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RE SUMEN DE LA TES I S EN CASTELLANO

El siglo XX marcó un punto de in�exión en el desarrollo de la física.
Concretamente, la física evolucionó para llegar a ser una ciencia capaz
de promover el desarrollo tecnológico. Como paradigmas de este hecho
podemos mencionar el desarrollo de la teoría de la relatividad por parte
de Albert Einstein a principios de siglo y la eclosión de la teoría cuán-
tica. Pese a que muchas de las aplicaciones tecnológicas de la mecánica
cuántica aún permanecen en estado latente, otras muchas han supuesto
una revolución sin precedentes en muchos campos. Un ejemplo de ello
ha sido la invención del láser. El láser —acrónimo de light ampli�cation
by stimulated emission of radiation— es un dispositivo basado en un
efecto puramente mecano-cuántico —la emisión estimulada— y es am-
pliamente utilizado hoy en día. Una de las aplicaciones más importantes
en el mundo cientí�co y tecnológico del láser fue la invención de los
instrumentos de pinzas ópticas por parte de Arthur Ashkin en ����.
Precisamente gracias a este hecho le fue otorgado el premio Nobel de
Física en el año ����.
Gracias a los estudios y desarrollos de Ashkin, junto con la so�sti-

cación de las técnicas en el campo de la biofísica molecular, se produjo
una revolución en el campo de la biofísica. Por ejemplo, mediante el
uso de los instrumentos de molécula individual se ha conseguido, con
una resolución espacial y temporal sin precedentes, medir y observar
reacciones moleculares otrora impensable. Este hecho tiene muchas
aplicaciones, tanto a nivel biológico, como físico. Por un lado, desde
una perspectiva biológica, los dispositivos de molécula individual han
permitido estudiar el plegamiento de las proteínas y los ácidos nucle-
icos, la unión de ligandos o iones a sistemas moleculares e, incluso, la
observación y seguimiento de motores moleculares sobre sustratos in
vivo. Por otro lado, desde el punto de vista físico, el poder estudiar
y experimentar con sistemas de molécula individual ha permitido de-
sarrollar el campo de la física de los llamados sistemas pequeños. Las
dimensiones de estos sistemas abarcan desde unos pocos nanómetros
—una millonésima parte del metro— hasta varios cientos de nanómet-
ros. Además, los sistemas pequeños están lejos del llamado límite
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termodinámico y están dominados por las �uctuaciones térmicas del
entorno. Por lo tanto, debido a estas peculiaridades, el estudio de sis-
temas pequeños mediante los instrumentos de molécula individual
está permitiendo impulsar y extender los horizontes de la física de no
equilibrio.
Esta tesis doctoral se ha llevado a cabo empleando dos de los in-

strumentos de molécula individual más conocidos: las pinzas ópticas y
las pinzas magnéticas. Ambas son técnicas que permiten la aplicación
controlada de fuerzas mecánicas a los extremos de una molécula indi-
vidual. Una molécula en cada realización experimental. El poder aplicar
fuerzas a sistemas moleculares permite llevar a cabo una profunda
caracterización de las propiedades físicas de dichos sistemas. Por ejem-
plo, mediante experimentos de desnaturalización mecánica, es posible
inducir transiciones entre el estado nativo y el estado desplegado de
horquillas de ácidos nucleicos o proteínas. Además, las pinzas ópticas y
magnéticas permiten medir distancias con una precisión nanométrica,
con lo que se pueden realizar medidas de extensiones moleculares con
un grado de precisión incomparable. Además, no únicamente permiten
medir distancias moleculares, si no que permiten controlarlas. Es decir,
los instrumentos utilizados permiten �jar, de manera controlada, la
distancia entre los dos extremos de una molécula. Dicha distancia está
estrechamente relacionada con la extensión de la molécula.
El estudio y comparación de ambos regímenes —fuerza y extensión

controlada— es precisamente el objeto de estudio de la primera parte
de la tesis. Mediante el uso de una horquilla de ADN bien caracteri-
zada a nivel de molécula individual, hemos demostrado cómo ambas
situaciones —controlar fuerza o controlar distancia— no son equiva-
lentes. En particular, la energética de ambas situaciones no es la misma.
Fundamentalmente, ambas magnitudes son diferentes. Mientras que
la distancia es una magnitud extensiva, la fuerza es una magnitud
física intensiva. Este hecho conlleva que la descripción termodinámica
—el colectivo estadístico— de los sistemas moleculares en uno u otro
contexto sea diferente. Pese a ello, hemos mostrado cómo es posible
conectar ambas descripciones termodinámicas en un contexto general.
Adicionalmente, hemos observado cómo dicha no equivalencia también
tiene un fuerte impacto a nivel cinético, abriendo un amplio abanico
de interesantes preguntas para investigar en el campo de la biofísica
celular.
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La segunda parte de la tesis está basada en el desarrollo de un método
sistemático para medir contenidos de información en sistemas molecu-
lares. La conexión de la física estadística con la teoría de la información
se inició hace casi �� años, gracias a los trabajos de Claude E. Shannon.
Posteriormente, cientí�cos como Jaynes desarrollaron una conexión di-
recta de la física estadística de equilibrio y de no equilibrio con la teoría
de la información. De nuevo, gracias a los instrumentos de molécula in-
dividual y a los controles de retroalimentación en dichos instrumentos
—en inglés, feedback—, recientemente se consiguió realizar experimen-
talmente un demonio de Maxwell, así como también se demostró la
posibilidad de asociar una información termodinámica a un sistema
fuera de equilibrio. Estos trabajos permitieron demostrar cómo el hecho
de poseer información tiene implicaciones termodinámicas. Nosotros,
con el desarrollo de esta tesis, hemos puesto la primera piedra para
relacionar la termodinámica con la información. En particular, hemos
demostrado la posibilidad de realizar medidas de contenidos de informa-
ción —con una precisión de unos pocos bits— en sistemas moleculares
únicamente mediante el estudio de cantidades termodinámicas medi-
bles. Las aplicaciones de este método son muy amplias, ya que abre la
posibilidad medir contenidos de información en procesos, por ejemplo,
de evolución molecular dirigida.
Finalmente, la tercera parte de la tesis se basa en la medición de

energías de unión especí�cas de iones magnesio con un sustrato de
ARN de gran importancia biológica. Hasta ahora, la posibilidad demedir
directamente la energía especí�ca de unión de un ion metálico a una
molécula de ARN con experimentos de molécula individual no existía.
Este hecho era debido a la imposibilidad de discernir las contribuciones
especí�cas y no especí�cas a la energía de unión. Gracias a recientes
estudios experimentales con pinzas ópticas, se demostró la equivalencia
entre dos condiciones iónicas, a priori, diferentes. Basándonos en estos
estudios, hemos sido capaces de llevar a cabo experimentos de molécula
individual sobre una molécula que contiene el nexo de tres hélices
de ARN con los que hemos sido capaces de medir, con una precisión
de unos pocos kBT, la contribución especí�ca de unión por parte del
magnesio.
Los resultados de esta tesis tienen implicaciones a nivel físico y bi-

ológico. Por un lado, los resultados correspondientes a la primera y
segunda parte son de mucha relevancia a nivel físico. El estudio de la



� ������� �� �� ����� �� ����������

no equivalencia entre colectivos estadísticos es un tema candente en la
actualidad precisamente gracias a la posibilidad de manipular sistemas
nano y microscópicos de modos —hoy en día— irrealizables en sistemas
macroscópicos. Del mismo modo, poder realizar mediciones de con-
tenido de información y demostrar la conexión entre la termodinámica
y la información es una de las líneas de investigación más actuales en
el ámbito de la física estadística. Por otro lado, los resultados de la
última parte de la tesis son de gran impacto a nivel biológico y biofísico.
Las medidas de energías de unión especí�cas, tanto de iones como de
ligandos, tradicionalmente se han llevado a cabo utilizando las llamadas
técnicas de volumen, siendo este tipo de medidas particularmente com-
plicadas. Por lo tanto, nuestro estudio nos ha permitido obtener un
resultado sin precedentes en el campo de los experimentos de molécula
individual.



Part I

P RE L IM INAR I E S





1
GENERAL IN TRODUCT ION

Depending on how you look at it,
statistical mechanics is either the
least fundamental or most
fundamental of all �elds of
physics. That is because it is not
really science at all. It is pure
mathematics.

Peter Eastman

The interest that classical thermodynamics aroused from the ��th to
the ��th centuries is, probably, only surpassed by the birth of quantum
physics in the beginning of the ��th century. Indeed, thermodynamics
fuelled the biggest boost of humanity, being the �ercest exponent of it
the development of sophisticated heat engines by the mid-����s. The
revolution triggered by thermodynamics and the impact on mankind is
not yet comparable nowadays with any recent scienti�c discovery.

As a major feature, thermodynamics settled the possibility of study-
ing macroscopic physical systems regardless of their inner structure or
their behavior, considering only the relations with their surroundings.
It was not until the probabilistic interpretation of the Second Law de-
veloped by Boltzmann [�] (���� – ����) that the microscopic nature
of physical systems was added as a new ingredient to the theory. For
the �rst time, the entropy S is related to statistical considerations of
the accessible microstates of the system (rather than being introduced
axiomatically as Carathéodory or phenomenologically as Clausius),
resulting in the well-known expression [�]:

S = kB log W , (�.�)

�
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where kB is the Boltzmann constant� and W the so-called thermo-
dynamic probability of a macrostate (i.e. the number of available mi-
crostates of the system).
Boltzmann also introduced the concept of thermodynamic equilib-

rium from a probabilistic point of view. Statistical mechanics was
formally born. As a matter of fact, he laid the foundations of ensemble
theory, predicted the so-called equilibrium statistical �uctuations (being
the Brownian motion the most noticeable e�ect of equilibrium thermal
�uctuations) and he investigated, for the �rst time, the non-equilibrium
regime with his H-theorem.

Figure �.�: Statistical mechanics fathers. Portrait of Ludwig Boltzmann
(���� – ����), who introduced probabilistic concepts into thermo-
dynamics (left picture). Josiah Willard Gibbs (���� – ����), founder
of modern ensemble theory (right picture).

Modern ensemble theory was developed by Gibbs (���� – ����). He
was able to connect the properties of statistical ensembles to the laws
of thermodynamics and, moreover, he formalized statistical mechanics
as a general theory that can be applied to all kind of physical systems.

During the course of the ��th century non-equilibrium phenomena
and information theory attracted the attention of statistical mechanics.
Spanning from the study of stochastic processes as Brownian motion
via the Fokker-Planck equation [�] and the study of dissipative systems
(or structures) [�] in non-equilibrium contexts, through the foundation
of information theory [�] and its latter connection to thermodynamics
[�, �], statistical thermodynamics has successfully expanded its “old”

� Although Eq. (�.�) was formally written by Planck (���� – ����), Boltzmann showed
that the entropy S is proportional to the 6N–dimensional phase space volume W
occupied by the corresponding macrostate of an N–particle system.
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perspective towards new horizons, such as biological, evolutionary
systems or even non-Hamiltonian systems (complex systems).

�.� ������������ ��� ��� ������� �� ����� �������

Statistical mechanics de�nes a general framework in which the connec-
tion with thermodynamics (i.e. the macroscopic behavior) is well settled
in the so-called thermodynamic limit. It corresponds to the idealized
limit in which a system composed by an arbitrary large number N of
units (e.g. atoms, particles, etc.) occupies an in�nite volume V but the
ratio N/V is kept constant. Macroscopic measurable thermodynamic
quantities are the result of the average over all the possible states of the
N molecules forming the system. On the other hand, �uctuations are
inherent to all physical systems and their description arises naturally
within statistical mechanics framework. Indeed, it can be shown that
the relative �uctuations� of thermodynamic quantities (such as energy
or entropy) are of the order 1/

p
N, vanishing (or being extremely hard

to measure) in the thermodynamic limit.
One of the most challenging aspects of statistical mechanics is the

study of physical systems with a small number N of particles, far
away from the thermodynamic limit. A paradigmatic example of
small systems are single molecule systems, where N ⇠ 1 and, hence,
1/
p

N ⇠ 1. Moreover, in small systems, typical energetic exchanges
between the system and the environment are of the order of Brownian
�uctuations (i.e. ⇠ kBT). Small systems thermodynamics provides
the precise framework that allows us to understand the physics of
small systems. Applications of small systems thermodynamics range
from molecular systems (such as nucleic acids, proteins or molecular
machines) up to self-propelled organisms (cells or active colloids).
The study of small systems and the small N regime, yet seemed

unrealisable in the dawn of statistical mechanics, has become a trending
topic due to the recent developments of micromanipulation techniques
(together with the progress of stochastic thermodynamics), such as
Single Molecule Experiments (SME).
The importance of �uctuations in ensemble theory is deeply dis-

cussed in chapter � of the present thesis.

� De�ned as the root mean square on the scale of the mean.
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Biophysics is a bridge science. It is the �eld of science that applies the
physical theories and methodologies to study biological systems. More-
over, the enterprise of biophysicists is to �nd out which are the physical
laws that govern life. In this context, the scope of biophysics spans
from molecules, to cells, tissues and even populations and evolutionary
systems.

Figure �.�: Discovery of DNA structure. James Watson and Francis Crick
showing the three-dimensional structure of DNA in ���� (left
picture). Rosalind Franklin (central picture), author of the X-Ray
crystallography image crucial for the inference of the double helix
structure of DNA. The so-called photo �� is the nickname of the
image of crystallized DNA obtained in ���� (right picture).

Since the mid-����s, some physicists were interested on applying
physical theories to biological systems [�]. The interest on biological
systems, and life in particular, started to grow up during the second half
of the ��th century, probably thanks to the inspirational book wrote in
���� by Erwin Schrödinger: What is Life? [�]. Few years later, the dou-
ble helix structure of DNAwas discovered by JamesWatson and Francis
Crick in ���� [��] by using the X-Ray di�raction images obtained by
Rosalind Franklin. Schrödinger’s book, together with the structural
resolution of the most important molecule in biology, burgeoned the
interest of late-����s scientists onto molecular biophysics.

The revolution that entailed molecular biophysics has not yet come
to its end. The boost of biochemical procedures and the development
of single molecule techniques have led to a signi�cant breakthrough in
the �eld of non-equilibrium statistical physics.
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One of the main results of the participation of physicists in biological
issues is the development of extremely precise experimental techniques.
Besides crystallographic techniques and imaging techniques [��], where
the interaction with the biological systems is pursued to be as minimal
as possible, single molecule assays emerge as one of the most powerful
techniques to study the behavior of biopolymers that are crucial for life,
such as nucleic acids or proteins. As a matter of fact, in SME the studied
systems are externally (and individually) perturbed and their response
is measured with an unprecedented accuracy, allowing experimentalists
to characterize the kinetics and energetics of individual molecules.

Laser

Cantilever

Tip

Molecule

Photodetector

Mirrors

Substrate

(a) Acoustic wavesMicrosphere

Micropipette

Molecules in parallel

Glass surface

(b)

Molecule

Optical Trap

Dielectric beads

(c) (d)

Glass surface

Magnetic
beads

Magnets

Magnetic field

Figure �.�: Schematics of single molecule devices. (a) - Atomic Force
Microscope. (b) - Acoustic Force Spectroscopy. (c) - Laser Optical
Tweezers. (d) - Magnetic Tweezers.

Among all single molecule techniques, we will focus in force spec-
troscopy techniques (they allow to exert mechanical forces on individual
molecules). As major protagonists of force techniques we highlight:
Atomic Force Microscopy (AFM), Acoustic Force Spectroscopy (AFS),
Laser Optical Tweezers (LOT) and Magnetic Tweezers (MT), all of them
allow experimentalists to manipulate single molecules. Nevertheless,
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there are some di�erences that make some techniques more suitable
than others depending on the studied system or the goal of the experi-
ment. An schematic cartoon of each experimental set-up is shown in Fig.
�.�. Now we will brie�y summarize the main features and drawbacks
of each instrument [��, ��].

• Although AFM is widespread used in imaging, it can be used as a
force spectroscopy tool. In AFM the molecules are adsorbed on a
planar surface (substrate) that can move relative to a metallic can-
tilever. The tip of the cantilever is coated with molecules that can
recognize and bind (either speci�cally or non-speci�cally) a site
of the molecules adsorbed on the surface. Therefore, by moving
the surface vertically, forces can be exerted on the molecule. The
force is measured by recording the de�ection of the cantilever
using a laser beam focused to the edge of the cantilever (see Fig.
�.�(a)). The force can be obtained in real time as a function of
the molecular extension. Cantilevers need to be soft enough to
detect typical molecular forces but, generally, AFM force resolu-
tion covers from �� to ��4 pN. Considering a sti�ness as small
as k ⇠ 10 pN/nm, the typical spatial resolution can be estimated
from Equipartition law, giving:

p
hDx2i =

p
kBT/k ⇠ 1 Å.

While AFM instruments are the perfect tool to study strong co-
valent interactions (⇠ 1 nN = 10�9 N = 103 pN), they present
several major drawbacks in single molecule studies. For instance,
the exploration of the low force regime (< 10 pN) turns out to be
di�cult. As a matter of fact, there can happen many undesired
interactions when the cantilever is approached to the surface
(this fact can be overcame by using single molecule markers). On
the other hand, cantilevers are very fragile, turning AFM one of
the most time-expensive techniques.

• AFS is based on the principle that a microsphere experiences a
force within a planar acoustic standing wave. The z-component
of the acoustic force equals to:

f = �V
∂

∂z

✓
km � kp

4
p

2 �
rp � rm

2rp + rm

rmv
2
◆

, (�.�)
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being V the volume of the microsphere; km and kp the compress-
ibility of the medium and the microsphere, respectively; and rm

and rp the density of the medium and the trapped microsphere,
respectively; p the acoustic pressure and v the acoustic velocity.
For standard polystyrene beads, the second term of Eq. (�.�) is
small as compared to the pressure term [��]. As a consequence,
the force is dominated by the pressure gradient, driving the mi-
crospheres towards acoustic pressure nodes. The typical applied
forces range from � - ��2 pN. On the other hand, the spatial �uc-
tuations are dominated by the image sampling bandwidth and
they are around �� nm [��].

AFS permits high-throughput single molecule measurements (i.e.
measure several molecules in parallel). It means that it is possible
to measure hundreds of molecules at a time. Additionally, AFS
is a relative simple technique allowing a straightforward imple-
mentation in lab-on-a-chip devices. It is important to mention,
however, that the spatial resolution is poorer as compared to
other single molecule techniques and speci�c limitations due to
image processing methods (i.e. bandwidth limitation, etc.). The
temporal resolution strongly depends on the wave frequencies,
on the viscosity of the surrounding medium and the number of
tracked beads. In Fig. �.�(b) we show a schematic cartoon of
the experimental construction of AFS, emphasizing its paralleling
capabilities.

• The physical principle behind LOT is the optical gradient force. It
is created by the de�ection of a light beam focused on an object
with an index of refraction higher than the one of the surrounding
medium (see section �.� for further details). On the one hand, a
biochemicallymodi�edmicron-sized bead is captured in the focus
of an optical trap. On the other hand, another bead containing in
its surface amolecular construct is held in the tip of amicropipette
by air suction�. Both beads are speci�cally biochemically labelled
so that the molecular construct form a tether between the two
beads. The construction contains the single molecule that will be
studied and another pair of molecules that act as spacers between

� Although it is possible to implement a second optical trap, our description stands for
the single trap construction.
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the beads, as can be seen in Fig. �.�(c). The usual force range
in LOT is ���1 - ��2 pN. Such range depends, essentially, on two
factors: the bead size and the laser power. The spatial resolution is
dominated by thermal �uctuations but since the typical sti�ness
of LOT is about kLOT ⇠ 10�2 pN/nm 10�3 · kAFM it fairly reaches
nanometric precision.

The main advantage of LOT relies on their remarkable force
precision (typically ⇠ 10�1 pN) and the possibility, depend-
ing on the setup, of a direct measurement of the force (without
post-processing techniques). This fact, combined with the sub-
milisecond temporal resolution, turns LOT into one of the most
versatile single molecule techniques. The disadvantage of LOT is
the complicated setup (as well as the optical aligning) and the
di�culty of carrying out high-throughput measurements.

• MT are based on the physical phenomenon that a superparamag-
netic bead becomes magnetized when subjected to an external
magnetic �eld B. And the force that the magnetized bead feels is
proportional to the magnetic �eld gradient (see section �.� for
a detailed description). Molecular extensions are determined by
image analysis and the force is determined by equipartition law:
f = kBT

x

hDx2i , being x the molecular extension and hDx
2i the

average extension �uctuations (which depend on the molecule).
The sti�ness of magnetic traps are on the order of ���4 pN/nm,
allowing sub-piconewton exploration and controlled force mea-
surements. Typical operating forces cover: 10�2 � 102 pN.

An important feature of MT is, besides its low force capabilities,
the possibility of exert torques on molecules. This fact allows
to study elastic and torsional properties of DNA and molecular
motors. Like AFS, MT allows for high-throughput measurements.
Yet, again, the main drawback of MT technique relies on the
fact that measurements are limited by the acquisition rate of the
tracked elements.

As a �nal summary, in Table �.� we summarize the main characteris-
tics of each experimental technique. Parameters were obtained from
Refs. [��, ��, ��].
We have brie�y mentioned four of the single-molecule techniques

capable of exerting forces on molecules (other techniques are be related
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AFM AFS LOT MT

Force range [pN] ��1 - ��4 ��1 - ��3 ���1 - ��2 ���2 - ��1

Spatial resolution [nm] �.� �� � �
Sti�ness [pN/nm] ��1 - ��5 ���2 ���2 - ��0 ���4

Temporal resolution [s] ���3 ���2 ���4 ���1 - ���3

Paralleling? 7 3 7 3

Table �.�: Single molecule techniques. Comparison of single molecule
force spectroscopy techniques. 3= yes, 7= no

to �uorescence and holographic methods, just to mention a few). In
combination, the four force spectroscopy methods that we highlighted,
form the perfect lineup to face a broad range of molecular problems
in a wide force regime (see Fig. �.�), as well as the exploration of
the conditions where thermal �uctuations really matter and new non-
equilibrium physics is still to be discovered.
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Figure �.�: Force range. Illustration of SME force range compared to di�erent
examples of forces at di�erent orders of magnitude.
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EXPER IMEN TAL SET UP

This thesis addresses several questions in the �eld of non-equilibrium
statistical mechanics. As we already discussed in chapter �, SME are the
perfect playground for studying non-equilibrium phenomena.

The present chapter aims to introduce, from a biological and chemical
perspective, the biological molecules that are employed as physical
systems (i.e. nucleic acids) and to perform a detailed description of
the single molecule devices (i.e. LOT and MT), covering from their
physical principles, the experimental set-up and their typical calibration
procedures.

�.� ������� �����

The term nucleic acid is the overall name for deoxyribonucleic acid
(DNA) and ribonucleic acid (RNA). Among the most important existing
macromolecules, nucleic acids are essential for life.

They are called nucleic acids for two reasons: �rst, they were discov-
ered in the nucleus of white blood cells and they present some acidic
properties. The discovery of nucleic acids was done by Friedrich Mi-
escher (���� – ����) in ����, who called them nuclein [��]. He realized
that the molecules he discovered, were phosphate rich and quite similar
to proteins [��]. Miescher’s discovery was done in a period where biol-
ogy shifted its attention focus from organisms to cells. Indeed, nuclein
was found a few years after Charles R. Darwin (���� – ����) published
his famous book On the Origin of the Species by Means of Natural Se-
lection [��]. Miescher’s �ndings paved the way to relate inheritance
to DNA. Richard Altmann (���� – ����) renamed nucleins to nucleic
acids after he discovered their acidic properties in ����. Nevertheless,
the chemical and biological di�erences between DNA and RNA were
not well established until the �rst part of the ��th century.

Nowadays we know that nucleic acids are essential to store, copy and
transmit genetic information. They are polymeric molecules formed
by nucleotides, which are macromolecular compounds comprising a

��
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Figure �.�: Components of nucleic acids. Chemical structure of a nu-
cleotide, formed by a phosphate group plus a �-carbon sugar (pen-
tose) and a nitrogenous base.

nitrogenous base (also called nucleobase), pentose (i.e. a �ve-carbon
sugar), and a phosphate group. The sugar can be either a deoxyribose
in DNA or a ribose in RNA. There exist �ve nitrogenous bases: adenine
(A), cytosine (C), guanine (G), thymine (T) and uracil (U). While A,C,G
are common in DNA and RNA, T is only found in DNA and U is only
found in RNA. A and G nucleobases are classi�ed as purines while C,
U, T bases are called pyrimidines (Fig. �.�).
Both in DNA and RNA, individual nucleotides link each other by a

phosphodiester bond from the �’ sugar carbon of one nucleotide to the �’
sugar carbon of the following nucleotide. The prime notation indicates
the directionality of the molecule. Typically, the carbon linked to the
nucleobase is labelled as �’ while the rest of the carbons are labelled as
�’, �’, etc., increasing from clockwise direction starting from the �’ (see
scheme in Fig. �.�).

As can be seen in Fig. �.� the phosphodiester bond takes place in the
phosphate group of each nucleotide. This bond is formed in the process
of DNA synthesis by the DNA polymerase enzyme [��].
Regarding the structure of nucleic acids, it is traditionally ranked

into four levels [��]:

i. The primary structure, corresponds to the nucleotide (for the
case of nucleic acids) or aminoacid sequence (for the case of
proteins).
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ii. The secondary structure, refers to the structural motifs.

iii. The tertiary structure, indicates the three-dimensional struc-
ture of the molecule.

iv. The quaternary structure, corresponds to the assembly of dif-
ferent tertiary structures.

�.�.� Deoxyribonucleic acid (DNA)

Eukaryotes� store the major part of the DNA inside the cell nucleus and
some part in the mitochondria. DNA, together with packaging proteins
(histones), form structures called chromosomes. They are responsible of
carrying the major part of the genetic information of organisms.

The three-dimensional structure (i.e. the tertiary structure) of DNA
was �nally resolved in ���� by James Watson and Francis Crick. They

� Organisms whose cells contain a nucleus, mitochondria and an endomembrane sys-
tem, dividing the cell into functional compartments (such as the Golgi apparatus and
chloroplasts in the case of some plants and algae).
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showed, thanks to the crucial work of Rosalind Franklin and Maurice
Wilkins, how the DNA forms a right-handed helix keeping the nega-
tively charged phosphate backbone in the outer part of the helix (major
groove). It is formed by two individual antiparallel strands (i.e. one
strand is oriented in the �’! �’ direction whereas the other runs in
the �’! �’ direction). Bases are located in the inner part of the helix.
Therefore, DNA structure physically protects the nucleobases from the
e�ects of the outer environment. Pairing between bases follow the
complementary rules (see Fig. �.�):

• A interacts with T via two hydrogen bonds: A=T

• C interacts with G via three hydrogen bonds: G⌘G

Bases that follow the previous pairing rules are coined as canonical or
Watson-Crick basepairs. Nevertheless, there can happen other possible
non-canonical pairings, such as Hoogsteen or Wobble bonds (for details
see Ref. [��]). Despite the weakness of hydrogen bonds (for DNA they
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are around 2� 3 kcal/mol (3.4� 5.1 kBT) [��]), DNA is a quite stable
molecule. This is due to the fact that two consecutive bases are able
to stack on one another near the center of the helix. Therefore, the
cooperative e�ect of all stacking contributions yield a remarkably stable
molecule.
A schematic cartoon of the three-dimensional structure of a right-

handed DNA helix is shown in Fig. �.�. The size of the helix diameter
is � nm, the axial rise (distance between consecutive bases) is �.�� nm
and the helix pitch equals to �.�� nm (i.e. �� basepairs per turn). This is
the standard structure of DNA and it is called the B-form. Nevertheless,
there are other helical structures, such as the A-form (right-handed
helix with an axial rise of �.�� nm and �� basepairs per helix turn)
and the Z-form (left-handed double helix with a distance of �.�� nm
between consecutive bases and �� basepairs per turn), that are formed
in certain conditions.

�.�.� Ribonucleic acid (RNA)

Structurally the ribonucleic acid (RNA) shares several features with
DNA, however it also presents substantial di�erences. For instance,
whereas DNA is usually found in the double stranded conformation
forming long molecules, RNA molecules are much shorter and typically
single stranded. Despite of that, two single-stranded RNA molecules
can ’hybridize’. That is, spontaneously join together to form a double-
helical three-dimensional structure [��]. This fact was discovered by
Alexander Rich and David R. Davies in ����, only three years after
the resolution of DNA structure by Watson and Crick. On the other
hand, ribonucleotides are formed by a pentose sugar containing ribose,
a phosphate backbone and a nucleobase (A, G, C or U).

RNA is chemically more reactive as compared to DNA. Indeed, RNA
is essentially involved in short-term functions rather than storing long-
term information as DNA. It is mainly involved in protein synthesis
and regulatory processes. It is present in eukaryotes and prokaryote
and in some viruses. The importance of RNA in protein synthesis was
discovered by Severo Ochoa (���� – ����). There are three main types
of RNA and all of them are involved in protein synthesis:
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• Messenger RNA (mRNA) transfers the information coming from
the DNA to a ribosome� and acts as a template for the protein
that will be synthesized.

• Ribosomal RNA (rRNA) is the major constituent of ribosomes.

• Transfer RNA (tRNA) is a small RNA molecule that inserts the
aminoacids in the correct location of the protein that is being
synthesized.

Moreover, many small RNAs have been discovered during the past
years. From RNA molecules that parcticipate in gene regulation, such
as microRNAs (miRNA) or small interfering RNAs (siRNA), to non-
coding RNA molcules, like piwi-interacting RNAs (piRNAs) or RNA
thermosensors.

�.� ������� ��������

Optics and mechanics are the two oldest scienti�c disciplines. The study
of light was laid in the ancient Greece. Indeed the book Optics by Euclid
(��� – ��� B.C.) collects all the existing knowledge, to that time, about
the geometry of vision (including re�ection and di�usion). Euclid’s
work remained silent until Ibn al-Haytham (Alhazen) (��� – ����), who
was also known as the “father of modern optics”, performed a large
set of experiments and observations on light re�ection and refraction
e�ects using lenses and mirrors. Al-Haytham had a great in�uence on
the later development of modern optics.
The invention of optical microscopes by Zacharias Janssen (���� –

����) in ���� turned out to be a tipping-point in science. The use of
microscopes opened up a new scienti�c dimension, in particular, for
biology. It is worthwhile to mention the works of Robert Hooke (���� –
����), who, using a microscope, was able to directly observe cells for
the �rst time. Later, Anton van Leeuwenhoek (���� – ����) popularised
the use of microscopes to view biological structures.

Although being well-known for developing the �eld of classical me-
chanics and, together with Leibniz, for developing the in�nitesimal
calculus, Isaac Newton (���� – ����) also made outstanding contribu-
tions in optics. As a matter of fact, he collected the existing technology

� Macromolecular complexes of RNA and proteins
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on lenses, prisms, mirrors, telescopes and microscopes. Newton showed
that white light is formed by the mixture of di�erent colors with di�er-
ent refractivity. Contemporary to Newton, Christiaan Huygens (����
– ����) proposed that light is actually a wave, becoming his theory of
light a mainstream topic in physics. Huygens’ wave theory experienced
a boost thanks to the experimental proofs made by Thomas Young (����
– ����) and Augustin Fresnel (���� - ����). Optics was later uni�ed to
electromagnetism by James Clerk Maxwell (���� – ����). Maxwell’s
equations laid the foundations of modern electrodynamics.
The ultimate boost in optics took place in ����, when Max Planck

�nally described the black body radiation showing that the energy
exchanges between light and matter only occurs for discrete packages
of energy equal to: hn (called quanta), being h the Planck constant.
Albert Einstein (���� – ����) proposed the existence of light quanta,
the so-called photons. The energy of a single photon is given by the
Planck–Einstein relation, which reads as:

E = hn , (�.�)

where h is the Planck constant and n is the frequency of the photon.
Regardless of having zero mass, photons are full-�edged particles. In-
deed, the linear momentum p of a photon can be obtained by combining
the Planck–Einstein equation (Eq. (�.�)) with the following relativistic
relation:

E
2 = m

2
c

4 + p
2
c

2 . (�.�)

Being m the mass and c the speed of light. Hence, setting m = 0, the
energy of a photon can be related to its energy as:

E = pc . (�.�)

Therefore, by combining Eq. (�.�) and (�.�), the linear momentum of
a photon p yields:

p =
h

l
=

hn

c
. (�.�)
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Einstein’s predictions were experimentally veri�ed by Arthur Comp-
ton (���� - ����) in ����. Since then, thanks to the development of
quantum mechanics, we know that undulatory and corpuscular proper-
ties of light will everlastingly walk hand by hand.

The full comprehension of the interaction between light and matter
yielded the development of quantum optics. This brand new �eld of
science aroused remarkable interest thanks to the inventions of the
maser (acronym for Microwave Ampli�cation by Stimulated Emission
of Radiation) in ���� and the laser (acronym for Light Ampli�cation
by Stimulated Emission of Radiation) in ����. The physical principle
underlying both devices is the phenomenon of stimulated emission,
stated by Einstein in ����. Laser rapidly emerged as a perfect tool for
addressing new and challenging physical problems and for designing
sophisticated instrumental devices.

�.�.� Principles of optical trapping

As we introduced, if a ray of light is composed by N photons, carries a
linear momentum proportional to the energy of each photon as:

p = N
hn

c
ûp , (�.�)

where ûp is a unit vector that indicates the direction of the linear
momentum (i.e. parallel to the direction of propagation of the ray). The
conservation of momentum is the physical principle of optical trapping.
Let us consider an incoming ray of light from a laser which has a

Gaussian intensity pro�le� and it interacts with a transparent bead.
When the laser beam reaches the object, the light rays are de�ected
according to the laws of re�ection and refraction. There are two reasons
that explain the change of the linear momentum in Eq. (�.�): �rst,
according to the Snell law, rays are refracted, entailing a change of ûp;
second, since there is also re�ection on the bead interfaces, the number
of incident photons on a surface is not equal to the number of exiting
photons. Both ingredients may yield a substantial change in the linear
momentum of light.

� Roughly speaking, the intensity of the light is higher at the center of the beam than at
the edges.
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Figure �.�: E�ect of gradient and scattering forces. Ray optics sketch of
the e�ect of scattering (Fscatt) and gradient forces (Fgrad) when
a Gaussian laser beam interacts with a transparent bead. In the
situation depicted in the left �gure, gradient force pulls the bead
towards the center of the laser beam, whereas in the situation
corresponding to the left �gure, there is no gradient force.

