UNIVERSITAT POLITECNICA DE CATALUNYA

Department of Computer Science

High-precision Computation of Uniform
Asymptotic Expansions for Special
Functions

Guillermo Navas-Palencia

Supervisor: Argimiro Arratia Quesada

A dissertation submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in Computing

May 7, 2019

Abstract

In this dissertation, we investigate new methods to obtain uniform asymptotic ex-
pansions for the numerical evaluation of special functions to high-precision. We
shall first present the theoretical and computational fundamental aspects required
for the development and ultimately implementation of such methods. Applying
some of these methods, we obtain efficient new convergent and uniform expan-
sions for numerically evaluating the confluent hypergeometric functions 1 F; (a; b; z)
and U(a, b, z), and the Lerch transcendent ®(z,s,a) at high-precision. In addition,
we also investigate a new scheme of computation for the generalized exponential
integral E,(z), obtaining one of the fastest and most robust implementations in
double-precision arithmetic.

In this work, we aim to combine new developments in asymptotic analysis with
fast and effective open-source implementations. These implementations are com-
parable and often faster than current open-source and commercial state-of-the-art
software for the evaluation of special functions.

ii

Acknowledgements

First, I would like to express my gratitude to my supervisor Argimiro Arratia
for his support, encourage and guidance throughout this work, and for letting me
choose my research path with full freedom. I also thank his assistance with admin-
istrative matters, especially in periods abroad.

I am grateful to Javier Segura and Amparo Gil from Universidad de Cantabria
for inviting me for a research stay and for their inspirational work in special func-
tions, and the Ministerio de Economia, Industria y Competitividad for the financial
support, project APCOM (TIN2014-57226-P), during the stay. Special thanks go to
my colleges at Numerical Algorithms Group from whom I learned many impor-
tant aspects in the development of numerical software, and to Fredrik Johansson
for fruitful and interesting discussions, and for his remarkable work developing
tools for arbitrary-precision arithmetic.

Finally, I would like to thank my mother for her patience and support, and
Regina for her encouragement, appreciation and understanding of the effort re-
quired to complete this work.

1ii

Contents

Abstract i
Acknowledgements ii
List of Figures v
List of Tables vi
Introduction 1
1 Analytic and Numerical Methods for Special Functions 4
1.1 Analytic methods and asymptotic expansions 4
1.1.1 Introduction 4

1.1.2 Asymptotic methods for integrals 5
Watson’slemma 5

Laplace’s method and saddle point method 6

1.1.3 Uniform expansions for Laplace-type integrals 7

1.2 Numerical Methods 7
1.2.1 Quadraturemethods 8

122 Continued fractions 8

1.2.3 Sequence acceleration techniques 9

124 Othermethods 10

2 Software Development for the Numerical Evaluation of Special Functions 11
2.1 Arbitrary-precision arithmetic o o000 11
211 Algorithms 11

212 Libraries 12

2.2 Floating-point arithmetic 13
221 Definitions and basic notation 13

2.2.2 Floating-point expansions and error-free transformation . . . 16

Basic algorithms o o0 16

2.2.3 DD vs MPER for the evaluation of Riemann zeta function .. 17
Borwein’s algorithms 00 18
Implementation and benchmarks 19

2.3 Development of numerical libraries in floating-point precision 21
2.3.1 Numerical libraries and compilers 21

2.3.2 Design of software for computing special functions 23

2.3.3 Testing methodologies 26

234 Benchmarking methodologies 28

24 GNSTLIBproject, 29

iv

241 Introduction 29
2.4.2 Efficient vectorization via generalized power series 30
243 Benchmarks o 0. 32
Vectorized exponential integral Ey(x) 32
Exponential integral Ey(x) 33
Exponential integral Ei(x) 34

3 Fast and Accurate Algorithm for the Generalized Exponential Integral for
positive real order 36
31 Introduction o 36
3.2 Methods of computation 0 0L 38
321 Specialvalues 38
322 Seriesexpansions 38
Series in terms of the confluent hypergeometric function . . . 39
Laguerreseries, 40
Taylorseriesfor1 < x <2..................... 42
Series expansions: specialcases 44
323 Asymptoticexpansions 46
Largexandfixedv 46
Largev 46
Largevandfixedx 438
3.3 Other numericalmethods 51
3.3.1 Factorialseries 51
3.3.2 Continued fractions 51
3.3.3 Numerical integration 52
Otherintegrals 53
3.4 Algorithm and implementation, 53
3.4.1 Algorithm for integerorder 55
3.42 Algorithm forrealorder 56
35 Benchmarks 56
3.5.1 Arbitrary-precision floating-point libraries 59
36 Conclusions L 60
4 Confluent Hypergeometric Functions 62
41 Background and PreviousWorko oL 62
41.1 Confluent hypergeometric function of the first and second kind 63
412 Computational methods and available software 64
413 Applications Lo Lo o 70

4.2 Onthe Computation of Confluent Hypergeometric Functions for Large
Imaginary Part of Parametersbandz 77
421 Introduction 77
422 Algorithm o 78
Path of steepestdescent, 78
CaseU(a,b,z), F(z) =00 79
Case U(a,b,z),I(b) o0 i 79
Case1Fi(a,b,z), S(z) o0 80
Case1Fi(a,b,z), S(b) > o0 80

42.3 Numerical quadratureschemes 80

Adaptive quadrature for oscillatory integrals 80
Gauss-Laguerre quadrature 81
424 Numericalexamples 82
425 Applications. L Lo 83
426 Conclusions e e 85
4.3 High-precision Computation of the Confluent Hypergeometric Func-
tions via Franklin-Friedman Expansion 86
431 Introduction 86
43.2 The Franklin-Friedman expansion 87
433 Theexpansionfor U(a,b,z) 89
43.4 The Franklin-Friedman expansion coefficients 90
Analysis of the coefficients ¢, (z) 92
435 Efficient computation of U(a,b,z) 97
43.6 Numerical experiments 99
43.7 Discussion e 101
5 The Lerch Transcendent and Other Special Functions in Analytic Number
Theory 103
51 Background L o 103
51.1 Special number and polynomials 103
Bernoulli numbers and polynomials 103
Euler numbers and polynomials 106
Stirling numbers and polynomials 106
Other special numbers and polynomials 108
5.1.2 The Lerch transcendent and related functions 110
513 Software e 112
514 Applications o oo 112
5.2 Numerical Methods and Arbitrary-Precision Computation of the Lerch
Transcendent. e 114
521 Introduction 114
5.2.2 Numericalmethods 115
Euler-Maclaurin formula 115
Uniform asymptotic expansion for ®(z,s,a) 119
Asymptotic expansion forlargez 122
52.3 Algorithmic details and implementation 125
Evaluationof L-series 126
Evaluation of the Euler-Maclaurin errorbound 127
Evaluation of the Euler-Maclaurintail 129
Evaluation of asymptotic expansions 130
Numerical integration 132
524 Benchmark, 132
525 Discussion e e e e 135
5.2.6 Appendix - Algorithms and implementations 136
L-series e 136
Euler-Maclaurin formula 137

Asymptoticexpansions L. 138

vi

List of Figures

2.1
2.2

2.3

24

2.5

2.6

2.7

2.8
29
2.10

3.1

3.2
3.3

4.1

4.2

Timing of the three methods in microseconds.. 19
Timing in microseconds for 106-bit precision vs MPFR 3.1.4. MPFR
caches intermediate results for s € {50,60,70}. 21
Relative errors checked with Mathematica. Maximum relative error
~ O-8€dd- 22
Decision tree generated with several methods to compute the gener-

alized exponential integral for real order and argument. Detail with
the first two split points, where class indicates the method exhibiting
superior accuracy (right). oo L L 24
Regions of applicability of each method for the numerical evaluation
of the generalized exponential integral for real order and argument.

Detail for small argument x (right). 25
Accuracy plot for the exponential integral using the numerical li-
brary chypergeo (left) and scipy (right). 28

Attained accuracy using the default algorithm for the logarithmic in-
tegral (left) and accuracy plot when using the new algorithm applied
in the region exhibiting loss of accuracy (right). 28
Comparison gnstlib.el_vec methods to Intel vdExpIntl. 33
Comparison gnstlib.el_vec methods to MATLAB R2016b expint. . 34
Comparison gnstlib.ei_vec methods to Scipy scipy.special.expi. 35

Plot of the absolute and relative errors of Ep; 05(1.98) and error bound
(3.36) for N € [1,20] (left). Plot of |x*/(1 —21.05);4], x = 2 for

k=1[1,40] (right). 44
Accuracy profilescasen € Nandx >0.. 58
Performance profilescasen € Nandx >0. 58

Real and imaginary part of integrand for 1 F; (5,10, 100 — 1000) be-
fore and after applying steepest descent method. 82
Relative error in computing U(a,b,z). Error in U(a,b,iz) for a €
[2,400],b € [-500,500],z € [103,10°] (left) and U(a,ib,z) for a €
[10,100],b € [10%,10%],z € [10,100] (right). 700 and 1400 tests, re-
spectively. 84

vii

List of Tables

2.1

2.2

2.3

24

3.1
3.2

3.3
34
3.5

3.6

3.7

3.8

4.1

4.2

4.3
44

4.5
4.6
4.7

Main parameters of the basic formats specified by the IEEE 754-2008

standard. Lo 14
Time (ms) to compute the exponential integral of vector of size N
element-wise with values within areduced range. 33
Time (ms) to compute the exponential integral of vector of size N
element-wise with values in [0.0001,700]. 34

Time (ms) to compute the exponential integral of vector of size N
element-wise with values in [-670, 670]. Cases where parallelization

was slower than single-thread were omitted. 35
Approximationtermsayn. L 42
Minimum number of terms k to satisfy |B 1 (—x)|/vk*! < 2753 for

the asymptotic expansion (3.56). 49
Upper bound for Bell polynomials B,(x) forx e R. 50
Upper bound for Bell numbers B,,. 50
Comparison of different continued fractions and Laguerre series, num-

ber of terms and relative errors. Precision is set to 53-bit. 52

Error statistics for each library. gcc-5.4.0 compiler running Cygwin.
Time in microseconds. Fails: returns Incorrect/NaN/Inf. Intel(R)
Core(TM) i5-3317CPU at1.70GHz. 59
Error statistics for each library. gcc-5.4.0 compiler running Cygwin.
Time in microseconds. Fails: returns Incorrect/NaN/Inf. Intel(R)
Core(TM) i5-3317 CPU at 1.70GHz. 59
Error statistics mpmath library. Average error is computed after ex-
cluding relative errors > 1le—10. A result is considered wrong if
relativeerroris > le—14.. L. 60

Relative errors of the asymptotic estimate for Pr[X; > Xo| for large
parameters of two Beta distributions. 00000 75
Relative errors for routines computing the confluent hypergeomet-
ric function for complex argument. N: number of Gauss-Laguerre
quadratures. (x): precision in mpmath increased to 30 digits. (E):
convergence to incorrect value. (—): overflow. 83
Error statistics for U(a, b, iz) and U(a,ib, z) using N = 100 quadratures. 83
Comparison in terms of cpu time. MATLAB second evaluation in
parenthesis. L L 83
Effectiveness of bound on ¢k (z) in (4.85) forg < 0Oand p >0. 97
Asymptotic approximation on ck(z) in (4.89) forg < 0asp+k — c0. 97
Comparison of the absolute error values when z = 15¢/ and v = %.
Series truncated at N = 100 terms. 100

4.8 Comparison between various methods for U(a,b, z). Large parame-
tersand argument. Lo

49 Comparison between various methods for U(a, b, z). Small and mod-
erate values of parameters and argument.

4.10 Comparison between various methods for U(a,b, z). Moderate neg-
ative parameters and argument.

5.1 Effectiveness of bound (5.79) in error term of the Euler-Maclaurin
formula.
5.2 Time (in seconds) to compute ®(z,s,a) with moderate values of z, s
and a to 64, 333, 1024, 3333 and 10000 bits of precision. First evalu-
ation pre-computing Bernoulli numbers within parentheses. Maxi-
mum time 1800seconds. o L
5.3 Number of terms N, M in the Euler-Maclaurin expansion and work-
ing precision PV for Euler-Maclaurin cases. (A) and (H) indicate the
method used to estimate M, asymptotic and heuristic, respectively. .
54 Time (in seconds) to compute ®(z,s,a) for small argument |z|.
5.5 Time (in seconds) to compute ®(z,s,a) for large parameter a and
argument z. Comparison to Euler-Maclaurin at low precision. The
rightmost column shows the percentage of the total time devoted to
computation of K peak numbers.
5.6 Time (in seconds) to compute ®(z,s,a) for large parameter a and s,
and argument z. Number of terms for each expansion within paren-
theses. For mpmath: (*) and (**) indicate no answer and inaccurate
answer, respectively. oL L L Lo

viii

133

135

Introduction

This thesis studies the development of efficient algorithms for the numerical
evaluation of special functions to fixed and high-precision. Special functions are
a class of well-studied mathematical functions that are formally defined as a solu-
tion of differential, integrals or functional equation. Amongst the vast majority of
applications, special functions are used for obtaining closed-form expressions with
analytical properties for the solution of problems arising in physics, engineering,
mathematics, and statistics.

The study of effective algorithms for evaluating special functions has been con-
sidered by many authors in the last two centuries. More recently, the use of arbitrary-
precision arithmetic has allowed the computation of special functions to very high-
precision, awakening special interest in the fields of number theory and combi-
natorics. On the other hand, on many occasions, applications do not have such
requirements in terms of precision but are demanding in terms of speed. Conse-
quently, there is also a need to develop fast and robust algorithms in moderate
precision, which turns out to be a challenging problem given the limitations of
working in lower precision, requiring the use of techniques to reduce rounding
effects and numerical instability issues.

The objective of this thesis is to contribute to the field through the develop-
ment of robust and efficient algorithms for several special functions. We present
these new algorithms from a performance-oriented approach rather than merely
theoretical, with the aim to reduce the existing gap between theory and software
implementations. This thesis is divided into five chapters.

Chapter 1 serves to introduce notation and revisit fundamental concepts in
asymptotic analysis and numerical methods used throughout this work.

Chapter 2 focuses on algorithmic aspects to develop numerical software for the
computation of special functions. This chapter reviews standard approaches and
includes an extensive treatment of best practices based on the author’s experience
in the numerical software industry. In addition, a new numerical library for the
evaluation of special functions developed while preparing this work is presented.

Chapter 3 explores different numerical methods in order to develop an algo-
rithm for the generalized exponential integral, which will be used for several im-
portant special cases and uniform asymptotic expansions for confluent hyperge-
ometric functions. The developed algorithm, unlike most of the available codes,
considers real and not just integer parameter. Furthermore, we present various im-
provements for relevant asymptotic expansions and a new asymptotic expansion
for large parameters in terms of Bell polynomials, for which a new uniform up-
per bound is calculated. Finally, this algorithm is compared with implementations
available in the most widely used numerical libraries, showing a superior accuracy
and usually running significantly faster.

Chapter 4 starts with an introduction to the generalized hypergeometric func-
tion, particularly the confluent hypergeometric functions, the methods of compu-
tation and their role in physics, mathematics, and statistics. In particular, we derive
two new results for the beta and Gumbel distribution with applications in Bayesian
statistics and the assessment of classification models” performance in credit risk

modelling. Next, we present an efficient algorithm for the computation of the con-
fluent hypergeometric functions when the imaginary part of the parameters and
argument is large. The algorithm is based on the application of the steepest descent
method, applied to a suitable representation of the confluent hypergeometric inte-
grals as a highly oscillatory integral, which is then integrated by using various nu-
merical quadrature methods. The performance of the algorithm is compared with
open-source and commercial software solutions with arbitrary precision. Our al-
gorithm clearly outperforms all the available open-source codes in floating-point
arithmetic and achieves high-precision (close to machine-precision) in both real
and imaginary parts. As stated before, special functions have many applications
in different areas and in this work our motivation comes from the need of accu-
rate computation of the characteristic function of the beta distribution, which is
required in several financial models, for example, modelling the loss given default
in the context of portfolio credit risk. In the third section, we present a method
of high-precision computation of the confluent hypergeometric functions using an
effective computational approach of what we termed Franklin-Friedman expan-
sions, originated in 1957. These expansions are convergent under mild conditions
of the involved amplitude function and for some interesting cases the coefficients
can be rapidly computed, thus providing a viable alternative to the conventional
dichotomy between series expansion and asymptotic expansions widely used in
practice. Our uniform asymptotic expansion is implemented and extensively tested
in different regimes of the parameters and compared with recently investigated
convergent and uniform asymptotic expansions.

Finally, chapter 5 deals with the evaluation of the Lerch transcendent, which
serves as a unified framework for the study of various particular cases of special
functions in number theory. After a first section introducing some functions in
analytic number theory, the second section examines the use of Euler-Maclaurin
formula and new derived uniform asymptotic expansions for the numerical evalu-
ation of the Lerch transcendent for complex parameters and argument to arbitrary-
precision. A detailed analysis of these expansions is accompanied by rigorous error
bounds and algorithmic details to achieve high performance implementations. Our
main contribution is an algorithm for large and small values of the parameters and
argument, showing a superior performance compared to current state-of-the-art
codes.

Chapters 3, 4 and 5 of this thesis are primarily based on a series of published
papers and preprints, which have been adjusted to consolidate the presentation.
The list of papers is:

e Chapter 3:

1. G. Navas-Palencia. Fast and accurate algorithm for the generalized exponen-
tial integral E,(x) for positive real order. Numerical Algorithms, 77(2):603-
630, 2018. [118].

e Chapter 4:

1. G. Navas-Palencia and A. Arratia. On the computation of confluent hyper-
geometric functions for large imaginary part of parameters b and z. Lecture
Notes in Computer Science, 9725:241-248, 2016. [120].

List of Tables 3

2. G. Navas-Palencia. High-precision computation of the confluent hypergeo-
metric functions via Franklin-Friedman expansion. Advances in Computa-
tional Mathematics, 44(3):841-859, 2018. [119].

e Chapter 5:

1. G. Navas-Palencia. Numerical methods and arbitrary-precision computation
of the Lerch transcendent. Preprint 2018, submitted to Numerical Algo-
rithms.

Finally, work from this thesis was presented at the following conferences:

1. 5" International Congress on Mathematical Software, 11-14 July 2016. Zuse
Institute Berlin (ZIB), Germany. Talk: On the computation of confluent hypergeo-
metric functions for large imaginary part of the parameters b and z.

2. FOCM 2017 - Foundations of Computational Mathematics, 10-19 July 2017.
Universitat de Barcelona, Spain. Poster: Fast and accurate algorithm for the
generalized exponential integral E, (x) for positive real order.

3. International Conference on Computational Science and Engineering 2017,
23-25 October 2017. Oslo, Norway. Talk: GNSTLIB: a new numerical library for
the evaluation of mathematical functions.

Chapter 1

Analytic and Numerical Methods
for Special Functions

This first chapter introduces standard methods for evaluating special functions.
Here we merely provide a short discussion about methods used in subsequent
chapters. The primary purpose of this introductory chapter is not to give a pre-
cise description of these concepts but rather references to the non-versed reader, to
whom we refer to the classical books [39, 125] and internet resources [43].

1.1 Analytic methods and asymptotic expansions

1.1.1 Introduction

As customary, we introduce asymptotic estimates presenting the big O-symbol, de-
noted by O. Let us consider two functions f(z) and g(z) defined on a complex
domain D, then

f(2) =0(g(2)), zeD,

means that f(z) is bounded by a constant M multiple of g(z), which can be written
as |f(z)| < M|g(z)], ¥z € D. Another standard symbol in asymptotic estimates is
the little 0-symbol, which is used to express the limit lim,_,. f(z)/g(z) =0 as

f(z) =0(g(z)), z— 0, zeD.

We also express that functions are asymptotically equivalent, meaning that the limit
lim, . f(z)/g(z) = 1, using the notation

f(z) ~g(z), z— o0, ze€D.

Let us consider a formal series expansion representation
o 0]
flz) =Y a2~
k=0

For f(z) having singular points the series converges for all |z| < r, where 7 is
positive number and coefficients a; are real or complex numbers. Less formally,
the series f(z) converges if the sequence of partial sums Y}_, axz* converges as
n — oo. Otherwise, we say that the series diverges. The series converges absolutely
if Y3 o |axz"| converges.

Chapter 1. Analytic and Numerical Methods for Special Functions 5

Convergence tests are tools to determine if a given infinite series converges,
conditionally converges, absolutely converges or diverges. Two well-known tests
are the comparison test and the ratio test. The comparison test compares a given se-
ries with a simpler series whose convergence properties are already known. Given
a series) ;2 bizk with by > 0 that converges, if |ax| < by, then Y ;7 agzk converges
absolutely. The ratio test, also known as D’Alembert criterion, is a test for deter-
mining the radius of convergence for power series of the form) ;> , ax with positive

terms a;, defined as
.a
r= lim -1,
k—oco A
Then, if r < 1, the series converges. If r > 1 or r = oo, the series diverges. Other-
wise, the ratio test is inclusive, the series may converge or diverge.

Let us now consider the Poincaré asymptotic expansion of the form

which is also frequently written with a remainder term, which should hold VK.

K-1

f) =Y % roEk), 2w,
k=0 2

for z in an unbounded domain D. The asymptotic series might accurately approxi-
mate the true value of f(z) for sufficiently large values of z, but we do not assume
convergence as the number of terms increases.

1.1.2 Asymptotic methods for integrals

In what follows we give a brief overview of classical methods usually employed to
develop asymptotic expansions of integrals: Watson’s lemma, Laplace’s method,
and the saddle point method. These methods are part of the standard approach
to obtain asymptotic expansions for Laplace-type and contour integrals. For other
methods such as the method of stationary phase or the Bleistein’s method, we refer
to [157] and [125], where proofs and detailed analysis of these and other asymptotic
methods for integrals are provided.

Watson’s lemma

The Watson’s lemma is one the most useful results from the theory of asymptotics
for integrals, being often the first option for deriving asymptotic expansions for
special functions, mainly due to its simplicity and effectiveness. Let us consider a
Laplace-type integral of the form

F(z,p) = /O T e (n) dt,

Chapter 1. Analytic and Numerical Methods for Special Functions 6

with R(z) > 0 large and R(u) > 0 fixed, and f(t) has a finite number of disconti-
nuities. If F(z, u) converges for sufficiently large values of #(z), then
i

2

2 T(k+
F(z,p) ~) ak(Zker‘u), z — 0o, |[phz| <
k=0

where I'(z) is the gamma function and aj are the coefficient of the expansion of f(t)
att = 0, also known as Maclaurin expansion, given by

(5 ~ Y gt
k=0

Laplace’s method and saddle point method

The Laplace’s method is a generalization of Watson’s lemma applicable to general
integrals of the form

F(z) = / g (r) dt

We assume that p(t) has a simple saddle point, i.e., the point ¢y such that p’(ty) = 0,
with p”(ty) # 0, thus the local minimum of p(t). For large z the main contribution
is located in a neighbourhood of t — ty. Assuming that p(t) and g(t) are contin-
uous in the vicinity of #y and independent of z, if F(z) converges absolutely for
sufficiently large values of z then

o [T) 3, (12
F(z) sze k;:]azk o I

where (a)y is the Pochhammer symbol. Formulas for the coefficients ay; require the
coefficients of the Taylor expansion of p(t) and q(t) at the saddle point t = ty. Thus,

p(t) =Y pe(t—t0), q(t) =Y qi(t — to)~.
k=0 k=0
The first two coefficients ap and 4, are

1 3psm <15P§ 3P4> >
ag=qo, a2=— (g2 — - — = :
0 170 2 2 <512 2p2 Sp% 2]72 QO

The saddle point method deals with contour integrals in the form

F(z) = /C e~ g (1) dt,

for large z. The integral is taken along a path C in a domain where p(t) and q(t)
are analytic, avoiding the singularities of the integrand. The idea is to modify the
contour of integration C through a saddle point such that the imaginary part of the
dominant part of the integral is constant, thus obtaining a steepest descent path.
The resulting integral may ultimately be estimated by using one of the previous
methods. This technique has been extensively applied to numerical integration of

Chapter 1. Analytic and Numerical Methods for Special Functions 7

oscillating integrals, see Section 4.2. Finally, a unified formulation of Laplace’s and
steepest descent method is presented in [50].

A closely related method is the determination of saddle point bounds, which are
commonly derived in analytic combinatorics. An elementary saddle point bound
[53, §VIII.2] satisfies that

‘/ABf(t) df‘ < |Collf'(t)l, f'(t0) =0,

where |Cy| are saddle point paths made of arcs connecting A to B through to. Thus,
|Co| = |to — A| + |B — to|. This method is often used throughout this work, for ex-
ample in Chapter 3, where we develop an effective bound for the Bell polynomials.

1.1.3 Uniform expansions for Laplace-type integrals

Besides the classical Watson’s lemma, the method of Laplace and the saddle point
methods, several analytic methods have been devised to obtain uniformly conver-
gent asymptotic expansions. These methods generally require a thorough analysis
of the coefficients involved, but they form a powerful set of methods to obtain uni-
form expansion valid for extended regimes of the parameters. These methods serve
to complement the standard dichotomy between series expansion and asymptotic
expansion. A detailed analysis of uniform methods applicable to Laplace-type in-
tegrals is provided in [157]. Here, we briefly present two of these methods that we
shall used throughout this work.

The Franklin-Friedman expansion [55, 119] is a suitable method to obtain con-
vergent uniform asymptotic expansions. This method replaces the Maclaurin ex-
pansion in Watson’s lemma by a type of interpolation process. See Section 4.3 for
an extensive detailed analysis of the coefficients of the expansion.

The vanishing saddle-point method [156] is an alternative method to the direct
application of the Watson’s lemma for Laplace-type integrals, where parameters
and argument can be simultaneously large. The resulting expansion is expressible
in terms of Tricomi-Carlitz polynomials [157, §24.3], which satisfy a three-term re-
cursive relation. A comparison between the Franklin-Friedman expansion and the
vanishing saddle point method is carried out in Section 4.3, to evaluate one of the
confluent hypergeometric functions.

1.2 Numerical Methods

This Section covers standard alternative methods to the direct evaluation of a con-
vergent or asymptotic series expansion for computing special functions. These
methods are needed when the coefficients of the expansion cannot be computed
efficiently, or the optimal truncation point of the asymptotic expansion is reached
before achieving the desired accuracy. The excellent and already classic book Nu-
merical Methods for Special Functions [61] deals with numerical methods and algo-
rithms to approximate special functions.

Chapter 1. Analytic and Numerical Methods for Special Functions 8

1.2.1 Quadrature methods

Many special functions can be expressed in terms of several integral representa-
tions. This favours the development of asymptotic expansions using some of the
techniques described in the previous Section. On the other hand, this also permits
the use of quadrature methods when those asymptotic expansions have difficult
coefficients and cannot be computed efficiently. The use of standard quadrature
methods for the computation of special functions is extensively studied in[61, §5],
including a discussion about the most suitable quadrature rule considering the an-
alytical properties of the integrand.

Among the variety of numerical integration methods, the most efficient meth-
ods used in practice are the extended trapezoidal rule [161], the Gauss quadrature
(Gauss-Legendre, Gauss-Laguerre, Gauss-Hermite, Gauss-Kronrod among other
variants) and the double-exponential integration, also known as tanh-sinh quadra-
ture, [150, 110]. The double-exponential quadrature is often preferred when eval-
uating integrals at high-precision since computing the nodes and weights for the
integration is cheap and can appropiately handle singularities at endpoints of the
interval of integration [6]. The double-exponential quadrature of an integrand f (x)
over [—1,1] is given by

1) N
[fwax= [flang Bt~ Y wiflx),

j=—N
for h > 0, where abscissas X; and weights w; are given by
xj = g(hj) = tanh (% sinh(hj))

o T cosh(hj)
8§) = 5 coshr /2 sinh(i]))?

wj =

Numerical implementation aspects are detailed in [7]. Usually, standard methods
struggle to return accurate results in the presence of severe oscillations of the inte-
grand. For this case, one can consider the specialized methods using the double-
exponential integration method developed in [127, 126] or the Gaussian quadrature
[82, 40], see Section 4.2 for a complete overview of numerical methods for highly
oscillatory integrals.

Recent developments aim to overcome the manual choice of the most suitable
quadrature method for each integral using a black-box approach [91]. This method
combines adaptive bisection with degree-adaptive Gauss-Legendre quadrature for
the evaluation of definite integrals. This method is adequate to evaluate integrals
at high-precision, say up to 1000 digits, considering rigorous error bounds rather
than merely heuristic error estimates like the previous methods.

1.2.2 Continued fractions

Let us define a continued fraction C = C,, when n — oo by [43, §1.12]

a az n An
S M= 2N e, #0,

Cn:bo—f-bl_f_sz...bn Bn,

Chapter 1. Analytic and Numerical Methods for Special Functions 9

where C, is called the n-th approximant to C, and A, and B, are called the numer-
ator and denominator respectively. A continued fraction converges if the approxi-
mants C, tend to the finite limit as 7 — co. The numerator and denominator can be
computed iteratively by means of the recurrence relations for k > 1

Ap = brAg1 + axAx2
By = bxBr—1 + axBi—2,

with A_1 = 1, Ay = by, B_.y = 0 and By = 1. A modern and more convenient
representation is
a

m(z)
b (z)

o) =h(2) + K
m=1

There are several continued fraction representations: Stieltjes fraction (S-fraction),
Jacobi fraction (J-fraction), C-fraction, M-fraction and T-fraction. Additionally, ap-
proximants modifications to improve convergence of these continued fractions are
discussed in [38].

Continued fractions are generally computed by means of one of the following
methods: forward recursion using the above three-term recurrence relations, back-
wards recurrence algorithm, Steed’s algorithm and the modified Lentz’s algorithm.
The latter is the preferred choice due to avoidance of successive rescaling and that
prior information about the value of 7 is not required [61].

Continued fractions are a common technique to evaluate special functions and
their quotients. Continued fractions are applied for the computation of conflu-
ent hypergeometric functions in [113]. A comparison among several continued
fractions types for evaluating the generalized exponential integral is presented in
Chapter 3. Lastly, we refer the reader to [38] for an exhaustive treatment of theoret-
ical and numerical aspects for continued fractions.

1.2.3 Sequence acceleration techniques

For some particular methods the resulting series expansion converges very slowly,
requiring a large number of terms to yield just a few correct digits. In addition, the
cost becomes prohibited for a series expansion with coefficients involving functions
hard to compute. In these cases, series acceleration techniques stand out as power-
ful tools to improve convergence at the expense of performing several operations
with partial sums. Therefore, the goal of convergence acceleration algorithms is to
accurately estimate the sum of slowly convergent infinite series.

There exist an extensive literature on sequence (series) acceleration, also re-
ferred as sequence transformations. For examples and covering of many transfor-
mations such as the classic techniques (the Euler’s transformation, Shank’s trans-
formation and Levin-type transformations among others) we refer the reader to
[21, 142]. Nowadays, there is not a universal technique that can efficiently acceler-
ate the convergence of all infinite series, in contrast, there are tailored algorithms
for different types of sequences. For example, a novel technique developed to accel-
erate the convergence of generalized hypergeometric functions is studied in [168].

Chapter 1. Analytic and Numerical Methods for Special Functions 10

Other methods often applied to improve convergence properties of a power se-
ries are the well-known Euler-Maclaurin formula, requiring derivatives and Berno-
ulli numbers and polynomials, and the Abel-Plana formula, with no derivatives
required, see [43, §2.10].

In the last decades, significant research has been endeavoured to develop effi-
cient algorithms to accelerate the convergence of alternating and divergent series.
A simple yet very effective linear method is presented in [35]. This method has
been widely applied in number theory for rapid evaluation of alternating sums to
very high precision. Nonlinear acceleration methods have been extensively treated
by Weniger in [166, 86] among other works, where the transformation of mono-
tone slowly convergent series into an alternating series is investigated. Another
interesting method for the summation of divergent asymptotic series is the use of
factorial series [167]. Finally, note that the technique in [35] is applied to accelerate
convergence are remove cancellations when evaluating the Lerch transcendent for
small negative argument, see Chapter 5.

1.2.4 Other methods

The described methods are generally applicable for the computations of special
functions in arbitrary-precision. However, there are also some other methods tai-
lored for computation at fixed precision that can be encountered in many numerical
libraries.

Chebyshev expansions, rational Chebyshev approximations and Padé approxi-
mations [61, §9.2] were methods popularly used during the last part of the past cen-
tury to develop numerical routines for the evaluation in double-precision floating-
point arithmetic. These methods are applicable to approximate a function f(x) by
a polynomial p(x) within real intervals [a, b] with uniform accuracy. The minimax
approximation is the best option to approximate a continuous function f(x) on an
interval [a,b]. For details and examples for univariate special functions we refer
to the work developed by W. J. Cody [30, 28] and the numerical library developed
by the same author, SPECFUN [29], where this type of methods are often used to
accurately compute functions for arguments in bounded intervals.

To conclude, we remark that occasionally, methods to approximate solutions of
ordinary differential equations such as Runge-Kutta methods may be a viable alter-
native when no available method returns a satisfactory value for some function’s
domain, see discussion in [133, §Appendix C].

11

Chapter 2

Software Development for the
Numerical Evaluation of Special
Functions

In the second Chapter, we focus on the main aspects considered when develop-
ing numerical software for the evaluation of special functions. The first two Sec-
tions are devoted to arithmetic in fixed and arbitrary-precision, where we present
algorithms implemented in software arithmetic (not to be confused with hardware
arithmetic). The remaining Sections discuss fundamental aspects in numerical soft-
ware development such as the use of standard libraries for compatibility, compilers
and best practices for proper testing, profiling, and deployment. The Chapter con-
cludes with an introduction to GNSTLIB, a numerical library written in C++ for
the evaluation of special functions developed following the principles previously
presented.

2.1 Arbitrary-precision arithmetic

In what follows we briefly summarize some fundamental arbitrary-precision algo-
rithms for performing arithmetic operations, which are implemented in packages
for the computation of elementary and special functions. By high-precision, more
generally arbitrary-precision, we refer to higher precision than the achievable di-
rectly using IEEE 754 standard floating-point hardware, introduced after this sub-
section. A modern book on the subject is Modern Computer Arithmetic [18], comple-
menting the classical reference [99], which we refer to more complete material.

211 Algorithms

Let us define n as the number of binary digits required to obtain a result with ac-
curacy 2~ ". For addition and subtraction of two n-bit integer numbers the cost is
O(n), but in computer algebra the quintessential primitive operation is multipli-
cation. Consider M(n) a bound for the time, measured in word or bit-operations,
required to multiply two n-bit integer numbers or polynomials of degree n — 1. The
naive multiplication algorithm (schoolbook multiplication) gives M(n) = O(n?)
and the subquadratic “divide and conquer" multiplication algorithm by Karatsuba
[96] gives M(n) = O(n'°823) ~ O(n'5%). For large n, the Schénhage-Strassen algo-
rithm [139], based on the fast Fourier transform gives M(n) = O(nlognloglogn)

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 12

asymptotic complexity. In general, the naive multiplication algorithm is used for
small 1, and subquadratic algorithms are used elsewhere except for very large n,
where asymptotic complexity algorithms are preferred. A good survey of algo-
rithms for fast multiplication with applications can be found in [9]. The division
operation is avoided when possible, and replaced by multiplication since it is a
more expensive operation [18, §1.4]. Note that the complexity of the arithmetic
operations of p-bit floating-point numbers is the same as the described for integer
numbers, up to a constant factor [20, §3].

Several techniques are used for computing elementary transcendental functions
to arbitrary-precision. The basic and widely used techniques are: argument reduc-
tion, the arithmetic-geometric mean (AGM), Newton’s method and fast methods
for evaluation of power series. Argument reduction (expansion) is a technique
used to decrease (augment) the magnitude of the argument to a domain where the
function can be evaluated effectively. This result in the evaluation of fewer terms
to achieve the desired accuracy thus improving the convergence rate; for example
exp(x) = (exp(x/ Zk))zk. Other tricks such as combination of power series after
argument reduction or the use of symmetries are usually exploited in software im-
plementations. When computations are performed at very large precision p, the
AGM algorithm is chosen due to its asymptotic complexity; requires O (M(p) log p)
bit operations to give p-bit accuracy. On the other hand, Newton’s method can be
used in the same cases where AGM is applicable. Newton’s method has complexity
O(M(p)log p), but increased with a constant factor.

Now, we mention several techniques to evaluate polynomials of degree P(x) =
ZI’;& arxk at p-bit precision, resulting after determination of the optimal truncation
point when evaluating a power series. Hereinafter, we assume that coefficients
aryj/ ay are rational functions, which eases a sequential evaluation by means of a
linear recurrence (this is the common case of hypergeometric functions, see Chapter
4). Fast algorithms for evaluation of linear recurrence include the binary splitting,
rectangular splitting and fast multipoint evaluation. A naive forward recursion al-
gorithm requires O (n?) operations and is only suitable at low precision. The binary
splitting algorithm has time complexity O(M(n)logn) as noted in [19]. In this al-
gorithm the finite sum is computed by “divide and conquer" [18, §4.9]. The fast
multipoint evaluation method allows evaluation of the n-th term of a linear recur-
rence in O(M(y/n)) operations [17]. The rectangular splitting algorithm [18, §4.4.3]
is based on the baby-step giant-step technique in [130] and extended in [145]. The
idea of rectangular series splitting is to evaluate a power series with O(/n) non-
scalar multiplications and O(n) scalar operations using O(y/n) storage. Finally, a
description of the domain of applicability of each algorithm in the context of the
evaluation of hypergeometric functions is given in [88, 90].

2.1.2 Libraries

Here we present a list of popular open-source software packages for arbitrary-
precision arithmetic.

1. GMP [69]: The GNU MP is a library written in C and the main reference for
arbitrary-precision arithmetic. Most of the new developments are built on

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 13

this library. GMP is released under the GNU Lesser General Public License
(LGPL).

2. MPER [54]: The MPFR is a library written in C for arbitrary-precision floating-
point computations with correct rounding and exceptions, extending the ideas
of the IEEE 754 standard. This library is based on the GMP and therefore also
distributed under the GNU LGPL.

3. MPC [47]: The GNU MPC library, is a C library for arbitrary-precision com-
plex arithmetic with correct rounding, based on the MPFR and GMP libraries.
This library is also distributed under the GNU LGPL.

4. mpmath [92]: This is a Python library for arbitrary-precision real and com-
plex arithmetic. Mpmath can use GMP as a backend, replacing native Python
integer operations thus improving performance at high precision. Mpmath is
distributed under the Berkeley Software Distribution (BSD) license.

5. Arb [87]: Arbis a C library for rigorous real and complex arithmetic with arbi-
trary precision. This library differs from the previous ones on the approach to
tracking numerical errors, which relies on a form of interval arithmetic based
on a midpoint-radius representation called ball arithmetic. Arb is distributed
under the GNU LGPL.

2.2 Floating-point arithmetic

In this subsection, we present a brief survey on the extensive topic of floating-point
arithmetic. An excellent reference for this subject is the Handbook of Floating-point
Arithmetic [112] to which we refer the reader for further reading.

After a mandatory introduction to floating-point arithmetic, this subsection is
focused on the less known floating-point extensions. Floating-point extensions are
used when higher precision than the standard double-precision or binary64 is re-
quired, and a software implementing arbitrary-precision arithmetic is not avail-
able. This need arises in numerical problems in mathematics, physics and engi-
neering fields when higher precision is necessary to compensate cancellation or
ill-conditioned sums (for example, the procedure known as iterative refinement
when numerically solving a system of linear equations). Some of the techniques
presented are implemented and discussed in detail in Section 3.4. for the numeri-
cal evaluation of the generalized exponential integral.

2.2.1 Definitions and basic notation

Let us start by defining a floating-point number in binary representation. A normal
binary floating-point number with precision p-bit is a number of the form

x=M-207PH, (2.1)

where M is a signed integer denoted as the significant or mantissa of x, which
absolute value is bounded 271 < |M| < 2P — 1. The integer e is called the exponent
of x. The 2 in above formula represents the base or radix for exponentiation, in this

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 14

case binary. The commonly used bases to represent floating-point numbers are
decimal (the scientific notation with base ten) and binary with base two.

Let us define e,;, and ey,x as the minimum and maximum allowed exponent,
respectively. Three extreme cases are considered:

1. minimum subnormal number; 2¢min—P+1
2. minimum normal number: 2¢min,
3. maximum normal number: 2¢max (2 — 21-p).

In order to store floating-point number correctly, its significant must be nor-
malized, i.e,, must be represented in the normal form (2.1), assuring the first bit
of the significant is set to 1 and adjusting the exponent accordingly. This process
is known as normalization. For example, 1001.101 is normalized as 1.001101 - 23,
A floating-point number x satisfying that x < 2°ni is called subnormal or denor-
malized number. This number is characterized by having the leading bit of the
significant set to 0, which result in an exponent that is below ¢,,;,,. In the IEEE 754
standard, described below, an underflow exception is raised when a subnormal
number occurs and the operation is inexact.

The IEEE 754 standard, specifies interchange and arithmetic formats and meth-
ods for binary and decimal floating-point arithmetic, along with exception condi-
tions and their default handling, in computer programming environments. The
active IEEE 754-2008 standard[146] ! supports several binary formats. The charac-
teristics of the three most common floating-point binary storage formats are listed
in Table 2.1. For example, the bits for binary64 or double-precision are arranged as
follows, 1 bit for the sign, 11 bits for the exponent, and 52 bits for the significant.

format word size sign exponent significant p Cimin Cmax
Binary32 (Single) 32 1 8 23 24 -126 127
Binary64 (Double) 64 1 11 52 53 -1022 1023
Binary128 (Quad) 128 1 15 112 113 -16382 16383

TABLE 2.1: Main parameters of the basic formats specified by the
IEEE 754-2008 standard.

The operations specified by the IEEE 754-2008 are: addition/subtraction, mul-
tiplication, division/remainder and squared root. All values from these operations
are returned with correct rounding using the current rounding mode.

The IEEE 754 standard considers five exceptions that can be flagged during a
calculation. The first three exceptions (invalid operation, division by zero and over-
flow) are the most common exceptions and can be easily identified. The last two
(underflow and inexact) and usually ignored, and careful inspection is required to
detect the source of errors.

