
Memory Bandwidth and Latency in HPC:
System Requirements

and Performance Impact

Author:
Milan Radulović

Thesis director:
Dr. Petar Radojković

Tutor:
Dr. Eduard Ayguadé

This dissertation is submitted in fulfillment
of the requirements for the degree of

Doctor of Philosophy

Departament d’ Arquitectura de Computadors (DAC)

Universitat Politècnica de Catalunya (UPC)

March 2019

http://www.petarradojkovic.com
http://people.ac.upc.es/eduard/

 Memory bandwidth and latency in HPC:
system requirements and

performance impact

Milan Radulović

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

To my family.

Mojoj porodici.

Acknowledgments

In the year when UNIX operating system is celebrating 50 years, World
Wide Web is having its 30th birthday and v1.0 of Linux kernel is marking 25
years, I am giving a modest contribution in the form of this thesis. Finishing
it has been an interesting journey, but it paid off; AMD company is naming
their third generation of EPYC server processors after me [1].

The biggest thanks goes to my advisor Dr. Petar Radojković for all the
help, guidance and support. I am grateful he gave me the opportunity to
be a part of his group. My research ideas were considerably amplified and
properly focused thanks to him, leading to positive outcomes. Him being
motivational and incentive was very precious, especially during tight deadlines.
It was a pleasure and honor working with him. Special thanks to Dr. Paul
Carpenter, for his help in shaping and polishing of our studies. His cleverness
significantly improved the quality of our research. Nevertheless, I would also
like to thank professor Dr. Eduard Ayguadé for all the help and support
in research and administrative topics, ensuring our work goes smoothly and
without any problems.

In addition, thanks to the BSC Support and Operations departments for
their endless patience and availability to realize dozens of requests I sent.
Thanks to the BSC Tools department as well, for sharing their valuable
advices and codes.

I would like to thank the pre-defense committee and the external reviewers
for their constructive and meticulous comments which improved the quality
of this thesis.

I am thankful to all the people with whom I have been sharing the office
for past five years. You’re ideas, smiles and cookies made everyday work
enjoyable. I also thank other people that were in BSC during this time, for
inspiring lunches and awesome basketball and football games.

My gratitude goes to my family and friends, from Barcelona and Serbia,
for making my personal life joyful during PhD. Thank you all for your support
and motivation, and for bringing rakija. Also, thanks to MI Labs R© for
including me in their stunning projects.

A huge thank you goes to my parents and my sister, who believed in me
and encouraged me during these years. I wouldn’t manage without their help.

Finally, I would like to thank my wife Milica, whose patience, love and
understanding can move mountains, but produced this thesis instead. And, to
my daughter Sofija, whose smile instantly casts sunlight in darkest moments.
I am privileged being by their side.

Author

iv

This work was supported by the Collaboration Agreement between Samsung
Electronics Co., Ltd. and Barcelona Supercomputing Center; by the Spanish
Ministry of Science and Technology (project TIN2015-65316-P), Generalitat
de Catalunya (contracts 2017-SGR-1414 and 2017-SGR-1328), Severo Ochoa
Programme (SEV-2015-0493) of the Spanish Government; and the European
Union’s Horizon 2020 research and innovation programme under ExaNoDe
project (grant agreement No 671578).

v

Abstract

A major contributor to the deployment and operational costs of a large-scale
high-performance computing (HPC) clusters is the memory system. In terms
of system performance it is one of the most critical aspects of the system’s
design. However, next generation of HPC systems poses significant chal-
lenges for the main memory, and it is questionable whether current memory
technologies will meet the required goals. This motivates a lot of research
in future memory architectures, their capacity, performance and reliability.
In this thesis we focus on HPC performance aspects of the memory system
design, covering memory bandwidth and latency.

We start our study with an extensive analysis, evaluating and comparing
three mainstream and five alternative HPC architectures, regarding memory
bandwidth and latency aspects. Increasing diversity of HPC systems in the
market causes their evaluation and comparison in terms of HPC features to
become complex and multi-dimensional. There is as yet no well established
methodology for a unified evaluation of HPC systems and workloads that
quantifies the main performance bottlenecks. Our work provides a significant
body of useful information for HPC practitioners and infrastructure providers,
and emphasizes four usually overlooked aspects of HPC systems’ evaluation.

Understanding the dominant performance bottlenecks of HPC applications
is essential for designing a balanced HPC system. In our study, we execute
a set of real HPC applications from diverse scientific fields, quantifying key
performance bottlenecks: FLOPS performance and memory bandwidth con-
gestion. We show that the results depend significantly on the number of
execution processes, which is typically overlooked in benchmark suites, and ar-
gue for guidance on selecting the representative scale of the experiments. Also,
we find that average measurements of performance metrics and bottlenecks
can be highly misleading, and suggest reporting as the percentage of execution
time in which applications use certain portions of maximum sustained values.

Innovations in 3D-stacking technology enable DRAM devices with much
higher bandwidths than traditional DIMMs. The first such products hit the
market, and some of the publicity claims that they will break through the
memory wall. We summarize our preliminary analysis and expectations of how
such 3D-stacked DRAMs will affect the memory wall for a set of representative
HPC applications. Higher bandwidth may lower average latency, provided
that our applications offer sufficient memory-level parallelism (MLP) and
that CPU architectures can exploit it. We conclude that although 3D-stacked

vi

Abstract

DRAM is a major technological innovation, it is unlikely to break through
the memory wall — at best, it moves it.

Novel memory systems are typically explored by hardware simulators
that are slow and often have a simplified or obsolete model of the CPU. We
propose an analytical model that quantifies the impact of the main memory
on application performance and system power and energy consumption, based
on the memory system and application profiles. The model is evaluated on a
mainstream platform, comprising various DDR3 memory configurations, and
an alternative platform comprising DDR4 and 3D-stacked high-bandwidth
memory. The evaluation results show that the model predictions are accurate,
typically with only 2% difference from the values measured on actual hardware.
Additionally, we compare the model performance estimation with simulation
results, and our model shows significantly better accuracy over the simulator,
while being faster by three orders of magnitude, so it can be used to analyze
production HPC applications on arbitrarily sized systems.

Overall, we believe our study provides valuable insights on the importance
of memory bandwidth and latency in HPC: their role in evaluation and
comparison of HPC platforms, guidelines on measuring and presenting the
related performance bottlenecks, and understanding and modeling of their
performance, power and energy impact.

vii

Contents

Acknowledgments iv

Abstract vi

Contents viii

Listing of figures xii

Listing of tables xvi

1 Introduction 1
1.1 Memory systems in HPC . 2

1.1.1 Memory capacity . 2
1.1.2 Architectural innovations 3
1.1.3 Memory reliability . 4
1.1.4 Memory performance 5

1.2 Thesis contributions . 7
1.2.1 Memory bandwidth and latency aspects

in HPC systems evaluation 7
1.2.2 Memory bandwidth requirements

of HPC applications 8
1.2.3 First steps on the performance impact

of memory bandwidth and latency 9
1.2.4 Memory system evaluation:

Modeling system performance
and energy without simulating the CPU 9

1.3 Thesis organization . 10

2 Background 12
2.1 DRAM memory system . 12

2.1.1 DRAM organization 13
2.1.2 DRAM operation . 15

2.2 On memory bandwidth and latency 16
2.2.1 Memory Wall . 17

2.3 High-bandwidth memory systems 18
2.3.1 Hybrid Memory Cube 19
2.3.2 High Bandwidth Memory 20

viii

Contents

2.3.3 Comparison . 20

3 Experimental environment 22
3.1 Hardware platforms . 22

3.1.1 Set of mainstream and alternative platforms 22
3.1.2 MareNostrum 3 supercomputer 24
3.1.3 Intel Knights Landing Xeon Phi 7230 25

3.2 HPC workloads . 26
3.2.1 HPC benchmarks . 26
3.2.2 Microbenchmarks . 27
3.2.3 SPEC CPU2006 benchmark suite 28
3.2.4 UEABS HPC applications 28

3.3 Tools . 31
3.3.1 Instrumentation and profiling tools 31
3.3.2 Simulators . 33

4 Memory bandwidth and latency aspects in HPC systems
evaluation 35
4.1 Introduction . 35
4.2 Experimental environment . 37

4.2.1 HPC benchmarks . 37
4.2.2 HPC platforms . 37
4.2.3 Power measurements 38

4.3 Results . 38
4.3.1 HPL and HPCG benchmarks 38
4.3.2 Caches and main memory access latency 40
4.3.3 Byte/FLOP ratio . 41
4.3.4 Theoretical vs. sustained FLOPs/s and memory band-

width . 43
4.4 Related work . 44
4.5 Summary . 46

5 Memory bandwidth requirements of HPC applications 47
5.1 Introduction . 48
5.2 Experimental environment . 49

5.2.1 Experimental platform 49
5.2.2 Workloads . 49

5.3 Results . 51
5.3.1 Floating-point performance analysis 51
5.3.2 Memory bandwidth analysis 52
5.3.3 Discussion . 55

ix

Contents

5.4 Related work . 56
5.5 Summary . 58

6 First steps on the performance impact of memory band-
width and latency 59
6.1 Introduction . 59
6.2 Latency vs. Bandwidth . 61

6.2.1 Memory access latency 61
6.2.2 Memory bandwidth . 62
6.2.3 Summary . 63

6.3 Experimental environment . 63
6.3.1 Hardware platform . 63
6.3.2 HPC applications . 64
6.3.3 Methodology . 64

6.4 Results . 65
6.5 Looking forward . 67

7 Memory system evaluation: Modeling system performance
and energy without simulating the CPU 69
7.1 Introduction . 69
7.2 On memory bandwidth and latency 71
7.3 Model overview . 71

7.3.1 The idea: Moving between memory curves 71
7.3.2 Model inputs . 72
7.3.3 Performance, power and energy estimation 74
7.3.4 Model source codes and case study 74

7.4 Memory system profiling . 75
7.5 Performance model: Detailed description 77

7.5.1 Application profiling 77
7.5.2 In-order processors . 78
7.5.3 Out-of-order processors 80
7.5.4 Performance as a function of latency 86
7.5.5 Performance estimation — the ultimate step 88
7.5.6 Novelties of the presented analytical model 90

7.6 Power and energy modeling 91
7.6.1 Power modeling . 91
7.6.2 Energy modeling . 97

7.7 Experimental environment
and methodology . 97
7.7.1 Hardware platforms . 98
7.7.2 Benchmarks . 98

x

Contents

7.7.3 Tools and methodology 99
7.8 Evaluation . 101

7.8.1 Sandy Bridge: DDR3-800 → 1066/1333/1600 101
7.8.2 Sandy Bridge: DDR3-1600 → 1333/1066/800 104
7.8.3 Step further.

Sandy Bridge: DDR3-1600 → DDR3-1866/2133 105
7.8.4 Knights Landing: DDR4-2400 → MCDRAM 107
7.8.5 Knights Landing: MCDRAM → DDR4-2400 108
7.8.6 Model vs. Hardware Simulator 109
7.8.7 Discussion . 111

7.9 Related work . 111
7.10 Summary . 114

8 Conclusions 116
8.1 Memory bandwidth and latency aspects

in HPC systems evaluation . 116
8.2 Memory bandwidth requirements

of HPC applications . 117
8.3 First steps on the performance impact

of memory bandwidth and latency 118
8.4 Memory system evaluation:

Modeling system performance
and energy without simulating the CPU 119

8.5 Future work . 119
8.6 List of publications . 121

8.6.1 Under submission . 121
8.6.2 Other publications . 121

Bibliography 123

xi

Listing of figures

2.1 Typical main memory system comprises one or more in-CPU
memory controllers, per-controller memory bus with N chan-
nels and DRAM DIMMs as memory devices. 13

2.2 Basic DRAM structure, showing memory arrays in a x8 memory
device. Single cell is accessed using the corresponding wordline
and bitline. 14

2.3 Bandwidth–latency curve showing how the memory access
latency depends on the used memory bandwidth. It is critical
to distinguish between the lead-off and loaded memory access
latency regions. 16

2.4 Increasing discrepancy between main memory access latency
and CPU cycle time, for last 25 years. Recently the downtrend
in CPU cycle time decreased to 2%, while single processor
performance improves at 3.5% per year. The decrement in
memory access latency is less than 1%. 18

2.5 The internal structure of a Hybrid Memory Cube (HMC). . . 19

2.6 The internal structure of High Bandwidth Memory (HBM). . . 20

3.1 Block diagram of a single MareNostrum 3 node. 24

3.2 Block diagram of a Knights Landing Xeon Phi platform. . . . 25

4.1 The gap in performance between the platforms under study
is much lower for HPCG than for HPL. Power efficiency of
the alternative platforms is promising for memory-intensive
workloads, such as HPCG. 39

4.2 Cache and main memory latency can vary significantly among
the studied platforms. KNL memory access latency exceeds
3× the latency on other platforms. 41

4.3 Ratio between sustained memory bandwidth and FLOPS of
the platforms under study can differ up to 21×. 42

4.4 Sustained FLOPS and memory bandwidth show significant
difference to theoretical maximums, especially for alternative
platforms. 43

5.1 Production HPC applications show fairly low FLOPS utiliza-
tion, both on lowest and highest number of processes. 52

xii

Listing of Figures

5.2 Contrary to FLOPS, memory bandwidth utilization of produc-
tion HPC applications is substantial. 53

5.3 Average memory bandwidth can mislead and hide potential
bottlenecks. BQCD-1024, GENE-128 and QE-256 have similar
average memory bandwidths, however BQCD-1024 and GENE-
128 spend significantly more time utilizing more than 80% of
max. sustainable bandwidth, which is a serious bottleneck. . . 54

5.4 Portion of total execution time spent in the inter-process com-
munication for UEABS applications, strong scaling. 55

6.1 Bandwidth-latency curves of DDR3 and HMC systems. 62

6.2 DDR3-1066: Portion of the maximum sustainable bandwidth
(STREAM) that HPC applications actually use. 65

6.3 Performance improvement and effective memory bandwidth
increase due to 25% memory bandwidth increment. 66

6.4 Position of HPL application on platform roofline model, with
DDR3-1066 and DDR3-1333 memory configurations. 67

7.1 High-level view of the transition from DDR4 to high-bandwidth
MCDRAM memory on the KNL platform. 72

7.2 Diagram of the whole process of performance, power and en-
ergy estimation. The cross-references indicate which section
describes which part of the estimation process. 73

7.3 Bandwidth–latency curves for the platforms under study. Mem-
ory access latency with respect to used memory bandwidth
cannot be approximated with a single curve — as the used
memory bandwidth increases, memory traffic read/write com-
position makes a significant latency impact. 76

7.4 In OOO processors, LLC misses overlap with the execution of
the instructions independent of the missing data. The overlap
depends on the number of independent instructions in the
instruction window and number of free entries in ROB. 82

7.5 Handling overlapping LLC misses in an OOO processor: the
penalty of a single miss is divided by a number of concurrent
LLC misses. 85

7.6 Performance as a function of the memory access latency. The
different curves arise by varying the unknown parameter Insooo

within its bounds. Please read the text before interpreting this
figure. 88

7.7 Graphical interpretation of a performance estimation as a
merged solution of Sections 7.4 and 7.5.4. 89

xiii

Listing of Figures

7.8 The workloads under study show a wide range of memory
bandwidth utilization, and different ratios of the Read and
Write memory traffic. 100

7.9 Sandy Bridge, DDR3-800→1066/1333/1600: Changing the
DRAM frequency has a significant performance impact. Per-
formance model estimations are precise, with low error bars,
and accurate, with small difference from the values measured
on the actual hardware. 101

7.10 Sandy Bridge, DDR3-800→1066/1333/1600: DRAM frequency
has a minor impact on the overall server power consumption.
Increasing DRAM frequency from DDR3-800 to DDR3-1600
(100% increment) causes average power increment of only 2%. 102

7.11 Sandy Bridge, DDR3-800→1066/1333/1600: DRAM frequency
has a significant impact on the system energy consumption.
Energy predictions of our model are precise, with low error
bars, and accurate, with small difference from the actual values
measured on real hardware. 103

7.12 Sandy Bridge, DDR3-1600→1333/1066/800: Decreasing the
DRAM frequency significantly decreases performance, espe-
cially for high-bandwidth workloads. Performance predictions
of the model are precise and accurate. 104

7.13 Sandy Bridge, DDR3-1600→1333/1066/800: Changing the
DRAM frequency has a minor impact on the overall server
power consumption. Decreasing the DRAM frequency from
DDR3-1600 to DDR3-800 causes average power decrement of
only 2%. 104

7.14 Sandy Bridge, DDR3-1600→1333/1066/800: Changing the
DRAM frequency has a significant impact on the energy con-
sumption. Energy predictions of the our model are precise,
with low error bars, and accurate, with small difference from
to the values measured on the actual hardware. 105

7.15 Sandy Bridge, DDR3-1600→1866/2133: Increasing DRAM
frequency beyond the limits of the current system to DDR3-
1866 and DDR3-2133 significantly benefits performance, up to
13% and 21% for high-bandwidth benchmarks. 106

7.16 Sandy Bridge, DDR3-1600→1866/2133: Increasing the DRAM
frequency beyond the limits of the current system to DDR3-
1866 and DDR3-2133 causes average power increment between
1% and 2%. 106

xiv

Listing of Figures

7.17 Sandy Bridge, DDR3-1600→1866/2133: Increasing DRAM
frequency beyond the limits of the current system to DDR3-
1866 and DDR3-2133, impacts energy consumption of the
whole system significantly, saving up to 10% and 16% for
high-bandwidth benchmarks. 107

7.18 Knights Landing, DDR4-2400→MCDRAM: Despite of the wide
range of the performance variation, between −9% (mcf) and
212% (leslie3d), the model shows high accuracy. Smaller KNL
reorder buffer leads to a smaller range of the Insooo sensitivity
analysis, and therefore more precise the performance prediction,
i.e., smaller error bars. 108

7.19 Knights Landing, DDR4-2400→MCDRAM: Despite of the wide
range of the performance variation, between −68% (leslie3d)
and 9% (mcf), the model shows high accuracy: The average
estimation error is below 2%. 109

7.20 Sandy Bridge, DDR3-800→1600: Comparison of the estimated
(our model) and simulated (ZSim+DRAMSim2) performance
improvement. Estimations of our model correspond to the
real-system measurements much better than the simulated
performance. 110

xv

Listing of tables

3.1 Summary of the most important features and used system
software of the platforms under study 23

3.2 SPEC CPU2006 benchmarks 29
3.3 Scientific HPC applications used in the thesis 32

5.1 Scientific HPC applications used in the study 50

7.1 Performance model input parameters 78
7.2 Notation used in formulas: In-order processors 79
7.3 Notation used in formulas: Out-of-order processors 81
7.4 Notation used in formulas: Power modeling 92
7.5 The most important features of experimental platforms 98

xvi

90% of supercomputer design is the memory sys-
tem...and so is the other 10%.

Shekhar Borkar, IEEE Fellow

1
Introduction

The use of high-performance computing (HPC) has become globally widespread
across all branches of government, academia, industry and commerce, touching
almost every aspect of daily life: medicine, energy, transportation, business,
communications, etc. Besides traditional science applications in physics,
biology, chemistry, and others, supercomputing is indispensable in engineer-
ing, weather prediction and climate modeling, complex financial modeling,
business analytics, cryptography, signals processing and other computation-
intensive research areas. HPC became widely accepted and accessible to
greater diversity of institutional and commercial users. The growing need for
more powerful systems motivated further research and development which
resulted in speed increment of the worlds fastest supercomputers by a factor
of roughly two million over the past 25 years. Not any other industry can
compare with such a rapid transformation.

The future of HPC is focused on the achievement of the next step: Exascale
supercomputers. Such machines will have the performance measured in
exaflops (EFLOPS), i.e. 1018 floating operations per second (FLOPS) in
double-precision. For the comparison, the most powerfull supercomputer today
is Summit from the Oak Ridge National Laboratory with the performance
of 143.5 PFLOPS [2]. However, the road to exascale milestone is not so
straightforward. Challenging constraints primarily in power consumption
of exascale supercomputers will force the future architectures to change
dramatically in order to meet the next goals [3]. The doubling of per-
chip transistors count every 18-24 months (known as the Moore’s Law 1 [4])
has ended and it is replaced by increasing of number of cores or other

1 Moore initially said transistors on a chip would double every year, and afterwards
recalibrated it to every two years in 1975. David House, an Intel executive at the time,
noted that the changes would cause computer performance to double every 18 months.

1

Section 1.1
∣∣∣ Memory systems in HPC

parallelism mechanisms. The architectures are becoming heterogeneous,
employing accelerators, asymmetrical CPU cores, hybrid memory systems,
etc. Nevertheless, the applications and algorithms will have to change and
adapt to new architectures, managing locality, parallelism and resilience in
order to achieve the exaflop performance. Exploring and simulating these
large-scale architectures is complex and multi-dimensional [5, 6].

One of the major contributor to the deployment and operational costs
of a large-scale HPC cluster is the memory system [3, 7, 8]. In terms of
system performance, it is one of the most critical aspects of the system’s
design [9, 10, 11]. Challenges and research directions of HPC memory systems
are explained more closely in the next section.

1.1 Memory systems in HPC

For last 40 years the dominant memory technology for all computing systems
is Dynamic Random Access Memory (DRAM). At the time it showed up
in the 1970s, it had high density, high performance and low cost per bit.
However, it could not follow the aggressive advance of computing units and
started to fall behind, widening the gap between the CPU cycle time and
memory access latency, known as the Memory wall [11]. The community
recognized the problem and memory system became one of the most im-
portant factors of system performance [11, 12]. Besides performance, power
consumption of data movement will dominate the power consumption pro-
file of future systems [13]. With the scaling of DRAM approaching its end
in many dimensions while constraints of exascale systems [14] continue to
push the limits in power, capacity, bandwidth and latency, it is questionable
whether DRAM will meet the requirements of future HPC systems. In the
next sections we briefly describe the research directions in the memory system
landscape. Section 1.1.1 shows the current problems and future constraints
of memory capacity. Innovative architectural technologies are presented in
Section 1.1.2. Challenges in reliability related to memory systems can be
found in Section 1.1.3. Afterwards, in Section 1.1.4 we describe the issues
and future requirements of memory system performance in HPC.

1.1.1 Memory capacity

Back in the 1970s when first DRAM products appeared, they were satisfying
the needs of typical computing systems. Manufacturing improvements that
led to larger die sizes, innovative cell layout for better efficiency and increasing
lithography resolution resulted in 4-fold increase in memory capacity roughly

2

Section 1.1
∣∣∣ Memory systems in HPC

every three years, matching Moore’s prediction [4]. It lasted until 128Mb chip
was produced, after which the increment reduced to 2-fold every four years.
Nowadays shrinking the cells further is a big challenge from technological side,
inducing performance and reliability issues. Increasing DRAM capacity per
chip leads to increment in time and energy for memory refresh operations [15].
Smaller capacitors have lower retention time and need to be refreshed more
often, while increase in storage capacity increases the total time for refresh
operations, since there are more cells to refresh. All this can significantly
impact performance. Also, reducing the space between the cells increases the
possibility of crosstalk between the adjacent wordlines. The crosstalk may in-
duce flipping of bits which are not directly accessed, seriously affecting system
security. The effect was recently discovered and named Rawhammer [16].

The future HPC systems’ power consumption is one of the major con-
straints and it will impact DRAM capacity. On the other side, future ap-
plications will put even more pressure on memory capacity [14]. Capacity
limitations can affect balance, parallel efficiency and scalability of future
applications. Having less memory per single HPC node implicates less useful
work can be done locally without additional communication to other nodes,
which can introduce significant overhead [17].

Novel 3D-stacked DRAM products appeared recently, having much higher
bandwidth than DDR devices. However, they still have a significantly higher
cost and lower capacity with respect to the standard DIMMs. Contrary
to them, storage-class memory technologies and products [18, 19], provide
significant increment in memory capacity with a moderate increment in cost
and power consumption. However, the access latency of these technologies
exceeds the DRAM latency by orders of magnitude, significantly impacting
performance.

1.1.2 Architectural innovations

As mentioned in the previous sections, mature DRAM technology came to
saturation in many aspects which motivated further research of different
memory technologies. It includes microarchitectural changes of the memory
chips, new packagings of memory modules and innovative interfaces between
the memory and the processor.

3D-stacking is one of the solutions to significantly increase the available
memory bandwidth, improve energy per bit and energy per GB/s [20, 21,
22, 23]. Stacking DRAM dies or wafers reduces the interconnection length
between them and latency of communication, while increasing the available
bandwidth. Unfortunately, the capacity of these devices is still not on par
with current DDR devices. The interfaces to connect these stacks with the

3

Section 1.1
∣∣∣ Memory systems in HPC

processor are challenging, since they require high-speed signaling in order to
deliver high bandwidths. Next generation of these interfaces could use optical
links [13].

There are different memory technologies that provide non-volatility and
achieve high densities i.e., capacity. Non-volatile memories (NVMs) eliminate
the energy consumption of refresh operations and provide support for check-
pointing of applications [24]. Check-pointing saves the current system state
to a non-volatile storage, from where it can be restarted if the application
terminates due to a failure. Phase Change Memory (PCM) stores data using
a phase-change material that can be in crystalline or amorphous physical
state [25, 26, 27]. It provides superior density, and therefore capacity, relative
to DRAM. However, write endurance limits PCM devices lifetime. Resistive
Random Access Memory (R-RAM) is another promising technology, storing
data as different resistance of a solid-state dielectric material [28]. Memristor
technology [29] has a similar method of storing the data, using the element
similar to resistor, however memristor changes its resistance as the electric
charge passes through the device. Once the resistance is changed, it remains
constant if no current is applied. Spin transfer torque magnetic RAM (STT-
MRAM) [30] is a magnetoresistive memory, using magnetic storage elements
instead of usual electric charge storage. STT-MRAM uses Magnetic Tunneling
Junction’s (MTJ) resistance to store data. It is mostly used in embedded
systems, but an ongoing research suggest its use as a main memory [31, 32].
Nano-RAM (NRAM) [33] is a carbon nanotube (CNT) based resistive NVM,
with high density and endurance, compatible with existing CMOS production
process. One of the recent emerging non-volatile memory technologies was
introduced by Intel and Micron, named 3D XPoint memory [18, 19], which
technology is not publicly disclosed.

However, current NVM devices have higher latencies than conventional
DRAMs and possibly lower than solid-state drives (SSDs). In order to
overcome their limitations, future HPC architectures may include some hybrid
combination of different memory technologies. Hybrid memory systems, with
different levels of hierarchy, in theory could provide the benefits of each
technology while hiding its weaknesses. However, design of these systems is
complex; it requires analysis of various tradeoffs and design of a non-trivial
algorithms for optimal data partitioning and distribution [34, 35].

1.1.3 Memory reliability

HPC clusters are vulnerable to various errors than can cause failure of
the application process, whole application or the entire node. Clusters are
composed of many nodes and failure of just one node can terminate the

4

Section 1.1
∣∣∣ Memory systems in HPC

application which was executing for days. Modern error-correcting code
(ECC) [36] protection can mitigate single-bit errors, however multi-bit errors
are still a significant problem. Typically, every few days at least one of the
nodes needs to be rebooted [37]. Exascale machines will be larger, more
complex and more heterogeneous, which will probably increase the fault rate.
Therefore, the resilience of future HPC clusters is one of the major concerns.

Memory system is one of the main sources of failures in modern HPC
systems [38, 39]. Current memory technologies are susceptible to cosmic rays,
crosstalk and technological imperfections, inducing temporal or permanent
damage to storage cells, or cause data corruption on the memory bus [16].
Ever increasing density of memory devices shrinks the storage cells making
them even more sensitive to any external disturbance, which will affect future
HPC systems [40].

On the other side, none of the emerging memory technologies is failure
safe and the same mechanism of error detection and correction have to be
applied. Hence, further research in characterization of memory failures in
large clusters is essential to understand the rates, distribution and patterns
of memory failures.

1.1.4 Memory performance

Ever since the improvement rate of CPU performance started to surpass the
improvement rate of DRAM performance, main memory became a bottleneck
in memory intensive applications which are commonly found in HPC. Growing
disparity between the CPU cycle time and memory access latency became
known as the Memory wall (see Section 2.2.1). Much has been done since it
was published to reduce its impact, however it still presents one of the main
performance bottlenecks.

Memory performance has two components which are correlated, memory
bandwidth and memory latency (see Section 2.2). Each of them has its perfor-
mance role and both are important in HPC systems. Memory bandwidth of
DDR memories is advancing slowly, while memory latency is almost constant.
As number of cores per socket increases, memory bandwidth per CPU core de-
creases. FLOPs performance also increases more rapidly, causing Byte/FLOP
ratio of modern architectures to decrease [41]. Byte/FLOP ratio of a platform
is calculated by dividing platform’s sustained memory bandwidth with its
sustained FLOPs performance. Platforms with low Byte/FLOP ratio are well
suited for compute intensive applications and in these platforms, memory
bandwidth may easily become a performance bottleneck. The platforms with
high Byte/FLOP ratio perform well with applications that put a high pressure
on memory bandwidth, often present in HPC, but floating-point processing

5

Section 1.1
∣∣∣ Memory systems in HPC

power may limit the performance. Since future applications will require higher
bandwidth and lower latency, it is questionable whether conventional DRAMs
will provide the necessary performance under the strict power consumption
constraints.

Significant effort is invested in research of novel memory technologies that
will cope better with increasing pressure on memory system by the future
applications. It resulted in 3D-stacked main memories [21, 22, 23] (see Sec-
tion 2.3), which have superior memory bandwidth compared to conventional
DDR memories and achieve lower energy per GB/s. With this significant
leap forward in memory bandwidth, Byte/FLOP ratio improved. However,
this comes with a cost of memory access latency which is higher than of
DDR DRAMs, although for some devices it is claimed being close [23]. High
access latency comes from the complexity of memory controller and handling
of memory requests, not from the memory device itself. Reducing memory
latency on the other hand is not trivial. Reduced Latency DRAM (RLDRAM)
devices have lower latency by introducing microarchitectural changes, such
are small sub-arrays and activation of many rows, with the cost of smaller
density and higher power consumption [42]. However they are mostly used
in specialized applications. We intent to emphasize memory bandwidth and
latency aspects of HPC systems evaluation in this thesis, making first steps
towards more reliable and uniform evaluation methodology.

Although it is well known that HPC applications are bandwidth-sensitive,
latency sensitivity may be even more important for certain applications [43, 44].
It should be noted that the Memory Wall was defined in terms of latency,
not bandwidth [11]. Algorithms like sparse linear algebra, structured grids
and combinational logic are more memory bandwidth limited, while spectral
methods (FFT), unstructured grids, N-Body methods and graph traversals
are memory latency bounded [43, 45]. Apart from HPC, algorithms used in
machine learning like dynamic programing, backtrack and branch+bound, and
graphical models are also memory bounded [43, 46]. Therefore, it is worth
investing in characterization of HPC applications, in terms of bandwidth and
latency, in order to quantify performance bottlenecks and better optimize
future HPC architectures. This thesis analyses memory bandwidth require-
ments of large HPC applications on a production HPC cluster, with respect
to scaling-out and granularity of measurements.

Finally, memory bandwidth and memory access latency present significant
performance factors of future computer systems. Besides novel memory
architectures, like 3D-stacked high-bandwidth solutions and storage-class
3D XPoint, conventional DDR memory space is moving forward. Emerging
server processors are increasing number of DDR memory channels to eight or
twelve per socket [47, 48], and DDR5 memory will roll out soon [49]. New

6

Section 1.2
∣∣∣ Thesis contributions

DDR5 will have number of improvements, like higher memory-bus frequency,
two 32-bit channels per single DIMM, larger burst-size and higher number
of banks in comparison to DDR4, innovative write pattern mode, etc. The
amount of performance improvement these new memory architectures and
topologies will introduce depends on the specific workload and its sensitivity
to memory bandwidth and latency. In this thesis, we quantify performance,
power and energy difference on a new memory system architecture or topology,
using an analytical model. It is based on the application profile, target memory
system profile and several architectural-dependent parameters. The proposed
analytical approach shows high precision and accuracy, and has the advantage
of being much faster than a usual simulation-based analysis with the ability
to analyse complex workloads such are production HPC applications.

1.2 Thesis contributions

Our study analyses memory bandwidth and latency aspects of HPC systems
and applications. We evaluate both mainstream and alternative HPC systems
and characterize production HPC applications. Finally, we perform estimation
of application performance and system power and energy, using analytical
model based on the memory system evaluation.

1.2.1 Memory bandwidth and latency aspects
in HPC systems evaluation

The analysis of memory bandwidth and latency is the important aspect of
HPC systems evaluation and comparison, and it is the first study presented
in this thesis. We share our experience of evaluating and comparing a diverse
set of HPC systems, consisting of three mainstream and five alternative
architectures. To our knowledge, there are no studies which analyze this
many platforms, three mainstream and five alternative ones. In addition to
presenting a large body of quantitative results, we emphasize four usually
overlooked aspects of HPC platform evaluation related to memory bandwidth
and latency.

First, we show a platform’s performance and energy-efficiency depend
significantly (n-fold) on the target application characteristics. We strongly ad-
vocate that any comparison among platforms should include High-Performance
Conjugate Gradients (HPCG) measurements, alongside with High-Performance
Linpack (HPL). HPCG adds the boundary for memory-intensive HPC appli-
cations, in addition to compute-intensive boundary from HPL.

7

Section 1.2
∣∣∣ Thesis contributions

Second, we detect a significant range in the main memory access latency,
with a factor of three difference between the fastest and slowest platforms
under study. As we described in Section 1.1.4, memory access latency has
a direct performance impact for many applications. Therefore, it should be
minimized in HPC servers, and any increment above about 100 ns should be
analysed and justified.

Third, we find that the Byte/FLOP ratio can differ by a factor of up
to 21× between platforms. While mainstream platforms show a decreasing
tendency, alternative platforms trend upwards in this metric. We propose for
a community to properly define this ratio for HPC applications, since it has
a direct impact on system performance.

Fourth, our results show that sustainable FLOPS performance and mem-
ory bandwidth on the alternative platforms can deviate more than 70% from
theoretical performance. An explanation could be that the overall system,
including both hardware and system software, cannot fully utilize Single
Instruction, Multiple Data (SIMD) floating-point execution units, i.e. not
achieving close to maximum FLOPS performance, or data-transfer mecha-
nisms, i.e. not saturating enough the available memory bandwidth. Therefore,
we strongly suggest not rely on theoretical performance, even in a first-order
system provisioning.

1.2.2 Memory bandwidth requirements
of HPC applications

Next problem we analyse in the thesis are the memory bandwidth require-
ments of production HPC applications. A clear understanding of HPC system
performance factors and bottlenecks is essential for designing an HPC in-
frastructure with the best features and a reasonable cost. In this study, we
analyse the methodology of quantifying key performance bottlenecks: FLOPS
performance and memory bandwidth congestion, and the implications of
scaling-out. We execute seven production HPC applications, together with
HPL and HPCG, on a production HPC cluster and reach two main conclusions.

When executing production HPC applications, our findings show that
HPC application performance and CPU/memory system bottlenecks are
strongly dependent on the number of application processes. This is typically
overlooked in benchmark suites, which seldom define how many processes
should be used. We argue that it is essential that HPC application suites
specify narrow ranges on the number of processes, so that the results are
representative of real world application use, or that they at least provide
some guidelines.

8

Section 1.2
∣∣∣ Thesis contributions

Additionally, we demonstrate that average measurements of performance
metrics and bottlenecks can be highly misleading. Reporting key application
measurements using the average values may conceal bursty behavior, and give
a misleading impression of how performance would be affected by changes in
the platform’s memory bandwidth. We suggest to avoid average figures when
evaluating performance or bottlenecks, and instead measure the percentage
of time that these figures are low, moderate and severe, with respect to their
sustained peak, which gives a more precise picture of the application’s or
system’s behavior.

1.2.3 First steps on the performance impact
of memory bandwidth and latency

In the next study we give a preliminary analysis of the performance im-
pact of 3D-stacked memories on HPC applications. Although it was defined
more than two decades ago, the memory wall remains a fundamental limita-
tion to system performance. Innovations in 3D-stacking technology enable
DRAM devices with much higher bandwidths than traditional DIMMs. This
study summarizes our preliminary analysis and expectations of how such
3D-stacked DRAMs will affect the memory wall for a set of representative
HPC applications.

We conduct a preliminary evaluation of our analysis for a set of HPC
applications running on a production system. We quantify the performance
improvement of HPC applications by increasing the memory-bus frequency
by 25%, which increases bandwidth by 25% as well. This change has no
impact on memory latency, though. Our results show that bandwidth-hungry
applications may benefit from increased available memory bandwidth. How
well applications will exploit the higher bandwidth provided by emerging
3D-stacked DRAMs ultimately depends on the workload’s memory-level
parallelism. They will not improve the performance of applications with
limited MLP. So in contrast to the publicity surrounding 3D DRAMs, they
are unlikely to break through the memory wall — at best, they move it.

1.2.4 Memory system evaluation:
Modeling system performance
and energy without simulating the CPU

In the final study of this thesis we propose an analytical model that quan-
tifies the impact of the main memory latency and bandwidth on application
performance and system power and energy consumption. Since it is becoming

9

Section 1.3
∣∣∣ Thesis organization

questionable whether DRAM DIMMs will continue to scale and meet the
industry’s demand for high performance and high capacity memory, significant
effort is therefore being invested into the research and development of future
memory systems. These novel memory systems are typically explored using
hardware simulators. Such an analysis is time consuming and limits the num-
ber of design options that can be explored within a practical length of time.

