r3

)]
, (1.6)

where r = τmR. The boundaries Eq. (1.6), plotted as blue lines
in the right panel of Fig.1.2, delimit a region in the (Θ, J) plane
of bistability between a low activity and a high activity state (cyan
region in the right panel of Fig. 1.2). In the same panel of Fig.1.2
we additionally show with dashed orange lines the stationary bi-
furcations obtained with a different (saturating) transfer function,
Φ̃ (I) = α/

(
1 + e−βI

)
.

Bistability

Stable node
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Figure 1.2: Graphical solution of Eq. (1.4) and related phase diagram. Left
panel: graphical solution of Eq. (1.4) for Θ = −7 and: J = 19 (solid
red line), J = 15 (dotted red line). The black line is the transfer function
Eq. 1.2. As the coupling is increased, two solutions (a saddle and a node)
emerge.
Right panel: phase diagram of Eq. (1.3). Blue lines represent the sad-
dle node bifurcation Eq. (1.6). In the cyan region, two stable fixed
points coexist. In the white region, the system has only one stable
node. The symbols correspond to the parameters chosen for the graph-
ical solutions of the left panel. The dashed orange lines, defined by
(Θ, J)S̃N =

[
β−1 (α/ (r − α) + log (r/ (α− r))) , αr−1 (αβ − rβ)−1

]
,

are the saddle node bifurcations of Eq. (1.3) with f-I curve Φ̃ (see text).
Parameters: Left panel: Θ = −7, J = 20, ∆ = 1, τm = 10 ms. Right
panel: ∆ = 1, β = 1, α = 0.5.

The usefulness of firing rate models is twofold: on one hand, they
have been proven to be a remarkable tool to model several brain functions,
as decision making (Wong and Wang, 2006; Rabinovich et al., 2008a,b),
learning and memory (Hopfield, 1984; Durstewitz et al., 2000; Mongillo
et al., 2008), motor control (Zhang, 1996), perception (Moreno-Bote
et al., 2007; Rankin et al., 2014, 2015), and visual processing (Schuster
and Wagner, 1990; Ben-Yishai et al., 1995). On the other hand, they are
very useful to investigate fundamental principles underlying the dynamics
of large populations of spiking neurons. Yet, firing rate models do not
provide an exact correspondence with the underlying networks of spiking
neurons, but rather are heuristic. There is no clear correspondence among
the underlying network parameters, and the parameters of the rate model.
Additionally, they are usually derived based on statistical assumptions
such that of uncorrelated spiking. They are precisely these limitations
that cause traditional, Wilson-Cowan like firing rate models to fail to
describe synchronous neuronal activity, as we will outline in the next
section.
In the next sections we present numerical simulations of networks of
spiking neurons where we consider the impact of synaptic processing.
In fact, as previously mentioned, the synaptic time course is crucial in
generating synchronous spiking. Comparing the network simulations
and an analysis of the corresponding H-FRE we will illustrate that, when
some degree of synchronous spiking is present in the network, traditional
rate models of Wilson-Cowan type fail to capture the underlying networks
dynamics.
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1.3 Synaptic time delays favor the emergence
of oscillations in populations of spiking neu-
rons

Synaptic processing generates some fixed delay among neuronal inter-
action. In this section we will show simulations of networks of spiking
neurons with fixed synaptic delays, and compare their dynamics with the
corresponding traditional firing rate equations. As model neurons, we
will employ both a conductance-based Hodgkin-Huxley type neuronal
model, the Wang-Buzsáki neuron (WB) (Wang and Buzsáki, 1996), and
the quadratic integrate-and-fire (QIF) neuron (Ermentrout and Kopell,
1986; Izhikevich, 2007). Details on the numerical simulations shown in
this Chapter are given in Appendix A.

1.3.1 Synchronization in recurrently coupled networks
of spiking neurons with synaptic latency

It is well known that generally, time delays induce oscillations in dy-
namical systems (MacDonald, 1989). An early study on the influence of
time delay in coupled oscillators is due to Schuster and Wagner (Schuster
and Wagner, 1989), that showed that at variance with the zero delay
case, two phase oscillators coupled with time delays may synchronize
with a multitude of different frequencies. Interestingly, these frequencies
tend to vanish for very large delays, a phenomenon known as frequency
suppression (Niebur et al., 1991), which holds also for networks of such
oscillators.
Yeung and Strogatz first thoroughly analyzed the effect of delays on the
canonical model of synchronization in populations of coupled oscillators,
the Kuramoto model. They found bistability between synchrony (again,
with multiple possible frequencies) and incoherence, and cluster states
(Yeung and Strogatz, 1999) . Multistability of synchronous solutions is
also found in ensembles of coupled rotators (Kim et al., 1997). In popu-
lations of limit cycle oscillators, time delay can also result in amplitude
death (Reddy et al., 1999).
All these results regard network of oscillators continuously coupled,
i.e. where the interactions depend continuously in time on the phase
difference among the oscillators. These type of models are reasonable
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representation of neuronal dynamics only in the weak coupling limit
(Izhikevich, 2007).
Synaptic delays profoundly shape the dynamics of networks of pulse-
coupled integrate-and-fire oscillators. Generally, they favor the emer-
gence of synchronization. Importantly, this delay-induced synchrony is
typically more robust for inhibitory, rather than for excitatory coupling
(Ernst et al., 1995, 1998). This holds particularly for short delays, where
only inhibition may lead to synchronous firing (Gerstner and van Hem-
men, 1992, 1993; Gerstner et al., 1996). Notably, the prominent role
of inhibition in synchronizing neural firing holds not only when a fixed
delay is explicitly introduced into the equations, but also for any effective
delay introduced by the synaptic coupling (Van Vreeswijk et al., 1994).
In the following, we illustrate numerical simulations of populations of
heterogeneous WB and QIF neurons showing transitions to synchronized
firing due to the delayed coupling. Neurons are recurrently coupled all-to-
all via the delayed mean firing rate of the population (the delay is set to 3
ms). Fig. 1.3 shows the result for a population of excitatory (left column)
or inhibitory (right column) WB neurons. In the two simulations, the
excitatory (inhibitory) coupling strength is suddenly increased at t = 100
ms. At the beginning of the simulations, neurons fire asynchronously,
with a given average firing rate. When the coupling is sufficiently strong,
the asynchronous state becomes unstable, and the system undergoes an
Hopf bifurcation giving rise to macroscopic oscillations. These macro-
scopic rate oscillations are due to spike synchronization, as illustrated by
the raster plots shown in panels (c,d) of Fig. 1.3. These synchrony-based
macroscopic oscillations are fast, with frequency ∼ 100 Hz, as it is gen-
erally observed in oscillations induced by short delays (Brunel and Wang,
2003).
The same collective oscillations also appear in a population of heteroge-
neous QIF neurons. Also here, as shown in Fig. 1.4, when the recurrent
coupling is sufficiently strong (either excitatory or inhibitory), the neurons
synchronize producing macroscopic rate oscillations. Again, the network
dynamics underlying the macroscopic oscillations is synchronous (see
the raster plots in panels (c,d) of Fig. 1.4).

Importantly, in all these simulations, the large majority of the neurons
of the populations are supra-threshold when there is no coupling, i.e. they
fire spikes periodically according to their own natural frequency. The
transition to oscillations is therefore the typical synchronization transition
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Figure 1.3: Networks of heterogeneous excitatory (left) and inhibitory (right)
Wang-Buzsáki neurons with synaptic delay display macroscopic oscillations
when recurrent excitation (respectively inhibition) is sufficiently strong. Panels
(a,b): time series of the population firing rate. Panels (c,d): raster plots showing
spiking events of the population. A sudden increase in coupling strength (shown
in panels (e,f) for excitation and inhibition respectively), results in synchronized
firing of the population. Parameters: Iapp = 1.34 µA/cm2, σ = 0.05 µA/cm2.
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Figure 1.4: Networks of heterogeneous excitatory (left) and inhibitory (right)
QIF neurons with synaptic delay display macroscopic oscillations when recurrent
excitation (respectively inhibition) is sufficiently strong. Panels (a,b): time series
of the population firing rate. Panels (c,d): raster plots showing spiking events of
the population. A sudden increase in coupling strength (shown in panels (e,f)
for excitation and inhibition respectively), results in synchronized firing of the
population. Parameters: Θ = 2.5, ∆ = 1.
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in a system of coupled oscillators, as the one of the Kuramoto model with
time delays (Yeung and Strogatz, 1999).
However, neurons are excitable cells, often silent for long time windows,
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Figure 1.5: Networks of heterogeneous WB (left) and QIF (right) neurons in
the excitable regime synchronize due to sufficiently strong recurrent excitation.
Panels (a,b): time series of the population firing rate for WB (a) and QIF (b)
neurons. Panels (c,d): raster plots showing spiking events of the populations.
A transient step current (shown in panels (e,f)) produces synchronous spiking,
which is then sustained by the strong recurrent excitation. WB parameters:
kE = 18 mV, σ = 0.05 µA/cm2 mV, Ī = −0.1601µA/cm2. QIF parameters:
J = 15, ∆ = 0.8, Θ = −2.5.

and spikes are triggered by external inputs. The dynamics of populations
where most of the neurons are excitable, clearly cannot be described by
models of self-sustained oscillators where rhythmic firing is implicitly
assumed. The QIF and the WB neuron can readily switch from the ex-
citable to the periodic regime by changing the input current to the neuron.
With no inputs, we expect the network activity of a population with most
of the neurons in the excitable regime to be low. However, what hap-
pens when a common current is injected into the network producing a
burst of spikes, transiently synchronizing the neurons? Simulations in
Fig. 1.5 show that, after removal of the transient input to the popula-
tion, neurons keep firing in a synchronized manner, thanks to the strong
recurrent excitatory coupling. Therefore, these networks are typically
bistable: according to initial conditions, the population will settle in a
(low activity) asynchronous state, or in an (oscillatory) high activity state.
Again, this phenomenon is general, and related to the coupling properties
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of the network rather than to the particular microscopic model considered.
Similar results can be indeed obtained with simulations of other types of
integrate-and-fire models, or other biophysically-detailed models.
The oscillations described in this section manifest themselves at the
population level, and we would expect a description of collective neu-
ral dynamics to capture them. In the next section we discuss how the
dynamics of traditional firing rate models is affected by time delays.

1.3.2 Dynamics of traditional rate models with synap-
tic delays

The Wilson-Cowan equation for a population of recurrently coupled
neurons with fixed delays is:

τmṘ = −R + Φ (JτmR(t−D) + Θ) , (1.7)

where D is the time delay and times are rescaled by the rate time constant.
Equation (1.7) has been widely employed to investigate the emergence
of delay-driven oscillations in networks of spiking neurons (Roxin et al.,
2005; Hutt and Atay, 2006; Battaglia et al., 2007; Brunel and Hakim,
2008; Roxin and Montbrió, 2011).
The fixed points of Eq. (1.7), as well as their stationary bifurcations, are
the same as the ones of the model without delays Eq. (1.3) (see comment
1.2.1). However the presence of delays introduces oscillatory instabilities
in the form of Hopf bifurcations. To look for instabilities of the fixed
point R = R∗, we study the linear evolution of a small perturbation
around the fixed point. Namely, we substitute in Eq. (1.7) the ansatz
R(t) = R∗+δRe

λt, where δR� 1, obtaining the characteristic equation:

λ = −1/τm + JΦ′e−λD, (1.8)

where Φ′ is the derivative of the transfer function evaluated at the fixed
point.
The stationary bifurcations shown in Comment 1.2.1 are obtained setting
λ = 0 in Eq. (1.8). To look for the oscillatory instabilities, we set λ = iω
(purely imaginary eigenvalue). In this case, Eq. (1.8) is equivalent to the
system of equations (Roxin et al., 2005; Roxin and Montbrió, 2011):

τmω = − tan(ωD), (1.9a)
JH = [cos (ωD) Φ′]

−1
. (1.9b)
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Eqs. (1.9a) has an infinite number of solutions, of which however only
the first is the relevant instability (the others are instabilities of unsta-
ble solutions). The first oscillatory instability given by Eqs. (1.9) is the
black line shown in the phase diagram illustrated in the left panel of
Fig. 1.6. For low coupling strength, the fixed point is stable (grey region).
When recurrent inhibition is sufficiently strong, the system undergoes
an Hopf bifurcation and a self-sustained oscillation is stable–see also
the numerical simulations of the right panel of Fig. 1.6. Importantly,

Figure 1.6: Hopf instability of the Wilson-Cowan model Eq.(1.7). Left
panel:phase diagram of the system. The black line is the Hopf bifurcation
obtained from Eqs.(1.9). In the grey region, the fixed point is stable. In the
white region self-sustained oscillations are stable. The symbols correspond to
the numerical simulations shown in the right panel. Right panel: numerical
simulations of Eq.(1.7) for J = −10 (blue line) and J = −15 (red line). In
both simulations, D = 3 ms.
In both panels, we use the transfer function defined by Eq.(1.2). Other parame-
ters: τm = 10 ms, Θ = 1, ∆ = 0.01.

oscillations emerge only for inhibitory coupling*. This is in contrast with
the numerical results presented in the previous section on networks of
spiking neurons, where oscillations emerged not only for inhibitory, but
also for excitatory coupling. A closer analysis, presented in Chapter

*It can be proved using the transfer function Φ defined by Eq.(1.2). Eq. (1.9a) has
solutions in two ranges: π/2 ≤ ωD ≤ π and 3π/2 ≤ ωD ≤ 2π. The first range always
results in a negative value of the critical coupling JH , since the f-I curve is an increasing
function. Solutions in the second range, that might produce a critical positive coupling,
always correspond to negative values of the firing rate, and are therefore unphysical.
Note that oscillations in Eq.(1.7) have been reported in the Literature exclusively for
inhibitory coupling (Roxin et al., 2005; Brunel and Hakim, 2008; Roxin and Montbrió,
2011)
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3, also reveals how the traditional rate model Eq. (1.1) has oscillatory
instabilities only for Θ > 0, at variance with networks of spiking neurons,
where even when the majority of neurons are excitable, oscillations due
to strong recurrent excitatory connections are possible.
Still, for inhibitory populations, the rate model Eq. (1.1) provides useful
insights: first, it predicts the emergence of oscillations for large enough
inhibitory coupling strength (Roxin et al., 2005). Secondly, it is also
able to predict the range of frequencies of the emerging oscillations:
1/4D < f < 1/2D (Brunel and Wang, 2003; Roxin et al., 2005). It also
gives a simple mechanistic interpretation of the nature of these oscilla-
tions: the delay provides windows of low inhibition where the activity
can be high, producing in turn windows of strong shunting inhibition
that suppresses the network activity. Traditionally, these oscillations
have been related to the sparsely synchronized states arising in networks
of spiking neurons with inhibition and strong noise. These states are
characterized by low irregular microscopic firing and coherent collective
rhythms (Brunel and Hakim, 1999, 2008) with a period again determined
the synaptic delay D, in the range between 2D and 4D. This ”stochastic”
form of synchronization is substantially different from the states we de-
scribed in the previous sections, where the firing frequency of the neurons
in the synchronized cluster is the same as the frequency of the mean field
oscillation. However, also for those highly synchronous oscillations, it
can be shown that, especially for large heterogeneity, the frequency for
inhibitory coupling is in the same range.
Still, the WC equation Eq. (1.1) with time delays does not account for
any of the rhythms sustained by excitatory coupling shown in the previ-
ous section. This discrepancy is related to one of the main hypothesis
underlying the WC model, the absence of spike correlations. Neglecting
such correlations prevents the possibility of accounting for those highly
synchronous states.
In the next section, we show how similar discrepancies occur also when
an extra variable describing synaptic dynamics is explicitly taken into
account.
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1.4 Networks of recurrently coupled inhibitory
neurons with synaptic kinetics generate fast
oscillations

A large body of experimental and computational work indicate that net-
works of spiking neurons with recurrent inhibitory interactions and synap-
tic dynamics readily generate oscillations (Whittington et al., 1995; Traub
et al., 1996; Wang and Rinzel, 1992, 1993; Van Vreeswijk et al., 1994;
Nischwitz and Glünder, 1995; Wang and Buzsáki, 1996; Brunel and
Wang, 2003; Olmi et al., 2014). Such inhibition-generated rhythms usu-
ally are referred to as Interneuronal-Gamma (ING) oscillations, as their
frequency is typically in the gamma (30-100 Hz) range (Bartos et al.,
2007; Buzsáki and Wang, 2012). Two possible network states (or mi-
crostates) underlie such oscillations in inhibitory populations: a highly
synchronous regime, with a large fraction of neurons firing at the popula-
tion frequency (Whittington et al., 1995; Nischwitz and Glünder, 1995;
Wang and Buzsáki, 1996), or a stochastic regime, where neurons fire
irregularly at low rates due to strong noise, the sparsely synchronized
state previously mentioned (Brunel and Wang, 2003). Here we focus on
the highly synchronous regime, and we leave for the Conclusions and
discussion further considerations on the relation among the two states.
The interplay between inhibition and synaptic integration determines the
frequency of the population rhythm, with a prominent role for the decay
times of the post-synaptic potentials (Whittington et al., 1995; Traub
et al., 1996). Figure 1.7 shows an illustration of such oscillations in a
network of globally coupled WB neurons (Wang and Buzsáki, 1996).
Panels (a,c) show the results of a numerical simulation of the network
for fast synapses (time constant τd = 5 ms), compared to the membrane
time constant of the neuron model (τm = 10 ms). Although the neurons
have different intrinsic frequencies due to a distribution in external input
currents, the raster plot reveals that fast inhibitory coupling produces the
frequency entrainment of a large fraction of the neurons in the ensemble.
This collective synchronization is reflected at the macroscopic scale as an
oscillation with the frequency of the synchronous cluster of neurons (Win-
free, 1967; Kuramoto, 1984). Indeed, panel (a) shows the time series of
both the mean synaptic activation variable S, and the mean firing rate
R, which display ING oscillations. Panels (b,d) of Fig. 1.7 show the
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disappearance of the synchronous state when the synaptic kinetics is slow
(τd = 50 ms).
The same behavior holds also for networks of QIF neurons, see Fig. 1.8.
Again, when synaptic kinetics is fast, the network shows sustained oscilla-
tions in the gamma range due to partially synchronous spiking. Increasing
the time constant of the synaptic dynamics suppresses the oscillations,
and desynchronizes the network (panels b,d).
In the next section, we compare the dynamics of the traditional firing rate
model Eq. (1.1) to the network simulations shown here.

Figure 1.7: Networks of heterogeneous inhibitory neurons with fast synaptic
kinetics (τd = 5 ms) display macroscopic oscillations in the gamma range (ING
oscillations) due to collective synchronization. Panels (a) and (c) show the time
series of the synaptic variable S (red) and mean firing rateR (blue), and the raster
plot of a population of N = 1000 inhibitory Wang-Buzsáki neurons (Wang
and Buzsáki, 1996) with first order fast synaptic kinetics. The oscillations are
suppressed considering slow inhibitory synapses (τd = 50 ms), as shown in
Panels (b) and (d). Parameters: Ī = 0.5 µA/cm2, σ = 0.01 µA/cm2 and
kI = 6 mV See Appendix A for details on the numerical simulations.