In particular, the resultant force (~Ftotal) from all such rays can be
separated into two components: the scattering force and the gradient
force. The scattering force points in the same direction of the incident
light and tends to push the bead away the light source. On the other
hand, the scattering force is due to the fact that the light near the
center of the Gaussian beam is more intense than the light of the edges.
Therefore, this generates an extra component for the change of the
linear momentum of the bead that points towards the center of the
beam. Indeed, gradient force is a restoring force that pulls the bead
to the most intense region of the beam. In Fig. �.� there are shown
two schematic depictions of the forces that undergoes a bead that is
displaced from the beam center (left �gure) and one located in the beam
center (right �gure). Whilst in the �rst case the gradient force is intense
and tends to move the bead towards the center, in the second situation
the gradient force does not play a signi�cant role. Therefore the bead
only feels the e�ect of the scattering force.
Forces due to radiation are small and their e�ects are only rele-

vant in microscopic scales. In order to illustrate this, let us consider a
macroscopic mirror which is illuminated by a regular ��W light bulb.
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Assuming all light rays are parallel and interact perpendicularly to the
surface of the mirror, the net force due on the mirror to total re�ection
can be obtained from Eq. (�.�) as:

F =
dp

dt
=

2
c

W , (�.�)

where W is the power of the light and the 2 prefactor takes into
account for the fact that the net force is due to the incident and re�ected
photons by the mirror. According to �.� the force that the mirror feels is
of order 10�7 N= 100 nN. Hence, radiation-due forces are only sensitive
for microscopic objects (with a mass lower than, approximately, 10�2

µg).
The relevance of radiation pressure for tiny objects was noticed, for

the �rst time, by Arthur Ashkin in ���� [��]. He experimentally tested
the possibility of accelerating micron-sized particles (of a radius of
�.�� µm) by radiation pressure forces using a ���.� nm wavelength
laser with milliwatt power. Additionally, a few years later, in other
experiments he demonstrated the possibility of trapping and levitating
micrometric objects (for a thorough review see [��]).

Later, in ����, Ashkin and collaborators used a lens in order to focus
a ���.� nm wavelength laser, showing how an optical trap emerges
near to the focusing point [��]. As a matter of fact, they were able to
trap particles with sizes that were four order of magnitudes di�erent
(from �� nm up to �� µm). They realized that traditional geometrical
optics does not properly describe the optical trapping phenomenon
when the size (diameter) of the object is similar (or smaller) to the
wavelength of the used light�. Ashkin’s groundbreaking invention was
called optical tweezers and triggered a revolution in biophysics [��] and
nanotechnology [��]. Arthur Ashkin was awarded the ���� Nobel Prize
in Physics for his invention of optical tweezers.

Since the typical working forces of optical tweezers are in the order
of piconewtons (i.e. 10�12 N) and they are designed with the capability
of measuring nanometric displacements, optical tweezers have became
the perfect tool to explore weak molecular forces.

� For a detailed discussion of the existing regimes: the Mie regime (i.e. the size of the
objects is larger than the light wavelength) and the Rayleigh regime (the size of the
objects is smaller than the light wavelength) check Refs. [��, ��]
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�.�.� The miniTweezers setup

All the experimental results regarding LOT data of this thesis were ob-
tained using the miniTweezers optical tweezers setup. It was designed
by Steve B. Smith and Carlos Bustamante in ���� [��]. MiniTweezers
allow for a direct force measurements, resulting in a clear advantage
as compared to most LOT setups. Moreover, miniTweezers is an instru-
ment capable of reaching piconewtons, sub-nanometer and millisecond
resolution.
MiniTweezers consist of two counter-propagating ��� nm wave-

length laser beams focused into a spot located inside a micro�uidics
chamber. The beams are generated by two ���mW laser diodes and the
focusing is done by means of two high numerical aperture objective
lenses (Olympus UPlanSApo ��x/�.��). The location of the optical trap,
and hence the de�ection of the laser beams, is set by means of two
piezoelectric actuators (�ber wigglers) located on the tip of the laser
�bers. A simpli�ed scheme of the miniTweezers instrument is shown in
Fig. �.�. In what follows, we brie�y describe the optical path followed
by one laser (the other laser follows the same path but in opposite
direction) and the details of the micro�uidics chamber.

Optical path prior to entering the microfluidics chamber

The light emitted by the ��� nm wavelength laser diode is directed
through a single mode optical �ber. The laser position is controlled
by a �ber wiggler capable of reaching high response frequencies (> �
kHz) and a position range of, approximately, �� µm. As soon as the
laser exits the optical �ber, a ⇠ � % of the light is re�ected by means of
a pellicle mirror and sent to a position-photo sensitive detector (PSD)
that measures the position of the optical trap. The remaining ⇠ ��
% of the light is collimated with a lens before it reaches a polarizing
beam splitter (PBS). Thanks to the PBS, the laser beam is completely
re�ected and linearly polarized. Afterwards, the beam passes through
a quarter-wave plate, becoming now circularly polarized. Then, the
beam is focused by means of a microscope objective lens to a focal
point located inside a micro�uidics chamber (where the optical trap is
generated).
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Figure �.�: MiniTweezers schematics The optical path of the counter prop-
agating laser beams are shown as blue and red lines. Images of
the micro�uidics chamber are obtained using a CCD camera, for
which a blue LED is used as the source of illumination in a Köhler
con�guration.

Optical path a�er exiting the microfluidics chamber

After coming out from the micro�uidics chamber, the laser light is
collected by a second microscope objective and it is immediately re-
stored to linear polarization conditions thanks to the action of another
quarter-wave plate. The linearly polarized beam passes through a PBS
and it is entirely transmitted to a second PBS that changes the direction
of propagation of the beam. After traversing a relay lens it is redirected
to a �nal PBS that splits the beam into two perpendicular beams. The
laser beam that has not changed its direction of propagation is �nally
directed to a PSD that directly measures the (x, y) components of the
force exerted by the optical trap. The z�force is obtained by measuring,
by means of a PSD, the diameter of the laser beam.

Microfluidics chamber

The micro�uidics chamber is the physical site at which single-molecule
measurements are actually done. It is inserted between the two micro-
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scope objectives (see Fig. �.�). A sketch of the internal setup of the
micro�uidics chamber can be seen in Fig. �.�.

Waste

Micropipette

Dispenser tubesBeads type 1

Beads type 2

Buffer

Experimental area

Figure �.�: Schematics of the micro�uidics chamber. It is composed by
three micro�uidic channels. The two lateral channels are conected
to the central one by two glass dispenser tubes of �.���(�) mm of
internal diameter. Experiments are performed in the dashed blue
region, close to the tip of the micropipette.

Micro�uidics chambers are handmade by joining two glass sur-
faces (coverslips) and a plastic para�n �lm (para�lm) layer forming
a sandwich-like structure. The para�lm (grey zone of Fig. �.�) is cut
using a laser in order to create the three-channel shape inner structure
of the micro�uidics chamber. The lateral channels are connected to
the central channel using two glass dispenser tubes (Garner Glass CO.)
with an outer diameter of 0.10 ± 0.01 mm and an inner diameter of
0.040 ± 0.006 mm. A glass pipette with a tip of size ⇠ µ is made using
a pipette puller. The glass micropipette is manually inserted before
glueing both glass coverslips.

In the central channel it is �owed bu�er�, while in the lateral channels
it is �own a mixture of bu�er and beads. In one of the lateral channels it
is �owed a mixture of bu�er and beads type � (e.g. streptavidin-coated
beads). Part of the beads eventually end in the central channel, where
one of them is captured by the optical trap and later lead to the tip of
the micropipette, where it is held by air suction. On the other hand,
in the other lateral channel, it is �owed a mixture of beads type � (e.g.
antidigoxigenin-coated beads) with the molecule of interest attached
to its surface and bu�er. Some of these beads reach the central channel
through the dispenser tube (Fig. �.�) and one is captured by the optical
trap and, subsequently, approached to the experimental area located

� Bu�er depends on the experiment.
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close to the tip of the pipette by moving the trap. Experiments are
carried out in the experimental area of Fig. �.�.

It is important to recall that the optical trap is generated in the central
region of the micro�uidics chamber, far enough from the surfaces in
order to avoid undesired hydrodynamic e�ects on the trapped objects.

Force measurement using miniTweezers

The main advantage of miniTweezers instrument is the possibility
of directly measuring the mechanical force by means of the linear
momentum of light. Indeed, the linear momentum of the light that
forms the optical trap is measured by means of PSD detectors. PSD
values are related to the real mechanical force f (plus a force o�set) in
the x (y) direction through:

fx(y) = Cx(y)PSDx(y) , (�.�)

where Cx(y) is a calibration factor and PSDx(y) is the sum of the
PSD values of both lasers (in analog to digital units so that the product
Cx(y)PSDx(y) equals a force). The calibration factors Cx(y) are indepen-
dent of the performed experiment, therefore their precise measurement
is done by applying a well-known force on a trapped bead and mea-
suring the PSD response. In what follows we brie�y describe several
force calibration methods that are typically used in the miniTweezers
instrument.

• Stokes’ law relates the drag force fd that undergoes a small
spherical object (of radius R) moving through a �uid with a shear
viscosity µ at constant speed v:

fd = gv = 6pµRv , (�.�)

being g = 6pµR the viscosity coe�cient. Stokes’ law is valid
in laminar �ows, for homogeneous objects and in absence of
hydrodynamic interactions. Hence, using distilled water (whose
shear viscosity has been accurately measured) and particles with
a known radius, by moving the micro�uidics chamber at velocity
v, it is possible to use Eq. (�.�) to obtain the mechanical force as
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Figure �.�: Force calibration methods. (a) - Stokes’ law calibration. Drag
force (obtained using Eq. (�.�)) as a function of PSD values. Orange
squares are experimental measurements and the blue solid line
a linear �t yielding the calibration factor. (b) - Overstretching
transition of a l-DNA molecule. It occurs around �� pN. Previous
�gures have been obtained from Ref. [��]. (c) - Unfolding-folding
cycles on CD� DNA at di�erent pulling speeds. Coexistence force
( fc) is around �� pN.

a function of v. Then, by considering the linear relation between
the force and the PSD values (i.e. Eq. (�.�)), the calibration factors
Cx(y) can be �nally obtained, as can be seen in Fig. �.�(a).

• The overstretching transition of a B-DNA molecule is com-
monly accepted to occur at �� - �� pN at room temperature and
��� mM NaCl [��] (see Fig. �.�(b)). It is attributed to a confor-
mational change of the DNA molecule, where it changes from
the B-DNA conformation to the S-DNA conformation (see Sec.
�.�.�). As a result at �� pN, with a little increase in the force, the
double-stranded DNA (dsDNA) extension is increased by around
�.� times its contour length. Therefore, due to the reproducibility
of this phenomenon, the force value at which the overstretching
transition occurs is usually taken as a referential value.

• The coexistence force of the �� basepairs CD�-DNAmolecule
falls between �� - �� pN at room temperature and �M NaCl [��]
(see Fig. �.�(c)). The coexistence force corresponds to the force
value at which the molecule can be found in the folded state or
in the folded state with equal probability. This procedure has
been recently developed in our lab and due its reproducibility
has become a benchmark when calibrating miniTweezers.
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These three methods are currently the most used when calibrating
miniTweezers due to their straightforward implementation and the
possibility of performing cross-check between them.

Sti�ness of miniTweezers

A key parameter in optical tweezers instruments is the trap rigidity or
trap sti�ness. For the usual range of forces or small displacements, the
optical trap behaves as an harmonic potential (Uot = 1

2 kbx
2). Therefore,

in the overdamped limit, the Langevin equation that governs the motion
of a Brownian particle (i.e. the bead) in a harmonic potential is:

g
dx

dt
= �kbx + h(t) , (�.�)

where x is the relative distance of the position of the bead to the
center of the optical trap (where the force is zero), kb is the sti�ness of
the optical trap and h(t) is the stochastic force acting on the bead due
to Brownian �uctuations. By performing a Fourier transform on the
force correlation function obtained by solving Eq. (�.�), the so-called
power spectrum of the force Sf (n) is obtained, yielding:

Sf (n) =
kBT

2p2g

k
2
b

n2 + n2
c

, (�.��)

where nc is the so-called corner frequency (nc = kb/(2pg)). The
trap sti�ness can be obtained as follows: �rst, record the Brownian-
induced displacements of a trapped bead conducting high bandwidth
measurements (e.g. �� kHz). Next, compute the power spectrum by
using a fast Fourier transform algorithm (FFT) on the force correlation
function. Finally, using a Levenberg-Marquadt algorithm �t the value
of kb using Eq. (�.��). Figure �.� shows the power spectrum of a
bead captured in the optical trap at zero force and a �t to Eq. (�.��).
For the case shown, we get: kb = 0.079 ± 0.010 pN/nm and g =
(3.1 ± 0.1)⇥ 10�5 pN·s/nm.

�.� �������� ��������

Force spectroscopy techniques are, nowadays, one of the most pow-
erful approaches to study the behavior of single molecules, macro-
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Figure �.�: Power spectrum of a bead in the optical trap at zero force.
Raw data shown as blue lines, the exponential average are the red
circles and the �t to Eq. (�.��) is the black solid line.

molecular assemblies and cells, with applicable results in the �eld of
non-equilibrium statistical physics or biophysics. Soon thereafter the
invention of optical tweezers, MT were developed to manipulate para-
magnetic objects using magnetic �eld gradients.

The �rst MT devices were developed in the ����s and their usefulness
was originally similar to the then-emerging LOT instruments. As LOT
they allow applying piconewton forces and measuring displacements
in the scale of the nanometer. First MT assays provided insights on the
elastic response of DNA [��, ��]. In MT setup, a superparamagnetic
bead is held inside a magnetic �eld gradient generated by a pair of
permanent magnets. Then, by controlling the position of the magnets’
stage, forces can be directly modulated. Therefore, MT naturally operate
in the force controlled scheme, without a force feedback.

�.�.� Physical principles of magnetic tweezers

The key ingredients of MT are the use of superparamagnetic beads and
magnetic �eld gradients. In what follows, we brie�y describe each
element.
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Superparamagnetism

Superparamagnetism is a form of magnetism that displays some fea-
tures of ferromagnetism and paramagnetism appearing in su�ciently
small ferromagnetic particles. Usually, the lowest energy state of fer-
romagnetic samples (in absence of an external �eld) corresponds to
the demagnetized state. This is not the case of small magnetic systems,
where the energetic cost to form domain walls is larger than volume
energies�, therefore they will present no domain walls, behaving like a
small permanent magnet or a single big magnetic moment (sum of all
the individual magnetic moments carried by the atoms of the nanopar-
ticle). In order to illustrate this fact, let us consider two of the possible
magnetization con�gurations for a small spherical ferromagnetic parti-
cle shown in Fig. �.�.

(a) (b)

Figure �.�: Two possible con�gurations of a spherical ferromagnetic
particle. Arrows indicate the direction of the magnetic moment.
Vertical line of right panel is a Bloch wall, creating two magnetic
domains inside the particle. Example reproduced from Ref. [��].

The energy of the (a)-con�guration, formed by a single magnetic
domain equals to:

E(a) = �µ0

Z

V

d
3
r M · Ha �

µ0

2

Z

V

d
3
r M · Hd , (�.��)

where µ0 is themagnetic permeability of free space, M themagnetiza-
tion, Ha the applied magnetic �eld and Hd the so-called demagnetizing
�eld (i.e. the �eld generated by the own magnetization of the magnet).
We note that both integrals are done over the volume V of the magnet.
The �rst term of Eq. (�.��) is the Zeeman energy (i.e. the energy of a

� Surface energies ⇠ (size)2 and volume energies ⇠ (size)3.
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magnetized system inside an external �eld), whereas the second term
is the energy due to the own magnetic �eld of the system (magneto-
static energy or dipolar energy). Considering a uniformly magnetized
ferromagnetic sphere of radius R, the demagnetizing �elds is equal to
Hd = �M/3 [��]. Moreover, when there is no external magnetic �eld,
Ha = 0, Eq. (�.��) becomes:

E(a) =
2
9

µ0pM
2
R

3 . (�.��)

On the other hand, the energy of the (b)-con�guration will have two
contributions. First, it will contain a magnetostatic-like term yet taking
into account that every domain occupies one half of the total volume
of the magnet. Finally, it will have an additional contribution due to
the formation of the domain wall (see Fig. �.�(b)). Unlike magneto-
static energies, domain wall formation energies are proportional to the
magnets’ surface. Hence, putting all the pieces together, the energy
yields:

E(b) =
1
9

µ0pM
2
R

3 + pR
2e , (�.��)

where the term e is the energy of formation of a vertical domain wall
per unit area. For su�ciently small particles, the (a)-con�guration is
more favourable than the (b)-con�guration. The critical radius Rc can
be found by investigating the regime where E(a) < E(b), obtaining:

Rc =
9e

µ0M2 . (�.��)

Then, for particle radius R < Rc, the (a)-con�guration becomes
more stable than the (b)-con�guration. Considering e ⇠ 10�2 Jm�2

and µ0M ⇠ � T, the critical radius is around �.� µm. We emphasize
that the critical size can be tuned by using di�erent magnetic materials.
Another key feature of superparamagnetism is the fact that the av-

erage magnetization of superparamagnetic beads is zero. Therefore,
by terms of an external magnetic �eld they can become magnetized,
as it happens in a paramagnetic system�. This fact can be understood

� However, their magnetic susceptibility is much higher as compared to typical param-
agnetic systems.
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by considering the characteristic time t at which magnetic moments
spontaneously �ip due to thermal �uctuations. It is given by the Néel
relaxation time, tN:

tN = t0 exp
✓

KV

kBT

◆
, (�.��)

where t0 is the attempt time that is material-dependent, V is the
volume and K the so-called anisotropy constant, being the product KV

the energy barrier associated with the change in the magnetization.
For bulk systems, the exponential dependence on the volume makes
the �ipping probability negligible as compared to small particles. By
setting t0 ⇠ 10�9 s and considering small particles where the product
KV ⌧ kBT, the relaxation time can be as small as few nanoseconds.
Therefore, for typical measurement times t (around milliseconds) we
have t� tN. Hence, the magnetization will �ip several times during
the measurement (i.e. the average magnetization will be zero), but not
in the presence of an external �eld.

Magnetic �elds

Now we will consider the e�ects of a magnetic �eld B when a super-
paramagnetic (or paramagnetic) bead is placed inside the �eld. The
bead will become magnetized with a net magnetic moment equal to
m(B) and its energy due to the presence of the magnetic �eld will be
[��]:

U = �1
2

m(B) · B . (�.��)

Therefore, the bead will experience a force that is given by the gradi-
ent of the energy with a minus sign:

f = �rU =
1
2
r (m(B) · B) . (�.��)

Besides, the bead not only feels a force that points in the same direc-
tion than the gradient of the magnetic �eld, but also a torque P given
by:

P = m(B)⇥ B . (�.��)
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The magnetization of the beads as a function of the applied �eld is
well described by the Langevin function:

M(B) = Msat.

 
coth

✓
B

B0

◆
� 1

B

B0

!
, (�.��)

where Msat. is the saturation magnetization. For low �elds, the
magnetization of the beads is linear with the applied �eld, yielding a
force: f µ r|B|2. However, for high enough �elds the magnetization
quickly tends to the saturation value, Msat..
On the other hand, the magnetic �eld of a permanent magnet (like

the ones used in the MT setup) can be computed using the Biot-Savart
law using the method of equivalent currents[��]:

B(r) =
µ0

4p

Z
Iequi

d̂l⇥ r̂

r2 , (�.��)

where Iequi. = M⇥ n̂, being n̂ the surface normal unitary vector, l̂

a unit vector pointing in the direction of the equivalent current (for
details see Ref. [��]) and r̂ the unitary vector that points from the
equivalent current to the point at which the magnetic �eld is calculated.
We note that Eq. (�.��) cannot be analytically solved in general since it
depends on the magnet geometry.

�.�.� The picoTwist setup

The experiments involving MT throughout this thesis were done using
a picoTwist instrument developed by Gosse and Croquette in ���� [��].
PicoTwist is a very low drift and robust MT apparatus. Additionally,
picoTwist is easily portable and plug-and-play. Unlike optical tweezers,
where temperature control is harder and needs for a speci�c setup
[��], a single Peltier system allows for direct temperature control in
picoTwist. Also, it allows the measurement of up to ��� molecules
in parallel. In addition, since picoTwist uses a pair of magnets, it is
possible to exert torques on individual molecules, becoming the perfect
tool for the study of molecular motors that modify the DNA topology
(such as topoisomerases) or the coiling of biological molecules.

A schematic illustration of picoTwist is shown in Fig. �.��. The
sample (magnetic bead + molecule) is �owed, together with reagents,
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Figure �.��: Schematic diagram of picoTwist. The superparmagnetic
bead(s) is(are) located within a strong magnetic �eld gradient.
A reference bead is �xed at the surface via non-speci�c inter-
actions. In order to measure the position of the pulled beads, a
di�erential measurement with the �xed bead is done to reduce
drift e�ects. Magnets can be either translated or rotated by means
of piezoelectric actuators that are externally controlled. The com-
puter processes the images obtained by the CCD camera in order
to get the positions of the beads in real time via an analysis of the
di�raction rings. A LED illuminates the sample through the gap
between the magnets.

inside a monochannel micro�uidics chamber. In what follows we brie�y
describe the individual parts of the setup.

Magnetic trap and force measurement

The magnetic trap is generated by a pair of small rare earth permanent
magnets (NdFeB). While the generated magnetic �eld is horizontal, the
magnetic �eld gradient is vertical and so the force, according to Eq.
(�.��). With picoTwist we are able to exert forces down to �� fN up
to ⇠ �� pN [��] with standard ⇠ � µm beads (or ⇠ ��� pN using �.�
µm beads). The maximum achievable force can be increased by using
bigger beads.
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Unlike the employed LOT instrument in this thesis (miniTweezers,
described in Sec. �.�.�), picoTwist does not allow of a direct measure-
ment of the mechanical force. This is due to the intrinsic variability
in the magnetization of commercial beads [��]. Therefore, the force
measurement is done by relating the thermal motion of the bead at
several positions of the magnets and constructing an empirical law for
the force as a function of the magnets’ position, f (zmag.). In particular,
a magnetic bead that is anchored to a surface through a molecule of
length l (see Fig. �.��), behaves like a pendulum feeling a vertical force
due to the presence of the magnetic �eld.

δx

l
x

z

y

force

Figure �.��: Force measurement in magnetic tweezers. A magnetic bead
tethered to a molecule is undergoes transverse Brownian �uctua-
tions and it feels a vertical force due to the presence of a magnetic
�eld. The magnetic �eld gradient goes in the z-direction (not
shown).

Therefore, the mean transverse position �uctuations, hdx
2i, are used

to characterize the mechanical force as:

f =
kBT

hdx2i l , (�.��)

where there has been used the law of Equipartition and the fact that
f /l is the lateral sti�ness. Then the force vs. magnets position pro�le
can be characterized�. It has been shown that the f (zmag.) curve is well
�tted by an exponential function as follows:

f (zmag.) = fmax exp
⇣
�azmag. + bz

2
mag.

⌘
, (�.��)

� A more accurate force calibration is done in the frequency domain by means of the
power-spectrum. For a detailed discussion see Ref. [��].
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where it has been found that, for typical ⇠ � µm beads, fmax. is
around �� pN, a = 3.53 mm�1 and b = 0.66 mm�2 [��]. The typical
position range� of the magnets span from zero (touching the outer layer
of the micro�uidics chamber) up to few millimetres. The dominant
term in the aforementioned distance range is azmag. (Eq. (�.��)) being
a of order 1 mm�1. Therefore, the position of the magnets, zmag., is
insensitive to changes of the position of the bead due to conformational
changes of molecules (e.g. unfolding-folding transitions), which are
typically in the nm - µm range. Hence, MT are high-precise natural
force clamps with typical sti�nesses of ⇠ 10�4 pN/nm [��].

Bead tracking and extension determination

The positions of the magnetic beads are recorded by a videotracking
system. The volume sample is vertically illuminated by using a LED as
a parallel light source. Then, since the size of the beads is comparable
with the wavelength of the incident light, signi�cant di�raction e�ects
appear. Beads are observed by an oil immersion objective located under
the tethering surface and di�raction pattern are recorded by means of
a �� Hz ���p CCD camera (see Fig. �.��) and subsequently analysed by
a computer program. Examples of di�raction rings are shown in Fig.
�.��.

z = 1 μm z = 3 μm z = 5 μm z = 7 μm

Figure �.��: Di�raction rings of a �.� µmmagnetic bead. Di�raction rings
are signi�cantly di�erent depending on the position of the micro-
scope focus plane, z. Figure adapted from [��].

The center of the di�raction rings correspond to the tethering point
of the magnetic bead to the surface. On the other hand, the vertical
position of the pulled beads is determined by comparing to a set of ref-
erence beads that are kept immobilized on the surface. The calibration
procedure is done prior to the actual experimental essay. It consists

� For typical experimental purposes.
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on obtaining a calibration image by translating the objective (i.e. the
focal plane) by means of piezoelectric elements at known positions.
This protocol is done, typically, from � to �� µm height and with a
characteristic resolution of � - �� nm [��].

The position and, subsequently, molecular extension determination
is done in real time by using a customized software. For each frame
the x, y, z positions are determined for one or several beads simultane-
ously. By using a static reference to measure positions, drift e�ects are
signi�cantly reduced. Nevertheless, as a main drawback of picoTwist, it
is fair to mention that spatial and time resolution is poorer than other
techniques that do not rely on image tracking.

�.� ������������ �������������

Antidig-digoxigenin 
bond

Streptavidin-biotin bond

Optical Tweezers

Magnetic Tweezers

Micropipette

Surface

Figure �.��: Experimental con�guration and schematics of bead coat-
ing. Experimental setup for LOT (top) and MT (bottom) experi-
ments.

Regardless they were performed using LOT or MT, the common de-
nominator of the experiments done in the course of this thesis, is the
use of functionalized micrometer-sized beads. In particular, beads are
coated with a chemical substance that can speci�cally bind to its com-
plementary molecule. This is the case, for instance, of streptavidin, a
protein that binds via non-covalent bonds to biotin, a vitamine. By la-
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belling the interested molecule (DNA or RNA) with a biotin at one of its
ends, it can bind to the streptavidin-coated beads through a strong non-
covalent bond. Streptavidin-coated beads are used both in LOT and MT
experiments. Nevertheless, in this latter case beads have, furthermore,
superparamagnetic characteristics.
On the other hand, the remaining free end of the molecule is bio-

chemically modi�ed in order to recognize another molecular complex
and avoid undesired bead attachments. For the case of LOT experiments,
molecules are merged with a tail of digoxigenins so now they bind
to an anti-digoxigenin functionalized bead via a high speci�c antigen-
antibody bond. For the case of MT experiments, there is no second bead.
In place, the bottom surface of the micro�uidics chamber in which
the experiments are performed is also functionalized with digoxigenin
antibody, as the second bead in LOT (details can be found in Ref. [��]).



3
BAS IC S OF STAT I S T I CAL MECHAN IC S OF POLYMER
ENSEMBLE S

�.� ����� ��� ��������� ����������� ���������

In statistical mechanics, the thermodynamic behavior of physical sys-
tems is obtained by modelling, through probability theory and statistics,
the dynamics of �uctuating microscopic states. A macroscopic state is
speci�ed by the values of a set of measurable physical parameters, like
temperature or pressure. Such quantities are externally imposed to the
system and they do not �uctuate in time. Each set of controlled param-
eters de�nes a statistical ensemble. For instance, when a gas formed
by N particles is in contact with a heat bath at a given temperature T

and it is kept at a �xed volume V, its equilibrium macroscopic state is
described by these three quantities. This situation corresponds to the
so-called canonical ensemble, NVT ensemble or Helmholtz ensemble.
The connection with thermodynamics is done by de�ning thermo-

dynamic potentials that are, in general, functions of the k controlled
parameters: Y (X1, · · · , Xk). Their successive derivatives, ∂Xi

Y, are
physically measurable quantities.
Also, in any ensemble, a conjugate statistical ensemble is generated

by Legendre transforming the thermodynamic potential Y via a pair
of conjugate variables�, Xi and ∂Xi

Y (with i 2 {1, · · · , k}) [��]. In
particular, choosing the volume V and pressure P = �

⇣
∂F

∂V

⌘

T

as
conjugate pairs, the NPT ensemble (or Gibbs ensemble) is generated.
The thermodynamic potential associated with the NPT ensemble is the
G (N, P, T) potential or Gibbs free energy:

G (N, P, T) = F (N, V, T) + PV , (�.�)

� Conjugate pairs are conjugate are conjugate variables with respect to energy.

��
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where F (N, V, T) is the thermodynamic potential associated to the
canonical ensemble or Helmholtz free energy de�ned as:

F (N, V, T) = �kBT log Z (N, V, T) , (�.�)

where Z (N, V, T) is the canonical partition function of the system.
It is important to remark, though, than in the NPT ensemble (i.e. Eq.
(�.�)) the volume V stands for the ensemble average of the volume of
the system, because in the NPT ensemble the pressure, rather than the
volume, is �xed.

Partition functions of conjugate ensembles are related by Laplace
transformations. Indeed, the partition function of the NPT ensemble,
X (N, P, T), is the Laplace transform of the canonical partition function
Z (N, V, T):

X (N, P, T) =
Z •

0
dV Z (N, V, T) e

�PV/kBT . (�.�)

In bulk systems, the equation of state does not depend on the ensem-
ble (in the thermodynamic limit). Hence, conjugate statistical ensembles
are equivalent. For instance, the equation of state of a gas in a piston
at �xed volume yield the same result than if the applied pressure is
controlled. Since �uctuations of the uncontrolled variables vanish in
the thermodynamic limit, the outcome of physical measures done on
macroscopic systems are not able to distinguish a situation where, for
instance, the pressure or the volume is �xed.

�.� ����� ���������

Due to the development of micromanipulation techniques, the issue of
ensemble inequivalence has become a hot topic in polymer systems,
such as synthetic polymers (e.g. as polyethylene or synthetic rubber) or
biopolymers (e.g. as nucleic acids or proteins). These techniques allow
researchers to observe the behavior corresponding to di�erent statistical
ensembles. For instance, one can work in the Helmholtz ensemble or
extensional ensemble (hereafter referred to as Extensional Ensemble
(ExtEns)) by tethering a single polymer between two points, keeping its
extension �xed. On the other hand, if a constant force is applied to
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the free ends of the polymer, the Gibbs or force ensemble (hereafter
referred to as Force Ensemble (ForceEns)) is generated. Extension and
force in polymers are the analogous parameters to volume and pressure
in liquids or P-V systems. Indeed, the main di�erence between the
ExtEns and the ForceEns is the nature of the control parameter: while in
the ExtEns the control parameter is extensive (it scales with the length
of the polymer), in the ForceEns the control parameter is an intensive
quantity.
According to Flory [��], in the thermodynamic limit, where the

number of monomers N constituting the polymer tends to in�nity
keeping the ratio N/L constant (L is the contour length of the polymer),
the �xed extension scheme is also indistinguishable from the situation
in which the force is �xed. Nevertheless, single polymers, as an example
of small systems, are far away from the thermodynamic limit. Then,
their thermodynamic behavior depends on the boundary conditions
that are set on the polymer (i.e. the extensive/intensive nature of the
control parameter).

In what follows, we perform a brief description of the physical princi-
ples that underlie the ExtEns and the ForceEns and, as a proof of ensemble
equivalence, we will demonstrate the equivalence of both thermody-
namic potentials (i.e. F(N, V, T, ) and G(N, P, T)) in the thermody-
namic limit.

�.�.� Fixed-extension ensemble

Let us consider a polymer, such as a protein or a nucleic acid, with
a �xed extension Xtot. = (Xtot, 0, 0) in contact with a heat bath at a
temperature T. This situation corresponds to the ExtEns. In Fig.�.� it is
shown an schematic comparison between the classical canonical NVT
ensemble and the ExtEns ensemble for polymers.
The polymer is assumed to be composed of N monomers and the

dynamics of the system can be described by a Hamiltonian or en-
ergy function H(x, p), where x = {x1, · · · , xN} are the positions
of the N monomers and p = {p1, · · · , pN} the linear momenta of the
monomers. Hence,

H(x, p) =
N

Â
k=1

pk · pk

2m
+ U (x1, · · · , xN) , (�.�)
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Fixed-extension ensembleHemholtz ensemble

~
XT

Figure �.�: Fixed-volume and�xed-extension analogy. Analogy between
a gas at �xed volume V and a polymer with �xed extension Xtot.

where m is the mass of the monomers and U (x1, · · · , xN) is the
potential that mediates the interaction of the monomers.
In the ExtEns the positions of the �rst and the last monomers are

�xed, so we can set the position of the �rst and the N-th monomer
as: x1 = 0 and xN = Xtot., respectively (so that xN � x0 = Xtot.).
Additionally, as both ends are �xed, p1 = pN = 0. Hence, the set
of position and momenta become: x = (x1 = 0, x2, · · · , xN = Xtot.),
p = (p1 = 0, p2, · · · , pN = 0)

Within this scheme, the canonical partition ZX function of the system
yields:

ZX =
Z Z

R6(N�2)
e
�H(x,p)/kBT

dxdp . (�.�)

And the free energy at constant extension (Eq. (�.�)) equals to�:

F(x) = �kBT log ZX . (�.�)

From F(x) we can obtain the ensemble average of the mechanical
force (i.e. equilibrium force) acting on the system as:

hf (x)i = ∂F(x)
∂x

= �kBT
∂ log ZX

∂x
. (�.�)

� Since temperature is constant, its explicit dependence on the thermodynamic quantities
is omitted.
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�.�.� Fixed-force ensemble

Now let us assume that the polymer, rather than being �xed by its both
edges, has a dangling end where a controlled force f is applied This
situation corresponds to the ForceEns and it is the analogous of a gas in
contact with a bariostat (see Fig. �.�).

Fixed-force ensembleGibbs ensemble

~
f

M

Figure �.�: Fixed-pressure and �xed-force analogy. Analogy between a
gas at �xed pressure P and a polymer with a constant force f

applied at its free end.