Our approach in this study is the analytical model that estimates the
impact of the main memory on the application performance and system power
and energy consumption, providing point estimates and error bars. The model
is based on memory system profiling and instrumentation of the application
execution. It has been evaluated on two actual platforms: Sandy Bridge-EP
E5-2670 with four DRAM configurations DDR3-800/1066/1333/1600 on a
set of SPEC benchmarks and HPC applications, and Knights Landing Xeon
Phi 7230 with DDR4 and 3D-stacked Multi Channel DRAM (MCDRAM),
using SPEC benchmarks.

The evaluation results show that the model predictions are very accurate.
The average difference from the performance, power and energy measured on
the actual hardware is only 2%, 1.1% and 1.7%, respectively. Additionally, we
compare the model’s performance predictions with simulation results for the
Sandy Bridge-EP E5-2670 system with ZSim and DRAMSim2, and our model
shows significantly better accuracy over the simulator. The model is also
faster than the hardware simulator by three orders of magnitude, so it can be
used to analyze production HPC applications, on arbitrarily sized systems.

1.3 Thesis organization

The thesis is divided into seven chapters following the subsequent structure:

• Chapter 2 describes basic DRAM architecture, its organization and
operation. We also summarize promising 3D-stacked high-bandwidth
memory solutions.

• The experimental environment of our studies is presented in Chapter 3.
We describe hardware platforms, HPC benchmarks and applications,
instrumentation tools and simulators used to obtain the results.

• In Chapter 4 we present the evaluation and comparison study of a
diverse set of mainstream and alternative HPC platforms. Besides a large
number of quantitative results, we highlight four memory bandwidth and
latency aspects of HPC platform evaluation, which are often overlooked.

10

Section 1.3
∣∣∣ Thesis organization

• Further in Chapter 5 we analyse memory bandwidth requirements of
HPC applications, and show that CPU and memory system bottlenecks
are strongly dependent on the number of application processes and
granularity of measurements.

• In Chapter 6 we give a preliminary analysis on the performance impact
of memory bandwidth and latency. We present our initial estimation on
how will improved memory bandwidth of 3D-stacked DRAMs impact
performance of HPC applications. We compare theoretical perspective
of bandwidth and latency in the case of conventional DDR and 3D-
stacked memories, and analyse performance improvement when we
increase DDR memory frequency, and therefore bandwidth, by 25%.

• Application performance and system power and energy estimations,
based on the analytical model, are given in Chapter 7. We describe in
detail the application and memory system profiling, and performance,
power and energy models. Afterwards, we evaluate the models on
a mainstream Sandy Bridge platform and on an alternative Knights
Landing platform. We also compare the performance model with the
state-of-the-art ZSim+DRAMSim2 simulators.

• Finally, in Chapter 8 we summarize the conclusions of all thesis contri-
butions and give future research directions.

11

Cache: a safe place for hiding or storing things.

Webster’s New World Dictionary of the American
Language, Second College Edition (1976)

2
Background

To provide a better understanding of the modern memory systems, in this
chapter we give a description of the DRAM memory system architecture and
its operation. We explain how memory is organized from a single DRAM
cell level to Dual In-Line Memory Module (DIMM), and how read and write
operations are performed in DDR memory systems. Nevertheless, we describe
how the concepts of memory bandwidth and memory access latency are
interrelated. Together with it, we explain the Memory Wall and its impact
on system performance. Finally, we give an overview of novel high-bandwidth
memory solutions, which could reinforce or even supersede DDR memories in
future HPC systems.

2.1 DRAM memory system

The main memory system comprises several components, displayed in Fig-
ure 2.1. Memory controller receives memory requests from the CPU, schedules
them, and issues commands to memory devices. Although it can be located
on-chip or off-chip, in current computer systems it is usually integrated in the
platform CPU. Memory bus connects memory controller with the memory
devices via several memory channels. In current DRAM DDR systems, each
channel carries commands, addresses and data using separate signals. Portion
of memory channel that carries data, is usually 64-bit wide in current systems,
with additional 8 bits if error-correcting codes (ECC) are used. Memory
devices consist of memory chips which integrate the very memory array. They
are usually grouped in DIMMs which thus provide wider data-bus and higher
memory capacity than individual memory chips. DIMMs are usually located
in special slots on computer motherboards, for servicing and future upgrades.

12

Section 2.1
∣∣∣ DRAM memory system

M
em

or
y

co
nt

ro
lle

r
1

CPU

DRAM DIMMsMemory bus

Channel 1

Channel 2

Channel N

Figure 2.1: Typical main memory system comprises one or more in-CPU
memory controllers, per-controller memory bus with N channels and DRAM
DIMMs as memory devices.

2.1.1 DRAM organization

The basic building block of DRAM memory is a memory cell. It consists of a
transistor-capacitor pair, representing a single bit of memory. These cells are
organized into memory arrays, a grid-like structures displayed in Figure 2.2.
Each DRAM cell is connected to a wordline, which forms horizontal lines of
the array in Figure 2.2, and a bitline, which forms vertical lines of the memory
array. Each DRAM cell can be accessed by specifying its row address and
column address. Once the specified row address turns-on the corresponding
wordline, capacitor charge from all cells on the selected wordline is transfered
to its bitlines. The voltage change on bitlines is further amplified with sense
amplifiers, referred to as a row-buffer. The row-buffer now effectively holds
the data of the entire row of the memory array. Afterwards, column address
specifies a single column from the row-buffer which goes to the output pins
of the chip. This corresponds to the read memory access. Similarly, write
memory access stores the data from the chip pins to the row-buffer, transfers
the data from the row-buffer onto the bitlines and further to the cells selected
by the wordline. Since the cell capacitor has leakage, it looses charge with time
and has to be refreshed periodically in order to preserve the stored information.
This corresponds to DRAM refresh operation, and it is performed periodically
by the memory controller.

DRAM chips have several memory arrays that act in unison or indepen-
dently. Usually four or more memory arrays is grouped and operating as
a unit, so column is effectively several bits wide. If there are four memory
arrays, these devices are marked as x4 implying that the column is 4 bits
wide. So, every memory access reads or writes four bits of data through
four data pins on the chip package. Currently there are x4, x8, x16 and x32

13

Section 2.1
∣∣∣ DRAM memory system

Memory
array

ro
w

 d
ec

od
er

...
wo

rd
lin

es
...

...bitlines...

column decoder

data output (x8)

row-buffer

Single cell

access
transistor

capacitor

wordline

bi
tli

ne
Figure 2.2: Basic DRAM structure, showing memory arrays in a x8 memory
device [50]. Single cell is accessed using the corresponding wordline and bitline.

devices on the market. This group of memory arrays that operate in unison
is called a bank. DRAM chips have multiple banks, increasing the parallelism
of accesses since multiple banks can be accessed concurrently. DDR3 memory
systems usually have 8 banks, while DDR4 memories increased number of
banks to 16. Finally, several memory chips can be grouped to form a rank.
All chips in a rank are connected to the memory channel and respond to
the same DRAM commands. Number of memory chips in a single rank is
determined by the number of data bits of each memory chip, which aggregate
to form a data-bus of the memory channel. If x8 devices form a rank and
memory channel comprises 72 data bits, exactly 9 memory chips form a rank.
Each memory DIMM can contain from one to four memory ranks.

Therefore, the physical address of the particular data word is decomposed
in the memory controller, specifying memory channel, rank, bank, row and
column as a unique location. For example, in the case of a read access, when
the address is decomposed and the request is sent over the memory bus, the
target cells are accessed and all the chips in the rank output the corresponding
data in the same time. Hence, the target data word is present on the memory
bus and it can be transfered to the CPU. DDR memories transfer data in
bursts, so every access transfers several data words from consecutive columns.
For DDR3 and DDR4 memories the length of the burst is 8, so every memory
access transfers eight data words, i.e. 64 bytes in total. Because of multiple
memory channels, ranks and banks which can be accessed simultaneously,

14

Section 2.1
∣∣∣ DRAM memory system

memory requests are interleaved by the memory controller to better utilize
the memory bus and to achieve higher bandwidth.

2.1.2 DRAM operation

In order to read the specified column from the row-buffer, internal circuitry
in the memory chip has to turn-on the wordline which corresponds to the
specified row address, transferring the target data from the cells to the row-
buffer. This operation is called row activation, and it is issued by the memory
controller to the corresponding DIMM. Since bitlines in the memory array
connect the cells across the vertical dimension, care must be taken not to
output more than one cell on the single bitline in the same time, which would
invalidate the stored information. To prevent this, at one moment exactly
one wordline can be turned-on in the same memory bank, i.e. only one row
can be activated at a time. Memory controller takes care of this, since it has
the info about all the banks and knows if there is any row already activated
among the banks. If another row in the same bank has to be activated, the
already activated row has to be closed. This operation of closing the row is
named precharge operation.

Therefore, we distinguish three scenarios when accessing the target data,
each having different latency of access. The first scenario is the case when the
target row containing the required data is already activated, and its content
is in the row-buffer. It is a row-buffer hit access and reading or writing the
data in this case has a minimum latency, skipping the row activation step.
Therefore, it requires only reading or writing the target data from or to the
row-buffer, specified by the column address. The second scenario is the case
when there is no activated row in the specified bank, named row-buffer empty
access. It requires the activation of the specified row and reading or writing
the target data, having higher latency than the row-buffer hit. The third
scenario is when there is already an activated row in the specified bank and
it is referred to as a row-buffer miss access. It requires closing the activated
row, activating the specified row and reading or writing the data, introducing
the highest latency of access.

To better optimize memory accesses, memory controller provides several
row-buffer-management policies (sometimes referred to as paging policies).
The basic ones are open-page and close-page policies. Open-page policy keeps
the row in activated state after reading or writing has finished, until the
memory access which targets another row in the same bank appears. It is
designed to favor memory accesses to the same row of memory, usually from
the memory-access sequence with a high degree of temporal and spatial locality.
Since the adjacent accesses target the same row, the access latency is minimal.

15

Section 2.2
∣∣∣ On memory bandwidth and latency

M
em

or
y

ac
ce

ss
 la

te
nc

y

40% 80%

Constant
region

100%

Linear
region

Exponential
region

Lead-off
latency

25 – 35%
reduction

M
ax

im
um

 s
us

ta
in

ed
ba

nd
w

id
thLoaded

latency

M
ax

im
um

 th
eo

re
tic

al
ba

nd
w

id
th

Used memory bandwidth

Figure 2.3: Bandwidth–latency curve showing how the memory access latency
depends on the used memory bandwidth [10]. It is critical to distinguish
between the lead-off and loaded memory access latency regions.

Close-page policy closes the activated row after every read or write access. It
favors accesses to random locations in memory and optimizes memory request
patterns with low degrees of access locality. In modern DRAM memory
controllers, row-buffer-management policy is usually a dynamic combination
of open-page and close-page policies. It usually comprises a countdown timer
which controls how long the row remains in active state after accessing it.
The timer value is dynamically adjusted based on the spatial and temporal
locality of the memory access pattern.

2.2 On memory bandwidth and latency

The memory access latency and used bandwidth are often described as
independent concepts, but they are in fact inherently interrelated. It is
important to distinguish the lead-off and loaded memory access latencies,
and to understand the connection between memory access latency and used
memory bandwidth.

Lead-off memory access latency corresponds to the single-access read
latency in an idle system. This latency includes the time spent in the CPU
load/store queues, cache memory, memory controller, memory channel and
main memory.

Loaded memory access latency corresponds to the read latency in a
loaded system. In addition to all timings included in the lead-off latency, the
loaded memory latency includes shared-resource contention among concurrent
memory requests.

The connection between memory access latency and used bandwidth is
given by the bandwidth–latency curve, as illustrated in Figure 2.3. The x

16

Section 2.2
∣∣∣ On memory bandwidth and latency

axis shows the application’s used memory bandwidth, and the y axis shows
the corresponding access latency. This curve has three regions that are
limited by the maximum sustainable bandwidth, which is 65–75% of the
maximum theoretical bandwidth [10]. In the first region, the application’s
used bandwidth is low, so there are few concurrent memory requests and
contention for shared resources is negligible. Over this region the memory
latency is constant and equal to the lead-off latency. In the second region,
the application’s used bandwidth is between 40% and 80% of sustainable
bandwidth, and there are increasing numbers of concurrent memory requests.
Contention for shared resources is moderate, and latency grows linearly with
the used bandwidth. In the final region, in which the application’s used
bandwidth is high, contention among concurrent memory requests is severe
and memory latency increases exponentially. The memory bandwidth-vs-
latency curve illustrated in Figure 2.3 can be described by queuing theory as
a mean system response time as a function of request arrival rate [51].

It is critical to distinguish between the lead-off and loaded memory access
latencies, since the difference between them can be on the order of hundreds
of nanoseconds. A fully-stressed memory system therefore introduces a
significant loaded latency, which leads to a major performance impact.

2.2.1 Memory Wall

The term was first introduced by Wulf and McKee in 1995. They published a
four-page note entitled “Hitting the Memory Wall: Implications of the Obvi-
ous” in the (unrefereed) ACM SIGARCH Computing Architecture News [11].
The motivation was simple: at the time, researchers were so focused on improv-
ing cache designs and developing other latency-tolerance techniques that the
computer architecture community largely ignored main memory systems. The
article projected the performance impact of the increasing gap between proces-
sor cycle time and memory access latency. This gap is illustrated in Figure 2.4.

The study predicted that if the trends held, even with cache hit rates above
99%, relative memory latencies would soon be so large that the processor
would essentially always be waiting for memory — which amounts to “hitting
the wall”. This article was not the first to point out impending problems:
Ousterhout had published “Why Aren’t Operating Systems Getting Faster
As Fast as Hardware?” [53] five years earlier. At the end of 1995, McCalpin
demonstrated that current shared-memory High-Performance Computing
(HPC) systems could typically sustain only 5–10% of the memory bandwidth
needed to keep the floating-point pipelines busy [54], and in 1996 Burger,
Goodman, and Kägi pointed out impending pin bandwidth limitations [55].

Various latency-tolerance techniques like out of order execution, wider

17

Section 2.3
∣∣∣ High-bandwidth memory systems

1990 1995 2000 2005 2010 2015 2020
0.1

1

10

100

N
an

os
ec

on
ds

(l
og

sc
al

e)

-30%/year
(52%/year perf. impr.)

-2%/year
(3.5%/year perf. impr.)

-11%/year
-0.7%/year

30×

360×

CPU cycle time Memory access latency

Figure 2.4: Increasing discrepancy between main memory access latency and
CPU cycle time, for last 25 years. Recently the downtrend in CPU cycle time
decreased to 2%, while single processor performance improves at 3.5% per
year [52]. The decrement in memory access latency is less than 1%.

instruction issue, and speculative techniques such as hardware prefetching
intent to bridge the processor-memory performance gap. Even in combination,
though, such approaches can mask the latency of only so many memory
requests, depending on the sizes of the hardware structures. The cost and
complexity of implementing larger and larger structures proved prohibitive,
and although latency tolerance increased the performance, it did not eliminate
the memory wall. Technological evolutions and revolutions notwithstanding,
the memory wall has imposed a fundamental limitation to system performance
for more than 20 years.

2.3 High-bandwidth memory systems

With continued slowdown in both DRAM density and access time, it is
becoming questionable whether DRAM DIMMs will continue to scale and meet
the industry’s demand for high performance. Significant effort is therefore
being invested into the research and development of future memory systems. A
promising alternative is a 3D-stacked DRAM. These devices comprise several
DRAM dies that are vertically connected with through silicon vias (TSVs),
which shorten interconnection paths and reduce connectivity impedance.
Thus, data can be moved at higher rates with lower energy-per-bit. We
summarize two 3D-stacked DRAM products: Hybrid Memory Cube and High
Bandwidth Memory.

18

Section 2.3
∣∣∣ High-bandwidth memory systems

Figure 2.5: The internal structure of a Hybrid Memory Cube (HMC) [56].

2.3.1 Hybrid Memory Cube

The Hybrid Memory Cube (HMC) [21] comprises stacked DRAM dies with
a unique organization. Figure 2.5 illustrates the HMC internal structure.
Stacked DRAM dies (dies 0 to n) are connected with TSVs and microbumps.
Each die is divided into partitions vertically grouped into vaults. Each vault
operates independently through a dedicated vault controller resembling the
memory controller in DIMM-based systems. Finally, each vault is divided
into banks much as in traditional DIMMs. Announced production runs of
HMC components are limited to 2 GB and 4 GB devices, while the standards
specify capacities of up to 8 GB. The HMC includes a logic layer that redirects
requests between off-chip serial interfaces and vault controllers. This logic
layer also enables in-memory operations.

A high-speed serial interface connects the HMC to a CPU. The interface
has two or four links, with each having four-, eight-, or 16-lane full-duplex
serial lines. Lanes support data rates of up to 30 Gb/s, which means that
per-device bandwidth can reach 480 GB/s (4 links×16 lanes×2×30 Gbit/s).

In August 2018, Micron Technology, Inc. announced a change in its
strategy for high-performance memory solutions, moving away from HMC and
focusing on the next-generation of high-performance compute and networking
solutions [57].

19

Section 2.3
∣∣∣ High-bandwidth memory systems

Figure 2.6: The internal structure of High Bandwidth Memory (HBM) [58].

2.3.2 High Bandwidth Memory

High Bandwidth Memory (HBM) [22] is another emerging JEDEC standard.
Figure 2.6 shows its internal structure. Like HMC, HBM consists of several 3D-
stacked DRAM dies connected with TSVs. The HBM memory specification
allows an optional logic base layer that can redistribute signals and implement
logic functions. Each die is divided into banks that are grouped and attached
to channels. The channels are independent: each accesses an independent set
of banks with independent clocks and memory arrays. Similarly to HMC, the
standard specifies up to 8 GB devices.

Each HBM stack provides up to eight 128-bit wide channels. A 1024-bit
parallel interface merges the channels. Maximum per-channel bandwidth is
32 GB/s, which implies 256 GB/s per device (eight channels×32 GB/s). As
with DIMMs, a system can use independent HBM devices to deliver larger
overall bandwidth.

2.3.3 Comparison

Both HMC and HBM are based on 3D-stacked DRAM, which increases
package density to enable higher per-chip capacity. To reduce channel latency
and support high-bandwidth channels, the memory chiplets are placed on
a silicon interposer instead of a printed circuit board (PCB). Both, HMC
and HMB support a logic layer at the bottom of the DRAM stack; this could
support in-memory computation that reduces the amount of data transferred

20

Section 2.3
∣∣∣ High-bandwidth memory systems

between memory and CPU. Both devices target networking, a domain that
traditionally requires high memory bandwidth. HBM also targets GPUs,
while HMC targets High-Performance Computing (HPC).

HBM has a DIMM-like system organization: the memory controller is
associated with the CPU, and a point-to-point parallel interface links it to
the main memory. In contrast, HMC changes the system organization by
placing the controller in the memory itself. Unlike DIMM-based architectures,
each HMC device can directly connect to four devices via independent serial
links. Device chains can thus provide an extended, high capacity memory,
or even support a network of CPUs, GPUs and HMCs. In a network-like
HMC system, remote HMC accesses that require multi-hop routing may have
significantly higher latency, requiring an asynchronous interface. This implies
higher variability in memory access times and lower timing determinism in
the overall system.

A crossbar switch located in the HMC logic base routes memory requests
through a network of HMC devices (see Figure 2.5). The CPU communicates
with the HMC using high-level memory requests: it need not be aware of data
location (device, vault, bank, row, and column) or memory-device timing
parameters. Since the memory controller (i.e., vault controller) resides within
the memory device, it can interact with the memory array more efficiently.

21

Hardware: the parts of a computer system that
can be kicked.

Jeff Pesis, TRW Inc. engineer

3
Experimental environment

In this Chapter we explain experimental environment used in our research.
We give a high-level view of platforms, workloads, tools and simulators used to
obtain the results. Later in further chapters, we give a specific experimental
methodology related to the particular study.

3.1 Hardware platforms

Throughout our research we use several HPC platforms. In the evaluation
study from Chapter 4 we use a set of three mainstream and five alternative
platforms; we also use Intel Sandy Bridge platform in study of bandwidth
requirements of HPC applications in Chapter 5 and in modeling study from
Chapter 7; in Chapter 7 we also use Intel Knights Landing (KNL) Xeon Phi
platform for the additional model evaluation.

3.1.1 Set of mainstream and alternative platforms

For the last decade, the dominant HPC architectures have been Intel ar-
chitectures such as Nehalem, Sandy Bridge and Haswell. Apart from these,
many-core systems, of which Intel’s KNL is an example, are becoming popular,
while other vendors are also emerging architectures that are promising for
HPC. For our evaluation study in Chapter 4, we included mainstream HPC
architectures which have been predominantly used in HPC systems so far,
as well as alternative architectures which have been recently introduced to
the market and are set to be used in future HPC systems. The architectures
under study with their most important features and used system software
are summarized in Table 3.1. We evaluate and compare three generations
of mainstream x86 architectures: Intel Nehalem, Sandy Bridge and Haswell,

22

Section 3.1
∣∣∣ Hardware platforms

Table 3.1: Summary of the most important features and used system software
of the platforms under study

Mainstream architectures Alternative architectures

Platforms

N
e
h
a
le
m

X
5
5
6
0

S
a
n
d
y

B
r
id

g
e

E
5
-2

6
7
0

H
a
sw

e
ll

E
5
-2

6
9
8
v
3

K
n
ig
h
ts

L
a
n
d
in

g
X
e
o
n

P
h
i
7
2
5
0

P
o
w
e
r
8

T
h
u
n
d
e
r
X

X
-G

e
n
e
2

X
-G

e
n
e
1

Manuf. Intel Intel Intel Intel IBM Cavium APM APM

Arch. Nehalem
Sandy
Bridge

Haswell
2nd gen.

MIC
POWER8 ARMv8-A ARMv8-A ARMv8-A

Released 2009 2012 2014 2016 2014 2014 2015 2013

Sockets 2 2 2 1 2 2 1 1

Cores per
Socket

4 8 16 68 10 48 8 8

CPU freq.
[GHz]

2.8 2.6 2.3 1.4 3.49 1.8 2.4 2.4

Out-of-order Yes Yes Yes Yes Yes No Yes Yes

DP Flops
per cycle,
per core

4 8 16 32 8 2 2 2

L1i 32kB 32kB 32kB 32kB 32kB 48kB 32kB 32kB

L1d 32kB 32kB 32kB 32kB 64kB 32kB 32kB 32kB

L2 256kB 512kB 256kB 1MB 512kB 16MB 256kB 256kB

L3 8MB 20MB 40MB / 80MB / 8MB 8MB

Memory
conf.

per socket

3 ch.
DDR3
1333

4 ch.
DDR3
1600

4 ch.
DDR4
2133

8 ch.
MCDRAMa

+
6 ch.

DDR4
2400

4 ch.
DMI

28.8GBps

4 ch.
DDR3
1600

4 ch.
DDR3
1600

4 ch.
DDR3
1600

Memory
capacity
per node

24GB 32GB 128GB

16GB
(MCDRAM)

+
192GB
(DDR4)

256GB 128GB 128GB 64GB

Operating
system (OS)

Ocean
OSb

SUSE
Linux

Enterp.
Server 11

Ocean
OS

Ocean
OS

Ubuntu
16.04

Ubuntu
14.04

Ubuntu
14.04

Ocean
OS

Compiler
Intel

compiler
17.0

Intel
compiler

13.0.1

Intel
compiler

17.0

Intel
compiler

17.0

IBM XL
13.01

GCC
6.1.0

GCC
6.1.0

GCC
4.8.5

MPI
implemen.

Intel
MPI

Intel
MPI

Intel
MPI

Intel
MPI

Open
MPI

Open
MPI

Open
MPI

Open
MPI

Scientific
libraries

Intel
MKL

Intel
MKL

Intel
MKL

Intel
MKL

ESSLc
ARM
Perf.
Lib.

ARM
Perf.
Lib.

OpenBLAS

a KNL system has been set to flat mode, therefore both memories, MCDRAM and DDR4, are exposed
as separate NUMA nodes, and the user can choose in which memory the workload executes.
b Ocean OS is a customized CentOS 7.2 Linux distribution used in Le Commissariat à l’Énergie Atomique
et aux Énergies Alternatives (CEA).
c ESSL stands for Engineering and Scientific Subroutine Library.

23

Section 3.1
∣∣∣ Hardware platforms

D
D

R
3

M
em

or
y

co
nt

ro
lle

r

Channel 1

Channel 2

Channel 3

Channel 4

E
C

CCore
1

Core
2

Core
3

Core
4

Core
5

Core
6

Core
7

Core
8

Shared L3 Cache

L1 L2 L1 L2 L1 L2 L1 L2

L1 L2 L1 L2 L1 L2 L1 L2

P
C

Ie
Q

P
I

Channel 1

Channel 2

Channel 3

Channel 4

E
C

CCore
1

Core
2

Core
3

Core
4

Core
5

Core
6

Core
7

Core
8

Shared L3 Cache

L1 L2 L1 L2 L1 L2 L1 L2

L1 L2 L1 L2 L1 L2 L1 L2

P
C

Ie
Q

P
I

4×DRAM DIMMs
DDR3-1600, 4GB

4×DRAM DIMMs
DDR3-1600, 4GB

Sandy Bridge E5-2670

Sandy Bridge E5-2670 4×72b

4×72b
D

D
R

3
M

em
or

y
co

nt
ro

lle
r

Figure 3.1: Block diagram of a single MareNostrum 3 node [59, 61].

and five alternative architectures: Intel Knights Landing Xeon Phi 7250,
IBM Power8, Cavium ThunderX, and Applied Micro (APM) X-Gene 1 and
X-Gene 2.

3.1.2 MareNostrum 3 supercomputer

We performed the experiments for HPC applications bandwidth requirements
from Chapter 5 using the MareNostrum 3 supercomputer [59]. It is the third
version of one of the six Tier-0 (largest) HPC systems in the Partnership for
Advanced Computing in Europe (PRACE) [60].

MareNostrum 3 comprises 3,056 compute nodes with peak performance
of 1.1 Petaflops. A sigle compute node block diagram is displayed in Fig-
ure 3.1. Every node is dual-socket, with each socket containing eight-core Intel
Sandy Bridge-EP E5-2670 processor, operating at 3.0 GHz. As in most HPC
systems, hyperthreading is disabled. The processors connect to main memory
through four channels, each with a single DDR3-1600 DIMM. The theoretical
memory bandwidth is 2 sockets×4 channels×64 bits×1.6 GT/s=102.4 GB/s,
per node. The maximum sustainable memory bandwidth measured with Triad
kernel from STREAM benchmark [62] is 77.86 GB/s, which is 76 % of the

24

Section 3.1
∣∣∣ Hardware platforms

2×
D

D
R

4
M

em
or

y
co

nt
ro

lle
rs

(3
 c

ha
nn

el
s

ea
ch

)

Channel 1

Channel 2

Channel 3

Channel 4
E
C

C 6×DRAM DIMMs
DDR4-2400, 16GB

Knights Landing Xeon Phi 7230

6×72b

Channel 5

Channel 6

8×MCDRAM
Memory controllers

8×3D-stacked MCDRAMs, 2GB

Core
1

L1
L2

Core
2

L1
Core

3

L1
L2

Core
4

L1 ...

P
C

Ie

Core
63

L1
L2

Core
64

L1...

D
M

I

Figure 3.2: Block diagram of a Knights Landing Xeon Phi platform [63, 64].

maximum theoretical value. Regular MareNostrum compute nodes include
32 GB of DRAM memory, i.e., 2 GB per core. The nodes are connected with
an InfiniBand FDR-10 (40 Gb/s) interconnect, as a non-blocking two-level
fat-tree topology.

3.1.3 Intel Knights Landing Xeon Phi 7230

In Chapter 7 we evaluated our performance model using Intel Knights Landing
platform [63, 65]. Figure 3.2 shows the block diagram of a KNL node. It is an
alternative platform, with single socket containing Intel Xeon Phi 7230 proces-
sor, with 64 cores running at 1.3 GHz. Each core has a local L1 cache while
two cores share L2 cache, without an additional third level of shared cache.

KNL combines two types of memory with different memory bandwidths
and access latencies: DDR4 DIMMs and 3D-stacked Multi Channel DRAM
(MCDRAM). It comprises 96 GB of DDR4-2400 memory through six memory
channels, providing 115.2 GB/s of the maximum theoretical bandwidth. MC-
DRAM is a 3D-stacked high-bandwidth memory [66]. KNL platform comprises
eight 2 GB MCDRAM chiplets (stacks), for total of 16 GB MCDRAM memory.
MCDRAM has a different organization than DDR memory, and connects to
the CPU through high-speed serial interface. It offers superior per-node maxi-
mum theoretical memory bandwidth of 480 GB/s, 4.2× higher than the DDR4.

Since it uses two types of memories, the system offers three modes of
operation: cache mode, flat mode and hybrid mode. In cache mode, MC-

25

Section 3.2
∣∣∣ HPC workloads

DRAM is used as another level of cache memory between processor and DDR
memory, and it is not visible to the operating system (OS). Flat mode config-
ures MCDRAM and DDR4 as separate NUMA nodes, so both memories are
addressable and the user may choose in which memory space the code resides.
In hybrid mode, the portion of MCDRAM space is used as the addressable
memory, while the rest is used as a cache. In our experiments, we use flat
mode, and we execute our workloads either in DDR4 or MCDRAM memory.

3.2 HPC workloads

This section details the workloads we used in our analyses. We executed promi-
nent HPC benchmarks, microbenchmarks, benchmark suite and production
HPC applications in our experiments.

3.2.1 HPC benchmarks

Two prominent HPC benchmarks we used in our experiments are High-
Performance Linpack (HPL) and High-performance Conjugate Gradients
(HPCG). Both benchmarks are used to rank supercomputers worldwide.

High-Performance Linpack

The most prominent evaluation of HPC systems constitutes the TOP500
list [2], which uses High-Performance Linpack (HPL) [67] to assess system
performance. It measures the sustained floating-point rate (GFLOPs/s) for
solving a dense system of linear equations using double-precision floating-point
arithmetic. Since the problem is very regular, the achieved performance is
quite high, and the performance numbers give a good correction of theoretical
peak performance. The linear system is randomly generated, with a user-
specified size, so that the user can scale the problem to achieve the best
performance on a given system. The documentation recommends setting a
problem size that uses approximately 80% of the available memory.

High-Performance Conjugate Gradients

Since HPL stresses only the system’s floating point performance, without
stressing other important contributors to overall performance, such as the
memory subsystem, the community has advocated for a way to evaluate
HPC systems that is better correlated with the needs of production HPC
applications [68]. High-Performance Conjugate Gradients (HPCG) [69], has
been released as a complement to the FLOPs-bound HPL. It is based on

26

Section 3.2
∣∣∣ HPC workloads

an iterative sparse-matrix conjugate gradient kernel with double-precision
floating-point values. While HPL can exploit data locality and thus cope with
relatively low memory bandwidth, HPCG performance is largely proportional
to the available memory bandwidth [70]. HPCG is a good representative
of HPC applications governed by differential equations, which tend to have
much stronger needs for high memory bandwidth and low latency, and tend
to access data using irregular patterns.

3.2.2 Microbenchmarks

We used three microbenchmarks to measure specific performance metrics:
double-precision general matrix multiplication (DGEMM), STREAM and
LMbench. DGEMM and STREAM are a part of a larger HPC Challenge
(HPCC) benchmark suite [71].

DGEMM

DGEMM is a floating-point intensive benchmark that represents the cor-
responding Level 3 Basic Linear Algebra Subprograms (BLAS) routine.
The benchmark calculates the product of dense double precision matrices:
C ← αA×B + β. It is used for measuring the sustainable FLOP perfor-
mance, at the per-core or per-node level.

STREAM

The STREAM benchmark [62] performs operations on arrays that are several
times larger than the last level cache, effectively measuring the system’s
sustained memory bandwidth. It comprises four kernels: Copy, Add, Scale
and Triad. In our analysis, we report the results of the Triad operation, since
it is the most similar to kernels used in HPC applications.

LMbench

LMbench [72] is a microbenchmark suite designed to focus attention on
the basic building blocks of many common system applications, such as
databases, simulations, software development, and networking. It contains
several benchmarks which measure performance of different hardware and
software components in a system. We used lat mem rd, the read memory
access latency benchmark, in order to measure access latencies of different
levels in memory hierarchy. The benchmark reads the input dataset in a
random order to mitigate the impact of the data prefetching. By varying
the input load size, we measure access latency of all memory hierarchy levels.

27

Section 3.2
∣∣∣ HPC workloads

The measured latency is reported in nanoseconds per load, and comprises
not only the latency of the hardware components (caches, memory controller,
main memory), but also the latency of the system software such as virtual-to-
physical memory translation.

3.2.3 SPEC CPU2006 benchmark suite

SPEC CPU2006 benchmark suite [73] is SPEC’s industry-standardized, CPU-
intensive benchmark suite, stressing a system’s processor, memory subsystem
and compiler. It provides single-thread workloads developed from real user
applications, which measure compute-intensive performance across the widest
practical range of hardware. The suite includes 12 integer and 17 floating-
point benchmarks. Table 3.2 lists the SPEC CPU2006 benchmarks with
their application areas. We used reference workload for each SPEC CPU2006
benchmark execution.

3.2.4 UEABS HPC applications

Besides HPC benchmarks, we used production HPC applications from Unified
European Application Benchmark Suite (UEABS) [74]. UEABS represents a
set of production applications and datasets, from various scientific domains,
designed for benchmarking the European HPC systems. It is included in
the Partnership for Advanced Computing in Europe (PRACE) [60], for
procurement and comparison purposes. Parallelized using the Message Passing
Interface (MPI), these applications are regularly executed on hundreds to
thousands of cores. We study 9 of 12 applications from UEABS.1 Here is the
brief description about each of the applications used in the thesis:

• ALYA is a computational mechanics code for solving different physics
problems: convection-diffusion reactions, incompressible flows, com-
pressible flows, turbulence, bi-phasic flows and free surface, excitable
media, acoustics, thermal flow, quantum mechanics and solid mechanics.

• BQCD is a hybrid Monte-Carlo code that simulates Quantum Chromo-
dynamics with dynamical standard Wilson fermions. The computations
take place on a four-dimensional regular grid with periodic boundary
conditions. The kernel is a standard conjugate gradient solver with
even/odd pre-conditioning.

1 We could not finalize the installations of Code Saturne and GPAW. The errors have
been reported to the application developers. The remaining SPECFEM3D application had
problems once the measurement infrastructure was included.

28

Section 3.2
∣∣∣ HPC workloads

Table 3.2: SPEC CPU2006 benchmarks

Benchmark Language Application area

Integer benchmarks
astar C++ Path-finding Algorithms
bzip2 C Compression
gcc C C Compiler
gobmk C Artificial Intelligence
h264ref C Video Compression
hmmer C Search Gene Sequence
libquantum C Quantum Computing
mcf C Combinatorial Optimization
omnetpp C++ Discrete Event Simulation
perlbench C Programming Language
sjeng C Artificial Intelligence
xalancbmk C++ XML Processing

Floating-point benchmarks
bwaves Fortran Fluid Dynamics
cactusADM C, Fortran General Relativity
calculix C, Fortran Structural Mechanics
dealII C++ Finite Element Analysis
gamess Fortran Quantum Chemistry
GemsFDTD Fortran Computational Electromagnetics
gromacs C, Fortran Molecular Dynamics
lbm C Fluid Dynamics
leslie3d Fortran Fluid Dynamics
milc C Quantum Chromodynamics
namd C++ Molecular Dynamics
povray C++ Image Ray-tracing
soplex C++ Linear Programming
sphinx3 C Speech recognition
tonto Fortran Quantum Chemistry
wrf C, Fortran Weather modeling
zeusmp Fortran Fluid Dynamics

• CP2K performs atomistic and molecular simulations of solid state, liquid,
molecular and biological systems. It provides a general framework
for different methods such as density functional theory using mixed
Gaussian and plane waves approach, and classical pair and many-body
potentials.

• GADGET is a code for cosmological N-body/SPH simulations on mas-
sively parallel computers with distributed memory. GADGET computes
gravitational forces with a hierarchical tree algorithm and represents
fluids by means of smoothed particle hydrodynamics. The code can be
used for studies of isolated systems, or for simulations that include the

29

Section 3.2
∣∣∣ HPC workloads

cosmological expansion of space, either with, or without, periodic bound-
ary conditions. In all these types of simulations, GADGET follows the
evolution of a self-gravitating collisionless N-body system, and allows
gas dynamics to be optionally included. Both the force computation
and the time stepping of GADGET are fully adaptive, with a dynamic
range that is, in principle, unlimited. GADGET can therefore be used
to address a wide array of astrophysics interesting problems, ranging
from colliding and merging galaxies, to the formation of large-scale
structure in the Universe. With the inclusion of additional physical
processes such as radiative cooling and heating, GADGET can also be
used to study the dynamics of the gaseous intergalactic medium, or to
address star formation and its regulation by feedback processes.

• GENE is a gyro kinetic plasma turbulence code. Originally used for
flux-tube simulations, today GENE also operates as a global code,
either gradient- or flux-driven. An arbitrary number of gyro kinetic
particle species can be taken into account, including electromagnetic
effects and collisions. GENE is, in principle, able to cover the widest
possible range of scales, all the way from the system size (where nonlocal
effects or avalanches can play a role) down to sub-ion-gyroradius scales
(where ETG or micro tearing modes may contribute to the transport),
depending on the available computer resources.

