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AMPK: AMP activate protein kinase 

AP-1: Activator protein 1 

AST: Aspartate aminotransferase 

ATG: Autophagy related protein 

ATGL: Adipose triglyceride lipase 

ATP: Adenosine triphosphate 

B2M: Beta-2-Microglobulin 

BC: Bariatric surgery 

BHMT: Betaine-homocysteine methyltransferase 

BMI: Body mass index 

CaMKK: Calmodulin-dependent protein kinase  

CCL2: C-C motif ligand 2 

CCR2: C-C motif chemokine receptor type 2 

CD163: Cluster of differentiation molecule 163 
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DNL: de novo lipogenesis 
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Overnutrition and decreased physical activity promote obesity and associated diseases, which are 

currently leading causes of morbidity and mortality worldwide. High prevalence and heterogeneity 

of obesity-related metabolic consequences, collectively known as the metabolic syndrome, is a 

global epidemic associated with a wide variety of comorbidities. A hallmark of type III obesity (BMI > 

40 kg/m2) is a failed attempt to adapt to metabolic perturbations caused by increased food intake. 

In this context, the role of the liver is crucial. The liver is particularly susceptible to the metabolic 

perturbations caused by obesity.  Most patients with severe obesity have some degree of non-

alcoholic fatty liver disease (NAFLD). If untreated or undetected, NAFLD often progresses to non-

alcoholic steatohepatitis (NASH) and other subsequent life-threatening diseases with poor 

prognosis (e.g., cirrhosis or hepatocellular carcinoma). In NASH patients with obesity-associated 

metabolic disorders, NASH is a serious and underdiagnosed condition. The absence of non-invasive 

markers for its diagnosis hampers clinical practice and the development of pharmacological 

treatments.   

 

The prevalence of NAFLD increases almost linearly with body mass index (BMI) and remains closely 

associated with type 2 diabetes mellitus (T2DM). The mechanisms linking these conditions remain 

unexplained. The scenario is not completely understood, but the hepatic alterations caused by 

oxidative stress, mitochondrial dysfunction and hepatocellular death are likely to be critical.  Thus, 

NAFLD may be considered per se a multisystemic disease with important contributions to 

maladaptive responses of multiple regulatory pathways.  

 

There are no specific pharmacological interventions approved for NAFLD/NASH treatment, and 

targeting obesity remains the cornerstone of clinical management, as weight loss appears 

associated with improvement in histologic features of NASH. Lifestyle modifications and/or 

currently approved anti-obesity medications rarely accomplish the objective and maintain the 

necessary amount of weight loss. Obese patients, however, might represent a unique research 

opportunity in searching for noninvasive biomarkers of liver alterations. In particular, these patients 

are likely candidates for bariatric surgery (BS) that can achieve rapid weight loss and/or resolve 

comorbidities, including NASH.  

 

Oxidative stress is related to the onset and development of liver diseases. Excessive nutrient intake 

impairs the redox status in the liver, which stimulates inflammation. The molecular mechanisms 
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accounting for these alterations involve alterations of enzyme activity, post-translational 

modifications of proteins and activation of nuclear receptors; the consequence is a global 

modification of metabolic networks.  In our first study we investigated the molecular mechanisms 

underlying the presence of hepatic alterations and its remission after BS. We analyzed changes in 

the circulating levels and hepatic expression of markers of oxidative stress and inflammation in 

patients with morbid obesity.  Results showed that one year after BS liver histology features 

improved in all patients and that this improvement was greater in severe cases of NAFLD including 

those with steatohepatitis, bridging fibrosis or cirrhosis. Significant pre-surgery differences in 

plasma and liver markers of oxidative stress and inflammation (chemokine C-C motif ligand 2, 

paraoxonase-1, galectin-3, and sonic hedgehog, among others) were observed between patients 

with, and those without, NASH. Patients showed a consistent improvement of oxidative stress and 

inflammatory processes and these data encourage the use of BS as a therapeutic option to improve 

or resolve NAFLD. 

 

NASH is often asymptomatic and laboratory or imaging techniques may help to suspect the disease. 

However, discrimination of obese patients with or without NASH ultimately requires liver biopsy, an 

invasive procedure with potential difficulties. Equally, the accurate assessment of pharmacologic 

approaches requires repeated liver biopsies, which are unrealistic. The choice of potential 

therapeutic targets needs to consider that NASH is a multisystem disease with an important 

mitochondrial contribution to the defective metabolic responses. Mitochondrial dysfunction 

eventually perturbs energy and one-carbon (1-C) metabolism. In the second study we hypothesized 

that plasma levels of metabolites from these pathways would highlight the prominent role of liver 

disease in regulating metabolic changes, and might provide clinically useful biomarkers. We 

performed measurements in samples from type III obese patients undergoing BS to identify specific 

metabolic patterns and to test the diagnostic ability to distinguish between patients with and 

without NASH. We confirmed that plasma mitochondrial metabolites could mitigate the need for 

liver biopsy to evaluate the effectiveness of therapies in NASH patients. Targeted plasma metabolic 

profiles identified connections between human liver metabolism and morbid obesity. Combined 

models of single or paired plasma measurements of α-ketoglutarate (α-KG), β-hydroxybutyrate, 

pyruvate and oxaloacetate reduced the uncertainty in clinical diagnosis of NASH and predicted 

NASH remission. 
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In the third study we provided evidence that mitochondrial dysfunction is at the center of the 

transition from relatively benign hepatic steatosis to NASH. Hepatic accumulation of α-KG via 

glutaminolysis appears to be a crucial checkpoint for NASH development, underscoring the signaling 

functions of mitochondrial metabolites in hepatocytes under stress conditions. We demonstrated 

that α-KG is a key metabolite of energy homeostasis that modulates hepatocyte death in NASH 

patients through mammalian TORC1 (mTORC1). However, after BS, the mitochondrial oxidative 

metabolism and the autophagy-lysosomal function compromised in NASH patients were also 

completely restored. AMPK activation in hepatocytes abrogated the effects of glutaminolysis and/or 

α-KG in modulating cell death through mTORC1-driven pathways, supporting the potential use of 

mTORC1 inhibitors and the future assessment of glutaminase and/or α-KG dehydrogenase as 

potential therapeutic targets. Finally, we confirm that metabolites may promote epigenetic changes 

affecting DNA methylation and likely post-translational modifications on enzymes regulating liver 

energy metabolism. Our data indicated the plausible importance of altered DNA methylation in the 

pathogenesis of NASH and we propose the significant hypermethylation of TDRD6 promoter in 

NASH livers and the significant hypomethylation of ACP5, C1orf54 and HDAC9 promoters as 

potential candidates in future research.  
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1. Obesity: an epidemic disease  
 
Obesity, considered by many as a 21st century epidemic, is one of the greatest public health diseases 

worldwide (1). At present time, obesity is defined as a disproportionate body weight with an 

excessive accumulation of adipose tissue that is usually accompanied by mild, chronic or systemic 

inflammation. Obesity is a major risk factor for developing a number of metabolic or non-

communicable diseases (NCDs), including cardiovascular diseases, cancer and diabetes mellitus, 

thus representing the leading causal factor for death and premature disability (2). 

 

The most common method for classifying obesity degree is an increase in fat mass, named body 

mass index (BMI). Even though the BMI is an unreliable measure of obesity, it is still the most 

commonly used. BMI grossly estimates adiposity and identifies overweight and obesity based on 

weight of the individual expressed in kilograms (Kg) and divided by the square of the height in 

meters (m2). The World Health Organization (WHO) defines obese as having a BMI more than 30 

kg/m2. Moreover, obesity is also divided in three different degrees: class I (30.0 > BMI > 34.9), class 

II (35 > BMI > 39.9) and class III (BMI > 40) (3, 4). 

 

According to the WHO, more than 2.1 billion adults were estimated to be overweight or obese 

globally in 2016. Furthermore, there is also an alarming increase in globally prevalence rates of 

overweight and obesity among children and adolescent population. In 2013, 42 million of children 

under the age of 5 were overweight or obese (5, 6).  

 

Although overweight and obesity are considered a problem of developed countries, their 

prevalence is increasing in lower and middle-income countries, particularly in urban surroundings. 

In these developing countries with emerging economies, the rate of this health problem is around 

30% higher than in developed countries (3). Therefore, obesity is a risk factor of increasing 

magnitudes, with clinical importance, which should be monitored systematically and rigorously. 

Future can be very worrying, if remedy is not provided, as the WHO extrapolation of existing data 

suggests that by 2025 obesity levels could reach 45–50 % in the US and Western Europe, 30–40 % in 

Australia, and over 20 % in India (7). 
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The increasing prevalence of obesity is influenced by an inverse interaction between obesity and 

socioeconomic class. It seems to be related to genetic, metabolic, behavioral, environmental and 

economic changes, inherent to modern society (Figure 1) (8, 9). Overall, these factors create an 

obesogenic environment. This term has been coined to express the sum of influences, 

opportunities, or conditions of the environment in which one is more susceptible to gain weight 

(10). 

 

In the past 3 decades, globalization and modernization have promoted growing availability of 

abundant, cheap, energy-rich and highly palatable foods, together with highly pervasive and 

persuasive marketing, creates a “push effect” that drives overconsumption of calories.  At the same 

time, energy expended in physical activities has decreased as people spend more time doing 

sedentary life style. Finally, hereditary factors (genetics, family history, racial/ethnic differences), 

epigenetic fluctuations and our sociocultural system have been shown to influence the risk of 

obesity. Nowadays, it is increasingly recognized that people are driven to become more overweight 

and obese as a result of this obesogenic environment (11, 12). 

 

Figure 1. Obesogenic environment contributes 
to weight gain. The present environment 
potently facilitates the development of obesity. 
The increment of human adiposity is influenced 
by complex interactions between genetic and 
epigenetic influences. Excessive energy intake 
has a major impact on energy expenditure, 
whereas numerous other environmental factors, 
such as television watching, leisure activities, and 
transport, negatively affect energy expenditure. 
Variations in body fat and BMI in large part 
influenced by genetic alterations modulate 
energy homeostasis by either decreasing energy 
expenditure or increasing energy intake. Picture 
from van der Klaauw AA et al. (12) 

 
 

At a social level, obesity is associated with disability, mortality, and substantial health costs. 

Nevertheless, at an individual level, severe obesity is often associated with a multitude of clinical 

problems, including metabolic perturbations, sleep disturbances, respiratory difficulties, mobility 

issues, as well as considerable social stigma, which can affect quality of life (13). 
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1.1. Obesity-related comorbidities and mortality  

Obese patients have an increased risk of developing many health complications, known as 

comorbidities. By definition, comorbidity is the presence of two or more additional disorders 

coexisting with a primary disease, which can contribute to premature death. In the context of 

obesity, there are metabolic diseases (for example type 2 diabetes mellitus [T2DM]) and fatty liver 

diseases), cardiovascular diseases (hypertension, stroke and atherosclerosis), Alzheimer’s disease 

and some types of cancer (for example in breast, liver, pancreas, ovarian, kidney and colon) (14-17). 

 

Although obesity is associated with several metabolic disturbances, all obese humans are not equal 

and approximately 20% of patients with severe obesity have a normal metabolic profile. The 

authors define these obese individuals as “metabolically healthy” obese. However, most obese 

patients are “metabolically unhealthy”. Nowadays, the reason of these two phenotypes is unknown. 

Differences in glucose tolerance, inflammatory response, adipose tissue distribution, adipokine 

secretion and age may be an explanation to this phenomenon. Thus, obesity is a heterogeneous 

disorder with variable risk profile (18). 

 

Obesity can be considered an inflammatory disease nature, characterized by a chronic systemic low-

grade inflammation, where different kinds of cytokines are involved. In obese individuals, adipose 

tissue releases increased amounts of non-esterified fatty acids, glycerol, hormones, pro-

inflammatory cytokines and other factors that are involved in the development of insulin resistance, 

which is a major trigger for T2DM. Evidence from several studies indicates that obesity and weight 

gain are associated with an increased risk of diabetes and many of these metabolic changes in 

obesity seem to be associated with insulin resistance (19, 20). 

 

Dramatic changes in diet and lifestyle of the worldwide population are triggering obesity as a global 

epidemic. Obesity is associated with a major risk factor for metabolic organs, and the relationship 

between obesity and liver disease was described several decades ago (21). Furthermore, the 

prevalence of obesity-related liver diseases has also certainly increased, becoming the most 

common cause of chronic liver disease in adults and children (22). 
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2. Nonalcoholic Fatty Liver Disease: a spectrum of clinical and 
pathological severity  

 
The liver is a vital organ that is involved in a wide range of functions that are important to metabolic 

homeostasis. Accordingly, liver diseases can promote a high number of pathologies (23). In 1980, 

Ludwig described the status of a group of patients who, without significant alcohol consumption, 

showed the same histopathological changes than those who had a liver disease associated with 

alcoholism. Therefore, this find is known to be the first histopathologic description of Nonalcoholic 

Fatty Liver Diseases (NAFLD) (24).  

 

By definition, NAFLD disorder is characterized by a broad spectrum of hepatic derangements 

ranging from simple steatosis and non-alcoholic steatohepatitis (NASH) to liver cirrhosis and 

hepatocellular carcinoma (HCC) (25).  Whereas simple steatosis remains a benign process in most 

affected individuals, the presence of liver inflammation (as observed in NASH) is the driving force 

for the development of fibrosis and cirrhosis (26). 

 

In the past 30 years, NAFLD was the leading cause of chronic liver disease in developing countries 

(27). The prevalence of NAFLD is constantly increasing. It rose from an estimated 15 % in 2010 to a 

25% in 2015, and likewise, the rate of NASH in the same timeframe has almost doubled, where the 

overall NASH prevalence estimated among biopsied NAFLD patients was 59.1% in 2015 versus 33% 

estimated in 2010. NAFLD is widespread in all continents, but the highest rates are reported from 

South America (31%), followed by Asia (27%), the USA (24%) and Europe (23%), whereas NAFLD is 

less common in Africa (14%) (28, 29).   

 

During the last two decades, approximately one-quarter of the European population is has been 

affected by NAFLD. In this context, a 2016 meta-analysis reported an average prevalence of 23.71% 

in Europe, with a variability ranging from 5% to 44% in different countries (27, 30). Along the same 

line, epidemiological data from Spain describe similar results, with a NAFLD prevalence of 25.8% in 

the adult population (31). The data of incidence rates and trends in the global NAFLD pandemic are 

unknown. NAFLD is now more common than alcoholic fatty liver disease  and it is thought that 

NAFLD is set to replace viral hepatitis as the primary cause of end-stage liver disease and liver 

transplantation over the next decade (32).  
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2.1 Pathogenesis and mechanism of NAFLD progression 

NAFLD is a spectrum of liver disorders (Figure 2). It is defined by the presence of lipid accumulation, 

also known as steatosis, in the absence of excessive alcohol consumption (25, 33). NAFLD comprises 

the benign non-alcoholic fatty liver (NAFL), and a more severe form referred to as NASH. NASH is 

characterized by the presence of steatosis, hepatocellular ballooning, lobular and portal 

inflammation, apoptosis, necrosis and almost always hepatic fibrosis. To regenerate new cells, NASH 

progresses to cirrhosis, where the hepatocytes are replaced by scar tissue made of type I collagen 

produced by stellate cells. Lastly, cirrhosis is an end-stage phase with organ failure that requires 

liver transplantation or may lead to the development of HCC and liver failure (34, 35). 

 

 

Figure 2. NAFLD disease spectrum.  Schematic representation of NAFLD progression. The benign form of 
NAFLD, progresses to NASH with or without fibrosis. NASH leads to cirrhosis and eventually hepatocellular 
carcinoma (HCC). NASH may progress to HCC without going through the cirrhosis stage. Histological sections 
illustrating normal liver, steatosis, NASH, and cirrhosis. Picture modified from Cohen et al. (34). 
 

 

The pathophysiology of NAFLD has not been resolved and, nowadays the mechanisms leading to 

NAFLD are still unclear. Several mechanisms have been proposed, but insulin resistance seems to 

have crucial importance in the development and progression of NAFLD (36). The pathological 

progression of NAFLD follows tentatively a “three-hit” process namely: steatosis, lipo-toxicity and 

inflammation. Overall, fat accumulation on the liver (1st hit) augments vulnerability to oxidative 

stress (2st hit), which triggers inflammation, endoplasmic reticulum (ER) stress, mitochondrial 
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dysfunction and the incapacity of hepatocytes to synthesize endogenous antioxidants (3rd hit).  

However, the existence of various parallel factors acting in synergy and the growing evidence of 

genetic predisposition of some individuals made evident that this view was too simplistic to 

recapitulate the complexity of this disease (37). Thus, a “multiple-hit” hypothesis was developed 

and substituted the outdated hypothesis for the origin and progression of NAFLD (36, 38). 

2.2.1 Genetics and NAFLD 

Although NAFLD is typically characterized by an obesity-related excess of adiposity and insulin 

resistance, seems that genetic factors are important determinants for the NAFLD condition. 

Genome-wide association studies have identified novel loci associated with disease severity (39-42). 

To this day, modifications in 2 two genes have been shown to influence NAFLD predisposition and 

progression. The first single-nucleotide polymorphism (SNP) has been identified in PNPLA3 

(encoding patatin-like phospholipase domain-containing protein 3) (39). PNPLA3 (rs738409; c.444 

C>G; p.I148M) is a non-synonymous cytosine to guanine nucleotide transversion mutation that 

results in an isoleucine to methionine amino acid change at codon 148. PNPLA3 variant have been 

associated with the severity of NASH and fibrosis. It is expressed in white adipose tissue and liver, 

and its expression is nutritionally regulated, and it increases with obesity (43). The second of these 

genes encodes transmembrane 6 superfamily member 2 (TM6SF2), with a non-synonymous SNP 

(rs58542926; c.449 C>T; p.E167K) (41). TM6F2 variant is also associated with progressive NAFLD and  

acts as a regulator of liver triglyceride content and plasma total cholesterol levels (44). 

 

Genetic predisposition must be placed in the context of environmental factors. Even though major 

advances uncovering the genetic basis for the heritability of NAFLD have been done, heritable 

mechanisms not encoded in the DNA sequence are emerging. Discordant NAFLD in genetically 

identical twins has been explained by microRNAs (45), and epigenetic factors might also be a 

mechanism through which environmental exposures exert a heritable effect on disease risk (46). 

Genetic endowment and epigenetic modifications have an important effect in the liver fat content, 

enzymatic processes, and the liver inflammatory environment, hence influencing the progressing of 

NALFD to NASH or persisting in a stable stage. Therefore, the pathogenesis of NAFLD seems to be a 

vicious cycle resulting in intricate alterations in the histopathological and biochemical features of 

the liver. 
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2.1.2 Pathophysiology of NAFLD  

The liver has a remarkable metabolic plasticity that performs important biochemical functions 

necessary for metabolic homeostasis, and it is one of the principal regulators of glucose and lipid 

metabolism. In NAFLD, numerous disorders modify the liver’s capacity to process lipids and it has 

been linked to multifactorial alterations in peripheral tissues, including skeletal muscle and adipose 

tissue (26). 

 

The initial stage of NAFLD involves over-accumulation of various lipids or lipid droplets, mostly 

observed in cases of obesity. Most lipids that accumulate in the liver are derived from increased 

uptake of circulating free fatty acids (FFA) and upregulated endogenous synthesis of FFAs. Dietary 

intake affects the metabolism of the human body and plays an important role in the development 

of NAFLD. Therefore, the amount of lipids present in hepatocytes represents a complex interaction 

among: 1) hepatic fatty acid uptake of plasma FFA released from lipolysis in adipose tissue and from 

the hydrolysis of circulating triglycerides, 2) de novo lipogenesis (DNL), 3) decreased fatty acid 

oxidation (FAO), and 4) reduction of hepatic lipid exportation via very low-density lipoproteins 

(VLDL) (Figure 3) (47, 48). 

 

Adipose tissue has an important role in the accumulation of hepatic lipids in the settings of obesity-

associated NAFLD (49). Adipose tissue has several functions in the organism, and the principal is to 

accumulate energy as triglycerides (TAG), that are released as FFA when other tissues need them.  

In normal conditions, insulin stimulates glucose transporter 4 (GLUT-4) in adipose tissue and 

promotes re-esterification of FAA into TAG storage. However, obese patients have an excess of FFA 

and if the caloric excess persists, the fat depots reach their maximum storage capacity and appears 

to trigger a cascade of different events (50). First, weight gain is associated with a marked expansion 

of adipose tissue, which leads to adipocyte’s growth in size (hypertrophy) and they accumulate 

more fat by the activation of lipoprotein lipase (LPL).  Second, there is a differentiation of pre-

adipocytes into new adipocytes (adipogenesis). Subsequently, it leads to an increase of the number 

of adipocytes (hyperplasia), which results in the dysfunction and eventual adipocyte death (51).  

 

Insulin resistance is one of the key factors in the development of steatosis/NASH (52). Insulin 

resistance compromises the ability of adipocytes to store fat and TAG in adipocytes are mobilized 

through lipolysis releasing FFA into circulation and they are transported to other tissues, for 
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example, liver or muscle (53, 54). Fatty acids are primarily delivered to the liver from blood 

following lipolysis of TAG in adipose tissue, a process that is regulated by actions of insulin on 

adipocytes. Hepatocytes take up these FFA via fatty acid transport proteins (FATPs) and fatty acid 

translocase (FAT/CD36). FFA accumulation in hepatocytes promotes the synthesis of triglycerides; 

during this process, the production of diacyl-glycerols (DAGs) has been implemented as a cause of 

hepatic insulin resistance and the conversion from TAG to DAG is mediated by adipose triglyceride 

lipase (ATGL). DAG activates protein kinase Cε (PKCε) membrane translocation to inhibit insulin 

receptor kinase and decrease insulin signaling (55-57).  

 

Hepatic lipids that are not esterified also induce endoplasmic reticulum stress, leading to the 

activation of c-Jun N-terminal kinases (JNKs) and nuclear factor – kappaβ (NF-κβ). JNKs and NF-κβ 

are two major regulators of inflammatory pathways that also inhibit phosphorylation of insulin 

receptor substrate-1 (IRS-1), aggravating hepatic insulin resistance and increasing intra-hepatic 

cytokine production. The synthesis of DAGs is intimately related to inflammatory pathways, and 

DAGs may also contribute to hepatic production of inflammatory cytokines [e.g., tumor necrosis 

factor-α (TNF-α), interleukin (IL)-6, IL-1] (47, 52, 58). These cytokines meditate inflammation in 

NASH through the recruitment and activation of Kupffer cells (resident hepatic macrophages) (59). 

 

Moreover, the liver itself can contribute to hepatic steatosis by producing lipid from carbohydrate in 

DNL process. In healthy liver, DNL is not a main source of hepatic lipid, but in the setting of obesity 

and hyperinsulinemia, DNL can contribute as much as 25% of total hepatic lipid stores, and is 

considered an important factor in the development of NAFLD (60, 61). The enzymes for DNL are 

upregulated by insulin and glucose through the action of two transcription factors, sterol regulatory 

element-binding protein 1 (SREBP-1c), which transcriptionally activates most genes required for 

lipogenesis, and carbohydrateresponsive element-binding protein (ChREBP) (62). ChREBP, also 

regulated by glucose, which induces gene expression of liver-type pyruvate kinase, a key regulator 

enzyme in glycolysis (63).   
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Figure 3. Pathophysiological aspects in NAFLD: role of lipids and insulin resistance in energy metabolism.  
NAFLD is associated with hepatic and peripheral insulin resistance, resulting in an insufficient suppression of 
hepatic gluconeogenesis, decreased glycogen synthesis and increased lipid accumulation (1). High amounts of 
free fatty acids (FFA) are attributed to an increased delivery from white adipose tissue. Levels of FFAs are 
further augmented by the availability of dietary lipids (2). De novo synthesis of FFA (DNL) is driven by sterol 
regulatory element binding-protein 1c (SREBP-1c) and carbohydrate response element binding-protein 
(ChREBP) and is characterized by hyperinsulinaemia and hyperglycaemia (3). However, lipid export through 
VLDL is decreased (4). FFA induces insulin resistance, causing lysosomal instability by induction of the 
NF-κB−TNFα pathway, or by activating the caspase-1−IL-1β/IL-18 pathways through the inflammasome (5). 
Diacylglycerol (DAG) promotes insulin resistance through the activation of protein kinase C (PKCε) and c-Jun 
N-terminal kinase (JNK) (6). The hepatocyte attempts to limit FFA by increasing mitochondrial β-oxidation, 
increased oxidative stress and mitochondrial dysfunction, leading to aggravation of insulin resistance and 
progression to NASH and fibrosis (7). Picture from Tilg H et al. (47) 
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Moreover, the excess of FFA in the liver induces oxidative stress, which is initially compensated by 

cellular antioxidant mechanisms. Nevertheless, the overloading of FFA generates reactive oxygen 

species (ROS) causing lipid peroxidation, increased levels of iron, activation of cytochrome P450, 

increased mitochondrial β-oxidation and stimulation of lipo-oxygenase (64, 65). Furthermore, ROS, 

through polyunsaturated fatty acids (PUFA), promotes the release of 4-hydroxy-2-nonenal (4-HNE) 

and malondialdehyde (MDA), which are involved in the pathogenesis of liver damage due to direct 

toxicity, and can intervene in the formation of Mallory bodies and increase collagen synthesis due to 

stellate cells (66). Consequently, increased hepatic inflammation and fibrosis and results in an 

increased risk of developing cirrhosis and HCC. 

2.2 The role of oxidative stress and inflammation in NAFLD 

Oxidative stress is considered an imbalance between production of free radicals and reactive 

oxygen species (ROS), and their elimination by protective mechanisms, referred to as antioxidants is 

an important process to maintain body’s homeostasis. This imbalance leads to damage of important 

biomolecules and cells, with potential impact on the whole organism. Organisms produce ROS as a 

by-product of cellular metabolism and in response to intra and extracellular environmental factors 

(67).  

 

ROS includes the superoxide anion (O2
-), hydrogen peroxide (H2O2), hydroxyl radicals (OH-), nitric 

oxide (NO), hypochlorite and peroxynitrite (ONOO-, the result of a reaction from O2
- and NO), all of 

which have inherent chemical properties that confer reactivity to different biological targets (68, 

69). Low concentrations of free radicals, ROS and other nitrogen species are necessary for normal 

cell redox status, cell function and intracellular signaling. However, in some disease states, free 

radicals are produced in excess. High concentrations of ROS and free radicals can damage DNA, 

proteins, carbohydrates and lipid constituents, and compromise cell function (70).  

 

ROS are by-products of aerobic metabolism, and most are generated in the cells by mitochondrial 

respiratory chain (MRC) (71). Free radicals and ROS can be generated by enzymes in the cytosol, 

such as amino acids oxidases, cyclooxygenases, lipoxygenase, NO synthase and xanthine oxidase, 

which generate superoxide anion or other derived ROS. These enzymes link the generation of ROS 

with specific signaling pathways involved in particular pathological processes (72).   
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Cells have developed a range of antioxidant strategies to protect the organism from the constant 

generation of free radicals and reactive species with a complex system of endogenous enzymatic 

antioxidants: 

- Superoxide dismutase (SOD): It is an enzyme that catalyzes the dismutation of the superoxide 

anion to hydrogen peroxide, which is then decomposed by catalases primarily located in the 

peroxisomes. Two forms of SOD are known: SOD-1 contains copper and zinc and is also known 

as Cu-ZnSOD. This enzyme is primary located in the cytosol but also in the nucleus and is an 

homodimeric protein. Copper is essential for the catalytic reaction, while zinc is important for 

maintaining the structure of the protein; SOD-2, also known as manganese-dependent 

superoxide dismutase MnSOD, is found in the mitochondrial matrix (73). 

- Catalase: It is located in the liver, erythrocytes, kidneys and central nervous system. The 

principal function of this enzyme is to convert H2O2 to water and molecular oxygen. 

- Glutathione peroxidase: It is an important enzyme in cellular antioxidant defense system, 

detoxifying peroxides and hydroperoxides. Its function is to reduce H2O2 to water, oxidizing two 

molecules of glutathione (GSH) to glutathione disulphide (GSSG), which is converted back to 

GSH by the enzyme glutathione reductase using NADPH (74). 

- Paraoxonases (PON): It is a family of three enzymes termed PON1, PON2 and PON3. They have 

multifunctional roles in various biochemical pathways such as protection against oxidative 

damage and lipid peroxidation, contribution to innate immunity, detoxification of reactive 

molecules, bio-activation of drugs, modulation of ER stress and regulation of cell 

proliferation/apoptosis (75, 76). 

 

The role of oxidative stress in the initiation and progression of NAFLD from simple steatosis to NASH 

has not been yet robustly established. Nevertheless, increased levels of ROS and lipid peroxidation 

products (MDA and HNE), decreased levels of antioxidants enzymes (SOD and catalase), and low 

levels of antioxidant compounds such as glutathione, have been observed in patients with 

NAFLD/NASH (64). Various mechanisms have been reported to cause lipid peroxidation (77, 78).         

Pro-oxidant system such as cytochrome P450, lipoxygenase and cyclooxygenase along with free 

radical products have been synergistically implicated in the emergence of oxidative stress in NAFLD. 
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Similarly, the inflammation leading to NASH has been discussed in relation to alterations in 

metabolic and pro-inflammatory transcription factors expression like CYP4A1 and CYP2E (isoforms 

of cytochrome P450).  

 

Chronic inflammation is associated to elevated ROS levels, because loss oxidative equilibrium in 

cells, tissues and organs potentiates inflammatory responses, which can potentially trigger NAFLD 

(79). For example, anti-inflammatory cascades are linked to diminished ROS concentrations, 

increased oxidative stress triggers inflammation, and redox balance inhibits cellular response to 

inflammation (80). Whether oxidative stress and inflammation represent the cause or the 

consequences of cellular pathology is unknown, but evidence suggests that both processes 

contribute considerably to the pathogenesis of NAFLD (81, 82) .  

 

Inflammatory cells also produce soluble mediators, such as cytokines (IL-1, IL-6, TNF-α, interferon 

alpha [IFN-α]), chemokine (C-C motif chemokine ligand 2 [CCL2]), prostaglandins, and leukotrienes 

(molecules derived from arachidonic acid), which act by further recreating inflammatory cells to the 

site of damage and producing more reactive species (83). These key sensors can activate signal 

transduction cascades as well as inducing changes in transcriptional factors, for example: nuclear 

factor-KB (NF-KB), signal transducer and activator of transcription 3 (STAT-3), hypoxia-inducible 

factor-1α (HIF-1α), activator protein-1 (AP-1), nuclear factor of activated T cells, and NF-E2 related 

factor-2 (Nrf2), which regulate cellular stress responses (84).  

 

Adipokines and cytokines play an important role in mediating pathological interactions between 

adipose tissue and the liver. Adipokines have pro- and anti-inflammatory functions, so an imbalance 

can promote injuries in the liver tissue. Several studies showed that alterations in plasma levels of 

adipokines correlates with insulin resistance and liver inflammation, for these reason high levels of 

TNF-α and low levels of plasma adipokines are possible diagnostic markers to differentiate NAFL and 

NASH patients (85, 86). 

 

In the liver injury tissue, the metabolic response and inflammation are closely related to NASH. 

Chronic low-grade systemic inflammation and fibrosis influence the proliferation and activation of a 

type of macrophages, especially because liver tissue homeostasis is maintained through an 

adequate balance of oxidative and pro- and anti-inflammatory state (87, 88). 
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2.2.1 The role of tissue macrophage-mediated inflammation on NAFLD 

Macrophages are bone marrow-derived cells that play an important role in the elimination of 

pathogens and regulation of inflammatory and immune responses. Macrophages are in a 

continuous functional state (proliferation and activation), which depends directly on the 

microenvironment where they are found, and whose regulation is very important since they are 

critical in the initiation and increase of immune responses. Resident hepatic macrophages received 

the name of Kupffer cells (KCs) and are localized in the periportal zone. The liver comprises the 

largest population of resident macrophage in the body, representing 80-90% of total fixed 

macrophages and 35% of the liver non-parenchymal cells (89, 90). 

 

Another important feature of macrophages is the plasticity. It allows their adaptation according to 

environmental changes, which lead to the activation of KCs and their consequent differentiation 

into M1 or “classically activated” and M2 or “alternatively activated” in the liver of obese mice as 

well as humans (91-93). Inflammatory cytokines and microbial products, such as lipopolysaccharide 

(LPS), can induce differentiation of KCs in a M1 profile.  M2 profile can be induced by IL-4, IL-10, IL-

13, IL-33, transforming grow factor (TFG-β), and granulocyte colony-stimulating factor (G-CSF). M1 

macrophages are the key factor cells for the elimination of pathogens, and are characterized for the 

production of IL-12, IL-23, NO and production of ROS. However, M2 macrophages are usually 

related to tissue repair and resolution, and produce IL-10, TFG-β and extracellular matrix 

components (94-96).  

 

Dysregulation of M1/M2 phenotypic balance is emerging as an important mechanism that promotes 

pathogenesis of chronic inflammatory disease (Figure 4) (97). KCs are known to control the 

inflammatory responses in NAFLD (98, 99). In early stages of the disease, KCs expand rapidly and 

secrete cytokines and chemokines such as IL-1, TNF-α and CCL2, contributing to a paracrine 

activation or apoptotic signaling pathways in hepatocytes and the recruitment of other immune 

cells. Evidences suggest that KCs can activate hepatic stellate cells (HSCs) through the production of 

profibrotic cytokine TFG-β and platelet-derived growth factor (PDGF) (100). Upon liver injury, HSCs 

sense hepatocyte damage and immune cell signaling and respond by transdifferentiation into active 

myofibroblast like cells that express alpha-smooth muscle actin (α-SMA) and migrate activating a 

fibroinflammatory response (101). Contrarily, KCs can promote multiple matrix metalloproteinases 

(MMPs) that promote extracellular matrix degradation and thus favor the resolution of fibrosis 
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(102). Recent studies have demonstrated the antifibrotic properties of KCs, which acting as M2 

macrophages can produce a variety of MMPs, enhancing extracellular matrix (ECM) degradation.  

 

 

 
Figure 4. Modulation of macrophages in Kupffer cells during NAFLD. Activated Kupffer cells (KCs) induce 
lipotoxicity, steatosis, cell death and insulin resistance in hepatocytes by releasing a variety of cytokines and 
chemokines. Hepatic stellate cells (HSCs) can be activated by DAMPs derived from damaged and stressed 
hepatocytes or by chemokines and cytokines. HSC activation is characterized by increased collagen production 
and extracellular matrix (ECM) organization and by the release of pro- inflammatory and profibrogenic 
cytokines.  Picture from Schuster S.  et al. (103) 

 

Finally, changes in the activation state of macrophages involve coordinated regulation at both the 

metabolic and transcriptional levels (104). During inflammation, macrophages are metabolically 

characterized by an increased glycolysis and, lactate production and decreased oxidative 

phosphorylation (OXPHOS), to reduce for example microorganisms. In contrast, anti-inflammatory 

and profibrotic macrophages show increased oxygen consumption, mitochondrial respiration, and 

fatty acid oxidation, as well as decreased glycolysis (105, 106).  
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2.3 Mitochondrial dysfunction and NAFLD 

Mitochondria are essential organelles that play a central role in cellular metabolism, for example, 

supplying the cell with energy and synthesizing key molecules (107). Mitochondria regulate 

apoptosis through the intrinsic pathway triggered in response to cellular stress signal, and 

apoptosis-related proteins influence mitochondrial respiration (108). Therefore, whether cells live 

or die is a process in which mitochondria play an important role. For this, it is not surprising, that 

mitochondrial diseases are often associated with metabolic components and, consequently, 

mitochondrial defects would be expected under inflammatory conditions, in obesity, and other 

energy-dependent disturbances, such as liver disorders (109). 

 

Mitochondria are dynamic organelles which fuse and divide in response to environmental stimuli, 

developmental stage, and energy requirements (Figure 5A). The main dynamic activities are fusion 

(the joining of two organelles into one), fission (the division of a single organelle into two), transport 

(directed movement within a cell), and mitophagy (targeted destruction via the autophagic 

pathway) (110, 111). Under “normal” conditions, a shift toward fusion contributes to a rapid 

provision of energy whereas a shift toward fission produces numerous mitochondrial fragments.  

 

Mitochondrial fusion (Figure 5B) is an evolutionary conserved process that is mediated by three 

GTPases of dynamic superfamily, mitofusin 1 (Mfn1), Mfn2, and optic atrophy 1 (Opa1). Because 

mitochondria have double membranes, mitochondrial fusion is a two-step process requiring outer-

membrane fusion followed by inner-membrane fusion. Fusion process plays an important role for 

OXPHOS activity, particularly through the regulation of mitochondrial DNA (mtDNA) levels. As a 

complement to fusion, fission of mitochondria is equally critical for cellular and organismal 

physiology (Figure 5C). Mitochondrial division is mediated by dynamin-related protein 1 (Drp1), a 

GTPase that is recruited to the mitochondria via receptors proteins (Mff, Fis1, MiD49, and Mi50). 

Besides influencing mitochondria morphology, fission has been implicated in multiple functions, 

including mitochondrial transport, mitophagy, and apoptosis (107, 112-114). 
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Figure 5. Mitochondrial metabolism and dynamics. Mitochondria are double membrane-bound organelles 
with characteristic inner membrane folds, termed cristae (A). Mitochondria are essential organelles since their 
most prominent role is to supply the cell with metabolic energy in the form of ATP through oxidative 
phosphorylation. Mitochondrial dynamic is determined by fission (B) and fusion (C) processes which are crucial 
for mitochondrial inheritance and for the maintenance of mitochondrial functions. Picture obtained from 
Camps J. et al. (115) 

 

Mitochondria play a critical role in the production of energy in the form of adenosine triphosphate 

(ATP). In humans, ATP is produced by three different processes to generate ATP:  the tricarboxylic 

acid (TCA) cycle, OXPHOS and FAO. The TCA cycle oxidizes acetyl-CoA, derived from sugars, fats and 

amino acids to generate nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide 

(FADH), which can be used by the OXPHOS system to generate ATP (116, 117).  