Now, when an external force is applied, the Hamiltonian of the
system becomes:

eH(x, p) = H(x, p)� f · x . (�.�)

Therefore, the partition function in the ForceEns can be calculated as:

Zf =
Z Z

R6(N�1)
e
� eH(x,p)/kBT

dxdp , (�.�)

where we have considered that the set of position and momenta
are: x = (x1 = 0, x2, · · · , xN), p = (p1 = 0, p2, · · · , pN); where
now only the �rst monomer is �xed, resulting in an increase on the
number of the degrees of freedom of the whole system, as compared
to the ExtEns. In the example shown in Fig. �.� the force is applied
to the polymer via a bead that is coupled, for instance, to a harmonic



�� ������ �� ����������� ��������� �� ������� ���������

oscillator. Additionally, the kinetic energy of the bead in Fig. �.� is
neglected because its mass is assumed to be much larger than the whole
polymer.
Now, in the ForceEns the Gibbs free energy is directly obtained from

the partition function Zf as:

G(f) = �kBT log Zf . (�.��)

And the equation of state of the system is obtained by di�erentiating
with respect to the mechanical force f ,

hx (f)i = �∂G(f)
∂f

= kBT
∂ log Zf

∂f
(�.��)

�.�.� Relation between the free energies in the two ensembles

As in classical thermodynamics, the Helmholtz free energy F(x) ob-
tained in the ExtEns is related to the Gibbs free energy G(f) obtained
in the ForceEns. Considering Eqs. (�.�) and (�.��) we can express the
corresponding partition functions as follows:

ZX(x) = e
� F(x)

kBT , (�.��)

Zf (f) = e
� G(f)

kBT . (�.��)

Inserting in Eq. (�.��) the explicit expression for the Hamiltonian
of the system (Eq. (�.�)), we may write (omitting prefactor constant
terms):

e
� G(f)

kBT = Zf (f) ⇠
Z

R3
ZX(x)e

f·x
kBT dx . (�.��)

Then, from Eq. (�.��) we have:

Z

R3
ZX(x)e

f·x
kBT dx =

Z

R3
e
� F(x)

kBT e
f·x

kBT dx . (�.��)
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Now, considering the extensive character of the thermodynamic
potentials we write: F(x) = N fN(l), G(f) = NgN(f), f · x = Nf · l

and dx = Ndl. Note that l = x/N. As a consequence, Eq. (�.��)
becomes:

exp
✓
�N

gN(f)
kBT

◆
⇠
Z

R3
Ndl exp

✓
�N

fN(l)� f · l

kBT

◆
. (�.��)

The integral can be evaluated in the large N limit using the saddle-
point method, obtaining:

exp
✓
�N

gN(f)
kBT

◆
⇠ N exp

✓
�Nminl


fN(l)� f · l

kBT

�◆
, (�.��)

which, extracting logarithms and dividing by �N/kBT yields,

gN(f) = minl [ fN(l)� f · l] +O
✓

log N

N

◆
. (�.��)

Since the log(N)/N corrections to Eq. (�.��) vanish in the large
N limit we can con�rm that, gN(f) is the Legendre transformation of
fN(l) using f and l as conjugate pairs. This transformation preserves
the convexity of thermodynamic potentials with respect to its own vari-
ables (i.e. Helmholtz free energy is a convex function of the extensive
variable and so it is the Gibbs free energy with respect to the intensive
conjugate variable).

Equation (�.��) is exact in the large N limit. Therefor, the main mes-
sage of Eq. (�.��) is that Gibbs and Helmholtz ensembles, for polymer
systems, are equivalent when N ! •. This fact has been recently
demonstrated for the case of real polymers, showing that the mechani-
cal response (i.e. force-extension curves) are ensemble-independent for
single in�nite polymers [��].

�.� ��������� �������� �� ������� ���������

As it is well known in classical thermodynamics, the equilibrium condi-
tions of a physical system subjected to one or some external constraints
(e.g. by �xing its temperature, volume, etc.) are given by the extrema
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(maximum or minimum) of the thermodynamic potentials [��]. In par-
ticular, in equilibrium, a system at constant volume (pressure), will
be found in its Helmholtz (Gibbs) free energy minimum. Moreover,
minima conditions also impose constraints in the curvature of the ther-
modynamic potentials with respect to their control parameters. As a
matter of fact, Helmholtz (Gibbs) free energy is a convex function� with
respect to the volume (pressure).

Convexity conditions are denoted by the negative behavior of second
derivatives of thermodynamic potentials at their extrema. Also, classical
thermodynamics relate these second derivatives with thermodynamic
measurable quantity. For instance, in the Helmholtz ensemble, where
the equation of the systems is given by:

P = �
✓

∂F

∂V

◆

T

, (�.��)

taking the derivative with respect to the pressure yields:

∂P

∂V
= �

✓
∂2

F

∂V2

◆

T

. (�.��)

And, according to the minimum criterion, the quantity
⇣

∂2
F

∂V2

⌘

T

must be positive. The isothermal compressibility is de�ned as kT =
�(1/V)(∂V/∂P)T , so that we �nd:

✓
∂2

F

∂V2

◆

T

=
1

VkT

, (�.��)

resulting in the well-known condition which states that isothermal
compressibility must be positive to guarantee thermodynamic stability.
Similarly, the isothermal compressibility is related to the Gibbs free
energy in �xed-pressure ensemble through:

✓
∂2

G

∂P2

◆

T

= VkT . (�.��)

� Also called concave upward, meaning that the line segment between any two points
of the function lies above or on the function.
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Therefore, Gibbs ensemble also preserves the positive behavior of the
isothermal compressibility. Interestingly, as in standard P-V systems
in statistical mechanics, kT is also related to �uctuations of the free
(non-controlled) parameters in the polymer ensembles. In the following
sections we will develop the relations between the isothermal com-
pressibility in the usual polymer ensembles (ExtEns and ForceEns) and
the �uctuations of the free parameters.

�.�.� Force �uctuations in the extensional ensemble

In the ExtEns, as described in Sec. �.�.�, the force acting on the polymer
ends is a �uctuating quantity while the total extension Xtot is a �xed
parameter. For the sake of simplicity, throughout this section we will
treat the polymers as one-dimensional systems.
Without loss of generality, let us consider a polymer that can be

found into two conformations�: folded (F) or unfolded (U). Furthermore,
regard that the polymer is subjected to isometric conditions (i.e. ExtEns),
�xing its total extension. The equilibrium probabilities of states F and
U are given by the Boltzmann-Gibbs factor:

pF(U) =
exp

⇣
� FF(U)

kBT

⌘

ZX

, (�.��)

where FF(U) is the partial free energy of F (U) state and ZX = e
�FF/kBT +

e
�FU/kBT is the partition function of the system calculated in the ExtEns
scheme.

The ensemble (or equilibrium) force of the system at a given extension
Xtot is given by:

h f i = h fFie
�FF/kBT + h fUie�FU/kBT

ZX

, (�.��)

and the second moment of the force h f 2i equals to:

h f 2i = h f
2
F ie�FF/kBT + h f 2

Uie�FU/kBT

ZX

. (�.��)

� This is the actual situation for small size polymers and it is analogous of a a two-state
system in statistical mechanics.



�� ������ �� ����������� ��������� �� ������� ���������

We note that h fFi and h fUi are the average over the partially equili-
brated F and U states and are de�ned as: h fF(U)i = ∂XtotFF(U).
Multiplying at both sides of Eq. (�.��) by ZX and di�erentiating at

both sides with respect to Xtot yields:

∂h f i
∂Xtot

ZX + h f i ∂ZX

∂Xtot
=

∂h fFi
∂Xtot

e
�FF/kBT +

∂h fUi
∂Xtot

e
�FU/kBT

� 1
kBT

✓
h fFi

∂ fF

∂Xtot
e
�FF/ kBT + h fUi

∂ fU

∂Xtot
e
�FU/ kBT

◆
=

= hkFie�FF/ kBT + hkUie�FU/ kBT � h f i
2

kBT
ZX .

(�.��)

In previous equation (Eq. (�.��)) we have identi�ed the terms ∂h fFi
∂Xtot

and ∂h fUi
∂Xtot

as the sti�ness of the F and U states (i.e. the slope of the
fF(U)(Xtot) curve). The equilibrium sti�ness hki is de�ned as:

hki = 1
ZX

⇣
hkFie�FF/ kBT + hkUie�FU/ kBT

⌘
. (�.��)

Dividing both sides of Eq. (�.��) by ZX and inserting the de�nition
of hki (Eq. (�.��)) we obtain:

∂h f i
∂Xtot

� h f i
2

kBT
= hki � h f

2i
kBT

, (�.��)

where we have also used the following equality:

1
ZX

∂ZX

∂Xtot
=

∂ log ZX

∂Xtot
=
�1
kBT

∂F

∂Xtot
= � h f i

kBT
, (�.��)

being F the total free energy of the system. The average force �uctu-
ations (D f )2 are equal to: (D f )2 = h f 2i � h f i2. Hence, Eq. (�.��) can
be rewritten as:

(D f )2

kBT
= hki � ∂h f i

∂Xtot
:= hki � k

x

e� , (�.��)

where the term k
x

e� is the e�ective sti�ness
� of the system (i.e. the

slope of the force-extension h f (Xtot)i curve). A beautiful consequence

� It is called e�ective due to the fact that, in typical experimental setups, the polymer is
attached in series with more molecules, resembling as a collection of springs in series.
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of Eq. (�.��) is that negative compressibilities (i.e. negative k
x

e�) are
allowed in the ExtEns. Unlike typical P-V systems, where negative com-
pressibilities are forbidden by stability conditions of thermodynamic
potentials, in polymer systems we can actually measure negative re-
sponse parameters yet ful�lling the constraint that �uctuations of the
uncontrolled parameters are positive.
We point that last equation (Eq. (�.��)) can be generalized for more

than two states. For an N-state system, the average sti�ness would
read as: hki = (1/ZX)ÂN

i=1
∂ fi

∂Xtot
e
�Fi/kBT , where now the limit of

summation is the number of states N that the polymer may explore
and ZX is the partition function of the system .

�.�.� Extension �uctuations in the force ensemble

Consider now that the mechanical force at the ends of the polymer is
controlled, as discussed in Sec. �.�.�. In the ForceEns the extension of
the polymer, rather than the force, �uctuates. As we have previously
shown, the partition function in this con�guration is given by Eq. (�.��).

Zf =
Z

dx e
� F(x)

kBT e

f x

kBT = e
� G( f )

kBT , (�.��)

where F(x) is the Helmholtz free energy (i.e. in the ExtEns) and G( f )
is the Gibbs free energy (i.e. in the ForceEns). Now, it is straightforward
to show that the n-th derivative of ZF with respect to the control
parameter f is related to the n-th moment of the extension as:

hxni = ( kBT)n

Zf

∂n
Zf

∂ f n
= ( kBT)n

∂n log Zf

∂ f n
8n � 1 . (�.��)

Hence, the average extension �uctuations, (Dx)2 = hx2i � hxi2,
can be related to the slope of the equilibrium force-extension curve as
follows:

(Dx)2

kBT

1
hxi =

�1
hxi

∂2
G( f )
∂ f 2 =

1
hxi

∂hxi
∂ f

:=
1

hxik f

e�

, (�.��)
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where we have identi�ed the e�ective sti�ness in the ForceEns, k
f

e�,
with:

∂hxi
∂ f

=
1

∂ f /∂hxi =
1

k
f

e�

. (�.��)

Again, the e�ective sti�ness is the slope of the extension-force curve
(hx( f )i curve).

We note that Eq. (�.��) is a �uctuation-dissipation-like relation. More-
over, Eq. (�.��) indicates us that in the ForceEns, the e�ective sti�ness is
always positive. This e�ect opposites with the fact than in the ExtEns,
isothermal compressibility can be negative (see Eq. (�.��)), whereas in
the ForceEns is always positive as required for stability.
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EN SEMBLE INEQU I VALENCE





4
F LUCT UAT ION THEOREM IN THE FORCE ENSEMBLE

�.� ����������� ��������

Until the dawn of stochastic thermodynamics at the end of the ��th
Century, the measurement of equilibrium thermodynamic quantities in
physical systems was only restricted to experimental assays performed
in static equilibrium conditions (quasistatic conditions). Typically, ex-
periments are done by modifying an externally controlled physical
quantity l, the so-called control parameter. The assumption of qua-
sistaticity implies that the thermodynamic system must relax much
faster than the rate at which the external parameter is varied. Therefore,
a quasistatic process must satisfy the following relation:

✓
dl

dt

◆
⌧
✓

Dl

t

◆
, (�.�)

where t is the relaxation time of the system, t is time and Dl is the
variation step of the control parameter. This condition guarantees that
the system passes through an in�nite set of equilibrium states, ensuring
that the measured quantities are purely the equilibrium ones.

In general, the required energy to drive the system from an arbitrary
state labelled with a value of the control parameter l0 up to a l1 state
is given by:

Wl =
Z l1

l0

dl

✓
∂H(l, t)

∂l

◆
, (�.�)

where Wl is the mechanical work and H is the Hamiltonian or en-
ergy function. The previous equation holds for arbitrary condictions.
Nevertheless, if the process is carried out quasistatically and, addi-
tionally, if it is possible to perform the time-inversion process at each
in�nitesimal variation of the control parameter (i.e. there is no time
arrow) the process is said to be reversible. In such conditions, the energy
required to modify the state of the system from l0 to l1 is equal to the

��
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free energy DG di�erence between the states labeled with l0 and l1
[��]:

Wrev. = DG = G(l1)� G(l0) . (�.�)

The free energy change DG measures the net amount of energy
exchanged between the system and its surroundings along an arbi-
trary equilibrium pathway and, as we mentioned, its measurement is
constrained by equilibrium conditions. However, the development of
�uctuation theorems in the ��s changed the situation: equilibrium free
energy di�erences can be measured from irreversible processes.
Fluctuation theorems are mathematical identities that allow the re-

covery of equilibrium thermodynamic quantities in nonequilibrium
experiments in driven microsystems. Although their experimental ap-
plicability range is very wide (ranging from mechanical oscillators,
colloids, biological systems up to electric circuits) [��] and their valid-
ity is general in stochastic thermodynamics [��], it is in biomolecular
systems where their potential is more exploited, highlighting the free
energy recovery of molecular structures in nonequilibrium experiments
as their major feature. For instance, they have been successfuly applied
to determine the free energies of formation of DNA and RNA hairpins
[��] or proteins [��]. Moreover, their applicability have been extended
to non full equilibrium states and non native states, such as kinetic
intermediate states [��], plus the measurement of binding energy of
small ligands that bind to nucleic acids [��] or even the measurement of
mechanical torque in molecular rotatory motors [��]. Also, due to the
connection of stochastic thermodynamics with information theory [��],
�uctuation theorems are currently extended to explore information-
to-energy conversion in systems with feedback control [��] and the
measurement of information content in molecular systems (see chapter
�).

�.�.� Nonequilibrium work relations. The Crooks �uctuation relation
and the Jarzynski equality

Among all the existing �uctuation theorems, the Crooks Fluctuation
Theorem (CFT) [��] and its corollary, the Jarzynski Equality (JE) [��], are
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themost used to relate irreversibleworkmeasurements with equilibrium
free energy di�erences.
Consider a system initially in thermal equilibrium at a given state

at time t0 where the control parameter �xed at a value l(t0) = l0.
Then, an arbitrary experimental protocol l(t) is applied on the system
during a time interval Dt. Afterwards, at the end of the protocol, at
time t1 = t0 + Dt, the system will be found in the state corresponding
to l(t1) = l1. This process corresponds to the so-called forward (F)
process and the exerted mechanical work is given by Eq. (�.�).
Now let us suppose that the reversed (R) protocol is subsequently

implemented. The system is equilibrated now at l1 and, following the
time-mirrored image of the experimental path (l̃(t) = l(Dt� t)), the
state l0 is recovered after a time interval Dt = t1� t0. In Fig. �.�(a) we
show a schematic depiction of an arbitrary nonequilibrium experiment
where a control parameter is changed from l0 to l1 in a time interval
Dt, while in Fig. �.�(b) it is shown its time-reversed process.

Time (a.u.)

λ 
(a

.u
.)

λ0

λ1

t1t0

Δt

Time (a.u.)

λ 
(a

.u
.)

λ0

λ1

t1t0

Δt

Forward Reversed(a) (b)

Figure �.�: Experimental protocol. Schematic depiction of an arbitrary for-
ward protocol (a) and its time-reversed path (b).

Since the energies involved in the typical processes of small systems
are on the same scale than Brownian �uctuations (i.e. ⇠ kBT), the
con�gurations that a small system may explore in the F and R processes
can be signi�cantly di�erent (and in subsequent experimental realiza-
tions). As a matter of fact, the term ∂lH of Eq. (�.�) is a �uctuating
quantity, so the mechanical work is path-dependent in small systems.
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The relation between the mechanical work in the F and R processes is
done via the CFT, which reads as:

PF(W)
PR(�W)

= exp
✓

W � DG

kBT

◆
, (�.�)

where PF(W) is the probability density function of the work done
in the F process (forward protocol), PR(�W) is the probability density
function of the mechanical work done along the R process (reversed
protocol) and DG is the free energy di�erence given by Eq. (�.�).

Additionally, the JE can be easily obtained from the CFT bymultiplying
both sides of Eq. (�.�) by PR(�W) and integrating with respect to W.
Therefore:

⌧
exp

✓
� W

kBT

◆�

F

= exp
✓
� DG

kBT

◆
, (�.�)

where h· · · iF denote the average over the forward process: h(· · · )iF =R
dW (· · · )PF(W). The JE is a corollary of the CFT and, since it does

not carry any information about the reverse process, it is called a uni-
directional free energy estimator.
It has been already shown that the CFT holds for systems initially

in equilibrium and independently of how far from equilibrium the
system is driven [��]. In general, Eq. (�.�) holds when the full work is
measured, while it does not hold when partial work measurements are
done [��] or when the transferred, rather than the accumulated, work is
measured in controlled extension protocols using LOT experiments [��,
��]. Moreover, the CFT holds under general assumptions of microscopic
reversibility and detailed balance.

�.� ���� ���������� �� ��� ����� ��������

Despite the general validity of the CFT and some experiments using
driven oscillators [��], it has not been previously tested in the case of a
force-controlled SME. As we commented in the previous section, the
CFT has been widely tested and used for free energy recovery in several
experimental scenarios. However, all these studies possess a common
factor: the use of extensive control parameters. For instance, in single
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molecules pulled by LOT and AFM the optical trap-bead distance and the
cantilever-surface distance scale proportionally to the polymer length
(see Sec. �.� for a brief introduction on these techniques). On the other
hand, MT and AFS are high-throughput techniques that manipulate mul-
tiple molecules in parallel where force is the natural control parameter
(magnetic �eld in MT and acoustic pressure in AFS). Note that in the
latter case, the control parameter is an intensive variable, and so it does
not scale with the system size.

Aswe already discussed in Chapter �, the selection of a certain control
parameter de�nes the proper statistical ensemble [��]. For the case of
macroscopic systems, the thermodynamic description is independent of
the ensemble. However, in small systems, where �uctuations dominate
the microscopic behaviour, this fact is no longer true. Two conjugate
statistical ensembles are not equivalent, in general. We will consider the
case of the mechanical work as the paradigm of ensemble inequivalence.

To illustrate how the control parameter choice constraints the phys-
ical description of the system, let us consider a single polymer with
controlled extension. Hence, l = x. If the polymer is stretched by
increasing the extension from x0 to x1, the mechanical work given by
Eq. (�.�) reduces to the well-known classical work expression [��]:

Wx =
Z

x1

x0

f (x
0) dx

0 , (�.�)

where f = ∂xH is the mechanical force acting on the ends of the
polymer. If the mechanical force is controlled (l = f ), the performed
mechanical work in a protocol where the force is changed from f0 to
f1 is given by:

Wf = �
Z

f1

f0

x( f
0) d f

0 , (�.�)

with x = �∂ fH. The �rst situation corresponds to the ExtEns (Eq.
(�.�)), while the latter (Eq. (�.�)) corresponds to the ForceEns (see chapter
� for a discussion on both ensembles). Both work de�nitions are related
by boundary terms of a Legendre transformation using extension and
force as conjugate pairs:

Wx = Wf + D (x f ) = Wf + (x1 f1 � x0 f0) . (�.�)
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Although the correctness of the theoretical work de�nition in the
ForceEns, Eq. (�.�), is widely accepted by the scienti�c community by
now, there has been controversy in this regard [��–��]. For this reason,
we decided to test the validity of the work de�nition in two conjugated
ensembles using the CFT. Moreover, testing the validity of the CFT in
the ForceEns is crucial to extend the applicability of free-energy recovery
methods to high-throughput single-molecule techniques.

�.� ������������ ���� �� ��� ������ ����������� �����
��� �� ��� ����� ��������

In this section we show the experimental validation of the CFT in the
ForceEns by computing the mechanical work according to Eq. (�.�). This
test has been carried out using MT and LOT with force-feedback control
[��] .

�.�.� Results with Magnetic Tweezers

We �rst tested the validity of the CFT in MT experiments. To do so, we
performed bidirectional pulling experiments on the CD� ��-bp DNA
hairpin (whose sequence is shown in Fig. �.�(a)). Also, the DNA hairpin
was �anked by two ��-bp dsDNA handles [��]. The whole molecular
construct (handles + DNA) was tethered between a glass surface and
a superparamagnetic �-µm bead that is captured in a magnetic trap
generated by a pair of permanent magnets. The mechanical force
is directly controlled by modulating the magnetic �eld gradient that
increases as the magnets approach the glass surface.
Bidirectional pulling experiments consist of consecutive cycles of

stretching/releasing cycles of the molecule. The stretching (or unfold-
ing) protocol is identi�ed with the F process (see Sec. �.�.�), whereas
the releasing (or folding) protocol is identi�ed with the R process.

In the unfolding process, the system is equilibrated at a given value
of the force f0. Thus, by approaching the magnets to the glass surface
at constant velocity the DNA hairpin is stretched until it unfolds and
a �nal force f1 is reached. Due to the Brownian nature of the system,
the unfolding force (i.e. the force at which the DNA hairpin can not
withstand the tension in the folded conformation) is stochastic. The
unfolding results in a sudden increase of the molecular extension cor-
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Figure �.�: CD� hairpin and bidirectional pulling experiments in Mag-
netic Tweezers. (a) - Sequence and structure of CD�DNA hairpin.
(b) - Unfolding (folding) trajectories are plot as dark (light) curves.
Examples of force-distance cycles at di�erent pulling rates. Curves
were shifted for the sake of clarity.

responding to the release of the single-stranded DNA (ssDNA) that is
associated with the unfolding process.
On the other hand, in the folding process, the unfolded ssDNA is in

equilibrium at f1 and then, moving away themagnets from the glass sur-
face following the time-reversed protocol the force f0 is �nally reached.
The refolding of the molecule is observed as a sudden absorption of
a certain molecular extension corresponding to the generation of the
original helical structure.
In Fig. �.� we show typical Force-Distance Curves (FDCs) of bidirec-

tional pulling experiments performed in MT at di�erent pulling rates �.
Hysteresis e�ects increase as the pulling rate r increases: the dispersion
in unfolding/folding forces grows as r increases.

According to Eqs. (�.�) and (�.�), Wx and Wf are given by the shaded
areas in Fig. �.�.

PF(W) and PR(�W) are shown in Fig. �.�(a) when the mechanical
work is obtained using Eq. (�.�). Interestingly, although the presence of
high dissipation e�ects, the work value at the crossing point between
both distributions does not change with the pulling rate, as expected

� Pulling rate r is de�ned as the temporal derivative of the force, r = ḟ
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Figure �.�:Measurement of the mechanical work in the ForceEns and in
the ExtEns. Work value corresponding to the ForceEns and ExtEns
correspond to the shaded area at the left and below the curve,
respectively.

[��]. According to the CFT, Eq. (�.�), such work value is equal to
DGf (Eq. (�.�))�. The measurement of the crossing point of work
distributions obtained at �.� pN/s and ��.� pN/s gives DGf = �36 ± 6
and �35 ± 6 kBT, respectively.

When the work is computed according to Eq. (�.�) notwithstanding
the fact that force, rather than molecular extension, is the control
parameter, distributions of Wx also present intersecting points that are
independent of the pulling rate (Fig. �.�(b)). In this case, however, the
CFT is not ful�lled. The CFT can be validated by extracting logarithms
in both sides of Eq. (�.�), yielding:

log
✓

PF(W)
PR(�W)

◆
=

W

kBT
� DG

kBT
, (�.�)

and performing a linear �t to the left-hand side of Eq. (�.�) as a
function of W/ kBT. When the CFT holds, data falls in a straight line
of slope � and y-intercept equal to �DG, both in kBT units.
In Fig. �.� it is shown how the CFT is ful�lled for Wf (i.e. Eq. (�.�)).

However, the CFT is not satis�ed for Wx (i.e. Eq. (�.�)): the slopes of

� The subscript f in the Gibbs free energy will be used to distinguish between the ForceEns
and ExtEns values.
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Figure �.�: Work distributions in MT experiments. a - Distributions ob-
tained computing W in the ForceEns scheme (i.e. Eq. (�.�). b -
Distributions obtained computing W in the ExtEns scheme (i.e. Eq.
(�.�). Error bars have been obtained using the Bootstrap method.

the linear �ts of Eq. (�.�) are 0.075 ± 0.010 and 0.33 ± 0.04 for the �.�
pN/s and ��.� pN/s pulling rates, respectively.
The breakdown of the CFT symmetry indicates that Wx does not

measure the correct thermodynamic work in the ForceEns. In fact, the
missing contribution in Wx is the boundary term: D (x f ) = x1 f1 �
x0 f0 = Wx�Wf . This term is not constant but �uctuates over di�erent
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Figure �.�: CFT test plot in MT experiments. Results corresponding to the
ForceEns (top panel) and the ExtEns (bottom panel). Dashed straight
black lines have slopes equal to � in kBT units.

pulling cycles as the initial and �nal extensions x0, x1 are �uctuating
variables (whereas f0, f1 are �xed). In other words, the boundary term
D (x f ) is a stochastic variable that contributes to the tails of the work
distributions that are crucial for testing the validity of the CFT in the
work crossing region. In Sec. �.� we discuss the contribution of the
work boundary terms deeper.

DGf [ kBT] DGx [ kBT] DG0 [ kBT]

�32 ± 5 80 ± 5 49 ± 5

Table �.�: Fluctuation theorem and free energy recovery. The free en-
ergy in the ForceEns is obtained by terms of the CFT (Eq. (�.�) with
Wf ), whereas DGx is obtained by subtracting the boundary term
hD(x f )i. Folding free energy DG0 is �nally obtained when all the
elastic contributions are subtracted (see Appendix C for details).
Previous results are the average over � molecules and the error bar
corresponds to the propagation of the standard error of the mean
and the error of the free energy estimator.
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Moreover, as the mechanical work, the free energy di�erence in the
ForceEns, DGf , is also related to the free energy di�erence in the ExtEns,
DGx, via: DGx = DGf + hD (x f )i, where angular brackets denote the
average over all experimental realizations. In Table �.� we report the
results for the free energies in MT experiments. The obtained value for
the folding free energy at zero force, DG0, is in very good agreement
with the predicted value using the Nearest-Neighbour model for DNA
[��, ��], giving: DG0 = 51 kBT.

�.�.� Results with Laser Optical Tweezers
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Figure �.�: Schematics of LOT experiments and FDCs. (a) - Schematic de-
piction of the experimental setup in LOT experiments. Distance
corresponds to the relative distance between the center of the opti-
cal trap and the tip of the micropippette. (b) - Data corresponding
to the ExtEns (top graph) and the ForceEns (bottom graph).

In LOT the position of the optical trap is the natural control parameter
(see Fig. �.�(a)), whereas the molecular extension and the force are
�uctuating quantities�. However, using force feedback control the
position of the trap is actively recti�ed while the force is kept constant.
This process is done by implementing the following feedback loop: �rst,
at a sampling rate of � kHz, the force acting on the bead captured in the
optical trap is measured as a time-average. Then, depending whether
the measured value is higher (lower) than the desired value, the position

� Although the molecular extension is not directly controlled, the position of the optical
trap is an extensive quantity (it is directly related to the molecular extension).
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of the optical trap is decreased (increased), so that an approximately
constant force is maintained[��, ��].
We performed experiments in LOT in the standard passive mode

(ExtEns) and in the active feedback mode (ForceEns). The implemented
experimental protocol is equivalent to the one we used in MT experi-
ments (see section �.�.�).
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Figure �.�: Crooks Fluctuation Theorem for LOT experiments (a) Work
probability distributions and CFT (top and bottom panel, respec-
tively) in the ExtEns (Eq. (�.�)) for ExtEns experiments. (b) Work
probability distributions and CFT (top and bottom panel, respec-
tively) in the ExtEns (Eq. (�.�)) for ForceEns experiments. In both
upper panels solid (dashed) lines correspond to F (R) distributions,
while vertical lines correspond to the free energy uncertainty. In
both lower panels, solid line corresponds to a straight line with
slope equal to � and y-intercept equal to -DG, in kBT units.

Typical FDCs fot LOT in the ExtEns (ForceEns) mode are shown in top
(bottom) graph of Fig. �.�(b). Unfolding (folding) events in the ExtEns
(top graph of Fig. �.�(b)) may be seen as sudden force drops (rises) due
to the release (absorption) of the molecular extension corresponding
to the unwinding of the double helix structure of the DNA hairpin. In
the ForceEns (bottom graph of Fig. �.�(b)) the feature of the transitions
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corresponding to the switching between the folded and unfolded con-
formations occurs at constant force, as we described for the case of MT
(see the previous section), leading to a sudden increase/decrease in the
molecular extension
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Figure �.�: Breakdown of CFT symmetry. (a)Work probability distributions
and CFT (top and bottom panel, respectively) in the ForceEns (Eq.
(�.�)) for ExtEns experiments. (b)Work probability distributions and
CFT (top and bottom panel, respectively) in the ForceEns (Eq. (�.�))
for ForceEns experiments. In both upper panels solid (dashed) lines
correspond to F (R) distributions. In both lower panels, solid line
corresponds to a straight line with slope equal to � in kBT units.

In all cases, the CFT prediction is ful�lled using the appropriate work
de�nition. In upper panels of Fig. �.� we show the work distributions,
after subtracting stretching contributions, obtained according to the
proper statistical ensemble. The CFT test is shown in the lower panels of
Fig. �.�. We stress that the obtained free energy value is compatible with
the theoretical prediction if the work is properly calculated: DG

ExtEns
0 =

52 ± 5 kBT, DG
ForceEns
0 = 51 ± 5 kBT.

On the other hand, in Fig. �.� we show how the CFT fails when
the wrong work de�nition is used. In particular, in top panel of Fig.
�.�(a) we have obtained the work probability distributions obtained



�� ����������� ������� �� ��� ����� ��������

using the ForceEns work de�nition (Eq. (�.�)) for the case of experiments
performed in the ExtEns. Clearly, the CFT is not satis�ed due to the use of
a wrong work de�nition for the ExtEns (bottom panel of Fig. �.�(a)). The
slopes for the � and �� pN/s pulling rates are, respectively, 0.11 ± 0.03
and 0.31 ± 0.02 (both in kBT units). Top panel of Fig. �.�(b) shows
the distributions obtained using the ExtEns work de�nition in the case
of active mode (ForceEns) experiments. Again, the CFT is clearly not
satis�ed (bottom panel of Fig. �.�(b)). The slopes for the � and �� pN/s
pulling rates are, respectively, 0.19 ± 0.02 and 0.17 ± 0.01 (in kBT

units).

�.� ���������������� �� ��� �������� ����� �� ���
������������� ����

As we already widely discussed, the breakdown of CFT symmetry when
the work is not properly computed (i.e. regardless of the statistical
ensemble) is due to the e�ect of the work boundary term: D(x f ) =
x1 f1 � x0 f0. The measurement of this contribution, yet being direct in
MT and LOT experiments, might not be feasible in all scenarios. We show,
both for LOT and MT, how it is possible to infer statistical properties of
the boundary terms by quantifying the breakdown of the CFT symmetry
when an ensemble-wrong work de�nition is used.

We state the problem as follows. In general, in each type of experi-
ment, only a single de�nition of the mechanical work satis�es the CFT.
While the experiments performed in the ExtEns, require the use of Wx

(Eq. (�.�)), the experimental assays done in the ForceEns, require the use
of Wf (Eq. (�.�)) instead. As we discussed, both work de�nitions are
related by a Legendre transform. Indeed, Eq. (�.�), can interpreted in
terms of sum (and di�erence) of random variables. In particular, let us
assume that work distributions are described by Gaussians (an exact
result in the linear response limit). Hence, we can write:

p(Wx) = N
�
hWxi, s2

Wx

�
, (�.��)

p(Wf ) = N
⇣
hWf i, s2

Wf

⌘
, (�.��)
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where h(· · · )i denotes the average value and s2
(··· ) the variance of

each distribution. Moreover, the moments of the p(Wx) distribution
(Eq. (�.��)) are related to the moments of the p(Wf ) distribution (Eq.
(�.��)) [��]:

hWxi = hWf i+ hD (x f )i , (�.��)

s2
Wx

= s2
Wf

+ s2
D(x f ) + 2rsWf

sD(x f ) , (�.��)

where hD (x f )i and s2
D(x f ) are the mean and variance of the bound-

ary terms and r := Cov(Wf , Dx f )/sWf
sD(x f ) is the correlation coef-

�cient (r 2 [�1, 1]). Note that, for correlated random variables, the
variance of their sum might be smaller than the sum of the individual
variances due to a negative correlation, r < 0 (Eq. (�.��)). On the other
hand, the average of the sum it is not a�ected by the non-independence
of the random variables. Once set the framework, we divide the fol-
lowing part of the discussion depending whether the experiments have
been performed using MT or LOT. We emphasize that our goal is the
inference of s2

D(x f ) and r by studying the breakdown of the CFT due to
the use of ensemble-work de�nitions.