• GROMACS performs molecular dynamics, i.e. simulate the Newtonian
equations of motion for systems with hundreds to millions of particles.
It is primarily designed for biochemical molecules like proteins, lipids
and nucleic acids that have a lot of complicated bonded interactions,
but since GROMACS is extremely fast at calculating the nonbonded
interactions (that usually dominate simulations) many groups also use
GROMACS for research on non-biological systems, e.g. polymers.

• NAMD is a widely used molecular dynamics application designed to
simulate bio-molecular systems on a wide variety of compute platforms.
In the design of NAMD particular emphasis has been placed on scal-
ability when utilizing a large number of processors. The application
can read a wide variety of different file formats, for example force fields,
protein structure, which are commonly used in bio-molecular science.
Deployment areas of NAMD include pharmaceutical research by aca-
demic and industrial users. NAMD is particularly suitable when the
interaction between a number of proteins or between proteins and other
chemical substances is of interest. Typical examples are vaccine research
and transport processes through cell membrane proteins.

30

Section 3.3
∣∣∣ Tools

• NEMO is a state-of-the-art modeling framework for oceanographic
research, operational oceanography seasonal forecast and climate studies.
Prognostic variables are the three-dimensional velocity field, a linear or
non-linear sea surface height, the temperature and the salinity. In the
horizontal direction, the model uses a curvilinear orthogonal grid and in
the vertical direction, a full or partial step z-coordinate, or s-coordinate,
or a mixture of the two.

• Quantum Espresso is an integrated suite of codes for electronic-structure
calculations and materials modeling, based on density-functional theory
plane waves, and pseudopotentials (norm-conserving, ultrasoft, and
projector-augmented wave). Quantum Espresso builds upon newly
restructured electronic-structure codes that have been developed and
tested by some of the original authors of novel electronic-structure
algorithms and applied in the last twenty years by some of the leading
materials modeling groups worldwide.

The applications come with input datasets and a recommended range of CPU
cores for the experiments. We use the Test Case A datasets, which are deemed
suitable for Tier-1 systems up to about 1,000 cores [74]. In all experiments, we
execute one application process per CPU core. The applications under study
with their area of science and input dataset description are listed in Table 3.3.

3.3 Tools

To obtain the measurements in our experiments, we use MPI instrumentation
tools and performance measurement tools. We also used CPU and DRAM
simulators in order to compare the estimations of our model with simulation
results, described in Chapter 7.

3.3.1 Instrumentation and profiling tools

In our analysis of HPC applications we used Extrae and Limpio instrumen-
tation tools, Paraver visualization tool and LIKWID tool for measuring
performance counter metrics.

Extrae

Extrae [75] is a dynamic instrumentation package to trace programs compiled
and executed with the shared memory model (such are OpenMP and pthreads),
the message passing (MPI) programming model or both programming models

31

Section 3.3
∣∣∣ Tools

Table 3.3: Scientific HPC applications used in the thesis

Name Area of science Input problem Size

ALYA
Computational
mechanics

27 million element mesh

BQCDa Particle physics 322 × 642 lattice

CP2K
Computational
chemistry

Energy calculation
of 1024 waters

GADGET
Astronomy
and cosmology

135 million particles

GENE Plasma physics
Ion-scale turbulence
in Asdex-Upgrade

GROMACS
Computational
chemistry

150000 atoms

NAMD
Computational
chemistry

2×2×2
STM Virus replication

NEMO Ocean modeling
1/12◦ global configuration;
4322× 3059 grid

Quantum Espresso
Computational
chemistry

112 atoms; 21 iterations

a Quantum Chromo-Dynamics (QCD) is a set of five kernels. We study
Kernel A, also called Berlin Quantum Chromo-Dynamics (BQCD), which is
commonly used in QCD simulations.

(different MPI processes using OpenMP or pthreads within each MPI process).
It takes advantage of multiple interposition mechanisms to add monitors into
the application and captures time-stamped events, e.g. entry/leave of a MPI
function call. Also, it provides support for gathering additional statistics such
as performance counters values at each sampling point. The result is a trace
file of a parallel application for a post-mortem analysis.

Limpio

Limpio [76] is a lightweight MPI instrumentation framework. It overrides
standard MPI functions and executes instrumentation routines on entry/leave
of the selected MPI calls. Users themselves can write and customize the
instrumentation routines and invoke external application profiling tools to fit
the requirements of the analysis. Limpio can generate application traces of
timestamped events that can be visualized by general-purpose visualization
tools or libraries. We used Limpio to instrument HPC applications in specific

32

Section 3.3
∣∣∣ Tools

region of interest, i.e., several iterations of the main computational phase.

Paraver

Paraver [77] is a flexible parallel program visualization and analysis tool.
It is developed for a qualitative and quantitative analysis of the parallel
application behavior by visual inspection. It supports trace filtering and trace
visualization in terms of timelines, histograms and a large set of available
performance metrics. We used Paraver to display trace files generated by
Extrae, and determine the region of interest for HPC applications analysis.

LIKWID

LIKWID (“Like I Knew What Im Doing”) [78] is a set of command-line
utilities for probing the thread, cache and NUMA topology in multicore and
multisocket nodes, enforcing thread-core affinity in a multithreaded applica-
tions, measuring performance counter metrics, etc. Currently it supports only
x86-based processors. We used it to measure hardware performance metrics,
since it easy to install and use, and covers a wide range of core and uncore
performance counters of the CPU architectures used in the thesis.

3.3.2 Simulators

In Chapter 7 we compare our performance model with the simulation results.
We chose ZSim as a CPU simulator, together with DRAMSim2 for the main
memory simulation.

ZSim

ZSim [79] system simulator is developed by researchers from MIT and Stan-
ford University, designed for simulation of large-scale x86-64 systems. It is
organized to scale well (almost linearly) with simulated core count. ZSim
uses DBT-based instruction-driven core timing models, the bound-weave par-
allelization algorithm, and a lightweight virtualization for complex workload
support. It is also one of the fastest systems simulators available, with speed
of hundreds of millions of instructions/second in a modern multicore host.

ZSim was initially designed to simulate Intel Westmere architecture (re-
leased in 2008). Since we wanted to simulate Intel Sandy Bridge-EP E5-2670
processor, one of the tasks that we had to perform was to upgrade and validate
ZSim for Intel Sandy Bridge processor [80]. The ZSim upgrade was done by
following the Intel documentation [81], and it comprised several steps. First,
we adjusted the latency of numerous instructions, and added support the for

33

Section 3.3
∣∣∣ Tools

the new x86 vector instruction extensions i.e. AVX, SSE3, that are supported
by Sandy Bridge and were not supported by Westmere. We also improved
the fusion of the instructions into a single micro-op, and we increased the
number of entries in the reorder buffer from 128 (Westmere) to 168 (Sandy
Bridge). Finally, the simulated hardware platform comprises a detailed model
of Sandy Bridge-EP E5-2670 cache hierarchy [82]. In all three levels of cache
memory, we used the Least Recently Used (LRU) cache replacement policy
and for the L3 cache level we implemented the slice allocation hash function
explained by Maurice et al. [83].

DRAMSim2

DRAMSim2 [84] is a cycle accurate model of a DRAM main memory. It is
developed by University of Maryland and it is validated against manufacturer
Verilog models. All major components in a modern memory system are
modeled as their own respective objects within the source code, including:
ranks, banks, command queue, the memory controller, etc. DRAMSim2 can
be integrated with various CPU simulators through fairly simple interface.

34

Pretend that you’re Hercule Poirot: Examine all the
clues, and deduce the truth by order and method.

LATEX error message

4
Memory bandwidth and
latency aspects in HPC

systems evaluation

Increasing diversity of servers with different characteristics and architectures
causes their evaluation and comparison in terms of HPC features to become
complex and multi-dimensional. In this chapter, we share our experience of
evaluating a diverse set of HPC systems, consisting of three mainstream and
five alternative architectures. We evaluate the performance and power effi-
ciency using prominent HPC benchmarks, High-Performance Linpack (HPL)
and High Performance Conjugate Gradients (HPCG), and expand our anal-
ysis using publicly available specialized kernel benchmarks, targeting specific
system components. In addition to a large body of quantitative results, we
emphasize four usually overlooked aspects of the HPC platforms evaluation,
related to memory bandwidth and latency, and share our conclusions and
lessons learned. We believe that our analysis will improve the evaluation and
comparison of HPC platforms, making a first step towards a more reliable
and uniform methodology.

4.1 Introduction

Each year we see a greater variety of HPC systems in the market. In addition
to mainstream x86 architectures, emerging architectures based on POWER,
ARM, SPARC and others are steadily appearing and catching attention [85].
Instead of hosting a single type of platform, supercomputing centers already
provide a diverse set of systems. Making the right choice of architecture is
critical, but evaluating and comparing HPC systems is hard.

35

Section 4.1
∣∣∣ Introduction

Our study evaluates and compares three generations of mainstream x86
architectures: Intel Nehalem, Sandy Bridge and Haswell, and five alternative
architectures: Intel Knights Landing (KNL), IBM Power8, Cavium ThunderX,
and Applied Micro (APM) X-Gene 1 and X-Gene 2. In addition to presenting
a large body of quantitative results, we emphasize four usually overlooked
aspects of HPC platform evaluation, related to memory bandwidth and
latency, and share our conclusions and lessons learnt.

First, we show that a platform’s performance and energy-efficiency depend
significantly (n-fold) on the characteristics of the target applications. For
example, the ThunderX platform has 50% better energy efficiency than
Haswell when running memory-bound HPCG, but Haswell shows 3.6× better
efficiency for the compute-intensive HPL. We strongly advocate that any
comparison between the platforms should start with the performance and
energy-efficiency of HPL and HPCG as the boundaries of the compute-
intensive and memory-intensive HPC applications. However, most of the
previous studies [86, 87, 88] that compare alternative and mainstream HPC
platforms do not include these results.

Second, we detect a significant range in the main memory access latency,
with a factor of three difference between the fastest and slowest platforms under
study (90 ns–285 ns). Since memory access latency has a direct performance
impact for many applications [11], it should be minimized in HPC servers,
and any increment above about 100 ns should be analysed and justified.

Third, we also analyse the Byte/FLOP ratio and detect a huge difference
of up to 21× among the platforms under study. The Byte/FLOP ratio is one
of the most important design decisions, and we hope that our results will
resurface a discussion on its desired range.

Fourth, our measurements show significant, up to 70% differences be-
tween theoretical and sustained FLOPS performance and memory bandwidth,
especially for alternative platforms. Therefore, we note the importance of
measuring performance using specialized kernel benchmarks rather than rely-
ing on theoretical numbers from datasheets, even for the first order evaluation
of the system. Also, hopefully these results will motivate further development
of the HPC compilers and scientific libraries for alternative platforms.

In summary, given the substantial investment of time and money to
deploy an HPC system, it is important to carefully evaluate and compare
the available mainstream and alternative architectures. The conclusions of
such an analysis depend significantly on the applied methodology, and the
previous studies report the findings based on different experimental set-up,
statistics of interest and benchmarks. Overall, we believe that this study will
improve the evaluation and comparison of HPC platforms, making first steps
towards more reliable and uniform methodology.

36

Section 4.2
∣∣∣ Experimental environment

4.2 Experimental environment

In this section, we explain efforts in evaluation of HPC systems, together
with workloads and experimental platforms we used in our analysis.

4.2.1 HPC benchmarks

HPC benchmarks are important for bounding the sustainable performance
of different components in a system. In our study, we used prominent HPC
benchmarks, HPL and HPCG (see Section 3.2.1). Apart from them, we used
DGEMM and STREAM benchmarks from HPCC suite, and memory read
latency benchmark from LMbench suite (see Section 3.2.2).

4.2.2 HPC platforms

For our study, we included mainstream HPC architectures which have been
predominantly used in HPC systems so far, as well as alternative architec-
tures which have been recently introduced to the market and are set to be
used in future HPC systems. We evaluate and compare three generations of
mainstream x86 architectures: Intel Nehalem, Sandy Bridge and Haswell, and
five alternative architectures: Intel Knights Landing (KNL), IBM Power8,
Cavium ThunderX, and Applied Micro (APM) X-Gene 1 and X-Gene 2. The
architectures under study with their most important features and used system
software are summarized in Table 3.1.

Comparing different HPC architectures under study is challenging. Archi-
tectures developed by different vendors essentially have different Instruction
Set Architectures (ISAs) and therefore different system software such as
compilers and scientific libraries. For each platform, we identified system
software that provided the best performance. It has been used as is, and
has not been tuned for each of the platforms. Hence, our conclusions should
not be understood as a comparison between different hardware (CPUs and
memory only), but a comparison of the platforms (systems) that also include
the corresponding system software.

To our knowledge, there are no studies which analyze this many platforms,
three mainstream and five alternative ones. Unlike some of the previous
studies [86, 89, 90] which performed first-order evaluation of the alternative
platforms by using their developer kits, all the platforms under study are fully-
fledged production servers that could be used in an HPC system. We argue
that it is important to compare fully-fledged servers since their performance
features and power consumption differ significantly from the corresponding
developers kits.

37

Section 4.3
∣∣∣ Results

4.2.3 Power measurements

For all platforms under study we measure the power consumption at the
server level, which may comprise multiple sockets, as detailed in Table 3.1.
The power measurements are performed with on-board or external power
meters, that account for the overall server consumption including CPUs,
memory, power supply, and so on. We also used power measurements to
calculate the power efficiency of the platforms under study for HPL and
HPCG benchmarks.

4.3 Results

In this section, we present results from the evaluation of multiple HPC ar-
chitectures with different benchmarks. We start with the most prominent
HPC benchmarks, HPL and HPCG, and later expand the analysis to include
other benchmarks, which together give a more complete picture of a system’s
performance.

4.3.1 HPL and HPCG benchmarks

This section gives insights on the performance and power efficiency of platforms
under study, while executing the HPL and HPCG benchmarks.1 Figures 4.1a
and 4.1b show the HPL and HPCG performance and performance-per-watt of
platforms under study. These measurements are obtained with multi-threaded
version of the benchmarks that use all the available physical cores.

Figure 4.1a lists the performance measurements. The KNL platform shows
by far the best performance for HPL, followed by the Haswell and POWER8
servers, which reach 42% and 18% of the KNL’s HPL performance. ARM
platforms show significantly lower performance. ThunderX, X-Gene 2 and
X-Gene 1 deliver 5%, 1.3% and 0.1% of the KNL HPL scores, respectively.
The results also show the notable improvement in the HPL performance over
the various generations of mainstream platforms, from Nehalem to Sandy
Bridge and Haswell.

The HPCG results show a slightly different trend. KNL using MCDRAM
is still the highest-ranked platform, followed by Haswell, POWER8, Sandy
Bridge and ThunderX. We see that the relative difference in the HPL per-
formance is much higher than the difference in HPCG performance. The
Figure 4.1a also indicates that POWER8, Haswell and KNL platforms with

1 For X-Gene 1 platform, we could not obtain power measurements.

38

Section 4.3
∣∣∣ Results

Nehale
m

X5560

Sandy Brid
ge

E5-2670 Hasw
ell

E5-2698v3 KNL

(D
DR4) KNL

(M
CDRAM)

POWER8

ThunderX
0

500

1000

1500

2000

H
PL

pe
rf

or
m

an
ce

[G
FL

O
Ps

/s
]

81
303

772

1825 1847

344
87 24 2

HPL
HPCG

0

4

8

12

16

H
PC

G
pe

rf
or

m
an

ce
[G

FL
O

Ps
/s

]

3

7

11

7

17

8
7

0.9 0.1

X-G
ene 1

X-G
ene 2

(a) HPL and HPCG performance

0
1
2
3
4
5
6

H
PL

Pe
rf

or
m

an
ce

-p
er

-w
at

t
[G

FL
O

Ps
/s

pe
rw

at
t]

0.29
1.1

1.8

5.8 5.9

0.45 0.49 0.17

HPL
HPCG

0.0
0.01
0.02
0.03
0.04
0.05
0.06

H
PC

G
Pe

rf
or

m
an

ce
-p

er
-w

at
t

[G
FL

O
Ps

/s
pe

rw
at

t]

0.013

0.028 0.027 0.026

0.058

0.011

0.040

0.007

Nehale
m

X5560

Sandy Brid
ge

E5-2670 Hasw
ell

E5-2698v3 KNL

(D
DR4) KNL

(M
CDRAM)

POWER8

ThunderX

X-G
ene 2

(b) HPL and HPCG performance-per-watt

Figure 4.1: The gap in performance between the platforms under study is
much lower for HPCG than for HPL. Power efficiency of the alternative
platforms is promising for memory-intensive workloads, such as HPCG.

DDRx memory interfaces reached plateau in terms of the HPCG performance,
while KNL with MCDRAM provides a huge leap forward.

Figure 4.1b lists the performance-per-watt results for the studied platforms.
Mainstream platforms show increasing power efficiency for HPL, with KNL as
the best. POWER8, ThunderX and X-Gene 2 show significantly lower energy
efficiencies, at just 7.6%, 8.3% and 2.9% of the KNL’s performance-per-watt.
HPCG power efficiency increases from Nehalem to Sandy Bridge and then
stagnates for Haswell and KNL using DDR4. On the other hand, KNL using
MCDRAM achieves the highest power efficiency. Alternative platforms show
a much lower power efficiency, except for the ThunderX platform, which is
the second best, only 31% lower than KNL using MCDRAM.

The results show that, regarding power efficiency, it is very important
to identify the target application. When targeting floating-point intensive

39

Section 4.3
∣∣∣ Results

applications (such as HPL), using low-power/low-performance cores seems not
to be the best approach for overall energy efficiency. However, when targeting
applications with lower processing requirements and higher stress to other
resources such as main memory, the ThunderX approach may deliver the
energy efficiency, which significantly exceeds the x86 and POWER8 platforms.

4.3.2 Caches and main memory access latency

For decades, the memory system has imposed a fundamental limitation on
system performance. This is recognized by the HPC community: HPL scores
are frequently complemented by HPCG performance; sustained memory
bandwidth is one of the main HPC performance metrics [71][91], and high-
bandwidth memory solutions caused a lot of interest by the HPC users. How-
ever, although the community invests significant effort to understand the mem-
ory bandwidth, the cache and main memory latencies are usually overlooked.
This is surprising because the memory latency has a direct performance impact,
and the memory wall itself was defined in terms of latency, not bandwidth [11].

In this section, we compare the access time of the caches and main memory
for platforms under study. The results are plotted in Figure 4.2. The x-axis
of the figures shows the input dataset size. In Figure 4.2a the load size
ranges from 2 KB to 256 KB, which focuses on the L1 and L2 caches. In
Figure 4.2b dataset size reaches up to 1 GB, covering all levels of caches
and main memory. Even for the L1 and L2 caches we detect a significant
difference in the latencies. At the L1 cache (2–32 KB load) the latency varies
from 1.25 ns (Sandy Bridge, Haswell, POWER8) to 2.5 ns for KNL. In the
L2 cache (128 KB load), the difference is even more significant, from 3.6 ns
(Nehalem, Sandy Bridge, Haswell, POWER8) to 23 ns (ThunderX). The main
memory latency (256 MB load) ranges from 90 ns (Nehalem, Haswell and
POWER8) and 105 ns (Sandy Bridge, ThunderX) up to 250 ns and 285 ns
for KNL using DDR4 and MCDRAM, respectively.

Overall, our measurements show that the cache and main memory latencies
can vary significantly among platforms. Mainstream platforms and POWER8
perform well on all memory hierarchy levels. Alternative ARM platforms,
ThunderX and X-Gene, have somewhat higher latency. KNL has significantly
higher latency especially for the datasets that exceed 1 MB. Since these
latencies have a direct performance impact, especially for the workloads with
a high rate of dependent memory accesses, they are an important parameter
to consider. KNL platform is especially interesting since it incorporates high-
bandwidth MCDRAM, based on 3D-integration. While KNL delivers memory
bandwidth far superior to any other platform under study, it comes with the
cost of the memory access latency that exceeds 3× the latency on mainstream

40

Section 4.3
∣∣∣ Results

2kB 4kB 8kB 16kB 32kB 64kB 128kB 256kB

Load size

0

5

10

15

20

25

L
a
te
n
cy

[n
s]

KNL (MCDRAM)

KNL (DDR4)

Haswell E5-2698v3

Sandy Bridge E5-2670

Nehalem X5560

POWER8

ThunderX

XGene2

XGene1

(a) L1 and L2 cache access latency

4kB 16kB 64kB 256kB 1MB 4MB 16MB 64MB 256MB 1GB

Load size

0

50

100

150

200

250

300

L
a
te
n
cy

[n
s]

(b) L1, L2, L3 and main memory access latency

Figure 4.2: Cache and main memory latency can vary significantly among
the studied platforms. KNL memory access latency exceeds 3× the latency
on other platforms.

platforms. Finally, it is also important to notice that most of the KNL memory
access penalty does not come from the memory device itself. DDR3 and DDR4
modules timing parameters are standardized by JEDEC [92], and the variation
between them (in nanoseconds) is negligible. Still, KNL DDR4 access is around
150 ns slower than other platforms. Therefore, the KNL memory access penalty
originates mainly from handling the memory request between the last-level
cache and the memory device, i.e. from the memory queues and memory
controller. It is interesting to see whether future architectures will succeed
in incorporating 3D-stacked memory without a significant latency overhead.

4.3.3 Byte/FLOP ratio

Using the node-level measurements of FLOPs and memory bandwidth (mea-
sured with DGEMM and STREAM benchmarks), in Figure 4.3 we show the

41

Section 4.3
∣∣∣ Results

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Byte/FLOP

Nehalem
X5560
(0.42)

Sandy Bridge
E5-2670

(0.23)

Haswell
E5-2698v3

(0.13)

KNL
(DDR4)
(0.05)

KNL
(MCDRAM)

(0.27)

POWER8
(0.29)

ThunderX
(0.35) (0.92) (1.07)

Mainstream KNL POWER8 ARM

X-Gene 1X-Gene 2

Figure 4.3: Ratio between sustained memory bandwidth and FLOPS of the
platforms under study can differ up to 21×.

ratio between sustained memory bandwidth and FLOPS of the platforms
under study. Platforms with a low Byte/FLOP ratio are well suited for
compute-intensive applications such as HPL. In these platforms, for real
applications memory bandwidth may easily become a performance bottleneck.
The platforms with a high Byte/FLOP ratio perform well with applications
that put a high pressure on memory bandwidth, such as HPCG. In this case,
floating-point processing power may limit the performance.

We detect a huge difference in the Byte/FLOP ratio among the platforms
under study. The measured Byte/FLOP ratio ranges from 0.05 (KNL-DDR4)
to 1.07 (X-Gene 1), a difference of more than 21×. For mainstream HPC
systems (Nehalem, Sandy Bridge and Haswell), the Byte/FLOP ratio is signifi-
cantly below 1, and it has the tendency of decreasing [41], which does not serve
well for memory-bound HPC workloads. Also, current DDRx technology can-
not keep up with aggressive FLOPs performance increases, so further progress
in memory bandwidth relies on high-bandwidth memory solutions based on 3D-
integration. In this respect, the KNL platform has a much higher Byte/FLOP
ratio using MCDRAM than DDR4. Alternative systems, on the other hand,
show a promising ratio, which is higher than mainstream platforms. This is
mostly because the sustainable memory bandwidth is currently comparable
between mainstream and alternative platforms, while the FLOPs performance
of alternative systems is significantly below the mainstream ones. If this
ratio keeps up with future developments of emerging platforms, we could see
systems that cope better with memory-bandwidth intensive HPC workloads.
Since HPC system performance strongly depends on the Byte/FLOP ratio,
we advocate for this ratio to be constrained more precisely for HPC systems.

42

Section 4.3
∣∣∣ Results

Nehale
m

X5560

Sandy Brid
ge

E5-2670 Hasw
ell

E5-2698v3 KNL

(D
DR4) KNL

(M
CDRAM)

POWER8

ThunderX
0%

20%

40%

60%

80%

100%

D
G

E
M

M
/S

T
R

E
A

M
pe

rc
en

ta
ge

of
th

eo
re

tic
al

m
ax

im
um 92 88

77

57 57

83

23

72

4854

76
87

77
92

58

27

49

77

DGEMM STREAM

X-G
ene 2

X-G
ene 1

Figure 4.4: Sustained FLOPS and memory bandwidth show significant differ-
ence to theoretical maximums, especially for alternative platforms.

4.3.4 Theoretical vs. sustained
FLOPs/s and memory bandwidth

As the final step of our analysis, we compare the maximum theoretical FLOPS
performance and memory bandwidth from platform datasheets with the sus-
tained values measured using DGEMM and STREAM. This comparison is
important because sometimes theoretical numbers are used to compare plat-
forms or estimate large-scale system performance before they are built. Our
results, however, show that the differences between theoretical and measured
numbers may be significant.

The results are displayed in Figure 4.4. Mainstream HPC systems based on
Sandy Bridge and Haswell deliver sustained FLOPS performance and memory
bandwidth close to theoretical maximums. Some alternative architectures,
however, reach moderate FLOPS and memory bandwidth utilization even
when running the DGEMM and STREAM benchmarks. For example, X-
Gene 1 and KNL reach only 48% and 56% of the maximum theoretical FLOPS,
while X-Gene 2 and POWER8 achieve similar rates for memory bandwidth.
An explanation could be that the overall system cannot fully utilize SIMD
floating-point execution units or data-transfer mechanisms. By the overall
system we include both hardware and system software, including the pipeline,
out-of-order (OoO) engine, caches, compilers and scientific libraries. The HPC
system software for alternative platforms is still under development; for exam-
ple, the first math libraries for ARM-based servers were released three years
ago [93]. Similar studies confirm that system software stack on alternative
platforms is relatively immature, which limits the achievable performance [88,
94, 95]. Finally, ThunderX shows very low FLOPS and memory utilization of
23% and 27%, respectively. In this case, additional problem is the simplicity
of the in-order core and poor performance of inter-socket communication.

43

Section 4.4
∣∣∣ Related work

This analysis has two outcomes. Firstly, we would avoid using maximum
theoretical performance even for first-order provisioning or an early evaluation
of the HPC system, especially for the alternative platforms. Secondly, for
some of the platforms under study, the results also show notable room for
performance improvement, which will hopefully motivate further development
of compilers and scientific libraries for alternative HPC platforms.

4.4 Related work

In addition to mainstream x86 architectures, emerging architectures based on
POWER, ARM, and SPARC are steadily appearing and catching the attention
of the HPC community. Although making the right choice of architecture is
critical for the HPC infrastructure providers, only few studies evaluate and
compare available alternative and mainstream HPC platforms.

The study of Rajovic et al. [86] is the first to analyze the suitability of
mobile ARM processors for HPC. The study compares the performance and
energy efficiency of development boards using mobile ARM 32-bit SoCs against
a laptop with a Intel Sandy Bridge CPU.2 Based on these measurements, the
authors conclude that the performance and energy efficiency of mobile ARM
platforms is competitive to the mainstream x86 HPC servers.

Abdurachmanov et al. [94] compare an X-Gene 1 development board with
a dual-socket Intel Sandy Bridge server and Intel Xeon Phi PCIe add-on
card. The authors compare only the CPU power consumption using on
board sensors for X-Gene 1 development kit and Xeon Phi card, and RAPL
interface [81] on the Sandy Bridge CPU. The study analyzes performance
and energy efficiency of a single benchmark, ParFullCMS, and it concludes
that the Sandy Bridge and Xeon Phi CPUs have similar performance that
is 2.5× higher than X-Gene 1. Performance-per-watt results position Sandy
Bridge as the most efficient platform, followed by X-Gene 1 (approximately
10% lower efficiency) and Xeon Phi (more than 35% lower efficiency compared
to Sandy Bridge).

Early evaluation of emerging platforms using developer kits is valuable
and needed. However, we argue that energy-efficiency analysis requires mea-
surements on the fully-fledged production servers, as performed in our study.

Rajovic et al. [87] also deploy a prototype cluster with nodes based on
mobile ARM 32-bit SoCs and compare it with a production HPC Sandy
Bridge cluster. The study also estimates the performance of the potential
successor mobile SoCs with advanced ARM cores and embedded GPUs. The

2 In order to reduce the non-essential power consumption the authors switch off the
laptop’s screen.

44

Section 4.4
∣∣∣ Related work

authors conclude that alternative ARM-based systems would offer performance
equivalent to mainstream x86 systems, while saving 40% energy, and achieving
higher integration density. However, these conclusions are based on two non-
trivial HPC application requirements. First, the HPC applications would have
to fully utilize the GPUs embedded into emerging SoCs, which is not the case
for most current production HPC codes. For the applications that can fully
utilize the GPUs, the CPU+GPU emerging systems should be compared with
similar (CPU+GPU) mainstream platforms, not with respect to the CPU-only
systems. Second, the application should have perfect parallel efficiency and
load balancing when scaling-out from strong x86 cores to an approximately
4× larger number of weaker ARM cores. However, scale-out of production
HPC applications typically leads to significant performance penalties [17].
Finally, the authors do not consider the performance and energy impact
of RAS features (RAS: Reliability, availability and serviceability), such as
memory ECC, available in the contemporary HPC systems, and not available
on the alternative system under study.

Laurenzano et al. [88] compare the performance, power and energy con-
sumption, and bottlenecks of Sandy Bridge, Atom, Haswell and X-Gene 1
servers. This analysis is based on system measurements with a large number of
benchmarks and statistical modeling. The authors conclude that on average,
for all the benchmarks under study, the X-Gene 1 and Atom servers have
comparable performance, which is significantly below the Haswell and Sandy
Bridge systems. Regarding the energy efficiency, Laurenzano et al. measure
similar results for the X-Gene 1 and Sandy Bridge, somewhat below the Atom
and Haswell servers. For all the platforms under study, the authors perform
server-level measurements, but then extract the power resulting from execut-
ing the application as a subtraction between the server power executing the
application and the idle server power. Our position is that using this metric
to quantify and compare energy efficiency is misleading and unfavorable for
servers with higher energy proportionality, in which power consumption is
highly correlated to server performance.

The conclusions of the studies that evaluate and compare emerging and
mainstream HPC platforms depend significantly on the methodology and
benchmarks used. Still, the related work shows there is no unified approach for
this analysis, and that the conclusions are sometimes based on a methodology
and assumptions open to discussion. In addition to a large body of quantitative
results, our study emphasizes usually-overlooked and important memory
bandwidth and latency aspects of the HPC platforms evaluation. We believe
this will improve the evaluation and comparison of HPC platforms, making a
first step towards a uniform and more reliable methodology.

45

Section 4.5
∣∣∣ Summary

4.5 Summary

In our study, we perform an extensive analysis of HPC architectures, three
mainstream and five alternative ones. To the best of our knowledge this is
the first study to include so many platforms. In addition to presenting a large
body of quantitative results, we highlight four important features in HPC
systems evaluation that require higher attention by the community.

First, we show a platform’s performance and energy-efficiency depend
significantly (n-fold) on the characteristics of the target application. We
strongly advocate that any comparison among platforms should start with
measurements using HPL and HPCG, which form the boundaries of compute-
intensive and memory-intensive HPC applications.

Second, our results show a huge range of memory access latencies, from
90 ns to 285 ns for the studied platforms. While KNL with MCDRAM has
the highest memory bandwidth, it also has the highest memory access latency,
due to complex memory controller and its handling of memory requests. Since
memory access latency has a direct performance impact any increment above
about 100 ns should be analysed and justified.

Third, we detect that the Byte/FLOP ratio can differ by a factor of up
to 21× between platforms. While mainstream platforms show a decreasing
tendency, alternative platforms trend upwards in this metric. We propose for
a community to properly define this ratio for HPC applications, since it has
a direct impact on system performance.

Fourth, our results show that sustainable FLOPS performance and mem-
ory bandwidth on the alternative platforms can deviate more than 70% from
theoretical performance. Therefore, we strongly suggest not relying on the-
oretical performance, even in a first-order system provisioning. These results
will hopefully motivate further development of the compilers and scientific
libraries for alternative HPC platforms.

Overall, our study provides a significant body of useful information for HPC
practitioners and infrastructure providers. Even more important, we believe it
will considerably improve the future evaluations and comparisons of HPC plat-
forms, making a first step towards a more reliable and uniform methodology.

46

In my opinion this problem of making a large mem-
ory available at reasonably short notice is much
more important than that of doing operations such
as multiplication at high speed.

Alan Turing, mathematician and pioneer of
computer science and AI

5
Memory bandwidth

requirements of HPC
applications

Designing a balanced HPC system requires an understanding of the dominant
performance bottlenecks. We highlighted in Chapter 4 that there is as yet
no well established methodology for a unified evaluation of HPC systems
and workloads that quantifies the main performance bottlenecks. This chap-
ter analyses the methodology of quantifying key performance bottlenecks:
FLOPS performance and memory bandwidth congestion, and the implica-
tions of scaling-out. We execute seven production HPC applications, together
with HPL and HPCG, on a production HPC platform and reach two main
conclusions. We show that the results depend significantly on the number of
execution processes, which is typically overlooked in benchmark suites that
seldom define how many processes should be used. We therefore advocate
for guidance in the application suites, on selecting the representative scale
of the experiments. Moreover, we find that the average measurements of
performance metrics and bottlenecks can be highly misleading. Hence, we
propose that the FLOPS performance and memory bandwidth should be
represented in terms of the proportions of time with low, moderate and
severe utilization. Our analysis shows that this gives much more precise and
actionable evidence than the average. Finally, we believe this study offers
new guidelines for accurately measuring key performance factors and their
impact on overall HPC performance.

47

Section 5.1
∣∣∣ Introduction

5.1 Introduction

Deploying an HPC infrastructure is a substantial investment in time and
money, so it is extremely important to make the right procurement decision.
Unfortunately, evaluating HPC systems and workloads and quantifying their
bottlenecks is hard. There are currently three main approaches. The approach
taken by TOP500 and Green500 is to evaluate systems using a prominent
HPC benchmark, such as High-Performance Linpack (HPL) [67] or High
Performance Conjugate Gradients (HPCG) [69]. Another approach is to
measure the sustained performance of the various components in the system
using specialized kernel benchmarks, such as HPC Challenge [71]. By design,
kernel benchmarks quantify only the sustainable performance of individual
system components, so they lack the capability to determine how a real-world
production HPC application will behave on the same platform.

The final approach, which is the one taken in this chapter, is to mimic
production use by running a set of real HPC applications from diverse scientific
fields [96]. We execute seven production HPC applications, together with HPL
and HPCG, on a production x86 platform, and we reach two main conclusions.
Firstly, we find that HPC application performance and CPU/memory system
bottlenecks are strongly dependent on the number of application processes.
This is typically overlooked in benchmark suites, which seldom define how
many processes should be used. We argue that it is essential that HPC
application suites specify narrow ranges on the number of processes, so that
the results are representative of real world application use, or that they
at least provide some guidelines. Secondly, we find that average values of
bytes/FLOP, bytes/s and FLOPs/s can be highly misleading. Our results
show that the applications under study have low average FLOPs/s utilization
and moderate pressure on the memory bandwidth. However, we identified
several applications, such as ALYA and GENE, with a moderate average
memory bandwidth that spend more than 50% of their computation time
in phases where the memory bandwidth bottleneck is severe. We therefore
recommend that rather than thinking in terms of average figures, one measures
the percentage of time that the utilization of memory bandwidth or FLOPs/s
is low (below 40% of sustainable maximum), moderate (40% to 80%) and
severe (above 80%). These three figures give a much more precise picture of
the application behavior than the average.

In summary, given the substantial investment of time and money to deploy
an HPC system, it is important to carefully evaluate HPC architectures. Com-
pared with benchmarks or kernels, system evaluation with HPC application
suites can give a more complete picture of the HPC system behavior. However,
our results show that it is very important that HPC application suites specify

48

Section 5.2
∣∣∣ Experimental environment

narrow ranges for the number of processes that are representative of real-life
application behavior, or at least provide some guidelines so users themselves
could determine these ranges for their target platforms. In addition, reporting
key application measurements using the average values may conceal bursty
behavior, and give a misleading impression of how performance would be
affected by changes in the platform’s memory bandwidth. We suggest to
avoid average figures when evaluating performance or bottlenecks, and instead
measure the percentage of time that these figures are low, moderate and
severe, with respect to their sustained peak, which gives a more precise picture
of the application’s or system’s behavior.

We hope our study will stimulate awareness and dialogue on the subject
among the community, and lead to improved standards of evaluating and
reporting performance results in HPC.

5.2 Experimental environment

In this section, we explain the experimental platform, workloads, methodology
and tools we used in our analysis.

5.2.1 Experimental platform

The experiments are executed on the MareNostrum 3 supercomputer (see
Section 3.1.2). In our experiments we used up to 64 nodes (1,024 processes).

5.2.2 Workloads

HPC benchmarks

For a long time, the High-Performance Linpack (HPL) benchmark (see Sec-
tion 3.2.1) has been the de facto metric for ranking HPC systems. HPL
stresses only the system’s floating point performance, without stressing other
important contributors to overall performance, such as the memory subsys-
tem. The most prominent evaluation of HPC systems constitutes the TOP500
list [2], which has been criticized for assessing system performance using only
HPL [97]. HPCG (see Section 3.2.1) has been released as a complement to
the FLOPs-bound HPL. We used both benchmarks in our experiments.