 

Mitochondrial dysfunction is a central feature in patients with obesity who have T2DM and/or 

NAFLD. Mitochondrial dysfunction has a pivotal role during the transition from NAFL to NASH (118, 

119). One of the principal drivers of mitochondrial deterioration in NASH is increased of FAA 

oxidation and lipotoxicity (120). A constant flux of FFA through mitochondria and elevated TCA cycle 

activity generates harmful ROS, which in turn can damage the protein complexes of the MRC and 

the mtDNA. Several studies showed that MCR complex activities were decreased in liver tissue from 
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patients with NASH (119, 121). Of note, mitochondria are not the only source of FAA oxidation; 

microsomes and peroxisomes also metabolize FAA and contribute to ROS production in NASH (122). 

Over time, mitochondria become progressively more dysfunctional, triggering oxidative stress, ATP 

depletion and loss of mitochondrial integrity, which all contribute to hepatocyte death. 

2.4 Energy metabolism-related aspects in liver homeostasis  

The liver is a key metabolic organ that governs energy metabolism. It acts as a hub to metabolically 

connect to various tissues, including skeletal muscle and adipose tissue (23). Nutrients are digested 

in the gastrointestinal tract, and glucose, fatty acids, and amino acids are absorbed into the 

bloodstream and transported to the liver through the portal vein circulation system. Liver can use 

glucose to diverse purposes: catabolism via glycolysis and the TCA cycle to produce ATP, storage as 

glycogen (glycogenogenesis), utilization as a carbon precursor for the biosynthesis of metabolites 

and generation of NADPH as reducing power via the pentose phosphate pathway. The liver also 

plays a central role in both glycogenolysis (the breakdown of glycogen) and gluconeogenesis (the 

synthesis of glucose from carbohydrate precursors), both of which contribute to the supply of blood 

glucose to deliver to other tissues (48). 

 

In the postprandial state, glucose is condensed into glycogen and/or converted into fatty acids or 

amino acids in the liver. In hepatocytes, free fatty acids are esterified with glycerol-3-phosphate to 

generate TAG. TAG is stored in lipid droplets in hepatocytes or secreted into the circulation as very 

low-density lipoprotein (VLDL) particles. Amino acids are metabolized to provide energy or used to 

synthesize proteins, glucose, and/or other bioactive molecules. In the fasted state or during 

exercise, fuel substrates are released from the liver into the circulation and metabolized by muscle, 

adipose tissue, and other extrahepatic tissues. Alanine, lactate, and glycerol are delivered to the 

liver and used as precursors to synthesize glucose (gluconeogenesis). Non-esterified fatty acids 

(NEFAs) are oxidized in hepatic mitochondria through FAO and generate ketone bodies 

(ketogenesis). Liver-generated glucose provides essential metabolic fuels for extrahepatic tissues 

during starvation and exercise (48, 123, 124). 

 

Liver energy metabolism is tightly controlled. Multiple nutrients, hormones, and neuronal signals 

are known to regulate glucose, lipid, and amino acid metabolism in the liver. For these reason, 

dysfunction of liver signaling, and metabolism causes or predisposes to T2DM or NAFLD. (125). 
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2.4.1 AMPK guardian of metabolism  

Eukaryotes have evolved a very sophisticated system to sense low cellular ATP levels via the AMP-

activated protein kinase (AMPK) complex. AMPK is a heterodimeric serine/threonine kinase formed 

by three subunits, two regulatory (β and γ) and one catalytic (α), and it is the fuel sensor par 

excellence. AMPK is activated by phosphorylation subunit α at threonine 172 (126). In absence of 

phosphorylation, AMPK is inactive. AMPK is activated by hypoxia, hyperosmolality, ROS, 

hypoglycemia, and stimulation of signaling pathways. In addition, adiponectin activates AMPK 

through two independent pathways; on the one hand through liver kinase B1 (LKB1) and on the 

other hand though Ca2+/calmodulin-dependent protein kinase (CaMKK). When AMP/ATP ratio 

increases, AMPK is phosphorylated. Once activated, AMPK acts by promoting catabolic pathways in 

order to restore energy homeostasis, resulting in ATP generation, and downregulating anabolic 

pathways that consume ATP (127).  

 

During energy stress, AMPK directly phosphorylates key factors involved in the multiple pathways to 

restore energy imbalance (Figure 6). The effect of AMPK on metabolism can be broadly divided into 

two categories: the inhibition of anabolism to minimize ATP consumption and the activation of 

catabolism to stimulate ATP production (126). 

 

One of the key AMPK functions is the inhibition of acetyl-coenzyme A (CoA) carboxylase (ACC), a 

rate-limiting enzyme in de novo lipogenesis. ACC suppression by AMPK lowers malonyl-CoA 

production, thus increasing the long chain fatty acids oxidation and inhibiting insulin-mediated lipid 

synthesis (128). Moreover, AMPK inhibits hepatic cholesterol synthesis by inhibiting SREBP-1. 

SREBP-1, in turn, controls the expression of genes involved in triglyceride synthesis and 

accumulation, such as fatty acid synthase (FASN) and ACC. In contrast, AMPK inhibits the 

mechanistic target of rapamycin complex 1 (mTORC1), which stimulates lipogenesis and protein 

synthesis (129, 130). 

 

Lastly, AMPK is closely related to insulin resistance and liver lipid content. Experimental studies also 

confirmed that phosphorylated AMPK protein expression level in high-fat-diet-induced NAFLD mice 

was significantly lower than in normal control group, which suggested that AMPK was involved in 

the pathological process of NAFLD (131). 
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Figure 6. AMPK regulates a variety of metabolic processes. Once activated, AMPK complex phosphorylates 

key targets to rewire metabolism. The direct targets of AMPK are shown in the first concentric circle. The 

pathways modulated by AMPK are grouped into four general categories: protein metabolism, lipid metabolism, 

glucose metabolism, and autophagy and mitochondrial homeostasis. Picture from Schuster Herzig S. et al. (126)   
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2.4.2 The game of mTOR  

Another key player in maintaining energy homeostasis is the mechanistic (formerly “mammalian”) 

target of rapamycin (mTOR). mTOR is an atypical serine/threonine kinase in the phosphoinosistol 3-

phosphate kinase (PI3K)-related kinase (PIKK) family, highly conserved from yeast to humans. In the 

early 2000s were several studies published by Hall and Sabatini, to demonstrate that mTOR existed 

in two highly conserved, large molecular complex, termed mTOR complex 1 (mTORC1) and mTOR 

complex 2 (mTORC2) (132, 133).  

 

mTORC1 is defined by mTOR and the core components, Raptor (Kog1), and mLST8 (mammalian 

lethal with Sec13 protein 18, also known as Lst8). This complex regulates protein synthesis, 

ribosome biogenesis, transcription factors, lipid synthesis, nucleotide biosynthesis, and nutrient 

uptake, while inhibit catabolic process like autophagy in response to growth factors, amino acids, 

and cellular energy (134). mTORC2 comprises mTOR, Rictor (Avo3), Sin1 (Avo1), and mLST8 (Lst8). 

Its function regulates many cellular processes via the AGC kinase family members , such as protein 

kinase B (Akt), serum/glucocorticoid regulated kinase (SGK), and protein kinase C (PKC) (135). It is to 

phosphorylate several AGC kinases in response to growth factors (Figure 7A).  

 

mTOR is activated by nutrients, growth factors, and cellular energy, and is inhibited by the 

rapamycin. Rapamycin-FKBP12 complex directly inhibits mTORC1, but mTORC2 is characterized by 

its insensitivity to acute rapamycin treatment. However, long-term treatment with rapamycin can 

also suppress mTORC2 (136).  

 

Well characterized down-streams targets of mTORC1 are ribosomal protein S6 kinase (S6K), 

eukaryotic translation initiation factor 4E (Eif4e) binding proteins (4E-BPs), and the autophagy 

activating kinase ULK1. mTORC1 positively regulates anabolic processes (Figure 7B).  

 

mTORC1 and mTORC2 play a key role in the liver lipid metabolism, and this process has already 

been extensively reviewed (137, 138). mTORC1 promotes de novo lipid synthesis through the SREBP 

transcription factor, which control the expression of metabolic genes involved in fatty liver and 

cholesterol biosynthesis. Also, mTORC1 signaling in the liver affects systemic glucose and insulin 

homeostasis, as we showed in the liver of specific tuberous sclerosis 1 (TSC1) knockout (L-TSC1 KO) 
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and raptor knockout mice, modulating Akt signaling (139, 140). However, hyperactivation of 

mTORC1 signaling upon fasting causes metabolic stress due to systemic and hepatic glutamine 

depletion and, thereby inability of glutaminolysis to sustain TCA cycle (141).  

 

 

Figure 7. mTOR activation pathways.  (A) The core components of mTOR complex 1 (mTORC1) and mTORC2.  
(B) Schematic detailing the key molecular players in the nutrient sensing branch upstream of mTORC1. mTORC1 
promotes several cellular anabolic processes, such as ribosome biogenesis and, lipid synthesis, whereas it 
blocks autophagy and other catabolic processes. Picture from Blenis J. et al (142). 
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2.4.2.1 Amino acids activate Rag-mTORC1 signaling  

A variety of environmental signals regulates mTORC1 activity, including growth factors, cellular 

stress, and energy and amino acids levels (143).  mTORC1 activity is particularly sensitive to leucine 

and arginine levels, whereas yeast mTORC1 responds best to the amino acid and nitrogen source 

glutamine (144).  

 

The Rag GTPases, members of the Ras GTPase superfamily, activate mTORC1 in response to some 

amino acids, such as leucine and glutamine (Figure 8A) (145). The Rheb and Rag GTPases reside on 

the lysosomal surface and coordinate mTORC1 activity in response to environmental conditions. The 

Rag GTPases consist of a constitutive heterodimer of RagA or RagB bound to RagC or RagD. In the 

presence of nutrients RagA/B interacts with RagC/D to form a heterodimer that is anchored to the 

surface of the lysosome. This active conformation of the Rag GTPases induces the translocation of 

mTORC1 to the lysosomal surface (146).  Once on the lysosome, the growth factors-stimulated GTP-

loaded form of the small GTPase Rheb binds and activates mTORC1. Grow factors stimulate 

lysosomal Rheb through the PI3K/PDK1/Akt pathway. AKT phosphorylates and inactivates tuberous 

sclerosis complex 2 (TSC2) by inducing its release from the lysosome. TSC2 otherwise associates 

with TSC1 and TBC1D7 to form the TSC complex that functions as GAP (GTPases  activating protein) 

(144). Nevertheless, mTORC1 inactivation is an active process that requires translocation of TSC2 to 

the lysosome to inhibit Rheb. For example, hypoxia inhibits mTORC1 signaling as a result of 

activation of AMPK (147).  

 

Glutamine is the most abundant amino acid in the blood, and is especially important in cell growth 

and metabolism. Glutamine is transported into cells through one of many transporters, such as the 

solute carrier family 1 neutral amino acid transporter member 5 (SLC1A5) (148). Glutamine is 

metabolized via a process termed glutaminolysis (Figure 8B), which consists of two deamination 

steps. First, there is a conversion of glutamine to glutamate catalyzed by the enzyme glutaminase 

(GLS). The second step involves the conversion of glutamate to α-ketoglutarate (α-KG) catalyzed by 

glutamate dehydrogenase (GDH),  which enters the TCA cycle to generate ATP through production 

of NADH and FADH2 (149, 150). Incorporation of α-KG intro de TCA cycle is a major anaplerotic step 

in proliferating cells and it is critical for the production of oxaloacetate which reacts with acetyl-CoA 

(generated by glycolysis) to produce citrate. However, the conversion of citrate to α-KG is not 

reversible. α-KG enters into mitochondria, where it can be used to provide the cell energy and 
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biosynthetic substrates through TCA cycle. Changes in the α-KG/citrate ratio could be the principal 

driving force for the switch from oxidative glucose to reductive glutamine metabolism by isocitrate 

dehydrogenases (IDHs) in the non-canonical reverse reaction to form citrate, promoting the use of 

glutamine as the primary carbon source for citrate synthesis (151).  

                                 

                           A 

            

 
 
 
 
 
 
 
 
 
 
 
 
 

                               B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Glutamine controls mTORC1 activity. (A) Glutamine enters into the cell by SLC1A5 transporter and is 
converted to glutamate by glutaminase (GLS or GLS2). Glutamate can contribute to the synthesis of glutathione 
or is converted to α‐ketoglutarate (α-KG) through glutamate dehydrogenase (GLUD). α‐KG enters the 
tricarboxylic acid (TCA) cycle and can provide energy for the cell. Alternatively, α‐KG can proceed backwards 
through the TCA cycle, in a process called reductive carboxylation (RC) to produce citrate, which supports 
synthesis of acetyl-CoA and lipids. (B) Amino acids stimulate the mTOR pathway, and amino acid pools rely on 
glutamine to be maintained. Glutamine can contribute to mTORC1 activation by being exchanged for essential 
amino acids, including leucine, through the large neutral amino acid transporter 1 (LAT1; a heterodimer of 
SLC7A5 and SLC3A2) antiporter17. This RAG-dependent regulation of mTOR is probably dependent on the 
lysosomal amino acid transporter SLC38A9, which transports glutamine, arginine and leucine as substrates.  
Picture from Altman BJ. et al. (151). 

UNIVERSITAT ROVIRA I VIRGILI 
ASSESSING DIAGNOSTIC AND THERAPEUTIC TARGETS IN OBESITY-ASSOCIATED LIVER DISEASES 
Noemí Cabré Casares 
 



58 
 

Glutaminolysis is correlated with mTORC1 activity (149). The enzymes mediating glutaminolysis 

sense leucine and glutamine directly. Leucine is an essential amino acid that directly binds to and 

activates glutamate dehydrogenase, and glutamine is the substrate for glutaminase. Thus, 

glutaminolysis accounts for an actual sensing mechanism, for at least leucine and glutamine, which 

ultimately leads to GTP loading of Rag and mTORC1 activation (Figure 8). In addition, glutaminolysis 

is necessary for GTP loading of RagB and activation of mTORC1 signaling. α-KG, the product of 

glutaminolysis, is sufficient to stimulate recruitment of mTORC1 to the lysosome (144).  

 

Finally, glutaminolysis promotes cell growth and inhibits autophagy via regulation of mTORC1. 

Combined, these findings suggest that glutaminolysis is upstream of the Rag GTPase and mTORC1, 

and that Rag, and thus mTORC1, senses glutamine and leucine via glutaminolysis. 

 

2.5 The influence of Autophagy in NAFLD  

Autophagy (term derived from the Greek meaning “eating of self”) is an evolutionarily conserved 

cellular degradation process that involves the delivery of cytoplasmic cargo (macromolecules or 

organelles) to the lysosome. This process degrades long-lived, unnecessary, or damaged proteins 

and organelles to maintain intracellular homeostasis. Autophagy can be subdivided into three 

classes: macroautophagy, microautophagy and chaperone-mediated autophagy (CMA) (152, 153). 

Variations of these autophagic pathways have been described according to the type of cytosolic 

component preferentially degraded. For example, selective degradation of mitochondria by 

macroautophagy is now termed mitophagy or for lipids named lipophagy (154).  

 

Macroautophagy is the main route for the incorporation of cytoplasmatic components into 

lysosomes. During macroautophagy entire cellular organelles such as mitochondria, lipid droplets, 

or protein aggregates, are sequestered in a double membrane structure known as autophagosome. 

The autophagosome fuses to a lysosome resulting in the degradation of the autophagosome 

contents by the hydrolytic enzymes of the lysosome (155). During this process, there are different 

genes generically known as autophagy-related genes (Atg), which encode for protein products 

involved in the execution and regulation of macroautophagy (156). 
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Mechanisms underlying the different steps of macroautophagy are complex (Figure 9). Briefly, Atg 

proteins organize in functional complexes that mediate each of the steps of macroautophagy: 

initiation, nucleation, membrane elongation, cargo recognition, sealing and fusion with lysosomes.  

 

First, the complex known as UNC-51-like kinase 1 (ULK1)-Atg13-FIP200-(Atg101) initiates 

phagophore formation. The activity of this complex is controlled by mTORC1, the main inhibitor of 

autophagy, and is negatively regulated by AMPK (157, 158). Upon mTOR inhibition, ULK1 dissociates 

from the complex and starts autophagosome formation. Then, nucleation of the phagophore 

requires the Beclin-1 vacuolar protein sorting 34 and 15 (Vps34, Vps15, class III PI3K). The synthesis 

of phosphatidylinositol-3-phosphate (PI3P) by Vps34 is an important trigger for the elongation and 

closure of the autophagosome by two ubiquitin-like conjugation systems, Atg5-Atg12 and LC3 

(Atg8)- phosphatidylethanolamine (PE) complex. The last phases of the autophagic process mediate 

the autophagy degradation. The processes of autophagosome-lysosome fusion and the lysosomal 

biogenesis, activation, reformation, and turnover are tightly regulated. The cargoes are selectively 

recognized by autophagy adaptors, such as p62, also called sequestosome 1, which is a protein that 

contains an LC3-interacting region and allows selective degradation of the ubiquitinated cargo by 

autophagy. Moreover, an important regulator of lysosomal biogenesis and autophagy is the 

transcription factor EB (TFEB). TFEB coordinates the cellular responses to different stresses, such as 

nutrient starvation, metabolic stress, and lysosomal stress, in order to maintain cellular homeostasis 

(153, 159-161). 

 

Similar sequestration of a region of the cytosol occurs in microautophagy, but in this case the 

lysosomal membrane invaginates to surround the cargo, which is then internalized into the 

lysosomal lumen in single membrane vesicles. Endosomal microautophagy involves selection of 

protein cargo by the heat shock cognate 71 kDa protein (HSC70). 

 

Selective autophagy has been associated with CMA. In CMA, a pentapeptide motif in the amino acid 

sequence of cytosolic proteins targeted for degradation is identified by the chaperone HSC70 (162). 

Once the chaperone-substrate complex reaches the lysosomal membrane, the substrate protein 

binds to the lysosome-associated membrane protein type 2A (LAMP-2A) and drives its 

oligomerization into a translocation complex that transports the substrate into the lysosomal lumen 

for degradation. LAMP-2A is the only one of three spliced variants of the lamp2 gene that 
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participates in CMA. Therefore, CMA activity is determined by the levels of LAMP-2A at the 

lysosomal membrane and by its efficiency of assembly and disassembly in this compartment. CMA 

has been extensively studied in the liver where it is induced in order to mediate selective removal of 

damaged proteins. CMA is usually activated by nutritional changes such as starvation or in response 

to lipid overload (163-166).  

 

 

 

 
Figure 9. Autophagosome formation. In macroautophagy, the initiation is mediated by the UNC51-like kinase 1 
(ULK1) complex, which consists of ULK1, autophagy-related protein 13 (Atg13), FAK family kinase interacting 
protein of 200 kDa (FIP200) and ATG101. Further nucleation requires the class III PI3K complex, which is 
composed of the vacuolar protein sorting 34 (VPS34) PI3K, along with its regulatory subunits ATG14L, VPS15 
and beclin 1 (Atg6 in yeast). Phagophore membrane elongation and autophagosome completion requires two 
ubiquitin-like conjugation pathways. The first produces the ATG5–ATG12 conjugate, which forms a multimeric 
complex with ATG16L, whereas the second results in the conjugation of phosphatidylethanolamine (PE) to LC3 
(the microtubule-associated protein 1 light chain 3). In microautophagy, substrates are directly engulfed at the 
boundary of the lysosomal membrane. In chaperone-mediated autophagy, substrates with the pentapeptide 
motif KFERQ are selectively recognized by the heat shock cognate 70 kDa protein (HSC70) chaperone and 
translocated to lysosomes in a LAMP2A-dependent manner.  Picture from Kaur J. et al. (159) 

 

The best-characterized example of selective autophagy is the process called mitophagy, in which 

depolarized mitochondria are selectively surrounded by autophagosomes and degraded (Figure 10). 

Mitophagy is regulated by serine/threonine protein kinase 1 (PINK1), p62 and receptors such as 

protein Bcl-2 nineteen-kilodalton interacting protein 3 (BNIP3), NIP3-like protein X (NIX) and FUN14 

domain-containing protein 1 (FUNDC1). Mitophagy is an important process in cellular quality 

control, because it regulates the mitochondria status, the size and fusion and fission processes (154, 

159). 
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Figure 10. Mitophagy process. Transimission electron micrographies of mitophagy in liver of patients with 
NAFLD.  

 

Autophagy helps to maintain a positive energetic balance in the liver. A growing number of liver 

pathologies, such as NAFLD, have been associated with autophagy dysfunctions. Several studies in 

mice showed that obesity-associated NAFLD results in decreased macroautophagy and CMA in the 

liver (161). A number of possible mechanisms for the inhibition of autophagy in fatty liver have been 

suggested including deceased expression of autophagy gens, reduced levels of  lysosomal enzymes, 

and impaired fusion of autophagosome with the lysosome (167-169). 

 

The human beings have two major lipid metabolism pathways, the lipolysis pathway and the 

lipophagy pathway (170). Lipolysis consists of the gradual degradation of intracellular lipid droplets 

into FFAs and glycerol by the cytoplasmic lipases. Once released, these FFAs are then transported 

into the mitochondria, where they undergo β-oxidation to form Acetyl-CoA. During lipophagy lipid 

droplets are wrapped by a double membrane and sent for degradation to the lysosomes as 

autolysosomes. Lipophagy ensures the degradation of excessive lipid droplets present in cells, and 

the maintenance of cellular homeostasis (171).  

 

Lipolysis and lipophagy both play important roles in the degradation of lipid droplets. There is a 

general consensus that autophagy is up-regulated during the early stage of NAFLD as an attempt to 

prevent lipid accumulation. However, as NAFLD progresses, it seems that the autophagy process is 

blocked. Studies conducted with animal models and NAFLD patients have reported that autophagy 

flux was suppressed, and that restoring autophagy balance could help to restore liver histology to a 

healthy state. Short-term inhibition of autophagy in NAFLD might be induced via the mTOR 

complex; while long-term inhibition could be regulated by the transcription factors such as 

Forkhead box protein O1 (FOXO1) and Transcription factor EB (TFEB), since they control the 

transcription of autophagic genes. In a fatty liver, mTORC1 could be over-activated, possibly due to 

excessive food consumption and/or hyperinsulinemia (159, 161, 172, 173). 
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2.6 One-carbon metabolism and DNA methylation  

Studies in diverse organisms, including humans, have suggested the important role of nutrients in 

regulating epigenetics in normal and disease states. Chronic diseases, such as obesity, T2DM, 

cancer, heart disease and aging, have been linked to metabolic and epigenetic factors that play an 

important role in pathogenesis (174-176).  

 

The emerging field of epigenetics, an inheritable phenomenon that can affect gene expression 

without altering the DNA sequence, provides a new perspective on the pathogenesis of liver 

diseases. Animal studies have demonstrated that hepatic steatosis can be induced by the 

derangement of one-carbon (1-C) metabolism. (177, 178). 

 

One-carbon metabolism utilizes a variety of nutrients such as glucose, vitamins, and amino acids, to 

produce 1-C units that fuel a diversity of metabolic pathways. These pathways include nucleotide 

metabolism, maintenance of cellular redox status, lipid biosynthesis, and methylation metabolism 

(179). Two major components of 1-C metabolism are the folate and methionine cycles (Figure 11), 

which function to transfer single-carbon units to acceptor substrates. Importantly, the methionine 

cycle provides a link to histone methylation through the generation of S-adenosylmethionine (SAM). 

Histones can be mono-, di-, or trimethylated at lysines and arginines by histone methyltransferases 

(HMTs), which transfer the methyl group from SAM to the histone substrate, generating                           

S-adenosylhomocysteine (SAH) (180).  

 

Folic acid is a B vitamin provided by the diet and it is essential to start the folate cycle. Folic acid is 

reduced first to dihydrofolate (DHF) and then tetrahydrofolate (THF) before it can enter to the 

folate cycle. THF can be interconverted between different oxidation states, including 5,10-

methylene-THF, 5-methyl-THF, and 10-formyl-THF each supporting distinct biosynthetic functions.  

5-methyl-THF is used for the homocysteine re-methylation to generate methionine during 

methionine cycle. (181). Thus, the folate cycle coupled to the methionine cycle constitutes a bi-

cyclic metabolic pathway that circulates carbon units.  

 

The methionine cycle is crucial in the epigenetic reaction for the generation of SAM through the 

adenylation of methionine, an essential amino acid sourced from diet,  by methionine 

adenosyltransferase (MAT) (182). The liver plays a crucial role because is the site where nearly half 
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of the methionine metabolism and 85% of all methylation takes place (183). Nutritional factors, e.g. 

methionine, influencing the metabolism of SAM and SAH, may impact on DNA methylation status. 

The establishment of epigenome is vulnerable to nutritional factors especially in disease such as 

obesity, T2M and liver disorders (184).  

 

 

 
Figure 11. One-carbon metabolism and epigenetics. SAM is produced from methionine by methionine 
adenosyltransferase (MAT). Methyl-transferases utilize SAM to donate a methyl group to histone or DNA, 
producing SAH. SAH is converted to homocysteine (hCys) via S-adenosylhomocysteine hydrolase (SAHH) and 
recycled by transsulfuration pathway. SAH can be remethylated to regenerate methionine by donation of a 
methyl group from 5-methyltetrahydrafolate (5-mTHF) via folate cycle or from betaine via betaine–
homocysteine S-methyltransferase (BHMT). Picture modified from Locasale JW. et al. (179) 
 

SAM is considered the universal methyl donor and uses methyltransferases to methylate 

metabolites, RNA, DNA, and proteins, including histones. After the methyl group is transferred from 

SAM to an acceptor substrate, SAH is produced. In turn, SAH is hydrolyzed by S-

adenosylhomocysteine hydrolase (SAHH) to adenine and homocysteine. Homocysteine enters the 

trans-sulphuration pathway and condenses with serine to generate cystathionine in an irreversible 

reaction by cystathionine β-synthase. In addition, betaine-homocysteine methyltransferase (BHMT) 

transfers a methyl group from betaine, an intermediate in choline metabolism, to regenerate 

methionine and produce dimethylglycine. 5-methyltetrahydrofolate-homocysteine 

methyltransferase (MTR) regenerates methionine by the transfer of 5-methyl-THF to homocysteine, 

producing THF (180, 181, 185). 
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2.6.1 DNA methylation 

DNA methylation is an epigenetic mark of gene regulation that is generally associated with 

transcriptional repression when present at the promoter regions of genes. It works in concert with 

histone modifications to regulate the activity of genes, and these regulatory mechanisms help guide 

levels of gene transcription in all tissues (186). DNA methylation changes are known to modulate 

susceptibility to obesity, a major risk factor for NAFLD (187).  

 

DNA can be covalently modified and the best-

known modification is methylation of the C-5 

position of a cytosine adjacent to a guanine residue 

(CpG dinucleotides), which normally leads to gene 

suppression. The enzymes that instruct DNA 

methylation (DNA methyltransferases, DNMT) and 

demethylation (ten-eleven translocation enzymes 

(TET1-3) are beginning to be functionally defined 

(188). DNMT1 is the responsible of DNA stability, de 

novo methylation is regulated by, DNTM3a and 

DNMT3b, and the TET enzymes catalyze the 

oxidation of 5-methylcystosine (5-mC) via three 

intermediate chemical states (5-

hydroxymethylcytosine (5hmC), 5-formylcytosine 

(5fC) and 5-carboxylcytosine (5caC)) to its 

demethylated form which is then again available for 

re-methylation by DNMTs   (Figure 12) (189). 

 

DNA methylation is critical in gene regulation. Under most circumstances, methylation is related to 

a decrease in transcription. Liver disorders strongly correlate with abnormal gene expression and 

transcription factors play an important role in altering the transcriptome during steatohepatitis 

(187, 190). Furthermore, changes in global DNA methylation are also an essential component of 

liver diseases (191, 192). 

 

 

 
Figure 12. DNA methylation cycle.  
DNMTs regulate DNA methylation generating      
5-mC modifications, which are then potentially 
substrates for TET-regulated step-wise 
demethylation via the functional (5hmC 
epigenetic mark). TDG (thymine DNA 
glycosylase) and BER (base excision repair) are 
involved in active demethylation. Picture 
modified from Mann DA. et al (118) 
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2.6.2 Metabolites modulate epigenetics 

Several metabolites generated by energy metabolism are implicated in the regulation of chromatin 

remodeling (Figure 13). The enzymes involved in the DNA and histone methylation/demethylation 

(DNMTs, DNA hydroxylases (DNHDs), histone acetyltransferases (HATs), HMTs and histone 

demethylases (HDMs)) are sensitives to the nutrients and metabolic fluctuations (193). As 

extensively reviewed (194-196), some of these enzymes utilize metabolites as a substrate or 

cofactor, derived from diverse metabolic pathways including: 1-C metabolism, TCA cycle, β-

oxidation and glycolysis that can modify gene expression. For example, SAM and the ratio of 

SAM/SAH haven shown to be influenced by multiple dietary and environmental factors.  

 

Glucose enters the cells and the major proportion can be converted to acetyl-CoA trough glycolytic 

pathways, along with the decreased NAD+/NADH ratio. Acetyl-CoA is an essential substrate of HATs 

and behaves as an essential acetyl group donor in histone lysine acetylation reactions. Metabolites 

that accumulate in physiological conditions can also inhibit chromatin-modifying enzymes. For 

instance, fasting-induced increased circulating levels of the ketone body beta-hydroxybutyrate 

inhibit histone deacetylases (HDCAs) in multiple tissues and induce expression of genes associated 

with resistance to oxidative stress (197, 198).   

 

α-KG is a key metabolite to modulate the removal of methylation marks by HDMs and TET enzymes 

(199). For example, JmjC domain-containing histone demethylase (JHDM) proteins are important in 

the context of energy homeostasis because they depend on FAD+ and α-KG to regulate histone 

methylation. In the context of DNA methylation, TET proteins depend on Fe (II) and α-KG. Although 

it is not clear whether TET proteins sense α-KG, it is known that the TCA cycle intermediates, 

fumarate and succinate, can act as competitive inhibitors of JHDMs and TETs. Mechanistically, 

enzymes succinate dehydrogenase (SDH) and fumarate hydratase (FH) regulate DNA and histone 

methylation counteracting α-KG -dependent enzymes. This suggests that the relative concentrations 

of TCA cycle intermediates may regulate TET and DNMT enzymes activity (178, 197).  
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Figure 13. Metabolic pathways provide substrates for enzymes that modify chromatin. Metabolic pathways 
implicated in the generation of 1-C metabolism required for methylation, acetylation, or demethylation of 
chromatin. TCA cycle metabolites serve to provide carbon units for both acetylation and demethylation via α-
KG. Chromatin modification reaction requires intermediary metabolites, such as α-KG, SAM, SAH, succinate, 
fumarate and acetyl-CoA. Picture obtained from Reid MA. et al. (195)  
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2.7 Diagnosis of NAFLD 

NAFLD is usually an asymptomatic disease and, consequently, it is often diagnosed accidentally 

following a routine blood test or an imaging study done for other reasons. Early diagnosis and 

treatment of NAFLD can prevent it is development into more progressive NAFLD, such as NASH, liver 

fibrosis, cirrhosis and HCC. Most patients with NAFLD are asymptomatic or complain about non-

specific symptoms. Although liver biopsy is the reference method to diagnose hepatic steatosis and 

its progressive stages, there are several non-invasive methods to use in the clinical practice (200, 

201). Nevertheless, in the present time, any specific marker for the diagnosis of NAFLD exists. 

2.7.1 The noninvasive diagnosis of NAFLD 

Liver test can show mild increases in the levels of alanine aminotransferase (ALT), aspartate 

aminotransferase (AST), and gamma-glutamyl transferase (GGT), but these levels remain normal in 

the majority of people with NAFLD (80%) (202). Consequently, they are considered as poor markers 

for the diagnosis of NAFLD due to their low specificity, sensitivity and prognostic value.  Ferritin may 

be increased in up to 60% of patients, but is mainly a marker of subclinical inflammation, given that 

iron overload is uncommon in NAFLD. However, high ferritin levels have been associated with more-

advanced disease (203). For these reasons, other diagnostic methods are needed to confirm the 

suspected diagnosis of NAFLD. 

 

Nowadays, different indices or biomarkers are validated for the diagnosis NAFLD patients. The best-

validated biomarkers are the Fatty Liver Index, the SteatoTest© and the NAFLD liver fat score (Table 

1) (25). There are also other scoring systems that predict NAFLD, such as NAFLD Liver Fat Score, 

Hepatic Steatosis Index, Visceral Adiposity Index and Triglyceride-Glucose Index.  According to 

European guidelines, the best externally validated scores are Fatty Liver Index, Steatotest© and 

NAFLD Liver Fat Score but the weakness of these and other scores is that they predict reliably only 

the presence of steatosis, not its severity (200).  

 

Other different serum markers of fibrosis seem to have a better performance, particularly the 

NAFLD Fibrosis Score (NFS), Fibrosis‑4 (FIB‑4) and commercially available panels, such as 

FibroTest©, FibroMeter© and the Enhanced Liver Fibrosis (ELF) test (25). 
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Table 1. Scores predicting NAFLD and NAFLD severity (NASH) 

AUROC, area under the curve of the receiver-operating characteristic plot; HA, hyaluronic acid; MetS, 
metabolic syndrome; PIIINP, amino-terminal propeptide of type III collagen; TIMP1, tissue inhibitor of 
metalloproteinase 1. Table obtained from Brunt EM. et al.(25) 

 

The imaging technologies are of wide interest as a possible non-invasive method the evaluation and 

diagnosis of NAFLD. Due to it is low cost and high availability without radiation exposure, ultrasound 

is commonly used as a first-line imaging method in the clinical practice. The increased liver-kidney 

contrast showing an echogenic (bright) liver is a widely accepted criterion to set the diagnosis of 

NAFLD (204).  However, the intra-observer and inter-observer repeatability in grading the NAFLD 

with ultrasound is shown to be highly limited (205).  Thus, the drawback with ultrasound is the 

relatively low sensitivity, especially when steatosis is less than 20% or it is use with in individuals-

with very high body mass index (BMI, >40 kg/m2) (200).  

 

Computed tomography (CT), magnetic resonance imaging (MRI) and 1H-MRS are the best non-

invasive tools to quantify liver steatosis. The leading quantitative MRI biomarker for hepatic 

steatosis is proton density fat fraction (PDFF) (206). MRI measures the quantity of steatosis directly 

by differentiating protons in fat from those in water. This enables the accurate quantification of 

hepatic steatosis. However, patients with morbid obesity did not typically fit into the apparatus 

(207).  

2.7.2 The non-invasive diagnosis of NASH 

The European guidelines state very clearly that NASH must be diagnosed only by a liver biopsy 

showing steatosis, hepatocyte ballooning and lobular inflammation (200). Some biochemical 

Score Components Cut-off 
value 

AUROC Sensitivity 
(%) 

Specificity 
(%) 

NAFLD      

Fatty Liver Index BMI, WC, TG and GGT >60 0.85 61 86 

NAFLD liver fat score MetS, T2DM, AST and ALT -0.640 0.86 86 71 

SeatoTest© GGT, ALT, BG, TG and CHOL >0.69 0.80 38 81 

Fibrosis      

NAFLD Fibrosis Score Age, BG, BMI, platelets, albumin, 
and AST or ALT 

>0.676 0.84 43 96 

Fibro-Test© GGT, BIL, haptoglobin, apoAI and 
α2-macroglobulin 

>0.30 0.81 92 71 

FIB-4 index Age, ALT, AST and platelets >2.67 0.80 33 98 

BARD BMI, AST or ALT and T2DM 2-4 0.81 NA NA 

Hepascore Age, gender, α2 macroglobulin, HA, 
BIL and GGT 

>0.37 0.81 75 84 

Enhanced Liver Fibrosis HA, TIMP1 and PIINP >0.35 0.90 80 90 

AST/platelet ratio index AST levels and platelet counts >0.91 0.87 66 91 
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measures such as cytokeratin-18, various cytokines (TNF-α, IL-6) and chemokines (for example 

CCL2), imaging studies or scoring systems have been proposed to diagnose NASH or distinguish 

NASH from simple steatosis (52, 201, 208). However, up to date, none of them have been proved 

accurate enough or externally validated to the degree that they would be generally accepted.  

 

The emergent field of metabolomics is increasingly being applied towards the identification of 

biomarkers for disease diagnosis, prognosis and risk prediction. Metabolomics involves the 

quantification of a large number of low molecular weight compounds in plasma and tissue samples. 

Recent developments in robust statistical analysis have allowed to detect changes in cellular and 

tissue metabolism related to some metabolic diseases such as obesity, T2DM, cancer, and more 

recently, NAFLD (209-212).  

2.8 Novel therapeutic options for treating NAFLD and NASH 

Lifestyle modifications with weight reduction, physical activity and diet control in overweight or 

obese people, are one of the first steps in the management of NAFLD. It has been demonstrated 

that lifestyle modifications leading to weight reduction and/or increased physical activity 

consistently reduces fat accumulation in the liver. However, these habits are rarely maintained in a 

long-term. At present, the pharmacotherapeutic agents available for NAFLD are scarce, but some 

potential new drugs are seen in the horizon. These agents are targeting insulin resistance, weight 

reduction and fibrotic or inflammatory processes. Bariatric surgery or liver transplantation may be 

used for selected patients (26, 213). 

2.8.1 Pharmacotherapy 

The recommendations of pharmacotherapy in NAFLD guidelines are unestablished (200). However, 

there are some interesting therapeutic targets with potential action. For instance, vitamin E is an 

antioxidant with several targets. It has been shown that vitamin E induces resolution of NASH more 

often than placebo but without improvement of fibrosis (214). Apoptosis in NASH and other chronic 

liver diseases promote tissue injury and fibrosis, which establishes a rationale for inhibiting 

apoptosis as a therapeutic strategy. Emricasan, a pancaspase inhibitor, reduces apoptosis that can 

attenuate inflammation and fibrosis; it is also currently in phase 2B clinical trials for NASH (215, 216).  