1. Invalid operation: This exception is raised if the result of a calculation is
mathematically undefined. By default returns quite NaN. A few examples:
v/x where x < 0 or (£0)/(+£0).

IThe active IEEE 754-2008 standard was adopted in June 2008. This version superseded two pre-
vious standards from 1985 and 1987. Two of the major additions with respect to previous standards
are the fused multiply-add (FMA) operator and including quadruple precision.

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 15

2. Division by zero: This occurs when computing x/0 if x is a nonzero finite
number, the division by zero exception is flagged. The result is a correctly
signed infinity.

3. Overflow: This exception is raised when the absolute value of the computed
result is strictly larger than the maximum normal number, i.e., |x| > 26m (2 —
2177), or equivalently, when the exponent of the computed result is strictly
larger that ey,y.

4. Underflow: This exception is raised when the result of computation is a non-
zero of absolute value less than |x| < 2°min, In this case, the returned value
is in the subnormal range, and a significant loss of accuracy may occur. The
returned value is subnormal or zero.

5. Inexact: This exception is raised when the rounded result of a valid opera-
tion is not exact. The correctly rounded, overflowed or underflowed result is
returned.

Floating-point operations are performed internally with extra precision. The
calculated values, not exactly representable in the same floating-point system used
for the input data, are returned rounded to ensure precision. The IEEE 754 defines
four possible rounding modes:

1. Round toward +co: result is rounded to the smallest representable value
which is greater that the result.

2. Round toward —oo: result is rounded to the largest representable value which
is less that the result.

3. Round toward zero: truncation, it is similar to the common behaviour of float-
to-integer conversions. If the result is negative is rounded up, and contrarily
for positive result.

4. Round to nearest: the result is rounded to the nearest representable value.
Two modes: the default rounding mode for binary floating-point arithmetic is
round to nearest even, which in case of ties, select result with even significant.
Alternatively, round to nearest away, where ties round away from zero (used
only for decimal floating-point arithmetic).

To conclude, we introduce two instruction sets currently supported by many
processors. We refer to [112, §3.5-3.6] for an extended list of instructions supported
by modern CPU and GPU.

1. Fused multiply-add (FMA):

The FMA instruction was introduced to facilitate correctly rounded software
division and to make some calculations (especially dot products and poly-
nomial evaluations) faster and more accurate. The new IEEE 754-2008 stan-
dard for floating-point arithmetic specifies the FMA instruction. The FMA
instruction performs the operation a x b + ¢ with only one rounding error
with respect to the exact result. This is actually a family of instructions that
includes useful variations such as fused multiply-subtract. The processors
implementing these instructions sets provide hardware FMA operators, with
latencies comparable to classical + and x operators.

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 16

2. SIMD instructions:

Most recent instructions sets also offer single instruction, multiple data (SIMD)
instructions. One such instruction applies the same operation to all elements
of a vector of data kept in a wide register.

2.2.2 Floating-point expansions and error-free transformation

The theory on floating-point expansions was pioneered by Dekker [42] and ex-
tended by Priest [135] and Schewchuck [140]. A floating-point expansion can be
defined as an exact finite sum operation of floating-point numbers. More precisely,
a floating-point expansion is a multiple-term representation in which a number is
expressed as the unevaluated sum of n standard floating-point numbers. This ap-
proach offers high performance, exploiting modern hardware capabilities, due to
using directly available and optimized hardware implemented floating-point op-
erations. However, among the drawbacks of this approach, we have that those
operations performed using floating-point expansions are not compliant with the
IEEE 754-2008 standard, the returned results are not correctly rounded and num-
bers have a limited exponent range.

Most algorithms performing arithmetic operations on floating-point expansions
are based on the so-called error-free transformations. An error-free transformation
is an algorithm which transforms any arithmetic operation of two floating-point
numbers a2 and b into a sum of two floating-point numbers s and ¢, being a floating-
point approximation and an exact error term, respectively. Therefore, these algo-
rithms rely on native precision operations but keep track of all accumulated round-
ing errors to avoid a loss of information.

A reference library using this approach is Bailey’s library QD [80]. This library
provides support to double-double and quad-double numbers, i.e., numbers are
represented as the unevaluated sum of two and four double-precision floating-
point numbers, respectively.

Basic algorithms

Here we only briefly present a survey of the algorithms developed to cover practi-
cally all common mathematical operations. The presented algorithms assume that
operations are performed in rounding to nearest mode. We start with addition/-
subtraction operation; the algorithms TwoSum [99] and FastTwoSum [42] are the
basic bricks used for more involved operations. These two algorithms take 6 and 3
flops?, respectively, but FastTwoSum requires a branch (Ja| > |b| must be satisfied),
making TwoSum usually preferable on modern processors. For multiplying two
floating-point numbers, the algorithm TwoProduct in [42] takes a total of 17 flops
and requires an error-free splitting of each floating-point number into two parts,
x = xp + x;, guaranteeing that no information is lost in the transformation. This
is known as Veltkamp’s algorithm and requires 4 flops. Another accurate algo-
rithm for the product and exponentiation of floating-point numbers is discussed in
[65]. An alternative algorithm taking only 2 flops is 2MultFMA, which uses a FMA

ZFlops: native floating-point operations.

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 17

instruction [93]. For division, a fast classical algorithm is given in [135], which di-
vision is carried out using the long division algorithm. A recent algorithm using
truncated Newton-Raphson iterations for reciprocal of a floating-point expansion is
studied in [94, 93]. Finally, an algorithm for square root based on adapted Newton-
Raphson iteration with a detailed error analysis is detailed in [93].

Several summation techniques [81] have been developed to perform accurate
addition of n floating-point numbers. These algorithms replace the traditional
method when the problem is ill-conditioned. A sum is ill-conditioned if its con-
dition number C = |Y}' (x;|/ Yi'y |xi| is large. Some techniques typically used
are: reordering in increasing/decreasing magnitude before addition, compensated
summation based on previous algorithms FastTwoSum and TwoSum, and distilla-
tion algorithms, which separate accumulators with exact additions until these are
finally added. Among the variations of compensated algorithm, we remark Vec-
sum [121]. Similar algorithms have been devised to perform dot product accurately
[121]. For polynomial evaluation, compensated Horner’s methods have been ex-
tensively studied in [66, 67, 68], including variants using FMA and with complex
floating-point arithmetic.

Finally, we note that we have implemented most of these algorithms in the li-
brary Fhyperg, introduced in the following subsection.

2.2.3 DD vs MPER for the evaluation of Riemann zeta function

In this subsection we compare the use of double-double arithmetic against arbitrary-
precision libraries in "medium" precision (106-bit). These floating-point expan-
sions are suitable in many applications in engineering and physics when only a
small multiple of the double precision is needed, without recurring to arbitrary
precision, obtaining significant performance gain. For this benchmark we imple-
ment the Riemann zeta function for integer argument using Fhyperg, a library
developed in Fortran 90 for the computation of special functions using double-
double numbers for real and complex values. Fhyperg is a work in progress (with
roughly 7000 lines of code) and can be downloaded from https://sites.google.

com/site/guillermonavaspalencia/software.

For the purpose of this study, we briefly introduce the Riemann zeta function
and the algorithms implemented. More details about the Riemann zeta and other
related functions can be found in Chapter 5. The Riemann zeta function is the
simplest of all L-functions, which can be defined as a Dirichlet series

I(s)=) — R(s)>1 (2.2)

(2.3)

where p indicates an infinite product over primes. The function has a continuation
to the whole complex plane with a simple pole at z = 1 with residue 1. For s = 3 the

https://sites.google.com/site/guillermonavaspalencia/software
https://sites.google.com/site/guillermonavaspalencia/software

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 18

Riemann zeta function is defined as Apéry’s constant. This constant can be com-
puted very efficiently using the accelerated formula described in [2] and applied in
[73], defined by

o 205k% + 250k +77 k110
_ _1\k
(3)=).(=1) 64 (2k+1)15° (24)

Other identities for the Riemann zeta function at odd integers were discovered
by Plouffe?, for example {(7) is given by

1977 = 1
67) = 56700 2}; k7 (e2mk — 1) 25
For large positive integers we use the defining series of the Riemann zeta func-
tion. The required number of terms to obtain p bits of precision is estimated using
n = (27)!/3, in practice we found that a heuristic n = [(27)!/*] + 3 suffices for
p = 106. As shown in Figure 2.1, this methods exhibits fast convergence as s in-
creases, therefore the L-series is applied for s > 18.

Borwein’s algorithms

P. B. Borwein in [15] describes three algorithms particularly simple compared with
other methods, but remarkably efficient. We focus on algorithm 2 and 3. The series
expansion in Algorithm 2 is given by

- (dy — dy,
) = (1—21 D) Z k+k1)“"(S)’ (26)
where
K (n4i—1)14

i = ”1.;0 (n—1)1(2i)!

taking the coefficient dy = 1 and subsequent coefficients can be computed by using
W It can be checked that the coeffi-
cients dy are integers. The error term ¢, (s) satisfies

(2.7)

the hypergeometric recurrence

3 1
G+ By -2

The analysis in [54] specifies that in order to obtain an accuracy of around p bits

len(s)] < (2.8)

for s > 2, a number of terms n > M;ﬂ is sufficient. We tested that n = 44 is
log(3+/8)

sufficient for s < 18 with p = 106.
The series expansion in Algorithm 3 is defined by

-1 2n—1 e.

= i K Gy

+en(s), (2.9)

Shttp://www.lacim.uqam.ca/“plouffe/identities.html

http://www.lacim.uqam.ca/~plouffe/identities.html

Chapter 2. Software Development for the Numerical Evaluation of Special 19
Functions

N
ej = (—1)](—_— — 2”), (2.10)
J k;) k!(n —k)!
where the empty sum is zero. The error term ¢, (s) satisfies

O E=——— @11)
This algorithm is simpler to implement but it is not quite as fast as Algorithm 2,
a comparison between both algorithms is shown in Figure 2.1. Other efficient al-
gorithms exist, for example the Euler-Maclaurin summation formula, which con-
verges much faster than the algorithms discussed. However, Euler-Maclaurin sum-
mation requires the computation of Bernoulli numbers, which turns out to be un-
desired due to the required storage and computational time. Given that precision
is fixed, we could pre-compute all required Bernoulli numbers, but the purpose of
this test is to provide a fair comparison of the underlying arithmetic.
In summary, our implementation treats special cases for s € {0,1,3} and com-
bines Borwein’s algorithm 2 and L-series for other values of s.

160 T

=—=a Borwein 2

140 |- . o—e Borwein 3 ||
¢ L-Series

time (us)

20 N 4 - -

10 20 30 40 50
S

FIGURE 2.1: Timing of the three methods in microseconds.

Implementation and benchmarks

As stated in [80], a precision of 106 bits (around 32 decimal digits) is achievable by
using double-double numbers. More precisely, the equivalent machine epsilon? is
€44 = 27104 ~ 4.93038¢—32.

As mentioned, we implemented the above algorithms in the Fhyperg library,
written in Fortran 90 using some Fortran 2003 features. Fhyperg is compiled with
gfortran 5.4.0. with optimization flag -O3. An important optimization considered,

4This is the epsilon considered in QD package file dd_const . cpp: https://bitbucket.org/njet/
qd-1library/src/352c372£9c94d957d312e131c804fcac1088561d/src/dd_const.cpp

https://bitbucket.org/njet/qd-library/src/352c372f9c94d957d312e131c804fcac1088561d/src/dd_const.cpp
https://bitbucket.org/njet/qd-library/src/352c372f9c94d957d312e131c804fcac1088561d/src/dd_const.cpp

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 20

is to use integer powers and switch to double-double only when necessary in order
to speed up the code. The following code illustrates how this is implemented:

LISTING 2.1: Main loop Borwein’s algorithm 2

! evaluate series
doj =0, n
U (~1)Aj (d[j] — d[n])
if (mod(j, 2) == 0) then
call dd_negative_copy(dn, v)
call dd_add_dd_dd_ip(ds(j+1), v)
else
call dd_negative_copy(ds(j+1), v)
call dd_add_dd_dd_ip(dn, v)
end if

nr = real(j + 1, kind=wp) *x s
if (nr < maxint) then
m= (j + 1) *x s
call dd_div_dd_d_ip(real (m, kind=wp), v)
else
call dd_pow_dd_i(dd_real(real(j + 1, kind=wp)), —s, q, info)
call dd_mul_dd_dd_ip(q, v)
end if

call dd_add_dd_dd_ip(v, t)
end do

The benchmarks are performed on an Intel i7-6700HQ at 2.60GHz running Linux
64-bit. Our implementation using double-double extended precision is compared
with MPFR 3.1.4 in Sage 7.3 with 106 bits of precision. The measures for MPFR
were obtained by using the function %timeit, which basically evaluates the func-
tion in a loop N times and returns the best average time out of three runs. Fhyperg
is tested next using the same number of evaluations in the loop and returning again
the best average out of three.

Figure 2.2 shows a notable general speedup for Fhyperg for small s, which is
diminished as s increases. We also observe a peak in the transition regions between
the Borwein’s algorithm and the L-series, due to the increasing numbers of the
terms in Borwein’s algorithm. For > 18, we observe a steady decay on timing. On
the other hand, Figure 2.3 shows the achieved accuracy, which remains below the
machine epsilon threshold.

Finally, although floating-point extensions can effectively exploit modern hard-
ware obtaining high-performance, recent improvements on this range of precision
for arbitrary-precision arithmetic have been achieved [103], almost closing the per-
formance gap.

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 21

250

T
e—e MPFR 3.1.4 (Sage 7.3)

s—a Fhyperg

S

FIGURE 2.2: Timing in microseconds for 106-bit precision vs MPFR
3.1.4. MPFR caches intermediate results for s € {50, 60,70}.

2.3 Development of numerical libraries in floating-point pre-
cision

This section deals with the main aspects to take into account when developing
numerical software in general, and for the evaluation of special functions, in par-
ticular. This includes the use of standard libraries, compilers, and various devel-
opment techniques and testing methodologies important to guarantee robust and
quality software.

2.3.1 Numerical libraries and compilers

Nowadays, there exists a notable number of open source and commercial numer-
ical libraries including implementations for the numerical evaluation of special
functions y double-precision floating-point arithmetic, extended precision, and arb-
itrary-precision arithmetic.

Historically, these numerical libraries were developed using low-level program-
ming languages such as Fortran or C/C++. More recently, these numerical li-
braries have been ported to other programming languages by means of wrap-
pers, to provide stable, well-tested implementations to newer influential languages
without much work. However, there are a few exceptions like the Julia package
SpecialFunctions.jl, which combines implementations from Fortran and C/C++ li-
braries and others entirely developed in Julia, a modern high-performance pro-
gramming language very well-suited for scientific computing. Another example
is the Python module scipy[95], which also combines Fortran and C implemen-
tations with new developments in Python and Cython (C extensions for Python)
to obtain C performance. The classical open source numerical libraries including
special functions are the Fortran (AMOS[3], SLATEC[163], SPECFUN][29]), and C

http://juliamath.github.io/SpecialFunctions.jl/latest/

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 22

10720

— €dd
e—= error

10730 L i

10-31| €4q ~ 4.93038¢—32 E

10732

relative error

10733 L

107341

10-35
10 20 30 40 50

S

FIGURE 2.3: Relative errors checked with Mathematica. Maximum
relative error ~ 0.8¢4;.

(Cephes[111] and GSL[56]). On the other side, two classical commercial libraries in-
cluding special functions from their very first release are IMSL[147] and NAG[114].
Recent alternatives are Boost[11] and AMath[46]. In addition, some scientific jour-
nal such as TOMS stores the collected algorithm of the ACM, published by the
journal ACM Transactions on Mathematical Software. Other public repositories
are Netlib or John Burkardt webpage https://people.sc.fsu.edu/~ jburkardt/,
where one can find a great deal of TOMS codes written or translated to C++.

New numerical libraries for the evaluations of special functions should make
use of high-performance libraries with parallelization capabilities on the CPU, and
ideally GPU. The Intel Math Kernel Library (MKL) is a good example, including
functions to accelerate and optimize routines in linear algebra, statistics and com-
mon special functions. This is a high-optimize and easy-to-use library including
vectorized mathematical functions. In particular, includes an extensive list of vec-
torized special functions®. Additionally, several programming languages include
many common and special functions as a part of their standards; for example,
C++17 <cmath> incorporates new special functions such as elliptic integrals or ex-
ponential integrals. Finally, as mentioned later, most of the previous numerical
libraries do not cover correctly all functions” domain, especially for those functions
with several real and complex parameters and arguments. Nevertheless, some of
the functions correctly implemented can be used as building blocks for new imple-
mentation of more involved functions.

For the development of numerical libraries in Fortran or C/C++, we required
the use of compilers. The following list includes the most widely used compilers
by programming language:

Shttps://software.intel.com/en-us/mkl-developer-reference-c-vm-mathematical-functions

https://people.sc.fsu.edu/~jburkardt/
https://software.intel.com/en-us/mkl-developer-reference-c-vm-mathematical-functions

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 23

o C/C++: GNU (gcc and g++), Clang C++ and Intel C++ (icc). Vendors bench-
marks®.

e Fortran: GNU (gfortran), Intel Fortran (ifort), NAG Fortran compiler, PGI
compilers and absoft Fortran compiler. Vendors benchmarks’.

During the development, it is convenient to use different compilers with high
checking capabilities and detailed error reporting, rather than the compilers pro-
ducing the best performance results. This extensive checking is useful to write
cleaner code (some compilers include source file polishers) leading to fewer mis-
takes. For deployment, the fastest compiler across all supported platforms is used.
Note that compilers’ performance is strongly influenced by the use of adequate op-
timization flags; careful and systematic testing of these flags is required, as noted
below. Finally, we remark that apart from automatic optimization and vectoriza-
tion performed by the compiler, it is recommended to write algorithms using tech-
niques allowing optimizations. For example, writing power series or piecewise ap-
proximation polynomials using the Horner scheme with a fixed number of terms
permits loop-unrolling optimizations available in all modern compilers.

2.3.2 Design of software for computing special functions

The implementation of special functions in double-precision floating-point arith-
metic presents some major difficulties when most of a the function’s domain needs
to be correctly covered. For arbitrary-precision arithmetic, implementation of spe-
cial functions usually includes only a few algorithms, and working precision is
adequately incremented to compensate numerical instabilities. However, this ap-
proach is not suitable for fixed-point arithmetic.

Therefore, the goal is to combine various methods in order to efficiently and
accurately compute a wide region of the function’s domain. These methods range
from series expansions and continued fractions to numerical quadrature. In cases
when there are various valid methods for the same function’s domain, the obvious
choice is the fastest and more accurate method. For these cases, it is also a good
practice to enable various execution modes for the same function, allowing the
choice of the best suitable method for each application. This is a common practice
to control central compiler behaviours, for instance, optimization flag -ffast-math
on GCC compiler might yield faster code, but do not guarantee the strict IEEE
compliance.

For some special functions, the achievable accuracy of each method can be ef-
fectively estimated by developing rigorous error bounds. Generally, these devel-
opments require hard theoretical error analysis, especially when dealing with com-
plex uniform asymptotic expansion with various parameters involved. Therefore,
unfortunately, only a few rigorous bounds are known for elementary functions on
restricted domains. Availability of such rigorous limits eases the correct determi-
nation of the region of applicability for each algorithm and permits to identify re-
gions where none of the considered algorithms behaves adequately. Besides, these
bounds might be used to determine the required number of iterations to achieve

https://software.intel.com/en-us/c-compilers/features/benchmarks
7https ://www.fortran.uk/fortran-compiler-comparisons/

https://software.intel.com/en-us/c-compilers/features/benchmarks
https://www.fortran.uk/fortran-compiler-comparisons/

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 24

certain accuracy; for asymptotic expansions this helps to detect if it is applicable
with given parameters and argument values. However, when rigorous bounds are
not available, it is unavoidable to resort to using heuristic error estimates, giving
up rigour and being exposed to incorrect results. Therefore, if used, these must be
meticulously tested to have strong empirical results about their usability.

Implementations of special functions with several parameters and argument
tend to require several methods. If various methods cover the same regions of
the function’s domain, the process of manually choosing the most suitable method
for each region becomes a time-consuming task. One can treat this problem using
classification algorithms such as decision trees, widely employ in predictive mod-
elling. Given a large set of samples with features (parameters and argument) and
a multi-class target (the most accurate and/or fast method for each sample), we
aim to devise the best split points for each feature in order to predict the class (the
most suitable algorithm) and the probability of each class. This method does not
substitute a numerical analysis of error bounds but generates a first set of rules
useful to develop heuristics. As an advantage, decision trees are data structures
easy to visualize and interpret, which rules can be straightforwardly translated into
code. The main disadvantages include over-complex trees producing over-fitting
and the need to have implementations for several methods, some of which may be
discarded in the final algorithm. Figure 2.4 show a decision tree example gener-
ated with several methods to compute the generalized exponential integral. On the
other hand, Figure 2.5 presents an alternative plot with regions of applicability of
each method for the same functions. Note that these type of plots are difficult to
interpret as the number of parameters increases, even using pairwise plots and for
these cases, therefore, binary trees improve visualization.

samples = 381
value = [75, 139, 26, 4. 34, 6, 28, 69]
class = expint_Lfl_optl

Tl;le/ False
273

value = [75, 137, 12, 4, 26. 6. 10, 3]
class = expint_1f1_optl
- I

z=701.3627
gini= 0.5761

samples = 108
value = [0, 2, 14,0, 8, 0, 18, 66]
class = expint_asymptotic_z

FIGURE 2.4: Decision tree generated with several methods to com-

pute the generalized exponential integral for real order and argu-

ment. Detail with the first two split points, where class indicates the
method exhibiting superior accuracy (right).

Besides considering several methods, the use of connection formulas with sim-
pler formulas is recommended to facilitate code maintenance and reduce develop-
ment times. Furthermore, the implementation of many special cases, expressible in

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 25

200 . 70

UASYMP / ol UASYMP
150 % / .
7 50
=1
L7 40t
X 100 L7 2
.’ a0l TAYLOR
. S-FRACTION "
500 QDE2 v ’ I]
2 i DE2 |
/ ASYMP 10 Q
7
N . 9% [opE1 .
0 50 100 150 200 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
xr X

FIGURE 2.5: Regions of applicability of each method for the numer-
ical evaluation of the generalized exponential integral for real order
and argument. Detail for small argument x (right).

terms of simpler formulas, also reduces sources of numerical instability improving
consistency across the same family of functions.

In some applications we need scaled versions of special functions to widen the
region of calculation and avoid overflow problems, for instance, when evaluat-
ing ratios of functions with an exponential terms. Additionally, some specific re-
gions such as the vicinity of function zeros suffer from accuracy loss and require
algorithms implemented in extended precision to mitigate catastrophic cancella-
tion and other numerical issues, see Section 3.2.2. Many open-source and com-
mercial libraries exhibit similar accuracy degradation when evaluating functions
in close vicinity of zeros. However, not many include efficient algorithms for these
regions. Any new numerical library should be designed taking into account this
severe problem; for instance, see efficient algorithm for Bessel functions in [74].

In addition, some challenging regions of a function’s domain might present nu-
merical difficulties for all algorithms. These cases can be effectively treated by the
use of efficient analytic continuation along a path, from a proximal point correctly
evaluated to the point of interest by connecting local solutions. Given a function
defined by a second order ordinary differential equation (ODE) with known deriva-
tives at an arbitrary point z, it is possible to build generalized power series (local
Taylor series expansion) which can be used to compute values in a neighbourhood
of the point z. Although this computation method is primarily used to cover diffi-
cult corner cases, it can also find applications in sensibility analysis, when we need
to evaluate a function to many similar points. Therefore, we can develop specific
algorithms which can be effectively vectorized, as shown in Section 2.4.2. The main
inconvenience of this approach is that computation of generalized power series for
some functions can be trickier than the function in question.

Another important aspect missing in many numerical libraries implementing

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 26

special functions is the availability of vectorized versions exploiting multi-core ar-
chitectures and SIMD (single instruction multiple data) instructions of modern pro-
cessors. Vectorization refers to the evaluation of a function on an array of values
at once avoiding looping over each array element. These functions are generally
implemented in low-level programming languages (C/C++ or Fortran) to reduce
overhead when looping in languages such as Python8 or R, and can easily interface
with OpenMP for developing parallel implementations.

Finally, it is important to consider development tools to locate and fix perfor-
mance issues. Checking why a software is slow is an extremely time-consuming
task, therefore fast code analysis to detect bottlenecks is critical. There are broadly
used tools such as Callgrind (front-end for Valgrind”), and its accompanying visu-
alization tool KCachegrind, to profiling and generating call-graphs. Furthermore,
Intel® Parallel Studio XE is a great tool to analyse performance and memory ac-
cess, and report possible optimizations for single and multi-threading applications,
being useful to assure that the executed code effectively exploits multi-core archi-
tectures and detect which parts of the code are blocking vectorization.

2.3.3 Testing methodologies

There are several methods to test the quality of the implementation of special func-
tions. These methods use distinct well-established metrics, such as achievable ab-
solute and relative accuracy and efficiency or computation time among others.

A reliable numerical library, usable in production environments, must show
stable performance when used in various infrastructures with different specifica-
tions. In general, automatic testing tools are employed to generate various config-
uration settings combining different processors, compilers and optimization flags.
Some companies developing commercial multi-platform numerical libraries, con-
sider robustness when the maximum difference in terms of precision for a given
function across different configurations is about 10%¢ and 10%¢, where € is the ma-
chine precision. In situations where higher differences or inconsistent performance
is observed across some supported platforms, a careful inspection of the imple-
mented algorithm is required. Eventually, the algorithm should be changed in or-
der to maintain homogeneous accuracy levels across all supported environments,
guaranteeing portability. In case, no suitable algorithmic substitution exist, these
performance issues must be adequately documented.

The standard and widely used automation testing tool in the software devel-
opment industry is Jenkins!?. Jenkins is an open-source tool used to automate
processes with continuous integration (CI) to facilitate monitoring tasks during de-
velopment, ultimately reducing time-to-market delivery. Other popular CI tool is
Travis!!.

Several methods exist to assess the achievable accuracy of a function imple-
mented in double-precision floating-point arithmetic. The most widely used method
is to compute relative and absolute errors with respect to the same function evalu-
ated at higher precision, say quadruple, octuple-precision or superior. For instance,

8Note that vectorization in numpy arrays are fast because ufunc is implemented in C.

9Valgrind is used to detect memory management bugs (memory leaks) and profile performance.
Dnttps://jenkins.io/
Mhttps://travis-ci.com/

https://jenkins.io/
https://travis-ci.com/

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 27

various values are computed using a software package of arbitrary-precision arith-
metic to ascending levels of precision, assuring sufficient certainty about the pre-
cision of the result used as a reference. Note that, this method can only be trusted
if reliable computer algebra systems (CAS) are employed to perform validations.
Basic testing of special functions include the evaluations of special values, which
provides a first estimation of the attainable accuracy. Other methods for verifica-
tion involve the use of functions relations via evaluation of Wronskians [61], eval-
uations of functional relationships and other special cases such as the zeros of the
function. Naturally, the functional relationships used to assess accuracy must be
well-conditioned to be utilized for verification purposes.

The other main metric to evaluate the performance of an implementation is
computational time. Obtainment of accurate and reliable timing measurements
might be tricky under certain settings, ultimately generating misleading conclu-
sions. For implementations in double-precision, it is common that functions calls
take more than the execution time of the function itself, thus difficulting the deter-
mination of the actual performance. In order to circumvent the problem, it is rec-
ommended to measure the time required to evaluate a function many times, dimin-
ishing the impact of function calls. Finally, the average and deviation of CPU times
is reported. In other cases, a given function is evaluated during an elapsed-time,
returning the number of evaluations. These precautions are needed to perform a
fair comparison among different software implemented in various programming
languages.

During the development of new algorithms, it is recommended to evaluate their
consistency with respect to other methods used to evaluate a function in the same
regions. This allows a comparison in terms of accuracy and CPU time per iteration,
facilitating the selection of the most efficient algorithm.

An alternative method for univariate and bivariate functions is accuracy evalu-
ation by visual inspection. The idea is simple, evaluate a function randomly within
its parameters regions and plot the attained accuracy to detect wherever loss of
accuracy is exhibited. Figure 2.6 compares the accuracy of the exponential inte-
gral for complex argument between the implementation in the numerical libraries
chypergeo'? and scipy. We observe that the implementation in scipy shows a sig-
nificant loss of accuracy around R(z) < 5, due to the use of the ascending series.
In some particular cases, the affected regions are well determined, permitting the
study of specific algorithms to improve the accuracy in that particular region. Fig-
ure 2.7 shows a concerning loss of accuracy in the sector arg(z) € [1.7,1.9]; the
first image shows the performance of the initial implementation, whereas the sec-
ond image shows how a new algorithm for that particular region reduces this loss.
Additionally, note that this type of tests requires the use of appropriate legends to
correctly identify regions of study.

Nevertheless, performance assessment by visual inspections is difficult to un-
dertake when evaluating multivariate functions, therefore, is only a viable approach
for univariate and bivariate functions.

Finally, a robust testing environment should include tools for reporting and
monitoring tasks, along with a warning system to ease the detection of those cases

2https://sites.google.com/site/guillermonavaspalencia/software/chypergeo

https://sites.google.com/site/guillermonavaspalencia/software/chypergeo

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 28

-11.4 -9.6

-12.0 -10.4
-12.6 -11.2
-13.2 -12.0

-13.8 -12.8

Im(z)
Im(z)

-14.4 -13.6

-15.0 -14.4

-15.6 -15.2

FIGURE 2.6: Accuracy plot for the exponential integral using the
numerical library chypergeo (left) and scipy (right).

60g&wpergeo.li(z):: mean error = 1.929170563277776e-15 60%rdypergeo.li(z):= mean error = 1.4398983051273112e-15

-11.4 -12.0

-12.0
4000

-12.6

2000

-13.2

B] S U TN R T SIS R e e (e -138

-14.4

—2000

-15.0

-4000
-15.6

-6000

L -16.2
—6000 -5000 —4000 —3000 —2000 —1000 [

Re(z)

-12.5
4000

-13.0

2000
-13.5

Y - - - < -S e - - o -3 p -14.0

-14.5
—2000

-15.0

—4000
-15.5

"»
-6000

— -16.0
—6000 -5000 —4000 -3000 —-2000 -1000 [

Re(z)

FIGURE 2.7: Attained accuracy using the default algorithm for the
logarithmic integral (left) and accuracy plot when using the new al-
gorithm applied in the region exhibiting loss of accuracy (right).

requiring revision. Usually, automatic building of code into the version control sys-
tem and testing is performed overnight, this is usually called a nightly build. Auto-
mated builds are generally run on dedicated servers with stable CPU workloads to
avoid altering performance metrics.

2.3.4 Benchmarking methodologies

The amount of information gathered during testing of different mathematical soft-
ware packages is analysed for posterior comparisons. In order to compare and
benchmark the mathematical software, the performance profiles were developed in
[44]. This method was devised to assess the performance of optimization packages
and sparse linear algebra, as a way of providing objective information, but has be-
come a popular tool in other mathematical fields. Many metrics can be compared
by means of performance profiles, CPU times, number of iterations and attained
accuracy are some commonly used for benchmarking. This methodology has been

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 29

subject to criticism by several authors, due to being a biased method when ranking
after excluding one particular library from the comparison. Therefore, performance
profiles are appropriate when comparing two solvers, but comparison among more
than two solvers leads to misleading conclusions regarding the performance of one
solver relative to another. Recent work in [76] propose a reliable algorithm to by-
pass the negative side effect incurred by performance profiles. When comparing
mathematical software in terms of CPU time, one approach is to use the shifted ge-
ometric mean, as used in well-known and publicly accepted optimization software
benchmarks http://plato.asu.edu/bench.html.

For benchmarking special functions, besides CPU times, we consider statistical
analysis of the relative and absolute errors with respect to reference values. These
statistics permit comparison by parameters regions, building a ranking with the
best numerical library for each region of interest. An extensive example is pre-
sented in Section 3.5, comparing different numerical libraries implementing the
generalized exponential integral.

24 GNSTLIB project

2.4.1 Introduction

GNSTLIB is a numerical library currently developed in C++11 for fast and accu-
rate computation of special functions in double-precision floating-point arithmetic.
The aim of GNSTLIB is to be used as stand-alone C++ library and provide wrap-
pers for the major programming languages used in scientific computing, such as
Fortran, C and Python. This library includes vectorized versions of all special func-
tions implemented. These routines include an option to trigger OpenMP for par-
allelization, thus taking advantage of multi-core processors. Furthermore, several
algorithms for multi-evaluation of univariate special functions via analytic contin-
uation/generalized power series are implemented. These routines are suitable for
the evaluation of large samples with values within a small range, as previously
mentioned.
This library is developed with the following considerations:

1. Quality: most of the algorithms implemented have been published in peer-
review journals (verified software such as ACM TOMS). An extensive frame-
work for testing has been developed to guarantee the highest quality stan-
dards.

2. One of the goals is to fill several gaps in the available software for the eval-
uations of special functions. This is achieved by developing new algorithms
and improving those widely used showing a loss of accuracy in some regions.

3. Flexibility: new software must have interfaces for most programming lan-
guages.
4. Parallelization and vectorization are a must.

The GNSTLIB project was initiated by the present author in 2016 with the de-
velopment of Chypergeo!®, which was the basis for the development of GNSTLIB.

Bhttps://sites.google.com/site/guillermonavaspalencia/software/chypergeo

http://plato.asu.edu/bench.html
https://sites.google.com/site/guillermonavaspalencia/software/chypergeo

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 30

During the author’s stay at Universidad de Cantabria in May 2017, Amparo Gil,
Javier Segura and Nico M. Temme joined the project. GNSTLIB 0.1 was released
in November 2017 and was made freely available at https://sites.google.com/
site/guillermonavaspalencia/software/gnstlib. Version 0.1 includes

1. Elementary functions (real and complex)

2. Gamma functions (real and complex)

3. Exponential, logarithmic and trigonometric integrals (real and complex)
4. Error functions, Dawson’s and Fresnel integrals (real and complex)

5. Incomplete Gamma and generalized exponential integral (real)

In addition, GNSTLIB 0.1 was presented in the International Conference on Com-
putational Science and Engineering, Oslo 2017. Future releases will include Airy,
Bessel and confluent hypergeometric functions among others. The addition of sta-
tistical distributions and routines for fast computation of Gauss quadratures is also
on the roadmap. Furthermore, we plan to include GPU implementation of special
functions, extending the CUDA Math Library to provide high-performance when
running large simulations.
In the next subsections, we describe the algorithmic details of the multi-evaluation

vectorized implementation of the exponential integral and show various bench-
marks results comparing against open source and commercial libraries.

2.4.2 Efficient vectorization via generalized power series

In this subsection we present a methodology for multi-evaluation of univariate spe-
cial functions via generalized power series, using as an illustrative example the ex-
ponential integral. The use of generalized power series can benefit the evaluation of
an array of arguments with small variations, which might occur when performing
sensitivity analysis in some applications in engineering.

Let us define the exponential integral for real argument as a Cauchy principal
value

x ot
- 73/ S, xeRr (2.12)
The exponential integral series representation is given by
i, x<0
Ei(x) = ¢ +log(x) + , 2.13
(x) = g(x E kk! {0, otherwise (2.13)

and the generalized power series at x = x is given by

(o]

Ei(x) = Ei(xo) k, —x0) (x — x0)¥, (2.14)

where T'(k, —xp) is the upper incomplete gamma defined as

k—
T(k,—xp) = (k—1)te®™ i (= k € N. (2.15)
m=0

https://sites.google.com/site/guillermonavaspalencia/software/gnstlib
https://sites.google.com/site/guillermonavaspalencia/software/gnstlib

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 31

Let us define the coefficients Ay (xo, x) as follows

Ap(xo,x) = (=1)f(x — xo>k<exl kf (_XO)m>, (2.16)

!
kxg =0 ™!

thus, we obtain

[e0]

Ei(x) = Ei(xo) Z (x0, %), (2.17)

The basic usage of generalized power series is to perform analytic continuation
steps |x; — xo| for i = 1,2,.... Note that there exists a trade-off in choosing the
steps lengths |x; — xo|, since larger steps yield slower convergence, i.e., more terms
are needed. In order to determine the required numbers of terms given |x — x|
we calculate two rigorous upper bounds for the regions xop > 0 and xp < —18.
The uncovered region xy € (—18,0) utilizes the first bound, since it is found that
performs reasonably well based on numerical experiments.

Proposition 2.4.1 For xo > 0and (x,xp) € R

|x—x0]k

1 e® -

where p indicates the precision in bits.

Proof: First, by observing that

0 [m
DY (n’i?) . (2.19)
. !

The problem is reduced to find k such that |Ax(xo, x)| is below a given threshold.
For xp > 0 the series is alternating, therefore the following inequality is satisfied

o [m k
e -y 2" o _ [0l (2.20)

plugging into (2.16) and after performing basic manipulations we obtain the result.
O

Proposition 2.4.2 For xo < —18and (x,xp) € R

X — X0 k

| Ag(x0, x)| < o

e*o o
(k!(1+(k—1>/x0>> <277[Ei(x). 21)

Proof: We use a majorant I'(k, xg) > T'(k, xo) described in [10] valid when the fol-
lowing two conditions are satisfied

1
x+1>k and 12> + . 2.22
s “Vitak-1)/2 X 222

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 32

Based on extensive testing, we restrict the maximum number of terms to k = 18,
therefore the majorant can be effectively used in this sector. In fact, fixing k = 18 is
easy to see that above inequalities are satisfied for xo < —17.637. Hence,

—X0 k—1
e .XO

=)
O]

For both cases we use the relative error with respect to Ei(xg). We select the
number of terms k by using a simple linear search. A complete algorithm with
several optimizations is implemented in gnstlib.el_vec_ac, see benchmarks.

Tk, xo) = (2.23)

2.4.3 Benchmarks

We show how GNSTLIB compares to other open-source and commercial software
for mathematical functions. For benchmarking we use the Python wrapper gener-
ated using SWIG (Simplified Wrapper and Interface Generator). Tests were run on
an Intel i5-3317U CPU @ 1.70GHz running Linux-Lubuntu 16.10 x86_64 with 4GB
RAM. GNSTLIB was compiled with GNU g++ 6.2.0 with the following optimization
flags and linked to Intel MKL.

—O3 —DMKL_ILP64 —m64 —msse2 —mfpmath=sse —fopenmp —lquadmath
W —fpic —std=c++11

MKIROOTI="/opt/intel /mkl/"

—WL——start —group ${MKLROOI}/lib/intel64/libmkl_intel_ilp64 .a
\$ {MKLROOT}/ lib /intel64 /libmkl_gnu_thread .a

${MKLROOT}/ lib/intel64 /libmkl_core.a \

—WL——end—group —lquadmath —Igomp —Ipthread —Im —1dl

Vectorized exponential integral E; (x)

This benchmark tests the speed of computation of E;(X) = —Ei(—x) for large vec-
tors X with values within a reduced range. We test different versions of gnst1lib.el_vec
and Intel MKL Vector Mathematics functions (VM), which provides optimized vec-

tor implementation of several mathematical functions taking advantage of modern
SIMD instructions. Timing in (ms) is measured with %time function in IPython.

>> import gnstlib

>> import numpy as np

>> samples = 10%x7 # example

>> v = np.linspace(10.0, 10.2, samples)

>> r = np.empty_like(v)

>> %time gnstlib.el_vec(v, r, 0) # sequential

>> %time gnstlib.el_vec(v, r, 1) # parallel — 4 threads
>> %time gnstlib.el_vec_ac(v, r) # analytic continuation
>> %time gnstlib.el_vec_mkl(v, r) # Intel MKL vdExpIntl

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 33

10° Vectorization exponential integral E, (z)

®—e@ gnstlib.el_vec

®—e gnstlib.el_vec (4 threads)

o—e Intel MKL vdExpIntl (SIMD - 2 threads)
®—@ gnstlib.el_ac

-
o
N

=
o
-

Wall Time (ms)
=

o

°

101

102 i i i
103 10* 10° 10° 10’
Samples

FIGURE 2.8: Comparison gnstlib.el_vec methods to Intel
vdExpIntl.

N gnstlib.el_vec(0) gnstlib.el_vec(1) gnstlib.el_vec_ac Intel vdExpIntl

10% 0.16 0.05 0.02 0.08
10* 0.66 0.29 0.14 0.42
10° 15.6 5.1 14 42
100 109 39 15 42
107 724 291 145 424

TABLE 2.2: Time (ms) to compute the exponential integral of vector
of size N element-wise with values within a reduced range.

gnstlib.ei_vec_ac was run with a single thread, so there is significant room
for improvement. A parallel implementation can be achieved by splitting the total
vector ¥ into K blocks, K being the total number of available threads. In this way;,
the new steps |xX — xX| are smaller and faster local convergence is yielded. On the
other hand, a simple approach such as a direct OpenMP instruction #pragma omp
parallel for on the main loop does not provide a significant speedup.

Exponential integral E; (x)

Time (ms) to compute E;(x) for large vectors ¥ : x; € {le—5,700}. Comparison to
MATLAB R2016b setting the maximum number of threads with maxNumCompThreads (N).
Timing in MATLAB is measured using tic; toc;. For gnstlib.el_vec timing is
measured as in the previous benchmark.

>> samples = 1074
>> v = linspace(le—5, 700, samples)
>> tic; expint(v); toc;

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 34

105 Vectorization exponential integral E,(z)

o—e MATLAB R2016b expint (1 thread)
e—e@ MATLAB R2016b expint (4 threads)
®—e gnstlib.el_vec (1 thread)

o—e gnstlib.el_vec (4 threads)

=
o
>

Wall Time (ms)
—
o
W

-
o
N

=
o
-

100 | 1
10* 10° 10° 10’
Samples

FIGURE 2.9: Comparison gnstlib.el_vec methods to MATLAB
R2016b expint.