HPC applications

Evaluating HPC systems using benchmarks that target specific performance
metrics is not enough to determine the performance of a real-world applica-

49

Section 5.2
∣∣∣ Experimental environment

Table 5.1: Scientific HPC applications used in the study

Name Area Selected no. of processes

ALYA Computational mechanics 16–1024
BQCDa Particle physics 64–1024
CP2K Computational chemistry 128–1024
GADGET Astronomy and cosmology 512–1024
GENE Plasma physics 128–1024
NEMO Ocean modeling 512–1024
QEb Computational chemistry 16–256

a Quantum Chromo-Dynamics (QCD) is a set of five kernels. We study
Kernel A, also called Berlin Quantum Chromo-Dynamics (BQCD), which is
commonly used in QCD simulations.
b QE stands for Quantum Espresso application. QE does not scale on more
than 256 processes.

tion. It is therefore essential to execute production applications on an HPC
system to better understand the bottlenecks and constraints experienced by
a production HPC application. There are efforts in making suites of HPC
applications that could be used in benchmarking purposes, such as NSF [98],
NCAR [99] and NERSC Trinity benchmarks [100] in USA, and EuroBen [101],
ARCHER [102] and UEABS [74] in Europe. In our evaluation, we used a set
of seven UEABS applications (see Section 3.2.4), listed in Table 5.1.1

Tools and methodology

In all experiments, we execute one application process per CPU core. The
number of processes starts from 16 (a single MareNostrum node) and it
increases by powers of two until 1,024 processes. Some of the applications
have memory capacity requirements that exceed the available node memory,
which limits the lowest number of processes in the experiments, e.g., BQCD
cannot be executed with fewer than 64 processes (four nodes). The presented
analysis keeps constant the input dataset and varies the number of application
processes, which refers to a strong scaling case.2

1 The remaining two applications had problems once the measurement infrastructure
was included.

2 The alternative would be a weak scaling analysis, in which the problem size scales
with the number of nodes. Unlike HPL and HPCG, for which the problem size is defined
by the user and the input data is generated algorithmically, application benchmark suites
include specific input problem data. We are not aware of a production application
benchmark suite that has problems suitable for weak scaling analysis. Although some of
the UEABS benchmarks are distributed with two input datasets, small and large, they are
not comparable so are insufficient for weak scaling analysis [103].

50

Section 5.3
∣∣∣ Results

The applications were instrumented with Limpio and Extrae tools (see
Section 3.3.1). We used core performance counters [81] to measure FLOPS
performance (scalar and vector FLOPS counters) and uncore performance
counters [61] to measure memory bandwidth (read and write Column Access
Strobe (CAS) commands counters).

We analyze the application behavior at two levels of granularity. First,
we plot mean FLOPs and memory bandwidth utilization using end-to-end
measurements and averaging the values of all application processes. Second,
we analyze the fine-granularity measurements done at the computational burst
level. For each computational burst we measure the FLOPs performance and
the burst execution time, while memory bandwidth utilization is measured
on 1 second time period, since uncore counters do not allow reading on every
computational burst. Afterwards, we strip the communication time from the
memory bandwidth measurements. Finally, we analyze the cumulative distri-
bution function of the measurements.3 As we show in this study, these two
levels of the analysis can, and often do, actually lead to different conclusions.

5.3 Results

In this section, we analyze the stress of the production HPC applications on
the CPU and memory resources, and pay special attention to understand how
this stress may change during execution and as the application scales.

5.3.1 Floating-point performance analysis

Figure 5.1a plots the average FLOPs/s utilization for different numbers of
application processes. The results show that the average FLOPs/s utilization
of production HPC applications is fairly low: for most applications it is
below 30%, and in the best case it reaches only 51% (CP2K-128 experiment).
Figure 5.1b summarizes the distribution of measurements done at compu-
tational burst level. We divide the computational burst measurements into
five clusters: 0–20%, 20–40%, 40–60%, 60–80% and 80–100% of sustained
FLOPs/s, and then plot the portion of execution time represented by each
cluster. For example, in the BQCD-64 experiment, 72% of the time the
FLOPs/s utilization is between 0 and 20%, while for the remaining 28% of
the time it is between 20% and 40%.

Our results show that detailed measurements are indeed needed, and
that plotting only average values may hide important information. The

3 The cumulative distribution function, y = F (x), in this case presents the fraction of
samples y that are less or equal to a certain value x.

51

Section 5.3
∣∣∣ Results

HP
CG

-10
24

NE
MO

-10
24

BQ
CD

-10
24

QE
-25

6

GE
NE

-10
24

AL
YA

-10
24

CP
2K

-10
24

GA
DG

ET
-10

24

HP
L-1

024
0%

20%

40%

60%

80%

100%

Pe
rc
en
ta
ge

of
m
ax
.

su
st
ai
na
bl
e
FL

O
Ps

(D
G
E
M
M
)

0.1 4
17

24
10

2

51

3

81

0.1 0.6

23 26
10

3

33

3

69
Lowest number of processes
Highest number of processes

HP
CG

-16

NE
MO

-51
2

BQ
CD

-64
QE

-16

GE
NE

-12
8

AL
YA

-16

CP
2K

-12
8

GA
DG

ET
-51

2

HP
L-1

6

(a) Average FLOPS utilization

0%

20%

40%

60%

80%

100%

Pe
rc
en
ta
ge

of
ex
ec
ut
io
n
tim

e

100 100

72 80
100 100

18

100

28

26

24

39

18 27

60

100 99

55
75

100 100

45

100

24

45

19

17

24
31 49

0-20% 20-40% 40-60% 60-80% 80-100% of the max. sus. FLOPs

HP
CG

-10
24

HP
CG

-16

NE
MO

-51
2

BQ
CD

-64
QE

-16

GE
NE

-12
8

AL
YA

-16

CP
2K

-12
8

GA
DG

ET
-51

2

HP
L-1

6

NE
MO

-10
24

BQ
CD

-10
24

QE
-25

6

GE
NE

-10
24

AL
YA

-10
24

CP
2K

-10
24

GA
DG

ET
-10

24

HP
L-1

024

(b) FLOPS utilization on burst granularity

Figure 5.1: Production HPC applications show fairly low FLOPS utilization,
both on lowest and highest number of processes.

most obvious case would be the QE-16 experiment. Although the average
FLOP utilization is only 24% (Figure 5.1a), the application actually puts
extremely high pressure on CPU FLOPs for around 18% of its computation
time (Figure 5.1b).

We also analyze changes in the application behavior when executing
them using different numbers of processes. Both, average and per-burst
measurements indicate significant changes in the application behavior as the
applications scale-out4.

This opens a very important question: Which application behavior is the
correct/representative one, i.e. which number should we report?

5.3.2 Memory bandwidth analysis

Memory bandwidth has become increasingly important in recent years. Keep-
ing the memory bandwidth balanced with the CPU’s compute capabilities,

4 We remind the reader that we used the official input datasets, and followed the
recommendations about the range of CPU processes that should be used in the experiments
(see Section 5.2.2).

52

Section 5.3
∣∣∣ Results

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

m
ax

.
su

st
ai

na
bl

e
bw

(S
T

R
E

A
M

)
98

86 82
74

63
47

38 37
26

83 84

61 62
54

4

31 34
25

Lowest number of processes
Highest number of processes

HPCG-1024

NEMO-1024

BQCD-1024

QE-256

GENE-1024

ALYA-1024

CP2K-1024

GADGET-1024

HPL-1024

HPCG-16

NEMO-512

BQCD-64
QE-16

GENE-128

ALYA-16

CP2K-128

GADGET-512

HPL-16

(a) Average memory bandwidth utilization

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

ex
ec

ut
io

n
tim

e

14

40
27

49
14

36

25
91

30 19

38

64
97

56
82

22

72
55

13
29

95

61 59

32
10 11

18 21

47

17

17 15

36

57
83

12

74
51 58

12

0-20% 20-40% 40-60% 60-80% 80-100% of the max. sus. bw

HPCG-1024

HPCG-16

NEMO-512

BQCD-64
QE-16

GENE-128

ALYA-16

CP2K-128

GADGET-512

HPL-16

NEMO-1024

BQCD-1024

QE-256

GENE-1024

ALYA-1024

CP2K-1024

GADGET-1024

HPL-1024

(b) Memory bandwidth utilization on burst granularity

Figure 5.2: Contrary to FLOPS, memory bandwidth utilization of production
HPC applications is substantial.

within affordable costs and power constraints, has become a key technological
challenge. The increasing awareness of this challenge also resulted in the
introduction of the HPCG benchmark, as an alternative to HPL. The indus-
try also responded to the growing need for more memory bandwidth, and
high-bandwidth 3D-stacked DRAM products are hitting the market. Their
manufacturers promise significant performance boosts over standard DDRx
DIMMs, although some independent studies doubt whether and to what
extent high-bandwidth memory will benefit HPC applications [104].

Memory bandwidth collision can indeed have the strong negative perfor-
mance impact. When a workload uses more than 40% of maximum sustainable
bandwidth, concurrent memory accesses start to collide, which increases mem-
ory latency causing performance penalties. Using more than 80% of maximum
sustainable bandwidth causes severe collisions among concurrent memory re-
quests; thus memory latency increases exponentially and memory bandwidth
becomes a serious performance bottleneck [10].

Figure 5.2 plots the memory bandwidth usage of UEABS applications.
The memory bandwidth values are plotted relative to the maximum sustained

53

Section 5.3
∣∣∣ Results

0% 20% 40% 60% 80%
Average memory bandwidth utilization

0%

20%

40%

60%

80%

100%
Po

rt
io

n
of

ex
ec

ut
io

n
tim

e
sp

en
ta

bo
ve

80
%

of
th

e
m

ax
.s

us
ta

in
ab

le
bw

.

HPCG (16, 1024)
NEMO (512, 1024)
BQCD (64, 1024)
QE (16, 1024)
GENE (128, 1024)
ALYA (16, 1024)
CP2K (128, 1024)
GADGET (512, 1024)
HPL (16, 1024)

100%

Figure 5.3: Average memory bandwidth can mislead and hide potential bot-
tlenecks. BQCD-1024, GENE-128 and QE-256 have similar average memory
bandwidths, however BQCD-1024 and GENE-128 spend significantly more
time utilizing more than 80% of max. sustainable bandwidth, which is a
serious bottleneck.

memory bandwidth measured by the STREAM benchmark. Again, we plot
the results at two levels of granularity: Figure 5.2a plots average utilization
over computation time and for different numbers of application processes,
while Figure 5.2b shows fine-granularity measurements at the computational
burst level. The applications under study show higher utilization of memory
bandwidth, than FLOPs performance, even for the average values.

Next we analyze the computational bursts measurements, presented in
Figure 5.2b. The chart shows moderate to high memory bandwidth utilization.
All the applications under study have segments in which memory bandwidth
utilization exceeds 40%, and all but two of them, CP2K and GADGET, spend
a significant portion of time with bandwidth utilization above 60% or even
80%.

The computational burst measurements reveal some interesting scenarios,
which are more apparent in Figure 5.3. In this figure, the x-axis is the average
memory bandwidth utilization, as in Figure 5.2a. The y-axis is the proportion
of time for which the memory bandwidth utilization is severe; i.e. more than
80% of the sustainable maximum, which corresponds to the darkest shade
parts of the bars in Figure 5.2b. Figure 5.3 shows that considering the average
memory bandwidth on the x-axis, ALYA-16 and CP2K-128 may seem to
be bandwidth insensitive, as their average bandwidths are around 50% and
40% of the sustained bandwidth. However, detailed in-time measurements
show that they spent significantly different proportions of the time with
severe memory bandwidth utilization: CP2K-128 spends only about 4% of
its computation time, but ALYA-16 spends 55% of its computation time,
which presents a serious performance penalty. We find a similar situation

54

Section 5.3
∣∣∣ Results

with BQCD-1024, GENE-128 and QE-1024. These applications all have
average memory bandwidth of around 60% of the sustained maximum. Even
so, QE-256 spends only 12% of its computation time with severe memory
bandwidth utilization (more than 80% of maximum sustained). In contrast,
BQCD-1024 and GENE-128 spend 58% and 72% of their computation time,
respectively, with severe memory bandwidth utilization.

This is another confirmation that detailed measurements are needed, and
that plotting only the average values may be misleading. Applications under
study that spend significant amount of their computation time using more
than 80% of the sustained bandwidth have a severe performance bottleneck.
In these phases of their computation time, the applications would benefit out
of increased available memory bandwidth in the system. In our case, ALYA-
16, but not CP2K-128, is likely to benefit from higher bandwidth memories.
It would reduce the bottleneck and increase the application performance.
However, reporting only average values of memory bandwidth cannot point
out the necessary details.

Our suggestion would be that memory bandwidth utilization should be
defined at least with three numbers — as the percentage of execution time
that applications use 0–40%, 40–80% and 80–100% of the maximum sustained
bandwidth. This would correspond the portion of the execution time in which
the application experiences negligible, moderate and severe performance
penalties due to collision on concurrent memory requests.

5.3.3 Discussion

Our analysis emphasizes that HPC application behavior is tightly coupled
with the number of application processes. There are two main reasons for
this. First, application scaling-out increases the inter-process communication
time. To illustrate this, in Figure 5.4 we plot the portion of overall execution

16 32 64 128 256 512 1024

Number of execution processes

0%
20%
40%
60%
80%

100%

C
om

m
.p

er
ce

nt
ag

e
in

to
ta

lt
im

e

ALYA
BQCD

CP2K
GADGET

GENE
NEMO

QE

Figure 5.4: Portion of total execution time spent in the inter-process commu-
nication for UEABS applications, strong scaling.

55

Section 5.4
∣∣∣ Related work

time that applications under study spend in inter-process communication.

Even for the low number of application processes, the communication
is non-negligible, and as the number of processes increases, it becomes the
dominant part of the overall execution time. The higher the portion of time
that is spent in communication,the lower the average utilization of FLOPs and
memory bandwidth (as detected in Figures 5.1a and 5.2a). Also, in general,
the higher the number of processes, the smaller the portion of the input data
handled by each process, which changes the effectiveness of cache memory
and the overall process behavior (as detected in Figures 5.1b and 5.2b).

HPC application behavior may be known by the application developers,
but it is often overlooked in all HPC application suites for benchmarking
purposes. State-of-the-art HPC application suites do not strictly define the
number of processes to use in experiments. For example, UEABS recom-
mends running the applications with corresponding input datasets on up to
approximately 1,000 processes, but the minimum number of processes is not
specified. Similarly, other HPC application suites either provide loose recom-
mendations about the number of processes [98, 99, 100, 102] or do not discuss
this issue at all [101]. However, it is not surprising that HPC application
suites overlooked the problem that application behavior is tightly-coupled
with number of application processes. After all, this problem does not exist
for single-threaded benchmarks, and it was not detected for HPC benchmarks
that put high stress to a single resource, such as HPCG, HPL or HPCC suite.

The essence of benchmarking is to provide representative use cases for
characterization and valid comparison of different systems. If the application
suite does not provide it, then the results are misleading. Our results show
that it is very important that HPC application suites specify narrow ranges
for the number of processes that are representative of real-life application be-
havior, or at least provide some guidelines so users themselves could determine
these ranges for their target platforms.

5.4 Related work

There are not many studies that analyse benchmarking methodologies and how
to represent evaluation results of HPC systems and applications. Bailey [105]
provides common guidelines for reporting benchmark results in technical
computing, following his similar summary of misleading claims for reporting
results in system evaluation [106]. He points out the possibilities of misleading
conclusions and potential biases from using projections and extrapolations,
tuning levels, evaluating non-representative segments of the workloads, etc.
Nevertheless, he presents several rules and advocates the community to pay

56

Section 5.4
∣∣∣ Related work

attention and avoid the biased results.
Hoefler et al. [107] attempt to define ground rules and guidelines for the

interpretation of HPC benchmarking. The authors propose statistical analysis
and reporting techniques in order to improve the quality of reporting research
results in HPC and ensure interpretability and reproducibility. In their study,
they identify several frequent problems and propose rules to avoid them.
Their analysis covers methods for reporting the results of speed-up, usage of
various means, summarizing ratios, confidence intervals, normalization, usage
of various chart techniques, and others.

Sayeed et al. [96] advocate the use of real applications for benchmarking
in HPC, and that small benchmarks cannot predict the behavior of the real
HPC applications. They discuss important questions, challenges, tools and
metrics in evaluating performance using HPC applications. Afterwards, they
evaluate the performance of four application benchmarks on three different
parallel architectures, and measure the runtime, inter-process communication
overhead, I/O characteristics and memory footprint. This way, they show
the importance of reporting various metrics, in order to have a better repre-
sentation of application and system performance. Since they measure these
metrics on several numbers of execution processes, the results differ from one
execution to another. It is clear from their results that on different numbers
of execution processes, different platforms perform better or worse, which can
significantly bias the analysis on certain scale of the experiments.

Marjanović et al. [108] explore the impact of input data-set for three
representative benchmarks: HPL, HPCG and High-performance Geometric
Multigrid (HPGMG). They perform an analysis on six distinct HPC platforms
at the node level, and perform scale-out analysis on one of the platforms. Their
results show that exploring multiple problem sizes gives a more complete pic-
ture of the underlying system performance, than a single number representing
the best performance, which is the usual way of reporting the results. They
advocate for the community to discuss and propose a method for aggregating
these values into a representative result of the system performance.

In our study, we focus on two important aspects of benchmarking with
HPC applications: the importance of defining the representative scale of
the experiments and measurement granularity in quantifying performance
bottlenecks, which are often overlooked by the community. To our knowledge,
this is the first study that analyses the importance of a deterministic range
for the number of execution processes. We also suggest a simple way to
show several values for portions of time spent in different utilizations of
certain metric. It does not require additional executions or special evaluation
infrastructure, yet it gives much better representation of application behavior
and clearer focus on its bottlenecks.

57

Section 5.5
∣∣∣ Summary

5.5 Summary

A clear understanding of HPC system performance factors and bottlenecks is
essential for designing an HPC infrastructure with the best features and a
reasonable cost. Such a perception can only be achieved by closely analysing
existing HPC systems and execution of their workloads.

When executing production HPC applications, our findings show that HPC
application performance metrics strongly depend on the number of execution
processes. We argue that it is essential that HPC application suites specify
narrow ranges on the number of processes, for the results to be representative
of a real-world application use. Also, we find that average measurements of
performance metrics and bottlenecks can be highly misleading. Instead, we
suggest that performance measurements should be defined as the percentage
of execution time in which applications use certain portions of maximum
sustained values.

Overall, we believe this study offers new guidelines for accurately measuring
key performance factors and their impact on overall HPC performance.

58

The Fast drives out the Slow even if the Fast is wrong.

William Kahan, professor Emeritus of Mathematics,
and of E.E. & Computer Science

6
First steps

on the performance impact
of memory bandwidth

and latency

First defined more than two decades ago, the memory wall remains a fundamen-
tal limitation to system performance. Innovations in 3D-stacking technology
enable DRAM devices with much higher bandwidths than traditional DIMMs.
The first such products hit the market, and some of the publicity claims that
they will break through the memory wall. Here we summarize our preliminary
analysis and expectations of how such 3D-stacked DRAMs will affect the
memory wall for a set of representative HPC applications. We conclude that
although 3D-stacked DRAM is a major technological innovation, it cannot
eliminate the memory wall.

6.1 Introduction

In 1995, Wulf and McKee published a four-page note entitled “Hitting
the Memory Wall: Implications of the Obvious” in the (unrefereed) ACM
SIGARCH Computing Architecture News [11]. The motivation was simple:
at the time, researchers were so focused on improving cache designs and
developing other latency-tolerance techniques that the computer architecture
community largely ignored main memory systems. The article projected
the performance impact of the increasing speed gap between processors and
memory, referred to as the Memory Wall (see Section 2.2.1). There were
other articles pointing-out to the problems of main memory, however the

59

Section 6.1
∣∣∣ Introduction

memory wall note seemed to strike a nerve where the others did not, though,
and it inspired a considerable backlash.

One set of arguments maintained that latency-tolerance techniques like
out of order execution, wider instruction issue, and speculative techniques
such as hardware prefetching would bridge the processor-memory performance
gap. Even in combination, though, such approaches can mask the latency of
only so many memory requests — the exact numbers depend on the sizes of
the hardware structures. The cost and complexity of implementing larger and
larger structures proved prohibitive, and although latency tolerance pushed
the memory wall back, it did not save us.

Another set of arguments maintained that new memory technologies like
Intelligent RAM (IRAM) [109] and Rambus Direct DRAM (RDRAM) [110]
would eliminate the memory wall. In spite of years of hype, embedded DRAM
(i.e., IRAM, or eDRAM) did not appear in commercial products for another
five years, and then it was only cost-effective in special-purpose platforms
like game consoles [111, 112]. eDRAM would not appear in general purpose
processor chips for another decade [113, 114]. Rambus modified the DRAM
interface and introduced narrow, high-speed channels that supported a peak
bandwidth of 1.6 Gbytes/s — a significant improvement over other memory
devices at the time — but taking full advantage of RDRAM capabilities re-
quired memory controller modifications that would introduce both design and
verification costs. Intel released the Pentium 4 with all RDRAM (but without
an optimized memory controller), but these systems came at higher cost and
offered little or no performance gain. Subsequent products [115, 116] moved
to DDR (double data rate) devices [117]. Rambus and others continue to
deliver high-performance DRAM technology, but they have not (yet) removed
the memory wall — latency remains limited by the speed of the underlying
storage technology, and high bandwidth does not necessarily reduce latency.

Technological evolutions and revolutions notwithstanding, the memory
wall has imposed a fundamental limitation to system performance for more
than 20 years. 3D-stacking technology now enables DRAM devices that
support much higher bandwidths than traditional DIMMs, and the first com-
mercial products such are the Hybrid Memory Cube (HMC) [21] and High
Bandwidth Memory (HBM) [22], appeared (their descriptions is given in
Section 2.3). Some of the publicity surrounding these promising new devices
suggests that they will break through the wall.

Here we summarize our analysis and expectations of how 3D-stacked
DRAMs will affect the memory wall for a particular set of HPC applications.
Recall that the memory wall was defined in terms of latency, not bandwidth.
Higher bandwidth may lower average latency, provided that our applications
offer sufficient memory-level parallelism (MLP) [118] and that CPU archi-

60

Section 6.2
∣∣∣ Latency vs. Bandwidth

tectures can exploit it. But higher bandwidth by itself cannot guarantee
better performance. How well we can exploit available bandwidth ultimately
depends on the inherent MLP in our targeted workloads.

6.2 Latency vs. Bandwidth

Although memory latency and bandwidth are often described as independent
concepts, they are inherently interrelated. We describe their relation in
Section 2.2. Nonetheless, we examine the likely impact of 3D devices on them,
in turn.

6.2.1 Memory access latency

When analyzing memory access latency, it is important to distinguish the
lead-off and loaded memory access latencies (see Section 2.2). 3D-stacked
DRAM does not change the time that memory requests spend in the CPU.
DRAM technology determines time spent accessing the storage array, so that
time is unlikely to decrease significantly. Placing 3D-stacked memory devices
on a silicon interposer instead of a PCB reduces time spent in the memory
channel. However, higher memory system complexity could increase memory
access latency. For example, HMC memory systems include serial links,
serializing/deserializing logic, and more complex memory controllers on both
the CPU and memory sides. Multi-hop memory accesses require routing and
multiple channel access. Overall, 3D-stacked DRAM barely reduces request
time in an idle system. In fact, the first memory system implementations
with 3D-stacked DRAM devices still locate them on the PCB [119, 120], so
lead-off memory access latency will probably increase.

Figure 6.1 compares bandwidth-latency curves of a conventional and an
emerging memory system to characterize the impact of 3D-stacked DRAMs on
loaded memory access latency. For the conventional memory system, we ana-
lyze a four-channel DDR3 memory running at 1066 MHz frequency. The max-
imum theoretical system bandwidth is 68.2 GB/s (four channels×frequency
×bytes-per-transfer). For the emerging memory system, we analyze an HMC
device. Note that our conclusions also apply to other 3D-stacked DRAMs.
Lack of access to real hardware and to details of on-CPU memory controllers
and in-memory logic (controller and request routing) complicates estimating
the HMC bandwidth-latency curve. For purposes of our analysis, we estimate
that the constant-latency region of the curve will reach at least 25% of the
maximum theoretical bandwidth, i.e., 80 GB/s.

61

Section 6.2 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Latency vs. Bandwidth

Figure 6.1: Bandwidth-latency curves of DDR3 and HMC systems.

Latency curve transition from conventional DDR3 to the HMC is il-
lustrated in Figure 6.1. The constant-latency region of the HMC (up to
80 GB/s) exceeds the maximum theoretical bandwidth of the conventional
system (68.2 GB/s). Thus, it covers all three regions of the DDR3 system —
constant, linear, and exponential. If an application is in the constant-latency
region of the DDR3 system (i.e., when memory access latency corresponds to
lead-off latency), upgrading the memory to the HMC will not reduce memory
access latency, nor will it improve overall performance. If the application is in
the linear or exponential regions in the DDR3 system, a significant portion of
its memory access latency comes from collisions between concurrent memory
requests. In this case, the bandwidth upgrade may reduce contention, which
could reduce memory access latency and improve performance.

6.2.2 Memory bandwidth

We also analyze whether high-bandwidth memories will increase effective
memory bandwidth — what applications actually use. According to Little’s
Law [51], effective application bandwidth is directly proportional to the num-
ber of outstanding memory requests and inversely proportional to memory
access latency:1

effective bandwidth ∝ outstanding memory requests

memory access latency
(6.1)

1 Instead of equality as originally used in Little’s Law, we use proportional to (“∝”)
to avoid converting between units that quantify memory bandwidth (GB/s) and memory
access latency (CPU cycles or nanoseconds).

62

Section 6.3
∣∣∣ Experimental environment

Properties of the application (such as the portion of memory accesses in the
overall instruction mix and data and control dependencies) and the CPU (such
as core count, out-of-order issue, speculative execution, branch prediction,
and prefetching) determine the number of outstanding memory requests.
3D-stacked DRAM will not change these parameters, and thus we expect
that the number of outstanding memory requests to remain roughly the same.
Therefore, effective application bandwidth with emerging 3D-stacked DRAM
systems will increase only if memory access latency is reduced.

6.2.3 Summary

3D-stacked DRAM devices will significantly increase available memory band-
width. How well applications will exploit that higher bandwidth, though,
ultimately depends on the workload’s memory-level parallelism (MLP). For
bandwidth-hungry applications that are in the linear or exponential regions of
the bandwidth-latency curve, the bandwidth upgrade will reduce contention
among concurrent memory requests, reduce memory access latency, and im-
prove performance. Lower memory access latency will also increase effective
application bandwidth. However, 3D-stacked DRAM cannot reduce lead-off
memory access latency. Memory access latency, and thus effective bandwidth
and overall performance, will not improve for applications for which lack of
MLP limits effective bandwidth.

6.3 Experimental environment

We conduct a preliminary evaluation of our analysis for a set of HPC applica-
tions running on a production system. This section describes our hardware
platform and applications along with the methodology we use in the study.

6.3.1 Hardware platform

We conduct all experiments on a dual-socket Sandy Bridge-EP E5-2620
server. Each socket contains six cores operating at 2.3 GHz. We execute
experiments with and without the supported two-way hyperthreading. When
hyperthreading is disabled at the operating system level the platform appears
to have 12 virtual CPUs (two sockets × six cores). With hyperthreading
enabled, the OS sees twice as many. We fully utilize the hardware platform
in all the experiments, i.e., we execute either 12 or 24 application processes.
Each Sandy Bridge processor accesses main memory through four channels,
and each channel connects to am 8 GB DDR3 DIMM, which gives 64 GB total

63

Section 6.3
∣∣∣ Experimental environment

server memory. We use a single server (not a large-scale HPC cluster), because
memory bandwidth measurements require root privileges (see Section 6.3.3).

We initially set the memory frequency to 1066 MHz, which makes the
theoretical maximum memory bandwidth 68.2 GB/s. In order to analyze
the performance impact (improvement) of higher memory bandwidth, we
then increase the frequency to 1333 MHz (through the BIOS setup at boot
time), which increases bandwidth by 25%. This change has no impact on
memory latency, though: memory operation latencies are still limited by the
DRAM technology. When memory frequency increases (i.e., the duration of
a memory cycle decreases), memory commands take more cycles, so memory
operation latencies remain practically the same.

6.3.2 HPC applications

We analyze a set of four large-scale production HPC applications from UEABS
(see Section 3.2.4): ALYA, GROMACS, NAMD, and Quantum Espresso (QE).
We could not run the remaining applications because the input dataset sizes
exceed the main memory capacity of our hardware platform. Apart from HPC
applications, we used two widely-used HPC benchmarks, HPL and STREAM
(see Sections 3.2.1 and 3.2.2).

6.3.3 Methodology

Memory bandwidth: We calculate the maximum theoretical bandwidth
of the system based on the specification of the hardware platform under
study — by multiplying memory frequency (1066 MHz or 1333 MHz) by
the memory data bus width and number of memory channels. We measure
sustainable memory bandwidth with the STREAM benchmark (a common
approach [91]). We measure effective bandwidth via the Intel Performance
Counter Monitor (PCM) library, which provides routines to access the memory
controller performance counters.2 In all experiments, we report total memory
bandwidth, i.e., read and write memory traffic of all four channels.

Performance: All applications under study report their performance in
their output files. For Quantum Espresso, ALYA, GROMACS, NAMD, and
HPL, performance corresponds to the number of elements that are processed
in a time unit, which is directly proportional to the number of floating point
operations per second. Performance of the STREAM benchmark corresponds
to the sustainable memory bandwidth.

2 Access to memory controller (uncore) performance counters requires root privileges.

64

Section 6.4
∣∣∣ Results

STREAM QE ALYA HPL GROMACS NAMD
HPC application

0

20

40

60

80

100

E
ff

e
ct

iv
e
 m

e
m

.
b
a
n
d
w

id
th

(%
 o

f
su

st
a
in

a
b
le

 b
a
n
d
w

id
th

)

100.0%

65.0%
57.4%

23.4%
13.0%

6.8%

Figure 6.2: DDR3-1066: Portion of the maximum sustainable bandwidth
(STREAM) that HPC applications actually use.

6.4 Results

First, we analyze the system without hyperthreading running with a memory
frequency of 1066 MHz. The maximum theoretical memory bandwidth of this
configuration is 68.2 GB/s, and the maximum sustainable memory bandwidth
is 54.1 GB/s. Figure 6.2 shows the application memory bandwidth relative
to the maximum sustainable bandwidth. STREAM, Quantum espresso (QE),
and ALYA use a significant portion of the maximum sustainable bandwidth,
and thus we expect that increasing available memory bandwidth will improve
performance for these applications by increasing their effective memory band-
width. On the other hand, HPL, GROMACS, and NAMD use a small portion
of the sustainable memory bandwidth — 23.4%, 13%, and 6.8%, respectively.
We expect no significant performance improvements for these applications
when available memory bandwidth increases.

In Figure 6.3, we quantify the impact of a 25% memory bandwidth
increase on application performance. Performance improves by 14.7%, 8.5%,
and 3.7% for STREAM, QE, and ALYA, respectively. This improvement
clearly correlates with the memory bandwidth that the applications use
in the baseline system configuration with DDR3-1066 memory. For HPL,
GROMACS, and NAMD, performance improves negligibly if at all — from 0%
(HPL) to 1.6% (NAMD). Effective memory bandwidth follows the same trend.

We repeat the experiments with hyperthreading enabled in order to
understand the impact on effective memory bandwidth.3 For all applications
but HPL, the results change insignificantly from those in Figures 6.2 and 6.3.
HPL changes memory behavior with hyperthreading: it becomes bandwidth-

3 The OS views the platform as 24 virtual CPUs: 2 sockets×6 cores×2, so the workloads
comprise 24 application processes.

65

Section 6.4
∣∣∣ Results

STREAM QE ALYA HPL GROMACS NAMD
HPC application

0

5

10

15

20

R
e
la

ti
v
e
 i
n
cr

e
a
se

 [
%

]

8.
5%

3.
7%

0.
0% 1.

0% 1.
6%

8.
6%

3.
7%

0.
2% 1.

6%

0.
3%

14
.7

% Performance

Effective memory bandwidth

Figure 6.3: Performance improvement and effective memory bandwidth
increase due to 25% memory bandwidth increment.

hungry — in the configuration with 1066 MHz memory, it uses 54% of the
maximum sustainable bandwidth. When memory frequency increases to
1333 MHz, against our expectations, performance does not improve, nor does
effective memory bandwidth increase.

To understand why HPL does not benefit from the 25% bandwidth increase,
we use a roofline model [91] to correlate the application performance with its
operational intensity, or the number of the floating point operations (FLOPS)
that it executes per byte of data transferred between the CPU and main
memory. Figure 6.4 shows roofline models for our two systems, with 1066 MHz
and 1333 MHz main memory, and the position of the HPL benchmark in each
of them. The x axis of the figure shows the application operational intensity,
and the y axis shows application performance in GFLOPS/s. The sloped
line shows the maximum sustainable memory bandwidth (as measured by
the STREAM benchmark); this determines the upper performance bound for
applications with low operational intensity. The horizontal line shows maxi-
mum sustainable performance in GFLOPS/s (determined by the DGEMM
routine [121]).

Our roofline model shows that even though HPL uses a significant portion
of the available bandwidth, it touches the horizontal line of the chart, meaning
that it is clearly limited by the GFLOPS/s that the CPUs can sustain.
Increasing the memory frequency from 1066 MHz to 1333 MHz increases
sustainable memory bandwidth and raises the inclined part of the roofline
chart. However, it has no impact on the horizontal GFLOPS/s performance
limit, and therefore does not improve HPL performance.

To summarize, even when increasing available memory bandwidth miti-
gates collisions in the memory system, other parts of the system (processing
units or interconnect) can still limit system performance. This result empha-

66

Section 6.5
∣∣∣ Looking forward

1 4 16
Operational intensity [FLOPS/Byte]

32

64

128

256
P
e
rf

o
rm

a
n
ce

 [
G

FL
O

P
S
/s

]

183.93 GFLOPS/s (DGEMM)
62

.0
7

G
B/

s
(S

TR
EA

M
, D

D
R3

-1
33

3)

54
.1

 G
B/

s
(S

TR
EA

M
, D

D
R3

-1
06

6)

HPL @ DDR3-1066
Op. Inten. = 6.56 FLOPS/Byte
Perf. = 177.93 GFLOPS/s
Mem. bw. = 27.12 GB/s

HPL @ DDR3-1333
Op. Inten. = 6.43 FLOPS/Byte
Perf. = 178.67 GFLOPS/s
Mem. bw. = 27.79 GB/s

Figure 6.4: Position of HPL application on platform roofline model, with
DDR3-1066 and DDR3-1333 memory configurations.

sizes the importance of building balanced computer systems that properly
exploit the benefits of novel high-bandwidth memory solutions.

6.5 Looking forward

How well applications will exploit the higher bandwidth provided by emerging
3D-stacked DRAMs ultimately depends on the workload’s memory-level
parallelism. For high-MLP applications, the bandwidth upgrade will reduce
contention among concurrent memory requests, reduce memory latency, and
improve performance. However, 3D-stacked DRAMs cannot reduce lead-off
memory access latency. Thus, they will not improve the performance of
applications with limited MLP.

Further, we are unlikely simply to replace conventional DIMMs with the
3D-stacked DRAMs. Higher prices will prevent memories composed only of
3D devices and may even limit adoption. Instead, we are likely to see main
memories that include both 3D devices and conventional DIMMs. Thus, in
the best case, the system will still be bandwidth-limited, and it will often be
latency-limited. So in contrast to the publicity surrounding 3D DRAMs, they
are unlikely to break through the memory wall — at best, they move it.

67

Section 6.5
∣∣∣ Looking forward

Building balanced, high-performance systems will require us to design
CPUs and memory controllers that can exploit the new devices for high-MLP
application domains. The logic layers in the HMC and HBM offer interesting
possibilities for in-memory processing and sophisticated memory controller
functionality. 3D-stacked DRAM is certainly an interesting technological
innovation. Finding a way to use this innovation to build high-performance
systems, however, will take time — and the extent of its adoption will likely
come down to cost.

68

This simulation is not as the former.

Malvolio, Act II, scene V
of Shakespeare’s Twelfth Night

7
Memory system evaluation:

Modeling system performance
and energy without
simulating the CPU

The approaching end of DRAM scaling and expansion of emerging memory
technologies is motivating a lot of research in future memory systems. Novel
memory systems are typically explored by hardware simulators that are slow
and often have a simplified or obsolete model of the CPU.

This study presents an analytical model that quantifies the impact of
the main memory on application performance and system power and energy
consumption. The model is based on memory system profiling and instrumen-
tation of an application execution on a baseline memory system. The model
outputs are the predicted performance, power and energy consumption on
the target memory. The model is evaluated on two actual platforms: Sandy
Bridge-EP E5-2670 and Knights Landing Xeon Phi 7230 platforms with
various memory configurations. The evaluation results show that the model
predictions are accurate, typically with only 2% difference from the values mea-
sured on actual hardware. We plan to release the model source code and all
input data required for memory system and application profiling. The released
package can be seamlessly installed and used on high-end Intel platforms.

7.1 Introduction

The memory system is a major contributor to the deployment and operational
costs of a large-scale high-performance computing (HPC) cluster [3, 7, 8],

69

Section 7.1
∣∣∣ Introduction

and in terms of system performance it is one of the most critical aspects
of the system’s design [10, 11]. For decades, most server and HPC cluster
memory systems have been based on DRAM DIMMs. However, it is becoming
questionable whether DRAM DIMMs will continue to scale and meet the in-
dustry’s demand for high performance and high capacity memory. Significant
effort is therefore being invested into the research and development of future
memory systems.

Novel memory systems are typically explored using hardware simulators.
System simulation is, however, time consuming, which limits the number of
design options that can be explored within a practical length of time. Also,
although memory simulators are typically well validated [84, 122], current
CPU simulators have various shortcomings, such as simplified out-of-order
execution, an obsolete data prefetcher and a lack of virtual-to-physical memory
translation, all of which can make a huge difference between the simulated
and actual memory system, in terms of behavior and performance.