 

Metformin is a biguanide widely used for the treatment of T2DM which action is mediated by the 

activation of AMPK, a regulator of energy metabolism, is able to stimulate ATP-producing catabolic 
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pathways (glycolysis, fatty acid oxidation, and mitochondrial biogenesis) and to inhibit ATP-

consuming anabolic processes (gluconeogenesis, glycogen, fatty acid, and protein synthesis). 

Metformin effectively improves both hepatic and peripheral insulin resistance and decreases 

endogenous glucose production by various mechanisms resulting from primary inhibition of 

complex I of the mitochondria respiratory chain (217, 218). Several clinical trials have supported the 

beneficial role of metformin in patients with NAFLD. Most of these studies have evaluated the effect 

of various doses of metformin on liver biochemistry (aminotransferase profile), histology, and 

metabolic syndrome features (219-221). 

 

Glucagon-like peptide-1 (GLP-1) is an intestinal hormone generated through the processing of 

proglucagon that stimulates insulin secretion and inhibits secretion of glucagon. GLP-1 is also an 

insulin sensitizer with additional metabolic effects that contribute to its anti-NASH activity (222). 

GLP-1 analogues, liraglutide and semaglutide, are promising in NASH treatment due to their 

potential to induce weight loss and insulin sensitivity, which may have a direct beneficial hepatic 

effect leading to decreasing hepatocyte triglyceride accumulation and fibrosis (223).  However, 

more extensive and long-term studies are necessary to establish the role of GLP-1 in the treatment 

of NASH.  

 

Cenicriviroc is a selective inhibitor of C-C motif chemokine receptors 2 and 5 (CCR2-CCR5), which are 

expressed on the surface of Kupffer cells, macrophages and hepatic stellate cells. Originally, 

cenicriviroc was developed as an anti-HIV agent, but several studies revealed that it has an 

important role as antifibrotic and anti-inflammatory in the liver diseases (224). There have not been 

any safety concerns with cenicriviroc and it has been well tolerated. The large double-blind, 

randomized, multinational phase 2b CENTAUR trial is currently ongoing. The first results will be 

presented in one year (225, 226). After 2 years of treatment, however, the fibrosis stage in those 

patients undergoing active therapy was not significantly different from that of patients on placebo. 

This molecule is also being evaluated in a phase 3 trial (58). 

 

Silymarin, a standardized extract from Silybum marianum, or milk thistle, and its major active 

compound silybinin or sylibin have been used since the time of ancient physicians, to treat liver 

diseases (227). Several studies in vitro and animal models have credited the silymarin therapeutic 

role treating NAFLD due to its anti-inflammatory, antioxidant, and antifibrotic properties. Recently, 
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silymarin extract tablets treated fatty liver disease in several clinical trials, whose results showing 

decreased hepatic enzymes levels in serum, especially ALT, indicated that silymarin could partially 

restore the liver's function and mitigate NASH patients’ symptoms. Furthermore, there were few 

side effects when administrating with therapeutic dosage. Therefore, silymarin could be a promising 

herbal remedy to treat NAFLD patients (228-230). 

2.8.2 Bariatric surgery 

Bariatric surgery is the third-line approach recommended when the multiple attempts at weight loss 

through lifestyle interventions and/or pharmacotherapy are not successful. Today, bariatric surgery 

is indicated for patients with severe or complex obesity whose BMI is at least 35 Kg/m2 with co-

morbidities or at least 40 Kg/m2 without co-morbidities) (231, 232). At present, the most widely 

used procedures are Roux-en-Y gastric bypass (RYGB) and laparoscopic sleeve gastrectomy (LSG) 

(233, 234) (Figure 14). 

 

- LSG procedure is characterized by the reduction of the stomach to about 15% of its original 

size, leaving a thin tube of lesser curve (banana shape). This procedure is not reversible. 

 

- In the RYGB technique the stomach is divided to create a small pouch. The smaller stomach 

is joined directly to a loop of jejunum around one meter distal to the duodenal-jejunal 

flexure, bypassing the rest of the stomach and the upper portion of the small intestine 

(duodenum). The redundant stomach and jejunum are then re-anastomosed to the 

jejunum at a variable distance downstream where digestive juices join food. In normal 

digestion, food passes through the stomach and enters the small intestine where most of 

the nutrients and calories are absorbed. Thus, with this surgery, food is not absorbed, and 

the amount of food is restricted by limited size of gastric pouch. 

 

Classically, bariatric surgery has been described as 1) restrictive, which aimed to reduce food intake 

by limiting gastric volume, or 2) restrictive with some malabsorption, which reduces stomach size 

and creates a physiological condition of malabsorption. The first group includes LSG and the second 

includes RYGB. 
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Figure 14. Commonly performed surgical methods for bariatric surgery. LSG stomach is transected vertically 
creating a gastric tube and leaving a pouch of 100 to 200 mL. In RYGB an upper gastric pouch, of 15 to 30 mL in 
volume, and a lower gastric remnant are formed from the stomach. 

 

Bariatric surgery is the most radical therapy for the metabolic syndrome and NASH, leading typically 

to massive weight loss, and improvement of liver histology.  The impact of bariatric surgery in 

NAFLD regression is consistent, as seen by several studies (235-239). These studies have shown that 

surgery-induced weight loss is also associated with improved hepatic histology including reduced 

steatosis, steatohepatitis, and fibrosis by ameliorating some factors that contribute to the 

pathogenesis of NAFLD (improvement of insulin sensitivity and inflammation). The beneficial effects 

are probably mediated by an enhanced of adipose tissue function, an improvement of insulin 

sensitivity and a decrease of inflammation and oxidation. All together could modify the course of 

NAFLD. 
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Hypothesis 
 

Oxidative stress, mitochondrial dysfunction and cell death responses are implicated in the       

obesity-associated liver diseases via metabolic reprogramming. Understanding the role of 

metabolites in cell fate outcomes may provide therapeutic strategies and potential disease 

biomarkers. 

Aims 
 

 
✓ To assess the hepatic markers of oxidative stress and inflammation in obese patients 

undergoing bariatric surgery.  
 

✓ To discover blood-based diagnostic markers and contributing factors to NASH onset. 
 

✓ To evaluate how weight loss affects liver and plasma metabolic reprogramming. 
 

✓ To investigate the impact of AMPK/mTORC1 driven-pathways in NASH remission. 
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Materials and Methods  
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STUDY I 

 

Bariatric surgery reverses non-alcoholic fatty liver disease in morbid 

obesity and while reducing oxidative stress and inflammation 
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Study design and participants 

This was a prospective, 12 months follow-up, longitudinal study including 436 patients with severe 

obesity who underwent laparoscopic sleeve gastrectomy at the Hospital Universitari Sant Joan de 

Reus. Patients provided 12-hours fasting blood samples immediately before surgery together with 

an intraoperative wedge-liver biopsy. Written informed consent was obtained according to the 

procedures approved by our Institutional Review Board (OBESPAD/14-07-31proj3 project) and the 

ethical guidelines of the 1975 Declaration of Helsinki. Exclusion criteria were age <25 years, alcohol 

abuse, infectious diseases, primary sclerosing cholangitis, autoimmune diseases, and cancer. One 

hundred and twenty patients agreed to have a second blood extraction and a liver biopsy at 12 

months post-surgery, and signed fully informed consent (OM-NAFLD, ESO3/18012013 project). 

Biopsies were performed by ultrasound-guided, percutaneous needle puncture. Patients were 

classified according to the non-alcoholic fatty liver score (NAS) system. The scales included the 

unweighted sum of steatosis (0-3), lobular inflammation (0-3) and ballooning (0-2) scores. Values 

assigned were ≤ 2 for non-NASH, >2 and ≤4 for uncertain NASH, and ≥5 for definite NASH. 

Information for fibrosis included the absence of fibrosis (F0), mild to moderate fibrosis (F1 and F2), 

bridging fibrosis (F3) and cirrhosis (F4) (240). Liver biopsies were assessed by a single experienced 

pathologist who was blinded with respect to the provenance of the samples.  

For comparisons, we used sera of healthy non-obese controls (n=404) in which NAFLD diagnosis was 

discarded using imaging procedures (INFLAMET/15-04/4proj7 project). These subjects were 

participants in a population-based study conducted in our geographical area. They had no clinical or 

analytical evidence of renal insufficiency, hepatic damage, or neoplasia. The samples (stored at –

80ºC) were obtained from the Biological Samples Bank of our Institution. A detailed description of 

this population has been published (241). 

Measurement of circulating levels of selected biochemical parameters 

Serum and EDTA-plasma samples were collected after centrifugation and stored at -80ºC for 

batched analyses. Serum PON1 concentrations were determined using an in-house ELISA with 

antibodies specific of PON1 (242). Serum PON1 lactonase and esterase activities were determined 

using synthetic substrates. Lactonase activity was measured as the hydrolysis of 5-thiobutyl 

butyrolactone (TBBL), and paraoxonase (esterase) activity was determined as the rate of hydrolysis 

of paraoxon (242). Plasma concentrations of CCL2, IL-10, TNF-α and galectin-3 were measured by 

ELISA (PeproTech, London, UK; and R&D Systems, Minneapolis, MN, USA). Serum alanine 
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aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and cholesterol, HDL-

cholesterol, LDL-cholesterol, triglycerides, glucose, C-reactive protein (CRP), and insulin 

concentrations were analyzed using standard tests in a Roche Modular Analytics P800 system 

(Roche Diagnostics, Basel, Switzerland).  

Immunohistochemical analyses in hepatic biopsies 

Procedures were performed essentially as previously reported (243). To assess differences in 

oxidation and inflammation, we analyzed the hepatic immunohistochemical expression of 4-

hydroxy-2-nonenal (a marker of lipid peroxidation), cluster of differentiation 68 (CD68, a marker of 

macrophages), PON1, CCL2, C-C chemokine receptor type 2 (CCR2), IL-10, TNF-α, and galectin-3. The 

appropriate primary and secondary antibodies and other reagents are described in Supplementary 

Table 2. Positive staining was quantified using the Image J software (National Institutes of Health, 

Bethesda, MD, USA).  

Western blotting of liver tissue 

Western blot was performed by denaturing 50 μg of protein from frozen liver tissues were 

subjected to 8% 14% sodium dodecyl sulfate polyacrylamide gel electrophoresis. The resolved 

proteins were transferred to polyvinylidene difluoride membranes (Thermo Fisher, Barcelona, 

Spain) using bovine serum albumin at 5% in Tris-buffered saline, 0.1% Tween-20 (pH = 7.4) as 

blocking agent. Membranes were incubated with the corresponding primary and secondary 

antibodies for PON1, galectin-3, TNF-α, IL-10, CD163 (a marker of anti-inflammatory macrophages), 

signal transducer and activator of transcription 3 (STAT-3) and its phosphorylated form (pSTAT-3), 

which regulate multiple metabolic processes (244), α-smooth muscle actin (α-SMA), and sonic 

hedgehog (Shh); these last two proteins being associated with liver fibrosis. Technical details and 

reagents are reported in Table 2. Fumarylacetoacetate hydrolase (FAH) was used as a reference 

(control) protein. Protein bands were visualized using SuperSignal West Femto chemiluminescent 

substrate (Pierce, Rockford, IL, USA) and analyzed with a ChemiDoc system using Image Lab 2.0 

software (Bio-Rad Laboratories, Hercules, CA, USA).  

UNIVERSITAT ROVIRA I VIRGILI 
ASSESSING DIAGNOSTIC AND THERAPEUTIC TARGETS IN OBESITY-ASSOCIATED LIVER DISEASES 
Noemí Cabré Casares 
 



83 
 

Statistical analyses 

Kolmogorov-Smirnov test was used to assess the distribution characteristics of variables. Student’s 

t-test (parametric) or Mann-Whitney U- test (non-parametric) were used to assess differences 

between any two groups of variables. Analyses were performed with the SPSS 22.0 package (IBM 

Corp., Armonk, NY, USA). Statistical significance was set at p < 0.05.  
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Table 2: Antibodies and relevant technical information for immunohistochemistry and western blotting 

 

 

Antigen Name Primary antibody and source Dilution Secondary antibody and source Dilution 

Immunohistochemistry       

CD68 Cluster of differentiation 68 
Anti-CD68, Clone KP1 (Dako, Santa Clara, CA, 
USA) 

Ready-to-
use 

Horse anti-mouse IgG, BA-9400 (Vector, 
Burlingame, CA, USA) 

1:200 

Gal-3 Galectin-3 
Anti-Gal-3, R2D AF1154 (R&D Systems, 
Minneapolis, MN, USA). 

1:400 
Rabbit anti goat IgG, BA-5000 (Vector, Burlingame, 
CA, USA) 

1:200 

TNF- Tumor necrosis factor alpha Anti-TNF-, ab6671 (Abcam, Cambridge, UK) 1:200 
Goat anti-rabbit IgG, BA-1000 (Vector, Burlingame, 
CA, USA) 

1:200 

CCL2 Chemokine (C-C motif) ligand 2 (CCL2) Anti-CCL2, ab9669 (Abcam, Cambridge, UK) 1:200 
Goat anti-rabbit IgG, BA-1000  
(Vector, Burlingame, CA, USA) 

1:200 

CCR2 Chemokine (C-C motif) receptor 2  
Anti-CCR2, abcam 21667 (Abcam, Cambridge, 
UK) 

1:500 
Goat anti-rabbit IgG, BA-1000 (Vector, Burlingame, 
CA, USA) 

1:200 

IL-10 Interleukin-10 Anti-IL-10, ab34843 (Abcam, Cambridge, UK) 1:200 
Goat anti-rabbit IgG, BA-1000 (Vector, Burlingame, 
CA, USA) 

1:200 

PON-1 Paraoxonase-1 In-house 1:50 
Goat anti-rabbit IgG, BA-1000 (Vector, Burlingame, 
CA, USA) 

1:200 

HNE 4-hydroxy-2-nonenal 
Anti-HNE, MHN­100P (Genox, Baltimore, MD, 
USA) 

1:1000 
Goat anti-rabbit IgG, BA-1000 (Vector, Burlingame, 
CA, USA) 

1:200 

Western Blotting      

Gal-3 Galectin-3 
Anti-Gal-3, R2D AF1154 (R&D Systems, 
Minneapolis, MN, USA). 

1:1000 
Rabbit anti-goat IgG, BA-5000 
(Vector, Burlingame, CA, USA) 

1:5000 

TNF- Tumor necrosis factor alpha 
Anti-TNFα   #3707 (Cell signaling,  Danvers, 
MA, USA) 

1:1000 
Goat α-rabbit HRP, P0448 (Dako, Santa Clara, CA, 
USA) 

1:5000 

CD163 CD163 molecule 
Anti-CD163, ab182422 (Abcam, Cambridge, 
UK) 

1:1000 
Goat α-rabbit HRP, P0448 (Dako, Santa Clara, CA, 
USA) 

1:5000 

IL-10 Interleukin-10 Anti-IL-10, ab34843 (Abcam, Cambridge, UK) 1:1000 
Goat α-rabbit HRP, P0448 (Dako, Santa Clara, CA, 
USA) 

1:5000 

pSTAT-3 
Phospho-signal transducer and activator 

of transcription 3 
Anti-pSTAT3, ab76315 (Abcam, Cambridge, 
UK) 

1:1000 
Goat α-rabbit HRP, P0448 (Dako, Santa Clara, CA, 
USA) 

1:5000 

STAT-3 
Signal transducer and activator of 

transcription 3 
Anti-STAT3, ab68153 (Abcam, Cambridge, UK) 1:1000 

Goat α-rabbit HRP, P0448 (Dako, Santa Clara, CA, 
USA) 

1:5000 

PON-1 Paraoxonase-1 In-house 1:200 
Goat α-rabbit HRP, P0448 (Dako, Santa Clara, CA, 
USA) 

1:5000 

α-SMA α-smooth muscle actin Anti α –SMA, ab5694 (Abcam, Cambridge, UK) 1:1000 
Goat α-rabbit HRP, P0448 (Dako, Santa Clara, CA, 
USA) 

1:5000 

Shh Sonic hedgehog Anti Shh, ab53281 (Abcam, Cambridge, UK) 1:1000 
Goat α-rabbit HRP, P0448 (Dako, Santa Clara, CA, 
USA) 

1:5000 
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STUDY II 

 

NASH modulates circulating metabolites from energy and one-carbon 

metabolism in obesity: implication in NASH remission 
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Participants 

Among patients referred to the Bariatric Surgery Unit at the Hospital Universitari Sant Joan de Reus 

270 patients with homogeneous ethnic origin consented to participate according to current 

guidelines and to the procedures (207, 245) approved by our Institutional Review Board and Ethics 

Committee (OBESPAD/14.07-31proj3 and INFLAMET/15-04/4proj7) and provided written informed 

consent to an intraoperative liver biopsy and donation of a preoperative fasting blood sample. 

Histologic discrimination was based on the non-alcoholic fatty liver score (NAS) system with care to 

avoid excluding advanced cases with low steatosis (200, 240, 246). Only patients at both sides of the 

clinical spectrum classified as non-NASH (n=130) i.e., with only minor liver alterations, or NASH        

(n = 53) were included. NASH patients also agreed to undergo blood donation, and a second biopsy 

was performed by ultrasound guided, percutaneous needle puncture (OM-NAFLD, ESO3/18012013) 

at 12 months post-surgery. Relevant data were extracted from clinical records. Healthy age- and 

sex-matched nonobese controls (n=50) were recruited among participants in a previous population-

based study (247) in whom liver alterations were excluded via liver imaging techniques and 

laboratory assessment (207). The BMI was calculated as the weight in kilograms divided by the 

square of the height in meters. A similar time of fasting (at least 10 hours) was considered essential 

for collecting blood samples, and EDTA-plasma aliquots were immediately stored at -80 °C for 

batched analyses. Readily available laboratory measurements were analyzed using standard tests in 

a Roche Modular Analytics P800 system (Roche Diagnostics, Basel, Switzerland). Homeostatic model 

assessment for insulin resistance (HOMA-IR) was calculated as described (248). 

 

Liver Biopsies 

Portions of the liver were obtained with wedge resection during the surgical procedure, and paired 

biopsies in NASH patients were obtained with needle devices 12 months after surgery, which 

required cooperation from trained pathologists, radiologists and surgeons (249, 250) Histologic 

features in sections stained with hematoxylin and eosin, Masson’s trichrome and Sirius red dyes 

were evaluated by the scores for steatosis (0-3), lobular inflammation (0-3), and ballooning (0-2), for 

a total (unweighted) score ranging from 0 to 8. Non-NASH patients scored ≤ 2, and NASH patients 

scored ≥ 5. Liver fibrosis was assessed considering the scale defined as F0, normal; F1a or F1b, mild 

or moderate focal pericellular fibrosis in zone 3; F1c, portal fibrosis; F2, perivenular and pericellular 
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fibrosis confined to zones 2 and 3, with or without portal or periportal fibrosis; F3, bridging or 

extensive fibrosis with architectural distortion; and F4, cirrhosis (200, 240, 251). 

Quantitative targeted metabolomics platform 

To quantitate metabolites involved in energy generation and 1-C metabolism, a chromatographic 

separation followed by mass spectrometry detection were performed. Metabolite extraction and 

chromatographic and mass spectrometer conditions have been previously described (252-254). 

Briefly, 400 L of methanol containing selected internal standards (Cambridge Isotope Laboratories, 

Tewksbury, MA, USA) were added to 100 L of plasma. The use of internal standards ensures to 

maximize technical precision during the injection and recovery during the extraction procedures. 

After protein precipitation, samples were centrifuged at 14000 rpm at 4 ºC during 10 minutes and 

supernatant was collected, dried in a Savant SPD2010 SpeedVac rotatory vacuum system (Thermo 

Fischer, USA) and stored at -80 ºC until analysis. Calibration curves containing internal standards 

were prepared immediately before each analysis using commercially available standards (Sigma-

Aldrich, Madrid, Spain).   

For the quantitation of intermediates of energy generation, dried samples were derivatized with 

methoxyamine dissolved in pyridine (40 mg/mL) and N-Methyl-N-trimethylsilyltrifluoroacetamide 

(TMS) as described (254). Then, samples were placed in chromatographic vials and injected into a 

7890A gas chromatograph (GC)  coupled with an electron impact (EI) source to a 7200 quadrupole 

time-of-flight mass spectrometer (QTOF-MS) equipped with a J&W Scientific HP-5MS column (30 m 

× 0.25 mm, 0.25 μm) (Agilent Technologies, Santa Clara, CA, USA). Parameters and conditions for 

GC-EI-QTOF-MS equipment are detailed in Riera-Borrull et al. (252). For the quantitation of 

metabolites belonging 1-C metabolism, samples were dissolved in 100 L of methanol:H2O (8:2 v/v) 

and injected into a 1290 Infinity ultra-high performance liquid chromatograph (UHPLC) coupled with 

an iFunnel electrospray ionization (ESI) source to a 6490 triple quadrupole mass spectrometer 

(QqQ-MS) (Agilent Technologies) equipped with an Acquity UPLC HSS T3 column (2.1 x 150 mm, 1.8 

m) (Waters Corporation, Mildford, MA, USA) working in Multiple Reaction Monitoring (MRM) and 

positive ionization modes. Detailed parameters of UHPLC-ESI-QqQ-MS and transitions for each 

metabolite were already described (253, 254). 

Metabolites were identified and quantitated using MassHunter Qualitative and Quantitative 

Analysis B.07.00 software (Agilent Technologies), respectively. 
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Global DNA methylation 

RNA-free DNA from peripheral blood leukocytes was prepared and purified using the QIAamp DNA 

Blood Mini Kit (Qiagen, Barcelona, Spain) dissolving DNA in RNase-free water. DNA quantitation and 

purity were assessed using a Nanodrop 1000 spectrophotometer (Thermo, Madrid, Spain). Total 5-

methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) content were detected in genomic 

DNA using an acid hydrolysis followed by a LC-MS-based method. DNA was hydrolyzed following a 

published protocol  (255). Briefly, 200 µL of 88% formic acid was added to dry DNA (2.5 µg) and 

incubated at 140 ºC for 90 minutes in sealed glass vials. Samples were cooled at room temperature 

and evaporated under N2, resuspended in 100 µL of 0.1% formic acid and placed into 

chromatographic vials. Detection of 5-mC, 5-hmC and guanine (G) was carried out by injecting 5 µL 

of hydrolyzed DNA into the UHPLC-ESI-QqQ-MS system (Agilent Technologies) equipped with an 

Acquity UPLC HSS T3 column (2.1 x 150 mm, 1.8 m) (Waters Corporation) and operating in MRM 

and positive ionization modes. Transitions used were as follow: for 5-mC, 126 → 109 and 126 → 83; 

for 5-hmC, 142 → 124 and 142 → 90; for G, 152 → 135 and 152 → 110. Metabolites were detected 

and quantitated using MassHunter Qualitative and Quantitative Analysis B.07.00 (Agilent 

Technologies), respectively. Quantitation was performed attending to the standard calibration 

curves to calculate the proportions of methylated and hydroxymethylated DNA related to the total 

guanine content. 

Statistical analysis 

The employed statistical software included the program ‘R’ (http://cran.rproject. org), the SPSS 25.0 

package (IBM, Madrid, Spain) and the MetaboAnalyst 4.0 (256) (https://www.metaboanalyst.ca/). 

Significantly altered metabolites, which were corrected for multiple testing, were defined using a   

p-value < 0.05 and a predesigned false discovery rate (257). We used Welch’s t-test and/or 

Wilcoxon’s rank sum test for pairwise comparisons and repeated- measurement analysis of variance 

for some calculations. We used multivariate statistics to improve the analysis of complex raw data 

and for pattern recognition. Random forests were used as a supervised classification technique to 

provide an unbiased estimate of prediction accuracy of classification and to select variables with the 

largest impacts (258). Heatmaps were used to visualize metabolomic data indicating the relative 

abundance of metabolites with color intensity. We also used linear discriminant analysis as a 

method of classification and principal component analysis as an unsupervised data analysis method 

to segregate the compared groups according to metabolomic data. Finally, logistic regression 
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analysis and receiver operating characteristic (ROC) curves described and assessed binary 

classifications (259). For this purpose, we also used confusion matrix and predicted class 

probabilities of each sample across 100 Monte-Carlo cross-validations. 
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STUDY III 

 

α-Ketoglutarate regulates AMPK/mTOR-driven pathways in NASH 

remission: therapeutic perspectives through rewiring metabolism and 

epigenetics 
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Study design and participants  

We included morbidly obese patients consecutively referred to the bariatric surgery unit at the 

Hospital Universitari Sant Joan de Reus with age > 30 years, BMI > 40 kg/m2, resistance to medical 

therapy based on lifestyle variations and without medical or psychological contraindications for LSG. 

The indication was confirmed according to guidelines currently used in preoperative evaluation 

(260). The ensuing clinical assessment excluded patients with current or past history of daily 

consumption of alcohol (>25 g / d) (n =12), long-term consumption of hepatotoxic drugs (n = 6) and 

positive testing for chronic liver diseases (n = 4). We finally included 62 patients that provided 12-

hours fasting blood samples before surgery and written informed consent according to the 

procedures approved by our Institutional Review Board and Ethic Committee (OBESPAD/14.07-

31proj3), which included intraoperative wedge-liver biopsy. Histology features were classified 

according to the non-alcoholic fatty liver score (NAS) system. Patients without NASH (n = 31; NAS ≤ 

2) or with proven NASH (n = 31) agreed to follow-up blood samples being taken during their 

involvement in a 1-year prospective longitudinal study and signed an additional fully informed 

consent (INFLAMET/15-04/4proj7). Those patients with NASH also agreed to a second biopsy to be 

performed at 12 months post-surgery by ultrasound-guided, percutaneous needle puncture (OM-

NAFLD, ESO3/18012013). 

Cell culture experiments 

HepG2 cells were maintained in complete cell culture medium obtained by supplementing DMEM 

high glucose (4.5 g/L) (Lonza Ibérica) with 1% L-glutamine (Lonza Ibérica), 1% penicillin/ 

streptomycin–EDTA (Sigma), 1% nonessential amino acids (Sigma), and 10% fetal bovine serum 

(Sigma). Cells were seeded in either 6 well plates at a concentration of 200,000 cells/mL in complete 

cell culture medium. Standard starvation medium was EBSS (GIBCO) containing 4.5 gl-1 of glucose. 

The activation of glutaminolysis was performed by adding the permeable α-KG (dimethyl-α-

ketoglutarate, DMKG) (Sigma). When indicated, DMKG was added to a final concentration of 0.2-

2mM for 72h.  Inhibitor metformin (10mM final concentration) (Sigma) were used to concomitantly 

with the activation of glutaminolysis. After the respective treatments cells were washed two times 

with phosphate-buffered saline (PBS) and stored at -80ºC until extraction and quantification of 

metabolites. For immunoblot assays, media were replaced with RIPA solution, lysis buffer 

containing a cocktail of protease inhibitor (P8340 Sigma), inhibitor of phosphatases (P0044Sigma) 

and PMFS 1mM.  
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Flow cytometry  

After treatment, cells were stained with annexin V and propidium iodide (PI) (Annexin V—early 

apoptosis detection kit, #6592 Cell Signaling Technology) following the manufacturer’s instructions. 

Then, cells were analysed using BDFACS Canto BD-Biosciences flow cytometer. The analysis of the 

data was performed using the software FlowJo. 

Laboratory measurements 

Blood samples were obtained after an overnight fast. Serum and plasma samples were collected 

after centrifugation and were stored at -80ºC until the day of analysis. Serum cholesterol, high-

density lipoprotein (HDL) cholesterol, triglycerides, glucose, albumin, and insulin concentrations 

were analyzed by standard tests in a Roche Modular Analytics P800 system (Roche Diagnostics, 

Basel, Switzerland). Low- density lipoprotein (LDL) concentration was estimated by the Friedewald 

formula (261).  

Histological analysis  

Liver biopsies were obtained from NAFLD patients undergoing bariatric surgery (n=62). Biopsies 

from normal individuals were not collected due to ethical considerations. To minimize the variability 

between individuals, samples were obtained from the same location and by the same specialist. 

Biopsies were processed conventionally for diagnostic purposes, histological grading, and staging, as 

described (262). All liver specimens were evaluated by an experienced pathologist, blinded to 

clinical data, using the NAFLD histology scoring system. The severity of steatosis was graded from 0 

to 3, inflammation from 0 to 3, hepatocellular ballooning between 0 or 1, and fibrosis from 0 to 4. 

Each liver specimen was assessed for the presence or absence of NASH by using the NAFLD activity 

score (NAS score), defined as the sum of steatosis, inflammation and hepatocyte ballooning. Those 

patients with a NAS score of ≥ 5 were classified as having NASH (240). 

Transmission electron microscopy (TEM) 

The samples used or TEM was prepared following the protocol described (263). Briefly, small pieces 

of the liver were fixed in a 2% glutaraldehyde solution in 0.1M cacodylate buffer, pH 7.4. Post fixed, 

the sample were included in osmium tetroxide (OsO4) and dehydrated in sequential steps of 

acetone prior to impregnation in increasing concentrations of the resin in acetone. Small sections 

(500nm) were stained with 1% toluidine blue. Ultrathin sections (70nm) were subsequently cut 
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using a diamond knife, double-stained with uranyl acetate and lead citrate, and examined using a 

transmission electron microscope (Hitachi, Tokyo, Japan).   

Immunoblotting analysis 

Previously frozen liver tissue (20 mg) was homogenized in 300 μl of a lysis buffer (0.25M sucrose, 

1mM Pefabloc, and phosphatase Inhibitor cocktail (Roche), using a sonicator (Branson Sonifer 150, 

Thistle Scientific, Glasglow, United Kingdom). Cells were harvested and homogenized with RIPA 

solution. Lysis buffer containing 2% sodium dodecyl sulfate (SDS), 50 mM Tris-HCl (pH 6.8), 10 mM 

dithiothreitol (DTT), 10% glycerol, 0.002% bromphenol blue, and freshly added protease inhibitors. 

50 μg of protein from total homogenates at 100 °C for 5 min in Laemmli sample buffer (LSB) and β-

mercaptoethanol. For the protein separation, 8%-14% SDS-polycrilamide gel was used and 

transferred to a PVDF or nitrocellulose membrane (Thermo Fisher, Barcelona, Spain). Membranes 

were blocked with non-fat milk or bovine serum albumin at 5% in Tris, sodium chloride and 1% 

Tween-20. The following antibodies (Table 3) were used pAMPK, AMPK, pAKT, AKT, pMTOR, MTOR, 

pS6, p4EBP1, p62, FASN, LC3, Tom20, Casp 8 and Casp 3, pSTAT-3, STAT-3 (1/1000, Cell Signaling), 

IL-10, MFN2, OXPHOS and LAMP2A (1/1000, Abcam), β-actin and Casp 9 (1/1000, Sigma) and FAA 

(1/2000, Millipore). Secondaries peroxidase-conjugated antibodies diluted 1:5000 (Dako). 

Immunoreactive bands were visualized using SuperSignal West Femto chemiluminescent substrate 

(Pierce, Rockford, IL, USA) and the analysis was performed with a ChemiDoc system (Bio-Rad 

Laboratories, Madrid, Spain). Bands were analyzed and quantified using the software Image Lab 2.0 

(Bio-Rad Laboratories). 

Targeted metabolomics analysis 

Metabolite extraction from liver tissue (20 mg) was performed adding 500 μL of methanol/water 

(8:2) containing internal standards and disrupting the tissue using a Precellys 24 system (Izasa, 

Barcelona). After centrifugation at 14,000 rpm for 10 min at 4°C, supernatants were collected, and 

the homogenization step was repeated. To avoid interferences in the analysis, non-polar 

compounds such as lipid species were further removed adding 2 mL of chloroform and following the 

Folch protocol (264). Polar phase was collected, filtered using 0.22 μm filters, dried in a rotatory 

vacuum system and stored at -80 ºC until analysis. Sample preparation and equipment settings for 

the analysis of metabolites involved in energy and 1-C metabolism were performed as described in 

Study II and in previously published data (252-254).  Raw data was processed and compounds were 
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detected and quantitated using the MassHunter Qualitative and Quantitative Analysis B.07.00 

software (Agilent Technologies), respectively.  

RNA extraction 

Total RNA was isolated from human liver tissue using the Qiagen RNeasy Lipid Tissue Mini Kit, and 

RNA concentration was quantified on a NanoDrop ND-1000 spectrophotometer (Nanodrop 

Technologies Inc., Wilmington, NC). An RNA integrity number (RIN) was calculated using a RNA2100 

Bioanalyzer (Agilent Technologies, Santa Clara, CA) with the RNA 6000 Nano Kit. 

Gene expression microarray 

For microarray investigation of gene expression, 100 ng of total RNA were prepared using the 

Agilent One-Color Microarray-Based Gene Expression Analysis Low Input Quick Amp Labeling Kit 

(cat. no. 5190-2943), and were then hybridized to the Agilent SurePrint G3 Human Gene Expression 

8x60k v2 microarray following the manufacturer’s instruction. In short, an input of 100 ng of entire 

RNA was used to generate cDNAs, followed by in vitro transcription and incorporation of Cy3 into 

the nascent cDNAs. The cy3-labeled cDNAs were fragmented and hybridized to the array for 17 h at 

65ºC in an Agilent hybridization oven (cat. no. G2545A) Arrays were scanned on an Agilent G2565CA 

microarray scanner at 5 μM resolution. The raw data were extracted using the Agilent Feature 

Extraction 10.7.3.1 Software. 

Gene expression analysis 

One microgram of RNA was transcribed to cDNA with random primers using the Reverse 

Transcription System (Applied Biosystems, Foster City, CA). Quantitative gene expression was 

evaluated by Real-time PCR (qPCR) on a 7900HTFast Real-Time PCR System using the TaqManR 

Gene Expression Assay (Applied Biosystems). All measurements (Table 4) were normalized to 18S. 

DNA Extraction 

Liver tissues were dissolved in 200 μL lysis buffer from the Qiagen QIAmp DNA Micro Kit (cat. no. 

56304), and incubated with proteinase K overnight at 56°C. DNA concentration was determined 

using a NanoDrop ND-1000 spectrophotometer (Nanodrop Technologies Inc., Wilmington, NC). 
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Global DNA methylation 

Total 5-mC and 5-hmC content were detected and quantitated in genomic DNA as previously 

described in Study II. 

DNA methylation microarray 

To detect methylation differences in individual cytosine-guanine dinucleotides (CpGs) between 

NASH and Non-NASH patients, we performed array-based DNA methylation analysis. Bisulfite-

converted DNA was analyzed using the Illumina Infinium Human MethylationEPIC BeadChip Array 

technology (San Diego, CA), which explores more than 850,000 CpGs in the human genome. 

Statistical analysis 

The Kolmogorov-Smirnov test was used to assess the normal distribution of our variables. Wilcoxon 

rank-sum tests (nonparametric) were used to determine significant differences between groups 

according to the distribution of variables and considered statistically significant when p < 0.05.  The 

chi-squared test use to compare categorical variables. All results are shown as the mean ± SEM 

unless otherwise stated. Statistical analyses were carried out using the SPSS 22.0 package and R 

version 3.4.  MetaboAnalyst 4.0 (256) available on the web (http://www.metaboanalyst.ca/) were 

used to generate scores/loading plots and Heatmaps. 

Methylation array analysis 

We analyzed the raw data from the Illumina Infinium MethylationEPIC array using the minfi (265, 

266) package in R, with annotations from Illumina Human Methylation EPICmanifest v0.3.0  (267) 

and Illumina Human Methylation EPICanno.ilm10b2.hg19 v0.6.0 (268). Briefly, we loaded raw probe 

level data and removed those with detection p < 0.01. From these, we normalized the data using 

the preprocessQuantile() function with mergeManifest=T, which resulted in an object with 864,307 

CpGs. To remove CpGs with SNPs, we ran dropLociWithSnps() with snps=c(“SBE”, “CpG”, “Probe”) 

and maf=0 parameters. We then filtered to keep only autosomal CpGs and only those not on cross-

reactive probes (269). Each remaining CpG had a beta value (calculated using getBeta()), which is 

the fraction of methylated / methylated + unmethylated signal, bounded between 0 and 1.  We 

performed Wilcoxon rank-sum tests on each CpG (n = 8 for each group) to determine significance of 

any differences. We also determined the average beta level in NASH and Non-NASH patients and 

then retained the CpGs whose average Δ beta > 0.05 and whose p < 0.05. 
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We annotated subsets of CpGs across features of the genome using the genomation package in R 

(270), with hg19 knownGene and CpG island .bed files downloaded from the UCSC Table Browser 

(271) (autosomal data only) as inputs. To generate a heatmap visualization, we arcsine transformed 

the beta values for significantly differentially methylated CpGs and clustered the rows and columns 

using the heatmap.2() function from the gplots package (https://cran.r-

project.org/web/packages/gplots/index.html) in R. 

Microarray analysis of mRNA transcripts 

Microarray analysis pipeline were done in the proprietary Agilent Gene Spring GX v14.8 software. At 

the gene level, spot signals were normalized by 75% percentile, control probes removed, and 46,308 

genes kept for statistical analysis. These were then filtered to keep only autosomal genes in 

TxDb.Hsapiens.UCSC.hg19.knownGene (272) (20,214 genes kept) for further analysis in R. Using the 

t.test() function, we determined significance of expression difference between NASH and Non-NASH 

patients (n = 8 each). We determined 345 genes to have p < 0.05 and log2(NASH/Non-NASH) > 1, 

which are shown in magenta in Figure S4A. All RNA expression data (20,214 genes) were used for 

the integration of DNA methylation and gene expression data (see below). 

Integration of DNA methylation and gene expression data 

For a more integrative analysis of DNA methylation and gene expression, we merged the CpG data 

from gene promoters with corresponding gene expression data. To determine significantly 

differentially methylated CpGs in gene promoters, we filtered for those annotated as TSS1500 or 

TSS200 (426 CpGs). We then merged these CpGs with the RNA microarray data by gene name, 

resulting in 367 promoter CpG-gene pairs. To understand the relationship between CpG methylation 

and gene expression, we used cor.test() in R, with individual beta values, expression values, and 

method=”spearman” as inputs. CpGs whose correlation p-values < 0.05 (11 CpGs in total) were kept 

for further analysis. The Circos visualization was generated using the circlize package (273) in R. 

Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analyses on selected subsets of genes 

were performed as described in (274). The -log10(p-value) is shown for each pathway in the figures, 

as calculated by hypergeometric test in R. 
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Table 3. List of antibodies and dilutions used in immunoblot analyses  

Antigen Primary Antibody Dilution Secondary Antibody Dilution 

AMPK-pT172 pAMPK Antibody, #2531 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

AMPK AMPK Antibody #2532S 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

AKT-pT308 p-Akt Antibody, #4056 

(Cell signalling Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

AKT-pT473 p-Akt Antibody, #4060 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

AKT AKT Antibody, #4685 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

ATG7 ATG7 Antibody, #8558 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

mTOR-pS2448 p-mTOR Antibody, #2971 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:2000 

mTOR mTOR Antibody, #2972 

(Cell signalling, Danvers, MA, USA) 

1:200 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:2000 

S6-pS235/236 p-S6 Antibody, #4856 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

4EBP1-pT37/46 p-4E-BP1 Antibody, #2855 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

p62/SQSTM1 SQSTM1 / p62 Antibody, #5114 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

Caspase 3 Cleaved Caspase-3 Antibody, #9664 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

Caspase 8 Caspase-8 Antibody, #9746 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

Caspase 9 Caspase-9 Antibody, C7729 

(Sigma, Saint Louis, MO, USA 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

IL10 IL10 antibody, ab34843 

 (Abcam, Cambridge, UK) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

OXPHOS OXPHOS Antibody, ab110411 

(Abcam, Cambridge, UK) 

1:1000 Goat α-mouse, HRP, 1D3 

(Dako Agilent) 

1:5000 

STAT3-pT705 p-STAT3 Antibody, #9145 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

STAT3  STAT3 Antibody, #9139 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-mouse HRP, 

P0447 (Dako, Agilent) 

1:5000 

LC3B LC3B Antibody, #2775S 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

LAMP2A LAMP2A Antibody, ab125068 

(Abcam, Cambridge, UK) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

FASN FASN Antibody, #3180 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

TOM20 Tom20 Antibody, #42406 

(Cell signalling, Danvers, MA, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

MFN2 MFN2 Antibody, ab127773 

(Abcam, Cambridge, UK) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 

FAH FAH Antibody, #ABN526 

(Millipore, Massachusetts, USA) 

1:1000 Goat α-rabbit HRP, P0448 

(Dako Agilent) 

1:5000 
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Table 4.  List of genes from gene expression analysis. Results were calculated using the comparative 
Ct method and expressed relative to the expression of the housekeeping genes 18S 
(Hs03928985_g1). 

Detector Gene name 

αKGDH Hs01081865_m1 Alpha-­‑Ketoglutarate Dehydrogenase 

ACACA Hs01046047_m1 Acetyl-CoA Carboxylase Alpha 

ACLY Hs00153764_m1 ATP citrate lyase 

IDH1 Hs00271858_m1 Isocitrate Dehydrogenase 1 

IDH2 Hs00953881_m1 Isocitrate Dehydrogenase 2 

IDH3A Hs00194253_m1 Isocitrate Dehydrogenase 3A 

GSL1 Hs00248163_m1 Glutaminase  

GLUD1 Hs03989560_s1 Glutamate Dehydrogenase 1 

PC Hs00559398_m1 Pyruvate Carboxylase 

SDHB Hs01042482_m1 Succinate Dehydrogenase B 

ACP5 Hs00356261_m1  Acid Phosphatase 5, Tartrate Resistant 

ARL8A Hs00373395_m1  ADP Ribosylation Factor Like GTPase 8A 

C1orf54 Hs04398113_m1  Chromosome 1 Open Reading Frame 54 

DISP2 Hs00394338_m1  Dispatched RND Transporter Family Member 2 

HDAC9 Hs00206843_m1  Histone Deacetylase 9 

MARK3 Hs01058270_m1  Microtubule Affinity Regulating Kinase 3 

RAB31 Hs00199313_m1 RAB31, Member RAS Oncogene Family 

TDRD6 Hs01597145_m1  Tudor Domain Containing 6 

TRIP10 Hs01012747_m1  Thyroid Hormone Receptor Interactor 10 

UGT3A2 Hs04177793_m1  UDP Glycosyltransferase Family 3 Member A2 

ZNF197 Hs01560359_m1  Zinc Finger Protein 197 
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STUDY I 

 

Bariatric surgery reverses non-alcoholic fatty liver disease in morbid 

obesity and while reducing oxidative stress and inflammation 
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Metabolic outcomes and remission of hepatic alterations post-BS  

 
Pre-BS, patients with severe obesity had decreased insulin sensitivity, increased chronic low-grade 

inflammation, higher prevalence of T2DM, dyslipidemia and hypertension, compared to the healthy 

population. We observed a high ratio of women to men in the obese cohort. Data presented here 

are without sex segregation because of the longitudinal nature of the study and, as well, because 

logistic regression analyses discarded sex as a determinant factor in diagnosis and/or disease 

outcomes. According to the NAS score, non-NASH, uncertain NASH and definite NASH were 

recorded in 43.8%, 34.6% and 21.6% of patients, respectively (Table 5).  

 

One-year post-BS, most clinical and biological metabolic outcomes significantly improved, together 

with a general amelioration of histological features of NAFLD; improvement was more evident in 

the most severe cases. Mild steatosis was observed in 4 patients (3%), mild lobular inflammation   

(<2 foci) in 22 patients (18.4%) and hepatocyte ballooning in 21 patients (17.5%). Fibrosis also 

improved, especially in the few patients with bridging fibrosis (Table 6 and Figure 15). Of note, one 

patient with pre-surgery liver cirrhosis presented only periportal/perisinusoidal fibrosis one-year 

post-surgery (Figure 16). 

Oxidation and inflammation and their association with NASH 

 
We found a significantly higher proportion of PON1, 4-hydroxy-2-nonenal and CD68 stained cells in 

liver biopsies of patients with NASH (n=94), compared to non-NASH patients (n=191). Sirius red 

positive areas were also significantly higher (Figure 17a). CD68 stained cells were more frequent in 

areas with inflammation and PON1 staining was stronger in hepatocytes with ballooning 

degeneration. Fat accumulation and 4-hydroxy-2-nonenal staining were more intense in fibrous 

areas (Figure 18).  
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Table 5. Selected characteristics in patients with severe obesity and in the control group 

 

 
Control group 

(n=404) 

Obese patients 
(n=436) 

 Non-NASH 
(n=191) 

Uncertain NASH 
(n=151) 

NASH 
(n=94) 

Male, n (%) 175 (43.1) 41 (21.5) a 41 (27.2) b 25 (26.6) c 

Age, years 46 (35 - 59) 46 (39 - 56)  49 (42 - 57) 48 (42.25 - 56.75) 
BMI, kg/m2 26.78 (23.34 – 28.12) 44.6 (41.3 - 49.2) a 46.6 (43.0 - 51.4) b,d 46.3 (42.3 - 51.5) c 

T2DM, n (%) 26 (6.3) 60 (31.6) a 66 (44.0) b,d 48 (51.1) c,e 

Hypertension, n (%) 62 (15) 104 (54.5) a  83 (55.0) b 62 (66.0) c,e 

Dyslipidemia, n (%) 36 (8.7) 55 (28.8) a 58 (38.4) b,d 40 (42.6) c,e 

Medication, n ( %)     
Metformin 6 (1.4) 33 (17.3) a 45 (30.0) b,d 36 (38.3) c,e 

Insulin - 10 (5.2)  16 (10.6) d 10 (10.6)  
Sulfonylureas 6 (1.4) 8 (4.2) a  11 (7.3) b 9 (9.6) c 

ACEIs+ARA II 15 (3.6) 55 (28.8) a 51 (33.8) b 41 (43.6) c,e 

Diuretics 20 (4.8) 15 (7.9) 14 (9.3) b 12 (12.8) c 

Statins 8 (1.9) 31 (16.3) a 34 (22.5) b 19 (20.4) c 

Biochemical variables     
Total cholesterol, mmol/L 5.2 (4.6 - 5.9) 4.1 (3.5 - 4.8) a 4.4 (3.6 - 5.1) b 4.4 (3.8 - 5.0) c 

HDL-cholesterol, mmol/L 1.4 (1.2 - 1.7) 1.2 (0.9 - 1.5) a 1.1 (0.85 - 1.4) b 1.1 (0.88 - 1.3) c 

LDL-cholesterol, mmol/L 3.1 (2.6 - 3.8) 2.7 (2.1 - 3.2) a 2.7 (2.1 - 3.3) b 2.8 (2.4 - 3.4) c 

Triglycerides, mmol/L 1.1 (0.7 - 1.5) 1.5 (1.1 - 2.0) a 1.7 (1.3 - 2.4) b,d 1.8 (1.2 - 2.4) c,e 

Glucose, mmol/L 4.7 (4.3 - 5.2) 6.7 (5.6 - 8.3) a 7.4 (5.9 - 9.4) b,d 7.6 (6.2 - 10.9) c,e 

Insulin, pmol/L 49.4 (31.9 - 70.0) 78.8 (39.2 - 131.1) a 82.6 (49.1 - 135.0) b 82.6 (53.4 - 145.1) c 

HOMA-IR 1.5 (0.9 - 2.3) 3.6 (1.7 - 5.6) a 4.3 (2.1 - 7.1) b,d 5.0 (2.4 - 7.6) c,e 

AST, µKat/L 0.35 (0.30 - 0.41) 0.45 (0.3 - 0.6) a 0.50 (0.39 - 0.81) b 0.87 (0.56 - 1.3) c,e,f 

ALT, µKat/L 0.32 (0.23 - 0.44) 0.4 (0.3 - 0.6) a 0.53 (0.38 - 0.86) b,d 0.88 (0.56 - 1.3) c,e,f 

CRP, mg/L 1.2 (0.5 - 2.7) 1.3 (0.5 - 4.3) 2.5 (0.70 - 9.4) b,d 1.83 (0.80 - 10.90)c,e 
Steatosis grade     
≤5% - 132 (69.1) 27 (17.9) - 
5-33% - 54 (28.3) 74 (49.0) 9 (9.6) 
33-66% - 5 (2.6) 47 (31.1) 50 (53.2) 
>66% - - 3 (2.0) d 35 (37.2) e,f 

Lobular inflammation     
No foci - 65 (34.2) 8 (5.3) - 
<2 foci - 100 (52.6) 54 (36.0) 18 (19.1) 
2-4 foci - 26 (13.2) 64 (42.0) 52 (55.3) 
> 4 foci - - 25 (16.7) d 24 (25.5) e,f 

Hepatocellular ballooning      
No - 163 (85.3) 75 (49.6) 7 (7.4) 
Few cells  24 (12.7) 67 (44.4) d 60 (63.8)  e,f 
Many cells - 4 (2.0) 9 (6.0)  27 (28.7) e,f 

Fibrosis     
None (F0) - 74 (38.7) 28 (18.5) 23 (24.4) 
Perisinusoidal or periportal (F1) - 78 (40.8) 67 (44.3) 21 (22.3) 
Perisinusoidal and portal (F2) - 32 (16.7) 41 (27.1) 29 (30.8) 
Bridging fibrosis (F3) - 7 (3.6) 15 (9.9) 20 (21.3) e,f 

Cirrhosis (F4) - - - 1(1.0)  

 

Values are shown as number of cases and percentages or medians and interquartile ranges. ACEIs: Angiotensin-
converting-enzyme inhibitor; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ARA-II: 
Angiotensin II receptor antagonists; BMI: Body mass index; CRP: C-reactive protein; HDL: High-density 
lipoprotein; HOMA-IR: Homeostatic model assessment of insulin resistance; HTG: Hypertriglyceridemia; LDL: 
Low-density lipoprotein; NASH: Non-alcoholic steatohepatitis; T2DM: Type 2 diabetes mellitus.  Significant 
differences (p < 0.05 or lower) in comparisons are indicated by a Control vs non-NASH. b Control vs Uncertain 
NASH. c Control vs NASH. d Non-NASH vs Uncertain NASH. e Non-NASH vs NASH. f Uncertain NASH vs NASH. 
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Table 6. Selected variables in patients with severe obesity and paired liver biopsies at baseline and 
12 months after laparoscopic sleeve gastrectomy. 
 

 
Values are shown as number of cases and percentages or medians and interquartile ranges. ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CRP, C-reactive protein; HDL, high-
density lipoprotein; HOMA-IR, homeostatic model assessment of insulin resistance; LDL, low-density 
lipoprotein

 Baseline 
(n=120) 

12 months after surgery 
(n=120) 

p-value 

BMI, kg/m2 46.4 (42.8) 31.2 (29.1-34.7)3 <0.001 
Total cholesterol, mmol/L 4.3 (3.7-5.3) 4.7 (4.2-5.4) <0.001 
HDL-cholesterol, mmol/L 1.0 (0.8-1.4) 1.4 (1.2-1.7) <0.001 
LDL-cholesterol, mmol/L 3.1 (2.5-3.9) 3.0 (2.5-3.3) 0.127 
Triglycerides, mmol/L 1.5 (1.1-2.3) 0.9 (0.8-1.3) <0.001 
Glucose, mmol/L 7.0 (6.0-9.1) 4.7 (4.5-5.) <0.001 
Insulin, pmol/L 100.8 (54.3-162.2) 39.6 (24.0-60.1) <0.001 
HOMA-IR 4.4 (2.8-7.5) 1.3 (0.4-2.5) <0.001 
AST, µKat/L 0.6 (0.4-0.8) 0.3 (0.2-0.3) <0.001 
ALT, µKat/L 0.5 (0.4-0.8) 0.2 (0.2-0.3) <0.001 

CRP, mg/L 3.0 (0.82-8.6) 1.5 (0.5-4.2) <0.001 

Steatosis grade    
<5% 25 (20.8) 116 (96.6)  

5-33% 46 (38.3) 4 (3.3)  
>33-66% 37 (30.8) -  
>66% 12 (10) - <0.001 
Lobular inflammation    
No foci 25 (20.8) 98 (81.6)  
<2 foci 38 (31.6) 22 (18.4)  

2-4 foci 41 (34.2) -  
> 4 foci 16 (13.3) - <0.001 
Hepatocellular ballooning    
No 49 (40.8) 98 (81.6)  
Few cells 65 (54.1) 19 (15.8)  
Many cells  6 (5.0) 3 (2.5) <0.001 
Fibrosis    
None (F0) 20 (16.6) 55 (45.8)  
Perisinusoidal or periportal (F1) 51 (42.8) 60 (50.0)  
Perisinusoidal and portal (F2) 39 (32.5) 5 (4.1)  
Bridging fibrosis (F3) 9 (7.5) -  
Cirrhosis (F4) 1 (0.8) - <0.001 
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Figure 15. Post-laparoscopic sleeve gastrectomy (LSG) improvement in liver histological features 
of patients with non-alcoholic fatty liver disease.  (a) Representative microphotographs (bars 
indicate 100x magnification) of baseline and 12 months post-surgery hepatic biopsies stained with 
Hematoxylin and Eosin, Sirius Red and Masson’s Trichrome. (b) Steatosis, inflammation ballooning 
and NAS score were quantified according to the non-alcoholic fatty liver activity score (NAS) system. 
(C) Sirius Red was quantified as percentage of positively-stained areas. *p < 0.001 by Mann-Whitney 
U test. 
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Figure 16. Post-laparoscopic sleeve gastrectomy resolution of bridging fibrosis and cirrhosis. 
Histological evaluation (bars indicate 40x magnification) from different cuts in a single patient with 
liver cirrhosis indicates fibrosis reduction after surgery. 
 Supplementary Figure 1. Post-laparoscopic sleeve gastrectomy resolution of bridging fibrosis and cirrhosis. Histological evaluation (bars indicate 40x magnification) from different cuts in a single patient with liver cirrhosis indicates fibrosis reduction after surgery. 
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We observed significant alterations in the pre-surgery circulating levels of molecules that tracked 

with oxidation and inflammation. Serum paraoxonase and lactonase activities were significantly 

decreased in obese patients, but serum PON-1 concentration remained unaltered. Low PON-1 

activities were associated with high plasma CCL2, but these measurements did not track with 

patients through the different stages of NAFLD (Figure 17b).  Circulating levels of TNF-α and IL-10 

were also significantly different from those found in control subjects, but differences between non-

NASH and NASH patients were either minor or negligible. Plasma galectin-3 levels were significantly 

higher in patients with NASH when compared with non-NASH patients (Figure 17b).  

BS outcomes promote remission of hepatic alterations through multiple cellular 
responses 

 

Using selected key markers, we compared oxidation, inflammation and fibrosis in liver tissues at 

baseline and 12 months post-BS. There were significant reductions in the hepatic immunochemical 

expressions of PON-1, 4-hydroxy-2-nonenal, CD68, CCL2, CCR2, TNF-α, and galectin-3; but IL-10 

staining remained unaltered (Figure 19). For cross validation we used western blot analysis. We 

observed a significant reduction in the expression of TNF-α and galectin-3, with minor changes in IL-

10. Variations in the expression of CD163 did not reach statistical significance. We also assessed the 

effect of BS in relation to the hepatic expression of STAT-3 and phosphorylated STAT-3. Both had 4-

fold increase in expression post-surgery, which would indicate increased production and activation 

following NAFLD remission. The extent of hepatic glycated PON-1 (the 45 kD band), which is less 

effective in providing protection against oxidative response, was not significantly reduced. However, 

the unmodified, more active enzyme (the 40 kD band) that had been practically absent pre-surgery, 

was prominent post-surgery. Finally, we observed a significant decrease in the expression of α-

smooth muscle actin (α-SMA) and sonic hedgehog (Shh) protein, indicating regression of liver 

fibrosis-activating pathways (Figure 20a). 

 

Significant variations were observed in circulating paraoxonase activity and galectin-3 levels post-

surgery. Circulating PON-1 and CCL2 concentrations remained high in patients with biopsy-proven 

NAFLD remission. Mean plasma TNF-α concentrations were normalized, and circulating IL-10 levels 

were even higher following remission (Figure 20b).       
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Figure 17. Hepatic oxidation and inflammation discriminate patients with NASH from those 
without.  (a) NASH patients had higher hepatic paraoxonase-1 (PON1), 4-hydroxy-2-nonenal, and 
cluster of differentiation 68 (CD68) expressions and Sirius Red staining compared to non-NASH 
individuals (bars indicate 100 x magnifications). (b) Circulating levels of paraoxonase and lactonase 
activities, and paraoxonase-1 (PON1), chemokine (C-C motif) ligand 2 (CCL2), tumor necrosis factor-
α (TNF-α), interleukin-10 (IL-10) and galectin-3 concentrations. *p < 0.05, **p < 0.01, ***p < 0.001 
by the Mann-Whitney U test. 
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Figure 18. Oxidative markers distribution in NASH liver patients.. Representative 
microphotographs (bars indicate 100x magnification) indicating paraoxonase-1 (a) and 4-hydroxy-2-
nonenal (b) staining. Paraoxonase-1 staining was predominantly observed in cells with fat 
accumulation and 4-hydroxy-2-nonenal in association with areas in which fibrosis was predominant. 
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Figure 19. Effect of laparoscopic sleeve gastrectomy in oxidation and low-grade systemic 
inflammatory balance. Differences in the hepatic immunochemical staining of paraoxonase-1 
(PON1), 4-hydroxy-2-nonenal, cluster of differentiation 68 (CD68), chemokine (C-C motif) ligand 2 
(CCL2), C-C motif chemokine receptor 2 (CCR2), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-
10) and galectin-3 in patients pre- and 12 months post-surgery (bars indicate 100x magnification). 
*p < 0.01, **p < 0.001 by the Mann-Whitney U test. 
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Figure 20. Laparoscopic sleeve gastrectomy (LSG) improves the hepatic levels of oxidative stress and inflammation markers. (a) Western Blot 
analysis of tumor necrosis factor-α (TNF-α), galectin-3, interleukin-10 (IL-10), cluster of differentiation 163 (CD163), phosphorylated signal 
transducer and activator of transcription-3 (pSTAT3), signal transducer and activator of transcription-3 (STAT3), paraoxonase-1 (PON1), α-
smooth muscle actin (α-SMA), and sonic hedgehog protein (Shh). Pooled liver extracts were used for cross validation (left) and mean values of 
variations in the expression of selected markers are shown on the right. The graph of paraoxonase-1 shows the ratio between the 40 kD and 
the 45 kD isoforms. (b) Circulating levels of CCL2, IL-10, galectin-3, TNF-α, PON1 and paraoxonase activity in patients (before- and after-surgery) 
and in the control group. *p < 0.05, **p < 0.01, ***p < 0.001 by the Mann-Whitney U test. 
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STUDY II 

 

NASH modulates circulating metabolites from energy and one-carbon 

metabolism in obesity: implication in NASH remission 
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Targeted quantitative plasma metabolomic profile identifies the significant influence of 

obesity on energy and one-carbon metabolism 

Morbid obesity was associated with metabolic alterations, as compared with nonobese controls 

(Table 7). To enlarge the scope of metabolic signals, we used a targeted metabolomic approach to 

selectively examine plasma metabolites to explore pathways of energy adaptation. Obesity appears 

to increase the oxidative changes through the citric acid cycle (CAC), and the significant plasma 

accumulation of most intermediates might reflect compensatory responses in mitochondrial 

energetics. We also found a significant increase in plasma glutamine, pyruvate and ß-

hydroxybutyrate (ß- HB) levels in obese patients with respect to nonobese controls, with alterations 

in amino acids and metabolites derived from 1-C metabolism. Specifically, serine, cysteine, 

methionine, SAM and SAH levels were decreased in morbid obesity with a significant accumulation 

of cystathionine and choline, major carbon or methyl donors and critical components for signaling 

functions (Table 8, Figure 21 a, b). 

 

Changes in circulating metabolites segregated nonobese controls from patients with morbid obesity 

and glutamine, ß-HB, citrate and cystathionine were the metabolites with the highest impacts on 

class distribution (Figure 21 c-e). The plasma levels of each of these metabolites predicted obesity, 

suggesting the contribution of body weight, but other metabolites, exemplified by plasma                 

α-ketoglutarate (α-KG), were independent of body weight (Figure 22).  

 

Values in plasma may suggest impaired energy homeostasis, metabolic inflexibility and likely 

induction of anaplerosis and pyruvate cycling (275). Plasma essentially reports the sum of changes 

from multiple organs. Hence, we investigated whether circulating metabolites could identify the 

effect of liver disease in regulating energy homeostasis by assessing differences between patients 

with and without NASH. 
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Table 7. Clinical and laboratory assessment in nonobese controls and obese patients 

 

  
Nonobese controls Obese patients 

p-value 
(n=50) (n=270) 

Clinical characteristics       

Male, n (%) 10 (20.4) 69 (25.7) 0.279 

Age, years 47 (32-62) 49 (41-58) 0.652 

BMI, kg/m2 25.2 (22.3-28.0) 46.4 (42.4-51.6) <0.001 

T2DM, n (%) 2 (4.1) 105 (39.0) <0.001 

Hypertension, n (%) 4 (8.2) 169 (62.8) <0.001 

Dyslipidemia, n (%) 2 (4.1) 98 (36.4) <0.001 

Medication, %       

Metformin 1 (2.0) 76 (28.4) <0.001 

Insulin - 22 (8.2) - 

Sulfonylureas - 16 (5.9) - 

ACEIs + ARA II 1 (2.0) 22 (8.2) <0.001 

Diuretics 1 (2.0) 33 (12.3) <0.05 

Statins - 52 (19.3) - 

Laboratory assessment       

Hemoglobin, g/dL 14.0 (13.1-14.8) 13.3 (12.5-14.4) 0.041 

Leukocytes, x109/L 6.5 (5.9-7.5) 7.9 (6.6-9.3) <0.001 

Platelets, x109/L 245 (210-272) 212 (182-252) <0.001 

Total cholesterol, mmol/L 5.1 (4.5-5.7) 4.3 (3.7-5.1) <0.001 

HDL-cholesterol, mmol/L 1.6 (1.3-1.8) 1.2 (1.0-1.5) <0.001 

LDL-cholesterol, mmol/L 3.0 (2.5-3.6) 3.3 (2.8-3.9) 0.01 

Triglycerides, mmol/L 0.9 (0.7-1.4) 1.0 (1.1-2.2) 0.01 

Glucose, mmol/L 4.7 (4.3-5.3) 7.3 (6.2-9.1) <0.001 

Insulin, pmol/L 48.8 (32.9-59.5) 91.3 (46.5-149.2) <0.001 

HOMA-IR 1.4 (0.9-2.0) 4.3 (2.2-7.5) <0.001 

Albumin, g/L 43.5 (41.9-45.0) 40.4 (36.4-44.0) <0.001 

AST, µKat/L 0.3 (0.2-0.4) 0.5 (0.4-0.8) <0.001 

ALT, µKat/L 0.3 (0.2-0.4) 0.6 (0.4-0.9) <0.001 

GGT, µKat/L 0.2 (0.1-0.4) 0.4 (0.2-0.6) <0.001 

CRP, mg/L 1.3 (0.5-3.0) 5.0 (0.8-12.2) <0.001 

  

Values are expressed as number (percentage) or median (interquartile range) in the indicated units. ACEIs: 
angiotensin-converting-enzyme inhibitor; ALT: alanine aminotransferase; AST: aspartate aminotransferase; 
ARA-II: angiotensin II receptor antagonists; BMI: body mass index; CRP: C-reactive protein; GGT: γ-glutamyl 
transferase; HDL: high-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin resistance; LDL: 
low-density lipoprotein; T2DM: type 2 diabetes mellitus. 
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Table 8. Targeted plasma metabolome in nonobese (control) and severely obese patients. 
  

Metabolite 
Non-obese controls Obese patients  Fold 

change 
p-value 

  (n=50) (n=270) 

En
e

rg
y 

M
et

ab
o

lis
m

 

α-ketoglutarate 11.0 (8.2-14.5) 17.2 (12.5-23.4) 1.6 <0.001 

β-hydroxybutyrate 32.9 (24.7-42.0) 252.4 (118.8 - 429.3) 7.7 <0.001 

Aconitate 0.4 (0.3-0.5) 0.8 (0.5 - 1.0) 2.0 <0.001 

Alanine 271.4 (204.8-282.9) 171.8 (131.0-218.2) -1.6 <0.001 

Aspartate 6.4 (4.6-8.0) 2.2 (1.5-3.2) -2.9 <0.001 

(Iso)Citrate 26.3 (18.3-30.9) 59.5 (48.6-71.2) 2.3 <0.001 

Fumarate 0.4 (0.3-0.6) 0.97 (0.2-2.7) 2.4 <0.001 

Glucose* 4.7 (4.3-5.3) 7.3 (6.2-9.1) 1.6 <0.001 

Glutamate 102.6 (87.6-135.0) 62.8 (48.3-79.3) -1.6 <0.001 

Glutamine 25.8 (17.8-31.2) 66.6 (51.5-81.9) 2.6 <0.001 

Isoleucine 60.0 (51.6-65.2) 34.2 (22.6-47.6) -1.8 <0.001 

Lactate* 2.3 (2.0-2.4) 1.5 (1.2-3.0) -1.5 <0.001 

Leucine 99.5 (84.4-112.0) 56.9 (37.6-80.3) -1.7 <0.001 

Malate 2.1 (1.7-2.7) 3.3 (2.2-15.2) 1.6 <0.001 

Malonyl-CoA 2.9 (2.5-3.5) 1.3 (1.0-1.6) -2.2 <0.001 

Oxaloacetate 1.1 (0.8-1.4) 1.6 (0.9-2.6) 1.5 <0.001 

Pyruvate 228.7 (118.2-326.2) 501.3 (317.5-674.7) 2.2 <0.001 

Serine 95.1 (79.2-111.4) 39.4 (24.3-50.0) -2.4 <0.001 

Succinate 8.1 (6.7-9.2) 8.4 (6.6-10.8) 1.0 0.262 

Succinyl-CoA 8.6 (7.0-10.9) 3.4 (2.1-4.4) -2.5 <0.001 

Valine 167.9 (149.3-191.2) 121.3 (88.4-154.4) -1.4 <0.001 

        

1
-C

 M
e

ta
b

o
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m
 

Betaine  14.1 (10.5-20.7) 10.5 (8.7 - 13.5) -1.3 0.014 

Choline  95.4 (82.4-109.4) 137.8 (98.0 - 166.3) 1.4 0.002 

Cystathionine  0.6 (0.5-0.7) 1.0 (0.9 - 1.1) 1.7 <0.001 

Cysteine  3.6 (3.2-4.7) 2.5 (2.1 - 2.9) -1.4 <0.001 

Dimethylglycine 87.7 (80.9-96.3) 115.3 (90.2 - 135.1) 1.3 0.001 

Folic acid 0.21 (0.20-0.24) 0.16 (0.13 - 0.20) -1.3 0.001 

Formyl-THF 0.10 (0.004-0.16) 0.13 (0.08 - 0.15) 1.3 0.456 

Glycine  138.5 (113.9-184.2) 175.1 (149.6 - 201.1) 1.3 <0.001 

Homocysteine  5.3 (4.4-6.1) 5.3 (4.7 - 5.9) 1.0 0.845 

Methionine 258.3 (227.9-312.8) 179.9 (163.4 - 211.6) -1.4 <0.001 

Methylcobalamine 3.4 (2.3-5.8) 4.0 (1.9 - 5.3) 1.2 0.301 

Riboflavin (B2) 26.3 (21.9-46.5) 57.6 (39.4 - 78.2) 2.2 <0.001 

SAH 0.008 (0.007-0.011) 0.006 (0.005 - 0.008) -1.3 0.032 

SAM 3.8 (3.4-4.0) 2.9 (1.8 - 4.3) -1.3 0.033 

 
 

 
Data are expressed as median (interquartile range) in μmol/L except those marked with an asterisk denoting 
mmol/L.  SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; THF, Tetrahydrofolate. 
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Figure 21. Morbid obesity perturbs plasma metabolome. Variations in the levels of plasma 
metabolites from energy (a) and one-carbon metabolism (b) between obese patients and nonobese 
controls are schematized, with colors indicating the statistical assessment according to the legend. 
Partial least square discriminant (PLS-DA) (c) and heat map (d) analyses were used to visualize the 
segregation between both groups. Variable importance in projection (VIP) scores (e) that provide 
the relative impact of each metabolite in the PLS-DA.  
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Figure 22. Obesity may influence the interpretation of plasma metabolite levels. Plasma 
glutamine, cystathionine, β-hydroxybutyrate and methionine levels correlated (Spearman test, p 
<0.05) almost perfectly with body mass index, and ROC curve-based model evaluation indicated 
their ability to distinguish obese and nonobese participants. In contrast, other metabolites, 
exemplified by α-ketoglutarate, were apparently independent of body weight and adiposity. 
Asterisks denote statistical significance (***p<0.001) by the Wilcoxon rank-sum test. 
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NASH impacts metabolic adaptation pathways 

 
Histologic features and clinical and laboratory variables identified progressive metabolic 

disturbances closely related to liver disease (Figure 23 a, Table 9). Liver alterations were 

heterogeneous, and we compared the plasma metabolome between patients with minor changes 

(non-NASH) and those with unambiguous NASH. The number of metabolites with the ability to 

segregate patients with and without NASH was lower than those distinguishing patients with and 

without obesity (Table 10), and plasma α-KG, oxaloacetate and isoleucine levels had the highest 

impacts on the class distribution (Figure 23 b-d). 

 

The histopathological features in patients with NASH were associated with a significant 

accumulation of plasma glucose, lactate and pyruvate, indicating reprogrammed glucose 

metabolism. These findings were accompanied by increased plasma concentrations of alanine, 

aspartate and branched chain amino acids (BCAAs) in NASH patients. Among metabolites from the 

CAC, only plasma oxaloacetate and α-KG levels were significantly increased in NASH patients, which 

in the presence of higher plasma glutamate likely indicated CAC replenishment via glutaminolysis.  

 

As glutamine is metabolized via glutaminolysis to be converted into α-KG and lactate, high plasma 

concentrations of these metabolites might indicate the role of NASH in the organismal metabolic 

responses (276). Plasma metabolites from 1-C metabolism also revealed significant alterations in 

the form of serine-to-glycine and SAM-to- SAH conversions in NASH patients (Figure 24 a). We then 

explored whether these metabolic alterations persisted or reversed after BC. 
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Table 9. Clinical and laboratory assessment in obese patients segregated by liver histologic features 
and NASH patients 12 months after surgery. 

 Non-NASH NASH NASH after surgery 

 (n=130) (n=53) (n=53) 

Clinical characteristics    

Male, n (%) 29 (22.3) 18 (33.9) - 

Age, years 47 (41 - 57) 50 (42 - 58) - 

BMI, Kg/m2 45.7 (42.3 - 51.6) 46.6 (42.5 - 51.9) a 34.3 (31.3-37.5) b, c 

T2DM, n (%) 45 (34.6) 29 (54.7) a 9 (16.7) b, c 

Hypertension, n (%) 76 (58.4) 41 (77.3) a 23 (43.4) b, c 

Dyslipidaemia, n (%) 40 (30.7) 23 (43.3) a 5 (9.4) b, c 

Medication (%)    

Metformin 31 (23.8) 20 (37.7) a 8 (15.1) b, c 

Insulin 7 (5.3) 7 (13.2) 2 (3.3) b, c 

Sulfonylureas 7 (5.3) 7 (13.2) - 

ACEIs + ARABS 48 (36.9) 26 (49) 9 (16.7) b, c 

Diuretics 12.7 (9.7) 8 (15.1) - 

Statins 21 (15.9) 12 (22.6) 5 (9.4) b, c 

Laboratory assessment    

Hemoglobin, g/dL 13.0 (12.4 - 14.1) 13.4 (12.1 - 14.4) a 13.3 (12.2-14.7) 

Leukocytes, x109/L 7.6 (6.2 - 9.6) 7.8 (6.6 - 8.7) 6.6 (5.3-7.5) b, c 

Platelets, x109/L 207.5 (184 - 254) 225.0 (179.0 - 249.5) 231.0 (184.8-287.5) 

Ferritin, µg/L 55.0 (24.8 - 87.0) 97.4 (24.5 - 202.45) a 57.2 (23.6-110.8) b, c 

Total-cholesterol, mmol/L 4.9 (4.5 - 5.4) 4.9 (4.3 - 5.5) 5.0 (4.5-5.9) b, c 

HDL-cholesterol, mmol/L 1.4 (1.1 - 1.7) 1.1 (0.9 - 1.4) a 3.0 (2.6-3.5) b, c 

LDL-cholesterol, mmol/L 2.8 (2.4 - 3.5) 2.8 (2.4 - 3.9) 1.6 (1.3-1.9) b, c 

Triglycerides, mmol/L 1.5 (1.1 - 2.0) 1.7 (1.2 - 2.3) a 1.0 (0.8-1.2) b, c 

Glucose, mmol/L 6.8 (6.0 - 8.4) 7.8 (6.2 - 11.4) a 4.7 (4.3-5.4) b, c 

Insulin, pmol/L 97.9 (41.8 - 152.4) 109.2 (65.1 - 193.7) a 39.6 (24.0-60.1) b, c 

HOMA-IR 4.1 (1.8 - 6.7) 6.1 (3.4 - 8.7) a 1.2 (0.7-1.9) b, c 

Albumin, g/L 43.0 (40.0 - 44.0) 41.0 (36.6 - 44.0) 43.0 (41.0-45.0) c  

AST, µkat/L 0.5 (0.4 - 0.7) 0.7 (0.5 - 1.2) a 0.3 (0.2-0.3) b, c 

ALT, µkat/L 0.5 (0.3 - 0.8) 0.7 (0.5 - 1.2) a 0.2 (0.2-0.3) b, c 

GGT, µkat/L 0.3 (0.2 - 0.4) 0.5 (0.3 - 0.7) a 0.2 (0.2-0.4) b, c 

CRP, mg/L 5.1 (4.3 - 7.0) 5.8 (4.8 - 7.1) 0.3 (0.2-0.5) b, c 

Liver histologic features    

Steatosis    

<5% 81 (62.0) - 51 (96.7) 

5-33% 45 (34.8) 5 (7.9) 2 (3.3) b, c 

34-66% 4 (3.3) 33 (57.9) - 

>66%  20 (34.2) a - 

Lobular inflammation    

No foci 40 (30.4) - 43 (81.6) 

<2 foci 69 (53.3) 8 (13.2) 10 (18.4) b, c 

2-4 foci 20 (15.2) 26 (44.7) - 

>4 foci - 24 (42.1) a - 

 
 
Hepatocellular ballooning 

 
 

 
 

 
 

None 124 (95.7) 9 (15.8) 43 (81.6) 

Few cells 3 (2.2) 44 (76.3) 10 (18.4) 

Many cells - 5 (7.9) a  

Fibrosis    

None (F0) 52 (40.2) 20 (34.2) 24 (45.8) 

Perisinusoidal or periportal(F1) 57 (43.5) 14 (23.7) 27 (50.0) 

Perisinusoidal and portal (F2) 17 (13.0) 9 (15.8) 2 (4.2) b, c 

Bridging fibrosis (F3) 1 (1.1) 12 (21.1)  - 

 
 

Values were expressed as number (percentage) or median (interquartile range) in the indicated units. ACEIs: 
angiotensin-converting-enzyme inhibitor; ALT: alanine aminotransferase; AST: aspartate aminotransferase; 
ARA-II: angiotensin II receptor antagonists; BMI: body mass index; CRP: C-reactive protein; GGT: γ-glutamyl 
transferase; HDL: high-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin resistance; LDL: 
low-density lipoprotein; T2DM: type 2 diabetes mellitus.  The letters denote significant (at least p<0.05) 
differences comparing a non-NASH vs NASH, b non-NASH vs NASH after surgery and c NASH vs NASH after 
surgery. 
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Figure 23. The metabolic adaptive responses in obesity are closely related to liver alterations. 
Routine clinical and laboratory assessment disclosed the metabolic consequences of different liver 
histologic features (a). Partial least square discriminant (PLS-DA) (b) and heatmap (c) analyses 
visualized differences in the plasma metabolome after surgery and the challenging task that 
represents distinguishing patients with and without NASH. Plasma α-ketoglutarate was the 
metabolite with the largest impact in projecting metabolic changes between patients with and 
without NASH and between NASH patients before vs. after surgery attending to the VIP scores (d). 
Asterisks denote statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001) by the Wilcoxon rank-
sum test. 