1.4.1 A heuristic firing rate equation with synaptic ki-
netics

A heuristic firing rate description of the spiking network simulated in
Figs. 1.7 and 1.8 takes the form (Wilson and Cowan, 1972; Cowan, 2014)

τmṘ = −R + Φ(−JτmS + Θ), (1.10a)
τdṠ = −S +R. (1.10b)
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Figure 1.8: Networks of heterogeneous inhibitory QIF neurons with fast synap-
tic kinetics (τd = 5 ms) display macroscopic oscillations in the gamma range
(ING oscillations) due to collective synchronization. Panels (a) and (c) show
the time series of the synaptic variable S (red) and mean firing rate R (blue),
and the raster plot of a population of N = 1000 inhibitory QIF neurons with
first order fast synaptic kinetics. The oscillations are suppressed considering
slow inhibitory synapses (τd = 50 ms), as shown in Panels (b) and (d). Other
parameters: Θ = 4, ∆ = 0.3, J = −5. See Appendix A for details on the
numerical simulations.

whereR represents the mean firing rate in the population, S is the synaptic
activation, and the time constants τm and τd are the neuronal and synaptic
time constants respectively (Ledoux and Brunel, 2011; Keeley et al.,
2017). In contrast with the network model, the H-FRE Eqs. (1.10) cannot
generate sustained oscillations. In fact, a linear stability analysis of steady
state solutions in Eqs. (1.10) shows that the resulting eigenvalues are

λ = −α(1±
√

1− β), (1.11)

where the parameter α = (τm + τd)/(2τmτd) is always positive. Ad-
ditionally, the parameter β = [4τmτd(1 + JτmΦ′)]/(τm + τd)

2 is also
positive, since the f-I curve Φ(x) is an increasing function, and its deriva-
tive evaluated at the steady state is then Φ′ > 0. Therefore the real part
of the eigenvalue λ is always negative and hence steady states are always
stable, although damped oscillations are possible, e.g. for strong enough
coupling J . Hence, traditional firing rate equations of Wilson-Cowan
type do not show the oscillations that emerge in networks of inhibitory
neurons with first order kinetics.
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In summary, all the examples shown so far in this chapter show that tradi-
tional firing rate models are not an appropriate description of networks
that show some degree of spike synchronization. This suggests that there
is an additional mechanism in the network dynamics, key for driving
oscillatory behavior, that is missing in the H-FRE.
In the next section we will discuss a recently derived firing rate model
that, exactly obtained from networks of QIF neurons, can capture syn-
chronous states, and therefore describe the synchrony-based oscillations
shown in the previous sections.

1.5 An exact firing rate model for networks of
QIF neurons

Following the work of Wilson and Cowan, several approaches have been
developed to infer low dimensional descriptions of the collective activity
of neuronal populations. They can be broadly cast into two main classes
of models. The first, which followed in spirit the approach of Wilson and
Cowan, typically use differential (or integro-differential) equations to de-
scribe the evolution of some macroscopic variable related to the neuronal
populations, as the firing rate (Wilson and Cowan, 1972; Gerstner, 1995,
2000; Schwalger et al., 2017), or the mean synaptic activity (Robinson
et al., 1997). Models belonging to this first class are also referred to as
neural mass (Freeman, 1975), or neural field models (Coombes, 2005).
The second class of models are derived using the so called population
density method, as they derive evolution equations for the probability
density of the membrane potentials (Knight et al., 1996; Nykamp and
Tranchina, 2000; Brunel and Hakim, 1999; Knight et al., 2000; Mattia
and Del Giudice, 2002; Dumont et al., 2014). Typically, models belong-
ing to the first class are simpler and more amenable to mathematical
analysis; however, often they fail to describe states with rapid variations
of the activity, due to the time coarse-graining applied to derive the model
equations (Gerstner, 2000; Schaffer et al., 2013). Population density
models are able in contrast to capture fast transient and synchronous
states (Nykamp and Tranchina, 2000). However, both the mathematical
and the computational analysis of such models is convoluted.
In the following, we introduce a recently derived firing rate model for
QIF neurons. We review the main steps of the derivation of the model
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equations, closely following (Montbrió et al., 2015). Remarkably, the
model nicely connects the two classes mentioned before, as we will see
in the following.
The quadratic integrate-and-fire model is the canonical representative for
Class-I neurons, neurons that fire at arbitrarily low frequencies close to
the spiking threshold. It describe the evolution of the voltage of the cell
with a first order differential equation:

τmV̇ = V 2 + I, (1.12)

where I is an input current. Eq. (1.12) needs the resetting condition:

If V ≥ Vth then Vreset ← V, (1.13)

where crossing Vth the neuron emits a spike. In the theoretical analysis,
it is useful to impose that Vth = −Vreset →∞.
We analyze population of all-to-all coupled QIF neurons, which is then
described by

τmV̇j = V 2
j + ηj + Jτms(t) + I(t) (1.14)

where j = 1, . . . , N , s is the synaptic activity, and J the coupling or
synaptic strength. The terms ηj represent the quenched heterogeneity
of the networks, and determine each neuron natural firing frequency. In
absence of synaptic coupling and time varying inputs, ηj determines
whether neuron j is in the excitable (ηj < 0, the membrane potential
converges to a stable fixed point) or oscillatory (ηj > 0) regime. In
the latter case, the interspike interval of the neuron is given by ISI =
πτm/

√
ηj .

The total synaptic activity can be written in general form as:

s(t) =
1

N

N∑

j=1

∑

k\tkj<t

∫ t

−∞
dt′aτd(t− t′)δ(t′ − tkj ) (1.15)

where tkj is the time of the kth spike emitted by neuron j, δ the Dirac delta
function, and aτd the synaptic kernel function. The derivation reviewed
in the following holds for general forms of the synaptic activation s(t).
In the next chapters of this thesis, we will focus on three specific cases:

Chapter 2 τdṡ = −s+ r(t), (1.16a)
Chapter 3 s = r(t−D), (1.16b)
Chapter 4 τdṡ = −s+ r(t−D). (1.16c)
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where r(t) is the population instantaneous firing rate,

r(t) = lim
τs→0

1

Nτs

N∑

j=1

∑

k\tkj<t

∫ t

t−τs
dt′δ(t′ − tkj ), (1.17)

and D the time delay. Eq. (1.16b) represents instantaneous-delayed
synapses, Eq. (1.16a) exponentially decaying synapses, and Eq. (1.16c)
delayed exponential synapses.

1.5.1 Population density description
We consider a large population of neurons N � 1. In this limit, η’s are
random variables distributed according to a density g(η). We drop the
indices j from Eq. (1.14), which now describe the velocity field of the
population.
The population of neurons can be described by the conditional density
function ρ(V |η, t), where ρ(V |η, t)dV dη will be the fraction of neurons
with V ∈ [V, V + dV ] and η ∈ [η, η + dη]. The total (marginal) voltage
density at time t will then be

ρ̄(V, t) =

∫ ∞

−∞
ρ(V |η, t)g(η)dη. (1.18)

Imposing the conservation of the total number of neurons on ρ̄ implies
that the following continuity equation must hold for each value of η:

τm∂tρ+ ∂V
[(
V 2 + η + Jτms(t) + I(t)

)
ρ
]

= 0. (1.19)

A periodic boundary condition for the flux, consistent with the resetting
condition Eq. (1.13), is also imposed (Dumont et al., 2014):

lim
V→−∞

[
V̇ (V |η, t)ρ(V |η, t)

]
= lim

V→+∞

[
V̇ (V |η, t)ρ(V |η, t)

]
. (1.20)

In the stationary state, the distribution of voltages is inversely proportional
to the velocity, ρ∗(V |η) ∝ (V 2 + η + Jτms) for each value of η. A
natural ansatz for Eq. (1.19) is to assume that, independently from initial
conditions, the time dependent solutions of Eq. (1.19) are Lorenztian
distributions for each value of η. We therefore assume the following form
for the distribution ρ:

ρ(V |η, t) =
1

π

x(η, t)

[V − y(η, t)]2 + x(η, t)2
(1.21)
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where x(η, t) and y(η, t) are respectively the time dependent width and
median of the Lorentzian distribution of voltages for every value of
η. Note that, imposing the ansatz Eq.(1.21), the boundary condition
Eq. (1.20) is automatically satisfied:

lim
V→−∞

(
V̇ ρ
)

= lim
V→+∞

(
V̇ ρ
)

= x(η, t)/π. (1.22)

Eq. (1.22) also identifies the firing rate for each value of η as πr(η, t) =
x(η, t), therefore relating the width of the distribution of voltages with
the firing rate for a given value of η. Then, we can obtain the total firing
rate marginalizing over η*:

r(t) = π−1

∫ ∞

−∞
x(η, t)g(η)dη. (1.23)

Additionally, from y(η, t), we can simply derive the median membrane
potential of the population †:

v(t) =

∫ ∞

−∞
y(η, t)g(η)dη. (1.24)

We can now substitute the ansatz Eq. (1.21) into the continuity equation
Eq. (1.19). With some algebra, we find that x and y must obey two
coupled differential equations, that can be written in compact form as:

τm∂tw(η, t) = i
[
η + Js(t)− w(η, t)2 + I(t)

]
, (1.25)

where w(η, t) ≡ x(η, t) + iy(η, t). The system described by Eq. (1.25)
is still infinite dimensional, since there is one equation for each value of
η. However, choosing a particular form for the distribution g(η), sharply
reduces the dimensionality of the system. Indeed, distributing η according
to a Lorentzian distribution of median Θ and width ∆,

g(η) =
1

π

∆

(η −Θ)2 + ∆2
, (1.26)

and extending the integrals Eqs. (1.23) and (1.24) to the complex η plane,
we find that only one value of η is relevant. More specifically, assuming

*Please note that in this section we denote firing rate and the mean membrane
potential with lower case r and v.

†In the text, we will refer to this quantity as the mean membrane potential, as it can
be also written as v(t) =

∫∞
−∞ dηg(η)

[
limR→∞

∫ R

−R ρ (V |η, t)V dV
]
.
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η = ηr + iηi, we can perform the integrals Eqs. (1.23) and (1.24) by
closing the integration path with a half circle in the lower half plane
ηr < 0, since this guarantees that the width x(η, t) remains positive zero
if initially so. Applying residue theorem, we find that the mean firing
rate and the mean voltage only depend on w(η, t) evaluated at one of the
poles of g(η),

πr(t) + iv(t) = w(Θ− i∆, t). (1.27)

Additionally, given this form of g(η), also the integral Eq. (1.18) can be
performed*, resulting in a voltage distribution ρ̄(V, t) with Lorentzian
shape of half width πr and center v

ρ̄(V, t) =
r(t)

[V − v(t)]2 + π2r(t)2
. (1.28)

Evaluating now Eq. (1.25) at η = Θ − i∆, we obtain two nonlinear
ordinary differential equations for the evolution of the mean firing rate
and the mean membrane potential of the populations of neurons:

τmṙ =
∆

πτm
+ 2rv, (1.29a)

τmv̇ = v2 + η̄ − (πτmr)
2 + Jτms(t). (1.29b)

Initial conditions of the membrane voltages of the populations inside
the Lorentzian manifold, clearly will follow the evolution given by
Eqs.(1.29). However, it can be proven that the Lorentzian manifold
is always attracting, as far as ∆ > 0 (Montbrió et al., 2015; Pietras
and Daffertshofer, 2016). Namely, any initial condition will always
converge toward the manifold defined by Eq.(1.28), with r and v evolv-
ing according to Eqs.(1.29). The reason for that is that the LA ansatz
Eq.(1.21) is equivalent to the Ott-Antonsen (OA) ansatz for populations
of phase oscillators (Ott and Antonsen, 2008, 2009). Specifically, the
original work by Ott & Antonsen applies to the Kuramoto model, and
it shows that the model admits an exact, low-dimensional description
in terms of the Kuramoto order parameter (Ott and Antonsen, 2008).
The same theory holds for large populations of globally pulse-coupled
oscillators (Pazó and Montbrió, 2014), and in particular for ensembles

*Note that, to solve this integral and integrals Eqs. (1.23) and (1.24), ∆ must be
strictly positive, so that the poles of g(η) do not fall on the real axis. Also, to integrate
Eq. (1.18), we need to impose x(η, 0) > 0, to avoid additional singularities of ρ(V |η, t).

31



of theta-neurons (Luke et al., 2013; So et al., 2014; Laing, 2014, 2015;
Coombes and Byrne, 2019; Roulet and Mindlin, 2016). The theta-neuron
phase-model can be transformed to a voltage-based description, the QIF
model (Ermentrout and Kopell, 1986). Similarly, the macroscopic de-
scription for networks of theta-neurons (in terms of the Kuramoto order
parameter) transforms into a more natural description for ensembles of
QIF neurons in terms of two mean-field quantities of particular relevance
in neuroscience: the mean firing rate, and the mean membrane poten-
tial (Montbrió et al., 2015).
The two equations Eqs. (1.29), or QIF-Firing rate equations (QIF-FRE)
together with the relations specifying the synaptic coupling s(t) (see
Eqs.(1.16)) fully describe the dynamics of the network of QIF neurons
Eqs. (1.14).

1.5.2 Analysis of the QIF-FRE with instantaneous
synapses

In this section, we briefly overview the asymptotic dynamics of the QIF-
FRE Eqs. (1.29) with instantaneous synaptic kinetics. We refer the reader
to (Montbrió et al., 2015) for a more detailed analysis of the system.
In their simplest variant of infinitely fast synapses s(t) = r(t), the QIF-
FRE Eqs. (1.29) take the form:

τmṙ =
∆

πτm
+ 2rv, (1.30a)

τmv̇ = v2 + Θ− (πτmr)
2 + Jτmr(t). (1.30b)

The only attractors of Eqs. (1.30) are fixed points. Specifically,
three regions with different attractors in parameters space can be dis-
tinguished (see Fig.1.9): a region where the only stable solution is a
node (white area), a region with one stable focus (grey shading), and
a region of bistability of the stable focus and the stable node (cyan re-
gion). The blue line, delimiting the bistability region, depicts a saddle
node bifurcation, which can be obtained in parametric form: (Θ, J)SN =
[−π2r2 − 3∆2/(2πr)2, 2π2r + ∆2/ (2π2r3)]. The red dotted line, de-
fined by Θf = − [J/(2π)]2 − (π∆/J)2, separates the region of stable
focus from the one of stable node.
Compare the phase diagram of Fig. 1.9 with the corresponding phase
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diagram of the Wilson-Cowan equation (see Fig. 1.2 of comment 1.2.1).
The stationary (saddle node) bifurcations of the two models are the same.
However, while in the Wilson-Cowan equation the fixed points are always
of node-type, in the QIF-FRE a stable solution is of focus type. This
simple but fundamental difference have important implications when
synaptic delays are additionally considered, as we will see in the follow-
ing chapters.

Figure 1.9: Phase diagram of the QIF-FRE Eqs. (1.30). White region: stable
node. Gray region: stable focus. Cyan region: bistability among a stable node
and a stable focus. The blue line is a saddle node bifurcation, while the red
dotted line separates the region of stable node from stable focus.

The QIF-FRE Eqs. 1.29 have been recently analyzed in several differ-
ent setups (Ratas and Pyragas, 2016, 2017; Dumont et al., 2017; Schmidt
et al., 2018; Esnaola-Acebes et al., 2017; Laing, 2018; di Volo and Torcini,
2018). In the following chapters, we analyze and discuss the effect of
fixed synaptic delays and synaptic kinetics on the firing rate equations
Eqs. (1.29), and compare them with the traditional rate equations pre-
sented in the previous sections of this chapter. We will show that, at
variance with the H-FRE, the QIF-FRE fully capture the dynamics of
networks of spiking neurons, including the synchronous states showed
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in this chapter, and more complex forms of synchrony-driven oscillatory
dynamics.
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CHAPTER 2

Firing rate equations require a spike
synchronization mechanism to correctly

describe fast oscillations in inhibitory
networks

In this chapter, we investigate the dynamics of the QIF-FRE with first
order synaptic kinetics. These results are published in:
Devalle F, Roxin A, Montbrió E (2017) Firing rate equations require
a spike synchrony mechanism to correctly describe fast oscillations in
inhibitory networks. PLoS Comput Biol 13(12): e1005881.

2.1 An exact firing rate equation which cap-
tures spike synchrony

Here we show that the mechanism responsible for the generation of
the oscillations shown in Fig. 1.3 is the interplay between the mean
firing rate and membrane potential, the dynamics of which reflect the
degree of spike synchrony in the network. To do this, we use a set of
exact macroscopic equations which have been recently derived from a
population of heterogeneous quadratic integrate-and-fire (QIF) neurons
(Montbrió et al., 2015). We refer to these equations as the QIF-FRE. The
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QIF-FRE with exponential synapses have the form

τmṘ =
∆

πτm
+ 2RV, (2.1a)

τmV̇ = V 2 − (πτmR)2 − JτmS + Θ, (2.1b)
τdṠ = −S +R. (2.1c)

where ∆ is a parameter measuring the degree of heterogeneity in the net-
work and the other parameters are as in the H-FRE Eqs. (1.10). Eqs. (2.1)
are an exact macroscopic description of the dynamics in a large network
of heterogeneous QIF neurons with inhibitory coupling. In contrast with
the traditional firing rate equations Eqs. (1.10), they contain an explicit
dependence on the subthreshold state of the network, and hence capture
not only macroscopic variations in firing rate, but also in spike synchrony.
Specifically, a transient depolarizing input which drives the voltage to pos-
itive values (the voltage has been normalized such that positive values are
suprathreshold, see Materials and Methods) will lead to a sharp growth
in the firing rate through the bilinear term in Eq. (2.1a). Simulations in
the corresponding network model reveal that this increase is due to the
synchronous spiking of a subset of neurons (Montbrió et al., 2015). This
increase in firing rate leads to a hyperpolarization of the mean voltage
through the quadratic term in R in Eq. (2.1b). This term describes the
effect of the neuronal reset. This decrease in voltage in turn drives down
the mean firing rate, and the process can repeat. Therefore the interplay
between mean firing rate and mean voltage in Eqs. (2.1) can generate
oscillatory behavior; this behavior corresponds to transient bouts of spike
synchrony in the spiking network model.

It is precisely the latency inherent in this interplay which provides
the effective delay, which when coupled with synaptic kinetics, generates
self-sustained fast oscillations. In fact, in the limit of instantaneous
synapses (τd → 0), Eqs. (2.1) robustly display damped oscillations due
to the spike generation and reset mechanism described in the preceding
paragraph (Montbrió et al., 2015). Contrast this with the dynamics in
Eqs.(1.10) in the same limit: the resulting H-FRE is one dimensional and
hence cannot oscillate.