N gnstlib.el_vec(0) gnstlib.el_vec(l) matlab.expint(0) matlab.expint(1)

10% 39 13.1 13.2 16.9
105 409 19.3 115.6 80.9
100 197 60.1 1026 800
107 1630 535 12203 7875

TABLE 2.3: Time (ms) to compute the exponential integral of vector
of size N element-wise with values in [0.0001, 700].

As usual, we clearly observe that triggering parallelization in gnstlib.el_vec
is only worthwhile for large arrays.

Exponential integral Ei(x)

Time (ms) to compute Ei(x) large vectors ¥ : x; € {—670,670}. Comparison to
Scipy [95] function scipy.special.expi, which calls Cephes C source [111]. Tim-
ings in IPython is measured as in the previous benchmarks. Note that Scipy com-
putes Ei(x) sequentially, so a fair comparison is against gnst1lib.ei_vec(0).

>> import scipy.special
>> samples = 10*x4 + 1
>> v = linspace(—670, 670, samples)
>> %time r = scipy.special.expi(v);

Chapter 2. Software Development for the Numerical Evaluation of Special

Functions 35

Vectorization exponential integral Ei(z)

®—@ scipy.special.expi
e—e gnstlib.ei_vec
®—e gnstlib.ei_vec (4 threads)

Wall Time (ms)
=
o
™

-
o
°

101

102 i i i i
102 103 10 10° 10° 10’
Samples

FIGURE 2.10: Comparison gnstlib.ei_vec methods to Scipy
scipy.special.expi.

N scipy.special.expi gnstlib.ei_vec(0) gnstlib.ei_vec(1)

10? 0.04 0.02 -
10% 0.43 0.18 -
104 428 1.80 -
104 42.1 18.1 6.20
10° 419 180 62
100 4290 1800 620

TABLE 2.4: Time (ms) to compute the exponential integral of vec-
tor of size N element-wise with values in [-670, 670]. Cases where
parallelization was slower than single-thread were omitted.

36

Chapter 3

Fast and Accurate Algorithm for
the Generalized Exponential
Integral for positive real order

3.1 Introduction
The generalized exponential integral is defined by [43, §8.19.3]

E,(x) = /100 e ™Mt7Vdt, veR, x>0. (3.1)
Another similar integral representation is given by

E,(x) = x"_l/ e 't dt, (3.2)

X

or [43, §8.19.4]

E,(x) =

v—1,—x) —xttv—l
r e / ¢ dt, v>0, x>0. (3.3)
0

I'(v) 1+t

The generalized exponential integral can also be expressed in terms of the upper
and lower incomplete gamma functions (I'(a, x) and y(a, x), respectively) by means
of the following functional relations,

E,(x) = 2" 'T(1 —v,x), (3.4)

E,(x) =x""1(T(1 —v) — (1 —v,x)). (3.5)

Recently, numerical methods for the evaluation of incomplete gamma functions
have been extensively investigated in [60, 62], therefore those proposed algorithms
could be used when v < 0. Albeit Equation (3.4) is being used in several software
packages, its direct application may lead to unsatisfactory results, as will be shown
throughout this work. The main contribution of this work is a detailed algorithm
for the computation of E, (x) for real and integer order v, which avoids recursive
calculations and includes new numerical methods not present in other existing al-
gorithms. These new computation schema are more efficient and return more ac-
curate results than available software packages in double-precision floating-point
arithmetic.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrgg
for positive real order

The function E, (x), with v > 0, appears in many fields of physics and engineer-
ing, in particular is of interest its connection with transport theory and radiative
equilibrium [1]. For other values of v, E,(x) is encountered in the computation of
molecular electronic integrals in quantum chemistry and wave acoustics of over-
lapping sound beams. Some well-known examples are the Schwarzschild-Milne
integral equation [23] or the generalization of Chandrasekhar’s integrals [27]. Be-
sides the applications in physics, the generalized exponential integral arises in sev-
eral special cases for more difficult special functions, such as the confluent hyper-
geometric functions 1Fy(a;b; x) and U(a, b, x). For instance, E,(x) can be defined in
terms of U(a, b, x)

E,(x) = x" e U(v,v, x) (3.6)

and using Kummer’s transformation U(a, b, x) = x'~*U(a — b+ 1,2 — b, x) we can
write (3.6) in the form
E,(x) =e*U(1,2 —v,x). (3.7)

Moreover, the generalized exponential integral plays an important role in some
exponentially improved asymptotic expansions (also known as hyperasymptotic
expansions) for the confluent hypergeometric function U(a, b, x) (U-Kummer func-
tion) [122] and [43, §13.7(iii)]

N= (@)e(a—b+ 1)

U(a,b,x) =x"") iz (—x) %+ Ry(a, b, x) (3.8)
k=0 :
and
_1\N a—b M-1/1 _ _
R(a,b,x) = F((a);)(az—nlj+ 1) (k;:) < a)’;{fb a)k(_xYkGNJrza—b—k(x)

(-l - DuRun(@b), 69
where M is an arbitrary non-negative integer, and

T
G,(x) = Zem(;j’_)£, (x), (3.10)

Gp(x) being the so-called terminant function. Then as |x| — co with a, b and M fixed

O(e=*x™), x>0

3.11
O(e*x™), x<0 G.11)

RM/N(Q, b, X) = {

Finally, for a collection of integrals involving E, (x), refer to [27, 102] and [43,
§8.19(x)].

An extensive study of different methods for the computation of the generalized
exponential integral has been carried out by Chiccoli, Lorenzutta and Maino in
[24, 25, 26]. The main method described by the authors, valid for real positive v
and x, is essentially based on recursive calculations starting from a different series

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg{3
for positive real order

representations for the cases x < 1and x > 1. This algorithm applies the recurrence

Ey(x) = %(e*x VE(x), (x>0, veER) (3.12)

and combines Taylor series expansion, series expansion in terms of Tricomi func-
tions and uniform asymptotic expansion for large v.

The outline of the work is the following: First, we study some of the main nu-
merical methods considered for the evaluation of E,(x), including error bounds,
and we describe a new asymptotic expansion along with several improvements for
difficult regions of computation. Then, we review other methods of computation
implemented in several software packages, focusing in quadrature methods and
suitable integral representations. Subsequently, we present our algorithm and a
detailed description of its implementation. After that, we assess the performance
of our algorithm — in terms of relative error and computation time — and we com-
pare to other publicly available codes. Finally, we present our conclusions.

3.2 Methods of computation

In this section we provide a detailed description of the methods of computation
implemented in the algorithm, both for the special case v = n,n € IN and the
general case v € R™.

3.2.1 Special values

Special cases are typically treated separately, here we list some of the most relevant
cases:

Eo(x) = ~ = #0, (3.13)

which can be used as starting point for recursive evaluation of E,(x). For x = 0
E,(0) = v vl (3.14)

R v e (—oo,1] '
For v = 1/2 we have the following value, which is also used for recursive

evaluation of half-integers

(x) = \/;erfc(ﬁ). (3.15)

Finally, v = 1, the so-called exponential integral

Ei(x) = —Ei(—x), x>0. (3.16)

3.2.2 Series expansions

Series expansions for the generalized exponential integral are commonly used in
the domain |x| < 1. We consider two different series expansions valid when the

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrgé
for positive real order

parameter v € R \ IN. The first expansion [43, §8.19.10] is given by

) k~k
Ey(x) = (1 —1)x" Z 1_V)+xkk,, veR\N, x e R\ {0}. (3.17)

The terms of the series expansion at the origin decrease for |x| < 1, and in
practice the best performance is observed in this region, where fast convergence is
experimented. The series expansion is alternating and hence the computation of
such a sum leads to catastrophic cancellation issues for x > 1, especially in finite
precision arithmetic. For x < 0, v not being a negative integer, the result is complex.
The principal branch of the generalized exponential integral is defined by taking
the principal branch of the natural logarithm in exp((v — 1) log(x)) = x"~! (with
the logarithm branch cut (—o0,0)). Along the negative real axis, the cancellation
errors on the power series are removed, although the required number of terms
increases due to slower convergence. For its evaluation, the series is truncated after
a level of precision 277 (p number of bits) is obtained, therefore it can be written as
follows,

N—-1 c0 k
E,(x)=T(1—v)x" ! - (): (1_(V+>k +) a _wzk)k'> (3.18)

k:N

For x > 0, Equation (3.17) is an alternating series and thus the remainder
is easily bounded by the first neglected term, therefore we choose N such that
xN/(]1 —v + N|N!) < 27P. For small values of x, the first neglected term tends
rapidly to 0 as k — co. However, the required number of terms can grow consider-
ably when x > 1, leading to initial ascending terms before the series starts to show
convergence, which originates a loss of digits due to roundoff errors.

Series in terms of the confluent hypergeometric function

As previously stated, the generalized exponential integral can be defined in terms
of the confluent hypergeometric function of the first kind, 1 F; (4; b; x),

11:1(1 — 1/}2 -V, —X)

E,(x) =T(1—v)x" 1+ — , (3.19)
where 1F;(a;b; z) is defined as
> (a)
1Fi(a;b;z) = ; b) kk' (3.20)

fora € C,b € C\Z; and z € C. Series (3.19) is equivalent to series (3.17), note that
(1—v)/(2—=v)g=(1—-v)/(1—v+k). Inorder to reduce significant cancellation
issues, we apply Kummer’s transformation 1F;(a;b;z) = eiF(b — a;b; —z), thus

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrib
for positive real order

Equation (3.19) can be written in this form, see [43, §8.19.11]
—X

e
E,(x)=T(1—v)x" 1+ 3

S 21
1];0(2—1/),; (3.21)

1F1(1,‘2 -V, x)

—X

=T1—v)x 4L
(1-v)ets 2

This series expansion turns out to be more numerically stable, especially for
small values of v, (for v < 2 all the terms of the expansion are positive), but the
convergence is slightly slower. Similarly to the previous series representation, the
number of terms diminish for |x| < 1. A rigorous error bound for the evaluation
of convergent generalized hypergeometric series qu(al, ceeslp;by, .., bq;z) in de-
vised in [90].

Expansion (3.21) can be effectively used as an asymptotic expansion for large v
and fixed x. In fact, note that when v >> x the term T'(1 — v)x"~! is not significant
compared to the terms in the finite sum and it can be neglected when less than
v terms are used. When v = n, n being a large integer, and not many terms are
considered, we can neglect the contribution of I'(1 — v)x"~! because it should be
combined with the k = n — 1 term, which gives the term shown in series expansion
(3.39).

Laguerre series

A globally convergent Laguerre series for the incomplete gamma function I'(a, x)
is described in [77]

I(a,x) = ¥ le* } (1= a)) 3.22
(a,x) =x"""e kgé(k—l—l)!Lk_“(—x) k_-ﬁl(_x) (3.22)

where L, (—x) is a generalized Laguerre polynomial. The region of validity of the
Laguerre series is outside the zeros of Laguerre polynomials. Zeros of L{(x) occur
in the interval x € (0,4x) where x = n + }(a + 1), so for our region of interest
(x >0and a = 1 —v) L, ?(—x) lies in the monotonic region. As remarked in
[13], the Laguerre series for (3.22) is closely related to the continued fraction for
the incomplete gamma function; see §3.3.2 for a comparison to several continued
fractions.

Applying the functional relation (3.4) in (3.22) we obtain the Laguerre series for

Ev(x) — X i (V)k

=0 (k+ DI (=LY (—x)

(3.23)

This series has two properties that make it very suitable for our regime of parame-
ters: it does not exhibit cancellations and the error can be made arbitrarily small by
increasing the number of terms (in contrast to asymptotic expansions, which have
an optimal value).

The generalized Laguerre polynomials satisfy the three-term recurrence relation

1 x+2k+v_(y—1 k+v—1_w-1
L(V)(—X): k+1 Ll((v)(—X)— k+1 Ll((lil)(_x)/

oo (3.24)

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integril1
for positive real order

which is not ill-conditioned in both backward and forward direction, consequently
it is used with initial values Lév_l)(—x) = 1and Lgv_l)(—x) = x + v. Moreover,
given the reduced number of terms needed, the loss of precision is almost negligi-

ble. In [13] a sub-exponential error bound valid for non-negative real x is given for
L (=x)
k 7

_ 1
where m = k + 1 and the sub-exponential! term Sy(a, x) is

e X/2p2\/mx
N T,

Sk(a, x) (3.26)

This asymptotic estimate results to be particularly effective for large n. For mod-
erate and large values of v and/or x in a “medium-precision’ range? the Laguerre
series converges after a small number of terms and thus the error term of the sub-

exponential estimate is significant. We now proceed to calculate approximations
for the coefficients of the Laguerre series define as

E(x)=e¢") a, and a;= () (3.27)
k=0

— (k+ LY V(=)L Y (—x)

Fork > 1,
/znkk+1/267k < k! < ekkJrl/Zefk,

and given (v); = I'(v + k) /T (v) the following inequality [97, Theorem 1] holds for
I['(b)/T(a)and b >a >1,

r(b) pb—1/2 b
(Zuj m < We , (328)

so (V)i/ (k+ 1)! satisfy

<1/) B v 1/2 (1/ + k>v+kek+1
<k+§)! < Gl = <2n(v+k)) vV (k + 1)k+3/2°

(3.29)

For x >> v we shall use the relation L} ' (—x) = (}%)kll(—k, v,—x) and the
property U(a,b,z) ~z % z — oo, [phz| < 37, therefore

k
LY (—x) ~ Be(x) = (’]z? X — . (3.30)

Combining (3.29) and (3.30) the coefficients a; satisfy
B Cr(v, x)

e 2 e = Bi(x) By (x)

!In [13], sub-exponential growth is defined as loglog | f(n)| ~ élogn, for some 0 < § < 1.
2We consider medium-precision the range from double precision to up to a few hundred bits of
precision.

(3.31)

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integriﬁ
for positive real order

When k is small and x < v, a first order approximation [13, §1.3] is given by

k
_ -1
LV (—x) ~ Ap(v,x) = <k+z > (1 + i) . (3.32)
Again, combining (3.29) and (3.32) we obtain the following approximation for aj

A_ Ci(v, x)
C A(x) A (x)

Note that approximation A (v, x) indicates that for small values of x, a; ~
k!/(v)k+1 and the rate of convergence is generally slow, depending entirely on v.
Therefore, if v is not sufficiently large, the method is not fast enough for efficient
numerical evaluation.

Table 3.1 shows the first neglected term ay < 273 and the corresponding values
for af, and af,. Observe that approximation a acts as an upper bound for large v,
whereas tends to overestimate a) for smaller values. Nevertheless, one could easily
devise a heuristic in order to compensate that overestimation by adding q extra bits
such that ay < 27779, g < p. For large x, a, bounds ay adequately, but is too
conservative when v > x.

a ~a (3.33)

10000 10
10 10000

2.38e—19 2.44e—19 2.44e4-08
2.19e—18 1.55e—18 2.26e—18

v x N an an ak
10 10 17 2.84e—17 3.48e—19 3.99e+00
100 10 10 29e—17 2.15e—16 5.66e+06
10 100 6 4.14e—18 3.67e—19 2.63e—17
100 100 7 132e—17 1.18e—17 6.26e—13
500 500 5 3.69e—18 3.69e—18 7.94e—15
500 100 6 8.28e—18 894e—17 1.17e—07
100 500 5 3.38e—19 2.89e—19 2.75e—18
4
2

TABLE 3.1: Approximation terms ay.

In practice, these approximations along with double-precision arithmetic are
used to select N using linear search or by inverting these approximations in func-
tion of N. This approach is particularly useful in arbitrary-precision interval arith-
metic.

Taylor series for 1 < x <2

As previously stated, the series expansions for x > 1 exhibit cancellation issues,
therefore other methods need to be used, especially if the working precision cannot
be increased to compensate the bad condition number of the series. Henceforth we
fix the working precision at 53-bit. For values of x such that x € [1,2), we consider
the following Taylor series described in [24]

0]

k
E(x—y) =Y %Ev,k(x), x>0, (1,y) €R, (3.34)
k=0 """

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrila
for positive real order

which is obtained from the Taylor series [24, (10)]

o (. \k dk
Er-y) = Y S| SaEeo),
making use of the following differential formula [24, (11)]

k
SPE) = (CDHE 4 (x)

The Taylor series truncated at k = N is given by

N-1_k ok
Efx=y)= ¥ DE () + Y LE (). (335)
k=0 ™° k=N "°

Proposition 3.2.1 Given v > 1, x > 0 and positive integer N, such that [v+x —1] >
N, the remainder of the Taylor series in (3.35) for |y| < 1 satisfies

ok de*|lv+x—1||yN
y %Ev_k(x) | - J % : (3.36)

k=N

Proof: Starting with the integral definition (3.2), it immediately results that the
generalized exponential integrals is monotonic increasing as v — —oo, satisfying
the inequality E,(x) > E,;1(x). This implies that
e*x
Er(x) S Eo(x) = 7, re [0,00)

With the assumption [v + x — 1] > N and using the well-known upper bound
for the generalized exponential integral in this domain, the following inequality
holds

e—x X

-
E,_ << —.
Vk(x)_v—l—x—k—1< x

Hence,

o k —x 00 k
y V- 1je &y

Y U E) < et

ke X = k!

Thus it remains to bound the series expansion. By observing that Y5> ; y*/k! is
equivalent to the remainder term after truncating the Taylor series of ¢/, we can use
the well-known upper bound for |y| <1

VY

K= NI

N

[

k

Il
Z

Finally, combining both bounds the upper bound for the remainder is obtained. [

By using bound (3.36) we can determine the required number of terms N in
order to target a level of precision 273, For x — land y — —1, N = 20 terms
suffice, meaning that v 2> 21; see Figure (3.1) (left). This constraint demands the
use of recurrence relations for smaller values of v. For example, we can use the
following recursion after increasing v taking care of possible cancellation issues for

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Int‘egri;L
for positive real order

v>1.))
(=) g X
E, n(x) = — (Ev(x) +e kg W) ne€N. (3.37)

Furthermore, by using recursion (3.37), this method can be applied for v < 0.
Regarding the finite series in (3.37), for v —n > 0 the minimum value occurs for
k ~ v; see Figure (3.1) (right). In order to evaluate E, ;(x) we make use of the

102 , : : 102
10° 1074
102 106
10~ 10-8
10—6 10—1()
108 1012
10710 1014
1072 — |ry =7 10716
0MH — = ey —r|/r 10718
10716 . ey N 1020
[v+a—1je"[y| X

10°8H — — o 10722 7| —e |2H/(1 = vkl

‘

10-20 T | | 10-24 N N I I I
5 10 15 20 5 10 15 20 25 30 35 40

TV T R T N R N T B |

FIGURE 3.1: Plot of the absolute and relative errors of E»;o5(1.98
and error bound (3.36) for N € [1,20] (left). Plot of |x*/(1 —
21.05)41], x = 2 for k = [1,40] (right).

recurrence relation [43, §8.19.12]

Eo(x) = (e —vEuu(x)). (539)
Hence, we just need to compute the first E, (x) (k = 0), in Nj terms, and for x — 1
and v ~ 21 we require N, = 18. Thus, when x —y ~ 2, this algorithm would
require Ny + N» + N3 terms, where Nj is the number of recursions in (3.37). For im-
plementation purposes, a simple choice x = —y = (x — y)/2 works well, although
an iterative procedure could optimize® these parameters.

Series expansions: special cases

Previous series expansions, excepting Laguerre series, cannot be used for integer v.
For this special case we introduce two series expansions, see [43, §8.19]:

Case: n € IN
E.(x) = 7(_3()”_1 (o(n) —log(x)) — i —(_x)k (3.39)
" (n—1)! k=001 kKl(1—n+k)’

where 1y(t) is the digamma function, which for integer t = 1 is denoted as

n—1 1
Po(n) = =7+) =7+ Hu,
k=1

3The optimal choice arises as a solution of a non-convex mix integer nonlinear programming prob-
lem, which is prohibitively expensive to compute.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integri%
for positive real order

where 7 is the Euler-Mascheroni constant and H,, is a harmonic number. Alike the
series expansions (3.17) and (3.21), this series performs better for x < 1. Other
series expansion in terms of the exponential integral E;(x) (also known as Theis
well function) is given by

—x)n-1 - n—2
Eﬂ(x)— ((i’lx—)l)!El(x n—l)!k_o ﬂ—k 2)k
—)1 n—2
- ((nx—)l)!El(x) T ekazzo(”)—k—l(—X)k- (3.40)
Case:n+3, n€N
3 n—1 k

(_1)n\/%xn—2 —x X
E,.1(x)= a2, erfc(v/71) —e k;:)m

(3.41)

This series expansion for half-integers is used for moderate values of n and small x
in order to reduce the effect of cancellation.

Case: n+¢, n € N: A difficult case arises when v = n + ¢, |e| < 1, for small
values of x, say x < 2. A direct evaluation of series expansion (3.17) leads to signif-
icant loss of precision both in the series expansion and I'(1 — n — €)x"~1T¢. More-
over, final subtraction of both terms incurs in catastrophic cancellation, since both
are of large magnitude. To deal with this issue, series expansion (3.17) is also imple-
mented in quadruple precision (128-bit) using the libquadmath? library. Our im-
plementation includes two interfaces: expint(const int vi, const double vf,
const double x) and expint(const double v, const double x), where vi and
vf (JvE| < 0.5) denote the integral and decimal fractional part of v, respectively. A
unique interface passing v = n + € produces a similar loss of precision, even split-
ting v using functions such as std: :modf in C++. Two relevant examples using a
double precision (53-bit) implementation: v = 2 + le—14 and x = 1e—10 returns a
result with relative error 1.6e-12, whereas v = 1 — le—13 and x = 1e—01 has a rel-
ative error 6.5e-06. An implementation in quadruple precision returns an relative
error below 2723,

In terms of performance, quadruple precision is about 10 ~ 15 times slower.
Although other approaches are possible, in our experience, quadruple precision is
indispensable to return reliable results in this regime of parameters.

4There seems to be a bug in libquadmath for tgammaq and 1gammagq. It returns incorrect signs when
€ < le — 6. This was fixed in our implementation.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integril6
for positive real order

3.2.3 Asymptotic expansions
Large x and fixed v

Asymptotic expansions for E, (x) as x — oo can be derived from the integral repre-
sentation in Equation (3.2)

E,(x) = x""! / e ftVdt =e " / e M(1+t)"Vdt. (3.42)
X 0

The transformation gives a Laplace integral and Watson’s lemma [165] can be ap-
plied, obtaining the following asymptotic expansion

o (1\k
Ey(x) ~e ™) (iler(lV)k’ x e R. (3.43)
k

The remainder ey (x) of the expansion after truncation can be written as follows,

E,(x)=e" (I\]El (_ﬁi(lv)k + sN(x)> . (3.44)

For x > 0, the asymptotic series is alternating, and as previously stated, the remain-
der can be bounded by the absolute value of the first neglected term,

(V)N

en ()] < | x| (3.45)

As pointed out in §3.2.2, in asymptotic expansions the remainder cannot be re-
duced arbitrarily as N — oo, in fact, given v and x, bound (3.45) first decreases until
an optimal value of terms Ny,,x = [x — v] is reached. Subsequent N > N,y in-
crease the bound. Thus, linear search is performed up to a limit N < N4y, without
guarantee of finding N such that ey (x) < 277. Hence, when x (x > 1) is not large
enough with respect to v and the required precision bits is moderate/high, this
asymptotic expansion cannot be used effectively. For an exponentially-improved
asymptotic expansion see [43, §2.11(iii)].

Large v

A uniform asymptotic expansion when both v and x are large is introduced in [58].
Using the definition in [43, §8.20(ii)], the expansion is given by

et &AM

E ~
V(x) x—|—1/k§0()t—|—1)2k1/k/

(3.46)

where A = x/v. The coefficients A(A), starting with Ag(A) = 1, can be computed
using the recursion

dAr(A)

Ak (A) = (1= 20 A,(A) + A (A +1) =55,

k=0,1,2,... (3.47)

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrig
for positive real order

and the degree of Ax(A)is k —1whenk > 1. In particular, the first 8 coefficients are

Ao(A) =1,

A1(A) =1,

Ay(A) =1-2A,

Az(A) =1 —8A+6A%,

Ag(A) =1 — 221 + 5812 — 2413,

As(A) =1 — 524 + 32872 — 44473 + 12004,

Ag(A) =1 — 114A + 1452A% — 440013 4 3708A* — 720A°,

Az(A) =1 —240A +5610A% — 321203 + 58140A* — 339841° + 5040A°.

Remark 3.2.2 It is not hard to observe that polynomials Ay 1(A) computed via recursion
in (3.47) can be obtained for k > 2 using the series

k-1 ‘
Axiq ()\) =1+ Z(&l] + bjfl + b] — Zkaj,l))d + (bk—l - 2k€lk_1)}\k, k>2
=1

where ag =1, bp = 0 and ay = by = —2. a; are the coefficients of each polynomial Ai(A)
and b; are the coefficients of their corresponding derivatives. Given the relation b; = ja;,
the above series can be simplified

k-1

A (V) =14 Y {aj(j+1) + (= 1 = 2k)aj 1 }A + {(k — 1 = 2)kay_1}AF, k>2
=1
: (3.48)

Remark 3.2.3 Ay (A) is an Eulerian polynomial of second kind defined by

Ar(A) = mf_o(—nm << :; >> Am, (3.49)

where << 51 >> are second-order Eulerian numbers®, defined by the recursion equation

<<,I;>>:(m+1)<<k;1>>+(2k—m—l)<<:1__11>>, (3.50)
with <<’5>> = 1and <<§1>> — Oform > k.

The remainder after truncating the series ¢, (v, x) satisfies

1 1
< _— | —. .
sk(v,x)_Ck<1+x+V_1>Vk (3.51)

Gautschi in [58] provides rigorous bounds for €, (v, x), k < 7. This uniform asymp-
totic expansion proves to be very powerful in a wide domain, A € [0,00). How-
ever, each term Ay (A) requires the construction of a polynomial and its evaluation,

Shttps://oeis.org/A008517

https://oeis.org/A008517

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrié
for positive real order

which increase the computational time substantially and requires to keep k — 1 tem-
porary coefficients in cache, which may make it unattractive for arbitrary-precision
arithmetic. Nonetheless, for a fixed precision (e.g., 53-bit or 113-bit) one can pre-
calculate as many polynomials as needed®. We use Horner’s scheme for evaluating
the polynomials A (A) for k > 3 to reduce the number of multiplications. Further-
more, we use compensated summation algorithms to minimize roundoff errors.

Large v and fixed x

We introduce an asymptotic expansion which can be used effectively for v > x.
The coefficients of the asymptotic expansion have a relatively simple representa-
tion, in contrast to the previous uniform asymptotic expansion. We start with the
integral representation floo e "t~V du applying a change of variable ¢/ = ¢(u) =
1 4 u to obtain

t

Eo(x) = e /0 TeviE(n () = e,

f () is analytic in [0, 00) and for x > 0 the integral is convergent, therefore we
can apply Watson’s lemma, obtaining the following asymptotic expansion

[e0]

Ey(x) ~e ™Y kg
k=0 Y

k! =
. v, f(t) = kZ; ci(x)t, (3.52)
=0
where ¢ denote the coefficients of the Maclaurin expansion. The function f(¢) is a
product of two exponential functions, which exponential generating functions are
defined by
=t v Bre(—%)

el = Z o e—x(e'—l) _ Z z ,

k=0 k=0

(3.53)

where By (x) are the Bell polynomials [137]. The Bell polynomials have an explicit
formula in terms of Stirling numbers of the second kind denoted as S(k, j) and an
infinite series known as Dobiriski’s formula, respectively

k ©
Be(x) = Y_S(kj)x/, Bi(x)=e*)_ ;]:xf. (3.54)
=0 =g

The coefficients c, are combinations of the coefficients in both exponential gen-
erating functions in Equation (3.53), thus we obtain

k (—x L
%=1]1'3&1_(])') - % D <k> Bi_j(—x). (3.55)

j=0 =0\

Let us define the coefficients d;, = cik!. We observe that dy is a recurrence formula
for Bell polynomials givenby B, (x) = x Y }_4 (Z:})Bk—l (x), with By(x) = 1. Conse-
quently, the coefficients d; have the following representation, dy = —Bj1(—x)/x.
Substituting these coefficients in Equation (3.52), the asymptotic expansion may be

6 Auxiliary data can potentially compromise thread safety in a multiple processor configuration,
therefore it is convenient to avoid its usage.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrié
for positive real order

written in this form

et d e & Bryi(—x
EV(X)NUkZO]/]IZ:_xZ]M’ vV — O0. (356)

Note that the computation of Bell polynomials with negative argument x leads
to substantial cancellation due to the evaluation of large magnitude alternating
terms. In order to guarantee the required accuracy, the working precision needs
to be increased to at least the exponent of the largest term involved.

Table 3.2 shows the required number of terms k to satisfy |Bi,1(—x)|/v 1 <
273 for several values of v and x when v >> x. Numerical experiments reveal that
for moderate x not more than roughly 30 terms are needed when v/x 2 3.

v x terms v X terms
20 2 28 1000 200 22
50 10 20 2000 40 10

100 30 21 5000 600 18
500 50 15 5000 10 6

TABLE 3.2: Minimum number of terms k to satisfy
|Bg1 (—x)|/vFH1 < 2753 for the asymptotic expansion (3.56).

To determine the number of terms k needed to achieve a required precision 277,
it is practical to have an upper bound of the truncated term |By{(—x)|/v*!, par-
ticularly to decide whether the asymptotic expansion can be used. In what follows,
we proceed to derive an effective upper bound for Bell polynomials for x € R. In
fact, by using Dobinski’s formula, the computation of By (x) generalizes tok, x € C,
and so thus our upper bound.

An integral representation for Bell polynomials is obtained by direct applica-
tion of Cauchy’s integral formula to the exponential generating function with a
parametrization z(t) = e, t € [0,27]

nt e nl 2Tty
Bn(.X) = %/(:Wdz = E/O ex(e 1)6 int dt. (357)

Equivalent formulas are given by

| T it .
Bu(x) = R X Dpmint gy
T 0

! T cos(t 3
= o [e st cos(nt — xsin(sin(t) e) dt,
0

where the latter integrand is the real part of e)=t n order to compute an ef-
fective upper bound for B,,(x) we develop a saddle-point bound” [39]. Let us define
the function g(t) representing the integrand in Equation (3.57) and its derivative

7Saddle-point bound: | ff ft)dt] < |Collf(to)|, f'(to) = 0.|Cp| are saddle-point paths made of
arcs connecting A and B through the saddle-point #j.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg_b
for positive real order

with respect to ¢,

g(t) _ ex(e"”fl)*mt, g/(t) — ex(“’eitfl)fint(ixeit+€it _ i?’l). (3.58)
The saddle-point ¢t is the point such that g’(fp) = 0, which is given by
to = —i(log(n/x) — W(n/x)), (3.59)

where W(x) is the Lambert-W function which solves W (x)eV) = x. Substituting
to in g(t) we obtain the principal contribution of the bound. It remains to compute
the term A representing the length of the path of the contour joining [0, 277] through
to that minimizes [g(to)|

n! exew(n/x)

lg(to)| = ‘27‘[6"1/\/(11/35)” ;A =1[0—to| + |21 — tol. (3.60)

Thus, the resulting upper bound for the Bell polynomials is given by

n' eer(n/x)

2me* W(n/x)"|’ (3-61)

B0l 4]

which as aforementioned can be generalized replacing the factorial by the gamma
function. Table 3.3 shows the closeness of the upper bound (3.3) for moderate and
large values of n € IN and x € R.

n x [B,(x)] Bound (3.61) n x [B.(x)] Bound (3.61)
30 20 4.0le+44 7.65e+-45 30 -20 1.38e+-33 1.69e+-35
10 200 1.27e+4-23 1.66e+-24 100 -200 8.12e+4-22 8.66e+23
500 1000/3 1.53e+1356 1.19e+1358 500 -1000/3 1.16e+1179 5.36e+1180

TABLE 3.3: Upper bound for Bell polynomials By, (x) for x € R.

For x = 1, B,(1) = B, is the nth Bell number®. As shown in Table 3.4, in turns
out that bound (3.61) is sharper than other upper bounds for Bell numbers recently
established in [8], especially for moderate and large #, and given by

0.792n \"
By < | —r (3.62)
log(n+1)
n B, Bound (3.62) Bound (3.61) n B, Bound (3.62) Bound (3.61)
50 1.9e+47 1.4e+50 7.7e+48 1000 3.0e+1927 2.1e+2059 7.7e41929

100 4.8e+115 2.9e+123 3.0e+117 10000 1.6e+27664 2.8e+29344 1.6e+27667
500 1.6e+-843 1.2e+902 2.7e+845 100000 1.0e+-364471 8.2e+383753 3.8e+364474

TABLE 3.4: Upper bound for Bell numbers B,.

8Bell numbers represent the number of class-partitions of a finite set with 7 elements.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg_l1
for positive real order

3.3 Other numerical methods

This section presents other numerical methods for the evaluation of the general-
ized exponential integral. Several of these numerical methods are used in other
available implementations, even though we do not employ them in our proposed
algorithm in Section 4, due to the existence of more robust and/or faster methods
in the same domains of computation introduced in Section 2.

3.3.1 Factorial series

Factorial series are considered an alternative for the summation of divergent in-
verse power series. The method is a useful numerical tool that can be used for func-
tions defined in terms of Laplace integral, for example integral (3.42), with which
we proceed by applying a change of variable e~ = w and ¢(w) = (1 — log(w)) ™"
to transform into a convergent expansion

akk!

Ey(x)=e")

L oo o(w) =Y (1 —-w), (3.63)
=0 k=0

where a; are the coefficients of the Maclaurin series of ¢(w) at w = 1. In particular,
the first 7 coefficients are

1 1 1
=1 m=-v, a= 51/2, az = —81/(1/2 +1), as= ﬁv(vg’ +4v—1),

as = —%v(v4 + 1002 —5v+8), ag= %01/(1/5 +20v° — 15v% + 58v — 26).

This factorial series exhibits fast convergence for moderate values of v and x
when x > v, and it generally outperforms the asymptotic expansion. However,
Laguerre series (3.23) tends to converge more rapidly, whereby factorial series was
not included in the proposed algorithm. For an introduction to factorial series we
refer to [61, §2.4.4].

3.3.2 Continued fractions

The Stieltjes fraction (S-fraction) [38, §14.1.16] is given by

E (x) =¥ (1{’; 12 (aml/x>>/ x>0, veRY, (3.64)

m=2

where ay; = j+n—1,a11 =], j= 1 Sincelimy e, = +00, the modification
[38, §7.7]

—1+ Véakx—T+1 ~1++An+k)x1+1

2 ’ w2k+1 (x) = 2

(3.65)

wok(x) =

The S-fraction is evaluated using a forward recursion algorithm based on the
three-term recurrence relations. This algorithm requires successive rescaling to
avoid numerical difficulties. Cephes library implementation includes the S-fraction
for the domain x > 1 and v < 5000, without modification.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg_&
for positive real order

The C-fraction [38, §14.1.19] is given by

E(x) =™ Iz (”’ﬂ(vl)x_l) x>0, veC, (3.66)

m=1
where the coefficients are given by
m(v) =1, ajv)=j+v—1, ayu(v)=j jeEN. (3.67)

The Jacobi fraction (J-fraction) [38, §14.1.23], obtained by taking the even part
of the C-fraction is given by

Y o ((L—m)(v+m—2)
E,(x)=e <V+x+n§< e S >> x>0, veC. (3.68)

The C-fraction and J-fraction are evaluated using the modified Lentz algorithm,
which is implemented taking into account the suggestions in [61, §6.6.2] to improve
numerical robustness. Table 3.5 shows the number of terms and relative error for
each continued fraction for regions where asymptotic expansions do not apply due
to the amount of terms required. The last column corresponds to the Laguerre
series.

v x (3.66) (3.68) (3.64) (3.23)
23 16 142(0) 63 (%e—16) 117 (0) 67 (0)
03 56 52(%e—16) 23(9%—16) 41(3e—16) 21(0)
103 156 32(de—16) 16(le—16) 28(le—16) 14 (le—16)
1003 156 26 (7e—16) 13 (3e—16) 25(le—16) 10 (4e—16)
103 150.6 14 (7e—16) 8 (0) 13 (2e—16) 6 (2e—16)
1003 150.6 18 (le—16) 10(le—16) 17 (le—16) 7 (le—16)

TABLE 3.5: Comparison of different continued fractions and La-
guerre series, number of terms and relative errors. Precision is set to
53-bit.

The results confirm the significant superiority of the Laguerre series with re-
spect to both C-fraction and S-fraction. On the other hand, the J-fraction exhibits
rapid convergence, but some loss of precision is observed for small values of v and
x. We refer the reader, e.g., to Cuyt et al. [38] for a theoretical background and
numerical methods for continued fractions.

3.3.3 Numerical integration

From the definition of the generalized exponential integral (3.2), we apply a change
of variable t = x + g to obtain

E,(x) = x"’le’x/ e 1(x+q)Vdg, (3.69)
0

which can be directly evaluated by means of Gauss-Laguerre quadrature. Further-
more, the integrand has the decay property as a single exponential function g — oo,

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg_é
for positive real order

therefore we can exploit this by applying a double-exponential transformation (DE-
transformation) to an integral over a half-infinite interval. Then,

E,(x) = xV"te™® /oo e 0 (x + (1)) V' (t) dt, (3.70)

where g = ¢(t) = e, and ¢/(t) = (1+e ')¢p(t). Another possible change
of variable is ¢(t) = 7r/2sinh(t) and ¢'(t) = 7r/2cosh(t)p(t), although the latter
does not provide better results in our experiments. We truncate the infinite sum-
mation at k = —n and k = n, where the total number of function evaluations is
N = 2n + 1 using the trapezoidal rule with equal mesh size,

E,(x)"1) = xV=1e=%p i e~ 0N (x + (ki) V¢’ (kh). (3.71)
k=—n

Two methods of computation are used for the evaluation of above integrals; the
extended trapezoidal rule and Ooura’s implementation for DE-transformation over
half-infinite interval [127]. For the extended trapezoidal rule we use symmetric
truncations at +6, which performs well for moderate values of v and x.

Other integrals

The integral in §3.2.3, can be computed effectively using numerical quadrature
methods, since the integrand decays exponentially for v and double exponentially
for z. If we start with A = x/v, where A > 0, we can write the integral as follows

E/(x)=e* /O N e M1 4+ t)Vdt. (3.72)

Now by applying a change of variable ¢ /A = ¢(t) = 1+t, e"/Adu = dt we obtain

E,(x) = AV71 /Oo e Ve =1 gy, (3.73)
log(A)

where the integrand only depends on v and it is entirely non-increasing. Our ex-
perimental results showed that computing these integrals by using the extended
trapezoidal rule was 1.5-4 times slower than other available methods in the same
domain of computation, consequently these were discarded.

3.4 Algorithm and implementation

We have devised an accurate algorithm along with an efficient implementation in
double-precision floating-point arithmetic of E, (x) for integer and real order v. The
program’ written in C++ is about 800 lines of code and includes python bindings.
It is released under MIT license.

Our implementation allows the use of internal computations using higher pre-

cision arithmetic implemented in software, in particular we use the so-called error

‘https://sites.google.com/site/guillermonavaspalencia/software/expint.zip

https://sites.google.com/site/guillermonavaspalencia/software/expint.zip

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg.ﬁ
for positive real order

free transformations and double-double numbers, for difficult regions prone to nu-
merical instability, thus diminishing the effect of round off errors. This approach
is particularly intended for the evaluation of series expansions, where cancellation
errors in the regime x € [1,1.5) occur.

A double-double (DD) number is a multiple-term representation in which a num-
ber is expressed as the unevaluated sum of two standard floating-point (FP) num-
bers. The DD number is capable of representing at least 106-bit of significant,
roughly 31 digits of accuracy and is, therefore, similar to IEEE 754 quadruple-
precision. A reference library using this approach is Bailey’s library!® QD [79].
There are several reasons for using DD numbers instead of quadruple-precision
(e.g., using libquadmath included in GCC): operations with DD numbers use highly
optimized hardware implementation of floating-point operations, and quadruple-
precision is still not available for all compilers and programming languages, which
would limit the implementation of the algorithm.

An error free transformation (EFT) is an algorithm which transforms any arith-
metic operation of two FP numbers a and b into a sum of two FP numbers s and
t, a floating-point approximation and an exact error term, respectively. Therefore,
these algorithms keep track of all accumulated rounding errors, avoiding the lost
of information. The basic brick for our implementation is Algorithm 3. This algo-
rithm requires Algorithm 1 [99], which computes the exact sum of two FP numbers
and returns the result under s and ¢. It requires 6 native FP operations (flops).

Algorithm 1 Error-free transformation of the sum of two floating-point numbers.

Input: a,b
Output: s, t
1: function TWOSUM(a, b)
2: s < RN(a+D) > RN: Rounding to nearest mode.
3: ¢+ RN(s—a)
4 t <~ RN(RN(a —RN(s —¢)) + RN(b —¢))
5: end function

Furthermore, it also uses Algorithm 2 [42], requiring 3 flops. This algorithm is
applicable when the exponent of 2 is larger or equal to that of b.

Algorithm 2 Error-free transformation of the sum of two floating-point numbers
(la] > [b]).
Input: a,b
Output: s, t
1: function FASTTWOSUM(a, b)
22 s+ RN(a+b)
33 z<+ RN(s—a)
4: t <+ RN(b — Z)
5: end function

Algorithm 3 computes the exact sum of a DD number and a FP number, storing
the resulting operation into the DD number, performing an operation in-place. This

10The operations implemented in this library are not compliant with the IEEE 754-2008 standard.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg_{5
for positive real order

algorithm is used to accumulate the intermediate summation of terms in series ex-
pansions (3.17), (3.21) and (3.39) and for the final subtraction or addition operation.
Although the use of EFTs for every single operation would definitely enhance the
accuracy of the algorithm, we aim to provide a good balance between achievable
accuracy and computational time, so that our implementation is competitive with
other software packages only using FP operations. Other alternatives to reduce
cancellations consist of grouping two consecutive terms in descending order, so
the subtraction of the second term does not produce cancellation. However, given
the satisfactory results obtained with EFTs, we discarded those methods.

Algorithm 3 Addition of a double-double number and a double number in-place.