UNIVERSITAT ROVIRA I VIRGILI 
ASSESSING DIAGNOSTIC AND THERAPEUTIC TARGETS IN OBESITY-ASSOCIATED LIVER DISEASES 
Noemí Cabré Casares 
 



125 
 

Table 10. Plasma metabolome in obese patients with and without NASH. 
 

  
Metabolite 

Non-NASH NASH  Fold 
change 

p-value 
  (n=130) (n=53) 

En
e

rg
y 

M
e
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α-ketoglutarate 13.05 (10.7-17.5) 19.7 (13.9-27.6) 1.5 <0.001 

β-hydroxybutyrate 286.8 (163.4-490.3) 247.9 (105.5-419.7) -1.2 0.110 

Aconitate 0.74 (0.5-1.0) 0.7 (0.6-1.0) 1.1 0.369 

Alanine 149.8 (114.5-192.3) 183.5 (140.1-220.7) 1.2 <0.001 

Aspartate 1.7 (1.2-2.9) 2.3 (1.5-3.2) 1.4 0.013 

(Iso)Citrate 58.8 (47.7-69.2) 61.7 (48.8-71.9) 1.0 0.379 

Fumarate 1.0 (0.2-3.8) 0.6 (0.2.2.5) -1.7 0.447 

Glucose* 6.6 (5.9-8.1) 7.6 (6.3-9.6) 1.2 <0.001 

Glutamate 54.5 (42.3-67.7) 65.9 (52.8-83.7) 1.2 <0.001 

Glutamine 64.6 (51.3-78.8) 68.6 (51.8-82.7) 1.1 0.317 

Isoleucine 28.2 (18.4-46.6) 34.8 (25.6-48.1) 1.2 <0.001 

Lactate* 1.4 (1.1-1.6) 1.7 (1.3-2.1) 1.2 <0.001 

Leucine 50.3 (31.7-75.9) 61.6 (42.4-81.9) 1.2 0.015 

Malate 2.8 (1.9-15.6) 3.6 (2.5-14.7) 1.3 0.142 

Malonyl-CoA 1.3 (1.1-1.7) 1.3 (1.0-1.6) 1.0 0.216 

Oxaloacetate 1.1 (0.9-1.9) 1.7 (1.0-2.8) 1.5 <0.001 

Pyruvate 409.2 (285.7-613.2) 537.0 (386.9-714.9) 1.3 <0.001 

Serine 39.6 (21.2-58.0) 38.2 (24.8-48.1) 1.0 0.645 

Succinate 8.2 (6.5-10.0) 8.4 (6.8-11.1) 1.0 0.222 

Succinyl-CoA 3.4 (2.0-5.2) 3.4 (2.2-4.2) 1.0 0.631 

Valine 113.3 (81.0-147.8) 127.3 (94.0-158.1) 1.1 0.008 
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Betaine 9.9 (7.0-13.3) 10.7 (9.6-13.7) 1.1 0.119 

Choline 137.8 (97.2-198.7) 110.8 (93.4-148.3) -1.2 0.937 

Cystathionine 1.1 (0.9-1.2) 1.0 (0.9-1.2) -1.1 0.371 

Cysteine 2.4 (2.0-2.7) 2.8 (2.2-3.1) -1.2 0.041 

Dimethylglycine 111.4 (89.9-161.9) 97.2 (86.9-121.2) -1.1 0.965 

Folic acid 0.16 (0.13-0.23) 0.16 (0.14-0.21) 1.0 0.788 

Formyl-THF 0.14 (0.09-0.16) 0.09 (0.06-0.13) -1.6 0.766 

Glycine 177.4 (162.2-202.6) 177.6 (139.1-204.9) 1.0 0.232 

Homocysteine 5.3 (4.7-5.8) 5.1 (4.4-5.9) 1.0 0.468 

Methylcobalamine (B12) 4.0 (1.6-5.1) 4.2 (2.1-9.5) 1.1 0.502 

Methionine 176.7 (156.8-211.9) 184.7 (170.2-215.5) 1.0 0.222 

Riboflavin (B2) 58.0 (43.1-78.3) 54.9 (33.3-82.5) -1.1 0.866 

SAH 0.007 (0.006-0.009) 0.006 (0.005-0.008) -1.2 0.030 

SAM 2.4 (1.7-4.1) 3.8 (1.8-5.0) 1.6 0.020 

 
 

 
Data are expressed as median (interquartile range) in μmol/L except those marked with an asterisk denoting 
mmol/L.  SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; THF, Tetrahydrofolate 
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Figure 24. Bariatric surgery reverses NASH-associated disturbances in the plasma metabolome. 
Schematized view of differences in plasma metabolites related to energy and one-carbon 
metabolism in comparing patients with vs. without NASH (a) and NASH patients before vs. after 
surgery (b). Colors denoted statistical comparisons as indicated in the legend. 

UNIVERSITAT ROVIRA I VIRGILI 
ASSESSING DIAGNOSTIC AND THERAPEUTIC TARGETS IN OBESITY-ASSOCIATED LIVER DISEASES 
Noemí Cabré Casares 
 



127 
 

Bariatric surgery restores the perturbed metabolic responses 

One year after bariatric surgery, NASH patients were reexamined and paired liver biopsies 

demonstrated NASH remission. Body weight decreased significantly, but patients remained obese 

(BMI > 30 kg/m2), though there were significant improvements in the severity and prevalence of 

diabetes, hypertension, and dyslipidaemia (Table 9). Variations in plasma metabolites segregated 

NASH patients before vs. after surgery (Figure 23 b, c, e) and plasma α-KG levels provided the 

largest impact on class distribution. Most plasma levels of CAC intermediates returned to values 

close to normal in nonobese controls. The significant reduction in plasma glutamate and α-KG after 

surgery and the simultaneous higher level of succinate indicated that glutaminolysis was no longer 

preponderant in the follow-up.  

 

Bariatric surgery also normalized plasma levels of circulating amino acids and metabolites from 1-C 

metabolism (Figure 24 b, Table 11). We also found that surgery restored the increased 5-mC levels 

in circulating leukocytes of patients with NASH (Figure 25 a) indicating differential and reversible 

DNA methylation in leukocytes. Variations in metabolites with influence in DNA methylation     

(Figure 24 b) suggest the potential role of metaboloepigenetic processes in NASH progression. 

However, the plasma α-KG to succinate ratio, which represents the relative proportions of the 

substrates and products of enzymes involved in methylation, was significantly altered only after 

surgery and did not differentiate patients with and without NASH (Figure 25 a). Of note, correlations 

between most metabolite levels and the leukocyte 5-mC level did not reach statistical significance 

between patients with and without NASH but the SAM-to-SAH ratio and plasma α-KG level were 

significantly associated with steatosis (Figure 25 c). After surgery, the DNA 5mC level was negatively 

correlated with the changes in SAM-to-SAH ratio and positively correlated with plasma α-KG levels 

(Figure 25 d). However, the diagnostic and predictive value of the 5-mC levels in DNA from 

leukocytes did not result into clinical benefit (data not shown) and we explored, without this input, 

the putative role of circulating metabolites as noninvasive biomarkers. 

 

UNIVERSITAT ROVIRA I VIRGILI 
ASSESSING DIAGNOSTIC AND THERAPEUTIC TARGETS IN OBESITY-ASSOCIATED LIVER DISEASES 
Noemí Cabré Casares 
 



128 
 

Table 11.  Plasma metabolome in NASH patients before and 12 months after surgery 
 

  Metabolite 
Before surgery 12 months after surgery Fold 

change  
p-value  

  (n=53) (n=53) 

En
e

rg
y 

M
e

ta
b

o
lis

m
 

α-ketoglutarate 16.6 (13.4-20.9) 7.2 (6.1-9.0) -2.3 <0.001 

β-hydroxybutyrate 431.1 (316.1-549.8) 39.1 (21.8 - 78.3) -11 <0.001 

Aconitate 1.3 (1.0-1.8) 1.2 (0.9 - 1.5) -1.1 0.766 

Alanine 129.0 (107.0-165.0) 117.8 (103.5-136.0) -1.1 0.054 

Aspartate 2.9 (2.2-3.7) 3.0 (2.8-4.0) 1 0.138 

(Iso)Citrate 68.0 (56.0-78.8) 65.5 (55.1-76.6) 1 0.502 

Fumarate 0.8 (0.6-2.0) 0.7 (0.6-0.9) -1.1 0.441 

Glucose* 6.8 (5.8-9.0) 4.7 (4.3-5.4) -1.4 <0.001 

Glutamate 67.0 (55.2-85.9) 44.8 (31.9-58.3) -1.5 <0.001 

Glutamine 79.8 (61.9-96.7) 84.2 (72.5-92.7) 1.1 0.109 

Isoleucine 25.0 (16.6-35.1) 12.8 (8.6-16.0) -2 <0.001 

Lactate* 1.7 (1.4-2.0) 1.5 (1.3-2.0) -1.1 0.172 

Leucine 63.1 (45.3-83.0) 46.8 (29.7-61.7) -1.3 <0.001 

Malate 3.4 (2.5-9.8) 3.2 (2.5-3.8) -1.1 0.061 

Malonyl-CoA 4.0 (2.3-4.9) 1.5 (1.2-1.7) -2.7 <0.001 

Oxaloacetate 1.6 (1.1-2.2) 2.3 (1.8-3.2) 1.4 <0.001 

Pyruvate 513.6 (285.3-562.4) 223.7 (187.9-356.5) -2.3 <0.001 

Serine 29.9 (23.1-39.4) 29.1 (22.9-34.4) 1 0.414 

Succinate 12.6 (10.4-14.9) 11.5 (10.4-12.8) -1.1 0.065 

Succinyl-CoA 3.4 (2.4-4.2) 5.6 (3.8-8.1) 1.6 <0.001 

Valine 135.2 (93.4-169.0) 115.0 (83.7-147.3) -1.2 0.038 

           

1
-C

 M
e

ta
b

o
lis

m
 

Betaine 10.5 (8.7 - 13.5) 13.2 (10.7 - 15.4) 1.3 0.003 

Choline 137.8 (98.0 - 166.3) 106.7 (85.7 - 118.0) -1.3 <0.001 

Cystathionine 1.0 (0.9 - 1.1) 0.5 (0.4 - 0.6) -2 <0.001 

Cysteine 2.5 (2.1 - 2.9) 3.0 (2.4 - 3.5) 1.2 <0.001 

Dimethylglycine 95.3 (80.2 - 115.1) 82.5 (72.9 - 103.9) -1.2 <0.001 

Folic acid 0.16 (0.13 - 0.20) 0.19 (0.16 - 0.25) 1.2 0.056 

Formyl-THF 0.13 (0.08 - 0.15) 0.05 (0.04 - 0.08) -2.6 <0.001 

Glycine 175.1 (149.6 - 201.1) 191.3 (146.9 - 232.4) 1.1 0.068 

Homocysteine 5.3 (4.7 - 5.9) 6.0 (5.5 - 7.0) 1.1 <0.001 

Methionine 179.9 (163.4 - 211.6) 215.8 (190.8 - 233.4) 1.2 <0.001 

Methylcobalamine 4.0 (1.9 - 5.3) 3.3 (1.8 - 4.7) -1.2 0.536 

Riboflavin (B2) 57.6 (39.4 - 78.2) 34.0 (24.1 - 50.5) -1.7 <0.001 

SAH 0.006 (0.005 - 0.008) 0.007 (0.006 - 0.008) 1.2 0.003 

SAM 2.9 (1.8 - 4.3) 2.2 (1.8 - 3.5) -1.3 0.176 

  
Data were expressed as median (interquartile range) in μmol/L except those marked with an asterisk denoting 
mmol/L. SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; THF, Tetrahydrofolate. 
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Figure 25. NASH affects plasma DNA methylation. The differential global DNA methylation was 
assessed as 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels in circulating 
leukocytes (n=24 for each group), indicating associations with liver histologic features and plasma α- 
ketoglutarate and succinate levels (a). Metabolites from the citric acid cycle and methionine cycles 
(b) correlated with steatosis when comparing patients with and without NASH (c) but not with 
global DNA methylation. In contrast, 5-mC level was restored in NASH patients after surgery and 
paralleled changes in circulating metabolites, suggesting the potential role of metaboloepigenetic 
processes (d). Asterisks denote statistical significance (*p < 0.05, **p < 0.01, ***p < 0.001) by the 
Wilcoxon rank-sum test, β-HB, β-hydroxybutyrate; DNMT, DNA methyltransferase; TET, ten-eleven 
translocation. 
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Plasma metabolome identifies biomarkers to distinguish patients with and without NASH 

and predict NASH remission 

The drawbacks associated with liver biopsy represent a considerable constraint to clinically detect 

the severity and progression of liver disease and to assess NASH remission after treatment. The 

current markers of liver injury, plasma aminotransferases, did not discriminate patients with and 

without NASH with AUC values between 0.511 and 0.837 and 45% of misinterpretations            

(Figure 26 a). In contrast, reduction after surgery in plasma aminotransferases provided an 

assessment of NASH remission with 10% of uncertainties (Figure 26 b). 

 

Logistic regression models and ROC analyses using the concentration of energy-balance metabolites 

in plasma revealed that the combination of plasma α-KG, pyruvate and oxaloacetate levels 

improved the diagnostic accuracy of NASH, with AUC values between 0.680 and 0.938 and reduced 

misinterpretations (Figure 27 a). Similarly, the combined decrease in plasma α-KG and ß-HB levels 

was also a good predictive biomarker of NASH remission with an AUC between 0.938 and 1 (Figure 

27 b). More importantly, the combination of reductions in plasma α-KG, ß-HB and AST levels 

predicted NASH remission without ambiguity (Figure 27 c).  

 

These results need to be validated in the routine clinical assessment, i.e., without controlled and 

batched laboratory assessment, but strongly suggest that the explorative second biopsy should be 

limited to NASH patients without changes in these measurements over time. Eventually, these 

simple measurements might be used to evaluate the effectiveness of therapies in NASH patients. 
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Figure 26. The diagnostic and predictive value of plasma aminotransferase levels. Logistic 
regression models and ROC curve-based model evaluation indicated that measurements of 
aminotransferases (ALT and AST) were practically useless to distinguish between patients with and 
without NASH (a). However, paired measurements before and after surgery may contribute to the 
assessment of NASH remission (b). Asterisks denote statistical significance (***p < 0.001) by the 
Wilcoxon rank-sum test. 
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Figure 27. Paired measurements of selected metabolites predict NASH remission. ROC curve-
based model evaluation indicated that selected circulating metabolites provide tools to distinguish 
patients with and without NASH, but the number of misinterpretations remains relatively high (a). 
Paired measurements of plasma α-ketoglutarate and β-hydroxybutyrate levels before and after 
surgery might be useful to predict NASH remission (b). Remarkably, the addition of variations in AST 
level to the model predicted bariatric surgery induced NASH remission without ambiguity. Asterisks 
denote statistical significance (***p < 0.001) by the Wilcoxon rank-sum test. 
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STUDY III 

 

α-Ketoglutarate regulates AMPK/mTOR-driven pathways in NASH 

remission: therapeutic perspectives through rewiring metabolism and 

epigenetics 
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Liver metabolic responses in NASH and the association with cell survival related to 

chronic oxidative stress and mitochondrial dysfunction. 

 

Clinical and laboratory variables identified progressive metabolic disturbances closely related to 

liver disease (Table 12). Patients with NASH provided paired liver biopsies one year after bariatric 

surgery demonstrating NASH remission, weight loss (although remained obese), and improvement 

in diabetes, hypertension and dyslipidemia.  

 

The mechanisms responsible for steatosis continuing benign (at least temporarily) in some patients 

but not in others remain speculative but appear associated with the differential resilience towards 

oxidative stress. The accumulation of lipoperoxides and the activation of antioxidant enzymes 

defined NASH livers and segregated non-NASH livers without confusions. Moreover, these 

alterations completely reverted after NASH remission (Figure 28 a). Mechanisms are likely 

multifactorial and related to pathways with potential to control immune responses and modulate 

proliferation and cell death, as indicated by correlating changes in the expression of IL-10 and signal 

pSTAT-3 (Figure 28 b). In the same scenario, we found in NASH livers a reduction in the expression 

of succinate dehydrogenase (complex II), which governs in the overall flux of mitochondrial ROS and 

as general sensor for apoptosis (Figure 28 c, d). Mitochondrial dynamics and mitochondria-

endoplasmic reticulum interactions regulate systemic energy balance coordinating the correct 

function of the CAC, and oxidative phosphorylation via the electron transport chain (ETC) (Figure 28 

e). In NASH livers fragmented mitochondrial network and higher number of mitochondria with 

lower size and heterogeneous shape, and lower number of autophagosomes were consistent 

observations with transmission electronic microscopy and discriminated livers with or without NASH 

(Figure 29 a). We also found in NASH with respect to non-NASH livers a significant under expression 

of the translocase of the outer mitochondrial membrane (TOM20) and MFN2, likely molecular 

effectors during mitochondrial biogenesis (Figure 29 b).  
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In NASH livers, compared with non-NASH livers, mTORC1 was activated with increased 

phosphorylation of the ribosomal S6 and 4EBP1 substrates (Figure 29 b). Metabolic and oxidative 

stress appear to be the triggers of mTORC1 hyperactivation with alternative feedback loops signaled 

by increased fatty acid oxidation indicated by higher expression of fatty acid synthase (FASN), 

increased AKT phosphorylation and decreased AMPK phosphorylation. Autophagy was also 

compromised in NASH livers with altered LC3 II to LC3 I ratio, accumulation of p62 and reduced 

LAMP2A expression. Apoptosis, mitochondrial dysfunction and the autophagic flux were improved 

in livers with confirmed NASH remission after surgery (Figure 29 c). The decreased phosphorylation 

of S6, 4EBP1 and AKT with increased AMPK phosphorylation suggested mTORC1 inhibition 

accompanied by the higher expression of TOM20 and MFN2 and the significant decrease in FASN 

and apoptotic markers. The increased LC3II to LC3I ratio, the lack of p62 accumulation and the 

increased expression of LAMP2A also suggested the recovery in liver autophagy after surgery 

(Figure 29 c, d).  
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Table 12. Clinical laboratory assessment and liver histologic features in patients with NASH and 12 
months after surgery. 

  Non-NASH (NAS ≤ 2) 
 

(n=31) 

NASH (NAS ≥ 5) 
 

(n=31) 

NASH, one-year after 
surgery 
(n=31) 

Clinical characteristics     

Male, n (%) 10 (32.3) 10 (32.3) - 

Age, years 46.0 (39.0-56.0) 49.0 (44.0-56.0) - 

BMI, Kg/m2 44.0 (41.4-46.4) 46.5 (42.6-53.6) 31.4 (28.7-33.4) b, c 

T2DM, n (%) 11 (35.5) 17 (54.8) 4 (12.9) 

Hypertension, n (%) 17 (54.8) 21 (67.7) 10 (32.3) b, c 

Dyslipidaemia, n (%) 9 (29.0) 12 (38.7) 2 (6.5) b, c 

Medication (%)      

Metformin 4 (12.9) 12 (38.7) a 4 (12.9) b, c 

Insulin 2 (6.5) 5 (16.1) 1 (3.2) b, c 

Sulfonylureas 1 (3.2) 2 (6.5) - 

ACEIs + ARA-II 11 (35.5) 14 (45.2) 4 (12.9) b, c 

Diuretics 4 (12.9) 5 (16.1) - 

Statins 5 (16.1) 5 (16.1) 2 (6.5) b, c 

Laboratory assessment    

Hemoglobin, g/dL 13.2 (12.7-14.7) 13.4 (12.7-14.8) 13.1 (12.3-14.0) 

Leukocytes, x109/L 7.5 (6.3-9.4) 7.6 (6.5-10.7) 6.0 (5.0-7.5) c 

Platelets, x109/L 197 (187-266) 243 (181-314) 227 (209-251) 

Ferritin, µg/L 44.4 (25.0-143.7) 112.4 (31.2-203.3) 32.2 (12.2-85.5) b, c 

Total-cholesterol, mmol/L 4.3 (3.4-5.2) 4.3 (3.8-5.0) 4.8 (4.1-5.4)  

HDL-cholesterol, mmol/L 1.2-0.9-1.6) 1.2 (0.9-1.4) 1.5 (1.3-1.7) c 

LDL-cholesterol, mmol/L 2.4 (1.9-2.8) 2.6 (2.4-3.7) a 2.8 (2.3-3.3) 

Triglycerides, mmol/L 1.5 (1.0-2.3) 1.7 (1.3-2.5) a 0.9 (0.6-1.4) b, c 

Glucose, mmol/L 6.5 (6.1-8.9) 7.6 (6.2-8.7) a 4.5 (4.3-5.1) b, c 

Insulin, pmol/L 90.9 (28.3-140.3) 108.0 (48.7-143.7) a 40.9 (20.9-58.6) b, c 

HOMA-IR 4.1 (1.3-6.3) 6.7 (2.7-8.1) a 1.2 (0.6-1.9) b, c 

Albumin, g/L 44.0 (41.0-45.0) 43.0 (41.0-46.0) 42.0 (41.0-44.0) 

AST, µkat/L 0.5 (0.4-0.7) 0.7 (0.5-1.3) a 0.3 (0.2-0.3) b, c 

ALT, µkat/L 0.5 (0.3-0.7) 0.7 (0.5-1.4) a 0.2 (0.2-0.3) b, c 

GGT, µkat/L 0.3 (0.2-0.5) 0.5 (0.3-0.8) a 0.2 (0.1-0.5) c 

CRP, mg/L 0.9 (0.5-1.5) 1.9 (0.6-1.5) a 0.4 (0.2-0.4) b, c 

Liver histologic features      

Steatosis    

<5% 27 (87.1) - 31 (100) c 

5-33% 3 (9.7) 3 (9.7) a - 

34-66% 1 (3.2) 15 (48.4) - 

>66% - 13 (41.9)  - 

Lobular inflammation    

No foci 12 (38.7) - 24 (77.4) b, c 

<2 foci 16 (51.6) 5 (16.1) a 7 (22.6) 

2-4 foci 3 (9.7) 21 (67.7) - 

>4 foci - 5 (16.1)  - 

Hepatocellular Ballooning    

None 26 (83.8) 2 (6.5) a 31 (100) b, c 

Few cells 5 (16.1) 20 (64.5) - 

Many cells - 9 (29.0)  - 

Fibrosis    

None (F0) 8 (25.8) 4 (12.9)  17 (54.8) b, c 

Perisinusoidal or periportal (F1) 18 (58.1) 8 (25.8) 13 (41.9) 

Perisinusoidal and portal (F2) 5 (16.1) 15 (48.4) 1 (3.3) b, c 

Bridging fibrosis (F3) - 4 (12.9) - 

  
Values are shown as number of cases and percentages or medians and interquartile range. ACEIs: Angiotensin-
converting-enzyme inhibitor; ALT: Alanine transaminase; AST: Aspartate transaminase; ARA-II: Angiotensin II 
receptor antagonists; BMI: Body mass index; CRP: C-reactive protein; HDL: High-density lipoprotein; HOMA-IR: 
Homeostatic model assessment of insulin resistance; HTG: Hypertriglyceridemia; LDL: Low-density lipoprotein; 
T2DM: Type 2 diabetes mellitus.  Significant differences in comparisons are indicated by a non-NASH vs NASH. 
b Non-NASH vs 12 months after surgery. c NASH vs 12 months after surgery (at least p<0.05). 
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Figure 28. Hepatic oxidative stress and mitochondrial dysfunction were associated with NASH.  
(a) Histological evaluation of Non-NASH and NASH patients indicates oxidative stress by 
immunochemical staining of paraoxonase-1 (PON1) and 4-hydroxy-2-nonenal. Representative 
microphotographs (bars indicate 100 x magnifications) are shown on right, with a quantification of 
positively-stained area in the right. (b) The level of the inflammatory response interleukin 10 (IL-10), 
and activator of transcription 3 (STAT-3) were determined by western blot for liver patients as 
indicated. (c) Oxidative phosphorylation (OXPHOS) mitochondrial complexes representing the five 
mitochondrial oxidative phosphorylation complexes were used to examine the expression of 
mitochondrial proteins in liver patients with (n=12) or without NASH (n=12) and NASH remission 
(n=12). (d) Gene expression of succinate dehydrogenase B (SDHB). (e) Representative shema of 
OXPHOS. Asterisks denote significance (* p < 0.05, ** p < 0.01, ***p < 0.001 by Wilcoxon rank-sum 
test). 
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Figure 29.  Mitochondrial integrity shapes the mechanisms AMPK/mTORC1 of hepatocyte death in 
livers with NASH after bariatric surgery. (a) Representative microphotographs (bars indicate 100x 
magnification) of liver sections stained with hematoxylin and eosin (H&E) and Sirius Red. 
Representative TEM liver images and immunoblot analysis (n=24) of mitochondria in NASH patients 
indicates lower degree of mitochondrial dysfunction. (b) Western blot analysis of apoptotic markers 
and mTORC1 downstream targets from Non-NASH (n=12) and NASH (n=12) patients. (c) 
Representative microphotographs (bars indicate 100x magnification) of before and 12 months after 
surgery in patients with paired liver biopsies indicates changes post-surgery by Hematoxylin an 
Eosin (H&E), Sirius Red and Masson’s Trichrome staining. Histological evaluation after surgery 
indicates apoptosis and mitochondrial dysfunction by immunochemical staining of B-cell lymphoma 
2 (Bcl-2) and mitofusin 2 (MFN2). (d) Western blot analysis of apoptotic markers involved in energy 
generation and autophagy signaling markers before (n=12) and after surgery (n=12) in liver samples. 
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NASH drives distinct metabolic rearrangements in the livers and suggests the role of α-

KG in energy homeostasis. 

 

We found that a relatively low number of metabolites distinctly segregated patients with or without 

NASH (Table 12). The more prominent difference in NASH livers with respect to non-NASH livers was 

the major alteration in the α-KG to succinate conversion revealed by the accumulation of hepatic 

glutamine, α-KG, citrate and pyruvate. These findings also denoted the potential role of 

glutaminolysis and reduced metabolic flexibility in NASH development (Figure 30 a). Of note, 

reductive carboxylation apparently induced the conversion of α-KG into citrate and the 

accumulation of both key lipogenic molecules might explain the higher steatosis in NASH livers.  

Changes in the expression of involved enzymes were consistent (Figure 30 b). Specifically, the 

upregulation of both glutamate dehydrogenase and glutaminase combined with the 

downregulation of α-KG dehydrogenase and pyruvate carboxylase. At the same time, the 

accumulation of fructose-6-phosphate and the decrease in 6-phospho-gluconate may indicate a 

suppressor effect in glycolysis (Table 13), and we also observed significant changes among 

metabolites from 1-C metabolism. Glycine, SAH and methionine were significantly decreased but 

taurine concentration increased significantly in NASH livers. These alterations and the positive 

correlation between steatosis and the SAM-to-SAH ratio, substrate and product of essential 

methyltransferase reactions, may likely result in lower glutathione levels and increased ROS burden 

(Figure 30 c, Table 12). These findings had a significant impact in the segregation between NASH and 

non-NASH livers (Figure 31 a).  
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Table 13. Liver metabolome in obese patients with or without NASH. 
 

  
Metabolite 

Non-NASH 
(n=31) 

NASH 
(n=31) 

Fold 
change 

p-value 

E
n

e
rg

y
 M

e
ta

b
o

li
s
m

 

α-ketoglutarate 35.5 (29.7 - 41.3) 44.1 (34.0 - 50.1) 1.2 <0.001 

β-hydroxybutyrate 1983.8 (1505.2 - 2479.0) 1702.4 (1297.4 - 2088.8) -1.2 0.156 

Aconitate 59.8 (42.3 - 75.5) 59.4 (45.3 - 65.5) 1.0 0.875 

Alanine 6317.9 (5450.0 - 6920.4) 6755.4 (5793.2- 7278.3) 1.0 0.156 

Aspartate 1108.1 (732.8 - 1282.0) 1190.3 (849.5 - 1547.5) 1.1 0.198 

(Iso)Citrate 1.2 (0.7 - 1.6) 1.7 (1.1 - 3.1) 1.4 0.008 

Fructose-1,6BP 90.0 (75.04 - 102.2) 101.1 (85.4 - 108.7) 1.1 0.064 

Fructose-6P 158.6 (133.37 - 166.6) 181.8 (154.6 - 197.6) 1.1 0.006 

Fumarate 208.2 (163.4 - 285.7) 210.8 (163.9 - 261.6) 1.0 0.803 

Glucose 1184.6 (756.3 - 1448.8) 1037.4 (815.0 - 1037.4) -1.1 0.118 

6P-Gluconate 98.7 (70.5 - 124.6) 73.6 (51.9 - 92.3) -1.3 0.027 

Glucose-6P 137.7 (114.3 - 157.8) 153.8 (129.5 - 165.6) 1.1 0.121 

Glutamate 3618.1 (2422.5 - 4818.9) 4937.1 (3517.6 - 5867.2) 1.4 0.172 

Glutamine 22121.1 (18181.2-26284.2) 25245.6 (17964.8-32496.9) 1.2 0.033 

Glyceraldehyde-3P 82.7 (55.3 - 105.1) 71.5 (59.5 - 86.8) -1.2 0.643 

Glycerate-3P 334.8 (302.4 - 473.4) 383.6 (315.7 - 543.2) 1.1 0.643 

Isoleucine 2091.6 (1230.6 - 2658.0) 2084.2 (1790.4 - 2420.0) 1.0 0.916 

Lactate 10570.4 (9565.5 - 13807.5) 10859.0 (9835.8 - 12126.4) 1.0 0.875 

Leucine 3833.8 (2459.6 - 5032.7) 3727.5 (3011.5 - 4416.4) 1.0 0.655 

Malate 425.3 (351.4 - 512.6) 446.3 (341.0 - 585.4) 1.0 0.872 

Oxolacetate 22.7 (14.8-38.8) 28.1 (13.8-46.2) 1.2 0.553 

Phosphoenolpyruvate (PEP) 100.5 (75.3 - 157.8) 109.6 (87.3 - 136.5) 1.1 0.478 

Pyruvate 75.1 (59.9 - 89.3) 108.4 (64.8 - 164.7) 1.4 <0.001 

Ribose-5P 126.8 (98.0 - 163.4) 123.1 (115.8 - 123.9) 1.0 0.703 

Serine 5561.7 (3382.7 - 7489.2) 6252.8 (5384.2 - 8002.2) 1.1 0.312 

Succinate 251.7 (198.5 - 322.5) 253.7 (206.52- 312.4) 1.0 0.813 

Valine 2743.2 (1572.0 - 3641.0) 2541.4 (1829.0 - 3136.1) -1.1 0.665 
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5-mTHF 68.6 (53.2 - 128.6) 59.6 (31.3 - 89.7) -1.2 0.198 

AMP 199.5 (98.9 - 350.7) 187.3 (109.1 - 275.4) -1.1 0.723 

Betaine 267.8 (171.1 - 356.6) 310.8 (179.4 - 323.9) 1.2 0.813 

Choline 1175.3 (927.6 - 1486.8) 1227.3 (1052.6 - 1327.6) 1.0 0.415 

Cystathionine 8.1 (5.9 - 11.2) 9.4 (7.2 - 11.7) 1.2 0.438 

Cysteine 27806.3 (16442.9 - 
47769.9) 

25289.8 (4208.4 - 37467.6) -1.1 0.160 

Dimethylglycine 1208.5 (889.1 - 1467.6) 1387.0 (1126.9 - 1715.8)  1.1 0.131 

dUMP 1.5 (1.1 - 2.1) 1.3 (1.0 - 1.8) -1.1 0.276 

Folic acid 0.12 (0.07 - 0.17) 0.10 (0.05 - 0.14) -1.2 0.185 

Formyl-THF 0.19 (0.12 - 0.27) 0.15 (0.11 - 0.17) -1.3 0.198 

Glycine 4810.2 (833.0-8174.1) 1544.9 (797.3-2512.9) -3.1 0.025 

Homocysteine 1007.4 (663.1 - 1808.2) 1366.0 (689.9 - 3074.2) 1.4 0.180 

Methionine 361.5 (245.8 - 671.3) 287.1 (199.5 - 333.4) -1.3 0.009 

NADPH 258.3 (178.9 - 328.1) 213.2 (140.5 - 263.2) -1.2 0.040 

Pyridoxal-5-P (B6) 2.1 (1.4 - 2.8) 2.5 (1.5 - 3.8) 1.2 0.386 

Riboflavin (B2) 3.4 (2.2 - 5.3) 3.3 (2.5 - 4.1) 1.0 0.478 

SAH 126.9 (106.5 - 149.6) 90.3 (75.8 - 104.5) -1.4 <0.001 

SAM 45.5 (29.6 - 54.9) 50.0 (37.7 - 69.2) 1.1 0.149 

Taurine 92.9 (71.2 - 119.0) 128.1 (96.2 - 136.1) 1.4 0.016 

  
Data were expressed as median (interquartile range) in μmol/100 mg of tissue. SAH, S-adenosylhomocysteine; 
SAM, S-adenosylmethionine; THF, Tetrahydrofolate. Significant differences (at least p<0.05). 
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Figure 30.  Reversion of liver metabolic perturbation in NASH patients after bariatric surgery.  
(a) Representation of the energy metabolism and 1-C intermediates in liver between NASH (n=31) 
and Non-NASH (n=31) patients measured by mass spectrometry. (b) Gene expression fold-changes 
(Log2 based) in enzymatic genes related to glutaminolysis process. (c) Liver correlation (Spearman 
test p < 0.05) between SAM/SAH ratio levels and steatosis grade. (d) Liver metabolites from CAC and 
1-C metabolism revealed distinct segregation between patients before and after bariatric surgery. 
(e) αKG-to-succinate ratio in liver before and after surgery. Metabolites are marked in blue 
(significant decrease), red (significant increase), grey (non-significant) and black (undetected). 
Statistical significance was estimated when p < 0.05, ** p < 0.01, ***p < 0.001 by Wilcoxon rank-
sum test. 
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Figure 31. (a) PLS-DA and VIP scores analysis denote that metabolites related to reductive 
carboxylation and methionine cycle discriminate among with or without NASH livers. (b) PLS-DA and 
VIP score non-supervised analysis shown an important segregation of patients before and after 
surgery attending metabolites involved in energy and 1-C metabolism. Asterisks denote significance 
(***p < 0.001 by Wilcoxon rank-sum test). 
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Reliably, liver metabolome in NASH patients after BC revealed reduction in hepatic levels of glucose 

and glycolytic intermediates distal to glucose-6-phospate suggested an increased entry of glucose-

derived intermediates into mitochondrial biosynthetic metabolism after NASH remission (Figure 30 

d and Table 14). The accumulation of glucose-6-phosphate and ribose-5-phosphate also indicated a 

shift towards the pentose-phosphate pathway. The reduction in the liver concentration of ß-HB and 

amino acids, including glutamine and BCAAs, also supported the restoration of glycolysis and the 

reversal in glutamine dependency. Decreased hepatic serine levels after remission might increase 

the flux through pyruvate formation in cytosol and decrease the flux to anaplerotic reactions that 

drive glutamine-derived carbon into the CAC in NASH livers. The change from the reductive to an 

oxidative metabolism after NASH remission was further confirmed by the associated decrease of 

hepatic α-KG and the increase in succinate levels. Liver citrate levels remained high after surgery. In 

contrast, all metabolites involved in 1-C metabolism remained unaltered or significantly decreased 

and the SAM to SAH ratio was restored (Figure 30 d, Figure 31 b). Moreover, we observed that the 

elevated α-KG-to-succinate ratio found in NASH livers was reverted after surgery (Figure 30 e). The 

challenge remains in ascertaining the relationship between these findings and potential pathogenic 

events. Taken together, our data suggest the previously unrecognized role of mTORC1 activation 

promoting a NASH phenotype in livers of obese patients. For this purpose, we then explored in a cell 

model whether increased α-KG is sufficient to facilitate mTORC1 activation. 

 

The accumulation of α-KG in hepatocytes modulates cell survival and the mTORC1-

mediated metabolic response.  
 

Amino acid-starved HepG2 cells treated with cumulative amounts of the cell-permeable αKG analog 

(DMKG) increased αKG levels in cells and intensified cell death in a dose-dependent manner     

(Figure 32 a). The likely mechanism was apoptosis as indicated by the rising expression of cleaved 

caspases and higher detection of late apoptotic (Annexin V / PI positive) cells (Figure 32 b,c). The 

activation of mTORC1 in DMKG-treated cells was indicated by the α-KG-dose-dependent increase in 

S6 (S235/236) phosphorylation and correlated with an increase of AKT (T308) phosphorylation and 

with a decrease in AMPK (T172) phosphorylation. Apoptosis was combined with autophagy 

inhibition as indicated by the rising accumulation of p62 and the progressive decrease in the 

formation of LC3II. The lack of AKT phosphorylation at S473 and the non-significant changes in the 

expression of LAMP2A and FASN were also suggestive (Figure 33 a).  
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Table 14. Liver metabolome before and after surgery (12months). 
  