On the face of things the Eqs. (2.1) appear to have an utterly dis-
tinct functional form from the traditional Wilson-Cowan Eqs.(1.10). In
particular, the f-I curve in H-FRE traditionally exhibits an expansive
nonlinearity at low rates and a linearization or saturation at high rates, e.g.
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Figure 2.1: The f-I curve Φ(I), Eq. (2.3), for several values of the heterogeneity
parameter ∆. The membrane time constant is τm = 10ms.

a sigmoid. There is no such function visible in the QIF-FRE which have
only quadratic nonlinearities. However, this seeming inconsistency is
simply due to the explicit dependence of the steady-state f-I curve on the
subthreshold voltage in Eqs. (2.1). In fact, the steady-state f-I curve in
the QIF-FRE is “typical” in the qualitative sense described above. Specif-
ically, solving for the steady state value of the firing rate in Eqs. (2.1)
yields

R∗ = Φ(−JτmR∗ + Θ), (2.2)

where

Φ(I) =
1√

2πτm

√
I +
√
I2 + ∆2. (2.3)

The f-I curve Eq. (2.3) is shown in Fig. 2.1 for several values of the
parameter ∆, which measures the degree of heterogeneity in the network.
Therefore, the steady-state firing rate in Eqs. (2.1), which corresponds
exactly to that in a network of heterogeneous QIF neurons, could easily
be captured in a heuristic model such as Eqs. (1.10) by taking the function
Φ to have the form as in Eq. (2.3). On the other hand, the non-steady
behavior in Eqs. (2.1), and hence in spiking networks as well, can be
quite different from that in the heuristic Eqs. (1.10).
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2.1.1 Fast oscillations in the QIF-FRE

We have seen that decreasing the time constant of synaptic decay τd in
a network of inhibitory spiking neurons lead to sustained fast oscilla-
tions, while such a transition to oscillations is not found in the heuristic
rate equations, in which the synaptic dynamics are taken into account
Eqs. (1.10). The exact QIF-FRE, on the other hand, do generate oscilla-
tions in this regime. Figure 2.2 shows a comparison of the firing rate R
and synaptic variable S from simulations of the QIF-FRE Eqs.(2.1), with
that of the H-FRE Eqs. (1.10), for two different values of the synaptic
time constants. Additionally, we also performed simulations of a network
of N = 5 × 104 QIF neurons. The mean firing rate of the network is
shown in red, and perfectly agrees with the firing rate of the low dimen-
sional QIF-FRE (solid black lines). The function Φ in Eqs. (1.10) is
chosen to be that from Eq. (2.3), which is why the firing rate from both
models converges to the same steady state value when oscillations are
not present (panels (b,d) for τd = 50 ms). We will study the transition to
fast oscillations in Eqs.(2.1) in greater details in the following sections.

2.2 Linear stability analysis of the QIF-FRE

We can investigate the emergence of sustained oscillations in Eqs. (2.1)
by considering small amplitude perturbations of the steady-state solution.
If we take R = R∗ + δReλt, V = V∗ + δV eλt and S = S∗ + δSeλt,
where δR, δV , δS � 1, then the sign of the real part of the eigenvalue λ
determines whether the perturbation grows or not. Plugging this ansatz
into Eqs. (2.1) yields three coupled linear equations which are solvable if
the following characteristic equation also has a solution

− 2JτmR∗ = (1 + τdλ)

[
(2πτmR∗)

2 +

(
τmλ+

∆

πτmR∗

)2
]
. (2.4)

The left hand side of Eq. (2.4) is always negative and, for τd = 0, this
implies that the solutions λ are necessarily complex. Hence, for instanta-
neous synapses, the fixed point of the QIF-FRE is always of focus type,
reflecting transient episodes of spike synchrony in the neuronal ensem-
ble (Montbrió et al., 2015). In contrast, setting τd = 0 in the H-FRE, the
system becomes first order and oscillations are not possible. This is the

38



Figure 2.2: Heuristic FRE Eqs. (1.10) do not display inhibition-based fast
oscillations. In contrast, networks of QIF neurons (red) and their corresponding
QIF-FRE Eqs. (2.1) (solid black) do show ING oscillations for fast synaptic
kinetics (τd = 5 ms). These oscillations are suppressed for slow synaptic
kinetics (τd = 50 ms), as in the Wang-Buzsáki model shown in Fig. 1.3. Panels
(a,b) show the times series of the Firing Rate variable R of the FRE models, as
well as the mean firing rate of a population of N = 5× 104 QIF neurons (red).
Panels (c,d) show the time series of the synaptic S variables for the H-FRE
(dashed line) and QIF-FRE (solid line). Parameters: τm = 10 ms, J = 21,
Θ = 4, ∆ = 0.3. Initial values: R(0) = S(0) = 5 Hz, V (0) = 0.

critical difference between the two firing rate models. In fact, and in con-
trast with the eigenvalues Eq. (1.11) corresponding to the growth rate of
small perturbations in the H-FRE, here oscillatory instabilities may occur
for nonvanishing values of τd. Figure 2.3 shows the Hopf boundaries
obtained from Eq. (2.4), as a function of the normalized synaptic strength
j = J/

√
Θ and the ratio of the synaptic and neuronal time constants

τ =
√

Θτd/τm, and for different values of the ratio δ = ∆/Θ —see
Materials and Methods, Eqs.(2.16-2.18). The shaded regions correspond
to parameter values where the QIF-FRE display oscillatory solutions.

2.2.1 Identical neurons

In the simplest case of identical neurons we find the boundaries of oscil-
latory instabilities explicitly. Indeed, substituting λ = ν + iω in Eq. (2.4)
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Figure 2.3: The ratio of the width to the center of the distribution of currents
Eq. (1.26), δ = ∆/Θ, determines the presence of fast oscillations in the QIF-
FRE. Oscillations disappear above the critical value given by Eq. (2.6). The
panels show the Hopf boundaries of QIF-FRE with first-order synapses, for dif-
ferent values of δ, obtained solving the characteristic Eq. (2.4) with Re(λ) = 0,
see Materials and Methods. Shaded regions are regions of oscillations. Symbols
in the right panel correspond to the parameters used in Fig 2.2.

we find that, near criticality (|ν| � 1), the real part of the eigenvalue is

ν ≈ Jτ
R∗

1 + (2πτdR∗)2
. (2.5)

Thus, the fixed point (2.2) is unstable for Jτ > 0, and changes its
stability for either J = 0, or τ = 0. In particular, given a non-zero
synaptic time constant there is an oscillatory instability as the sign of
the synaptic coupling J changes from positive to negative. Therefore
oscillations occur only for inhibitory coupling (Van Vreeswijk et al.,
1994; Ermentrout, 1994; Hansel et al., 1995). The frequency along this
Hopf bifurcation line is determined entirely by the intrinsic firing rate of
individual cells ωc = 2πR∗.

On the other hand, in the limit of fast synaptic kinetics, i.e. τd = 0 in
Eq. (2.4), we find another Hopf bifurcation with ωc = 1

τm

√
2τmR∗(J + 2π2τmR∗).

This reflects the fact that oscillations cannot be induced if the synaptic
interactions are instantaneous. The left panel of Figure 2.3 shows the
phase diagram with the Hopf boundaries depicted in Red, reflecting
that oscillations are found for all values of inhibitory coupling and for
non-instantaneous synaptic kinetics.
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2.2.2 Heterogeneous neurons
Once heterogeneity is added to the network the region of sustained os-
cillatory behavior shrinks, see Fig.2.3, center and right. The red closed
curves correspond to the Hopf bifurcations, which have been obtained
in parametric form from the characteristic equation (2.4), see Materials
and Methods. Note that for small levels of δ, oscillations are present in a
closed region of the phase diagram, and disappear for large enough values
of τ (the synaptic time constant relative to the neuronal time constant).
Further increases in δ gradually reduce the region of oscillations until it
fully disappears at the critical value

δc =

(
∆

Θ

)

c

=
1

5

√
5− 2

√
5 = 0.1453 . . . , (2.6)

which has been obtained analytically from the characteristic Eq. (2.4),
see Materials and Methods. This result is consistent with numerical
studies investigating oscillations in heterogeneous inhibitory networks
which indicate that gamma oscillations are fragile against the presence of
quenched heterogeneity (Wang and Buzsáki, 1996; White et al., 1998;
Tiesinga and José, 2000).

In the following, we compare the phase diagrams of Fig. 2.3 with nu-
merical results using heterogeneous ensembles of Wang-Buzsáki neurons
with first order synapses. Instead of using the population mean firing rate
or mean synaptic activation, in Fig. 2.4 we computed the amplitude of
the population mean membrane potential. This variable is less affected
by finite-size fluctuations and hence the regions of oscillations are more
easily distinguishable. The results are summarized in Fig. 2.4 for differ-
ent values of δ and have been obtained by systematically increasing the
coupling strength k for fixed values of τd. The resulting phase diagrams
qualitatively agree with those shown in Fig. 2.3 . As predicted by the
QIF-FRE, oscillations are found in a closed region in the (τd, k) parameter
space, and disappear for large enough values of δ. Here, the critical value
of δ = σ/Ī is about 6%, smaller than the critical value given by Eq. (2.6).
This is due to the steep f-I curve of the WB model, which implies a larger
dispersion in the firing rates of the neurons even for small heterogeneities
in the input currents.

Additionally, for small τd (fast synaptic kinetics) and strong coupling
k, we observed small regions where the oscillations coexist with the
asynchronous state —not shown. Numerical simulations indicate that
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Figure 2.4: Amplitude of the oscillations of the mean membrane potential
for a population of N = 1000 WB neurons. From left to right: δ = σ/Ī =
0, 0.05 and 0.06. Central and Right panels have σ = 0.01 µA/cm2. See
Materials and Methods for details.

this bistability is not present in the QIF-FRE. For strong coupling, and co-
existing with the asynchronous state, we also observed various clustering
states, already reported in the original paper of Wang & Buzsáki (Wang
and Buzsáki, 1996). Clustering in inhibitory networks has also been
observed in populations of conductance-based neurons with spike adapta-
tion (Kilpatrick and Ermentrout, 2011) or time delays (Ernst et al., 1998).
The fact that such states do not emerge in the model Eqs. (2.10) may be
due to the purely sinusoidal shape of the phase resetting curve of the QIF
model (Okuda, 1993; Hansel et al., 1993; Kori and Kuramoto, 2001; Kori,
2003; Politi and Rosenblum, 2015; Clusella et al., 2016).

2.3 Firing Rate Equations in the limit of slow
synapses

We have seen that the oscillations which emerge in inhibitory networks
for sufficiently fast synaptic kinetics are correctly described by the firing
rate equations Eqs. (2.1), but not by the heuristic Eqs. (1.10). The reason
for this is that the oscillations crucially depend on the interaction between
the population firing rate and the subthreshold membrane potential during
spike initiation and reset; this interaction manifests itself at the network
level through spike synchrony. Therefore, if one could suppress the spike
synchrony mechanism, and hence the dependence on the subthreshold
membrane potential, in Eqs. (2.1), the resulting equations ought to bear
resemblance to Eqs. (1.10). In fact, as we saw in Fig. 2.2, the two firing
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rate models become more similar when the synaptic kinetics become
slower.

Next we show that the two models become identical, formally, in the
limit of slow synaptic kinetics. To show this, we assume the synaptic
time constant is slow, namely τd = τ̄d/ε where 0 < ε � 1, and rescale
time as t̄ = εt. In this limit we are tracking the slow synaptic dynamics
in while the neuronal dynamics are stationary to leading order, i.e.

R∗ = Φ(−JτmS + Θ). (2.7)

Therefore, the dynamics reduce to the first order equation

τdṠ = −S + Φ(−JτmS + Θ). (2.8)

Notably, this shows that the QIF-FRE Eqs. (2.1), and the H-FRE (1.10),
do actually have the same dynamics in the limit of slow synapses. In other
words, Eq. (2.8) is formally equivalent to the Wilson-Cowan equations
for a single inhibitory population, and this establishes a mathematical link
between the QIF-FRE and Heuristic firing rate descriptions. Additionally,
considering slow second order synaptic kinetics (not shown), allows one
to reduce the QIF-FRE with either alpha or double exponential synapses
to a second-order system that formally corresponds to the so-called neural
mass models largely used for modeling EEG data, see e.g. (Freeman,
1975; Jansen and Rit, 1995; Robinson et al., 1997; Coombes et al., 2014;
Ashwin et al., 2016).

2.3.1 External inputs and breakdown of the slow-synaptic
limit Eq. (2.8)

It is important to note that, in the derivation of Eq. (2.8) we considered
external inputs Θ to be constant. Then, if synapses are slow, the neuronal
variables (R in the case of Eqs. (1.10) and R and V in the case of
Eqs. (2.1)) decay rapidly to their fixed point values. However even in
the limit of slow synapses, such reduction can break down if external
inputs are time-varying Θ = Θ(t), with a time-scale which itself is not
sufficiently slow.

To demonstrate this, in Fig. 2.5, we compared the dynamics of the
QIF-FRE and H-FRE with the approximation Eq. (2.8), for periodic
stimuli of various periods —panels (g-i)—, and always considering slow
synapses, τd = 100 ms. As expected, the models show good agreement
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Figure 2.5: The reduction of the QIF-FRE to Eq.(2.8) breaks down when
neurons receive time-varying inputs. Panels (a-c): S-variable time series for QIF-
FRE (solid Black), H-FRE (dashed Black) and Eq. (2.8) (Blue), for decreasing
values of the period TΘ of the external periodic forcing Θ(t) = 4 + [1 +
sin(2πt/Tθ)]

3 —shown in panels (g-i). In all cases, the synaptic time constant
is slow τd = 100 ms, compared to the membrane time constant τm = 10 ms.
Panels (d-f): R-variable time series. In the case of model Eq. (2.8), the firing
rate has been evaluated using Eq.(2.7). Other parameters are J = 21, ∆ = 0.3.

for very slow external inputs —see panels (a,d)—, but this discrepancy is
strongly magnified for fast external inputs Specifically, for fast inputs —
see panels (c,f)—, the dynamics of the S and R variables of the QIF-FRE
are clearly different form those of the other models. This illustrates that
even in the limit of slow synapses, the response of spiking networks to
arbitrary time-varying inputs will always generate some degree of spike
synchrony.

2.4 Discussion

Firing rate models, describing the average activity of large neuronal en-
sembles are broadly used in computational neuroscience. However, these
models fail to describe inhibition-based rhythms, typically observed in
networks of inhibitory neurons with synaptic kinetics (Wang and Buzsáki,
1996; Whittington et al., 1995; White et al., 1998; Whittington et al.,
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2000; Tiesinga and José, 2000; Brunel and Hansel, 2006; Brunel and
Hakim, 2008; Bartos et al., 2007; Wang, 2010). To overcome this limi-
tation, some authors heuristically included explicit delays in traditional
FRE, and found qualitative agreement with the oscillatory dynamics ob-
served in simulations of spiking neurons with both synaptic kinetics and
fixed time delays (Roxin et al., 2005; Roxin and Montbrió, 2011; Brunel
and Hakim, 2008; Keeley et al., 2017). Nonetheless it remains unclear
why traditional H-FRE with first order synaptic kinetics do not generate
inhibition-based oscillations.

Here we have investigated a novel class of FRE which can be rigor-
ously derived from populations of spiking (QIF) neurons (Montbrió et al.,
2015). Networks of globally coupled QIF neurons with fast inhibitory
synapses readily generate fast self-sustained oscillations. The correspond-
ing exact FRE, which we call the QIF-FRE, therefore also generates
oscillations. The benefit of having a simple macroscopic description
for the network dynamics is its amenability to analysis. In particular,
the nonlinearities in Eqs.(2.1), which arise due to the spike initiation
and reset mechanism in the QIF model, conspire to generate damped
oscillations which reflect transient spike synchrony in the network. This
oscillatory mode can be driven by sufficiently fast recurrent inhibitory
synaptic activation, leading to sustained oscillations. This suggests that
any mean-field description of network activity which neglects subthresh-
old integration will not properly capture spike-synchrony-dependent
dynamical behaviors, including fast inhibitory oscillations.

The QIF-FRE have also allowed us to generate a phase diagram
for oscillatory behavior in a network of QIF neurons with ease via a
standard linear stability analysis, see Fig.2.3. This phase diagram agrees
qualitatively with that of an equivalent network of Wang-Buzsáki neurons,
suggesting that the QIF-FRE not only provide an exact description of QIF
networks, but also a qualitatively accurate description of macroscopic
behaviors in networks of Class I neurons in general. In particular, the
QIF-FRE capture the fragility of oscillations to quenched variability in
the network, a feature that seems to be particularly pronounced for Class
1 neuronal models compared to neural models with so-called Class 2
excitability (Tikidji-Hamburyan et al., 2015).

Finally we have shown that the QIF-FRE and the heuristic H-FRE
are formally equivalent in the limit of slow synapses. In this limit the
neuronal dynamics is slaved to the synaptic activation and well-described
by Eq. (2.8), as long as external inputs are stationary. In fact, in the
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absence of quenched heterogeneity (∆ = 0), the approximation for
slow synapses Eq. (2.8) is also fully equivalent to the reduction for
slow synapses in networks of Class 1 neurons derived by Ermentrout in
(Ermentrout, 1994). This further indicates that the QIF-FRE are likely
valid for networks of Class 1 neurons in general. However, we also show
that in the more biologically plausible scenario of time-varying external
drive some degree of neuronal synchronization is generically observed,
as in Fig. (2.5), and the slow-synapse reduction Eq. (2.8) is not valid.

The results presented here are obtained under two important assump-
tions that need to be taken into account when comparing our work to the
existing literature on fast oscillations in inhibitory networks. (i) A deriva-
tion of an exact firing rate model for a spiking neuron network is only
possible for ensembles of QIF neurons, which are the canonical model
for Class 1 excitability (Ermentrout, 1994; Izhikevich, 2007). Although
many relevant computational studies on fast inhibitory oscillations also
consider Class 1 neurons (Wang and Buzsáki, 1996; White et al., 1998;
Brunel and Hakim, 1999; Brunel and Wang, 2003; Tiesinga and José,
2000; Hansel and Mato, 2003; Keeley et al., 2017), experimental evi-
dence indicates that fast spiking interneurons are highly heterogeneous
in their minimal firing rates in response to steady currents, and that a
significant fraction of them are Class 2 (Golomb et al., 2007; Tateno et al.,
2004; Tateno and Robinson, 2007; Mancilla et al., 2007) —but see also
(La Camera et al., 2006). (ii) Our derivation of the QIF-FRE is valid for
networks of globally coupled QIF neurons, with Lorentzian-distributed
currents. In this system inhibition-based oscillations are only possible
when the majority of the neurons are self-sustained oscillators, i.e. for
Θ > 0 in Eq. (1.26), and are due to the frequency locking of a fraction of
the oscillators in the population (Winfree, 1967; Kuramoto, 1984) —as
it can be seen in the raster plot of Fig. 1.3(c). In this state, the frequency
of the cluster of synchronized oscillators coincides with the frequency of
the mean field. The value of the frequency itself is determined through an
interplay between single-cell resonance and network effects. Specifically,
the synchronized neurons have intrinsic spiking frequencies near that of
the mean-field oscillation and hence are driven resonantly. This collec-
tive synchronization differs from the so-called sparse synchronization
observed in inhibitory networks of identical Class 1 neurons under the
influence of noise (Brunel and Hakim, 1999; Brunel and Wang, 2003;
Tiesinga and José, 2000; Brunel and Hakim, 2008). In the sparsely syn-
chronized state neurons fire stochastically at very low rates, while the
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population firing rate displays the fast oscillations as the ones reported
here.

Oscillatory phenomena arising from single-cell resonances, and which
reflect spike synchrony at the population level, are ubiquitous in networks
of spiking neurons. Mean-field theory for noise-driven networks leading
to a Fokker-Planck formalism, allows for a linear analysis of the response
of the network to weak stimuli when the network is in an asynchronous
state (Ostojic and Brunel, 2011; Ledoux and Brunel, 2011). Resonances
can appear in the linear response when firing rates are sufficiently high
or noise strength sufficiently low. Recent work has sought to extend
H-FRE in this regime by extracting the complex eigenvalue correspond-
ing to the resonance and using it to construct the linear operator of a
complex-valued differential equation, the real part of which is the firing
rate (Schaffer et al., 2013). Other work has developed an expression for
the response of spiking networks to external drive, which often generates
resonance-related damped oscillations, through an eigenfunction expan-
sion of the Fokker-Planck equation (de Monte and d’Ovidio, 2002). Our
approach is similar in spirit to such studies in that we also work with
a low dimensional description of the network response. In contrast to
previous work our equations are an exact description of the macroscopic
behavior, although they are only valid for networks of heterogeneous
QIF neurons. Nonetheless, the QIF-FRE are simple enough to allow for
an intuitive understanding of the origin of fast oscillations in inhibitory
networks, and in particular, of why these oscillations are not properly
captured by H-FRE.