Input: sh,sl, a
Output: sh, sl
1: function ADD_DD_D_IP(sh, sl, a)
2: (th,tl) <~ TWOSUM(sh, a)
3: t RN(th -+ tl)
4: (sh,sl) - FASTTWOSUM(th, tl)
5: end function

Finally, our algorithm uses some mathematical functions from the standard
library defined in <cmath>, for instance tgamma and lgamma, which compute the
gamma function and the natural logarithm of the absolute value of the gamma
function, respectively.

3.4.1 Algorithm for integer order

The algorithm of integer order v = n,n € IN combines asymptotic expansions, La-
guerre series, series expansions and Chebyshev approximations. Laguerre series
is the dominant method for x > 2 and it is used as a backup method wherever
asymptotic expansions are not applicable. For small x series expansions are em-
ployed, since they show faster convergence and return more accurate results than
Laguerre series. For the special case n = 1 we use the Chebyshev approximations
in [30], which require fewer terms and provide more accurate results for moder-
ate values of x. Note that we avoid the evaluation of Ei(—x) in the vicinity of
xp ~ —0.372507, which corresponds to a single zero.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg_l6
for positive real order

Algorithm 4 Algorithm for E,(x), n € N and x > 0

Input: n€ N, x € R
Output: E,(x)

1: if n == T1and x € (0.9,10) then
2 compute E;(x) = —Ei(—x) using Chebyshev approximations [30]
3: elseif x < 1.5and n < 20 then
4: series expansion (3.39)
5. else if x < 2.0 and n < 10 then
6
7
8
9

series expansion (3.40) > Faster than Laguerre series
. else if n > x then
if x <5 then
: check if asymptotic expansion (3.56) can be used, otherwise Laguerre
series (3.23)
10: end if
11: Laguerre series (3.23) > Backup method
12: else
13: if x/v > 100 then
14: check if asymptotic expansion (3.44) can be used, otherwise Laguerre
series (3.23)
15: end if
16: Laguerre series (3.23) > Backup method
17: end if

3.4.2 Algorithm for real order

The algorithm for real order differs on the computational methods applied for small
x. The alternating series (3.17) converges faster and it is used for large v/x and as
a backup method. Series (3.21) is used when the value v guarantees that all terms
of the expansion are positive. Finally, Laguerre series (3.23) is employed in regions
where results returned by series expansions are not sufficiently accurate.

3.5 Benchmarks

Publicly available implementations of the generalized exponential integral in double-
precision arithmetic are Cephes [111], Boost [11] and GNU Scientific Library (GSL)
[56]. These libraries provide implementations for the special case v = n,n € IN.
To our knowledge, there are no numerical libraries in double-precision arithmetic
implementing E,(x) for real values of v. We compare our implementation to the
aforementioned software for v integer and to mpmath [92] and Arb [87], both sup-
porting arbitrary-precision arithmetic, for real v.

To compare our implementation to other software packages we use perfor-
mance profiles. Performance profiles [44] are widely used tools for benchmarking
and evaluating the performance of several solvers, particularly in the fields of op-
timization and linear algebra, when run on a large test set. Performance profiles
provide a convenient procedure of assessing the performance of a code relative to
the best code of the set.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg_e
for positive real order

Algorithm 5 Algorithm for E,(x), v € RT and x > 0

Input: v € R*, x >0
Output: E,(x)
1: if x <1 and x < 20 then
2: if v/x > 10 then

3: series expansion (3.17) > Fast convergence
4: end if
5: if v > 1.5and x > 0.5 then
6: Laguerre series (3.23) > Slow but more accurate
7: else if v < 0.9 then
8: series expansion (3.21) > All terms of expansion are positive
9: else
10: series expansion (3.17) > Backup method
11: end if

12: else if v > x then
13: if x < 5 then

14: check if asymptotic expansion (3.56) can be used, otherwise Laguerre
series (3.23)

15: end if

16: Laguerre series (3.23) > Backup method

17: else

18: if x/v > 100 then

19: check if asymptotic expansion (3.44) can be used, otherwise Laguerre
series (3.23)

20: end if

21: Laguerre series (3.23) > Backup method

22: end if

Regarding the other codes, Cephes and Boost use similar algorithms, both use
continued fractions as a main method and the power series for small x. In addition,
Cephes includes the uniform asymptotic expansion in (3.46) for n > 5000. The
implementation in GSL is purely based on the applications of the functional relation
with the incomplete gamma function (3.4). As shown in Figure 3.2 and Table 3.6,
this simplistic approach in double-precision has several limitations, especially for
large n, as the number of failures indicate.

Figure 3.2 compares all four codes in terms of the relative error using as a ref-
erence the value computed by mpmath with 1000 digits of precision. If relevant
discrepancies arise using different levels of precision, we use the result from Arb
or Mathematica, which tend to be more reliable. The test samples are generated
non-uniformly, in fact we select certain input values around regions of transition
between computational methods, in order to test the worst cases. Figure 3.3 shows
a comparison in terms of computation time. All measurements were obtained by
evaluating each test sample 100 times are returning the average time.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg.é
for positive real order

1.0

o
)

(%]
IS
[}
0 06 -
(@] 1
& |-l e
2
S}
o 04
2
©
o — Paper
0.2 -- Cephes
Boost
'''''' GSL
00 L L L L L L L
0 1 2 3 4 5 6 7 8

Time ratios: logs(ratio)

FIGURE 3.2: Accuracy profiles case n € N and x > 0.

(%]
IS
D T
S06lf 0 e
o
—_
a
—
S}
O 4
] 1
© K
o B
‘ i — Paper
J :
0.2} -- Cephes |
- Boost
'''''' GSL
0.0 b - ;
0 1 2 3 4 5 6 7 8

Time ratios: logs(ratio)

FIGURE 3.3: Performance profiles case n € IN and x > 0.

Observing the performance profiles and the statistics in Table 3.6, it seems safe
to claim that our algorithm outperforms the other available codes. In terms of com-
putation time, Boost comes very close in median, however, for some large values
of n the computation time is ridiculously high. Cephes does not include an asymp-
totic expansion for large n < 5000, so cases where 7 is large and x < 1 require
the computation of n terms, being prohibitively expensive. Nevertheless, Cephes
implements a more effective computation scheme than Boost, the former being pos-
sibly improved by replacing the S-fraction by the J-fraction, as shown in Section 3.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrg_b
for positive real order

Library Max. error Avg. error Avg. time (zs) Stdev. time (us) fails

Paper 9.7e—16 1.3e—16 0.25 0.21 0/200

Cephes 1.4e—15 2.0e—16 0.73 2.47 0/200

Boost-1.61.0 4.8e—15 3.3e—16 63.76 558.36 0/200
GSL-2.2.1 5.2e—14 6.1e—15 1.34 1.19 75/200

TABLE 3.6: Error statistics for each library. gcc-5.4.0 compiler run-
ning Cygwin. Time in microseconds. Fails: returns Incorrect/-
NaN/Inf. Intel(R) Core(TM) i5-3317 CPU at 1.70GHz.

For real order v we have generated two sample sets with the following charac-
teristics:

e Large set: v € [0.0,10000] and x € [10~?,1000]
e Small set: v € [0.04,70] and x € [0.00075, 1.5]

The large set was generated to test the accuracy of asymptotic expansions and
Laguerre series, whereas the small set is testing the region in x where a loss of
significant digits is expected. As shown in Table 3.7, the maximum relative error
determines that about 5 bits of precision might be lost. These results suggest that
the computation in this region could be improved by re-implementing both series
expansions using DD operations, at the cost of worsening the computation time.

Library Max. error Avg. error Avg. time (us) Stdev. time (us) fails
Largeset 9.8e—16 l.1e—16 0.14 0.10 0/1500
Small set 3.1le—15 1.7e—-16 0.52 0.37 0/500

TABLE 3.7: Error statistics for each library. gcc-5.4.0 compiler run-
ning Cygwin. Time in microseconds. Fails: returns Incorrect/-
NaN/Inf. Intel(R) Core(TM) i5-3317 CPU at 1.70GHz.

3.5.1 Arbitrary-precision floating-point libraries

We evaluate the implementation of the generalized exponential integral in the arbitrary-
precision packages Arb 2.8 and mpmath 0.19. Test were run on an Intel(R) Core(TM)
i7-6700HQ CPU at 2.60GHz. For testing Arb we use Sage 7.3. Both software pack-
ages implement the generalized exponential integral using the functional relation
with the incomplete gamma function, which is implemented using the series ex-
pansion of the confluent hypergeometric function for small x and the asymptotic
expansion of the U-Kummer function for large x, for more details refer to [90]. Table
3.8 summarizes the results obtained by mpmath for all three test sets using 53-bit of
precision. Mpmath automatically chooses guard bits to achieve the requested ac-
curacy, however it is usually unable to return a correct results for large parameters.
Additionally, mpmath doest not return a flag indicating that the result is incorrect.

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integrgb
for positive real order

Set Max. error Avg. error Avg. time (us) Stdev. time (us) fails
Integer 1.0 4.4e—-13 125 243 5/200
Largereal 1.2e+163 2.2e—15 16397 128024 75/1500

Small real 0.0 0.0 672 187 0/500

TABLE 3.8: Error statistics mpmath library. Average error is com-
puted after excluding relative errors > 1le—10. A result is considered
wrong if relative error is > le—14.

Arb uses interval arithmetic and efficiently tracks errors. The usage of the func-
tional relation works reasonably well in most of the cases, but as shown below for
large parameters one needs to increase the working precision considerably to ob-
tain a solution with 16 significant digits. For example, evaluating Es00.25(400) at 53,
1000 and 1210 bits with Arb produces:

sage: CBF = ComplexBallField(53)

sage: CBF(400).exp_integral_e(CBF(500+1/4))
nan + nan*I

sage: CBF = ComplexBallField(1000)

sage: CBF(400).exp_integral_e(CBF(500+1/4))
[+/- 5.05e-130]

sage: CBF = ComplexBallField(1210)

sage: CBF(400) .exp_integral_e(CBF(500+1/4))
[2.128687916150507e-177 +/- 6.64e-194]

sage: %timeit CBF(400).exp_integral_e(CBF(500+1/4))
1000 loops, best of 3: 1.15 ms per loop

Hence, it is necessary to systematically increase the precision in order to obtain
results at the desired accuracy. On the other hand, our implementation uses the
Laguerre series in this domain reporting fast convergence (5 terms), see below:

In [1]: import expint
In [2]: expint.expint_v(500+1/4,400)
Out[2]: 2.128687916150507e-177

In [3]: Ytimeit expint.expint_v(500+1/4,400)
1000000 loops, best of 3: 475 ns per loop

Finally, we encourage the use of more sophisticated computation scheme and
addition of specific numerical methods for the computation of the generalized ex-
ponential integral in arbitrary-precision arithmetic.

3.6 Conclusions

In this work, we proposed an efficient algorithm for the computation of the general-
ized exponential integral. The algorithm includes a new asymptotic expansion for
large order v and other methods not implemented in existing software. Numerical
experiments confirmed the benefits of using internal higher precision arithmetic for

Chapter 3. Fast and Accurate Algorithm for the Generalized Exponential Integr%l1
for positive real order

regions where numerical instability appears, thus obtaining more reliable results.
This resulted in an implementation capable of outperforming available software
packages in terms of accuracy and computation time.

We believe the improvements and suggested numerical methods in this work
should be considered for inclusion in arbitrary-precision arithmetic software pack-
ages, which in general implement simplistic computation schema and rely on con-
tinuously increasing the working precision to obtain a solution satisfying the user’s
precision. Finally, our implementation in C++ was made freely available.

62

Chapter 4

Confluent Hypergeometric
Functions

4.1 Background and Previous Work

Confluent hypergeometric functions (also known in the literature as Kummer func-
tions) and Gauss hypergeometric function compound a set of general functions
covering a majority portion of the most commonly used special functions. Even
though this chapter is focused on confluent hypergeometric functions of the first
kind 1F; and the confluent hypergeometric function of the second kind or Kum-
mer U-function U, we consider instructive to provide a minimum background on
the generalized hypergeometric function. The generalized hypergeometric function of
order (p,q), p and g being nonnegative integers representing the number of numer-
ator and denominator parameters, respectively, is usually represented as

k

qu(ﬂl,...,ap;bl,... (4.1)

i (ap)k Z
5 ()i (bg)i K
where (a); is the Pochhammer symbol or rising factorial, a;, Vi € {1,...,p} and
bi, Vi € {1,...,q} are the parameters and z is called the argument. The generalized
hypergeometric function is given by a hypergeometric function. A hypergeometric
function defined as F(z) = Y5>, cxz", is a power series for which coefficients ¢ sat-

isfy a first-order recurrence relation, ¢y, = %ck, where the ratio of polynomials

P(k) and Q(k) form a rational function of k. For numerical computation reasons
when b is close to a non-positive integer, it is sometimes preferable to use the reg-
ularized generalized hypergeometric function given by

pFy(ar, ..., ap;by, ..., by 2)
r(bl) o ‘r(bs/)

qu(al,...,ap;bl,...,bq;z) —

For certain values of a; and b; two important cases are considered: if any a4; €
Z, , the series terminates and the generalized hypergeometric function is a poly-
nomial in z. On the other hand, if any b; € Z, the series is undefined due to
zero denominator, except if a; > b;. The radius of convergence of the series (4.1) is
described by three cases.

1. Case p < g: the series converges for all finite values of z and defines an entire
function. This is the case for confluent hypergeometric functions ¢Fj, called
confluent hypergeometric limit function, and | F;.

Chapter 4. Confluent Hypergeometric Functions 63

2. Casep =g+ 1:Fora; & Z;,Vi € {1,...,p}, the series has a radius of 1 for
|z| < 1and is defined by analytic continuation with respect to z elsewhere.

3. Case p > g + 1: the series diverges for all nonzero values of z, except when
values of the parameters satisfy some of the aforementioned terminating con-
ditions. The function ,Fy, which is equivalent to U is the most used hyperge-
ometric function of this kind.

Several infinite power series and partial sums can be written as generalized
hypergeometric functions by inspection of the ratios of consecutive terms. There
is a large number of identities in terms of ,F, for large orders (p, q) [43, §16.4]. In
the field of discrete mathematics, the generalized hypergeometric function arise in
many combinatorial identities and random graph theory [84].

41.1 Confluent hypergeometric function of the first and second kind

The confluent hypergeometric function of the first kind M(a,b,z) = 1F(a;b;z)
arises as one of the solutions of the limiting form of the hypergeometric differential
equation
d>w dw

zﬁ—l—(b—z)g—aw—o, (4.2)
forb ¢ Z,, see [43, §13.2]. 1F1(a;b;z) is entire in z and a and is a meromorphic
function of b, however, its regularized form T'(b)1F;(a;b;z) = 1F(a;b;z) is entire
in b since its limiting form is well defined

1F(a;b;2) (a)pz™ !

I _ F L +22).
o T (D) 1y (atmtlim+2z)

Another standard solution is the confluent hypergeometric function of the second
kind (also called Kummer U-function or Tricomi confluent hypergeometric func-
tion, indistinctly) U(a, b, z), which is defined by the property U(a,b,z) ~z7%, z —
oo, [phz| < (3/2)m — 6 where ¢ is an arbitrary small positive constant such that
0<iK1.

For certain regimes of the parameters, these functions are expressible as poly-
nomials in z. In particular, when a € Z;, U(a, b, z) is a polynomial of degree m

" (m
U-mb,2) = (1" G F(-m0,2) = (1" Y () 0+ 0ea-2)
k=0
Similarly, whena —b+1 € Z,,
Uaa+m+1,z)=(-1)"A1—a—m)uz " "1 F(-m,1—a—m,z).

For 1 F; the previous polynomials can be used after application of connection for-
mulas as shown later on. However, we mention a few terminating series in terms
of the lower incomplete gamma function, see http://functions.wolfram.com/07.
20.03.0106.01

1Fi(a;a+m;z) = I(a+m)(=z) 2 (m k_ 1> ya+k —z)z7%, meNT,

http://functions.wolfram.com/07.20.03.0106.01
http://functions.wolfram.com/07.20.03.0106.01

Chapter 4. Confluent Hypergeometric Functions 64

and http://functions.wolfram.com/07.20.03.0115.01

[(b)e?z" b &
B2 = i

<m - 1)7(b +k—mz)(—z)%, meNt.
o\ K

We refer to [60] for numerical algorithms to compute the incomplete gamma func-
tion for real a and negative argument z, where the function well-behaved v*(a,z) =
z~"y(a,z)/T(a) real for real values of 2 and z is computed instead.

Kummer’s transformations [43, §13.2] are particularly useful to handle regimes
of parameters prone to numerical instabilities, such as the case z < 0 for 1Fj, or in
situations where the parameters are not directly valid for some methods,

1Fi(a;b;z) = e#1Fy (b —a;b; —z2) (4.3)

and
U(a,b,z) =z""U@—b+1,2—b,2). (4.4)

Connection formulas for confluent hypergeometric functions for (a,b,z) € C2 :
z # 0 are

Ei(a;b AT) b — a bzt 45
1 1(51, ;@—m (ﬂ, ,Z>+ F(a) e (—a,n,ze)/ (4.5)
> F(wbiz) PR)
B 7T 1F(a;b;z 277" Fa—b+1,2—-b;z
Ulabz) = G e Ta—b+1)) (46)
and when b ¢ Z
_ I-bp) oy, 2 (1) . .
u(ﬂ,b,Z) - m11:1(a,b,z>+T1Fl(a_b+1,2—b,z)~ (47)

Connection formulas (4.6) and (4.7) are implemented in some numerical libraries
to handle cases for U(a, b, z) when |z| is not sufficiently large to use asymptotic ex-
pansions. On the contrary, formula (4.5) is an alternative to compute 1 F; for large
values of |z|. In general, most of the methods for computing confluent hyperge-
ometric functions are interchangeable by making use of connection formulas and
Kummer transformations. However, specific methods usually lead to more stable
algorithms and therefore more accurate results.

4.1.2 Computational methods and available software

Most numerical libraries implementing confluent hypergeometric functions in double-
precision arithmetic combine various numerical methods to cover, in many cases,
the functions” domains encountered in many applications. In this section, we sur-
vey the most common computational methods implemented in open-source and
commercial software. More advanced methods shall be discussed in subsequent
sections.

Series representations. The most standard definition of the confluent hypergeo-
metric function of the first kind is given by the Maclaurin series expansion

http://functions.wolfram.com/07.20.03.0115.01

Chapter 4. Confluent Hypergeometric Functions 65

ey v (@2

1F1(11, b,Z) kg%) (b)k k!, (48)
convergent for all finite values of z. The convergent Maclaurin series expansion
is the building block of most of the available implementations for 1F; (a;b;z) and
U(a,b,z). As previously discussed, series expansion are prone to suffer cancella-
tion as the argument z increases. In particular, for z € R, z < 0, Kummer trans-
formation (4.5) should be used. Several methods for computing the Taylor series
are investigated in [133] such as direct hypergeometric recursion, three-term recur-
rence equation or single fraction computation, all of them exhibiting similar accu-
racy and performance. For numerical computation in double-precision arithmetic,
compensated summation methods (see Chapter 2) are usually implemented to ex-
tend the region of z where series (4.8) can be evaluated effectively. By examining
the coefficients of the Maclaurin series we observe that (4.8) is indeed an asymptotic

expansion of b when a and z are fixed.
For large |a| or real a and z such that sign(a) # sign(z), alternatives series
representations in terms of Bessel functions of the first kind, J,(z), are available in
[162] and [22] . The expansion in terms of Buchholz polynomials, pi(b, z), is given

by

1F ([Z; b;z) — r(b)ez/Zzb—l i Pk(b/Z)]b—l-i—k(Z(Zb — 45{))

k=0 (\/2(2b — 4a)b-1+k (4.9)

where Buchholz polynomials are defined as

Nk Lk/2] k
plb2) = S8 L () fi(bin(2),

j=0

and polynomials f;(b) and g;(z) are defined by the following recurrence equations

=Y i 1\ 47|Byi,
s ==L () e, pe =1

= 2r j—r

LG=D72] ,- 9\ 4"+1|B
=5 E () e, -
and B, denote the Bernoulli numbers. The coefficients of Buchholz’s expansion,
unlike the ones from Tricomi’s expansion, are independent of a, being preferable
even though their computation is more involved.

To compute the Kummer function U(a, b, z) for small values of z, the usual ap-
proach is to employ connection formulas for this function in terms of 1F;(a; b; z),
for example (4.6) or (4.7), which is not defined for integer values of b, although the
limit exists for b — 0. Additionally, a recent method for computing the Kummer
function U(a, b, z) for small values of |a|, |b| and |z| is described in [63].

Asymptotic expansions for large argument z. Ascending series expansion (4.8),
even though convergent in nature, is not adequate for large values of |z| when

Chapter 4. Confluent Hypergeometric Functions 66

performing computations using double-precision arithmetic, and it is costly at ar-
bitrary-precision due to the necessity of increasing the working precision to com-
pensate cancellation. In what follows, we introduce the basic asymptotic formulas
for computing the confluent hypergeometric functions when |z| — co.

The asymptotic expansion of U(a, b, z) results from the application of Watson’s
lemma to the Laplace integral representation in (4.13), which gives us [43, §13.7.3]

ad —b
U(a,b,z) ~z " k;) (a)k](j(_z)—: 1)k,

(4.10)

|ph z| < 3/27. Note that the Kummer U-function is related to the hypergeometric
function Fy via U(a, b,z) = z7%yFy(a,a —b+1, —1/z), which exhibits its divergent
behavior. An effective bound is detailed in [43, §13.7]. For (z) > 0, asymptotic se-
ries (4.10) is alternating and thus the remainder is bounded by the absolute value of
the first neglected term. As previously discussed, the remainder cannot be reduced
arbitrarily, hence when z is not sufficiently large with respect to a and b (not made
rigorous here) and the required precision bits is moderate, this expansion cannot
be used effectively. Evaluation of U(a, b,z) outside the sector [phz| < 17 can be
achieved by use of the continuation formula (4.5).

Similarly, one can obtain the asymptotic expansion for 1F;(a;b;z) using (4.12)
resulting in
T(b)erz* 0 & (b —a)(1—a)

1h(@biz) ~ ['(a) kizk ’

(4.11)
k=0
given a ¢ Z; and |phz| < 7/2. The region of validity of the expansion can be
easily extended by making a compound expansion using the connection formula
(4.5) and asymptotic expansion (4.10)

1Fi(a;b;z) ~

2 T(h) & (b—a)(1—a)y e z7T(b) & (a)k(a—b+1)
OB PEa T(a) kzo kk!(—z)k X

k=0

which is valid in sectors —7/2 < £ph z < 3/27.

An alternative asymptotic expansion of U(a,b, z) in the form of a convergent
expansion involving a series of Kummer U-functions described in [157, §17.2] is
given by

U(a,b,z) = 2 i (a)x (b ;!a — 1)

k=0

uk,1—a,z),

suitable for fixed a and |z| — oo when |phz| < 7/2. An exhaustive analysis
of this kind of expansion is conducted in [41], where numerical examples and a
recursive scheme of computation using continued fractions in backward direction
is included.

Asymptotic expansions for large parameters. An excellent survey of asymptotic
expansions for the confluent hypergeometric functions for large parameters can be
found in [157, §10]. In this section, we briefly comment those more relevant results
and refer to the previous book for details.

Chapter 4. Confluent Hypergeometric Functions 67

Asymptotic expansions for large values of a or b have been extensively stud-
ied in the last 50 years. First asymptotic expansions for large a for 1F;(a;b;z) and
U(a,b,z) are given in [143], where expansions are derived from the Kummer differ-
ential equation (4.2). Extensions for 4 — $-oc0 in terms of modified Bessel functions
are derived in [153] and [157, §10.3, §27 4].

A direct asymptotic expansion of 1 F; (a; b; z) for large b follows the series expan-
sion in (4.8). Uniform asymptotic expansions for large b and z are derived in [152],
in terms of parabolic cylinder functions, and [107].

The coefficients of the aforementioned asymptotic expansions and some uni-
form variants are generally involved and require expensive computations which
make them unattractive to be implemented in numerical libraries. As a construc-
tive criticism, many classic works in asymptotic analysis only provide a few coeffi-
cients computed using computer algebra systems rather than a general expression.
Even though this might be sufficient from a theoretical perspective, it is limiting for
its successful implementation. To the author’s knowledge the algorithm in [154] for
the numerical evaluation of U(a, b, z) for (a,b,z) € R3 and z > 0, is one of the few
exceptions, given that it is the primary method implemented in the AMath special
functions library ! written in Pascal.

Integral representations. As stated in [43, §13.4.1, §13.4.4], the functions 1 F; (4; b; z)
and U(a, b, z) have the following integral representations, respectively

T'(b 1
1Fi(a;b;2) = r(a)r((b)—a)/o A1 — 0P ldt, R(b) > R(a) >0 (4.12)
U(a,b,z) = r(la) /O N e = (1 4-1) L dt, (4.13)

valid for ®(a) > 0 and R(z) > 0. As we shall see in subsection 4.3, Laplace-type
integral (4.13) is a convenient starting point for developing methods for U(a, b, z)
exploiting the amplitude function f(t) = (1 + t)’~%~1. Contour integrals also play
an important role on the derivation of powerful asymptotic expansions, see [43,
§13.4] for a complete list.

The two integrals along the real line are generally included in implementations
in double-precision arithmetic taking advantage of available quadrature methods.
The most common method is the use of Gauss-Jacobi quadrature applied to in-
tegral (4.12). In order to obtain an integral in the standard form of Gauss-Jacobi
quadrature

1

@) = [fE)(1-2)1+b)F,
we apply the transformationt — s/2+1/2and takinga =b—a—-1landf=a—1
yields the standard form

21—br b 1
1F1(a;b;2) = 1"(a)1"(b(—)a) /_1 e/FH/2(1 —)b 1(1 4 5)7 1 ds. (4.14)

http://www.wolfgang-ehrhardt.de/amath_functions.html

http://www.wolfgang-ehrhardt.de/amath_functions.html

Chapter 4. Confluent Hypergeometric Functions 68

See [59] for more details about effectiveness of the Gauss-Jacobi quadrature. Other
more general quadrature methods such as Gauss-Legendre, double-exponential
or Clenshaw-Curtis quadrature are also amenable for the evaluation of both in-
tegrals after proper transformations. In general, as long as the imaginary part of
the parameters and/or argument is bounded and the integrand decays smoothly,
the aforementioned methods are suitable. An extensive treatment of quadrature
methods for large imaginary part of parameters and argument is given in Section
4.2 of this thesis, where the behaviour of the integrals is highly oscillatory.

Other methods. Several numerical methods and techniques not previously dis-
cussed have been investigated to compute confluent hypergeometric functions.
Probably, the most helpful technique is the use of recurrence relations (using ei-
ther Miller’s or Olver’s algorithm) to move parameters to regimes where previous
methods are usable. Besides, a rational approximation is generally applied as a
backup method [108].

Moreover, for many special values of the parameters, confluent hypergeometric
functions are expressible in terms of less complex special functions such as Bessel
function and generalized exponential integrals (see Chapter 3), to mention a few.
Efficient software implementations handle these special cases effectively.

Software. In this section we list open-source and commercial software packages
including implementations for the confluent hypergeometric functions. We note
that, specially for double-precision arithmetic, implementations for complex pa-
rameters and/or argument are rarely available. On the other hand, arbitrary-pre-
cision arithmetic libraries tend to cover most of regimes of the parameters and ar-
gument. An extensive benchmarking of open-source and commercial software is
conducted in [90].
Double-precision arithmetic software:

e GNU Scientific Library (C/C++) [56]: provides implementations for real pa-
rameters and argument of oFy, 1F1, U, o F; and »Fy. In particular, for 1 F; (a; b; x)
and U(a, b, x) wehave gs1_sf_hyperg_1F1 and gs1_sf_hyperg_U, respectively.
Furthermore, this library provides special routines returning a result with ex-
tended range, which aim to avoid numerical issues with overflow and/or
underflow.

e Cephes (C) [111]: File hyperg.c implements 1 F; and »Fy and hyp2f1.c imple-
ments ,F;, both routines for real parameters and argument. The implemen-
tation for 1F (a; b; x) combines the Maclaurin series expansion (4.8) and the
asymptotic expansion in terms of (4.10) along with Kummer’s transforma-
tion.

e SLATEC (Fortran 77) [163]: Function chu.f/dchu.f implements U(a,b, x)
(referenced as logarithmic confluent hypergeometric function) for real pa-
rameters and argument combining the particular cases, Macluarin series (4.8)
with connection formula (4.6) and Luke rational approximation [108] in the
asymptotic region.

Chapter 4. Confluent Hypergeometric Functions 69

e Scipy (Python/Cython) [95]: The module scipy.special includes implemen-
tations for oFy, 1F1, U, 1F, 2Fy, 2F1 and 3F. Functions hyp1f1 and hyperu are
implemented for real parameters and argument. As experienced in Github?,
implementation of confluent hypergeometric functions in double-precision
arithmetic is a rather challenging assignment. We note that some of the pre-
vious functions are wrapped from the Cephes library and Fortran implemen-
tations available at [171].

e AMath (Pascal/Delphi) [46]: This library implements functions oF;, 1F;, U,
2Fo, 2F1 and regularized versions in double-precision and extended-precision
(80 bit) arithmetic for real parameters and argument. Many of the previously
discussed methods and several special cases are considered, being one of the
most advanced open-source implementations.

e NAG (Fortran) [114]: This commercial library includes implementations of
1F and > F for real parameters and argument. Routines s22ba/s22bb for 1 F;
and s22be/s22bf for oF; compute the value of the function in standard and
scaled form, respectively. Routines s22bb and s22bf accept parameters split
into an integral and decimal fractional component, which can improve the
precision in the final result.

To the author’s knowledge, NAG and AMath implementations stand out by
being the most robust and reliable. In general, old implementations vaguely
include a few methods which might successfully cover a decent amount of the
regimes of parameters. However, these cannot be safely included in applica-
tions with very varying parameters. AMath library would be more notice-
able by including comprehensive interfaces to more popular programming
languages such as Python or Java, for instance.

Arbitrary-precision arithmetic software:

e mpmath (Python/Cython)[92]: provides implementations for real and com-
plex parameters and argument of oFy, 1Fi, U, 1F>, 2Fo, 2F1, 2B, 2F3 and 3F. In
particular, for 1F;(a; b;z) and U(a, b, z) we have hyp1f1 and hyperu.

o Arb (C) [87]: This highly-optimized library includes implementations for real
and complex parameters and argument of oF;, 1F;, U and »F;. Besides hy-
pergeometric auxiliary functions, the main routines are: acb_hypgeom_0f1,
acb_hypgeom_m_1f1/acb_hypgeom_m, acb_hypgeom_u and acb_hypgeom_2f1.

e Matlab (C/C++) [158]: This software provides arbitrary-precision and sym-
bolic computation of the generalized hypergeometric function , F; and its spe-
cial cases. In particular, routine hypergeon is used to compute oF; and 1Fj,
whereas kummerU computes U.

e Mathematica (C/C++) [169]: This software provides arbitrary-precision and
symbolic computation of the generalized hypergeometric function ,F;, corre-
sponding regularizations and many special cases. Function Hypergeometric-
PFQ covers all cases, but functions HypergeometricOF1, HypergeometriciF1,

Zhttps://github.com/scipy/scipy/issues?utf8=%4E2%9C%93&q=is%3Aopen+label%3Ascipy.
special+hypergeometric

https://github.com/scipy/scipy/issues?utf8=%E2%9C%93&q=is%3Aopen+label%3Ascipy.special+hypergeometric
https://github.com/scipy/scipy/issues?utf8=%E2%9C%93&q=is%3Aopen+label%3Ascipy.special+hypergeometric

Chapter 4. Confluent Hypergeometric Functions 70

HypergeometricU and Hypergeometric2F1 compute oF;, 1F;, U and »F; as
well.

e Maple (C) [109]: This software provides the function hypergeom to compute a
floating-point approximate value of ,Fgq and Hypergeom to evaluate ,Fg sym-
bolically.

To the author’s knowledge/experience Arb and Mathematica are generally
faster and more reliable than mpmath, Matlab or Maple. Matlab is observed
to be significantly slower than other software libraries. Finally, we note that
Arb and Mathematica are chosen for benchmarking throughout this work.

4.1.3 Applications

In this section, we mention several applications where hypergeometric functions
are encountered. A complete and up to date survey of their applications would
hardly be achievable. Therefore, we aim to introduce applications that might be less
well-known or that are of interest on current relevant research topics. Other specific
applications, related to numerical methods developed in subsequent sections, will
be discussed further on.

Special functions. There are many special functions appearing in engineering,
physics and mathematics which are particular cases of the hypergeometric func-
tion. The following list presents the most common derived cases of confluent hy-
pergeometric functions and Gauss hypergeometric function.

e Confluent hypergeometric functions:

— Elementary functions.
— Exponential, logarithmic and trigonometric integrals.

— Error functions, Faddeeva function, Fresnel integrals and Dawson’s and
Goodwin-Staton integral.

Incomplete gamma functions and generalized exponential integral.

Airy and Scorer functions.

Bessel, Kelvin, Struve and Lommel functions.

Parabolic cylinder functions.

Whittaker functions.

Hermite and generalized Laguerre orthogonal polynomials.
e Gauss hypergeometric function:

— Incomplete beta functions.
— Chebyshev, Gegenbauer, Jacobi and Legendre orthogonal polynomials.
— Spherical and spheroidal harmonics.

— Complete elliptic integrals.

Chapter 4. Confluent Hypergeometric Functions 71

Physics. Confluent hypergeometric functions, their special cases and especially
the closely related Whittaker functions are ubiquitous in physics. They appear in
the study of potentials in quantum mechanics, the solution of eigenvalue problems,
dynamics of many-body systems and relativistic cosmology to mention a few. As
recent application, we note that confluent hypergeometric functions are often used
to describe first passage of Ornstein-Ulhenbeck processes [70]. It is worthwhile
to mention that the confluent hypergeometric function 1 F; is used for the solution
of time-dependent Schrddinger equation for an atom in the laser field, where fast
multi-evaluation over a grid is required during simulation processes®.

Other cases of the hypergeometric function such as 3 F, arise in considering cou-
pled angular momenta in two quantum systems, where Wigner 3 j-symbols are
used [141]. Last, single variable hypergeometric functions ,F; arise in applications
in quantum and statistical physics and chemistry as described in [31].

Mathematics. In particular, Gauss hypergeometric function > F; arises in several
applications in number theory; complete elliptic integrals of the first and second
kind are expressible in terms of oF;, K(k) = 71/2,F(1/2,1/2;1;k?) and E(k) =
w/2.F(=1/2,1/2;1;k?), respectively. Furthermore »F is used to compute the in-
verse of the j-invariant in parametrization of elliptic curves over C. Additionally,
the hypergeometric function arise as matrix coefficients of representations of Lie
groups.

We mention the connection between hypergeometric functions and algebraic
equations, for example the roots of the general quintic equation are expressible in
terms of 4F3, which can be found in [98]. Combinatoric interpretations of the hyper-
geometric function and general hypergeometric sums, together with computational
aspects about their identification, are studied in depth in the already classic book
[134]. Finally, an extensive survey of classic applications of basic hypergeometric
functions to partitions, number theory, finite vector spaces and combinatorial iden-
tities is presented in [4].

Statistics. The hypergeometric function and several special cases are regularly en-
countered in statistical applications. Numerous probability distribution functions
(PDF) and cumulative distribution functions (CDF) of discrete and continuous dis-
tributions are expressible in terms of the hypergeometric function. A few examples
are:

1. Hyperbolic distribution: probability distribution function in terms of the mod-
ified Bessel function of the second kind,

E(x: 5 — Vo? — p? —an/ 82+ (x—p)2+ B(x—p) 5 R4
(0, B,0, 1) e , (a,B,6,1u) €ERY,
200Ky (6+/ 0> — B?)

3Personal communication from Professor Liangyou Peng. http://www.phy.pku.edu.cn/
“lypeng/.

http://www.phy.pku.edu.cn/~lypeng/
http://www.phy.pku.edu.cn/~lypeng/

Chapter 4. Confluent Hypergeometric Functions 72

where the modified Bessel function Kj (z) is expressible in terms of the Kum-
mer U-function as follows

Ki(z) = 2zy/me *U (;,3,22> .

2. Hypergeometric distribution: cumulative distribution function in terms of
hypergeometric function 3F, given by

(i) ()
K

F(k;N,K,n) =1— 3B (1,4, B;C,D; 1), (4.15)

where (k,N,K,n) € N*and
A=k+1-K, B=k+1-n, C=k+2, D=N+k+2—-—K-—n.

3. Non-central Student’s t-distribution: probability distribution function is ex-
pressed in terms of the confluent hypergeometric function 1 F; as follows

Wy De i 1Fi(v/2+1;3/2;7)
flov,p) = 2'(v + x2)"/ 2T (v/2) <\[”x (v+x2)T((v+1)/2)

1F1((1/+1)/2;1/2;’)’)) n
, veR", uek,
Vv+x2T(v/241) .
2
where v = %

Other well-known statistical distributions such as the non-central Chi distribution
or the Pearson type IV distribution have PDF and CDF expressible in terms of the
incomplete gamma function, incomplete beta function and Marcum functions, see
[157, 8§36 — 39] for references and further examples. Furthermore, several character-
istic functions and moment generating functions might be represented in terms of
the hypergeometric function as detailed in the next section, where numerical meth-
ods for the computation of various characteristic functions are presented. More-
over, we refer to [138] for recent applications in the field of directional statistics
in Machine Learning, where Von Mises-Fisher distribution and particular cases of
the Kent distribution (also known as Fisher-Bingham distribution) in terms of the
hypergeometric functions are considered.

Despite the fact that matrix functions are not studied in this work, we note that
the hypergeometric function of a matrix argument have applications in multivari-
ate statistical analysis, random matrix theory and wireless communications, see
[100] for numerical aspects and experiments.

The hypergeometric function occasionally arise in the computation of the to-
tal probability that a given distribution is greater than another distribution, which
is required for evaluating A /B tests in a Bayesian context?, for instance. Another
related problem is the computation of the accuracy ratio (AR) or Gini coefficient,
which are widely used performance metrics in classification models, the latest be-
ing the standard metric to assess the performance of credit risk default models. The

*http://www.evanmiller.org/bayesian-ab-testing.html

http://www.evanmiller.org/bayesian-ab-testing.html

Chapter 4. Confluent Hypergeometric Functions 73

remaining of this section is devoted to the computation of the Gini coefficient for
two well-known statistical distributions; the Beta and the Gumbel distribution.

Let us introduce a standard definition of the Gini coefficient [151]: given two
distribution Xy and X; the Gini coefficient is defined as

Gini = AR = |2Pr[Xy < Xq] + Pr[Xo = X1] — 1| = |Pr[Xo < X1] — Pr[Xo > X1]],

and considering the assumption that parameters of both distributions are different,
Pr[Xp = Xi] = 0, we take the definition using the area under the ROC curve (AUC)
given by

Gini = AR = |2AUC —1|. (4.16)

As previously stated, we will focus on the Beta distribution and the Gumbel distri-
bution. Their respective probability density functions are given by

x4 (1 — x)P1

fBeta(x} i, ﬁ) = (06 ,3) , (&, ,B) €]RZ ,
o~ (x—p)/p—e”T1/E
fGumber (X; 1, B) = 5 , neER, peR".

Having introduced the main requirements, we proceed to present our contribu-
tions in the form of the following two theorems.

Theorem 4.1.1 Given two standard Beta distributions Xo ~ Beta(wg, o) and X1 ~
Beta(ay, B1) such that (xg, Bo, a1, B1) € R, the Gini or Accuracy Ratio (AR) between
distributions is given by
ARpes = |2AUC — 1], (4.17)
where AUC is the area under the ROC curve defined as

B(ag + a1, Bo)
a1 B(ao, Bo) B(a1, B1)

Proof: Integrating the joint distribution, under the assumption of independence,
over all values of X; > Xy we obtain the following integral

04011_ ﬁ01“111_ B1—1
P X1 > X() / / Xo) 1 (xl) dx1 dX()

AUC =

sha(ar, a0 + a1, 1 — Bi; 1+ ag, a0 + a1 + Bo; 1). (4.18)

0‘0/ 50 ({Xl’ ﬁl)
xho— 1(1 xg)Po~1
=1 —/ 0 L. (aq, dxo,
0 B(ao, Bo) (01, Pr) dxo
where I, (a,b) is the regularized incomplete Beta function defined by
ad 1 — b k x
Ii(a,b) = ab ; @tk & |x| < 1.

Let us focus on the above integral I. By formally interchanging integration and
summation, which is justified by the absolute convergence of the hypergeometric

Chapter 4. Confluent Hypergeometric Functions 74

series, we obtain

Lyt (1 —x)Potxm & (1 — By x*

0 B(ao/ﬁO)B(“lzﬁl) —~ (a1 +k) k!
1—,31 wotar+k—1(7 _ \Bo—1
a1+kk'/x (=)™ dx

1—[31 F(ao+a1+k)
Oél—l-k k'r(lX0+a1+,30+k)

|
M

(060,50) ﬂélfﬁl =

I'(Bo
B(ao, Bo)B 041,/31 h

Finally, note that the resulting series is hypergeometric and expressible in terms of
3F> which yields

0

|
M)

i (=B Tlaot+ar+k) sh(a,ao+ar,1—Bi;1+ar,a0+ a1+ Bo;1)
=0 Dq—i—k k'r(ao—l—lxl—i—ﬁo—i—k) Dq(tX()—l—[Xl)/go ’
Rearranging terms the proof is completed. O

Note that the hypergeometric function in (4.18) is terminating for 1 € IN, al-
though is numerically unstable due to the amount of cancellation when adding
large alternating terms. A stable convergent solution is given by applying the trans-
formation in http://functions.wolfram.com/07.27.17.0035.01 yielding

B(ag + a1, Bo + B1)
BoB(wo, fo)B(a1, B1

The hypergeometric function is reduced to

] 3F (1,0 + Bo, Bo+ B1; Bo+ 1,0 + 1 + o+ B1;1). (4.19)

i (20 + Bo)k(Bo + B1)k
= (Bo+1)k(ao + a1 + Bo + B1)i”

where all terms are positive. For some combinations of parameters, this hyperge-
ometric series is slowly convergent, therefore series acceleration techniques come
into play.