�.�.� Boundary terms in Magnetic Tweezers experiments

We have seen in section �.�.� how, for MT experiments (i.e. ForceEns)
the CFT is satis�ed for Wf (Eq. (�.�)) and it is not for Wx (Eq. (�.�)).
Nevertheless, for this latter case, we can consider that Wx does satisfy
an e�ective-CFT that can be written as:

PF(Wx)
PR(�Wx)

= exp
✓

Wx � DGx

kBTe�

◆
, x := T/Te� , (�.��)

where F and R denote the standard forward and reversed distributions
and Te� is an e�ective temperature. The x parameter is related to the
�uctuation-dissipation ratio in glassy systems [��]. Note that Eq. (�.��)
can be rearranged as:

exp
✓
� Wx

kBTe�

◆
PF(Wx) = PR(�Wx) exp

✓
� DGx

kBTe�

◆
. (�.��)
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Thus, by integrating over W both sides of Eq. (�.��) we obtain:

⌧
exp

✓
� Wx

kBTe�

◆�

F

= exp
✓
� DGx

kBTe�

◆
, (�.��)

where again h(· · · )iF denote the average over the F distribution.
Since we are considering p(Wx) (and p(Wf )) as Gaussian distribu-
tions, left-hand side of previous equation (Eq. (�.��)) can be analytically
computed using the moment-generating function�. After some straight-
forward algebraic steps we obtain:

s2
Wx

2kBTe�
= hWxi � DGx = x

s2
Wx

2 kBT

= x

s2
Wf

+ s2
D(x f ) + 2rsWf

sD(x f )

2 kBT
.

(�.��)

Recalling that in ForceEns Wf ful�ls the CFT, for a Gaussian p(Wf )
the following expression holds:

s2
Wf

2 kBT
= hWf i � DGf . (�.��)

Note that in previous equation the e�ective temperature does not
appear since Wf is the suitable work for the ForceEns. We must also
have in mind the fact the relation between DGx and DGf :

DGx = DGf + hD (x f )i . (�.��)

Finally, by subtracting Eq. (�.��) from Eq. (�.��) and using the rela-
tions (�.��) and (�.��) we obtain:

s2
Wf

(x� 1) + xs2
D(x f ) + 2xrsWf

sD(x f ) = 0 . (�.��)

Equation (�.��) allows us to link r and sD(x f ) with x. Furthermore,
it can be used as a constraint in the inference procedure (see below).

� E[e±tX ] = e
±thXi+ 1

2 s2
t
2
, being t a parameter and hXi and s2 the mean and the

variance of X, respectively.
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The inference of the aforementioned parameters is done using a Max-
imum Likelihood estimation. Such procedure consists on �nding the
set of parameters (in our case r and sD(x f )) that maximize the so-
called likelihood of a given statistical model. The likelihood function,
L
⇣

r, sD(x f ) | {Wx}
⌘
, is de�ned as:

L
⇣

r, sD(x f ) | {Wx}
⌘
= p

⇣
{Wx} | r, sD(x f )

⌘
, (�.��)

where {Wx} are the set of Nexp measuredWx and p

⇣
{Wx} | r, sD(x f )

⌘

is the joint density function of Wx (which we have assumed to be Gaus-
sian, Eq. (�.��)). Then, for our Nexp independent measurements, Eq.
(�.��) becomes:

p

✓
W

(1)
x , · · · , W

(W(1)
x )

x | r, sD(x f )

◆
=

Nexp

’
k=1

p

⇣
W

(k)
x | r, sD(x f )

⌘

=
�
2ps2

Wx

��Nexp/2 exp

0

B@�
Â

Nexp
k=1

⇣
W

(k)
x � hWxi

⌘2

2s2
Wx

1

CA .

(�.��)

For convenience, we extract the logarithm of Eq. (�.��). The log-
likelihood, logL

⇣
r, sD(x f ) | {Wx}

⌘
, becomes:

logL
⇣

r, sD(x f ) | {Wx}
⌘
= �Nexp

2
log
�
2ps2

Wx

�
� 1

2s2
Wx

Nexp

Â
k=1

⇣
W

(k)
x � hWxi

⌘2
.

(�.��)

Since the values which maximize the likelihood also maximize its
logarithm, we have numerically maximized Eq. (�.��) imposing the
constraint found in Eq (�.��) in order to obtain a simultaneous estima-
tion of r and sD(x f ). It is important to mention that we have used the
experimental value for hWxi, so we have not estimated it. On the other
hand, we stress that the value of s2

Wx
is given by Eq. (�.��).

In Fig. �.� we show the F (solid lines) and R (dashed lines) work
boundary terms for the experimental data obtained at two di�erent
pulling rates (�.� and ��.� pN/s). We note that F and R distributions
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Figure �.�: Distribution of the boundary terms in MT experiments.
Probability distributions of the work boundary terms in the F pro-
cess (solid lines) and R process (dashed lines) for ForceEns experi-
ments.

are almost overlapped, indicating us that there is nearly no dispersion
between the F and R boundary terms in MT: |D(x f )F| ⇡ |D(x f )R|.

We measured x from the slope of the e�ective-CFT (see section �.�.�).
We obtained: x = 0.075 ± 0.010 and x = 0.33 ± 0.04 for �.� and ��.�
pN/s, respectively. In Table �.� we report the values for the correlation
r and the inferred values of s2

D(x f ) (denoted as s2
Dinf
(x f )

) obtained by

maximizing Eq. (�.��) for MT experiments when the work is computed
according to Eq. (�.�). Furthermore, we also compare the inferred and
the experimental (s2

Dexp
(x f )

) values.

r [pN/s] s2
Dexp
(x f )

[( kBT)2] s2
Dinf
(x f )

[( kBT)2] r [ad.]

�.� ��� ± �� ��� ± �� �.� ± �.�
��.� ��� ± �� ��� ± �� -�.� ± �.�

Table �.�: Fluctuations of work boundary terms in MT. The term s2
Dexp

x f

have been obtained calculating the average between themean values
of F and R distributions and the values s2

Dinf
x f

, r have been obtained

from the maximization of Eq. (�.��) using the constraint (�.��).
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Interestingly, inferred values are in good agreement with the experi-
mental measurements. Surprisingly, correlation coe�cient r changes
its sign upon increasing the pulling speed. On the other hand, �uc-
tuations of the boundary term become smaller as the pulling speed
increases. This decreasing trend might indicate us that in the in�nite
pulling rate regime, r ! •, relative �uctuations of the boundary
term might become negligible as compared to Wx and Wf �uctuations.
Hence, in this regime, the CFT might be satis�ed both for Wx or Wf .

�.�.� Boundary terms in Laser Optical Tweezers experiments

In what follows we perform the same analysis for LOT experiments.
Nevertheless, we must take into account the fact that, using LOT, we
carried out experiments both in the ExtEns and in the ForceEns. While in
the �rst case the study is done by investigating the breakdown of the
CFT for Wf , in the second case it is done by considering that the CFT
does not hold for Wx. For the sake of clarity, we split the discussion
in two parts, depending whether the experiments were done in the
ForceEns or in the ExtEns.

ExtEns experiments. Breakdown of the CFT symmetry for Wf

According to the framework we discussed in section �.�.�, for the ExtEns
experiments (i.e. the CFT is ful�lled for Wx) we consider that Wf satisfy
an e�ective-CFT given by:

PF(Wf )

PR(�Wf )
= exp

✓
Wf � DGf

kBTe�

◆
, x := T/Te� , (�.��)

and, consequently:

⌧
exp

✓
�

Wf

kBTe�

◆�

F

= exp
✓
�

DGf

kBTe�

◆
. (�.��)

Moreover, the Gaussian approximation for p(Wf ) (Eq. (�.��)) im-
plies:
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s2
Wf

2kBTe�
= hWf i � DGf = x

s2
Wf

2 kBT

= x

s2
Wx

+ s2
D(x f ) � 2rsWx

sD(x f )

2 kBT
.

(�.��)

We point that in previous equation (Eq. (�.��)) the sign of the right-
most term of the �nal equality has been changed from positive to
negative�. On the other hand, we can write the analogous expression
of Eq. (�.��) for the ExtEns as:

s2
Wx

2 kBT
= hWxi � DGx . (�.��)

In order to obtain the equivalent expression of Eq. (�.��), we subtract
Eq. (�.��) from Eq. (�.��) and we use the relation between the free
energies (Eq. (�.��)) and the result of Eq. (�.��):

s2
Wx

(x� 1) + xs2
D(x f ) � 2xrsWx

sD(x f ) = 0 . (�.��)

As we expected, Eq. (�.��) allows us to impose an additional con-
straint for the numerical estimation of r and sD(x f ). The inference
of these parameters has been done following the same procedure we
explained in section �.�.�. We note that the log-likelihood function now
reads as:

logL
⇣

r, sD(x f ) | {Wf }
⌘
= � Nexp

2
log
⇣

2ps2
Wf

⌘

� 1
2s2

Wf

Nexp

Â
k=1

⇣
W

(k)
f
� hWf i

⌘2
,
(�.��)

where s2
Wf

is given by:

s2
Wf

= s2
Wx

+ s2
D(x f ) � 2rsWx

sD(x f ) . (�.��)

� This is due to the fact that Wf = D(x f )�Wx .
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In Fig. �.��(a) we show the F (solid lines) and R (dashed lines) work
boundary terms for the experimental data obtained at two di�erent
pulling rates (�.� and ��.� pN/s). The results we obtained for ExtEns
experiments in LOT are reported in Table �.�. Finally, we indicate that
the slopes of the e�ective-CFT (i.e. x) we used are: 0.11 ± 0.03 and
0.31 ± 0.02, for the 6 and 16 pN/s pulling rates, respectively.

ForceEns experiments. Breakdown of the CFT symmetry for Wx

Since the goal of this part is the study of the breakdown of the CFT due
to the use of Wx in ForceEns experiments, the situation is completely
analogous to that already explained for MT. Hence, the estimation of
the parameters has been done as we explained in section �.�.�. We note
that the slopes of the e�ective-CFT (i.e. x) we used are: 0.19 ± 0.02 and
0.17 ± 0.01, for the 7 and 21 pN/s pulling rates, respectively.
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Figure �.��: Work boundary term for LOT experiments. Distributions of
the work boundary terms in the F process (solid lines) and R
process (dashed lines) for ForceEns experiments (a) and for ExtEns
experiments (b).

Figure �.��(b) shows the F (solid lines) and R (dashed lines) work
boundary terms (obtained at the aforementioned pulling rates) for
ForceEns experiments in LOT. On the other hand, Table �.� contains the
results of the estimation of s2

Dinf
x f

, r based on the numerical maximization

of the log-likelihood given by Eq. (�.��).

Summary of results

We note that the �uctuations of the boundary term in LOT are typically
ten times bigger than in MT. This might be a result of the fact that the



�� ����������� ������� �� ��� ����� ��������

r [pN/s] s2
Dexp

x f

[( kBT)2] s2
Dinf

x f

[( kBT)2] r [ad.]

ExtEns
� ���� ± ��� ���� ± ��� �.�� ± �.��
�� ���� ± ��� ���� ± ��� �.�� ± �.��

ForceEns
� ���� ± ��� ���� ± ��� -�.�� ± �.��
�� ���� ± ��� ���� ± ��� -�.�� ± �.��

Table �.�: Fluctuations of the work boundary terms in LOT. The term
s2

Dexp
x f

have been obtained calculating the average between the

mean values of F and R distributions and the values s2
Dinf

x f

, r have

been estimated by numerically maximizing of Eq. (�.��) using
the constraint (�.��). The slopes of the e�ective-CFT for ExtEns
(ForceEns) experiments obtained using Wf (Wx) are: x = 0.11± 0.03
(x = 0.19± 0.02) and x = 0.31± 0.02 (x = 0.17± 0.01) for 6 and
16 pN/s (7 and 21 pN/s), respectively.

distance x in the LOT setup, rather than being directly the molecular
extension as in MT, is the sum of several �uctuating quantities: the
molecular extension (xm) plus the extension of the dsDNA handles (xh)
plus the displacement of the bead in the optical trap (xb). While in the
ExtEns experiments the total distance x = xm + xh + xb is �xed, its
individual components �uctuate. This, added to their di�erent elastic
response might induce higher �uctuations in the energetics of the
systems as compared to the MT setup. On the other hand, notoriously,
the correlation coe�cient r we infer have two di�erent behaviors
depending on the ensemble. Whereas for ExtEns r decreases as the
pulling rate increases (like we obtained in MT, see Table �.�), in ForceEns
r is approximately constant for all pulling rates.

The model we derived is able to reproduce the typical order of magni-
tude of the work boundary �uctuations. Nevertheless, we must bear in
mind that the Gaussian assumption for the work distributions might not
be realistic in all situations. Indeed, the distributions corresponding to
the natural ensembles of each experimental system (Fig. �.� for ForceEns
in MT and Fig. �.��(a) for ExtEns in LOT) are symmetric (as the Gaussian
assumption requires), while the corresponding one to the ForceEns in
LOT (Fig. �.��(b)) is not.
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In this chapter we have addressed the issue of ensemble inequivalence
from a thermodynamic perspective. We performed nonequilibrium
bidirectional pulling experiments in a small DNA hairpin and we have
explored two conjugate ensembles: ExtEns and ForceEns. In particular,
we carried out experiments in the ForceEns, both with MT and LOT with
force feedback, and in the ExtEns with LOT. This has allowed us to
perform the de�nitive experimental veri�cation of Eq. (�.�) by using
the CFT, indicating that in the ForceEns Eq. (�.�) measures the correct
thermodynamic work and that it is not equivalent to using Eq. (�.�).
Moreover, by comparing the ForceEns and the ExtEns we have shown

the importance of the often neglected boundary terms of the measured
mechanical work. They play a pivotal role when testing the CFT and,
since they strongly depend on the experimental conditions, their study
may allow experimentalists to gather useful information about �uctua-
tions of the di�erent parts of experimental setup. Moreover, we have
exempli�ed this fact by developing a solvable model that allows us to
infer the statistical properties of the work boundary terms.
Our study paves the way to the extension of free energy recovery

methods using �uctuation theorems in situations in which only inten-
sive variables (such as force) are controlled.





5
K INET IC S AND D I S S I PAT ION IN THE FORCE
ENSEMBLE

In the preceding chapter we have explored the issue of ensemble in-
equivalence in small systems by exploring several thermodynamic
quantities in two conjugate statistical ensembles (ExtEns vs. ForceEns).
As a matter of fact, we found the e�ect of Brownian �uctuations

goes beyond thermodynamic e�ects. In the present chapter we will
analyze how the folding/unfolding kinetics of DNA hairpins are a�ected
by whether intensive variables (e.g. force or pressure) rather than
extensive ones (e.g. extension or volume) are controlled, causing also
subsequently notorious di�erences in dissipation.

The chapter is organized as follows: in the �rst section we will brie�y
expose the concept of the Free Energy Landscape (FEL) and how the
molecular folding/unfolding problem is mapped onto it. Then, in the
second section the theory beneath the folding/unfolding kinetics is in-
troduced, leading to the quanti�cation of dissipation and irreversibility
e�ects in the ForceEns and the ExtEns. Then, the implications to liquid
systems are �nally discussed.

�.� ��� ���� ������ ��������� : � ����� ��������

The search for speci�c (or targeted) molecular conformations has drawn
attention since the birth of molecular biophysics. As pointed out by
Levinthal [��], even for a small protein, the number of possible states
that the molecule can explore is gigantic. Additionally, the possibility
of exploring a certain molecular state does not only depend on its
thermodynamic stability but also on kinetic considerations. The boost
of SME has fuelled the study of molecular folding problem [��, ��].
As a matter of fact, the feasibility of applying mechanical force to
biomolecules has allowed experimentalists to explore kinetic states that
often remain hidden in bulk assays [��].
In statistical physics the concept of FEL is widely used to obtain a

relation between the free energy of a system as a function of all its

��
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available con�gurations. It is widely used as a tool to predict reaction
pathways in chemical reactions, to infer thermodynamically stable
states in molecular systems (such as proteins or nucleic acids) or even
to study glassy systems [��] and mathematical optimization problems
in computer science [��].
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Figure �.�: Con�gurations and free energy landscape of CD�DNAhair-
pin. (a) - Sketch of the sequential con�gurations that appear when
unzipping the hairpin. Leftmost con�guration corresponds to the
situation in which there are no free bases, whereas the follow-
ing ones correspond to situations in which there are n = N and
n = N + 1 released bases. x denotes the molecular extension
corresponding to n. (b) - FEL evaluated using Eq. (�.�) at the coex-
istence force, fc. Using the NN parameters [��]: fc = 15.1 pN at
T = 298 K and �M NaCl. The vertical dashed line corresponds to
the position of the transition state and xF(U) are the distances from
the folded (unfolded) state to the transition state.

The FEL is, mathematically, a continuous non-bijective function that
sets a correspondence between each con�guration of a physical system
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and its free energy. Con�gurations are labelled according to a reaction
coordinate. When applying a mechanical force at the extremities of a
molecule (e.g. such as in LOT or MT experiments), the good reaction
coordinate is the molecular extension. Nevertheless, for DNA hairpins
in which the unzipping process is sequential, the number n of released
(or unpaired) bases is also a good reaction coordinate [��]. To calculate
the FEL when an external force f is applied to the hairpin we used the
following expression:

G(n, f ) = G
n

0 + Gstret.(n, f ) + Gdiam.( f ) , (�.�)

where the term G
n

0 accounts for the free energy of formation at zero
force of the con�guration in which n sequential basepairs are unpaired
(see Fig. �.�(a)). It is fully sequence-dependent and it is computed
according to the Nearest-Neighbor model for DNA [��, ��] as:

G
n

0 =
N

Â
k=n+1

gk,k+1 + (1� dn,N)gloop , (�.�)

where the terms in the summation, gk,k+1 are the basepair free en-
ergies, gloop is the free energy of formation of the loop and dn,N is the
Kronecker delta. The used values for gk,k+1 are obtained from the Mfold
web server [��].

The elastic response of the released single-stranded nucleic acid is
modelled according to the Worm-Like Chain (WLC) model [��]. Thus,
the stretching free energy at a �xed force f is given by:

Gstret.(n, f ) = �
Z

f

0
xn( f

0) d f
0 , (�.�)

where xn( f ) is the extension of the ssDNA at the force f when n

bases are released. xn( f
0) is calculated as the inverse function of Eq.

(B.��) using P = 1.35 nm and db = 0.59 nm/base [��]. The contour
length of the ssDNA equals to L

n
c = (n + nloopdn,N)db, being nloop the

number of bases that form the loop (nloop = 4 for the hairpin shown in
Fig. �.�(a)).
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Finally, the energy cost to orientate the double helix diameter (d =
b = 2 nm) along the direction of the force is evaluated using the Freely
Jointed Chain (FJC) model [��], giving:

Gdiam.( f ) = � kBT log
✓

kBT

f d
sinh

✓
f d

kBT

◆◆
. (�.�)

In Fig. �.�(b) it is shown the calculated FEL for the CD� DNA hairpin
at the coexistence force fc. That is, the force at which the unfolded and
folded states have the same energy: G(n = 0, fc) = G(n = N, fc).
From the estimated FEL, that presents only two minima separated by
a single barrier, we can infer that the CD� DNA hairpin behaves as
a two-state system with two stable conformations: the folded state
(corresponding to n = 0) and the unfolded state (n = N).

�.� ��������� ������� ����� �� � ��������

As we already commented, small DNA hairpins (such as CD�) behave
like two-state systems. Therefore, under the action of an external force
f , the DNA can switch between two states: the folded (F) and the
unfolded (U) state (for a schematic depiction see Fig. �.�).

Folded (F) Unfolded (U)

k
F    U

k
U    F

Figure �.�: Schematics of two-state systems. Switching between the folded
and the unfolded conformation of a DNA hairpin according to the
unfolding kinetic rate, kF!U, and the folding kinetic rate, kU!F.

Since in the FEL it appears a single kinetic barrier (i.e. the state
with highest free energy along the reaction coordinate, dashed line in
Fig. �.�), the hairpin is considered to behave like a two-state system
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[��]. Unfolding and folding rates are usually described according to
Kramers Bell-Evans theory [��–��] with kinetic rates kF!U and kU!F

for transitions F ! U and U ! F, respectively. Rates can be written
as:

kF!U( f ) = km exp
✓

f xF

kBT

◆
, (�.�)

kU!F( f ) = km exp
✓

DGFU � f xU

kBT

◆
, (�.�)

where km is the unfolding kinetic rate at zero force, DGFU = fcxm is
the free energy di�erence between states F and U and xm = xF + xU
is the molecular extension at the force fc.

�.� ������� ���������� ����

The Second Law of thermodynamics sets the free energy, DG, as a
lower bound for the average mechanical work, hWi, done over a set of
di�erent experimental realizations of an arbitrary experimental protocol
as: hWi � DG. The excess work hWi � DG is often referred to as the
dissipated work and it strongly depends on the experimental conditions,
hWdisi = hWi � DG.
It has been recently shown that the dissipated work provides a mea-

sure of distinguishability between forward and backward trajectories
in the phase space [��], providing a direct link to information thermo-
dynamics. From a di�erent perspective, we found that irreversibility
e�ects and dissipation are another sign of ensemble inequivalence.

In our bidirectional pulling experiments we can estimate the average
dissipated work per cycle as:

hWdisi '
hWiF � hWiR

2
, (�.�)

where hWiF(R) is the mean value of F(R) work distribution. The
main advantage of using Eq. (�.�) is that the neither the knowledge of
the free energy nor the stretching contributions are required.
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�.�.� Experimental results for dissipation and kinetic rescaling

In Fig. �.� it is shown hWdis.i as a function of the pulling rate r for all
experiments: ForceEns in MT; and ForceEns and ExtEns in LOT. Note that,
under equivalent pulling rate conditions, dissipation is systematically
lower in the ExtEns as compared to the ForceEns.
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0 2 4 6 8 10 12 14 16 18 20 22

W

Figure �.�: Dissipation in the ForceEns and in the ExtEns. Comparison be-
tween the average dissipated work in the ForceEns with MT (red
full squares), ExtEns (full dark blue circles) and the ForceEns in LOT
(empty light circles) (obtained from Ref. [��]).

The di�erence found in the average dissipation between the ForceEns
and the ExtEns relies on the molecular kinetics. In the ForceEns, the
unfolding-folding transitions occur at constant force, keeping the ki-
netics unchanged. In contrast, in the ExtEns, every unfolding-folding
event is followed by a force jump, speeding up the kinetics as compared
to the ForceEns. In Fig. �.� there are shown schematic depictions of an
arbitrary unfolding event (solid lines) in the ForceEns and in the ExtEns
when kinetics are described according to Eqs. (�.�) and (�.�). Kinetic
rates (and hence the overall relaxation time) are always higher in the
ExtEns, which leads to lower dissipation.
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Figure �.�: Illustration of ensemble dependence of coexistence kinetic
rates. Hopping kinetics at coexistence in the ForceEns (�xed point)
and the ExtEns (two arrow line), D f is the force jump when the
molecule unfolds.

In Ref. [��] an expression for the average dissipated work, hWdis.i,
has been derived for a two-state DNA hairpin if an external mechanical
force is varied at a constant pulling rate f . It reads as:

hWdis.i
kBT

=
Z •

�•
dx

Z
x

�•

dy

cosh2(y)
exp

✓
�1
r̃

Z
x

y

dz e
µz cosh z

◆
,

(�.�)

being µ the molecular fragility [��] de�ned as:

µ =
xF � xU

xF + xU
=

xF � xU

xm

, (�.�)

and the dimensionless rate r̃:

r̃ =
xm

4 kBTkc

r , (�.��)

where kc is the so-called critical coexistence rate of the F and U states
(i.e. kF!U( fc) = kU!F( fc) := kc). Interestingly, although Eq. (�.�)
was derived in the ForceEns scheme, through a kinetic rescaling, it can be
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Figure �.�: Kinetic rescaling for average dissipated work. (a) hWdis.i as
a function of the pulling rate r for di�erent values of kc (indicated
in the graph). (b) Theoretical prediction for ExtEns data (dashed
line) and ForceEns data (solid line). hWdis.i has been obtained by
numerically integrating Eq. (�.�) using xm = 19.8 ± 0.9. µ =
-0.3 ± 0.1 and kBT = 4.11 pN nm at ��� K.

used to characterize dissipation in the ExtEns. In Fig. �.�(a) it is shown
how the average dissipated work (obtained by numerically integrating
Eq. (�.�)) spans from few kBTs up to tens of kBTs by varying the value
of kc. As a matter of fact, in order to reproduce the ExtEns behavior
using Eq. (�.�), it has been shown that kinetic rates at the coexistence
transition must be appropriately rescaled as [��]:

k
ForceEns = Wk

ExtEns , (�.��)

where the W factor equals to:

W = exp
✓
�1� µ2

8
xm|D f |

kBT

◆
< 1 . (�.��)

Since the folded-unfolded transition in the ForceEns occurs at constant
force (D f = 0), the force jump must be measured in the ExtEns. For
the CD� DNA hairpin (Fig. �.�(a)) we obtain xm = 19.8 ± 0.9 nm,
D f = 1.1 ± 0.1 and µ = -0.3 ± 0.1, leading to W = 0.55 ± 0.02 at
T = 298 K. Moreover, the kinetic rate at coexistence was measured
from hopping experiments in the ExtEns [��]: k

ExtEns = 1.3 ± 0.2 s�1,
giving k

ForceEns = 0.72 ± 0.11 s�1. Using these values we �nd good
agreement between theory and experiments, as it can be seen in Fig.
�.�(b).
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We found that the ensemble inequivalence phenomenon is also present
at the level of molecular kinetics. We showed that the average dissipated
work, which is essentially governed by the molecular kinetics, strongly
depends on the nature of the control parameter.
In general, �uctuations of intensive variables in the ExtEns leads to

e�ective higher kinetic rates in thermally activated processes. The char-
acteristic Arrhenius dependence of kinetic rates, k ⇠ exp (�B/ kBT),
and the �uctuating nature of the kinetic barrier, B, together with
Jensen’s inequality� give:

k
ExtEns ⇠ hexp (�B/ kBT)i > exp (�hBi/ kBT) ⇠ k

ForceEns . (�.��)

In turn, in linear response, the average dissipated work is expected
to scale like: hWdis.i ⇠ P/k, with P a characteristic driving power
(⇠ xmr in our pulling experiments), giving hWExtEns

dis. i < hWForceEns
dis. i.

Note that Eq. (�.��) can be written as: W = exp (�a|hDxD f i|/ kBT),
with Dx = xm and a = (1� µ2)/8 ⇠ O(1).

We believe that the conclusions of our single-molecule study might
be generalized to other physical contexts. As a matter of fact, in the
pressure-volume context of liquids we argue that the W factor would
read as:

W = exp
✓
�b

|hDVDPi|
kBT

◆
= exp

✓
�b

(DP)2
VkT

kBT

◆
, (�.��)

where b ⇠ O(1), V being the volume, DP the root-mean square
deviation of pressure �uctuations and kT the isothermal compressibility.

An important consequence of Eq. (�.��) is that, given the fundamental
thermodynamic uncertainty relation between pressure and volume
�uctuations [��]: |hDPDVi| > kBT, it is expected that the ForceEns
and the ExtEns will recover the property of equivalence among them in
the high T limit.
Ensemble inequivalence might be important in in vivo molecular

reactions. As a matter of fact, Eq. (�.��) allows us to exemplify it.
Let us consider a cell of typical size �� µm with �xed volume V =

� e
E[X]  E

⇥
e

X
⇤
.
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103µm3, osmotic pressure �uctuations DP ⇡ 100 Pa (osmotic pressure
di�erences can be as large as ��� Pa [��]) and isothermal compressibility
kT of water as small as 4⇥ 10�10 Pa�1. Inserting these values in Eq.
(�.��) with kBT = 4.11 pN nm = 4 ⇥ 10�21 N m at T = 298 K
we obtain: W ⇡ exp(�b), which is of order � if b is of order �, as
assumed. This result suggests that the kinetics of molecular reactions
inside cellular compartments [��, ��] might be strongly sensitive to the
ensemble.
Since the right-hand side of Eq. (�.��) is strongly sensitive to the

three terms appearing in the exponent: DP, V and kT , the �gures
employed in the previous expression for W should be taken only as
a guide. Indeed, for the case of molecular reactions in much smaller
compartments, V can be a thousand times smaller. Nevertheless, the
magnitude of the pressure �uctuations, DP, can be comparatively larger.
Also, kT must not be necessarily as small as for pure water�, the bulk
modulus of the cellular solvent could be larger at �nite frequencies
under nonequilibrium conditions. In this regard, SME of molecular
folding in crowded environments o�er an interesting research track to
follow.

� kT = 4⇥ 10�10 Pa�1
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6
S INGLE �MOLECULE CHARACTER I ZAT ION OF
HETEROGENEOUS NEU TRAL MOLECULAR
ENSEMBLE S

�.� ����������

Through complex non-equilibrium dynamics, living organisms can
grow, undergo metabolism, reproduce or even evolve. Nonetheless,
those features are hard to explain in a classical thermodynamic sce-
nario and concepts like information must be added as an ingredient.
Indeed, living systems behave like a Maxwell demon, as they can mea-
sure and exploit information from their surroundings. From chemotaxis
(i.e. the ability of bacteria to move towards regions with nutrien-richt
concentrations) [��, ��], to communication [���] or even to the adap-
tation to changing environments [���], living organisms are able of
harvesting information from their surroundings and, subsequently, of
e�ectively transducing the obtained information into useful energy.

In the early years of information theory, information-to-energy con-
versions were assumed to be only gedankenexperiments. Indeed, quoting
Schrödinger [���]: “We never experiment with just one electron or atom
or (small) molecule. In thought experiments we sometimes assume that
we do; this invariably entails ridiculous consequences (...) In the �rst
place it is fair to say that we cannot experiment with single particles,
any more than we can raise Ichtkyosauria in the zoo”. Fortunately this
situation has not become true. Nowadays, experimental measurements
of information-contents are a hot topic in the �eld of statistical me-
chanics. From the experimental demonstration of information-to-work
conversion [��], to the veri�cation of the Landauer principle [���],
the link between information theory and thermodynamics is �nally
well-built [��]. In this regard, the measurement of information content
of populations has become essential due to its applications in directed
evolution experiments.
Evolution is the natural process that, through genotipic variations,

generates phenotipic variations. Natural evolution has two main in-

��
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gredients: variability and selection. Whereas selection is related to the
change of heritable traits of a population over time, variability brings
out evolution. Moreover, evolutionary processes occur across all spatial
and temporal scales, from species and organisms down to the molecular
level. In the context of information theory, evolving populations are
continuously adapting to changing environment, so they must extract
and store information from their surroundings in order to improve their
adaptability. Therefore, a precise knowledge (and quanti�cation) of the
information content of evolving systems is essential to understand the
information-to-energy trade-o�s that underlie evolutionary dynamics.

In this part of the thesis we prove how the information content of a
DNA molecular ensemble can be directly measured by extending the
traditional combination of precise single-molecule measurements and
�uctuation relations for mechanical work. This paves the way for the
resolution of the long-standing research question of whether informa-
tion content is or is not a physically measurable quantity. Our method
is built on what we call ensemble force spectroscopy, a powerful
systematic experimental procedure that allows to overcome the evident
di�culty of single-molecule methods: sampling enough molecules in
order to have a precise measurement of ensemble properties (sample
versus population characterization). In this context, there is a funda-
mental interest in characterizing heterogeneous ensembles. First, and
foremost, heterogeneity has an enormous (and often overlooked) impact
on biophysical systems: from spatial conformations of molecules (such
as proteins, nucleic acids or even viruses) [���–���], up to oncologic
implications at the cellular level [���–���]. Moreover, since there is
no systematic procedure to study heterogeneity at the single-molecule
level, our work aims to �ll this gap by establishing a framework in
which structural and kinetic properties of molecular ensembles can
be obtained by means of thermodynamic measurements in SME. The
precise knowledge of thermodynamic properties of the molecular en-
sembles will, ultimately, allow us to relate the information content with
physical properties of the molecular ensembles.

This chapter is focused on the thermodynamic ensemble characteri-
zation, aiming to provide a complete and systematic description of an
heterogeneous DNA ensemble. Building on this result, the connection
between energy and information in molecular ensembles is discussed
in the chapter �.
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In order to pose the long-standing question of whether information
content is an actual physically measurable quantity in molecular en-
sembles, we need to aim for a suitable physical system. For the case of
molecules studied by means of single-molecule assays, the possibility
of conducting extremely high accurate thermodynamic measurements
(e.g. measuring free energy di�erences) suggest that they are the perfect
playground to explore the connection between energy and information.
Nevertheless, in the best tradition of SME, only one molecule is studied
at a time. Hence, the information gained at each experimental real-
ization is the same (within experimental uncertainty), yielding a zero
formation content of an homogeneous sample. In order to generate
the suitable system to carry out information-content measurements,
variability must be added as an ingredient.

First of all, we argue that that folding free energy is the key quantity
that we must look for. Folding free energy is one of the most straight-
forward measurable quantity in SME, becoming a useful phenotype
(i.e. an observable trait) in many situations. Through free energy mea-
surements, further thermodynamic quantities can be obtained. This
is the case of energy dissipation, which is of remarkable importance
for living systems (see section �.�) or the quanti�cation of speci�c
ligand binding energy of, for instance, ions or small ligands (see later
discussion of Sec. �.�). We will show how the measurement of free
energy di�erences in molecular ensembles allows us, ultimately, to con-
duct systematic information content measurements in heterogeneous
molecular ensembles.

Variability is introduced in the molecular sample by performing ran-
dom uniform� point mutations in some speci�c bases of a given DNA
molecule. In particular, we have used as a “template” molecule, the CD�
DNA hairpin (the same we used in chapter �). Since force kinetics and
energetics of CD� DNA are have been widely measured by means of,
bulk and single-molecule measurements, CD� is a benchmark molecule
for a large variety of experimental assays [��]. For this reason we have
used CD� as the base molecule for generating three di�erent hetero-
geneous samples: consisting on four, eight and twelve randomized

� In the sense that the insertion of any nucleotide is equally probable. Therefore, p(A) =
p(C) = p(G) = p(T) = 1/4.
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Figure �.�: Schematics of molecu-
lar ensembles. Each hair-
pin corresponds to a dif-
ferent molecular ensemble.
Orange bases correspond
to GC canonical basepairs
whereas blue correspond
to AT canonical basepairs.
Green bases are loop bases
and purple N bases can be
either A, G, C or T.