2.5 Materials and Methods

2.5.1 Populations of inhibitory Quadratic Integrate and
Fire neurons

We model fast-spiking interneurons, the dynamics of which are well-
described by the Hodgkin-Huxley equations with only standard spiking
currents. Many models of inhibitory neurons are Class 1 excitable (Rinzel
and Ermentrout, 1989), including for example the Wang-Buszáki (WB)
(Wang and Buzsáki, 1996), and the Morris-Lecar models (Morris and
Lecar, 1981). Class 1 models are characterized by the presence of a
saddle-node bifurcation on an invariant circle at the transition from quies-

47



cence to spiking. One consequence of this bifurcation structure is the fact
the spiking frequency can be arbitrarily low near threshold. Additionally,
near threshold the spiking dynamics are dominated by the time spent
in the vicinity of the saddle-node itself, allowing for a formal reduction
in dimensionality from the full neuron model to a reduced normal form
equation for a saddle-node bifurcation (Ermentrout, 1994; Izhikevich,
2007; Ermentrout and Terman, 2010). This normal form, which is valid
for any Class 1 model near threshold, is known as the quadratic integrate-
and-fire model (QIF). Using a change of variables, the QIF model can
be transformed to a phase model, called Theta-Neuron model (Ermen-
trout and Kopell, 1986), which has an strictly positive Phase Resetting
Curve (PRC). Neuron models with strictly positive PRC are called Type
1 neurons, indicating that perturbations always produce an advance (and
not a delay) of their phase. In general, Class 1 neurons have a Type 1
PRC (Ermentrout, 1994), but see (Achuthan et al., 2011; Ermentrout
et al., 2012).

In a network of QIF neurons, the neuronal membrane potentials are
{Ṽi}i=1,...,N , which obey the following ordinary differential equations (Er-
mentrout and Kopell, 1986; Latham et al., 2000; Hansel and Mato, 2003):

C
dṼi
dt

= gL
(Ṽi − Vt)(Ṽi − Vr)

(Vt − Vr)
+ I0,i (2.9)

where C is the cell capacitance, gL is the leak conductance and I0,i are
external currents. Additionally, Vr and Vt represent the resting potential
and threshold of the neuron, respectively. Using the change of variables
Ṽ ′i = Ṽi − (Vt + Vr)/2, and then rescaling the shifted voltages as Vi =
Ṽ ′i /(Vt − Vr), the QIF model (2.9) reduces to

τmV̇i = V 2
i + Ii (2.10)

where τm = C/gL is the membrane time constant, Ii = I0,i/(gL(Vt −
Vr))− 1/4 and the overdot represents derivation with respect to time t.
Note that in the model (2.10) the voltage variables Vi and the inputs Ii
do not have dimensions. Thereafter we work with QIF model its simplest
form Eq. (2.10). We assume that the inputs are

Ii = ηi − JτmS, (2.11)

where J is the inhibitory synaptic strength, and S is the synaptic gating
variable. Finally, the currents ηi are constants taken from some prescribed
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distribution that here we consider it is a Lorentzian of half-width ∆,
centered at Θ

g(η) =
1

π

∆

(η −Θ)2 + ∆2
. (2.12)

In numerical simulations the currents were selected deterministically
to represent the Lorentzian distribution as: ηi = Θ + ∆ tan(π/2(2i −
N − 1)/(N + 1)), for i = 1, . . . , N . In the absence of synaptic input,
the QIF model Eqs.(2.10,2.11) exhibits two possible dynamical regimes,
depending on the sign of ηi. If ηi < 0, the neuron is excitable, and an
initial condition Vi(0) <

√−ηi, asymptotically approaches the resting
potential −√−ηi. For initial conditions above the excitability threshold,
Vi(0) >

√−ηi, the membrane potential grows without bound. In this
case, once the neuron reaches a certain threshold value Vθ � 1, it is
reset to a new value −Vθ after a refractory period 2τm/Vθ (in numerical
simulations, we choose Vθ = 100). On the other hand, if ηj > 0, the
neuron behaves as an oscillator and, if Vθ →∞, it fires regularly with a
period T = πτm/

√
ηi. The instantaneous population mean firing rate is

R = lim
τs→0

1

N

1

τs

N∑

j=1

∑

k

∫ t

t−τs
dt′δ(t′ − tkj ), (2.13)

where tkj is the time of the kth spike of jth neuron, and δ(t) is the Dirac
delta function. Finally, the dynamics of the synaptic variable obeys the
first order ordinary differential equation

τdṠ = −S +R. (2.14)

For the numerical implementation of Eqs. (2.13,2.14), we set τs =
10−2τm. To obtain a smoother time series, the firing rate plotted in Fig.
2.2 was computed according to Eq. (2.13) with τs = 3 · 10−2τm.

Fixed points of the QIF-FRE Eqs. 2.1

The fixed points of the QIF-FRE (2.1) are obtained imposing Ṙ = V̇ =
Ṡ = 0. Substituting this into Eqs. (2.1), we obtain the fixed point equation
V ∗ = −∆/(2πτmR

∗), the firing rate given by Eq. (2.2) and S∗ = R∗.
Note that for homogeneous populations, ∆ = 0, the f-I curve Eq. (2.3)
reduces to

Φ(I) =
1

π

√
|I|+,
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which displays a clear threshold at I = 0 (Here, |I|+ = I if I ≥ 0,
and vanishes for I < 0.) This function coincides with the squashing
function found by Ermentrout for homogeneous networks of Class 1
neurons (Ermentrout, 1994). As expected, for heterogeneous networks,
the well-defined threshold of Φ(I) for ∆ = 0 is lost and the transfer
function becomes increasingly smoother.

2.5.2 Nondimensionalized QIF-FRE
The QIF-FRE (2.1) have five parameters. It is possible to non-dimensionalize
the equations so that the system can be written solely in terms of 3 pa-
rameters. Generally, we adopt the following notation: we use capital
letters to refer to the original variables and parameters of the QIF-FRE,
and lower case letters for non-dimensional quantities. A possible non-
dimensionalization, valid for Θ > 0, is

ṙ = δ/π + 2rv, (2.15a)
v̇ = v2 − π2r2 − js+ 1, (2.15b)
τ ṡ = −s+ r, (2.15c)

where the overdot here means differentiation with respect to the non-
dimensional time

t̃ =

√
Θ

τm
t.

The other variables are defined as

r =
τm√

Θ
R, v =

V√
Θ
, s =

τm√
Θ
S.

On the other hand, the new coupling parameter is defined as

j =
J√
Θ
. (2.16)

and the parameter

δ =
∆

Θ
, (2.17)

describes the effect of the Lorentzian heterogeneity (1.26) into the collec-
tive dynamics of the FRE (1.29). Though the Lorentzian distribution does
not have finite moments, for the sake of comparison of our results with
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those of studies investigating the dynamics of heterogeneous networks
of inhibitory neurons, e.g.(Wang and Buzsáki, 1996; White et al., 1998),
the quantity δ can be compared to the coefficient of variation, which
measures the ratio of the standard deviation to the mean of a probability
density function. Finally, the non-dimensional time

τ =

√
Θ

τm
τd, (2.18)

measures the ratio of the synaptic time constant to the most-likely period
of the neurons (times π),

T̄ = π
τm√

Θ
.

In numerical simulations we will use the original QIF-FRE (2.1), with
Θ = 4, and τm = 10ms. Thus T̄ = 10π/3 ≈ 15.71ms, so that the
most likely value of the neurons’ intrinsic frequency is f̄ ≈ 63.66 Hz.
However, our results are expressed in a more compact form in terms of
the quantities j, δ, τ , and we will use them in some of our calculations
and figures.

2.5.3 Parametric formula for the Hopf boundaries
To investigate the existence of oscillatory instabilities we use Eq. (2.4)
written in terms of the non-dimensional variables and parameters defined
previously, which is

− 2jr∗ = (1 + λ̃τ)

[
(2πr∗)

2 +

(
λ̃+

δ

πr∗

)2
]
. (2.19)

Imposing the condition of marginal stability λ̃ = iω̃ in Eq. (2.19) gives
the system of equations

0 = 2jr∗ + 4π2r2
∗ + 4v2

∗ − (1− 4v∗τ)ω̃2 (2.20a)
0 = ω̃(4v∗ − 4π2r2

∗τ − 4v2
∗τ + τ ω̃2) (2.20b)

where the fixed points are obtained from Eq. (2.2) solving

0 = v2
∗ − π2r2

∗ − jr∗ + 1, (2.21)

with
v∗ = − δ

2πr∗
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Eq. (2.20b) gives the critical frequency

ω̃ =
2

τ

√
(πτr∗)2 + τv∗(τv∗ − 1).

The Hopf boundaries can be plotted in parametric form solving Eq. (2.21)
for j, and substituting j and ω̃ into Eq. (2.20a). Then solving Eq. (2.20a)
for τ gives the Hopf bifurcation boundaries

τ±(r∗) =
π2r2

∗ − 1 + 7v2
∗ ±

√
(π2r2

∗ − 1)2 − (14 + 50π2r2
∗)v

2
∗ − 15v4

∗
16v∗(π2r2

∗ + v2
∗)

.

(2.22)
Using the parametric formula

(
j(r∗), τ

±(r∗)
)±

=
(
v2
∗/r∗ + 1/r∗ − π2r∗, τ

±(r∗)
)
.

we can be plot the Hopf boundaries for particular values of the parameter
δ, as r∗ is changed. Figure 2.3 shows these curves in red, for δ = 0.035
and δ = 0.075. They define a closed region in parameter space (shaded
region) where oscillations are observed.

2.5.3.1 Calculation of the critical value δc, Eq. (2.6)

The functions τ± meet at two points, when the argument of the square
root in Eq. (2.22) is zero. This gives four different roots for δ, and only
one of them is positive and real

δ∗(r∗) =
2πr∗√

15

√
8
√

1 + 5π2r2
∗ + 10π4r4

∗ − 7− 25π2r2
∗.

This function has two positive zeros, one at r∗min = 0, and one at
r∗max = 1/π, corresponding, respectively, to the minimal (j → ∞)
and maximal (j = 0) values of the firing rate for identical neurons
(δ = 0). Between these two points the function attains a maximum,
where r∗min = r∗max = r∗c, with

r∗c =
1√

2
√

5π
= 0.1505 . . .

The function δ∗(r∗) evaluated at its local maximum r∗ = r∗c gives
Eq. (2.6).
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2.5.4 Populations of Wang-Buzsáki neurons
We perform numerical simulations using the the Wang-Buzsáki (WB)
neuron (Wang and Buzsáki, 1996), and compare them with our results
using networks of QIF neurons. The onset of oscillatory behavior in the
WB model is via a saddle node on the invariant circle (SNIC) bifurca-
tion. Therefore, the populations of WB neurons near this bifurcation
are expected to be well described by the theta-neuron/QIF model, the
canonical model for Class 1 neural excitability (Ermentrout and Kopell,
1986; Ermentrout, 1994).
We numerically simulated a network of N all-to-all coupled WB neurons.
The evolution equations of the WB neuron are given in Appendix A.
In Fig. 2.4, we systematically varied the coupling strength and the synap-
tic time decay constant to determine the range of parameters displaying
oscillatory behavior. For each fixed value of τd we varied the coupling
strength k; we performed two series of simulations, for increasing and
decreasing coupling strength. In Fig. 2.4 we only show results for in-
creasing k.
All quantities were measured after a transient of 1000 ms. To obtain the
amplitude of the oscillations of the mean membrane potential, we com-
puted the maximal amplitude V̄max − V̄min over time windows of 200 ms
for 1000 ms, and then averaged over the five windows.
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CHAPTER 3

Dynamics of a large systems of spiking
neurons with synaptic delays

In this chapter, we analyse the QIF-FRE with fixed delays. The results
are published in:
Devalle, F., Montbrió, E., Pazó, D. (2018). Dynamics of a large system of
spiking neurons with synaptic delay. Physical Review E, 98(4), 042214.

3.1 Model Description
We consider a network of N � 1 all-to-all coupled QIF neurons. The
membrane potential of the neurons is governed by the following quadratic
differential equation (Izhikevich, 2007)

τ V̇j = V 2
j + Ij j = 1, . . . , N (3.1)

where τ is a time constant. Every time the membrane potential of a
neuron reaches an upper threshold Vth � 1 it is said to fire. Obviously, in
addition to (3.1), one must define a spike-resetting condition

If Vj > Vth then Vreset ← Vj. (3.2)

In our theoretical analysis we consider the limits Vth = −Vreset → ∞,
which is faithfully reproduced in numerical simulations in the following

55



way: first, we consider Vth = −Vreset = 500. Then, after the firing, we
set the neuron at Vreset after an inactive period of 2τ/Vth. This is the
approximate time that a neuron needs to reach +∞ from Vth and return
from −∞ to Vreset *.

The input in Eq. (3.1) is determined by two distinct contributions:

Ij = ηj + Js (t) . (3.3)

The first term represents the quenched heterogeneity, which for neurons
in the oscillatory regime (ηj > 0), determines the intrinsic interspike
interval (ISI)

Tj = πτ/
√
ηj. (3.4)

The second term corresponds to the mean field coupling, where J is the
coupling strength and s (t) is the mean synaptic activation. We consider
networks of spiking neurons with delayed, mean-field coupling

s(t) =
τ

Nτs

N∑

j=1

∑

k

∫ t−D

t−D−τs
δ
(
t′ − tkj

)
dt′. (3.5)

where tkj is the time of the kth spike of neuron j, and τs the synaptic time
constant. After adopting the thermodynamic limit, N → ∞, we take
the limit τs → 0, so that s becomes proportional to the instantaneous
population-averaged firing rate at time t−D:

lim
τs→0

lim
N→∞

s(t) = τ r(t−D) ≡ τ rD.

Finally, we assume a Lorentzian (Cauchy) distribution of the quenched
heterogeneity

g (η) =
∆/π

(η − η̄)2 + ∆2
. (3.6)

3.2 Low-dimensional description: Firing rate
equations

In the thermodynamic limit, the network of QIF neurons can be reduced
to a finite set of FRE (Montbrió et al., 2015; Pietras and Daffertshofer,

*For the numerical simulations of the population of QIF neurons we use the Euler
method with time step δt = 10−5. For the integration of the FREs Eqs. (3.9) we use
a third-order Adams-Bashforth-Moulton predictor-corrector scheme with a timestep
δt = 10−4 (Press et al., 1992). In all simulations shown, initial transients were
discarded.
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2016). This is possible assuming that the conditional neuron densities
ρ(V |η, t) are Lorentzian for all η values (Montbrió et al., 2015), which is
mathematically equivalent as to invoke the so-called Ott-Antonsen (OA)
theory (Ott and Antonsen, 2008).

Considering the QIF model in Sec. 3.1, the FRE consist of a system
of two delay differential equations for the firing rate r and for the mean
membrane potential

v =

∫ ∞

−∞
dη g(η)

[
lim
R→∞

∫ R

−R
dV ρ(V |η, t)V

]
,

which read (Montbrió et al., 2015; Pazó and Montbrió, 2016)

τ ṙ =
∆

πτ
+ 2rv, (3.7a)

τ v̇ = v2 + η̄ − (πτr)2 + JτrD. (3.7b)

These FRE describe the evolution of the population of infinitely many
spiking neurons in terms of the firing rate r and the mean-membrane
potential v of the population of QIF neurons Eq. (3.1). Eqs. (3.7) have
5 parameters, which can be reduced to 3 by nondimensionalization. In
Ref. (Pazó and Montbrió, 2016) the FRE Eqs. (3.7) were analyzed under
the restriction η̄ > 0, and they were rescaled accordingly. Such rescaling
allows to systematically vary the time delay parameter D (including the
case D = 0), and facilitates the comparison with the classical and well-
studied Kuramoto model with delay (Yeung and Strogatz, 1999; Choi
et al., 2000; Earl and Strogatz, 2003; Montbrió et al., 2006; Lee et al.,
2009).

Alternatively, here we consider a new nondimensionalization which
allows us to investigate the dynamics of the FRE Eqs. (3.7) in the entire
range of η̄, so that the majority of the neurons can be either self-oscillatory
(η̄ > 0) or quiescent/excitable (η̄ < 0). Specifically, we rescale time and
v by D and τ as

t̃ = D−1t , ṽ = Dτ−1v, (3.8)

so that the new, non-dimensional rate is r̃ = Dr. Then the dynam-
ics of the FRE can be completely explored, without loss of generality,
considering the rescaled parameters

J̃ = Dτ−1J , ˜̄η = D2τ−2η̄ , ∆̃ = D2τ−2∆,
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and setting τ = D = 1 in Eqs. (3.7). Specifically, we investigate the
nondimensional system of equations

dr̃

dt̃
=

∆̃

π
+ 2r̃ṽ, (3.9a)

dṽ

dt̃
= ṽ2 + ˜̄η − (πr̃)2 + J̃ r̃D=1. (3.9b)

To lighten the notation we drop the tildes hereafter (also in the figure
labels).

3.3 Populations of Identical Neurons

As we discussed previously, the case of identical oscillatory neurons has
been investigated in (Pazó and Montbrió, 2016) using a certain rescaling
that required η̄ > 0. Here we adopt the rescaling in Eq. (3.8), which
allows us for an exhaustive investigation of the dynamics of the system
by systematically varying the parameter η̄.

Before starting the analysis, we emphasize that the Lorentzian ansatz
(or the equivalent OA ansatz) is not strictly valid for identical oscillators.
In this case the system is partially integrable and its phase space is foliated
by a continuum of invariant manifolds, being the Lorentzian ansatz a
particular one. Actually, for the case of identical neurons (∆ = 0), the
correct approach is to resort to the so-called Watanabe-Strogatz theory
(Watanabe and Strogatz, 1994), instead of the OA ansatz (Pikovsky
and Rosenblum, 2011; Laing, 2018). Nevertheless, from a physical
perspective the OA/Lorentzian ansatz is very significant since any small
amount of noise and/or heterogeneity destroys the degeneracy and, at
least for the systems analyzed so far, the density converges to a vicinity
of the OA manifold (Tyulkina et al., 2018).

Hence, in the following we analyze the identical case taking into
account that its full significance holds once a small amount of noise or
heterogeneity is added to the system. However, to avoid the inclusion of
noise/heterogeneity in the integration algorithm, we use initial conditions
in the Lorentzian manifold in all the numerical simulations of ensembles
of identical QIF neurons Eqs. (3.1).
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3.3.1 Analytical results: The incoherent and the fully
synchronized states

3.3.1.1 The incoherent state

Equation (3.9) has at most four fixed points. In some parameter values
one of these points is located in the negative rate region (r < 0), and
we refer to it as “unphysical”. Moreover, for ∆ = 0, the axis r = 0 is
invariant so that solutions initiated with r(0) > 0 remain positive for all
times. The equilibria of Eqs. (3.9) can be grouped into two sets of fixed
points:

• The first pair of fixed points is located in the (r, v) plane at

a± =

(
J ±

√
J2 + 4π2η̄

2π2
, 0

)
.

For J > 0, these fixed points are born at a saddle-node bifurcation
located at

Jsn = 2π
√−η̄.

This line is partly depicted as a solid green straight line in the phase
diagram Fig. 3.1, and is located in the region η̄ < 0. Note that
the fixed point a− becomes unphysical for η̄ > 0, while a+ exists
for J < 0 only if η̄ > 0. As shown below, the fixed point a+ is
stable in a wide range of parameter values. We will refer to a+ as
the incoherent, or the asynchronous state. For finite networks a+

becomes a so-called splay state, with all neurons firing with the
same ISI, and one neuron firing every ISI/N time units.