Finally, we can derive an asymptotic approximation for large parameters to es-
timate Pr[X; > Xo]. First, notice the resemblance of expression (4.19) with the
Hypergeometric distribution in (4.15). Matching parameters we have

K=—-ay, n=-p1, k=p—1 N=ua3—1.

By the Law of Large Numbers we can approximate Pr[X; > Xo| as the probability
of Pr[X < k|, X ~ Hypergeometric(K, N, n). Hence,

_ (XQﬁl 0_2 _ (XQ‘Bl ng+oap—1 0(1‘31 —1
0(1—1/ 061—1 0(1—1 061—2

,BO —1= “0,31

JEm) (o) ())

and

Pr[X; > Xo] = @ (4.20)

http://functions.wolfram.com/07.27.17.0035.01

Chapter 4. Confluent Hypergeometric Functions 75

where ®(x) is the cumulative normal distribution function. Table 4.1 shows the
relative error of the asymptotic estimate for several parameters of the Beta distribu-
tion. We observe the effectiveness of the asymptotic estimate as g, o, a1, B1 — 0,
exhibiting a linear decay rate.

«p Bo w1 B1 rel. error
50 70 100 120 4e-2
500 700 1000 1200 3e-3
5000 7000 100 160 3e-2

300 610 20000 40000 2e-2
3000 6100 20000 40000 3e-3
10000 20100 20000 40000 4e-3
100000 201000 200000 400000 9e-5

TABLE 4.1: Relative errors of the asymptotic estimate for Pr[X; >
Xo| for large parameters of two Beta distributions.

Theorem 4.1.2 Given two Gumbel distributions defined as Xo ~ Gumbel(uo, Bo) and
Xy ~ Gumbel(p1, B1) such that (o, u1) € R? and (Bo, B1) € R?., the Gini or Accuracy
Ratio (AR) between distributions is given by

ARGumpel = ‘2AUC - 1|/ (4.21)

where AUC is the area under the ROC curve defined as

k=0 k!eBk ’ 51 ﬁl !
where |A| < 1.
Proof: Following the steps presented previously, we compute the integral I given
by
—(x—pp) —(x—pq)
o oy T)
1:1/ e e et M dx.
Po /e

After performing the change of variable z = (x — pg)/Bo — dz fo = dx we get

o0
_ > _p—z _,—(zA+B)
I:/fzzeezeeZ dz,

—00

where A = Bo/B1 and B = (pp — p1)/ B1. Unfortunately, this integral does not seem
to have a closed-form for arbitrary values of A and B, therefore we easily compute
a series expansion by expanding the third exponential function in the integrand as

follows
k (e—(zAJrB))k

k! ’

e_e—(zA+B) _ i (1)
k=0

Chapter 4. Confluent Hypergeometric Functions 76

and plugging the resulting series expansion into the integral

[e) s o] _ k 7Z(Ak+1)
I :/ e e* Z (1)ek'e_Bk dz,

- k=0
2 (—1)F © 2 (—1)"T(Ak+1
-y (k') eka/ e T A gy = (-1 '(Bk +).
=0 . —o0 =0 kle
Note that the series expansion is convergent for |A| < 1. O

A simple observation of the Gumbel case shows that given the absolute value
in the calculation of the Gini coefficient, we can interchange distributions Xy and
X; when A > 1, satisfying

_@ _ (mo—m)\ _ _& _ (#1— po)
ARGumbel (A - ﬁllB - ﬁl > - ARGumbel <A - ﬁO,B - ﬂO)

Finally, it is possible to obtain a closed-form expression for ARG,mp. for frac-
tional values of A and B, expressing the series expansion as a combination of hy-
pergeometric functions. For example A = 1/3 and B = 2 yields

12 1 2t 1 1
AR =10\ L, 5552) 5 5==Bi| 5=/,
Gumbel 12 (33 27€6> 3 \3/§e2 1 <\3/§e2>

where Bi(z) is one of the standard solutions of the Airy’s equation [43, §9], express-
ible in terms of F.

Chapter 4. Confluent Hypergeometric Functions 77

4.2 On the Computation of Confluent Hypergeometric Func-
tions for Large Imaginary Part of Parameters b and z

4.2.1 Introduction

Many different methods have been devised for evaluating the confluent hypergeo-
metric function of the first and second kind, 1F;(a;b;z) and U(a, b, z) respectively.
In this work we are mainly interested in numerical methods involving some of their
integral representations for complex values of the parameters and argument.

As mentioned in previous sections of this Chapter, the basic approach for com-
puting the confluent hypergeometric functions is based on the combination of power
series and asymptotic series expansions. In addition, the Kummer’s transforma-
tions are applied for cases where the parameters are not valid for some methods, or
when the regime of parameters causes numerical instability. In particular, as noted
in [90], the Kummer’s transformation (4.3) is used to compute 1F; for R(z) < 0,
so that the worst-case cancellation occurs around the oscillatory region z = iy,
y € R. Besides the described disadvantages commonly occurring by using series
expansions, numerical integration methods based on polynomial interpolation or
Gaussian quadrature for large complex parameters also suffer severe difficulties to
return accurate values. In order to compensate the inaccuracies in the presence of
large oscillations, these methods require a prohibited number of quadrature points,
consequently being computationally inefficient. Therefore, specific analytic and
numerical methods are required to potentially diminish these difficulties.

The most relevant analytic method to handle this problem is the so-called method
of stationary phase. The method of stationary phase [157, §14] is an analytic ap-
proach to handle high oscillatory integrals commonly encountered in the form of
Fourier-type integrals, F(w) = fab f(t)ewst) dt; more details in subsequent sec-
tions. The principle of the method establishes that the main contributions to the
asymptotic expansion of the integral are located in the vicinity of the critical points:
stationary points in interval [g, b], the finite endpoints a and b and singular points
of the integrand. An application of the method to the confluent hypergeometric
function 1 F; for pure imaginary argument z was derived by Erdélyi in 1955, see
[157, §14.6],

T(a+b) 5 o~ i) (D)k(1 = @)k

1Fi(a;a+ byiw) ~ I(a) P

k=0

I Meiw i e%ﬂi(k-i-a)(a)k(li_b)k w — +oo,
k=0

T (0) klkta

where R(a) > 0 and R(b) > 0. We note that these type of asymptotic expan-
sions are generally divergent when w is not sufficiently large. Therefore, one must
switch to alternative methods such as numerical integration for fixed values of w
or whenever high-precision results are needed.

In the last two decades, substantial progress has been accomplished in numer-
ical quadratures methods for highly oscillatory integrals. Most of these methods
use, as a building block, analytic tools like the method of stationary phase just men-
tioned or the steepest descent method hereafter described. Some of these methods

Chapter 4. Confluent Hypergeometric Functions 78

are: the Filon-type method [83], the Levin method [105], numerical steepest de-
scent [82] and complex-valued Gaussian distribution [40]. Other recent numeri-
cal integration methods, conceptually different, are based on exploitation of the
trapezoidal rule properties after performing effective variable transformations; see
[127,126].

Finally, we consider a recent proposed method applied to the evaluation of con-
fluent hypergeometric function 1 F; described in [132]. The numerical quadrature
technique is described in [131] and given by

1 . N N
[feer i~ L2k 1>\/§fk_;<w)]; wj 1P 1 (%1)f(xj1),

where Ji(z) is the Bessel function of the first kind, Py (x) are the Legendre polyno-
mials and wy and xj are the weights and nodes for Gauss quadrature. The method
is directly applicable to the integral transformation (4.14)

/1 GH/2H1/2) (1 _ pyb—a—tga=1 gy _ p2/2 /1 REN2(1 _ pyb-a—1pa=151(2)1/2 gy
-1 -1

In this work we present an efficient algorithm for the computation of the con-
fluent hypergeometric functions when the imaginary part of the parameter b or
argument z is large. The outline of the Section is the following: we briefly review
the theory behind the steepest descent method and present the integral represen-
tations for four particular cases. Then, we discuss different numerical quadrature
schemes amenable for the resulting integrals. After that, we perform numerical ex-
amples and a benchmarking against available software. Then, we present several
applications where this method is applicable. Finally, some remarks and prospec-
tive enhancements to the presented method are given.

4.2.2 Algorithm

The presented method for the computation of the confluent hypergeometric func-
tions is based on the application of suitable transformations to highly oscillatory in-
tegrals and posterior numerical evaluation by means of quadrature methods. Some
direct methods for 1F;(a; b; iz) can be applied for moderate values of |3(z)|, how-
ever a more general approach is the use of the numerical steepest descent method,
which turns out to be very effective for the regime of parameters of interest. First,
we briefly explain the path of steepest descent. Subsequently, we introduce the
steepest descent integrals for those cases where |3(b)|, |3 (z)| — oo.

Path of steepest descent

For this work we consider the ideal case for analytic integrand with no stationary
points. We follow closely the theory developed in [82]. Let us consider the oscilla-
tory integral

1= / P ()8 gy 4.22)

Chapter 4. Confluent Hypergeometric Functions 79

where f(x) and g(x) are smooth functions. By applying the steepest descent method,
the interval of integration is substituted by a union of contours on the complex
plane, such that along these contours the integrand is non-oscillatory and expo-
nentially decaying. Given a point x € [«, 8], we define the path of steepest descent
hy(p), parametrized by p € [0,00), such that the real part of the phase function
g(x) remains constant along the path. This is achieved by solving the equation
g(hy(p)) = g(x) +ip. If g(x) is easily invertible, then hy(p) = ¢ (g(x) +ip),
otherwise root-finding methods are employed, see [82, §5.2]. Along this path of
steepest descent, integral (4.22) is transformed to

1fim = s [f(n(p)iip)e7 dp

iwg(x) oo
- eag) 0 f(hx<1)>h;<j]>eqdq (4.23)

and I = I[f;h,] — I[f; hg] with both integrals well behaved. In the cases where
B = oo, this parametrization gives I = I[f; h,| — 0.

A particular case of interest is when ¢(x) = x. Then the path of steepest descent
can be taken as h,(p) = x + ip, and along this path (4.22) is written as

/ﬁf(x)ei“’x dx = ieim/oof<(x +il)e_”’ dg e oof(ﬁ + ij})e_q dg. (4.24)

w Jo w w Jo

Case U(a,b,z), S(z) — o

Integral representation (4.13) can be transformed into a highly oscillatory integral

U(a,b,z) = 1) / e R a1 4)bl gy (4.25)
0

()

Although the integral transformation is not in standard form of the oscillatory inte-
gral, one can amend it after application of the mirror symmetry property U(a, b,z) =
U(a,b,z) valid when z ¢ (—o0,0). Taking g(t) = ¢t, ¢'(t) = 1 # 0 and there are no
stationary points. Therefore, in this case we only have one endpoint and the steep-
est descent integral obtained by (4.24) is reduced to a single line integral,

Uab2) = s [Tt () (1) ey, o)

wl’ w
where w = —(z).

Case U(a,b,z), I(b) — oo

In this case, the path of integration is modified to avoid the singularity at t = 0, as
can be observed after performing the transformation to a highly oscillatory integral,

U(a,bz) = r(la)/o o1) gy
_ % ® _ 1\a—1,R(b)—a—1,i(b) log(t)
~ T(a) /1 e (-1 e . (427)

Chapter 4. Confluent Hypergeometric Functions 80

Now, we solve the path of steepest descent at t = 1 with g(t) = log(t), which in this
case results trivial, 1 (p) = e8P = ¢ and I/ (p) = ie'?. Likewise, no stationary
points besides t = co are present, and therefore there are no further contributions.
The steepest descent integral is given by

1
e Tdg, (4.28)

e? [R(b
U(a,b,z) = wi"e(a) /o ePaw) (eu(q,w) — 1)+ (ep.(q,w)> (b)

where w = $(b), (g, w) = il and (g, w) = —ze" 1) + u(q, w).

Case 1F(a,b,z), $(z) > o

Similarly, we transform integral (4.12) into a highly oscillatory integral

hes) — r(b) ! R(z)tpa—1 b—a—1,i(z)t
1F1(a, b,Z) = IWb—cz)/o e t (1 — t) e dt, (4:29)

valid for R®(b) > R(a) > 0. Again with g(t) = t and the transformation stated in
(4.24), we obtain, after some calculations, the steepest descent integrals given by

. 0o .) a—1) b—a—1 B
1Fi(a;b;z) = r(a)rr((bb)_a)i;[0 R (1%) (1 —z%) e 7dg
. o .) a—1) b—a—1
plw f() eﬁ(z)(lJrl%) (] + l%) (— 1%) e 1 dq:|, (430)
where w = (z).

Case 1Fi(a,b,z), S(b) — o

For this case we can use the connection formula (4.5), valid for all z # 0. Alterna-
tively, integral representation (4.12) can be rewritten as a Laplace-type integral for
large b as follows

. - _ r(b) ! zt ya—1 b—a—1
1F](a,b,Z) =]_—'(a)r(b—a)/(; et (1 t) dt
_ I'(d) C bt 0\ aprz(1—et)
_r(a)r(b—a)/o e (1-er) e dt
= & RO —tya—T attz(1—et) —iS(b)t
- F(a)F(b—a)/o e mer) e e at. (43D

The resulting transformation is in turn a suitable integral representation to develop
an asymptotic expansion for b, as described in [157, §10.4.1]. Note that this case is
similar to U(a, b, z) when 3(z) — oo, hence we refer to (4.26).

4.2.3 Numerical quadrature schemes

Adaptive quadrature for oscillatory integrals

The integrand in (4.30) can be rewritten in terms of its real and imaginary parts to
obtain two separate integrals with trigonometric weight functions, the oscillatory

Chapter 4. Confluent Hypergeometric Functions 81

factor, given the property,

/01 f(t)e“t dt = /Olf(t) cos(wt) dt —H'/Ol sin(wt) dt . (4.32)

Thus, we obtain the following integral representation for 1 F; (a; b; z) for large imag-
inary z,

LeR()tpa=1(1 — $)b=0-1 cog(S(2)t) dt

1F1(a;b;z) = __T) [0

+ ifol eR@ta—1(1 — p)b—a—Tgin(J(z)t) dt | (4.33)

These type of integrals can be solved using specialized adaptive numerical inte-
gration routines, such as the routine gs1l_integration_gawo from the GNU Scien-
tific Library [56]. This routine combines Clenshaw-Curtis quadrature with Gauss-
Kronrod integration. Numerical examples can be found in [117], which show that
this method works reasonably well for moderate values of |J(z)|. Unfortunately,
this method cannot be directly applied to U(a,b,z), and Kummer’s transforma-
tion [43, §13.2.42], valid for b & Z, is needed. Finally, Figure 4.1 illustrates the
behaviour of an integrand evaluated with this method and the numerical steep-
est descent. Observe that the reformulation of the integral by the steepest descent
method removes the oscillatory nature on the real and imaginary part, a fact that
facilitates the use of numerical integration techniques.

Gauss-Laguerre quadrature

An efficient approach for infinite integrals with an exponentially decaying inte-
grand is classical Gauss-Laguerre quadrature. Laguerre polynomials are orthogo-
nal with respect to e=* on [0,). Hence, using n-point quadrature yields an ap-
proximation,

tmd = Qlfimd = o g (i ())i () was

w3

As stated in [82], the approximation error by the quadrature rule behaves asymp-
totically as O(w=2""!) as w — . As an illustrative example, let us consider the
asymptotic expansion for U(a, b, z) when |z| — oo given in (4.10). The error behaves
asymptotically as O(z7"~1), as notice by truncating the asymptotic expansion af-
ter n terms. Therefore, the asymptotic order of the Gauss-Laguerre quadrature is
practically double using the same number of terms. A well-known formula for the
error of the n-point quadrature approximation (4.34) is

2
E= g’?) (), 0<f<o (4.35)

According to this formula and under the general assumption thata, b € R\ N, f is
infinitely differentiable on [0, c0), we can use the general Leibniz rule for the higher

Chapter 4. Confluent Hypergeometric Functions 82

derivatives of a product of m factors to obtain the derivative of order 2n,

20 2] (311 £) oK) y(2n—k=))

co) -)@ =
where
) X b—a—1 x a—1
— »,—R(2)ix/w _ A _(:*
f(x)=e , g(x) <1 + lw> , h(x) (Zw> (4.37)
and the 2n derivatives are given by
2n 2n—j) . S\ K b—a—1—k
2)1(=1) (R@i\ —R(2)ix/w (5)]
Y ey (B R il (145
j=0 k=0
(;)Zn—kfj
x (ﬂfwl)fzwkﬂ Xt IR, (4.38)

where (a), is the Pochhammer symbol or rising factorial. An error bound in terms
of a,b and z might be obtained from (4.38). Ideally, the error bound shall be tight
enough without increasing the total computation time excessively. However, as
can be seen below, numerical experiments indicate that the number of terms n
rarely exceeds 50 for moderate values of the remaining parameters, typically if
|a|,|b| - 10 < |w|, for the case U(a, b, iz) or 1Fi(a,b,iz). Finally, for large parame-
ters we apply logarithmic properties to the integrand in order to avoid overflow
and underflow errors.

le36 1le29

15

T
— real part

1.0H

— imaginary part ||

0.5}

0.0

3

—0.5

AT

'OAf:)S 0.06 0.07 0.08 0.09 0.10

-1.01

_1.: L L L L L L L . L L L L
0.60 0.65 0.70 0.75 t0.80 0.85 0.90 0.95 1.00 0 10 20 g 30 40 50

FIGURE 4.1: Real and imaginary part of integrand for
1F1(5,10,100 — 1000i) before and after applying steepest descent
method.

4.24 Numerical examples

In this section, we compare our algorithm (NSD) with other routines in double pre-
cision floating-point arithmetic in terms of accuracy and computation time®. Note
that just a few packages in double precision allow the evaluation of the confluent
hypergeometric function with complex argument. For this study we use Algorithm
707: CONHYP, described in [115, 116] and Zhang and Jin implementation (Z]) in
[171]. Both codes are written in Fortran 90 and were compiled using gfortran

5Intel(R) Core(TM) i5-3317U CPU at 1.70GHz.

Chapter 4. Confluent Hypergeometric Functions 83

4.9.3 without optimization flags. We implemented a simple prototype of the de-
scribed methods using Python 3.5.1 and the package SciPy [95], therefore there
is plenty of room for improvement, and is part of ongoing work. Nevertheless, as
shown in Table 4.2, our algorithm clearly outperforms aforementioned codes, be-
ing more noticeable as z increases. In order to test the accuracy, we use mpmath [92]

with 20 digits of precision to compute the relative errors.

1F(a,b,z) CONHYP ZJ NSD N
(1,4,50i) 3.96e—13/4.29e—18i 1.50e—15/4.28¢—18; 1.15e—16/1.11e—16i 2
(3,10,30 + 1007) 1.27e—13/1.28e—13i 6.83e—17/1.07e—14i 2.48e—17/1.24e—14i 25
(15,20,200) 9.20e—13/9.20e—13i E 8.43e—16/7.93e—16i 25
(400,450, 10007) 8.32e—12/1.00e—11i - 1.37e—12/1.02e—13i 50
(2,20,50 — 2500i) 1.35e—11/1.35e—11i 7.30e—11/2.10e—09 4.75e—16/6.41e—16i 20
(500,510,100 — 1000i) 4.10e—13/3.68e—12i - 4.71e—13/3.11e—16i 50
(2,20, —20000i) - 5.79e—10/7.99e—07i 5.92e—16/3.62e—14i 10
(900,930, —10'%) - — 6.78¢—13/6.77e—13i 20
(4000, 4200, 500007)* - - 6.04e—12/5.99e—12i 80

TABLE 4.2: Relative errors for routines computing the confluent hy-

pergeometric function for complex argument. N: number of Gauss-

Laguerre quadratures. (*): precision in mpmath increased to 30 dig-
its. (E): convergence to incorrect value. (—): overflow.

Table 4.3 and Figure 4.2 summarize the testing results and general performance
of the algorithm for U(a, b, z). As can be observed, 13-14 digits of precision in real
and imaginary part are typically achieved. A similar precision for 1 F (a;ib; z) is ex-
pected. In terms of computational time, we compare our implementation in Python
with MATLAB R2013a. As shown in Table 4.4, the MATLAB routine hypergeom is
significantly slow for large imaginary parameters.

Function Min Max Mean
U(a,b,iz) 1.97e—18/2.04e—17i 9.97e—13/2.50e—11i 1.34e—14/6.94e—14i
U(a,ib,z) 6.57e—18/6.17e—18i 1.49e—11/8.55e—12i 1.38e—13/1.43e—13i

TABLE 4.3: Error statistics for U(a, b,iz) and U(a,ib,z) using N =
100 quadratures.

NG MATLAB NSD
(2,20, —200001) 1509 (0.068) 0.033
(900,930, —10%) 5.594(0.739) 0.035
(4000,4200,50000i) 488.384(18.127) 0.043

TABLE 4.4: Comparison in terms of cpu time. MATLAB second eval-
uation in parenthesis.

4.2.5 Applications

Besides the necessity of accurate and reliable methods for the regime of parameters
and argument considered, confluent hypergeometric functions can be encountered

Chapter 4. Confluent Hypergeometric Functions 84

1010 : ‘ ‘ ‘ ‘ 10" :
" R(U(a,b,7) N)
107" S(Ula,b,2) E 107 H — sWabe)
10'12 [] 10—12 [\ I
M) 1)
| 13) AN
10 ‘ 10 }l ‘ k A il M MI } 1““1 ‘ ‘.‘\
10714 gL ! ‘H \” ‘ ‘ ‘ I i 104 “‘,i\ “‘ el | i ‘ S B
i i e
101 P o iy U | ‘ | ‘\“ “ \ ‘ 1 101 ‘ f
10'16 [] 10—16 [
10 L] 107 L
10-18 L L L L L N 10-15 N N L L L L
0 100 200 300 400 500 600 700 0 200 400 600 800 1000 1200 1400

FIGURE 4.2: Relative error in computing U(a,b,z). Error in

U(a,b,iz) for a € [2,400],b € [—500,500],z € [10%,10°] (left) and

U(a,ib,z) for a € [10,100],b € [103,10%],z € [10,100] (right). 700
and 1400 tests, respectively.

in several scientific applications. In this work, we focus on applications in statistics,
more precisely on the evaluation of characteristic functions, which can be defined
in terms of confluent hypergeometric functions. Let us consider three statistical
distributions:

e Characteristic function of the Beta distribution.
¢x(t) = 1F(a; o + B;it) (4.39)

where «, 8 > 0. Thereby, the regime of parameters holds for the integral
representation in (4.30).

e The standard Arcsine distribution is a special case of the Beta distribution
witha = B = 1/2, therefore we obtain a similar characteristic function, which
can be identically computed.

Px(t) =1k G;l; it) (4.40)

e The characteristic function for the F-distribution is defined in terms of the
confluent hypergeometric function of the second kind,

_T(p+q)/2), (P q 9.

where p, g > 0, are the degrees of freedom. In this case we can use the integral
representation in (4.26).

Several numerical libraries include implementations of aforementioned charac-
teristic functions, for example the R package prob and MATLAB code CharFunToo1®
(https://github.com/witkovsky/CharFunTool). Package prob relies on the R pack-
age fAsianOptions which computes the confluent hypergeometric functions using
algorithm CONHYP. On the other hand, CharFunTool only implements the power

6T was contacted by the author and future collaboration is planned.

https://github.com/witkovsky/CharFunTool

Chapter 4. Confluent Hypergeometric Functions 85

series expansion. Therefore, these and other libraries could benefit by adding the
described algorithm.

Characteristic functions appear in many financial econometric models, for ex-
ample modelling a beta-distributed loss given default in portfolio credit risk mod-
els (see [117, §4.4.2]). In particular, the computation of the portfolio Fourier trans-
form with beta-distributed loss given default at time ¢ is given by

o N
F = [_TLO=puo)+puly)iFiwin+ fi—itha) fn)dy, @442)

where N is total number of assets in the portfolio, p,(y) is the default probability
for each asset, E, is the exposure at default for each asset and f(y) represents the
probability distribution of the credit risk factor. We stress that only a few digits
of precision are generally required in financial models, says less than /€, which is
achievable by the presented numerical method.

4.2.6 Conclusions

We have presented an efficient algorithm for computing the confluent hypergeo-
metric functions with large imaginary parameter and argument, which emerges as
an alternative to asymptotic expansions. The numerical experiments show promis-
ing results and fast convergence as the imaginary part increases. Throughout this
work we have been considering real values for the remaining parameters, other-
wise the function f becomes oscillatory. The numerical steepest descent method is
not insensitive to oscillations in f, although in some cases this can be treated by
applying other transformations. In cases where that is not possible, other methods
have to be considered. Finally, a suitable integral representation for |J(a)| — oo
carry more complications and is part of future work.

Chapter 4. Confluent Hypergeometric Functions 86

4.3 High-precision Computation of the Confluent Hyperge-
ometric Functions via Franklin-Friedman Expansion

4.3.1 Introduction

The current standard method of evaluation of many special functions to high-
precision consists of employing the ascending series for small argument z, i.e. the
direct series expansion at z = 0, combined with the usage of an asymptotic ex-
pansion for large values of the argument z. It is well known that the behaviour
of asymptotic series of Poincaré type for large |z| is characterized by having ini-
tial terms that decrease in magnitude until a minimum is attained, also known as
optimal truncation, and thereafter subsequent terms start to increase. This limita-
tion on the achievable accuracy forces a switch from the asymptotic series to the
ascending series depending on the desired level of precision. However, the eval-
uation of ascending series for large z requires to increase the working precision in
order to compensate the large amount of cancellation, which in turn increases the
computational cost.

Normally, the scheme of computation implemented in high-precision software
is a relatively simplistic choice between the ascending series and the asymptotic
series based on the magnitude of the argument z and the desired level of precision
or other heuristics that generally exclude other parameters involved. This type of
scheme, although asymptotically valid, may lead to incorrect results in the vicinity
of the transition region.

Alternative computational methods have been devised to complement the de-
scribed dichotomy between series expansion and asymptotic expansion. These
methods, such as exponentially-improved expansions [124] or their extension called
hyperasymptotic expansions [123], are focused on extending the region of validity of
the asymptotic series by iteratively re-expanding the remainder terms at optimal
truncation into another asymptotic series, each exponentially smaller than its pre-
decessor. This procedure increases the attainable accuracy of the asymptotic expan-
sion at the expense of the computational cost of evaluating substantial complicated
terms at each level of the hyperasymptotic expansion.

A remarkable method to obtain geometrically convergent series for the evalua-
tion of special functions consists of using variants of Hadamard series, which have
been extensively investigated by R. B. Paris, for example in [129]. These series in-
volving the normalized incomplete gamma function exhibit a rapid decay after the
optimal truncation term, being comparable with the behaviour of the first terms of
the asymptotic expansion. A similar geometrically convergent series for the evalu-
ation of Bessel functions was developed by D. Borwein, J. Borwein and O. Chan in
[12] through the evaluation of the so-called “exp-arc" integrals.

On the other hand, it is essential to mention the role played by uniform asymp-
totic expansions to obtain powerful expansions valid for extended regimes of the
parameters. We shall remark the so-called vanishing saddle point method developed
by N. M. Temme in [155, 156]. This method is applicable to Laplace-type integrals

of the form ,

R = 5 /0 T AT (1) dt, (4.43)

Chapter 4. Confluent Hypergeometric Functions 87

with R(A) > 0 and z large, in which A may also be large. Essentially, this method
expands the amplitude function f(t) att = p, g = A/z > 0 being a uniformity
parameter corresponding to the saddle point of the dominant part of the integral
(4.43).

In this work, we revisit the theory originally developed by J. Franklin and B.
Friedman in [55], which henceforth we shall call Franklin-Friedman expansions.
Their method was developed with the aim to overcome the disadvantages of the
direct application of Watson’s lemma to Laplace-type integrals [157, §2]. Histor-
ically, this method has not received significant attention, presumably due to the
inherent difficulty of evaluating the coefficients of the expansion. We shall show,
through the study of an important amplitude function occurring in many integral
representations of special functions, how the coefficients of the Franklin-Friedman
expansion can be efficiently evaluated, resulting in a convergent method capable of
out-performing aforementioned methods.

The rest of the Section is outlined as follows. First, we briefly revisit the theory
corresponding to the Franklin-Friedman expansion and we show an illustrative
example. Then we compute the coefficients for the amplitude function correspond-
ing to the confluent hypergeometric function and we provide an analysis of the
obtained coefficients. Subsequently, we present an effective recursive algorithm
for the computation of the coefficients and we provide numerical calculations and
compare the present method with the conventional ascending-asymptotic series
and previously discussed convergent and uniform asymptotic expansions. Finally,
we discuss possible enhancements and present our conclusions.

4.3.2 The Franklin-Friedman expansion

J. Franklin and B. Friedman developed in [55] a method for obtaining convergent
asymptotic representations for Laplace-type integrals of the form

Fu(z) = r(lA) /0 TP T i () dt, R(z) >0, R(A) > 0, (4.44)

for large values of z with suitable assumptions on the amplitude function f(¢). This
method is based on the application of a type of interpolation process to the function

f(t), differing from Watson’s lemma, in which the amplitude function is expanded
in a power series at t = 0 and integrated term by term. The first interpolation

point tg = A/z corresponds to the saddle point of the dominant part t*¢~*, and by
substituting in (4.44) we obtain
SR S Ay WS g
F(z) = f(to)z™" + F()\)/o e (f(t) — f(to)) dt. (4.45)

After integrating by parts we obtain

Eu(z) = f(to)z ™ + 21“1)\) /0 TPt (1) dt, (4.46)

Chapter 4. Confluent Hypergeometric Functions 88

where the new amplitude function f;(t) is defined by

ﬁ@%=ifw—¢ww. (4.47)

t—to

One can observe that integral (4.46) has the same form as the integral (4.44), with
A replaced by A 4+ 1 and f by f;. The interpolation point for the next iteration is
t; = (A +1)/z. This process can be continued iteratively obtaining the following
series expansion

= (A) 1 © Atn—1,—z
Fﬂ@=g;ﬂW2M£+TTM%At“ e~ £ (1) dt, (4.48)

wheren =0,1,2,..., fo(t) = f(t) and

fre1(t) = jtfk(t)_fk(tk)/ = Atk

, k=01,2,.... (4.49)
t— 1t z

Sufficient conditions on the amplitude function f(t) for the convergent behaviour
of the series expansion are stated in the following two theorems. We refer to [55]
for proofs.

Theorem 4.3.1 (J. Franklin and B. Friedman [55]) Take A = « + i, where « is real
and positive and B is real. For B # 0, suppose that f(t) is analytic for ®(t) > 0 and that
fe C?» [0, 00), such that the derivatives satisfy

F™ ()] < Me™, m=0,1,...,2n,

where M and p are non-negative constants. Under these conditions, expansion (4.48) has
an asymptotic behaviour as z — oo, with remainder term of order O(z=2"). If A = a,
the assumption that f(t) is analytic for ®(t) > 0 may be replaced by the assumption that
f € C?"[0,00) for t > 0. Therefore, the series expansion is convergent.

Theorem 4.3.2 (J. Franklin and B. Friedman [55]) Suppose f(q) = f(x +iy) can be
represented in the form

flg) = /O'we—qf J¥(H), x>0,

where ¥ (t) is a complex-value function which is of bounded variation in each finite interval
t € [0, T] and which satisfies the inequality

'¥(t)| <M, t>0.
Then for z > 0 and R(A) > 0, series expansion (4.48) converges to (4.44).

In [157, §17.4], Temme gives the first five coefficients fi(t) for the incomplete
gamma function e*I'(1 — A, z) = ﬁ Jo t* e # (1 + t)~! dt, amplitude function

Chapter 4. Confluent Hypergeometric Functions 89

f(t) = (1 +t)~1, by using computer algebra

z z3 2230 + 4
h=7 h= i R g
£ = z7 (1523 + 9022 + 175 + 108)
T I+ A+ 2P+
foz 2% (1052° + 1680Z° + 11025¢* + 3787073 + 7154077 + 701207 + 27648)
! CC+1)2(C+23(G+3)4C +4)° (:1 o

where { = z + A. Despite the relative ease of computing the coefficients by means
of computer algebra systems, it is usually difficult to obtain explicit representations
such that these become usable for numerical evaluation purposes. In practice, one
generates a few coefficients of the expansions for a bounded domain of the parame-
ters and incorporate them into a routine, this procedure being solely valid for fixed
precision.

4.3.3 The expansion for U(a,b,z)

The confluent hypergeometric function of the first kind 1 Fy (a; b; z) and the Kummer func-
tion U(a,b,z) arise as linearly independent solutions of the Kummer’s differential
equation [43, §13.2]

d*w dw

i —7) = = 4.51

Zdz2+(b Z)dz aw =0, (4.51)

for b ¢ Z~ U{0}. Confluent hypergeometric functions appear in a wide range
of applications in mathematical physics and applied mathematics. Many special
functions are expressible in terms of specific forms of the confluent hypergeometric
functions such as, for example, Bessel functions, incomplete Gamma functions and
Laguerre polynomials amongst others.

A convenient starting point for U(a,b,z) is the integral representation [157,
§10.1.5]

U(a,b,z) = r(la) /O " e (1 +)1 dt, (4.52)

valid for ®(a) > 0 and R(z) > 0. Laplace-type integral (4.13) includes the am-
plitude function f(t) = (1 + #)?=*~!, which we shall investigate further on. An
asymptotic expansion valid for |z| — oo can be derived by application of Watson’s
lemma to the integral representation (4.13). We obtain [43, §13.7.3]

U(a,b,z) ~z* Ii)(_l)k (u>k(ﬂkaf + 1>k,

lphz| < %7‘(—5, (4.53)

where ¢ is an arbitrary small positive constant such that0 < é < 1and (a); = a(a+
1)---(a+ k — 1) denotes a rising factorial or Pochhammer symbol. For (z) > 0,
asymptotic series (4.53) is alternating and thus the remainder is bounded by the
absolute value of the first neglected term. As previously discussed, the remainder
cannot be reduced arbitrarily, hence when z is not sufficiently large with respect to

Chapter 4. Confluent Hypergeometric Functions 90

a and b (not made rigorous here) and the required precision bits is moderate, this
expansion cannot be used effectively.

Evaluation of U(a, b, z) outside the sector |phz| < 37 can be achieved by use of
the continuation formula [157, §10.1.11]

_ e¥7T (b — a)
z — —n*h —
e *U(a,b,z) = —F(b) 1F(b—a;b; —2)
eT™T (b — a) i
- Tu(b —a,b,ze*™), (4.54)

where 1F(a;b; z) is an entire function with series expansion given by [157, §10.1.2]

[ee]

1F1abz :Z

kk' (4.55)

To compute the Kummer function U(a, b, z) for small values of z, the usual ap-
proach is to employ connection formulas for this function in terms of 1F;(a;b;z),
for example [157, §10.1.12]

I'(1-0b)

_T(-b) CO-1) s o o
Ta—b+1) 27" 1F(a—b+1,2-bz), (4.56)

I'(a)
which is not defined for integer values of b, although the limit exists for b — 0.
Additionally, a recent method for computing the Kummer function U(a, b, z) for
small values of |a|, |b| and |z| is described in [63].

U(a,b,z) = 1F1(a;b;2) +

4.3.4 The Franklin-Friedman expansion coefficients

We compute the coefficients of the Franklin-Friedman expansion for the amplitude
function f(t) = (1 + t)"~*"! appearing in the Laplace-type integral for U(a,b,z)
in (4.13). We start computing a few coefficients f; in expansion (4.48) using Math-
ematica 10 [169] and employing the Expand and FullSimplify options to perform
algebraic simplifications and transformations. We only show the first two coeffi-
cients since their size grows considerably with k

_ boa1 L (aEypma (LHaEENba(0 4 0g — b+ z)
fo=(1+a/z) and fl—z< P (T)

Note that above coefficients coincide with those in (4.50) when A = a = b. Un-
fortunately, Mathematica was unable to produce more simplified expressions of f;.
Hereinafter, we proceed to generate tractable explicit representations of the coeffi-
cients f;. Let us first define the coefficients Al := (1 + (a +5)/z)7. Subsequently,
we factorize the previously obtained coefficients and rearrange terms such that co-
efficients Ab =1 appear in ascending order (i,). The first four coefficients f; are

Chapter 4. Confluent Hypergeometric Functions 91

now given by

fo=A3""1,
fi= (AL 20— a 1)+ (A0 - A o)z,
f= (Ag*”*3(b —a—1)(b—a—2)+2(Al 2 AL 2)(h—q 1)z
72
+ (A(b)fﬂfl o ZAﬁfufl + Agfafl)22> E/
fy = (Aé’*”*‘*(b —a-1)(b—a—2)(b—a—3)
+3(b—a—1)(b—a—2)(AS73 — Ab"73);
+3(b—a—1)(A;72 — 245772 A72)22
3
+ (A(b)—u—l o 3A§—u—l + 3Ag—u—1 _ Ag—u—l)z?)) %
We observe that the terms multiplying A;’_“_i in fi correspond to rows of Pas-

cal’s triangle, with alternating sign for the inner terms in (- - -)z*~/. Furthermore,
a multiplicative factor z¥/k! is present. After performing a few more algebraic ma-
nipulations we obtain the explicit representation of f; given by

7k

fie = ex(2) (4.57)
where
cr(z) = Z (’;) g, Z < é) ATV k=012, (458)
j=0
and d; is defined by
I'(b—a) 1, j=0

d: = 7= 4.59
F7T(b—a—j) {dj_l(b—a—j), j>0 (+59)

We remark that equations (4.58)-(4.59) add the internal coefficients backwards. In
order to calculate them forward, the coefficients c,(z) are written equivalently as

i(>Z’l Z <) AT, (4.60)

where

(4.61)

T(b—a) {H ((b—a—i), j=

l‘: N e 17 .
o T(b—a+j—k) 7(ba/1k+]), j>0

Chapter 4. Confluent Hypergeometric Functions 92

Note that the previous double finite summation is over the triangle 0 < s < j < k.
Furthermore, ci(z) can be written as

. 1{ (i 1
cr(z) =2k Y (kz])j! Y (—1) <i> TRt (4.62)

j=0 s=0

where g = b —a —1and p = z + a. We shall see that the explicit representation in
(4.62) will lead to our main result (Theorem 4.3.5), where we prove that the follow-
ing expression for U(a, b, z) holds

U(a,b,z) =) ck(z)kfju)fk. (4.63)
k=0 :

Analysis of the coefficients ci(z)

In this subsection we examine the coefficients ¢, (z) defined in (4.62). Let us define
the coefficients r; := Y_(=1)*())(p + k — j + 5)7*/ ¥ corresponding to the inner
summation in (4.62). These coefficients are defined by the binomial transform of
the sequence {(p + k — j + s)777%}4>o, which can be represented by means of the
Norlund-Rice integrals [52].

In what follows, we proceed to derive asymptotic expansions and upper bounds
for the coefficients ci(z). Let us consider the alternating binomial sum defined by

z,N,m Cy (M 4.64
FeNm =1 (3) 0 g (464

In [32], Coffey calculates the alternating binomial sum (4.64) for (N,m) € N and
z € C\ Z; . The main result of [32] is an analytic relation in terms of Bell polynomi-
als with generalized harmonic number arguments. We present some of his results
along with other relations that will be needed further on

1
F(z,N,m) = Z—mmHFm(Z,...,z,—N;z—i—1,...,z+1;1) (4.65)
= (mll)' / e (1 — e H)N gt (4.66)
“D Jo

where qu(al, N Y by, ..., bq ;2) is the generalized hypergeometric function.
The Stirling numbers of the second kind S(n, k) may be defined by the following

generating function
n

Y S(nk)(x —k+ 1), =x", (4.67)
k=1
and S(n,k) = 0 for n < k. We introduce the following proposition for the coeffi-
cients cx(z).

Chapter 4. Confluent Hypergeometric Functions 93

Proposition 4.3.3 Given a,b,z € C, R(z) > 0and j, k € N, coefficients c(z) in (4.62)
can be represented by the following asymptotic expansion as (p + k) — oo

1!

ck(z)wzk_qk!i<kq)(j+1) i SUTHEDE=G =iz g i ptk+1).

j=0 i=j+1
(4.68)
Proof: We use the integral representation (4.66) for r;
1 ® k—q—j-1,—(p+k—j —tyj
- - th=q—j (p+k=pt(1 — o=tV dt . 4.
] F(k—q—j)/o e (I—e) (4.69)

This Laplace-type integral is defined for R(k — g — j) > 0, where a direct use of
Watson’s lemma applies, see (4.72). Alternatively, note that this integral can be
written as

)) t j+1
/ tk—'i—f—le—(P+k—j)t(1 —etydt = / ph=q—j=1,~(p+k+1)t (" —1)/ dar .
0 0 (1—et)

An asymptotic expansion for r; can be obtained if we expand (e’ — 1)flatt =0,
which corresponds to the following generating function of the Stirling coefficients
of the second kind (4.67)

: , .
(=1 =(G+1) Y SG,j +1)i—', (4.70)
i=j+1 '

and interchanging the previous summation and integration we obtain a divergent
asymptotic series

(G+1)! & S(,j+1) /°° kg iyiipe PR
P~ . . AL A p—; [4.71
T Tk—q—)) l-_]ZH i! 0 (1—e) &7

The resulting integral has an explicit representation in terms of the Hurwitz zeta
function [43, §25.11]. Hence, replacing the integral by the Hurwitz zeta function
and substituting the ratio of gamma functions by a Pochhammer symbol gives the
result. O

An equivalent asymptotic expansion representation for (p + k) — oo is obtained
by application of Watson’s lemma to integral (4.69)

].! is(l’]) I‘(k_q—]-l-l) _ 'is(ll]) (k_q_j)i (4.72)

TV Th—q—) &= it (prk)irat it (p+k)itk-a-1’

i=j i=j

where the use of Pochhammer symbol permits the evaluation out of the domain
R(k—q—j) > 0. In[32] a similar asymptotic expansion restricted to k — g —j € N
is obtained after a change of variable and using the generating function for Stirling
numbers of the first kind and solving the beta function.