Ensemble Population, W

CD� 40 = 1
�M 44 = 256
�M 48 = 65536
�M 412 = 16777216

Table �.�: Summary of molec-
ular ensembles and
populations. List of
the number of di�erent
molecules that are
compatible with a given
number of randomized
nucleotides.

nucleotides (for the speci�c positions, see Fig. �.�). Each ensemble
is coined as �M, �M and �M, respectively. In Table �.� we report the
number of di�erent molecules that are compatible with a given number
of mutations. For an arbitrary number N of mutated bases, the total
amount of existing molecules equals to: W = 4N = 22N .

Clearly, for traditional single-molecule techniques (no high-troughput
or paralleling) the possibility of measuring all (or a signi�cant fraction)
of the molecules existing in a mutational ensemble becomes unattain-
able as N grows (see Table �.�). The necessity of overcoming this
di�culty is essential for measuring ensemble quantities (e.g. informa-
tion content) of real molecular systems.
We note that our heterogeneous DNA ensembles are analogous to

DNA ensembles undergoing evolutionary dynamics without selecting
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forces. That is, obtained only by means of genetic drift (i.e. neutral
ensembles).

�.� �������� ����� ������������

The measurement of information contents of molecular ensembles is
done by characterizing the folding free energy spectrum of the molecu-
lar ensembles. Here we propose a systematic methodology that allows
us to quantify the folding free energy distributions of heterogeneous
ensembles by the combination of classical nonequilibrium pulling ex-
periments and the CFT. With our methodology we are able to extract the
folding free energy spectra of neutral molecular ensembles. In the best
tradition of statistical physics, a pool of several tens of molecules out
of a large population it is su�cient to extract the information-content.
Pulling experiments were performed analogously as explained in

section �.�.�. Additionally, DNA hairpins are also attached to the same
two ��-bp dsDNA handles we used in the experiments described in
chapter � and the molecular construct is inserted between two micron-
sized polystyrene beads, as shown in Fig. �.�(a). While one bead is held
in the tip of a micropipette by air suction, the other one is captured in
the center of the optical trap. The distance l is the relative distance
between the center of the optical trap and the tip of themicropipette. All
the assays are performed in the ExtEns, where l is the control parameter.
The protocol applied for characterizing the ensembles is as follows.

Every sampled DNA hairpin is subjected to bidirectional nonequilib-
rium pulling experiments. Molecules are stretched by increasing the
distance l, whereas they are relaxed by decreasing l. The stretching
(releasing) path is identi�ed with the forward (reversed), F (R), pro-
cess. At the beginning of the F process, the molecule is in thermal
equilibrium at a given value of l := l0 in the folded conformation and
it is mechanically unfolded by performing a controlled increase of l.
When the molecule does no longer withstand the mechanical tension,
it unfolds to its single-stranded conformation. Unfolding events can be
seen as sudden force drops in the F process. On the other hand, in the R
process, the molecule is initially found in equilibrium at l := l1 in the
unfolded conformation and the time reversed protocol is applied until
again l0 is reached. The footprint of the refolding of the molecules is
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Figure �.�: LOT experimental setup and experimental evidence of het-
erogeneity. (a) - Schematics of the experimental setup of LOT
experiments and representation of the control parameter l. (b) -
Examples of FDCs of CD� (top panel) and di�erent molecules of the
three ensembles we studied (from top to bottom: �M, �M, �M; see
Fig. �.�(a)). Curves were shifted for the sake of clarity. Dark colors
corresponding to unfolding process and light colors correspond to
the refolding paths.

an abrupt force increase, corresponding to the formation of the original
double helical structure.
In Fig. �.�(b) we show several FDCs for di�erent molecules and dif-

ferent molecular ensembles (indicated in the right bottom side of each
panel). All molecules were pulled at the same conditions (Tris-HCl �M
NaCl bu�er, ��� nm/s of pulling speed), so the mechanical response
and, in particular, the unfolding/folding forces is only dependent on
the sequence. Nevertheless, we point that our assays are sequence-
blindfolded, so we are not able to determine the sequence we are mea-
suring by means of standard pulling experiments.

A key quantity when studying molecular ensembles in evolutionary
processes is the molecular stability. Due to the features of our experi-
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mental procedure, the CFT (Eq. (�.�)) is the perfect tool to recover the
individual molecular folding free energy, DG0, using irreversible work
measurements. Also, we must take into account two aspects of the me-
chanical work W. First, W has to be calculated according to the ExtEns
scheme (Eq. (�.�)). Additionally, when comparing the mechanical work
(or related quantities) of di�erent molecules (e.g. work distributions or
dissipation), stretching contributions must be subtracted as described
in appendix C.
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Figure �.�:Work distributions and CFT veri�cation. Top panels: forward
(dark colors) and reversed (light colors) work distributions of a
selection of molecules belonging to each ensemble (written as in
top graphs). Bottom panels: CFT test for the corresponding upper
distributions. Solid lines are linear �ts to the experimental data.
All slopes are approximately � in kBT units. Error bars have been
calculated using the Bootstrap method.

In upper panels of Fig. �.� we show the measured work distributions
for di�erent molecules belonging to the same molecular ensemble (the
ensemble is indicated in the graph), whereas lower panels show the
usual CFT test (i.e. plotting log PF(W)/PR(�W) and �tting a straight
line to the experimental data). Interestingly, even though the work
distributions can be signi�cantly di�erent among molecules of the
same ensemble, all of them ful�l the CFT. We remark that, in order to
compare the work distributions of di�erent molecules, for each value
of W, the intrinsic elastic contributions of the experimental setup have
been subtracted as explained in appendix C. Hence, according to Eq.
(�.�), the crossing point of the work distributions of upper panels of Fig.
�.� (or the x-intercept of each data set shown in lower panels of Fig.
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�.�) equals to the folding free energy of the corresponding molecule
DG0.

�.�.� Folding free energy spectra

We extracted the folding free energy of every molecule that we mea-
sured (��, �� and �� molecules for the �M, �M and �M ensembles,
respectively) by means of the CFT (see Fig. �.�). In order to obtain DG0,
the energetic contributions of the elements forming the experimental
setup have been subtracted to the individual DGs. We mention that
we have used the e�ective sti�ness approximation for the energetic
contribution of the handles plus the optical trap (see Sec. C.�.�) and the
ssDNA elastic parameters reported in Ref. [��] (i.e. persistence length
equal to 1.35 nm and contour length equal to 0.59 nm/base). Despite
there are sophisticated single-molecule studies regarding sequence-
dependence elasticity of ssDNA [���], we assumed an homogeneous
elastic response when stretching the ssDNA since we cannot directly
identify the sequence we pull.
In Fig. �.� we show the obtained folding free energy histograms

for the measured molecules (solid lines) and we compare them with
the theoretical prediction obtained using Mfold (dashed lines). Mfold
data have been obtained by numerically folding all the existing ���
molecules for the �M case, whereas for the �M and �M ensembles
we have numerically folded, respectively, ���� and ����� di�erent
molecules.
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Figure �.�: Experimental and theoretical folding free energy spectra.
Experimental folding free energy histograms (red data) and theo-
retical folding free energy histograms (blue data) obtained using
Mfold. Error bars have been obtained by Bootstrap resampling.
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Notoriously, our measured folding free energies seem to be in good
agreement with the nearest-neighbor model prediction using Mfold
[��]. Nevertheless, eyeball comparison between histograms may lead
to false conclusions�. Hence, we performed a statistical test in order to
unveil the compatibility (or not) between folding free energy distribu-
tions (the experimental and the theoretical prediction). In particular,
we carried out the non-parametric two-sample Kolmogorov–Smirnov
test (hereafter referred to as K-S test) for checking whether two un-
derlying one-dimensional probability distributions di�er [���]. Brie�y,
the K-S statistic is built by evaluating the maximum absolute di�erence
between the Empirical Cumulative Distribution Function (ECDF) of the
two studied datasets, D

?. Then, the rejection of the null hypothesis at
level a is done if the following inequality holds:

D
? > c(a)

s
1

N1
+

1
N2

. (�.�)

Being c(a) =
q
� log a

2 and N1, N2 the number of points of each
dataset (details and mathematical considerations are shown in section
E.�). a accounts for the probability of incorrectly rejecting the null
hypothesis.
Our (null) hypothesis is:

Null hypothesis (H0). Assuming that, for each ensemble, Mfold fold-
ing free distribution contains all existing molecules in the ensemble, the
free energies that we experimentally measure are drawn from the Mfold
distribution.

In order to test this hypothesis, the ECDF of both datasets (the experi-
mental measured values of DG0 and the obtained using Mfold) must be
obtained �rst. The ECDF of DG0, F̂N(DG0), is de�ned as:

F̂N(DG0) =
Number of molecules with free energy  DG0

N

=
1
N

N

Â
j=1

1
DG

(j)
0 DG0

.
(�.�)

� Histograms depend on the number of bins and their size. Often these parameters are
set by a rule of thumb, leading to biased and unreal results.
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Figure �.�: Empirical cumulative distribution function. ECDF obtained
for experimental data (red, sharp line) and for theoretical prediction
(blue, smoother line). Dashed lines correspond to the ��% lower
and upper con�dence bounds for the ECDF.

Where, for a given ensemble, N is the number of measured molecules
and 1

DG
(j)
0 DG0

is the indicator function of the event DG
(j)
0  DG0.

In Fig. �.� we show the calculated ECDF for both, the experimental
values of DG0 and the theoretical ones (red and blue lines, respectively).
Dashed lines correspond to the ��% con�dence bounds, obtained by
applying the Greenwod’s Formula [���]. In Table �.� we report the K-S
statistic and the corresponding p-value, as well as the conclusion for
the hypothesis.

N1 N2 D?
c(a)

q
1

N1
+ 1

N2
p-value Compatible?

�M �� ��� �.���� �.���� �.���� 7

�M �� ���� �.���� �.���� �.���� 3

�M �� ����� �.���� �.���� �.���� 3

Table �.�: Kolmogorov-Smirnov test for folding free energy distribu-
tions. Results of the K-S test and conclusion about the hypothesis
(N1 corresponds for the experimental data, whereas N2 corresponds
to the Mfold prediction). Hypothesis test has been performed with
a signi�cance level a equal to �%.

Interestingly, we note that only the �M ensemble is not compatible
with the folding free energy distribution predicted by Mfold. Both the
K-S test and the corresponding p-value�, indicate that the measured
folding free energies are not drawn from the Mfold distribution (which

� The p-value indicates the probability of, assuming that both distributions are drawn
from the same distribution, what is the probability of the two ECDF are as far apart
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Figure �.�: Sequence logo of all molecular ensembles. Graphical repre-
sentation of the sequence conservation of the molecular ensembles
(from top to bottom: �M. �M and �M). The height of each base indi-
cates its frequency of appearance in the sequence. For randomized
positions, its frequencies of appearance are shown in the graph.
Data obtained by D. Incarnato.

contains all the existing sequences compatible with � point mutations).
For the rest of the molecular ensembles, the K-S test and the corre-
sponding p-values indicate that the measured folding free energies are
drawn from their respective Mfold distributions.

Spurred by the discrepancies that we found in the �M sample, we se-
quenced all the molecular ensembles. Sequencing results are shown in
Fig. �.�, where we show the sequence logo of each molecular ensemble.
We highlight several important facts. First and foremost, the nucleotide
frequencies are closer to the desired ones (i.e. �.��) in ensembles con-
taining molecules with more mutational sites (see Table �.�). In contrast,

as observed. Hence, low p-values indicate that two distributions are not likely to be
compatible.
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nA [ad.] nC [ad.] nG [ad.] nT [ad.]

�M 0.18 ± 0.03 0.14 ± 0.03 0.37 ± 0.03 0.31 ± 0.04
�M 0.20 ± 0.01 0.22 ± 0.04 0.30 ± 0.02 0.27 ± 0.02
�M 0.200 ± 0.003 0.21 ± 0.01 0.30 ± 0.01 0.285 ± 0.004

Table �.�: Summary of sequencing results. Average of nucleotide frequen-
cies (n N, with N = A, C, G, T) for all the randomized positions
of each ensemble. Uncertainty in each case corresponds with the
standard error of the mean. Ideally, all frequencies should be equal
to �.��.

for ensembles containing less mutations, the nucleotides frequencies
do not satisfy the ordered weights. This fact becomes crucial in the �M
sample, where the measured nucleotide frequencies are far away from
the target frequencies. This fact might explain the discrepancies we
found between the measured values of DG0 and the ones predicted by
Mfold. This fact will be further discussed below. Interestingly, the G, T
nucleotide frequencies are signi�cantly higher as compared to the A,
C nucleotides. Finally, we also note that in the �M sample, there is a
missing nucleotide in the �th position. Hence, this results might be a
�ngerprint of the di�culty when synthesizing small DNA molecules
and the importance of having a precise knowledge of the sequence in
order to correctly relate sequence and physical properties of molecules
in SME.
We modi�ed the theoretical prediction by including the actual nu-

cleotide frequencies provided by the sequencing (Fig. �.�). Afterwards,
we computed again the folding free energy distributions for the same
number of molecules than before (i.e. ���, ���� and ����� for the �M,
�M and �M ensemble, respectively). Finally, we carried out again the
K-S test in order to discern whether the experimental data is compatible
with the corrected Mfold predictions.

In Fig. �.� we show the ECDF calculated for the experimentally mea-
sured DG0 (red curves, same as in Fig. �.�) and the theoretical ECDF
(green curves) obtained for an equivalent amount of molecules as in Fig.
�.� but setting the nucleotide frequencies obtained by sequencing each
ensemble (Fig. �.�). On the other hand, in Table �.� we summarize the
results regarding the K-S test as well as the p-values for the hypothesis
test.
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Figure �.�: New ECDF with corrected weights. ECDF obtained for experi-
mental data (red, sharp line) and for theoretical prediction (green,
smoother line) with the corrected nucleotide frequencies. Dashed
lines correspond to the ��% lower and upper con�dence bounds
for the ECDF.

N1 N2 D?
c(a)

q
1

N1
+ 1

N2
p-value Compatible?

�M �� ��� �.���� �.���� �.���� 3

�M �� ���� �.���� �.���� �.���� 3

�M �� ����� �.���� �.���� �.���� 3

Table �.�: NewKolmogorov-Smirnov test for folding free energy distri-
butions after sequencing. Results of the K-S test and conclusion
about the hypothesis (N1 corresponds for the experimental data,
whereas N2 corresponds to the Mfold prediction with corrected fre-
quencies). Hypothesis test has been performed with a signi�cance
level a equal to �%.

Now, we �nd that all the experimental ECDF are fully compatible
with the corrected theoretical predictions. Besides �M ensemble, where
the theoretical prediction was not fully compatible with the actual
molecular ensemble, in �M and �M ensembles the di�erences between
theory and experiments were not signi�cant. We conclude that, the
assumption that all samples come from a neutral mutational ensemble
(where any nucleotide can be found in the randomized positions with
equal probability) is fair enough for further considerations, yet always
recalling that the comparison between theory and experiments in the
�M ensemble must be delicate.
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�.�.� Comment on the sample size

Overwhelmed by the astonishing number of di�erent molecules exist-
ing in an NM molecular ensemble (where WN = 42N), one may ask
what is the required sample size to correctly estimate some statistical
quantities of such ensemble. Among all of the statistical properties of a
distribution, the mean and the variance are two of the most important.
Higher order moments, such as the statistical skewness or kurtosis, are
usually hard to estimate since they are very sensitive to data outliers.
Indeed, histogram method is usually the best method to unravel sym-
metry properties of the data. On the other hand, the estimation of the
mean requires a knowledge of the expected sample standard deviation.
This parameter, in general, is not known in our purposes. Therefore,
the present discussion is restricted on the sample size required for the
estimation of the population variance (or standard deviation). Indeed,
variance is one of the key quantities in statistics. From statistical in-
ference, hypothesis testing up to Monte Carlo techniques, having a
good estimation of the variance is essential. Nevertheless, its accurate
estimation is often a di�cult task.

Let us suppose that we want to estimate the population variance of
the folding free energy, denoted as s2

DG0
. A typical procedure consists

on the measurement of a subset Nexp (< WN) of folding free energies
of molecules belonging to the population, DG

(1)
0 , · · · , DG

(Nexp)
0 , and its

latter estimation of the population variance as:

s
2
DG0

=
1

Nexp � 1

Nexp

Â
k=1

(DG
(k)
0 � DG

?
0 )

2 , (�.�)

where DG
?
0 = 1

Nexp
Â

Nexp
k=1 DG

(k)
0 is the sample mean of the measured

folding free energies. By repeating the number of experiments a large
number of times (Nexp � 1), the sample variance yields: E[s2

DG0
] =

s2
DG0

. Our goal is to foresee how many molecules we need to pull
in order to have a precise estimation of the population folding free
energy variance. In order to solve this question, we will focus on
the relative di�erence between sDG0 and sDG0 [���]. Let us assume
that the measured DG

(k)
0 (1  k  Nexp) are i.i.d. Gaussian random
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1 - α
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pχ2(x)

x

Figure �.�: Illustration of c2 distribution. The a and b parameters shown
in the graph are the areas that are pointed by the arrows and they
correspond to the probabilities given by Eq. (�.�) and Eq. (�.��).

variables drawn from a N (µDG0 , s2
DG0

) distribution. We de�ne the
relative deviation between sDG0 are sDG0 as:

u :=
|sDG0 � sDG0 |

sDG0

. (�.�)

Note that, for sDG0 < sDG0 :

u = � sDG0 � sDG0

sDG0

, (�.�)

whereas for sDG0 > sDG0 :

u =
sDG0 � sDG0

sDG0

, (�.�)

so 0 < u < 1. Then, the probability that the relative deviation
between sDG0 and sDG0 lies within a fraction 0 < u < 1 can be written
as:

P {sDG0 < (1� u)sDG0} := a , (�.�)

and

P {sDG0 > (1 + u)sDG0} := b . (�.�)
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Figure �.�: Sample size as a function of the relative deviation between
the sample and the population standard deviation, u. Nexp
obtained by numerically solving Eq. (�.��) for di�erent values of
the signi�cance level, a.

Equivalently, previous probabilities can be written as:

P

(
(Nexp � 1)s2

DG0

s2
DG0

< (Nexp � 1)(1� u)2

)
= a , (�.�)

P

(
(Nexp � 1)s2

DG0

s2
DG0

> (Nexp � 1)(1 + u)2

)
= b . (�.��)

Equations (�.�), (�.��) de�ne the con�dence level c of the variance
estimation and it is related to the signi�cance level a as 1� a = c. In
Fig. �.� we show an illustration of a and b from Eq. (�.�) and Eq. (�.��).
The area pointed by both arrows correspond to a and b.

Note that the quantity
(Nexp�1)s2

DG0
s2

DG0
follows a chi-squared distribution

with Nexp � 1 degrees of freedom (for a formal proof see section E.�).
Then, the addition of Eqs. (�.�), (�.��) yields:

1� a = Fc2
(Nexp�1)

((Nexp� 1)(1+u)2)� Fc2
(Nexp�1)

((Nexp� 1)(1�u)2) ,

(�.��)
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where a is the signi�cance level� and Fc2
(Nexp�1)

is the cumulative
distribution function of the chi-squared distribution. Then, Eq. (�.��)
can be numerically solved in order to estimate the number of molecules
(i.e. sample size), Nexp, that are needed to estimate sDG0 with a relative
deviation from sDG0 equal to u.

Figure �.� highlights the di�culty involving a precise determination
of a population variance (i.e. the squared value of the standard devia-
tion). For instance, for a �% signi�cance level, in order to decrease u

from �.� down to �.��, implies an increase of Nexp by a factor of �. This
e�ect becomes stronger when lowering a and for decreasing u.

�.� ������� �������� ����������� ��� ������� �������
����

As we discussed in Sec. �.�, molecular kinetics governs the behavior of
the average dissipated work. Moreover, kinetics are strongly sequence-
dependent. Indeed, recent studies related the unfolding kinetic rate at
zero force (km of Eqs. (�.�) and (�.�)) with the sequence, showing a clear
increase of the spontaneous unfolding kinetic rate (i.e. at zero force)
as the AT-content of the sequence also increases [��]. Despite of that,
there are no studies relating the average dissipation with molecular
sequences.
In contrast to in section �.�, the experiments presented throughout

this chapter were done at a constant and unique pulling speed. Hence,
now we are not able to extract the molecular kinetic properties by
studying the average dissipation in di�erent pulling regimes, as done
before. Nevertheless, in what follows, we prove that characteristic ki-
netic properties can be also obtained by means of the ensemble average
dissipation. In particular, we have developed an analytical model that
allows us to quantify ensemble kinetic properties from the knowledge
of the folding free energy distribution for each ensemble.
The average dissipated work, de�ned as: hWdisi = hWi � DG, has

been obtained for every molecule using Eq. (�.�). We note that in the
previous de�nition of the dissipated work, if stretching contributions
are subtracted to hWi, instead of DG, DG0 must be used. In Fig. �.��
we show, for each molecular ensemble, the probability distribution of

� Intuitively, the signi�cance level accounts for the probability that the pattern of the
data is due to chance.
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Figure �.��: Probability distribution of the average dissipated work.
Probability density function of the average dissipated work for
each ensemble (indicated in the graph). Error bars were obtained
by Bootstrap resampling and the number of molecules are the
reported in the preceding section.

the average dissipated work obtained by measuring, for each molecule,
hWdisi. Interestingly, average dissipation spans from few kBTs up
to �� kBTs. Since experimental conditions were identical for all the
molecules, the di�erences found in dissipation are clearly due to the
sequence variability from molecule to molecule.

Having in mind that we cannot know the molecule we are pulling, we
aim to develop amodel for hWdisi that allows us, through the knowledge
of the particular folding free energy distribution of each ensemble
(p(DG), see Fig. �.�), to characterize the shape of the p(hWdisi). Since
probability is conserved, p(DG) can be transformed to p(hWdisi) as:

|p(hWdisi)dhWdisi| = |p(DG)dDG| . (�.��)

Then, in order to characterize p(hWdisi) we need to relate hWdisi
with DG. In the linear response limit, the average total dissipated work
of a two-state system is given by [��]:

hWdisi =
pxm

4 kBTkc

1� µ2

cos pµ
2

r +O(r2) . (�.��)

Where µ is the molecular fragility de�ned in Eq. (�.�), r is the loading
rate, kc the unfolding-folding kinetic rate at the coexistence force (i.e.
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the force at which folded and unfolded state are equally populated), xm

is the molecular extension at the coexistence force (same de�nitions
as in Section �.�.�). Equation (�.��) is obtained by integrating Eq. (�.�)
using the saddle-point method. We point out that Eq. (�.��) accounts
for the total average dissipation, the sum of the average dissipated work
in the F process and the R process�.
Equation (�.��) depends on the free energy via the critical kinetic

constant kc. Since Eq. (�.�) at fc can be written as:

kU!F( fc) := kc = km exp
DG� fcxU

kBT
, (�.��)

where at �rst order approximation DG equals: fcxm. Then, inserting
the previous relation and Eq. (�.��) in Eq. (�.��), we obtain:

hWdisi =
p

4 kBT

1� µ2

cos pµ
2

xmr

km

exp

�DG

kBT

✓
1 + µ

2

◆�
. (�.��)

To obtain the previous result we have also used the fact that the
fragility can be written as: µ = 1� 2 xU

xm
.

Equation (�.��) allows us to analytically di�erentiate hWdisi with
respect to DG. By considering p(DG) = N (DG

?, s2
DG

), Eq. (�.��) also
allows us to explicitly write the dependence of DG on hWdisi. Finally,
after straightforward algebraic steps, p(hWdisi) yields:

p(hWdisi) =
1p
2p

W
hWdisi

exp
✓
�W2

2
�
loghWdisi �mhWdisi

�2
◆

.

(�.��)

Where the parameter W is de�ned as:

W2 =
( kBT)2

s2
DG

(1 + µ)2

4
, (�.��)

and mhWdisi equals to:

mhWdisi = log

 
p

4 kBT

1� µ2

cos pµ
2

xmr

km

!
� 1 + µ

2
DG

?

kBT
. (�.��)

� In the R process µ! �µ
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We note that Eq. (�.��) allow us to estimate important kinetic prop-
erties of each molecular ensemble. This is the case of, for instance,
the molecular fragility µ and the unfolding kinetic rate at zero force,
km. On the one hand µ gives us information about the position of the
kinetic barrier (µ 2 [�1, 1]) and, on the other hand, km provides us
insights about the height of the kinetic barrier.
The estimation of µ using Eq. (�.��) is complex, in general. The

fragility appears in the W parameter (Eq. (�.��)), which essentially gov-
erns the kurtosis of the distribution (via an exponential dependence)
[���]. Kurtosis is the quantity that measures the “tailedness” of the
distribution. Therefore, since tails are extremely hard to characterize,
obtaining a good and reliable estimation for µ turns out to be an ar-
duous task. Hence, we decided to �x this parameter to µ = 0 due to
several reasons. First and foremost, the value µ = 0 corresponds to
the measured (and predicted) value for CD�, our template molecule
[��]. Secondly, since we are sequence-blindfolded and µ 2 [�1, 1],
we approximate the probability distribution of the molecular fragility,
p(µ), as a continuous uniform probability distribution as:

p(µ) =

8
>>><

>>>:

0 if µ < �1 ,
1
2 if � 1  µ  1 ,

0 if µ > 1 .

(�.��)

In this approximation, the average value of µ equals �. It is worth
mentioning that assuming a molecule-independent fragility implies
that the position of the kinetic barrier is the same for all the molecules.
Furthermore, setting µ = 0 means that the kinetic barrier is equidistant
between the folded and the unfolded state. A molecular fragility µ =
�1 implies that the barrier is located in the folded state, whereas µ = 1
implies that the barrier is located in the unfolded state.
The knowledge of km allows us to, ultimately, estimate the height

of the kinetic barrier. km estimation has been done by maximizing
the logarithm of the Maximum Likelihood function of Eq. (�.��) (see
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section �.�.�). For a series of W
(k)
dis (k = 1, · · · , N), the logarithm of the

Maximum Likelihood is de�ned as:

logL (km | {hWdisi}) = log
N

’
k=1

p(hW(k)
dis i | km) =

N

Â
k=1

log p(hW(k)
dis i | km) ,

(�.��)

where the multiplication and the sum runs for all the measured
molecules, N. From Eq. (�.��) we insert p(hWdisi) into Eq. (�.��),
yielding:

logL (km | {hWdisi}) = �
N

2
log 2p+ N log W�N

N

Â
k=1

log hW(k)
dis i

� W2

2

N

Â
k=1

⇣
log hW(k)

dis i �mhWdisi

⌘2
. (�.��)

Equation (�.��) has been numerically maximized for km. In Table
�.� we report the obtained values for each molecular ensemble. The
uncertainty associated to each value of km is the standard error of the
Maximum Likelihood. That is, the square root of the numerical Hessian.
We emphasize that the maxima we �nd are reproducible: multiple runs
from di�erent starting points yield the same maxima.

Interestingly, the kinetic constants we obtain (Table �.�) are several
orders of magnitude above the measured value of CD� [��]. This is
due to the fact that it is more likely to measure molecules with non-
canonical basepairs (i.e. non complementary) rather than fully canoni-
cal molecules. Hence, DNA hairpins with less complementary basepairs
tend to have smaller kinetic barriers. This fact can be illustrated consid-
ering that the unfolding kinetic constant at zero force, km has an expo-
nential dependence on the kinetic barrier as: km = k0 exp (�B/ kBT),
being k0 the so-called attempt frequency at zero force. Then, for
k0 ⇠ 104 s�1, a typical value for hairpins [��], the kinetic barrier
B can decrease from almost �� kBT for CD�, to few kBT for molecular
ensembles with higher number of mutations. Of course, we are still
able to measure molecules spontaneously forming hairpins (i.e. with
higher kinetic barriers as compared to Brownian �uctuations), hence
the �gures employed in the previous discussion should be taken only
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Figure �.��: Theoretical prediction of average dissipated work. Compar-
ison between the experimental probability distribution function
of the average dissipated work (color lines) and the �t to Eq. (�.��)
(black solid lines). Insets are a comparison between the ECDF of
the experimental data and the cumulative distribution function
calculated according to Eq. (�.��). Error bars are obtained by
resampling, whereas dashed lines in the ECDF correspond to the
��% lower and upper con�dence bounds.

as a guide. Indeed, we think that the kinetic constants we estimate
using Eq. (�.��) are an upper bound for the km that we may �nd for
each individual molecule. This is due to the logarithmic dependence of
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CD� �M �M �M

km [s�1] (5 ± 5)⇥ 10�12 (5 ± 2)⇥ 10�7 (3 ± 1)⇥ 10�6 (7 ± 3)⇥ 10�5

Table �.�: Estimated unfolding kinetic rates at zero force. Results of the
Maximum Likelihood estimation of km via the ensemble average
dissipated work (Fig. �.��). The value corresponding to CD� was
measured in Ref. [��].

mhWdisi (Eq. (�.��)), where higher km dominate when maximizing the
Maximum Likelihood function (Eq. (�.��)).

Figure �.�� shows the comparison between the experimental proba-
bility distributions of the average dissipated work and the theoretical
ones obtained using Eq. (�.��) and the estimated values of km (Eq.
(�.��)). As insets, we show the comparison between the ECDF for the ex-
perimental data (color lines) and the theoretical cumulative distribution
function calculated using Eq. (�.��) with the estimated km (Table �.�).
Remarkably, our model can reproduce the shape of the experimental
distribution, as well as the location of the mode of hWdisi.

�.� �����������

This chapter aimed for setting the grounds for the development of
a systematic procedure for measuring the information-content of a
molecular ensemble. Such method will be described in the following
chapter, however a previous and exhaustive characterization of the
molecular ensembles was required.
We have presented a novel experimental system for usual SME: het-

erogeneous molecular pools. Typically, in single-molecule assays, the
studied molecules are always known. This is not our case, where in each
experimental realization the molecule is unknown (and, very likely,
di�erent). This fact, rather than being a hindrance, allows us to har-
vest a remarkable amount of information of the molecular ensembles.
We have demonstrated that with some tens of molecules, we are able
to determine the folding free energy spectra of the ensembles. Fur-
thermore, we detected discrepancies between the theoretical and the
actual construction of the molecular ensembles. Such discrepancies,
until now, were only noticeable when sequencing the samples and
might have been masked when only considering individual molecular
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properties, rather than ensemble molecular properties (e.g. DG0 vs.
p(DG0)). Moreover, by studying ensemble thermodynamic quantities
(e.g. dissipation), we have been able to measure characteristic kinetic
properties of the molecular ensembles via a solvable model.
Finally, it is worth mentioning that, among all the results we pre-

sented in the present chapter, the veri�cation of the CFT for arbitrary
randomized molecules must not be underestimated. We con�rmed that
the CFT is ful�lled for a large set of (very) di�erent molecules, being this,
probably, the SME study involving the largest set of molecules testing
the CFT.



7
I N FORMAT ION �CON TEN T MEASUREMEN T OF
MOLECULAR ENSEMBLE S

�.� ������������

The connection between statistical mechanics and information theory
sprang forth almost �� years ago. Claude E. Shannon set the mathemat-
ical foundations of information theory in a landmark paper published
in ���� in the context of communication theory [�]. Shannon de�ned
the so-called information by a very familiar formula to the one de�ning
the entropy in statistical physics: the Gibbs formula. While the Gibbs
formula reads as:

S = �kB Â
i

pi log pi , (�.�)

the Shannon entropy H equals to:

H = �Â
i

pi log
b

pi . (�.�)

Although previous equations have clear similarities, they are con-
textually di�erent. For instance, while in the Gibbs formula (Eq. (�.�)),
pi denotes the probability of the microstate i, in Shannon’s expression
(Eq. (�.�)) pi accounts for the probability of receiving the i message.
Furthermore, one may note that the base of the logarithm in Eq. (�.�)
is b, whereas in the Gibbs entropy (Eq. (�.�)) the logarithm is a natural
logarithm. Hence, the logarithm prefactor between both expressions is
also di�erent. Shannon’s entropy, in its most basic terms (setting b = 2)
accounts for the number of binary digits required to encode a message.
Nevertheless, it is possible to make a direct connection between Gibbs
and Shannon formulae. In the view of Jaynes, Eqs. (�.�) and (�.�) are
two sides of the same token [�, �]. He argued that statistical mechanics
can be regarded as an application of a more general theory containing
logical inference and information theory.

���
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Shannon entropy has recently acquired a thermodynamic meaning
in small systems under feedback control [���–���]. Recent experi-
mental realizations of information-to-energy converting devices have
demonstrated the close connection between information and energy
[��], showing how the possession (or lack) of information might have
thermodynamic consequences. Paradigmatic examples of the connec-
tion between information and energy are the Szilard’s engine [���] and
the Landauer’s principle [���, ���].

Szilard aimed to resolve the famous Maxwell’s paradox: the Maxwell
demon. The Maxwell’s demon refers to a Gedankenexperiment in which
an intelligent being (the demon) is able to monitor the individual
molecules of a gas contained in two neighboring chambers. The demon
is able to gather information about the state of the particles in order
to sort them according to their velocity. Ultimately, only by means of
the demon, the system ends up in a situation in which fast molecules
(higher temperature) are in one chamber whereas slow molecules (low
temperature) are in the other side of the vessel. Hence, the entropy of
the system is decreased with no external action. Szilard showed that
a one-particle device is able to perform useful work only by receiving
information, rather than energy (like the Maxwell demon). Nowadays,
there are many experimental realizations of the Szilard’s engine both
in its classical and quantum version [��, ���], strengthening the fact
that information is a physically measurable quantity. On the other
hand, according to the Laudauer’s principle, every process involving
the erasure of information dissipates some heat to the environment.
The amount of entropy generated upon erasing one bit of information
is set by the Landauer’s limit: kB log 2. Hence, the dissipated energy
energy is E � kBT log 2 ⇡ 0.69 kBT.

Summing up, information-to-energy conversion is a well-established
topic. However, what about the reverse? Is it possible to convert energy
into information? The possibility of obtaining information-contents
in physical systems through thermodynamic energetic measurements
opens a wide range of exciting possibilities. For instance, in molec-
ular systems, measuring the information-content of protein families
or studying the information-content production of molecular ensem-
bles in directed evolutionary processes, just to mention a few. In this
chapter we show how the information-content of heterogeneous popu-
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lations can be robustly de�ned by only means of free energy di�erences
measurements.

�.� ������������������� �� ��������� ���������

Let us consider an heterogeneous population (or ensemble #) of in-
dividuals. Each individual can be characterized (or identi�ed) by its
phenotype a in a population of M phenotypes (1  a  M). The frac-
tion of individuals with a given phenotype, pa de�ne the phenotypic
frequencies in #. Clearly: Âa pa = 1.