• The second pair of fixed points,

q± =
(
0,±√−η̄

)
,

only exists for η̄ < 0. They correspond to quiescent states, and
coincide with the fixed points of an individual QIF neuron. Hence,
q− (resp. q+) is trivially stable (unstable). The bifurcation at η̄ = 0
(green dashed line in Fig. 3.1) is somewhat peculiar because it is
not a simple saddle-node bifurcation of q+ and q− as expected.
For J > 0, it involves the simultaneous collision with a−, while
for J < 0 it coincides with the appearance of a+ for η̄ > 0.
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ASYNC FULL SYNC QPS M-QPS COLLECTIVE CHAOS

IDENTICAL Single neuron: Periodic Periodic 2F-Quasip. 3F-Quasip. Chaotic-like (λ = 0)
Mean field: Constant Periodic Periodic 2F-Quasip. Chaotic

ASYNC PS-I PS-II M-PS COLLECTIVE CHAOS

HETEROGENEOUS Single neuron: Periodic Periodic, Periodic, 2F-Quasip., Chaotic-like (λ < 0)2F-Quasip. 2F-Quasip. 3F-Quasip.
Mean field: Constant Periodic Periodic 2F-Quasip. Chaotic

Table 3.1: Classification of the different dynamical states observed for popu-
lations of both identical, and heterogeneous QIF neurons. The names of the
states are the following: ASYNC: Asynchronous or incoherent state. FULL
SYNC: fully synchronized state. QPS: Quasiperiodic partial synchronization. M
-QPS: modulated quasiperiodic partial synchronization. PS-I and PS-II stands
for type I and type II partially synchronous states. M-PS: modulated partially
synchronous state. The prefix 2F- and 3F- indicate the number of frequencies
of the corresponding quasiperiodic dynamics. For each state we specify the
dynamics at the macroscopic level (mean field) and at the microscopic level
(single neuron). For the states of collective chaos, λ is the Lyapunov exponent
of a single neuron forced by the mean field.

Next we study the linear stability of the fixed points. The incoherent
state a− is always unstable, while the linear stability analysis of the high
activity, asynchronous state a+ reveals interesting features. Imposing the
condition of marginal stability λ = iΩ in the linearization of Eq. (3.9),
we find a family of oscillatory instabilities at

J
(n)
H = π

(
Ω2
n − 4η̄

)
×
{

(6Ω2
n + 12η̄)

−1/2
, odd n

(2Ω2
n − 4η̄)

−1/2
, even n

(3.10)

where Ωn = nπ. We point out that these instabilities (represented as
blue and red lines in the phase diagram Fig. 3.1) are actually Hopf-like,
rather than Hopf, because of two facts: (i) The amplitude equations,
computed in the Supplemental Material of (Pazó and Montbrió, 2016),
are degenerated. (ii) In the supercritical case, we find that the emerging
limit cycle has a period 2π/Ωn, which remains constant as one moves
away from threshold. This is apparently related to the reversible character
of Eqs. (3.9) for ∆̃ = 0 (note the invariance t → −t, v → −v) that, as
argued in (Pazó and Montbrió, 2016), stabilizes symmetric orbits with
fixed periods when D is nonzero.
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Figure 3.1: Phase diagram for identical neurons, ∆ = 0. Shaded region: The
asynchronous state (a+) is stable. Slantwise hatched region: full synchrony
is unstable. Horizontally hatched region: The fully synchronized state does
not exist and the only attractor is the global rest state q−. The orbit of fully
synchronized self-sustained oscillations is created at the dashed black line (at
η̄ < 0), Eq. (3.14). Blue and red lines are the loci of the sub- and super-critical
Hopf-like instabilities of incoherence Eqs. (3.10). Solid green line: saddle-node
bifurcation. The vertical dashed green line separates the oscillatory from the
excitable regime of the QIF neuron.

3.3.1.2 The fully synchronized state

Besides the stability boundary of the asynchronous state, we can also
analytically determine the boundaries of full synchrony, Vj = V (t), ∀j.
The FRE Eq. (3.9) are not suitable for this analysis, since the fully syn-
chronized state corresponds to a degenerate infinite trajectory along the
v-axis. Full synchrony is hence investigated using the original Eqs. (3.1).

As shown in (Pazó and Montbrió, 2016), for oscillatory dynamics
(η̄ > 0) the stability region of full synchrony is bounded by the family of
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curves

J (n′)
s = 2

√
η̄ cot

(√
η̄

n′

)
with n′ = 1, 3, .., (3.11)

and by the evenly spaced lines
√
η̄ = mπ with m = 1, 2, 3, ....

On the other hand, in the case η̄ < 0, we emphasize that the term ‘full
synchronization’ cannot be strictly used since the neurons are excitable
and not self-sustained oscillators. However, to simplify the notation, in
the following we refer to collective oscillatory states with η̄ < 0 as fully
synchronized states. Indeed, due to the presence of time delay, collective
self-sustained oscillations could be in principle maintained for strong
enough excitatory coupling. To study the existence and stability of these
states, we rewrite the QIF model Eq. (3.1) as

V̇j = V 2
j − |η̄|+ JrD. (3.12)

Then, to investigate the existence of a fully synchronized state, we can
drop the index j in Eq. (3.12). Note that, in the absence of coupling,
Eq. (3.12) has one stable (s) and one unstable (u) fixed points

V ∗u = −V ∗s =
√
|η|.

Between consecutive spikes, the evolution of the membrane potential of
all neurons is given by

V̇ = V 2 − |η̄|. (3.13)

Considering that the neurons’ membrane potentials reach infinity at t = 0,
we find that their membrane potentials at the time immediately before
receiving the spike, t = D− = 1−, must satisfy the following equation,

∫ V (1−)

−∞

dV

V 2 − |η̄| = 1,

which gives
V
(
1−
)
≡ V − = −

√
|η̄| coth

√
|η̄|.

A necessary condition for the existence of self-sustained collective oscil-
lations is that an excitatory spike causes a jump in V beyond the unstable
fixed point, which enables the repetition of the cycle. More precisely,
immediately after receiving the first spike, t = 1+, the membrane po-
tential V + must satisfy V + > V ∗u . Then, for η̄ < 0, we find that fully
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synchronized solutions exist above the critical coupling

Jc = V ∗u − V − = 2
√
|η̄| e2

√
|η̄|

e2
√
|η̄| − 1

. (3.14)

To analyze the stability of full synchrony, we study the evolution of an
infinitesimal perturbation δV of a single neuron membrane potential away
from the cluster formed by the rest of the population. The perturbed neu-
ron and the cluster before the incoming spike evolve according to the flow
given by Eq. (3.13). The multiplier of the linearized flow ( ˙δV = 2V δV )
is antisymmetric causing convergence for negative V , and divergence
for positive V . Hence, to have a stable fully synchronous solution, the
neurons need to spend more time in the convergent region of the flow
than in the divergent one. This holds if the instantaneous jump of the
membrane potential due to the incoming spike is large enough. Then the
critical coupling corresponds to V + = |V −|, i.e. Js = 2|V −|, or

Js = 2
√
|η̄| coth

√
|η̄|. (3.15)

This function is precisely the boundary in Eq. (3.11) with n′ = 1, which
extends to the negative η̄ region, since cot(ix) = −i coth(x). Note also
that Js approaches Jc as η̄ → −∞.

3.3.2 Phase diagram
The phase diagram shown in Fig. 3.1 summarizes our analytical results
for populations of identical neurons. On the y axis we represent the
coupling strength J , which can be either excitatory or inhibitory. On
the x axis we represent a quantity that, if positive, is proportional to the
natural frequency of the neurons, see Eq. (3.4). Regions with qualita-
tively different dynamics are highlighted with different combinations of
colors and patterns. In the gray shaded regions, the asynchronous state
a+ is stable, while slantwise hatching indicates instability of the fully
synchronized state. On the other hand, in the horizontally-hatched area,
the global quiescent state q− is the only attractor of the system. In the
unhatched white region, full synchrony is a stable attractor (and typically
the only one–see below), but several of such states may coexist in certain
regions for η̄ > 0.

More specifically, in the excitable region (η̄ < 0) of the diagram
the global quiescent state q− is always stable. In addition, the stability
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Figure 3.2: Macroscopic (columns 1-2) and microscopic (columns 3-5) dy-
namics of QPS (rows a,b), M-QPS (row c) and collective chaos (row d), see
Table 3.1. Column 1: time series of the mean firing rate. Blue lines correspond
to numerical simulations of the FRE Eqs. (3.9), while red dotted lines are ob-
tained computing the mean firing rate of a population ofN = 2000 QIF neurons.
Column 2: (r, v) phase portraits, numerically obtained using Eqs. (3.9). In panel
(b2) two coexisting periodic attractors are shown: QPS-asym(I) (solid) and QPS-
asym(II) (dashed) —see also inset of Fig. 3.3. Panels (b1,b3-5) correspond to
QPS-asym(I). Columns (3-5) show the dynamics of a population of N = 2000
QIF neurons. Column 3: raster plots. Neurons are ordered according to their
firing time at the beginning of the simulation (due to the first order nature of the
QIF model, this ordering is preserved in time). Columns 4 and 5 show return
ISI plots and ISI distributions of an arbitrary neuron j. The return plots of
panels (a4,b4) are closed curves, indicating quasiperiodic microscopic dynamics
in the QPS-sym and QPS-asym. The corresponding ISI histograms (a5,b5)
show two (QPS-sym) or three (QPS-asym) peaks. In the M-QPS, neurons are
quasiperiodic with three characteristic frequencies — the return plots of panel
(c4) is a closed surface in 3D, and therefore its projection in 2D fills a defined
region of the space. Parameters: (row a) J = −9.2, (row b) J = −9.5, (row c)
J = −10.3, (row d) J = −10.6. We use

√
η̄ = 3.6 in all simulations.

64



region of the asynchronous state a+ (grey shading) is bounded by the
saddle-node bifurcation Jsn (green line), and the Hopf-like bifurcation
line J (1)

H , Eq. (3.10) (blue line). The two lines meet at a Zero-Hopf
codimension-two point. In the unhatched grey region a+ coexists not
only with q−, but also with the fully synchronized state. This oscillatory
state becomes stable at the solid black line Eq. (3.15).

On the other hand, the positive η̄ region of the diagram is character-
ized by a sequence of subcritical (blue lines) and supercritical (red lines)
Hopf-like bifurcations, defined by Eq. (3.10), that switch the stability of
the incoherent state a+. Remarkably, in this region (where neurons are
self-sustained oscillators), the phase diagram bears strong resemblance
with that of the Kuramoto model with time delays (Yeung and Strogatz,
1999; Choi et al., 2000; Earl and Strogatz, 2003; Montbrió et al., 2006;
Lee et al., 2009). The two systems display tent-shaped regions with an
even spacing given by the equality between the delay (D = 1) and the
intrinsic ISI Eq. (3.4), as well as bistability regions between full sync and
incoherence (unhatched gray regions). However, while in the Kuramoto
model the Hopf bifurcations are always subcritical, here we find super-
critical Hopf bifurcations for some η̄ values in the inhibitory (J < 0)
part of the diagram. Near the supercritical Hopf bifurcations, in the
unshaded hatched region, both the incoherent and the fully synchronous
states are unstable, and partial synchrony (QPS, M-QPS, and collective
chaos) is found. In the next section we classify these states in terms
of their macroscopic and microscopic dynamics, and investigate their
bifurcations.

Finally, we discuss an interesting feature of the phase diagram in
Fig. 3.1 —see also the phase diagram in (Pazó and Montbrió, 2016). Note
that, at variance with the vertically oriented, tent-shaped regions of the
Kuramoto model (Yeung and Strogatz, 1999; Choi et al., 2000; Earl and
Strogatz, 2003; Montbrió et al., 2006; Lee et al., 2009), here the regions of
stability are tilted. This discrepancy between populations of QIF neurons
and the Kuramoto model can be understood as follows: in the QIF
model the neurons always advance their phase in response to excitatory
inputs, and always delay their phase in response to inhibitory inputs —i.e.
they have a so-called Type 1 phase resetting curve. This produces the
progressive ‘advancement’ of the boundaries in the excitatory part of the
phase diagram as the strength of the excitatory coupling J is increased
—given that neurons increase their firing frequency and thus their effective
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value of η̄. Similarly, in the inhibitory region, the neurons slow down their
firing frequency in response to inhibitory inputs, and this progressively
‘delays’ the boundaries for J < 0. In contrast, in the classical Kuramoto
model, the terms producing advances and delays in response to excitation
and inhibition are not included (Montbrió and Pazó, 2018), and hence the
boundaries are not tilted.

3.3.3 Numerical analysis of partially synchronous states
Next we perform a numerical exploration of the partially synchronized
states arising both in the white slantwise-hatched region of Fig. 3.1, as
well as in some neighboring regions. In Table 3.1 these partially synchro-
nized states are classified according to their dynamics, both for identical
and for heterogeneous (in Sec. V) populations of QIF neurons. The
macroscopic dynamics of the states is investigated performing numerical
simulations of the FRE Eq. (3.9), and illustrated in the columns 1 and
2 of Fig. 3.2. To investigate the single neuron dynamics associated to
the macroscopic states we also performed numerical simulations of the
original system of QIF neurons Eqs. (3.1), and depicted the raster plots
(column 3), and the ISI return maps (column 4) and histograms (column
5). Finally, in column 1, we also show the time series of the population-
mean firing rate of the network simulations (dashed red lines), which
show a perfect agreement with the time series of the FRE (blue lines)
—except in panel (d1), where the collective dynamics is chaotic.

Note that stable partially synchronized states are not only found in
the slantwise-hatched region of Fig. 3.1, but also in a neighborhood of
this region with

√
η̄ > π. This is because the region where the Hopf-like

bifurcation J (1)
H is supercritical (around the red line at

√
η̄ ≈ π in Fig. 3.1)

extends to
√
η̄ > π, and hence one expects a low-amplitude periodic so-

lution bifurcating from incoherence, a+, coexisting with a fully in-phase
synchronized state. In Figs. 3.2(a1) and 3.2(a2) we respectively show
the time series and the phase portraits corresponding to the numerical
integration of Eqs. (3.9) for

√
η̄ = 3.6. These simulations confirm the

presence of a small amplitude symmetric limit cycle, which grows in size
as parameters are moved away from the instability.

As analyzed in (Pazó and Montbrió, 2016), in Fig. 3.2(a1) the os-
cillation period of the mean field is exactly T = 2 (or, in dimensional
form, T = 2D). The periodic dynamics of the global quantities leads
to quasiperiodic dynamics of the individual neurons, i.e. Quasiperiodic
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QPS-asym(I)

QPS-asym(II) TC

SN

Figure 3.3: Four largest Lyapunov exponents for two alternative bifurcation
sequences in a range of negative J values and fixed

√
η̄ = 3.6. For each solution,

the continuation was carried out either increasing or decreasing parameter J
adiabatically. In the top panel the vertical dashed lines indicate, from right to
left: a supercritical Hopf bifurcation (SC-H), a transcritical bifurcation (TC), a
Neimark-Sacker bifurcation (NS), and a subcritical Hopf bifurcation (SB-H).
In the bottom panel the vertical dashed lines indicate, from right to left: a
saddle-node bifurcation (SN), a Neimark-Sacker bifurcation (NS), and the onset
of chaos (C). The inset shows a sketch of the bifurcation diagram connecting
the two bifurcation sequences.

partial synchrony (QPS). This may be appreciated plotting the ISIs of
a single neuron versus their consecutive ISIs. The resulting return plot,
shown in Fig. 3.2(a4), forms a closed curve indicating quasiperiodic
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dynamics. Interestingly, the ISIs of the neurons are always shorter than
the period of the firing rate oscillations, as shown by the ISI histogram
in Fig. 3.2(a5). The bimodal structure of the distribution is related to
double-loop shape of the macroscopic periodic attractor.

The limit cycle that emerges via the Hopf-like instability displays
a robust v → −v symmetry that only breaks down after another bifur-
cation. In (Pazó and Montbrió, 2016), for

√
η̄ = 3, it was shown that

symmetry broke down after a period-doubling bifurcation. Here, taking a
slightly larger value of

√
η̄ and increasing inhibition, we observe an im-

perfect symmetry breaking transition, with two coexisting attractors, see
Fig. 3.2(b1,b2) and Fig. 3.3. These asymmetric periodic orbits —which
we call QPS-asym(I) and QPS-asym(II)— are not related by symmetry.
In fact, each attractor is born via a different bifurcation, see details below.
In these asymmetric states the period differs from 2D, but still neurons
are quasiperiodic, see Fig. 3.2(b4,b5).

Increasing inhibition further, the macroscopic dynamics becomes
more irregular, with no evident periodicity, see Fig. 3.2(c1,c2). Below,
we show the analysis of the Lyapunov exponents indicating quasiperiodic
mean field dynamics with two incommensurable frequencies. As a conse-
quence of this quasiperiodic forcing, the neurons exhibit three-frequency
quasiperiodic motion, see Fig. 3.2(c4). We call this new state modulated
QPS, or simply M-QPS, due to the additional modulating frequency. To
the best of our knowledge this state has been only reported in a very
different setup (Nakagawa and Kuramoto, 1995; Clusella and Politi,
2018). Lowering J further, the M-QPS eventually turns into a chaotic
state, see Fig. 3.2(d1,d2).

To determine the bifurcations linking different partially synchronous
states (QPS, M-QPS, or collective chaos), we computed the four largest
Lyapunov exponents of the FRE on the line along the J direction with η̄
value of Fig. 3.2. Employing the usual method (Farmer, 1982), parameter
J was quasi-adiabatically decreased and increased, to detect eventual
bistabilities. Two parallel sequences of bifurcations were eventually
detected, as shown in top and bottom panels of Fig. 3.3. In the top
panel, moving leftwards, the fixed point attractor (a+), first undergoes
a supercritical Hopf-like bifurcation, after which the stable attractor of
the system is a symmetric QPS attractor. The symmetry breaking takes
place at a transcritical bifurcation (TC), after which the limit cycle is
asymmetric (QPS-asym(II)). At a lower J value, the asymmetric periodic
orbit undergoes Neimark-Sacker bifurcation giving rise to M-QPS —
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Figure 3.4: Poincaré sections of the FRE (3.9) for
√
η̄ = 3.6, and for three

different values of the inhibitory coupling strength: (a) J = −10.3; (b) J =
−10.48; (c) J = −10.6. The Poincaré surface is v = 0, v̇ < 0.

given that we find two vanishing Lyapunov exponents. Further decreasing
inhibition, the M-QPS disappears in a subcritical Hopf bifurcation (SB-
H).