Remark 4.3.4 Interestingly, coefficients ci(z) have a remarkable property for (a,b) in a
domain D := {(a,b) € C*>:b—a—1 = n,n € N}. For this particular case, U(a, b, z)

Chapter 4. Confluent Hypergeometric Functions 94

reduces to a polynomial in z of degree n given by

U(ga+n+1,z)=z" f (”) (@) (4.73)

=N/

We note, by expanding the double binomial sum in (4.62), that coefficients ci(z) vanish by
symmetry for k > |n/2|. This implies that expansion (4.63) terminates in almost half of
terms required by (4.73).

We now prove the Franklin-Friedman expansion for U(a, b, z) in (4.63).

Theorem 4.3.5 For (a,b,z) € C3 and R(z) > 0 the Franklin-Friedman expansion for the
)

confluent hypergeometric function U(a, b, z) is given by
— a
U(a,b,z) = k;)ck(z) k!(zsz' 4.74)
where
K (k\ o T(b—a) & (k—7\ bea-1-
= A N (—1)s =17
cx(2)];) <],>z O ;(1) (k B S) A (4.75)
£ (k r(b—a) | 7\ ootk
=)2 —1)° (1)A S L, k=012,
];] <]> T(b—a+j—k) S;)() <S) koits
(4.76)
and]
Al — (1+ ”;LS> : 4.77)

Proof: It follows from (4.66) that coefficients ¢, (z) can be written as

(2) = = Z< —])]' i(_l)S@ (P+k—fl+5>k_q_j

k& q 1 ® k—g—j—1,—(p+k—j)t —t\j
=f_k2 k=](k—]—q)/o ErITI T e PN (1 — e dt, (4.78)

where g = b —a — 1 and p = z + a with the integral representation being valid for
R(k—q—j)>0and R(p +k —j) > 0. Next, we rearrange U := (.7])m to
obtain U = u(q, k,j)f(k,j), where f(k,j) = 1/(j!(k — j)!). The following identity is
established for u(q, k, j)

T(g+1) B _F(q+1)sin(7t(j—k+q))' (4.79)

k1) = . . =
u(q,k,j) Ig—k+j+1)T(k—j—gq) T

Chapter 4. Confluent Hypergeometric Functions 95

Now replacing (4.79) into (4.78) and by formally interchanging integration and
summation we obtain the following integral representation for cx(z)

o(z) = T+ DK I (i sin(72(j — k + 4))e’ (1 - ef)f') pe1-1p— (0t gy

Zq_ka j=0]'(k _])'t]
_ (g +1)sin(z(k—q)) /°° 1o (PR ot 1)k gy (4.80)
z1- k7 0 ' .

valid for R(g) < 0and R(p) > 0. Given the explicit integral representation of cx(z)
in (4.80), the proof consists of developing the sum after replacing (4.80) into (4.74).
Thus, we obtain after interchanging summation and integration

Izatk — zeta ekik!

§ ale)e) _Ia+D I (i (a)sin(re(k —) (1 — e + t)k) -
k=0

k=0

This interchange is justified since the series converges absolutely. Now we consider
the following identity

> (a)gsin(m(k —q))(1 —e' + t) sin(7tg)e™

) = = —. (4.81)
= ertk! (1+41¢)
Using (4.81), it follows that the Franklin-Friedman expansion in (4.74) is expressible
in terms of the Laplace-type integral given by

i ck(z)ﬂ _ T(g+1)sin(mq) /00 t—q—1p—(p—a)t »
0

= kizotk oian (1+1t)e
_ T —a)sin(n(b—a-1)) /°° tabe—t it
N mzb-1 o (148

By observing that the resulting integral is indeed the integral representation
of U(a,b,z) in (4.13) after application of Kummer’s transformation U(a,b,z) =
zZ'7PU(1+a—b,2 — b,z), we obtain

I'(b—a)sin(mr(b—a—1))z'"? /°° ti—be—t
= — 4.82
U(a,b,z) -) Ar0 dt (4.82)
L AP g b—a—1
=—— [t"eF(14+1t)7 " dt, 4.83
I'(a) /o 1+ (4.83)
and the proof of the theorem is completed. O

Remark 4.3.6 A relation between contiguous coefficients can be obtained by performing
integration by parts on (4.80), which yields

cr1(p q;z) = z(cr(p, g:2) —c(p+1,4;2)) +qc(p + 1,9 — 1;2). (4.84)

Despite the interest of the latter result, this recurrence is not the preferred choice to com-
pute consecutive coefficients. An efficient method to compute a set of coefficients cy(z) is
described in Section 4.

Chapter 4. Confluent Hypergeometric Functions 96

To conclude the analysis of coefficients ¢, (z), we derive an upper bound for the
domain of parameters D := {(a,b,z) € C°>: R(a) > R(b) —1AR(z+a) > 0}.

Proposition 4.3.7 For %(q) < 0and R(p) > 0, we have
le(z)] < [Z77p7). (4.85)

Proof: Let us consider the integral representation of ci(z) in (4.80)

c(z) = o(k, p,q)/o £ e (PHRE (1 — ot 4 pk g,

where
ZK=9T (g + 1) sin(7t(k — zk-
q)(kr p’q) 9 (q 1) ((k q)) (1)k (;)

We have that the amplitude function (1 — ¢! + t)¥ is bounded in absolute value by
11— et +tF < (14)k + €. Hence,

lck(2)] < ok, p,q)| (/ I le= (PHRE (] 4)R dr 4 / gl pt dt) . (4.86)
0 0
We note that the first integral is expressible in terms of Charlier polynomials of
degree g [43, §13.6.20]

1
I'(—q)

whereas the second integral is simply

/ e (PN)R dE = (k+ p)IC, (kK + p), (4.87)
0

/ 11 P g = T(—q)p". (4.88)
0

Substituting (4.87) and (4.88) into (4.86) gives an upper bound for c(z). A simpler
bound can be easily obtained by means of the equivalent integral representation

ck(z) = I,Z(k_;) /Ooo £ e PH (1 — (14 t)e)k dt,

where the amplitude function is bounded in absolute value by |1 — (1 +t)e | < 1.
Thus, using the result in (4.88) gives the bound. 0
Table 4.5 shows effectiveness of the bound for several values (a,b,z) € D and k.
Such a bound can be used to determine the truncation level N due to the convergent
behaviour of the expansion.
Furthermore, application of Watson’s lemma to integral representation (4.80)
gives a first-order asymptotic approximation for (p + k) — oo given by

(g +sin(r(k—q) T2k—q) _ 4 274
g 2K(k + p)2 2(k+p)2-a’

ck(z) ~ (4.89)

Table 4.6 shows a few examples of the above asymptotic approximation of cx(z)
for large argument.

Chapter 4. Confluent Hypergeometric Functions 97

a b z k |ekl (4.85)
-500.1 -6024 770 10 1.le+64 7.9e+75
7102 725 1500 15 2.7e—82 1.3e—60
-50.1 -624 70 20 28e+34 1.5e+44
-10.1 524 80 30 1.3e+40 4.3e+59

-5.1 -62.4 40 50 5.4e+73 3.6e+83

TABLE 4.5: Effectiveness of bound on c(z) in (4.85) for ¢ < 0 and
p>0.

a b z k c(2) (4.89)
121 104 100 10 5.7e—05 4.6e—05
22.1 114 100 50 1.7e+36 1.8e+38
20.1 124 280 50 3.9e+23 3.6e+25

TABLE 4.6: Asymptotic approximation on c(z) in (4.89) for g < 0 as
p+k— oo.

Finally, we note that the terms of the Franklin-Friedman expansion (4.63) satisfy
the order estimate

a 3/0 _
Ck(z)k!(zk)jiu = 02"k 32" %*n(z)), k—co, p— oo, (4.90)
where h(z) = (1+ p/k)~%+4. This result is obtained combining the asymptotic
estimate in (4.89) and the usual estimates for the factorial and Pochhammer symbol
given by

k=0 (kkﬂ/ze’k) , (a)i=0 (k’”k’l/ze’k) , k- oo

4.3.5 Efficient computation of U(a, b, z)

Equations (4.58), (4.60) and (4.62) are explicit representations that can be used to
compute ¢ (z) directly, but a double binomial sum turns out to be significantly ex-
pensive as k grows. Furthermore, from a numerical perspective, the evaluation of
alternating binomial sums are prone to suffer from substantial cancellation. As we
shall see, the direct computation of c(z) can be avoided by constructing a recur-
rence equation for generating a set of cx(z), k € {0, ..., N}. This idea leads to the
following proposition and Algorithm 6.

Proposition 4.3.8 The coefficients cy(z) of the Franklin-Friedman expansion for the am-
plitude function f(t) = (1 + t)?=9~1 satisfy the recurrence equation

B k—1 k i 191
ck(z) = uy + Z L)E (4.91)
i=0
where
Ug = A,l;_“_l_kk!LZ_“_l_k(z +a+k) and cog=ug= A", (4.92)

L} (z) being generalized Laguerre polynomials.

Chapter 4. Confluent Hypergeometric Functions 98

Proof: We start defining 1 as the leading coefficient f(Ay), resulting from the it-
eration j = 0 in (4.60). After grouping the remaining coefficients f(A;), j < k in
ascending order j, we identify that each f(A;) is a non-linear comb1nat1on of the
previous leading terms u;, j < k. These non—hnear terms in the recurrence equation
are indeed binomial coefficients (']‘) times zF=/. This gives the following expression
for uy, which can be expressed in terms of generalized Laguerre polynomials as
follows

k ‘ , ,
we =Yy (1) <]]C> zk_]deZ_“_l_]

j=0
i I(b—a)
b—a—1—k
= A E() RS sy
= Aok a1k (z A (4.93)

and d; is defined as in (4.59). Taking zA; = z + a + k gives the final closed form for
Ug.]

Recently, several variants of asymptotic expansions for large order k have been
extensively studied for generalized Laguerre polynomials. For example, the paper
[13] provides a treatment for the region of sub-exponential behaviour and the re-
cent paper [45] studies uniform asymptotic expansions for a larger domain of the
parameters. Although the computation of c¢,(z) by means of computing Laguerre
polynomials would certainly reduce cancellation effects, there is a substantial com-
putational cost involved.

In order to bypass the computation of generalized Laguerre polynomials and
the direct computation in (4.62), we introduce a fast algorithm for computing c(z),
see Algorithm 6. This algorithm combines both binomial expansion sums to reuse
the binomial coefficients, so in practice cx(z) at u; are computed at once. In terms
of time complexity, computing the first N coefficients ¢, (z) using Algorithm 6 has
complexity O(N?), whereas clearly a direct computation has complexity O(N?).
Additionally, note that coefficients d; in (4.59) do not need to be computed for each
j but for k, thus avoiding redundant operations. In terms of algorithmic aspects,
given a suitable truncation level N, the complete Pascal’s triangle until row N can
be pre-computed with complexity O(N?), obviously computing only half rows. On
the other hand, in terms of space complexity, computing the first N coefficients with
Algorithm 6 has complexity O(2N), due to the storage of successive uy and di. As
we shall see later, this is not an issue due to the small number of terms needed to
obtain high accuracy. In general, several parts of the algorithm can be easﬂy pre-
computed in parallel, for example a block of k : k < N coefficients A 1 can
be distributed to each thread. However, although pre-computations improve effi-
ciency, they require substantial space, especially for high-precision computations.
Concerning working precision, higher precision arithmetic is normally needed to
satisfy the requested accuracy, especially for large values of the parameters and
argument. Based on experiments, we found that to guarantee good performance
a working precision of p bits must satisfy p 2 2N, N being the number of terms
in expansion (4.63). For this same reason, approaches based on performing linear
search to obtain an optimal number of terms N using floating-point arithmetic are

Chapter 4. Confluent Hypergeometric Functions 99

less likely to succeed.

Algorithm 6 Fast computation of coefficients ci(z)

Input: a,b,z€ C,R(z) >0, N e N

Output: c,(z), k € {0,...,N}
1: Pre-compute Pascal’s triangle, PascalRow(k), k € {0,..., N}
2U=][],C=[],D=]] > Empty cache of coefficients ¢, u and d
3: U[0] + C[0] < (1+a/z)""*Tand D[0,1] < [1,b —a — 1]
4: fork=1k=N; k<~ k+1do

5: r<0,t+<0
6: f — z
7 h<1/z
88 m<«1+(a+k)/z
9: n<<1/m
10: g+ mbo!
11: R = Pascal Row(k) > k-th row of pre-computed Pascal’s triangle
12: forj=0;j=kj<« j+1do
13: u < f-RJ[j]
14: p (=1)7-u-Dlj]-q
15: t<t+p
16: f«f-h
17: gq-n
18: if j < k then
19: r<r+Ufjl-u
20: else
21: D[j+1]« D[j]-(b—a—1—)) > Store next d
22: end if
23: end for
24: Ulk] <+t > Store block 1y to posterior use
25: ré—r+t
26: Clk] < r > Store new coefficient cx(z)
27: end for
4.3.6 Numerical experiments

In this Section we compare expansion (4.63) with other asymptotic and convergent
series previously mentioned. The described algorithms has been implemented in
Python using the Mpmath library for multi-precision floating-point arithmetic [92].
Firstly, we compare (4.63) with the convergent expansion for U(a,b,z) in [129],
which we briefly summarize:

U(a,a+b,z)=z"" i (1)@~ b)kP(k +a,0x)

= kizk
e—iaG 00 o
+) e S, (x;0), (4.94)
n=1

Chapter 4. Confluent Hypergeometric Functions 100

valid in |arg z| < 7t with z = x¢' and x = |z|. The second series is defined as

Su(x;0) =Y "’;ﬂ‘f)AP <k+1, ‘”;x), AP(m+1,z) = P(m+1,z) — P(m+1, —z).

Coefficients ci , () can be computed via recurrence relation. This method subdi-
vides the integration path in (4.13) into intervals of length Jwy,, where Jw, = 9,
% € (0,1] and Q, denote the mid-points of these intervals, being both freely cho-
sen. As shown in [129, §4], expansion (4.94) converges geometrically without re-
striction on the parameters a and b when ¢ < 1. It is observed that evaluation of the
second series may be unavoidably expensive, even though the incomplete gamma
function can be computed via recursion.

We consider the example in [129, §5] to compare both expansions. This example
evaluates the modified Bessel function K, (z) given by

Ky (z) = \/E(Zz)vll(v + %,21/ - 1,22). (4.95)

We reproduce Table 3 in [129, §5] for different values of 6 with convergence rate ¢ =
1 and n = 2, i.e. using the first two terms of the second expansion in (4.94). We skip
the improved case ¢ = 1 and n = 4 in [129, §5] due to the notable computational
effort. Results reveal that for z € R, expansion (4.63) gives more correct digits
than Hadamard expansion, but for R(z) < $(z) expansion (4.63) is affected by a
progressive loss of accuracy due to the omission of path rotation arguments like
those employed in [129].

(0/r) Hadamard (4.94) Expansion (4.63)

0 4.3e—43 1.3e—50
0.125 8.3e—43 2.4e—49
0.250 9.8e—43 3.0e—45
0.375 5.3e—43 1.3e—38
0.500 6.4e—43 2.3e—28

TABLE 4.7: Comparison of the absolute error values when z = 15610
and v = %. Series truncated at N = 100 terms.

In the following tables we compare the performance of the ascending series,
asymptotic series and the vanishing saddle point series. The vanishing saddle point
series for U(a, b, z) is given by [157, §25.4]

(14)" (T Pe(a)
U(a,b,z) ~ k;) a-+k !

(4.96)

where y = a/zis the saddle point of the dominant part of the integral (4.13). Coef-
ficients Py(a) are expressible in terms of generalized Laguerre polynomials defined

by
Pi(a) = kIL,*(~a), (4.97)

and satisfy the following recursion relation

Py(a) =1, Pi(a)=0, and Pii1(a) =k(Pc(a)+aPi_1(a)), k=1,2,....

Chapter 4. Confluent Hypergeometric Functions 101

For comparison, absolute relative errors are computed using as a reference Arb
[87] hypergeometric_U evaluated at 5000-10000 bits of precision. Symbol (-) in-
dicates an absolute error > 1. Table 4.8 shows the absolute relative errors for
large parameters and argument when truncated at N terms. For these cases each
term of expansion (4.63) adds about 1 digit of accuracy every term. In particu-
lar, the first case in Table 4.8 corresponds to the generalized exponential integral
E,(z) = z'"'U(v,v,z). We remark that this special case can be computed with
faster methods, for example the Laguerre expansion described in [118] returns an
absolute relative error of magnitude 1.4e—294 with N = 200 terms.

(a,b,2) N Asymptotic (4.53) Vanishing (4.96) Expansion (4.63)
10 - 3e—14 6e—25
30 - 7e—34 le—59
(600, 600, 500) 50 - 7e—50 6e—88
100 - 4e—82 5e—146
200 - 3e—128 2e—234
10 - le—04 le—10
30 - 4e—15 8e—38
(100, 1,1000) 50 4e—02 2e—26 7e—66
100 le—27 2e—54 4e—132
200 9e—60 le—102 2e—245
10 - 3e—01 3e—03
30 - 2e—05 2e—17
(1000,500,5000) 50 - le—11 2e—36
100 - 2e—31 8e—92
200 - 4e—78 3e—213

TABLE 4.8: Comparison between various methods for U(a,b,z).
Large parameters and argument.

Table 4.9 shows the performance of expansion (4.63) for small and moderate
positive values of parameters and argument. For these cases, we incorporate the
ascending series in (4.56) into the first column, where the value within parenthe-
ses indicates the required number of terms to obtain that absolute relative error.
We notice that for sufficiently small argument z the ascending series out-performs
the Franklin-Friedman expansion, although for moderate values the latter substan-
tially improves both the ascending and asymptotic expansion.

Finally, Table 4.10 shows cases with moderate negative parameters and positive
argument. For these cases expansion (4.63) exhibits fast convergence giving about
1.7 digits of accuracy every term. We remark that, as described in [129], Hadamard
series accuracy deteriorates when 4 is large and negative due to the oscillatory be-
haviour of the incomplete gamma function.

4.3.7 Discussion

The Franklin-Friedman expansion developed provides a uniform approach to eval-
uating confluent hypergeometric functions to arbitrary-precision for sufficiently
large R(z) > 0 and outside this sector via connection formulas. This expansion
is generally convergent and especially useful for the transition region between the
ascending and asymptotic series. It is found that the expansion developed system-
atically out-performs the vanishing saddle point series and asymptotic expansion

Chapter 4. Confluent Hypergeometric Functions 102

(a,b,z2) N Ascending (4.56) Asymptotic (4.53) Vanishing (4.96) Expansion (4.63)

10 - le—04 6e—10 8e—20

30 - le—16 8e—26 le—-52

(30,81/4,300) 50 - le—27 8e—39 3e—79
100 - 5e—48 6e—63 5e—131

200 1e—13 (N = 1000) 4e—68 3e—88 4e—202

10 - - 8e—04 6e—08

30 - - 3e—07 7e—20

(123/4,101/5,50) 50 - - 7e—08 2e—28
100 - - - 4e—43

300 2e—48 - - 9e—71

10 - le—10 2e—11 8e—19

30 - 5e—15 4e—16 4e—32

(5/4,10/4,30) 50 - 7e—13 3e—14 2e—39
100 6e—11 - - 4e—50

200 6e—80 - - 4e—61

10 - - - 7e—01

30 - - - le—04

(401/2,211/6,300) 50 - - - 5e—11
100 - - - 6e—30

200 4e—53 (N = 1600) - - 3e—66

TABLE 4.9: Comparison between various methods for U(a,b,z).
Small and moderate values of parameters and argument.

(a,b,z) N Asymptotic (4.53) Vanishing (4.96) Expansion (4.63)
10 - - -
30 - - -
(—241/2,20,400) 50 - - 2e—19
100 le—11 3e—16 2e—170
200 le—226 4e—138 2e—375
10 - - -
30 - - 3e—-21
(—500/6,—21/6,300) 50 - 9e—11 2e—87
100 9e—118 7e—78 9e—212
200 6e—225 le—143 3e—334

TABLE 4.10: Comparison between various methods for U(a, b, z).
Moderate negative parameters and argument.

in their respective regions of validity and is remarkably useful to compute the con-
fluent hypergeometric function for large parameters and argument, providing a
clear advantage over direct computation using the ascending series. Furthermore,
it is observed that for small argument the expansion developed converges at ap-
proximately geometric rate 27N. However, for sufficiently small argument the as-
cending series still exhibits faster convergence.

The presented approach results adequate in a “medium /high-precision" range,
say 100 - 1000 digits, given the considerable computation complexity as the num-
ber of terms increases. Therefore, a complete arbitrary-precision implementation
should combine the Franklin-Friedman expansion with other low-complexity meth-
ods described in this work.

Finally, further work is needed to compute uniform bounds for the coefficients
of the expansion in a wider regions of the parameters a4 and b, and to enhance the
algorithm to accelerate the computation of coefficients via efficient parallelization.

103

Chapter 5

The Lerch Transcendent and Other
Special Functions in Analytic
Number Theory

5.1 Background

5.1.1 Special number and polynomials

We introduce some basic properties of special numbers and polynomials essential
in the field of analytic number theory and asymptotic expansions for special func-
tions. Most of the section shall be devoted to the Bernoulli numbers and polyno-
mials given their number of appearances throughout this work and their relevance
in the field. The number of formulae relating special numbers and polynomials
between each other is considerable and practically infeasible to cover in detail.

Bernoulli numbers and polynomials

The Bernoulli polynomials B,(z), for n € Ny and z € C, are defined by their
exponential generating function (EGF)

%} f”
i) Bn(z)a, It| < 2m, (5.1)

and the Bernoulli numbers B, by B,,(0) = B,. Some basic properties of Bernoulli
numbers and polynomials are the following

e Bernoulli numbers are rational numbers. B, is defined for n € {0,1} and,
n > 2 and n even, otherwise B, = 0. On the other hand, the even-indexed B,
alternate in sign, thus (—1)"*1B,, > 0,n > 1.

e The exact denominator of B, is obtained by the Von Staudt-Clausen theorem.
The sequence of the numerator and denominators of the rational B, are de-
tailed in [144, A027641] and [144, A027642], respectively.

e Bernoulli polynomials are expressible in terms of Bernoulli numbers

B,(z) = i (Z) Byz" . (5.2)

k=0

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 104

e They satisfy the difference equation: B,(z + 1) — B,(z) = nz""1.
e The derivative w.r.t. argument z: %Bn(z) = nB,_1(z).

e Multiplicative formula is given by the finite series [136],

m—1
Bu(mx) =m""' Y B, (x + :1> , m>2and m even.
k=0
A generalization of Bernoulli polynomials denoted by By (z) for complex order
and argument, and integer degree is described in [157, §15.6]. The generalized
Bernoulli polynomials, like previous particular cases, are defined by an exponential
generating function given by [43, §24.16.1]

Canr y Bn”)(z)m, It < 2. (5.3)

Note that when p = 1, they reduce to the conventional Bernoulli polynomials and
numbers B,(ql)(z) = By,(z) and B,(f)(O) = B,. As previously stated, generalized

Bernoulli polynomials can be computed recursively with the following formula

Bl'(z) =) (Z) B =2} <Z> Bz, (5.4)
k=0

k=0

Therefore, these polynomials are expressible in terms of a finite sum of general-

ized Bernoulli numbers, also called Norlund numbers, B,(f‘) = B,(f‘) (0). Norlund
numbers are, therefore, easily defined by the generating function [43, §24.16.9]
t\ & "
<et—1) :nZOB,SWm, It < 2. (5.5)

Several methods have been developed to perform the efficient computation of
many Bernoulli numbers. In what follows, we aim to summarize some common
approaches implemented in arbitrary-precision software packages. An exhaustive
chronology of earlier work with several references is included in [75]. The most
widely used algorithm for computing a single B, is based on the application of the
relationship between B, and the Riemann zeta function {(s), given by

B, = (—1)”/2“2(@2(3:!, n > 2 and n even. (5.6)
A state-of-the-art parallel implementation is the software CalcBn V3.0 (C++ making
use of the GMP library) https://www.bernoulli.org/. A faster method developed
in [75] computes B, modulo p for many small primes p and then reconstruct B, via
the Chinese Remainder Theorem. This is the default algorithm in Sage [160] and
was used to achieve a new record (2008), B,, for n = 108. On the other hand, the re-
current formula from Ramanujan’s congruences is the method of choice in mpmath
[92] for n < 3000, whereas the Riemann zeta function relationship is exploited for

https://www.bernoulli.org/

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 105
larger values. Ramanujan congruences are
3 Sy () Busk, if n =0 (mod 6)
(n: >Bn = ”+3 Zk" 2)/6 (:+63’k)Bn_6k, ifn=2(mod6), (5.7)

n+3 Zk 1 (ﬁffk)Bn_ék, if n =4 (mod 6)

where a = b (mod c) indicates that 2 and b are congruent modulo ¢, i.e. a — b is
integrally divisible by c, thus (a —b)/c € Z.

The Arb library [87] implementation also exploits the relationship between B,
and the Riemann zeta function, but instead of using the Euler product for (1), as in
various aforementioned implementations, a reversing computation of the L-series
to favour the recycling of powers is used. Finally, it is worth mentioning that most
of the libraries systematically catch Bernoulli numbers for subsequent calculations,
since the computation of a large number of B, at high precision is time-consuming.

The number of available methods of computation of Bernoulli polynomials and
generalized Bernoulli polynomials is limited if compared with Bernoulli numbers.
To the author knowledge the main methods implemented are based on the recur-
rences (5.2) and (5.4). However, this recurrence is numerically unstable if applied
using floating-point arithmetic. Alternatively, B,(z) are expressible in terms of the
Hurwitz zeta function {(s, a) via the functional relation

Bu(z) = —ng(1 —n,z). (5.8)

Note that the Hurwitz zeta function generalizes the Bernoulli polynomials ton € C.
Furthermore, some explicit formulas have been developed such as

:é i <>x+]) (5.9)

which might also cause numerical instability due to the binomial alternating sum.
Finally, for z € [0, 1], the Fourier series in [43, §24.8] can be applied.

For the generalized Bernoulli polynomials, extensions to complex z, y and n
and uniform asymptotic expansion for large argument z and degree 7 are studied
in [157, §15.6]. Explicit formulas for the generalized Bernoulli polynomials and
Norlund polynomials are studied in [148], these are respectively

B — i(_nk(ﬂ + ”) (V +k— 1> M (5.10)

k=0 n—k k ("Zk)

where S(n, k) are Stirling numbers of the second kind, described later on, and

BY(z) =Y (Z) <y sz - 1> (2kk!)! i(_l)j <];>j2k(z+j>nk

k=0 j=0
]
Flk—nk—u2k+1,——|, 5.11
X 2 1(n M, 2k + z+]> ()

where > F; is the Gauss hypergeometric function, see Chapter 4.

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 106

Euler numbers and polynomials

Analogous to the generalized Bernoulli polynomials, the generalized Euler poly-

nomials are defined by means of the exponential generating function [43, §24.16.2]
2H

(ef + 1)

o tn
ot — Eo E,(fl)(z)a, It < 7. (5.12)
n=

The Euler polynomials are defined by E, (z) = el (z), and the classical Euler num-
bers by E, = 2"E, (1/2), which leads to the generating function for Euler numbers
given by

1 2

> " T
sech(t) = cosh() — e h et = E)Enm, It < 5 (5.13)

Euler polynomials satisfy the recurrence formula

Eu(z) = i (") Ek(z—12{(2)”_k. (5.14)

The even-indexed Euler numbers are expressible in terms of Bernoulli polyno-
mials as follows Byyer(1/4)
Ey, = —42n 122000 L 1
2n 2n+1 ’ (5 5)

and Euler polynomials are related to the Bernoulli polynomials by

2

En,1 (Z) = E

(Bp(x) — 2"By(x/2)). (5.16)

Finally, we refer to [34, §9] and [43, §24] for further properties. For uniform
asymptotic expansion of the generalized Euler polynomials see [157, §15.7], which
derivation follow the same steps as those of the generalized Bernoulli polynomials.

Stirling numbers and polynomials

The Stirling polynomials are defined by the exponential generating function

¢ z+1 00 n
<> =Y Su(2)5, |t <on (5.17)
n=0

1—et n!’

Note that Stirling polynomials represent a special case of the generalized Bernoulli
polynomials in (5.3). This can be observed by rewriting (t/(1 —e~))**1 = (te! /(e! —
1))**! hence S, (z) = B,(fﬂ)(z + 1) follows.

Stirling numbers of the first kind, denoted as s(n, m), are related to the Stirling
polynomials by

Sp(m) = (_m)ns(m—i—l,m—l—l—n). (5.18)

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 107

The Stirling numbers of the second kind, denoted as S(n, m), are also related by

Sy(—m) = (i:ﬂ};?)S(n%—m—l,m—l). (5.19)

Given m, n € Z and m < n, both Stirling numbers share the following properties
s(n,n) =S(n,n)=1,n>0 and s(n,0)=5(n0)=0,n>1, (5.20)

and s(n,m) = S(n,m) =0if m > n.

The Stirling numbers of the first kind, also known as ordinary or signed Stirling
numbers of the first kind, represent the number of permutations of n elements with
m disjoint cycles. Several generating functions exist

(t=n+1), =) s(nm)t" (5.21)
m=1

for t < 1. These numbers satisfy the recurrence relation
s(inym)=sn—1,m—-1)—(n—1)s(n—1,m), 1<m<n, (5.23)

and can be computed iteratively by means of the finite summation
n
s(n,m) =Y nMs(n4+1,k+1), m>1. (5.24)
k=m

The Stirling numbers of the second kind are non-negative integers representing
the number of partitions of n elements into exactly m non-empty subsets. These are
defined by the generating functions

t" = i S(n,m)(t—m+1)y, (5.25)
m=1
(et _ 1)m 0 tn
=) S(n,m)a. (5.26)

n

m

The Stirling numbers of the second kind have an explicit representation

i' i m+k (’Z> K" (5'27)

Equivalently to the Stirling numbers of the first kind, they satisfy the recurrence
relations

S(n,m)=mS(n—1,m)+Sn—1,m—1) (5.28)
S(n,m) = i m"kS(k—1,m—1). (5.29)

k=m

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 108

Interestingly, the Stirling numbers are related to other special numbers; for ex-
ample the Bernoulli numbers are expressible in terms of the Stirling numbers of the
second kind as follows

i kiS(n k) ¢ n+1\S(n+kk)
k k ’
= -1 —. 5.30
Z k+1 k;)() <k+1> ("R (5:30)
- - n

Although the general recurrence and direct summation is usually implemented
in numerical libraries such as Sage [160], we mention that several methods for ob-
taining asymptotic expansion for large order n and uniform asymptotic expansions
when n ~ m for both Stirling numbers are described in [157, §24].

Other special numbers and polynomials

For completeness we give a non-exhaustive short overview of other combinato-
rial numbers and polynomials of interest in the field of number theory, some of
them being used in various asymptotic formulas derived throughout this work. We
start with some less-known list of special numbers expressible in terms of Bernoulli
numbers

e Genocchi numbers are defined by the exponential generating function

T =Y G, (5.31)

and are related to the Bernoulli numbers through the relation

Gy = 2(1—2")B,. (5.32)

e Tangent numbers are defined by the exponential generating function
oo tn
tan(f) =) Tnﬁ. (5.33)

n=0

These are related to the Bernoulli numbers by means of the functional relation

2211 22n -1
M= (-2 gm0 wz1, G
and Tp = 0. The first n secant numbers S,, also known as zig numbers
and expressible in terms of Euler numbers, S, = |Ez,|, and Tangent num-

bers can be computed very efficiently using asymptotically fast algorithms in
O(n?log(n)2+°(1) bit-operations, as described [20].

e Bernoulli numbers of the second kind are defined by the generating function

n
Tog(+1) 1+t Zb t", |t <1, (5.35)

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 109

and are expressible in terms of Norlund numbers as follows

nib, = —jB(” Y, n>2. (5.36)

The Eulerian polynomials are defined by the exponential generating function

x—1 i t”
x_ex 1 Z (5.37)

Properties of the Eulerian polynomials are described in the next Section. The Eu-
lerian numbers, usually denoted as A(n, m) or (,"), give the number of permuta-
tions of set of n elements having m permutation ascents, i.e. m elements are greater
than the previous element. They are the coefficient of the Eulerian polynomials

n
=) A(n,m)x". (5.38)
m=0
The Eulerian numbers satisfy the recurrence relation

An,m)=n—-—m+1)An—1,m—1)+mAn—1,m), (5.39)

and have the explicit formulas

<Z> = i(_l) <n71) (k+1—j)" (5.40)

j=0

<Z> = g(_l)”“ﬂ <n L j) S(n, j), (5.41)

the latter in terms of the Stirling numbers of the second kind. The Eulerian numbers
are also connected to Bernoulli numbers [170]

_ /) (=1
B"_Z<k>k+l’ n > 0. (5.42)

k=0

The Bell polynomials B, (x) (not be confused with Bernoulli polynomials) have
the exponential generating function

t7’l

Dr=y" Bu(x) (5.43)

and they are connected with Stirling numbers of the second kind through the ex-
plicit formula

x) = i xkS(n, k). (5.44)

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 110

The computation of Bell polynomials can be extended to complex order and argu-
ment by using the Dobiinski’s formula given by

ey Lo, (5.45)
j=0 /'

For x = 1, B,(1) = B, is the n-th Bell number, which represent the number of
class-partitions of a finite set with n elements. A well-known asymptotic formulas
for B, is given in [39]. A recent discussion about methods for efficient computation
of large Bell numbers with arbitrary-precision can be found in http://fredrikj.
net/blog/2015/08/computing-bell-numbers/. Last, we recall that uniform upper
bounds for the Bell polynomials and Bell numbers are derived in Chapter 3.

5.1.2 The Lerch transcendent and related functions

The most prominent and complete work aiming to present a unified framework for
the Lerch transcendent and other related functions was carried out by Crandall in
[37]. In this subsection, we present some well-known functional relations involving
the Lerch transcendent. We briefly introduce the Lerch transcendent notation, and
we shall refer to the next section for extended treatment and presentation of nu-
merical methods for its computation. Finally, a quite complete list of zeta functions
is givenin https://en.wikipedia.org/wiki/List_of_zeta_functions.
The Lerch transcendent is defined by the L-series

d(z,5,a) Z k+a (5.46)

which converges for |z| < 1,a ¢ Z; or %(s) > 1, |z| = 1 and is defined by analytic
continuation elsewhere. Relevant special cases include the Riemann zeta function

1
I(s)=)_ &= ®(1,s,1). (5.47)
Furthermore, by analytic continuation the following alternating series valid for

R(s) > 0 is obtained

o (_1\n+1
{(5) = ;o 1 T

n=1

, R(s) >0 (5.48)

where the sum on the right-hand side is exactly the Dirichlet eta function #(s) or
alternating zeta function given by

-5

k=1

_)k—l
—2179)¢(s) = ®(—1,5,1). (5.49)

http://fredrikj.net/blog/2015/08/computing-bell-numbers/
http://fredrikj.net/blog/2015/08/computing-bell-numbers/
https://en.wikipedia.org/wiki/List_of_zeta_functions

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 1

The Riemann zeta function is also expressible in terms of Stieltjes constants y; by
means of the Laurent expansion

(S_nl) (5.50)

The Hurwitz zeta function is defined by analytic continuation of the sum

9= L

d(1,s,a), (5.51)

and has a Laurent expansion in terms of generalized Stieltjes constants 7 (a) given
by

[} s — k
(s,0) = =+ 3 (-l 652
k=0 '

Other related functions representable in terms of the Lerch transcendent are the
Dirichlet beta function

B(s) = ,;(Z(k_i)lk)s =4 [C <S,i> — <S,Z>] =275¢ <—1,s,;> , (5.53)

the Legendre chi function

(=% o —2e (? 1) (5.54)
Xs(z2) =) 7—-=2"20 (25,5). .
’ = (2k+1)8 2
and the Polylogarithm
Li,(z Z o D(z,n,1). (5.55)

The Polylogarithm is generally computed by means of its functional relation with
the Hurwitz zeta function

Lis(z) = g;;sz [ilsg <1 —s5+ k’g(_z)> +i71z <1 — s,% — k’g(_z)ﬂ .

2711

Additionally, some special polynomials such as the Bernoulli polynomials are
also special cases of the Lerch transcendent

= iki (> (x+))"=-nd(1,1—n,x). (5.56)

There is a vast literature on numerical methods for the computation of the Rie-
mann zeta function and the Hurwitz zeta function. Besides the numerical methods
for the Riemann zeta function in [15], previously discussed in Chapter 2, other
methods are included in [14] and [78]. A complete algorithmic description of the
implementation in [54] for real and integer argument is included in https://www.
mpfr.org/algorithms.pdf.

https://www.mpfr.org/algorithms.pdf
https://www.mpfr.org/algorithms.pdf

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 112

Regarding the Hurwitz zeta function, a recent study on the numerical evalua-
tion using the Euler-Maclaurin formula is described in [89], other algorithms avoid-
ing the use of Bernoulli numbers are described in [33, 164]. For uniform asymptotic
expansions in the regime of parameters s ~ a we refer to the usage of the vanishing
saddle point explained in [157, §25.5].

5.1.3 Software

e mpmath (Python/Cython)[92]: includes the Lerch transcendent and related
functions in http://mpmath.org/doc/1.1.0/functions/zeta.html and sev-
eral special numbersinhttp://mpmath.org/doc/1.1.0/functions/numtheory.
html. In particular for {(s), {(s,a) and ®(z,s,a) we have zeta and lerchphi.

e Arb (C) [87]: provides implementations for the functions {(s), #(s), {(s,a),
B,(x), Lis(z) and other Dirichlet L-functions, and special numbers B, E,
among others. Algorithms for the Hurwitz zeta function are described in
http://arblib.org/hurwitz.html and for polylogarithmsinhttp://arblib.
org/polylogarithms.html.

e Pari/GP (C) [159]: support several L-functions (Dirichlet L-functions, Hecke
L-functions and Artin L-functions) and theta functions described the doc-
umentation https://pari.math.u-bordeaux.fr/dochtml/html-stable/_L_
minusfunctions.html. The unified function to compute several L-functions
is1fun(L, s, {D = 0}). Transcendental functions are also directly available,
for example zeta or zetahurwitz. See documentation https://pari.math.
u-bordeaux.fr/dochtml/html/Transcendental_functions.html.

e Mathematica (C/C++) [169]: includes one of the most completed collections
of transcendent functions. Some the available functions are Zeta[s], Zetals, al
and LerchPhi[z,s,a]. Other related zeta functions can be found in http://
functions.wolfram.com/ZetaFunctionsandPolylogarithms/, special integer
numbers inhttp://functions.wolfram.com/IntegerFunctions/ and gener-
alized Bernoulli and Bell polynomials in http://functions.wolfram.com/
Polynomials/.

e Maple (C) [109]: as other software packages, it includes most of the presented
functions, for example Zeta and LerchPhi and polylog and special polyno-
mials such as bernoulli, euler and BellB.

Other specialized software packages implementing a great deal of these func-
tions are GAP [57], Magma [16] and some special-purpose programs such as the
Dokchitser’s L-function calculator https://people.maths.bris.ac.uk/ matyd/computel/
index.html.

5.1.4 Applications

The generalized Bernoulli polynomials and their special cases arise in many appli-
cations in mathematics. They often appear in numerical methods for interpolation,
differentiation and integration, for example the Euler-Maclaurin summation for-
mula. They also occur in power series expansions and asymptotic expansions of

http://mpmath.org/doc/1.1.0/functions/zeta.html
http://mpmath.org/doc/1.1.0/functions/numtheory.html
http://mpmath.org/doc/1.1.0/functions/numtheory.html
http://arblib.org/hurwitz.html
http://arblib.org/polylogarithms.html
http://arblib.org/polylogarithms.html
https://pari.math.u-bordeaux.fr/dochtml/html-stable/_L_minusfunctions.html
https://pari.math.u-bordeaux.fr/dochtml/html-stable/_L_minusfunctions.html
https://pari.math.u-bordeaux.fr/dochtml/html/Transcendental_functions.html
https://pari.math.u-bordeaux.fr/dochtml/html/Transcendental_functions.html
http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/
http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/
http://functions.wolfram.com/IntegerFunctions/
http://functions.wolfram.com/Polynomials/
http://functions.wolfram.com/Polynomials/
https://people.maths.bris.ac.uk/~matyd/computel/index.html
https://people.maths.bris.ac.uk/~matyd/computel/index.html

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 113

various classical special functions and are prevalent in the field of number theory
and mathematical analysis. Bernoulli and Euler polynomials are used to express
several sum of powers [43, §24.4].

The Bell number and polynomials appear in combinatorics and various asymp-
totic expansions. We recall the asymptotic expansion in terms of Bell polynomi-
als for the generalized exponential integral for large order, developed in Chapter
3. The Stirling numbers play an important role in combinatorics and probability
theory; for instance, they are intimately connected with Bell polynomials and the
Poisson distribution. In particular, Stirling numbers of the second kind also ap-
pear in asymptotic expansions; see application for the coefficients of the Franklin-
Friedman expansion in Chapter 4.

The Lerch transcendent and their special cases and other closely related func-
tions are essential in physics applications and mathematics, playing a crucial role
in fundamental conjectures (the renowned Riemann hypothesis, the Selberg con-
jecture and Lehmer conjecture, among others). Additionally, they serve to express
several sums of reciprocal in closed-form and occur in some Taylor expansions; in
particular, the Riemann zeta function with integer values appears as coefficients of
some power series expansions for the gamma function,

1 = (—1)Fg (K)ot 3 © (—1)kg(k)xk

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 14

5.2 Numerical Methods and Arbitrary-Precision Computa-
tion of the Lerch Transcendent

5.2.1 Introduction

The Lerch transcendent, also called Hurwitz-Lerch zeta function, which is named
after the Czech mathematician Mathias Lerch (1860 - 1922) is defined by means of
the Dirichlet series [5]

o0 Zk

D(z,s,a) =) = .57
Gsn) = X Geay (557)
where ®(z,s,a) is absolutely convergent for |z| <1, a € Z; or R(s) > 1, |z| =1
and is defined elsewhere by analytic continuation. The Lerch transcendent serves
as a unified framework for the study of various particular cases of special func-
tions in number theory such as polygamma functions, polylogarithms, Dirichlet
L-functions and certain number-theoretical constants. The Lerch transcendent is
related to Lipschitz-Lerch zeta function by the functional equation

R(a,x,s) = @(62””‘, s,a).