ε
λ(t)

Partial equilibriumFull equilibrium

Eλ(t) = kBTI

Figure �.�: Information-content of heterogeneous ensembles. The
information-content of # is the minimum amount of energy, kBTI ,
required to build the heterogeneous partially equilibrated pop-
ulation (right) starting from a population of individuals in full
thermodynamic equilibrium (left) via a l(t) protocol.

We de�ne the information-content of # at temperature T as the min-
imum free energy cost required to build the population of partially
equilibrated individuals (de�ned by the set {pa}) starting from a popu-
lation of individuals in full thermodynamic equilibrium (see Fig. �.�).
An ensemble # is in equilibrium if and only if :

pa =
e
�Ga/ kBT

Z , Z = Â
a

e
�Ga/ kBT = e

�G/ kBT , (�.�)

being Ga the partial free energy of individuals with phenotype a, Z
the partition function of the system and G the ensemble free energy.
Let us now consider an isothermal thermodynamic transformation

0 ! 1 applied to all individuals of the ensemble where one or more
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control parameters l are varied between an initial (l0) and �nal (l1)
values following an arbitrary l!(t) protocol in a time Dt. We de�ne
the Ensemble Work Distribution (EWD) as:

P!(W) = Â
a

paP
(a)
! (W) , (�.�)

where P
(a)
! (W) is the work distribution corresponding to individual

a calculated in the 0! 1 transformation. The EWD ful�ls a �uctuation
theorem (see section E.� of appendix E for a mathematical demonstra-
tion):

P!(W)
P (�W)

= exp
✓

W � DG + kBTI
kBT

◆
, (�.�)

where P (�W) stands for the EWD in the reverse process (0 1),
de�ned as that process applied on the same phenotypic ensemble ({pa})
where the control parameter is varied following the time-reversed path
of the forward one (l (t) = l!(Dt� t)). On the other hand, DG
is the ensemble free energy di�erence, de�ned as: DG = G(l1) �
G(l0) = � kBT log (Zl1 /Zl0).
We note that the reversed EWD can be expressed as:

P (�W) = Â
a

p̂aP
(a)
 (�W) , (�.�)

being p̂a positive normalized frequencies (Âa p̂a = 1) de�ned as:

p̂a = pa
e
�DGa/ kBT

Âa pae�DGa/ kBT
. (�.�)

Here DGa = Ga(l1)� Ga(l0). Equation (�.�) de�nes a �uctuation
theorem for a phenotypic ensemble and the information-content I of
the ensemble # equals to:

kBTI = DG + kBT log

 

Â
a

pa exp
✓
�DGa

kBT

◆!
. (�.�)
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For an equilibrium phenotypic ensemble the probabilities are given
by: pa = e

�Ga(l0)/ kBT/Zl0 , yielding I = 0, as expected. However,
we note that Eq. (�.�) is not uniquely de�ned as it depends on the �nal
state. This issue can be solved by considering a speci�c �nal state of
the 0! 1 transformation where all the phenotypes have the same free
energy, Ga(l1) := G(l1). In this latter case, Eq. (�.�) reduces to:

I = log

 

Â
a

pa exp
✓
�Ga(l0)

kBT

◆
1
M

Â
a

exp
✓

Ga(l0)
kBT

◆!

= log

 

Â
a

pa exp
✓
�Ga(l0)

kBT

◆!
+ log

 
1
M

Â
a

exp
✓

Ga(l0)
kBT

◆!
.

(�.�)

Equation (�.�) has two fundamental properties. First, it is uniquely
de�ned for a given ensemble #. Second, its average over all possible
phenotypic ensembles {pa} is always positive, hIi � 0. Moreover, Eq.
(�.�) provides a simple way to unambiguously measure the information-
content of populations by only using thermodynamic considerations,
circumventing the use of the Shannon information or other information
measures based on distributions of arbitrary quantities across the pop-
ulation. Our derivation of the information-content uses the extended
�uctuation theorem [��, ���] to extract free energy di�erences between
partially equilibrated Gibbs states. This requires the knowledge of the
partial free energies Ga(l0) of the di�erent phenotypes in the popula-
tion, a task that can be accomplished using single-molecule methods
on di�erent phenotype individuals.

�.�.� Upper bound for information-content in molecular ensembles

While Eq. (�.�) is fully general, we found an upper bound for the
information-content of a molecular ensemble. The derivation of the
upper bound of the information-content I only requires two ingre-
dients: the application of the Jensen’s inequality and the assumption
that Ga(l0) are i.i.d. Gaussian random variables with an average equal
to the arithmetic mean of Ga(l0) (hGa(l0)i := G

?). The Gaussian
approximation may be justi�ed by arguing that the Gaussian entropy
has the maximum entropy relative to all probability distributions in R

(and, moreover, �nite moments).
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We rewrite the �rst term of Eq. (�.�) in a more recognizable way:

log

 

Â
a

pa exp
✓
�Ga(l0)

kBT

◆!
:= log

✓
hexp

✓
�Ga(l0)

kBT

◆
i
◆

.

(�.��)

Then, for Gaussian distributions, the following relation holds:

log
✓
hexp

✓
�Ga(l0)

kBT

◆
i
◆
= � G

?

kBT
+

s2
G

2( kBT)2 , (�.��)

where s2
G
is the variance of the folding free energy distribution. On

the other hand, the application of Jensen’s inequality to the second
term of Eq. (�.�) yields:

log
✓
hexp

✓
Ga(l0)

kBT

◆
i
◆
� log

✓
exp

✓
hGa(l0)i

kBT

◆◆
=

G
?

kBT
.

(�.��)

We stress that the latter expected value is done over the uniform
distribution, so the Gaussian approximation does not a�ect the (�.��)
result. Then, by summing Eq. (�.��) and (�.��) and inserting the result
in Eq. (�.�) we obtain the upper bound for I :

kBTI � s2
G

2 kBT
. (�.��)

Interestingly, the bound set by Eq. (�.��) only depends on the variance
of the free energies. This result looks reasonable, since the information-
content of a molecular ensemble should not depend on the molecule
(i.e. the mean free energy) but on the widespread of the free energy
spectrum (for a discussion of the sample size in variance estimation see
Sec. �.�.�).

�.� �������

�.�.� Information-content measurement

To show the applicability of Eq. (�.�) we extract the information-content
of the molecular ensembles presented in chapter �, whose folding free
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Random coil

Hairpin

Unfolded

(stretched)

Gα(λ1)
Gα(λ0)

¢G0 > 0

(Gα = 0)
Figure �.�: Reference states for free energy measurement. Ga(l0) and

Ga(l1) are the energies of the hairpin state and the unfolded
(stretched) state, respectively. Both quantities are measured with
respect to the random coil state and DG0 = Ga(l1)� Ga(l0) >
0.

energies spectra were obtained in Sec. �.�.�. We recall that the number
of molecules we have used in the present study are ��, �� and �� for
the �M, �M and �M molecular ensembles, respectively. Moreover, for
every molecule we have used a similar number of pulls (⇠ 100) and
we subtracted the stretching contributions to every W as explained in
appendix C. Also, it is important to bear in mind that all the folding free
energies we extract (as in chapters � and �) are measured with respect
to the random coil state (see Fig. �.�). Now, in the present framework,
Ga(l0) is also measured with respect to the random coil. Therefore,
Ga(l0) = �DG0, where DG0 (> 0) is the free energy of formation of
the hairpin structure (Fig. �.�).
In Fig. �.� we show the EWD distributions computed according to

Eq. (�.�) (F distribution) and (�.�) (R distribution) using, in all cases,
pa = 1/M. On the other hand, p̂a are given by Eq. (�.�). In Fig. �.�(a)
we show the EWD we obtained for the three molecular ensembles. Now,
according to Eq. (�.�), the crossing point between F and R distribu-
tion corresponds to the work value equal to DG � kBTI , rather than
the bare DG value as it is the case when using the standard CFT for
individual molecules.
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Figure �.�: Experimental veri�cation of the information-content �uc-
tuation theorem. (a) - Forward (solid lines) and reversed (dashed
lines) work distributions obtained using Eqs. (�.�), (�.�) and im-
posing the relation given by Eq. (�.�) with pa = 1/M. (b) -
Logarithm of the ratio of the work distributions shown in the (a)
panel and plot of straight lines with slope equal to � (in kBT units).
X-intercepts correspond to the work values, according Eq. (�.�),
equal to: DG � kBTI . In all cases, error bars have been calculated
using the Bootstrap method.

On the other hand, the validity of the information-content �uctuation
theorem can be tested in the usual way. By extracting logarithms at
both sides of Eq. (�.�) we have:

log
✓

P!(W)
P (�W)

◆
=

W

kBT
� DG � kBTI

kBT
. (�.��)

Then, if the �uctuation theorem is satis�ed, the logarithm of the
ratio of the EWD will follow a straight line with slope equal to � and
x-intercept equal to DG � kBTI (both in kBT units). In Fig. �.�(b) we
show the experimental validation of the information-content for the
molecular ensembles we studied.
Having in mind the validity of the information-content �uctuation

theorem, we aim to measure the precise value of I . The measurement
can be done using three distinct approaches. First, we can use the closed
formula for I (Eq. (�.�)) inserting the measured p(DG0) (see previous
chapter). Second, the information-content can be also measured in
the framework of partial measurements and thermodynamic inference.
Third, we show that I can be estimated numerically. In what follows,
we apply all three methods in order to quantify I for all the molecular
ensembles.
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Theoretical prediction for the information-content I

We note that the information-content I (Eq. (�.�)) can be written as:

I = log
✓Z

d (DG0) p(DG0) exp
✓

DG0

kBT

◆◆

+ log
✓Z

d (DG0) p(DG0) exp
✓
�DG0

kBT

◆◆
.

(�.��)

where p(DG0) is the folding free energy distribution. This method
requires the measurement of the folding free energy spectrum of each
molecular ensemble, which can characterizedwith few tens ofmolecules
(see Sec. �.�.�). The simplicity of this method lies in the fact that it only
requires the calculation of two expected values. In Table �.� we report
the values for the information-content obtained using Eq. (�.��).

Thermodynamic inference of the information-content I

The information-content �uctuation theorem is valid only when the
weights pa and p̂a ful�l the relation given by Eq. (�.�). Hence, one
may ask what is the e�ect of ignoring such constraint between the
aforementioned frequencies. Let us consider the simplest case, equal
and constant (yet normalized) weights equal to pa = p̂a = 1/M. In
this scenario, the EWD are equal to the white average of the individual
work distributions:

Pwhite
! (W) =

1
M

Â
a

P
(a)
! (W) , (�.��)

Pwhite
 (�W) =

1
M

Â
a

P
(a)
 (�W) . (�.��)

In Fig. �.�(a) we show the EWD obtained using Eqs. (�.��), (�.��).
While R distributions (dashed lines) are the same than in Fig. �.�, F
distributions are signi�cantly di�erent from the ones in Fig. �.�. In the
present case, all molecules are equally weighted due to the factor 1/M,
whereas in Fig. �.� the molecules with higher free energies dominate the
shape of the distribution. On the other hand, the information-content
�uctuation theorem does not hold for the previous EWD since they are
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wrong. This fact can be seen in Fig.�.�(b), where the solid line is the
same line than in Fig. �.�(b) and the slopes of the experimental data are
clearly lower than �. The slopes we measure for the experimental data
are 0.11 ± 0.03, 0.074 ± 0.010 and 0.05 ± 0.01 for the �M, �M and �M
ensembles, respectively.
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Figure �.�: Breakdown of the information-content �uctuation theo-
rem. (a) - Forward (solid lines) and reversed (dashed lines) work
distributions obtained using Eqs. (�.��), (�.��). (b) - Logarithm of
the ratio of the work distributions shown in the (a) panel and plot
of the same straight line of Fig. �.� (slope equal to � in kBT units).
In all cases, error bars have been calculated using the Bootstrap
method.

Despite Eqs. (�.��) (�.��) correspond to the wrong EWD they allow
us to infer the information-content of each ensemble. The breakdown
of the �uctuation theorem can be analytically quanti�ed from Eqs. �.��,
�.��. To do so, we consider that the individual work distributions (both
F and R) are Gaussian distributions with identical variances equal to
s2

W
. In this conditions, the CFT is satis�ed for every molecule. Moreover

let us consider that the ensemble folding free energy distribution is
well-reproduced by a Gaussian distribution N (G?, s2

G
). In this approx-

imation, the EWD (Eqs. (�.��), (�.��)), ful�l a quasi-�uctuation theorem
(explicit calculations can be found in section E.�) given by:

Pwhite
! (W)

Pwhite
 (�W)

= exp
✓

x
W � G

?

kBT

◆
, x =

1

1 + s2
G

s2
W

. (�.��)

Where x is a similar parameter to the one found in Eq. (�.��). Indeed
x governs the breakdown of the �uctuation theorem. We note that
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the traditional CFT symmetry will be restored in the limit s2
G
! 0

(i.e. an homogeneous or equilibrium phenotypic ensemble) or in the
regime where s2

W
>> s2

G
. In this latter case, work �uctuations mask

heterogeneous e�ects, yielding a similar situation to the one explained
in Sec. �.�, where work �uctuations in the limit of in�nite pulling speed
are so high that ExtEns and ForceEns become equivalent. Interestingly,
our approximation for x (Eq. (�.��)) is in good agreement with the
experimental data. The slopes predicted by x are equal to 0.06 ± 0.02,
0.063 ± 0.010 and 0.044 ± 0.010 for the �M, �M and �M ensembles,
respectively. We remind that the experimental slopes are equal to
0.11 ± 0.03, 0.074 ± 0.010 and 0.05 ± 0.01, respectively.
In the context of thermodynamic inference we can argue that the

�uctuation theorem is not satis�ed because we are not measuring
the correct mechanical work, so P!(W) and P (�W) are not the
full work� distributions [��, ���]. In the Gaussian approximation, the
full work distributions can be inferred imposing that P!(W) and
P (�W) satisfy the �uctuation theorem with the same free energy
G
?. Within our scheme, the full work distributions can be recovered

by adding to each W the following quantity (explicit calculations can
be found in section E.�):

D =
s2

G

2 kBT
. (�.��)

This quantity is reminiscent of the upper bound of the information-
content (Eq. (�.��)) so we may write: D = kBTI . In Eq. (�.��) we
replace s2

G
by its value appearing in x in the Gaussian approximation

(Eq. (�.��)) so we rewrite previous equation as:

kBTI =
1� x

2x

s2
W

kBT
. (�.��)

Hence, the information-content can be inferred, rather than directly
measured, as follows: �rst, quantify the breakdown of the �uctuation
theorem (i.e. measuring x) when the EWD are calculated according
to Eqs. (�.��), (�.��). Then, insert the variance of the work distribu-
tions, s2

W
and x in Eq. (�.��). The calculation of Eq. (�.��) yields the

� So an energetic contribution to W is systematically lost (or not measured).
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information-content of the molecular ensemble. The values of the vari-
ances of the work distributions are: 3.4 ± 0.4, 3.8 ± 0.4 and 4.0 ± 1.4
( kBT)2 for the �M, �M and �M ensemblee, respectively. In Table �.� we
report the values of the information-content obtained using Eq. (�.��).

Numerical estimation of the information-content I

Within the Gaussian scheme, the information-content I relies on the
assumption that the function H(W), de�ned as:

H(W) = log
✓

P!(W)
P (�W)

◆
, (�.��)

is linear on the mechanical work W. This supposition may not be
true in all circumstances. For instance, the data we shown in Fig. �.�(b)
corresponding to the �M ensemble, is not a linear function of W at all.
Thus, the quanti�cation of the information-content via the slope of
the �uctuation theorem is hard. In order to circumvent this situation,
let us propose that the uniform (i.e. pa = p̂a = 1/M) EWD ful�l an
information-content �uctuation theorem given by:

Pwhite
! (W)

Pwhite
 (�W)

= exp
✓

W � G
? + kBTI
kBT

◆
. (�.��)

Where again I is the information-content of the molecular ensemble
and G

? is the mean free energy of the molecular ensemble. We note
that, in this scenario, DG (Eq. �.�) is equal to G

?. Equation (�.��) can
be rearranged as:

exp
✓
�W � G

?

kBT

◆
Pwhite
! (W) = exp (I)Pwhite

 (�W) . (�.��)

Then, integrating over W in Eq. (�.��) we have a Jarzynski-like
relation:

⌧
exp

✓
�W � G

?

kBT

◆�

!
= exp (I) , (�.��)

where h· · · i! denotes the average over the white F EWD (Eq. (�.��)).
Hence, by numerically solving for I Eq. (�.��), we obtain an estimation
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Figure �.�: Numerical estimation of information-content. Plot of Eq.
(�.��) as a function of kBTI . Minima (I?) correspond to the
information-content of each molecular ensemble.

of the information-content of each molecular ensemble. In Table �.� we
show the obtained values of the information-content when solving Eq.
(�.��) and in Fig. �.� we show the numerical minimization of Eq. (�.��).

�.�.� Summary of results

In this section we summarize and report the results for the information-
content I we obtained for the three molecular ensembles (�M, �M and
�M). Values can be found in Table �.�.
Interestingly, all the results are compatible among them. This sup-

ports our theoretical �ndings regarding the information-content of an
arbitrary molecular ensemble (Eq. (�.�)). The Gaussian approxima-
tion of I is less accurate for the �M ensemble, highlighting the fact
that a large number of molecules are required in order to have a good
estimation of the pro�le of the H(W) function (Eq. (�.��)) and, in con-
sequence, of its slope. Moreover, it is worth mentioning that the upper
bound of the information-content provides a good estimation of the
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kBTIexp [ kBT] kBTIGaussian [ kBT] kBTIJE [ kBT] Upper bound [ kBT]

�M 12 ± 2 14 ± 2 13 ± 1 12 ± 1
�M 26 ± 6 24 ± 2 25 ± 1 23 ± 1
�M 31 ± 5 38 ± 4 31 ± 1 33 ± 1

Table �.�: Information-content measurement. Summary of the results
of the information-content measurement using the three meth-
ods described in Sec. �.�.�. kBTIexp corresponds to Eq. (�.��),
kBTIGaussian has been obtained using Eq. (�.��), kBTIJE using Eq.
(�.��) and the upper bound has been obtained using Eq. (�.��) with
the variance predicted by Mfold when numerically folding ���, ����
and ����� molecules for the �M, �M and �M ensemble, respectively.
CD� data corresponds to the non-mutated ensemble (i.e. the native
CD�, see chapter �). Errors have been obtained by propagation of
the experimental uncertainties.
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Figure �.�: Experimental energy-to-information conversion. Conver-
sion of the information-content of each molecular ensemble from
energy to bits (� bit = kBT log 2). Solid line corresponds to the
upper bound of the information-content and the dashed lines are
its uncertainty obtained by propagation.

information-content, as well. Hence, the Gaussian approximation is
reasonable for estimating information-contents in molecular ensemble.

In Fig. �.� we plot the energy-to-information conversion, where the
information-content of each ensemble is shown in bits. As expected,
information-content is a monotonous increasing function with the
number of mutations. Regarding the energy-to-information conver-
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sion, we have used the equivalence set by the Landauer limit (� bit
= kBT log 2 ⇡ 0.69 kBT).

�.� �����������

In this chapter we have set the theoretical basis for establishing the
connection between energy and information. We have shown that
in SME this procedure can be e�ciently implemented in order to con-
duct systematic energy-to-information measurements. Moreover, the
information-content I can be unambiguously de�ned by using only
thermodynamic considerations. Likewise, the information-content is
well de�ned regardless experimental conditions as it only depends on
thermodynamic equilibrium (measurable) quantities.

This chapter must be taken, together with chapter �, as a single pack-
age. While in the preceding chapter � we characterized the variability
of heterogeneous molecular ensembles and discussed the biological
and medical implications, in the present chapter we have demonstrated
how not only molecular ensemble have an information-content that
is intrinsic to their nature, but also how to measure it. To the best of
our knowledge, this kind of information-content measurements have
never been carried out. The work presented in this chapter aims to spur
new research lines in which information-content measurements can
be combined with thermodynamic and kinetic measurements in order
to grant access to a full and unprecedented level of characterization of
biophysical systems.
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EXPER IMEN TAL MEASUREMEN T OF THE SPEC I F I C
B IND ING ENERGY OF MAGNES I UM CAT IONS TO AN
RNA THREE �WAY JUNCT ION

�.� ������������

One of themost important ingredients regulating intracellular biomolec-
ular reactions are electrostatic forces. The structure of biopolymers is
essentially determined by their ionic charge and the concentration of
dissociated ions in the surrounding environment (solvent). Both factors
also a�ect the binding strength to ligands. As we explained in Sec.
�.�, nucleic acids have a net charge due to the presence of phosphate
groups in the outer backbone. Indeed, they are one of the most densely
charge polymers of all. DNA and RNA have a linear charge density
of �e� every, approximately, � Å (see Fig. �.�), resulting in a repulsive
force per basepair in water of order ⇠ 1 pN. Such repulsive force is
counterbalanced by base stacking interactions that stabilize the double
helical structure. Base interactions can be either speci�c or non speci�c.
Examples of speci�c interactions are the interaction with metal ions,
where the hydration sphere of the ion coordinates with charged grups
of the di�erent nucleobases. Moreover, since the negative charge of the
phosphate backbone is screened by the net positive charge of the ion,
the interaction with metal ions also has a non-speci�c aspect.

Non-speci�c electrostatic interactions can be described phenomeno-
logically using generalized activity theories of electrolytes, mean �eld
approaches such as the Debye-Hückel theory, Gouy-Chapman, Poisson-
Boltzmann [���, ���], the tightly bound ion (TBI) model [���] or the
DLVO Theory [���, ���]. On the other hand, much less is known for
speci�c charge interactions between metal ions binding to DNA and
RNA structures [���, ���].

Divalent ions, such as magnesium, play a leading role in RNA folding
[���]. The strong repulsive forces between basepairs di�cult RNA to
fold into a compact structure, but thanks to the surrounding positive
ions, the folding is promoted by the reduced repulsion between the

���
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charges of the phosphate groups. Indeed, millimolar concentrations
of Mg2+ are able to stabilize RNA tertiary structures (see Sec. �.�.�)
[���]. However, the e�ect of Mg2+ in RNA folding goes beyond charge
screening as they can speci�cally bind to RNA. Magnesium ions act as
a major driving force for tertiary structure formation since the two free
positive charges of magnesium are able to speci�cally recognise the
negatively charged hydroxyl group of the ribose and, hence, two distant
nucleotides can be brought together in order to form a stable tertiary
structure [���]. Regarding non-speci�c electrostatic screening e�ects,
they can be described using the ���/� phenomenological rule which
states that the non-speci�c binding a�nity of a given concentration of
divalent cations is equal to that of ���-fold times large concentration
of monovalent cations� [���–���]. This rule has been recently veri�ed
in SME using RNA [���] and DNA hairpins [���].
In this chapter we aim to disentangle the non-speci�c and speci�c

electrostatic contributions of magnesium to the stabilization energy of a
�-way helix RNA junction (hereafter referred to as �WJ) using SME. The
chapter is organized as follows: in the following section the biological
context and relevance of the �WJ is explained, as well as the e�ects that
divalent cations have on the �WJ structure. Next, the �WJ is studied
with classical Dynamic Force Spectroscopy (DFS), characterizing the
folding-unfolding pathways of the �WJ. In the �nal section, the free
energy of formation of the �WJ molecule is extracted by combining
irreversible work measurements and the extended �uctuation theorem.

It is worth mentioning that although it is not the �rst time that �WJ is
a target of single molecule studies, previous experimental assays done
with LOT instruments were unable to separate the two electrostatic
contributions and only the full folding free energy was measured [��].

�.� ��� ��� ��� ���?

As we already mentioned in the general introduction of the thesis
(see Chapter �), RNA is an essential molecule participating in, mainly,
protein synthesis and regulatory processes. In particular, proteins
are assembled thanks to complex molecular machineries, such as the
ribosomes. Ribosomes are formed by amix of proteins and RNA (see Sec.

� For instance, the stabilizing contribution to RNA of ��mM MgCl2 is equivalent to that
of �M NaCl.
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Central domain of  16S rRNA

Figure �.�: Secondary structure of ��S rRNA. Helices are indicated with
a capital H and a number. Red circles mark the positions C���-
G���-C��� (magnesium binding site). Figure adapted from Ref.
[���].
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�.�.�). The ribosomal RNA (rRNA) consist of two major components:
the small ribosomal units (which read the mRNA) and the big ribosomal
units (where the machinery essential for protein synthesis is).

Prokaryotes have ��S� ribosomes, each one consisting of a ��S large
and a ��S small subunits. While the large subunit is formed by two types
of rRNAs, the ��S subunit is formed by a ��S rRNA of, approximately,
���� nucleotides long. In Fig. �.� we show the secondary structure of
��S rRNA, each helix is labelled according to the standard nomenclature.
The central domain of ��S rRNA (H��, H�� and H�� helices in Fig. �.�) is
a highly-conserved site shared above ��% across all known eubacterial
sequences [���]. This fact makes ��S rRNA particularly important for
tracing studies and reconstructing phylogenetic trees [���].
Even though the central domain of ��S rRNA is usually found in

extended conformations, the crystal structure reveals its three-helix
junction structure [���]. Moreover, the central domain of ��S rRNA is
able to bind to the �� aminoacids small protein S��, a key protein for
the assembly of the whole ribosome. S�� protein interacts with a G-
U/G-C motif in the �WJ and this interaction is mediated by magnesium.
Indeed, the presence of magnesium ions enhances the characteristic
binding rates of S�� to the �WJ RNA [���]. Upon adding magnesium,
speci�c binding of three Mg2+ ions to the G���, G��� and G��� nu-
cleotides [���] in the �WJ (indicated with red circles in Fig. �.�) induce
a conformational change in the �WJ by changing the relative angular
positions of helices H��, H�� and H�� [���].
The �WJ molecule, together with its biological importance and all

the existing studies about its structure, is a useful molecular system
that allow us to dig into the e�ects of magnesium ions in kinetic and
structural properties.

�.� ����� ������������ �� ��� ��� ��������

Force spectroscopy experiments were performed on an RNA molecule
(i.e. the �WJ RNA) containing the highly-conserved site of a ��S rRNA
complex [���] using LOT. In previous single-molecule assays it was
discovered that the �WJ RNA molecule has a force-induced misfolded
state, unnoticed by bulk techniques [��, ���]. The study of misfolded

� S stands for Svedberg unit. It accounts for a particle’s size based on its sedimentation
rate.
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molecular structures has turned out to be a hot topic in biophysics for
their potential in the development of diseases. A remarkable case is, for
instance, the case of prions (i.e. misfolded proteins), which are respon-
sible of several neurodegenerative (fatal) diseases [���]. Misfolding
happens because there is a large number of competing structures in the
folding pathway that can kinetically trap the molecule. In our particular
system, the application of force cycles, favours the formation of a stable
secondary structure rather di�erent from the native one. Moreover,
it was demonstrated that the misfolding probability of the RNA �WJ
strongly depends on the experimental conditions in a nontrivial fash-
ion [���]. In the left panel of Fig. �.� we show the native structure
of the RNA �WJ molecule whereas in the right panel we represent
the misfolded structure proposed in Ref. [���]. Misfolded structure is
composed by two short RNA hairpins (HM

1 and HM
2 ) connected in series

by three unpaired bases (see Fig. �.�, right).
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Figure �.�: Structures of �WJ. Native structure of the RNA �WJ (left �gure)
and proposed misfolded structure (right �gure). Colors indicate the
type of motif: green color indicate that bases are forming Watson-
Crick basepairs, blue indicates the formation of outer loops, brown
bases are inner loop bases and red color indicates that bases are
forming a single-stranded chain.

Given an RNA sequence, the folding free energy and the correspond-
ing secondary structure can be predicted using the Vienna package or
Mfold software [��, ���]. We have, for the native �WJ structre, a folding
free energy of DG

N
0 = �39.5 kcal/mol = �67 kBT at standard condi-

tions (T = 298 K, [NaCl] = �M). Regarding the misfolded structure,
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Figure �.�: Dynamic force spectroscopy on RNA �WJ. (a) - LOT experi-
mental setup. The distance between themicropipette and the center
of the optical trap is the control parameter of the experiment. (b) -
Typical FDC when unfolding the native structure (leftmost curves
of both panels) and the misfolded structure (rightmost curves of
both panels). Top panel corresponds to experiments in monova-
lent conditions whereas bottom panel corresponds to experiments
performed in divalent salt conditions.

the free energy of formation is equal to DG
M
0 = �29.6 kcal/mol =

�50 kBT, resulting in a di�erence with respect to the folding free en-
ergy of the native structure of less than 20 kBT.
Upon performing nonequilibrium pulling experiments (same proto-

col as described in Sec. �.� see Fig. �.�(a)) we observe two types of
unfolding/folding patterns that we interpret as the stretching the native
structure or the misfolded structure of the �WJ.

Most of the times (' 90%), the unfolding curves display a single force
jump event (leftmost curves of Fig. �.�(b)) resulting of the cooperative
unfolding in all the �� bases forming the �WJ. Therefore, we associate
this kind of FDCs with the unfolding of the native �WJ. The refolding
pathway of the native structure display two events: one minor folding
event resulting in the formation of a partial structure and another minor
event in which the original native structure is recovered.

Less frequently (' 10% of the times), we observe FDCs that we asso-
ciate to the unfolding of the misfolded structure of the �WJ (rightmost
curves of Fig. �.�(b)). Previous studies proposed that the behavior we
observe when unfolding the misfolded structure is due, �rst of all, to
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the non-cooperative unfolding (like a zipper) of HM
1 hairpin (around

10� 12 pN) and, �nally, to the cooperative unfolding of the HM
2 (force

rip around ⇠ 15 pN) [���].
In the following sections we study the force-dependent kinetics of

both, native and misfolded structure, in order to obtain the maximum
amount of information of each structure in di�erent salt conditions.
Then, combining the results from the DFS experiments with the theoret-
ical prediction for the FEL are able to unravel some structural properties
of the �WJ molecule.

Our experiments were performed in two distinct, salt conditions. On
the one hand, experiments were done in an aqueous bu�er containing
� M NaCl (hereafter referred to as monovalent conditions). On the
other hand, experiments were repeated using an aqueous bu�er that
contains �� mM NaCl and �� mM MgCl2 (hereafter referred as divalent
conditions). Note that applying the ���/� rule between monovalent and
divalent conditions, both salt conditions are equivalent from the ionic
strength point of view.
Folding-unfolding kinetics can be investigated by means of equilib-

rium hopping experiments or non-equilibrium pulling experiments. In
hopping experiments, the control parameter (i.e. the distance between
the trap and the micropipette, labelled as “Distance” in Fig. �.�) is kept
�xed and the system is able to explore equilibrium states (i.e. sampled
according to the Boltzmann-Gibbs distribution). By monitoring the
force changes as a function of the time (hopping traces), kinetics can be
obtained. The main drawback is that kinetic barriers between di�erent
conformational sates might be large (specially for long molecules) and
therefore the kinetics are too slow to be explored by means of hopping
experiments. From the pulling experiments, force-dependent kinet-
ics are obtained via �rst-rupture forces measurements. A molecule
that is subjected to a pulling experiment undergoes stochastic tran-
sitions over di�erent conformations at di�erent forces. By recording
the �rst rupture forces and extracting the survival probabilities of the
corresponding states can be obtained (see appendix D).

�.�.� Native structure

Throughout this section we will only focus in trajectories involving the
native structure. Moreover, despite the fact that the footprints of the
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unfolding of the native �WJ are sudden force jumps ( fU in Fig. �.�(a)),
folding is less well-de�ned. We recorded the �rst-refolding forces ( fF in
Fig. �.�(a)) despite there is a gentle previous non-cooperative folding,
as can be noticed in light curve of top panel of Fig. �.�(b). For this
reason, the folding kinetics we measured do not correspond to U! N
transitions. They correspond, instead, to transitions between a kinetic
intermediate state (labelled as IN) and the native state: IN ! N.
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Figure �.�: Unfolding-folding pathways, FEL and force kinetics of the
native structure of the �WJRNA. (a) - Example of an unfolding
(dark curve) trajectory and a folding (light curve) trajectory. The
structures that the molecule explores are shown as cartoons in
the graph. (b) - FEL of native �WJ at di�erent forces and sketches
of intermediate kinetic states. (c) - Distributions of �rst-rupture
and �rst-folding forces. Bell-Evans kinetics are shown as inset.
kN!U are shown as dark symbols whereas kIN!N are shown as
light symbols. (d) - Distributions of �rst rupture (and refolding)
forces and Bell-Evans kinetics (inset) in divalent salt conditions.
In both graphs dark curves correspond to unfolding forces and
light curves correspond to folding forces. Regarding kinetics, the
same color code holds than in (c) panel. In both cases, errors were
computed using the Bootstrap method. Pulling speed is ��� nm/s
for both cases.
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xN-TS [nm] xIN-N [nm]

NaCl �.� ± �.� �.� ± �.�
MgCl2 �.� ± �.� �.� ± �.�

Table �.�: Fit of the kinetic rates for the native �WJ to the Bell-Evans
model. Parameters are obtained by linear �tting Eqs. (�.�) and (�.�)
to the data shown in Fig. �.�(c,d). Results obtained by averaging the
individual obtained parameters of four di�erent pulling speeds (��,
���, ��� and ��� nm/s) for six di�erent molecules.

The FEL is a useful tool when studying molecular folding dynamics.
It allows us to relate molecular structural properties with the experi-
mentally measured kinetic rates. We have calculated the theoretical
pro�le of the FEL (see section �.�) for the native �WJ molecule using the
elastic parameters of the RNA molecule and the handles reported in
Ref. [���]. In Fig. �.�(b) we show the FEL calculated at di�erent forces
as a function of the unpaired bases. Interestingly, for forces around �� -
�� pN, the FEL has a local minimum corresponding to an intermediate
state composed by, approximately, �� bases, which might be associated
with the IN state observed in the FDCs.