This study proposes an analytical model that quantifies the impact of
the memory on the application performance and system power and energy
consumption, providing point estimates and error bars. The model is based
on memory system profiling and instrumentation of an execution of the
application. It has been evaluated on two actual platforms: Sandy Bridge-
EP E5-2670 with four DRAM configurations DDR3-800/1066/1333/1600,
and Knights Landing (KNL) Xeon Phi 7230 with DDR4 and 3D-stacked
MCDRAM. The evaluation results show that the model predictions are very
accurate — the average difference from the performance, power and energy
measured on the actual hardware is only 2%, 1.1% and 1.7%, respectively.

We also compare the model’s performance predictions with simulation
results for the Sandy Bridge-EP E5-2670 system with ZSim [79, 80] and
DRAMSim2 [84], and our model shows significantly better accuracy over the
simulator. The model is also faster than the hardware simulators by three
orders of magnitude, so it can be used to analyze production HPC applications,
on arbitrarily sized systems. Additionally, the method is based on profiling of
the application’s memory behavior, so it does not require detailed modeling
of the CPU as it already takes account of the real (and not publicly disclosed)
data prefetcher and out-of-order engine. Therefore, it can be used to model
various platforms as long as they support the required application profiling.
The model was initially developed for the Sandy Bridge platform, and later
we evaluated it for the KNL server. Adjustment of the model to the KNL
system was trivial, as it required changes to only a few hardware parameters,
such as, for example the reorder buffer size.

We will release the model source code as open source. The release will
include all model inputs and outputs and evaluation results for the case study

70

Section 7.3
∣∣∣ Model overview

that is used in the rest of this study. The package includes the memory system
profiles, CPU parameters, application profiles and memory power parameters,
as well as the power, performance and energy outputs from the model and the
measurements on the baseline and target platforms. The released model is
ready to be used on high-end Intel platforms, and we would encourage the com-
munity to use it, adapt it to other platforms, and share their own evaluations.

7.2 On memory bandwidth and latency

The connection between memory access latency and used bandwidth is given
by the bandwidth–latency curve, as illustrated in Figure 2.3 and described in
Section 2.2. We repeat the essential information here. The curve in Figure 2.3
has three regions that are limited by the maximum sustainable bandwidth,
which is 65–75% of the maximum theoretical bandwidth [10]. In the first
region, the application’s used bandwidth is low, so there are few concurrent
memory requests and contention for shared resources is negligible. Over this
region the memory latency is constant and equal to the lead-off latency. In
the second region, the application’s used bandwidth is between 40% and 80%
of sustainable bandwidth, and there are increasing numbers of concurrent
memory requests. Contention for shared resources is moderate, and latency
grows linearly with the used bandwidth. In the final region, in which the
application’s used bandwidth is high, contention among concurrent memory
requests is severe and memory latency increases exponentially.

It is critical to distinguish between the lead-off and loaded latencies, since
the difference between them can be on the order of hundreds of nanoseconds.
A fully-stressed memory system therefore introduces a significant loaded
latency, which leads to a major performance impact.

7.3 Model overview

This section summarizes the main idea behind the presented analytical models
and it describes the model inputs and outputs.

7.3.1 The idea: Moving between memory curves

The main idea of this study is that we can understand the effect of changing
the memory system by understanding how the application moves from one
bandwidth–latency curve to another. We illustrate this idea using the DDR4
and MCDRAM memories on Intel’s Knight’s Landing platform. This platform
has two memory systems, so there are two bandwidth–latency curves, shown

71

Section 7.3
∣∣∣ Model overview

Used memory bandwidth

Application using DDR4
(,)

Application using MCDRAM
(,)BW MCDRAM

used Lat MCDRAM
mem

BW DDR4
used

M
em

or
y

ac
ce

ss
 la

te
nc

y

Lat DDR4
mem

Figure 7.1: High-level view of the transition from DDR4 to high-bandwidth
MCDRAM memory on the KNL platform.

together on the same plot in Figure 7.1.1 When used bandwidth is high
(towards the right of the figure), MCDRAM is clearly better, but when used
bandwidth is low (towards the left), DDR4 has lower latency due to its lower
lead-off latency.

When an application (or application phase) executes on the DDR4 main
memory, it will be positioned at some point on the DDR4 curve; e.g. point
(BWDDR4

used , latDDR4
mem) illustrated in Figure 7.1. Analogously, when the same

application is executed on the MCDRAM memory, it will be positioned at
some point on the MCDRAM curve, e.g. (BWMCDRAM

used , latMCDRAM
mem). We

see that the application in Figure 7.1 benefits from running on the MCDRAM
through a lower memory latency (MCDRAM point is lower) and a higher
used bandwidth (MCDRAM point is to the right).

This idea, of moving between bandwidth–latency curves, is central to the
performance, power and energy model presented in this chapter.

7.3.2 Model inputs

Figure 7.2 gives a high-level overview of the whole process of performance,
power and energy estimation. The model inputs, shown towards the left of the
figure, are the detailed bandwidth–latency curves, measured for the baseline
memory system and the target memory system, parameters for the CPU (which
is the same for both memory systems), as well as the application profiles
on the baseline memory system. These inputs can all be easily obtained on
mainstream platforms and it is becoming increasingly possible to obtain them
on emerging platforms. The outputs from the model will be the predicted
performance, power and energy consumption on the target memory system.

1 Figure 7.1 shows a simplified bandwidth–latency curve, as discussed in Section 7.2.
Detailed curves are given in Figure 7.3 in Section 7.4.

72

Section 7.3
∣∣∣ Model overview

time

t0 t1 t2 t3

P1 , tpwr1

Performance

Power

t0
t1

t0
t1

Power
model

Baseline
memory

I1,V1,t1
P1,BW1

Target
memory

I2,V2,t2
P2,BW2

P0 , tpwr0

Cyc0, Ins0,...
Cyc1, Ins1,

Memory system profiling: Bandwidth-latency curves

Section 7.4

Section 7.5.1

Sections 7.5.2,
7.5.3, 7.5.4
and 7.5.5

Section 7.6.1

CPU
parameters

ROB, IPCmax,
LLClat

Application executing
on the baseline system

Application profiling: Hardware counters

Energy
model

Section 7.6.2

E=P×Δt

Performance
model

Memory
power

parameters

I1, V1, tmem1

I2, V2,

Outcome 1:
Performance

estimation

Outcome 2:
Power

estimation

Outcome 3:
Energy

estimation

Figure 7.2: Diagram of the whole process of performance, power and energy
estimation. The cross-references indicate which section describes which part
of the estimation process.

Memory system profiling is done via bandwidth–latency curves, for
the baseline and target memory systems, along the lines outlined in Section 7.2.
The precise method for obtaining these curves is given in Section 7.4, which
describes the memory profiling microbenchmarks and their outputs.

CPU parameters are needed, alongside the application profiling (see
below), to characterize the relationship between memory system latency and
execution time. This relationship is dependent on the processor’s ability
to hide memory latency by overlapping memory accesses with independent
instructions. As detailed in Section 7.5.3, the performance model there-
fore requires some basic parameters of the processor under study: re-order
buffer (ROB) capacity, miss information status holding register (MSHR)
capacity and minimum theoretical cycles-per-instruction (CPI).

Application profiling is done on the baseline memory system, and con-
sists of executing the application and profiling it using hardware performance
counters. Application performance profiling obtains the number of CPU
cycles, number of instructions, number of last-level cache (LLC) misses and
the read and write memory bandwidths. Application power profiling measures
the total power consumption using integrated or external power measurement
infrastructure, and memory-related power parameters using performance
counters. These parameters include row-buffer access statistics, number of
page activations and page misses, and number of cycles in power-down states:
active standby, precharge power-down and self-refresh.

Since the application’s behavior changes over time, application profiling is
done by sampling over regular time intervals, which we refer to as segments.
The overall outcome of application profiling is two time-stamped trace files,

73

Section 7.3
∣∣∣ Model overview

needed for performance and power consumption, respectively. Further details
on application profiling are given in Section 7.5.1.

Memory power parameters characterize the baseline and target mem-
ory systems, in terms of the power consumption in various operational modes,
idle state and power-down states, as well as the energy consumption for various
operations such as read and write transfers, row buffer hits and misses. These
figures are typically provided by the memory device manufacturers [123].

7.3.3 Performance, power and energy estimation

The right-hand side of Figure 7.2 gives an overview of the whole process
of performance, power and energy estimation. Since application profiling
involves collecting a trace over the program’s execution, the performance and
power models are ran for each segment (time interval) in the trace. This gives
the predicted execution time, power and energy consumption of each segment.
Summing over time gives the final execution time and energy for the whole
application. The application’s average power demand is total energy divided
by total execution time.

The Performance model reads the application performance information
from the profiling trace-file and determines the application’s position on the
bandwidth–latency curve for the baseline memory system. As described
in detail in Sections 7.5.2, 7.5.3 and 7.5.5, the model then estimates the
application’s position on the memory bandwidth–latency curve for the target
memory system, and uses it to predict the application’s performance on the
target memory system.

The Power model estimates the power consumption of the target memory
system using the application performance profiling and the memory power
parameters. Finally, the Energy model is done based on the output of the
performance and power models. The detailed description and evaluation of
the power and energy models are presented in Sections 7.6.1 to 7.8.2.

7.3.4 Model source codes and case study

We plan to release the model source code as open source. The release includes
all model inputs and outputs and all evaluation results for the case study that
is used in the rest of this analysis. The package includes the memory system
profiles, CPU parameters, application profiles and memory power parameters,
as well as the power, performance and energy outputs from the model and
the measurements on the baseline and target platforms.

74

Section 7.4
∣∣∣ Memory system profiling

7.4 Memory system profiling

The baseline and target memory systems are characterized using bandwidth–
latency curves measured on a real platform. This is straightforward for mature
technologies, but for emerging memory devices that are not yet available
in off-the-shelf servers, the bandwidth–latency curve can be measured on a
developer board with a prototype of the new device [119], or alternatively it
can be provided by the manufacturer.

The bandwidth–latency curve is determined using a pointer-chasing mi-
crobenchmark designed to measure latency [124]. It executes constant number
of data-dependent load instructions that traverse randomized memory loca-
tions, so we exclude the effect of prefetcher and ensure that all the loads go
to the main memory. By measuring clock cycles necessary for the benchmark
execution, we can derive the latency of a single instruction, i.e., single load
memory access. Pointer-chasing microbenchmark is running concurrently
with a derivative of the STREAM benchmark [62] that was modified to vary
the load on the memory system, for various ratios of read and write accesses.

Although Section 2.2 plots a single bandwidth–latency curve, in reality a
single memory system has a family of curves. This is because the memory
bandwidth on the x axis combines into a single metric the aggregate bandwidth
of reads and writes, even though they are fundamentally different operations.2

The main reason for distinguishing reads and writes is that write requests
introduce additional delays not required by memory reads [50]: Write Recovery
time or tWR is a minimum delay between the end of a write and the next
precharge command, and Write To Read delay time or tWTR is a minimum
time interval between a memory write and a consecutive read. So, increasing
the proportion of write requests reduces the sustainable bandwidth and
increases the loaded latency.

As an example, Figure 7.3 shows the measured bandwidth–latency curves
for the Knights Landing and Sandy Bridge platforms, as the proportion of
reads is varied between 50% and 100%. The lightest curves correspond to 50%
reads and the darkest curves correspond to 100% reads. Instead of the single
bandwidth–latency curve per memory system that was illustrated in Fig-
ure 2.3, we now see a family of curves. When the used memory bandwidth is
low or moderate, the read fraction has negligible impact on the memory access
latency, i.e. within the constant and linear regions, the bandwidth–latency
curves practically overlap. As the stress to the memory system increases,
however, the read fraction starts to have a significant impact on latency.

2 In addition to the fractions of reads and writes, the bandwidth–latency curve measures
the loaded memory latency, which depends on other parameters, such as the row-buffer hit
rate. This analysis is a part of ongoing work.

75

Section 7.4
∣∣∣ Memory system profiling

0 50 100 150 200 250 300 350 400 450

Used memory bandwidth [GB/s]

150

200

250

300

350

M
em

or
y
ac
ce
ss

la
te
nc
y
[n
s]

DDR4-2400

MCDRAM

50% RD 100% RD

0

(a) Knights Landing platform with a DDR4-2400 and MCDRAM.

0 10 20 30 40 50 60 70 80 90

Used memory bandwidth [GB/s]

0

50

100

150

200

250

M
em

or
y

ac
ce

ss
la

te
nc

y
[n

s]

DDR3-800

DDR3-1600

50% RD 100% RD
232ns
(41.5GB/s, 50% RD, 50% WR)
132ns
(41.5GB/s, 100% RD, 0% WR)Δlatency = 100ns

(b) Sandy Bridge platform with DDR3-800/1066/1333/1600. DDR3-
1066 and DDR3-1333 are excluded to improve the visibility.

Figure 7.3: Bandwidth–latency curves for the platforms under study. Memory
access latency with respect to used memory bandwidth cannot be approx-
imated with a single curve — as the used memory bandwidth increases,
memory traffic read/write composition makes a significant latency impact.

For example, in Figure 7.3b, at an aggregate bandwidth of 41.5 GB/s, the
(read) latency with 100% reads is 132 ns, but the read latency with 50% reads
and 50% writes is 232 ns, an increase of 76% and 100 ns. In general, for all
experiments we did, shown in Figure 7.3, curves with a higher percentage of
writes (lighter curves) are located higher (at higher latency) on the chart.

Recently Clapp et. al. [125] also did a preliminary analysis of bandwidth–
latency curves for different memory frequencies (DDR3-1333 and DDR3-1600)
and different read-to-write ratios (3:1 and 2:1). Based on an analysis of
four curves, the authors conclude that it is sufficient to use a single, generic
memory bandwidth–latency curve for different frequencies and memory traffic
compositions. Our analysis is based on numerous measurements on a wide
range of DDR3, DDR4 and MCDRAM frequencies, with fine-grain changes in

76

Section 7.5
∣∣∣ Performance model: Detailed description

the read-to-write ratio. Our findings show that different memory frequencies
have fundamentally different bandwidth–latency curves with different shapes
and different lead-off and maximum memory access latencies. We also show
that the read-to-write ratio may have a significant impact on memory access
latency. Directly contrary to the conclusion of Clapp et. al. [125], our
study shows that the relationship between bandwidth and latency cannot be
approximated with a single curve. To the best of our knowledge this is the
first study of memory system read latency that considers how the latency
depends on the fractions of reads and writes.

In conclusion, the memory system profiling must quantify the impact of
the read fraction on the read latency. Across the benchmarks used in the
study (see Section 7.7.2), the read fraction varied between 50% and 100%. We
therefore profile the memory system by measuring several bandwidth–latency
curves, as the read fraction is varied over this range.

7.5 Performance model: Detailed description

This section presents the analytical model that predicts the application’s per-
formance. This is done starting from the baseline and target memory system
characterization via the bandwidth–latency curves, obtained as described
in Section 7.4. The first step is to determine, for a given application, the
relationship between memory system read latency and performance. We start,
in Section 7.5.1, by outlining the application characteristics that must be mea-
sured on the baseline system. Then, in Section 7.5.2, we introduce the problem
with a simple case, that of an in-order processor. Next, in Section 7.5.3, we
analyse a complex out-of-order processor. Section 7.5.4 completes the analysis
of out-of-order processor performance as a function of latency. Finally, in
Section 7.5.5, we explain how the model combines this latency–performance
characterization with the bandwidth–latency curves to obtain the estimate,
with error bars, of the application performance on the target memory system.

7.5.1 Application profiling

As outlined in Section 7.3.2, the application’s execution is divided into seg-
ments at regular time intervals. For each segment, we measure, using per-
formance measuring counters, the number of cycles, number of instructions,
read last-level cache (LLC) misses, used memory bandwidth, and the overall
fraction of reads. These parameters and the notation used in the study are
listed in Table 7.1.

77

Section 7.5
∣∣∣ Performance model: Detailed description

Table 7.1: Performance model input parameters

Input parameter Symbol

Number of cycles Cyctot

Number of Instructions Instot

Application read LLC misses MissLLC

Used memory bandwidth for total traffic BW
(1)
used

Fraction of reads in total traffic RatioR/W

The used memory bandwidth, BWused, and fraction of reads, RatioR/W,
are measured at the memory system, i.e. after the LLC. Both these figures
include all accesses, whether issued by the application or the prefetcher,
since both types of accesses appear the same to the memory system. In
contrast, MissLLC only includes LLC read misses issued by the application.
This parameter is used to estimate how the memory read latency impacts
application performance, and only application read misses have a direct
impact on performance.

In order to determine the duration of the sampling interval, we analyzed
the tradeoff among the measurement overhead, trace-file size and model
accuracy. An interval of 1 s was selected because it provided high accuracy
(see Section 7.8) while introducing negligible measurement overhead of below
1%. With this sampling interval, the trace-file size of the benchmarks used in
the study is in the range of hundreds of megabytes, which is acceptable.

7.5.2 In-order processors

This section derives the relationship between latency and performance for
a simple in-order CPU. In the interest of helping the reader to follow the
formulas, we start by summarizing the model’s inputs and outputs in Table 7.2.

Our analysis distinguishes between Memory access latency, Memory access
penalty and LLC miss penalty. Memory access latency, Latmem, is the
number of CPU cycles necessary for a single load instruction that reads data
from the main memory. It is measured as part of the memory system pro-
filing and given in the memory bandwidth–latency curve. Memory access
penalty, Penmem, is the difference between the latency of a main memory
access and the latency of an LLC hit. The values of Latmem and Penmem are
inputs to the model. The values for the baseline memory system are found
by looking up the application’s used bandwidth, measured on the baseline
memory system. The values for the target memory system are generated

78

Section 7.5
∣∣∣ Performance model: Detailed description

Table 7.2: Notation used in formulas: In-order processors

Description Symbol

Inputs (in addition to Table 7.1)

Memory access latency from bandwidth–latency curve Latmem

Memory access penalty (Latmem minus LLC hit latency) Penmem

Intermediate outputs
Single LLC miss penalty (number of CPU stall cycles) StallsLLC

Application cycles-per-instruction CPItot

CPI component in the case of perfect LLC CPI0

CPI component due to LLC misses penalties CPILLC

Outputs
Application instructions-per-cycle (1/CPItot) IPCtot

as explained in Section 7.5.5. Finally, LLC miss penalty, StallsLLC, is
calculated by the model as the average number of cycles for which the CPU
pipeline is stalled because of each LLC miss.

We start by partitioning the application cycles-per-instruction, CPItot,
into two components [52, 126, 127, 125]: CPItot = CPI0 + CPILLC. The
first component, CPI0, is the application’s CPI for the hypothetical case of
a 100% LLC hit rate. This component is not affected by the memory access
latency. The second component, CPILLC, is due to execution stalls due to
the LLC misses. Once we know the number of stall cycles to be attributed
to each LLC miss, we can calculate its value as [52, 128]:

CPILLC =
MissLLC × StallsLLC

Instot

(7.1)

We use the superscripts (1) and (2) to distinguish between the baseline
an target memory systems, respectively:

Baseline memory: CPI
(1)
tot = CPI

(1)
0 + CPI

(1)
LLC

Target memory: CPI
(2)
tot = CPI

(2)
0 + CPI

(2)
LLC (7.2)

Since the memory access latency does not affect CPI0, we have CPI
(1)
0 =

CPI
(2)
0 . Therefore, CPI

(2)
tot from Eq. 7.2 can be expressed as:

CPI
(2)
tot = CPI

(1)
tot +

(
CPI

(2)
LLC − CPI

(1)
LLC

)
(7.3)

Next, we assume that a change in the memory system, which for this

79

Section 7.5
∣∣∣ Performance model: Detailed description

section is a change in the read access latency, does not change the number
of instructions, Instot, or the application’s memory access pattern. This
is a reasonable assumption for applications or computational kernels that
do not use busy-waiting or dynamic scheduling. A change in the memory
access latency may affect the timeliness of the prefetcher, but it should not
consistently affect its coverage or accuracy; in any case, we found this effect to
be small.3 We therefore also assume that the LLC miss rate is unaffected by
the change in memory latency. In summary we conclude that we do not need
superscripts (1) or (2) on Instot and MissLLC. We can therefore substitute
Eq. 7.1 into Eq. 7.3 to obtain:

CPI
(2)
tot = CPI

(1)
tot +

MissLLC

Instot

×
(
Stalls

(2)
LLC − Stalls

(1)
LLC

)
(7.4)

We have not yet assumed an in-order processor, so all the above equations
are also true for out-of-order processors. For an in-order processor we make
the single observation that LLC misses directly lead to the pipeline stalls, i.e.:
StallsLLC = Penmem. Substituting this into Eq. 7.4 gives:

CPI
(2)
tot = CPI

(1)
tot +

MissLLC

Instot

×
(
Pen(2)

mem − Pen(1)
mem

)
for an in-order processor (7.5)

Eq. 7.5 is important because it shows that the difference in application CPI
for different memory systems, CPI

(2)
tot and CPI

(1)
tot , can be calculated based on

the corresponding memory access penalties, Pen
(2)
mem and Pen

(1)
mem. Finally, by

replacing IPC = 1/CPI, the application performance on the target memory
system is calculated as:

IPC
(2)
tot =

1
1

IPC
(1)
tot

+ MissLLC

Instot
× (Pen

(2)
mem − Pen(1)

mem)

for an in-order processor (7.6)

7.5.3 Out-of-order processors

The analysis for out-of-order (OOO) processors is more complex because
following an LLC miss the processor can continue executing independent
instructions without immediately being stalled. In consequence, the number

3 We measured the number of prefetches per instruction on our Sandy Bridge evaluation
platform (Section 7.7.1). The overall difference between DDR3-800 and DDR3-1600 memory
configurations across all benchmarks is less than 5%.

80

Section 7.5
∣∣∣ Performance model: Detailed description

of stalls per LLC miss is no longer equal to the full memory access penalty,
and it is typically strictly lower than it: StallsLLC < Penmem. In order to
handle this inequality it is necessary to introduce the additional symbols
given in Table 7.3.

Table 7.3: Notation used in formulas: Out-of-order processors

Description Symbol

Inputs
Instructions in reorder buffer InsROB

Size of miss information status holding register (MSHR) MSHR
Minimum CPI, equal to reciprocal of maximum IPC CPImin

Intermediate outputs
Number of execution cycles overlapped with
LLC miss stalls, due to OOO mechanism

Cycooo

Number of instructions executed during
LLC miss stalls, due to OOO mechanism

Insooo

Cyctot component in the case of perfect LLC Cyc0

Memory level parallelism:
Number of concurrent LLC misses (memory accesses)

MLP

Isolated LLC miss

We first consider an isolated LLC miss. When an LLC miss occurs (isolated
or not), the corresponding instruction must wait for data from memory, but
the CPU pipeline continues issuing and executing independent instructions.
Execution may halt, however, before the LLC miss is resolved, for two reasons.
First, instruction issue may stop because the instruction window has filled
with instructions, all of which are dependent, directly or indirectly, on the
instruction waiting for data from main memory. Second, instruction commit
may stop because the reorder buffer (ROB) has filled with instructions that
cannot be committed until after the waiting instruction has itself been com-
mitted.4 Both cases are illustrated in Figure 7.4. The upper part of the figure
shows a timeline indicating whether instruction execution has halted, while
the lower part of the figure shows snapshots of the ROB occupancy before
an isolated LLC miss, while the processor is waiting for data, and after the
data has been received. Immediately following the LLC miss, the ROB is
occupied with a certain number of instructions. The ROB begins to fill, as
the processor executes independent instructions. At some point, either there

4 They cannot be committed because OOO processors commit instructions in-order.

81

Section 7.5
∣∣∣ Performance model: Detailed description

LLC miss ROB fills Requested miss data

ROB
ocupancy

Commiting

ROB full

Commit resumes,
execution ramps back

to a steady state

Insooo

Cycooo

LLC miss penalty (StallsLLC)

time
Instructions
execution

memory access penalty (Penmem)

Free
entries

Ocupied
entries

InsROB

Figure 7.4: In OOO processors, LLC misses overlap with the execution of the
instructions independent of the missing data. The overlap depends on the
number of independent instructions in the instruction window and number of
free entries in ROB [127].

are no more independent instructions or the ROB becomes full. In either
case instruction execution will stall. Once the LLC miss has been resolved
and the LLC miss data are available, the instructions waiting for the data
can be executed and committed. This allows the instructions in the ROB to
be committed, so issuing and execution of new instructions can resume.

In Figure 7.4, the period after the LLC miss in which the processor is
executing new independent instructions is labeled as Cycooo.So, the number
of stall cycles is equal to the memory access penalty minus Cycooo [52, 127]:

StallsLLC = Penmem − Cycooo for an isolated miss (7.7)

If execution is immediately halted following the LLC miss, then Cycooo would
equal zero, and the LLC miss penalty would equal the memory access penalty,
as for the in-order case in Section 7.5.2.

The number of independent instructions that are executed during this
period, of Cycooo, is referred to as Insooo, and indicated in the lower half of
Figure 7.4. The connection between Cycooo and Insooo requires knowledge of
the CPI over the period. Our analysis partitions the application execution in
sampling segments of 1 second (detailed in Section 7.5.1), and considers there
to be a steady average execution rate. So, during these execution segments
the CPI equals its average rate of CPI0, as detailed in Table 7.2 and the
corresponding text. Therefore, Cycooo can be calculated as:

82

Section 7.5
∣∣∣ Performance model: Detailed description

Cycooo = CPI0 × Insooo for an isolated miss (7.8)

The factor of Insooo depends on the number of independent instructions and
the number of free instruction slots in the ROB. It is analyzed in detail in
the next section.

Insooo estimation

State-of-the-art architectures do not incorporate counters that can be used
to measure the value of Insooo. We therefore calculate bounds on its value
and incorporate these bounds into the model’s error estimate. We use the
platform-specific parameters and the application’s measured CPI.

The Insooo lower bound is trivial: Insooo ≥ 0, since OOO execution
may stop immediately after the LLC miss and continue being stalled until
the requested miss data arrives.

The Insooo upper bound is calculated as the lower of two constraints.
The first is the reorder buffer size, InsROB, which corresponds to the maximum
number of instructions that can be stored in the ROB. The first bound is
summarized as [127]:

Insmax1
ooo = InsROB (7.9)

The ROB size is a characteristic on the target architecture. In our study
we analyze two architectures, as described in Section 7.7. In Sandy Bridge
EP-2670 CPU the ROB comprises 168 entries, while in Intel Knights Landing
Xeon Phi 7230 it has 72 entries.

The second upper bound is determined by the maximum number of
instructions that can be executed during the LLC miss. In this scenario,
the whole Penmem is covered by the OOO execution, so Cycooo would equal
Penmem. Therefore, since Insooo is calculated as Cycooo/CPI0 (Eg. 7.8),
we can combine the two equations to find that the maximum number of
instructions that the processor will execute in this time is Penmem/CPI0.
Since the second upper bound assumes that OOO execution covers the whole
memory access penalty, there cannot be any stalls due to LLC misses, i.e.,
CPILLC would equal 0. Therefore, since the application’s overall CPI is
defined to be CPItot = CPI0 +CPILLC, it must be (in this case) that CPItot

equals CPI0. Combining these facts the final form of the second upper-bound,
given in terms of inputs to the model:

Insmax2
ooo = Penmem ×

Instot

Cyctot

(7.10)

83

Section 7.5
∣∣∣ Performance model: Detailed description

The overall upper bound on Insooo is the minimum of the two limits:

Insmax
ooo = min

(
InsROB, P enmem ×

Instot

Cyctot

)
(7.11)

Since the value of Insooo can be anywhere between its bounds we consider
Insooo to be a free parameter and perform a sensitivity analysis when calcu-
lating other dependent parameters.

Overlapping LLC misses: Impact of memory level parallelism.

Previously, in Section 7.5.3, specifically in Eq. 7.7, we considered the case
of an isolated read LLC miss. This section now considers the general case,
in which after an LLC miss occurs, and while the corresponding instruction
is waiting for data from memory, the CPU pipeline generates one or more
additional LLC misses. This situation is illustrated in Figure 7.5. Any stall
cycles that occur should be counted once per group of overlapping LLC misses
rather than once per LLC miss, which was the case for Eq. 7.7. The number
of concurrent LLC misses is typically known as the memory level parallelism,
and is denoted MLP [118, 128]. The penalty per LLC miss is therefore given
by the number of stall cycles divided by MLP [127, 128]:5

StallsLLC =
1

MLP
× (Penmem − Cycooo)

=
1

MLP
× (Penmem − CPI0 × Insooo) (7.12)

Karkhanis et al. [127] analyze this in detail and show that this is correct
independently of the moment in which second, third, or subsequent LLC
misses occur, as long as they occur within the Cycooo interval. If MLP equals
1, then the above equation becomes identical to Eq. 7.7; so Eq. 7.12 covers
both cases, that of isolated and overlapping LLC misses.

Current processors cannot directly measure MLP , so it must be estimated
based on the parameters that are available. We derive lower and upper bounds
on MLP and a point estimate.

The MLP lower and upper bounds can be computed starting from
the equation CPI

(1)
tot = CPI0 + CPI

(1)
LLC, then substituting CPI

(1)
LLC from

Eq. 7.1 and Stalls
(1)
LLC from Eq. 7.12:

5 LLC misses can also overlap with front-end miss events such as instruction cache
miss, branch misprediction, etc. These overlaps, however, tend to be rare leading to an
insignificant performance impact [129].

84

Section 7.5
∣∣∣ Performance model: Detailed description

LLC
miss1

Requested
miss data1

LLC misses penalty (n×StallsLLC)

LLC
missn-1

LLC
missn

Requested
 miss datan-1

Requested
miss datan

Cycooo

memory access penalty1

memory access penaltyn-1

memory access penaltyn

time

Instructions
execution

Figure 7.5: Handling overlapping LLC misses in an OOO processor: the
penalty of a single miss is divided by a number of concurrent LLC misses [127].

CPI
(1)
tot = CPI0 +

MissLLC ×
(
Pen

(1)
mem − CPI0 × Insooo

)
Instot ×MLP

(7.13)

Rearranging to isolate MLP and writing as a function to make clear which
values are unknown gives:

MLP (Insooo, CPI0) =
MissLLC

Instot
× (Pen

(1)
mem − CPI0 × Insooo)

CPI
(1)
tot − CPI0

(7.14)

This equation expresses MLP , which we want to know, in terms of Insooo,
the free variable that we will vary later, and CPI0, which is unknown but
can be bounded. The lower bound on CPI0 is CPImin, the reciprocal of the
processor’s highest theoretical IPC. The upper bound on CPI0 is CPI

(1)
tot ,

since CPI0 was defined to be one (of two) components contributing to CPI
(1)
tot .

Now that CPI0 is bounded, and assuming a value of Insooo, it is possible to
use Eq. 7.14 to obtain the range of potential values of MLP , either via a sweep
on CPI0 between its lower and upper bounds or using differential calculus.

A second upper bound on MLP is the size of the Miss Information Status
Holding register (MSHR) [130]. The MSHR is the hardware structure that
keeps information about in-flight cache misses, so they can be resolved once
the corresponding data arrives. Its size is CPU-specific; e.g. it is 10 for Sandy
Bridge [82] and 12 for KNL [131].6

The MLP point estimate is derived by assuming that the applica-

6 In state-of-the-art processors, the MSHR is usually referred to as Line Fill Buffer (In-
tel), Linefill Buffer (ARM), Load Miss Queue (POWER), Movein buffer (SPARC), etc.

85

Section 7.5
∣∣∣ Performance model: Detailed description

tion’s behavior is uniform (in a sense to be clarified below) over the sampling
segment (described in Section 7.5.1). Specifically, we assume that the number
of LLC misses per instruction is homogeneous across the time segment, in
which case it must equal MissLLC/Instot. In the period between the LLC
miss and the arrival of its data, the processor executes Insooo instructions,
so with a constant rate of LLC misses, the total number of additional LLC
misses is MissLLC

Instot
× Insooo. The value of Insooo is a free parameter, as de-

scribed in Section 7.5.3, so the value being calculated here is a function of
that parameter. In order to account for the first LLC miss, which has not
yet been counted, the point estimate for the total number of LLC misses, as
a function of Insooo, to which the stall cycles must be attributed is:

M̂LP (Insooo) =
MissLLC

Instot

× Insooo + 1 (7.15)

Note that M̂LP (Insooo) is a point estimate for MLP based on the available
information. If the point estimate is outside the valid range, between the lower
and upper bounds described above, then it is corrected to lie in the range.

7.5.4 Performance as a function of latency

This section completes the analysis of out-of-order processor performance as a
function of latency. We start by repeating Eq. 7.4, which gives the predicted
CPI in terms of StallsLLC:

CPI
(2)
tot = CPI

(1)
tot +

MissLLC

Instot

×
(
Stalls

(2)
LLC − Stalls

(1)
LLC

)
(7.4 again)

As remarked at the beginning of Section 7.5.3, in comparison with an
in-order processor, an out-of-order processor has a more complex expression
for StallsLLC, and this was given in Eq. 7.12:

StallsLLC =
1

MLP
× (Penmem − CPI0 × Insooo) (7.12 again)

Finally we replace the MLP parameter in this equation with the point
estimate in Eq. 7.15:

M̂LP (Insooo) =
MissLLC

Instot

× Insooo + 1 (7.15 again)

In fact, as explained in Section 7.5.3, this value should be restricted to
lie between the lower and upper bounds given in that section. This is done

86

Section 7.5
∣∣∣ Performance model: Detailed description

in the released source code, but for the sake of clarity we consider the more
common case for which it is not necessary.

Combining Eq. 7.4, Eq.7.12 and Eq.7.15, and assuming that Instot,
MissLLC, CPI0, Insooo and MLP do not change when moving from one
memory system configuration to another as detailed in Section 7.5.3, then
CPI

(2)
tot can be calculated as:

CPI
(2)
tot = CPI

(1)
tot +

Pen
(2)
mem − Pen(1)

mem

Insooo + Instot/MissLLC

(7.16)

This equation is written in terms of the memory access penalty, Penmem,
but at the system level, outside a detailed analysis of a particular processor’s
pipeline, only Latmem is relevant. Recall that Penmem was defined to be the
memory access latency, Latmem minus the cost of an LLC hit. We note, there-
fore, that the expression Pen

(2)
mem−Pen(1)

mem is equal to Lat
(2)
mem−Lat(1)

mem. Tak-
ing account of this and rewriting in terms of the IPC instead of the CPI gives:

IPC
(2)
tot =

IPC
(1)
tot

1 + IPC
(1)
tot × Lat

(2)
mem−Lat

(1)
mem

Insooo+Instot/MissLLC

(7.17)

The various values in Eq. 7.17, IPC
(1)
tot , Instot, and MissLLC are known

because they were measured on the baseline memory configuration. All other
inputs to the model, such as InsROB, MSHR, CPImin (see Table 7.3) appear
in the upper and lower bounds of Insooo.7

Eq. 7.17 is plotted in Figure 7.6. The x axis is the target system memory
latency, Lat

(2)
mem, and the y axis is the predicted IPC, IPC

(2)
tot . Eq. 7.17 is a

function of the independent parameter Insooo, which we cannot measure or
calculate exactly. We bounded its value in the previous section, and varying it
between the lower and upper bounds gives the family of curves shown in the
figure. Note that the case of Insooo = 0 corresponds to an in-order processor.
This can be seen by comparing Eq. 7.17 and Eq. 7.6.

As indicated on the figure, when the target memory latency is the same
as the baseline memory latency, Lat

(1)
mem, the model correctly “predicts” the

measured IPC to be that of the baseline system, IPC
(1)
tot .

It is easy to be misled by Figure 7.6. For instance, a decrease in the
memory latency by a fixed value, e.g. reducing the lead-off load penalty by
10 ns, is not equivalent to simply moving by 10 ns to the left on the x axis.
This is because, as seen in the figure, such a change will result in an increase

7 Or the upper and lower bounds of MLP which are not in Eq. 7.17 but considered in
the full model.

87

Section 7.5
∣∣∣ Performance model: Detailed description

Memory access latency on the target memory system

IP
C

to
t(2
)

Insooo =

IPCtot
(1)

Latmem
(1)

Insooo
max

Insooo = 0

Figure 7.6: Performance as a function of the memory access latency. The
different curves arise by varying the unknown parameter Insooo within its
bounds. Please read the text before interpreting this figure.

in the IPC, which will itself cause an increase in the used memory bandwidth,
for reasons explained in the next section. This increase in used bandwidth will
cause a movement to the right in the memory’s bandwidth–latency curve and
therefore increase the memory system latency, counterbalancing the original
decrease in memory system latency. It is to this problem that we turn to in
the next section.

7.5.5 Performance estimation — the ultimate step

This section completes the performance model. We start from the bandwidth–
latency curves described in Section 7.4, which give the loaded memory access
latency as a function of used memory bandwidth. We then combine these
curves with the analysis in Section 7.5.4, which gives application performance
as a function of the loaded memory latency. Doing so, in the right way, gives a
prediction of the performance on the target memory system, with error bars.

The solution will be explained through Figure 7.7. The x axis is the used
memory bandwidth and the y axis is the memory access latency. We show
the measured bandwidth–latency curves for the Knights Landing platform,
exactly as in Figure 7.3a. As before, the lightest curves correspond to 50%
reads and 50% writes, and the darkest curves correspond to 100% reads. Now,
however, since we are analysing a specific application segment, the proportion
of reads is known (it is RatioR/W), so we know which curve from the family
to select. The selected curve, which corresponds to RatioR/W, is shown as a
dashed white curve.