This function was introduced and investigated by Lerch [104] and Lipschitz [106],
where the latter studied general Euler integrals including the Lerch zeta function.
Subsequently, many authors have studied properties of these functions. Among the
recent investigations on the analytic properties of Lerch zeta function, we remark
the work conducted by Laurin¢ikas and Garunkstis in [101].

The Lerch transcendent and their special cases are ubiquitous in theoretical
physics. They play a relevant role in particle physics, thermodynamics and sta-
tistical mechanics, being present, for instance, in Bose-Einstein condensation distri-
bution [71] and integrals of the Fermi-Dirac distribution. They also occur in quan-
tum field theory, in particular in quantum electrodynamic bound state calculations
[86]. Regarding mathematical applications, the Lerch zeta function can be used to
evaluate Dirichlet L-series of the form

o x (k)
ks’

L(s,x) =
k=1

where x : (Z/qZ)* — C is a Dirichlet character and g a natural number, thus the
above summation is also expressible as a combination of Hurwitz zeta functions
(s, a) or polygamma functions for s € IN

1 i 1
L(s,x) = ;x(r) Y.

q
— (r+nq)s 9 ;X(Y)C(S,r/q).

The Lerch transcendent occasionally occurs in statistics, for instance, it provides
an analytic expression for the central moments of the geometric distribution.

Over the last two decades several authors have devised new series represen-
tations to extend the regime of computation of the Lerch transcendent. Complete
asymptotic expansions including error bounds of ®(z,s,a) for large a and large z
are derived in [49]. More recently, an exponentially-improved expansion for the Lerch

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 15

zeta function in large a asymptotic was examined in [128]. A remarkable and ex-
tensive review of properties, identities and numerical methods for the computation
of the Lerch transcendent and their special cases was carried out by R. Crandall in
[37]. In addition, we mention two important convergent series: the Hasse’s conver-
gent series expansion in [72] given by

(1—2)®(z,5,a) = i (1_—2.2)” f(—1)k<z> (a+k)—

n=0 k=0

which holds for s,z € C with R(z) < 1/2 and Erdélyi-series representation [48]

2"®(z,5,0) = ké (s — k) k’g]z(‘z) +T(1—s)(—log(z)) Y,

where s is not a positive integer, and for parameter a € (0,1], |log(z)| < 27, the
series representation is linearly convergent.
Finally, the Hermite-type integral representation is given by

D(z,s,a) = i + Mf(l —s,—alog(z))

Zﬂ
sin(sarctan(t/a) — tlog(z))
+ 2/ (a2 + 12)5/2(e27t — 1) dt, R(a) > 0. (5.58)

In this work, we derive complete new uniform asymptotic expansions of ®(z, s, a)
for large order of the parameters g, s and argument z, with special emphasis on the
less investigated case #(z) > 0. The starting point for our asymptotic expan-
sions is the integral representation in (5.58). Additionally, a careful treatment of
the Euler-Maclaurin formula is considered along with the calculation of a rigorous
error bound. A significant effort have been made to develop uniform asymptotic
expansions with tractable coefficients in terms of known entities and amenable to
arbitrary-precision computations. An extensive discussion on algorithmic aspects
for their successful implementation is also provided.

The outline of the work is the following: in Section 2 we study the main nu-
merical methods considered for the numerical evaluation of ®(z,s,a), including
error bounds. Then, in Section 3, we discuss in detail implementation aspects, sev-
eral heuristics and performance issues. We also devise an effective algorithm that
permits computation to arbitrary-precision in an extensive region of the function’s
domain. In Section 4, we provide numerical calculations and compare the present
implementation with open source and commercial state-of-the-art libraries. Finally,
in Section 5, we discuss possible enhancements and present our conclusions.

5.2.2 Numerical methods

Euler-Maclaurin formula

We briefly summarized the Euler-Maclaurin formula and refer to [34] for a formal
proof. We closely follow the expository style in [89]. Let us suppose that f is an an-
alytic function on a closed domain [N, U] where N, U € Z, and let M be a positive
integer. Let B, denote the n-th Bernoulli number and B,y(t) = B, (t — [t]) denote

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 116

the n-th periodic Bernoulli polynomials. The Euler-Maclaurin summation formula
states that

i f(k)=I+T+R (5.59)

k=N

where
u

- /N F(1) dt (5.60)
- LN U = U (2k-1) (N 561
= S(FN)+ £())+k;(2k)!(f (U) - fAD(N)) G
- %ﬁ;? £ () di (5:62)

If f decreases sufficiently rapid, letting U — co the above equations remain valid.

Proposition 5.2.1 The Euler-Maclaurin summation formula for the Lerch transcendent is
given by

®(z,5,a) =S+I1+T+R, (5.63)
where
N-1 k
S = k;)) (5.64)
- (_k’i(f))s_lr(l s, —(a+N)log(2)), (5.65)
B zN M sz U(—2k+1,-2k+2—s,—(a+ N)log(z))

t
R=— /N ?;AZ&()') (a +j)s+2Mu(—2M, —2M+1—s,—(a+t)log(z))dt, (5.67)

fora,s,z € Cwith |log(z)| < 2w and N, M € N such that ®(a) + N > 0and R(s) +
2M > 1.

Proof: Let us first consider the Hermite-type integral in (5.58)

. /°° sin(sarctan(t/a) — tlog(z)) dt
0

(az + t2)s/2(627rt _ 1) (5'68)

Forz,s,a € R,z > 0and a > 0, the above integral can be written in the form

1 e dt
I—as\f</0 (1—it/a)5e2m—1>' (5.69)

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 117

The domain delimited by previous constraints shall be extended by analytic con-
tinuation. Now we express the integrand in (5.69) in terms of the confluent hyper-
geometric function U(a, b, z) which yields

i ls\f ((tlog(2))’ /Ooo e~ o8 (s,s + 1, (it —a)log(z)) dt) ’ (570)

a et — 1

By applying the addition theorem for U(a, b, z) [43, §13.13] given by

U(a,bx+y) =) U(a,b+mn,x), |yl <lx| (5.71)

the integrand can be written as a summation defined by

. o k -
e_ZIOg(t)U(S,S +1, (it _ 11) log(z)) — 2 (it log(z)) U(S, Skj' k+ 1, alog(z)))

k=0

(5.72)
Substituting (5.72) into (5.70) and formally interchanging summation and integra-
tion we obtain

® (_ilog(z))kU(s, s —a z e k
Izlsd<(alog(z)) ¥ (THog@) Uls s Tk + 1, IOg())/O i 1dt>,

! 27t
a = k! e

where the integral can be directly evaluated in closed form by

A K
/0 et b= (Zn)kﬂg(+1).

We use Kummer’s transformation U(s,s + k + 1, —alog(z))(—alog(z))+ =
U(—k,1—k—s,—alog(z)) to rewrite I in the form

1=1g (i FU(k1-k-s, —108(2)) -1 4 1)> . (5.73)

s \ Hak (2m)k+1

‘Note that the same summation formula can be derived by expanding f(t) =
z7"(1—it/a)~5, which gives

f(t)zi@”)k,f!]io(’?)(1)(alog(2) “2 ms", (57

]

where s(j, m) are Stirling numbers of the first kind. The inner summation in (5.74)
is expressible in terms of rising factorial or Pochhammer’s symbol (s); using the
well-known identities

i ‘ ‘ ,
L (1) s(j s = (<1)/(=5)0 = (5 675

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 118
and
3 (4) tatog@) H=9)") = (~)U-k 1k =5, —alog2). (576)
j=0
Finally, taking the imaginary part of (5.73) yields
=L e g
_ Zias k‘é (123;;;‘ Uu(—2k+1, —2];;21 —s,—alog(z)) ’ 577)

where the relationship between Bernoulli numbers By, and the Riemann zeta func-
tion is applied. O

Note that the expansion is convergent for | log(z)| < 27t. This can be observed
by taking the asymptotic estimate of the k-th term in (5.77)

] = By U(—2k+1,—2k+2—s,—(a+ N)log(z))
(24)! (a+ Ny

~ Gl e, 679

as N,M — oo, where we consider the usual asymptotic estimates for U(a,b,z) ~
z7% as |z| — oo and |By|/(2k)! using the fact that {(2k) ~ 1 as k — co. To assess
the domain of convergence for z we use the ratio test (d"Alembert ratio test)

_ [og(2)?|
472

frt1
tx

lim

<1< |log(z)| < 2m.
k—o0

Finally, taking M such that R(s) +2M — 1 > 0, the remainder term (5.67) in the
Euler-Maclaurin summation formula is well defined, giving its analytic continua-
tiontos € C\ {1}.

Theorem 5.2.2 Given a,s,z € C with |log(z)| < 27w and N, M € N such that R(a) +
N > 0and R(s) + 2M > 1, the error term (5.67) in the Euler-Maclaurin summation
formula satisfies

4 2M M (_log(z))—k—l+2M+s
IR| < () ckgg (.)Q(k+ 1-2M—s,W) log *(2 , (5.79)

where C = T'(1 —5s)/z°, W = —(a+ N)log(z) and Q(a,z) = T(a,z)/T(a) is the
reqularized incomplete Gamma function.

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 119

Proof: We have

B z'
IR| = ‘/ 2M a+t)5+2M U(-2M, -2M +1—s,—(a +1) log(z))dt‘

= UZZ\A]\/D?‘ /N°° W?)HQMU(—ZM,—ZM—Fl—S,—(a—i—t)log(z))dt‘
4 2M 2M 0 ot
= 5(¢ VB [G 0 oste)

with BM(s) = (k-+1—2M — s)p—x. We apply the usual upper bound for | B, (t)| <
4n!/(27)" and formally interchange integration and the expansion of U(—2M, —2M +
1—s5s,—(a+ N)log(z)) given by

2M
U(-2M, —2M+1—s,—(a+ N)log(z)) = Y (sz) BM(s)((a +) log(2)).
k=0

The integral above can be expressed in terms of the incomplete Gamma function
I'(a,z) as follows (similar to (5.65))

00 t ¢
[sl) log(a))f di = 21 (—log(a)) k- 1z
X T(k+1-2M—s,—(a+N)log(z)) (580

Thus, we have

oM ” ;
)3 <2]Z(VI) By (s) /N (a_i_::)smv[((“—i—t) log(z))* dt

k=0
—5) M _ —k—142M-+s
“ 5 Z() k+1—2M—s,—(a+N)log(z))(IOg(Z)Zk)
k=0 log™"(2)
where we use BM(s) = T'(1 —s)/T(k+1—2M —s). Note that for s € N we take
equation (5.80) to avoid the pole. O

The bound given in Theorem 5.2.2 give us a notably tight approximation of
remainder (5.67). However, for large M the direct evaluation of the terminating
series in (5.79) might be substantially expensive, being a not negligible part of the
total computation time, therefore approximations for large order will be considered
in Section 5.2.3.

Uniform asymptotic expansion for ®(z,s,a)

A suitable Laplace-type integral representation of ®(z,s,a) amenable to derive
multiple asymptotic expansions [37], is given by

1 0o ¢85 1,—at
(z5,8) = £ /0 o, R(s) >0, R(@) >0, z¢ [Leo), (581)

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 120

which serves to define the analytic continuation of the Lerch-seriestoz € C \ [1,).
This integral has been chosen as starting point to derive asymptotic expansions for
either large or small 2 (assuming that s and z are fixed) or for large z in [49], and for
a Bernoulli-series representation as in [37]. The aim of this subsection is to extend
the domain of computation of the Poincaré type asymptotic expansion for large a
defined in [49] by constructing a uniform asymptotic expansion for large a, s and z.

We proceed to construct that expansion by using the vanishing saddle point
method described in [157]. This method is fundamentally a modification of Laplace’s
method applicable to integrals of the form

F\(z) = r&) /O Tt f(t)dt, (5.82)

with R(A) > 0 and z large, in which A might also be large. The resulting expansion
is given by
= ar () Pe(A
F)L(Z) -~ E k(ﬂ) k(),

ZktA

where a; (1) are the coefficients of the expansion of f(t) at the saddle pointu = A/z
and coefficients P () are expressible in terms of generalized Laguerre polynomials
defined by

Pe(A) = kI (=A). (5.83)

At this point, we briefly recall the definition of the Eulerian polynomial and its
connection with the polylogarithm function before stating the next proposition.
The Eulerian polynomial is defined as

k-1 k)
z) =) < .>zf, (5.84)
=0 \J

where <']‘) are the Eulerian numbers [64]. The Eulerian polynomials satisfy the re-
currence equation

Ao(z) =1, - i (> Dz k> 1 (5.85)

The Eulerian polynomial and polylogarithm are related by the functional equa-
tion
(1— Z)k+1

_ k 0
) = T) = 2

Z] 4, |z| <1, (5.86)

and if |z| > 1 then Ag(z) = (—1)F1 A (1).

Proposition 5.2.3 For a,s,z € C, R(a) > 0and z ¢ [1,00) we have the following
uniform asymptotic expansion for ®(z,s,a)

d(z,8,a) = e (1—1—[(2:_1(—1)]"5 5{25 r* Ag (ey>> +ex(z,8,a), (5.87)

U o_ s
et —z \a* =

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 121

wherer = z/ (et — z).

Proof: We take f(t) = (1 —ze !)"! and u = s/a in (5.82), where u is the saddle
point of the dominant part of the integral. Following closely the derivation in [49],
we expand f(t) at t = u to obtain the Taylor expansion

— etz = AN
f(t) = kgéak(l‘)(t -wk a(n) = (_1)kk!(eP‘—z)k+1]§ <]> <z> . (5.88)

After performing a few algebraic manipulations we obtain the final representation
for the vanishing point expansion for ®(z,s, a). O

We can clearly observe that for large values of R(s) and |z|, the asymptotic con-
vergence of the expansion improves. Furthermore, from a numerical perspective,
moderate to large values of R(s) < 0 permit the evaluation of Ax(e"/z) via the
convergent series (5.86).

It remains to bound the error term in the expansion after truncationatk = K —1.
Let us consider the k-th term of expansion (5.87) defined as

et
o |4 (2.

k . k
Pi(s) z A, et < 1 z
klak+s \ et —z z klakts \ et —z

A bound for the error term by comparison with a geometric series yields

Ity =

fr41
tx

C=) (5.89)

iff C < 1, where tg is the first omitted term in the expansion and

et | |tk

1-C

lex(z,8,a)] <

et —z

In order to provide an effective upper bound for |t|, we compute two saddle point
bounds for polynomials Py(z) and Ag(z).

Proposition 5.2.4 For k > 1and z € C\ {1} the Eulerian polynomials satisfy the fol-
lowing bound

|A(z)] < k! ((z —1)et)], (5.90)

where

k _
to = W(ezk_z)lk and ¢(tg) = —klogty —log (z — e(z’l)t0)> ,

and W (x) is the Lambert-W function which solves W (x)e"V®) = x.

Proof: An integral representation for the Eulerian polynomials is obtained after
applying Cauchy’s integral formula to the exponential generating function given

by

a tk z-1 _kl(z—1) gt
I;Ak(z)ﬁ oz —elzt — Alz) = 27ti %z — elz=1)t a,

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 122

which can be written in the form

(z — ¢(t)
Ap(z) = Kz 1) j{et dt, ¢(t) = —klogt —log (Z _ e(z—l)t) .

2711

We compute the saddle point of the integrand by solving the following equation

_ (z—1)t k B
¢'(t) = e e 7 It{ to = W(ezk_z)lk (5.91)

7 _ plz—1)t
The principal contribution of the saddle point bound is obtained by substituting f,
into the integrand

k! dt
e — 1)e%(t0) S — 1)p#(t0)
|Ar(z)| < > Z_‘(z 1)e?to j{ 7 k.‘(z 1)e?to)|.

Finally, by the residue theorem we obtain the result. O

A similar analysis is carried out for polynomials Pi(z). The use of the generat-
ing function for generalized Laguerre polynomials gives the Cauchy-type integral
representation

ke k! ~) dt
Pi(s) = KIL K (—s) = o /C (1 — t)kts—lets/ 0 t)tﬁ' (5.92)

where C is a circle around the origin with a radius less than unity.

Proposition 5.2.5 Fork > 1and s € C\ {0, 1} the polynomials Py(s) satisfy the follow-
ing bound

[Pi(s)| < ki [e?t0), (5.93)

where

o V2 +4ks — 2k +1+k+1

0~ 2(1—5)
and ;

9(to) = s Ot + (k45 —1)log(1 — to) — klog to.
—to

Proof: A proof follows the steps presented previously. O

Combination of both bounds (5.90) and (5.93) gives the final form for the error
bound. The selection of the appropriate truncation point K to achieve a desired
level of precision is detailed in Section 5.2.3.

Asymptotic expansion for large z

A careful reader shall have noticed that none of the previous series expansions are
suitable for arbitrarily large R(z) > 0. The expansion in this subsection comple-
ments the asymptotic expansion described in [49] for z € C \ [0, c0), R(a) > 0 and
R(s) > 0 for large z and fixed a and s

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 123

Theorem 5.2.6 Fora,s,z € C and R(a) > 0 we have an asymptotic expansion for large
a and z, and fixed s given by

o s—1
D(z,s,a) ~ 2%5 + (bgzaz))l“(l —s,—alog(z))
1 2 log(z)
+Zf<maw‘*“h()
1 © 1 n-kJrl 1 5 5
a— Z k+1 (ukﬂ ~ coth(7tu) csch(7tu)Py (sech (7tu))) ,

(5.94)
og()

where u = and Py (x) are peak polynomials [149].

Proof: We start from the integral representation (5.69). Application of the binomial
theorem yields

) Z*it dt o) (S)k i koo Z*ittk
— Cx — Cx N R _ -
_\s</o (1—it/a)5627“—1) _\$<k¥ k! (a) /0 ezm—ldt)

0

Let us focus on the inner integral I; defined as

) —itsk 1) —ityk _ ,—t
IkZ/ idt:/ z(1—e) dt.
o et —1 0 (1 — eft)(ezm _ 1)
Noting that (1 —e~*)/(e2™ — 1) = 1(coth(7t) — 1)(sinh(t) — cosh(t) + 1), we split
the integral obtaining a closed form in terms of the Hurwitz zeta function

C(k+1,ilog(z)/(2m)) 1 > k! (log()>
pum— ' R —

=k (B (g1) ~ @t M)
Fork=0,((og(z)> has a pole, so we proceed as follows

([) [- (- (5).

Combining terms give us the asymptotic expansion for integral (5.69)

INi(bgz(Z)_CothCo%(z)))_l_éM(;);H (k§<k+1 1+i 10;3;())).

Hereinafter we use u = % to simplify notation. Let us define the terms Cy (1)
as

ik+1
Ce(u) =S (ikg (k+1,1+ iu)) == ((—1)kg (k+1,1—iu)— ¢ (k+1,1+ iu)) ,

where we remove the imaginary part. In order to eliminate the computations on
the complex plane for real z, we expand! Ci(u) reducing compound arguments.

IWe employ FunctionExpand in Mathematica [169].

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 124
The first five coefficients ¢ (1) = 2Cy(u) are
_ 1 2 h 2

c1(u) = 7 T (rTu)”,
c(u) = % — 72 coth(7tu) esch(rtu)?,

1 2 2 4
c3(u) = i (4coth(7tu) csch(rtu)® + 2 esch(mu)),
ca(u) = 1 (8 coth(7ru)? esch(7tu)? + 16 coth(7ru) csch(nu)4)

us 24 ’

1 6
cs(u) = i 17;—0 (16 coth(7ru)* esch(7ru)? + 88 coth(7ru)? esch(mru)* + 16 csch(nu)4) .

From the observation of previous coefficients, we state the following identity, which
proof follows by induction

1 k1 [k/2] -1 ' '
Cr(u) = ST T Tonr Z P(k, j) coth(rru)k —1-% csch(m[)Z(JH)
2u 2k! far
1 k1 [k/2]-1 '
= ok T okl coth(mu)* Pesch(rtu)* Y. P(k,j)sech(mu)¥
! =
1 rk+1

= ok T okl coth(rru)¥~1 esch(7ru)* Py (sech(rru)?).

where P(k, j) denotes the number of permutations of k numbers with j peaks, also
known as peak number or pk-number, and Py (x) a pk-polynomial. O

Peak numbers P(k, j) give the sequence A008303 of the OEIS [144]. For k > 1
and 0 < j <k, we have a functional recursion generating a triangular array

P(k,j) =2(j+1)P(k—1,j) + (k—2))P(k —1,j — 1). (5.95)

Note that P(k,j) = 0 for j > k/2 and therefore deg Pi(x) = [k/2] — 1. Peak
polynomials are given by the generating function for peak numbers P(k, j).

Tk/2] -1 4
Pr(x) = E P(k,j)x.
i=0

Note that for values of |x| — 1 we can estimate its magnitude by the finite sum of
peak numbers, since Zj[igﬂ -1 P(k,j) = k!, hence

Pe(x)| ~ K, x| = 1. (5.96)

https://oeis.org/A008303

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 125

The bivariate exponential generating function can be defined as in [51], [172]

Eﬁ
—_

ad xk 1
Y Pelp) =1——+
P! k(p)k| p

tan (x\/ﬁ + arctan(1/ Jpj))

B v/1—pcosh(xy/1—p)
N v/1—pcosh(xy/1—p) —sinh(x/1—p)

1
B /1 —pcoth(xy/1—p)—1

As customary in analytic combinatorics, application of Cauchy’s integral formula
to the bivariate exponential generating function gives

27 e ikt
dt
/ /1 —pcoth(eit\/1—p)—1

A remarkable result from the theory of enriched P-partitions is the functional
relation between peak polynomials and Eulerian polynomials stated in [149]

4 2k71
Pk <(1 _|_xx)2) = (1 +X)k_1 Ak(x)l (597)

which allows us to use the upper bound in (5.90) to estimate the truncation point
in (5.94). Furthermore, a good asymptotic estimate of Py (x) for large order k can be
derived from a Mittag-Leffler type decomposition of Eulerian polynomials [36]:

Au(z) = C(k,2) <log —— 1 1

/= (log(z) + 27ij)* " <log<z>—znjk>k“>’

where
eti(k=1) (1 _ Z)k+1k!

z

C(k,z) =

Taking the prefactor of the expansion and applying the functional relation (5.97)
we have
2k Tglemitk=1) (1 — 3)k+1 2—x—2y1—x

Pilx) ~ (1+ u)k—1ulog(u)ktt ’ " x ; ko

5.2.3 Algorithmic details and implementation

In this section we discuss in detail the implementation aspects and several pro-
posed heuristics easy to evaluate while being effective in practice. All algorithms
described are implemented in Python? using the mpmath library for arbitray-preci-
sion floating-point arithmetic [92] with GMPY2, which supports integer and ratio-
nal arithmetic via the GMP library [69] and real and complex arithmetic by the
MPER [54] and MPC [47] libraries.

Zhttps://sites.google.com/site/guillermonavaspalencia/software/lerch.py

https://sites.google.com/site/guillermonavaspalencia/software/lerch.py

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 126

As it is well-known, numerical evaluation of special functions requires the use
of several methods of computation to cover the whole regime of the parameters.
We aim to sketch the building blocks of a basic algorithm, which have been tested
to work reasonable well for most cases, but we do not dare to claim that it will
cover the whole function’s domain optimally. For those cases either not covered
by current series expansions or prone to numerical instability, we select numerical
complex integration, which serves as a backup method.

Evaluation of L-series

The L-series of the form (5.57) are in general difficult to accelerate due to the non
recursive scheme of computation. In order to employ common acceleration tech-
niques such as parallelization, the determination of the optimal truncation level is
crucial. As described in the previous section, a bound for the remainder term of the
L-series can be constructed as follows

SEE 21 2|
) < < / (5.98)
ik (k+a)*| = |[(K+a)*|(1 = Cx(z,5,a)) — [(K+a)|(1—[z])
where (K + a)°
zZ(K+a .
CK(Z,S,Q) — m 7 1}5{}0 CK(Z,S,ﬂ) — |Z| (599)

The required number of terms K to obtain a result with P-bit precision can
be obtained by performing a simple linear search, which is generally sufficient
to target an absolute error of about 2-°. However, a more efficient approxima-
tion of K is yielded by solving the following equation with the first omitted term,
zK(K +a)=5 = 27P for K. The first solution in closed-form is given by
sW(¢(z,s,a,P)) + alog(z)’ 0(z,5,0,P) = — (2_Pz”)_1/slog(z)'

K== log(z) S

We distinguish two different approximations for K, denoted as K, depending

on R(s). For R(s) > 0

0 H%(S)Wo(%(%S/a,P)H!ﬂ!logUZ\)
(2~ Pla| RO [z]le) /RO Tog |2])

k= Tog(12])

where [x] denotes the nearest integer function and

4)1(2/5/“/1)):_ %(S)—Fl .
For R(s) <0
£ H%(S)W1(4’2(Z/SI%P))+ 2| log(|z]) }
log(|z])
where =P 4| =R(5) |z |laly—1/R(s)
s p) = 2l ROLE]) 1 g

R(s) '

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 127

Given that ¢1, ¢» € R, we use the principal branch Wy(z) = W(z) when
R(s) > 0, since ¢ > 0 and the branch W_1(z) for R(s) < 0, since ¢ € (—1/¢,0).
Remember that W(x) is two-valued for —1/e < x < 0. Numerical tests suggest that
these approximations for choosing K are sufficient to obtain good estimates of the
required number of terms. We note that K can be computed using 53-bit machine
floating-point arithmetic.

Several heuristics are implemented to compensate catastrophic cancellation for
cases when R(z) < 0 and/or R(s) < 0. In particular, for R(s) < 0 we increase
the working precision P = P + | P/3| + [~R(s)]. On the other hand, for the case
R(s) > 1and z € Ry we employ the linear acceleration methods for alternating
series described in [35]. This method is used when K > 1.2[1.31D], where D is
the precision digits. For all other cases, we add up to 20 guard bits to the working
precision.

The computation of the L-series is particularly simple to parallelize by assign-
ing a block of size k : k < N to each thread. This parallelization scheme is im-
plemented using the multiprocessing module in Python. Based on experiments,
parallelization provides a significant speedup factor for K > 1024 or P > 1024 bits.

We remark that L-series converges rather slowly when |z| — 1. It is possible to
employ convergence acceleration techniques to obtain an efficient evaluation of the
Lerch transcendent; see the application of combined nonlinear-condensation trans-
formation in [85]. Alternatively, the Euler-Maclaurin formula is also convenient for
those cases, as shown later.

Evaluation of the Euler-Maclaurin error bound

For a precision of D digits, we choose N = |D/3]. For large (a) > 0 we choose
N = 0 if the following condition is satisfied

R(a) > |R(s)| + |R(z)| + D.

The number of terms M can be effectively approximated by solving t; = 277,
where P is the precision in bits and #; is the asymptotic estimate in (5.78), which
yields

M~ [z log(27) — log(log(2))
This is a near-optimal approximation at high-precision. In practice, the asymptotic
estimate of M is used for P > 500, otherwise we use the heuristic M = N + LP / 3J .
There is a unavoidable trade-off when choosing N and M, large values results in
catastrophic cancellation since the L-series might be unstable, especially for z €
C \ R, but reduces the number of terms M, therefore the time spent computing
Bernoulli numbers, which represents a significant amount of the total computation
time.

We can evaluate the coefficient in the error bound (5.79) using a recurrence.
Computation of Q(k+1—2M —s, —(a + N)log(z)) only requires the initial value
Q(1—s,—(a+ N)log(z)), which can be computed re-using I'(1 —s, —(a + N) log(z))

1| log(2 P log(z)) H |

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 128

in (5.66). Subsequent terms can be computed at lower precision via the recurrence

—za—1

Q(a,2) = Qa—1,2) + 1

aeC\Z",

or
I(a,z)=(a—1)T(a—1,2z)+e %2, acC.

A recurrence for the rest of terms in the coefficients is trivial. The direct evalua-
tion of the recurrence requires O (M) arithmetic operations, therefore the associated
computational cost is not negligible for very large M, as previously mentioned.

For large M we might use asymptotic estimates to reduce the complexity, for
example the case M > |(a + N)log(z)|

(a 4 N)—2M7s+1

R| ~ 2 '(—ZM +1 = $)omEantss (—(a+ N) log(2))

(27r)2M S+ N
4 (—2M +1 —s)aum (log(z)/z)" N
(2m)M ' 2M + s (a+ Ny2M+s—1|” (5.100)

where E, (z) is the generalized exponential integral [118] and we take the asymp-
totic estimate E, (z) ~ e */v asv — oo.

For M ~ |(a+ N)log(z)| and |s| < M, we use the first order estimate of the
Franklin-Friedman expansion for U(a, b, z) in [119] given by

2M i
—2M, -2M+1—s,— 1 ~ T 1 M
U(—2M,—2M+1—s,—(a+ N)log(z)) < + (u—{—N)log(z)) ((a+N)log(z))=",
replacing it in (5.79) and after observation that the remaining integral is expressible
in terms of the incomplete gamma function we obtain

4 (—log(z) 2M+s—1
(27T)ZM 3min(%(s),0) za

IR| ~ T(1—s,—(a+ N)log(z)|. (5.101)

Table 5.1 shows a few examples when |z| < 1, otherwise the integral (5.67) is
not well defined. Approximations (5.100) and (5.101), although being quite simple,
might be used to compute a crude estimate of the magnitude of the remainder in
reasonable time.

z s a N M (5.67) (5.79) (5.100) (5.101)
08 32 105 6 15 75e-30 15e-28 1.3¢-38 l.le—47
05+02i -302-4 105+5 10 40 4.8¢—24 1.0e—22 8.1e—37 3.2¢—20
05+02i -302-4 1005+5i 100 2000 2.5e+302 5.6e+302 3.9¢+282 -
05+07F -32+10i 105+5i 250 300 1.6e—503 4.8¢—502 15¢—503 5.4e—496
05+07 302+10i 105+105i 600 700 9.9e—1240 1.2¢—1238 7.5¢—1216 3.8¢—1264

TABLE 5.1: Effectiveness of bound (5.79) in error term of the Euler-
Maclaurin formula.

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 129

Evaluation of the Euler-Maclaurin tail

A more interesting form of the tail (5.66) is obtained by applying Kummer’s trans-
formation to U(—2k+ 1, —2k +2 —s, —(a + N)log(z)), thus

M
—log(z))*~tU(s,s +2k, —(a+N) log(z))).

1
—_ N _
I=z (2(a+N) log(2)

For this particular case, U(a,b,z) reduces to a polynomial in —(a + N)log(z) of
degree 2k — 1, indeed expressible in terms of generalized Laguerre polynomials,
given by

2k—1 _ S):
U(s,s+2k,—(a+N)log(z))) = (—(a+N)log(z))* Z <2k. 1) (—(a+§\l)]

=0\ J

(k)

Terms T," can be constructed using a linear holonomic recurrence equation. Let us
define the constants expressions p and g

1

p=s—@+N)og), 1=~ iiog()

(k)

The sequence of terms T," satisfy the recurrence equation

T = [(pr + @k —3) (1Y - T)g
Y = pr + k=21 - T

for k > 2, with initial values

™™W=1, TV=1- >

(a+ N)log(z)
A matrix form for k > 2 is defined as
T} g(p+2k—3) q(3-2k) 0 T,
™V | = q2-2k) 0 qg(p+2k—2) | | T
7D 1 0 0 T
or simply
T\ (k(4k+4p—12)+ (p—5)p+8 k(—4k—2p+10)+3p—6) [TV
) — 4 32k 12k—3 (k=1) | -
T! p T!

The complexity of the recurrence scheme is O(MP) and requires a small tem-

(k)

porary storage. Note that a matrix recurrence for the sequence of coefficients T
is suitable in a binary splitting scheme. The previous analysis results in a more

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 130
tractable expression for the tail T
ZN = BZk 2k—177:(k)

Now the terms of tail sum T satisfy a recurrence equation except for the mul-
tiplication by Bernoulli numbers. The Bernoulli numbers are cached for repeated
evaluation, but computing them the first time at very high precision is time-consu-
ming. We do not attempt to improve current implementations but rather rely on the
algorithm implemented in mpmath, which automatically caches Bernoulli numbers
B, when n < 3000 for multiple evaluations. For larger values of n the connection
to Riemann zeta function (1) is used Many recursive algorithms for computing
By,...,B, such as B, = Zk 0 m require O(n?) arithmetic operations. As
an alternative, an algorithm based on recycling terms in the Riemann zeta function
series expansion, which also have cubic complexity, is implemented in [87].

Evaluation of asymptotic expansions

The main drawback of the asymptotic expansions in (5.87) and (5.94) is the diffi-
culty of computing a large number of Eulerian and peak polynomials efficiently.
Computing the first k Eulerian polynomials simultaneously can be performed by
using the recursion in (5.85). Thus, given Ao(z),..., Ax_1(z), we can compute
Ag(z) in O(k) arithmetic operations, and noting that A (z) has O(klog k) bits from
(5.90), the algorithm needs O (k*+°(1)) bit operations and requires O (k?log k) space
to store previous A;(z),j < k. For example, using a straightforward implementa-
tion, we compute Ay (2),..., A1000(2) at 333-bit precision in 1.51 seconds on a 2.6
GHz Intel i7 processor.

To compute k Eulerian polynomials in time complexity O (k**°(1)) we might ap-
ply a multisectioning scheme to the bivariate exponential generating function. Alter-
natively, it is possible to recycle terms of the sum (5.86) to speedup multievaluation,
considering that terms j*z/ can be optimized to only compute binary exponentia-
tion when j is prime and multiplication otherwise. The required number of terms
is approximated by solving J¥z/ =277,

KW (o)
o ((«) . (5.103)

]*N
~

log(z])

For large k the size of [* growth rapidly, therefore it is convenient to apply
asymptotic faster methods such as the Mittag-Leffler type decomposition previ-
ously introduced, which acts as an asymptotic expansion. For z € RR, two opti-
mizations can be implemented:

I N ! PeR!
Ap(z) = . R <log(B +ZZ ‘ (log(z)+27T1])k+1> eRT,

(z —1)1k! “ ~
Ar(z) = x + z€R™.

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 131

To compute a single Ajgpo(1/5) at 333-bit, the power series requires [* = 5545
whereas the Mittag-Leffler decomposition only needs [* = 59 terms, hence a com-
plete algorithm shall combine the iterative computation via the three-term recur-
rence and the asymptotic expansion as k — co.

Like other orthogonal polynomials, polynomials Py (A) in (5.83), which are strongly
related to Tricomi-Carlitz polynomials, satisfy three-term recurrence,

Po(A) =1, Py(A)=0, and Pei(A) =k(P(A) +AP1(A)), k> 1.

Given the complexity of computing a large number of Eulerian polynomials, the
cost of the three-term recurrence is almost negligible.

The truncation level K in (5.89) is computed at lower precision via linear search
and C is estimated as

z (s+K)(z—1)
z—et alog(z)

fK41
tx

C= , k— oo,

from which we obtain an estimate of the number of terms

Computation of peak polynomials is carried out using the generating function
for peak numbers for moderate k, which evaluation only involves roughly half of
the terms k/2 compared to the Eulerian polynomials. For example, computing
the triangular array for the first 1000 peak numbers using recurrence (5.95) takes
1.55 seconds. For larger k the functional relation with the Eulerian polynomial is
applied. A trickier aspect of the asymptotic expansion (5.94) is to determine the
optimal truncation K. The coefficients ¢, (1) behave as

1 Tl'k'H " 1
s coth(7ru)*~! esch(ru)2 Py (sech(rru)?)| ~ T

lex(u)] =

as k — oo. Given the ratio of convergence of the asymptotic expansion, we can esti-
mate the maximum number of terms Kj,x, thus the maximum attainable accuracy
as follows

(s +K)
a27mt(1 — iu)

tk+1
tx

, k=00, Kpax = |a(2m —ilog(z)) —s|.

It remains to estimate the required numbers of terms K to target P-bit accuracy,
which is approximated heuristically and subsequently refined via linear search us-
in

K ~ ¢(s)

(s)
W1 (a27rq)log(z))

4

where ¢(s) = —log(2)P — log(1 + s). In fact, we slightly increase K by a factor ~
1.2, which works well in practice. Hence, we can evaluate the asymptotic expansion
as long as K < K4 to target an absolute error of 2-P,

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 132

Numerical integration

The current implementation in mpmath computes the Lerch transcendent via nu-
merical integration using the double-exponential method for the integral represen-
tation (5.58) employing the quad function. We choose numerical integration for
R(a) > 0 as a backup method when computation by aforementioned methods is
not satisfactory. Note that a few optimizations are possible for real parameters by
rewriting the integrand, for example, the integral representation (5.69) when z > 0
and a > 0 or

o0 (1—it/a)sz" dt
_
I=-3 (/0 @+ 25211 2/a2)2 (2t —1))" Z¥1 €R, z>0,

both integral representations avoiding evaluation of trigonometric functions. The
computation at high-precision, say 1000 digits onwards, is generally costly com-
pared to asymptotic methods, therefore this is the method of choice when only
strictly indispensable.

5.2.4 Benchmark

In this Section, we benchmark our implementation to current state-of-the-art soft-
ware supporting evaluation of the Lerch transcendent function to arbitrary-precision.
Tests were conducted on an Intel(R) Core(TM) i7-6700HQ CPU at 2.60GHz, using
up to 4 cores for parallel mode, running Linux Ubuntu. We compare the comput-
ing times of Mathematica 10.4 and mpmath 1.0.0 using functions Timing[] and
time.perf_counter (), respectively. For mpmath we set the precision in bits p us-
ing mpmath.mp.prec = p, whereas for Mathematica the desired level of precision
in digits d is set with N[..., d], applying the conversion factor d = |0.301p|.
To assess the correctness of our implementation, we compare to Mathematica at
higher precision since it is frequently faster and more reliable than mpmath. Note,
however, that Mathematica attempts to achieve d digits of precision might fail un-
expectedly, therefore we check the consistency of results at increasing levels of pre-
cision.

The following tables show timing results to compute the Lerch transcendent for
various regimes of the parameters and argument, varying the level of precision.
We remark that Mathematica and mpmath use GMP internally, so timing measure-
ments are directly comparable.

Table 5.2 shows the performance of the Euler-Maclaurin formula (5.77) for small
z and moderate values of s and a. The Euler-Maclaurin formula is implemented in
a loop manner checking the level of cancellation at each iteration and increasing the
working precision accordingly to correct it. Hence, a better estimation of the total
amount of cancellation would reduce the computation time considerably. How-
ever, as we see for these cases, both Mathematica and mpmath are regularly an
order of magnitude slower. Furthermore, as previously noted, larger values of |a]
improve the convergence of the series, reducing significantly the number of terms
N and M; Table 5.3 shows the metrics corresponding to the last iteration.

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 133
D(z,s,a) bits mpmath ~ Mathematica Euler-Maclaurin Parallel

64 0.09 (0.139) 0313 0.008 (0.013) -

z=25+15 333 1.09(1.21) 0.672 0.041 (0.089) -

s=1254+2i 1024 8.39(9.38) 3.14 0.128 (0.233) -

4 =35+5i 3333 154.4 (161.1) 27 1.64 (2.37) ;
10000 1564.6 438 25.04 (33.33) 19.06 (27.32)

64 0.263(0.295) 0.047 0.016 (0.039) -

z=25+75 333 179 (1.98) 0.250 0.110 (0.250) -

s=-5025+10i 1024 659 (7.05) 1.58 0.72 (1.49) -
a=15—1i 3333 133.6 (135.1) 21.66 11.83 (16.64) 872 (13.22)
10000 1453 409.1 190.3 (224.5) 153.2 (196.5)

64 0.253(0.324) 0.031 0.013 (0.022) -

z=25+0.5i 333 1.79 (1.92) 0.265 0.058 (0.104) -

s =—10025+10i 1024 12.66(13.94) 7.72 0.298 (0.685) -

a =100.5 —10i 3333 120.7 (127.1) 83.14 2.97 (4.19) -
10000 1500.6 > 1800 24.65(32.89) 18.88(28.34)

TABLE 5.2: Time (in seconds) to compute ®(z,s,a) with moderate

values of z, s and a to 64, 333, 1024, 3333 and 10000 bits of precision.

First evaluation pre-computing Bernoulli numbers within parenthe-
ses. Maximum time 1800 seconds.

Current implementation does not incorporate complexity-reducing methods for
the evaluation of the tail but simply uses the recurrence scheme and only includes
optional parallelization of the truncated L-series, thus limiting the observable im-
provement by activating the parallel mode.

®(z,s,a) bits N M P" (bits)

64 7 32 (H) 86

z=25+15i 333 39 172 (H) 400

s =1.25+2i 1024 123 247 (A) 1229
a=35+5i 3333 401 805 (A) 4000
10000 1203 2416 (A) 12000

64 28 122 (H) 84

z=25+75i 333 127 402 (A) 383
s=—-50254+10i 1024 364 1146 (A) 1094
a=15—i 3333 1115 3503 (A) 3346
10000 3193 10032 (A) 10419

64 10 46 (H) 108

z=25+05i 333 52 97 (A) 528
s=-10025+10i 1024 156 285 (A) 1561
a=1005-10i 3333 480 876 (A) 4790
10000 1214 2216 (A) 12108

TABLE 5.3: Number of terms N, M in the Euler-Maclaurin expan-

sion and working precision P" for Euler-Maclaurin cases. (A) and

(H) indicate the method used to estimate M, asymptotic and heuris-
tic, respectively.