  Metabolite 

Before surgery 
(n=31) 

12 months after surgery 
(n=31) 

Fold 
change 

p-value 

E
n
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α-ketoglutarate 37.6 (30.4 - 46.8) 3.7 (2.9 - 5.7) -10.2 <0.001 

β-hydroxybutyrate 1901.2 (1388.7 - 2364.2) 224.9 (202.0 - 277.6) -8.5 <0.001 

Aconitate 59.4 (44.5 - 69.2) 14.3 (10.2-22.2) -4.1 <0.001 

Alanine 6557.5 (5652.4 - 7109.1) 3128.0 (1798.0 - 5530.9) -2.1 <0.001 

Aspartate 1109.6 (828.9 - 1368.2) 292.3 (230.0 - 364.2) -3.8 <0.001 

(Iso)Citrate 1.4 (0.8 - 2.0) 8.4 (6.0 - 12.1) 6.0 <0.001 

Fructose-1,6BP 90.5 (79.8 - 107.4) 57.1 (35.6 - 75.7) -1.6 <0.001 

Fructose-6P 159.9 (140.1 - 182.3) 88.6 (57.5-143.2) -1.8 <0.001 

Fumarate 209.5 (163.0 - 283.5) 83.7 (47.2 - 107.1) -2.5 <0.001 

Glucose 1037.4 (809.1 - 1281.7) 735.7 (370.0 - 909.8) -1.4 <0.001 

Glucose-6P 139.3 (118.3 - 165.0) 253.6 (148.6 - 304.2) 1.8 <0.001 

Glutamate 4443.1 (2488.4 - 5496.7) 5281.1 (3598.3 - 7617.7) 1.2 0.094 

Glutamine 25503.4 (18015.5-33831.5) 21106.9 (14789.9-52127.8) -1.2 <0.001 

Glycerate-3P 357.5 (308.1 - 496.4) 211.1 (184.7 - 217.9) -1.7 <0.001 

Isoleucine 2089.7 (1636.6 - 2527.7) 121.1 (88.7 - 267.6) -17.3 <0.001 

Lactate 10744.9 (9678.2 - 12824.5) 11212.1 (4996.0 - 18339.0) 1.0 0.956 

Leucine 3727.5 (2876.9 - 4720.9) 376.0 (302.9 - 686.7) -9.9 <0.001 

Malate 440.4 (346.0 - 525.4) 430.8 (270.0 - 559.8) 1.0 0.800 

Phosphoenolpyruvate (PEP) 103.2 (81.4 - 147.7) 21.9 (5.8 - 27.6) -4.7 <0.001 

Pyruvate 75.1 (61.9 - 123.6) 150.3 (65.7 - 209.6) 2.0 0.025 

Ribose-5P 123.1 (109.4 - 146.1) 341.7 (231.9 - 464.4) 2.8 <0.001 

Serine 5818.5 (3939.3 - 7716.9) 2672.3 (1558.9 - 3790.0) -2.2 <0.001 

Succinate 251.7 (199.9 - 322.0) 622.1 (345.2 - 950.0) 2.5 <0.001 

Valine 2552.8 (1813.8 - 3290.3) 339.6 (204.4 - 610.7) -7.5 <0.001 

           

1
-C

 M
e
ta

b
o

li
s
m

 

AMP 187.31 (100.8 - 332.7) 112.2 (49.4 - 137.5) -1.7 0.003 

Betaine 275.3 (171.1 - 341.8) 212.7 (126.0 - 258.7) -1.3 0.016 

Choline 1185.4 (999.6 - 1337.3) 1163.4 (543.0 - 1713.1) 1.0 0.644 

Cystathionine 8.1 (6.0 - 11.3) 1.4 (0.8 - 1.9) -5.8 <0.001 

Dimethylglycine 1224.1 (957.7 - 1654.7) 872.6 (436.3 - 1220.3) -1.4 0.001 

Homocysteine 1189.1 (667.4 - 2173.5) 242.2 (121.9 - 455.6) -4.9 <0.001 

Methionine 292.9 (219.5 - 501.3) 72.3 (49.4 - 107.4) -4.1 <0.001 

NADPH 228.7 (150.8 - 293.0) 71.8 (48.6 - 81.5) -3.2 <0.001 

Pyridoxal-5-P (B6) 2.2 (1.4 - 3.5) 1.8 (1.4 - 2.8) -1.2 0.400 

Riboflavin (B2) 3.3 (2.3 - 4.3) 2.2 (1.3 - 3.4) -1.5 0.003 

SAH 106.3 (83.1 - 130.0) 29.1 (15.7 - 37.4) -3.7 <0.001 

SAM 47.0 (33.0 - 61.2) 14.5 (8.5 - 26.6) -3.2 <0.001 

Taurine 103.6 (78.4 - 129.8) 96.6 (50.9 - 162.6) -1.1 0.651 

  
Data were expressed as median (interquartile range) in μmol/100 mg of tissue. SAH, S-adenosylhomocysteine; 
SAM, S-adenosylmethionine; THF, Tetrahydrofolate. Significant differences (at least p<0.05). 
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Even moderate increases in cellular α-KG levels induced a significant metabolic reprogramming in 

this cell model (Figure 34 a). Treatment with 2mM of DMKG, compared with untreated cells 

mimicked glutaminolysis activation and increased most energy-balance metabolites especially those 

from the CAC. Conversely, metabolites from 1-C metabolism were either unaffected or significantly 

decreased by increased cellular α-KG levels with the exception of serine levels (Figure 33 b and 

Table 15).  

 

Most observations resembled those found in livers with NASH, a condition in which there is an 

apparent maladaptive response of cellular processes to energy status. It seems apparent that 

therapies focused on AMPK/mTOR-driven pathways that can regulate and coordinate cellular and 

whole-body energy homeostasis might have beneficial effects in NASH development.  

 

Metformin is a potential candidate acting directly by reducing energy charge through inhibition of 

the respiratory-chain complex I. The data from randomized clinical trials with metformin are not 

encouraging but low quality in design, dose, duration and histologic features do not exclude 

beneficial effects. The addition of metformin, an energy disruptor and AMPK activator regulated the 

α-KG-induced effects of metformin. The effects on apoptosis were unclear because metformin 

decreased the levels of cleaved caspases but simultaneously induced a consistent rise in late 

apoptotic cells (Figure 32 b, c) indicating additional toxic effects, which were likely responsible for 

inconsistent effects on autophagy with significant p62 degradation and lower expression in LAMP2A 

but without statistically significant changes in LC3II levels. However, metformin prevented the 

DMKG-mediated upregulation of mTORC1 signaling restoring S6, AKT and AMPK phosphorylation 

and decreasing FASN expression (Figure 33 c). Metformin also abrogated the α-KG-induced 

metabolic effects restoring the levels of energy-balance metabolites with further reduction in 

metabolites from 1-C metabolism with the exception of homocysteine and SAH (Figure 33 d, Figure 

34 b and Table 16). These results suggest a link with our previous findings suggesting the effect of 

metformin on DNA methylation and histone modifications regulating the expression of genes.   
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Figure 32. DMKG and metformin treatment in HepG2 cells induce apoptosis. (A) Intracellular α-KG 
concentrations of each studied group incubated with increasing concentrations of DMKG. Data were 
normalized by concentration of total protein and HepG2 cell viability in relation to an increasing 
DMKG concentration. Statistical significance was estimated by Wilcoxon rank-sum test. aSignificant 
difference compared with control group; bsignificant differences compared with 0.2 mM group; 
csignificant differences compared with 0.5 mM group. (b) Apoptosis induction was determined by 
annexin V / propidium iodide (PI) staining by flow cytometry. (c) Late apoptotic cells percentage was 
determined as the percentage of cells positive for both annexin V and PI. Graphs show mean values 
± SEM (n=3). Statistical significance was estimated when p<0.05 by Anova post hoc Bonferroni). 
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Figure 33. α-Ketoglutarate activates mTORC1 in hepatocytes and imitates metabolic perturbations observed in NASH: a potential role for 
metformin. (a) Western blot analysis of proteins related to energy metabolism, autophagy and apoptosis in HepG2 cells with DMKG treatment 
at the indicated concentrations for 72 hours. (b) Representation of energy and 1-C metabolism intermediates in HepG2 cells treated with 2mM 
DMKG. (c) Western Blot analysis of proteins related to energy metabolism, autophagy and apoptosis in HepG2 cells incubated with DMKG and 
metformin for 72 hours. (d) Energy and 1-C metabolism intermediates in HepG2 cells after corresponding treatment. Metabolites are marked in 
blue (significant decrease), red (significant increase), grey (non-significant) and black (undetected). Statistical significance was estimated when 
p<0.05.

UNIVERSITAT ROVIRA I VIRGILI 
ASSESSING DIAGNOSTIC AND THERAPEUTIC TARGETS IN OBESITY-ASSOCIATED LIVER DISEASES 
Noemí Cabré Casares 
 



149 
 

 
 
Figure 34.  Heatmap and PLSDA analysis obtained from metabolomics data of relevant energy and 
1-C metabolism intermediates in cells incubated with increasing concentrations of 2 mM DMKG (a) 
and 2mM DMKG plus 10mM metformin (b). Rows: metabolites; columns: samples; color key 
indicates metabolite expression value (blue: lowest; red: highest).  
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Table 15. Targeted metabolome of HEPG2 cells with or without 2 mM DMKG 
 

  

  
Metabolite 

Untreated 

(n=6) 

2 mM DMKG 

(n=6) 

Fold 

change  
p-value  

E
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y
 M
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α-ketoglutarate 0.2 (0.2-0.4) 2.0 (1.3-3.1) 10.0 0.002 

β-hydroxybutyrate 2.7 (1.9-3.6) 3.3 (2.7-5.2) 1.2 0.240 

Alanine 11.0 (8.9-15.0) 44.4 (33.6-76.6) 4.0 0.002 

Aspartate 17.8 (12.7-51.4) 86.3 (57.3-144.5) 4.8 0.026 

(Iso)Citrate 1.6 (1.4-2.3) 2.9 (2.4-4.4) 1.8 0.041 

Fructose-1,6BP 9.1 (6.7-14.5) 15.1 (8.5-25.2) 1.7 0.240 

Fructose-6P 57 (35.8-75.1) 82.6 (50.0-119.2) 1.4 0.240 

Fumarate 1.3 (1-1.9) 6.5 (3.9-8.9) 5.0 0.002 

Glucose 102.9 (76.6-166.7) 85.8 (62.4-105.9) -1.2 0.310 

6P-Gluconate 2.3 (2.1-3.6) 3.4 (2.4-4.1) 1.5 0.485 

Glucose-6P 16.9 (10.8-26.1) 26.4 (14.3-42.5) 1.6 0.240 

Glutamate 29.8 (8.2-63.9) 238.6 (168.8-385.8) 8.0 0.002 

Glycerate-3P 19.0 (11.5-29.9) 40.1 (22.4-66.9) 2.1 0.065 

Isoleucine 15.2 (13.0-26.1) 16.1 (15.8-16.4) 1.1 0.485 

Lactate 295.4 (241.5-361.6) 326.0 (241.6-408.3) 1.1 0.818 

Leucine 37.0 (31.5-49.3) 45.3 (32.8-52.4) 1.2 0.699 

Malate 2.8 (2.51-3.8) 11.5 (8.6-19.7) 4.1 0.002 

Oxaloacetate 8.1 (6.5-11.9) 17.5 (10.4-22.6) 2.2 0.041 

Phosphoenolpyruvate (PEP) 1.9 (0.8-4.2) 3.6 (2.4-8.1) 1.9 0.240 

Pyruvate 1.4 (1.1-2.2) 2.8 (2.2-3.4) 2.0 0.041 

Ribose-5P 2.6 (1.4-3.9) 4.0 (3.3-4.9) 1.5 0.132 

Serine 20.4 (10.8-31.8) 81.2 (53.3-117.6) 4.0 0.004 

Succinate 46.3 (45.1-56.6) 54.6 (42.6-75.4) 1.2 0.485 

Valine 45.8 (38.0-53.1) 48.8 (36.4-60.4) 1.1 0.818 
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AMP 5.4 (1.1-6.7) 0.7 (0.5-1.2) -7.7 0.045 

Betaine* 0.08 (0.05-0.10) 0.03 (0.02-0.05) -2.7 0.026 

Choline-Dimethylglycine 0.5 (0.3-0.8) 0.2 (0.08-0.3) -2.5 0.015 

Cystathionine* 19.3 (18.1-35.1) 17.8 (15.0-18.2) -1.1 0.015 

Cysteine 7833.3 (5791.2-11418.9) 6516.2 (6356.8-7043.1) -1.2 0.485 

Folic acid* 4.2 (2.9-5.4) 2.4 (2.0-4.0) -1.8 0.180 

Formyl-THF* 2.8 (2.4-6.4) 2.6 (1.1-6.3) -1.1 0.589 

Glycine 70.9 (53.6-75.0) 57.5 (48.5-79.3) -1.2 0.699 

Homocysteine 0.11 (0.08-0.14) 0.07 (0.04-0.09) -1.6 0.041 

Methyl-THF* 5.0 (3.0-9.6) 3.3 (2.2-3.5) -1.5 0.093 

Methylcobalamine (B12)* 1.1 (0.6-2.3) 1.7 (1.5-2.0) 1.5 0.485 

Methionine 0.36 (0.25-0.76) 0.38 (0.26-0.68) 1.1 0.485 

NADPH 1.1 (0.8-1.2) 0.5 (0.3-0.6) -2.2 0.015 

Pyridoxal 5-P (B6)* 35.0 (31.8-48.9) 28.7 (22.5-46.1) -1.2 0.240 

Riboflavin (B2)* 3.5 (3.4-7.5) 5.9 (3.8-6.0) 1.7 0.589 

SAH* 0.10 (0.06-0.23) 0.08 (0.04-0.09) -1.3 0.009 

SAM 0.71 (0.65-0.80) 0.58 (0.48-0.65) -1.2 0.041 

 
 

Data were expressed as median (interquartile range) in μmol / mg of protein except those marked with an 
asterisk denoting nmol / mg of protein. SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; THF, 
Tetrahydrofolate. Significant differences (at least p<0.05).  
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Table 16. Targeted metabolome of HEPG2 cells treated with 2 mM DMKG with or without 
metformin (10mM). 
 

Table S4. Targeted metabolome of HEPG2 cells treated with 2mM DMKG with or without metformin (10mM). 

  

  
Metabolite 

Without metformin 

(n=6) 

With metformin 

(n=6) 

Fold 

change  
p-value  
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α-ketoglutarate 1.7 (1.1-1.8) 0.8 (0.7-0.9) -2.1 0.002 

β-hydroxybutyrate 6.6 (4.4-8.2) 1.8 (1.4-2.3) -3.7 0.002 

Alanine 17.3 (7.8-24.9) 15.9 (7.2-40.7) -1.1 0.041 

Aspartate 73.3 (59.3-96.1) 25.7 (19.2-33.0) -2.9 0.002 

(Iso)Citrate 2.4 (2.8-5.9) 0.9 (0.8-1.1) -2.7 0.002 

Fructose-1,6BP 9.9 (3.8-14.4) 0.7 (0.6-0.8) -14.1 0.002 

Fructose-6P 69.9 (47.0-94.1) 2.7 (2.4-3.8) -25.9 0.004 

Fumarate 7.2 (4.2-8.2) 3.3 (22.9-4.3) -2.2 0.002 

Glucose 90.9 (77.2-98.2) 48.8 (45.9-62.2) -1.9 0.004 

6P-Gluconate 4.6 (2.4-5.1) 0.5 (0.3-0.8) -9.2 0.051 

Glucose-6P 16.5 (5.8-24.3) 1.0 (0.7-1.2) -16.5 0.002 

Glutamate 244.1 (11.8-300.0) 3.0 (1.6-6.6) -81.4 <0.001 

Glycerate-3P 37.1 (7.6-45.6) 13 (4.2-12.1) -2.9 0.002 

Isoleucine 30.3 (20.3-52.5) 17.8 (16.1-22.9) -1.7 0.009 

Lactate 391.9 (369.8-447.5) 505.1 (395.8-677.0) 1.3 0.240 

Leucine 66.2 (39.9-117.0) 42.1 (38.8-44.8) -1.6 0.002 

Malate 20.9 (14.0-26.1) 8.9 (7.4-12.3) -2.3 0.002 

Oxaloacetate 29.6 (25.6-32.1) 2.9 (2.2-3.1) -10.2 0.002 

Phosphoenolpyruvate (PEP) 14.8 (6.0-16.1) 2.3 (0.9-3.0) -6.4 0.240 

Pyruvate 3.5 (2.5-6.4) 1.8 (1.3-2.7) -1.9 0.004 

Ribose-5P 4.5 (2.6-4.9) 2.2 (1.8-3.4) -2.0 0.041 

Serine 107.1 (73.4-231.3) 43.2 (26.6-91.6) -2.5 0.009 

Succinate 66.3 (62.2-71.2) 73.8 (61.1 9.3) 1.1 0.065 

Valine 67.1 (58.5-55.2) 53.9 (47.7-77.5) -1.2 0.041 

 

        

1
-C
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e
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AMP 1.5 (1.1-1.6) 1.0 (0.6-1.2) -1.5 0.589 

Betaine* 0.03 (0.02-0.04) 0.02 (0.02-0.04) -1.5 0.003 

Choline-Dimethylglycine 0.10 (0.03-0.10) 0.02 (0.01-0.03) -5.0 0.002 

Cystathionine* 19.5 (17.9-21.0) 8.5 (8.3-8.8) -2.3 0.002 

Cysteine 6169.5 (5000.6-7957.9) 4306.1 (3873.7-6194.6) -1.4 0.009 

Folic acid* 3.1 (1.5-5.2) 3.3 (1.5-5.8) 1.1 0.062 

Formyl-THF* 1.5 (0.8-2.7) 0.8 (0.5-0.9) -1.9 0.041 

Glycine 67.7 (54.1-75.5) 47.1 (38.7-62.6) -1.4 0.041 

Homocysteine 0.7 (0.6-0.9) 1.2 (0.8-1.5) 1.7 0.004 

Methyl-THF* 3.6 (2.3-3.7) 0.4 (0.3-0.7) -9.0 0.002 

Methylcobalamine (B12)* 1.1 (0.6-1.6) 0.3 (0.2-0.5) -3.7 0.004 

Methionine 0.5 (0.3-0.6) 0.2 (0.1-0.3) -2.5 0.002 

NADPH 1.3 (1.0-1.3) 0.2 (0.1-0.4) -6.5 0.002 

Pyridoxal 5-P (B6)* 36.8 (33.6-51.6) 27.3 (22.4-31.5) -1.3 0.009 

Riboflavin (B2)* 6.7 (4.4-7.3) 4.7 (4.0-6.1) -1.4 0.004 

SAH* 0.09 (0.07-0.13) 0.12 (0.08-0.24) 1.3 0.041 

SAM 0.7 (0.6-0.9) 0.2 (0.1-0.4) -3.5 0.008 

 
Data were expressed as median (interquartile range) in μmol / mg of protein except those marked with an 
asterisk denoting nmol / mg of protein. SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; THF, 
Tetrahydrofolate. Significant differences (at least p<0.05). 
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The integrative analysis of DNA methylation and gene expression data discriminates 

NASH from non-NASH livers.  

The changes caused by NASH in the relative abundance of metabolites with the ability to function as 

epigenetic modifiers suggested that differences in liver DNA methylation might correlate with 

differences in liver gene expression with a potential prominent role in NASH development. We 

found a significant effect on DNA methylation during NASH, specifically in the context of 5-mC 

conversion to 5-hmC (Figure 35 a). To conclusively determine how these metabolic differences can 

influence NASH pathology requires further investigation, but the relationships revealed by our 

analyses between the relative abundance of metabolites in the livers of patients with or without 

NASH implicate crosstalk between metabolism and DNA methylation in NASH progression        

(Figure 36). To gain a comprehensive insight into the variation in genomic DNA methylation 

between Non-NASH and NASH livers, we explored the methylation levels of cytosine 5 prime to 

guanine (CpG) sites in commercially available single-stranded linear sequences. The average β 

values between NASH and non-NASH livers of 637,380 CpG sites correlated significantly indicating a 

largely stable CpG methylation (Figure 35 b). We identified 2,508 differentially methylated CpG 

sites, which segregated livers with or without NASH (Figure 35 b-d). Hypo- and hyper-methylation 

was equally distributed between groups and were notably located in CpG islands from gene 

promoters (≈ 25%), gene body (≈ 44%) or intergenic regions (≈ 31%) (Figure 35 e, f). We focused our 

analysis to transcripts corresponding to promoters and covering functional regions both from 

transcriptional start site to 200 nucleotides upstream and from 200 to 1500 nucleotides upstream 

according to KEEG pathway analysis (Figure 35 g, i).  

 

To better understand the effects of NASH on gene expression, we performed transcriptional analysis 

using microarrays (see methods). Transcriptional analysis identified the significantly different 

expression of 345 genes that segregated livers with or without NASH (Figure 37 a, b). A 

comprehensive list of differentially expressed genes in NASH livers included 144 upregulated and 

201 downregulated genes (Table 17). According to KEEG analysis genes with lower expression in 

NASH livers were involved in pathways related to metabolism and those upregulated were 

associated with functions such as cell adhesion and migration, chemokine and cytokine signaling, 

and metabolic signaling pathways (Figure 37 c).  
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The resulting 367 differentially methylated CpG sites in CpG islands from promoters likely associated 

with transcriptional activity were compared testing for significant inverse correlation between 

promoter methylation and gene expression and we identified genes that segregated NASH from 

non-NASH livers. After testing for significant inverse correlation between promoter methylation and 

gene expression, our analysis showed that 11 CpGs (corresponding to 11 genes) displayed an 

increase or decrease in promoter methylation corresponding to a decrease or increase of gene 

expression, respectively (inverse Spearman correlation p < 0.05). Of these, 5 CpGs (corresponding 

to: DISP2, MARK3, TDRD6, TRIP10 and ZNF197) were significantly hypermethylated in NASH, and 6 

CpGs (corresponding to: ACP5, ARL8A, C1orf54, HDAC9, RAB31 and UGT3A2) were significantly 

hypomethylated (Figure 38 a). Figure 39 shows individual patient methylation and expression data 

for the genes with negative correlation between DNA methylation and mRNA expression in NASH 

vs. Non-NASH. The genomic locations of these 11 genes across autosomes are visualized using a 

Circos plot (Figure 38b) to explore the relationship between chromosome localization, DNA 

methylation, and gene expression. To determine the biological relevance that these 11 genes have 

with respect to NASH pathogenesis, we curated a comprehensive list of molecular functions or 

biological processes associated with them. This analysis revealed functions in the regulation of 

riboflavin metabolism, insulin signaling pathway, pathways in cancer, lysosome modulation, RET 

signaling pathway and chemokine signaling pathway, to name a few (see Table 16 for 

comprehensive list). 

 

Finally, our 11 gene candidates were validated by gene expression (Figure 38 c). Our data indicated 

the plausible importance of altered DNA methylation in the pathogenesis of NASH and we propose 

the significant hypermethylation of TDRD6 promoter in NASH livers and the significant 

hypomethylation of ACP5, C1orf54, HDAC9 promoters as potential candidates.  Taken together, 

these studies demonstrate locus specific regulation of DNA methylation that differs between obese 

patients with or without NASH. Mechanistically, our findings indicate that some of these 

methylation changes correlate with gene expression, providing novel insights into molecular 

pathogenesis of this disease. 
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Figure 35. Global DNA methylation arrays reveal differences in CpG methylation between non-
NASH and NASH patients. (a) 5-mC and 5-hmC levels measured by mass spectrometry in liver. (b) 
Density plot showing average Beta values at 637,380 filtered CpG sites in Non-NASH and NASH 
patients. (c) Graphical representation of the filtering process used to determine significantly 
differentially methylated CpGs. To investigate methylation differences, we kept only CpGs with 
average methylation difference > 5% between NASH and Non-NASH, and determined those with      
p < 0.05 (Wilcoxon rank-sum test). (d) Heatmap showing methylation levels for 2508 significantly 
differentially methylated CpGs (Wilcoxon rank-sum test p < 0.05 and average methylation difference 
> 5%). (e) Genomic distribution of all differently methylated CpGs across promoters (red), exons 
(light blue), introns (dark blue), and intergenic regions (grey). (f) Genomic localization of hypo- or 
hypermethylated CpGs, demonstrating no preferential change at these regions (color scale same as 
e). (g) Distribution of differentially methylated CpGs between promoters and non-promoter regions. 
(i) KEGG pathway analysis of genes whose promoters contain significantly hypo- (left) or 
hypermethylated (right) CpGs. The most clinically relevant pathways are highlighted in red. 
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Figure 36. Relationships between methionine, TCA cycle and DNA methylation. Significant 
correlations (Spearman cor.test() p < 0.05) denote the connection between metabolism and DNA 
methylation in the progression of NASH. 
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Figure 37. Global mRNA microarray analysis identifies significant expression differences between 
non-NASH and NASH patients. 
(a) Volcano plot of mRNA expression differences between NASH and Non-NASH patients plotted 
against the p-value of the expression difference. The x-axis indicates log2(NASH/Non-NASH), while 
the y-axis shows -log10(p-value) of the t-test. Pink coloring indicates p-values < 0.05, while darker 
shading indicates absolute value of log2(fold-change) in expression greater than 1. (b) Unsupervised 
hierarchical clustering of 345 significantly differentially expressed genes (p < 0.05 and absolute 
value of log2(fold-change) > 1) reveals a clear separation between NASH and Non-NASH (shown as 
red and blue bars across the top of the heatmap, respectively). The heatmap was generated using 
row scaling, and color range indicates low (blue) to high (red) gene expression. (c) Of the 345 
significantly differentially expressed genes from the microarray, 201 are downregulated (left) and 
144 upregulated (right). KEGG pathway analysis is shown, with the most clinically relevant pathways 
distinguished in red. 
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Table 17. Up- and down-regulated genes in NASH.   
 

 

 Cell adhesion molecules (CAMs) 

 Chemokine signaling pathway 

 Leukocyte transendothelial migration 

 Lysosome 

 Metabolism regulation 

 Solute Carrier Family 

 Small Nucleolar RNA 

 

 

Up regulated 

 
ACP5, ADCYAP1R1, AJUBA, APOL3, B3GNT5, BBC3, BHLHA15, BTG2, C12orf5, C15orf48, C2orf82, C5AR1, CAPG, 

CCDC109B, CCL2, CCL20, CCL3, CCNB2, CD209, CD3G, CD52, CD83, CDCA2, CDH15, CDHR2, CFTR, CH25H, CLDN11, 

CLDN5, CLECL1, COL1A1, COL1A2, COL4A2-AS1, CPXM2, CPZ, CRTAM, CTSV, CXCL10, CXCL3, CXCL8, CXCL9, DOK5, 

DOK6, EDN2, EEF1A2, EGR2, EGR3, EZR-AS1, FABP4, FABP5, FAM151A, FAM90A7P, FAR2, FCAMR, FFAR3, FMO1, 

FNDC5, FOXL2, FPR2, GATA3, GEM, GLIPR1, GPNMB, GPR182, GPR183, HIST1H1B, HIST1H3B, HLA-DQA1, HLA-DRB5, 

HMGCS1, HSPB8, HULC, IGSF22, IL10RB-AS1, IL1B, IL4I1, INHBE, ISM1, KCNJ3, LAMP3, LINC00884, LINC00885, 

LOC154872, LPL, LYPD1, MB, MB21D2, MCM2, MMP9, MNDA, NANOS3, NFKBIE, NR4A3, NTN3, OSM, PADI1, PCDH9-

AS2, PEG10, PLA2G7, PLAUR, PLCXD2, PLXNC1, PODN, PRAMEF10, PROK2, PSRC1, QPCT, RASSF9, RFTN1, RGS16, 

RGS2, RNF186, RRAD, SEC14L3, SIX1, SLC22A13, SMIM24, SORT1, SPP1, SQLE, STMN2, TACC3, TBXAS1, THBS2 

,THEMIS, THY1, TIFAB, TLR9, TM4SF19, TMEM200A, TNFAIP3, TNFSF9, TREM2, TRHDE-AS1, TRIM59, TRIM63, TYMS, 

UGT3A2, UHRF1, UNC93A, WNT2 ,WNT5A, ZNF620, ZNF683 

 

Down regulated 

 
AASS, ABCA10, ACKR2, ACOT6, ADAM1A, ADCY1, ADCY10, ADHFE1, ADTRP, AFF3, AFG3L1P, AGR2, AKR1C6P, ALPK2, 

ANKRD23, ANO8, ARHGEF26, ARHGEF4, C1orf228, C1QTNF3, CA3, CA9, CAPN3, CATSPER3, CCDC158, CCDC162P, 

CCDC180, CCDC38, CCDC84, CELSR3, CENPJ, CFAP70, CHAD, CHKB, CHRD, CIART, CIT, CLASRP, CLCN2, CMYA5, 

COLCA2, CPT1B, CRYGS, CSPP1, CXCL2, CYP1A1, CYP3A4, CYP3A43, CYP3A5, CYP3A7, CYP4Z1, DCDC5, DCPS, DDX43, 

DFNB59, DGCR14, DKFZp434J0226, EFCAB1, ENO1-AS1, ERN1, FAM132A, FAM193B, FAM76B, FAM83A-AS1, FKBP5, 

FLJ21408, FLJ31104, FOXO1, FUT3, GADD45G, GNMT, GNRH1, GOLGA7B, GPR128, GPT2, GSTA7P, HAL, HERC2P2, 

HERC2P7, HERC5, HIGD1B, HORMAD2, HSD17B3, HSD3B1, ICA1, IFRD1, IGF1,IGFBP2, INS-IGF2, IRX3, ITGA10, 

KCNMB3, KGFLP1, KIAA0895L, KPNA7, KRT42P, KRT71, L3MBTL1, LCE2D, LGI4, LGSN, LHX4-AS1, LINC00238, 

LINC00659, LINC00939, LINC01125, LOC100270804, LOC100289230, LOC100505918, LOC285626, LOC644656, 

LOC729603, LRRC73, LYG1, MAST2, MEGF6, MREG, MT1IP, MTHFD2L, MTUS2, MYO15A, MYOM1, NBPF14, NEAT1, 

NEIL1, NINJ2, NNMT, NOXO1, NRBP2, OAT, P4HA1, PAPD7, PAQR6, PARP6, PATL2, PDZD3, PILRA, PILRB, POFUT2, 

POU6F1, PPARGC1A, PRR26, PRSS50, PSPH, PTPRH, PYROXD2, PZP, RAD51AP2, RDH12, REC8, RFPL4AL1, RHBG, RIC3, 

S100A1, SEC16B, SH2B1, SH2D6, SLC10A5, SLC16A1, SLC23A2, SLC25A18, SLC29A2, SLC34A1, SMIM5, SNORA33, 

SNORA41, SNORA6, SNORA70B, SNORA70C, SNORA70E, SNORA72, SNORD18C, SNORD85, SNORD98, SOCS2, SYBU, 

TAS1R3, TAS2R19, TBC1D3B, TBC1D3C, TCAF2, TCERG1, TDRD6, TFRC, TG, TMCO6, TPTE2P5, TRPV1, TSKU, TSNAXIP1, 

UBE2Q2L, UCN, UGT2A1, VCPKMT, WDR60, ZDHHC11, ZNF211, ZNF266, ZNF276, ZNF507, ZNF833P 
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Figure 38. Relationship between DNA methylation and mRNA expression.  
(a) Relationship between average change in methylation (NASH – Non-NASH; on the x-axis) is 
plotted against the log2(fold-change) of gene expression (NASH/Non-NASH; y-axis) for 367 
differentially methylated CpGs within promoters of genes with microarray expression data. Purple 
coloring indicates CpGs in promoters of genes whose expression goes up or down with promoter 
hypo- or hypermethylation, respectively. Text labels indicate genes corresponding to promoter 
CpGs with significant correlation between methylation and gene expression (p < 0.05 using 
cor.test() in R), and purple text highlights those with an increase or decrease in expression with 
promoter hypo- or hypermethylation, respectively. (b) Circos plot showing the 367 CpGs from (a), 
with red and blue layers indicating localization and methylation levels respectively in NASH and 
Non-NASH patients. The interior layer shows log2(fold-change) in mRNA levels between NASH and 
Non-NASH patients and text labels indicate CpGs highlighted in purple in (a). (c) Gene expression 
validation of 11 candidate gens. aSignificant difference compared with Non-NASH vs NASH; 
bsignificant differences compared with NASH vs NASH-remission. Statistical significance was 
estimated when p<0.05 by Wilcoxon rank-sum test.   
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Figure 39.  Genes with the highest significant changes in DNA methylation and gene expression. 
Correlation plots of DNA methylation (Beta average) versus gene expression (log2 expression) in 
NASH vs. Non-NASH patients (Spearman cor.test() p < 0.05) for the 11 genes with negative 
correlation between DNA methylation and mRNA expression.  
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Table 18. Genes with the negative correlation of DNA methylation and mRNA expression between Non-NASH and NASH patients 

 

Gene Gene Name CpG name Region Super pathway 
Entrez 
gene 

p-value 
Log2 Fold change 
(NASH/Non-NASH) 

ACP5 Acid Phosphatase 5, Tartrate 
Resistant 

cg01524690 TSS200 
-Metabolism of vitamins and cofactors 

-Lysosome 
54 0.006 1.01 

ARL8A ADP Ribosylation Factor Like 
GTPase 8A 

cg08649954 TSS1500 - Innate Immune System lysosomes motility 127829 0.040 0.12 

C1orf54 Chromosome 1 Open Reading 
Frame 54 

cg06334965 TSS200 -Unknown 79630 0.041 0.37 

DISP2 Dispatched RND Transporter 
Family Member 2 

cg17063840 TSS1500 
-Signaling by Hedgehog 

-Signaling by GPCR 
85455 0.014 -0.10 

HDAC9 Histone Deacetylase 9 cg19585556 
TSS200 

TSS1500 

Signaling by NOTCH1, macrophage 

differentiation and intracellular calcium 

signaling 

9734 0.028 0.61 

MARK3 Microtubule Affinity Regulating 
Kinase 3 

cg26623547 TSS1500 
-RET signaling.  

-Signaling MAPKS kinase activity BRAF  
4140 0.003 -0.44 

RAB31 RAB31, Member RAS Oncogene 
Family 

cg18456459 TSS1500 -Member RAS Oncogene Family 11031 0.012 0.53 

TDRD6 Tudor Domain Containing 6 cg11931223 TSS200 -Gene expression 221400 0.017 -1.49 

TRIP10 Thyroid Hormone Receptor 
Interactor 10 

cg18732869 TSS200 
-Regulation of lipid metabolism Insulin 

signaling-generic cascades 
9322 0.001 -0.64 

UGT3A2 UDP Glycosyltransferase Family 
3 Member A2 

cg10402936 TSS1500 
-Cytochrome P450 - arranged by substrate 

type 
167127 0.035 1.51 

ZNF197 Zinc Finger Protein 197 cg11557071 TSS1500 - Chemokine signaling pathway  10168 0.002 -0.31 
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Discussion 
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The high prevalence of obesity is a global public health problem, declared it as “global epidemic” (5, 

15). Type III obesity (BMI>40 kg/m2) is a pathologic condition that fails in adaptation to metabolic 

changes caused by increase food intake and metabolic disturbances, which are associated with 

severely NCDs, including diabetes and liver disorders (17, 22, 51).  

 

In the context of obesity, up to 70% of patients have liver steatosis and/or inflammation (22, 277). 

NAFLD is an important comorbidity of obesity and is recognized worldwide as the most common 

cause of chronic liver disease in adults and children. Its incidence and prevalence are constantly 

increasing (277, 278). Furthermore, NAFLD is not a simple disease; it includes a spectrum of hepatic 

abnormalities which extends from simple steatosis or NAFL to NASH, a pathological entity 

associated with an increased risk for developing more serious diseases such as cirrhosis, liver failure 

and hepatocellular carcinoma (25).  

 

BS is the most radical therapy for the severe obesity accompanied with metabolic syndrome and 

NASH, leading typically to massive weight loss and, improvement of liver histology. However, the 

clinical use of this procedure remains low even in patients meeting all criteria for eligibility (279). 

Here in we provide evidence that all comorbidities, including NAFLD, significantly improved within 

one-year post-surgery, following weight loss and metabolic improvement. Our findings of the 

impact of BS in NAFLD regression are consistent with previous studies (236-239, 280). The glycemic 

control improvement in all diabetic patients and the likely beneficial effects on diabetes-associated 

end-organ complications is particularly important (281). To consider surgery in patients with lower 

weight excess and suboptimal control of T2DM has been widely endorsed by Diabetes Organizations 

(282). The lack of clinical influence of these recommendations might result in denying diabetic 

patients an effective therapy. Here we add another indication to be evaluated because BS resolves 

NAFLD including NASH and fibrosis in most cases. This major impact on the liver was concordant 

with results from other prospectively designed studies and planned biopsy programs (237). 

 
The transition from NAFL to NASH remains uncertain. However, it is unlikely related to body weight, 

and provably associated with increased insulin resistance, hyperglycemia, hyperlipidemia and other 

metabolic disturbances. Understanding the transition from non-NASH to NASH requires 

investigating the relationship between oxidative stress, mitochondrial dysfunction and 

hepatocellular death (35, 58, 64).  
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It is important to recognize and target the hepatic consequences of nutrient overload. Dietary 

restraint improves liver function and histologic features in mice (283), but in the clinical setting, 

dietary advice is clearly insufficient to stop the growing incidence and prevalence of obesity-

associated diseases (284). Unbalanced nutritional status may lead to the accumulation of fat in 

hepatocytes, which sequentially induces mitochondrial dysfunction, oxidative stress, inflammation, 

and cell death. Remission through dietary interventions is uncommon, and our findings might have 

therapeutic and pathogenic implications in searching effective treatment procedures to reverse 

NAFLD and/or avoiding progression from simple steatosis to NASH. 