We now turn to Figure 7.6, and use the latency–performance plot to
construct a latency–bandwidth plot, i.e. to find the used memory bandwidth
as a function of the memory access latency. This is because the total number

88

Section 7.5
∣∣∣ Performance model: Detailed description

0 50 100 150 200 250 300 350

Used memory bandwidth [GB/s]

200

250

300

350

M
em

or
y

ac
ce

ss
la

te
nc

y
[n

s]

0

Application using DDR4

Application using MCDRAM

Performance modelBandwidth-latency curves

150

Figure 7.7: Graphical interpretation of a performance estimation as a merged
solution of Sections 7.4 and 7.5.4.

of memory accesses performed over the application’s execution is a constant,
since it is the sum of the application’s total number of read LLC misses and
the prefetcher’s total number of accesses, both of which are argued to be
constant in Section 7.5.2. The total number of accesses can be evaluated,
for the baseline memory system, by multiplying bandwidth by time, giving
BW

(1)
used × (Cyc

(1)
tot/FreqCPU). Dividing this expression by the execution time

on the target memory system gives:

BW
(2)
used =

BW
(1)
used × (Cyc

(1)
tot/FreqCPU)

(Cyc
(2)
tot/FreqCPU)

=
BW

(1)
used

IPC
(1)
tot

× IPC(2)
tot (7.18)

We therefore obtain a plot of bandwidth vs latency simply by multiplying
the value on the y axis of Figure 7.6 by the factor BW

(1)
used/IPC

(1)
tot . The axes

now match those in Figure 7.7 except they are transposed. We therefore
transpose the bandwidth vs. latency plot, by swapping the x and y axes,
and superimpose it onto Figure 7.7. This gives the family of lines for the
performance model.

When the application runs on a memory system, it must be located on the
memory system’s bandwidth–latency curve and on one of the performance
model curves that was just added. It must therefore be located on the
intersection of these curves, as indicated on Figure 7.7. For the baseline
memory system, we find that all performance model curves intersect the
bandwidth–latency curve in the same place, at the bandwidth measured on
the real system.

Each pair of bandwidth–latency and performance model curves will inter-

89

Section 7.5
∣∣∣ Performance model: Detailed description

sect in exactly one place. There cannot be more than one intersection because
the memory system’s bandwidth–latency curve is increasing (as a function of
latency) whereas the application’s performance model curve is decreasing (as a
function of latency). In addition, there must be an intersection point, since the
application’s curve decreases from a very high latency necessary to get a small
used memory bandwidth whereas the memory’s bandwidth–latency curve
increases to a very high latency close to the maximum sustainable bandwidth.

In summary, we start from the target memory system’s bandwidth–latency
curve and Eq. 7.17, which defines a family of performance model curves. We
perform a sweep of the valid range for Insooo, and for each value, find the
intersection of its performance model curve with the target bandwidth–latency
curve. To find this intersection we use the bisection method. This point gives
a bandwidth on the y axis, which can be converted to an IPC by rearranging
Eq. 7.18. Taking the minimum, maximum and average of these IPC values,
as Insooo varies, gives the minimum, maximum and point estimate for the
performance prediction. Recall that the whole discussion so far is related to
a single segment (time period) of the application. Performing these steps and
averaging over time provides the final point estimate for the application run,
plus error bars.

7.5.6 Novelties of the presented analytical model

As our analytical model is based on the CPI stack analysis widely used for
performance modeling [52], it is important to emphasize the contributions of
our work beyond the previous studies.

Computation of the CPI component that corresponds to the execution
stalls due to the LLC misses (Eq. 7.1) is described by previous studies [128,
125, 52]. Hennessy and Patterson [52] and Karkhanis and Smith [127] also
analyze execution of independent instructions Insooo after the LLC miss
(Eq. 7.7) and define some of the Insooo bounds (Eq. 7.9). Finally, the MLP
and its impact on the CPI stack analysis (Eq. 7.12). are also well explored
by the community [127, 128, 132, 125, 133].

CPI stack, Insooo and MLP are the foundation of various analytical models
that quantify the performance impact of the main memory latency [127, 128,
132, 133]. The previous analytical models however have one great challenge:
they require detailed application profiling, which can be performed only with
hardware simulators. The main objective of our work is to avoid the use of the
simulators, and to develop an analytical model based only on the parameters
that can be obtained or derived from performance counters measurements
on actual platforms. This requires a novel approach to the MLP estimate,
presented in Eq. 7.13–7.15. In addition to this, we also present additional

90

Section 7.6
∣∣∣ Power and energy modeling

Insooo bounds in Eq. 7.10 and Eq. 7.11. Finally, to the best of our knowledge,
this is the first study that combines analysis of the application performance as a
function of the memory access latency (Sec 7.5.4) with the bandwidth–latency
curves (Sec 7.5.5) and it proves that this analysis leads to a unique solution.

7.6 Power and energy modeling

Apart from performance, power and energy demand are important system
constraints. In modern HPC systems, the memory subsystem contributes
10–16% of the total server power consumption [134]. It is therefore valuable
to quantify the trade-offs in power and energy consumption due to the change
of the memory system.

Similarly to performance model, we develop the power and energy models
for the Sandy Bridge E5-2670 server.Based on the application profiling and
memory power parameters, these models predict the variation of the system
power and energy consumption due to the change of the memory systems.
Detailed description of power and energy models are given in Sections 7.6.1
and 7.6.2.

7.6.1 Power modeling

We analyse the difference in total system power consumption when we move
from baseline to target memory system. In our study, we assume that when
the memory system changes, the biggest impact on total system power con-
sumption is the change of the main memory power consumption. Hence, we
focus on modeling the power consumption of the memory subsystem and con-
sider that power consumption of the rest of the system does not change [135].
Estimating power and energy consumption requires measurements of the total
platform power consumption, ratio of time spent in memory power-down states
(active standby, precharge power-down and self-refresh states in our system)
and row-buffer access statistics (rate of page hits and page misses). Table 7.4
summarizes the symbols used in the formulas for power and energy estimation.

To calculate the components of memory power consumption, we use Mi-
cron’s guide for calculating power consumption of DDR3 memory systems [123].
Apart from the parameters in Table 7.4, Micron’s power consumption guide
requires IDD currents, memory system voltage and DIMM timing parameters,
which are detailed in DIMMs documentation [136].8 The power model was

8 During the evaluation on different memory frequencies (DDR3-800/1066/1333/1600)
we used the same DIMMs. Each memory frequency, however, uses different timing and
IDD current parameters.

91

Section 7.6
∣∣∣ Power and energy modeling

Table 7.4: Notation used in formulas: Power modeling

Description Symbol

Input parameters

Total platform power consumption Ptot

Percentage of time spent in active standby state tact

Percentage of time spent
in precharge power-down state

tppd

Percentage of time spent in self-refresh state tsr
Percentage of row-buffer hits phit

Percentage of row-buffer misses pmiss

Used memory bandwidth for read/write traffic BW
rd/wr,(1)
used

Intermediate outputs
Total memory power Pmem

Power consumption of the rest of the system,
apart from the memory

Prest

Operational memory power Pop

Background memory power Pbg

Memory power in active standby state Pact

Memory power in precharge power-down state Pppd

Memory power in self-refresh state Psr

Total memory read/write operations power Prd/wr

Power of memory refresh operations Pref

Duration of sampling segment Tsample

Number of read/write memory accesses
on a sampling segment

N
rd/wr
access

Energy on termination resistors
for a single read/write memory access

E
rd/wr
term

Single memory read/write access energy E
rd/wr
access

Energy of a read/write row buffer miss access E
rd/wr
miss

Energy of a read/write row buffer hit access E
rd/wr
hit

not developed for the KNL server, because we lacked the reliable MCDRAM
power parameters. The estimation of these power parameters is part of
ongoing work.

Micron’s power consumption guide defines how to calculate power con-
sumption of individual read or write memory accesses and DRAM power-down
states. In our power analysis, we begin from total platform power consump-
tion and expand its components down to these basic DRAM operations. We
start by dividing the total platform power consumption into two components,

92

Section 7.6
∣∣∣ Power and energy modeling

power of the memory system and power of the rest of the platform apart
from the memory [135]: Ptot = Pmem + Prest. As in the analysis of the
performance in Section 7.5, we use the superscripts (1) and (2) to distinguish
between the Ptot and its components in the baseline and target memory
systems, respectively:

Baseline memory: P
(1)
tot = P (1)

mem + P
(1)
rest

Target memory: P
(2)
tot = P (2)

mem + P
(2)
rest (7.19)

Since we assume that the power of the rest of the system stays the same, we
can write P

(2)
rest = P

(1)
rest.

9 Therefore, total platform power consumption in the
target memory system can be expressed as:

P
(2)
tot = P

(1)
tot + (P (2)

mem − P (1)
mem) (7.20)

In further analysis we focus on the Pmem. It comprises two components,
background power Pbg and operational power Pop:

Pmem = Pbg + Pop (7.21)

Background power accounts for the current state of the memory system.
There are several possible states of the memory system, depending on which
power-down states are used. On our experimental system, there are three
supported memory power states: active standby, precharge power-down and
self-refresh. They differ in terms of power consumption and the transition
latency to the active state. In active standby state, the memory device
consumes the highest power Pact but executes the commands immediately,
without any latency penalty. Precharge power-down state consumes power
Pppd, which is less than Pact, with a moderate latency penalty. In self-refresh
mode, memory consumes the least power Psr, but has a significant latency
penalty for coming back to active standby mode. Multiplying each of these
powers with the corresponding time share spent in each of them (tact, tppd

and tsr, respectively),10 and summing these products gives the background
power Pbg:

Pbg = tact × Pact + tppd × Pppd + tsr × Psr (7.22)

Operational power presents the sum of power consumptions while reading or

9 Quantifying the impact of a change from baseline to target memory system on Prest is
a part of ongoing work.

10 Please note that tact + tppd + tsr = 1.

93

Section 7.6
∣∣∣ Power and energy modeling

writing the data, plus the power consumption of the refresh operations:

Pop = Prd + Pwr + Pref (7.23)

Components Prd and Pwr present power consumptions of all read or write
memory accesses, respectively, on a sampling interval. Expanding these
components further leads to the power consumptions of individual read or
write memory accesses, which can be calculated using the Micron’s power
consumption guide. However, using the power consumption of individual
read or write memory accesses to calculate Prd and Pwr is not trivial. These
individual reads or writes are interleaved and overlapped in time. In order
to sum the powers of individual reads or writes, we have to know their
distribution on intervals which are the orders of magnitude of 1 ns, which is
infeasible in current hardware platforms.

To mitigate this problem we calculate the energy of individual read or write
memory access. Using energy instead of power implies that we do not have to
know the distribution of memory accesses on a sampling segment to calculate
the sum of energies of all the individual reads or writes. This way, we calculate
Prd and Pwr in two steps. First, we sum the energies of all the individual reads
or writes on the sampling segment. Second, we divide this cumulative energy
from the previous step with the duration of the sampling segment. If an
energy of a single read or write memory access is E

rd/wr
access and there are N

rd/wr
access

number of reads or writes on a sampling segment Tsample, we can write:

Prd =

∑Nrd
access

i=1 Erd
access,i

Tsample

=
Erd

access ×N rd
access

Tsample

(7.24)

Pwr =

∑Nwr
access

i=1 Ewr
access,i

Tsample

=
Ewr

access ×Nwr
access

Tsample

(7.25)

Number of reads or writes on the sampling segment can be measured with
memory bandwidth hardware counters. A single read or write memory access
transfers the amount of data defined as width of the memory bus (64 bits)
multiplied by number of bursts (8), so 8 Bytes × 8 bursts = 64 Bytes of data.
Therefore, number of reads or writes equals the total read or write traffic
during the sampling segment, divided by the size of a single memory access:

N rd
access =

BW rd
used × Tsample

64 B
(7.26)

94

Section 7.6
∣∣∣ Power and energy modeling

Nwr
access =

BWwr
used × Tsample

64 B
(7.27)

Using Eq. 7.26 and 7.27 with Eq. 7.24 and 7.25, we get:

Prd = Erd
access ×

BW rd
used

64 B
(7.28)

Pwr = Ewr
access ×

BWwr
used

64 B
(7.29)

Energy per single memory access accounts for read or write operation with
its sub-operations. It also includes the energy on termination resistors, which
are common in DDR devices. Our Sandy Bridge experimental platform
uses adaptive open-page policy [50, 137], therefore performed sub-operations
depend whether the target row in memory array was open or closed when
accessing it. If the target row was open, it is a row-buffer hit access and it
consumes only the energy for reading or writing the data. When the target
row is closed, there are two scenarios. The first scenario is that there is no
other opened row in the same bank and initially the energy accounts for
opening a row and reading or writing the data. This row will be eventually
closed after a time-out, so precharge energy should be added afterwards. The
second scenario is that if there is an opened row (which is not the target
one) in the same bank, it has to be closed first. It accounts the energy for
precharging and closing the opened row, activating the target row and reading
or writing the data. Both scenarios include same sub-operations from the
energy point of view and we consider them as row-buffer miss case in further
analysis. Since we measure the ratio of row-buffer hits phit and row-buffer
misses pmiss

11 with regard to total number of accesses, the energy per memory
access can be represented as:

Erd
acc = Erd

hit × phit + Erd
miss × pmiss + Erd

term (7.30)

Ewr
acc = Ewr

hit × phit + Ewr
miss × pmiss + Ewr

term (7.31)

The energy parameter Emiss represents the row-buffer miss energy, including
opening the row, sending or receiving the data and precharging the row. Ehit

11 Note that phit + pmiss = 1.

95

Section 7.6
∣∣∣ Power and energy modeling

represents the row-buffer hit energy and it includes sending or receiving the
data. Eterm represents the energy on termination resistors. These parameters
are calculated using Micron’s power consumption guide.

Now that we have all the power components, we can include all of them
from Equations 7.21 to 7.31 into Eq. 7.32 and calculate P

(2)
tot on the target

memory system. Before this step, we have to make two assumptions. First as-
sumption is that the ratio of time spent in memory power-down states stays the
same on baseline and target memory system. Hence, t

(2)
act = t

(1)
act, t

(2)
ppd = t

(1)
ppd

and t
(2)
sr = t

(1)
sr . Second assumption is that row-buffer access statistics does

not change from baseline to target memory system. So, p
(2)
hit = p

(1)
hit and

p
(2)
miss = p

(1)
miss. These assumptions are reasonable, since we assume that Instot,

MissLLC, CPI0, RatioR/W and memory access pattern do not change from
baseline to target memory system (detailed in Section 7.5.2). So, the final

solution for P
(2)
tot on the target memory system is given in the Eq. 7.32.

P
(2)
tot = P

(1)
tot + (P (2)

mem − P (1)
mem) = P

(1)
tot +

(
P

(2)
bg + P (2)

op − (P
(1)
bg + P (1)

op)
)

= P
(1)
tot + P

(2)
bg − P

(1)
bg + P (2)

op − P (1)
op

= P
(1)
tot + P

(2)
bg − P

(1)
bg + P

(2)
ref − P

(1)
ref + P

(2)
rd − P

(1)
rd + P (2)

wr − P (1)
wr

= P
(1)
tot +

P
(2)
bg −P

(1)
bg (Eq. 7.22)︷ ︸︸ ︷

tact × (P
(2)
act − P

(1)
act) + tppd × (P

(2)
ppd − P

(1)
ppd) + tsr × (P (2)

sr − P (1)
sr)

+(P
(2)
ref −P

(1)
ref)+

P
(2)
rd (Eq. 7.28 and Eq. 7.30)︷ ︸︸ ︷

1

64B
×
(
BW

rd,(2)
used × (E

rd,(2)
hit × phit + E

rd,(2)
miss × pmiss + E

rd,(2)
term)

)
− 1

64B
×
(
BW

rd,(1)
used × (E

rd,(1)
hit × phit + E

rd,(1)
miss × pmiss + E

rd,(1)
term)

)
︸ ︷︷ ︸

P
(1)
rd (Eq. 7.28 and Eq. 7.30)

+

P
(2)
wr (Eq. 7.29 and Eq. 7.31)︷ ︸︸ ︷

1

64B
×
(
BW

wr,(2)
used × (E

wr,(2)
hit × phit + E

wr,(2)
miss × pmiss + E

wr,(2)
term)

)
− 1

64B
×
(
BW

wr,(1)
used × (E

wr,(1)
hit × phit + E

wr,(1)
miss × pmiss + E

wr,(1)
term)

)
︸ ︷︷ ︸

P
(1)
wr (Eq. 7.29 and Eq. 7.31)

(7.32)

96

Section 7.7
∣∣∣ Experimental environment and methodology

7.6.2 Energy modeling

Once we have the performance and the power consumption estimations, we
can estimate the total system energy consumption with the target memory
system. In general, energy is defined as the integral of power over time:

Etot =

∫ ttot

0

Ptot(t)dt

In our experiments, we measure and analyse power consumption on sampling
segments of 1 s. Hence, we represent total energy from our experiments in a
discrete form:

Etot =
N∑
i=1

Ptot,i ×∆ti (7.33)

The parameter ∆ti is the duration of the sampling segment, and equals
∆ti

(1) = 1 s on a baseline memory system (detailed in Section 7.5.1). Dur-

ing ∆ti
(1) segment, Ins

(1)
tot,i instructions are executed. As we mentioned in

Section 7.5.2, we assume that Instot does not change from baseline to target
memory system, therefore Ins

(1)
tot,i = Ins

(2)
tot,i. However, duration of the corre-

sponding time interval ∆ti
(2) on the target memory system is not the same

as ∆ti
(1). This implies that ∆ti

(2) on the target memory system is inversely
proportional to the estimated performance improvement:

∆t(2) =
IPC

(1)
tot,i

IPC
(2)
tot,i

×∆ti
(1) (7.34)

Finally, total energy on the target memory system is:

E
(2)
tot =

N∑
i=1

P
(2)
tot,i ×∆t

(2)
i =

N∑
i=1

P
(2)
tot,i ×

IPC
(1)
tot,i

IPC
(2)
tot,i

×∆ti
(1) (7.35)

Parameter P
(2)
tot,i can be calculated using the Equation 7.32, and IPC

(2)
tot,i can

be calculated using the performance model from Section 7.5.

7.7 Experimental environment

and methodology

In this section, we present the hardware platforms and benchmarks used in
the model evaluation. We also list the tools used for the application profiling

97

Section 7.7
∣∣∣ Experimental environment and methodology

Table 7.5: The most important features of experimental platforms

Platforms
Sandy Bridge

E5-2670
Knights Landing
Xeon Phi 7230

Sockets 2 1

Cores per socket 8 64

CPU freq. [GHz] 3.0 1.3

L1i, L1d 32 kB, 32 kB 32 kB, 32 kB

L2 512 kB 1 MB

L3 20 MB /

Memory conf.
per socket

4 chann.
DDR3-800/1066/1333/1600

8 chann. MCDRAM
6 chann. DDR4-2400

Memory capacity 64 GB
16 GB MCDRAM

96 GB DDR4

and server power measurements. Finally, we summarize the main steps of the
model evaluation process.

7.7.1 Hardware platforms

We evaluate the model on Sandy Bridge-EP E5-2670 and Knights Landing
Xeon Phi 7230 platforms (see Sections 3.1.2 and 3.1.3). The most important
features of the platforms are summarized in Table 7.5.

The Sandy Bridge-EP server is a representative of mainstream high-
performance computing (HPC) servers, and it is still in use, especially in
smaller Tier-0 systems [2]. In the server under study we were able to setup
four memory frequencies: DDR3-800, DDR3-1066, DDR3-1333 and DDR3-
1600, and we used these configurations to evaluate our performance, power
and energy models.

The Intel KNL platform [65] is an emerging platform that combines two
types of memory with different memory bandwidths and access latencies:
DDR4 DIMMs and 3D-stacked MCDRAM [65]. Since it uses two types of
memories, the system offers three modes of operation: cache mode, flat mode
and hybrid mode. In our experiments, we use flat mode, in which the DDR4
and MCDRAM are configured as separate NUMA nodes, and we execute our
workloads either in DDR4 or MCDRAM memory.

7.7.2 Benchmarks

We evaluated our model on a set of SPEC CPU2006 benchmarks (see Sec-
tion 3.2.3) and scientific HPC applications from UEABS (see Section 3.2.4).

98

Section 7.7
∣∣∣ Experimental environment and methodology

We choose four applications: ALYA, representative of the computational
mechanics codes, and GROMACS, NAMD, and Quantum Espresso (QE),
computational chemistry applications. The remaining UEABS applications
could not be executed because their input dataset sizes exceed the main
memory capacity of our hardware platforms.

In all the experiments on Sandy Bridge platform, we fully utilize the avail-
able 16 CPU cores:12 we execute 16 copies of each SPEC CPU2006 benchmark,
or 16 application processes for each UEABS applications. The KNL platform
comprises 16 GB of the MCDRAM, which is insufficient to execute any of
the UEABS applications. Also, for each SPEC CPU2006 benchmark, we had
to determine the maximum number of instances whose cumulative memory
footprint fits into MCDRAM. In the SPEC charts, this number of benchmark
instances is specified in parentheses after the benchmark name.

In order to quantify the level of stress that our workloads put to the memory
system, we measure their memory bandwidth. Figure 7.8 shows the bandwidth
utilization, relative to the maximum sustained memory bandwidth,13 for the
platforms under study. When reporting the model evaluation in Section 7.8,
we will emphasize the results for the high-bandwidth benchmarks with over
50% of the used memory bandwidth. These benchmarks are the most affected
by the changes in the memory system, and the most challenging to model
because they are located in the linear and exponential regions of the memory
bandwidth–latency curves.

7.7.3 Tools and methodology

Application profiling requires measurements of the CPU cycles, instructions,
LLC misses, read and write memory bandwidths, as well as the row-buffer
access statistics, number of page activations and page misses, and number
of cycles spent in memory power-down states. All these inputs are measured
by the hardware counters and the LIKWID performance tool suite (see Sec-
tion 3.3.1). The counters used in the study are widely available in mainstream
HPC servers [61, 138].

The UEABS applications mimic large-scale production HPC workloads;
they have large input data-sets and can scale up to thousands of processes.
Extracting the UEABS execution segments representative of the production
runs is not trivial [139] and requires specialized HPC profiling and visualiza-

12 Although the processors support hyper-threading at the core level, this feature is
disabled, as in most HPC systems.

13 The maximum sustainable memory bandwidth of our experimental platforms is
measured with STREAM benchmark (see Section 3.2.2).

99

Section 7.7
∣∣∣ Experimental environment and methodology

lib
qu

an
tu

m
bw

av
es

lb
m

m
ilc

so
pl

ex
G

em
sF

D
T

D
le

sl
ie

3d m
cf

sp
hi

nx
3

w
rf

om
ne

tp
p

ze
us

m
p

ca
ct

us
A

D
M

as
ta

r
gc

c
de

al
II

bz
ip

2
go

bm
k

xa
la

nc
bm

k
sj

en
g

hm
m

er
to

nt
o

gr
om

ac
s

h2
64

re
f

ca
lc

ul
ix

na
m

d
pe

rl
be

nc
h

ga
m

es
s

po
vr

ay Q
E

A
LY

A
G

R
O

M
A

C
S

N
A

M
D

0%
20%
40%
60%
80%

100%
U

se
d

po
rt

io
n

of
m

ax
.s

us
.b

w

Read memory bandwidth Write memory bandwidth

High Bandwidth (HBW) Low Bandwidth (LBW) HBWLBW

(a) Sandy Bridge E5-2670. Fully utilized server: 16 SPEC CPU2006
instances or 16 UEABS MPI processes.

sp
hi

nx
3

[6
0]

le
sl

ie
3d

[4
8]

lib
qu

an
tu

m
[3

6]
lb

m
[3

2]
om

ne
tp

p
[6

4]
so

pl
ex

[3
6]

G
em

sF
D

T
D

[1
8]

m
ilc

[2
0]

ca
ct

us
A

D
M

[2
0]

gc
c

[2
4]

as
ta

r[
48

]
hm

m
er

[6
4]

ze
us

m
p

[3
0]

xa
la

nc
bm

k
[3

6]
bw

av
es

[1
8]

w
rf

[2
2]

de
al

II
[2

4]
h2

64
re

f[
64

]
bz

ip
2

[1
8]

m
cf

[8
]

go
bm

k
[6

4]
gr

om
ac

s
[6

4]
sj

en
g

[6
4]

pe
rl

be
nc

h
[2

6]
to

nt
o

[4
4]

na
m

d
[6

4]
ca

lc
ul

ix
[4

8]
ga

m
es

s
[4

8]
po

vr
ay

[5
6]

0%
20%
40%
60%
80%

100%

U
se

d
po

rt
io

n
of

m
ax

.s
us

.b
w High Bandwidth Low Bandwidth

(b) Knights Landing Xeon Phi. The MCDRAM capacity limits the number
of the benchmarks instances, specified in the square brackets.

Figure 7.8: The workloads under study show a wide range of memory band-
width utilization, and different ratios of the Read and Write memory traffic.

tion tools, such as Limpio, Extrae and Paraver, all of which were used in this
study and described in Section 3.3.1.

We used a Yokogawa WT230 [140] power meter to measure the server
power consumption. It measures the voltage and current at the power plug to
calculate the server power consumption. The measurements were sampled on
one second time period. The energy consumption was calculated by summing
the power consumption over the execution time.

100

Section 7.8
∣∣∣ Evaluation

lib
qu
an
tum

bw
av
es lbm mi

lc

so
ple
x

Ge
ms
FD
TD

les
lie
3d mc

f

sp
hin
x3 wr

f

om
ne
tpp

ze
us
mp

ca
ctu
sA
DM ast

ar gc
c
de
alI
I
bz
ip2

go
bm
k

xa
lan
cb
mk sje

ng

hm
me
r
ton
to

gro
ma
cs

h2
64
ref

ca
lcu
lix

na
md

pe
rlb
en
ch

ga
me
ss

po
vra
y QE

AL
YA

GR
OM

AC
S

NA
M
D

0%

20%

40%

60%

80%

100%

R
el
at
iv
e
IP
C
di
ff
er
en
ce

w
.r.
t.
D
D
R
3-
80

0

Measured performance improvement
Estimated DDR3-800 -> DDR3-1066
Estimated DDR3-800 -> DDR3-1333
Estimated DDR3-800 -> DDR3-1600

Figure 7.9: Sandy Bridge, DDR3-800→1066/1333/1600: Changing the DRAM
frequency has a significant performance impact. Performance model estima-
tions are precise, with low error bars, and accurate, with small difference from
the values measured on the actual hardware.

7.8 Evaluation

The model evaluation is done in four steps. First, we execute a benchmark on
the baseline memory system, e.g., Sandy Bridge server with DDR3-800. In this
run, we measure the benchmark performance, power and energy consumption,
and collect all the hardware counters needed for the model prediction. Second,
we use the model to estimate the benchmark performance, power and energy
on the target memory configuration, e.g., DDR3-1600. Third, we change the
platform memory configuration from the baseline to the target memory, e.g.,
from DDR3-800 to DDR3-1600. This requires changing the BIOS settings for
the Sandy Bridge, and changing the execution NUMA node for the Knights
Landing platform. Finally, we execute the benchmark on the target memory
system, measure the actual performance, power and energy consumption, and
compare them with the values estimated by the model in Step 2.

7.8.1 Sandy Bridge: DDR3-800 → 1066/1333/1600

Performance results for the Sandy Bridge server are displayed in Figure 7.9.
For each benchmark we plot three sets of bars, one per each DRAM frequency
change: DDR3-800→1066/1333/1600. As described in Section 7.5.3, since
we could not determine the exact value of the Insooo parameter in the ex-
perimental platform, we performed a sensitivity analysis on this parameter

— we changed the Insooo values from 0 to Insmax
ooo , and did the performance

estimate for each of them. The solid bars correspond to the mean perfor-
mance estimate, while the error bars show the lowest and highest estimated
performance. In addition to the estimated values, we plot the performance
improvement measured on the actual platform, marked with a cross marker
for each experiment.

101

Section 7.8
∣∣∣ Evaluation

lib
qu
an
tum

bw
av
es lbm mi

lc

so
ple
x

Ge
ms
FD
TD

les
lie
3d mc

f

sp
hin
x3 wr

f

om
ne
tpp

ze
us
mp

ca
ctu
sA
DM ast

ar gc
c
de
alI
I
bz
ip2

go
bm
k

xa
lan
cb
mk sje

ng

hm
me
r
ton
to

gro
ma
cs

h2
64
ref

ca
lcu
lix

na
md

pe
rlb
en
ch

ga
me
ss

po
vra
y QE

AL
YA

GR
OM

AC
S

NA
M
D

0%

1%

2%

3%

4%

5%

6%

7%

8%
R
el
at
iv
e
po
w
er

co
ns
.d

iff
.

w
.r.
t.
D
D
R
3-
80

0

Measured power cons. increment
Estimated DDR3-800 -> DDR3-1066
Estimated DDR3-800 -> DDR3-1333
Estimated DDR3-800 -> DDR3-1600

Figure 7.10: Sandy Bridge, DDR3-800→1066/1333/1600: DRAM frequency
has a minor impact on the overall server power consumption. Increasing
DRAM frequency from DDR3-800 to DDR3-1600 (100% increment) causes
average power increment of only 2%.

First, we can see that the error bars, i.e., ranges of the estimated perfor-
mance are narrow. Across the high-bandwidth benchmarks, the average width
of the error bars is only 2.5%, 5.4% and 7.2%, for DDR3-1066/1333/1600
respectively. Across the low-bandwidth benchmarks, the average width of the
error bars is even lower, at 1.1%, 1.8% and 2.1%. This means that, although for
the architectures under study we cannot determine the precise value of Insooo

parameter, performance estimation based on the sensitivity analysis leads to
narrow ranges of the estimated performance. Second, the model predictions are
highly accurate. The average difference from the performance measured on the
actual hardware for DDR3-1066/1333/1600 frequencies is 1.8%, 3.9% and 5.3%
for the high-bandwidth benchmarks, and it drops to just 1%, 1.3% and 1.7%
over the low-bandwidth benchmarks. Finally, the presented results show that
the DRAM frequency increase indeed has a significant performance impact.
For example, increasing the DRAM frequency from the baseline DDR3-800
to the target DDR3-1600 causes average performance improvement of 22%,
and it reaches 80% for the libquantum benchmark. Therefore it is important
to understand the relation between the available memory bandwidth and the
overall application performance, which is the main objective of our work.

System power

Next we present the evaluation results for system-level estimation of power
and energy consumption. Figure 7.10 shows the estimated and measured
system power. As in Figure 7.9, for each benchmark we plot three sets of
bars, one per DRAM configuration: DDR3-800 → 1066/1333/1600. Also,
as in all previous evaluation charts, we plot the model point estimate (solid
bars), estimation bounds (error bars), and the power consumption measured
on the actual server (cross markers).

102

Section 7.8
∣∣∣ Evaluation

lib
qu
an
tum

bw
av
es lbm mi

lc

so
ple
x

Ge
ms
FD
TD

les
lie
3d mc

f

sp
hin
x3 wr

f

om
ne
tpp

ze
us
mp

ca
ctu
sA
DM ast

ar gc
c
de
alI
I
bz
ip2

go
bm
k

xa
lan
cb
mk sje

ng

hm
me
r
ton
to

gro
ma
cs

h2
64
ref

ca
lcu
lix

na
md

pe
rlb
en
ch

ga
me
ss

po
vra
y QE

AL
YA

GR
OM

AC
S

NA
M
D

-50%

-40%

-30%

-20%

-10%

0%

10%

R
el
at
iv
e
en
er
gy

co
ns
.d

iff
.

w
.r.
t.
D
D
R
3-
80

0

Measured energy cons. decrease
Estimated DDR3-800 -> DDR3-1066
Estimated DDR3-800 -> DDR3-1333
Estimated DDR3-800 -> DDR3-1600

Figure 7.11: Sandy Bridge, DDR3-800→1066/1333/1600: DRAM frequency
has a significant impact on the system energy consumption. Energy predictions
of our model are precise, with low error bars, and accurate, with small
difference from the actual values measured on real hardware.

Although some of the high-bandwidth benchmarks such as libquantum
to GemsFDTD show a moderate prediction error of 3–4%, in general the
power prediction error of the model is small, below 1% on average. The most
important finding of the results presented in Figure 7.10 is that the significant
increment in the DRAM frequency causes very small change in the overall
server power consumption. For example, increasing the DRAM frequency
from DDR3-800 to 1600 (100% increment) causes average power increment of
only 2%. Even if we focus on the high-stress memory benchmarks, the power
increment is still below 5%. This is expected since, as assumed in our power
model, when changing the DRAM frequency the most important impact on
total system power consumption is the change of the main memory power
consumption. Although the relative change of the memory power itself could
be significant, this is still a small portion of the overall server power [134].

Energy consumption

Estimated and measured changes in the system energy consumption when
increasing the DRAM frequency from DDR3-800 to DDR3-1066/1333/1600
are given in Figure 7.11. The results show that the DRAM frequency has a
significant impact on the overall energy consumption. For example, increasing
the DRAM frequency from DDR3-800 to DDR3-1600 leads to average energy
savings of 13% and reaches 41% savings for the libquantum benchmark. The
results also show that the model energy predictions are precise, with narrow
error bars, and accurate, with average prediction error of below 2%.

The presented results and findings are expected. Our previous results
showed that increasing the DRAM frequency causes significant execution
time reductions, and only few percent server power increment. Since, energy
is the integral of the power consumption over the application execution time,

103

Section 7.8
∣∣∣ Evaluation

lib
qu
an
tum

bw
av
es lbm mi

lc

so
ple
x

Ge
ms
FD
TD

les
lie
3d mc

f

sp
hin
x3 wr

f

om
ne
tpp

ze
us
mp

ca
ctu
sA
DM ast

ar gc
c
de
alI
I
bz
ip2

go
bm
k

xa
lan
cb
mk sje

ng

hm
me
r
ton
to

gro
ma
cs

h2
64
ref

ca
lcu
lix

na
md

pe
rlb
en
ch

ga
me
ss

po
vra
y QE

AL
YA

GR
OM

AC
S

NA
M
D

-50%

-40%

-30%

-20%

-10%

0%

10%
R
el
at
iv
e
IP
C
di
ff
er
en
ce

w
.r.
t.
D
D
R
3-
16

00

Measured performance decrease
Estimated DDR3-1600 -> DDR3-1333
Estimated DDR3-1600 -> DDR3-1066
Estimated DDR3-1600 -> DDR3-800

Figure 7.12: Sandy Bridge, DDR3-1600→1333/1066/800: Decreasing the
DRAM frequency significantly decreases performance, especially for high-
bandwidth workloads. Performance predictions of the model are precise and
accurate.

it is reasonable to expect significant energy savings. Also, it is anticipated
that the energy predictions are precise and accurate, since they are derived
from the performance and power estimations.

7.8.2 Sandy Bridge: DDR3-1600 → 1333/1066/800

In all previous experiments, we analyzed the impact of the DRAM frequency
increment. In this section, evaluate the model performance, power and energy
predictions when the DRAM frequency is decreased, from DDR3-1600 to
DDR3-1333/1066/800.

Figure 7.12 shows the measured and estimated system performance. As one
may expect based on our previous results, reducing the DRAM frequency has
a significant performance impact. Precision and the accuracy of the model is
high, with average error of below 2%. Estimations and measured difference of
the server power consumption are displayed in Figure 7.13. As expected based

lib
qu
an
tum

bw
av
es lbm mi

lc

so
ple
x

Ge
ms
FD
TD

les
lie
3d mc

f

sp
hin
x3 wr

f

om
ne
tpp

ze
us
mp

ca
ctu
sA
DM ast

ar gc
c
de
alI
I
bz
ip2

go
bm
k

xa
lan
cb
mk sje

ng

hm
me
r
ton
to

gro
ma
cs

h2
64
ref

ca
lcu
lix

na
md

pe
rlb
en
ch

ga
me
ss

po
vra
y QE

AL
YA

GR
OM

AC
S

NA
M
D

-8%

-6%

-4%

-2%

0%

2%

R
el
at
iv
e
po
w
er

co
ns
.d

iff
.

w
.r.
t.
D
D
R
3-
16

00

Measured power cons. decrease
Estimated DDR3-1600 -> DDR3-1333
Estimated DDR3-1600 -> DDR3-1066
Estimated DDR3-1600 -> DDR3-800

Figure 7.13: Sandy Bridge, DDR3-1600→1333/1066/800: Changing the
DRAM frequency has a minor impact on the overall server power consumption.
Decreasing the DRAM frequency from DDR3-1600 to DDR3-800 causes
average power decrement of only 2%.