Figure �.�(c) shows the rupture forces distributions and Bell-Evans
kinetics (already introduced in Sec. �.�) for monovalent conditions,
whereas the analogous plots in divalent conditions are shown in Fig.
�.�(d). Kinetics have been obtained as explained in appendix D. By com-
paring rupture force distributions, we note that the presence of divalent
ions increase the mean unfolding force by ⇠ 2 pN. This e�ect points
towards the stabilizing role of magnesium ions in RNA. In contrast,
folding distributions do not seem a�ected by the presence of magne-
sium ions in the bu�er. This fact might indicate us the magnesium
binds to the �WJ after forming the native structure.
Transition state distances (i.e. the distance from the native, N, and

unfolded, U, state to the kinetic barrier) are obtained by performing
linear �ts of Eqs. (�.�) and (�.�) to the data shown as insets in Fig. �.�(c,d)
and the results are reported in Table �.�. It is important to have in mind
that Bell-Evans approach is only valid for two-state systems and force
ranges close to the coexistence region between the two considered
states. Since, the folding-unfolding process of the �WJ is not a two-
state process (see previous discussion). The molecule does not directly
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Figure �.�: Folding pathway of native �WJ. (a) - Example of a hopping
trace between the unfolded and the intermediate structure (left).
Force distribution function obtained for the hopping trace (right).
(b) - Hopping kinetics and number of released nucleotides in the
unfolded-intermediate transitions for the case of monovalent (left)
and divalent (right) salt conditions. Empty symbols correspond to
IN$ U kinetics, whereas full symbols are U$ IN kinetics.

switch from the unfolded to the folded state. It explores a kinetic
intermediate state (IN) before recovering the native structure. Thus,
note that: xN-TS + xIN-N 6= xN-U. Nevertheless, from the force jump in
the N!U transition (see Fig. �.�(a)), we �nd that 73± 4 nucleotides are
released, which agrees with the total number of nucleotides forming the
molecule (�� nucleotides), therefore it is consistent with the unfolding
of the native �WJ. In what follows we perform a deeper analysis of the
folding pathway of the �WJ in order to obtain the maximum amount of
information about the kinetic intermediate state IN.
We studied the IN state by performing hopping experiments in the

region where U$ IN transitions take place (see Fig. �.�(a)). An example
of a hopping trace is shown in left panel of Fig. �.�(a). The force
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xIN-TS [nm] xTS-U [nm]

NaCl �.� ± �.� ��.� ± �.�
MgCl2 �.� ± �.� �.� ± �.�

Table �.�: Bell-Evans analysis for the intermediate-unfolded transi-
tion. Parameters are obtained by linear �tting Eqs. (�.�) and (�.�)
to the data shown in Fig. �.�(b). Results obtained by averaging the
individual obtained parameters of four di�erent pulling speeds (��,
���, ��� and ��� nm/s) for six di�erent molecules.

distribution has a two-state structure (right panel), indicating that the
molecule only jumps between two well-de�ned states: the U and IN
states. Kinetic rates in hopping experiments are obtained by measuring
the inverse average lifetime of each state. By measuring several forces,
the force pro�le of kU!IN and kIN!U is obtained, as we show in Fig.
�.�(b). Kinetic rates are modelled according to the Bell-Evans scheme,
so that the distances from the I state to the U state can be directly
obtained.
In Table �.� we report the obtained results for the transition state

distances between the IN and U states. These results allow us to esti-
mate the number of released (or absorbed) nucleotides in the U$ IN
transitions, obtaining 40 ± 3 and 42 ± 4 for the case of monovalent
and divalent conditions, respectively. Then, recalling the number of
released nucleotides in the N ! U transition is equal to 73 ± 4 nu-
cleotides, we infer that in the IN ! N transition, 31 ± 3 nucleotides
are absorbed. This result is is in very good agreement with the value
predicted by the FEL (Fig. �.�(b)). The scheme in Fig. �.� summarizes
the unfolding-folding pathway of the native �WJ molecule.

Finally, the folding free energy of the intermediate structure has been
obtained using the Continous E�ective Barrier Analysis (CEBA). While
Bell-Evans theory considers a single kinetic barrier whose position
does not depend on the mechanical force, the CEBA method is able to
reproduce a realistic behavior of the force-dependent kinetic barrier
[��]. Brie�y, within CEBA framework, the kinetic rates are written as:
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Figure �.�: Unfolding-folding pathway of the �WJnative structure. The
folded native structure switches to the unfolded state through
no intermediate state (U ! N transitions are not observed due
to the height of the kinetic barrier), whereas the folding process
occurs through a kinetic intermediate state (IN). Number of released
nucleotides are indicated in each scheme.

kIN!U( f ) = k0 exp
✓
�Be�( f )

kBT

◆
, (�.�)

kU!IN( f ) = k0 exp
✓
�Be�( f )� DGUIN( f )

kBT

◆
. (�.�)

Here, k0 is the kinetic rate at zero force, Be�( f ) is the force-dependent
kinetic barrier and DGUIN( f ) is the free energy di�erence between the
IN and U state at a force f . We notice that the term DGUIN( f ) contains
several energetic contributions due to the unfolded hairpin in the U
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state and the diameter contribution in the IN state (both calculated in
the ForceEns). Then:

DGUIN( f ) = DG
0
UIN �

Z
f

0
xU( f

0) d f
0 +

Z
f

0
xd( f

0) d f
0 , (�.�)

where DG
0
UIN is the free energy di�erence between IN and U states

at zero force, xU( f ) is the extension of the unfolded hairpin at a force
f (obtained as the inverse function of Eq. (B.��)) and the term xd( f ) is
the extension of two serially connected hairpin diameters forming the
IN state (Eq. (B.�)).
We note that Eq. (�.�) can be written as:

Be�( f )
kBT

= log k0 � log kIN!U( f ) , (�.�)

whereas from Eq. (�.�) we have:

Be�( f )
kBT

= log k0 � log kU!IN( f ) +
DGUIN( f )

kBT
. (�.�)

Hence, from kIN!U( f ) (Fig. �.�(b)) we can obtain: � log kIN!U( f ) =
Be�( f )/ kBT � log k0. Finally, by imposing analytical continuity of
Eqs. (�.�) and (�.�) we can estimate DG

0
UIN . That is, imposing that the

two kinetic barriers (Eqs. (�.�) and (�.�)) follow the same curve.
In Fig. �.�we show the results for experiments performed in monova-

lent conditions (left panel) and in divalent salt conditions (right panel).
Remarkably, we �nd that magnesium stabilizes the secondary structure
by increasing the folding free energy of the intermediate structure by
almost 10 kBT.

We stress that Bell-Evans analysis was not suitable for obtaining ther-
modynamic parameters of the native structure since folded-unfolded
transitions do not behave as a two-state process. Nevertheless, the
analysis we performed allowed us to gain some insights on the e�ects
of magnesium in the native structure, pointing towards the stabilization
of the native structure due to speci�c binding.
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0

UI. Analytical continuation of Eqs. (�.�) and (�.�).
Empty symbols correspond to the experimental values of:
� log kIN!U( f ) = Be�( f )/ kBT � log k0 while full symbols are
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R
f

0 xU( f
0) d f

0 +
R

f

0 xd( f
0) d f

0 =
Be�( f )/ kBT� log k0 � DG

0
UIN . Values of DG

0
UIN are shown as in-

sets for monovalent conditions (left panel) and divalent conditions
(right panel).

�.�.� Misfolded structure

Whereas in the preceding section we have only focused in the folding-
unfolding pathways of trajectories departing from the native structure,
in the present section we will repeat the same analysis but only consid-
ering the trajectories involving themisfolded structure.
Misfolding in the �WJ RNA is a force-induced e�ect, consequence

of the competition between the formation of two smaller hairpins that
cannot coexist in the same conformation. Previous studies proposed
the misfolded state has the structure shown in the right panel of Fig.
�.�, where HM

1 and HM
2 are the two non-native hairpins [���]. Along the

unfolding pathway of the misfolded structure we observe two distinct
unfolding patterns depending whether HM

1 or HM
2 unfolds (see Fig.

�.�(a)). The di�erent unfolding patterns can be understood in terms of
the FEL of both hairpins (see Fig. �.�(b)). At the same force, while the
FEL of HM

1 is pretty �at, the one corresponding to HM
2 has a more abrupt

pro�le. This fact allows us to foresee a smoother unfolding of HM
1 as

compared to the unfolding of HM
2 .

For the sake of clarity, we divide the following discussion depending
whether we study the unfolding of HM

1 or HM
2 .
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2 hairpin.

Cooperative unfolding of HM
2
hairpin

In Fig. �.� we show the rupture forces distributions obtained for the
cooperative unfolding of the misfolded structure. Bell-Evans kinetic
rates are shown as insets and the results are reported in Table �.�.
Interestingly, transition state distances and free energies do not

change with the presence of magnesium. Hence, the misfolded structure
is not a�ected by the presence of magnesium ions. This fact is in
contrast with the results that we found for the native structure (Fig.
�.�(c,d)), where we noticed that the presence of magnesium increases
the average unfolding forces. Also, coexistence forces are equal with
and without magnesium, and are compatible with the experimental
observations (see circles in Fig. �.�(a) and (b)). On the other hand, we
�nd that the observed extension jump in the cooperative unfolding is
consistent with a release of 32± 4 bases. Since the size of theHM

2 hairpin
is �� nucleotides, our �ndings are consistent with the prediction that
the HM

2 hairpin unfolds all at once (see Fig. �.�(a)). Thus, the situation
in which HM

1 hairpin is unfolded but the hairpin HM
2 is still formed acts

as an intermediate state (IM) between the M and U states.
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Figure �.�: First rupture force distributions and kinetics for the coop-
erative unfolding of HM

2
hairpin. (a) - Distributions of �rst

rupture forces and Bell-Evans kinetics (inset) in monovalent con-
ditions. (b) - Distributions of �rst rupture forces and Bell-Evans
kinetics (inset) in divalent conditions. In both graphs dark curves
correspond to unfolding forces and light curves correspond to fold-
ing forces. Errors were computed using the Bootstrap method.
Graphs correspond to a pulling speed equal to ��� nm/s. The cir-
cles highlight the crossing point of the distributions (coexistence
force).

xIM�U [nm] xU�IM [nm] DGIMU [ kBT] fc [pN]

NaCl �.� ± �.� �.� ± �.� ��.� ± �.� ��.� ± �.�
MgCl2 �.� ± �.� �.� ± �.� �� ± � ��.� ± �.�

Table �.�: Bell-Evans analysis for the misfolded structure in the
folding-unfolding transition. Parameters are obtained by lin-
ear �tting Eqs. (�.�) and (�.�) to the data shown in Fig. �.�. Results
obtained by averaging the individual obtained parameters of four
di�erent pulling speeds (��, ���, ��� and ��� nm/s) for six di�erent
molecules.

Non-cooperative unfolding of HM
1
hairpin

Next, the non-cooperative unfolding of the rest of the molecule can be
studied by performing equilibrium hopping experiments in the region
where the transition takes place. Non-cooperative unfolding (i.e. IM$
M transitions of Fig. �.�(a)) are consistent with the unfolding of HM

1 for
two reasons. First, when computing the number of released nucleotides
in the IM$ U transition (see previous discussion), is compatible with
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the whole unfolding of HM
2 . Moreover, the FEL of HM

1 in the observed
force range (i.e. ��.� - �� pN) is pretty �at, with an intermediate located
at n ' 17� 18 bases, as can be seen in Fig. �.�(b). Hence, thermal
�uctuations make feasible the equilibrium non-cooperative transition
between the folded and unfolded state of HM

1 .
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Figure �.��: Hopping kinetics and e�ective barrier for folded-
intermediate transitions of misfolded structure in
monovalent conditions (folding-unfolding of HM

1
hairpin).

(a) - Unfolding kinetics (empty symbols) from the misfolded state
to the intermediate state (where the hairpin HM

1 is unfolded) and
folding kinetics (full symbols). Number of released/absorbed
nucleotides in the M $ IM transition is shown as inset. (b) -
Continuous e�ective barrier analysis for the M$ IM transition.
Colour criteria is the same as in Fig. �.�. Free energy of formation
of IM state is shown in the graph.

In Fig. �.��(a) we show the hopping kinetics measured in the M$ IM
in monovalent conditions. By analysing the transition state distances
we obtain that the non-cooperative transition is compatible with a
release/absorption of 30 ± 3 bases, reinforcing the hypothesis that the
opening of HM

1 hairpin acts as an intermediate state between the fully
unfolded �WJ molecule and the misfolded state. On the other hand,
we applied once again the CEBA, as in the previous section, in order to
extract the free energy di�erence (or free energy of formation) between
the misfolded state and the I state, giving DGMIM = 24 ± 2 kBT. This
latter value is compatible with the free energy of formation of hairpin
HM

1 predicted by Mfold, which is equal to DG
H

M
1
= 24.3 kBT.

Interestingly, in a bu�er containing magnesium we are not able
to extract the kinetics of the IM $ M transition. Only in divalent
conditions, after some time measuring hopping traces we observe a
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sudden force increase. After this event, hopping does not longer occur.
We believe that this phenomenon is due to the rescue of the native
�WJ structure by the magnesium ions. We stress that the rescue takes
place in time scales shorter than those we need in order to accurately
measure hopping transitions. In the following section we delve into
this guess by performing further experimental assays.
It is worth mentioning that the kinetic analysis done by Bell-Evans

approach (Table �.�) plus the CEBA method (result in graph of Fig.
�.��(b)) reports a free energy of formation of the misfolded structure
equal to: DG

0
MU = 49 ± 3 kBT, whereas the Mfold prediction is equal

to 50 kBT. Hence, our experimental �ndings are in good agreement
with the theoretical prediction.

�.�.� Mg2+ rescue experiments

Upong adding magnesium, we could not observe hopping kinetics
between the intermediate and the misfolded state. Indeed, when per-
forming hopping experiments to characterize IM $ M transition (i.e.
for the misfolded structure), after a certain time (the so-called rescue
time), a sudden force jump is observed and IM $ M transitions are
not anymore observed. The sudden force range is associated with the
formation of the native structure (see below) and the process is called
rescue.
In divalent conditions, for usual force ranges (⇠ �� pN), the rescue

time is as small as � seconds, short enough to avoid obtaining accurate
kinetic measurements by means of hopping experiments. However, res-
cue experiments might provide complementary insights on the folding
procedure of misfolded structure, so we designed a new experimen-
tal procedure. We point out that in monovalent conditions this phe-
nomenon also takes place. Nevertheless, in monovalent conditions the
rescue time can be around � minutes, long enough to obtain accurate
hopping measurements.

Rescue experiments are composed by the following steps. First, when
refolding the misfolded structure, the position (i.e. the relative distance
between the optical trap and the tip of the micropipette, see Fig. �.�(a))
is kept �xed at a value in which the molecule is in the intermediate
state prior to form the misfolded structure. Then, the time-evolution
of the force is monitored, as in a typical hopping experiment, until a
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Figure �.��: Rescue experiments in MgCl2. (a) - Examples of two typical
force-time trace . (b) - Evolution of the rescue time as a function of
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Error bars are the standard error after averaging the results of six
di�erent molecules in divalent conditions.

force jump is observed. This protocol is repeated for di�erent values of
the trap-micropipette distances (and hence, forces). In Fig. �.��(a) we
show typical force-time traces upon performing rescue experiments.
The rescue time is stochastic, but with a slight tendency to increase
as the force increases, as can be seen in Fig. �.��(b) (empty symbols
correspond to monovalent conditions and full symbols correspond to
divalent conditions). The force jump can be related to an absorption of
a certain molecular extension. Hence, according to the scheme shown
in Fig. �.�(a), the distance (hereafter denoted as x) can be decomposed
as:

x( f ) = xb( f ) + xhandles( f ) + xmol( f ) , (�.�)

where xb( f ) is the distance from the center of the bead to the center
of the optical trap at a force f , xhandles( f ) is the extension of the handles
and xmol( f ) is the molecular extension. Hence, by considering that the
rescue happens at constant x, from Eq. (�.�) we can obtain absorbed
molecular extension Dxmol as:

Dxmol = �(Dxb + Dxhandles) , (�.�)

whereDxb andDxhandles denote the di�erence of xb( f ) and xhandles( f )
after the force jump. In Fig. �.��(c) we show the extension jump calcu-
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lated according to the previous scheme as a function of the force prior
to the jump. We note that the absorbed extension is equal to �� ± � nm
and it is nearly independent of the mechanical force (in the range [�� -
�� pN]), yielding a value of �� ± � nucleotides absorbed. This value is
compatible with a con�guration in which the HM

2 hairpin is completely
formed whereas the HM

1 hairpin is only formed by the six bases prior to
the GAAA loop. After the force jump, the remaining �� nucleotides are
absorbed and the native structure is rescued. This situation is depicted
in Fig. �.��.
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Figure �.��: Proposed partially misfolded structure and rescue of na-
tive structure in MgCl2. The partially misfolded structure has
�� free bases. Binding sites of magnesium cations are marked with
stars. After magnesium binding, the native structure is rescued.

Magnesium ions can speci�cally recognise the negatively charged
hydroxyl group of the bases so they can bring together distant RNA
nucleotides in order to form stable tertiary structures. We believe that
this is, in fact, the e�ect that triggers the rescue of the native structure
in the presence of magnesium. Since the misfolded structure does not
contain the speci�c binding motif of magnesium (see Fig. �.�), the
native structure cannot be rescued. However, in the folding pathway,
the partiallymisfolded structure shown in left Fig. �.�� can be eventually
formed, so magnesium is able to bind to some speci�c locations (red
stars) [���]. Then, via electrostatic interactions, the native structure
can be again restored.
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�.�.� Free energy determination of kinetic states

An important quantity when studying ligand interactions is the bind-
ing strength. This topic is particularly interesting when studying RNA
folding. Indeed, due to the strong negativity of RNA molecules, the
interaction with positive-charged ligands is crucial for correctly folding
RNA molecules (i.e. in their native structure). In particular, in physio-
logic conditions, the concentration of free Mg2+ is of the order of �mM
[���] and, as we demonstrated in the preceding section, magnesium
cations are essential for the correct folding of �WJ RNA. Indeed, mag-
nesium ions stabilize the native structure and they are able to rescue
the native structure from misfolded structures. The next question is
immediate: how much is the speci�c binding energy of Mg2+ to the
�WJ?

The relation between Mg2+ (and other ions) and RNA folding is still
a hot topic in the �eld [���, ���] and, moreover, a precise quanti�cation
of the binding energy of Mg2+ with RNA is still under the spotlight
[���]. We have found that the speci�c binding energy of Mg2+ to
the �WJ is measurable by means of �uctuation relations. We have
used the CFT throughout the thesis in order to either determine folding
free energy di�erences in di�erent statistical ensembles or to perform
information-content measurements. In both frameworks, the CFT is the
suitable framework since the molecules we used have well-established
equilibrium states. This is not the case of the �WJ RNA molecule,
where misfolded state is not an equilibrium state. Hence, the traditional
CFT (Eq. (�.�)) will not provide us the correct free energy. In order to
take into account non native states, the Extended Crooks Fluctuation
Theorem (ECFT) must be used instead [��]. In particular, the ECFT reads
as�:

fA!B

F

fB!A

R

P
A!B

F
(W)

P
B!A

R
(�W)

= exp
✓

W � DGAB

kBT

◆
, (�.�)

where A and B denote two kinetic states (i.e. partially equilibrated),
DGAB = GB(l1)� GA(l0) is the free energy di�erence between A

� As always, l denotes the control parameter of the experiment.



��� M�2+ �������� ������� �����������

state at l0 and B state at l1, P
A!B

F
(W) and P

B!A

R
(�W) are the partial

forward and reversed work distributions (i.e. the work distributions for
the processes that start at A and end at B), respectively. Finally, fA!B

F

and fB!A

R
are the fraction of trajectories starting in A state (or B) at

l0 (or l1) and ending in B state (or A) at l1 (or l0). The use of the
ECFT, rather than the CFT, is crucial for the correct determination of the
free energy di�erences of non-native states. Indeed, the free energy
appearing in Eq. (�.�) is related to the free energy di�erence appearing
in Eq. (�.�) (i.e. DG from Eq. (�.�)) via:

DGAB = DG� kBT log
fA!B

F

fB!A

R

. (�.�)

Which, in some cases, is a signi�cant correction to DG. Either we
start at the native or misfolded state, all trajectories end in the unfolded
state, so: fN,M!U

F
= 1. Then, the overlooking of misfolding probability

(i.e. the fraction of trajectories starting in the unfolded conformation
ending in the misfolded state: fU!M

R
) would lead to a remarkable free

energy underestimation. In fact, the misfolding probability we observe
is around � - ��%, for low and high pulling speeds, respectively, leading
to a free energy underestimation of � kBT. We note that the misfolding
probability we observe is compatible with the model developed in Ref.
[���].
First, the folding free energy di�erence between the native and the

unfolded state, DGNU, has been determined by performing nonequi-
librium pulling experiments (as described in Sec. �.�) and using the
ECFT (Eq. (�.�)). As usual, the unfolding process is identi�ed with the
forward protocol (F), whereas the folding process is identi�ed with
the reversed protocol (R). Since the control parameter is the relative
distance trap-micropipette (x in Eq. (�.�)), the work W is calculated
according to the ExtEns scheme (Eq. (�.�)). We stress that, even though
fN!U

F
= 1, fU!N

R
6= 1. Not all of the refolding trajectories end up in

the native state. Nevertheless, the classi�cation of the trajectories is
straightforward from the pattern of the FDCs (see Fig. �.�). In Fig. �.��(a)
we show the partial work distributions obtained after classifying the
trajectories involving the native structure for the case of experiments
done in monovalent conditions, whereas Fig. �.��(b) show the same
information obtained in divalent conditions.
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Figure �.��: ECFT applied to the native (top panels) andmisfolded (bot-
tom panels) structure of �WJRNA. Results of the partial work
distributions obtained in monovalent salt conditions (left panels)
and divalent salt conditions (right panels) for a pulling speed equal
to �� nm/s. The integration range is the same for all conditions.
Forward distributions are plotted as solid lines whereas reversed
distributions are plotted as dashed lines. Top panels ((a), (b))
correspond to partial work distributions for trajectories starting
in the native state ending in the unfolded state, whereas bottom
panels ((c), (d)) correspond to partial work distributions for trajec-
tories starting in the misfolded state ending in the unfolded state.
The ECFT veri�cation is shown as inset in both graphs, were solid
line represents a straight line with slope � and y-intercept equal
to �DGXU , both in kBT units, being X = N, M. In all cases, N

stands for native, M for misfolded and U for unfolded. Error bars
are obtained using Bootstrap method.

We emphasize the validity of the ECFT in both cases as insets of Fig.
�.��, where we have plotted the logarithm of the ratio of the F and R
work distributions plus the logarithm of the term fA!B

F

fB!A

R

as a function of
the work in kBT units. As predicted by Eq. (�.�), the slope is � for both
salt conditions (solid lines in both insets of Fig. �.��).
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The same procedure has been repeated in order to obtain the free
energy di�erence between the misfolded and the unfolded state, DGMU.
Again, we must take into account the fact that fM!U

F
= 1, fU!M

R
6= 1.

In Fig. �.��(c) we show the partial work distributions obtained after
classifying the trajectories involving the misfolded structure for the
case of monovalent salt conditions and divalent ionic conditions (Fig.
�.��(d)). Again, the ECFT veri�cation is shown as inset in both panels.
The energetic contributions inherent to the experimental setup (i.e.

displacement of the bead in the optical trap, stretching of the handles
and the released ssRNA) are subtracted to the free energy determined
by means of the ECFT, as we describe in Appendix C. We point up that
the obtained free energies are measured with respect to the energy of
the random coil state at zero force. In Table �.� we report the measured
values for DG

0
XU

, being X = N (native) or X = M (misfolded).

DGXU [ kBT] DW
rev.
stret. [ kBT] DW

rev.
handles + bead [ kBT] DG

0
XU

[ kBT]

X = N
NaCl ��� ± � �� ± � ��� ± � �� ± �
MgCl2 ��� ± � �� ± � ��� ± � �� ± �

X = M
NaCl ��� ± � �� ± � ��� ± � �� ± �
MgCl2 ��� ± � �� ± � ��� ± � �� ± �

Table �.�: Experimental measurement of DG
0

NU
and DG

0

MU
. The values

for DGXU are obtained using the ECFT. Error bars contain statistical
and systematic errors. Experiments were performed at four di�erent
pulling speeds (��, ���, ��� and ��� nm/s) for six di�erent molecules.

We �nd that the folding free energy of the misfolded structure does
not change in monovalent or divalent salt conditions. This result is due
to two key factors. First and foremost, our experiments are performed
in equivalent monovalent/divalent salt conditions. As a matter of fact,
our �ndings serve as another experimental validation of the empirical
���/� rule regarding the non-speci�c contribution of monovalent and
divalent salt to the free energy of formation of RNA molecules. Finally,
since the misfolded structure does not contain the minimal binding site
of magnesium, there is no contribution of speci�c binding involving
magnesium ions.

On the other hand, we �nd that the folding free energy of the native
structure is considerably higher upon adding magnesium. Since experi-
ments are performed in equivalent salt conditions, the di�erence found
in the free energy of formation is, undoubtedly, due to the speci�c
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binding of three divalent cations to the native structure. Moreover, the
di�erence of both folding free energies: DDGNU = DG

MgCl2
NU � DG

NaCl
NU

quanti�es the speci�c binding strength of three Mg2+ to the �WJ struc-
ture. We obtain: DDGNU = 17 ± 5 kBT and, hence, a binding strength
per ion of 6 ± 2 kBT.
It is important to emphasize that the free energy obtained using

the ECFT is consistent with the folding free energy predicted by Mfold,
which is equal to DG

0
NU = 67 kBT for the native structure and DG

0
MU =

50 kBT for the misfolded structure.

�.� �����������

Summarizing, in this chapter we have explored the thermodynamic and
kinetic behavior of a three-helix RNA junction molecule and we pro-
vided a direct measurement of the speci�c contribution of magnesium
ions binding to the tertiary RNA structure. In particular, we studied
the highly-conserved site of the ��S rRNA. Such RNA fragment has a
three-way junction structure acting as the binding site of S�� protein.
The interaction between the �WJ RNA and S�� is promoted by the
presence of magnesium cations in the solute. Moreover, magnesium
stabilizes the native structure by inducing a conformational change in
the molecule. Also, previous force-spectroscopy assays showed that
�WJ RNA molecule is able to explore a force-induced state.
Even though the secondary structure of the native and misfolded

structure was already characterized by means of DFS, there was a gap
in the study of folding and unfolding pathways. We have performed a
detailed DFS characterization in order to determine the kinetics of the
unfolding-folding pathways of the native and misfolded structure in
equivalent monovalent and divalent salt conditions (according to the
���/� rule). In particular, we unravelled the kinetic structures acting as
an intermediate states when mechanically unfolding and refolding the
molecule. Such studies allowed us to gain some insights on the role of
magnesium ions on the �WJ RNA molecule. In fact, we discovered that
magnesium is not only able to stabilize the native structure, but also
to rescue the native structure from the misfolded state in measurable
time scales (on the order of a few seconds).

Moreover, we have used the ECFT to measure the free energy of for-
mation of the native and the misfolded structure of the �WJ RNA. The
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results we found investigating the thermodynamics of both conforma-
tions have remarkable implications. First and foremost, we con�rmed,
at the single-molecule precision, that magnesium is not able to bind
to the misfolded RNA since the binding domain does not exist in the
misfolded structure. Finally, thanks to having tested the ���/� rule,
we have been able to perform a direct quanti�cation of the speci�c
energy of magnesium ions binding to the �WJ molecule, which we
found to be 6 ± 2 kBT per magnesium cation, unprecedented result in
single-molecule assays.
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F INAL CONCLUS IONS





F INAL CONCLUS IONS

The development of quantum theory and relativity at the beginning
of the XXth Century shook the world of physics. The advent of quan-
tum mechanics and relativity caused a paradigm shift in physics. As a
consequence of this revolution, the scope of modern physics became
signi�cantly di�erent. Physics grown into a science capable of pro-
moting technological developments. Among many others, for instance,
the invention of the laser turned out to be a milestone for modern and
contemporary physics. One of the most relevant and in�uential appli-
cations of the laser is the development of optical tweezers by Arthur
Ashkin in ����. For this invention Arthur Ashkin was awarded the
���� Nobel Prize in Physics. Thanks to Ashkin’s invention, nowadays,
physics can cope with new problems, which were unimaginable few
decades ago. For instance, the �eld of biophysics experienced a break-
through due to the development of single-molecule instruments capable
of exerting forces on individual molecules.
Single-molecule experiments have emerged as a powerful tool that

allow researchers to investigate the physical behavior of individual
molecules with unprecedented resolution. The feasibility of exerting
forces at the piconewton scale (10�12 N) and measuring nanometric
displacements in the sub-millisecond scale, o�ers a widespread range of
exciting possibilities. This fact is attractive both from a biological and a
physical perspective. On the one hand, from the biological perspective,
the possibility of manipulating individual molecules to induce their
mechanical denaturation may allow researchers to get insights about
the origin —and hopefully the cure— of many diseases. On the other
hand, from a physical perspective, the study of individual molecules is
also attractive for physicists and chemists. Indeed, energetic exchanges
of molecular systems are of the order⇠ nm pN⇠ kT, that is, of the order
of Brownian �uctuations. As a consequence of this fact, most of the
quantities that we are able to measure in single-molecule experiments
have an inherent stochastic nature. Therefore, single-molecule systems
are very attractive to theoretical physicists to test and discovery new
physical laws of non-equilibrium processes.

���
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The major part of this thesis is devoted to address fundamental topics
of statistical physics using single-molecule experiments. In particular,
in Part II, we aimed to study one of the eldest questions in statistical
mechanics: the issue of ensemble inequivalence. Statistical physics
sets a bridge between the microscopic and the macroscopic behavior
—thermodynamics— and its modern conception is based on the Gibbs
ensemble theory. Essentially, the approach of statistical mechanics
consists in studying the average behavior of the individual elements of
a statistical ensemble when some external constraints are imposed to
the system. One of the most remarkable —and polemical— result of the
ensemble theory is the phenomenon of ensemble equivalence. In gen-
eral, for a given statistical ensemble it is possible to build a conjugate
statistical ensemble by performing a Legendre transform using two
conjugate variables with respect to energy (for instance, the pressure
p and the volume V). Mathematically, two conjugate ensembles are
equivalent in the thermodynamic limit. Nevertheless, this fact is not
always true. In macroscopic magnetic systems, it has been experimen-
tally observed that controlling an extensive quantity (like the volume)
is not equivalent to controlling an intensive quantity (like the pres-
sure). In our case, by performing single-molecule experiments on a
well-known molecule—CD� DNA hairpin—, we have been able to ex-
plore two conjugate ensembles: the �xed-extension and the �xed-force
ensemble. Both ensembles are conjugate with respect to energy since
the product force times extension equals has energy dimensions. We
carried out experiments in the �xed-force ensemble using both optical
tweezers and magnetic tweezers, and in the �xed-extension using opti-
cal tweezers. We have found that these two conjugate ensembles are
not equivalent at the level of thermodynamics and kinetics. Moreover,
we showed that the often-neglected boundary terms in the de�nition of
the thermodynamic work are essential for the validity of the �uctuation
theorem. The main consequences of our studies are: �rst, the possibil-
ity of extending free energy recovery methods to statistical ensembles
in which only intensive variables can be controlled and, second, the
resolution of the controversial question of whether the work de�nition
of the �xed-force is indeed a correct thermodynamic work de�nition
or not. On the other hand, our �ndings in ensemble inequivalence
at the level of molecular kinetics arise interesting questions from a
biophysical perspective. For instance, what is the suitable statistical
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ensemble of crowded environments like cells? How do molecular reac-
tions behave in di�erent statistical ensembles? All of these questions
are an interesting research track to follow.
The second part of this thesis is also merely theoretical. Recent

single-molecule assays con�rmed the connection between informa-
tion theory and statistical physics. This historical pursuit sprang forth
thanks to the works of Claude E. Shannon, who laid the foundations
of information theory, and the works of Edwin T. Jaynes, who spurred
the connection between statistical physics and information theory. The
development of �uctuation theorems and stochastic thermodynam-
ics have provided a general framework in which the thermodynamics
of information naturally appears. Moreover, single-molecule exper-
iments have turned out to be the perfect playground to explore the
thermodynamic implications of having —or lacking— information. It
is worthwhile to mention the experimental realization of the Szilard
engine and the experimental veri�cation of Landauer’s limit. With the
current existing results, the information-to-energy connection is well
established. We have been able to experimentally demonstrate, for the
�rst time, the reversed implication. We have been able to quantify the
information-content of neutral molecular ensembles by means of ther-
modynamic measurements. That is, we experimentally demonstrated
the energy-to-information conversion. Our works are built on what we
call ensemble force spectroscopy, a systematic procedure capable of ob-
taining a robust characterization of molecular ensembles by measuring,
in the best tradition of statistical physics, just a few tens of molecules.
We think that our work paves the way to study the information-content
production of systems undergoing evolutionary dynamics. Despite our
experimental system was a neutral molecular ensemble without selec-
tion forces, the framework is fully general and suitable for studying
real evolutionary systems (such as molecular systems under directed
molecular evolution). We think that we have before us a large number
of exciting questions ready to answer. For instance, how does informa-
tion evolve in time? Is there a competition between information and
energy in evolution?

In the �nal part of the thesis (Part III) we aimed tomeasure the speci�c
binding energy of a metallic ion to the tertiary structure of a three-way
RNA junction belonging to the central domain of the ��S ribosomal
RNA (rRNA). This study has remarkable physical and biological consid-
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erations. The central structure of the ��S rRNA is able to bind the small
S�� protein, an essential element for assembling the whole ribosome.
From the physics perspective, to the best of our knowledge, this is the
�rst time we have been able to discern the free energy contribution due
to the speci�c binding of magnesium ions to an RNA substrate by means
of single-molecule assays. On the other hand, such molecule is able to
form, besides its native conformation, a force-induced misfolded state.
Despite this fact was already pointed out in previous single-molecule
studies, there was a lack of knowledge regarding the molecular kinetics
and the folding pathway of the three-helix junction. Aiming to �ll this
gap, we performed a thorough study of the three-helix RNA junction us-
ing dynamic force spectroscopy. As a result, we have characterized the
full folding pathway of the molecule, including both the native and the
misfolded structure. Furthermore, we have experimentally con�rmed
the fact that the presence of magnesium promotes the stabilization of
the native structure and we have measured this contribution. We have
found that magnesium is able to rescue the native structure from the
misfolded structure via electrostatic interactions due to magnesium
binding. This fact is biologically relevant, since we have been able to
characterize the conditions in which a misfolded molecule is able to
recover its native conformation. We hope that our �ndings will spur
further single-molecule assays in this direction.
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A
MOLECULAR SYN THES I S O F DNA /RNA
CONSTRUCTS

The present appendix brie�y summarizes the steps to synthesize the
DNA and RNA hairpins we have used throughout the thesis. This
includes short DNA hairpins, short randomized DNA hairpins and RNA
constructs.