In the other sequence of bifurcations —bottom panel of Fig. 3.3—
another asymmetric orbit (QPS-asym(I)) is born at a saddle-node (SN)
bifurcation. As QPS-asym(II), it also undergoes a Neimark-Sacker bi-
furcation as J is decreased giving rise to M-QPS. In Figs. 3.2 and 3.4
we show the M-QPS state corresponding to this particular sequence of
bifurcations. However, note that M-QPS states resulting from either
route in Fig. 3.3 have the same dynamical features (two vanishing largest
Lyapunov exponents and three-frequency microscopic motion). Lockings
occur at certain windows of J , where the second largest Lyapunov expo-
nent is not zero. To further prove the macroscopic quasiperiodic nature of
the M-QPS, we also show Poincaré sections for three different values of
J in Fig. 3.4. As J is lowered the torus corrugates as typically observed
in the transition to chaos via fractalization of the torus (Curry and Yorke,
1978), see Fig. 3.4(b). The torus breaks down around J = −10.5, and the
attractor turns fractal. Notably, the chaotic attractor achieves rapidly an
information dimension larger than three according to the Kaplan-Yorke
formula (Kaplan and Yorke, 1979) since λ1 > |λ3|, see bottom panel
of Fig. 3.3; in contrast with the dimension slightly above two found in
(Pazó and Montbrió, 2016) for the chaotic attractor born from the period
doubling cascade. It is important to stress that, in spite of the positive
Lyapunov exponent (of the collective dynamics), the microscopic dy-
namics remains nonchaotic, because the individual oscillators have only
one degree of freedom. In fact the structure of the model imposes the
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Figure 3.5: Numerical exploration of the partially synchronized states (QPS,M-
QPS, collective chaos) near the supercritical Hopf bifurcation in phase diagram
Fig. 3.1. In the light gray region the largest Lyapunov exponent is zero, and
QPS is stable. The purple dots correspond to two vanishing Lyapunov expo-
nents, indicating quasiperiodic dynamics. In the cyan region the dynamics is
chaotic. The vertical dashed black line at

√
η̄ = 3.6 corresponds to the range of

parameters explored in Fig. 3.3.

neurons to fire sequentially, see Fig. 3.2(d3). Finally, the inset in Fig. 3.3
is our conjecture of how the two bifurcation sequences in the main panels
are connected: the unstable branch the SN bifurcation collides with the
symmetric QPS state at the TC bifurcation.
In the preceding figures we have shown the transitions along a specific
η̄ value. Seeking a more global picture we decided to sweep parame-
ters J and η̄ monitoring the largest Lyapunov exponents. This permits
to identify the attractor types efficiently. Figure 3.5 shows the region
spanned by partially synchronized dynamics *. The light gray and purple
regions indicate QPS and M-QPS states, respectively, while cyan dots
correspond to chaotic dynamics. It surprised us the extension of the
parameter region where QPS coexists with full synchrony (light shaded

*Actually, we have not explored the region close to the supercritical bifurcation just
above

√
η̄ = 2π.
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unhatched area). There is a “tongue” extending to very negative J values
around

√
η̄ = 4.7 that looks like an “echo” at 3π/2 = 4.712 . . . of the

infinite tongue just below
√
η̄ = π. We have not an intuitive explanation

for this. Quasiperiodic dynamics (M-QPS) is found always not far from
the degenerate point were the instability boundaries for n = 1 and n = 2,
see Eq. (3.10), meet. This is probably not casual (further analysis is
nonetheless beyond our scope*). Regarding the chaotic state, it shows up
in two distinct regions: the leftmost one is related to the period-doubling
scenario observed in (Pazó and Montbrió, 2016), while the rightmost one
is correspond to the quasiperiodic route uncovered here.

3.4 Populations of Heterogeneous neurons

In this section we consider that the neurons in the network are non-
identical, and investigate how this alters the phase diagram in Fig. 3.1,
and the partially synchronous states depicted in Fig. 3.2. Hence, in the
following we assume that the half-width ∆ of the Lorentzian distribution
Eq. (3.6) is not zero. Under the presence of Lorentzian heterogeneity fully
and partially synchronous states discussed previously are unattainable.
In the following the generic term ‘partial synchronization’ refers to any
state of the network which is not an incoherent state.

States reminiscent of QPS and collective chaos persist for finite values
of ∆, with individual neurons displaying different motions depending on
their native Tj values. We denote these states as partial synchronization-I
(PS-I) and PS-II for the states reminiscent of full synchrony and QPS, re-
spectively. In PS-I most neurons are 1:1 entrained to the global frequency,
and the remaining neurons are either entrained with a different ratio or
display quasiperiodic dynamics. In the case of PS-II only a minority of
the neurons entrains 1:1 with the macroscopic oscillation. We use the
distinction between PS-I and PS-II for convenience, but we emphasize
that there is not a clearcut distinction between both states and one can
transit from one to the other continuously. As for the other states, the
asynchronous state continues to exist after introducing the heterogeneity,
although not in the form of a splay state. Finally, M-QPS is replaced by a
modulated PS states, or M-PS, while collective chaos continues to exist,

*The degenerate point is a codimension-three point because the instability for n = 1
is degenerate exactly at that point (see the Supplemental Material of (Pazó and Montbrió,
2016)).
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see Table I.
Next we analyze how the stability regions of incoherence, which can

still be analytically computed from the FRE Eqs. (3.9), change due to the
presence of heterogeneity. Unfortunately, in the heterogeneous case, a
stability analysis similar to that of Sec. IVA for the case of synchronous
states is not possible. Later in this section we examine how the partially
synchronized states found in the region η̄ > 0 for identical inhibitory
neurons are altered by quenched disorder.

3.4.1 Stability boundaries of incoherence and phase di-
agram for ∆ = 0.1

It is important to note that the presence of heterogeneity removes all
degeneracies of the FRE Eqs. (3.9). The fixed points can be still obtained
in parametric form, as well as the boundaries corresponding to saddle-
node bifurcations of the asynchronous/incoherent states, [green lines
in Fig. 3.6]. However, these expressions are lengthy and here we omit
them for the sake of clarity, see (Montbrió et al., 2015). Linearizing and
imposing the condition for marginal stability, also the loci of the Hopf
bifurcations can be obtained in parametric form [black lines in Fig. 3.6].
We finally used numerical simulations of Eqs. (3.9) to detect the regions
where partially synchronous states become unstable, or cease to exist
[dark gray region in Fig. 3.6].

The phase diagram in Figure 3.6 summarizes these results for ∆ =
0.1, and displays the regions where distinct dynamics occur —compare
with the phase diagram Fig. 3.1. As expected, close to the J = 0 axis
incoherence is the only attractor of the system (dark shaded). Like in
the case of identical neurons, bistability regions between incoherence
and another state(s) exist (light shaded). Interestingly, for inhibitory
coupling, the Hopf bifurcations of the asynchronous state largely overlap
with the numerical boundaries of ‘pure’ incoherence (dark shading). This
indicates that, for inhibitory networks, the intervals where the Hopf
bifurcations are supercritical are dramatically enlarged as heterogeneity
is increased.

3.4.1.1 Phase diagram in the region η̄ < 0

Figure 3.7 displays an enlarged view of the phase diagram Fig. 3.6,
around the brown region located at η̄ < 0. The scenario of bifurcations
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Figure 3.6: Phase diagram for populations of heterogeneous neurons, ∆ = 0.1.
Dark shaded region: Incoherence (fixed point) is the only stable state. Light
shaded region: Incoherence (fixed point) coexist with a partially synchronous
state (limit cycle). Brown region: Two forms of asynchrony (high and a low
activity fixed points) coexist with a partially synchronous state. Green lines are
saddle-node bifurcations, and black lines correspond to Hopf boundaries. Note
that here, in contrast with Fig. 3.1, the Hopf boundaries are not represented in
Blue/Red (we do not explicitly specify whether these boundaries are subcritical
or supercritical). The boundary between light and dark shaded regions was
obtained numerically.
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Stable limit cycle

Unstable fixed point

Stable fixed point

Unstable limit cycle

Cusp

Figure 3.7: Enlarged view of the region of multistability located at η̄ < 0 in
Fig. 3.6. Black line: Hopf bifurcation (subcritical). Green lines: saddle-node
bifurcations. In the dark shaded region, only the quiescent, low activity state
is stable. In the light shaded region, incoherence coexists with a collective
oscillatory state —self-sustained due to recurrent excitation. In the brown region
the low activity fixed point coexists with a high activity fixed point and with
the oscillatory state. In the small dark purple region only the two high and
low activity fixed points are attracting. Right panels: Sketches of the Poincaré
section in different regions (assuming that it coincides with the one-dimensional
manifold that connects different fixed points). The thick lines indicate two-
dimensional manifolds, and periodic orbits are indicated by a point surrounded
by a small circle.

is quite intricate in this region, and here we describe it in detail. The
brown shaded region is interesting since a high-rate and a low-rate fixed
points —reminiscent of the fixed points a+ and q−— coexist with a
periodic orbit. In Fig. 3.7 we have included two dashed lines corre-
sponding to bifurcations involving saddles and/or repellors to fully clarify
the transitions between different stable states. We also highlight two
codimension-two points: the cusp point where the two saddle-node bifur-
cations meet, and the zero-Hopf (ZH) point —associated to a zero and a
pair of pure imaginary eigenvalues. The different shadings in the figure
indicate regions with qualitatively different attractors: in the dark region
(I) only one fixed point is stable. In the small dark purple region (II) this
fixed point coexists with another stable fixed point. In the light shaded
areas (IV,V,VI) a stable fixed point coexists with a stable limit cycle. This
limit cycle is the only stable attractor in the white region (VII). Finally,
in the brown region (III), there are three coexisting stable attractors: two
fixed points, and a limit cycle.

The transitions between any two regions in the diagram can be un-
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derstood considering a three-dimensional space. In the right panels of
Fig. 3.7 we present sketches of the phase portraits of the different sta-
bility regions, by means of Poincaré sections. Thick lines represent
two-dimensional manifolds. Comparing the phase diagram in Fig. 3.7
with the results previously obtained for instantaneous interactions (Mont-
brió et al., 2015), we see that the delay promotes the appearance of a
Hopf bifurcation of the asynchronous state. Note that the scenario shown
in Fig. 3.7 resembles that of a population of heterogeneous QIF neurons
with fast synaptic kinetics (Ratas and Pyragas, 2016), but here we find a
codimension-two ZH point, instead of a double-zero eigenvalue point.

3.4.2 Numerical analysis of partially synchronized states
in the presence of heterogeneity

Here we explore numerically how the presence of heterogeneity trans-
forms the partially synchronized states described in Sec. IV. In order
to circumvent sample-to-sample fluctuations, ηj values are selected
deterministically from the Lorentzian distribution setting ηj = η̄ +
∆ tan [π(2j −N − 1)/(2N + 2)], where j = 1, 2, . . . , N . States remi-
niscent of previous partially synchronous states persist for ∆ 6= 0; in
columns (1,2) of Fig. 3.8 we show the macroscopic time series of PS-II,
M-PS and collective chaos, where blue lines represent numerical inte-
gration of the FRE (3.9) and red lines simulation of a population of
QIF neurons. All the three states are clearly reminiscent of the QPS,
M-QPS and collective chaos states for identical neurons. In the columns
(3-5) of Fig. 3.8 we also show the raster plots of the spiking activity
of the population of QIF neurons together with the return plots and ISI
histograms of a single neuron of the population. Due to the presence
of heterogeneity, in the PS-II state neurons can be either periodic or
two-frequency quasiperiodic, while in the M-PS they can be two- or
three-frequency quasiperiodic, see Table 3.1. The illustrative neuron cho-
sen to plot the return maps and ISI histograms of Fig. 3.8 are, respectively,
two-frequency and three-frequency quasiperiodic for panels (a4,a5) and
(b4,b5). Note how, as in the QPS-asym in Fig. 3.2(f), the histogram of
ISIs for a quasiperiodic neuron in the PS-II state has three peaks, due to
the asymmetric shape of the limit cycle.

To further characterize the microscopic dynamics of PS-II, M-PS and
collective chaos, in Fig. 3.9 we calculate the time-averaged coupling-
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Figure 3.8: Macroscopic (columns 1-2) and microscopic (columns 3-5) dynam-
ics of (row a) PS-II states, (row b) M-PS states, and (row c) collective chaos for
heterogeneous neurons, —see Fig. 3.2 and Table 3.1. Column 1: Time series of
the firing rate for the FRE Eqs. (3.9) (blue) and for a population of N = 2000
QIF neurons Eqs .(3.1) (red dotted). Column 2 shows the corresponding attrac-
tors, obtained using the FRE. In rows (a) and (b), the dynamics is periodic but,
in contrast with the identical case, here the limit cycle is asymmetric due to
the presence heterogeneity. Column 3 shows the raster plots corresponding to
numerical simulations of a population of N = 2000 QIF neurons Eqs. (3.1),
and columns 4 and 5 show the corresponding return plots and ISI histograms,
respectively. In the raster plots, each neuron index j corresponds to a specific
ηj value (see text). For the computation of return plots and ISI histograms
we used neuron j = 500. In panels (a4) and (b4) one can see that the neuron
behaves quasiperiodically, with two and three incommensurable frequencies,
respectively. Note also the three peaks in panel (a5) due to the asymmetry of the
limit cycle. In all panels we use ∆ = 0.1,

√
η̄ = 3.5, and (row a) J = −9.60;

(row b) J = −10.70; (row c) J = −11.30.

modified ISIs of the neurons, and plot them against each neuron natural
ISI Tj . In the PS-II state shown in panel (a), the frequencies of the
upper and lower plateaus correspond, respectively, to the average period
between two consecutive peaks of the mean field, and to the period of the
mean field oscillation in Fig. 3.8. Here it is convenient to recall Table 3.1,
where the relations between macroscopic and microscopic dynamics are
indicated.

Finally, we investigate the bifurcations that connect these partially
synchronous states, again relying on the computation of the Lyapunov
spectrum of Eqs. (3.9). As we did in Section IV for identical neurons,
we evaluate the four largest Lyapunov exponents along the J direction
in the phase diagrams, near the Hopf bifurcation. Figure 3.10 reveals a
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scenario qualitatively similar to the identical case (except that, at least for
the specific η̄ value adopted, no bistability was detected). Starting from
a fixed point, the Hopf bifurcation produces a periodic solution (PS-II)
with a vanishing largest LE, which then undergoes a Neimark-Sacker
bifurcation leading to a quasiperiodic solution (M-PS). Eventually, this
quasiperiodic solution breaks down giving rise to a chaotic state. Finally,
increasing inhibition above a critical level makes the Lyapunov exponents
to change abruptly, and chaos is suddenly replaced by a periodic orbit
(PS-I). This is in consistency with an exterior crisis undergone by the
chaotic attractor.
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Figure 3.9: Time-averaged coupling-modified ISIs as a function of the intrinsic
ISI for a population of 2000 QIF neurons in three different states: (a) PS-
II, (b) M-PS, and (c) collective chaos. The red dots are obtained with direct
simulations of the population of QIF neurons, while the blue line is obtained
forcing each neuron with the FRE. Note the multiple plateaus in the middle panel.
Parameters are as in Fig. 3.8:

√
η̄ = 3.5 and (a) J = −9.60; (b) J = −10.70;

(c) J = −11.30.

3.4.3 Boundaries of incoherence for large heterogene-
ity

At this point, we discussed a fixed value of the heterogeneity ∆ = 0.1. We
now study the effect of increasing values of ∆ on the stability boundaries
of incoherence. As previously discussed, the Hopf bifurcations become
increasingly supercritical as the level of heterogeneity grows, and this
is particularly pronounced for inhibitory coupling. Hence the Hopf
boundaries are a good proxy to bound the regions with oscillations of
either type (PS-I, PS-II, M-PS, collective chaos).
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Figure 3.10: The four largest Lyapunov exponents for ∆ = 0.1 and
√
η̄ = 3.5.

The stability regions of the different attractors are indicated by vertical gray
dashed lines.

Figure 3.11 shows the Hopf boundaries increasing values of ∆.
Note that the region of oscillations for inhibitory coupling progressively
shrinks, and eventually disappears from the diagram. Accordingly, given
a value of η̄, there is a value of ∆ for which, no matter how strong inhibi-
tion is, the neurons will not synchronize. The fragility of the oscillations
against heterogeneity is consistent with previous computational studies
of networks of inhibitory, conductance-based spiking neurons (Wang and
Buzsáki, 1996; White et al., 1998; Tiesinga and José, 2000). However,
note that synchronization can always be achieved for strong enough ex-
citatory coupling. This highlights a fundamental asymmetry between
the excitatory and the inhibitory oscillatory regions in networks of QIF
neurons. We emphasize that this asymmetric behavior is not found in
the heterogeneous Kuramoto model with delay (Earl and Strogatz, 2003;
Montbrió et al., 2006; Lee et al., 2009). A possible explanation for such
asymmetry is that, at variance with other self-sustained oscillators, QIF
neurons cease to oscillate for strong enough inhibition. On the contrary,
excitation just speeds up QIF neurons, which remain oscillatory.
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Figure 3.11: Increasing the level of heterogeneity ∆ reveals different synchro-
nization scenarios for excitation and inhibition (see text). Black, dark blue, blue
and light blue lines correspond, respectively, to the Hopf boundaries of Eqs. (3.9)
with ∆ = 0.1, 5, 10, 20. These boundaries determine the regions of stability of
the incoherent/asynchronous states. In the shaded regions incoherence is stable
for ∆ = 0.1. In the dark shaded region the only attractor is incoherence.

3.5 Conclusions and Discussion

We analyzed the dynamics of a large population of QIF neurons with
synaptic delays. To a large extent the analysis was carried out using
the FRE Eqs. (3.9), which is mathematically tractable and allows for an
efficient computational analysis. For identical neurons, we have extended
the analytical results in (Pazó and Montbrió, 2016) to the excitable regime
(η̄ < 0). Our analytical predictions pointed out parameter regimes where
non-trivial dynamics should necessarily occur. In these regions of pa-
rameters we performed an extensive numerical exploration supported by
the computation of the Lyapunov spectrum, which revealed the existence
of partially synchronous states. One of these states, which we called
M-QPS, appears after a Neimark-Sacker bifurcation of QPS that super-
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imposes a second (modulating) frequency. Partially synchronous states
—especially QPS— coexist with full synchronization in a large region
of the parameter space. The existence in the phase diagram Fig. 3.5 of
what looks like a second tongue for QPS is an intriguing finding of this
work. Can its origin be understood, at least heuristically? We finally
showed that the partially synchronized states observed in the absence
of disorder also have their counterpart in the presence of heterogeneity.
However, disorder induces diversity in the microscopic behaviors of the
single neurons.

To conclude, we demonstrate that most of the dynamics of the FRE
Eqs. (3.9) investigated here cannot be reproduced using traditional firing
rate models (Wilson and Cowan, 1972; Dayan and Abbott, 2001; Gerstner
and Kistler, 2002; Ermentrout and Terman, 2010). To show this we note
that the fixed points of Eqs. (3.9) have precisely the structure of traditional
firing rate models, while the dynamics is generically different (Devalle
et al., 2017). Solving the fixed point equation corresponding to Eq.(3.9a)
for v, and substituting it into the fixed point equation corresponding to
Eq. (3.9b), one obtains an equation for the steady firing rate

r∗ = Φ(Jr∗ + η̄). (3.16)

The function

Φ(x) =
1√
2π

√
x+
√
x2 + ∆2,

is the so-called ‘transfer function’ of a population of QIF neurons with
Lorentzian distribution of currents (Devalle et al., 2017; Laing, 2014)
—steady state equations for arbitrary distributions of currents can be
obtained self-consistently, see Eq. (C1) in (Montbrió et al., 2015). Clearly,
the traditional first-order firing rate model with time delays

ṙ = −r + Φ(JrD=1 + η̄), (3.17)

largely investigated in the literature has exactly the same fixed points as
Eqs. (3.9), but different dynamics —see e.g. (Roxin et al., 2005; Battaglia
et al., 2007; Brunel and Hakim, 2008; Roxin and Montbrió, 2011; Ledoux
and Brunel, 2011; Keeley et al., 2017; Kim et al., 2018) for studies of
Eqs. (3.17) using different transfer functions. Indeed, the linear stabililty
analysis of the fixed points of Eq.(3.17) gives the characteristic equation

λ = −1 + Φ′Je−λ,
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Figure 3.12: Oscillations emerge only for inhibitory coupling in the traditional
firing rate model Eq. (3.17). In the gray region, limited by the black line
(∆ = 0.1), the fixed point determined by Eq. (3.16) is stable and looses stability
via a Hopf bifurcation —compare with Fig. 3.11. The dark blue, and blue
curves respectively correspond to ∆ = 5, and 10. The green dashed boundary
corresponds to the case ∆ = 0 and is a straight line.

where λ is an eigenvalue, and Φ′ is the derivative of the transfer function
evaluated at the fixed point r∗, determined by Eq. (3.16). The nonsta-
tionary instabilities (obtained using the condition of marginal stability
λ = iΩ) are depicted in Fig. 3.12 for different values of the heterogeneity
∆, and clearly differ from the Hopf boundaries of the FRE (3.9) shown
in Fig 3.11. Specifically, the traditional firing rate model Eq. (3.17) only
displays oscillations for inhibitory coupling and η̄ > 0, while the FRE
Eqs. (3.9) show oscillations for both excitation and inhibition, even for
η̄ < 0 —see Figs. 3.1, 3.6, and 3.11. Moreover, the tent-shaped structure
of the Hopf boundaries of Eqs. (3.17) is lost in the traditional firing rate
model Eq. (3.17).