104

Section 7.8
∣∣∣ Evaluation

lib
qu
an
tum

bw
av
es lbm mi

lc

so
ple
x

Ge
ms
FD
TD

les
lie
3d mc

f

sp
hin
x3 wr

f

om
ne
tpp

ze
us
mp

ca
ctu
sA
DM ast

ar gc
c
de
alI
I
bz
ip2

go
bm
k

xa
lan
cb
mk sje

ng

hm
me
r
ton
to

gro
ma
cs

h2
64
ref

ca
lcu
lix

na
md

pe
rlb
en
ch

ga
me
ss

po
vra
y QE

AL
YA

GR
OM

AC
S

NA
M
D

0%

20%

40%

60%

80%

100%

R
el
at
iv
e
en
er
gy

co
ns
.d

iff
.

w
.r.
t.
D
D
R
3-
16

00

Measured energy cons. increment
Estimated DDR3-1600 -> DDR3-1333
Estimated DDR3-1600 -> DDR3-1066
Estimated DDR3-1600 -> DDR3-800

Figure 7.14: Sandy Bridge, DDR3-1600→1333/1066/800: Changing the
DRAM frequency has a significant impact on the energy consumption. Energy
predictions of the our model are precise, with low error bars, and accurate,
with small difference from to the values measured on the actual hardware.

on the previously-presented results (see Section 7.8.1), significant decrement
in available memory bandwidth causes small changes in overall server power
consumption. As in Figure 7.10, some of the high-bandwidth benchmarks,
show a moderate prediction error of up to 4%. Analysis of this error is a part
of ongoing work. Still, the power prediction error of the model is small, below
1% on average. Finally, Figure 7.14 shows the estimated and measured energy
consumption. Reducing the DRAM frequency leads to significant increment
in the overall energy consumption. The average energy increment is 19%, and
it ranges up to 69% for the libquantum benchmark. The energy predictions
of the our model are precise, with low error bars, and accurate, with small
difference from to the values measured on the actual hardware.

Overall, the results presented in this section show that the model shows
high precision and accuracy when predicting the impact of the decreasing
DRAM frequency, i.e., that the model can be used to predict system per-
formance, power and energy consumption in both scenarios, increasing and
decreasing of the available memory bandwidth.

7.8.3 Step further.
Sandy Bridge: DDR3-1600 → DDR3-1866/2133

The main focus of the previous results sections was the evaluation of the
model predictions w.r.t. performance, power and energy measurements from
the actual hardware. In this section, we demonstrate how the model can be
used to explore new memory configurations that cannot be configured in the
existing hardware. We illustrate this capability by exploring the behavior
of the Sandy Bridge platform with DDR3-1866 and DDR3-2133 memory
systems. DDR3-1866 and DDR3-2133 are existing memory configurations,
but they cannot be used with the Sandy Bridge system because they exceed

105

Section 7.8
∣∣∣ Evaluation

lib
qu

an
tum

bw
av

es lbm milc

so
ple

x

Gem
sF

DTD

les
lie

3d mcf

sp
hin

x3 wrf

om
ne

tpp

ze
us

mp

ca
ctu

sA
DM

ast
ar gc

c
de

alI
I

bz
ip2

go
bm

k

xa
lan

cb
mk

sje
ng

hm
mer

ton
to

gro
mac

s

h2
64

ref

ca
lcu

lix
na

md

pe
rlb

en
ch

ga
mess

po
vra

y QE
ALY

A

GROM
ACS

NAM
D

0%

5%

10%

15%

20%

25%
R

el
at

iv
e

IP
C

di
ff

er
en

ce
w

.r.
t.

D
D

R
3-

16
00

Estimated DDR3-1600 -> DDR3-1866
Estimated DDR3-1600 -> DDR3-2133

Figure 7.15: Sandy Bridge, DDR3-1600→1866/2133: Increasing DRAM fre-
quency beyond the limits of the current system to DDR3-1866 and DDR3-2133
significantly benefits performance, up to 13% and 21% for high-bandwidth
benchmarks.

the maximum DRAM frequency supported by the processor.

Figure 7.15 shows the performance estimations for a hypothetical case of
the DDR3-1866 and DDR3-2133 integrated into the Sandy Bridge platform
under study. The results are plotted relative to the DDR3-1600, which is
the highest DRAM frequency available in the actual system. The average
estimated performance improvement of the DDR3-1866 and DDR3-2133 is 3%
and 4.5%, respectively, and it reaches 13% and 21% for the high-bandwidth
benchmarks, respectively. Power consumption estimates are displayed in
Figure 7.16. As expected, the power increase is small, between 1% and 2%.
Finally, Figure 7.17 shows the estimated energy consumption. Increasing
the memory frequency to DDR3-1866 and DDR3-2166 reduces the energy
consumption by 2.6% and 3.3% on average, and up to 10% and 16% for the
high-bandwidth benchmarks.

The most important outcome of this analysis, however, are not the esti-
mated performance, power and energy improvements, but the demonstration
how easy it is to explore memory configurations that are beyond the limits

lib
qu

an
tum

bw
av

es lbm milc

so
ple

x

Gem
sF

DTD

les
lie

3d mcf

sp
hin

x3 wrf

om
ne

tpp

ze
us

mp

ca
ctu

sA
DM

ast
ar gc

c
de

alI
I

bz
ip2

go
bm

k

xa
lan

cb
mk

sje
ng

hm
mer

ton
to

gro
mac

s

h2
64

ref

ca
lcu

lix
na

md

pe
rlb

en
ch

ga
mess

po
vra

y QE
ALY

A

GROM
ACS

NAM
D

0%

0%

1%

2%

2%

2%

3%

4%

4%

R
el

at
iv

e
po

w
er

co
ns

.d
iff

.
w

.r.
t.

D
D

R
3-

16
00

Estimated DDR3-1600 -> DDR3-1866
Estimated DDR3-1600 -> DDR3-2133

Figure 7.16: Sandy Bridge, DDR3-1600→1866/2133: Increasing the DRAM
frequency beyond the limits of the current system to DDR3-1866 and DDR3-
2133 causes average power increment between 1% and 2%.

106

Section 7.8
∣∣∣ Evaluation

lib
qu

an
tum

bw
av

es lbm milc

so
ple

x

Gem
sF

DTD

les
lie

3d mcf

sp
hin

x3 wrf

om
ne

tpp

ze
us

mp

ca
ctu

sA
DM

ast
ar gc

c
de

alI
I

bz
ip2

go
bm

k

xa
lan

cb
mk

sje
ng

hm
mer

ton
to

gro
mac

s

h2
64

ref

ca
lcu

lix
na

md

pe
rlb

en
ch

ga
mess

po
vra

y QE
ALY

A

GROM
ACS

NAM
D

-20%

-15%

-10%

-5%

0%

R
el

at
iv

e
en

er
gy

co
ns

.d
iff

.
w

.r.
t.

D
D

R
3-

16
00

Estimated DDR3-1600 -> DDR3-1866
Estimated DDR3-1600 -> DDR3-2133

Figure 7.17: Sandy Bridge, DDR3-1600→1866/2133: Increasing DRAM
frequency beyond the limits of the current system to DDR3-1866 and DDR3-
2133, impacts energy consumption of the whole system significantly, saving
up to 10% and 16% for high-bandwidth benchmarks.

of the existing system. Application execution can be instrumented on the
CPU under study running with an existing memory system, and performance
prediction on the new memory systems can be performed as soon as the
memory bandwidth–latency curves of the target memory system are available.
Power and energy predictions additionally requires only the memory power
parameters detailed in Section 7.6. All the required memory system parame-
ters are publicly available for most of the existing and emerging memories,
and can be provided by the memory manufacturers for the technologies in an
early development stage.

7.8.4 Knights Landing: DDR4-2400 → MCDRAM

Figure 7.18 shows the estimated and measured performance improvement
of the KNL platform with high-bandwidth MCDRAM with respect to the
DDR4-2400 memory. Again, our model shows high precision. Actually, the
width of the estimation error bars is only 0.7%, which is significantly smaller
from the Sandy Bridge system. The main reason for this is the 72-instructions
reorder buffer in the KNL platform, compared to 168 instructions in the Sandy
Bridge. The smaller the reorder buffer, the smaller the range of the Insooo

sensitivity analysis, and therefore the more precise performance prediction.
The MCDRAM provides 4.2-fold higher bandwidth over DDR4, which

leads to significant performance improvement for the high-bandwidth bench-
marks, up to 212% improvement for the leslie3d. However, the MCDRAM
also has a 23 ns higher lead-off latency (see Figure 7.3a), that penalizes bench-
marks with low and moderate memory bandwidth requirements. Actually,
for bzip and mcf, execution on the MCDRAM leads to performance loss. For
the mcf benchmark, this performance loss reaches a non-negligible 9%.

Despite of the wide range of the performance variation, between −9% and

107

Section 7.8
∣∣∣ Evaluation

sph
inx

3 [
60]

les
lie3

d [
48]

lib
qua

ntu
m [36

]

lbm
[32

]

om
net

pp
[64

]

sop
lex

[36
]

Ge
ms
FD

TD
[18

]

mi
lc [

20]

cac
tus
AD

M
[20

]

gcc
[24

]

ast
ar [

48]

hm
me

r [6
4]

zeu
sm
p [
30]

xal
anc

bm
k [
36]

bw
ave

s [1
8]

wr
f [2

2]

dea
lII
[24

]

h26
4re

f [6
4]

bzi
p2

[18
]

mc
f [8

]

gob
mk

[64
]

gro
ma

cs
[64

]

sje
ng

[64
]

per
lbe

nch
[26

]

ton
to [

44]

nam
d [
64]

cal
cul

ix [
48]

gam
ess

[48
]

pov
ray

[56
]

0%

50%

100%

150%

200%

250%
R
el
at
iv
e
IP
C
di
ff
er
en
ce

w
.r.
t.
D
D
R
4-
24

00

Measured performance improvement
Estimated DDR4-2400 -> MCDRAM

Figure 7.18: Knights Landing, DDR4-2400→MCDRAM: Despite of the wide
range of the performance variation, between −9% (mcf) and 212% (leslie3d),
the model shows high accuracy. Smaller KNL reorder buffer leads to a
smaller range of the Insooo sensitivity analysis, and therefore more precise
the performance prediction, i.e., smaller error bars.

212%, when moving from DDR4 to the MCDRAM, the model shows high ac-
curacy. The difference between the model performance estimates and the mea-
surements on the actual hardware is 7% for high-bandwidth workloads, and
drops down to 1.6% for the low-bandwidth benchmarks. Also, the model pre-
dictions accurately distinguish between the benchmarks that significantly bene-
fit from the MCDRAM, and the benchmarks that show negligible performance
improvements or even performance loss. This confirms that the model prop-
erly considers both segments of the memory bandwidth–latency curves (Fig-
ure 7.3a): the constant latency segment, close to the lead-off memory latency,
and the exponential segment, close to the memory bandwidth saturation point.

7.8.5 Knights Landing: MCDRAM → DDR4-2400

Next, we analyze the model performance predictions on the KNL server when
moving from the high-bandwidth MCDRAM to DDR4-2400. The results are
plotted in Figure 7.19. As already discussed in Section 7.8.4 performance
prediction when switching between MCDRAM and DDR4 is challenging. The
MCDRAM provides 4.2× higher bandwidth, but it also has 23 ns higher lead-
off latency. Proper performance estimate, therefore, requires accurate mod-
eling of both extremes of the memory bandwidth–latency curve (Figure 7.3a):
the constant latency region close to the lead-off memory access latency, and
the exponential region close to the memory bandwidth saturation point.

As one may expect, the results in Figure 7.19 show that moving from MC-
DRAM to DDR4 penalizes the high-bandwidth benchmarks. The measured
performance loss reaches up to 68% for the leslie3d. For the benchmarks
with moderate or low memory bandwidth requirements, however, moving
to the DDR4, leads to a small performance impact, or even performance

108

Section 7.8
∣∣∣ Evaluation

sph
inx

3 [
60]

les
lie3

d [
48]

lib
qua

ntu
m [36

]

lbm
[32

]

om
net

pp
[64

]

sop
lex

[36
]

Ge
ms
FD

TD
[18

]

mi
lc [

20]

cac
tus
AD

M
[20

]

gcc
[24

]

ast
ar [

48]

hm
me

r [6
4]

zeu
sm
p [
30]

xal
anc

bm
k [
36]

bw
ave

s [1
8]

wr
f [2

2]

dea
lII
[24

]

h26
4re

f [6
4]

bzi
p2

[18
]

mc
f [8

]

gob
mk

[64
]

gro
ma

cs
[64

]

sje
ng

[64
]

per
lbe

nch
[26

]

ton
to [

44]

nam
d [
64]

cal
cul

ix [
48]

gam
ess

[48
]

pov
ray

[56
]

-80%
-70%
-60%
-50%
-40%
-30%
-20%
-10%
0%
10%

R
el
at
iv
e
IP
C
di
ff
er
en
ce

w
.r.
t.
M
C
D
R
A
M

Measured performance decrease
Estimated MCDRAM -> DDR4-2400

Figure 7.19: Knights Landing, DDR4-2400→MCDRAM: Despite of the wide
range of the performance variation, between −68% (leslie3d) and 9% (mcf),
the model shows high accuracy: The average estimation error is below 2%.

improvement, up to a non-negligible 9% for the mcf benchmark.
Despite of the wide range of performance variation, the model shows high

accuracy, with an average error of below 2% The model also shows high
precision, illustrated with narrow estimation error bars, as already discussed
in Section 7.8.4. Finally, model predictions clearly distinguish between the
benchmarks that are considerably penalized when moving to the DDR4, and
the benchmarks that show no performance difference or even experience
performance improvement.

7.8.6 Model vs. Hardware Simulator

Novel memory systems are typically explored using hardware simulators.
In this section we compare the performance estimates of our model with
ZSim+DRAMSim2 hardware simulators.

Experimental

We compared the results of hardware simulators and our model on the
Intel Sandy Bridge platform described in Section 7.7.1. Although the Sandy
Bridge is a main-stream HPC architecture released eight years ago (January
2011), finding a CPU simulator that accurately models this architecture was
not trivial. After extensive search and analysis of the available options, we
decided to use the ZSim simulator. Different main memory configurations were
simulated with DRAMSim2. Both simulators are described in Section 3.3.2.

The accuracy of the model and the ZSim+DRAMSim2 were compared
on an example of increasing memory frequency from DDR3-800 to DDR3-
1066/1333/1600. To keep the simulation time at the acceptable level, we
had to focus on the CPU2006 benchmarks and exclude the HPC scientific
applications. In all the experiments we fully utilize the available 16 cores of the

109

Section 7.8
∣∣∣ Evaluation

lib
qu
an
tum

bw
av
es lbm mi

lc

so
ple
x

Ge
ms
FD
TD

les
lie
3d mc

f

sp
hin
x3 wr

f

om
ne
tpp

ze
us
mp

ca
ctu
sA
DM ast

ar gc
c
de
alI
I
bz
ip2

go
bm
k

xa
lan
cb
mk sje

ng

hm
me
r

ton
to

gro
ma
cs

h2
64
ref

ca
lcu
lix

na
md

pe
rlb
en
ch

ga
me
ss

po
vra
y

0%

20%

40%

60%

80%

100%
R
el
at
iv
e
IP
C
di
ff
er
en
ce

w
.r.
t.
D
D
R
3-
80

0

Measured performance improvement
Estimated DDR3-800 -> DDR3-1600
Simulated DDR3-800 -> DDR3-1600

Figure 7.20: Sandy Bridge, DDR3-800→1600: Comparison of the estimated
(our model) and simulated (ZSim+DRAMSim2) performance improvement.
Estimations of our model correspond to the real-system measurements much
better than the simulated performance.

Sandy Bridge platform by executing 16 benchmark copies. The simulations
were limited to 150 billion instructions of each benchmark. In order to make
a fair comparison with the simulator, the benchmark execution on the actual
system and the corresponding model predictions were done for the same 150
billion instructions.

Results

In Figure 7.20, we compare the measured, simulated and estimated perfor-
mance improvement when increasing the DRAM frequency from DDR3-800
to DDR3-1600. The DDR3-800→DDR3-1066/1333 results show the same
trend and lead to the same conclusions.

The actual measured values (red cross markers) show significant perfor-
mance improvement for the high-bandwidth benchmarks (left hand-side of the
chart) and no performance changes for the low-bandwidth benchmarks (right
hand-side of the chart). The model estimations are accurate, with an average
error of 3.6%, and closely follow the trend of the actual measurements. Also,
for the benchmarks for which the estimation error is moderate, e.g., lbm and
milc, the estimated performance have high error bars, clearly indicating a
limited estimation precision in these cases. The simulated performance shows
discrepancy with the actual measured values. The average simulation error is
15.7%, which is significant considering that the average DDR3-800→DDR3-
1600 performance improvement is 17.5%. The range of the simulator error is
also very high, between −23.7% (libquantum) and 45.7% (omnetpp). Finally,
trend of the simulated results is completely different from the actual one. As
already mentioned, high-bandwidth benchmarks experience high performance
improvement, and insignificant performance changes for the low-bandwidth
benchmarks. The simulator underestimates performance gains of the high-

110

Section 7.9
∣∣∣ Related work

bandwidth benchmarks (left hand-side of the chart) while it overestimates
gains for the low-bandwidth benchmarks (right hand-side of the chart). There-
fore, the simulated performance gains are roughly uniform over the benchmark
suite, which is a completely different trend from the actual measurements.

7.8.7 Discussion

In addition to the better accuracy, the model has various advantages over
hardware simulators. The model is faster than the hardware simulators by
three orders of magnitude, so it can be used to analyze production HPC
applications, arbitrarily sized systems, and numerous design options. In this
study we presented experiments on two hardware platforms, Sandy Bridge
and KNL. We analyzed six memory configurations for Sandy Bridge (DDR3-
800/1066/1333/1600/1866/2166), and two for the KNL (DDR4-2400 and
MCDRAM). In all the experiments, we analyzed all the benchmarks from
the SPEC CPU2006 suite. For the Sandy Bridge platform, we also analyzed
power and energy consumption in each memory configuration, and four HPC
production applications. Finally, in most memory configurations, all but
Sandy Bridge DDR3-1866/2166, we analyzed the impact of both, increasing
and decreasing DRAM frequency. Performing the study of this size by using
hardware simulators would be impossible within a practical length of time.

Additionally, the method is based on profiling of the application’s memory
behavior, so it does not require detailed modeling of the CPU as it already
takes account of the real (and not publicly disclosed) data prefetcher and
out-of-order engine. Therefore, it can be used to model various platforms
as long as they support the required application profiling. The model was
initially developed for the Sandy Bridge platform, and later we evaluated
it for the KNL server. Adjustment of the model to the KNL system was
trivial, as it required changes to only a few hardware parameters, such as, for
example the reorder buffer size.

7.9 Related work

Numerous studies propose CPU and memory analytical models as an alter-
native to cycle-accurate hardware simulation. Next, we summarize the ones
that are directly related to our work.

Karkhanis and Smith [127] present an OOO processor model that estimates
the performance impact of instruction window size, branch misprediction,
instruction cache misses and data cache misses. The model is validated versus
detailed superscalar OOO CPU simulation and the authors conclude that,
although the model provides much less data than detailed simulation, it

111

Section 7.9
∣∣∣ Related work

still provides insights on what is going on inside the processor. Published
in 2004, this work became the foundation for numerous advanced processor
modeling approaches. Eyerman et al. [132] extend the work of Karkhanis and
Smith [127] and develop the mechanistic model and interval analysis. The
analysis breaks the total execution time into intervals based on the miss events,
branch mispredictions and TLB/cache misses, and then predicts the execu-
tion time of each interval. Genbrugge et al. [141] propose interval simulation
which combines the high-level mechanistic analytical model [132] and detailed
simulation to accelerate multi-core simulation. The mechanic analytical model
is used to estimate the core-level performance between two miss events, while
the miss events are determined through the simulation of branch predictor
and the entire memory hierarchy: private per-core caches and TLBs, shared
caches, cache coherence, network on chip, memory controller, and main mem-
ory. Finally, Van den Steen et al. [133] present various enhancements of the
interval model [132]. First, the study incorporates architecture-independent
application profiling, so the application can be profiled once and then simu-
lated on any given platform. The authors also demonstrate that the analytical
model can be connected to the McPAT power tool [142] for estimation of
the processor power and energy consumption. Finally, the authors make first
steps in memory system modeling by considering congestion on the memory
bus. Unlike our study, however, they do not take into account contention in
the memory controller and memory device itself, which are more challenging.

Gulur and Manikantan [143] focus on the main memory access latency,
and propose modeling it as an open queuing network without blocking. The
queuing network parameters are workload specific, so the model requires a
detailed workload profiling that monitors parameters such as the memory
requests arrival rate, row-buffer hit rate, bank-level parallelism and the ratio
of accesses that go to the idle banks. The authors perform the application
profiling by executing it on simulation infrastructure that comprises M5 [144]
and an in-house DRAM simulator.

The greatest challenge of the presented modeling approaches is that,
although they do not require simulation to perform performance prediction,
they do require detailed application profiling, which can be performed only
with hardware simulators. Even with recent advances in hardware performance
counters, we are still far away from being able to read values such as, for
example, the number of cold, capacity and conflict cache miss. Since they
require simulation results, even for application profiling, a significant effort
is required to set up and tune for a target architecture, a serious amount
of simulation time, and potentially high simulation errors. Our approach
avoids these issues by using only those parameters that can be read using
performance counters on real hardware. This is the greatest advantage

112

Section 7.9
∣∣∣ Related work

of our work compared with previously-mentioned studies. Limiting the
application profiling on the performance counters available on real hardware
requires a novel approach to infer various application parameters, such as
the MLP or number of executed OOO instructions. Therefore, although
we start with the same foundation as the previous studies, as detailed in
Section 7.5.6, estimation of the important application parameters and the
overall performance calculation are fundamentally different from previously-
presented models.

The second important difference of our work compared with the previous
studies is the treatment of the main memory access latency. The previous
studies use the memory access latency obtained from a detailed simulation of
the whole memory hierarchy [141] or even use a constant latency [127, 132, 133].
Our study performs a detailed analysis of memory bandwidth-latency curves
and uses these curves as an integral part of the overall performance estimation,
as detailed in Section 7.5.5.

Third, unlike previous studies, our model does consider data prefetching.
This is an important difference because prefetching may have significant impact
on the application performance, behavior and memory bandwidth usage.

Forth, we complement the performance model with power and energy
consumption estimates, and evaluate all three models against fully-utilized
actual HPC servers with multi-threaded or multi-programmed benchmark
execution. The previous models are validated versus the same simulators
used for the application profiling. This means that the previous evaluations
overlook potentially high errors of application profiling on a simulation versus
the actual hardware. Finally, most of the previous studies [127, 132, 133]
build and validate the models for single-core processors.

The performance impact of memory bandwidth and latency is frequently
estimated by workload characterization studies and memory DVFS propos-
als. Since there is no publicly-available memory model that can be used
to quantify this impact, some studies develop their own models to support
some segments of the study (these models were required to run some of the
experiments) [125, 135].

Clapp et al. [125] analyze behavior of big data workloads and positions
them with respect to enterprise and HPC workloads. Different classes of
workloads are compared in terms of CPU utilization, CPI, used memory
bandwidth, and estimated performance impact of increasing memory latency
or reducing memory bandwidth. To develop the model, they measure CPU
utilization, CPI, on a real hardware, using Intel Xeon 2600 server with DDR3
main memory, while the used memory bandwidth is calculated analytically.
Afterwards, memory latency and bandwidth sensitivity analysis is based on an
analytical model developed in the study. The model also considers the OOO

113

Section 7.10
∣∣∣ Summary

execution and the MLP, and mimic them with a parameter that the authors
refer to as the blocking factor. The authors recognize the complexity of measur-
ing the blocking factor on the real hardware, and try to estimate it indirectly
based on the execution of the same workload on different CPU frequencies,
using a linear fit. The authors propose to use the developed model to calculate
the impact on future memory systems, taking into account the bandwidth-
latency dependency (measured with the Intel Memory Latency Checker (MLC)
benchmark)[145]. The memory bandwidth-latency analysis does not account
for the differences between read and write memory bandwidth. However, they
do not carry out such an analysis and instead perform the sensitivity analysis
by reducing the available memory bandwidth in steps of 0.5 GB/s per core,
and by increasing the memory access latency in steps of 10 ns.

Deng et al. [135] propose MemScale, a scheme for dynamic voltage and
frequency scaling (DVFS) on the memory controller, and dynamic frequency
scaling (DFS) on the memory channels and DRAM devices. As a part of the
MemScale, the authors develop a model that predicts relationship between
the application performance and the memory frequency. The model targets a
simplified case of an in-order processor with no prefetcher. The application
performance estimate is based on the hardware counters not available in
current architectures, so the authors carefully analyze the possibility and the
cost of including these counters into future server-class processors.

These models are developed for very specific tasks in the context of
the larger studies and they successfully fulfill their objectives. Still it is
questionable whether they can be applied generally because of two main
limitations. First, the modeled CPU and memory systems are much simpler
than state-of-the-art production platforms. Second, the models are not
validated versus any real hardware or hardware simulators, so it is difficult to
quantify the errors they may introduce.14 Even so, we consider these studies
as very valuable for any follow-up on this topic because they analyze different
approaches for main memory modeling and share their experiences.

7.10 Summary

This study presents an analytical model that quantifies the impact of the main
memory on application performance and system power and energy consump-
tion. The model is based on memory system profiling and instrumentation of
an application execution on a real platform with a baseline memory system.
By running on the real platform, it takes account of the real (not publicly

14 Deng et al. [135] do evaluate the proposed DVFS scheme and show significant energy
savings, but do not perform any evaluation of the presented memory model.

114

Section 7.10
∣∣∣ Summary

disclosed) prefetcher and out-of-order engine. The model outputs are the
predicted performance, power and energy consumption on the target memory.

The model is evaluated on two actual platforms: Sandy Bridge-EP E5-2670
and Knights Landing Xeon Phi platforms with various memory configurations.
The evaluation results show that the model predictions are very accurate —
the average difference from the performance, power and energy measured on
the actual hardware is only 2%, 1.1% and 1.7%.

We also compare the model’s performance predictions with simulation
results for the Sandy Bridge-EP E5-2670 system with ZSim and DRAMSim2
simulators. The model shows significantly better accuracy while being three
orders of magnitude faster than the hardware simulators.

We release the model source code and all input data required for memory
system and application profiling. The released model is ready to be used on
high-end Intel platforms, and we would encourage the community to use it,
adapt it to other platforms, and share their own evaluations.

115

Anyone can build a fast CPU.
The trick is to build a fast system.

Seymour Cray, considered the Father of the Supercomputer

8
Conclusions

In state-of-the-art HPC clusters, memory system is one of the major contrib-
utor to the deployment and operational costs. Nevertheless, memory system
is one of the most critical aspects of the system performance. Challenges
posed by the exascale milestone question whether DRAM systems will have
the strength to meet the required goals. Further research is therefore needed
on applications side, to understand memory requirements and bottlenecks
of HPC workloads, and on the hardware side, in order to mitigate the bot-
tlenecks and improve system performance. In this thesis we present studies
that analyse memory bandwidth and latency aspects of HPC systems and
applications, and use them as a memory system profile to model system
performance, power and energy.

8.1 Memory bandwidth and latency aspects

in HPC systems evaluation

The first study presents memory bandwidth and latency aspects of HPC
systems evaluation and comparison. Evaluating and comparing HPC systems
is complex, since the variety of HPC systems in the market is increasing. We
present a large body of quantitative results, evaluating three mainstream and
five alternative HPC platforms, and highlight four important features in HPC
systems evaluation that require higher attention by the community.

We show a platform’s performance and energy-efficiency depend signifi-
cantly (n-fold) on the characteristics of the target application. Haswell plat-
form shows 3.6× better efficiency than ThunderX platform for the compute-
intensive HPL, but ThunderX platform has 50% better energy efficiency than
Haswell when running memory-bound HPCG. We strongly advocate that
any comparison among platforms should include HPCG measurements, to

116

Section 8.2
∣∣∣ Conclusions

add the boundary for memory-intensive HPC applications, alongside the
compute-intensive boundary from HPL.

Second, we detect a significant range in the main memory access latency,
with a factor of three difference between the fastest and slowest platforms
under study. While KNL with MCDRAM has the highest memory band-
width, it also has the highest memory access latency, due to complex memory
controller and its handling of memory requests. Since memory access latency
has a direct performance impact any increment above about 100 ns should
be analysed and justified.

Our results show that Byte/FLOP can differ by a factor of up to 21×
among the platforms under study. While mainstream platforms show a
decreasing tendency, alternative platforms trend upwards in this metric.
Byte/FLOP ratio is one of the most important design decisions, and we hope
that our results will resurface a discussion on its desired range in HPC.

Finally, we strongly suggest not relying on theoretical FLOPS performance
and memory bandwidth, even in a first-order system provisioning, since our
measurements demonstrate that sustainable performance on the alternative
platforms can deviate more than 70% from theoretical ones. These results
will hopefully motivate further development of the compilers and scientific
libraries for alternative HPC platforms.

8.2 Memory bandwidth requirements

of HPC applications

Next study in the thesis characterizes bandwidth requirements of the HPC
applications, and discusses the methodology of presenting the results of
quantified performance bottlenecks with respect to representative number of
execution processes and measurement granularity. To our knowledge, this is
the first study that analyses the importance of a deterministic range for the
representative scale of the experiments.

Our results show that HPC application behavior is tightly coupled with
the number of application processes, for two main reasons. The first reason
is that inter-process communication time increases as the application scales-
out, lowering the average utilization of FLOPs and memory bandwidth. The
second reason is that scaling-out reduces the portion of the input data handled
by each process, which changes the effectiveness of cache memory and the
overall process behavior. We argue that it is essential that HPC application
suites specify narrow ranges on the number of processes, for the results to be
representative of a real-world application use.

117

Section 8.4
∣∣∣ Conclusions

Moreover, we demonstrate that plotting only the average values of perfor-
mance metrics and bottlenecks may be misleading. ALYA-16 and CP2K-128
may seem to be bandwidth insensitive, as their average bandwidths are around
50% and 40% of the sustained bandwidth. However, detailed in-time mea-
surements show that they spent significantly different proportions of the time
with severe memory bandwidth utilization: CP2K-128 spends only about
4%, while ALYA-16 spends 55% of its computation time, which presents a
serious performance penalty. In this case, ALYA-16, but not CP2K-128, is
likely to benefit from higher bandwidth memories. Therefore, we suggest that
performance measurements should be defined as the percentage of execution
time in which applications use certain portions of maximum sustained values.

8.3 First steps on the performance impact

of memory bandwidth and latency

The third study presents our preliminary analysis and expectations of how
will 3D-stacked DRAM affect the memory wall for a particular set of HPC
applications. 3D-stacking technology now enables DRAM devices that support
much higher bandwidths than traditional DIMMs. However, memory wall
was defined in terms of latency, not bandwidth, therefore higher bandwidth
by itself cannot guarantee better performance. Higher bandwidth may lower
average latency, provided that our applications offer sufficient MLP and that
CPU architectures can exploit it.

We perform a preliminary analysis on a set of four UEABS applications,
together with HPL and STREAM benchmarks. To quantify the performance
improvement with regard to memory bandwidth, we increase the memory-bus
frequency, and therefore available memory bandwidth, by 25%. Memory-
intensive applications that are in the linear or exponential regions, using
more than 50% of the sustainable memory bandwidth, show the performance
improvement less than 10%. For these applications, the bandwidth upgrade
of 3D-stacked memories will reduce contention among concurrent memory
requests, reduce memory latency, and improve performance. The performance
improvement for the rest low-bandwidth applications under study is negligi-
ble. Since 3D-stacked DRAM cannot reduce lead-off memory access latency,
memory latency, and thus effective bandwidth and overall performance, will
not improve for applications for which lack of MLP limits effective bandwidth.

118

Section 8.5
∣∣∣ Future work

8.4 Memory system evaluation:

Modeling system performance

and energy without simulating the CPU

The last study represents a method to quantify the impact of the main memory
on application performance and system power and energy consumption, using
the analytical model. The model is based on memory system profiling and
instrumentation of an application execution on a real platform with a baseline
memory system. By running on the real platform, application profiling
takes account of the real (not publicly disclosed) prefetcher and out-of-order
engine. The model outputs are the predicted performance, power and energy
consumption on the target memory.

Memory system profile presents memory access latency dependency with
respect to used memory bandwidth. We show that the percentage of write
requests impacts memory access latency, especially when stress to the memory
system increases over 80% of the sustainable maximum. To the best of our
knowledge this is the first study of memory access latency that considers how
the latency depends on the fractions of reads and writes.

We evaluated the model on two platforms: Sandy Bridge-EP E5-2670
with four DRAM configurations DDR3-800/1066/1333/1600 on a set of SPEC
benchmarks and HPC applications, and Knights Landing Xeon Phi 7230 with
DDR4 and high-bandwidth 3D-stacked MCDRAM, using SPEC benchmarks.
The model estimations are highly-accurate, typically with only 2% difference
from the performance, power and energy consumption measurements on the ac-
tual hardware. Also, the model can be used in both scenarios, when the target
memory system has increased or decreased available memory bandwidth. Fi-
nally, the estimations are accurate even when the baseline and target memory
systems have fundamentally disparate bandwidth–latency curves, with differ-
ent lead-off latency and with an n-fold difference in the available bandwidth.

Comparing the model performance estimations with the ZSim+DRAMSim2
simulations showed that our model is more accurate than hardware simulators.
It is also faster by three orders of magnitude, so it can be used to analyze
production HPC applications, arbitrarily sized systems, and numerous design
options, within a practical length of time.

8.5 Future work

The landscape of HPC architectures evolves rapidly and there will likely be
more heterogeneous platforms. As a part of the future work, we plan to evalu-
ate memory bandwidth and latency related aspects of more recent mainstream

119

Section 8.5
∣∣∣ Future work

and emerging architectures. They include Intel Xeon Scalable Processors fam-
ily, IBM POWER9, Cavium ThunderX2, and accelerators like Nvidia GPUs
or PEZY-SCx (used in ZettaScaler series of supercomputers). They are more
power efficient than previous generations, use innovative memory technologies
and more mature software ecosystem. Hence, it would be interesting to com-
pare their evaluation results with the analysed architectures from this thesis.

In the study of bandwidth requirements of HPC applications, we analysed
strong scaling of the applications. Next step is to characterize bandwidth
requirements and bottlenecks for weak scaling of production HPC applica-
tions. Weak scaling analysis is especially important to anticipate future HPC
problems with significantly larger input datasets. This analysis, however,
requires HPC application benchmark suites which allow a tunable problem
size in a similar way to HPL and HPCG, or at least provide a collection of
comparable input sets with varying problem size. Furthermore, bandwidth
bottlenecks of HPC applications can be characterized on different mainstream
and emerging architectures, mentioned in the HPC systems evaluation study.

Estimation model from this thesis is evaluated on two Intel platforms. Fur-
ther model evaluations should include different architectures, such are ARM
or IBM POWER. As for memory systems, interesting evaluation candidates
are RLDRAM and 3D XPoint memory. RLDRAM provides lower device
latency and thus should provide significant performance improvement for
workloads that put moderate pressure on memory bandwidth. On the other
side, 3D XPoint memory has somewhat higher latency than that of DDR
DIMMs and it would be valuable to estimate its impact on HPC applications.
In the current study, we consider that the power consumption of the rest
of the system, apart from the memory, remains constant when the memory
system changes. The follow-up study could quantify power and energy impact
of the rest of the system, with regard to changes in the memory system.
Additionally, this analysis should include power and energy modeling of non
DDR memories, such as 3D-stacked memory devices.

120

Section 8.6
∣∣∣ List of publications

8.6 List of publications

In this section, we present a list of research articles that are accepted for
publication. We also list the titles of the publications on other topics that
are not considered to be the contributions of the thesis.

• Milan Radulovic, Kazi Asifuzzaman, Darko Zivanovic, Nikola Rajovic,
Guillaume Colin de Verdière, Dirk Pleiter, Manolis Marazakis, Nikolaos
Kallimanis, Paul Carpenter, Petar Radojković, and Eduard Ayguadé,
Mainstream vs. Emerging HPC: Metrics, Trade-offs and Lessons Learned,
in 30th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Sept. 2018.

• Milan Radulovic, Kazi Asifuzzaman, Paul Carpenter, Petar Radojković,
and Eduard Ayguadé, HPC Benchmarking: Scaling Right and Looking
Beyond the Average, in Euro-Par 2018: Parallel Processing, pp. 135–146,
Aug. 2018.

• Milan Radulovic, Darko Zivanovic, Daniel Ruiz, Bronis R. de Supinski,
Sally A. McKee, Petar Radojković, and Eduard Ayguadé, Another Trip
to the Wall: How Much Will Stacked DRAM Benefit HPC?, in Proceed-
ings of the International Symposium on Memory Systems (MEMSYS),
pp. 31–36, Oct. 2015.

8.6.1 Under submission

• Milan Radulovic, Rommel Sánchez Verdejo, Paul Carpenter, Petar
Radojković, Bruce Jacob, and Eduard Ayguadé, Memory System Eval-
uation: Modeling System Performance and Energy Without Simulating
the CPU, Under submission.

8.6.2 Other publications

• Rommel Sánchez Verdejo, Kazi Asifuzzaman, Milan Radulovic, Petar
Radojković, Eduard Ayguadé, and Bruce Jacob, Main Memory Latency
Simulation: The Missing Link, in Proceedings of the International
Symposium on Memory Systems (MEMSYS), Oct. 2018.

• Darko Zivanovic, Milan Pavlovic, Milan Radulovic, Hyunsung Shin,
Jongpil Son, Sally A. Mckee, Paul M. Carpenter, Petar Radojković,
and Eduard Ayguadé, Main Memory in HPC: Do We Need More or
Could We Live with Less?, ACM Transactions on Architecture and Code
Optimization (TACO), vol. 14, pp. 3:1–3:26, Mar. 2017.

121

Section 8.6
∣∣∣ List of publications

• Darko Zivanovic, Milan Radulovic, Germán Llort, David Zaragoza,
Janko Strassburg, Paul M. Carpenter, Petar Radojković, and Eduard
Ayguadé, Large-Memory Nodes for Energy Efficient High-Performance
Computing, in Proceedings of the Second International Symposium on
Memory Systems (MEMSYS), pp. 3–9, Oct. 2016.