�.� ���������� ��� �������������� ��� �������� ����
����� �������

Following, the steps to synthesize short DNA hairpins with short ��-
basepairs long dsDNA handles are summarized [��]. We point that
the following protocol is valid either for fully-complementary DNA
hairpins and hairpins presenting unpaired bases. The handles are the
same for every hairpin and their sequence is:

�’ – AGTTAGTGGTGGAAACACAGTGCCAGCGC – �’

5’ 3'
Left handle Right handle

Splint Splint
3'

5’ 5’
3'

Oligo

29-bps 29-bps

Hairpin

Figure A.�: Sketch of themolecular construct composed by aDNAhair-
pin linked to two handles. Dashed box indicates the oligonu-
cleotide we use to attach the splints.

���
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The oligonucleotide that is able to pair up with each handle is the
so-called “splint”. Its sequence is the following one:

�’ – GCGCTGGCACTGTGTTTCCACCACTAACT – �’

Note that the sequence of the splint is fully complementary (from �’
to �’) to the sequence of the handles.
DNA hairpins are synthesized by hybridizing the oligonucleotides

shown in Fig. A.�. The �rst oligonucleotide (grey dashed box) is com-
posed by the two handles plus the hairpin (which contains the suit-
able sequence for each assay) and the two splint molecules. All of
these oligonucleotides are supplied by a specialized company (as Sigma-
Aldrich or Invitrogen) and, usually, they are freeze dried.

We must have in mind that in order to allow the binding of the
molecular construct (Fig. A.�) with the elements involved in each
single-molecule setup, at the �’ end of the left handle contains a biotin,
whereas the �’ end of the right handle is modi�ed with a digoxigenin
tail. The biotin labelling is indicated when buying the oligonucleotides,
but the digoxigenin tailing is done as follows:

Digoxigenin of the �’ end of the oligonucleotide

Using the Oligonucleotide Tailing Kit (Roche), a tail of an average of
Digoxigenin-dUTP (Dig-dUTP) nucleotides is added to the �’ end of
the oligonucleotide. The steps of this process are:

i. Dissolve the supplied oligonucleotide with double distilled water
(ddH2O) until a ��� µM concentration is reached. The required
water is speci�ed in the oligonucleotide tube. After that, spin
down the oligonucleotide tube.

ii. Mix the following components in a sterile Eppendorf tube:

iii. Incubate for �� minutes at ���C.

iv. Purify the mixture using the Qiaquick Nucleotide Puri�cation Kit
(QUIAGEN). Follow the instructions of the kit.

v. Keep the �nal sample at -���C.
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� µl ddH2O
� µl oligonucleotide ��� µM (��� pmol)
� µl CoCl2
� µl Reaction Bu�er x�
� µl dATP
� µl Dig-dUTP
� µl Terminal transferase (enzyme)

��µl

Annealing of the whole molecular construct

In what follows, we describe the protocol that allows for the hybridiza-
tion of the two splint molecules and the oligonucleotide (which has
been previously Dig-tailed). At the end of the process, the molecular
construct will be available for performing SME.

i. Spin down all the oligonucleotide tubes (oligo and splint).

ii. Mix the following components in a sterile Eppendorf tube:

�� µl Dig-tailed oligonucleotide (� pmol)
� µl splint (�� pmol)
� µl Tris � M pH�.�
� µl NaCl �M
x µl ddH2O
� µl Dig-dUTP

��µl

iii. Incubate for � hours at ���C.

iv. Decrease the temperature at a constant rate equal to ��C/min
until room temperature (���C) is reached.

v. If desired,dialysis of the mixture for �� min in �� ml of �� mM
NaCl, �� mM Tris pH �.�, � mM EDTA. Recover the maximum
amount of the mixture.
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vi. Keep the DNA at ��C.

�.� ��������� �� ��� ��� ����������� ��������

Now we brie�y summarize the steps required to synthesize the RNA
three-helix junction (hereafter to referred as �WJ). A thorough and
precise description about all the intermediate steps of the synthesis can
be found in Ref. [��].

Figure A.�: Scheme of RNA synthesis. (a) - Plasmid containing the �WJ
(green) and the required �anking regions (yellow and orange). (b)
- PCR ampli�cation (top) and tethering of the handles (central) for
forming the �nal construct (bottom). Figure obtained from Ref.
[��].

We used pBR��� plasmid with ��S-�WJ sequence inserted between
EcoRI and HindIII restriction sites (see Fig. A.�). The plasmid was
purchased at Euro�ns. After extracting the region of interest from
the plasmid, we performed a PCR ampli�cation in order to obtain a
template for the in vitro transcription that contains, besides the �WJ
sequence, ��� extra bases at each end, which will be used to form the
handles needed to connect the molecules to the beads used in the LOT
experiments.
After performing the in vitro transcription, biotin or digoxigenin

labelled complementary handles to the template are hybridized to the
single-stranded RNA (ssRNA) molecule at each end.
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The Freely Jointed Chain (FJC) model is a simpli�ed model for the
structural properties of a linear polymer. In this model, the polymer
is assumed to be formed by N rigid linear monomers of length b (the
so-called Kuhn length). Moreover, the N monomers are joined together
at their ends by freely rotating hinges. As the joints can freely rotate,
we do not consider excluded volume interactions.

Now, let us consider that a FJC polymer that is kept �xed by one of
its ends while the remaining end is subjected to an external force f .
The external force creates an e�ective potential energy equal to � f x,
being x be the end-to-end distance of the polymer(see Fig. B.�(a)).

f

x

b

bi

θi

bcos( θi )
fb/(kBT)

x /Nb

0 5 10 15 20 25

0.2

0.4

0.6

0.8
1

(a)

(b) (c)

φi

Figure B.�: Freely Jointed Chainmodel. (a)- Illustration of a linear polymer
made by N monomers of length b under the action of an external
force f . Big red leftmost ball indicates that this edge is �xed.
(b)- Contribution of each monomer to the end-to-end distance
x. (c)- Rescaled average end-to-end distance as a function of the
dimensionless force f b/ kBT.

���
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At zero force, due to thermal �uctuations, the polymer explores a
large number of di�erent con�gurations (microstates). However, as
force increases, the number of available microstates decreases. Indeed,
when the polymer becomes fully extended, there is only one available
microstate. Therefore, the elastic response of polymers is due to en-
tropic e�ects: competition between the external action that forces the
chain to adopt entropically less favourable conformations and the force
that tends to collapse the chain.
Due to the linearity of the polymer, the contribution to the end-

to-end distance from i-th monomer equals to b cos qi. Therefore, the
end-to-end distance x equals to:

x(q1, · · · , qN , f1, · · · , fN) = b

N

Â
i=1

cos qi . (B.�)

The f angles take into account the freely rotating ends. According
to Fig. B.�(b), q 2 [0, p] and f 2 [0, 2p]. Therefore, the partition
function in the Force Ensemble equals to:

Zf = Â
{s}

e

f b

kBT
ÂN

i=1 cos qi , (B.�)

where {s} denotes the set of available microstates. Indeed, the sum
over microstates can be replaced by the following integral:

Zf =
N

’
i=1

Z 2p

0
df

Z p

0
dq sin q exp

✓
f b

kBT
cos q

◆
. (B.�)

Hence, the average end-to-end distance hxi at a force f can be ob-
tained via:

hxi = kBT
∂ log Zf

∂ f
= Nb

0

@ 1

tanh
⇣

f b

kBT

⌘ � kBT

f b

1

A . (B.�)

Usually, the FJC model is written in the following way:

x( f ) = Lc

0

@ 1

tanh
⇣

f b

kBT

⌘ � kBT

f b

1

A , (B.�)
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being Lc = Nb the contour length of the polymer. A schematic
illustration of the behavior of Eq. (B.�) is shown in Fig.B.�(c), where it
is plot hxi/Nb as a function of f b/ kBT.

�.�.� Low and high force regimes

For the low force regime (or high temperature, as f b/ kBT ⌧ 1) it
is possible to perform a Taylor expansion of the hyperbolic function
around zero:

x( f ) = Lc

✓✓
kBT

f b
+

f b

3 kBT
+O( f

3)

◆
� kBT

f b

◆
⇡ Lc

f b

3 kBT
. (B.�)

Hence, for small forces, the polymer behaves like a Hookean spring
(i.e. f = kFJCx) with an elastic constant equal to: kFJC = 3 kBT

Lcb
. In-

deed, for high temperatures, entropic e�ects become more notorious,
rendering more di�cult to pull the polymer.

On the other hand, forhigh forces (or low temperatures, as f b/ kBT �
1) the hyperbolic tends to unity very fast. Therefore, Eq. B.� becomes:

x( f ) = Lc

✓
1� kBT

f b

◆
. (B.�)

Previous equation indicates that an in�nite force is required to fully
stretch the polymer or, equivalently, entropic e�ects cannot be ignored
in any regime, yielding, in general, x( f ) < Lc.

�.�.� Extensible Freely Jointed Chain (EFJC) model

In the FJC model, bending e�ects have not been considered. Moreover,
monomers are assumed to be inextensible. This is not the case, though,
of real polymers, where monomers are more compliant to extend at
high enough forces. Then, in order to take this e�ect into account,
a modi�cation of Eq. (B.�) was proposed ad hoc by Smith, Cui and
Bustamante in ���� [���] to characterize the overstretching transition
of B-DNA (see Sec. �.�.� and �.�.� of the present thesis for a brief
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description of the e�ect). The Extensible Freely Jointed Chain (EFJC)
reads as:

x( f ) = Lc

0

@ 1

tanh
⇣

f b

kBT

⌘ � kBT

f b

1

A
✓

1 +
f

S

◆
, (B.�)

being now S the stretching modulus of the polymer in units of force.
Despite that Eq. (B.�) has been widely used to characterize the elastic
response of several polymers, it has not been until recently that it has
been derived from statistical mechanics principles [���].

�.� ��������� ����� (���) �����

A more detailed and realistic description of polymers is done through
the Worm-Like Chain (WLC) model. Polymers now are assumed to be
isotropic homogeneous semi�exible rods. Therefore, bending e�ects
are now considered and a sort of cooperative e�ects between monomers
appear (nearby segments are roughly aligned, see Fig. B.�(a)).

In the WLC model, the energetic cost of bending the polymer can be
written as:

Hbend. =
P kBT

2

Z
Lc

0
ds

✓
∂2~r(x)

∂s2

◆2

=
P kBT

2

Z
Lc

0
ds

✓
∂t̂(x)

∂s

◆2

,

(B.�)

where P is the persistence length of the polymer,~r(s) is the position
vector along the chain, t̂(s) = ∂~r(s)

∂s
is the unit tangent vector to the

chain at the point s (see Fig. B.�(b)) and Lc is the contour length of the
polymer. The end-to-end distance can be obtained via: x =

R
Lc

0 t̂(s)ds.
The persistence length P measures the tangent-tangent correlation
function of the polymer at zero force as: h(̂t)(s) · t̂(s+Ds)i = e

�|Ds|/P.
Also, it quanti�es the bending e�ects due to thermal �uctuations and it
is the key parameter of the WLC model.
As we explained for the FJC model, when the polymer is stretched,

the number of accessible states of the polymer is reduced, causing an
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Figure B.�:Worm-LikeChainmodel. (a)- Illustration of a continuous linear
polymer under the action of an external force f . Big red leftmost
ball indicates that this edge is �xed. (b)- Position (~r(s)-) and unit
tangent vector (û(s)) along the contour length s of a segment of
the whole polymer. (c)- Relative extension as a function of the
mechanical force f .

entropic force against the external force f . Then, the Hamiltonian of
the polymer can be written as:

H = Hbend. +Hstret. =
P kBT

2

Z
Lc

0
ds

✓
∂2~r(x)

∂s2

◆2

� x f , (B.��)

being now x the extension of the polymer. The WLC model has no
analytical solution but using the previous Hamiltonian as an energy
functional, the partition function of the system can be minimized and
the following interpolating formula for the force-extension curve can
be found [��]:

f =
kBT

4P

 ✓
1� hxi

Lc

◆�2

� 1 + 4
hxi
Lc

!
. (B.��)

The behavior of the relative extension (i.e. hxi/Lc) as a function
of the applied force f is shown in Fig. B.�(c). It is important to men-
tion several improvements of Eq. (B.��) have been developed. For
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instance, by adding a polynomial correction [���] or non-polynomial
more sophisticated corrections [���].

�.�.� Extensible Worm-Like Chain (EWLC) model

As we discussed in the previous section, polymers elongate due to
external forces. This enthalpic� e�ect can be taken into account by
adding an extra term to the Hamiltonian of the polymer as follows:

H = Hbend. +Henthal. +Hstret. , (B.��)

where now Henthal. =
Sx

2

2Lc
. Then, for the low force regime ( f < 10

pN) the Extensible Worm-Like Chain (EWLC) model yields [���]:

f =
kBT

4P

 ✓
1� hxi

Lc

+
f

S

◆�2

� 1 + 4
✓
hxi
Lc

� f

S

◆!
. (B.��)

Again, there are more accurate interpolation formulas for the EWLC
model [���] or approximations for higher-force regimes [���]. Never-
theless, throughout this thesis we have used the standard WLC model
given by Eq. (B.��) or, when required, the EWLC given by Eq. (B.��).

� It is said to be an enthalpic e�ect because the elongation of the monomers due to the
external force changes the average energy of the system at controlled force.
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FOLD ING FREE ENERGY RECO VERY

The free energy di�erence DG determined in nonequilibrium pulling
experiments by terms of the Crooks Fluctuation Theorem (CFT) contains
several inherent elastic contributions due to the di�erent elements of
the experimental set-up. Therefore,

DGx =

8
<

:
DG0 + DW

rev
st + W

rev
handles. for MT experiments

DG0 + DW
rev
st + W

rev
handles + DW

rev
ot . for LOT experiments

(C.�)

Being DGx the free energy di�erence between the unfolded (U) state
and the folded (F) state calculated in the extensional ensemble (ExtEns).
DG0 is the folding free energy at zero force. DW

rev.
stret. = W

U
stret. �W

F
stret.

is the di�erence between the reversible work required to stretch the
unfolded single-stranded DNA molecule from � up to a maximum force
fmax (molecular extension at fmax: xU) and the reversible work needed
to align the folded DNA hairpin along the force axis from � to fmin
(molecular extension at fmin: xF):

DW
rev.
stret. =

Z
xU( fmax)

0
fU(x

0) dx
0 �

Z
xF( fmin)

0
fF(x

0) dx
0 . (C.�)

Where fU(x) [ fF(x)] and the inverse function xU( f ) [xF( f )] are
the equation of state of the unfolded (folded) DNA. The �rst integral
is calculated using the WLC model given by Eq. (B.��) and setting
hxi = xn as the extension of the n bases of released single-stranded
nucleic acid, L

n
c = ndb the contour length and db equal to the average

interphosphate distance. On the other hand, the second integral is
computed according to the FJCmodel (Eq. (B.�)) considering the hairpin
as a single dipole with �xed diameter d = 2 nm and equal Kuhn length
[��].

���
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The term DW
rev.
handles is the reversible work needed to stretch the

handles from fmin to fmax:

DW
rev.
handles =

Z
xhandles( fmax)

xhandles( fmin)
fhandles(x

0) dx
0 . (C.�)

The handles are modeled according to the EWLC model (Eq. (B.��))
using the Bouchiat interpolation formula [���].
Finally, DW

rev.
bead is the reversible work needed to pull the optically

trapped bead from fmin to fmax:

DW
rev
ot =

Z
xbead( fmax)

xbead( fmin)
f (x
0) dx

0 =
Z

fmax

fmin

1
kot( f 0)

d f
0 , (C.�)

where kot( f ) is the force-dependent sti�ness of the optical trap de-
termined for the miniTweezers instrument [��]. Since in MT the bead
is always in the equilibrium position of the trap, there is no energy
contribution due to the displacement of the bead in the trap.
Note that: DGx = DGf + hD (x f )i, where DGf is the free energy

di�erence measured in the force ensemble (ForceEns) and hD (x f )i is the
average over all experimental realizations of the force and extension
boundary terms.

�.�.� E�ective sti�ness approximation

Typically, in LOT experiments, the sti�ness of the optical trap (i.e. kot)
is not known. It depends on the size of the bead, the laser power, the
surrounding medium, etc. Therefore, for short ranges of integration,
it is possible to perform an approximation that bypasses the precise
knowledge of the elastic response of the handles and the bead in the
optical trap [��]. The sum of the contributions DW

rev.
handles and DW

rev.
bead

(i.e. Eqs. (C.�), (C.�)) can be written as:

DW
rev.
handles + DW

rev.
ot =

Z
fmax

fmin

f
0
✓

1
khandles

+
1

kot

◆
d f
0 (C.�)

⇡
Z

fmax

fmin

f
0
✓

1
k

F

e�

◆
d f
0 (C.�)

=
f

2
max � f

2
min

2k
F

e�
, (C.�)
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where k
F

e� is the e�ective sti�ness of the folded branch. Here we
have performed two approximations: �rst, we have considered that the
kot is independent of the force and, second, that the folded molecule is
much sti�er than the combination of the handles and the bead, so that
it does not contribute to the total sti�ness of the system.





D
FORCE K INET IC S

The goal of this appendix is to summarize and present the concepts
involved in �rst-rupture forces analysis. A thorough theoretical de-
scription of kinetic rates (and beyond Bell-Evans theory) can be found
in Ref. [��].

�.� ������� ������ , �������� ������������� ��� �������
�����

Let us consider a nonequilibrium pulling experiment in which a short
hairpin (can be either DNA or RNA) experiences a structural transi-
tion (the molecule unfolds or folds). In standard extension controlled
experiments (i.e. ExtEns), the �ngerprint of such transition is a force
jump. The force at which the hairpin unfolds for the �rst time in an ex-
perimental realization will be referred to as unfolding force ( fU) while
the �rst force at which it refolds will be referred to as folding force
( fF). Due to the Brownian nature of the system, the unfolding-folding
forces are stochastic. Therefore, they are di�erent in each experimental
realization and force histograms r ( fU) , r ( fF) can be easily obtained.

The survival probability (or survival function), SF(U)( f ), quanti�es
the probability that a molecule remains in the F(U) state at a force f .
They can be obtained from the force histograms r ( fU) , r ( fF) accord-
ing to:

SF( f ) = 1� P({ f < fU}) = 1�
Z

f

0
r ( fU) d fU , (D.�)

SU( f ) = P({ f < fF}) = 1�
Z •

f

r ( fF) d fF . (D.�)

On the other hand, the time (or force) evolution of both survival
probabilities, SF(U)( f ), can be obtained by considering that they are

���
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described by a �rst-order Markov process. For the case of the unfolding
process:

dSF( f )
d f

= � kF!U( f )
r

SF( f ) , (D.�)

whereas for the folding process:

dSU( f )
d f

= � kU!F( f )
r

SU( f ) , (D.�)

where r = ḟ is the loading rate and kF!U( f ), kU!F( f ) are the force-
dependent folding-unfolding kinetic rates of the hairpin. Hence, they
are obtained as:

kF!U( f ) = �r
1

SF( f )
dSF( f )

d f
, (D.�)

kU!F( f ) = �r
1

SU( f )
dSU( f )

d f
. (D.�)

Since the survival probability of the folded state decreases with
force, the kinetic rate kF!U( f ) increases with the force, while kU!F( f )
decreases.



E
MATHEMAT ICAL METHODS AND
DEMONSTRAT IONS

�.� ����������–������� ���������

The goal of this section is to introduce the statistic used in the Kolmogorov-
Smirnov (K-S) test. K-S test is a statistical test that aims to unveil
whether an empirical cumulative distribution function F̂n is drawn
from a known cumulative distribution function F.
The statistical hypotheses are de�ned as:

H0 : F̂n = F H1 : F̂n 6= F .

On one hand, F̂n(x) is the empirical distribution function of X1, · · · , Xn

of n i.i.d. random variables de�ned as:

F̂n(x) :=
1
n

n

Â
k=1

1{Xi  x} , (E.�)

where 1 is the indicator function. On the other hand, F(x) is the
real cumulative distribution function of {X}. We note that F̂n(x) is a
consistent:

E[F̂n(x)] =
1
n

E[nF̂n(x)] = F(x) , (E.�)

and an unbiased estimator:

Var
�

F̂n(x)
�
=

1
n2Var

�
nF̂n(x)

�
=

F(x) (1� F(x))
n

, (E.�)

of F(x). We point out that previous expressions have been obtained
by recalling that Ân

k=1 1{Xi  x} is the sum of n independent Bernoulli
random variables, so nF̂n(x) is a binomial random variable. According
to the Central Limit Theorem, the following equality holds:

p
n
�

F̂n(x)� F(x)
�
!d N (0, F(x) (1� F(x))) . (E.�)

���
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Where d means that they converge in distribution. Equally, the same
convergence in distribution holds for:

p
n sup

x2R

��F̂n(x)� F(x)
��.

Theorem without proof. For n! • we have:

P

 
p

n sup
x2R

��F̂n(x)� F(x)
��  c

!
! 1� 2

•

Â
k=1

(�1)k�1
e
�2c

2
k

2
. (E.�)

We note that the c parameter is the same than c(a) in Eq. (�.�) (main
text of the thesis).

Let us de�ne the following statistic (Kolmogorov-Smirnov statistic):

Dn := sup
x2R

�
F̂n(x)� F(x)

�
. (E.�)

It is important to have in mind two important properties of Dn

(enunciated without proof):

i. As n! •, Dn ! 0 almost surely. This property can be proven
using the Glivenko-Cantelli theorem [���].

ii. The distribution of Dn is the same for all continuous underlying
distribution functions F (The Distribution-Free property).

We note that we can �nd the threshold c by recalling the de�nition
of the signi�cance level a:

a = P(Dn > c | H0) . (E.�)

a �.�� �.�� �.��� �.�� �.��� �.���

c(a) �.��� �.��� �.��� �.��� �.��� �.���

Table E.�: Values of signi�cance level a and threshold c(a). Values for
c(a) have been obtained by numerically solving Eq. (E.�). A good

approximation for c(a) is c(a) =
q
� log a

2 [���].
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Then, from Eq. (E.�) and considering n! •:

P

 
sup
x2R

��F̂n(x)� F(x)
�� > cp

n

!
= 2

•

Â
k=1

(�1)k�1
e
�2c

2
k

2
= a . (E.�)

The threshold c clearly depends on a, so strictly it must read as c(a)
(as it does in Eq. (�.�)). In Table E.� we report some of the most typical
values for a and the corresponding c(a) obtained from Eq. (E.�).

We conclude this section by mentioning that Kolmogorov-Smirnov
statistic can be used in order to unveil the compatibility between two
distributions (as we did in section �.�.�). Note that since both samples
may have di�erent sizes,

p
n must read as

q
nm

n+m
, being n and m the

sizes of both samples.

�.� ����������� ������������ �� ������ ��������

In this section we will proof the following statement:

(N � 1)S2

s2 ⇠ c2
(N�1) . (E.�)

Where S
2 = (N � 1)�1 Âi(Xi � X̄)2 is the sample variance of N

random and independent observations drawn from a N (µ, s2) distri-
bution and c2

(N�1) is the chi-squared distribution with N � 1 degrees
of freedom.

First of all we need to bear in mind that X̄ (i.e. the sample mean) and
S

2 are independent�. Then, let us consider the following function:

W =
N

Â
i=1

✓
Xi � µ

s

◆2
, (E.��)

now let us add and subtract X̄ in the numerator of the right hand
side of last equation as:

W =
N

Â
i=1

✓
(Xi � X̄) + (X̄� µ)

s

◆2

. (E.��)

� According to Cochran’s theorem
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By expanding the square we obtain:

W =
N

Â
i=1

✓
Xi � X̄

s

◆2

+
N

Â
i=1

✓
X̄� µ

s

◆2

+ 2
✓

X̄� µ

s

◆
N

Â
i=1

(Xi� X̄) .

(E.��)

Note that the rightmost term is equal to zero since: Âi(Xi � X̄) =
NX̄� NX̄ = 0. Thus, Eq. (E.��) becomes:

W =
N

Â
i=1

✓
Xi � X̄

s

◆2

+ N

✓
X̄� µ

s

◆2

. (E.��)

Note that the second term of Eq. (E.��) does not depend on i, so the
sum equals to N. Now, inserting the de�nition of S

2 (see above) in Eq.
(E.��) we have:

W =
(N � 1)S2

s2 +
N(X̄� µ)2

s2 . (E.��)

Nowwe have to recall that sinceW = ÂN

i=1

⇣
Xi�µ

s

⌘2
and X1, · · · XN

are drawn from a N (µ, s2), the quantity inside the parenthesis is a
standardized variable�. Then, de�ning Zi = (Xi � X̄)/s, we have:

W =
N

Â
i=1

Z
2
i

. (E.��)

The moment-generating function of W, equals to:

mW := hetWi = hetZ
2
1 i · · · hetZ

2
N i = m

Z
2
1
· · ·m

Z
2
N

. (E.��)

The function mW can be explicitly calculated:

mW =
Z •

�•
dz f (z)etz = (1� 2t)�1/2 for t <

1
2

, (E.��)

� Also called z-score. It is a rescaled variable with zero mean and standard deviation
equal to �.
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where we have used the fact that f (z) = (2p)�1 exp(�z
2/2) for

standardized variables. We note that the result of Eq. (E.��) is precisely
the moment-generating function of the chi-squared distribution [���].
As a consequence, and after performing the product of the N moment-
generating functions in Eq. (E.��), we can see that W (Eq. (E.��)) is
chi-squared distributed with N degrees of freedom (i.e. N Zi’s).
From Eq. (E.��) we can write:

mW = hetWi (E.��)

=

⌧
exp

✓
t
(N � 1)S2

s2

◆
exp

✓
t

N(X̄� µ)2

s2

◆�
(E.��)

= m (N�1)S2

s2
m N(X̄�µ)2

s2
. (E.��)

We have used the fact that X̄ and S
2 are independent (so their func-

tions). On the other hand, using the same argument than before (Eq.

(E.��)), the quantity
⇣

X̄�µ
s

⌘2
is also chi-squared distributed with �

degree of freedom. Therefore, Eq. (E.��) yields:

(1� 2t)�N/2 = m (N�1)S2

s2
(1� 2t)�1/2 . (E.��)

Therefore, solving Eq. (E.��) for m (N�1)S2

s2
we have:

m (N�1)S2

s2
= (1� 2t)�(N�1)/2 for t < 1/2 . (E.��)

Which is again a chi-squared distribution but with N � 1 degrees of
freedom. The uniqueness property of the moment-generating function
indicates us that:

(N � 1)S2

s2 ⇠ c2
(N�1) , (E.��)

as we wanted to proof.
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Let us consider an heterogeneous system in which there there are M

observable traits (i.e. phenotypes or physically measurable quantities).
Moreover, let us suppose that we perform an isothermal thermodynamic
transformation 0! 1 applied to all individuals of the ensemble through
the variation of a control parameter l from l0 to l1 in a l!(t) protocol
in a time Dt.

The forward (F) and reversed (R) ensemble work distributions (EWD)
are de�ned as:

P!(W) = Â
a

paP
(a)
F

(W) , (E.��)

P (�W) = Â
a

p̂aP
(a)
R

(�W) , (E.��)

where P
(a)
F

(W), P
(a)
R

(�W) are the F and R work distribution corre-
sponding to an individual a calculated in the 0 ! 1 transformation.
On the other hand, pa, p̂a are the probability of �nding an individual
with a given phenotype. Note that individual work distributions ful�l
the Crooks Fluctuation Theorem (CFT):

P
(a)
F

(W)

P
(a)
R

(�W)
= exp

✓
W � DG

01
a

kBT

◆
, (E.��)

where DG
01
a = G

1
a � G

0
a := Ga(l1)� Ga(l0) is the free energy

di�erence between l1 and l0 states.
In Eq. (E.��) we substitute the value of P

(a)
F

(W) given by Eq. (E.��).
Then, Eq. (E.��) becomes:

P!(W) = Â
a

paP
a
R
(�W) exp

✓
W � DG

01
a

kBT

◆
(E.��)

= e
W

kBT Â
a

paP
a
R
(�W)e�

G
1
a�G

0
a
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Now we note that, in order to have a �uctuation theorem-symmetry
for the EWD, pa and p̂a must be related as:

pa exp
✓
�G

1
a � G

0
a

kBT

◆
= p̂a exp

✓
�DG � kBTI

kBT

◆
, (E.��)

where DG = � kBT log Z1
Z0
, being Z0 and Z1 the partition functions

given by:

Z0 = Â
a

e
�G

0
a/ kBT

Z1 = Â
a

e
�G

1
a/ kBT . (E.��)

On the other hand kBTI is the information-content of the ensemble
de�ned as the minimum free energy cost required to generate the
population of partially equilibrated individuals (de�ned by pa) starting
from a population in full thermodynamic equilibrium. Inserting the
result of Eq. (E.��) in Eq. (E.��) we obtain:

P!(W) = e
W

kBT

 

Â
a

p̂aP
a
R
(�W)

!
e
� DG� kBTI

kBT = e
W

kBT
� DG� kBTI

kBT P (�W) .

(E.��)

Finally, Eq. (E.��) can be rewritten in order to obtain the information-
content �uctuation theorem:

P!(W)
P (�W)

= exp
✓

W � DG + kBTI

kBT

◆
. (E.��)

We note that, for I = 0 we obtain the result corresponding to the
equilibrium phenotypic ensemble. We can prove it by summing for all
a on both sides of Eq. (E.��) (and setting I = 0):

Â
a

p
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a exp

✓
�G

1
a � G

0
a

kBT

◆
= exp
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kBT
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Â
a
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eq
a . (E.��)

Recalling that the frequencies p
eq
a , p̂

eq
a are normalized�, Eq. (E.��)

becomes:
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� Âa p
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a = Âa p̂

eq
a = 1.
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Now, inserting the equilibrium probabilities (peqa = e
�G

0
a/ kBT/ Âa e

�G
0
a/ kBT):
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Expanding the left-hand side of Eq. (E.��) we obtain:

Âa exp
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Âa exp
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a
kBT
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as required for an equilibrium phenotypic ensemble.
Finally we point out that, summing for all a in Eq. (E.��) we obtain

the reported equation for the information-content (Eq. (�.�)):
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= exp
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or, equivalently:

kBTI = DG + kBT log
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In this section we show the explicit calculations for the case that the
EWD are the white average of the individual work distributions. That
is, pa = p̂a = 1/M, where M is the number of phenotypes. Then, the
white average EWD are:

Pwhite
! (W) =

1
M

Â
a

P
(a)
F

(W) , (E.��)

Pwhite
 (�W) =

1
M

Â
a

P
(a)
R

(�W) , (E.��)
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where the individual work distributions satisfy the CFT (Eq. (E.��)).
Under Gaussian assumption, the folding free energy spectrum is Gaus-
sian distributed according to:

Q(G) =
1q

2ps2
G

e
� (G�G

?)2

2s2
G . (E.��)

Likewise, so are individual work distributions:

P
(a)(W) =

1q
2ps2

W

e
� (W�hWi)2

2s2
W . (E.��)

Keep in mind the relation given by Jarzynski equality (Eq. (�.�)) and
the moment-generating function for Gaussian variables�:

G = hWi � s2
W

2 kBT
. (E.��)

In the continuum limit, the ratio betweenPwhite
! (W) andPwhite

 (�W)
(Eqs. (E.��), (E.��)) can be written as:
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Note that in previous equation we have used Eq. (E.��) and, since we
integrate over G, a does not appear anymore. For convenience, using
again the CFT (Eq. (E.��)) we rewrite Eq. (E.��) as:

Pwhite
! (W)

Pwhite
 (�W)

=

R •
�• dGP

F

G
(W)Q(G)

R •
�• dGP

F

G
(W)e�(W�G)/ kBTQ(G)
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Now, in order to calculate both the numerator and the denominator
of Eq. (E.��) we need to recall several results. First, PG(W) are given
by (E.��). Second, the result from the Jarzynski equality: Eq. (E.��).

� he�
W
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� hWi

kBT
+

s2
W

2( kBT)2 .
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Third, considering that the work variances are molecule-independent
and equal for the F and R distributions. Finally, we use the result for
the Gaussian integral:

Z •

�•
e
�ax

2+bx+c
dx =

r
p

a
e

b
2

4a
+c with a, b, c 2 R . (E.��)

Now, putting all the pieces together, the integral of the numerator
IN , equals to:
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where b = ( kBT)�1. On the other hand, the integral of the denomi-
nator ID, equals to:
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Both in Eq. (E.��) and in Eq. (E.��), A is a real parameter that equals
to:
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e
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Then, by dividing Eqs. (E.��), (E.��) we obtain the e�ective-�uctuation
theorem (Eq. (�.��)):
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Pwhite
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= exp
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◆
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1
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In the thermodynamic inference context [��], the full work distributions
can be recovered by looking for the quantity D that satis�es:

P!(W)
P (�W)

=
P 0!(W � D)
P 0 (�W � D)

= exp
✓

W � G
?

kBT

◆
, (E.��)

where the prime (’) distributions are the ones that ful�l the e�ective-
CFT (Eq. (E.��)). We point out that, for the sake of clarity, we have
omitted the label white for all the distributions. Nevertheless, bear in
mind that all the distributions of the present section correspond to the
white averaged ones.

Multiplying at both sides of Eq. (E.��) byP 0 (�W), integrating over
W and using the Gaussian moment-generating function we have:

G
? = hWi � x

s2
W
+ s2

G

2 kBT
. (E.��)

Then, by repeating the same procedure in Eq. (E.��) we obtain the
following result:

G
? = hWi+ D� s2

W
+ s2

G

2 kBT
. (E.��)

In both cases the average h· · · i runs over the! distributions. Then,
after simple algebraic steps in Eqs. (E.��), (E.��) and substituting x (Eq.
(E.��)) we obtain:

D =
s2

G

2 kBT
. (E.��)
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