Nonetheless note that as the heterogeneity ∆ is increased, the behav-
ior of the Hopf boundaries of Eq. (3.17) qualitatively agrees with that of
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the FRE Eqs. (3.9): The region of oscillations in both models shifts to
large η̄ values, in consonance with the well known result that quenched
heterogeneity cannot be counterbalanced by inhibitory coupling to pro-
duce synchronization (Wang and Buzsáki, 1996; White et al., 1998;
Tiesinga and José, 2000; Devalle et al., 2017). Moreover, we have shown
that for large heterogeneity the Hopf boundaries of Eqs. (3.9) become
supercritical, and this coincides with what is generically found in tradi-
tional firing rate models with small delays (Roxin and Montbrió, 2011).
In fact, though Eq.(3.17) is heuristic, it has proven to be remarkably
effective at describing the oscillatory dynamics of networks of spiking
neurons with strong noise (Roxin et al., 2005; Battaglia et al., 2007;
Brunel and Hakim, 2008; Roxin and Montbrió, 2011; Ledoux and Brunel,
2011; Keeley et al., 2017; Kim et al., 2018; Senk et al., 2018), and is a
paradigmatic mean-field model to investigate the effect of various types
of delays in neuronal networks, see e.g. (Hutt and Atay, 2006; Bressloff
and Kilpatrick, 2008; Venkov et al., 2007; Coombes and Laing, 2009;
Faye and Faugeras, 2010; Touboul, 2012; Wilson et al., 2012; Veltz, 2013;
Veltz and Faugeras, 2013; Faye and Touboul, 2014; Dijkstra et al., 2015).

Finally, we want to note the resemblance of the partially synchro-
nized states investigated here with the so-called sparsely synchronized
states (Brunel and Hakim, 2008), in which strong inhibition and noise
produce irregular spiking but a coherent macroscopic oscillation. Remark-
ably, in both states the period of the macroscopic oscillation is determined
by the time delay but differs from the ISIs of the single cells. However,
microscopically, the neurons have a qualitatively different behavior: in
the QPS, their dynamics is purely deterministic and quasiperiodic, while
in the sparse synchrony it is stochastic and irregular.
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CHAPTER 4

Firing rate equations with synaptic kinetics
and fixed delays

In the previous chapters, we separately analyzed the effect of time de-
lays and synaptic kinetics on the dynamics of large networks of spiking
neurons. However, the postsynaptic response to a presynaptic action
potential is typically characterized by both ingredients, a brief latency
(of the order of a few milliseconds, see e.g. (Markram et al., 1997)),
followed by a (fast) increase and subsequent decrease of the postsynaptic
ionic current.
In this chapter we analyze the QIF-FRE including both a fixed delay and
a differential equation for the synaptic kinetics. The model equations we
consider are:

τmṘ =
∆

πτm
+ 2RV, (4.1a)

τmV̇ = V 2 − (πτmR)2 + JτmS + Θ, (4.1b)
τdṠ = −S +RD. (4.1c)

Note that the fixed point solutions of Eqs. (4.1) are the same as those
of the QIF-FRE discussed in chapters 2 and 3. They can be expressed
in compact form as V∗ = −∆/(2πτmR∗), S∗ = R∗, where R∗ is the
solution of the implicit equation R∗ = Φ(R∗) and Φ is the transfer
function for QIF neurons Eq. 2.3.
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In this chapter, we will restrict the analysis to Θ > 0, i.e. regimes where
the majority of neurons in the population are rhythmically firing.
The number of free parameters in the model equations (4.1) can be
reduced with a suitable rescaling. Adopting the same rescaling used in
the previous chapter*, we obtain the following (non-dimensional) firing
rate equations:

ṙ =
δ

π
+ 2rv, (4.2a)

v̇ = v2 − (πr)2 + js+ 1, (4.2b)
τ ṡ = −s+ rd. (4.2c)

In the next section we analyze the stability of the fixed point of Eqs. (4.2).

4.1 Oscillatory instabilities
To analyze the stability of the stationary solution of Eqs. (4.2), we lin-
earize around the fixed point setting r(t) = r∗+ δreλt, s(t) = s∗+ δseλt

and v(t) = v∗ + δveλt. We then obtain the following characteristic
equation:

2jr∗e
−λd = (1 + λτ)

[
(2πr∗)

2 +

(
λ+

δ

πr∗

)2
]
. (4.3)

Clearly, Eq. (4.3) reduces to the characteristic equation Eq. (2.4) of the
system with vanishing delays when d → 0. Imposing the condition of
marginal stability λ = iω, we obtain the two following conditions:

ω2

(
1 +

2δτ

πr∗

)
− 4π2r2

∗ −
(

δ

πr∗

)2

= −2jr∗ cosωd,(4.4a)

ω

[
τω2 −

(
2πδr∗ + 4τ (πr∗)

4 + τδ2
)

(πr∗)
2

]
= 2jr∗ sinωd. (4.4b)

*The only extra parameter to be rescaled comparing to Chapter 3 is D. The di-

mensionless variables are then t̃ =

√
Θ

τm
t, r =

τm√
Θ
R, v =

V√
Θ

. The new parameters

are: j =
J√
Θ

, δ =
∆

Θ
, τ =

√
Θ

τm
τd, d =

√
Θ

τm
D. The overdot in Eqs. (4.2) represents

derivative w.r.t. the dimensionless time t̃.
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Explicit solutions of Eqs. (4.4) cannot be found; however, parametric
formulas for the Hopf bifurcations can be obtained. We first illustrate the
simpler case of an identical population of neurons, δ = 0.

4.1.1 Identical neurons δ = 0

Setting δ = 0 in Eqs. (4.4), it is possible to find explicit solutions for d
and j, as a function of the Hopf frequency ω. As in the QIF-FRE with
instantaneous synaptic kinetics and fixed delays (Chapter 3), the system
dynamics is characterized by a sequence of Hopf bifurcations. The Hopf
boundaries are given by

j
(n)
H = πα1/2

n

(
ω2
n − 4

)
×
{

(4α−1
n + 8 + 4ω2

nαn + 2ω2
n)
−1/2

, odd n
(4α−1

n − 8 + 4ω2
nαn − 2ω2

n)
−1/2

, even n
(4.5)

d
(n)
H =

nπ − arctan (τωn)

ωn
, (4.6)

where αn =
√

1 + τ 2ω2
n and n ∈ Z. When τ → 0, we have αn = 1

and ωn = nπ/d, then recovering the equations of chapter 3 and (Pazó
and Montbrió, 2016) *. Remarkably, the formula for the Hopf frequency
given by Eq. (4.6) coincides with the formula obtained by Brunel and
Wang for the oscillations the emerge in networks of inhibitory spiking
neurons with strong noise, the sparsely synchronized state (Brunel and
Wang, 2003).
The boundaries Eqs.(4.5,4.6) can be plotted in the plane (d, j) for dif-
ferent values of parameter τ . The resulting phase diagrams are shown
in Fig. 4.1. The black lines represent the Hopf bifurcations; in the dark
shaded region the fixed point is stable. The tent-shaped structure of
both panels is clearly reminiscent of the phase diagrams obtained in the
previous chapter for the QIF-FRE with fixed delays. The slower the
synaptic kinetics, the more the shape of the tents is modified (right panel
of Fig. 4.1). Regions of stable incoherence grow, as the intersections
between consecutive Hopf lines shift to larger coupling strengths.
The range of values that parameters can assume is limited by physi-
ological constraints. We then also plot the Hopf lines Eq. (4.5) with

*For this reason we indicate ω as ωn in Eqs. (4.5), even if in this formulation ω has
no explicit dependence on n.
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Figure 4.1: Phase diagram of the model Eqs. (4.2) for τ = 0.5 (left) and τ = 5
(right). The black lines are the Hopf bifurcations Eqs.(4.5). Gray shading
indicates stability of the fixed point.

dimensional parameters. Synaptic latencies typically are of the order of
a few milliseconds (Markram et al., 1997). On the other hand, synaptic
decay time constants may vary from a few milliseconds (fast inhibitory
GABA-mediated synapses), to tens of milliseconds (slow excitatory
NMDA neurotransmitters) (Roth and van Rossum, 2009). In Fig.4.2,
we show the phase diagram for Eqs. (4.1) for two values of the intrinsic
period of the neurons (left panel: 5 Hz, right panel: 60 Hz) and two
values of the synaptic time constant (solid lines: τd = 5 ms, dashed lines:
τd = 100 ms).
In this range of delays, between 0 and 10 ms, only the first three Hopf
lines affect the dynamics of the system. When neurons have a low intrin-
sic firing rate (left panel), oscillations exist mainly in the inhibitory region
of the diagram. However, with strong enough coupling and sufficiently
large delay, the system undergoes an Hopf bifurcation also for excitatory
coupling. With higher intrinsic firing of the neurons (right panel), the
crossing of the first Hopf line with the axis J = 0 is at D ' 5 ms, so that
the regions of oscillations for excitatory coupling enlarges. As a counter
effect, here larger delays prevent oscillations for inhibitory coupling.
In both panels, the effect of increasing the synaptic time constant τd is
modest and mainly quantitative, as it slightly shifts the Hopf lines toward
shorter delay (see dashed lines in Fig. 4.2).
These findings indicate that the dynamics of the system strongly depends

on the presence of a fixed synaptic delay. Indeed, the effect of varying
the synaptic time constant produce no qualitative changes of the phase
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Figure 4.2: Phase diagram of the model Eqs. (4.1) for slow (left) and fast (right)
intrinsic frequency of the neurons. The black lines are the Hopf bifurcations
Eqs. (4.5). The synaptic time constant τd is equal to 10 ms for the solid lines
(fast synapses), and to 100 ms for the dashed lines (slow synapses). Grey regions
indicate stability of incoherence. Left panel: η = 3.58. Right panel: η = 0.024.
In both panels, τm = 10 ms.

diagram of the model. The characteristic tent-shaped structure of the
Hopf bifurcations of the equations with fixed delays persist when the
decay time of the synapses is finite. On the other hand, even short delays
of the order of few milliseconds (in range with experimental observations
of synaptic latencies, see e.g. (Markram et al., 1997)) induce oscilla-
tory dynamics for excitatory coupling, in contrast to the case of first (or
second–not shown) order synaptic kinetics, where oscillations appear
only for inhibitory interactions.

4.1.2 Heterogeneous neurons δ 6= 0

We now consider an heterogeneous population of neurons, taking δ 6= 0
in Eqs. (4.2). In this case, explicit parametric formulas for j and d cannot
be found from Eqs. (4.4), as the fixed point solution of Eqs. (4.2) can be
found only numerically.
To plot the Hopf boundaries, we apply the following procedure. Given
a value of r∗, from the fixed point condition we find jfp = j(r∗). Then,
we can solve Eq. (4.4b) for d = d(jfp, ω). Substituting the solution in
Eq.(4.4a), we obtain a numerical solution for ω. We can then plot the
boundaries in the plane (d, j), varying parametrically r∗, for different
values of δ. The resulting phase diagrams, for τ = 0.5 and τ = 5, are
shown in Fig. 4.3. Comparing to the case δ = 0, here incoherence is
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Figure 4.3: Phase diagram of the model Eqs. (4.2) for different values of the
heterogeneity δ and the synaptic time constant τ . Left panel: τ = 0.5. Right
panel: τ = 5. The scatter points represent the Hopf boundaries obtained
from Eqs. (4.4). Different colors stand for different values of the heterogeneity.
Oscillations are present inside the islands defined by the Hopf lines.

always stable for small coupling strengths. For small heterogeneity and
vanishing delay, for both values of τ , incoherence is unstable in a range
of negative j values. This range corresponds to the islands of stable
oscillations of the model without delays described in the Chapter 2 (see
Fig. 2.3). Increasing heterogeneity, while the boundaries in the positive
j region persist for large enough coupling, for inhibitory coupling they
progressively shift to larger delay values. This is particularly pronounced
for large τ values, where already for small values of δ oscillations appear
only for large values of the delay. Eventually, the Hopf boundaries com-
pletely disappear from the inhibitory region of the diagram. A numerical
estimation of the critical value of δ at which the diagram disappears gives
δc = 0.577 . . . for both τ = 0.5, 5. Thus, oscillations are fragile against
heterogeneity in inhibitory networks consistently across the three forms
of synaptic coupling considered in this thesis.
As in the previous section, we also show the phase diagram of the system
in a parameter space with physical dimensions. The diagram is shown
in Fig. 4.4; the parameters chosen are the same as in the right panel of
Fig. 4.2. In this range of delays, oscillations appears for both excitatory
and inhibitory coupling. While for excitatory coupling, sufficiently in-
creasing the synaptic strength may lead to oscillations, the oscillations
rapidly disappear from the inhibitory region of the diagram.
In the next section, we analyse the dynamics of traditional firing rate
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Figure 4.4: Phase diagrams of the QIF-FRE Eqs. (4.1) for different values of
the heterogeneity ∆ and fast synaptic kinetics τd = 5 ms. The scatter points are
the Hopf boundaries. Different colors correspond to different values of ∆. All
other parameters are as in right panel of Fig. 4.2.

equations with fixed delays and first order synaptic kinetics, to compare
it with the results obtained with the QIF-FRE.

4.2 Wilson-Cowan equations with fixed delays
and synaptic kinetics

A Wilson-Cowan-type equation with both synaptic kinetics and a fixed
delay takes the form:

τmṘ = −R + Φ(JτmS + η̄), (4.7a)
τdṠ = −S +R(t−D), (4.7b)

where, as in previous chapters, we choose the function Φ to be the trans-
fer function for QIF neurons Eq. (2.3). The fixed points of Eq. (4.7),
determined by the conditions R∗ = Φ(R∗) and S∗ = R∗, clearly are
the same of Eqs. (4.1). Here, we analyse the model without rescaling
parameters, even though the same rescaling adopted for the QIF-FRE can
be employed.
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This model, with fixed delays and synaptic kinetics, also display oscil-
lations, which are induced by the time delay D. Linearizing around the
fixed point and imposing the condition of marginal stability λ = iΩ, we
obtain the following conditions for the emergence of oscillations:

(τm + τd)Ω

1− τmτdΩ2
= − tan(ΩD), (4.8a)

(τd + τm)Ω = −τmJΦ′ sin(ΩD), (4.8b)

where Φ′ is the derivative of the transfer function evaluated at the fixed
point. Eqs. (4.8) clearly reduce to Eqs. (1.9) when τd → 0.
Solving for D and Ω, we find:

D
(n)
H =

arctan

[
(τm + τd) Ω

τmτdΩ2 − 1

]
+ nπ

Ω
, (4.9a)

Ω =

√
−τ 2

m − τ 2
d +

√
(τ 2
m − τ 2

d )
2

+ 4J2τ 2
d (Φ′)2

√
2τmτd

, (4.9b)

where n ∈ Z.
Hence Eqs. (4.9) together with the fixed point condition Φ(R∗) = R∗,
permit to plot the Hopf boundaries in the (D, J) plane for several values
of the heterogeneity ∆. The resulting diagram is shown in Fig. 4.5. In
contrast to the QIF-FRE, here only the first Hopf line n = 1 is relevant
for the dynamics of the system, as the subsequent Hopfs destabilize
already unstable solutions. Moreover, this line exists only for negative
values of the coupling J , in contrast with the QIF-FRE, where oscillatory
instabilities exist also for excitatory coupling.
For identical neurons (∆ = 0), the difference between the H-FRE and
the QIF-FRE is pronounced also for negative couplings: for short delays,
the QIF-FRE display oscillatory behaviour, in contrast to the H-FRE
where incoherence is always stable. This result agrees with the fact that
the H-FRE with first order synaptic kinetics do not show oscillations,
unless some delay is explicitly considered into the equations (Keeley
et al., 2017; Devalle et al., 2017). We note that, if second order kinetics is
considered (e.g. alpha synapses), then the H-FRE do have an oscillatory
instability for vanishing delay– not shown.
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Figure 4.5: Phase diagrams of the Wilson Cowan model Eqs. (4.7) for different
values of the heterogeneity ∆. The black line corresponds to the Hopf bifurca-
tion for identical neurons. Gray shading indicates stability of incoherence for
identical neurons. The scatter points are the Hopf boundaries obtained varying
r∗ in Eqs. (4.9). Incoherence is stable left to the Hopf boundaries. All other
parameters are as in right panel of Fig. 4.2.

4.2.1 Disappearance of oscillations for large heterogene-
ity

Increasing heterogeneity, the Hopf lines shift toward larger values of D,
as in the QIF-FRE. It is possible to compute the critical value of ∆ at
which the boundaries disappear. Indeed, imposing that the solutions of
Eq. (4.9b) must be real (positive argument of the square root), we find
the critical value: (

∆

η̄

)

c

=
1√
3

= δc. (4.10)

Note how the relevant parameter for the existence of inhibition-driven
oscillation is the previously defined dimensionless quantity δ. At this
value of δ, the Hopf frequency Ω vanishes and the boundaries tend to
D → ∞, as it can be easily verified by computing the limit ω → 0 in
Eq. (4.9a).
Interestingly, this critical value δc coincides with the critical value we
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numerically estimated for the QIF-FRE. The value does not depend on the
synaptic time constant τ ; in fact, it holds also for infinitely fast synapses.
In Fig. 3.6 of Chapter 3, it corresponds to a vertical line tangent to the
Hopf boundary, due to the different variables’ rescaling.
In the QIF-FRE, the ratio ∆/η̄ establishes the fraction of excitable vs
oscillatory neurons. The cumulative distribution of the Lorentzian density
of frequencies is:

F (η) =
1

π
arccot

(
η̄ − η

∆

)
,

which, for η = 0, gives:

F (0) =
1

π
arctan

(
∆

η̄

)
.

The critical value of the fraction of excitable (non-oscillatory) neurons is
then

Fc =
1

π
arctan δc =

1

6
.

Hence, when the fraction of excitable or inactive neurons is above ∼16%,
both the QIF-FRE and the H-FRE with delays and first order synaptic
kinetics do not display oscillations for any (D, J) values. Note that this
value does not depend on the decay time constant of the synapses τd.
On the other hand, we saw in the previous chapter that, when D = 0 in
Eqs. (4.1), such critical value reduces to ∼5 % (see section (2.5.3.1) of
chapter 2). This further indicates the importance of the time delay for
generating oscillatory behavior.