 

Recent evidence suggests that continuous adaptation of “remodeling” of hepatic mitochondrial 

metabolism or mitochondrial dysfunction play a key role in the pathogenesis of simple 

steatosis/NASH (285). Mechanisms promoting NAFLD progression involve multiple cellular 

adaptations to the oxidative stress occurring when fatty acid metabolism is impaired by MRC stress 

(119). This adaptation is increased in obese humans with NASH, who also exhibit greater hepatic 

insulin resistance, hepatic oxidative stress, and systemic inflammation.  The decreased activities of 

MRCs increase pro-inflammatory status, influences the proliferation and, activate macrophage 

polarization. For example, the release of certain molecules that promotes tissue damage such as 

TNF-α levels, leading to additional lipid peroxidation which, in turn induces the production of CCL2, 

and fibrogenic factors such as, transforming growth factor β (TGF-β).  TGF-β stimulates hepatic 

stellate cells in injured livers to become myofibroblast (MFs), which activate collagen synthesis that 

finally drives fibrosis progression (101, 103, 286). 

In the first study we show that oxidation, inflammation and fibrosis were clearly altered in patients 

with NASH compared to those without NASH. Moreover, oxidation, inflammation and fibrosis in the 

liver substantially improved after surgery. The measurement of PON1 and CCL2 that have been 

previously shown good indicators of these phenomena assessed the improvement. In particular, we 

had previously observed the close relationship between PON1 and CCL2 in the regulation of hepatic 

oxidative stress and inflammation (76, 287). In mice, pon1 gene deficiency promotes fatty liver 

disease and ccl2 gene deficiency abrogates it (115, 287, 288). In humans, polyphenols attenuate 

liver damage modulating gene expression pathways that regulate the roles of PON1 and CCL2 in 

oxidative stress and the inflammatory response respectively (289, 290). Both processes are 

important in macrophage polarization, with potential impact on promoting the resolution of liver 
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disease (99). Increasingly, galectin-3 has been recognized as a modulator of oxidative stress, 

inflammation, fibrosis and angiogenesis (291). The decrease in liver galectin-3 expression and the 

simultaneous decrease in the liver expression of α-SMA post-surgery appears to modify the 

hedgehog-signaling pathway, indicating that transition from the quiescent stellate cells to 

myofibroblast stellate cells may be reversible (292-294).  

 
Our results suggest a sequential involvement of multiple cellular responses, and support the 

concept of using a combination of different therapies to achieve non-invasive regulation of several 

molecular networks. Assaying a single, expensive and potentially toxic new compound does not 

seem a desirable strategy, considering the multi-factorial nature of NAFLD development (103, 286, 

295). Protection of the liver requires considerable weight loss and deep changes in lifestyle. Some 

well-tried and safe drugs may help improve insulin sensitivity but are fairly ineffective without 

dietary restraint (283). Our histology evidence confirmed that reducing oxidative stress and 

suppressing activation of liver inflammatory cells are mandatory targets.  Dietary antioxidants, 

insulin sensitizers, and lipid-lowering agents can, when used in combination, boost intracellular 

protection against lipoperoxides, suppress key inflammatory signaling systems, and induce 

reparative stress signaling (296, 297); all of which warrant further randomized controlled trials with 

a multi-targeting approach to determine dosage, length of treatment and combinatory modes of 

action (298).  

 

Mitochondria plays an important role in hepatocyte metabolism, being the primary site for the 

oxidation of fatty acids and oxidative phosphorylation. NAFLD affects mitochondrial metabolism and 

metabolic pathways which can lead to perturbations in metaboloepigenetic processes (184). The 

choice of potential therapeutic targets needs to consider that NASH is a multisystem disease with an 

important mitochondrial contribution to the defective metabolic responses (49). Mitochondrial 

dysfunction eventually perturb energy and 1-C metabolism and the involved metabolites may be 

measured in the circulation (263). 

 

The second study focused on plasma target metabolomics, which includes energy and 1-C 

metabolism. Metabolomics is arising attention as powerful tool to provide identification and 

quantification of systemic biological changes. To date, a few studies have explored the detailed 

metabolic profile in severe obesity using target metabolomics strategies. Thus, we developed mass 

UNIVERSITAT ROVIRA I VIRGILI 
ASSESSING DIAGNOSTIC AND THERAPEUTIC TARGETS IN OBESITY-ASSOCIATED LIVER DISEASES 
Noemí Cabré Casares 
 



166 
 

spectrometry–based methods for robust and accurate quantitation of a defined set of closely 

related metabolites (252-254). Our observations suggest that the critical links between obesity and 

liver disease are closely related to the mitochondrial integrity of energy and 1-C metabolism. 

Fluctuations in the plasma metabolome assessed complex effects associated with the severity of 

liver disease, as were almost completely reversed after NASH remission. In human obesity, the liver 

may efficiently respond to nutrient overload during a period of time but the onset and development 

of NASH represents a critical event leading to metabolic inflexibility (299). The clinical relevance in 

obesity of increased CAC activity, whole-body protein catabolism and pyruvate-driven 

gluconeogenesis remains to be established, although the increased anaplerotic flux and 

glutaminolysis-derived accumulation of plasma α-KG in NASH patients may supply pathogenic clues 

(300, 301).  Our data suggest that obese patients, especially those with metabolic syndrome, might 

benefit from bariatric surgery at an earlier stage. Plasma α-KG identifies obese patients with hepatic 

steatosis (263). Our findings suggest that circulating metabolites provide signals of the impaired 

metabolic state that might lead to NASH development when there is an insufficient adaptive hepatic 

response. NASH was associated with perturbed pathways in glucose and fatty acid oxidation with 

convergence in the metabolism of amino acids and lipids (302). These perturbed pathways were 

restored after surgery following NASH remission.  

 

Targeted quantitation of plasma α-KG, pyruvate and oxaloacetate levels revealed differences 

between patients with and without NASH that may be used a interesting noninvasive diagnostic 

biomarkers. A major finding of this study was that paired measurements of these metabolites, 

before and after surgery, provided excellent results to predict NASH remission without ambiguity, 

indicating a reliable alternative to liver biopsy in assessing the effectiveness of clinical management 

in NASH patients. Similarly, metabolites from the methionine cycle, succinate and α-KG have been 

reported as mediators in the dynamic process of methylation linked to altered cellular metabolism 

in disease states (303, 304). Circulating metabolites from energy and 1-C metabolism provide a 

global picture of metabolic interorgan crosstalk with potential importance in liver metabolic 

research associated with the growing obesity epidemics. 

 

Plasma α-KG levels may distinguish lean controls from obese patients with a high predictive 

accuracy and predict obese patients with or without NASH better than commonly used biomarkers 

(263). This result supports the potential clinical utility of plasma α-KG levels. However, additional 
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validation is required. In the third study, our data strongly support the notion that α-KG in NASH 

patients is mainly incorporated into the TCA cycle though increased glutaminolysis. α-KG is 

produced from isocitrate by oxidative decarboxylation catalysed by isocitrate dehydrogenase (IDH). 

α-KG can also be produced anaplerotically via process termed glutaminolysis (145, 149). 

Incorporation of α-KG into the CAC cycle is the major anaplerotic step in proliferating cells and is 

critical for the production of oxolacetate which reacts with acetyl-CoA to produce citrate (151, 305) 

. Moreover, in the liver of NASH patients, the reductive glutamine carboxylation of the α-

ketoglutarate to citrate is favoured. That is, metabolic changes promote glutamine and the primary 

carbon source for citrate and fatty acid synthesis (305).  

One year after BS we showed an important metabolic shift of profile in the liver. Our results 

determine that glycolytic intermediates were decreased, although CAC intermediates were 

significantly increased after BS. Conversely, livers after bariatric surgery apparently exhibited a 

decreased dependency in reductive glutamine metabolism capable of replenishing the high levels of 

lipogenic acetyl-CoA/malonyl-CoA, as shown in low levels of α-KG. Besides, we observed a 

significative reduction of ketogenesis, because of low levels of BCAAs and β-hydroxybutyrate. A 

similar picture emerged when assessing plasma samples (207, 263). The significant reduction of 

BCAAs improves ketogenesis and patients restore glutamine dependency with decreasing 

glutaminolysis.  

 

Glutaminolysis-induced mTORC1 activation stimulates protein synthesis and cell growth (an 

elevated concentration of amino acids (alanine, serine, and glutamate) indicates protein synthesis 

induced by the over activation of mTORC1). mTORC1 activation by amino acids controls insulin 

signalling, a key aspect of body metabolism, that, in pathophysiological process, can lead to 

metabolic diseases (150). Our results suggest that mTORC1 signalling pathway is over-activated in 

liver patients with NASH and promotes anabolism (306, 307). The activation of the mTORC1 

pathway causes the downregulation of the AMPK pathway. The AKT/mTORC1 complex inhibits 

autophagy and promotes an imbalance of pAMPK/AMPK ratio. Our in vitro study, showed that 

mTORC1 signalling pathway is over activated in groups treated with DMKG, and this over activation 

is greater as the concentration of DMKG increases, suggesting that the presence of α-KG caused cell 

death in a dose-dependent manner. However, 12 months after BS our results suggest significative 

inactivation of Akt/mTORC1 axis. This inhibition, restores phosphorylation/activation of AMPK, 
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reduces the production of malonyl-CoA and FASN are reduced. These results indicate that NASH 

remission requires inhibition of mTORC1 to restore autophagy flux (308). This fact was due to an 

over activation of mTORC1 by glutaminolysis (141, 145). Overall, these results supported the idea 

that the capacity of glutaminolysis to sustain mTORC1 activation could be an important factor in the 

severity of NASH.  

Manipulating metabolites that work as epigenetic modifiers offers novel therapeutic possibilities 

and the relevance of DNA methylation in NASH management is highlighted (309-312). Variations in 

methionine concentration lead to changes in the SAM/SAH ratio, which impact many methylation 

reactions including cytosine methylation to from 5-mC methylation. Hence, our analysis confirmed 

that energy and 1-C metabolism contribute to DNA methylation/demethylation. Metabolites 

involved in intracellular energy balance (α-KG, glutamine and β- hydroxybutyrate) can modulate the 

enzymatic function of DNA methylation. Hence, our analysis supports that there was a significant 

relationship between energy and one-carbon metabolism, and NASH progression. Significative 

correlations between SAH and citric acid cycle metabolism were also found in liver and plasma, 

suggesting an important interconnection with the metabolism and the regulation of global DNA 

methylation. These results allude that multiple mechanisms, including and energy and one-carbon 

metabolism, play an important role modulating DNA methylation, especially in patients with NASH. 

 

 

 

 

. 
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Conclusions 
 

✓ Resolution of mitochondrial dysfunction promotes the beneficial effect of bariatric surgery 
in obesity-associates liver disease. 
 

✓ Measurement of circulating metabolites from energy and one-carbon metabolism provides 
non-invasive and effective disease biomarkers for NASH diagnosis. 

 
✓ Liver metabolome reveals the contribution of α-Ketoglutarate in mTORC1-driven metabolic 

perturbations. 
 

✓ mTORC1 coordinates autophagy and apoptosis in NASH development through 
glutaminolysis preponderance. 

 
✓ Metabolic-epigenetic effects distinguish patients with and without NASH and these effects 

may be restored by bariatric surgery. 
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ABSTRACT 

Background & Aims: Hepatic alterations, such as in non-alcoholic fatty liver disease 

(NAFLD) and non-alcoholic steatohepatitis (NASH) are frequently associated with 

obesity. To investigate the molecular mechanisms of these alterations and to identify 

molecules that could be used as potential therapeutic targets, we investigated the 

modulation of hepatic indices of oxidative stress and inflammation in obese patients 

undergoing bariatric surgery (BS).  

Methods: Patients (n=436) attending our obesity clinic underwent BS for weight loss. 

We obtained a diagnostic intraoperative liver biopsy, and a sub-cohort (n=120) agreed 

to a 1-year follow-up that included donation of blood samples and additional liver 

biopsies. Selected key molecules in blood and liver tissue were used to investigate the 

hepatic alterations in obesity, and their response to BS.  

Results: One year post-surgery, the prevalence of diabetes, dyslipidemia and 

hypertension decreased significantly. BS improved liver histology features in all 

patients. Improvement was greater in severe cases of NAFLD including those with 

steatohepatitis, bridging fibrosis or cirrhosis. Significant pre-surgery differences in 

plasma, and liver markers of oxidative stress and inflammation (including chemokine 

C-C motif ligand 2, paraoxonase-1, galectin-3, and sonic hedgehog) were observed 

between patients with, and those without, NASH; post-surgery indicated consistent 

improvements in these parameters.  

Conclusion: Our study shows that the histology and liver function of patients with 

morbid obesity are significantly improved after BS via mechanisms that involve the 

reduction of oxidative stress and inflammatory processes. These data encourage the 

use of BS as a therapeutic option to improve, or resolve, NAFLD.  

 

 

 

Keywords: Cytokines; fibrosis; galectin-3; metabolic surgery; oxidation  
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Abbreviations: BMI, body mass index; CD, cluster of differentiation; CCL2, chemokine 

(C-C motif) ligand 2; CCR2, C-C chemokine receptor type 2; DAB, 3,3’-

diaminobenzidine; FAA, fumarylacetoacetase; HOMA-IR, homeostasis model 

assessment-insulin resistance; HDL, high-density lipoproteins; IL-10, interleukin-10; 

NAFLD, non-alcoholic fatty liver disease; NAS, non-alcoholic fatty liver activity score; 

NASH, non-alcoholic steatohepatitis; PON1, paraoxonase-1; pSTAT3, phospho signal 

transducer and activator of transcription 3; Shh, sonic hedgehog; α-SMA, α-smooth 

muscle actin; STAT3, signal transducer and activator of transcription 3; T2DM, type 2 

diabetes mellitus; TBBL, 5-thiobutyl butyrolactone; TNF-, tumor necrosis factor-. 
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1. Introduction 

Risks of hepatic disease and metabolic abnormalities increase with higher body 

mass index (BMI) [1]. In the liver, accumulation of fat causes multiple alterations, such 

as non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) 

which, if untreated or undetected, may subsequently result in life-threatening diseases 

such as cirrhosis or hepatocellular carcinoma [2]. Management of liver impairment 

associated with severe obesity presents unique challenges. Intensive changes in 

lifestyle remain the primary treatment options but which, over the long term, are 

frequently unsuccessful. Bariatric surgery (BS) appears to be a safe and efficient 

procedure to reduce weight, but data are sparse regarding its effectiveness in treating 

the hepatic alterations [1].  

Oxidative stress and inflammation are related to the onset and development of 

liver diseases [3]. Excessive nutrient intake impairs the redox status in the liver which 

stimulates inflammation [3]. The molecular mechanisms accounting for these 

alterations involve modifications of enzyme activity, post-translational modifications of 

proteins, and activation of nuclear receptors; the consequence is a global modification 

of metabolic networks [4]. Several biomarkers of oxidative stress and inflammation 

have been associated with liver diseases. Paraoxonase-1 (PON1) is a lipolactonase and 

esterase with antioxidant activity present in the hepatocytes, as well as bound to high-

density lipoproteins (HDL) in the circulation [5]. Serum PON1 activity is decreased in 

liver diseases and in several other non-communicable diseases in which there is an 

increase in free radical production [6]. Oxidative stress and decreased PON1 activity 

result in an increase in the production of pro-inflammatory cytokines such as  

chemokine (C-C motif) ligand 2 (CCL2) and tumor necrosis factor- (TNF-) [6]. In 

patients with liver impairment, the circulating levels of these cytokines correlate with 

the severity of the hepatic inflammation [7,8], while the pharmacological inhibition of 

CCL2 results in improved liver function [9]. In addition, oxidative stress and 

inflammation increase the synthesis of galectin-3, and activate the sonic hedgehog 

(Shh) pathway, both of which stimulate fibrogenesis [10,11]. The inflammatory 

processes are counteracted by anti-inflammatory cytokines such as interleukin-10 (IL-

10), Conversely, some studies have found increase in liver disease during attempts to 

attenuate hepatic injury [12].  
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The aim of the present study was to investigate molecular mechanisms 

underlying hepatic alterations in patients with morbid obesity. Analyses included 

changes in the circulating levels and hepatic expression of markers of oxidative stress 

and inflammation pre- and post-BS. 

 

2. Materials and Methods 

 

2.1. Study design and participants 

This was a prospective, 12 month follow-up, longitudinal study including 436 

patients with severe obesity who underwent laparoscopic sleeve gastrectomy at the 

Hospital Universitari de Sant Joan de Reus. Patients provided 12-hours fasting blood 

samples immediately before surgery together with an intraoperative wedge-liver 

biopsy. Written informed consent was obtained according to the procedures approved 

by our Institutional Review Board (OBESPAD/14-07-31proj3 project) and the ethical 

guidelines of the 1975 Declaration of Helsinki. Exclusion criteria were age <25 years, 

alcohol abuse, infectious diseases, primary sclerosing cholangitis, autoimmune 

diseases, and cancer. One hundred and twenty patients agreed to have a second blood 

extraction and a liver biopsy at 12 months post-surgery, and signed fully informed 

consent (OM-NAFLD, ESO3/18012013 project). Biopsies were performed by 

ultrasound-guided, percutaneous needle puncture. Patients were classified according 

to the non-alcoholic fatty liver score (NAS) system. The scales included the unweighted 

sum of steatosis (0-3), lobular inflammation (0-3) and ballooning (0-2) scores. Values 

assigned were ≤ 2 for non-NASH, >2 and ≤4 for uncertain NASH, and ≥5 for definite 

NASH. Information for fibrosis included the absence of fibrosis (F0), mild to moderate 

fibrosis (F1 and F2), bridging fibrosis (F3) and cirrhosis (F4) [13]. Liver biopsies were 

assessed by a single experienced pathologist who was blinded with respect to the 

provenance of the samples.  

For comparisons, we used sera of healthy non-obese controls (n=404) in which 

NAFLD diagnosis was discarded using imaging procedures (INFLAMET/15-04/4proj7 

project). These subjects were participants in a population-based study conducted in 

our geographical area. They had no clinical or analytical evidence of renal insufficiency, 

hepatic damage, or neoplasia. The samples (stored at –80ºC) were obtained from the 
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Biological Samples Bank of our Institution. A detailed description of this population has 

been published [14]. 

 

2.2. Measurement of circulating levels of selected biochemical parameters 

Serum and EDTA-plasma samples were collected after centrifugation and 

stored at 80ºC for batched analyses. Serum PON1 concentrations were determined 

using an in-house ELISA with antibodies specific of PON1 [5]. Serum PON1 lactonase 

and esterase activities were determined using synthetic substrates. Lactonase activity 

was measured as the hydrolysis of 5-thiobutyl butyrolactone (TBBL), and paraoxonase 

(esterase) activity was determined as the rate of hydrolysis of paraoxon [5]. Plasma 

concentrations of CCL2, IL-10, TNF-α and galectin-3 were measured by ELISA 

(PeproTech, London, UK; and R&D Systems, Minneapolis, MN, USA). Serum alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and 

cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, glucose, C-reactive protein 

(CRP), and insulin concentrations were analyzed using standard tests in a Roche 

Modular Analytics P800 system (Roche Diagnostics, Basel, Switzerland).  

 

2.3. Immunohistochemical analyses in hepatic biopsies 

Procedures were performed essentially as previously reported [15]. To assess 

differences in oxidation and inflammation, we analyzed the hepatic 

immunohistochemical expression of 4-hydroxy-2-nonenal (a marker of lipid 

peroxidation), cluster of differentiation 68 (CD68, a marker of macrophages), PON1, 

CCL2, C-C chemokine receptor type 2 (CCR2), IL-10, TNF-α, and galectin-3. The 

appropriate primary and secondary antibodies and other reagents are described in 

Supplementary Table S1. Positive staining was quantified using the Image J software 

(National Institutes of Health, Bethesda, MD, USA).  

 

2.4. Western blotting of liver tissue 

Protein lysates (50 μg) from frozen liver tissues were subjected to 8%14% 

sodium dodecyl sulfate polyacrylamide gel electrophoresis. The resolved proteins were 

transferred to polyvinylidene difluoride membranes (Thermo Fisher, Barcelona, Spain) 

using bovine serum albumin at 5% in Tris-buffered saline, 0.1% Tween-20 (pH = 7.4) as 
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blocking agent. Membranes were incubated with the corresponding primary and 

secondary antibodies for PON1, galectin-3, TNF-, IL-10, CD163 (a marker of anti-

inflammatory macrophages) [16], signal transducer and activator of transcription 3 

(STAT-3) and its phosphorylated form (pSTAT-3), which regulate multiple metabolic 

processes [16], α-smooth muscle actin (α-SMA), and sonic hedgehog (Shh); these last 

two proteins being associated with liver fibrosis. Technical details and reagents are 

reported in Supplementary Table S1. Fumarylacetoacetate hydrolase (FAH) was used 

as a reference (control) protein. Protein bands were visualized using SuperSignal West 

Femto chemiluminescent substrate (Pierce, Rockford, IL, USA) and analyzed with a 

ChemiDoc system using Image Lab 2.0 software (Bio-Rad Laboratories, Hercules, CA, 

USA).  

 

2.5. Statistical analyses 

Kolmogorov-Smirnov test was used to assess the distribution characteristics of 

variables. Student’s t-test (parametric) or Mann-Whitney U- test (non-parametric) 

were used to assess differences between any two groups of variables. Analyses were 

performed with the SPSS 22.0 package (IBM Corp., Armonk, NY, USA). Statistical 

significance was set at p 0.05.  

 

3. Results 

 

3.1. Metabolic outcomes and remission of hepatic alterations post-BS  

Pre-BS, patients with severe obesity had decreased insulin sensitivity, increased 

chronic low-grade inflammation, higher prevalence of type 2 diabetes mellitus (T2DM), 

dyslipemia and hypertension, compared to the healthy population. We observed a 

high ratio of women to men in the obese cohort. Data presented here are without sex 

segregation because of the longitudinal nature of the study and, as well, because 

logistic regression analyses discarded sex as a determinant factor in diagnosis and/or 

disease outcomes. According to the NAS score, non-NASH, uncertain NASH and 

definite NASH were recorded in 43.8%, 34.6% and 21.6% of patients, respectively 

(Table 1).  
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One year post-BS, most clinical and biological metabolic outcomes significantly 

improved, together with a general amelioration of histological features of NAFLD; 

improvement was more evident in the most severe cases. Mild steatosis was observed 

in 4 patients (3%), mild lobular inflammation (<2 foci) in 22 patients (18.4%) and 

hepatocyte ballooning in 21 patients (17.5%). Fibrosis also improved, especially in the 

few patients with bridging fibrosis (Table 2 and Fig. 1). Of note, one patient with pre-

surgery liver cirrhosis presented only periportal/perisinusoidal fibrosis one year post-

surgery (Supplementary Fig. 1). 

 

3.2. Oxidation and inflammation and their association with NASH 

We found a significantly higher proportion of PON1, 4-hydroxy-2-nonenal and 

CD68 stained cells in liver biopsies of patients with NASH (n=94), compared to non-

NASH patients (n=191). Sirius-red-positive areas were also significantly higher (Fig. 2A). 

CD68 stained cells were more frequent in areas with inflammation and PON1 staining 

was stronger in hepatocytes with ballooning degeneration. Fat accumulation and 4-

hydroxy-2-nonenal staining were more intense in fibrous areas (Supplementary Fig. 2).  

We observed significant alterations in the pre-surgery circulating levels of 

molecules that tracked with oxidation and inflammation. Serum paraoxonase and 

lactonase activities were significantly decreased in obese patients, but serum PON-1 

concentration remained unaltered. Low PON-1 activities were associated with high 

plasma CCL2, but these measurements did not track with patients through the 

different stages of NAFLD (Fig. 2B).  Circulating levels of TNF- and IL-10 were also 

significantly different from those found in control subjects, but differences between 

non-NASH and NASH patients were either minor or negligible. Plasma galectin-3 levels 

were significantly higher in patients with NASH when compared with non-NASH 

patients (Fig. 2B).  

 

3.3. BS outcomes promote remission of hepatic alterations through multiple cellular 

responses 

Using selected key markers we compared oxidation, inflammation and fibrosis 

in liver tissues at baseline and 12 months post-BS. There were significant reductions in 

the hepatic immunochemical expressions of PON-1, 4-hydroxy-2-nonenal, CD68, CCL2, 
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CCR2, TNF-, and galectin-3; but IL-10 staining remained unaltered (Fig. 3). For cross 

validation we used western blot analysis. We observed a significant reduction in the 

expression of TNF- and galectin-3, with minor changes in IL-10. Variations in the 

expression of CD163 did not reach statistical significance. We also assessed the effect 

of BS in relation to the hepatic expression of STAT-3 and phosphorylated STAT-3. Both 

had 4-fold increase in expression post-surgery, which would indicate increased 

production and activation following NAFLD remission. The extent of hepatic glycated 

PON-1 (the 45 kD band), which is less effective in providing protection against 

oxidative response, was not significantly reduced. However, the unmodified, more 

active enzyme (the 40 kD band) that had been practically absent pre-surgery, was 

prominent post-surgery. Finally, we observed a significant decrease in the expression 

of α-smooth muscle actin (α-SMA) and sonic hedgehog (Shh) protein, indicating 

regression of liver fibrosis-activating pathways (Fig. 4). 

Significant variations were observed in circulating paraoxonase activity and 

galectin-3 levels post-surgery. Circulating PON-1 and CCL2 concentrations remained 

high in patients with biopsy-proven NAFLD remission. Mean plasma TNF- 

concentrations were normalized, and circulating IL-10 levels were even higher 

following remission (Supplementary Fig. 3).        

 

4. Discussion 

BS is a safe and effective procedure for weight loss in persons with severe 

obesity refractory to lifestyle modifications [17]. However, the clinical take-up of this 

procedure remains low even in patients meeting all criteria for eligibility. Here we 

provide evidence that all comorbidities, including NAFLD, significantly improved within 

one year post-surgery, following weight loss and metabolic improvement. Our findings 

of the impact of BS on NAFLD regression are consistent with previous studies [1]. 

Indices of oxidation, inflammation and fibrosis were clearly altered in patients 

with NASH compared to those without NASH. Moreover, oxidation, inflammation and 

fibrosis in the liver substantially improved post-surgery. The measurement of 

molecules that have been shown to be good indicators of these phenomena confirmed 

the improvement. In particular, we had previously observed the close relationship 

between PON1 and CCL2 in the regulation of hepatic oxidative stress and inflammation 
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[18,19]. In mice, pon1 gene deficiency promotes fatty liver disease and ccl2 gene 

deficiency abrogates it [18]. In humans, polyphenols attenuate liver damage by 

modulating gene expression pathways that regulate the roles of PON1 and CCL2 in 

oxidative stress and the inflammatory response [20]. Both processes are important in 

macrophage polarization, with potential impact on promoting the resolution of liver 

disease [21]. Increasingly, galectin-3 has been recognized as a modulator of oxidative 

stress, inflammation, fibrosis and angiogenesis [22]. The decrease in liver galectin-3 

expression and the simultaneous decrease in the liver expression of -SMA post-

surgery appears to modify the hedgehog-signaling pathway; indicating that transition 

from the quiescent stellate cells to myofibroblastic stellate cells may be reversible [23]. 

In the current study we observed that BS resulted in a significant increase in hepatic 

STAT-3, a cytoplasmic protein that, when phosphorylated, induces transcription of 

genes promoting cellular protective and proliferative effects [24]. 

Limitations of this study are inherent in the design; in particular, the lack of 

randomized control subjects, a relatively short-term follow-up, and enrolment of 

referral patients at a single hospital. Further, criteria for entry into the study were 

strict and carefully characterized; aspects that are not feasible in routine clinical 

practice. As such, surveillance bias cannot be ruled out. Future research should 

investigate long-term outcomes post-surgery. However, the sparse data available 

indicate a clear association with sustained weight loss, reduced comorbidities, and 

higher effectiveness compared to intensive lifestyle interventions [25]. Moreover, our 

study was restricted to a limited set of biomarkers associated with oxidative stress and 

inflammation. We do not rule out the possibility that other factors such as changes in 

lipogenesis, endoplasmic reticulum stress, insulin resistance or fibrogenesis could be 

related to the remission of hepatic alterations [26,27]. 

Our results suggest a sequential involvement of multiple cellular responses, and 

support the concept of applying a combination of different therapies to achieve non-

invasive regulation of several molecular networks. Assaying a single, expensive and 

potentially toxic new compound does not seem a desirable strategy, considering the 

multi-factorial nature of NAFLD development. Positive modulation of liver function 

requires considerable weight loss and profound changes in lifestyle. Some well-tried 

and safe drugs may help improve insulin sensitivity but are fairly ineffective without 
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dietary restraint [28]. Our histology evidence confirmed that reducing oxidative stress 

and suppressing activation of liver inflammatory cells are valuable therapeutic targets.  

Dietary antioxidants, insulin sensitizers, and lipid-lowering agents can, when used in 

combination, boost intracellular protection against lipoperoxides, suppress key 

inflammatory signaling systems, and induce reparative stress signaling [29,30]; all of 

which warrant further randomized controlled trials with a multi-targeting approach to 

determine dosage, duration of treatment, and modes of action when used in 

combinations. 

In conclusion, our study suggests that BS improves the histology and liver 

function of patients with morbid obesity. The mechanism involves the reduction of 

oxidative stress and inflammatory processes. These data encourage the use of BS as a 

therapeutic option to improve, or resolve, obesity-associated liver disease.  
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Figure legends  

 

Fig. 1. Post-laparoscopic sleeve gastrectomy (LSG) improvement in liver histological 

features of patients with non-alcoholic fatty liver disease.  

(A) Representative microphotographs (bars indicate 100x magnification) of baseline 

and 12 months post-surgery hepatic biopsies stained with Hematoxylin and Eosin, 

Sirius Red and Masson’s Trichrome. (B) Steatosis, inflammation ballooning and NAS 

score were quantified according to the non-alcoholic fatty liver activity score (NAS) 

system. (C) Sirius Red was quantified as percentage of positively-stained areas.  *p  < 

0.001 by the Mann-Whitney U test.  

 

Fig. 2. Hepatic oxidation and inflammation discriminate patients with NASH from those 

without.  

(A) NASH patients had higher hepatic paraoxonase-1 (PON1), 4-hydroxy-2-nonenal, 

and cluster of differentiation 68 (CD68) expressions and Sirius Red staining compared 

to non-NASH individuals (bars indicate 100x magnification). (B) Circulating levels of 

paraoxonase and lactonase activities, and paraoxonase-1 (PON1), chemokine (C-C 

motif) ligand 2 (CCL2), tumor necrosis factor- (TNF-), interleukin-10 (IL-10) and 

galectin-3 concentrations. *p  < 0.05, **p  < 0.01, *** p  < 0.001 by the Mann-Whitney 

U test. 

 

Fig. 3. Effect of laparoscopic sleeve gastrectomy in oxidation and low-grade systemic 

inflammatory balance.  

Differences in the hepatic immunochemical staining of paraoxonase-1 (PON1), 4-

hydroxy-2-nonenal, cluster of differentiation 68 (CD68), chemokine (C-C motif) ligand 2 

(CCL2), C-C motif chemokine receptor 2 (CCR2), tumor necrosis factor- (TNF-), 

interleukin-10 (IL-10) and galectin-3 in patients pre- and 12 months post-surgery (bars 

indicate 100x magnification). *p < 0.01, **p < 0.001 by the Mann-Whitney U test. 
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Fig. 4. laparoscopic sleeve gastrectomy (LSG) improves the hepatic levels of oxidative 

stress and inflammation markers.  

Western Blot analysis of tumor necrosis factor- (TNF-), galectin-3, interleukin-10 (IL-

10), cluster of differentiation 163 (CD163), phosphorylated signal transducer and 

activator of transcription-3 (pSTAT3), signal transducer and activator of transcription-3 

(STAT3), paraoxonase-1 (PON1), -smooth muscle actin (-SMA), and sonic hedgehog 

protein (Shh). Pooled liver extracts were used for cross validation (left) and mean 

values of variations in the expression of selected markers are shown on the right. The 

graph of paraoxonase-1 shows the ratio between the 40 kD and the 45 kD isoforms. *p 

< 0.05, **p  < 0.01, ***p <  0.001 by the Mann-Whitney U test. 
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Table 1. Selected characteristics in patients with severe obesity and in the control group 

 

 

 

 
Values are shown as number of cases and percentages or medians and interquartile ranges. ACEIs: Angiotensin-converting-enzyme 
inhibitor; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ARA-II: Angiotensin II receptor antagonists; BMI: Body 
mass index; CRP: C-reactive protein; HDL: High-density lipoprotein; HOMA-IR: Homeostatic model assessment of insulin resistance; 
HTG: Hypertriglyceridemia; LDL: Low-density lipoprotein; NASH: Non-alcoholic steatohepatitis; T2DM: Type 2 diabetes mellitus.  

Significant differences (p  0.05 or lower) in comparisons are indicated by 
a 

Control vs non-NASH. 
b 

Control vs Uncertain NASH. 
c
 

Control vs NASH. 
d 

Non-NASH vs Uncertain NASH.
 e 

Non-NASH vs NASH.
 f 

Uncertain NASH vs NASH.   

 

Control group 
(n=404) 

Obese patients 
(n=436) 

 Non-NASH 
(n=191) 

Uncertain NASH 
(n=151) 

NASH 
(n=94) 

Male, n (%) 175 (43.1) 41 (21.5) 
a 

41 (27.2) 
b 

25 (26.6) 
c 

Age, years 46 (35 - 59) 46 (39 - 56)  49 (42 - 57) 48 (42.25 - 56.75) 
BMI, kg/m2 26.78 (23.34 – 28.12) 44.6 (41.3 - 49.2) 

a 
46.6 (43.0 - 51.4) 

b,d 
46.3 (42.3 - 51.5) 

c 

T2DM, n (%) 26 (6.3) 60 (31.6) 
a 

66 (44.0) 
b,d 

48 (51.1) 
c,e 

Hypertension, n (%) 62 (15) 104 (54.5)
 a  

83 (55.0) 
b 

62 (66.0) 
c,e 

Dyslipidemia, n (%) 36 (8.7) 55 (28.8) 
a 

58 (38.4) 
b,d 

40 (42.6) 
c,e 

Medication, n ( %)     
Metformin 6 (1.4) 33 (17.3) 

a 
45 (30.0) 

b,d 
36 (38.3) 

c,e 

Insulin - 10 (5.2) 
 

16 (10.6) 
d 

10 (10.6)  
Sulfonylureas 6 (1.4) 8 (4.2) 

a
  11 (7.3) 

b 
9 (9.6) 

c 

ACEIs+ARA II 15 (3.6) 55 (28.8) 
a 

51 (33.8) 
b 

41 (43.6) 
c,e 

Diuretics 20 (4.8) 15 (7.9) 14 (9.3) 
b 

12 (12.8) 
c 

Statins 8 (1.9) 31 (16.3) 
a 

34 (22.5) 
b 

19 (20.4) 
c 

Biochemical variables     
Total cholesterol, mmol/L 5.2 (4.6 - 5.9) 4.1 (3.5 - 4.8) 

a 
4.4 (3.6 - 5.1) 

b 
4.4 (3.8 - 5.0) 

c 

HDL-cholesterol, mmol/L 1.4 (1.2 - 1.7) 1.2 (0.9 - 1.5) 
a 

1.1 (0.85 - 1.4) 
b 

1.1 (0.88 - 1.3) 
c 

LDL-cholesterol, mmol/L 3.1 (2.6 - 3.8) 2.7 (2.1 - 3.2) 
a 

2.7 (2.1 - 3.3) 
b 

2.8 (2.4 - 3.4) 
c 

Triglycerides, mmol/L 1.1 (0.7 - 1.5) 1.5 (1.1 - 2.0) 
a 

1.7 (1.3 - 2.4) 
b,d 

1.8 (1.2 - 2.4) 
c,e 

Glucose, mmol/L 4.7 (4.3 - 5.2) 6.7 (5.6 - 8.3) 
a 

7.4 (5.9 - 9.4) 
b,d 

7.6 (6.2 - 10.9) 
c,e 

Insulin, pmol/L 49.4 (31.9 - 70.0) 78.8 (39.2 - 131.1) 
a 

82.6 (49.1 - 135.0) 
b 

82.6 (53.4 - 145.1) 
c 

HOMA-IR 1.5 (0.9 - 2.3) 3.6 (1.7 - 5.6) 
a 

4.3 (2.1 - 7.1) 
b,d 

5.0 (2.4 - 7.6) 
c,e 

AST, µKat/L 0.35 (0.30 - 0.41) 0.45 (0.3 - 0.6) 
a 

0.50 (0.39 - 0.81) 
b 

0.87 (0.56 - 1.3) 
c,e,f 

ALT, µKat/L 0.32 (0.23 - 0.44) 0.4 (0.3 - 0.6) 
a 

0.53 (0.38 - 0.86) 
b,d 

0.88 (0.56 - 1.3) 
c,e,f 

CRP, mg/L 1.2 (0.5 - 2.7) 1.3 (0.5 - 4.3) 2.5 (0.70 - 9.4) 
b,d

 1.83 (0.80 - 10.90)
c,e

 
Steatosis grade     
≤5% - 132 (69.1) 27 (17.9) - 
5-33% - 54 (28.3) 74 (49.0) 9 (9.6) 
33-66% - 5 (2.6) 47 (31.1) 50 (53.2) 
>66% - - 3 (2.0) 

d 
35 (37.2) 

e,f 

Lobular inflammation     
No foci - 65 (34.2) 8 (5.3) - 
<2 foci - 100 (52.6) 54 (36.0) 18 (19.1) 
2-4 foci - 26 (13.2) 64 (42.0) 52 (55.3) 
> 4 foci - - 25 (16.7) 

d 
24 (25.5) 

e,f 

Hepatocellular ballooning      
No - 163 (85.3) 75 (85.4) 7 (7.4) 
Few cells  24 (12.7) 67 (44.4) 

d
 60 (63.8) 

 e,f
 

Many cells - 4 (2.0) 9 (6.0) 
 

27 (28.7) 
e,f 

Fibrosis     
None (F0) - 74 (38.7) 28 (18.5) 23 (24.4) 
Perisinusoidal or periportal (F1) - 78 (40.8) 67 (44.3) 21 (22.3) 
Perisinusoidal and portal (F2) - 32 (16.7) 41 (27.1) 29 (30.8) 
Bridging fibrosis (F3) - 7 (3.6) 15 (9.9) 20 (21.3) 

e,f 

Cirrhosis (F4) - - - 1(1.0)  
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Table 2. Selected variables in patients with severe obesity and paired liver biopsies at baseline and 

12 months after laparoscopic sleeve gastrectomy. 