Table 5.4 assesses the performance of the L-series implementation and its par-
ticular cases for |z| < 1 and small values of s and a. Due to the performance gap

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 134

between Mathematica and mpmath (mpmath only implements numerical integra-
tion), only the former is used for benchmarking on subsequent tests. Results show
that our implementation is comparable to Mathematica (presumably evaluating
the same L-series) at lower precision and it is found to be surprisingly faster at
higher precision®. Moreover, we observe that our parallelization scheme achieves
speedup ratios close to theoretical maximum, which apparently is not implemented
in Mathematica. Interestingly, the Euler-Maclaurin formula should be the preferred
algorithm at low-medium precision when |z| ~ 1.

D(z,5,a) bits Mathematica L-series Parallel Euler-Maclaurin
64 0.0011 0.0011 - -
z=1/4 333 0.0067 0.0055 - -
s=10/4 1024 0.0339 0.0155 - -
a=20/7 3333 0.7313 0.0660 0.0431 -
10000 21.406 0.4885 0.1513 -
64 0.0015 0.0069 - 0.0031 (0.0053)
z=9/10 333 0.0109 0.0607 0.0429 0.0153 (0.0255)
s=10/4 1024 0.0984 0.2165 0.1052 0.0166 (0.0222)
a=20/7 3333 1.8843 1.0422 0.3281 0.0953 (0.1197)
10000 39.937 8.6969 2.4881 2.7331 (3.1578)
64 0.0031 0.0020 - -
z=—-6/10 333 0.0156 0.0083 - -
s=10/4 1024 0.1422 0.0243 - -
a=20/7 3333 3.0922 0.0983 - -

10000 21.2969 0.7500 - -

TABLE 5.4: Time (in seconds) to compute ®(z,s,a) for small argu-
ment |z|.

The third example assesses the performance of the series acceleration technique
for alternating series, which while it is hardly parallelizable, it is consistently faster
than Mathematica for all tested instances.

Table 5.5 shows the time to compute the Lerch transcendent using the asymp-
totic expansion (5.94) for large z and a. The optimal truncation of the first test is
Kinax = 1598, limiting the evaluation at 3333 bits of precision, which would require
K = 2767. The optimal truncation for the second test is K, = 22297 requiring up
to 1952 terms at 10000 bit of precision. As noted, the time spent on the computation
of a large number of peak polynomials accounts for a significant amount of the to-
tal time, therefore a more sophisticated and efficient algorithm would be needed at
higher precision. On the other hand, for multiple evaluations, peak numbers can
be cached same as Bernoulli numbers.

Numerical experiments show a performance deterioration of the Euler-Maclaurin
formula as z increases due to catastrophic cancellation, therefore its use should be
restricted to low precision calculations. Our implementation of the asymptotic ex-
pansion exhibits fast convergence for large parameters, but the limitation on the
achievable accuracy forces a switch to numerical integration depending on the de-
sired level of precision.

3We guess the poor performance is due to incorrect error tracking, which overestimates the re-
quired working precision.

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 135

D(z,s,a) bits mpmath Mathematica Euler-Maclaurin Asymptotic K peak time

z =140 64 0.0684 0.0154 0.0027 0.0022 9 6.3%

s=1/4 333 0.7859 0.1219 2.2342 0.0134 59 10.9%

a =200 1024 5.0361 0.7297 - 0.1931 254 10.5%

64 0.1238 0.0661 - 0.0017 6 4.6%

z =10000 333 1.5456 0.2078 - 0.0066 34 11.5%
s=10/4 1024 9.9478 1.0406 - 0.0481 122 10.0%
a=2000 3333 94.362 15.141 - 0.9498 493 8.4%
10000 1978.2 283.21 - 39.779 1952 6.0%

TABLE 5.5: Time (in seconds) to compute ®(z, s, a) for large param-

eter 2 and argument z. Comparison to Euler-Maclaurin at low pre-

cision. The rightmost column shows the percentage of the total time
devoted to computation of K peak numbers.

Finally, Table 5.6 compares the uniform asymptotic expansion (5.87) to the asymp-
totic expansion (5.94). Results show that the former expansion should be the pre-
ferred choice at low-medium precision for sufficiently large parameters and argu-
ment, otherwise the previous methods generally show superior performance. Note
that the computation of Eulerian polynomials accounts for the majority of the to-
tal time, consequently any improvement on this respect will directly reduce the
reported timings.

D(z,s,a) bits mpmath Mathematica Asymptotic =~ Uniform Eulerian time
z = —200.65 64 0.0228* 0.0469 0.0031 (16) 0.0173 (20) 97.0%
s =100.25 333 0.0149* 0.1563 0.0412 (104) 0.0592 (60) 97.5%
a=>501.5 1024 1.0219* 0.8438 0.7512 (421) 0.5151 (229) 98.8%
z = —20000 64 0.0101* 0.0312 0.0027 (15) 0.0051 (9) 93.2%
s =10025 333 0.0168* 0.1875 0.0362 (93) 0.0436 (53) 96.9%
a=5015 1024 17736 1.0313 0.5424 (365) 0.2964 (196) 98.3%

TABLE 5.6: Time (in seconds) to compute ®(z,s,a) for large param-

eter a and s, and argument z. Number of terms for each expansion

within parentheses. For mpmath: (*) and (**) indicate no answer
and inaccurate answer, respectively.

5.2.5 Discussion

The algorithms presented in this work are an important step towards a complete
arbitrary-precision implementation of the Lerch transcendent using asymptotically
fast methods. A fundamental improvement to our implementation is to devise
a more intelligent strategy to address cancellation issues for the Euler-Maclaurin
formula, which should yield a significant reduction of the current overhead factor.

Further work is needed to develop an efficient multithreaded implementation
of the asymptotic expansions. More importantly, it remains an open problem whet-
her there is a fast memory-efficient algorithm for computing a large number of
Eulerian and peak polynomials.

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 136

5.2.6 Appendix - Algorithms and implementations

L-series

Algorithm 7 Alternating L-series for z < 0
Input: a,5,z€ Cand (|z| <1,a ¢ Z;)V (R(s) > 1,|z| =1)
Output: S =Y, ﬁ with D digits of precision initialization
N <« [1.31D]
d <+ (3+V8)N
b+ —1
c+ —d
u<1
S0
fork=0;k=N;k+ k+1do
t<—u/(k+a)
c<c—b
if k mod 2 then
S+ S—c-t
else
S« S+c-t

end if N ()

2(k+N)(k—N
b b ey
16: U< u-z

17: end for
18: return S/d

e e el e
ISU IS N e

LISTING 5.1: mpmath implementation of truncated block L-series

def _lerch_lseries_trunc_block(z, s, a, nl, n2, queue):
""" Truncated L—series block for pavallel implementation.”"”
u = zxxnl
Isum = u / (nl + a)xx*s
for k in range(nl+1, n2):
u *= z
Isum += u / (k + a)*xs
queue. put (lsum)

LISTING 5.2: mpmath parallel implementation of truncated L-series

def _lerch_lseries_trunc_parallel(z, s, a, N):
""" Truncated L—series , parallel implementation.”””
if N == 0: return 0

threads = multiprocessing.cpu_count()
block_size N // threads
last_block N % threads

queue = multiprocessing .Queue()
processes = [multiprocessing.Process(
target=_lerch_lseries_trunc_block , args=(z, s, a,

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory

137

block_sizexthread, block_size «(thread+1),
queue)) for thread in range(threads)]

for p in processes: p.start ()

for p in processes: p.join ()

series_sum = sum([queue.get() for p in processes])

if last_block:

_lerch_lseries_trunc_block(z, s, a, block_sizex(threads),

block_size*(threads) + last_block, queue)
series_sum += queue. get ()

return series_sum

Euler-Maclaurin formula

Algorithm 8 Evaluation of the tail T in (5.66)

Input: 4,5,z ¢ Cand N,M € IN

Output: T=YM, E)

R A T i e

e =
N = O

By U(—2k+1,—2k+2—s,—(a+N)log(z))

a<a+N
b < —log(z)
r<a-b
g« 1/r
p<s+r
c+b?

m < 2
n<b
<1
th<1+s-q

T+ tr-b/12
cfork=2k=M;k+ k+1do

—_
@

—_
e

—
o

[y
S

-
N

—
®

_

)
e

NN
M=

h <+ 2k+3

prp+th

pz(——h

o< (t2-p1+t-p2)g
t2<—(t1‘p1+t2-p2+t1—t2)q
m < m- (2k — 1)(2k)
n<mn-b

U+ ty-n-By/m

T+ T+u

. end for

(a+N)2k71

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

Number Theory 138

Asymptotic expansions

Algorithm 9 Compute first N Eulerian polynomials using recurrence

Input: z€ C,N €¢ N
Output: Ay(z) k€ {0,...,N}
1 A=/1] > Cache of polynomials A with initialization
y<z—1
r<1/y
t<r
fork=1,k=N;k<+ k+1do
s+ 0
t<t-y
u<+1
forj=0j=kj«j+1do
s s+ Alk]-u
ueu-(k=j)-r/(j+1)
end for
§4—s-t
14 Afk] s > Store new polynomial s
15: end for

e e
LN P

Algorithm 10 Compute first N rows of peak numbers triangle

Input: N € N
Output: N rows of P(k,),k € {0,...,N}

1 P=[[1],[2]] > Cache of coefficients P with initialization

2. fork=2k=N;k+— k+1do

3: 0= []
w < [k/2]
g+ [k/2]
forj=0;j=g+1j+j+1do

if] < w then
b« 2(j+1)Pk—1,]]
else

10: t1 <0
11: end if
12: if j > 0 then
13: ty < (k+1—2j)Plk—1,j—1]
14: else
15: th 0
16: end if
17: v[jl] < t1 +
18: end for
190 Plk|+v > Store row v
20: end for

D N AR L

Chapter 5. The Lerch Transcendent and Other Special Functions in Analytic

139

Number Theory

Algorithm 11 Evaluation of power series in asymptotic expansion (5.94)

Input: 4,5,z € C,R(a) >0and N € N
Output:

P o T e S e S G e G e S S
©® N> T B BN 2D

N N N DN
W N = O

N NN NN
P N9

O P N TR

—_

N

S(N) = % (logz(z) — coth <10gz(z))>

+ 1 % (5)x LI Ll co’ch(mt)k_1 csch(rtu)*Py(sech(mru)?)
s = ak(27r)k+1 yk+1 k!

logz < log(z)

logz2 < logz /2

g+ 1/(2m)
y<1+4i-logz-q
ian<1/a-q

n<—q

sech2 < sech(logz2)?
cothk < coth(logz2)
iu < 1/(logz2/m)
<+ iu

. d < csch(logz2)?m/ cothk

: ¢ (2/logz — cothk)/2

: P = GeneratePeakNumbers(N) > pre-compute N of peak numbers triangle
: 50

cfork=1,k=N;k+ k+1do

n+<mn-ia(s+k—1)

t<t-iu

d < d - (rtcothk /k)

pN « [k/2]

ps <0

sc<1

forj=0;j=pN;j+ j+1do
ps < ps+ Plk—1,j] - sc
sc <— sc - sech2

end for

h<t—d-ps

S<S+mn-h

: end for
: return (c + S)/a°

140

Bibliography

[1] Z. Altag. Integrals involving Bickley and Bessel functions in radiative
transfer, and generalized exponential integral functions.]. Heat Transfer,
118(3):789-792, 1996.

[2] T. Amdeberhan and D. Zeilberger. Hypergeometric series acceleration via
the WZ method. Electron. |. Combin., 4(3), 1996.

[3] Donald E. Amos. Algorithms 683: A portable FORTRAN subroutine for
exponential integrals of a complex argument. ACM Trans. Math. Softw.,
16(2):178-182, 1990.

[4] E. G. Andrews. Applications of basic hypergeometric functions. SIAM Re-
view, 16(4):441-484, 1974.

[5] T. M. Apostol. On the lerch zeta function. Pacific J. Math., 1(2):161-167, 1951.

[6] D. H. Bailey and J. M. Borwein. High-precision numerical integration:
Progress and challenges. Journal of Symbolic Computation, 46(7):741-754, 2011.

[7] D. H. Bailey, K. Jeyabalan, and X. S. Li. A comparison of three high-precision
quadrature schemes. Experimental Mathematics, 14(3):317-329, 2005.

[8] D. Berend and T. Tassa. Improved bounds on bell numbers and on moments
of sums of random variables. Probability and Mathematical Statistics, 30(2):185—
205, 2010.

[9] D.J. Bernstein. Fast multiplication and its applications. Algorithmic Number
Theory, 44:325-384, 2008.

[10] G. Boese. Eine majorante asymptotische Abschédtzung fiir die unvollstandige
Gammafunktion. Z. Angew. Math. Mech., (52):552-553, 1972.

[11] Boost. Boost C++ Libraries. http://www.boost.org/, 2016. Last accessed
2016-12-29.

[12] D. Borwein, J. M. Borwein, and O. Chan. The evaluation of Bessel func-
tions via exp-arc integrals. Journal of Mathematical Analysis and Applications,
341(1):478-500, 2008.

[13] D.Borwein, J. M. Borwein, and R. E. Crandall. Effective laguerre asymptotics.
SIAM |. Numerical Analysis, 46(6):3285-3312, 2008.

[14] J. M. Borwein, D. M. Bradley, and R. E. Crandall. Computational strategies for
the Riemann zeta function. Journal of Computational and Applied Mathematics,
121:247-296, 2000.

http://www.boost.org/

BIBLIOGRAPHY 141

[15] P.B. Borwein. An efficient algorithm for the Riemann zeta function. Canadian
Mathematical Society Conference Proceedings, 27:29-32, 2000.

[16] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational
algebra and number theory (London, 1993).

[17] A.Bostan, P. Gaudry, and E. Schost. Linear recurrences with polynomial coef-
ficients and application to integer factorization and Cartier-Manin operator.
SIAM Journal on Computing, 36(6):1777-1806, 2007.

[18] R. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge Uni-
versity Press, New York, NY, USA, 2010.

[19] R. P. Brent. The complexity of multiple-precision arithmetic. The Complexity
of Computatioanl Problem Solving, pages 126165, 1976.

[20] R.P.Brent and D. Harvey. Fast computation of Bernoulli, Tangent and Secant
numbers. In Computational and Analytical Mathematics, pages 127-142, New
York, NY, 2013. Springer New York.

[21] C. Brezinski and M. Redivo Zaglia. Extrapolation Methods. Theory and Practice,
volume 2 of Studies in Computational Mathematics. North-Holland Publishing
Co., Amsterdam, 1991. With 1 IBM-PC floppy disk (5.25 inch).

[22] H. Buchholz. The Confluent Hypergeometric Function with Special Emphasis on
Its Applications. Springer-Verlag, New York, 1969. Translated from the Ger-
man by H. Lichtbau and K. Wetzel.

[23] S. Chandrasekhar. Radiative Transfer. Dover Books on Intermediate and Ad-
vanced Mathematics. Dover Publications, 1960.

[24] C. Chiccoli, S. Lorenzutta, and G. Maino. A numerical method for general-
ized exponential integrals. Comput. Math. Appl., 14(4):261-268, 1987.

[25] C. Chiccoli, S. Lorenzutta, and G. Maino. An algorithm for exponential inte-
grals of real order. Computing, 45(3):269-276, 1990.

[26] C. Chiccoli, S. Lorenzutta, and G. Maino. Recent results for generalized ex-
ponential integrals. Comput. Math. Appl., 19(5):21-29, 1990.

[27] C. Chiccoli, S. Lorenzutta, and G. Maino. Concerning some integrals of the
generalized exponential-integral function. Comput. Math. Appl., 23(11):13-21,
1992.

[28] W.]. Cody. A survey of practical rational and polynomial approximation of
functions. SIAM Review, 12(3):400-423, 1970.

[29] W.]. Cody. Algorithm 715: SPECFUN-a portable FORTRAN package of spe-
cial function routines and test drivers. ACM Trans. Math. Softw., 19(1):22-30,
1993.

[30] W.]. Cody and H. C. Thacher, Jr. Chebyshev approximations for the expo-
nential integral Ei(x). Math. Comp., 23(106):289-303, 1969.

BIBLIOGRAPHY 142

[31] M. W. Coffey. On hypergeometric series reductions from integral represen-
tations, the Kampe de Feriet function, and elsewhere. Int. J. Mod. Phys.,
B(19):4483-4493, 2006.

[32] M. W. Coffey. A set of identities for a class of alternating binomial sums
arising in computing applications. Util. Math., 2007.

[33] M. W. Coffey. An efficient algorithm for the Hurwitz zeta and related func-
tions. Journal of Computational and Applied Mathematics, 225(2):338-346, 2009.

[34] H. Cohen. Number Theory - Vol 1I: Analytic and Modern Tools. Springer-Verlag
- Graduate Texts in Mathematics 240, 2007.

[35] H. Cohen, F. Rodriguez Villegas, and D. Zagier. Convergence acceleration of
alternating series. Experiment. Math., 9(1):3-12, 2000.

[36] O. Costin and S. Garoufalidis. Resurgence of the fractional polylogarithms.
2009.

[37] R.E. Crandall. Unified algorithms for polylogarithms, L-series, and zeta vari-
ants. 2012.

[38] A. Cuyt, V. Petersen, B. Verdonk, H. Waadeland, W. B. Jones, and C. Bonan-
Hamada. Handbook of Continued Fractions for Special Functions. Kluwer Aca-
demic Publishers Group, Dordrecht, 2007.

[39] N.G. de Bruijn. Asymptotic Methods in Analysis. Bibliotheca mathematica.
Dover Publications, 1970.

[40] A. Deafio and D. Huybrechs. Complex gaussian quadrature of oscillatory
integrals. Numerische Mathematik, 112(2):197-219, 2009.

[41] A. Deafio and N. M. Temme. On modified asymptotic series involving con-
fluent hypergeometric functions. Electronic Transactions on Numerical Analysis,
35:88-103, 2009.

[42] T.]J. Dekker. A floating-point technique for extending the available precision.
Numer. Math., 18(3):224-242,1971.

[43] NIST Digital Library of Mathematical Functions. http:/ /dlmf.nist.gov/, Release
1.0.14 of 2016-12-21. E. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. L.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller and B. V. Saunders, eds.

[44] E.D. Dolan and J. J. Moré. Benchmarking optimization software with perfor-
mance profiles. Mathematical Programming, 91(2):201-213, 2002.

[45] T.M. Dunster, A. Gil, and J. Segura. Uniform asymptotic expansions for la-
guerre polynomials and related confluent hypergeometric functions. 2017.

[46] W. Ehrhardt. The AMath and DAMath Special Functions (version 2.23), 2018.
http://www.wolfgang-ehrhardt.de/amath_functions.html.

http://www.wolfgang-ehrhardt.de/amath_functions.html

BIBLIOGRAPHY 143

[47] A. Enge, M. Gastineau, P. Théveny, and P. Zimmermann. mpc — A library
for multiprecision complex arithmetic with exact rounding. INRIA, 1.0.3 edition,
February 2015. http://mpc.multiprecision.org/.

[48] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher Tran-
scendental Functions. Vol. I. McGraw-Hill Book Company, Inc., New York-
Toronto-London, 1953.

[49] C. Ferreira and J. L. Lopez. Asymptotic expansions of the Hurwitz—Lerch
zeta function. Journal of Mathematical Analysis and Applications, 298(1):210-
224, 2004.

[50] C. Ferreira, J. L. Lépez, P. Pagola, and E. Pérez Sinusfa. The Laplace’s and
steepest descents methods revisited. Int. Math. Forum, 2:297-314, 2007.

[51] C.]. Fewster and D. Siemssen. Enumerating permutations by their run struc-
ture. The electronic journal of combinatorics, 21, 10 2014.

[52] P. Flajolet and R. Sedgewick. Mellin transforms and asymptotics: Finite dif-
ferences and Rice’s integrals. Theoretical Computer Science, (144):101-124, 1995.

[53] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, New York, NY, USA, 1 edition, 2009.

[54] L. Fousse, G. Hanrot, V. Lefevre, P. Pélissier, and P. Zimmermann. MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM
Trans. Math. Softw., 33(2), June 2007.

[55] J. Franklin and B. Friedman. A convergent asymptotic representation for inte-
grals. Mathematical Proceedings of the Cambridge Philosophical Society, 53(3):612—
619, 1957.

[56] Galassi et al. Gnu Scientific Library: Reference Manual (3rd Ed.). Network The-
ory Ltd., 2003.

[57] The GAP Group. GAP — Groups, Algorithms, and Programming, Version 4.10.0,
2018.

[58] W. Gautschi. Exponential integral floo e *t="dt for large values of n. J. Res.
Nat. Bur. Standards, 62:123-125, 1959.

[59] W. Gautschi. Gauss quadrature approximations to hypergeometric and con-
fluent hypergeometric functions. Journal of Computational and Applied Mathe-
matics, 139:173-187, 2002.

[60] A.Gil, D. Ruiz-Antolin, J. Segura, and N. M. Temme. Algorithm 969: Compu-
tation of the incomplete gamma function for negative values of the argument.
ACM Trans. Math. Softw., 43(3):26:1-26:9, November 2016.

[61] A. Gil, J. Segura, and N. M. Temme. Numerical methods for special functions.
SIAM, 2007.

http://mpc.multiprecision.org/

BIBLIOGRAPHY 144

[62] A.Gil,]. Segura, and N. M. Temme. Efficient and accurate algorithms for the
computation and inversion of the incomplete gamma function ratios. SIAM
J. Scientific Computing, 34(6), 2012.

[63] A. Gil, J. Segura, and N. M. Temme. Computing the kummer function
U(a,b,z) for small values of the arguments. Applied Mathematics and Com-
putation, 271:532 — 539, 2015.

[64] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foun-
dation for Computer Science. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2nd edition, 1994.

[65] S. Graillat. Accurate floating-point product and exponentiation. IEEE Trans-
actions on Computers, 58(7):994-1000, 2009.

[66] S. Graillat, P. Langlois, and N. Louvet. Compensated horner scheme. 2005.

[67] S. Graillat, P. Langlois, and N. Louvet. Improving the compensated Horner
scheme with a fused multiply and add. In Proceedings of the 2006 ACM Sym-
posium on Applied Computing, SAC '06, pages 1323-1327, New York, NY, USA,
2006.

[68] S.Graillat and V. Ménissier-Morain. Compensated horner scheme in complex
floating point arithmetic. 2008.

[69] T. Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library. http://gmplib.org/.

[70] D.S. Grebenkov. First exit times of harmonically trapped particles: a didactic
review. Journal of Physics A: Mathematical and Theoretical, 48(1):013001, 2015.

[71] A. Griffin, Wen-Chin Wu, and S. Stringari. Hydrodynamic modes in a
trapped Bose gas above the Bose-Einstein transition. Phys. Rev. Lett., 78:1838—
1841, Mar 1997.

[72] J. Guillera and J. Sondow. Double integrals and infinite products for some
classical constants via analytic continuations of lerch’s transcendent. The Ra-
manujan Journal, 16(3):247-270, Aug 2008.

[73] B. Haible and T. Papanilolaou. Fast evaluation of series of rational num-
bers. J.P. Buhler (Ed.), Algorithmic Number Theory, Third International Sympo-
sium, ANTS-11II, Lecture Notes in Computer Science, 1423, 1998.

[74]]J. Harrison. Fast and Accurate Bessel Function Computation. In 2009 19th
IEEE Symposium on Computer Arithmetic, pages 104-113, 2009.

[75] D. Harvey. A multimodular algorithm for computing Bernoulli numbers.
Mathematics of Computation, 79(272):2361-2370, 2010.

[76] R. Hekmati and H. Mirhajianmoghadam. Nested performance profiles for
benchmarking software. preprint, 2018.

http://gmplib.org/

BIBLIOGRAPHY 145

[77] P. Henrici. Applied and Computational Complex Analysis. Vol. 2: Special
Functions—Integral Transforms—Asymptotics—Continued Fractions. Wiley-
Interscience [John Wiley & Sons], New York, 1977. Reprinted in 1991.

[78] G. Hiary. Fast methods to compute the Riemann zeta function. Annals of
mathematics, 174:891-946, 2011.

[79] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double precision
floating point arithmetic. In Proceedings 15th IEEE Symposium on Computer
Arithmetic. ARITH-15 2001, pages 155-162, 2001.

[80] Y. Hida, X. S. Li, and D. H. Bailey. Library for double-double and quad-
double arithmeti. NERSC Division, Lawrence Berkeley National Laboratory, 2007.

[81] N.]J. Higham. Accuracy and Stability of Numerical Algorithms. Society for In-
dustrial and Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2002.

[82] D. Huybrechs and S. Vandewalle. On the evaluation of highly oscillatory
integrals by analytic continuation. SIAM |. Numerical Analysis, 44(3):1026—
1048, 2006.

[83] A. Iserles. On the numerical quadrature of highly-oscillating integrals I:
Fourier transforms. IMA Journal of Numerical Analysis, 24(3):365-391, 2004.

[84] S.Janson, D. E. Knuth, T. Luczak, and B. Pittel. The birth of the giant compo-
nent. Random Structures Algorithms, 4(3):231-358, 1993. With an introduction
by the editors.

[85] U.D. Jentschura, P. J. Mohr, G. Soff, and E.]. Weniger. Convergence accelera-
tion via combined nonlinear-condensation transformations. Computer Physics
Communications, 116(1):28 — 54, 1999.

[86] U. D. Jentschura, G. Soff, and P. J. Mohr. Lamb shift of 3p and 4p states and
the determination of a. Phys. Rev. A, 56:1739-1755, Sep 1997.

[87] F. Johansson. Arb: a C library for ball arithmetic. ACM Communications in
Computer Algebra, 47(4):166-169, 2013.

[88] F.Johansson. Evaluating parametric holonomic sequences using rectangular
splitting. In Proceedings of the 39th International Symposium on Symbolic and
Algebraic Computation, ISSAC 14, pages 256-263, 2014.

[89] E. Johansson. Rigorous high-precision computation of the hurwitz zeta func-
tion and its derivatives. Numerical Algorithms, 69(2):253-270, Jun 2015.

[90] E. Johansson. Computing hypergeometric functions rigorously. working pa-
per or preprint, 2016.

[91] F. Johansson. Numerical integration in arbitrary-precision ball arithmetic.
In Mathematical Software — ICMS 2018, pages 255-263, Cham, 2018. Springer
International Publishing.

[92] F.Johansson et al. mpmath: a Python library for arbitrary-precision floating-point
arithmetic (version 0.19), December 2014. http://mpmath.org/.

http://mpmath.org/

BIBLIOGRAPHY 146

[93] M. Joldes, O. Marty, J. Muller, and V. Popescu. Arithmetic algorithms for ex-
tended precision using floating-point expansions. IEEE Transactions on Com-
puters, 65(4):1197-1210, 2016.

[94] M. Joldes, J.-M. Muller, and V. Popescu. On the computation of the recipro-
cal of floating point expansions using an adapted Newton-Raphson iteration.
2014 IEEE 25th International Conference on Application-Specific Systems, Archi-
tectures and Processors, pages 63-67, 2014.

[95] E.Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for
Python, 2001-.

[96] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on au-
tomata (in russian). Doklady Akad. Nauk SSSR, 145:293-294, 1962.

[97] J. D. Kecli¢ and P. M. Vasié. Some inequalities for the gamma function. Publ.
Inst. Math. (Beograd) (N. S.), 11:107-114, 1971.

[98] F. Klein. Lectures of the Icosahedron. Dover Publications, 2003.

[99] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumer-
ical Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1997.

[100] P.Koev and A. Edelman. The efficient evaluation of the hypergeometric func-
tion of a matrix argument. Mathematics of Computation, 75(254):833-846, 2006.

[101] A.Laurincikas and R. Garunkstis. The Lerch zeta-function. Springer, 2002.

[102]]J. LeCaine. A Table of Integrals Involving the Functions En(x). N.R.C. (National
Research Council). National Research Council Canada, Division of Atomic
Energy, 1949.

[103] V. Lefévre and P. Zimmermann. Optimized Binary64 and Binary128 Arith-
metic with GNU MPER. In 24th IEEE Symposium on Computer Arithmetic
(ARITH 24), pages 18-26, 2017.

ekax

[104] M. Lerch. Note sur la fonction &(w, x,s) = Y2, (

(g Acta Math., 11(1-
4):19-24, 1887.

[105] D. Levin. Fast integration of rapidly oscillatory functions. Journal of Compu-
tational and Applied Mathematics, 67(1):95 — 101, 1996.

[106] R. Lipschitz. Untersuchung einer aus vier Elementen gebildeten Reihe. J.
Reine Angew. Math., 54:313-328, 1857.

[107]]J.L.Lo6pez and P.J. Pagola. The confluent hypergeometric functions M(a, b; z)
and U(a, b; z) for large b and z. . Comput. Appl. Math., 233(6):1570-1576, 2010.

[108] Y. L. Luke. Algorithms for the Computation of Mathematical Functions. Academic
Press, 1977.

[109] Maplesoft, a division of the Waterloo Maple Inc. Maple 18.

BIBLIOGRAPHY 147

[110] M. Mori and M. Sugihara. The double-exponential transformation in numer-
ical analysis. Journal of Computational and Applied Mathematics, 127:287-296,
2001.

[111] S. L. Moshier. Cephes mathematical function library, 2000.

[112] J.-M. Muller, N. Brisebarre, F. de Dinechin, V. Jeannerod C.-P.and Lefévre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres. Handbook of Floating-Point
Arithmetic. Birkhauser, 2010.

[113] K. E. Muller. Computing the confluent hypergeometric function, M(a, b, x).
Numerische Mathematik, 90(1):179-196, 2001.

[114] The Numerical Algorithms Group (NAG). The NAG Library. Oxford, United
Kingdom, 2018. www.nag.com.

[115] W. F. Nardin, M. Perger and A. Bhalla. Algorithm 707. conhyp : A numerical
evaluator of the confluent hypergeometric function for complex arguments
of large magnitudes. ACM Trans. Math. Software, 18:345-349, 1992.

[116] W. F. Nardin, M. Perger and A. Bhalla. Numerical evaluation of the conflu-
ent hypergeometric function for complex arguments of large magnitudes. J.
Comput. Appl. Math., 39:193-200, 1992.

[117] G. Navas-Palencia. Portfolio credit risk: Models and numerical methods.
Master’s thesis, Universitat Politecnica de Catalunya, 2016.

[118] G. Navas-Palencia. Fast and accurate algorithm for the generalized exponen-
tial integral E, (x) for positive real order. Numerical Algorithms, 77(2):603-630,
2018.

[119] G. Navas-Palencia. High-precision computation of the confluent hypergeo-
metric functions via Franklin-Friedman expansion. Advances in Computational
Mathematics, 44(3):841-859, 2018.

[120] G. Navas-Palencia and A. Arratia. On the computation of confluent hyper-
geometric functions for large imaginary part of parameters b and z. Lecture
Notes in Computer Science, 9725:241-248, 2016.

[121] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product. SIAM J.
Sci. Comput., 26(6):1955-1988, 2005.

[122] A. B. Olde Daalhuis. Hyperasymptotic expansions of confluent hypergeo-
metric functions. IMA Journal of Applied Mathematics, 49:203-216, 1992.

[123] A.B. Olde Daalhuis and F. W. J. Olver. Hyperasymptotic solutions of second-
order linear differential equations. I. Methods Appl. Anal., 2(2):173-197, 1995.

[124] E. W.]. Olver. Uniform, exponentially improved, asymptotic expansions for
the confluent hypergeometric function and other integral transforms. SIAM
J. Math. Anal., 22(5):1475-1489, 1991.

[125] F. W.]. Olver. Asymptotics and Special Functions. A. K. Peters, Wellesley, MA,
1997. Reprint, with corrections, of original Academic Press edition, 1974.

www.nag.com

BIBLIOGRAPHY 148

[126] T. Ooura. A double exponential formula for the Fourier transforms. Research
Institute for Mathematical Sciences, 41:971-977, 2005.

[127] T. Ooura and M. Mori. The double exponential formula for oscillatory func-
tions over the half infinite interval. Journal of Computational and Applied Math-
ematics, 38(1):353-360, 1991.

[128] R.B. Paris. The Stokes phenomenon and the Lerch zeta function. Mathematica
Aeterna, 6(2):165-179, 2016.

[129] R.B. Paris. High-precision evaluation of the Bessel functions via Hadamard
series. Journal of Computational and Applied Mathematics, 224(1):84 — 100, 2009.

[130] M. Paterson and L. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM Journal on Computing, 2(1):60-66,
1973.

[131] T.N. L. Patterson. On high precision methods for the evaluation of Fourier in-
tegrals with finite and infinite limits. Numerische Mathematik, 27:41-52, 1976.

[132] J. W. Pearson. Computation of hypergeometric functions. Master’s thesis,
University of Oxford, 2009.

[133] J. W. Pearson, S. Olver, and M. A. Porter. Numerical methods for the com-
putation of the confluent and Gauss hypergeometric functions. Numerical
Algorithms, 74(3):821-866, 2017.

[134] M. Petkovsek, H. Wilf, and D. Zeilberger. A=B. A K Peters, Ltd., 1997.

[135] D. M. Priest. Algorithms for arbitrary precision floating point arithmetic. In
Proceedings 10th IEEE Symposium on Computer Arithmetic, pages 132-143,1991.

[136]]J. L. Raabe. Zuriickfiihrung einiger Summen und bestimmten Integrale auf
die Jakob Bernoullische Function. J. reine angew. Math., 42:348-376, 1851.

[137] S. Roman. The Umbral Calculus. Pure and Applied Mathematics. Elsevier
Science, 1984.

[138] Sra S. Directional statistics in machine learning: A brief review. Applied Di-
rectional Statistics, 2016.

[139] A. Schonhage and V. Strassen. Schnelle multiplikation grosser zahlen. Com-
puting, 7:281-292, 1971.

[140] J.R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Discrete & Computational Geometry, 18(3):305-368, 1997.

[141] B.W. Shore and D.H. Menzel. Principles of atomic spectra. Wiley series in pure
and applied spectroscopy. Wiley, 1968.

[142] A.Sidi. Practical Extrapolation Methods: Theory and Applications, volume 10 of
Cambridge Monographs on Applied and Computational Mathematics. Cambridge
University Press, Cambridge, 2003.

BIBLIOGRAPHY 149

[143] L.]. Slater. Confluent Hypergeometric Functions. Cambridge University Press,
Cambridge-New York, 1960. Table errata: Math. Comp. v. 30 (1976), no. 135,
677-678.

[144] N.]J. A. Sloane. The On-Line Encyclopedia of Integer Sequences.

[145] D. M. Smith. Efficient multiple-precision evaluation of elementary functions.
Mathematics of Computation, 52:131-131, 1989.

[146] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE
Std 754-2008, pages 1-70, 2008. Available from https://ieeexplore.ieee.
org/document/4610935.

[147] RogueWave Software. IMSL Numerical Libraries. Louisville, USA,
2018. https://www.roguewave.com/help-support/documentation/
imsl-numerical-libraries.

[148] H.M Srivastava and P. G. Todorov. An explicit formula for the general-
ized Bernoulli polynomials. Journal of Mathematical Analysis and Applications,
130(2):509-513, 1988.

[149] J. R. Stembridge. Enriched p-partitions. Transactions of the American Mathe-
matical Society, 349(2):763-788, 1997.

[150] H. Takahasi and M. Mori. Double exponential formulas for numerical inte-
gration. Publications of the Research Institute for Mathematical Sciences, 9:721—
741, 1974.

[151] D. Tasche. Estimating discriminatory power and PD curves when the number
of defaults is small. Lloyds Banking Group, 2009.

[152] N. M. Temme. Uniform asymptotic expansions of confluent hypergeometric
functions. J. Inst. Math. Appl., 22(2):215-223, 1978.

[153] N. M. Temme. On the expansion of confluent hypergeometric functions in
terms of Bessel functions. Journal of Computational and Applied Mathematics,
7:27-32,1981.

[154] N. M. Temme. The numerical computation of the confluent hypergeomet-
ric function U(a, b, z). Numer. Math., 41(1):63-82, 1983. Algol 60 variable-
precision procedures are included.

[155] N. M. Temme. Uniform asymptotic expansions for Laplace integrals. Analy-
sis, 3:221-249, 1983.

[156] N. M. Temme. Laplace type integrals: Transformations to standard form and
uniform asymptotic expansions. Quarterly of Applied Mathematics, 43(1):103—
123, 1985.

[157] N. M. Temme. Asymptotic Methods for Integrals, volume 6 of Series in Analysis.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.

[158] The MathWorks, Inc. Matlab release 2017b.

https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935
https://www.roguewave.com/help-support/documentation/imsl-numerical-libraries
https://www.roguewave.com/help-support/documentation/imsl-numerical-libraries

BIBLIOGRAPHY 150

[159] The PARI Group, Univ. Bordeaux. PARI/GP version 2.11.0, 2018. Available
from http://pari.math.u-bordeaux.fr/.

[160] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
8.4.0),2018. http://www.sagemath.org.

[161] L. N. Trefethen and J. A. C. Weideman. The exponentially convergent trape-
zoidal rule. SIAM Review, 56(3):385-458, 2014.

[162] F. G. Tricomi. Fonctions hypergéométriques confluentes. Mémorial des sciences
mathématiques, 140:1-86, 1960.

[163] W.H. Vandevender and K. H. Haskell. The SLATEC mathematical subpro-
gram library. ACM SIGNUM Neuwsletters, 17(3), 1982.

[164] L. Vepstas. An efficient algorithm for accelerating the convergence of os-
cillatory series, useful for computing the polylogarithm and Hurwitz zeta
functions. Numerical Algorithms, 47(3):211-252, 2008.

[165] G.N. Watson. The harmonic functions associated with the parabolic cylinder.
Proceedings of the London Mathematical Society, s2-17(1):116-148, 1918.

[166] E.]. Weniger. Nonlinear sequence transformations for the acceleration of con-
vergence and the summation of divergent series. Computer Physics Reports,
10(5):189 — 371, 1989.

[167] E.]. Weniger. Summation of divergent power series by means of factorial se-
ries. Applied Numerical Mathematics, 60(12):1429 — 1441, 2010. Approximation
and extrapolation of convergent and divergent sequences and series (CIRM,
Luminy - France, 2009).

[168]]J. L. Willis. Acceleration of generalized hypergeometric functions through
precise remainder asymptotics. Numerical Algorithms, 59(3):447-485, 2012.

[169] Wolfram Research, Inc. Mathematica 10.

[170] J. Worpitzky. Studien iiber die Bernoullischen und Eulerschen zahlen. J. reine
angew. Math., 94:203-233, 1883.

[171] S. Zhang and]. Jin. Computation of special functions. John Wiley & Sons Inc.,
New York, 1996.

[172] Y. Zhuang. Counting permutations by runs. Journal of Combinatorial Theory,
Series A, 142:147 — 176, 2016.

http://pari.math.u-bordeaux.fr/
http://www.sagemath.org

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Analytic and Numerical Methods for Special Functions
	Analytic methods and asymptotic expansions
	Introduction
	Asymptotic methods for integrals
	Watson's lemma
	Laplace's method and saddle point method

	Uniform expansions for Laplace-type integrals

	Numerical Methods
	Quadrature methods
	Continued fractions
	Sequence acceleration techniques
	Other methods

	Software Development for the Numerical Evaluation of Special Functions
	Arbitrary-precision arithmetic
	Algorithms
	Libraries

	Floating-point arithmetic
	Definitions and basic notation
	Floating-point expansions and error-free transformation
	Basic algorithms

	DD vs MPFR for the evaluation of Riemann zeta function
	Borwein's algorithms
	Implementation and benchmarks

	Development of numerical libraries in floating-point precision
	Numerical libraries and compilers
	Design of software for computing special functions
	Testing methodologies
	Benchmarking methodologies

	GNSTLIB project
	Introduction
	Efficient vectorization via generalized power series
	Benchmarks
	Vectorized exponential integral E1(x)
	Exponential integral E1(x)
	Exponential integral Ei(x)

	Fast and Accurate Algorithm for the Generalized Exponential Integral for positive real order
	Introduction
	Methods of computation
	Special values
	Series expansions
	Series in terms of the confluent hypergeometric function
	Laguerre series
	Taylor series for 1 x < 2
	Series expansions: special cases

	Asymptotic expansions
	Large x and fixed
	Large
	Large and fixed x

	Other numerical methods
	Factorial series
	Continued fractions
	Numerical integration
	Other integrals

	Algorithm and implementation
	Algorithm for integer order
	Algorithm for real order

	Benchmarks
	Arbitrary-precision floating-point libraries

	Conclusions

	Confluent Hypergeometric Functions
	Background and Previous Work
	Confluent hypergeometric function of the first and second kind
	Computational methods and available software
	Applications

	On the Computation of Confluent Hypergeometric Functions for Large Imaginary Part of Parameters b and z
	Introduction
	Algorithm
	Path of steepest descent
	Case U(a,b,z), (z)
	Case U(a,b,z), (b)
	Case 1F1(a,b,z), (z)
	Case 1F1(a,b,z), (b)

	Numerical quadrature schemes
	Adaptive quadrature for oscillatory integrals
	Gauss-Laguerre quadrature

	Numerical examples
	Applications
	Conclusions

	High-precision Computation of the Confluent Hypergeometric Functions via Franklin-Friedman Expansion
	Introduction
	The Franklin-Friedman expansion
	The expansion for U(a, b, z)
	The Franklin-Friedman expansion coefficients
	Analysis of the coefficients ck(z)

	Efficient computation of U(a,b,z)
	Numerical experiments
	Discussion

	The Lerch Transcendent and Other Special Functions in Analytic Number Theory
	Background
	Special number and polynomials
	Bernoulli numbers and polynomials
	Euler numbers and polynomials
	Stirling numbers and polynomials
	Other special numbers and polynomials

	The Lerch transcendent and related functions
	Software
	Applications

	Numerical Methods and Arbitrary-Precision Computation of the Lerch Transcendent
	Introduction
	Numerical methods
	Euler-Maclaurin formula
	Uniform asymptotic expansion for (z, s, a)
	Asymptotic expansion for large z

	Algorithmic details and implementation
	Evaluation of L-series
	Evaluation of the Euler-Maclaurin error bound
	Evaluation of the Euler-Maclaurin tail
	Evaluation of asymptotic expansions
	Numerical integration

	Benchmark
	Discussion
	Appendix - Algorithms and implementations
	L-series
	Euler-Maclaurin formula
	Asymptotic expansions