4.3 Discussion
Presynaptic and dendritic processing unavoidably produce some delay
in action potential transmission (Markram et al., 1997). Together with
postsynaptic filtering, they contribute to shape the collective dynamics of
neuronal populations. In this chapter, we analyzed the combined effect
that fixed delays and synaptic kinetics have on the QIF-FRE.
We showed that a fixed time delay is greatly determining the dynamics
of the network. In fact, even short delays of the order of a few millisec-
onds, generate oscillatory instabilities in networks of excitatory neurons.
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Oscillatory states cannot be achieved on the other hand in excitatory
networks with only first or second order synaptic kinetics. In fact, the
effect of introducing a finite time constant in the interaction is mainly
quantitative. It certainly favors the emergence of oscillatory behaviours
in physiological ranges of the synaptic latency, but does not qualitatively
alters the model dynamics.
Moreover, we conducted a similar analysis in the Wilson-Cowan equa-
tions for one recurrently coupled population with fixed delays and first
order synaptic kinetics. At variance with the QIF-FRE, the H-FRE do not
capture the excitation-driven oscillations observed in presence of delays,
neither for identical, or heterogeneous neuronal populations. The two
models, QIF-FRE and H-FRE, qualitatively agree only for inhibitory
coupling, and large heterogeneity.
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Conclusions and discussion

In this dissertation, we investigated the emerge of synchrony-driven os-
cillations in networks of spiking neurons with synaptic delays. For this
purpose, we employed a recently derived firing rate model for networks
of QIF neurons, the QIF-FRE. We were able to analyze the bifurcation
structure of the model to a large extent analytically for different forms
of synaptic delays. In parallel to the analysis of the reduced model, we
conducted extensive numerical simulations of the underlying network of
spiking neurons, which confirm the presence of several synchrony-based
oscillatory states. Moreover, we systematically compared the dynamics
of the novel QIF-FRE, to that of traditional rate equations of Wilson-
Cowan type. In the following we discuss the most relevant results that
emerged from the analysis conducted.
Synchrony-driven oscillations and heterogeneity. Synaptic delays fa-
vor the emergence of synchronization in networks of spiking neurons
(Wang and Buzsáki, 1996; Van Vreeswijk et al., 1994; White et al., 1998).
Synchronous neuronal firing is reflected at the macroscopic level by col-
lective rate oscillations. Traditional firing rate equations cannot describe
such oscillations, as they generally capture the dynamics of highly asyn-
chronous networks’ states (Wilson and Cowan, 1972; Abbott and van
Vreeswijk, 1993).
The firing rate equations employed in this dissertation faithfully capture
synchronous neuronal firing, and hence correctly display the macroscopic
self-sustained oscillations that synaptic delays generate in networks of
spiking neurons. It is well known that such synchrony-driven oscilla-
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tions are fragile against heterogeneity for inhibitory networks (Wang and
Buzsáki, 1996; White et al., 1998; Tiesinga and José, 2000). In contrast
to the Kuramoto model with time delays, where increasing (either exci-
tatory or inhibitory) coupling, may always result in a synchronization
transition (Yeung and Strogatz, 1999; Montbrió et al., 2006), networks
of inhibitory neurons cease to oscillate when heterogeneity is too strong
(Wang and Buzsáki, 1996; White et al., 1998; Tiesinga and José, 2000).
We have shown that this phenomenon is well captured and predicted by
the QIF-FRE. For all three forms of synaptic delays considered in this
thesis, oscillations in inhibitory networks are suppressed beyond a critical
value of the heterogeneity, no matter the strength of recurrent connections.

The relation of the QIF-FRE with traditional firing rate models. As
previously discussed, traditional firing rate models, at variance with the
QIF-FRE, do not describe synchronous states. The fundamental reason
for this discrepancy resides in the fact that, while traditional rate rate
models only keep track of the mean firing rate of the neuronal popula-
tion, the firing rate equations employed in this dissertation track both the
mean firing rate and the mean membrane voltage (Montbrió et al., 2015).
This difference produces important effects on the network dynamics,
particularly concerning oscillatory behavior. Already a comparison of
the QIF-FRE and traditional rate models in the simple setting of one
excitatory recurrently coupled population with instantaneous synapses,
reveals a simple but essential discrepancy. While the steady bifurcations
of the two models are the same, the high activity stable fixed point of the
QIF-FRE is a focus rather than a node (i.e. perturbations decay oscillating
to the fixed point) (Montbrió et al., 2015). This feature is what consti-
tutes the substrate in the QIF-FRE for the presence of the self-sustained
oscillatory states shown in Chapters 2 and 3 when synaptic kinetics, or
time delays, are considered.
The dynamical regimes that traditional rate models show are also cap-
tured by the QIF-FRE. The bistability among high and low activity fixed
points is inherent to the fixed point structure of the two models. The
oscillations that emerge when explicit delays are introduced in the tra-
ditional rate equations for inhibitory networks are also captured by the
QIF-FRE (Chapter 3). Interestingly, traditional rate equations are gener-
ally considered to describe highly asynchronous network states, in the
noise-dominated regime. Using the QIF-FRE however, the microstates
of the network can be directly observed, and it can be appreciated that
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the neuronal dynamics is purely deterministic, and that the network state
underlying the collective oscillations is partially synchronous (Chapter
3). This consideration further underlines the non-trivial relation among
the microscopic state of a network, and its macroscopic or collective
dynamics.
When the voltage-dependent spike synchronization mechanism is sup-
pressed the QIF-FRE and the H-FRE become formally equivalent, and
have the same dynamical behaviour (Chapter 2). This is what occurs
when synaptic kinetics is assumed to be much slower than neuronal dy-
namics (and external inputs are also slow). In this limit, the neuronal
variables (firing rate and membrane potential in the QIF-FRE, only the
firing rate in the H-FRE), rapidly converge to their fixed points, sup-
pressing the rate-voltage interplay of the QIF-FRE and therefore the
spike-synchronization mechanism.
In the case of fixed delays (Chapter 3), no formal equivalence among the
two models is found. Still, for inhibitory coupling, the phase diagrams of
the QIF-FRE and the corresponding H-FRE become increasingly similar
as heterogeneity is increased. The tendency of the QIF-FRE and H-FRE
to agree as heterogeneity is increased holds also when both synaptic ki-
netics and fixed delays are simultaneously considered (Chapter 4). Also
in the latter case, a reduction of the QIF-FRE to a Wilson-Cowan type
equation is hard to achieve and requires further investigations, as more
time scales are involved in the system dynamics (the fixed delay, the time
constant of the synaptic dynamics, and the neuronal time constant).

Dichotomy among macroscopic and microscopic dynamics. A great
advantage of the Ott-Antonsen theory is that it offers a description at
two different scales: the microscopic (single neurons) dynamics, and the
macroscopic (mean-field) dynamics. This allows to explore the relation
among the two spatial scales. From a theoretical perspective, this fact
represents a novelty in the field: typically, firing rate descriptions are
not exactly derived from the underlying network of spiking neurons, and
hence do not establish a precise relationship among the microscopic and
the macroscopic scale.
For Kuramoto-like synchronous states (e.g. the oscillations shown in
Chapter 2) the relation among neuronal and mean-field dynamics is
transparent. The neurons that contribute to the mean-field oscillations are
frequency-locked and regularly fire at the same frequency as the mean
field. On the other hand, for the partially synchronous states illustrated
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in Chapter 3, such as the QPS and the M-QPS, the micro-macro relation
is far more intricate: in the QPS, a periodic mean field is produced self-
consistently by a population of quasiperiodic neuronal oscillators. The
neurons ”feel” a periodic mean-field, with incommensurable frequency
to their own: therefore they behave quasiperiodically. Intriguingly, the
mean-field is produced by the population itself. The neurons contributing
to the peaks of the mean field change over time, at variance with the
Kuramoto-like synchronous states.
In the M-QPS, a similar reasoning can be carried out, with the difference
that here the mean-field is quasiperiodic: single neuron dynamics is
then also quasiperiodic, but with three, rather than two, frequencies.
The microscopic-macroscopic dichotomy emerges also in the chaotic
states: here, the collective dynamics is chaotic, while the single neurons
have either zero (if they are identical) or negative Lyapunov exponents
(Chapter 3 and (Pazó and Montbrió, 2016)).
Remarkably, the presence of complex partially synchronous states as
the QPS is revealed by the QIF-FRE. This fact shows the utility of low-
dimensional descriptions as the QIF-FRE to analyze and investigate the
dynamics of large neuronal networks. Thanks to their simplicity, such
firing rate descriptions allow to uncover and thoroughly analyze complex
dynamical regimes.

Open questions and perspectives for future work

The firing rate equations employed in this dissertation have shown to
be a valuable tool to investigate the dynamics of networks of spiking
neurons. Specifically, at variance with traditional firing rate equations the
QIF-FRE correctly account for synchrony-driven oscillations generated
by the interplay between recurrent network connections and synaptic
delays. Yet, the QIF-FRE also suffer some limitations, mainly due to the
assumptions made to obtain the low-dimensional description (Ott and
Antonsen, 2008, 2009; Ott et al., 2011).
Specifically:

• The connectivity structure of the network of spiking neurons is
assumed to be all-to-all. However, local cortical circuits have
complex synaptic connectivity structures, see e.g. (Song et al.,
2005);
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• The shape of the distribution of heterogeneity is Lorentzian;

• The dynamics of the single neurons is purely deterministic.

On the connectivity structure, a certain progress has been recently made
to account for more complex topologies in networks of theta neurons
(Chandra et al., 2017) and phase oscillators (Restrepo and Ott, 2014).
Additionally, mean-field approximations allow to rephrase a random
structure of the synaptic connectivity into quenched heterogeneity of the
synaptic weights (di Volo et al., 2014). This approach has been recently
employed using the QIF-FRE to investigate the dynamics of random
networks of spiking neurons (di Volo and Torcini, 2018).
Concerning the type of distribution assumed for the heterogeneity, the
QIF-FRE were shown to qualitatively capture the dynamics of the sys-
tem also for Gaussian distributed heterogeneity (Montbrió et al., 2015).
However, further studies are needed to extend the Ott-Antonsen ansatz,
and hence the QIF-FRE, to more general shapes of synaptic connectivity
and forms of heterogeneity. In the following, we discuss the role of noise,
which is probably the more compelling issue, as experimental evidence
indicates that spike train statistics of single neurons is often stochastic.

The presence of noise. Strictly speaking, the Ott-Antonsen approach,
on which the derivation of the QIF-FRE is based, holds only for deter-
ministic networks of oscillators. Still, it can be expected to capture the
qualitative dynamics of the systems as long as the noise is small, i.e. the
oscillator’s dynamics is mainly governed by the deterministic contribu-
tion (Vlasov et al., 2016). In networks of neurons, this regime is usually
called mean-driven regime. In the mean-driven regime, neuronal spiking
is substantially regular. The mean-driven regime is opposed to the noise-
driven regime, where spiking (driven by noisy inputs) is highly irregular.
Irregular spike trains are often observed both in in vivo and in vitro exper-
iments. A vast literature exists on the dynamics of noise-driven excitable
system, see (Lindner et al., 2004) for a review. A relevant example closely
related to the topics of this dissertation are the stochastic oscillations that
arise in networks of spiking neurons with recurrent delayed inhibition
and strong noise (Brunel and Hakim, 1999, 2008; Brunel and Wang,
2003). In this regime, also known as sparsely synchronized state (SPS),
the mean field oscillates with a period of about twice the delay, while
the neurons fire stochastically, with a rate much lower than the collective
oscillation. The origin of these oscillations can be intuitively understood
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as follows: strong noise guarantees the irregular microscopic firing, while
strong recurrent delayed inhibition produces windows where firing is less
likely to occur. This, in turn, induces (after a delay) windows of lower
inhibition, and therefore higher activity. The period of the collective
oscillation is then about twice the delay. Macroscopically, the SPS is
closely related to the QPS state reported in Chapter 3. In the QPS, the
collective period is also about twice the delay (or exactly twice the delay
for populations of identical neurons), and the collective oscillation can be
understood intuitively exactly in the same way as the SPS. However, the
single neurons dynamics in the two regimes is very different. In the QPS,
neurons fire quasiperiodically, with an average firing rate higher than the
mean-field; in the SPS, neurons fire irregularly at low rate. Intuitively
speaking, the QPS appears to be the ”mean-driven” correspondent regime
of the SPS: it preserves the same macroscopic collective dynamics, yet
with a strikingly different microscopic counterpart.
Some progress has been recently made to obtain low dimensional de-
scriptions for populations of noisy oscillators. A strategy to tackle the
problem has been developed in (Tyulkina et al., 2018; Goldobin et al.,
2018), based on a perturbative approach on top of the Ott-Antonsen re-
duction. The approach is perturbative on the order of magnitudes of the
noise, and could then in principle account for high noise intensities. As
noise is increased, extra equations are added to the mean-field description.
Could this approach bridge among states, and regimes, like the QPS and
the SPS? Is it actually possible to describe with macroscopic laws highly
stochastic regimes as the SPS? Could a mean-field model account both
the mean-driven and the noise-driven regimes, and be sufficiently simple
to be of practical utility? These are important questions which need to be
further explored.

Modelling perspectives. A great challenge of theoretical neuroscience
is to understand possible functional roles and underlying mechanisms
of the wide range of rhythms that are constantly observed in electrical
recordings of brain activity (Dipoppa and Gutkin, 2013; Deco et al., 2013;
Cabral et al., 2011, 2014; Freyer et al., 2011; Daffertshofer et al., 2018).
Are brain oscillations a mere epiphenomenon, or do they play a functional
role? What are the neuronal mechanisms that generate such large-scale
rhythms? Theoretical modelling should address and provide insights into
these questions.
The spike-synchronization mechanism inherent in networks of spiking
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neurons has been proposed to play a functional role in working mem-
ory (Dipoppa and Gutkin, 2013) and inter-areal brain communication
(Fries, 2005). The firing rate equations employed in this dissertation,
the QIF-FRE, readily account for a large variety of synchrony-driven
dynamical regimes, ranging from Kuramoto-like synchronous states, to
the non-trivial partially synchronous states reported in Chapter 3. Faith-
fully accounting for the spike-synchronization mechanism inherent in
networks of spiking neurons, the QIF-FRE constitute an ideal candidate
to investigate oscillations-driven brain functions. Specifically, mean-field
descriptions as the QIF-FRE have been employed to model working
memory computations (Schmidt et al., 2018), motor control (Byrne et al.,
2017), and inter-areal neuronal communication (Dumont and Gutkin,
2018).
We expect the firing rate equations studied in this dissertation to serve
as a valuable modeling tool for the neuroscience community, helping
to unravel the fundamental principles that underlie the relation between
oscillations and cognitive functions. cognitive functions.
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APPENDIX A

Numerical simulations of Chapter 1

In this Appendix, we describe the models and methods used to perform
the numerical simulations of networks of spiking neurons of Chapter 1.
The model neurons used throughout Chapter 1 are the Wang-Buzsáki
(WB) neuron (Wang and Buzsáki, 1996), and the quadratic integrate-and-
fire (QIF) neuron (Ermentrout and Kopell, 1986; Izhikevich, 2007). In
the following, we describe the equations of the model neurons employed.

A.1 Spiking neuron models

Wang-Buzsáki neuron. We numerically simulated a network ofN all-to-
all coupled WB neurons, where the dynamics of each neuron is described
by the time evolution of its membrane potential:

CmV̇i = −INa,i − IK,i − IL,i − Isyn + Iapp,i + I0.

The cell capacitance is Cm = 1 µF/cm2. The inputs Iapp (in µA/cm2)
are distributed according to a Lorentzian distribution with half width
σ and center Ī . In numerical simulations these currents were selected
deterministically to represent the Lorentzian distribution as Iapp,i = Ī +
σ tan(π/2(2i−N − 1)/(N + 1)), for i = 1, . . . , N . The constant input
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I0 = 0.1601 µA/cm2 sets the neuron at the SNIC bifurcation when
Iapp = 0. The leak current is

IL,i = gL (Vi − EL) ,

with gL = 0.1 mS/cm2, so that the passive time constant τm = Cm/gL =
10 ms. The sodium current is

INa,i = gNam
3
∞h (Vi − ENa) ,

where gNa = 35 mS/cm2, ENa = 55 mV, m∞ = αm/ (αm + βm) with
αm (Vi) = −0.1 (Vi + 35) / (exp (−0.1 (Vi + 35)− 1)),
βm (Vi) =4 exp (− (Vi+60) /18). The inactivation variable h obeys the
differential equation

ḣ = φ (αh (1− h)− βhh) ,

with φ = 5, αh (Vi) = 0.07 exp (− (Vi + 58) /20) and
βh (Vi) = 1/ (exp (−0.1 (Vi + 28)) + 1). The potassium current follows

IK,i = gKn
4 (Vi − EK) ,

with gK = 9 mS/cm2, EK = −90 mV. The activation variable n obeys

ṅ = φ (αn (1− n)− βnn) ,

where αn (Vi) = −0.01 (Vi + 34) / (exp (−0.1 (Vi + 34))− 1) and βn (Vi) =
0.125 exp (− (Vi + 44) /80).

The synaptic current is Isyn = k{E,I}CmS, where S is the synaptic
activation variable and k{E,I} is the excitatory or inhibitory coupling
strength (expressed in mV). The factor Cm ensures that the effect of
an incoming spike to the neuron is independent from its passive time
constant. The neuron is defined to emit a spike when its membrane
potential crosses 0 mV.
Quadratic integrate-and-fire neuron model. In the numerical simula-
tions of Chapter 1 we considered a population of N QIF neurons, where
each neuron is described by the differential equation:

τmV̇j = V 2
j + ηj + JτmS(t) + I(t) (A.1.1)

where j = 1, . . . , N , ηj represents the quenched heterogeneity, S is
the synaptic activity, J the coupling or synaptic strength, and I(t) an
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external time varying input. The membrane time constant τm is set to 10
ms. The inputs ηj are distributed according to a Lorentzian distribution
with half width ∆ and center Θ. In numerical simulations these currents
were selected deterministically to represent the Lorentzian distribution
as ηj = Θ + ∆ tan(π/2(2j − N − 1)/(N + 1)), for j = 1, . . . , N .
Eq. (A.1.1) is accompanied by the resetting condition:

If Vj ≥ Vth then − Vj ← Vj. (A.1.2)

According to the theoretical analysis presented in section 1.5 of Chapter
1, the resetting rule is applied as follows: when Vj ≥ Vth, the mem-
brane voltage is held at Vj for a time interval τm/Vj . Then, a spike is
emitted, and the voltage is reset and hold at−Vj for another interval τ/Vj .

Numerical simulations
In the numerical simulations carried out in Chapter 1 we considered
populations of N = 1000 WB neurons and N = 1000 QIF neurons. To
integrate the evolution equations for both the WB and the QIF spiking
model we used the Euler method. For WB neurons, we used a time step
dt = 0.001 ms, while for QIF neurons we used dt = 5× 10−5 ms. From
all the simulations, an initial transient is discarded.
In Figs. 1.3, 1.4 and 1.5 the synaptic variable is defined as S(t) =
R(t−D), where D = 3 ms and the firing rate is defined according to

R(t) =
1

Nτs

N∑

j=1

∑

k\tkj<t

∫ t

t−τs
dt′δ(t′ − tkj ), (A.1.3)

with τs = 10−2 ms.
In Figs. 1.7 and 1.8 the synaptic variable follows the first order kinetics:

τdṠ = −S +R, (A.1.4)

where R is defined according to Eq. (A.1.3) with τs = 10−2 ms.
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