 
Values are shown as number of cases and percentages or medians and interquartile ranges. ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CRP, C-reactive protein; HDL, 
high-density lipoprotein; HOMA-IR, homeostatic model assessment of insulin resistance; LDL, low-density 
lipoprotein.  

 

 Baseline 
(n=120) 

12 months after surgery 
(n=120) 

p-value 

BMI, kg/m2 46.4 (42.8) 31.2 (29.1-34.7)3 <0.001 
Total cholesterol, mmol/L 4.3 (3.7-5.3) 4.7 (4.2-5.4) <0.001 
HDL-cholesterol, mmol/L 1.0 (0.8-1.4) 1.4 (1.2-1.7) <0.001 
LDL-cholesterol, mmol/L 3.1 (2.5-3.9) 3.0 (2.5-3.3) 0.127 
Triglycerides, mmol/L 1.5 (.1-2.3) 0.9 (0.8-1.3) <0.001 
Glucose, mmol/L 7.0 (6.0-9.1) 4.7 (4.5-5.) <0.001 
Insulin, pmol/L 100.8 (54.3-162.2) 39.6 (24.0-60.1) <0.001 
HOMA-IR 4.4 (2.8-7.5) 1.3 (0.4-2.5) <0.001 
AST, µKat/L 0.6 (0.4-0.8) 0.3 (0.2-0.3) <0.001 
ALT, µKat/L 0.5 (0.4-0.8) 0.2 (0.2-0.3) <0.001 
CRP, mg/L 3.0 (0.82-8.6) 1.5 (0.5-4.2) <0.001 

Steatosis grade    
<5% 25 (20.8) 116 (96.6)  
5-33% 46 (38.3) 4 (3.3)  
>33-66% 37 (30.8) -  
>66% 12 (10) - <0.001 
Lobular inflammation    
No foci 25 (20.8) 98 (81.6)  
<2 foci 38 (31.6) 22 (18.4)  
2-4 foci 41 (34.2) -  
> 4 foci 16 (13.3) - <0.001 
Hepatocellular ballooning    
No 49 (40.8) 98 (81.6)  
Few cells 65 (54.1) 19 (15.8)  
Many cells  6 (5.0) 3 (2.5) <0.001 
Fibrosis    
None (F0) 20 (16.6) 55 (45.8)  
Perisinusoidal or periportal (F1) 51 (42.8) 60 (50.0)  
Perisinusoidal and portal (F2) 39 (32.5) 5 (4.1)  
Bridging fibrosis (F3) 9 (7.5) -  
Cirrhosis (F4) 1 (0.8) - <0.001 
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abstract 
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(b) Provide in the abstract an informative and balanced summary of what 

was done and what was found 
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Introduction 

Background/rationale 2 Explain the scientific background and rationale for the investigation being 

reported 
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Objectives 3 State specific objectives, including any prespecified hypotheses 5 

Methods 

Study design 4 Present key elements of study design early in the paper 5 
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recruitment, exposure, follow-up, and data collection 
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of selection of participants. Describe methods of follow-up 
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methods of case ascertainment and control selection. Give the rationale for 

the choice of cases and controls 
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methods of selection of participants 
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(b) Cohort study—For matched studies, give matching criteria and number of 

exposed and unexposed 

Case-control study—For matched studies, give matching criteria and the 

number of controls per case 

 

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, 

and effect modifiers. Give diagnostic criteria, if applicable 

6,7 

Data sources/ 

measurement 

8*  For each variable of interest, give sources of data and details of methods of 

assessment (measurement). Describe comparability of assessment methods 

if there is more than one group 
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applicable, describe which groupings were chosen and why 

Statistical methods 12 (a) Describe all statistical methods, including those used to control for 

confounding 
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(b) Describe any methods used to examine subgroups and interactions 6,7 

(c) Explain how missing data were addressed 6,7 

(d) Cohort study—If applicable, explain how loss to follow-up was addressed 

Case-control study—If applicable, explain how matching of cases and 

controls was addressed 

Cross-sectional study—If applicable, describe analytical methods taking 

account of sampling strategy 
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(e) Describe any sensitivity analyses  
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Results 

Participants 13* (a) Report numbers of individuals at each stage of study—eg numbers potentially 

eligible, examined for eligibility, confirmed eligible, included in the study, 

completing follow-up, and analysed 

7-9 

(b) Give reasons for non-participation at each stage 7-9 

(c) Consider use of a flow diagram  

Descriptive data 14* (a) Give characteristics of study participants (eg demographic, clinical, social) and 

information on exposures and potential confounders 

Table 

1 

(b) Indicate number of participants with missing data for each variable of interest Tables 

(c) Cohort study—Summarise follow-up time (eg, average and total amount)  

Outcome data 15* Cohort study—Report numbers of outcome events or summary measures over time 7-9, 

Tables 

Case-control study—Report numbers in each exposure category, or summary 

measures of exposure 

7-9, 

Tables 

Cross-sectional study—Report numbers of outcome events or summary measures 7-9, 

Tables 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and 

their precision (eg, 95% confidence interval). Make clear which confounders were 

adjusted for and why they were included 

Tables 

and 

figures 

(b) Report category boundaries when continuous variables were categorized Tables 

and 

figures 

(c) If relevant, consider translating estimates of relative risk into absolute risk for a 

meaningful time period 

 

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and 

sensitivity analyses 

 

Discussion 

Key results 18 Summarise key results with reference to study objectives 9-11 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or 

imprecision. Discuss both direction and magnitude of any potential bias 

9-11 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, 

multiplicity of analyses, results from similar studies, and other relevant evidence 

9-11 

Generalisability 21 Discuss the generalisability (external validity) of the study results 9-11 
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Funding 22 Give the source of funding and the role of the funders for the present study and, if 

applicable, for the original study on which the present article is based 

11 

 

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and 

unexposed groups in cohort and cross-sectional studies. 
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http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is 

available at www.strobe-statement.org. 
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Abstract

Liver biopsy is central to identify nonalcoholic steatohepatitis (NASH) in patients 

and to assess their therapeutic follow-up. Noninvasive biomarkers may facilitate 

the clinical task and the investigation of hypothetical drugs. We investigated the 

potential as biomarkers of metabolites associated with mitochondrial integrity 

that is compromised in these patients and links nutrition and the epigenome. 

We developed mass spectrometry-based methods to quantitate metabolites 

from energy and one-carbon metabolism in plasma and DNA methyl cytosine 

levels in peripheral leukocytes. We performed measurements in samples from 

morbidly obese patients undergoing bariatric surgery to identify specific 

metabolic patterns and to test the diagnostic ability to distinguish between 

patients with and without NASH. From NASH patients, a second plasma sample 

and liver biopsy were obtained one year after surgery to assess the ability of 

metabolomics to predict remission. The targeted plasma metabolomic profiles 

identified connections between human liver metabolism and morbid obesity. 

Differential DNA methylation in leukocytes was reversible and associated with 

hepatic lesions. Combined models of single or paired plasma measurements of 

α-ketoglutarate, β-hydroxybutyrate, pyruvate and oxaloacetate reduced the 

uncertainty in clinical diagnosis of NASH (area under receiver-operating 

characteristic curve (AUC) of 0.826) and predicted NASH remission without 

ambiguity (AUC of 0.999). We conclude that plasma mitochondrial metabolites 

could mitigate the need for liver biopsy to evaluate the effectiveness of 

therapies in NASH patients.
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The liver is particularly susceptible to the metabolic challenge caused by 

obesity. The incidence and prevalence of nonalcoholic steatohepatitis (NASH) 

are increasing to epidemic proportions, with implications for morbidity and 

mortality.(1-3) Mechanisms leading to NASH onset and progression remain 

poorly understood, available data are mostly inferred from nonclinical models, 

and there is no pharmacological intervention specifically approved for NASH 

management.(4) Investigation in humans is challenging due to a number of 

ethical and clinical considerations. Efforts to discover noninvasive biomarkers 

might fulfill an unmet clinical need with the potential for accelerating 

pharmacologic research. NASH is often asymptomatic and laboratory or 

imaging techniques may help to suspect the disease but discrimination of obese 

patients with and without NASH ultimately requires liver biopsy, a procedure 

with potential pitfalls.(5) Equally, the accurate assessment of pharmacologic 

approaches requires repeated liver biopsies, which is unrealistic.(6) Targeting 

lifestyle factors remains the cornerstone of clinical management, but its failure 

rate is high,(7) especially in patients with morbid obesity (body mass index (BMI) 

≥40 kg/m2) who have a higher risk of noncommunicable diseases.(8) These 

patients, however, might represent a unique research opportunity in searching 

for noninvasive biomarkers of liver alterations. In particular, these patients are 

likely candidates for bariatric surgery that can achieve rapid weight loss and/or 

resolve comorbidities, including NASH.(9) 

The choice of potential therapeutic targets needs to consider that NASH is a 

multisystem disease with an important mitochondrial contribution to the 

defective metabolic responses.(10) Overfed mitochondria eventually perturb 

energy and one-carbon (1-C) metabolism and the involved metabolites may be 
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measured in the circulation.(11) We hypothesized that plasma levels of 

metabolites from these pathways would highlight the prominent role of liver 

disease in regulating metabolic changes in this clinical model, and might 

provide clinically useful biomarkers.(12) Interpretation might be difficult because 

changes in plasma result from the action of multiple transporters of metabolites 

into and out of cells,(13) which may represent a disadvantage for using 

nontargeted, nonquantitative techniques that detect numerous but small 

differences among metabolites.(14,15). Thus, we developed mass spectrometry–

based methods for robust and accurate quantitation of a defined set of closely 

related metabolites.(11,16,17) In addition, some of these metabolites are either 

methyl donors or rate-limiting factors for the catalytic activity of enzymes that 

play a role in chromatin methylation.(18) Then we investigated whether this 

approach bears potential translational relevance to noninvasively assess the 

obesity-associated liver diseases.(19-21) 

Materials and Methods

PARTICIPANTS

Among patients referred to the Bariatric Surgery Unit at the Hospital Universitari 

de Sant Joan de Reus 270 patients with homogeneous ethnic origin consented 

to participate according to current guidelines and to the procedures(8, 22) 

approved by our Institutional Review Board and Ethics Committee 

(OBESPAD/14.07-31proj3 and INFLAMET/15-04/4proj7) and provided written 

informed consent to an intraoperative liver biopsy and donation of a 

preoperative fasting blood sample. Histologic discrimination was based on the 

non-alcoholic fatty liver score (NAS) system with care to avoid excluding 
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advanced cases with low steatosis.(5,23-25) Only patients at both sides of the 

clinical spectrum classified as non-NASH (n=130) i.e., with only minor liver 

alterations, or NASH (n = 53) were included. NASH patients also agreed to 

undergo blood donation, and a second biopsy was performed by ultrasound-

guided, percutaneous needle puncture (OM-NAFLD, ESO3/18012013) at 12 

months post-surgery. Relevant data were extracted from clinical records. 

Healthy age- and sex-matched nonobese controls (n=50) were recruited among 

participants in a previous population-based study(26) in whom liver alterations 

were excluded via liver imaging techniques and laboratory assessment.(8) The 

BMI was calculated as the weight in kilograms divided by the square of the 

height in meters. A similar time of fasting (at least 10 hours) was considered 

essential for collecting blood samples, and EDTA-plasma aliquots were 

immediately stored at -80 °C for batched analyses. Readily available laboratory 

measurements were analyzed using standard tests in a Roche Modular 

Analytics P800 system (Roche Diagnostics, Basel, Switzerland). Homeostatic 

model assessment for insulin resistance (HOMA-IR) was calculated as 

described.(27)

LIVER BIOPSIES 

Portions of the liver were obtained with wedge resection during the surgical 

procedure, and paired biopsies in NASH patients were obtained with needle 

devices 12 months after surgery, which required cooperation from trained 

pathologists, radiologists and surgeons.(28,29) Histologic features in sections 

stained with hematoxylin and eosin, Masson’s trichrome and Sirius red dyes 

were evaluated by the scores for steatosis (0-3), lobular inflammation (0-3), and 

ballooning (0-2), for a total (unweighted) score ranging from 0 to 8. Non-NASH 
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patients scored ≤ 2, and NASH patients scored ≥ 5. Liver fibrosis was assessed 

considering the scale defined as F0, normal; F1a or F1b, mild or moderate focal 

pericellular fibrosis in zone 3; F1c, portal fibrosis; F2, perivenular and 

pericellular fibrosis confined to zones 2 and 3, with or without portal or periportal 

fibrosis; F3, bridging or extensive fibrosis with architectural distortion; and F4, 

cirrhosis.(23-25) 

QUANTITATIVE TARGETED METABOLOMICS PLATFORM

Chromatographic conditions and methods to optimize reproducibility and 

robustness for the simultaneous measurement of selected metabolites from 

energy and 1-C metabolism have been previously described.(16,17,30). Briefly, 

surrogate deuterated standards were added to maximize technical precision 

during the injection and recovery during the extraction procedures (Isotec 

Stable Isotopes, Miamisburg, OH, USA). The calibration curves were prepared 

immediately before each assay using commercially available metabolites 

(Fluka, St Gallen, Switzerland). The samples for gas chromatography (GC-EI-

QTOF-MS) were derivatized and analyzed on an Agilent Technologies (Santa 

Clara, CA, USA) 7890A gas chromatograph coupled with an electron impact 

(EI) source to a 7200 quadrupole time-of-flight mass spectrometer (QTOF-MS) 

equipped with a 7693 autosampler module and a J&W Scientific HP-5MS 

column (30 m × 0.25 mm, 0.25 μm). The liquid chromatography platform 

(UHPLC-ESI-QqQ-MS) was based on an Agilent 1290 Infinity Ultra High 

Performance Liquid Chromatograph (UHPLC) coupled with an iFunnel 

electrospray ionization (ESI) source and a 6490 triple quadrupole mass 

spectrometer (QqQ-MS). The MS analysis alternated between MS and data-

dependent MS2 scans using dynamic exclusion. Metabolites were identified and 
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quantified using available reference libraries and Qualitative and Quantitative 

Analysis B.06.00 software (Agilent Technologies).

GENOMIC DNA METHYLATION

RNA-free DNA from peripheral blood leukocytes was prepared and purified 

using the QIAamp DNA Blood Mini Kit (Qiagen, Barcelona, Spain). DNA 

quantification and purity were assessed using a Nanodrop 1000 

spectrophotometer (Thermo, Madrid, Spain) and DNA was dissolved in RNase-

free water to obtain 100 μL aliquots of 1 μg. The internal standard solution 

containing deuterated bases was added and vacuum dried for up to 48 h. The 

residue was dissolved in 15 μL of formic acid (98%), and the vials were sealed 

and heated at 150 °C for 3 h to hydrolyze DNA to the free bases, vacuum-dried 

overnight and dissolved in a solution containing calibration curves and quality 

control material. Samples were run on the UHPLC-ESI-QqQ-MS platform 

described above. This method ensures the ability to discriminate small 

differences in 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) 

levels but the low throughput limited the number of measurements in batched 

analyses. 

STATISTICAL ANALYSIS 

The employed statistical software included the program ‘R’ (http://cran.r-

project.org), the SPSS 25.0 package (IBM, Madrid, Spain) and the 

MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/). Significantly altered 

metabolites, which were corrected for multiple testing, were defined using a p-

value <0.05 and a predesigned false discovery rate.(31) We used Welch’s t-test 

and/or Wilcoxon’s rank sum test for pairwise comparisons and repeated-
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measurement analysis of variance for some calculations. We used multivariate 

statistics to improve the analysis of complex raw data and for pattern 

recognition. Random forests were used as a supervised classification technique 

to provide an unbiased estimate of prediction accuracy of classification and to 

select variables with the largest impacts.(32) Heat maps were used to visualize 

metabolomic data indicating the relative abundance of metabolites with color 

intensity. We also used linear discriminant analysis as a method of classification 

and principal component analysis as an unsupervised data analysis method to 

segregate the compared groups according to metabolomic data. Finally, logistic 

regression analysis and receiver operating characteristic (ROC) curves 

described and assessed binary classifications.(33) For this purpose, we also 

used confusion matrix and predicted class probabilities of each sample across 

100 Monte-Carlo cross-validations.

Results

TARGETED QUANTITATIVE PLASMA METABOLOMIC PROFILE 

IDENTIFIES THE SIGNIFICANT INFLUENCE OF OBESITY ON ENERGY 

AND ONE-CARBON METABOLISM

Morbid obesity was associated with metabolic alterations, as compared with 

nonobese controls (Table 1). To enlarge the scope of metabolic signals, we 

used a targeted metabolomic approach to selectively examine plasma 

metabolites to explore pathways of energy adaptation.  Obesity appears to 

increase the oxidative changes through the citric acid cycle (CAC), and the 

significant plasma accumulation of most intermediates might reflect 

compensatory responses in mitochondrial energetics. We also found a 
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significant increase in plasma glutamine, pyruvate and ß-hydroxybutyrate (ß-

HB) levels in obese patients with respect to nonobese controls, with alterations 

in amino acids and metabolites derived from 1-C metabolism. Specifically, 

serine, cysteine, methionine, S-adenosyl methionine (SAM) and S-

adenosylhomocysteine (SAH) levels were decreased in morbid obesity with a 

significant accumulation of cystathionine and choline, major carbon or methyl 

donors and critical components for signaling functions (Table S1, Figure 1 a, b). 

Changes in circulating metabolites segregated nonobese controls from patients 

with morbid obesity and glutamine, ß-HB, citrate and cystathionine were the 

metabolites with the highest impacts on class distribution (Figure 1 c-e). The 

plasma levels of each of these metabolites predicted obesity, suggesting the 

contribution of body weight, but other metabolites, exemplified by plasma α-

ketoglutarate (α-KG), were independent of body weight (Figure S1). Values in 

plasma may suggest impaired energy homeostasis, metabolic inflexibility and 

likely induction of anaplerosis and pyruvate cycling.(34) Plasma essentially 

reports the sum of changes from multiple organs. Hence, we investigated 

whether circulating metabolites could identify the effect of liver disease in 

regulating energy homeostasis by assessing differences between patients with 

and without NASH. 

NASH IMPACTS METABOLIC ADAPTATION PATHWAYS 

Histologic features and clinical and laboratory variables identified progressive 

metabolic disturbances closely related to liver disease (Figure 2 a, Table 2). 

Liver alterations were heterogeneous, and we compared the plasma 

metabolome between patients with minor changes (non-NASH) and those with 

unambiguous NASH. The number of metabolites with the ability to segregate 
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patients with and without NASH was lower than those distinguishing patients 

with and without obesity (Table S2), and plasma α-KG, oxaloacetate and 

isoleucine levels had the highest impacts on the class distribution (Figure 2 b-

d). The histopathological features in patients with NASH were associated with a 

significant accumulation of plasma glucose, lactate and pyruvate, indicating 

reprogrammed glucose metabolism. These findings were accompanied by 

increased plasma concentrations of alanine, aspartate and branched chain 

amino acids (BCAAs) in NASH patients. Among metabolites from the CAC, only 

plasma oxaloacetate and α-KG levels were significantly increased in NASH 

patients, which in the presence of higher plasma glutamate likely indicated CAC 

replenishment via glutaminolysis. As glutamine is metabolized via 

glutaminolysis to be converted into α-KG and lactate, high plasma 

concentrations of these metabolites might indicate the role of NASH in the 

organismal metabolic responses.(35) Plasma metabolites from 1-C metabolism 

also revealed significant alterations in the form of serine-to-glycine and SAM-to-

SAH conversions in NASH patients (Figure 3 a). We then explored whether 

these metabolic alterations persisted or reversed after surgery.

BARIATRIC SURGERY RESTORES THE PERTURBED METABOLIC 

RESPONSES

One year after bariatric surgery, NASH patients were reexamined and paired 

liver biopsies demonstrated NASH remission. Body weight decreased 

significantly, but patients remained obese (BMI > 30 kg/m2), though there were 

significant improvements in the severity and prevalence of diabetes, 

hypertension, and dyslipidaemia (Table 2). Variations in plasma metabolites 

segregated NASH patients before vs. after surgery (Figure 2 b, c, e) and 
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plasma α-KG levels provided the largest impact on class distribution. Most 

plasma levels of CAC intermediates returned to values close to normal in 

nonobese controls. The significant reduction in plasma glutamate and α-KG 

after surgery and the simultaneous higher level of succinate indicated that 

glutaminolysis was no longer preponderant in the follow-up. Bariatric surgery 

also normalized plasma levels of circulating amino acids and metabolites from 

1-C metabolism (Figure 3 b, Table S3). We also found that surgery restored the 

increased 5-mC levels in circulating leukocytes of patients with NASH (Figure 4 

a) indicating differential and reversible DNA methylation in leukocytes. 

Variations in metabolites with influence in DNA methylation (Figure 4 b) suggest 

the potential role of metaboloepigenetic processes in NASH progression.  

However, the plasma α-KG to succinate ratio, which represents the relative 

proportions of the substrates and products of enzymes involved in methylation, 

was significantly altered only after surgery and did not differentiate patients with 

and without NASH (Figure 4 a). Of note, correlations between most metabolite 

levels and the leukocyte 5-mC level did not reach statistical significance 

between patients with and without NASH but the SAM-to-SAH ratio and plasma 

α-KG level were significantly associated with steatosis (Figure 4 c). After 

surgery, the DNA 5mC level was negatively correlated with the changes in 

SAM-to-SAH ratio and positively correlated with plasma α-KG levels (Figure 4 

d). However, the diagnostic and predictive value of the 5-mC levels in DNA from 

leukocytes did not result into clinical benefit (data not shown) and we explored, 

without this input, the putative role of circulating metabolites as noninvasive 

biomarkers. 
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PLASMA METABOLOME IDENTIFIES BIOMARKERS TO DISTINGUISH 

PATIENTS WITH AND WITHOUT NASH AND PREDICT NASH REMISSION

The drawbacks associated with liver biopsy represent a considerable constraint 

to clinically detect the severity and progression of liver disease and to assess 

NASH remission after treatment. The current markers of liver injury, plasma 

aminotransferases, did not discriminate patients with and without NASH with 

AUC values between 0.511 and 0.837 and 45% of misinterpretations (Figure S2 

a). In contrast, reduction after surgery in plasma aminotransferases provided an 

assessment of NASH remission with 10% of uncertainties (Figure S2 b). 

Logistic regression models and ROC analyses using the concentration of 

energy-balance metabolites in plasma revealed that the combination of plasma 

α-KG, pyruvate and oxaloacetate levels improved the diagnostic accuracy of 

NASH, with AUC values between 0.680 and 0.938 and reduced 

misinterpretations (Figure 5 a). Similarly, the combined decrease in plasma α-

KG and ß-HB levels was also a good predictive biomarker of NASH remission 

with an AUC between 0.938 and 1 (Figure 5 b). More importantly, the 

combination of reductions in plasma α-KG, ß-HB and AST levels predicted 

NASH remission without ambiguity (Figure 5 c). These results need to be 

validated in the routine clinical assessment, i.e., without controlled and batched 

laboratory assessment, but strongly suggest that the explorative second biopsy 

should be limited to NASH patients without changes in these measurements 

over time. Eventually, these simple measurements might be used to evaluate 

the effectiveness of therapies in NASH patients. 
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Discussion

It is important to recognize and target the hepatic consequences of nutrient 

overload. Dietary restraint improves liver function and histologic features in 

mice,(36) but in the clinical setting, dietary advice is clearly insufficient to halt the 

growing incidence and prevalence of obesity-associated diseases.(37) Our 

observations suggest that the critical links between obesity and liver disease 

are closely related to the mitochondrial integrity of energy and 1-C metabolism. 

Fluctuations in the plasma metabolome assessed complex effects associated 

with the severity of liver disease, as were almost completely reversed after 

NASH remission. In human obesity, the liver may efficiently respond to nutrient 

overload during a period of time but the onset and development of NASH 

represents a critical event leading to metabolic inflexibility.(38) The clinical 

relevance in obesity of increased CAC activity, whole-body protein catabolism 

and pyruvate-driven gluconeogenesis remains to be established but the 

increased anaplerotic flux and glutaminolysis-derived accumulation of plasma 

α-KG in NASH patients may supply pathogenic clues.(8,39,40) Our data suggest 

that obese patients, especially those with metabolic syndrome, might benefit 

from bariatric surgery at an earlier stage.

Plasma α-KG identifies obese patients with hepatic steatosis.(11) Our findings 

suggest that circulating metabolites provide signals of the impaired metabolic 

state and that the insufficient adaptive hepatic response might be a distinctive 

feature of NASH. NASH was associated with perturbed pathways in glucose 

and fatty acid oxidation and convergence in the metabolism of amino acids and 

lipids.(41) These perturbed pathways were restored after surgery following NASH 
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remission. Targeted quantitation of plasma α-KG, pyruvate and oxaloacetate 

levels revealed differences between patients with and without NASH that may 

be used as modest to good noninvasive diagnostic biomarkers. A major finding 

of this study was that paired measurements of these metabolites, before and 

after surgery, provided excellent results to predict NASH remission without 

ambiguity, indicating a reliable alternative to liver biopsy in assessing the 

effectiveness of clinical management in NASH patients. Similarly, metabolites 

from the methionine cycle, succinate and α-KG have been reported as 

mediators in the dynamic process of methylation linked to altered cellular 

metabolism in disease states.(18,42) These metabolites might provide signaling 

functions via the circulation with the ability to alter epigenetic cellular 

reprogramming. Manipulating metabolites that work as epigenetic modifiers 

offers novel therapeutic possibilities and the relevance of DNA methylation in 

NASH management is likely.(19,20,43,44) However, despite the significant effect of 

surgery, our data did not support the value of 5-mC and 5-hmC levels of DNA 

from leukocytes to segregate patients with and without NASH.

Circulating metabolites from energy and 1-C metabolism provide a global 

picture of metabolic interorgan crosstalk with potential importance in liver 

metabolic research associated with the growing obesity epidemics. Despite this 

encouraging insight it is important to keep several knowledge gaps and 

limitations in mind. First, the effect of metabolic signaling in the regulation of 

liver gene expression should be investigated. It is not a trivial consideration that 

cell types other than hepatocytes may contribute the technological and clinical 

challenges ahead. Second, clinical models do not provide true dynamic 

information and the actual value of still pictures recorded at different time points 
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requires cautious interpretation. In this context, we have developed versatile, 

simple and inexpensive electroanalytical bioplatforms.(45,46) to continuously 

monitor the impact of metabolic pathways and epigenetics in NASH onset and 

progression. These considerations represent exciting areas of future research. 
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Figure legends

Fig. 1. Morbid obesity perturbs plasma metabolome. Variations in the levels 

of plasma metabolites from energy (a) and one-carbon metabolism (b) between 

obese patients and nonobese controls are schematized, with colors indicating 

the statistical assessment according to the legend. Partial least square 

discriminant (PLS-DA) (c) and heat map (d) analyses were used to visualize the 

segregation between both groups. Random forests analyses (e) provided the 

relative impact of each metabolite according to the variable influence on the 

projection (VIP) scores.

Fig. 2. The metabolic adaptive responses in obesity are closely related to 

liver alterations. Routine clinical and laboratory assessment disclosed the 

metabolic consequences of different liver histologic features (a). Partial least 

square discriminant (PLS-DA) (b) and heat map (c) analyses visualized 

differences in the plasma metabolome after surgery and the challenging task 

that represents distinguishing patients with and without NASH. Plasma α-

ketoglutarate was the metabolite with the largest impact in random forests 

projecting metabolic changes between patients with and without NASH and 

between NASH patients before vs. after surgery (d). Asterisks denote statistical 

significance (*p < 0.05, **p < 0.01, ***p < 0.001) by the Wilcoxon rank-sum test.

Fig. 3. Bariatric surgery reverses NASH-associated disturbances in the 

plasma metabolome. Schematized view of differences in plasma metabolites 

related to energy and one-carbon metabolism in comparing patients with vs. 
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without NASH (a) and NASH patients before vs. after surgery (b). Colors 

denoted statistical comparisons as indicated in the legend.

Fig. 4. NASH affects plasma DNA methylation. The differential global DNA 

methylation was assessed as 5-methylcytosine (5-mC) and 5-

hydroxymethylcytosine (5-hmC) levels in circulating leukocytes (n=24 for each 

group), indicating associations with liver histologic features and plasma α-

ketoglutarate and succinate levels (a). Metabolites from the citric acid cycle and 

methionine cycles (b) correlated with steatosis when comparing patients with 

and without NASH (c) but not with global methylation. In contrast, 5-mC level 

was restored in NASH patients after surgery and paralleled changes in 

circulating metabolites, suggesting the potential role of metaboloepigenetic 

processes (d). Asterisks denote statistical significance (*p < 0.05, **p < 0.01, 

***p < 0.001) by the Wilcoxon rank-sum test, β-HB, β-hydroxybutyrate; DNMT, 

DNA methyltransferase; TET, ten-eleven translocation. 

Fig. 5. Paired measurements of selected metabolites predict NASH 

remission. ROC curve-based model evaluation indicated that selected 

circulating metabolites provide tools to distinguish patients with and without 

NASH but the number of misinterpretations remains relatively high (a). Paired 

measurements of plasma α-ketoglutarate and β-hydroxybutyrate levels before 

and after surgery might be useful to predict NASH remission (b). Remarkably, 

the addition of variations in AST level to the model predicted bariatric surgery-

induced NASH remission without ambiguity. Asterisks denote statistical 

significance (***p < 0.001) by the Wilcoxon rank-sum test.
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Table 1. Clinical and laboratory assessment in nonobese controls and obese patients

. 

Nonobese controls Obese patients
 

(n=50) (n=270)
p-value

Clinical characteristics    

Male, n (%) 10 (20.4) 69 (25.7) 0.279

Age, years 47 (32-62) 49 (41-58) 0.652

BMI, kg/m2 25.2 (22.3-28.0) 46.4 (42.4-51.6) <0.001
T2DM, n (%) 2 (4.1) 105 (39.0) <0.001
Hypertension, n (%) 4 (8.2) 169 (62.8) <0.001
Dyslipidemia, n (%) 2 (4.1) 98 (36.4) <0.001
Medication, %    

Metformin 1 (2.0) 76 (28.4) <0.001
Insulin - 22 (8.2) -

Sulfonylureas - 16 (5.9) -

ACEIs + ARA II 1 (2.0) 22 (8.2) <0.001
Diuretics 1 (2.0) 33 (12.3) <0.05
Statins - 52 (19.3) -

Laboratory assessment    

Hemoglobin, g/dL 14.0 (13.1-14.8) 13.3 (12.5-14.4) 0.041
Leukocytes, x109/L 6.5 (5.9-7.5) 7.9 (6.6-9.3) <0.001
Platelets, x109/L 245 (210-272) 212 (182-252) <0.001
Total cholesterol, mmol/L 5.1 (4.5-5.7) 4.3 (3.7-5.1) <0.001
HDL-cholesterol, mmol/L 1.6 (1.3-1.8) 1.2 (1.0-1.5) <0.001
LDL-cholesterol, mmol/L 3.0 (2.5-3.6) 3.3 (2.8-3.9) 0.01
Triglycerides, mmol/L 0.9 (0.7-1.4) 1.0 (1.1-2.2) 0.01
Glucose, mmol/L 4.7 (4.3-5.3) 7.3 (6.2-9.1) <0.001
Insulin, pmol/L 48.8 (32.9-59.5) 91.3 (46.5-149.2) <0.001
HOMA-IR 1.4 (0.9-2.0) 4.3 (2.2-7.5) <0.001
Albumin, g/L 43.5 (41.9-45.0) 40.4 (36.4-44.0) <0.001
AST, µKat/L 0.3 (0.2-0.4) 0.5 (0.4-0.8) <0.001
ALT, µKat/L 0.3 (0.2-0.4) 0.6 (0.4-0.9) <0.001
GGT, µKat/L 0.2 (0.1-0.4) 0.4 (0.2-0.6) <0.001
CRP, mg/L 1.3 (0.5-3.0) 5.0 (0.8-12.2) <0.001

Values are expressed as number (percentage) or median (interquartile range) in the indicated units. 
ACEIs: angiotensin-converting-enzyme inhibitor; ALT: alanine aminotransferase; AST: aspartate 
aminotransferase; ARA-II: angiotensin II receptor antagonists; BMI: body mass index; CRP: C-reactive 
protein; GGT: γ-glutamyl transferase; HDL: high-density lipoprotein; HOMA-IR: homeostatic model 
assessment of insulin resistance; LDL: low-density lipoprotein; T2DM: type 2 diabetes mellitus.  
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Table 2. Clinical and laboratory assessment in obese patients segregated by liver histologic features and NASH 
patients 12 months after surgery.

Non-NASH NASH NASH after surgery
(n=130) (n=53) (n=53)

Clinical characteristics
Male, n (%) 29 (22.3) 18 (33.9) -
Age, years 47 (41 - 57) 50 (42 - 58) -
BMI, Kg/m2 45.7 (42.3 - 51.6) 46.6 (42.5 - 51.9) a 34.3 (31.3-37.5) b, c

T2DM, n (%) 45 (34.6) 29 (54.7) a 9 (16.7) b, c

Hypertension, n (%) 76 (58.4) 41 (77.3) a 23 (43.4) b, c

Dyslipidaemia, n (%) 40 (30.7) 23 (43.3) a 5 (9.4) b, c

Medication (%)
Metformin 31 (23.8) 20 (37.7) a 8 (15.1) b, c

Insulin 7 (5.3) 7 (13.2) 2 (3.3) b, c

Sulfonylureas 7 (5.3) 7 (13.2) -
ACEIs + ARABS 48 (36.9) 26 (49) 9 (16.7) b, c

Diuretics 12.7 (9.7) 8 (15.1) -
Statins 21 (15.9) 12 (22.6) 5 (9.4) b, c

Laboratory assessment
Hemoglobin, g/dL 13.0 (12.4 - 14.1) 13.4 (12.1 - 14.4) a 13.3 (12.2-14.7)
Leukocytes, x109/L 7.6 (6.2 - 9.6) 7.8 (6.6 - 8.7) 6.6 (5.3-7.5) b, c

Platelets, x109/L 207.5 (184 - 254) 225.0 (179.0 - 249.5) 231.0 (184.8-287.5)
Ferritin, µg/L 55.0 (24.8 - 87.0) 97.4 (24.5 - 202.45) a 57.2 (23.6-110.8) b, c

Total-cholesterol, mmol/L 4.9 (4.5 - 5.4) 4.9 (4.3 - 5.5) 5.0 (4.5-5.9) b, c

HDL-cholesterol, mmol/L 1.4 (1.1 - 1.7) 1.1 (0.9 - 1.4) a 3.0 (2.6-3.5) b, c

LDL-cholesterol, mmol/L 2.8 (2.4 - 3.5) 2.8 (2.4 - 3.9) 1.6 (1.3-1.9) b, c

Triglycerides, mmol/L 1.5 (1.1 - 2.0) 1.7 (1.2 - 2.3) a 1.0 (0.8-1.2) b, c

Glucose, mmol/L 6.8 (6.0 - 8.4) 7.8 (6.2 - 11.4) a 4.7 (4.3-5.4) b, c

Insulin, pmol/L 97.9 (41.8 - 152.4) 109.2 (65.1 - 193.7) a 39.6 (24.0-60.1) b, c

HOMA-IR 4.1 (1.8 - 6.7) 6.1 (3.4 - 8.7) a 1.2 (0.7-1.9) b, c

Albumin, g/L 43.0 (40.0 - 44.0) 41.0 (36.6 - 44.0) 43.0 (41.0-45.0) c 
AST, µkat/L 0.5 (0.4 - 0.7) 0.7 (0.5 - 1.2) a 0.3 (0.2-0.3) b, c

ALT, µkat/L 0.5 (0.3 - 0.8) 0.7 (0.5 - 1.2) a 0.2 (0.2-0.3) b, c

GGT, µkat/L 0.3 (0.2 - 0.4) 0.5 (0.3 - 0.7) a 0.2 (0.2-0.4) b, c

CRP, mg/L 5.1 (4.3 - 7.0) 5.8 (4.8 - 7.1) 0.3 (0.2-0.5) b, c

Liver histologic features
Steatosis
<5% 81 (62.0) - 51 (96.7)
5-33% 45 (34.8) 5 (7.9) 2 (3.3) b, c

34-66% 4 (3.3) 33 (57.9) -
>66% 20 (34.2) a -
Lobular inflammation
No foci 40 (30.4) - 43 (81.6)
<2 foci 69 (53.3) 8 (13.2) 10 (18.4) b, c

2-4 foci 20 (15.2) 26 (44.7) -
>4 foci - 24 (42.1) a -
Hepatocellular ballooning
None 124 (95.7) 9 (15.8) 43 (81.6)
Few cells 3 (2.2) 44 (76.3) 10 (18.4)
Many cells - 5 (7.9) a

Fibrosis
None (F0) 52 (40.2) 20 (34.2) 24 (45.8)
Perisinusoidal or periportal(F1) 57 (43.5) 14 (23.7) 27 (50.0)
Perisinusoidal and portal (F2) 17 (13.0) 9 (15.8) 2 (4.2) b, c

Bridging fibrosis (F3) 1 (1.1) 12 (21.1) -
Values were expressed as number (percentage) or median (interquartile range) in the indicated units. ACEIs: 
angiotensin-converting-enzyme inhibitor; ALT: alanine aminotransferase; AST: aspartate aminotransferase; ARA-II: 
angiotensin II receptor antagonists; BMI: body mass index; CRP: C-reactive protein; GGT: γ-glutamyl transferase; HDL: 
high-density lipoprotein; HOMA-IR: homeostatic model assessment of insulin resistance; LDL: low-density lipoprotein; 
T2DM: type 2 diabetes mellitus.  The letters denote significant (at least p<0.05) differences comparing a non-NASH vs 
NASH, b non-NASH vs NASH after surgery and c NASH vs NASH after surgery.
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