• Kazi Asifuzzaman, Milan Pavlovic, Milan Radulovic, David Zaragoza,
Ohseong Kwon, Kyung-Chang Ryoo, and Petar Radojković, Perfor-
mance Impact of a Slower Main Memory: A Case Study of STT-MRAM
in HPC, in Proceedings of the Second International Symposium on Mem-
ory Systems (MEMSYS), pp. 40–49, Oct. 2016.

• Milan Pavlovic, Milan Radulovic, Alex Ramirez, and Petar Radojković,
Limpio — LIghtweight MPI instrumentatiOn, in Proceedings of the
IEEE International Conference on Program Comprehension (ICPC),
pp. 303–306, May 2015.

122

Bibliography

[1] Advanced Micro Devices, Inc., “AMD Product Roadmaps.”
http://ir.amd.com/static-files/a63127c4-569f-4fbe-9fcf-54c24dcfa808,
Jan. 2018. [Cited on page iv.]

[2] “TOP500 List.” https://www.top500.org/, June 2018. [Cited on pages
1, 26, 49, and 98.]

[3] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp, S. Keck-
ler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely,
T. Sterling, R. S. Williams, and K. Yelick, “ExaScale Computing Study:
Technology Challenges in Achieving Exascale Systems,” Sept. 2008.
[Cited on pages 1, 2, and 69.]

[4] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, Apr. 1965. [Cited on pages 1 and 3.]

[5] A. Rico, F. Cabarcas, C. Villavieja, M. Pavlovic, A. Vega, Y. Etsion,
A. Ramirez, and M. Valero, “On the Simulation of Large-scale Archi-
tectures Using Multiple Application Abstraction Levels,” ACM Trans-
actions on Architecture and Code Optimization, vol. 8, pp. 36:1–36:20,
Jan. 2012. [Cited on page 2.]

[6] T. Grass, C. Allande, A. Armejach, A. Rico, E. Ayguad, J. Labarta,
M. Valero, M. Casas, and M. Moreto, “MUSA: A Multi-level Simulation
Approach for Next-Generation HPC Machines,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 526–537, Nov. 2016. [Cited on page 2.]

[7] A. Sodani, “Race to Exascale: Opportunities and Challenges.” Keynote
Presentation at the 44th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2011. [Cited on pages 2 and 69.]

[8] R. Stevens, A. White, P. Beckman, R. Bair-ANL, J. Hack, J. Nichols,
A. GeistORNL, H. Simon, K. Yelick, J. Shalf-LBNL, S. Ashby,
M. Khaleel-PNNL, M. McCoy, M. Seager, B. Gorda-LLNL, J. Morrison,
C. Wampler-LANL, J. Peery, S. Dosanjh, J. Ang-SNL, J. Davenport,
T. Schlagel, BNL, F. Johnson, and P. Messina, “A Decadal DOE Plan
for Providing Exascale Applications and Technologies for DOE Mission
Needs.” Presentation at Advanced Simulation and Computing Principal
Investigators Meeting, Mar. 2010. [Cited on pages 2 and 69.]

123

Bibliography

[9] B. L. Jacob, “Exascale Begins at the Memory System,” Mar. 2016.
Keynote at the DATE Workshop on Emerging Memory Solutions. [Cited
on page 2.]

[10] B. L. Jacob, “The memory system: You can’t avoid it, you can’t ignore
it, you can’t fake it,” Synthesis Lectures on Computer Architecture,
vol. 4, no. 1, pp. 1–77, 2009. [Cited on pages 2, 16, 17, 53, 70, and 71.]

[11] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH Computer Architecture News, vol. 23,
pp. 20–24, Mar. 1995. [Cited on pages 2 (3), 6, 17, 36, 40, 59, and 70.]

[12] R. L. Sites, “It’s the memory, stupid!,” Microprocessor Report, vol. 10,
pp. 2–3, Oct. 1996. [Cited on page 2.]

[13] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in Proceedings of the 9th International Conference on High
Performance Computing for Computational Science, pp. 1–25, June
2011. [Cited on pages 2 and 4.]

[14] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. An-
dre, D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello,
B. Chapman, X. Chi, A. Choudhary, S. Dosanjh, T. Dunning, S. Fiore,
A. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,
K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway, D. Keyes,
B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas, B. Mac-
cabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S. Mueller,
W. E. Nagel, H. Nakashima, M. E. Papka, D. Reed, M. Sato, E. Sei-
del, J. Shalf, D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz,
B. Sugar, S. Sumimoto, W. Tang, J. Taylor, R. Thakur, A. Trefethen,
M. Valero, A. van der Steen, J. Vetter, P. Williams, R. Wisniewski, and
K. Yelick, “The international exascale software project roadmap,” The
International Journal of High Performance Computing Applications,
vol. 25, no. 1, pp. 3–60, 2011. [Cited on pages 2 and 3.]

[15] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, pp. 1–12, June 2012. [Cited on
page 3.]

[16] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in Proceeding of
the 41st Annual International Symposium on Computer Architecuture,
pp. 361–372, June 2014. [Cited on pages 3 and 5.]

124

Bibliography

[17] D. Zivanovic, M. Radulovic, G. Llort, D. Zaragoza, J. Strassburg, P. M.
Carpenter, P. Radojković, and E. Ayguadé, “Large-Memory Nodes for
Energy Efficient High-Performance Computing,” in Proceedings of the
Second International Symposium on Memory Systems, pp. 3–9, Oct.
2016. [Cited on pages 3 and 45.]

[18] Micron Technology, Inc., “Intel and Micron Produce Breakthrough
Memory Technology.” https://files.shareholder.com/downloads/ABEA-
45YXOQ/6352638360x0x841530/7852AA28-
4E57-4D8F-A180-FA135F0BC406/Micron-
Intel Next Gen NVM Press Release FINAL 072815.pdf, 2015. [Cited
on pages 3 and 4.]

[19] F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform storage
performance with 3d xpoint technology,” Proceedings of the IEEE,
vol. 105, pp. 1822–1833, Sept. 2017. [Cited on pages 3 and 4.]

[20] R. Patti, “Advances in 3d integrated circuits,” in Proceedings of the
International Symposium on Physical Design, pp. 79–80, Mar. 2011.
[Cited on page 3.]

[21] Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification
2.1.” https://hybridmemorycube.org/files/SiteDownloads/HMC-30G-
VSR HMCC Specification Rev2.1 20151105.pdf, Oct. 2015. [Cited on
pages 3, 6, 19, and 60.]

[22] JEDEC Solid State Technology Association, “High Bandwidth Memory
(HBM) DRAM.” www.jedec.org/standards-documents/docs/jesd235,
Oct. 2013. [Cited on pages 3, 6, 20, and 60.]

[23] R. S. Patti, “New Trends in Advanced 3D Vertical Interconnect
Technology.”
https://indico.cern.ch/event/381514/contributions/901448/attachments/
760394/1043064/Tezzaron Presentation Infieri 042715.pdf, Apr. 2015.
Vth INFIERI Workshop at CERN. [Cited on pages 3 and 6 (2).]

[24] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of rollback-recovery protocols in message-passing systems,” ACM
Computing Surveys, vol. 34, pp. 375–408, Sept. 2002. [Cited on page 4.]

[25] S. Tyson, G. Wicker, T. Lowrey, S. Hudgens, and K. Hunt, “Non-
volatile, high density, high performance phase-change memory,” in
IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484), vol. 5,
pp. 385–390, Mar. 2000. [Cited on page 4.]

[26] M. Gill, T. Lowrey, and J. Park, “Ovonic unified memory - a high-
performance nonvolatile memory technology for stand-alone memory

125

Bibliography

and embedded applications,” in IEEE International Solid-State Circuits
Conference. Digest of Technical Papers, vol. 1, pp. 202–459, Feb. 2002.
[Cited on page 4.]

[27] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,” in
Proceedings of the 36th Annual International Symposium on Computer
Architecture, pp. 24–33, June 2009. [Cited on page 4.]

[28] H. . P. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee,
F. T. Chen, and M. Tsai, “Metaloxide rram,” Proceedings of the IEEE,
vol. 100, pp. 1951–1970, June 2012. [Cited on page 4.]

[29] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, pp. 80–83, May 2008. [Cited
on page 4.]

[30] Y. Xie, “Modeling, architecture, and applications for emerging memory
technologies,” IEEE Design & Test, vol. 28, pp. 44–51, Jan. 2011. [Cited
on page 4.]

[31] K. Asifuzzaman, M. Pavlovic, M. Radulovic, D. Zaragoza, O. Kwon,
K.-C. Ryoo, and P. Radojković, “Performance Impact of a Slower Main
Memory: A Case Study of STT-MRAM in HPC,” in Proceedings of the
Second International Symposium on Memory Systems, pp. 40–49, Oct.
2016. [Cited on page 4.]

[32] K. Asifuzzaman, R. Sánchez Verdejo, and P. Radojković, “Enabling
a reliable stt-mram main memory simulation,” in Proceedings of the
International Symposium on Memory Systems, pp. 283–292, Oct. 2017.
[Cited on page 4.]

[33] S. Ning, T. O. Iwasaki, D. Viviani, H. Huang, M. Manning, T. Rueckes,
and K. Takeuchi, “NRAM: High Performance, Highly Reliable Emerging
Memory.”
https://www.flashmemorysummit.com/English/Collaterals
/Proceedings/2016/20160811 S301A Ning.pdf, Aug. 2016. Flash Mem-
ory Summit presentation. [Cited on page 4.]

[34] H. Servat, A. J. Pea, G. Llort, E. Mercadal, H. Hoppe, and J. Labarta,
“Automating the Application Data Placement in Hybrid Memory Sys-
tems,” in IEEE International Conference on Cluster Computing, pp. 126–
136, Sept. 2017. [Cited on page 4.]

[35] L. Alvarez, M. Casas, J. Labarta, E. Ayguade, M. Valero, and M. Moreto,
“Runtime-Guided Management of Stacked DRAM Memories in Task
Parallel Programs,” in Proceedings of the International Conference on

126

Bibliography

Supercomputing, pp. 218–228, June 2018. [Cited on page 4.]

[36] D. Locklear, “Chipkill correct memory architecture,” in DELL Technol-
ogy Brief, Aug. 2000. [Cited on page 5.]

[37] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory Errors in Modern Systems: The
Good, The Bad, and The Ugly,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 297–310, Mar. 2015. [Cited on page 5.]

[38] A. Geist, “Supercomputing’s monster in the closet,” IEEE Spectrum,
vol. 53, pp. 30–35, Mar. 2016. [Cited on page 5.]

[39] Hewlett Packard Enterprise, “How memory RAS technologies can en-
hance the uptime of HPE ProLiant servers,” Feb. 2016. Technical white
paper 4AA4-3490ENW. [Cited on page 5.]

[40] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomputing Frontiers
and Innovations, vol. 1, pp. 5–28, June 2014. [Cited on page 5.]

[41] J. D. McCalpin, “SC16 Invited Talk: Memory Bandwidth and System
Balance in HPC Systems.”
https://sites.utexas.edu/jdm4372/2016/11/22/sc16-invited-talk-
memory-bandwidth-and-system-balance-in-hpc-systems, Nov. 2016.
[Cited on pages 5 and 42.]

[42] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang,
R. Illikkal, and R. Iyer, “Leveraging Heterogeneity in DRAM Main
Memories to Accelerate Critical Word Access,” in Proceedings of the
45th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 13–24, Dec. 2012. [Cited on page 6.]

[43] K. Asanović, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The Landscape of Parallel Computing Research: A
View from Berkeley,” Tech. Rep. UCB/EECS-2006-183, EECS Depart-
ment, University of California, Berkeley, Dec. 2006. [Cited on page
6 (3).]

[44] R. Murphy, “On the effects of memory latency and bandwidth on
supercomputer application performance,” in Proceedings of the IEEE
10th International Symposium on Workload Characterization, pp. 35–43,
Sept. 2007. [Cited on page 6.]

[45] Office of Science at U.S. Department of Energy, “A Science-Based Case
for Large-Scale Simulation (SCaLeS),” tech. rep., July 2003. [Cited on

127

Bibliography

page 6.]

[46] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Ja-
worski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter perfor-
mance analysis of a tensor processing unit,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture, pp. 1–12,
June 2017. [Cited on page 6.]

[47] K. Lepak, “The next generation AMD enterprise server product
architecture.”
https://www.hotchips.org/wp-content/uploads/hc archives/hc29/HC29.22-
Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.921-EPYC-Lepak-
AMD-v2.pdf, Aug. 2017. Hot Chips 2017. [Cited on page 6.]

[48] L. Spelman, “Cascade Lake advanced performance.”
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/11/cascade-
lake-advanced-performance-press-deck.pdf, Nov. 2018. Data Centric
Business Update, Intel Corporation. [Cited on page 6.]

[49] P. McLellan, “DDR5 Is on Our Doorstep.”
https://community.cadence.com/cadence blogs 8/b/breakfast-
bytes/posts/oip-ddr5, Oct. 2018. [Cited on page 6.]

[50] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk.
2007. [Cited on pages 14, 75, and 95.]

[51] R. Jain, The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Model-
ing. Wiley, Apr. 1991. [Cited on pages 17 and 62.]

[52] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quan-
titative Approach. 6th ed., Nov. 2017. [Cited on pages 18, 79 (2), 82,
and 90 (3).]

[53] J. K. Ousterhout, “Why Aren’t Operating Systems Getting Faster As

128

Bibliography

Fast as Hardware?,” USENIX Summer Conference, pp. 247–256, June
1990. [Cited on page 17.]

[54] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers,” IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, pp. 19–25,
Dec. 1995. [Cited on page 17.]

[55] D. Burger, J. R. Goodman, and A. Kägi, “Memory Bandwidth Limita-
tions of Future Microprocessors,” in Proc. ACM/IEEE International
Symposium on Computer Architecture, pp. 78–89, May 1996. [Cited on
page 17.]

[56] P. Rosenfeld, E. Cooper-Balis, T. C. Farrell, D. Resnick, and B. Jacob,
“Peering Over the Memory Wall: Design Space and Performance Analy-
sis of the Hybrid Memory Cube,” Tech. Rep. UMD-SCA-2012-10-01,
University of Maryland, Systems and Computer Architecture Group,
Oct. 2012. [Cited on page 19.]

[57] Micron Technology, Inc., “Micron Announces Shift in High-Performance
Memory Roadmap Strategy.”
https://www.micron.com/about/blog/2018/august/micron-
announces-shift-in-high-performance-memory-roadmap-strategy,
Aug. 2018. [Cited on page 19.]

[58] J. Kim and Y. Kim, “HBM: Memory solution for bandwidth-hungry
processors,” in IEEE Hot Chips 26 Symposium (HCS), Aug. 2014. [Cited
on page 20.]

[59] Barcelona Supercomputing Center, “MareNostrum III System Archi-
tecture.” https://www.bsc.es/marenostrum/marenostrum/mn3, 2013.
[Cited on page 24 (2).]

[60] PRACE Research Infrastructure. www.prace-ri.eu. [Cited on pages 24
and 28.]

[61] Intel Corporation, “Intel R© Xeon R© Processor E5-2600 Product Family
Uncore Performance Monitoring Guide,” tech. rep., Mar. 2012. [Cited
on pages 24, 51, and 99.]

[62] J. D. McCalpin, “STREAM: Sustainable Memory Bandwidth in High
Performance Computers,” tech. rep., University of Virginia, 1991-2007.
[Cited on pages 24, 27, and 75.]

[63] Barcelona Supercomputing Center, “CTE-KNL User’s Guide.”
https://www.bsc.es/user-support/knl.php, 2017. [Cited on page 25 (2).]

[64] Intel Corporation, “Intel R© Xeon Phi
TM

Processor Performance Moni-

129

Bibliography

toring Reference Manual - Volume 1: Registers,” tech. rep., Mar. 2017.
[Cited on page 25.]

[65] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. C. Liu, “Knights Landing: Second-
Generation Intel Xeon Phi Product,” IEEE Micro, vol. 36, pp. 34–46,
Mar. 2016. [Cited on pages 25 and 98 (2).]

[66] A. Sodani, “Knights landing (KNL): 2nd Generation Intel R© Xeon Phi
processor,” in 2015 IEEE Hot Chips 27 Symposium (HCS), pp. 1–24,
Aug. 2015. [Cited on page 25.]

[67] A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary,
“HPL - A Portable Implementation of the High-Performance
Linpack Benchmark for Distributed-Memory Computers.”
https://www.netlib.org/benchmark/hpl/, Sept. 2008. [Cited on
pages 26 and 48.]

[68] M. Heroux and J. Dongarra, “Toward a New Metric for Ranking High
Performance Computing Systems,” Tech. Rep. SAND2013-4744, UTK
EECS and Sandia National Labs, June 2013. [Cited on page 26.]

[69] J. Dongarra, M. Heroux, and P. Luszczek, “The HPCG Benchmark.”
https://www.hpcg-benchmark.org, 2016. [Cited on pages 26 and 48.]

[70] V. Marjanović, J. Gracia, and C. W. Glass, Performance Modeling of
the HPCG Benchmark, pp. 172–192. Springer International Publishing,
2014. [Cited on page 27.]

[71] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The HPC Challenge (HPCC)
Benchmark Suite,” in Proc. of the ACM/IEEE Conference on Super-
computing, 2006. [Cited on pages 27, 40, and 48.]

[72] L. McVoy and C. Staelin, “Lmbench: Portable Tools for Performance
Analysis,” in Proceedings of the Annual Conference on USENIX Annual
Technical Conference, 1996. [Cited on page 27.]

[73] Standard Performance Evaluation Corporation, “SPEC CPU 2006.”
https://www.spec.org/cpu2006/. [Cited on page 28.]

[74] Partnership for Advanced Computing in Europe (PRACE), “Unified
european applications benchmark suite.” www.prace-ri.eu/ueabs/, 2013.
[Cited on pages 28, 31, and 50.]

[75] Barcelona Supercomputing Center, Extrae User guide manual for ver-
sion 3.1.0, May 2015. [Cited on page 31.]

[76] M. Pavlovic, M. Radulovic, A. Ramirez, and P. Radojković, “Limpio

130

https://www.spec.org/cpu2006/

Bibliography

— LIghtweight MPI instrumentatiOn,” in Proceedings of the IEEE In-
ternational Conference on Program Comprehension, pp. 303–306, May
2015. [Cited on page 32.]

[77] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to visu-
alize and analyze parallel code,” in Transputer and Occam Engineering
Series, Apr. 1995. [Cited on page 33.]

[78] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A Lightweight
Performance-Oriented Tool Suite for x86 Multicore Environments,” in
International Conference on Parallel Processing Workshops, pp. 207–
216, Sept. 2010. [Cited on page 33.]

[79] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microar-
chitectural Simulation of Thousand-core Systems,” in Proceedings of
the 40th Annual International Symposium on Computer Architecture,
pp. 475–486, June 2013. [Cited on pages 33 and 70.]

[80] R. Sánchez Verdejo and P. Radojković, “Microbenchmarks for De-
tailed Validation and Tuning of Hardware Simulators,” in 2017 Interna-
tional Conference on High Performance Computing Simulation (HPCS),
pp. 881–883, July 2017. [Cited on pages 33 and 70.]

[81] Intel Corporation, “Intel R© 64 and IA-32 Architectures Software Devel-
oper’s Manual,” tech. rep., July 2017. [Cited on pages 33, 44, and 51.]

[82] Intel Corporation, “Intel R© 64 and IA-32 Architectures Optimization
Reference Manual,” tech. rep., Jan. 2016. [Cited on pages 34 and 85.]

[83] C. Maurice, N. Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse Engineering Intel Last-Level Cache Complex Addressing Using
Performance Counters,” in Proceedings of the 18th International Sym-
posium on Research in Attacks, Intrusions, and Defenses, pp. 48–65,
Nov. 2015. [Cited on page 34.]

[84] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle
Accurate Memory System Simulator,” IEEE Computer Architecture
Letters, vol. 10, pp. 16–19, Jan. 2011. [Cited on pages 34 and 70 (2).]

[85] TOP500.org, “Supercomputing Centers Have Be-
come Showcases for Competing HPC Technologies.”
https://www.top500.org/news/supercomputing-centers-have-become-
showcases-for-competing-hpc-technologies/, June 2017. [Cited on page
35.]

[86] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and
M. Valero, “Supercomputing with Commodity CPUs: Are Mobile SoCs
Ready for HPC?,” in Proc. of the International Conference on High

131

Bibliography

Performance Computing, Networking, Storage and Analysis, pp. 40:1–
40:12, 2013. [Cited on pages 36, 37, and 44.]

[87] N. Rajovic, A. Rico, F. Mantovani, D. Ruiz, J. O. Vilarrubi, C. Gomez,
L. Backes, D. Nieto, H. Servat, X. Martorell, J. Labarta, E. Ayguade,
C. Adeniyi-Jones, S. Derradji, H. Gloaguen, P. Lanucara, N. Sanna,
J.-F. Mehaut, K. Pouget, B. Videau, E. Boyer, M. Allalen, A. Auweter,
D. Brayford, D. Tafani, V. Weinberg, D. Brömmel, R. Halver, J. H.
Meinke, R. Beivide, M. Benito, E. Vallejo, M. Valero, and A. Ramirez,
“The Mont-blanc Prototype: An Alternative Approach for HPC Sys-
tems,” in Proc. of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 38:1–38:12, 2016.
[Cited on pages 36 and 44.]

[88] M. A. Laurenzano, A. Tiwari, A. Cauble-Chantrenne, A. Jundt, W. A.
Ward, R. Campbell, and L. Carrington, “Characterization and bot-
tleneck analysis of a 64-bit ARMv8 platform,” in IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
pp. 36–45, Apr. 2016. [Cited on pages 36, 43, and 45.]

[89] Z. Ou, B. Pang, Y. Deng, J. K. Nurminen, A. Yl-Jski, and P. Hui,
“Energy- and Cost-Efficiency Analysis of ARM-Based Clusters,” in
12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, pp. 115–123, May 2012. [Cited on page 37.]

[90] A. Selinger, K. Rupp, and S. Selberherr, “Evaluation of Mobile ARM-
based SoCs for High Performance Computing,” in Proc. of the High
Performance Computing Symposium, pp. 21:1–21:7, 2016. [Cited on
page 37.]

[91] S. W. Williams, A. Waterman, and D. A. Patterson, “Roofline: An
Insightful Visual Performance Model for Floating-Point Programs and
Multicore Architectures,” EECS Technical Report UCB/EECS-2008-
134, Oct. 2008. [Cited on pages 40, 64, and 66.]

[92] Joint Electron Device Engineering Council. https://www.jedec.org.
[Cited on page 41.]

[93] ARM Ltd, “ARM Accelerates Mathematical Computation on 64-bit
ARM-based HPC Systems.”
https://www.arm.com/about/newsroom/arm-accelerates-
mathematical-computation-on-64-bit-arm-based-hpc-systems.php, Nov.
2015. [Cited on page 43.]

[94] D. Abdurachmanov, B. Bockelman, P. Elmer, G. Eulisse, R. Knight, and
S. Muzaffar, “Heterogeneous High Throughput Scientific Computing

132

Bibliography

with APM X-Gene and Intel Xeon Phi,” CoRR, 2014. [Cited on pages
43 and 44.]

[95] I. Z. Reguly, A.-K. Keita, and M. B. Giles, “Benchmarking the IBM
Power8 Processor,” in Proc. of the International Conference on Com-
puter Science and Software Engineering, 2015. [Cited on page 43.]

[96] M. Sayeed, H. Bae, Y. Zheng, B. Armstrong, R. Eigenmann, and
F. Saied, “Measuring High-Performance Computing with Real Applica-
tions,” Computing in Science & Engineering, vol. 10, pp. 60–70, July
2008. [Cited on pages 48 and 57.]

[97] W. T. Kramer, “Top500 Versus Sustained Performance: The Top
Problems with the Top500 List - and What to Do About Them,” in
Proc. of the International Conference on Parallel Architectures and
Compilation Techniques, pp. 223–230, Sept. 2012. [Cited on page 49.]

[98] National Science Foundation.
https://www.nsf.gov/pubs/2006/nsf0605/nsf0605.pdf. [Cited on pages
50 and 56.]

[99] National Center for Atmospheric Research.
https://www2.cisl.ucar.edu/resources/computational-systems/cisl-
high-performance-computing-benchmarks. [Cited on pages 50
and 56.]

[100] National Energy Research Scientific Computing Center.
https://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks. [Cited on
pages 50 and 56.]

[101] Home page of the EuroBen Benchmark. https://www.euroben.nl. [Cited
on pages 50 and 56.]

[102] A. Turner, “UK National HPC Benchmarks,” tech. rep., UK National
Supercomputing Service ARCHER, 2016. [Cited on pages 50 and 56.]

[103] D. Zivanovic, M. Pavlovic, M. Radulovic, H. Shin, J. Son, S. A. Mckee,
P. M. Carpenter, P. Radojković, and E. Ayguadé, “Main Memory
in HPC: Do We Need More or Could We Live with Less?,” ACM
Transactions on Architecture and Code Optimization, vol. 14, pp. 3:1–
3:26, Mar. 2017. [Cited on page 50.]

[104] M. Radulovic, D. Zivanovic, D. Ruiz, B. R. de Supinski, S. A. McKee,
P. Radojković, and E. Ayguadé, “Another Trip to the Wall: How
Much Will Stacked DRAM Benefit HPC?,” in Proc. of the International
Symposium on Memory Systems, pp. 31–36, Oct. 2015. [Cited on page
53.]

133

Bibliography

[105] D. H. Bailey, “Misleading performance claims in parallel computations,”
in 2009 46th ACM/IEEE Design Automation Conference, pp. 528–533,
July 2009. [Cited on page 56.]

[106] D. H. Bailey, “Twelve ways to fool the masses when giving performance
results on parallel computers,” Supercomputing Review, pp. 54–55, Aug.
1991. [Cited on page 56.]

[107] T. Hoefler and R. Belli, “Scientific Benchmarking of Parallel Computing
Systems: Twelve Ways to Tell the Masses when Reporting Performance
Results,” in Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pp. 73:1–73:12,
Nov. 2015. [Cited on page 57.]

[108] V. Marjanović, J. Gracia, and C. W. Glass, “HPC Benchmarking: Prob-
lem Size Matters,” in Proceedings of the 7th International Workshop
on Performance Modeling, Benchmarking and Simulation of High Per-
formance Computing Systems, pp. 1–10, Nov. 2016. [Cited on page
57.]

[109] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A Case for Intelligent RAM,”
IEEE Micro, vol. 17, pp. 34–44, Mar. 1997. [Cited on page 60.]

[110] R. Crisp, “Direct RAMbus technology: the new main memory standard,”
IEEE Micro, vol. 17, pp. 18–28, Nov. 1997. [Cited on page 60.]

[111] K. Diefendorff, “Sony’s Emotionally Charged Chip,” Microprocessor
Report, vol. 13, pp. 1,6–11, Apr. 1999. [Cited on page 60.]

[112] A. Mandapati, “2001: A Graphics Odyssey,” Microprocessor Report,
vol. 16, pp. 7–10, Jan. 2002. [Cited on page 60.]

[113] R. Kalla, B. Sinharoy, W. Starke, and M. Floyd, “Power7: IBM’s Next-
Generation Server Processor,” IEEE Micro, vol. 30, pp. 7–15, Mar. 2010.
[Cited on page 60.]

[114] P. Hammarlund, “4th Generation Intel R© CoreTMProcessor, codenamed
Haswell,” Hot Chips 25, Aug. 2013. [Cited on page 60.]

[115] Intel Corporation, “Intel R© Pentium R© 4 Processor and Intel R© E7205
Chipset Design Guide,” Dec. 2002. [Cited on page 60.]

[116] Intel Corporation, “Intel R© 875P Chipset Datasheet,” Feb. 2004. [Cited
on page 60.]

[117] JEDEC Solid State Technology Association, “Double Data Rate (DDR)
SDRAM Standard.” www.jedec.org/standards-documents/docs/jesd-
79f, Feb. 2008. [Cited on page 60.]

134

Bibliography

[118] A. Glew, “MLP yes! ILP no!,” International Conference on Architectural
Support for Programming Languages and Operating Systems, Wild and
Crazy Ideas Session, Oct. 1998. [Cited on pages 60 and 84.]

[119] Arira Design, “Hybrid Memory Cube Evaluation & Development Board.”
https://www.ariradesign.com/hmc-board, 2013. [Cited on pages 61
and 75.]

[120] Y. Durand, P. Carpenter, S. Adami, A. Bilas, D. Dutoit, A. Farcy,
G. Gaydadjiev, J. Goodacre, M. Katevenis, M. Marazakis, E. Matus,
I. Mavroidis, and J. Thomson, “EUROSERVER: Energy Efficient Node
for European Micro-servers,” in Proc. Euromicro Conference on Digital
Systems Design, pp. 206–213, Aug. 2014. [Cited on page 61.]

[121] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A Set of
Level 3 Basic Linear Algebra Subprograms,” ACM Transactions on
Mathematical Software, vol. 16, pp. 1–17, Mar. 1990. [Cited on page
66.]

[122] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” IEEE Computer Architecture Letters, vol. 15, pp. 45–
49, Jan. 2016. [Cited on page 70.]

[123] Micron Technology, Inc., “Calculating Memory System Power for DDR3,”
Tech. Rep. TN-41-01, Aug. 2007. [Cited on pages 74 and 91.]

[124] R. Sánchez Verdejo, K. Asifuzzaman, M. Radulovic, P. Radojković,
E. Ayguadé, and B. Jacob, “Main Memory Latency Simulation: The
Missing Link,” in Proceedings of the International Symposium on Mem-
ory Systems, Oct. 2018. [Cited on page 75.]

[125] R. Clapp, M. Dimitrov, K. Kumar, V. Viswanathan, and T. Willhalm,
“Quantifying the Performance Impact of Memory Latency and Band-
width for Big Data Workloads,” in IEEE International Symposium on
Workload Characterization, pp. 213–224, Oct. 2015. [Cited on pages 76,
77, 79, 90 (2), and 113 (2).]

[126] P. G. Emma, “Understanding some simple processor-performance limits,”
IBM Journal of Research and Development, vol. 41, pp. 215–232, May
1997. [Cited on page 79.]

[127] T. S. Karkhanis and J. E. Smith, “A First-Order Superscalar Processor
Model,” in Proceedings of the Annual International Symposium on
Computer Architecture, pp. 338–349, June 2004. [Cited on pages 79,
82 (2), 83, 84 (2), 85, 90 (3), 111, 112, and 113 (2).]

[128] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture Optimizations
for Exploiting Memory-Level Parallelism,” in Proceedings of the 31st

135

Bibliography

Annual International Symposium on Computer Architecture, pp. 76–87,
June 2004. [Cited on pages 79, 84 (2), and 90 (3).]

[129] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A Perfor-
mance Counter Architecture for Computing Accurate CPI Components,”
in Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 175–
184, Dec. 2006. [Cited on page 84.]

[130] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,”
in Proceedings of the Annual Symposium on Computer Architecture,
pp. 81–87, May 1981. [Cited on page 85.]

[131] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High
Performance Programming: Knights Landing Edition. 2nd ed., 2016.
[Cited on page 85.]

[132] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A Mechanis-
tic Performance Model for Superscalar Out-of-order Processors,” ACM
Trans. Comput. Syst., vol. 27, pp. 3:1–3:37, May 2009. [Cited on pages
90 (2), 112 (3), and 113 (2).]

[133] S. V. den Steen, S. Eyerman, S. D. Pestel, M. Mechri, T. E. Carlson,
D. Black-Schaffer, E. Hagersten, and L. Eeckhout, “Analytical processor
performance and power modeling using micro-architecture independent
characteristics,” IEEE Transactions on Computers, vol. 65, pp. 3537–
3551, Dec 2016. [Cited on pages 90 (2), 112, and 113 (2).]

[134] X. Feng, R. Ge, and K. W. Cameron, “Power and energy profiling of
scientific applications on distributed systems,” in IEEE International
Parallel and Distributed Processing Symposium, Apr. 2005. [Cited on
pages 91 and 103.]

[135] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,
“MemScale: Active Low-power Modes for Main Memory,” in Proceedings
of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 225–238, Mar. 2011. [Cited
on pages 91, 93, 113, and 114 (2).]

[136] Micron Technology, Inc., “MT36JSF1G72PZ-1G6M1, 8GB (x72, ECC,
DR) 240-Pin DDR3 RDIMM.”
https://www.micron.com/˜/media/documents/products/data-
sheet/modules/parity rdimm/jsf36c1gx72pz.pdf, Apr. 2013. [Cited on
page 91.]

[137] Intel Corporation, “Intel R© Xeon R© Processor E5-1600/E5-2600/E5-4600
Product Families Datasheet - Volume One,” Tech. Rep. 326508, May

136

Bibliography

2012. [Cited on page 95.]

[138] Intel Corporation, “Intel R© Xeon Phi
TM

Processor Performance Moni-
toring Reference Manual - Volume 2: Events,” tech. rep., Mar. 2017.
[Cited on page 99.]

[139] M. Radulovic, K. Asifuzzaman, P. Carpenter, P. Radojković, and
E. Ayguadé, “HPC Benchmarking: Scaling Right and Looking Be-
yond the Average,” in Euro-Par 2018: Parallel Processing, pp. 135–146,
Aug. 2018. [Cited on page 99.]

[140] Y. T. . M. Corporation, “Wt230 digital power meter.”
https://cdn.tmi.yokogawa.com/IM760401-01E.pdf. [Cited on page 100.]

[141] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation:
Raising the level of abstraction in architectural simulation,” in The
Sixteenth International Symposium on High-Performance Computer
Architecture, pp. 307–318, Jan. 2010. [Cited on pages 112 and 113.]

[142] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture, pp. 469–480, Dec. 2009. [Cited on page 112.]

[143] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan,
“ANATOMY: An Analytical Model of Memory System Performance,” in
The 2014 ACM International Conference on Measurement and Modeling
of Computer Systems, pp. 505–517, June 2014. [Cited on page 112.]

[144] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The m5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, pp. 52–60, July 2006. [Cited on page 112.]

[145] Intel Corporation, “Intel R© Memory Latency Checker.”
https://software.intel.com/en-us/articles/intelr-memory-latency-
checker, Nov. 2013. [Cited on page 114.]

137

	Acknowledgments
	Abstract
	Contents
	Listing of figures
	Listing of tables
	Introduction
	Memory systems in HPC
	Memory capacity
	Architectural innovations
	Memory reliability
	Memory performance

	Thesis contributions
	Memory bandwidth and latency aspectsin HPC systems evaluation
	Memory bandwidth requirementsof HPC applications
	First steps on the performance impactof memory bandwidth and latency
	Memory system evaluation:Modeling system performanceand energy without simulating the CPU

	Thesis organization

	Background
	DRAM memory system
	DRAM organization
	DRAM operation

	On memory bandwidth and latency
	Memory Wall

	High-bandwidth memory systems
	Hybrid Memory Cube
	High Bandwidth Memory
	Comparison

	Experimental environment
	Hardware platforms
	Set of mainstream and alternative platforms
	MareNostrum 3 supercomputer
	Intel Knights Landing Xeon Phi 7230

	HPC workloads
	HPC benchmarks
	Microbenchmarks
	SPEC CPU2006 benchmark suite
	UEABS HPC applications

	Tools
	Instrumentation and profiling tools
	Simulators

	Memory bandwidth and latency aspects in HPC systems evaluation
	Introduction
	Experimental environment
	HPC benchmarks
	HPC platforms
	Power measurements

	Results
	HPL and HPCG benchmarks
	Caches and main memory access latency
	Byte/FLOP ratio
	Theoretical vs. sustained FLOPs/s and memory bandwidth

	Related work
	Summary

	Memory bandwidth requirements of HPC applications
	Introduction
	Experimental environment
	Experimental platform
	Workloads

	Results
	Floating-point performance analysis
	Memory bandwidth analysis
	Discussion

	Related work
	Summary

	First steps on the performance impact of memory bandwidth and latency
	Introduction
	Latency vs. Bandwidth
	Memory access latency
	Memory bandwidth
	Summary

	Experimental environment
	Hardware platform
	HPC applications
	Methodology

	Results
	Looking forward

	Memory system evaluation: Modeling system performance and energy without simulating the CPU
	Introduction
	On memory bandwidth and latency
	Model overview
	The idea: Moving between memory curves
	Model inputs
	Performance, power and energy estimation
	Model source codes and case study

	Memory system profiling
	Performance model: Detailed description
	Application profiling
	In-order processors
	Out-of-order processors
	Performance as a function of latency
	Performance estimation — the ultimate step
	Novelties of the presented analytical model

	Power and energy modeling
	Power modeling
	Energy modeling

	Experimental environmentand methodology
	Hardware platforms
	Benchmarks
	Tools and methodology

	Evaluation
	Sandy Bridge: DDR3-800 1066/1333/1600
	Sandy Bridge: DDR3-1600 1333/1066/800
	Step further.Sandy Bridge: DDR3-1600 DDR3-1866/2133
	Knights Landing: DDR4-2400 MCDRAM
	Knights Landing: MCDRAM DDR4-2400
	Model vs. Hardware Simulator
	Discussion

	Related work
	Summary

	Conclusions
	Memory bandwidth and latency aspectsin HPC systems evaluation
	Memory bandwidth requirementsof HPC applications
	First steps on the performance impactof memory bandwidth and latency
	Memory system evaluation:Modeling system performanceand energy without simulating the CPU
	Future work
	List of publications
	Under submission
	Other publications

	Bibliography
	advertiment 2019.pdf
	Memory bandwidth and latency in HPC:

