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ABSTRACT	

	
The	 rapid	 development	 of	 high-throughput	 sequencing	 technologies	
pushed	 forward	 the	 fields	 of	 medical	 genomics	 and	 precision	 medicine,	
creating	 many	 new	 applications	 for	 diagnostics	 and	 clinical	 studies	 that	
require	 high	 quality	 data	 and	 highly	 accurate	 analysis	 methods.	
Distinguishing	 errors	 from	 real	 variants	 in	 Next	 Generation	 Sequencing	
data	 is	 a	 challenge	 when	 systematic	 errors,	 random	 sequencing	 errors,	
germline	 variants	 or	 somatic	 variants	 at	 very	 low	 allele	 frequency	 are	
present	 in	 the	same	data.	 In	 the	 first	part	of	 this	 thesis,	we	developed	a	
genotype	 callability	 filter	 (ABB)	 able	 to	 identify	 systematic	 variant	 calling	
errors	 that	were	not	 found	by	 state-of-the	 art	methods.	 This	 tool	 cleans	
false	positive	 calls	 from	 somatic	 and	 germline	 variant	 callsets,	 as	well	 as	
detects	 false	 gene-disease	 associations	 in	 case-control	 studies.	 Secondly,	
we	 developed	 a	 set	 of	 novel	 methods	 able	 to	 distinguish	 and	 correct	
sequencing	and	PCR	errors	with	the	use	of	molecular	barcodes,	permitting	
us	 to	 build	 error	 rate	models	 for	 the	 detection	 of	 somatic	mutations	 at	
extremely	 low	 allele	 frequencies.	 We	 demonstrated	 the	 applicability	 of	
our	 methods	 for	 liquid	 biopsy	 and	 monitoring	 of	 cancer	 treatment	
response	 in	 a	 longitudinal	 study	 of	 the	 circulating-tumor	 DNA	 (ctDNA)	
kinetics	 in	 20	 head	 and	 neck	 squamous	 cell	 carcinoma	 patients	 during	
radiochemotherapy	 (RCTX).	 As	 final	 part	 of	 this	 thesis,	 we	 characterized	
mosaic	mutations	in	a	multi-tissue,	multi-individual	study	using	a	cohort	of	
thousands	 of	 samples	 from	 hundreds	 of	 healthy	 individuals.	 The	 high	
number	 of	 embryonic	 mosaic	 mutations	 we	 observed	 in	 coding	 regions	
implies	 novel	 hypotheses	 and	 diagnostic	 procedures	 for	 investigating	
genetic	causes	of	disease	and	cancer	predisposition.	
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RESUM	

	
El	 ràpid	 desenvolupament	 de	 les	 tecnologies	 de	 seqüenciació	 d’alt	
rendiment	 ha	 impulsat	 els	 camps	 de	 la	 genòmica	 mèdica	 i	 la	 medicina	
d’alta	 precisió,	 creant	 una	 gran	 varietat	 de	 noves	 aplicacions,	 les	 quals	
requereixen	 dades	 d’una	 qualitat	 excel·lent	 i	mètodes	 d’anàlisi	 altament	
precisos.	La	distinció	entre	errors	i	variants	reals	en	dades	de	seqüenciació	
de	 propera	 generació	 (NGS)	 és	 un	 repte	 quan	 hi	 ha	 errors	 sistemàtics	 o	
aleatoris	 mesclats	 amb	 variants	 germinals	 o	 somàtiques	 a	 freqüències	
al·lèliques	 molt	 baixes.	 En	 la	 primera	 part	 d'aquesta	 tesi,	 hem	
desenvolupat	 un	 filtre	 per	 al	 genotipatge	 de	 variants	 (ABB)	 capaç	
d'identificar	 errors	 sistemàtics	 durant	 el	 procés	 de	 detecció	 de	 variants	
que	 altres	 mètodes	 convencionals	 no	 poden	 trobar.	 Aquesta	 eina	 filtra	
falsos	 positius	 del	 conjunt	 de	 variants	 finals	 en	 estudis	 de	 variacions	
somàtiques	 i	 germinals,	 així	 com	 també	 detecta	 falses	 associacions	 de	
malalties	 gèniques	 en	 estudis	 de	 casos-controls.	 En	 segon	 lloc,	 hem	
desenvolupat	un	conjunt	de	nous	mètodes	capaços	de	distingir	 i	 corregir	
els	 errors	 de	 seqüenciació	 i	 PCR	 amb	 l’ús	 d’identificadors	 moleculars.	
Aquests	 ens	 permeten	 modelar	 les	 taxes	 d’error	 i	 conseqüentment	
detectar	mutacions	 somàtiques	 a	 freqüències	 al·lèliques	 extremadament	
baixes.	 A	 més,	 hem	 demostrat	 l’aplicabilitat	 d’aquests	 mètodes	 per	
l’anàlisi	 de	 biòpsies	 líquides	 i	 el	 seguiment	 de	 la	 resposta	 al	 tractament	
contra	el	càncer	en	un	estudi	longitudinal	de	la	cinètica	de	l’ADN	de	tumor	
circulant	(ctDNA)	en	20	pacients	amb	carcinoma	de	cèl·lules	escamoses	de	
cap	 i	 coll	 durant	 radioquimioteràpia	 (RCTX).	 Per	 finalitzar	 aquesta	 tesi,	
hem	caracteritzat	les	mutacions	mosaiques	en	un	estudi	multi-teixit	multi-
individu	utilitzant	una	cohort	de	centenars	d'individus	sans	amb	milers	de	
mostres.	 L’elevat	 nombre	 de	 mutacions	 mosaiques	 codificants	 que	
ocorren	 durant	 el	 desenvolupament	 embrionari	 humà	 implica	 noves	
hipòtesis	 i	 procediments	diagnòstics	per	 investigar	 les	 causes	 genètiques	
d’una	gran	diversitat	de	malalties	i	la	predisposició	al	càncer.	



	

	

	 	



	

VII	

TABLE	OF	CONTENTS	

ACKNOWLEDGEMENTS	 ________________________________________	I	

ABSTRACT	__________________________________________________	III	

RESUM	 ____________________________________________________	 V	

LIST	OF	FIGURES	_____________________________________________	XI	

LIST	OF	SUPPLEMENTARY	FIGURES	_____________________________	XIII	

LIST	OF	TABLES	_____________________________________________	XV	

LIST	OF	SUPPLEMENTARY	TABLES	______________________________	XV	

ABBREVIATIONS	___________________________________________	XVII	

INTRODUCTION	 _____________________________________________	 1	

1.	 From	Mendel	to	Next-Generation	Sequencing	______________	 1	

2.	 Next-Generation	Sequencing	era	_________________________	 2	

3.	 Next-generation	sequencing	and	short	variant	detection	_____	 4	
3.1.	 Library	preparation	and	sequencing	___________________	 5	
3.2.	 Read	pre-processing	and	quality	control	_______________	 7	
3.3.	 Alignment	_______________________________________	 8	
3.4.	 Variant	calling	and	filtering	__________________________	 9	
3.5.	 Applications	_____________________________________	 11	

4.	 The	use	of	 liquid	biopsies	 for	monitoring	cancer	patients	during	

and	after	treatment	_______________________________________	 13	
4.1.	 Circulating	Cell-free	DNA	 __________________________	 13	
4.2.	 Circulating-tumor	DNA	and	its	use	in	cancer	diagnostics	 _	 15	
4.3.	 Early-diagnosis	using	ctDNA	________________________	 16	
4.4.	 Detecting	tumor	heterogeneity	using	ctDNA	___________	 16	
4.5.	 Monitoring	patients	during	and	after	treatment	using	ctDNA	
	 	_______________________________________________	 17	
4.6.	 Limitations	in	ctDNA	analysis	_______________________	 18	

5.	 Somatic	and	mosaic	mutations	in	healthy	individuals	_______	 19	
5.1.	 Importance	of	timing	in	somatic	mosaic	mutations	______	 20	
5.2.	 Mosaic	mutations	during	human	development	_________	 22	



	

	

5.3.	 Somatic	mutations	during	life	in	healthy	individuals	_____	 22	

6.	 Objectives	__________________________________________	 23	

CHAPTER	 1:	 Detection,	 characterization	 and	 importance	 of	 systematic	

errors	in	re-sequencing	studies	________________________________	 27	

CHAPTER	 2:	 Identifying	 somatic	mutations	 in	 cell-free	 DNA	 from	 blood	

plasma	to	monitor	cancer	patients	pre-,	during	and	post-treatment	__	 43	

Dynamics	 of	 circulating	 cell-free	 tumor	 DNA	 in	 HNSCC	 patients	

receiving	radiochemotherapy	correlates	with	treatment	response	_	 47	

1.	 Introduction	 ________________________________________	 49	

2.	Patients	and	Methods	_________________________________	 50	

3.	Results	_____________________________________________	 53	

4.	Discussion	 __________________________________________	 60	

5.	Supplementary	material	_______________________________	 63	

6.	Supplementary	figures	and	tables	_______________________	 69	

APPENDIX:	 Use	 of	 unique	 molecular	 identifiers	 to	 detect	 ultra-rare	

somatic	variants	in	cell-free	DNA	____________________________	 73	

1.	Methods	 ___________________________________________	 73	
1.1.	 Processing	reads	_________________________________	 73	
1.2.	 Barcode	correction	_______________________________	 74	
1.3.	 Error	rate	calculation	 _____________________________	 75	
1.4.	 Targeted	variant	calling	 ___________________________	 75	
1.5.	 Minimal	Residual	Disease	(MRD)	score	 _______________	 77	
1.6.	 Variant	calling	and	MRD	performance	________________	 77	
1.7.	 Samples	used	 ___________________________________	 78	

2.	Results	_____________________________________________	 79	
2.1.	 Deduplication	and	error	correction	__________________	 79	
2.2.	 Variant	calling	___________________________________	 80	
2.3.	 Minimal	residual	disease	 __________________________	 81	

CHAPTER	3:	Detecting	mosaic	mutations	in	healthy	tissues	of	the	human	

genome	___________________________________________________	 85	



	

IX	

The	 rate	 and	 spectrum	 of	 mosaic	 mutations	 during	 embryogenesis	

revealed	by	RNA	sequencing	of	49	tissues	_____________________	 89	

1.	Background	_________________________________________	 91	

2.	Results	_____________________________________________	 92	

3.	Discussion	 _________________________________________	 100	

4.	Conclusion	_________________________________________	 101	

5.	Methods	 __________________________________________	 102	

6.	Supplementary	information	___________________________	 112	

DISCUSSION	 ______________________________________________	 117	

CONCLUSIONS	 ____________________________________________	 125	

REFERENCES	______________________________________________	 129	

ANNEX	___________________________________________________	 151	
	 	



	

	

	 	



	

XI	

LIST	OF	FIGURES	

Figure	1	|	Typical	next-generation	re-sequencing	workflow.	 __________	 5	

Figure	2	|	The	origin	of	the	cell-free	DNA.	________________________	 14	

Figure	3	|	Potential	ctDNA	applications	in	clinical	cancer	research.	____	 15	

Figure	 4	 |	 Genetic	 Intra-tumor	 heterogeneity	 (A)	 and	 the	 correspondent	

phylogeny	(B)	in	patient	with	renal	carcinoma.	____________________	 17	

Figure	5	|	Different	stages	of	human	embryogenesis	and	life.	________	 20	

Figure	6	|	Importance	of	timing	in	mosaic	mutations.	 ______________	 21	

Figure	 7	 |	 Timeline	 for	 cfDNA	 sampling,	 treatment	 regime	 and	 ctDNA	

analysis.	___________________________________________________	 54	

Figure	8	|	Variant	allele	frequencies	(VAF)	of	monitored	driver	mutations	in	

plasma	at	different	time	points	during	treatment.	 _________________	 56	

Figure	9	|	Longitudinal	profiles	of	ctDNA	levels	in	MRD	patients.	______	 57	

Figure	10	|	Longitudinal	profiles	of	cvDNA	levels	in	plasma.	__________	 59	

Figure	11	|	Barcode	correction	strategy.	_________________________	 79	

Figure	12	|	Error	rates	based	on	deduplication	level.	 _______________	 80	

Figure	13	|	Detection	limits	of	the	variant	calling.	 _________________	 81	

Figure	14	|	Minimal	residual	disease	(MRD)	detection	limit.	 _________	 83	

Figure	 15	 |	 Identification	 of	 mosaic	 mutations	 acquired	 during	 various	

developmental	stages	and	adult	life.	____________________________	 92	

Figure	16	|	Rate	and	mutational	signatures	of	mosaic	mutations	in	healthy	

individuals	acquired	during	embryogenesis.	 ______________________	 94	

Figure	 17	 |	Rate	 of	 somatic	 mutations	 varies	 significantly	 across	 the	 46	

tissues	of	the	GTEx	cohort	_____________________________________	 97	

Figure	18	|	Mutational	signatures	observed	in	tissue	sub-groups.	_____	 99	



	

	

	 	



	

XIII	

LIST	OF	SUPPLEMENTARY	FIGURES	

Supp.	Figure	1	|	Oncoplot	of	10	most	frequently	mutated	genes	with	driver	

mutations.	_________________________________________________	 69	

Supp.	Figure	2	|	Correlation	of	ctDNA	fraction	 in	the	plasma	with	(A)	the	

fraction	of	DNA	fragments	in	the	size	range	90-150	bps,	and	(B)	the	tumor	

volume	before	treatment.	_____________________________________	 70	

Supp.	 Figure	 3	 |	 Heatmap	 with	 tumor	 allele	 frequencies	 of	 variants	

detected	in	this	study	(ctDNA	fractions)	across	different	patients	and	time	

points.	____________________________________________________	 71	

Supp.	Figure	4	|	Lineage	tree	of	human	embryogenesis	and	organogenesis	

including	49	tissues	studied	in	GTEx.	 ___________________________	 112	

Supp.	 Figure	 5	 |	 Variant	 allele	 frequency	 (VAF)	 distribution	 of	 mosaic	

variants	mapped	to	different	stages	of	embryogenesis	.	____________	 113	

Supp.	Figure	6	|	Rate	of	late	embryonic	(organ-specific)	mosaic	mutations	

observed	per	tissue	and	individual	in	human	coding	regions	(45	Mbps).	 113	

Supp.	Figure	7	|	Quality	control	 for	RNA-seq	data	of	 the	GTEx	cohort	 for	

somatic	mutation	analysis.	___________________________________	 114	

Supp.	Figure	8	|	Uncorrected	rate	of	somatic	mutations	per	tissue.	___	 115	

Supp.	Figure	9	|	Signatures	of	positive	selection	in	cancer	genes	identified	

for	sun-exposed	skin	and	esophagus-mucosa.	____________________	 115	



	

	

	 	



	

XV	

LIST	OF	TABLES	

Table	1	|	Comparison	of	several	sequencing	platforms.	______________	 7	

Table	2	|Tissues	derived	from	the	three	germ	layers	________________	 21	

	

LIST	OF	SUPPLEMENTARY	TABLES	

Supp.	Table	1	|	Correlation	analysis	between	VAF	in	ctDNA	and	treatment	

time	points.	________________________________________________	 72	

Supp.	Table	2	|	HPV-positive	individuals’	information.	______________	 72	

Supp.	 Table	 3	 |	 Performance	 of	 RNA-seq	 based	 variant	 detection	 in	 CLL	

samples	using	different	thresholds	for	variant	allele	frequency	(VAF).	_	 116	

Supp.	Table	4	|	Number	and	rate	of	EEMMs	and	MEMMs	in	the	four	sets	

of	constitutively	expressed	genes.	 _____________________________	 116	

Supp.	Table	5	|	Signature	of	selection	in	cancer	genes.	 ____________	 116	

	

	



	

	

	

	 	



	

XVII	

ABBREVIATIONS	

NGS	 Next-Generation	Sequencing	
ABB	 Allele	Balance	Biasds	
AB	 Allele	Balance	

AFB1	 Aflatoxin	B1		
AUC	 Area	Under	the	Curve	
BAM	 Sequence	Alignment	Map	(binary)	
BQ	 Base	Quality	
BWA	 Burrows-Wheeler	Aligner	
cfDNA	 Cell-Free	DNA	
CI	 Confidence	Interval	
CLL	 Chronic	Lymphocytic	Leukemia	
CNV	 Copy	Number	Variant	
COV	 Coverage	
CRG	 Centre	for	Genomic	Regulation	
CT	 Computed	Tomography	
ctDNA	 Circulating-Tumor	DNA	
cvDNA	 Circulating	Viral	DNA	
DFS	 Disease-Free	Survival	
DNA	 Deoxyribonucleic	Acid	
DP	 Depth	of	Coverage	
EEMM	 Early-Embryonic	Mosaic	Mutation	
EMM	 Embryonic	Mosaic	Mutation	
FFPE	 Formalin-Fixed	Paraffin-Embedded	
FP	 False	Positive	
FPR	 False	Positive	Rate	
FS	 Fisher	Strand	bias	
GATK	 Genome	Analysis	Toolkit	
GIAB	 Genome	In	A	Bottle	
GQ	 Genotype	Quality	
GTEx	 Genotype-Tissue	Expression	
GTV	 Gross	Tumor	Volumes	
HC	 High	Confident	
HCC	 Hepatocellular	Carcinoma	
hGE	 Haploid	Genome	Equivalent	
HGP	 Human	Genome	Project	



	

XVIII	

HNSCC	 Head	and	Neck	Squamous	Cell	Carcinoma	
HPV	 Human	Papiloma	Virus	
ICGC	 International	Cancer	Genome	Consortium	
IMRT	 intensity-modulated	radiotherapy	
Indel	 Insertion	/	Deletion	
LCR	 Low-Complexity	Region	
LEMM	 Late-Embryonic	Mosaic	Mutation	
LN	 Lymph	Nodes	
LR	 Logistic	Regression	
MEMM	 Mid-Embryonic	Mosaic	Mutation	
MMC	 mitomycin	C	
MRD	 Minimal	Residual	Disease	
OS	 Overall	survival	
PCA	 Principal	Component	Analysis	
PCR	 Polymerase	Chain	Reaction	
PT	 Primary	Tumor		
QC	 Quality	Control	
RCTX	 Radiochemotherapy	
RF	 Random	Forest	
RIN	 RNA	Integrity	Number	
RNA	 Ribonucleic	Acid	
RPKM	 Reads	Per	Kilobase	per	Million	
RVAS	 Rare	Variant	Association	Study	
SAM	 Sequence	Alignment	Map	
SBS	 Sequencing	By	Synthesis	
SNP	 Single	Nucleotide	Polymorphism	
SNV	 Single	Nucleotide	Variant	
SV	 Structural	Variant	
T1	 Time	point	1	
T2	 Time	point	2	
T3	 Time	point	3	
T4	 Time	point	4	
T5	 Time	point	5	
TCGA	 The	Cancer	Genome	Atlas	
Ti	 Transition	
TMB	 Tumor	Mutation	Burden	
TP	 True	Positive	



	

XIX	

TPM	 Transcripts	Per	Million	
Tv	 Transversion	
UMI	 Unique	Molecular	Identifier	
UV	 Ultraviolet	light	
VAF	 Variant	Allele	Frequency	
VLC	 Very	Low	Confident	
VQSR	 Variant	Quality	Score	Recalibration	
WES	 Whole	Exome	Sequencing	
WGS	 Whole	Genome	Sequencing	
5-FU	 5-fluorouracil	





Introduction	

1	

INTRODUCTION	

1. FROM	MENDEL	TO	NEXT-GENERATION	SEQUENCING	
	
The	 origin	 of	 genetics	 is	 to	 be	 found	 in	 Gregor	Mendel’s	 experiment	 on	
plant	hybridization	(1865)	(Mendel,	1866).	In	this	book,	Mendel	described	
and	 discovered	 the	 fundamental	 laws	 of	 inheritance	 by	 studying	 seven	
different	characters	of	garden	pea	plant	(Pisum	sativum).	However,	it	was	
not	until	 the	 first	years	of	20th	 century	when	his	work	was	 re-discovered	
and	the	massive	impact	on	biological	sciences	was	appreciated.	Thanks	to	
this	 study	 and	 the	discovery	of	 chromosomes	during	 the	 last	 decades	of	
19th	 century,	 in	 1909,	 Wilhelm	 Johannsen	 proposed	 the	 new	 biological	
concept	 of	 ‘gene’	 to	 describe	 the	 functional	 unit	 of	 the	 heredity	 and	
recombination	(Gayon,	2016).	
	
It	was	three	decades	later	(1941)	when	Beadle	and	Tatum	showed	the	first	
proof	that	a	specific	gene	could	control	a	biochemical	reaction	(production	
of	vitamin	B6)	(Beadle	and	Tatum,	1941).	However,	although	they	proved	
the	 role	 of	 genes	 on	 controlling	 and	 regulating	 specific	 biochemical	
reactions	 in	 the	 system,	 the	 molecular	 bases	 remained	 unknown.		
Although	 deoxyribonucleic	 acid	 (DNA)	 was	 already	 isolated	 in	 1869	 by	
Friedrich	Miescher	in	Tübingen,	it	was	only	in	1953	when	Francis	Crick	and	
James	Watson	(thanks	to	Rosalind	Franklyn	work)	discovered	the	structure	
of	 DNA	 and	 its	 importance	 in	 hereditary	 processes	 (Watson	 and	 Crick,	
1953).	From	this	year	on,	many	new	findings,	such	as	the	discovery	of	the	
genetic	 code	 or	 the	 first	 model	 to	 describe	 the	 regulation	 of	 the	 gene	
expression	(Crick	et	al.,	1961),	rapidly	changed	our	view	and	improved	our	
knowledge	of	molecular	genetics.	
	
One	of	the	main	technologies	that	substantially	helped	to	evolve	the	fields	
of	 molecular	 biology	 and	 genetics	 was	 DNA	 sequencing.	 Although	 the	
invention	of	DNA	 sequencing	was	 first	 reported	 in	1968	 (Wu	and	Kaiser,	
1968),	other	biomolecules	were	sequenced	several	years	before.	The	first	
molecule	sequenced	was	a	protein	of	insulin,	in	1953	by	Frederick	Sanger	
(Shendure	 et	 al.,	 2017).	 Sanger’s	 technology	 fragmented	 the	 protein	
molecule	 in	 two	 chains,	 deciphered	 each	 fragment	 and	 afterwards	
overlapped	 them	 to	obtain	 the	 complete	protein	 sequence	 (Shendure	et	
al.,	2017).	 Few	years	 later,	 in	1965,	a	 first	 sequence	of	an	RNA	molecule	
(alanine	 tRNA	 –	 76	 nucleotides)	 was	 obtained	 using	 similar	 processes	
(Holley	 et	 al.,	 1965):	 fragmentation	 of	 RNA	 with	 RNases,	 separation	 of	
pieces	 by	 chromatography	 and	 electrophoresis,	 decipheration	 by	
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sequential	exonuclease	digestion,	and	sequence	deduction	by	overlapping	
fragments.	As	previously	mentioned,	the	first	DNA	sequence	was	obtained	
in	 1968.	 It	 consisted	 in	 the	 sequencing	 of	 the	 cohesive	 ends	 of	 phage	
lambda	 DNA	 using	 primer	 extension	 (Wu	 and	 Kaiser,	 1968).	 Almost	 10	
years	 later,	 in	 1977,	 Sanger	 and	 Coulson	 described	 the	 chain	 terminator	
procedure	(Sanger	et	al.,	1977),	also	known	as	Sanger	sequencing,	which	
changed	 the	 way	 and	 the	 speed	 to	 obtain	 DNA	 sequences,	 reaching	 an	
output	of	few	hundreds	bases	per	day.	
	
The	90s	was	an	important	decade	for	DNA	sequencing.	In	1995	and	1996,	
the	 whole	 genomes	 of	 Haemophilus	 influenza	 (12	 Mb,	 1995)	 and	
Saccharomyces	 cerevisiae	 (~	 12	 Mb,	 1996)	 were	 successfully	 completed	
and	 two	 years	 later,	 the	 C.	 elegans	 genome	 (around	 100	 Mb,	 1998)	
(Fleischmann	et	al.,	1995;	Goffeau	et	al.,	1996;	The	C.	elegans	Sequencing	
Consortium,	 1998).	 In	 2000,	 the	 whole-genome	 of	 Drosophila	
melanogaster	 (around	 175	 Mb)	 was	 obtained	 using	 a	 whole-genome	
shotgun	 strategy	 (Adams	 et	 al.,	 2000),	 which	 would	 represent	 the	 pilot	
project	for	the	Human	Genome	Project	(HGP).		HGP	released	the	first	draft	
of	 the	 human	 genome	 in	 2001	 (Lander	 et	 al.,	 2001;	 Venter	 et	 al.,	 2001)	
and	 the	 finished	 version	 in	 2004	 (International	 Human	 Genome	
Sequencing	 Consortium,	 2004).	 Nevertheless,	 although	 sequencing	
efficiency	 improved	 exponentially	 since	 1968,	 new	 findings	 and	
technologies	 were	 needed	 in	 order	 to	 achieve	 the	 goal	 of	 sequencing	
complete	 eukaryotic	 genomes	 for	 reasonable	 cost	 and	 efforts.	 The	 high	
number	of	independent	steps	that	Sanger	sequencing	required,	all	of	them	
very	 crucial,	 and	 the	 huge	 time	 and	 financial	 investments	 required	 to	
generate	 the	 human	 genome	 (Lander	 et	 al.,	 2001),	 inspired	 the	 science	
community	 to	 investigate	 alternatives	 to	 electrophoretic	 sequencing	
technology.	The	Human	Genome	Project	represented	an	inflexion	point	in	
the	 DNA	 sequencing	 era,	 as	 massive	 parallel	 sequencing	 technologies	
started	to	replace	Sanger	sequencing	for	large-scale	sequencing	projects.		
	
	

2. NEXT-GENERATION	SEQUENCING	ERA	
	
The	 way	 and	 how	 fast	 genomes	 are	 analyzed	 has	 dramatically	 changed	
since	 mid	 2000s.	 The	 electrophoretic	 sequencing	 strategy	 (Sanger	
sequencing),	 based	 on	 bacteria	 cloning	 and	 fragment	 length	
quantification,	was	then	replaced	by	the	massive	parallel	sequencing.		The	
strategy	 of	 densely	multiplexing	 short	 DNA	 fragments	 on	 a	 plate,	 which	
are	 subsequently	 sequenced	 in	 cycles	 using	 imaging	 technologies	 to	
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determine	the	nucleotide	sequence	(e.g.	the	two	methods	pyrosequencing	
and	‘sequencing-by-synthesis’	(SBS))	made	NGS	the	optimal	technology	to	
perform	 large-scale	 genome	 analysis	 studies	 (Margulies	 et	 al.,	 2005;	
Bentley	et	al.,	2008).	
	
The	 total	 amount	 of	 nucleotides	 sequenced	 per	 time	 unit	 exponentially	
increased	 due	 to	 massive	 parallelization.	 Sanger	 sequencing	 achieved	 a	
throughput	 of	 0.166	Mb	 per	 hour	while	 NGS	 technologies	 obtained	 ~20	
Mb	 per	 hour	 in	 2008	 (Sinville	 and	 Soper,	 2007;	 Morozova	 and	 Marra,	
2008)	 and	 ~136	 Gb	 per	 hour	 nowadays	 (in	 a	 NovaSeq	 6000	 S4	 dual		
sequencer	 -	 https://www.illumina.com).	 Although	 read	 lengths	 for	 NGS	
technology	 are	 shorter	 than	 in	 Sanger	 sequencing,	 they	 achieve	 few	
hundred	bases	in	length	with	around	99.9%	sequence	accuracy	in	billions	
of	reads	per	run	(Pfeifer,	2017).		
	
In	 parallel,	 the	 sequencing-cost	 has	 extremely	 been	 reduced	 during	 the	
last	15	years.	 The	 total	 cost	of	 the	 first	draft	of	 the	human	genome	was	
estimated	 to	 be	 around	 2.7	 USD	 billion	 (Lewin	 et	 al.,	 2018).	 However,	
nowadays,	 the	 cost	 for	 re-sequencing	 a	 whole	 human	 genome	 at	 30X	
coverage	 is	 around	 1,000	 USD	 (Check	 Hayden,	 2014).	 Thus,	 both	 the	
reduced	 prize	 of	 sequencing	 and	 the	 high	 throughput	 achieved	 by	 NGS	
technology	permitted	to	investigate	and	answer	questions	that	few	years	
ago	were	almost	impossible	to	be	studied.		
		
NGS	 has	 enabled	 the	 analysis	 of	 genomes,	 transcriptomes,	 epigenomes,	
and	microbiomes,	 among	 others.	 Since	 the	 advent	 of	 NGS	 technologies,	
many	 big	 projects	 have	 been	 successfully	 performed:	 many	 large	
eukaryotic	genomes	of	a	broad	range	of	species	have	been	fully	assembled	
(Pagani	 et	 al.,	 2012);	 the	 ENCODE	 project	 (ENCODE	 Project	 Consortium,	
2004;	 Harrow	 et	 al.,	 2012)	 characterized	 the	 complex	 structure	 and	
regulation	 of	 the	 human	 genome;	 the	 GTEx	 consortium	 helped	 to	
understand	the	gene	expression	complexity	across	different	tissues	of	the	
human	 body	 (Ardlie	 et	 al.,	 2015;	 Consortium,	 2017);	 population	 scale	
screening	projects	like	the	1000	Genome	Project	(Consortium,	2010)	have	
provided	important	findings	about	the	diversity	of	the	human	genome;	the	
International	Cancer	Genome	Consortium	(ICGC,	https://dcc.icgc.org/)		and	
The	 Cancer	 Genome	 Atlas	 (TCGA,	 https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga)	 have	 generated	
an	 amazing	 resource	 of	 cancer	 genomes	 from	 different	 tumor	 entities,	
which	 allowed	 to	 investigate	 the	 causes,	 prognosis	 and	 treatments	 of	
different	cancers.	These	examples,	plus	many	others	not	listed	here,	show	
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that	 NGS	 is	 an	 effective	 approach	 to	 rapidly	 generate	 huge	 amounts	 of	
data	and	novel	insights.		
	
The	 huge	 quantity	 of	 data	 generated	 in	 NGS	 studies	 resulted	 in	 many	
technical	 challenges	 that	 needed	 to	 be	 solved	 to	 obtain	 a	 complete	 and	
accurate	 record	 of	 sequences	 and	 to	 transform	 them	 into	 biologically	
meaningful	results.	Therefore,	bioinformatics	plays	a	critical	role	in	current	
omics	 (‘genomics,	 transcriptomics,	 epigenomics,	 proteomics	 etc.’)	
research	not	only	for	processing	of	the	massive	amounts	of	genomic	data,	
but	 also	 for	 unlocking	 the	 utility	 of	 these	 data	 for	 discovering	 novel	
knowledge	 in	 genomics.	 Finally,	 bioinformatics	 and	biostatistics	methods	
are	crucial	for	the	creation	of	computational	models	that	reliably	generate	
or	evaluate	various	hypotheses.	
	
	
3. NEXT-GENERATION	 SEQUENCING	 AND	 SHORT	 VARIANT	

DETECTION	
	
Since	the	first	personal	genome	was	sequenced	and	more	precisely,	since	
sequencing	of	the	first	genomes	with	the	Illumina	technologies	(Bentley	et	
al.,	 2008),	 re-sequencing	 has	 been	 widely	 used	 for	 the	 research	 of	
personalized	 cancer	 genomics,	 the	 discovery	 of	 inherited	 or	 de	 novo	
mutations	associated	with	Mendelian	diseases,	comparative	genomics,	to	
reconstruct	 human	 population	 history	 and	 to	 understand	 mutation	
processes	(Li,	2014;	Shendure	et	al.,	2017).		
	
Re-sequencing	is	a	process	based	on	the	alignment	of	short	reads	against	a	
reference	 genome	 in	 order	 to	 detect	 variants,	 which	 mark	 individual	
deviations	 from	 the	 reference	 genome.	 Variants	 can	 be	 characterized	 as	
single	 nucleotide	 polymorphisms	 (SNPs),	 which	 are	 by	 far	 the	 most	
common	type	of	variants,	as	small	 insertions	and	deletions	(indels),	or	as	
larger	 structural	 variants	 (SVs)	 and	 copy	 number	 variants	 (CNVs).	 The	
success	 of	 variant	 identification	 (often	 termed	 ‘variant	 calling’)	 relies	 on	
highly	precise	alignments	of	reads	onto	a	reference	genome	and	accurate	
variant	calling	algorithms	that	avoid	false	positive	and	false	negative	calls	
originating	from	alignment	or	sequencing	issues	(Li,	2014).	
	
The	 typical	 next-generation	 re-sequencing	 workflow	 is	 usually	 split	 into	
sequencing,	 read	 pre-processing	 and	 quality	 control,	 read	 alignment,	
alignment	 post-processing,	 variant	 calling	 plus	 filtering,	 and	 variant	
annotation	 (Pfeifer,	 2017).	 	 The	 NGS	 workflow	 starts	 with	 the	 library	
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preparation	and	finishes	with	the	interpretation	of	the	high-quality	variant	
calls	 (Figure	 1).	 Each	 one	 of	 these	 steps	 has	 particular	 limitations	 and	
issues,	which	require	sophisticated	algorithms	to	minimize	their	impact	on	
the	accuracy	of	the	final	call	list.		
	

	

Figure	1	|	Typical	next-generation	re-sequencing	workflow.	

	

3.1. Library	preparation	and	sequencing	

	
Before	data	generation,	NGS	protocols	start	with	the	DNA	extraction	and	
library	preparation.	Extracted	DNA	 is	 sheared	 to	 short	DNA	 fragments	of	
few	hundred	nucleotides	 (e.g.	200-500bp)	and	platform-specific	adapters	
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are	 ligated.	 Each	of	 these	 steps	 can	have	 important	effects	on	 sequence	
integrity	and	accuracy	of	the	generated	data.		
	
Firstly,	 Costello	 et	 al	 described	 how	 oxidation	 of	 DNA	 during	 acoustic	
shearing	 generated	 8-oxoguanine	 (8-oxoG)	 lesions,	 observed	 afterwards	
as	C	 to	A	or	G	to	T	changes	 (Costello	et	al.,	2013).	This	event	 is	 rare	and	
only	 represents	 a	 low	 percentage	 of	 reads	 generated	 for	 a	 sample,	 and	
hence,	 does	 not	 have	 a	 huge	 impact	 on	 germline	 variant	 detection.	
However,	the	introduced	errors	can	have	important	consequences	for	the	
ability	to	confidently	call	rare,	sub-clonal	mutations	in	e.g.	tumor	samples	
or	bacterial	populations.	Secondly,	although	there	are	PCR-free	protocols,	
PCR	amplification	is	a	step	commonly	required	in	many	protocols.	PCR	can	
incorporate	 additional	 errors	 when	 generating	 duplicates	 of	 the	 original	
DNA	fragment	due	to	the	Taq	Polimerase	error	rate	of	around	1-20	x	10-5	
(McInerney	et	al.,	2014).		
	
Finally,	 each	 sequencing	 technology	 yields	 erroneous	 or	 ambiguous	 data	
at	particular	genomic	 locations	as	consequence	of	systematic	sequencing	
errors,	 alignment	 errors,	 or	 biases	 in	 coverage	 depending	 on	 the	 GC	
content	 (Table	 1)	 (Pfeifer,	 2017;	 Ardui	 et	 al.,	 2018).	 Nowadays,	 most	
genome	re-sequencing	studies	are	performed	by	sequencing-by-synthesis	
based	 platforms	 (Illumina	 HiSeq,	 MiSeq,	 NovaSeq,	 etc)	
(https://www.illumina.com).	Several	causes	of	sequencing	errors	of	these	
platforms	are	well	described:	(1)	crosstalk,	occurring	if	dye	frequencies	of	
the	 laser-excited	 nucleotides	 overlap	 (miscalling	 A	 as	 C,	 G	 as	 T	 and	 vice	
versa)	 (Ledergerber	 and	 Dessimoz,	 2011);	 (2)	 dephasing,	 which	 occurs	
when	the	incorporation	of	a	nucleotide	is	missed	in	a	cycle	and	the	error	is	
propagated	to	 later	cycles	 (leading	to	errors	at	 the	end	of	 the	reads);	 (3)	
an	increase	of	errors	at	the	end	of	the	read	because	of	reductions	in	signal	
intensity	due	to	decreased	enzyme	activity	(Kircher	et	al.,	2009);	(4)	error	
in	 low	 complexity	 regions	 such	 as	 homopolymers	 resulting	 in	 false	
insertion	 or	 deletion	 calls;	 and/or	 (5)	 decreased	 coverage	 in	 regions	 of	
very	high	or	low	GC	content	which	leads	to	low-quality	base	calls	(Sleep	et	
al.,	2013).	
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Table	 1	 |	 Comparison	 of	 several	 sequencing	 platforms.	 	 Table	 adapted	 from	
Pfeifer,	2017	and	Ardui	et	al.	2018	and	complemented	with	in-house	information	
for	Oxford	Nanopore	sequencing	technology.	

	
	

3.2. Read	pre-processing	and	quality	control	

	
After	 sequencing,	 platform-specific	 software	 is	 used	 to	 obtain	 the	
nucleotide	 sequences	 in	 FASTQ	 format,	 which	 provides	 the	 read	
sequences	 and	 the	 corresponding	 ASCII-encoded	 PHRED	 quality	 scores	
(Cock	et	 al.,	 2010).	Raw	sequencing	data	often	 contain	 complex	artifacts	
and	biases	produced	during	the	experimental	and	sequencing	steps,	which	
strongly	influence	the	accuracy	of	the	read	alignments	and	consequently,	
the	variant	calling	and	genotyping.	Tools	like	FastQC	or	htSeqTools	(Planet	
et	 al.,	 2012)	 provide	 summary	 statistics	 of	 the	 sequencing	 performance	
such	 as	 nucleotide	 and	 base	 quality	 score	 distributions,	 as	 well	 as	
characteristics	 of	 the	 sequence	 (GC-content,	 k-mer	 fragments,	 levels	 of	
sequence	 ambiguity	 and	 PCR	 duplicates).	 These	 statistics	 provide	 a	
guidance	 for	 the	 selection	 of	 the	 quality	 control	 parameters	 and	
thresholds	 to	 filter	 potential	 problematic	 reads	 for	 later	 stages	 of	 the	
analysis	(Pfeifer,	2017).		
	
Finally,	 before	 the	 alignment	 step,	 sequence	 reads	 need	 to	 be	 cleaned	
from	 undesired	 sequences	 at	 the	 3’-	 or	 5’-ends	 (adapters,	 primers	 or	
barcodes	depending	on	the	protocol	used	to	build	the	library)	when	reads	
are	 longer	 than	 the	 targeted	 fragments.	 Tools	 like	 Cutadapt,	
AdapterRemoval	or	SeqPurge,	among	many	others,	are	designed	 for	 that	
purpose	(Lindgreen,	2012;	Sturm	et	al.,	2016).	
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3.3. Alignment	

	
The	 alignment	 is	 one	 of	 the	 most	 important	 steps	 in	 genome	 re-
sequencing	 studies.	 Its	 accuracy	 affects	 massively	 the	 performance	 of	
variant	calling,	and	therefore,	plenty	of	algorithms	have	been	developed	in	
order	 to	minimize	 as	much	 as	 possible	 the	 number	 of	 alignment	 errors.	
The	 goal	 of	 an	 alignment	 algorithm	 is	 to	 map	 individual	 reads	 to	 the	
proper	 position	 in	 the	 reference	 genome	 from	 which	 they	 most	 likely	
originated	 (Pfeifer,	 2017).	 Resulting	 alignments	 are	 usually	 stored	 in	 the	
SAM	 (sequence	 alignment/map)	 format,	 or	 its	 binary	 and	 compressed	
version	 (BAM	 format)	 (Li	 et	 al.,	 2009),	 which	 contain	 information	 about	
the	location,	orientation	and	alignment	quality	of	each	individual	read.	To	
this	 end,	 alignment	 algorithms	 like	 Bowtie	 (Langmead,	 2010),	 Burrows-
Wheeler	 Aligner	 (BWA)	 (Li	 and	 Durbin,	 2009)	 and	 BWA-mem	 (Li,	 2013)	
were	 developed	 to	 identify	 the	 correct	 place	 of	 reads	 in	 the	 reference	
genome.	 Most	 alignment	 algorithms	 are	 based	 on	 the	 identification	 of	
short	 kmers	 from	 the	 reads	 in	 the	 reference	 genome	 (‘seed’)	 using	 e.g.	
suffix	 arrays	 or	 Burrows-Wheeler	 transformation,	 followed	 by	 the	
generation	 of	 an	 accurate	 pairwise	 alignment	 of	 the	 read	 to	 the	 most	
likely	position	on	the	reference	genome	by	dynamic	programming	(Smith-
Waterman	 or	 Needleman-Wunsch	 algorithms).	 During	 these	 processes	
reads	can	be	 falsely	aligned	to	 the	wrong	position	 in	 the	genome,	or	 the	
pairwise	 alignment	 at	 the	 correct	 position	 could	 ‘misalign’	 parts	 of	 the	
read.		
	
A	 particular	 challenging	 task	 during	 alignment	 is	 to	 place	 and	 correctly	
align	 short	 reads	 originating	 from	 repetitive	 or	 low-complexity	 genomic	
regions	(LCRs).	LCRs	and	repetitive	regions	represent	an	important	fraction	
of	 the	human	genome	 (around	2	%	and	45	%,	 respectively)	and	 result	 in	
multiple	 possible	 locations	 of	 a	 read	 in	 the	 genome	 or	 multiple	 equally	
likely	 gapped	 pairwise	 alignments	 if	 indels	 are	 involved	 (Cordaux	 and	
Batzer,	2009;	Wall	et	al.,	2014).	These	ambiguous	alignments	subsequently	
lead	 to	 biases	 and	 errors	 in	 the	 variant	 calling	 procedure	 (Cordaux	 and	
Batzer,	2009;	Wall	et	al.,	2014).	Furthermore,	systematic	alignment	errors	
(non-random,	 recurrent	 errors)	 are	 found	 to	 be	 highly	 enriched	 in	 low-
complexity	 sequences	 (homo-,	 di-	 and	 tri-polymers)	 due	 to	 1)	 the	 high	
difficulty	to	define	the	exact	position	of	a	read	or	parts	of	the	read	in	low-
complexity	 sequences	 (Li,	 2014),	 and	 2)	 the	 high	 error	 rate	 of	 Illumina	
machines	in	homo-	and	di-polymers.	
	
Another	 important	 step	 after	 the	 global	 read	 alignment	 is	 the	 local	 re-
alignment	of	 reads	around	 indels.	Reads	spanning	 insertions	or	deletions	
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are	 often	 misaligned	 as	 most	 aligners	 have	 the	 tendency	 to	 introduce	
mismatches	(SNPs)	rather	than	gaps	 in	the	alignments	(high	penalties	for	
gap	opening)	(Van	der	Auwera	et	al.,	2013).	Methods	like	Genome	Analysis	
Tool-Kit	(GATK)	(Van	der	Auwera	et	al.,	2013)	or	Abra2	(Mose	et	al.,	2019)	
identify	 these	 suspicious	 intervals	 and	 locally	 realign	 reads	 in	 order	 to	
obtain	a	more	concise	consensus	alignment.		
	
As	 previously	 mentioned,	 some	 protocols	 require	 PCR	 amplification.	 An	
important	 consequence	 of	 this	 step	 is	 that	 DNA	 molecules	 might	 have	
been	 sequenced	 several	 times	 due	 to	 over-amplification	 and	
consequently,	it	leads	to	artifacts	in	the	variant	analysis	(Li,	2014).	Hence,	
it	 is	 crucial	 to	 identify	 and	 mark	 these	 ‘duplicated	 reads’	 to	 allow	 the	
variant	 caller	 to	 ignore	 them	 (for	 instance,	 with	 tools	 like	 Picard	 or	
Samtools	(Li	et	al.,	2009)).		
	

3.4. Variant	calling	and	filtering	

	
The	process	to	generate	high-quality	variant	calls	remains	challenging	due	
to	 the	 complexity	 of	 errors	 that	 arose	 in	 any	 of	 the	 previous	 steps	 (i.e.	
systematic	 errors	 generated	 during	 DNA	 shearing,	 amplification,	 library	
preparation,	sequencing	or	mapping).	To	solve	this,	a	plethora	of	genomic	
variant	prediction	 tools	has	been	developed	available	 to	date,	which	can	
be	divided	in	germline	and	somatic	variant	callers	depending	on	the	type	
of	mutations	that	one	wants	to	detect.	The	goal	of	these	tools	is	to	detect	
mutations	such	as	 short	variants	 (also	called	point	mutations),	which	are	
further	divided	into	SNVs	and	short	insertions	or	deletions	(indels),	as	well	
as	other	more	complex	variants	such	as	large-scale	rearrangements,	copy	
number	alterations,	inversion	and	translocations.	However,	in	this	section	
we	 only	 focus	 on	 short	 variant	 detection	methods	 in	 both	 germline	 and	
somatic	analysis.	
	
A	 germline	 variant	 is	 defined	 as	 a	 genomic	 alteration	 inherited	 from	
progenitors	and	 found	 in	all	 cells	of	 the	organism	 in	at	 least	one	haploid	
genome	copy	of	each	cell.	Some	of	the	most	used	germline	variant	callers	
for	diploid	genomes	 (e.g.	 for	human	genomes)	are	GATK	HaplotypeCaller	
(McKenna,	 2009;	 Van	 der	 Auwera	 et	 al.,	 2013),	 Samtools	 mpileup	 (Li,	
2011),	 Freebayes	 and	Varscan	 (Koboldt	 et	 al.,	 2009;	 Koboldt	 DC,	 Larson	
DE,	2013).		
	
GATK	HaplotypeCaller	(McKenna,	2009;	Van	der	Auwera	et	al.,	2013)	uses	
Bayesian	models	 to	genotype	the	genomic	status	of	each	 locus	based	on	
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machine	 learning	 approaches	 trained	 on	 many	 samples.	 This	 can	 be	
performed	 in	 single-	 and	 in	 multi-sample	 analysis	 mode.	 Samtools	 (Li,	
2011)	performs	the	variant	calling	in	two	steps,		first	generating	genotype	
likelihoods,	 and	 second,	 obtaining	 and	 filtering	 the	 calls.	 Freebayes	 is	 a	
single-sample	Bayesian	genetic	variant	detector	that	performs	the	variant	
calling	 based	 on	 the	 literal	 sequences	 of	 reads	 aligned	 to	 a	 particular	
target,	 and	 hence	 manages	 better	 the	 alignment	 problems	 than	
alignment-based	 variant	 detectors	 like	 GATK	 and	 Samtools.	 Finally,	
VarScan2	 (Koboldt	 et	 al.,	 2009;	 Koboldt	DC,	 Larson	DE,	 2013)	 employs	 a	
robust	heuristic	approach	to	call	variants	that	reach	desired	thresholds	for	
read	 depth,	 base	 quality,	 variant	 allele	 frequency,	 strand	 bias	 filter,	 and	
statistical	significance.	
	
Although	 there	are	different	algorithms	 for	germline	variant	 calling,	 they	
show	similar	performances	in	sense	of	quality	of	the	final	germline	callset.	
However,	 in	 somatic	 variant	 detection,	 the	 algorithm	 or	 tool	 used	
influences	strongly	 the	accuracy	of	 the	 final	 somatic	callset	 (Alioto	et	al.,	
2015).	 A	 somatic	 variant	 is	 defined	 as	 a	 non-inherited	 mutation	 that	
occurs	 in	 any	 of	 the	 cells	 in	 a	 developing	 somatic	 tissue	 and	 can	 be	
transmitted	to	one	of	 the	descent	cells	 (Clancy,	2008).	The	timing	of	 this	
mutation	 in	 development	 and	 the	 posterior	 clonal	 expansion	 will	 affect	
the	 proportion	 of	 cells	 carrying	 a	 specific	 somatic	 mutation	 in	 a	 tissue,	
organ	or	organism	(explained	in	more	detail	later).	
	
Somatic	 variant	 calling	 algorithms	 try	 to	 identify	mutations,	which	 differ	
between	 tumor	 and	 normal	 (healthy)	 tissues	 from	 the	 same	 individual	
(strategy	 often	 called	 ‘tumor-normal	 paired	 sequencing’).	 Some	 of	 the	
most	widely	used	somatic	variant	callers	are	MuTect/MuTect2	(Cibulskis	et	
al.,	2013;	Van	der	Auwera	et	al.,	2013),	Strelka/Strelka2	 (Saunders	et	al.,	
2012;	Kim	et	al.,	2018),	LoFreq	(Wilm	et	al.,	2012)	and	VarScan2	(Koboldt	
et	al.,	2009;	Koboldt	DC,	Larson	DE,	2013).	These	tools	use	 likelihoods	of	
the	 variant	 model	 (Cibulskis	 et	 al.,	 2013),	 base-call	 qualities	 plus	 other	
sources	of	error	information	(Wilm	et	al.,	2012),	or	random	forest	models	
trained	on	various	call	quality	features	(Kim	et	al.,	2018)	to	detect	somatic	
mutations.	 However,	 recent	 benchmarking	 studies	 reported	 substantial	
disagreement	 between	 somatic	 SNV	 and	 indel	 detection	 methods,	
especially	for	indels	(Alioto	et	al.,	2015),	showing	the	necessity	to	develop	
post-filter	 algorithms	 to	 call	 variants	 at	 low	 allele	 frequency	 with	 high	
precision	and	sensitivity.		
	
Once	 raw	 calls	 have	 been	 obtained	 from	 a	 variant	 caller,	 it	 is	 usually	
required	 to	perform	quality	 filtering	 to	achieve	high	quality	 calls.	Variant	
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callers	 have	 complex	 algorithms	 to	 clean	 false	 positive	 calls	 such	 as	
Variant	Quality	Score	Recalibration	(VQSR)	in	GATK	(Van	der	Auwera	et	al.,	
2013),	which	uses	machine	 learning	approaches	trained	 in	many	samples	
to	filter	low	quality	calls.	However,	systematic	errors	due	to	alignment	or	
sequencing	 issues,	which	are	not	easy	 to	be	modeled,	might	 remain	and	
bias	the	quality	of	the	final	callset.	Moreover,	if	somatic	mutations	at	very	
low	 variant	 allele	 frequency	 (i.e.	 in	 cancer	 studies)	 are	 of	 interest,	
systematic	 errors	must	 be	 distinguished	 and	 filtered	 in	 order	 to	 achieve	
good	accuracy	for	real	somatic	mutations.		
	
Several	hard	and	universal	filters	have	been	suggested,	although	they	are	
only	able	to	capture	a	 fraction	of	 false	positives	due	to	systematic	errors	
(Li,	2014)	and	have	 the	potential	 to	 substantially	 increase	 the	 fraction	of	
false	negatives.	They	are	based	on:	 (1)	 filtering	variants	overlapping	 low-
complexity	regions,	(2)	removing	sites	with	higher	than	expected	depth	of	
coverage	 (signal	 of	 mapping	 bias	 due	 to	 repetitive	 regions),	 (3)	 filtering	
sites	where	the	fraction	of	non-reference	reads	is	too	low,	(4)	for	somatic	
mutation	calling	only,	removing	alternative	alleles	 frequently	observed	 in	
the	 human	 population	 listed	 in	 e.g.	 the	 1000	 Genomes	 Project	 or	 the	
GnomAD	 databases	 (Auton	 et	 al.,	 2015;	 Karczewski	 et	 al.,	 2019)	 or	 (5)	
filtering	 sites	 where	 the	 numbers	 of	 reference/non-reference	 reads	 are	
highly	correlated	with	the	strands	of	the	reads	(Guo	et	al.,	2012).	
	
However,	 a	 general	 issue	 of	many	 post-filtration	 strategies	 is	 the	 use	 of	
hard	 thresholds	 for	 the	various	quality	metrics,	where	small	 changes	can	
dramatically	 influence	 false	 negative	 and	 false	 positive	 rates,	 or	 their	
dependence	 on	 large	 sample	 sets	 to	 be	 effective	 (e.g.	 VQSR)	 (Lek	 et	 al.,	
2016;	De	Summa	et	al.,	2017).	Therefore,	novel	strategies	to	remove	both	
systematic	errors	and	background	noise	are	needed	to	get	high	precision	
calls,	while	not	reducing	the	sensitivity.	
	

3.5. Applications	

	
The	 range	 of	 DNA	 re-sequencing	 applications	 has	 rapidly	 expanded	 over	
the	last	13	years	and	continues	to	expand	to	date.	The	notable	decrease	of	
next	 generation	 sequencing	 (NGS)	 cost	 during	 the	 last	 decade	 has	
significantly	 changed	 biomedical	 and	 genomics	 research.	 Applications	 in	
clinical	genomics,	genome	diversity	studies	with	population-scale	analysis,	
transcriptome	 and	 expression	 analysis,	 metagenome	 sequencing	 and	
developmental	biology	have	become	readily	available	to	most	researchers	
at	low	cost.		
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Clinical	 genomics	 has	 improved	 significantly	 during	 the	 last	 years.	
Nowadays,	 both	 whole	 genome	 sequencing	 (WGS,	 where	 no	 targeted	
enrichment	 is	 used	 and	 hence	 the	 whole	 genome	 is	 sequenced),	 whole	
exome	sequencing	(WES,	which	uses	oligo-enrichment	protocols	to	target	
all	 exons	of	 the	human	genome)	 and	 targeted	gene	panels	 (where	 small	
regions	of	genome	are	targeted)	are	protocols	often	used	in	diagnostics	or	
studies	 of	 genetic	 diseases	 and	 cancer,	 resulting	 in	 promising	 novel	
diagnostic	 tools	 with	 the	 potential	 to	 transform	 diagnosis	 of	 genetic	
diseases	 (Taylor	et	al.,	2015;	Schwarze	et	al.,	2018).	Early	applications	of	
WES	rapidly	discovered	new	genes	for	hundreds	of	Mendelians	disorders	
and	rare	diseases,	as	well	as	causal	coding	germline	de	novo	mutations	in	
neurodevelopmental	disorders	(Taylor	et	al.,	2015;	Shendure	et	al.,	2017).	
DNA	 re-sequencing	 applications	 quickly	 expanded	 to	 clinical	 cancer	
research	 discovering	 novel	 targets	 for	 therapies,	 cancer	 predisposition	
genes	and	cancer	driver	genes	based	on	the	analysis	of	mutations	in	large	
cohort	 studies,	 as	 widely	 performed	 by	 the	 ICGC	 and	 TCGA	 consortia	
(Birkeland	et	al.,	2015;	Colli	et	al.,	2017;	Bailey	et	al.,	2018;	Huang	et	al.,	
2018).	In	addition	to	WGS	and	WES	of	tumor	biopsies	commonly	used	for	
clinical	 cancer	 research	 and	 diagnostics,	 DNA	 sequencing	 of	 tumor-
released	 circulating	 cells	 or	 cell-free	DNA	 (cfDNA)	has	 revolutionized	 the	
field	of	non-invasive	diagnostics	 (Wan	et	al.,	2017).	Sequencing	of	cfDNA	
and	 the	 detection	 of	 circulating	 tumor	 DNA	 (ctDNA)	 in	 plasma	 or	 other	
body	liquids	enable	applications	such	as	early-diagnose	of	cancer	patients,	
treatment	 response	 monitoring	 during	 therapy,	 relapse	 screening	 and	
prognostic	 prediction	 of	 relapse	 likelihoods	 (Diehl	 et	 al.,	 2008;	 Xi	 et	 al.,	
2016;	Christensen	et	 al.,	 2019).	 In	parallel,	 the	use	of	 cfDNA	has	already	
been	well	 stablished	 for	 non-invasive	 prenatal	 testing,	where	 the	 simple	
counting	of	DNA	 fragments	 released	 into	 the	maternal	 circulation	by	 the	
fetus	 during	 pregnancy	 can	 help	 to	 detect	 chromosomal	 aneuploidies	
(Norton	et	al.,	2015;	Nshimyumukiza	et	al.,	2018;	Guy	et	al.,	2019).		
	
DNA	re-sequencing	is	highly	important	for	biomedical	genomics	research.	
Population-scale	 resequencing	projects	 like	1000	Genomes	Project	 (1000	
Genomes	Project	Consortium	et	al.,	2015)	have	helped	to	understand	the	
diversity	 of	 the	 human	 genome.	 However,	 there	 are	 many	 other	
applications,	 which	 are	 frequently	 used	 and	 have	 helped	 to	 shape	 the	
current	knowledge	 in	genetics	and	cell	biology.	Firstly,	 the	 importance	of	
RNA-sequencing	(RNA-seq)	protocols	to	characterize	the	transcriptome	by	
shotgun	 sequencing	 of	 either	 full-length	 or	 3’	 ends	 of	 cDNA	 has	 already	
been	 demonstrated	 in	 thousands	 of	 publications	 and	 by	 large-scale	
sequencing	projects	such	as	GTEx	(Lonsdale	et	al.,	2013;	Ardlie	et	al.,	2015;	
Consortium,	2017),	ENCODE	 (Dunham	et	al.,	2012)	or	GENCODE	 (Harrow	
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et	 al.,	 2012).	 Secondly,	 metagenome	 sequencing,	 which	 uses	 shotgun	
sequencing	 strategies	 to	 characterize	 complex	 communities	 of	
microorganisms,	has	emerged	as	a	new	field	in	genomics	(Shendure	et	al.,	
2017;	Costea	et	al.,	2018).	Moreover,	a	plethora	of	epigenome	sequencing	
methods	has	been	 introduced	over	 the	 last	decade	 (Klemm	et	al.,	2019).	
Furthermore,	single	cell	DNA-	and	RNA-sequencing	 is	used	to	understand	
how	 a	 single	 cell	 develops	 into	 a	 highly	 organized	mass	 of	 cells	 (tissues,	
organs	or	tumors),	or	how	expression	differs	in	various	cell	types	(Potter,	
2018).		Finally,	analysis	of	multiple	tissues	from	same	individuals	can	help	
to	better	understand	the	differentiation	of	cells	during	development.	
	
Although	 not	 considered	 second-generation	 sequencing	 (but	 third	 or	
fourth-generation),	 extremely	 long	 reads	 obtained	 by	 real-time,	 single-
molecule	sequencing	technologies	like	PacBio	or	Nanopore	allow	not	only	
to	 obtain	 better	de	 novo	 assemblies	 of	 eukaryotic	 genomes,	 but	 also	 to	
investigate	 structural	 variants	 with	 higher	 precision	 and	 accuracy	 than	
achievable	with	 short-reads	 technologies	 (Laszlo	 et	 al.,	 2014;	 van	Dijk	 et	
al.,	2018;	Bowden	et	al.,	2019).		
	
As	 pointed	 out	 in	 previous	 paragraphs,	 DNA	 re-sequencing	 has	 many	
applications.	However,	in	the	next	sections	we	will	specifically	focus	on	the	
sequencing	of	 cfDNA	 to	monitor	 cancer	patients	 and	 the	use	of	DNA	 re-
sequencing	of	healthy	individuals	to	find	somatic	and	mosaic	mutations.		
	
	

4. THE	 USE	 OF	 LIQUID	 BIOPSIES	 FOR	 MONITORING	 CANCER	

PATIENTS	DURING	AND	AFTER	TREATMENT		

4.1. Circulating	Cell-free	DNA	

	
Circulating-cell-free	 or	 in	 short	 cell-free	 DNA	 (cfDNA)	are	 DNA	fragments	
released	 from	 cells	 mostly	 through	 apoptosis,	 necrosis,	 and	 (possibly)	
secretion	 into	 various	 body	 fluids	 such	 as	 bloodstream,	 urine,	
cerebrospinal	 fluid,	pleural	 fluid	and	saliva	 (Botezatu	et	al.,	2000;	 Jahr	et	
al.,	2001;	Mithani	et	al.,	2007;	Sriram	et	al.,	2012;	Wang	et	al.,	2015b)	(see	
Figure	 2).	 The	 size	 of	 these	 cfDNA	 fragments	 in	 healthy	 individuals	 is	
around	166	bps,	which	corresponds	to	the	length	of	DNA	wrapped	around	
a	nucleosome	(around	147	bp)	plus	linker	DNA	associated	with	histone	H1	
(Wan	et	al.,	2017;	Mouliere	et	al.,	2018).	Moreover,	the	half-life	of	cfDNA	
is	 estimated	 to	 be	 between	 16	 minutes	 and	 2.5	 hours,	 and	 might	 be	
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influenced	 by	 the	 association	 of	 these	 fragments	 with	 cell	 membranes,	
extracellular	vesicles	or	proteins	(Wan	et	al.,	2017).	
	

	
Figure	2	|	The	origin	of	the	cell-free	DNA.	 (A)	 	Origins	and	alterations	 in	cfDNA,	
(B)	different	body	fluids	where	cfDNA	can	be	released	and	(C)	use	of	barcodes	or	
unique	molecular	 identifiers	 (UMIs)	 to	detect	sequencing	and	PCR	errors.	Figure	
taken	from	Wan	et	al.,	2017.	
	

In	healthy	individuals,	the	concentration	of	cfDNA	varies	between	1	and	10	
ng	 /	 ml	 of	 plasma,	 representing	 around	 330	 to	 3,300	 haploid	 human	
genome	 equivalents	 (HGE).	 Most	 cfDNA	 in	 plasma	 originates	 from	
hematopoietic	 cells	 (Lehmann-Werman	 et	 al.,	 2016),	 nevertheless,	 small	
quantities	of	cfDNA	from	most	organs	of	the	human	body	are	represented	
in	 bloodstream.	 Under	 specific	 physiological	 or	 clinical	 conditions	 like	
traumas,	 cerebral	 infarctions,	 transplantations,	 infections	 or	 cancer,	 the	
concentration	 of	 DNA	 fragments	 from	 different	 tissues	 of	 origin	 can	
change	significantly	(Wan	et	al.,	2017;	Zwirner	et	al.,	2018a).		
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4.2. Circulating-tumor	DNA	and	its	use	in	cancer	diagnostics	

	
The	 term	 ‘circulating-tumor	 DNA’	 (ctDNA)	 describes	 those	 cfDNA	
fragments	 that	 are	 released	 from	 cancer	 cells.	 The	 facts	 that	 ctDNA	
fragments	can	carry	tumor-specific	mutations,	can	be	obtained	through	a	
non-invasive	 biopsy	 and	 that	 the	 cfDNA	 half-life	 is	 less	 than	 2.5	 hours	
makes	 ctDNA	 an	 interesting	 biomarker	 for	 obtaining	 a	 ‘real-time’	
screenshot	of	the	disease	burden	(Wan	et	al.,	2017).		
	
The	 high	 efficiency	 of	 PCR	 and	 NGS	 technologies	 enables	 novel	 liquid	
biopsy	protocols	to	produce	a	huge	clinical	benefit	through	many	different	
applications.	 First	 of	 all,	 it	 permits	 to	 obtain	 a	 more	 complete	
characterization	 of	 complex	 tumors	 compared	 to	 conventional	 sampling	
methods	 (invasive	biopsies,	e.g.	punch	biopsy),	which	have	difficulties	 to	
obtain	sufficient	material	to	represent	the	proper	genomic	profile	due	to,	
for	example,	intra-tumor	heterogeneity	(explained	later).	Secondly,	ctDNA	
sampling	is	a	rapid	and	non-invasive	biopsy	method	not	requiring	surgery	
or	 other	 invasive	 procedures.	 For	 these	 reasons,	 ctDNA	 analysis	 is	
considered	a	potential	clinical	strategy	to	perform	screening	for	and	early-
diagnosis	 of	 cancer,	 to	 characterize	 the	 molecular	 tumor	 profile,	 for	
detection	of	tumor	residual	disease	after	treatment	and	finally,	to	perform	
monitoring	of	treatment	response	and	tumor	clonal	evolution	(Figure	3).			
	

	

Figure	3	|	Potential	ctDNA	applications	in	clinical	cancer	research.	The	diagram	
shows	 how	 cancer	 originated	 from	 one	 individual	 cell	 acquired	 cancer	 driver	
mutations	 initiating	 tumorigenesis	 and	 rapid	 proliferation	 of	 cells.	 Additional	
mutations	at	later	time	points	lead	to	tumor	heterogeneity,	complexity	and	clonal	
expansion	of	the	fittest	tumor	cells.	After	treatment	(chemotherapy	in	this	case)	
the	 tumor	mass	decreases	but	 some	clones	 resist	 treatment	and	 form	 the	basis	
for	cancer	relapse.	Molecular	residual	disease	(MRD)	describes	the	situation	were	
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residual	 tumor	 cells	 remain	 after	 treatment,	 and	 is	 a	 prognostic	 marker	 for	
relapse.	Background	figure	edited	and	adapted	from	(Griffith	et	al.,	2015)	

4.3. Early-diagnosis	using	ctDNA	

	
The	diagnosis	of	cancer	at	early	stages	could	allow	earlier	intervention	and	
could	 improve	 survival.	 Bettegowda	 et	 al	 found	 ctDNA	 fragments	 in	 the	
plasma	of	around	82	%	of	cancer	patients	(solid	tumors	except	brain)	with	
advanced	stages,	while	only	47%	of	patients	at	stage	I	had	distinguishable	
ctDNA	 fragments	 (Bettegowda	 et	 al.,	 2014).	 They	 described	 that	 the	
capability	to	detect	ctDNA	fragments	varied	strongly	among	cancer	stages,	
ranging	 from	 10	 fragments	 in	 5	ml	 of	 plasma	 in	 patients	 at	 early	 stages	
(stage	 I)	up	 to	100-1000	 fragments	 in	patients	at	advanced	stages	 (stage	
IV).	Additionally,	these	values	also	differed	depending	on	the	cancer	type.	
Other	body	fluids	than	plasma	may	have	a	higher	tumor	DNA	content	for	
specific	 cancer	 types,	 as	 for	 example,	 urine	 for	 bladder	 cancers	
(Birkenkamp-Demtröder	 et	 al.,	 2016),	 stool	 for	 colorectal	 cancers	
(Sidransky	et	al.,	1992)	or	cerebrospinal	fluid	for	various	brain	cancers.	
	

4.4. Detecting	tumor	heterogeneity	using	ctDNA	

	
Cancer	 is	 a	 complex	 and	 heterogeneous	 disease.	 The	 intra-tumor	
heterogeneity	 occurs	 when	 different	 tumor	 regions	 from	 a	 single	
individual	 present	 different	mutation	 profiles,	which	might	 also	 differ	 to	
the	ones	 found	 in	metastatic	 sites	 (Nowell,	1976;	Griffith	et	al.,	2015).	 It	
has	 been	 suggested	 and	 later	 supported	 that	 different	 cancer	 sub-
populations	of	the	same	cancer	mass	have	in	general	a	common	ancestral	
origin,	 but	 evolve	 over	 time	by	 obtaining	 different	 sub-clonal	mutations,	
which	 can	 also	 lead	 to	 differential	 speed	 of	 proliferation	 of	 sub-clones	
(Nowell,	 1976;	Gerlinger	et	 al.,	 2012;	Griffith	et	 al.,	 2015)	 (see	Figure	4).	
For	 this	 reason,	 an	 individual	 biopsy	 does	 likely	 not	 represent	 the	 full	
complexity	and	heterogeneity	of	the	whole	tumor.	Hence,	 liquid	biopsies	
are	 preferable,	 considering	 that	 all	 regions	 of	 the	 tumor	 release	 ctDNA	
fragments	 to	 the	bloodstream	 (or	other	 liquids).	 Therefore,	 liquid	biopsy	
methods	 based	 on	 ctDNA	 sequencing	 have	 the	 potential	 to	 reflect	 the	
complex	architecture	of	a	tumor	without	the	need	of	invasive	sampling.		
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Figure	 4	 |	 Genetic	 Intra-tumor	 heterogeneity	 (A)	 and	 the	 correspondent	

phylogeny	(B)	in	patient	with	renal	carcinoma.	Figure	taken	from	Gerlinger	et	al.,	
2012.		

4.5. Monitoring	patients	during	and	after	treatment	using	ctDNA	

The	 short	 half-life	 and	 the	 easy	 accessibility	 to	 plasma	 makes	 liquid	
biopsies	 a	 good	 choice	 for	 longitudinal	monitoring	 of	 patients	 and	 their	
response	to	cancer	or	other	types	of	therapy	(Wan	et	al.,	2017).	Although	
it	 is	 still	 a	 novel	 approach,	 there	 are	 already	 some	 studies	 that	
demonstrated	 that	 ctDNA	 dynamics	 correlates	 with	 treatment	 response	
and	 might	 help	 to	 correctly	 measure	 treatment	 response	 earlier	 than	
other	clinical	detection	methods	such	as	tumor	imaging.		

In	2008,	Diehl	et	al	described	the	importance	of	ctDNA	measurements	to	
monitor	 tumor	 dynamics	 in	 subjects	 with	 cancer	 who	 were	 undergoing	
surgery	or	chemotherapy	(Diehl	et	al.,	2008).		Several	years	later	in	2016,	
Xi	 et	 al	 suggested	 that	 an	 early	 spike	 in	 ctDNA	 levels	 (specifically,	 an	
increase	in	the	variant	allele	fractions	of	BRAF	mutations)	in	the	first	week	
after	 the	 initiation	 of	 immunotherapy	 for	 patients	with	melanoma	 could	
predict	response	to	treatment.	The	authors	speculated	that	the	observed	
surge	in	ctDNA	frequency	might	reflect	a	transient	 increase	in	cancer	cell	
death	due	to	therapy	(Xi	et	al.,	2016).	In	2018,	Kurtz	et	al	claimed	that	pre-
treatment	ctDNA	 levels	 and	 molecular	 responses	 were	 independently	
prognostic	 of	 outcomes	 in	 aggressive	 lymphomas	 (Kurtz	 et	 al.,	 2018).	
Finally,	 a	 recent	 study	 including	 68	 patients	 with	 localized	 advanced	
bladder	 cancer	 was	 able	 to	 associate	 the	 dynamics	 of	 ctDNA	 during	
chemotherapy	with	disease	recurrence	(Christensen	et	al.,	2019).		
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These	examples	show	that	the	longitudinal	analysis	of	ctDNA	is	becoming	
an	 important	 clinical	 application	 enabling	 personalized	 medicine	 and	
helping	oncologists	to	better	diagnose	and	treat	cancer	patients.		
	
Following	 surgery,	 radiochemotherapy	 (RCTX)	 and/or	 targeted	 drug	
treatments,	 the	 detection	 of	 ctDNA	 in	 plasma	 indicates	 the	 presence	 of	
minimal	residual	disease	(MRD),	 i.e.	residual	tumor	cells	 in	the	body	that	
survived	 treatment,	 even	 when	 other	 clinical	 features	 or	 evidences	 are	
absent	 (Tie	 et	 al.,	 2016).	 Tests	 of	 230	 colorectal	 cancer	 patients	 at	 first	
follow-up	after	surgical	resection	showed	that	90%	of	the	ctDNA-positive	
(MRD)	 group	 suffered	 from	 relapse,	 compared	 to	 0%	 of	 the	 ctDNA-
negative	 group.	 With	 these	 results,	 Tie	 et	 al	 demonstrated	 that	 the	
detection	of	ctDNA	at	 follow-up	after	 treatment	could	also	 indicate	poor	
prognosis,	allowing	the	stratification	of	patients	into	high-	and	low-risk	to	
relapse.	(Tie	et	al.,	2016).		
	

4.6. Limitations	in	ctDNA	analysis		

	
All	 recent	 advances	 in	 ctDNA	 research	 and	 high-throughput	 sequencing	
highlight	the	potential	of	liquid	biopsies	for	clinical	applications.	However,	
there	are	few	limitations	that	need	to	be	addressed	in	order	to	have	highly	
accurate	and	reproducible	results.	
	
The	concentration	of	 ctDNA	 in	plasma	has	been	shown	 to	correlate	with	
tumor	size	and	stage	(Thierry	et	al.,	2010;	Bettegowda	et	al.,	2014).	Thus,	
the	 ctDNA	 fragment	 proportion	 compared	 to	 fragments	 originated	 from	
healthy	cells	depends	on	 the	 individual’s	disease	status.	Scenarios	where	
ctDNA	 concentrations	 are	 extremely	 low	 remain	 challenging	 (Wan	et	 al.,	
2017).	 	 Additionally,	 background	 noise	 like	 oxidation	 damage	 during	
library	preparation	or	 systematic	mapping	and	sequencing	errors	 (or	any	
other	 issues	 described	 above)	 affect	 sensitivity,	 specificity	 and	 false	
discovery	 rates	 and	 hence,	 they	 must	 be	 taken	 into	 account.	 Novel	
approaches	 or	 protocols	 try	 to	 use	 unique	 molecular	 identifiers,	 i.e.	
random	barcodes	attached	to	DNA	fragments,	 to	 identify	PCR	duplicates.	
Subsequently,	 information	 about	 duplicates	 is	 used	 to	 reduce	 the	
background	 errors	 rates	 through	 the	 removal	 of	 amplification	 and	
sequencing	errors	(Schmitt	et	al.,	2012;	Newman	et	al.,	2016a)	(Figure	2C).	
These	 strategies	 permit	 to	 detect	 variants	 below	 0.1	%	 (Newman	 et	 al.,	
2016a).		
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A	 second	 important	 limitation	appears	when	variant	 calling	 is	performed	
in	 large	target	regions,	e.g.	 in	panels	of	hundreds	of	cancer	driver	genes.	
The	 risk	 of	 having	 false	 positive	 calls	 increases	 with	 the	 number	 of	
genomic	positions	covered	by	the	panel	due	to	multiple	hypothesis	testing	
(Wan	et	 al.,	 2017).	 For	 this	 reason,	 it	 is	 necessary	 to	 apply	multiple	 test	
corrections	 and	 filters	 to	 increase	 specificity	 and	 precision,	which	 at	 the	
same	 time	 decrease	 the	 sensitivity	 to	 discover	 ultra-low	 frequency	
mutations.		
	
In	addition	to	previous	 limitations,	ctDNA	analyses	are	usually	performed	
on	 a	 few	 milliliters	 of	 plasma,	 which	 contain	 only	 around	 20ng	 of	 DNA	
representing	 few	 thousands	 of	 haploid	 human	 genome	 equivalents.	 For	
this	 reason,	 increasing	 the	 theoretical	 sensitivity	 and	 specificity	 for	
mutations	to	below	1	in	several	thousand	DNA	fragments	may	not	actually	
produce	any	gain	in	sensitivity	due	to	a	lack	of	unique	genome	equivalent	
in	the	tested	DNA	sample.	It	is	indeed	highly	likely	that	a	specific	mutation	
with	a	variant	allele	 fraction	below	1/10,000	 (0.01%)	 is	not	 found	due	to	
the	 insufficient	 number	 of	 haploid	 genomes	 present	 in	 the	 sample.	
Therefore,	 new	 strategies	 and	 variant	 calling	 algorithms	 need	 to	 be	
developed	to	solve	this	problem.	
	
Finally,	recent	studies	have	discovered	the	presence	of	mutations	in	genes	
associated	 to	 cancer	 (NOTCH1,	 TP53,	 KRAS…)	 in	 healthy	 individuals	
(Martincorena	 et	 al.,	 2015,	 2018).	 These	 results	 show	 that	mutations	 in	
specific	 genes	 should	 be	 considered	 carefully,	 as	 the	 effect	 of	 aging	 in	
some	tissues	of	healthy	individuals	might	be	misinterpreted	as	early-stage	
cancer	events.		
	
ctDNA	sequencing	and	the	concept	of	 liquid	biopsy	have	the	potential	 to	
revolutionize	 biomedical	 research	 as	 well	 as	 cancer	 diagnosis	 and	
prognosis.	However,	there	are	several	 important	 limitations	that	must	be	
addressed	and	hence,	new	algorithms	and	strategies	are	needed	in	order	
to	 generate	 highly	 accurate	 results	 necessary	 for	 applications	 in	
personalized	medicine.				
	
	

5. SOMATIC	AND	MOSAIC	MUTATIONS	IN	HEALTHY	INDIVIDUALS	
	
The	 acquisition	of	DNA	mutations	during	 life	 is	 unavoidable.	Despite	 the	
existence	of	several	cell	mechanism	that	preserve	genome	integrity,	cells	
accumulate	mutations	during	development	and	life	due	to	aging	and	many	
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environmental	influences.	Accumulation	of	mutations	over	time	generates	
populations	of	cells	with	different	genomic	profiles	in	the	same	individual,	
a	 phenomenon	 called	 somatic	 mosaicism	 (Acuna-Hidalgo	 et	 al.,	 2016).	
Moreover,	if	these	mutations	are	present	in	gametes,	they	can	be	passed	
to	 the	 offspring	 and	 might	 contribute	 to	 evolution,	 i.e	 they	 can	 be	
positively	 selected,	 have	 neutral	 effects	 or	 lead	 to	 sever	 disorders	 or	
abnormalities.		
	

5.1. Importance	of	timing	in	somatic	mosaic	mutations	

	
Postzygotic	mosaic	mutations,	which	 are	 those	mutations	 acquired	 after	
the	 fertilization	 of	 the	 egg,	 lead	 to	 the	 coexistence	 of	 distinct	 cell	
populations	 in	 a	 single	 individual	 (Biesecker	 and	 Spinner,	 2013;	 Acuna-
Hidalgo	et	al.,	2016).	
		

	
Figure	5	|	Different	stages	of	human	embryogenesis	and	life.	

	
	
Since	 fertilization,	 the	 zygote	 divides	 and	 clonally	 expands	 during	
embryonic	 development	 up	 to	 around	 1013	 -	 1014	cells	 constituting	 the	
human	body	(Bianconi	et	al.,	2013).	After	fertilization,	the	one-cell	zygote	
starts	 a	 series	 of	 cell	 divisions	 in	 which	 the	 embryo	 increases	 the	 cell	
number	 while	 maintaining	 its	 overall	 size	 and	 a	 round	 shape	 to	 finally	
create	the	blastocyst,	a	process	called	cleavage	(Rossant	and	Tam,	2017).	
Afterwards,	the	blastocyst	is	implanted	in	the	uterus	and	during	the	stage	
of	 gastrulation	 the	 three	 germ	 layers	 (ectoderm,	 mesoderm	 and	
endoderm)	 are	 formed.	 These	 germ	 layers	will	 further	 differentiate	 into	
tissues	 and	 organs	 through	 two	 important	 processes	 called	 histogenesis	
and	 organogenesis	 (see	 Table	 2	 and	 Figure	 5)	 (Yamada	 et	 al.,	 2010;	
Rossant	 and	 Tam,	 2018).	 Finally,	 the	 fetal	 development	 stage	 begins	
around	the	9th	week	and	continues	until	birth	(Figure	5).		
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Table	2	|Tissues	derived	from	the	three	germ	layers	(ectoderm,	mesoderm	and	

endoderm).		

	
	
The	 timing	 of	 mosaic	 mutations	 and	 the	 posterior	 apoptosis	 and	 cell	
migration	determine	the	mosaic	pattern	of	each	individual	(Biesecker	and	
Spinner,	2013)	and	 the	percentage	of	affected	cells	 in	organisms,	 tissues	
or	groups	of	tissues	(Campbell	et	al.,	2015;	Acuna-Hidalgo	et	al.,	2017).	For	
instance,	 mutations	 occurring	 early	 in	 embryogenesis	 (cleavage,	
blastulation,	 gastrulation)	 can	 be	 present	 in	 a	 substantial	 proportion	 of	
cells	 in	postnatal	humans	and	therefore,	have	particularly	high	 likelihood	
to	 effect	 the	 phenotype	 or	 cause	 disease	 (Ju	 et	 al.,	 2017)	 (Figure	 6).	
Moreover,	mutations	occurring	earlier	 in	development	should	be	present	
in	 more	 tissues	 and	 in	 greater	 proportion	 of	 cells,	 although	 they	 don’t	
expand	in	a	symmetric	way	to	adult	somatic	tissues,	as	Ju	et	al	claimed	(Ju	
et	al.,	2017).		
	

	
Figure	6	|	Importance	of	timing	in	mosaic	mutations.	Figure	taken	from	Campbell	
et	al.,	2015).	
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5.2. Mosaic	mutations	during	human	development	

	
Mosaic	 mutations	 have	 been	 associated	 with	 a	 broad	 range	 of	 genetic	
diseases	 (Campbell	 et	 al.,	 2015),	 including	 neurological	 disorders	 (Poduri	
et	 al.,	 2013;	Halvorsen	et	 al.,	 2016),	 brain	malformation	and	overgrowth	
syndromes	 (Lindhurst	 et	 al.,	 2011;	Rivière	 et	 al.,	 2012),	 autism	 spectrum	
disorders	 (Yurov	 et	 al.,	 2007),	 and	 cancer	 predisposition	 syndromes	
(Prochazkova	 et	 al.,	 2009;	 Ruark	 et	 al.,	 2013).	 However,	 although	
sometimes	causing	disorders,	 studies	 in	 single	 tissues	demonstrated	 that	
mosaic	mutations	also	occur	in	normal	(healthy)	tissues	(Acuna-Hidalgo	et	
al.,	 2015;	 Ju	et	 al.,	 2017;	Wei	et	 al.,	 2018a).	 Interestingly,	Acuna-Hidalgo	
and	 colleagues	 found	 that	 around	 7%	 of	 presumed	 germline	 de	 novo	
mutations	causing	rare	disease	cases	treated	in	their	hospital	were	in	fact	
post-zygotic	mosaic	mutations	 (Acuna-Hidalgo	et	al.,	2015).	Using	whole-
genome	sequencing	of	normal	blood	 from	241	adults,	 Ju	et	al	 estimated	
that	 approximately	 three	 mutations	 are	 accumulated	 per	 cell	 division	
during	 early	 embryogenesis	 (Ju	 et	 al.,	 2017),	 each	 of	which	 could	 hit	 an	
essential	gene	and/or	cause	severe	genetic	diseases.		
		
The	 detection	 of	 mosaic	 variants	 in	 tissues	 is	 challenging	 because	 it	
requires	analysis	of	many	cells	within	a	given	tissue	and	it	may	be	tissue-
specific	 or	 tissue-limited	 (Acuna-Hidalgo	 et	 al.,	 2016).	 Therefore,	 the	
detection	 of	 the	mosaicism	 in	 the	 tissue	 in	 which	 it	 occurs	may	 require	
analysis	of	multiple	tissues	within	an	individual.	A	comprehensive	study	of	
all	 tissues	of	an	 individual	 in	a	 large	cohort	of	 individuals	has	 indeed	not	
been	performed	so	far.		
	

5.3. Somatic	mutations	during	life	in	healthy	individuals	

	
Somatic	 mutations	 events	 are	 not	 limited	 to	 prenatal	 development	 and	
also	 occur	 frequently	 after	 birth	 due	 to	 environmental	 effects	 (sunlight,	
mutagenic	agents	etc.)	or	simply	aging	(Risques	and	Kennedy,	2018).	Age-
related	disorders	like	cancer	emerge	through	the	accumulation	of	somatic	
mutations	 during	 life,	 creating	 complex	 genetic	 heterogeneity	 and	
clonality	 within	 tissues	 or	 organs.	 However,	 as	 around	 half	 of	 these	
mutations	arise	years	or	even	decades	before	tumor	initiation	(Tomasetti	
et	al.,	2013),	it	opens	the	possibility	that	somatic	variants	acquired	during	
development	 and	 life	might	 be	 present	 in	 non-malignant	 human	 tissues	
(Wei	et	al.,	2018a).		
	



Introduction	

23	

An	 increase	of	somatic	mutations	and	clonal	expansion	events	 in	healthy	
adults	has	been	reported	for	peripheral	blood,	esophagus	and	skin	(Jaiswal	
et	al.,	2014;	Xie	et	al.,	2014;	Martincorena	et	al.,	2015,	2018;	Yokoyama	et	
al.,	 2019).	 Studies	 in	 blood	 of	 elder	 healthy	 individuals	 discovered	
recurrent	mutations	in	genes	implicated	in	myelogenous	leukemia	(such	as	
DNMT3A,	 TET2,	 ASXL1	 and	 JAK2),	 suggesting	 that	 these	 clones	 might	
represent	early	stages	of	leukemic	progression	(Jaiswal	et	al.,	2014;	Xie	et	
al.,	2014).		
	
In	 the	 analysis	 of	 74	 cancer	 genes	 across	 234	 biopsies	 of	 normal	 skin,	
Martincorena	et	al	 found	between	2-6	somatic	mutations	per	megabase,	
which	also	exhibited	ultraviolet	light	exposure	signatures	(Martincorena	et	
al.,	 2015).	 Moreover,	 they	 also	 described	 that	 some	 cancer	 genes	 were	
under	positive	selection	and	clonal	expansion	(NOTCH1,	TP53	and	FGFR3)	
(Martincorena	et	al.,	2015).		
	
Finally,	a	study	of	biopsies	of	normal	esophagus	(in	middle-aged	and	early	
donors)	 has	 also	 shown	 the	 presence	 of	 clones	 with	 cancer-associated	
mutations,	caused	mainly	by	intrinsic	mutational	processes,	with	NOTCH1	
and	TP53	mutations	affecting	a	high	proportion	of	cells	 (from	12	to	80	%	
and	 2	 to	 37	 %,	 respectively)	 (Martincorena	 et	 al.,	 2018).	 Additionally,	
NOTCH1	 mutation	 frequencies	 in	 normal	 esophagus	 were	 found	 to	 be	
several	 times	 greater	 than	 in	 esophageal	 cancer,	 suggesting	 a	 different	
function	(oncogene	or	tumor	suppressor)	of	NOTCH1	 from	the	oncogenic	
function	 described	 for	 instance	 in	 leukemia.	 In	 parallel,	 in	 2019,	 both	
Yizhak	et	al	and	Yokoyama	et	al	found	similar	results	for	normal	esophagus	
tissues	(Yizhak	et	al.,	2019;	Yokoyama	et	al.,	2019).	
	
It	 is	 maybe	 not	 surprising	 that	 mutations	 conferring	 proliferative	
advantages	develop	into	larger	and	highly-clonal	cell	populations	through	
the	pass	of	life.	However,	all	these	findings	have	many	implications	on	the	
way	to	understand	both	cancer	development	and	aging.		
	
	

6. OBJECTIVES	
	
As	DNA	re-sequencing	becomes	more	and	more	important	for	diagnostics	
of	genetic	diseases	and	cancer	and	can	help	to	make	clinical	decisions,	 it	
also	became	more	and	more	 important	 to	assess	 the	accuracy	of	variant	
calls	 and	 to	 understand	 biases	 and	 sources	 of	 errors	 in	 sequencing	 and	
bioinformatics	methods.	False	positive	and	negative	calls	in	clinical	studies	
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affect	dramatically	the	downstream	analysis	and	bias	the	interpretation	of	
the	 results,	 leading	 in	 some	 cases	 to	 a	 wrong	 diagnosis	 or	 prognosis	 or	
suboptimal	 treatment	 choices.	 For	 this	 reason,	 the	 general	 goal	 of	 this	
thesis	 is	 to	develop	methods	to	reduce	the	amount	of	 false	positive	calls	
enriched	 in	 both	 germline	 and	 somatic	 variant	 analysis,	 as	 well	 as	 to	
maximize	 the	 sensitivity	 for	 the	 detection	 of	 true	 variants,	 especially	 for	
somatic	 mutations	 at	 very	 low	 fraction	 in	 cancer	 patients	 or	 normal	
tissues.		
	
The	 accuracy	 of	 variant	 detection	 highly	 depends	 on	 the	 capacity	 to	
distinguish	and	understand	the	possible	biases	that	NGS	data	might	have.	
For	this	reason,	first	of	all	it	is	crucial	to	characterize	errors	that,	in	general	
terms,	can	be	summarized	as	follows:		
	

Errors	~	Systematic	errors	 + PCR	errors + Sequencing	errors + Others	
		

I. The	first	part	of	 this	 thesis	 (chapter	1)	was	 focused	on	detecting	and	
characterizing	 systematic	errors.	Although	 random	sequencing	errors	
can	 be	 modelled	 statistically	 and	 deep	 sequencing	 minimizes	 their	
impact,	 systematic	 errors	 remain	 a	 problem	 even	 at	 high	 depth	 of	
coverage.	Therefore,	understanding	their	source	 is	crucial	to	 increase	
precision	of	 clinical	NGS	applications.	Hence,	 in	 the	 chapter	1	of	 this	
thesis,	we	tried	to	achieve	the	following	objectives:		

	

- Identifying	 genomic	 sites	 prone	 to	 systematic	 alignment	 and	
sequencing	errors	with	the	analysis	of	allele	balance	bias	in	a	cohort	of	
987	WES	individuals.	

- Computing	a	variant	callability	 score	 (ABB	score)	 for	each	position	of	
the	 human	 exome,	 which	 is	 able	 to	 distinguish	 systematic	 and	
recurrent	errors.		

- Validating	 and	 benchmarking	 the	 utility	 of	 ABB	 score	 to	 detect	 false	
positive	 calls	 in	 somatic	 and	 germline	 variant	 calling,	 as	 well	 as	 its	
utility	 for	 finding	 artifacts	 and	 false	 associations	 in	 rare	 variant	
association	studies.		

II. The	second	part	of	this	thesis	(chapter	2	and	Appendix)	had	the	main	
goal	 of	 distinguishing	 mutations	 at	 very	 low	 allele	 frequencies	 for	
monitoring	 cancer	 patients	 during	 treatment	 using	 cell-free	 DNA	
samples	 from	 plasma.	 Once	 systematic	 errors	 are	 characterized,	
background	noise,	mainly	caused	by	sequencing	and	PCR	errors,	needs	
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to	 be	 removed	 to	 call	 variants	 at	 ultra-low	 frequency.	 Hence,	 the	
objectives	of	this	chapter	2	were:	

	

- Developing	 an	 algorithm	 to	 detect	 and	 remove	 sequencing	 and	 PCR	
errors	 in	 cfDNA	 sequences	 with	 the	 use	 of	 unique	 molecular	
identifiers.		

- Creating	 a	 variant	 caller	 modeling	 the	 remaining	 errors	 and	 calling	
somatic	variants	at	extremely	low	allele	frequency.	

- Performing	 longitudinal	 analysis	 of	 cancer	 mutation	 kinetics	 in	 20	
head	and	neck	squamous-cell	carcinoma	(HNSCC)	patients	across	four	
different	time	points	during	treatment	(radiochemotherapy),	and	one	
extra	 time	 point	 at	 the	 first	 follow-up	 after	 treatment	 in	 order	 to	
detect	treatment	response.		

- Detecting	 minimal	 residual	 disease	 after	 treatment	 and	 using	 it	 to	
predict	poor	cancer	prognosis.	

III. Finally,	 the	 third	 part	 of	 this	 thesis	 (chapter	 3)	 was	 focused	 on	 the	
detection	 of	 somatic	 and	 mosaic	 mutations	 in	 10,097	 RNA-seq	
samples	from	up	to	49	different	tissues	of	570	healthy	individuals	from	
the	GTEx	project.	Thus,	the	objectives	of	this	chapter	were:	
	

- Developing	an	algorithm	and	variant	calling	method	to	detect	somatic	
mutations	in	RNA-seq	data.		

- Integrating	 the	 multi-tissue,	 multi-individual	 calls	 and	 the	 human	
embryonic	 development	 tree	 information	 to	 detect	 and	 characterize	
mosaic	mutations	in	healthy	individuals	during	embryogenesis	and	life.		

- Investigating	 the	 relation	 of	 somatic	 mutations	 and	 age	 in	 multiple	
tissues	of	healthy	individuals.		
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CHAPTER	1		

DETECTION,	 CHARACTERIZATION	 AND	 IMPORTANCE	 OF	

SYSTEMATIC	ERRORS	IN	RE-SEQUENCING	STUDIES	

	
The	enrichment	of	false	positive	calls	in	re-sequencing	studies	might	have	
important	 consequences	 for	 downstream	 analysis.	 Decisions	 such	 as	 the	
selection	of	treatment,	diagnosis	and	prognosis	of	some	disease	are	based	
on	 the	 calls	 obtained	 from	 conventional	 somatic	 or	 germline	 variant	
calling	 pipelines	 and	 hence,	 polishing	 final	 callsets	 to	 remove	 remaining	
errors	 is	 crucial	 to	 achieve	 reliable	 results.	 Although	most	 of	 the	 errors	
that	 are	 random	can	be	modelled	 statically	 and	high	depths	of	 coverage	
might	help	to	detect	them,	systematic	errors,	which	are	found	recurrently	
across	samples,	remain	even	at	high	depths	and	are	usually	not	detected	
by	standard	aligners	and	variant	callers.			
	
For	 this	 reason,	 in	 this	 chapter	we	 have	 developed	 an	 algorithm	 named	
ABB	 (‘Allele	 Balance	 Bias’)	 able	 to	 detect	 systematic	 errors	 in	 human	
genome	 re-sequencing	 studies.	 	 We	 defined	 allele	 balance	 bias	 as	 a	
recurrent	 deviation	 of	 observed	 from	 expected	 proportion	 of	 reads	
supporting	the	alternative	allele	at	a	genomic	position	 in	a	 large	number	
of	samples.	The	analysis	of	ABB	in	a	cohort	of	around	1000	whole	exome	
sequencing	 (WES)	 samples	has	permitted	us	 (1)	 to	build	a	model	able	 to	
identify	sites	in	human	genome	prone	to	systematic	error,	(2)	to	create	a	
genotype	callability	filter	able	to	remove	this	type	of	errors	from	germline	
and	 somatic	 mutation	 studies	 and	 (3)	 to	 detect	 false	 gene-disease	
associations	in	rare	variant	association	studies.	
	
My	contribution	 in	this	project	has	been	to	design,	analyse	and	build	the	
ABB	model,	as	well	as	to	perform	the	benchmarking	analysis	of	the	tool.	
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CHAPTER	2		

IDENTIFYING	 SOMATIC	 MUTATIONS	 IN	 CELL-FREE	 DNA	

FROM	BLOOD	PLASMA	TO	MONITOR	CANCER	PATIENTS	

PRE-,	DURING	AND	POST-TREATMENT	

	
Characteristics	 such	 as	 short	 half-life,	 easy	 accessibility	 (non-invasive	
biopsy)	and	complete	representation	of	tumor	mutation	profiles	show	the	
potential	 of	 cfDNA	 analysis	 to	 become	 a	 method	 for	 monitoring	 cancer	
patients	during	treatment	and	different	stages	of	the	disease.		
	
In	 this	 chapter	 (adapted	 version	 from	 the	 manuscript	 Dynamics	 of	
circulating	 cell-free	 tumor	 DNA	 in	 HNSCC	 patients	 receiving	
radiochemotherapy	 correlates	 with	 treatment	 response	 paper	 –	 in	
preparation),	 we	 have	 performed	 the	 longitudinal	 analysis	 of	 the	 ctDNA	
kinetics	in	plasma	of	20	head	and	neck	squamous	carcinoma	patients	pre-,	
during	and	post-treatment	 to	understand	how	cfDNA	behaves	compared	
to	treatment	response.	
	
My	contribution	to	this	project	has	been	the	complete	computational	and	
statistical	 analysis	 related	 to	 cfDNA	 sequencing	 data.	 To	 this	 end,	 I	 have	
developed	different	algorithms	to	use	unique	molecular	identifiers	(UMIs)	
barcodes	 to	 correct	background	noise	and	obtain	highly	accurate	variant	
calls	 at	 very	 low	 allele	 frequency.	 Please,	 find	 detailed	 and	 expanded	
methods	 for	 barcoded	 deduplication	 and	 variant	 calling	 in	 Appendix.	
Furthermore,	 I	 have	developed	 statistical	methods	 to	1)	 correlate	 cfDNA	
levels	 with	 response	 to	 treatment	 over	 time,	 2)	 identify	 residual	 tumor	
cells	after	treatment	by	measuring	minimal	residual	disease	in	plasma,	and	
3)	identify	onco-viral	DNA	in	plasma.	
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Rieß,	D.	 Zips,	 C.	 Schroeder,	 K.	 Zwirner.	Dynamics	 of	 circulating	 cell-free	
tumor	 DNA	 in	 HNSCC	 patients	 receiving	 radiochemotherapy	 correlates	
with	treatment	response.	In	preparation.	
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Abstract		

Purpose:	 In	patients	with	 locally	advanced	head	and	neck	 squamous	cell	
carcinoma	 (HNSCC),	 definitive	 radiochemotherapy	 (RCTX)	 is	 a	 standard	
treatment	 option.	 However,	 in	 spite	 of	 intense	 treatment,	 two-year	
overall	survival	is	as	low	as	60	%.	Therefore,	novel	biomarkers	for	patient	
stratification	and	prediction	of	 treatment	success	are	needed.	We	tested	
the	 prognostic	 capacity	 of	 circulating-tumor	DNA	 (ctDNA)	 before,	 during	
and	subsequent	to	RCTX	in	patients	with	HNSCC.		
	
Patients	and	Methods:	We	 sequenced	 solid	 tumors	and	normal	 samples	
of	 20	 patients	with	 locally	 advanced	HNSCC	 receiving	 a	 primary	 RCTX	 to	
identify	driver	mutations,	and	determined	the	HPV-status	of	each	patient	
by	 p16	 staining.	 Subsequently,	 we	 performed	 a	 longitudinal	 analysis	 of	
circulating	 tumor	 DNA	 dynamics	 under	 RCTX	 by	 monitoring	 of	 driver	
mutations	and	HPV	levels	in	the	plasma	prior,	during	and	after	treatment	
(5	time	points,	n	=	99).	
	
Results:	 Overall,	 we	 detected	 ctDNA	 or	 circulating	 viral	 DNA	 (cvDNA)	 in	
85%	 of	 all	 patients.	 The	 pre-therapeutic	 ctDNA	 fraction	was	 significantly	
correlated	with	the	gross	tumor	volume	(p-value	0.032)	and	ctDNA	levels	
showed	 a	 negative	 correlation	 between	 the	 tumor	 allele	 fraction	 in	 the	
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plasma	and	the	course	of	treatment	(p-value	<	0.05).	Additionally,	if	ctDNA	
was	 still	 detectable	 at	 the	 first	 follow-up	 (molecular	 residual	 disease	 -	
MRD),	the	patient	presented	with	a	recurring	disease	later	on.	Circulating	
viral	 DNA	 (HPV16/18)	 could	 be	 detected	 in	 4	 patients,	 showed	 a	 similar	
dynamic	 behavior	 to	 the	 ctDNA	 during	 treatment,	 and	 completely	
disappeared	 after	 treatment	 in	 all	 cases.	 Hence,	 circulating	 HPV	 DNA	
mainly	 originated	 from	 tumor	 cells,	 which	 harbor	multiple	 copies	 of	 the	
virus,	 and	 therefore	 can	be	 seen	 as	 a	 promising	 plasma-based	 surrogate	
marker	of	tumor	size.		
	
Conclusion:	The	detection	of	ctDNA	and	cvDNA	in	plasma	of	patients	with	
locally	 advanced	 HNSCC	 is	 feasible,	 could	 support	 the	 surveillance	 of	
treatment	response,	and	the	dynamic	changes	of	ctDNA	levels	throughout	
the	therapy	seem	to	be	prognostic	for	the	recurrence	of	the	disease.	
	
Keywords:	 head	 and	 neck	 cancer,	 HPV,	 cfDNA,	 ctDNA,	 liquid	 biopsy,	
biomarker		
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1. INTRODUCTION	
	
Head	and	neck	squamous	cell	carcinomas	(HNSCC)	represents	a	relatively	
high	 number	 of	 the	 cancers	 worldwide,	 with	 roughly	 700,000	 newly	
diagnosed	 cases	 in	 2018	 (including	 the	 oral	 cavity,	 oropharynx,	 pharynx	
and	 larynx)	 (Bray	 et	 al.,	 2018).	 The	 three	 major	 etiologies	 for	 the	
development	of	HNSCC	are	 tobacco	use,	heavy	alcohol	consumption	and	
the	 infection	 with	 the	 human	 papillomavirus	 (HPV),	 which	 is	 especially	
associated	with	oropharyngeal	squamous	cell	carcinomas	(Leemans	et	al.,	
2011,	2018).		
	
In	 unresectable,	 advanced	 tumor	 stages	 the	 primary	 combination	 of	
radiation	and	 chemotherapy	 (RCTX)	with	 curative	 intention	 is	 a	 standard	
treatment	option.	The	treatment	regimen	includes	a	cumulative	radiation	
dose	 of	 about	 70	 Gy	 applied	 within	 6-7	 weeks	 and	 a	 concomitant	
chemotherapy	 with	 cisplatin	 (Pignon	 et	 al.,	 2009)	 or	 optionally	 with	 5-
fluorouracil	(5-FU)	and	mitomycin	C	(MMC)	(Budach	et	al.,	2015).	Despite	
of	this	 intense	treatment,	a	recent	multicenter	retrospective	study	of	the	
German	 Cancer	 Consortium	 Radiation	 Oncology	 Group	 (DKTK-ROG)	
reported	a	 two-year	overall	 survival	 (OS)	 rate	of	only	59.6%	(Linge	et	al.,	
2016).	To	date,	active	 treatment	monitoring	during	RCTX	 is	not	 routinely	
performed	 and	 the	 follow-up	 is	 based	 on	 clinical	 examinations	 and	
imaging	 modalities.	 This	 allows	 an	 approximation	 of	 the	 therapeutic	
success	 over	 time	 but	 gives	 no	 insights	 into	 the	 existence	 of	 residual	
disease.	 Circulating	 tumor	 DNA	 (ctDNA)	 is	 a	 potential	 biomarker	 for	
patient	stratification,	treatment	response	assessment	and	post-treatment	
tumor	surveillance	in	HNSCC	patients	(Wang	et	al.,	2015b;	Muhanna	et	al.,	
2017;	 Tinhofer	 and	 Staudte,	 2018).	 In	 addition,	 monitoring	 of	 HPV	 viral	
particles	 in	 plasma	 was	 shown	 to	 be	 a	 surveillance	 marker	 for	 disease	
recurrence	and	of	prognostic	value	(Ahn	et	al.,	2014;	Wang	et	al.,	2015b;	
Jeannot	et	al.,	2016).		
	
Thus,	 in	 this	 study	we	 tested	 the	 capacity	 of	 ctDNA	 and	 circulating	 viral	
DNA	 (cvDNA)	 to	monitor	 treatment	 response	during	combined	RCTX	and	
to	 identify	molecular	 residual	 disease	post	 treatment.	 The	present	 study	
provides	 data	 of	 an	 ultra-sensitive	 NGS-approach	 to	 detect	 ctDNA	 and	
cvDNA	dynamics	pre-,	during-	and	post	RCTX	 in	patients	with	HNSCC.	To	
our	knowledge,	 this	 is	 the	 first	 report	of	ctDNA	dynamics	during	primary	
RCTX	in	HNSCC	and	the	according	correlation	with	outcome	parameters.	
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2. PATIENTS	AND	METHODS	
	

Patients	and	Clinical	Samples	

	

In	 this	 prospective	 pilot	 study	 twenty	 patients	 with	 locally	 advanced	
HNSCC	were	 enrolled	 between	 2015	 and	 2016.	 All	 participants	 declared	
written	informed	consent,	and	the	study	was	approved	by	the	local	ethics	
committee	 (577/2014BO2).	 The	 patients	 received	 a	 definitive	
radiochemotherapy	(RCTX)	after	primary	diagnosis	by	intensity-modulated	
radiotherapy	 (IMRT)	 with	 a	 cumulative	 radiation	 dose	 of	 70-77Gy	 and	
concomitant	chemotherapy	either	with	cisplatin	weekly	or	a	combination	
therapy	of	5-FU	and	MMC.		
	
For	the	analysis	of	ctDNA,	blood	samples	were	collected	at	5	times:	prior	
to	 therapy	 as	 baseline	 (T1),	 3	 times	 during	 therapy	 to	 follow	 the	 ctDNA	
kinetic	 and	 dynamic	 (T2-4)	 and	 subsequent	 to	 chemoradiation	 (T5)	 to	
evaluate	the	treatment	outcome	(the	time	 line	 is	shown	in	the	Figure	7).	
Clinical	 investigations	 and	 computed	 tomography	 (CT)	 scans	 were	
terminated	6	respectively	12	weeks	after	treatment	for	the	first	follow-up	
and	 consecutively	 every	 3-6	 months.	 Recurrent	 disease	 or	 progression	
were	diagnosed	by	imaging	and	endoscopic	follow	up	and	-	if	possible	-	by	
histology.		
	

Targeted	Panel	Sequencing	and	Bioinformatics	Analysis	

	

A	HNSCC	specific	cancer	panel	containing	327	genes	(Eder	et	al.,	2019)	was	
used	 for	 the	 library	 preparation	 of	 DNA	 from	 formalin-fixed	 paraffin-
embedded	 (FFPE)	 tumor	 tissues	and	blood	samples	were	used	as	normal	
tissue	control.	An	in-solution	capture	of	the	exonic	regions	was	performed	
using	 the	 Agilent	 HaloplexHS	 technology	 (Agilent,	 Santa	 Clara,	 CA)	
followed	 by	 paired-end	 sequenced	 using	 the	 HiSeq2500	 instrument	
(Illumina,	 San	 Diego,	 CA).	 Data	 analysis,	 quality	 control	 and	 calling	 of	
somatic	 single	 nucleotide	 variants,	 insertions	 and	 deletions	 were	
performed	 with	 an	 in-house	 developed	 pipeline,	 called	 “megSAP”	 as	
published	 before	 (Zwirner	 et	 al.,	 2019).	 Identification	 and	 clinical	
interpretation	 of	 driver	 mutations	 was	 performed	 using	 the	 Cancer	
Genome	Interpreter	(Tamborero	et	al.,	2018).	
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CtDNA	 and	 HPV	 monitoring	 by	 ultra-deep	 sequencing	 with	 unique	

molecular	barcodes	
	
We	 collected	 peripheral	 blood	 samples	 in	 Streck	 (Streck,	 La	 Vista,	
Nebraska)	 and	 EDTA	 tubes	 (Sarstedt,	 Nümbrecht,	 Germany)	 for	 the	
isolation	 of	 cell-free	 DNA	 (cfDNA),	 using	 the	 QIAmp	 Circulating	 Nucleic	
Acid	 Kit	 (Qiagen,	 Hilden,	 Germany).	 In	 each	 patient,	 we	 sequenced	 the	
genomic	 regions	 of	 all	 135	 driver	 mutations,	 identified	 from	 the	 total	
cohort,	and	the	E7	viral	DNA	sequence	from	the	HPV16	and	HPV18	strain	
at	 all	 available	 times	 (T1-T5;	 n	 =	 99).	 The	 input	 amount	 of	 cfDNA	 was	
limited	to	either	9	ng,	13	ng	or	15	ng	per	patient	and	sample.	This	is	equal	
to	2700–	4500	haploid	genome	equivalents	(hGEs).	Therefore,	we	tried	to	
achieve	a	minimum	fragment	recovery	of	1000	genome	equivalents,	which	
would	 allow	 us	 to	 detect	 variants	 at	 a	minimum	 allele	 frequency	 of	 0.1	
percent.		
	
To	 ensure	 correct	 variant	 calling	 at	 even	 low	 ctDNA	proportion	we	used	
the	unique	molecular	identifier	technology	provided	by	the	SureSelectXT-
HS	 kit	 (Agilent,	 Santa	 Clara,	 CA).	 For	 deduplication,	 fragments	 were	
identified	 and	 grouped	 by	 unique	molecular	 barcodes	 of	 8	 bps	 plus	 the	
coordinate	 information.	 Then,	 sequencing	and	PCR	errors	were	 removed	
with	the	base-to-base	comparison	between	these	PCR	duplicates	in	order	
to	create	collapsed	fragments	(deduplicated	reads).	Then,	resulting	reads	
were	 processed	 with	 the	 BamClipOverlap	 tool	
(https://github.com/imgag/ngs-bits)	 to	 softclip	 paired-end	 reads	 that	
overlapped.	 Each	 one	 of	 the	 final	 consensus	 fragments	 represented	 a	
recovered	DNA	fragment.		
	
For	the	variant	calling	step,	information	of	duplicates	and	error	rates	were	
taken	 into	 account	 to	 calculate	 error	 probabilities	 in	 a	 beta-binomial	
model	 (method	 paper	 in	 preparation)	 to	 obtain	 the	 potential	 calls.	 Only	
reads	 with	 mapping	 quality	 greater	 than	 30	 and	 nucleotides	 with	 base	
quality	 greater	 than	 20	 were	 considered	 in	 the	 variant	 calling	 step.	
Additionally,	 only	 variant	 sites	 that	 passed	 the	 beta-binomial	model	 and	
with	at	least	2	alternative	reads	were	considered	as	PASS	calls.	
	
A	 sample	 was	 considered	 ctDNA	 positive	 if	 at	 least	 one	 variant	 was	
detected	in	the	plasma	that	was	also	observed	in	the	primary	tumor	of	the	
patient.	
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Molecular	residual	disease	(MRD)	

	

The	 MRD	 (Molecular	 Residual	 Disease)	 value	 summarizes	 all	 variant	
information	 per	 sample	 into	 one	 variant	 calling	 value	 (sample-specific	
value).	 This	 value	 combines	 and	 collapses	 the	 significance	 of	 all	 variants	
analyzed	as	one	value.	The	p-values	of	all	variants	(obtained	from	variant	
calling	 step)	 are	 combined	 into	 one	 value	 using	 Fisher’s	 combined	
probability	 test.	 Afterwards,	 the	 resulting	 p-value	 is	 transformed	 in	 a	 1-
100	scale	using	–log10.	Therefore,	MRD	values,	which	range	from	0	to	100,	
represent	 the	 significance	 of	 ctDNA	 fragments	 presence	 in	 the	 analyzed	
sample,	 giving	 as	 maximum	 significance	 the	 value	 100.	 Finally,	 we	
considered	as	significant	MRD	>	1.3,	what	is	equivalent	to	p-value	<	0.05.	
	
Statistics	and	Data	Correlation	

	

Statistical	 significance	 was	 defined	 as	 p	 <	 0.05.	 Events	 were	 defined	 as	
follows:	 overall	 survival	 (OS),	 death	 of	 any	 cause;	 disease-free	 survival	
(DFS),	 loco-regional	 or	 distant	 failure	 or	 death	 of	 any	 cause.	 For	
longitudinal	 analysis	 of	 ctDNA	 levels	 we	 used	 a	 combination	 of	 linear	
regression	 for	 removal	 of	 confounding	 effects	 and	 Spearman	 correlation	
test	 for	 correlating	 ctDNA	 and	 treatment	 dosage.	 See	 supplementary	
materials	for	extended	and	detailed	methods.	
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3. RESULTS		
	
The	 study	 included	 20	 patients	 with	 locally	 advanced	 HNSCC,	 located	 in	
the	 oropharynx	 (n=14),	 hypopharynx	 (n=4)	 or	 in	 the	 oral	 cavity	 (n=2).	 In	
our	20	patients,	99	of	100	planned	blood	samples	could	be	collected.	One	
patient	did	not	show	up	at	the	first	follow-up	due	to	 inpatient	treatment	
in	another	clinic.	The	median	follow-up	was	823	days	(range:	135	–	1168)	
with	13	patients	still	alive	at	the	time	of	analysis.	Ten	patients	developed	
either	a	local	or	distant	relapse,	whereat	the	majority	within	the	first	year	
of	 follow-up.	 The	 genetic	 analysis	 revealed	 667	 somatic	 alteration	
(synonymous	 and	 non-synonymous),	 of	 which	 127	 were	 annotated	 as	
driver	mutation,	 resulting	 in	 a	median	 of	 4	 driver	mutations	 per	 patient	
(min	=	1,	max	=	52).	The	major	affected	signaling	cascades	were	the	TP53	-
,	 NOTCH	 -,	 HIPPO	 -,	 PI3K	 –	 pathways	 and	 members	 of	 the	 chromatin	
modification	 (Supp.	 Figure	 1).	 Additionally,	 five	 of	 the	 patients	 were	
screened	 positive	 in	 the	 pathology	 for	 HPV	 infection	 by	 p16ink	
activation/inactivation	analysis	(patients	2,	4,	8,	14	and	15).		
	
Detection	rate	of	ctDNA	and	HPV	-	E7	genes	in	the	cohort	

	

For	 monitoring	 of	 treatment	 response,	 we	 analyzed	 the	 5	 consecutive	
blood	samples	taken	from	each	patient	(n	=	99)	(see	Figure	7).	Overall,	we	
had	a	positive	detection	rate	of	85%,	whereby	in	17	out	of	the	20	patients	
we	detected	 ctDNA.	 In	 three	 patients	 (2,	 8	 and	 23)	we	 could	 not	 detect	
ctDNA	 likely	 due	 to	 variant	 calls	 of	 low	 quality	 or	 low	 variant	 allele	
frequency	(VAF)	from	the	solid	tumor	biopsy,	undetectable	levels	of	ctDNA	
or	 insufficient	 fragment	 recovery	 and	 coverage	 depth.	 Therefore,	 we	
excluded	 these	 patients	 from	 downstream	 analysis.	 In	 the	 remaining	 17	
individuals,	 we	 detected	 circulating	 viral	 DNA	 (HPV)	 in	 four	 patients	
(patients	4,	5,	14	and	15),	of	which	3	were	validated	by	p16k	analysis	 in	
solid	 tumor.	 Even	 though	 the	 total	 amount	 of	 cfDNA	 at	 each	 blood	
collection	(median:	9.98	ng/ml,	range:	2.89	–	172.9	ng/ml)	was	limited	we	
achieved	an	average	sequencing	depth	of	23,206X	before	and	2049X	after	
deduplication	 with	 molecular	 barcodes	 (see	 methods),	 representing	 on	
average	 2049	 hGEs.	 This	 enabled	 us	 to	 detect	 somatic	 alterations	 in	 the	
plasma	 with	 variant	 allele	 fractions	 (VAF)	 as	 low	 as	 0.1	 percent,	 with	
sensitivity	 depending	 on	 the	 sequencing	 depth	 and	 error	 correction	
efficiency	 obtained	 in	 deduplication	 with	 molecular	 barcodes	 (see	
supplemental	methods).		
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Figure	7	|	Timeline	 for	cfDNA	sampling,	 treatment	regime	and	ctDNA	analysis.	

The	 overview	 shows	 the	 outline	 of	 the	 study	 design	 from	 diagnosis,	 to	 the	
recruitment	and	treatment	until	the	first	follow-up.	All	solid	tumor	biopsies	were	
sequenced	prior	to	the	analysis	of	the	cfDNA.	The	lower	part	shows	when	the	five	
consecutive	blood	samples	(t1-t5)	were	taken	and	how	they	were	analyzed.	
	

	

Correlation	 of	 ctDNA	 in	 plasma	 with	 the	 gross	 tumor	 volume	 and	

fragment	proportion	

	

We	 observed	 a	 positive	 correlation	 of	 the	 macroscopic	 tumor	 burden	
according	to	the	gross	tumor	volumes	(GTVs)	in	the	planning	CTs	with	the	
allele	 frequencies	 of	 driver	 mutations	 observed	 in	 the	 plasma	 before	
treatment	 initiation	 (T1)	 (p-value	 <	 0.05	 with	 Pearson	 correlation	 test).	
Bigger	volumes	of	the	primary	tumors	(PT)	and	their	involved	lymph	nodes	
(LN)	were	associated	with	higher	allele	frequencies	(Supp.	Figure	2A).		
	
As	already	described	in	literature	(Mouliere	et	al.,	2018),	ctDNA	fragments	
are	 substantially	 smaller	 (around	 90-150	 bps)	 than	 fragments	 originated	
from	 healthy	 cells	 (166	 bps).	 Therefore,	 we	 checked	 the	 proportion	 of	
cfDNA	 fragments	 in	 cfDNA	 in	 the	 range	 of	 90.150	 bps.	 Our	 analysis	
revealed	 that	 samples	 with	 higher	 ctDNA	 fractions	 showed	 greater	
proportions	of	 cfDNA	 fragment	 in	 the	 range	size	of	90-150	bp	 (p-value	=	
0.001	with	Pearson	correlation	test,	see	Supp.	Figure	2B).	
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Treatment	surveillance	and	ctDNA	kinetics	

	
We	next	investigated	the	kinetics	of	ctDNA	levels	in	plasma	in	response	to	
the	 combined	 RCTX.	 To	 this	 end,	we	 surveyed	 the	 level	 of	 ctDNA	 in	 the	
plasma,	as	well	as	the	total	cfDNA	amount	and	the	presence	of	a	manifest	
infection	 during	 radiochemotherapy	 (Figure	 8).	 The	 latter	 two	measures	
are	 considered	 confounders	 that	 influence	 the	 proportion	 of	 ctDNA	 to	
total	cfDNA	 in	 the	bloodstream,	as	shown	before	 (Zwirner	et	al.,	2018b).	
After	 removal	 of	 confounding	 effects,	 we	 observed	 a	 dynamic	 of	 ctDNA	
levels,	 which	 showed	 a	 clear	 time	 and	 dosage	 dependency.	 Throughout	
the	 treatment,	 the	 allele	 frequency	 of	 the	 tumor-	 and	 patient-specific	
alterations	 decreased	 from	 a	 median	 of	 1%	 at	 T1	 to	 0.01%	 at	 T5	 (see	
Figure	8).	Additionally,	 7	patients	 (3,	 7,	 13,	 14,	 16,	 18	and	20)	 showed	a	
significant	negative	correlation	(p-value	<	0.05)	between	the	tumor	allele	
fraction	 in	 the	 plasma	 and	 the	 course	 of	 treatment	 (Supp.	 Table	 1).	
Longitudinal	analysis	of	another	8	patients	also	showed	a	decrease	in	the	
ctDNA	levels	over	time,	although	non-significant.	One	patient	that	did	not	
respond	to	RCTX	indeed	showed	a	positive	relation	between	tumor	allele	
fraction	 and	 dosage,	 i.e.	 an	 increase	 of	 ctDNA	 levels	 over	 the	 course	 of	
treatment	 (patient	 5).	 In	 addition	 to	 patient	 2,	 8	 and	 23,	 previously	
removed	from	all	analysis	due	to	technical	issues,	patient	11	was	excluded	
from	this	correlation	analysis	because	had	only	one	variant	called,	which	in	
some	time	points	did	not	reach	the	minimum	coverage	(see	Figure	8).		
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Figure	 8	 |	 Variant	 allele	 frequencies	 (VAF)	 of	 monitored	 driver	 mutations	 in	

plasma	 at	 different	 time	 points	 during	 treatment.	 Each	 individual	 picture	
represents	 a	 patient	 and	 its	 relapse	 status.	 Lines	 connect	 VAF	measures	 of	 the	
false	same	mutation	between	time	points	and	their	colors	represent	their	VAF	in	
the	solid	tumor	(Variant	allele	frequency	(solid)	legend).	The	shapes	of	the	points	
show	the	result	and	significance	of	variant	calling	(legend	Filter).			
	
	

Detection	of	molecular	residual	disease	(MRD)	

	
The	 second	 major	 goal	 of	 this	 study	 was	 to	 detect	 residual	 circulating	
tumor	 DNA	molecules	 at	 the	 first	 follow-up	 6-12	weeks	 after	 treatment	
finished,	 and	 to	 investigate	 the	 prognostic	 value	 of	 residual	 ctDNA	
molecules.	 We	 refer	 to	 the	 significant	 observation	 of	 residual	 ctDNA	
molecules	after	treatment	as	‘molecular	residual	disease’	(MRD)	from	here	
on.	 We	 included	 the	 16	 patients	 in	 the	 MRD	 analysis	 for	 which	 we	
successfully	obtained	plasma	for	T5	(post-treatment)	and	which	showed	a	
significant	 ctDNA	 level	 for	 at	 least	 one	 earlier	 time	 point	 (T1-T4).	 We	
compared	 the	 rate	 of	 observed	MRD	 in	 the	 group	 of	 patients	 suffering	
from	a	relapse	(patients	3,	5,	9,	10,	11,	13,	14,	21)	with	rate	in	relapse-free	
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patients	(patients	4,	7,	15	–	20).	We	detected	MRD	in	2	out	of	8	patients	
(25%)	suffering	from	a	relapse	(Figure	9),	while	none	of	the	8	relapse-free	
patients	showed	MRD.		
	

	
Figure	9	|	Longitudinal	profiles	of	ctDNA	levels	 in	MRD	patients.	 	(A)	Patient	5:	
Longitudinal	profile	of	ctDNA	levels	for	driver	mutations	(left)	and	the	MRD	value	
at	 the	 first	 follow-up	 (T5)	 after	 treatment.	 Lines	 connect	 identical	mutations	 at	
different	 time	 points	 and	 boxes	 show	 gene	 names.	 The	 color	 of	 the	 lines	
represents	the	VAF	in	the	solid	tumor	and	the	shapes	of	the	dots	show	the	variant	
calling	result	and	significance.	(B)	Patient	10:	Longitudinal	profile	of	ctDNA	levels	
for	 driver	 mutations	 (left)	 and	 the	 MRD	 value	 at	 the	 first	 follow-up	 (T5)	 after	
treatment.		See	(A)	for	plot	description	(**	for	p-value	<	0.01	and	***	for	p-value	
<	0.001).	
	
	
Both	MRD	positive	patients	had	a	significant	number	of	tumor	fragments	
with	 MRD	 scores	 of	 12.16	 (p-value	 <	 10-12)	 and	 2.44	 (p-value	 <	 0.004),	
respectively	(see	Figure	9).	Both	patients	presented	with	either	a	 local	or	
distant	 relapse,	within	101	days	 for	patients	5	and	833	days	 for	patients	
10,	 respectively.	 Further	 analysis	 of	 the	 residual	 ctDNA	 fragments	
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detected	 in	 the	 two	 MRD-positive	 patients	 revealed	 that	 patient	 5	 still	
presented	ctDNA	fragments	from	five	mutated	driver	genes	with	a	global	
tumor	 allele	 frequency	 of	 0.27	 %	 (Figure	 9Error!	 Reference	 source	 not	
found.A).	Patient	10	carried	only	a	mutation	in	TP53	with	a	smaller	tumor	
allele	 frequency	 (0.09	 %),	 while	 the	 mutation	 in	 ATM	 became	
undetectable	 (Figure	9B).	 Interestingly,	 there	 is	 enrichment	of	 significant	
MRD	scores	for	patients	suffering	from	a	relapse	in	treatment	time	points	
4	and	5	(Supp.	Figure	3).	
	
HPV	 DNA	 in	 the	 plasma	 as	 a	 marker	 for	 therapy	 monitoring	 and	

prognosis	in	advanced	HNSCC	

	
HPV-positivity	 was	 confirmed	 on	 the	 solid	 tumor	 biopsy	 by	 p16ink	
activation/inactivation	 in	5	patients	out	of	our	cohort	of	20,	and	3	out	of	
17	 after	 excluding	 patients	 2,	 8	 and	 23.	 To	 evaluate	 the	 diagnostic	
potential	 of	 liquid	 biopsy	 we	 screened	 the	 complete	 cohort	 for	 the	
existence	of	cvDNA	in	the	plasma.	We	could	confirm	HPV-positive	result	in	
100	%	of	remaining	patients	after	low-quality	sample	exclusion	(patients	4,	
14	 and	 15)	 plus	 one	 additional	 patient	 (patient	 5).	 The	 number	 of	 viral	
fragments	 in	 patients	 that	 had	 a	 positive	 p16ink	 test	 was	 very	 high,	
showing	2,229	to	11,671	reads	per	kilobase	per	million	(RPKM)	at	T1	(see	
Figure	10),	while	 the	additional	patient	 (5)	with	negative	p16ink	 showed	
only	352	RPKM	 in	T1.	We	next	 assessed	 the	 cvDNA	kinetics	of	 the	 three	
patients	 with	 positive	 p16ink	 and	 cvDNA	 test	 (4,	 14	 and	 15).	 The	
quantification	 of	 HPV	 virus	 fragments	 –	 normalized	 as	 RPKM	 values	 –
showed	 a	 steady	 decrease	 of	 the	 viral	 load	 throughout	 the	 therapy,	
mirroring	the	decrease	of	ctDNA	levels	in	the	respective	samples.	All	three	
patients	showed	a	significant	correlation	between	the	longitudinal	change	
of	 the	 normalized	 cvDNA	 counts	 and	 the	 administered	 treatment	 over	
time	 (p-val	 <	 0.05	 with	 Spearman	 correlation	 test).	 Moreover,	 the	
longitudinal	decrease	in	normalized	cvDNA	counts	(RPKM)	correlated	with	
the	 decrease	 of	 allele	 fraction	 of	 driver	 mutations	 in	 the	 respective	
patients	 (p-value	<	0.05	 in	patients	4	and	14,	p-value	=	0.0728	 in	patient	
15,	with	Pearson	correlation	test,	Figure	10).	
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Figure	 10	 |	 Longitudinal	 profiles	 of	 cvDNA	 levels	 in	 plasma.	 	 Left:	 normalized	
counts	of	HPV	fragments	observed	in	cfDNA	at	five	time	points	for	patients	with	
at	least	one	read	mapping	to	HPV.	Counts	are	normalized	using	the	RPKM	formula	
frequently	applied	for	RNA-seq	analysis.	Right:	VAF	of	driver	mutations	 in	cfDNA	
for	 the	 respective	 patients.	 Pearson	 correlation	 values	 between	 VAF	 and	 HPV	
(RPKM)	are	shown	under	patient	label.	
	
	
Finally,	we	estimated	the	number	of	HPV	copies	per	cancer	cell	in	patients	
4,	 14	 and	 15.	 Normalizing	 cvDNA	 coverage	 by	 genomic	 coverage	 we	
estimated	3.86,	2.95	and	11.69	HPV	copies	per	cancer	cell	 for	patients	4,	
14	and	15,	respectively	(see	Supp.	Table	2).	HPV	copy	number	estimates	of	
a	patient	were	highly	similar	between	time	points	1	and	2,	demonstrating	
the	 robustness	 of	 the	 approach.	 Furthermore,	 this	 observation	 indicates	
that	all	cells	of	a	given	tumor	had	the	same	HPV	copy	number,	suggesting	
that	 the	 HPV	 expansion	 in	 the	 genome	 predates	 and	 potentially	 caused	
tumorigenesis.	
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4. DISCUSSION		
	
In	this	study,	to	the	best	of	our	knowledge,	we	document	for	the	first	time	
the	kinetics	of	ctDNA	and	corresponding	outcome	parameters	 in	patients	
with	 locally	 advanced	 HNSCC	 receiving	 primary	 chemoradiation.	
Unfortunately,	 the	 majority	 of	 these	 patients	 develop	 either	 a	 local	 or	
distal	 relapse	 within	 the	 first	 2	 years	 (Linge	 et	 al.,	 2016;	 Specenier	 and	
Vermorken,	 2018).	 Therefore,	 close	 monitoring	 strategies	 and	 an	 early	
detection	of	 recurrence	 is	needed	to	 initiate	salvage	strategies.	Here,	we	
tested	 the	 application	 of	 liquid	 biopsy	 for	 monitoring	 of	 treatment	
response	 during	 RCTX	 and	 detection	 of	molecular	 residual	 disease	 post-
treatment,	 leading	 to	 four	 major	 findings,	 all	 of	 which	 could	 have	
relevance	 for	 the	 future	 clinical	 use	of	 ctDNA	as	 a	biomarker	 in	patients	
with	advanced	HNSCC.	
	
First,	 ctDNA	 can	 be	 seen	 as	 a	 surrogate	 marker	 of	 the	 disease	 burden,	
tightly	correlating	with	the	gross	tumor	volume	(primary	tumor	and	lymph	
nodes)	prior	to	the	treatment	start.	Correlation	between	ctDNA	levels	and	
tumor	stage	has	also	been	reported	and	observed	in	a	preclinical	model	of	
HNSCC	 (Muhanna	 et	 al.,	 2017).	 Second,	 the	 observed	 ctDNA	 kinetics	
showed	 a	 clear	 time	 and	 dosage	 dependency.	 This	 enables	 a	 closer	
monitoring	of	the	dynamic	changes	of	cfDNA	as	a	proxy	of	tumor	size,	and	
hence	allowing	estimation	of	 the	 response	 to	 the	 treatment.	 Indeed,	we	
have	shown	that	 the	decline	of	ctDNA	 levels	 in	plasma	observed	 in	most	
patients	corresponded	with	the	primary	success	of	the	curative	treatment	
intend.	 In	 the	only	exception,	patient	5,	 the	 increasing	 ctDNA	 fraction	 in	
the	 plasma	 indicated	 treatment	 failure.	 This	 patient	 had	 a	 local	 relapse	
within	101	days	and	the	patient	died	after	135	days.	Therefore,	we	believe	
that	 surveilling	 the	dynamic	 changes	 of	 ctDNA	 in	 the	plasma	might	 be	 a	
new	 way	 to	 monitor	 and	 to	 adjust	 the	 ongoing	 treatment	 regime.		
Interestingly,	 some	 patients	 (5,	 7,	 13,	 16	 and	 18)	 showed	 a	 peak	 in	 the	
ctDNA	 levels	 in	 in	 the	 first	 cfDNA	 sampling	 after	 treatment	 (T2).		Except	
the	patient	13,	all	variants	analyzed	 from	these	 five	patients	showed	the	
same	 tendency,	 representing	 likely	and	 increase	of	 the	cell	death	due	 to	
the	 first	 round	 of	 treatment,	 as	 already	 suggested	 in	 BRAF	mutations	 in	
metastatic	melanoma	(Xi	et	al.,	2016).	However,	although	this	increase	of	
cell	 death	 could	 represent	 a	 success	 of	 the	 prognosis	 outcome,	 some	of	
these	patients	suffered	of	relapse.	Moreover,	not	all	individuals,	including	
the	relapse-free	ones,	showed	this	early	spike,	meaning	that	more	analysis	
on	that	direction	should	be	performed	to	confirm	this	hypothesis.	
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The	 recurrence	 rate	 in	 locally	 advanced	 HNSCC,	 treated	 with	 RCTX,	 is	
around	50	percent	(Linge	et	al.,	2016).	Hence,	a	dynamic	and	non-invasive	
biomarker	such	as	ctDNA	is	needed,	that	enables	the	stratification	and	or	
prediction	of	patients	into	a	high	and	low	risk	group	for	recurrence	based	
on	 the	observed	 kinetic	 changes.	 In	many	 tumor	entities	 such	 as	 breast,	
lung,	 pancreatic,	 bladder	 or	 colon	 cancer	 residual	 ctDNA	 in	 plasma	 or	
urine	 has	 shown	 the	 association	 of	 residual	 disease	 with	 poorer	 overall	
survival	 and	 accelerated	 disease	 recurrence	 rates	 (Garcia-Murillas	 et	 al.,	
2015;	Sausen	et	al.,	2015;	Chaudhuri	et	al.,	2017;	Christensen	et	al.,	2019;	
Tie	et	al.,	2019)	.	In	our	study,	we	observed	that	molecular	residual	disease	
(MRD)	 could	 be	 detected	 after	 treatment	 only	 in	 patients	 that	 had	 a	
relapse.	 However,	 not	 all	 patients	 suffering	 from	 relapse	 showed	 MRD,	
which	 could	 either	 be	 due	 to	 limited	 sensitivity	 and	 low	 number	 of	
targeted	 variants	 per	 individual	 applied	 here,	 or	 due	 to	 the	 absence	 of	
ctDNA	 despite	 later	 relapse.	 Further	 studies	 with	 increased	 numbers	 of	
monitored	SNVs,	higher	sequencing	depth	or	larger	volumes	of	plasma	will	
be	 necessary	 to	 better	 understand	 the	 sensitivity	 and	 specificity	 of	 the	
MRD	approach.	
	
The	 presence	 of	 HPV	 type	 16	 or	 18	 was	 shown	 to	 be	 a	 promising	
biomarker	 for	 diagnosis	 of	 HNSCC,	 and	 specifically	 oropharyngeal	 SCC	
(Wang	et	al.,	2015a).	In	our	longitudinal	liquid	biopsy	study,	we	observed	
that	 circulating	 HPV	 DNA	 (cvDNA)	 detectable	 in	 the	 plasma	 of	 patients	
shows	 the	 same	 dynamic	 properties	 during	 treatment	 as	 the	 ctDNA	
representing	 driver	 genes.	 Moreover,	 we	 observed	 that	 cvDNA	
disappeared	 post	 treatment,	 indicating	 that	 only	 tumor	 cells	 harbor	
(multiple)	 copies	 of	 the	 virus.	 Furthermore,	 pre-therapy	 and	 during	 the	
first	two	time	points	during	therapy	we	were	able	to	detect	thousands	of	
unique	DNA	 fragments	of	 the	virus	 in	plasma.	Therefore,	we	suggest	 the	
use	of	circulating	HPV	DNA	as	a	highly	sensitive	and	specific	biomarker	for	
diagnosing	 HNSCC,	 for	 monitoring	 of	 treatment	 response	 and	 for	
detection	 of	 MRD	 or	 relapse.	 Due	 to	 the	 high	 sensitivity,	 cvDNA	 can	
furthermore	 be	 used	 as	 a	 blood-based	 screening	 marker	 for	 the	 early	
detection	 of	 HNSCC	 (Ahn	 et	 al.,	 2014;	 Jeannot	 et	 al.,	 2016;	 Eder	 et	 al.,	
2019).	Finally,	a	sustained	detection	of	HPV	following	the	treatment	could	
be	 predictive	 for	 disease	 recurrence.	 On	 the	 basis	 of	 these	 results	 it	 is	
mandatory	to	initiate	lager	clinical	trials	to	validate	our	findings.	
	
A	 major	 limitation	 of	 liquid	 biopsy	 approaches	 is	 the	 small	 fraction	 of	
ctDNA	 present	 in	 the	 total	 cfDNA	 convolute	 (Wan	 et	 al.,	 2017),	 and	 the	
limited	amount	of	cfDNA	that	can	be	extracted	from	a	vial	of	blood.	With	
an	average	of	around	20	ng	DNA	per	vial	 in	cancer	patients,	representing	
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roughly	 6,000	 genome	 equivalent,	 the	 chance	 of	 detecting	 MRD	 by	
monitoring	 a	 single	 mutation	 	 is	 limited	 (Chin	 et	 al.,	 2019).	 These	
limitations	can	be	overcome	by	targeting	multiple	independent	mutations	
per	individual	(affecting	different	genes),	which	is	basically	a	multiplier	of	
the	number	of	detectable	genome	equivalents.	Hence,	the	potential	of	our	
diagnostic	strategy	correlates	with	the	total	number	of	targeted	mutations	
per	 individual	 (Chaudhuri	et	al.,	2017),	and	an	 increase	of	the	number	of	
monitored	mutations	per	individual	would	significantly	increase	the	power	
to	detect	tumor	fragments	at	very	low	fraction.	In	this	study,	we	could	not	
detect	MRD	 in	 all	 patients	 that	 suffered	 from	 a	 recurring	 disease,	 most	
probably	 due	 to	 low	number	 of	mutations	 found	 in	 panel	 sequencing	 of	
the	 biopsy	 of	 some	 patients.	 In	 future	 studies,	 we	 will	 therefore	 utilize	
larger	 gene	 panels	 (>700	 genes	 instead	 of	 350	 genes)	 or	 whole	 exome	
sequencing	 for	 biopsy	 analysis	 to	 substantially	 increase	 the	 number	 of	
monitored	mutations	in	the	liquid	biopsy.		
	
In	conclusion,	we	have	used	ctDNA	and	cvDNA	for	the	first	time	in	patients	
with	 locally	advanced	HNSCC	to	monitor	their	treatment	response	during	
and	 post	 RCTX.	 We	 have	 proven	 the	 biological	 relationship	 between	
ctDNA/cvDNA	kinetics	and	the	tumor’s	 response	to	treatment,	as	well	as	
its	 prognostic	 and	 predictive	 capability	 for	 the	 detection	 of	 disease	
recurrence.	Future	clinical	trials	should	include	more	patients	and	a	more	
sensitive	approach	to	prove	our	assumptions	and	refine	our	method.	
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5. SUPPLEMENTARY	MATERIAL	
	

Treatment	regime	

	

All	participants	declared	their	written	and	informed	consent	and	received	
chemoradiation	after	primary	diagnosis	with	a	cumulative	 radiation	dose	
of	 70Gy	 in	 areas	 of	 the	 macroscopic	 tumor,	 respectively	 60Gy	 were	
applied	 in	 bordering	 areas	 and	 54Gy	 were	 prescribed	 in	 adjuvant	
lymphatic	 regions.	 Three	 patients	 were	 treated	 additionally	 with	 an	
integrated	 boost	 on	 hypoxic	 tumor	 volumes	 with	 up	 to	 77Gy.	 For	
concomitant	 chemotherapy	 either	 cisplatin	 weekly	 or	 a	 combination	
therapy	of	5-FU	and	MMC	was	applied.	
	
Follow-up	

	

Clinical	 investigations	 and	 computed	 tomography	 (CT)	 scans	 were	
terminated	6	respectively	12	weeks	after	treatment	for	the	first	follow-up	
and	 consecutively	 every	 3-6	 months.	 Recurrent	 disease	 or	 progression	
were	diagnosed	by	imaging	and	endoscopic	follow	up	and	-	if	possible	-	by	
histology.	
	
Histopathological	identification	of	HPV	

	
Immunohistochemistry	was	 performed	 on	 an	 automated	 immunostainer	
according	to	manufacturer’s	instruction	(Ventana,	Tuscon,	AZ,	USA)	and	an	
antibody	 was	 used	 against	 the	 p16INK4a	 protein	 (mouse	 monoclonal	
antibody,	clone	E6H4®,	“ready-to-use”	(RTU),	Roche	mtm	laboratories	AG,	
Mannheim,	Germany).	 Strong	and	homogenous	positivity	 reflects	a	 close	
link	to	HPV	infection.	
	
Collection	of	blood	samples	for	the	analysis	of	cfDNA	

	

We	 collected	 peripheral	 blood	 samples	 by	 Streck	 (Streck,	 La	 Vista,	
Nebraska)	and	EDTA	tubes	(Sarstedt,	Nümbrecht,	Germany)	to	analyse	the	
ctDNA.	 Plasma	 separation	 was	 performed	 within	 2	 hours	 of	 the	 blood	
draw.	 All	 samples	were	 store	 at	 either	 -20°C	 or	 -80°C	 immediately	 after	
plasma	separation.	Cell	free	DNA	was	isolated	from	3-5	ml	of	Plasma	with	
the	 QIAamp	 Circulating	 Nucleic	 Acid	 Kit	 (Qiagen,	 Hilden,	 Germany)	
according	 to	 the	 manufacturer´s	 protocol,	 with	 the	 exception	 that	 the	
samples	 were	 eluted	 in	 75-150µl	 of	 DNAse,	 RNAse	 and	 proteinase	 free	
water	(AccuGENE,	Lonza).	The	DNA	concentration	was	quantified	by	Qubit	
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(Thermo	Fischer	Scientific,	Waltham,	USA)	fluorescence	method	following	
the	manufacturer’s	instructions	and	normalized	by	plasma	volume.	
	
Targeted	panel	sequencing	of	tumour	biopsies		

	

Formalin-fixed	paraffin-embedded	(FFPE)	tumour	tissues	were	provided	by	
the	pathology	department.	EDTA	blood	samples	were	collected	as	normal	
tissue	 controls.	 Library	 preparation	 and	 in	 solution	 capture	 of	 exonic	
regions	were	performed	using	the	Agilent	HaloplexHS	technology	(Agilent,	
Santa	 Clara,	 CA).	 Samples	 were	 paired-end	 sequenced	 using	 the	
HiSeq2500	 instrument	 (Illumina,	 San	 Diego,	 CA).	 An	 in-house	 developed	
pipeline,	 called	 “megSAP”	 was	 used	 for	 data	 analysis	
(https://github.com/imgag/megSAP,	 vers.	 0.1-484-g9ad29f4	 and	0.1-614-
g21d6cfe).	In	brief,	sequencing	reads	were	aligned	to	the	human	genome	
reference	 sequence	 (GRCh37)	 using	 bwa-mem	 (vers.	 0.7.15)	 (Li,	 2013).	
Somatic	mutations	were	called	using	Strelka2	(vers.	2.7.1)	and	annotated	
with	 SNPeff/SnpSift	 (vers.	 4.3i)	 (Cingolani	 et	 al.,	 2012;	 Kim	 et	 al.,	 2018).	
For	 validity	 and	 clinical	 relevance,	 an	 allele	 fraction	 of	 ≥	 5%	 (i.e.	 ≥	 10%	
affected	 tumor	 cell	 fraction)	 was	 required	 for	 reported	 mutations.	 All	
variants	 were	 visually	 validated	 with	 the	 Integrative	 Genomics	 Viewer	
(version	 2.3.97,	 http://	 http://software.broadinstitute.org/software/igv/).	
Quality	 control	 (QC)	 parameters	 were	 collected	 during	 all	 analysis	 steps	
(Schroeder	 et	 al.,	 2017).	 For	 further	 interpretation	 all	 somatic	 variants	
were	uploaded	to	the	Cancer	Genome	Interpreter	(CGI)	(Tamborero	et	al.,	
2018).	 Somatic	 nucleotide	 variants	 were	 annotated	 as	 driver	 mutation	
based	on	the	CGI	classifications	TIER1,	TIER2	or	predicted	driver	mutation.	
	
Targeted	cell-free	DNA	sequencing	panel	design	

	
We	aimed	at	designing	a	panel	for	targeted	sequencing	of	plasma	cell-free	
DNA,	 which	 is	 as	 small	 as	 possible	 while	 at	 the	 same	 time	 covering	 all	
relevant	 patient	 specific	 somatic	 mutations	 of	 the	 whole	 cohort.	
Therefore,	 we	 limited	 the	 panel	 to	 the	 somatic	 mutations	 identified	 as	
driver	mutation	by	CGI,	based	on	the	sequencing	results	of	the	solid	tumor	
biopsies.	Additionally,	we	included	the	sequence	of	the	E7	onco-protein	of	
the	HPV16	and	HPV18	 strains.	 The	panel	was	designed	using	 the	Agilent	
SureDesign	 software	 (https://earray.chem.agilent.com/suredesign/)	 with	
standard	tiling	density,	most	stringent	masking	and	max	performance.	This	
resulted	in	a	target	size	of	26,926kb.		
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Deep	sequencing	of	plasma	samples	

	

The	library	preparation	was	done	using	the	Agilent	SureSelectXT-HS	protocol	
following	 the	manufacturer’s	 instructions.	 To	ensure	uniformity	 15	ng	of	
cfDNA	for	each	patient	were	used.	Adapters	used	in	SureSelectXT-HS	contain	
unique	molecular	identifiers	(UMIs),	which	tag	each	unique	DNA	fragment	
with	a	unique	8bp	barcode	prior	to	the	first	PCR	amplification.	These	UMI	
barcodes	can	subsequently	be	used	to	identify	any	PCR	copy	of	an	original	
DNA	fragment.	For	the	pre-hybridization	step	the	samples	were	amplified	
with	 10	 cycles.	 The	 entire	 product	 was	 used	 for	 the	 Fast	 Hybridization	
protocol	 (60cycles,	 taking	 ~1.5h).	 Capture	was	 started	 immediately	 after	
the	final	hybridization	cycle	and	proceeded	for	30	minutes	at	26°C.	For	the	
post-capture	 procedure,	 the	 libraries	were	 amplified	with	 12	 cycles.	 The	
post-capture	washes	were	performed	at	71°C.	The	 libraries	were	cleaned	
with	1x	Ampure	XP	beads,	quantified	and	pooled	together.	Subsequently,	
1.8nM	 of	 the	 library	 pool	 of	 32	 samples	was	 sequenced	 on	NextSeq500	
(Illumina,	CA).		
	
Identification	of	unique	DNA	fragments	by	UMI-based	de-duplication	

	

Sequencing	reads	originating	from	the	same	amplified	DNA	fragment	were	
identified	and	grouped	by	their	unique	molecular	identifier	(UMI)	of	8	bps	
and	 the	coordinate	of	 the	mapped	 read	on	 the	 reference	genome.	Next,	
sequencing	 and	 PCR	 errors	 were	 identified	 and	 removed	 using	 multiple	
alignment	and	base-to-base	comparison	between	all	PCR	duplicates.	Third,	
all	 PCR	 duplicates	 with	 the	 same	 UMI	 were	 collapsed	 to	 one	 sequence	
(‘de-duplicated’),	 in	 which	 discordant	 bases	 between	 duplicates	 were	
masked	 or	 marked	 as	 low	 quality.	 Finally,	 resulting	 de-duplicated	 reads	
were	 processed	 with	 the	 BamClipOverlap	 tool	
(https://github.com/imgag/ngs-bits)	 to	 soft-clip	 paired-end	 reads	 that	
overlap.		
	
Ultra-low	 frequency	 somatic	 variant	 calling	 using	 UMI-corrected	 deep-

sequencing	data	

	

In	order	to	 identify	mutations	at	ultra-low	variant	allele	frequencies	(VAF	
>=	0.1%)	in	the	cfDNA	read	data	we	utilize	the	information	from	the	UMI-
based	 de-duplication	 and	 error	 correction	 procedure	 (see	 above)	 and	
developed	 a	 statistical	 model	 for	 error	 probabilities	 based	 on	 the	 beta-
binomial	 distribution	 (method	 paper	 in	 preparation).	 Only	 reads	 with	
mapping	quality	greater	than	30	and	nucleotides	with	UMI-corrected	base	
quality	 greater	 than	 20	 were	 considered	 in	 the	 variant	 calling	 step.	
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Additionally,	only	variant	sites	with	at	least	2	alternative	reads	that	passed	
the	beta-binomial	error	model	were	considered	as	PASS	calls.	The	 lowest	
AF	 identified	 by	 our	 model	 had	 a	 VAF	 of	 0.043%	 (~1	mutated	 DNA	 per	
2,325	reference-like	DNA	fragments	in	plasma).	Variant	allele	frequencies	
of	 each	 mutation	 per	 patient	 and	 time	 point	 were	 recorded	 for	
longitudinal	analysis	of	ctDNA	dynamics	in	plasma	in	relation	to	treatment	
dosage.		
	
Correlation	of	treatment	time	point	with	VAF	

	
In	 order	 to	 obtain	 the	 correlation	 between	 VAFs	 of	 driver	 mutations	 in	
plasma	 with	 treatment	 time	 points	 we	 developed	 the	 following	
longitudinal	analysis	procedure.	First,	to	reduce	the	effect	of	VAF	variance	
and	 to	 allow	 to	 visualize	 extremely	 low	 VAFs	 we	 log-transformed	 VAF	
values	 (log10).	As	many	mutations	disappeared	 in	 later	 treatment	 stages,	
and	VAF	=	0	cannot	be	log-transformed,	we	summed	to	a	small	value	to	all	
VAFs,	 representing	 the	 expected	 background	 error	 noise	 (10-5).	 Next,	 as	
cfDNA	 concentration	 and	 infection	 status	 (Infection	 or	Not	 Infection)	 are	
known	 confounders	 that	 likely	 affect	 the	 concentrations	 of	 cfDNA	
fragments	in	plasma	(Zwirner	et	al.,	2018b),	we	subtracted	(‘removed’)	the	
effect	of	 these	 confounders	using	a	 linear	model.	 In	detail,	we	applied	a	
linear	regression	to	remove	the	effect	of	the	variables	concentration	and	
infection-status	(confounder	model):	
	

Log10(VAF)	~	[cfDNA]	+	Infectionstatus	+	ε		
	
The	 residuals	 (ε)	 of	 this	 model	 represent	 the	 variability	 of	 the	 ctDNA	
fraction	in	the	plasma,	which	cannot	be	explained	by	the	two	confounders	
(concentration	 and	 infection-status).	 Once	 the	 effects	 of	 DNA	
concentration	and	infection	were	subtracted,	we	considered	the	residuals	
(ε)	as	proxy	for	the	tumor	size.	Hence,	residuals	 (ε)	were	next	correlated	
with	 the	 variable	 treatment	 time-point	 (T1	 to	 T5)	 using	 the	 Spearman	
correlation	 test	 in	 order	 to	 test	 if	 the	 tumor	 responded	 to	 the	 RCTX	
treatment.	We	defined	a	positive	treatment	response	if	patients	showed	a	
decrease	 of	 VAF	 over	 time	 and	 a	 negative	 Spearman	 correlation.	 The	
treatment	response	test	was	considered	significant	for	p	<	0.05.	A	positive	
Spearman	 correlation	 indicates	 no	 response	 to	 treatment	 or	 progress	
under	treatment	(only	patient	5).		
	
	
	
	



Chapter	2	

67	

Molecular	residual	disease	(MRD)	

	
The	MRD	value	(Molecular	Residual	Disease,	also	termed	Minimal	Residual	
Disease	 in	 other	 publications)	 combines	 information	 of	 all	 monitored	
mutations	 per	 patient	 and	 time-point	 into	 one	 measure	 of	 presence	 or	
absence	of	residual	tumor	DNA.	We	use	Fisher’s	combined	probability	test	
to	integrate	the	significance	values	returned	by	the	variant	calling	method	
for	each	monitored	mutation	at	a	time-point	x.	The	resulting	MRD	p-value	
represents	 the	 significance	 of	 observing	 residual	 tumor	 DNA	 in	 plasma,	
with	p-values	<	0.05	indicating	that	more	ctDNA	was	detected	as	expected	
based	 on	 the	 error	 distribution.	 Afterwards,	 the	 resulting	 p-value	 is	 log-
transformed	to	a	1-100	scale	(–log10)	forming	the	MRD	score.	Higher	MRD	
scores	 indicate	a	higher	 likelihood	that	a	patient	has	residual	 tumor	DNA	
in	 the	 plasma	 after	 treatment,	 and	 hence	 a	 higher	 likelihood	 that	 the	
patient	has	residual	tumor	cells	in	the	body.	Detection	of	significant	MRD	
score	at	 a	 later	 follow-up	 time-points	 can	also	 indicate	a	 local	or	distant	
relapse.	 Finally,	we	 considered	 as	 significant	MRD	 scores	 >	 1.3,	which	 is	
equivalent	to	p-value	<	0.05.	
	
Correlation	of	DNA	fragment	sizes	in	plasma	and	variant	allele	frequency	

of	driver	mutations		

	
Fragment	sizes	were	calculated	for	all	patients	and	times	directly	from	the	
insert	 size	 of	 paired	 reads	 in	 bam	 files.	 To	 calculate	 the	 proportions	 of	
molecules	with	fragment	sizes	between	90	and	150	bps,	we	only	took	into	
account	 fragments	with	a	 size	 less	 than	or	equal	 to	200	bps.	 Finally,	 the	
correlation	 between	 the	 proportion	 of	 90-150	 bps	 fragments	 to	 all	
fragments	 <=	 200	 and	 the	 log10	 of	 VAF	 was	 computed	 with	 a	 Pearson	
correlation	 test.	 As	 ctDNA	 fragments	 have	 been	 reported	 to	 be	 shorter	
than	other	cfDNA	 fragments	 (Mouliere	et	al.,	2018)	we	expect	a	positive	
correlation	between	VAF	of	driver	mutations	and	the	proportion	of	short	
fragments.	
	
RPKM	for	HPV	

	
We	included	the	HPV	virus	strains	16	and	18	in	the	oligo	enrichment	panel	
used	for	liquid	biopsy.	After	UMI	barcode	de-duplication,	we	counted	how	
many	 reads	 (i.e.	 unique	DNA	 fragments)	mapped	 to	 each	 of	 the	 regions	
corresponding	to	the	virus	strains.	In	order	to	normalize	these	counts,	we	
calculated	RPKM	values	 (Reads	Per	Kilobase	per	Million),	 a	method	well-
known	from	RNA-seq	analysis	that	normalizes	by	region	length	and	library	
sequencing	depth	(Mortazavi	et	al.,	2008).	Hence,	for	RPKM	normalization	
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of	 viral	 read	 counts	 we	 used	 the	 total	 on-target	 read	 count	 (viral	 +	
genomic	 regions)	 and	 the	 size	 of	 the	 virus-specific	 target	 regions.	 The	
correlation	 between	 HPV	 RPKM	 values	 and	 treatment	 time	 points	 was	
calculated	with	a	Spearman	correlation	test.	Additionally,	in	order	to	check	
the	correlation	between	HPV	and	VAF	we	used	a	Pearson	correlation	test.	
Afterwards,	the	calculation	of	HPV	copies	per	cell	was	calculated	with	the	
following	formula:	
	

HPV	copies	/cell	=	 9:;<	=:>
9:;<	?@ABC@

	D	 E
F∗>HI

	
	
Where	 RPKM	 HPV	 is	 the	 value	 previously	 computed,	 and	 RPKM	 per	
genome	is	the	RPKM	value	calculated	for	all	targeted	regions	(except	virus	
regions).	½	x	VAF	is	used	as	a	correction	factor	that	estimates	the	fraction	
tumor	DNA	in	the	plasma.		
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6. SUPPLEMENTARY	FIGURES	AND	TABLES	
	

	
Supp.	 Figure	 1	 |	 Oncoplot	 of	 10	 most	 frequently	 mutated	 genes	 with	 driver	

mutations.	The	upper	part	of	the	panel	shows	the	total	number	of	mutations	for	
each	patient	as	a	 staged	bar	 chart,	where	black	 indicates	all	 somatic	alterations	
and	 grey	 highlights	 the	 identified	 driver	 alterations	 by	 the	 Cancer	 Genome	
Interpreter.	 The	 oncoplot	 itself	 depicts	 the	 top	most	 frequently	mutated	 genes	
based	on	the	selection	of	all	driver	mutations,	solely.	While	each	row	represents	
the	 different	 kinds	 of	 driver	 mutations	 (color	 coded)	 and	 their	 alteration	
frequency	 as	 well	 as	 the	 total	 number	 of	 mutations.	 Each	 line	 represents	 one	
patient	 summarizing	 the	 identified	driver	mutations.	Additionally,	 the	 treatment	
response	is	shown	in	a	grey	scale,	as	well	as	the	localization	of	the	primary	tumor	
(yellow-green	 scale)	 and	 the	 HPV	 status	 (purple-blue	 scale)	 determined	 by	 the	
pathology.	
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Supp.	Figure	2	|	Correlation	of	ctDNA	fraction	in	the	plasma	with	(A)	the	fraction	

of	DNA	fragments	in	the	size	range	90-150	bps,	and	(B)	the	tumor	volume	before	

treatment.	 (A)	Correlation	of	the	total	tumor	volume	(GTV	PT	+	LN)	with	variant	
allele	 frequencies	 of	 driver	mutations	 in	 plasma	 before	 treatment	 (T1).	 Variant	
allele	 frequencies	 in	 plasma	 correlated	 positively	 (p-value	 <	 0.05	 with	 Pearson	
correlation	 test)	with	 the	 total	 size	of	 the	 tumor	 (GTV	PT	+	LN).	However,	when	
the	 two	 measures	 of	 volume	 were	 taken	 separately,	 none	 of	 them	 showed	 a	
significant	correlation	(p-value	>	0.05).	(B)	The	proportion	of	fragments	with	size	
in	the	range	of	90-150	bps	correlated	significantly	and	positively	with	the	tumor	
allele	frequencies	in	plasma	of	the	variants	monitored	in	this	study	(p-value	<	0.01	
with	 Pearson	 correlation	 test).	 This	 fact	 supports	 that,	 independent	 of	 the	
number	 of	 variants	we	 are	 looking	 at,	 high	 ctDNA	 fractions	 in	 the	 bloodstream	
have	an	impact	in	the	fragment	size	distribution	of	a	patient.	
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Supp.	Figure	3	|	Heatmap	with	tumor	allele	frequencies	of	variants	detected	in	

this	 study	 (ctDNA	 fractions)	 across	 different	 patients	 and	 time	 points.	 Only	
patients	 with	 all	 time	 treatment	 points	 available	 and	 not	 excluded	 due	 to	
technical	 issues	are	 included	 in	this	plot.	There	 is	enrichment	of	significant	MRD	
scores	 for	 patients	 suffering	 from	 a	 relapse	 in	 treatment	 time	 points	 4	 and	 5	
(dashed	line	box).	
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Supp.	Table	1	|	Correlation	analysis	between	VAF	in	ctDNA	and	treatment	time	

points.	Firstly,	confounder	effects	were	removed	from	data	set,	and	afterwards,	
VAF-time	correlation	was	obtained	with	a	Spearman	correlation	test.	Significance	
was	assumed	when	p-value	<	0.05	after	FDR	correction.	

	

	

Supp.	Table	2	|	HPV-positive	individuals’	information.	Correlations	of	HPV	levels	
with	 treatment	 time	 points	 and	 ctDNA	 levels,	 as	 well	 as	 HPV	 copy	 number	
estimates	in	t1	and	t2.		
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APPENDIX		

USE	 OF	 UNIQUE	 MOLECULAR	 IDENTIFIERS	 TO	 DETECT	

ULTRA-RARE	SOMATIC	VARIANTS	IN	CELL-FREE	DNA	

	
This	 section	 of	 the	 thesis	 describes	 in	 detail	 the	 computational	
methodology	and	benchmarking	analysis	of	 the	 tools	used	 in	 the	project	
Dynamics	 of	 circulating	 cell-free	 tumor	 DNA	 in	 HNSCC	 patients	 receiving	
radiochemotherapy	correlates	with	treatment	response	(previous	section).		
	
The	goal	of	these	methods	is	to	detect	ultra-rare	somatic	variants	in	cfDNA	
with	the	use	of	unique	molecular	identifiers	(UMIs)	or	barcodes.	UMIs	are	
defined	 as	 random	 sequences	 attached	 to	 the	 original	 DNA	 fragment,	
which	 afterwards	 will	 be	 present	 in	 all	 duplicates	 derived	 from	 each	
individual	 fragment.	 The	 use	 of	 UMIs	 has	 been	 considered	 in	 two	main	
applications:	
	
- Barcode-based	 consensus	 sequence	 correction.	 Use	 of	 barcodes	 to	

reduce	background	noise	(PCR	and	sequencing	errors).		
- Variant	calling	and	minimal	residual	disease	(MRD)	detection.		

	
Both	applications	will	be	explained	within	this	appendix	and	will	be	part	of	
a	method	paper	(in	preparation).	Moreover,	this	method	is	part	of	an	un-
submitted	 patent	 application.	 Currently	 it	 has	 not	 been	 decided	 if	 the	
patent	will	be	submitted	to	the	patent	office.	

1. METHODS	

1.1. Processing	reads	

	
First	 of	 all,	 the	 sequences	 of	 unique	 molecular	 identifiers	 (UMIs)	 or	
barcodes	are	attached	and	stored	at	the	end	of	the	read	name	line	of	the	
fastq	files	of	read	1	and	2.	This	step	is	mandatory	to	link	each	read	with	its	
own	UMI,	which	afterwards	will	be	used	for	clustering	duplicate	reads.		
	
Next,	 in	 order	 to	 trim	 possible	 adapters	 at	 the	 end	 of	 the	 reads,	 we	
processed	 reads	with	 the	 tool	SeqPurge	 (Sturm	et	 al.,	 2016).	 This	 tool	 is	
able	to	distinguish	and	remove	the	adapters	when,	for	instance,	reads	are	
longer	than	the	insert	size.		
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Following	 the	 previous	 steps,	 reads	 were	 aligned	 against	 the	 human	
reference	 genome	 using	 BWA-mem	 (default	 parameters).	 Afterwards,	 a	
QC	 (quality	control)	 in-house	script	was	applied	 for	 removing	 low	quality	
read	pairs.	This	step	removed	reads	if:		
	
- Reads	are	not	paired	or	not	properly	mapped	as	pairs.	
- Mapping	quality	was	lower	than	30.	
- >=	3	mismatches	or	>=	1	gap	per	read	alignment.		

	
The	 filtered	 bam	 file	was	 then	 submitted	 to	 the	 barcode	 correction	 tool	
(deduplication	step),	where	the	sequences	of	duplicate	DNA	fragments	are	
merged	into	a	single	consensus	sequence.	

1.2. Barcode	correction	

	
The	goal	of	this	step	is	to	identify	PCR	duplicates	of	the	same	original	DNA	
fragment	by	 their	 common	UMI,	and	 to	use	 the	 information	 in	duplicate	
reads	to	detect	and	correct	errors	that	occurred	during	sequencing	or	PCR	
amplification	 steps.	 This	 de-duplication	 step	 collapses	 duplicates	 into	
error-free	consensus	fragments.		
	
As	 previously	 explained,	 UMI	 sequences	 are	 available	 in	 the	 bam	 file	
within	the	read	name.	Therefore,	DNA	fragments	(both	paired	reads)	are	
grouped	by	UMI,	alignment	start,	alignment	start	of	the	pair,	and	fragment	
length	 (total	 insert	 size)	 in	 order	 to	 identify	 PCR	 duplicates	 originating	
from	 the	 same	 DNA	 fragment.	 These	 duplicates	 are	 grouped	 and	
subsequently	 used	 to	 form	 a	 consensus	 sequence,	 i.e.	 to	 correct	 a	
nucleotide	we	compare	the	sequenced	base	of	each	PCR	duplicate	aligning	
to	the	same	genomic	position.	The	consensus	base	at	one	specific	position	
x	is	the	most	common	base	on	that	site	observed	across	all	PCR	duplicates	
of	the	group	(with	base	quality	(BQ)	>	20).	At	that	stage,	the	base	quality	
of	 the	 consensus	 base	 is	 chosen	 based	 on	 the	 maximum	 base	 quality	
observed	 in	 the	 position	 x	 of	 all	 PCR	 duplicates	 used	 to	 generate	 the	
consensus	sequence	(only	base	qualities	showing	the	consensus	base	are	
considered).	 Nevertheless,	 if	 there	 is	 a	 disagreement	 between	 the	
compared	bases	or	if	more	than	one	nucleotide	is	equally	represented,	the	
consensus	 base	 is	 chosen	 as	 the	most	 frequent	 one	 or	 as	 the	 one	 with	
highest	 BQ	 in	 the	 read	 data,	 respectively.	 In	 all	 cases,	 if	 the	 fraction	 of	
duplicates	supporting	the	consensus	base	is	less	than	75%	or	there	are	>=	
3	reads	showing	any	other	allele,	the	BQ	of	the	consensus	base	is	set	to	0.	
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Finally,	the	number	of	duplicates	from	which	each	consensus	is	created	is	
saved	 in	 one	 extra	 column	 in	 the	 bam	 format	 under	 the	 identifier	
DP:i:’Number	of	duplicates’.		
	

1.3. Error	rate	calculation	

	
The	error	rate	is	calculated	dividing	the	sum	of	alternative	bases	over	the	
total	 number	 of	 bases	 sequenced.	 Sites	with	 allele	 balance	 greater	 than	
10%	 (reads	 supporting	 alternative	 allele	 /	 reads	 covering	 the	 site)	 were	
considered	 true	germline	or	 somatic	variants	and	were	 ignored	 from	the	
error	rate	analysis.	We	computed	different	error	rates	for	each	correction	
stage	 and	 only	 bases	 that	 passed	 the	 BQ	 filter	 were	 considered	 in	 the	
calculation.	To	get	the	error	rate	depending	on	the	number	of	duplicates,	
we	split	the	bam	file	based	on	the	DP:i.	

1.4. Targeted	variant	calling	

	
The	 variant	 calling	 is	 performed	using	 the	pileup	 format	 generated	 from	
BAM	 files	 by	 Samtools.	 To	 ensure	 high	 precision	 and	 sensitivity	 we	
consider	all	consensus-reads	obtained	in	the	deduplication	step,	although	
we	take	 into	account	the	number	of	duplicates	each	consensus	fragment	
was	created	from	(i.e.	using	the	information	from	DP:i).		
	
Using	major	and	minor	allele	counts	per	position	we	model	the	error	rate	
distribution	 with	 a	 beta-binomial	 distribution	 in	 n	 collapsed	 and	
independent	samples	(n	=	number	of	samples	analyzed	in	the	same	run,	or	
alternatively	samples	from	an	in-house	database).	Errors	are	distributed	as	
a	Binomial	distribution	with	parameter	P	 (error	 rate),	which	 is	 a	 random	
variable	that	follows	a	Beta	distribution	with	parameters	a	and	b.	
	

Error	counts	~	Bin(Coverage,	error	rate)	
Error	rate	~	Beta(a,	b)	

	
Our	 analysis	 strategy	 was	 designed	 to	 maximize	 recall	 and	 precision	 by	
considering	 all	 information	 obtained	 during	 duplicate	 consensus	
generation,	 while	 also	 taking	 into	 account	 potential	 chemical	 processes	
leading	to	a	nucleotide-specific	error	(e.g.	oxidative	stress	or	de-amination	
of	 methylated	 cytosines).	 Hence,	 we	 considered	 two	 types	 of	 error	
models:	 a)	 nucleotide-change	 specific	 error	 signature,	 and	 b)	 duplicate-
correction-depth	specific	error	rates.		
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a. Nucleotide-change	 specific	 error	 signature:	 As	 the	 error	 rate	 varies	
across	 the	 six	different	nucleotide-change	 types,	we	model	 the	error	
rate	 distribution	 (maximum	 likelihood	 estimation	 –	 MLE)	 per	 each	
nucleotide	 change	 in	 a	 non-strand-specific	manor	 (T/A	 >	 G/C,	 T/A	 >	
A/T,	 T/A	 >	 C/G,	G/C	 >	 T/A,	G/C	 >	A/T	 and	G/C	 >C/G)	 resulting	 in	 six	
different	error	models.		
	

b. Duplicate-correction-depth:	 The	 error	 rate	 varies	 significantly	
depending	 on	 the	 number	 of	 duplicates	 used	 to	 create	 consensus	
reads.	 For	 instance,	 a	 consensus	 generated	 from	 more	 duplicates	
should	 have	 less	 errors,	 as	more	 duplicate	 reads	 were	 compared	 to	
each	other,	increasing	the	chance	of	distinguishing	errors.	Considering	
this	 criterion,	 error	 rates	were	 calculated	 separately	 for	 4	 groups	 of	
DP:i	(DP	=	1x,	DP	=	2x,	DP	=	3x	and	DP	>=	4x),	which	at	the	same	time,	
every	 DP	 group	 had	 six	 nucleotide-change	 specific	 error	 models,	
resulting	in	24	error	models	in	total.		

	
Therefore,	 for	 any	 targeted	 position	 in	 the	 analysis,	 we	 split	 consensus	
reads	 in	 the	 4	 different	DP:i	 groups,	where	 each	 one	has	 different	 error	
rates	per	nucleotide	change.	Then,	using	the	nucleotide-DP-specific	beta-
binomial	distribution,	we	obtain	a	p-value	for	each	site	and	DP,	resulting	in	
4	p-values	for	every	position	(one	for	every	DP:i	group).	Afterwards,	these	
p-values	 are	 combined	 (Fisher’s	 combined	 probability	 test)	 into	 a	 single	
one	(one	p-value	per	targeted	site)	and	normalized	(with	FDR)	to	identify	
likely	 mutated	 sites,	 i.e.	 sites	 with	 an	 alternative	 count	 significantly	
outside	of	the	respective	error	rate	distribution.	Hence,	the	total	number	
of	 targeted	 (genotyped)	 variant	 positions	 affects	 the	 p-value	 correction.	
Hence,	 a	 higher	 number	 of	 monitored	 variants	 will	 slightly	 decrease	
sensitivity	per	variant	site.	However,	as	discussed	below,	a	higher	number	
of	variants	at	 the	same	time	 increases	sensitivity	of	 the	test	based	on	all	
variants	combined.		
	
Finally,	once	we	got	potential	calls,	other	filters	were	applied:	
	
- Minimum	 distance	 between	 variants.	 Variants	 clustered	 in	 small	

windows	are	prone	to	be	false	positive	calls	and	can	be	removed.	
- Strand	 bias	 filter.	 Variants	 that	 are	 not	 equally	 represented	 on	

forward	 and	 reverse	 strand	 are	 related	 with	 false	 positive	 calls.	 To	
remove	 these	 variants,	 we	 perform	 a	 Fisher	 exact	 test	 comparing	
reference	and	alternative	counts	per	strand.		

- Multi-allelic	 sites.	 Positions	 with	 more	 than	 1	 alternative	 allele	 are	
filtered.	
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1.5. Minimal	Residual	Disease	(MRD)	score	

	
The	 Minimal	 Residual	 Disease	 (MRD)	 score	 is	 designed	 for	 monitoring	
variants	already	found	in	a	biopsy	of	a	solid	tumor.	It	is	appropriate	when	
very	 low	 allele	 frequency	 variants	 (already	 known)	 need	 to	 be	
distinguished	 in	 cfDNA	 extracted	 from	 liquid	 biopsies,	 where	 the	 low	
amount	of	extracted	DNA	results	 in	a	 limited	number	of	distinct	(unique)	
DNA	fragments	in	the	sample	(only	few	thousands	haploid	DNA	fragments	
can	be	captured	per	vial	of	blood).			
	
MRD	scores	summarize	the	complete	information	obtained	for	all	targeted	
variants	 per	 sample/individual	 into	 one	 significance	 value.	 This	 value	
combines	 and	 collapses	 the	 significance	 of	 each	 variant	 analyzed	
separately	 (computed	 as	 explained	 in	 Targeted	 variant	 calling	 section),	
using	Fisher’s	combined	probability	test.	Afterwards,	the	resulting	p-value	
is	transformed	using	–log10	and	floored	at	maximum	value	100.	Therefore,	
MRD	 values,	 which	 range	 from	 0	 to	 100,	 represent	 the	 significance	 of	
ctDNA	 fragments	 presence	 in	 the	 analyzed	 sample,	 giving	 as	 maximum	
significance	 the	 value	 100.	 Finally,	 we	 considered	 as	 significant	 sample	
when	MRD	>	1.3,	which	is	equivalent	to	p-value	<	0.05.	

1.6. Variant	calling	and	MRD	performance	

	
Firstly,	variant	calling	limitations	were	obtained	with	the	theoretical	beta-
binomial	 distributions	 previously	 computed	 for	 17	 cfDNA	 samples	 from	
HNSCC	 patients.	 To	 check	 the	 importance	 of	 the	 depth	 of	 coverage,	we	
investigated	different	depths	of	coverage	or	haploid	genome	equivalents	
(hGEs)	(1000,	5000	and	10000).	
	
Secondly,	 false	 discovery	 rate	 (FDR)	 of	 our	 variant	 calling	 was	 obtained	
using	the	real	cfDNA	data.	To	avoid	the	difficult	task	of	background	noise	
simulation,	we	first	randomly	selected	real	reads	overlapping	with	a	total	
of	2,000	random	sites	where	no	germline	or	somatic	variants	were	found,	
but	 where	 real	 background	 noise	 and	 errors	 were	 already	 in	 the	
sequences.	Moreover,	 in	 order	 to	 achieve	 high	 hGEs	 and	 coverages,	 we	
collapsed	the	bam	files	of	all	samples	(after	deduplication)	and	extracted	
reads	 in	 different	 depths	 of	 coverage	 (1000,	 5000	 and	 10000).	 Then,	
variant	 calling	 with	 default	 parameters	 was	 run	 in	 these	 2,000	 random	
sites	and	FDR	was	calculated.		
	
Finally,	 to	 understand	 the	 potential	 of	 the	 MRD	 calculation	 we	 first	
simulated	 mutations	 at	 different	 ctDNA	 fractions.	 As	 described	 in	 the	
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literature	 (Newman	et	 al.,	 2016b),	 the	number	of	 circulating	 tumor	DNA	
(ctDNA)	fragments	in	plasma	follows	a	Poisson	distribution	with	λ	=	n	x	d;	
where	 λ	 represents	 the	 expected	 number	 of	 ctDNA	 fragments,	 n	 the	
number	of	haplotype	genomes	and	d	 the	 fraction	of	 ctDNA	molecules	 in	
the	totality	of	cfDNA	fragments	analyzed.	Therefore,	following	this	model,	
we	 simulated	 2,000	 variants	 at	 different	 tumor	 fragment	 fractions	 (0.1,	
0.05,	0.025,	0.01,	0.0075	and	0.005	%)	under	different	conditions	of	hGEs	
(2500,	5000,	7500	and	10000	hGEs,	ranging	from	~	10-35	ng	of	DNA).		
	
In	order	to	check	the	importance	of	the	amount	of	variants	monitored	in	
different	ctDNA	fractions,	we	randomly	selected	different	numbers	(N)	of	
variants	(from	1	to	150	variants)	from	the	2,000	simulated	mutations	and	
checked	the	proportion	of	 times	 that	ctDNA	 fragments	were	significantly	
detected	 (MRD	>	 1.3)	 (bootstrapping	 each	 ‘N	 variant	 selection	 and	MRD	
calculation’	1,000	times)	for	every	N	at	every	different	ctDNA	fraction	and	
hGE	 content.	 Additionally,	 we	 calculated	 MRD	 values	 assuming	 three	
different	levels	of	background	error	rates	(0.01	%,	0.005	%	and	0.001	%).	

1.7. Samples	used	

	
The	 application,	 optimization	 and	 benchmarking	 of	 this	 method	 was	
performed	in	the	samples	from	20	HNSCC	patients	described	in	chapter	2.	
Specially,	only	samples	from	the	last	two	time	points	from	individuals	that	
not	 presented	 relapse	were	 considered	 in	 this	 analysis	 in	 order	 to	 avoid	
ctDNA	fragment	contamination,	resulting	in	17	samples.		
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2. RESULTS	

2.1. Deduplication	and	error	correction	

	
As	 described	 in	 the	 Method	 section,	 we	 used	 UMI	 and	 mapping	
information	 to	 collapse	 and	 group	 the	 reads	 in	 family	 duplicates.	 The	
comparison	 of	 these	 fragments	 allows	 us	 to	 detect	 errors	 that	 occurred	
during	sequencing	or	PCR	amplification,	and	hence,	it	allows	us	to	remove	
them	from	the	background	noise	amplification,	and	hence,	it	allows	us	to	
remove	them	from	the	background	noise	(Figure	11).	
	

	
Figure	 11	 |	 Barcode	 correction	 strategy.	 (1)	 Barcodes	 are	 attached	 to	 each	
original	 fragment;	 (2)	exponential	PCR	creates	duplicates,	which	can	be	grouped	
using	 barcode	 and	 mapping	 information;	 (3)	 Comparison	 of	 duplicates	 intra-
family-wise	permits	 to	detect	PCR	and	 sequencing	errors;	 (4)	 finally,	 ‘error-free’	
consensus	fragments	are	re-build	using	duplicate	information.		
	
	
The	 analysis	 of	 17	 cfDNA	 samples	 revealed	 that	 error	 rates	 (background	
noise)	 decreased	 substantially	 when	 using	 barcode	 correction	 strategy	
(Figure	 12).	 Collapsed	 fragments	 that	 originated	 from	 more	 duplicates	
showed	 lower	 error	 rates,	 demonstrating	 that	 ultra-deep	 sequencing	
analysis	and	therefore,	a	high	saturation	of	duplicates	 is	useful	to	reduce	
the	 background	 noise	 when	 unique	 molecular	 identifiers	 are	 used.	
Nevertheless,	 some	errors	 remained	even	after	 strong	deduplication	 (4x,	
Figure	 12B),	 showing	 C	 to	 A	 and	 its	 complementary	 G	 to	 T	 the	 greatest	
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errors	rates.	These	errors	were	most	probably	caused	due	to	oxidation	of	
DNA	 during	 library	 preparation	 (before	 barcode	 ligation),	 as	 already	
described	in	Costello	et	al	(Costello	et	al.,	2013).	We	further	observed	that	
the	improvements	are	minor	when	going	from	3	to	4	duplicates,	indicating	
that	 we	 likely	 reach	 saturation	 for	 error	 correction	 with	 less	 than	 10	
duplicates.	 Unfortunately,	 our	 data	 did	 not	 provide	 enough	 DNA	
fragments	with	>=5	duplicates	to	test	this	hypothesis.			

Figure	12	|	Error	 rates	based	on	deduplication	 level.	 (A)	Global	error	 rates;	 (B)	
error	rates	split	by	nucleotide	change.		

2.2. 	Variant	calling	

Once	 we	 reduced	 the	 background	 noise	 from	 data,	 it	 was	 important	 to	
take	 into	 account	 the	 remaining	 error	 rates	 in	 order	 to	distinguish	 them	
from	 real	 somatic	 variants	 at	 very	 low	 allele	 frequency.	 Using	 beta	
binomial	 distributions,	 we	 modeled	 the	 error	 rates	 per	 each	 one	 of	
nucleotide	change	and	deduplication	levels	(consensus	generated	from	1x,	
2x,	3x	and	>=4x	duplicates)	and	use	this	information	to	maximize	precision	
and	sensitivity.	Therefore,	the	detection	limit	highly	depends	on	the	error	
rate	of	the	nucleotide	change	and	the	deduplication	level.		

Considering	the	error	rates	of	the	cfDNA	samples	previously	described,	we	
observed	that	detection	limits	depended	also	on	the	number	of	fragments	
covering	 a	 specific	 position,	 reaching	 lower	detection	 limits	when	higher	
numbers	 of	 fragments	were	 analyzed	 (Figure	 13).	We	noticed	 that	 allele	
frequencies	 as	 low	 as	 1-2	 in	 10,000	 fragments	 were	 detectable	
(considering	 a	 single	 variant	 and	 p-value	 <	 0.01)	 when	 looking	 at	 high	
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fragment	 depths	 (5,000	 and	 10,000)	 in	 high	 deduplicated	 levels	 (3x	 and	
4x),	and	lower	values	were	achieved	when	only	one	duplicate	was	used	to	
create	the	consensus	fragment	(1x).	As	expected,	nucleotide	changes	like	
C	to	A	and	C	to	T	(and	their	complementaries)	had	higher	detection	limits	
in	most	of	deduplicated	levels.		

	
Figure	13	|	Detection	limits	of	the	variant	calling.		Detection	limits	are	split	based	
on	 nucleotide	 change,	 deduplication	 level	 and	 depths	 of	 coverage	 simulated	
(colors	of	 the	 lines).	 The	detection	 limit	 is	 calculated	 in	a	 single	variant	 (no	FDR	
correction)	with	a	=	0.01	(grey	dashed	line).		

	
	
Additionally,	random	selection	of	2,000	non-variant	sites	(using	collapsed	
samples	 in	 order	 to	 achieve	 high	 depth	 of	 coverage)	 demonstrated	 that	
false	 discovery	 rates	 remained	 as	 low	 as	 1.7	 %,	 showing	 that	 ultra-rare	
variants	could	be	detected	with	a	high	precision.	

2.3. Minimal	residual	disease	

	
One	 of	 the	main	 limitations	 of	 cfDNA-based	 tests	 is	 that	 only	 few	 ng	 of	
cfDNA	per	ml	of	plasma	are	found	per	patient,	which	only	represents	few	
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thousands	 of	 haploid	 genome	 equivalents	 (hGEs).	 Hence,	 detection	 of	 a	
tumor	specific	mutation	present	in	a	frequency	below	1	in	some	thousand	
fragments	 is	 unreliable	 (Wan	 et	 al.,	 2017).	 Our	 MRD	 strategy	 tries	
compensate	 for	 this	 limitation	 by	 analyzing	 many	 targeted	 variants	 per	
individual	 in	 combination.	 Increasing	 the	 number	 of	 monitored	 variants	
per	 patient	 is	 thought	 to	 increase	 the	 chances	 of	 detecting	 tumor	
fragments	at	very	low	fraction.	Here,	we	prove	this	assumption	within	our	
simulation	based	on	real	HNSCC	patients.	
	
Using	 a	 Poisson	 distribution,	 we	 simulated	 variants	 at	 different	 tumor	
fragment	 fractions	 (from	 1	 %	 to	 0.005	 %)	 under	 different	 conditions	 of	
hGEs	(2500,	5000,	7500	and	10000	hGEs,	ranging	from	~	10-35	ng	of	DNA)	
in	2000	 sites.	 In	order	 to	 investigate	 the	effect	of	 the	background	noise,	
we	 called	 the	 variants	 under	 three	 different	 levels	 of	 background	 error	
rates	(0.01,	0.005	and	0.001	%).		
	
As	 shown	 in	 Figure	 14,	 the	 number	 of	 targeted	 variants,	 the	 number	 of	
hGEs	and	the	background	noise	level	influenced	the	sensitivity	of	the	MRD	
test	to	detect	tumor	fragments	at	very	low	ctDNA	fractions.		
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Figure	14	|	Minimal	residual	disease	(MRD)	detection	limit.	Y	axis	represent	the	
proportion	 of	 times	 (boostrap	 N	 =	 1000)	 in	 which	 the	 algorithm	 significantly	
detected	MRD	(i.e.	detected	the	mutations	 in	ctDNA)	under	different	conditions	
of	 number	 of	 targeted	 variants	 (lower	 x-axis),	 background	 error	 rates	 (upper	 x-
axis),	 ctDNA	 fractions	 (right	 y-axis)	 and	 haploid	 genome	 equivalents	 (hGEs,	
indicated	by	curve	colors).		

	
	
As	 expected,	 greater	 error	 rates	 increased	 the	 fraction	 limit	 to	 detect	
tumor	 fragments	 in	plasma,	permitting	only	 to	detect	variants	as	 rare	as	
0.025	 %	 when	 a	 mean	 error	 rate	 of	 0.01	 %	 was	 considered	 (with	 a	
minimum	of	25	variants	to	detect	at	least	50	%	of	cases).	However,	when	
lower	 error	 rates	were	 assumed	 (0.005	and	0.001	%),	 the	MRD	 test	was	
able	 to	 detect	 in	 a	 high	 proportion	 of	 cases	 tumor	 fragments	 at	 a	
frequency	as	 low	as	0.005	%.	Of	course,	 if	very	 low	tumor	fractions	need	
to	be	detected,	it	requires	to	increase	the	number	targeted	variants	or	the	
amount	of	DNA	(hGEs).	Indeed,	increasing	both	the	number	of	monitored	
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variants	and	the	number	of	samples	blood	vials	would	clearly	be	the	ideal	
solution	to	increase	the	sensitivity	(Figure	14).		

In	summary,	the	MRD	method	shows	that	despite	the	 limitations	of	DNA	
quantities	in	liquid	biopsies,	the	increase	of	variants	helps	to	solve	the	low	
input	 DNA	 limitation.	 However,	 both	 background	 noise	 and	 input	 DNA	
amount	 influence	 significantly	 the	 capability	 to	 detect	 ultra-low	 ctDNA	
fractions,	representing	a	challenge	for	new	barcoding	protocols.		
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CHAPTER	3	

DETECTING	MOSAIC	MUTATIONS	IN	HEALTHY	TISSUES	OF	

THE	HUMAN	GENOME	

The	 way	 and	 rate	 that	 mosaic	 mutations	 are	 acquired	 during	 human	
development	and	life	is	not	fully	understood.	From	the	first	division	of	the	
zygote	until	 death,	 cells	 accumulate	mutations	 that	 in	 some	 cases	might	
lead	to	the	development	of	disorders	 (Prochazkova	et	al.,	2009;	Ruark	et	
al.,	2013;	Campbell	et	al.,	2015;	Halvorsen	et	al.,	2016).	However,	although	
the	effect	of	somatic	mutations	 in	cancer	has	been	deeply	studied,	there	
are	 very	 few	 studies	 that	 characterize	mosaic	mutations	 acquired	during	
human	 embryogenesis	 or	 adult	 life	 in	 healthy	 individuals.	 Studies	 of	
mosaic	 mutations	 acquired	 early	 during	 embryogenesis	 have	 only	 been	
performed	 in	 single	 tissues	 (Ju	 et	 al.,	 2017;	 Wei	 et	 al.,	 2018a),	 which	
means	 these	 studies	had	a	high	 chance	of	missing	mosaic	mutations	not	
present	 in	the	analysed	tissue.	For	this	reason,	a	multi-tissue	view	of	the	
mosaic	mutations	of	an	individual	is	lacking	to	date.	

In	 this	 chapter,	 we	 have	 used	 10,097	 RNA-seq	 samples	 from	 up	 to	 49	
tissues	and	570	 individuals	 from	 the	Genotype-Tissue	Expression	 (GTEx)	
(Lonsdale	 et	 al.,	 2013)	 consortium	 cohort	 to	 characterize	 the	 mosaic	
mutations	acquired	during	human	embryogenesis	and	adult	life.	The	high	
number	of	mosaic	mutations	in	coding	regions	detected	in	several	normal	
tissues	 from	 the	 same	 donor	 entails	 novel	 hypothesis	 to	 be	 considered	
when	 searching	 for	 genetic	 causes	 of	 diseases,	 which	 might	 impact	 the	
development	of	new	diagnostic	procedures.	

The	 selection	 signature	 analysis	 of	 somatic	mutations	was	 performed	by	
Dr.	Zapata	Ortiz.	The	rest	of	the	analysis	of	this	study	were	performed	by	
Francesc	 Muyas.	 I	 have	 also	 written	 the	 paper,	 with	 the	 help	 of	 my	
supervisor	Prof.	Ossowski.		
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DISCUSSION	

The	 fast	 development	 and	 continuous	 improvement	 of	 high-throughput	
sequencing	 technologies	 pushed	 forward	 the	 field	 of	 medical	 genomics,	
creating	 plenty	 of	 new	 applications	 that	 require	 high	 quality	 data	 and	
methods	 to	 obtain	 relevant	 results	 and	 novel	 hypotheses.	 Distinguishing	
errors	 from	 real	 variants	 is	 a	 challenge	 when	 systematic	 errors,	
background	 errors,	 germline	 variants	 or	 somatic	 variants	 at	 very	 low	
frequency	are	present	 in	 the	same	data	 (Li,	2014).	Therefore,	one	of	 the	
main	objectives	of	 this	 thesis	was	 to	develop	methods	 to	distinguish	 the	
different	type	of	errors	from	real	somatic	or	germline	variants.	

For	 this	 reason,	 the	 first	part	of	 the	thesis	was	 focused	on	characterizing	
errors	that,	in	general	terms,	can	be	divided	into:	

JKKLKM	~	NOMPQRSPTU	QKKLKM	 + VWX	QKKLKM + NQYZQ[UT[\	QKKLKM + ]PℎQKM	

In	 the	 chapter	 1	 of	 this	 thesis,	we	 focused	on	 creating	 a	method	 (called	
ABB)	 to	 detect	 sites	 in	 the	 human	 genome	 that	 are	 prone	 to	 systematic	
errors,	 leading	 to	 false	 calls	 in	 germline	 and	 somatic	 variant	 studies.	We	
described	 several	 important	 implications	 of	 these	 errors	 in	 downstream	
analysis	and	showed	how	to	reduce	their	negative	impact	on	rare	variant	
association	studies	for	case-control	cohorts.	

In	 the	 next	 chapter,	 chapter	 2,	 we	 analyzed	 the	 kinetics	 of	 somatic	
mutations	 in	 cfDNA	 of	 20	 HNSCC	 cancer	 patients	 during	 treatment.	 For	
that,	 we	 developed	 methods	 to	 remove	 background	 noise	 (PCR	 and	
sequencing	errors)	using	unique	molecular	 identifiers	 (UMIs)	and	created	
a	somatic	variant	calling	approach	able	to	detect	variants	at	extremely	low	
fraction.		

Finally,	 in	 chapter	 3	 we	 applied	 previous	 acquired	 knowledge	 to	
characterize	 the	 spectrum	 and	 rate	 of	 mosaic	 mutations	 during	 early	
embryogenesis	and	 life	 from	a	big	cohort	of	49	tissues	 from	hundreds	of	
healthy	individuals.		

Impact	and	detection	of	systematic	errors	

Although	the	performance	of	variant	callers	has	been	optimized	since	DNA	
re-sequencing	 by	 sequencing-by-synthesis	 technologies	 was	 introduced,	
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some	systematic	errors	remain	even	after	strict	filtering,	which	might	bias	
the	downstream	analysis	(Pfeifer,	2017).	

In	 chapter	 1,	 we	 described	 a	 new	 genotype	 callability	 filter	 (called	 ABB)	
able	 to	 detect	 and	 filter	 systematic	 errors	 from	 read	 alignments	 to	 the	
human	 reference	 genome.	 The	 analysis	 of	 allele	 balance	bias	 recurrence	
across	987	WES	samples	permitted	us	 to	build	a	model	 to	 recognize	and	
distinguish	 this	 type	 of	 errors.	 Sanger	 validations	 of	 randomly	 selected	
variants	and	quality	control	measures	such	as	transition-transversion	ratio	
(TiTv)	(Freudenberg-hua	et	al.,	2003;	Pattnaik	et	al.,	2012)	confirmed	that	
our	method	was	able	to	detect	false	positive	calls	that	standard	filters	and	
pipelines	were	not	able	to	remove	(Muyas	et	al.,	2019a).	

Around	4%	of	the	genomic	positions	called	as	germline	variants	and	8%	of	
positions	 called	 as	 somatic	 mutations	 by	 conventional	 methods	 were	
labeled	as	potential	systematic	errors	by	ABB,	showing	that	an	important	
fraction	 of	 final	 and	 “high-quality”	 variant	 callsets	 are	 enriched	 by	 false	
positive	 calls.	 The	 importance	 of	 this	 finding	 arises	 in	 the	 downstream	
analysis	 of	 these	 calls,	 as	 they	 can	 be	 used	 in	 clinical	 diagnostics,	 rare	
variant	 association	 studies	 and	 many	 other	 applications	 requiring	 high	
precision.	 The	 enrichment	 of	 false	 positive	 calls	 in	 this	 type	 of	 analysis	
might	 have	 important	 consequences	 such	 as	 suboptimal	 treatment	
selection,	could	lead	to	wrong	diagnosis	and	prognosis	of	different	genetic	
disorders	 or	 could	 lead	 to	 false	 positive	 associations	 of	 genes	 with	
diseases.		

Although	ABB	shows	some	correlations	with	other	QC	measures	like	Fisher	
strand	 bias	 and	 repetitive	 or	 low	 complexity	 regions	 (Li,	 2014),	 none	 of	
these	parameters	completely	overlap	with	the	set	of	positions	flagged	by	
ABB,	making	ABB	a	valuable	addition	to	the	QC	filter	setup.	Moreover,	we	
found	an	enrichment	of	systematic	errors	in	public	databases,	with	dbSNP	
being	 by	 far	 the	 database	 with	 the	 highest	 fraction	 of	 ABB	 low-quality	
sites,	 supporting	 previous	 observations	 by	 other	 groups	 (Musumeci,	
2011).	 Our	 results	 also	 demonstrate	 that	 variant	 callsets	 created	
consistently	by	a	defined	and	reproducible	pipeline	and	parameter	setting,	
such	 as	 1000GP,	 ExAC/GnomAD,	 EVS,	 provide	 higher	 quality	 than	
databases,	which	 are	 collections	 provided	 by	many	 different	 users.	 As	 a	
consequence	databases	like	GnomAD	should	be	preferred	over	dbSNP	for	
benchmarking	of	variant	callers	(Muyas	et	al.,	2019a).	

The	high	fractions	of	somatic	variant	calls	that	are	likely	systematic	errors	
revealed	that	novel	algorithms	are	required	to	remove	false	positive	calls,	
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in	order	to	achieve	reliable	cancer	diagnostics.	Considering	the	importance	
of	 predicted	 mutations	 for	 cancer	 diagnostics	 and	 treatment	 selection,	
filtering	 of	 FP	 calls	 is	 essential	 for	 the	 applicability	 of	 NGS	 in	 precision	
oncology.	
	
A	 second	 important	 application	 described	 in	 this	 chapter	 was	 the	
utilization	 of	 our	 ABB	 tool	 to	 identify	 false	 phenotype-genotype	
associations	 resulting	 from	 systematic	 errors	 in	 rare	 variant	 association	
studies	(RVAS).	A	high	fraction	of	significantly	associated	genes	(25	%)	we	
detected	 for	 the	 ICGC	Chronic	Lymphocytic	 Leukemia	cohort	 (Quesada et 
al., 2011; Muyas et al., 2019a) was	 labeled	 as	 FP	 by	 ABB,	 as	 their	
association	 could	 be	 better	 explained	 by	 uneven	 burden	 of	 systematic	
errors	between	cases	and	controls.	Again,	 this	demonstrates	the	massive	
impact	 of	 systematic	 sequencing	 analysis	 errors	 in	 genetic	 studies	 and	
hence,	 the	 necessity	 of	 systematic	 error	 removal	 before	 downstream	
analysis.	However,	we	also	hypothesize	that	some	of	these	systematic	SNV	
calling	errors	could	be	introduced	by	un-annotated	copy	number	variants	
(CNVs)	 in	 at	 least	 a	 couple	of	 candidate	genes,	 indirectly	pointing	 to	 the	
real	 cause	 of	 the	 genotype-phenotype	 association,	 although	 further	
analysis	 in	 that	 direction	 needs	 to	 be	 performed	 (Abyzov et al., 2013; 
Muyas et al., 2019a).			
	
In	 summary,	 in	 chapter	 1	 of	 this	 thesis	 we	 have	 presented	 a	 novel	
genotype	 callability	 estimator	 based	 on	 allele	 balance	 bias	 (ABB),	 which	
can	identify	systematic	variant	calling	errors	not	found	by	other	measures.	
Moreover,	ABB	can	improve	the	accuracy	of	germline	and	somatic	variant	
sets	as	well	as	clean	disease	association	studies	in	large	cohorts.	
	

Monitoring	 cancer	 patients	 pre-,	 during	 and	 post-treatment	 using	 cell-

free	DNA	

	

In	 chapter	 2	 of	 this	 thesis,	 we	 performed	 the	 longitudinal	 analysis	 of	
ctDNA	dynamics	in	20	HNSCC	patients,	pre-,	during	and	post-treatment,	as	
well	 as	 developed	 methods	 to	 detect	 mutations	 in	 cfDNA	 at	 very	 low	
frequency	with	the	use	of	unique	molecular	barcodes.		
	
HNSCC	 is	 a	 highly-represented	 cancer	 worldwide	 whose	 patients	
frequently	develop	local	or	distal	relapse	in	the	first	two	years	(Linge	et	al.,	
2016;	 Specenier	 and	 Vermorken,	 2018).	 For	 these	 reasons,	 close	
monitoring	 strategies	 are	of	 high	 importance	 to	 anticipate	 recurrence	as	
early	as	possible.	The	analysis	of	ctDNA	kinetics	in	locally	advanced	HNSCC	
patients	 receiving	 primary	 chemoradiation	 (RCTX)	 revealed	 that	 ctDNA	
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fractions	 before	 treatment	 correlated	 positively	 with	 the	 gross	 tumor	
volume,	a	phenomenon	already	described	in	a	preclinical	model	of	HNSCC	
(Muhanna	et	al.,	2017).			

The	 ctDNA	 dynamics	 during	 treatment	 showed	 a	 clear	 dosage	
dependency.	This	 fact	 indicates	 that	 surveilling	 the	 fluctuations	of	ctDNA	
in	 the	plasma	during	 treatment	 could	be	a	new	way	 to	monitor	patients	
and	might	 also	 help	 to	 adjust	 the	 ongoing	 treatment	 regime,	 as	 already	
described	 for	 bladder	 cancer	 (Christensen	 et	 al.,	 2019).	 However,	 the	
power	 of	 this	 strategy	 relies	 on	 the	 number	 of	 targeted	 mutations,	
meaning	 that	 greater	 number	 of	 analyzed	 variants	 would	 show	 more	
confident	results.			

The	 analysis	 of	 the	 ctDNA	 levels	 in	 the	 first	 follow-up	 after	 treatment	
seems	to	be	a	potential	prognostic	 test	 for	relapse	 in	HNSCC	patients,	as	
already	 described	 for	 colorectal	 cancer	 (Tie	 et	 al.,	 2016).	 Using	
minimal/molecular	 residual	 disease	 (MRD)	 analysis,	 we	 detected	
significant	 amount	 of	 tumor	 fragments	 in	 two	 patients	 of	 our	 cohort,	
which	afterwards	presented	with	relapse.	Moreover,	none	of	the	relapse-
free	 individuals	 were	 MRD-positive.	 However,	 several	 patients	 without	
detectable	 MRD	 also	 suffered	 from	 relapse,	 indicating	 that	 our	 method	
and	 study	 design	 had	 sensitivity	 problems	 for	 detecting	 very	 low	 ctDNA	
levels.	 Benchmarking	 analysis	 of	 our	MRD	 algorithm	 suggested	 that	 this	
low	sensitivity	 could	have	been	 caused	by	 insufficient	 sequencing	depth,	
but	 more	 importantly,	 by	 the	 low	 number	 of	 monitored	 variants	 per	
patient	 in	 combination	 with	 the	 low	 input	 DNA	 typically	 obtained	 from	
plasma.		

Our	 study	 also	 revealed	 that	 circulating	HPV	DNA	 (circulating	 virus	DNA,	
cvDNA)	 is	detectable	 in	 the	patient´s	plasma,	showing	the	same	dynamic	
properties	 as	 the	 ctDNA.	 Hence,	 we	 suggest	 the	 use	 of	 circulating	 HPV	
DNA	 as	 additional	 biomarker	 for	 the	 detection	 of	HNSCC	with	 two	main	
applications:	 (1)	 as	 a	 blood-based	marker	 for	 early	 detections	 similar	 to	
the	 detection	 of	 EBV	 for	 nasopharyngeal	 carcinoma	 (Chan	 et	 al.,	 2013;	
Wang	 et	 al.,	 2013)	 and	 (2)	 as	 a	 post-treatment	 test	 to	 predict	 disease	
recurrence.	

Finally,	 all	 these	 results	were	obtained	 thanks	 to	 a	previously	developed	
set	of	tools	to	detect	somatic	mutations	and	ctDNA	fragments	at	very	low	
fraction	with	the	use	of	barcodes	(detailed	method	described	in	appendix).	
This	 was	 split	 in	 two	main	 parts:	 (1)	 barcode	 correction	 and	 (2)	 variant	
calling	and	minimal	residual	diseases	(MRD)	detection.	
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Our	 barcode	 correction	 strategy	 decreased	 substantially	 the	 error	 rates	
(background	noise)	of	our	samples,	allowing	to	reduce	the	detection	limits	
of	our	somatic	variant	caller	(Newman	et	al.,	2016c).	We	showed	that	the	
use	of	barcode	and	mapping	information	to	collapse	and	group	the	reads	
in	 families	 of	 duplicates	 was	 extremely	 useful	 to	 distinguish	 PCR	 and	
sequencing	 errors,	 allowing	 variant	 calling	 to	 reduce	 the	 false	 discovery	
rate	at	very	low	allele	fractions.	

Our	somatic	variant	calling,	based	on	the	use	of	beta-binomial	distribution	
to	model	errors	combined	with	barcode	correction	information,	permitted	
us	to	call	ultra-rare	somatic	mutations	(as	low	as	1-2	in	10,000	fragments).	
However,	 although	 ultra-low	 frequency	 variants	 could	 be	 detected	 with	
our	 algorithm,	 high	 haploid	 genome	 equivalents	 are	 hardly	 recovered	 in	
conventional	 liquid	 biopsy,	 where	 only	 few	 milliliters	 of	 plasma	 are	
isolated	 (representing	 few	 thousands	 of	 haploid	 genome	 equivalents)	
(Wan	et	al.,	2017).	

Our	MRD	strategy	tries	to	compensate	for	the	low	DNA	input	by	collapsing	
observations	 from	 all	 targeted	 variants	 per	 individual	 into	 a	 single	
observations	and	p-value	and	hence,	increasing	the	number	of	monitored	
variants	would	increase	the	chances	of	detecting	tumor	fragments	at	very	
low	 fraction.	 Benchmarking	 and	 simulations	 revealed	 that	 if	 background	
noise	 is	 reduced	 down	 to	 0.005-0.001	 %,	 ctDNA	 fractions	 as	 low	 as	
0.0075%	 can	 be	 detected	 with	 high	 sensitivity	 in	 5,000	 haploid	 genome	
equivalents	(around	16ng	DNA)	with	only	50	targeted	variants.		

In	 summary,	 the	 development	 of	 this	 variant	 calling	 strategy	 and	 the	
barcode	 correction	 permitted	 us	 to	 detect	 ctDNA	 fragments	 present	 at	
extremely	 low	fractions,	which	has	 important	 implications	for	monitoring	
cancer	 patients	 pre-,	 during	 and	 post-treatment	 as	 shown	 in	 the	HNSCC	
project	(chapter	2)	and	benchmarking	analysis	(appendix).	

Mosaic	mutations	in	healthy	individuals	

The	 accumulation	 of	 DNA	 mutations	 during	 life	 is	 inevitable.	 Although	
many	 cell	 mechanisms	 are	 involved	 in	 the	 preservation	 of	 genome	
integrity,	 cells	 still	 acquire	 mutations	 during	 development	 and	 life,	
generating	populations	of	cells	with	different	genomic	profiles	in	the	same	
individual,	a	phenomenon	named	mosaicism	(Acuna-Hidalgo	et	al.,	2016;	
Muyas	et	al.,	2019b).	
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In	 the	chapter	3,	we	characterized	mosaic	mutations	across	49	tissues	of	
570	healthy	individuals	(a	total	of	10,097	RNA-seq	samples)	using	the	GTEx	
consortium	 data	 (Ardlie	 et	 al.,	 2015;	 Consortium,	 2017;	 Muyas	 et	 al.,	
2019b).	 As	 so	 far	 there	 is	 not	 a	 defined	methodology	 to	 detect	 somatic	
variants	in	RNA-seq	data,	we	developed	an	algorithm	able	to	achieve	high	
precision	 and	 recall	 detecting	 somatic	 calls	 from	 expression	 data	 (85	 %	
and	71	%	for	precision	and	recall,	respectively).		
	
Our	 multi-tissue,	 multi-individual	 approach	 has	 allowed	 us	 to	 identify	
mosaic	 mutations	 occurring	 during	 various	 stages	 of	 human	 embryo	
development	 and	 life.	 We	 estimated	 that	 newborns	 harbor	 on	 average	
around	 0.5	 -	 1	 mosaic	 mutations	 in	 exons	 affecting	 multiple	
tissues/organs,	 and	 likely	 a	 greater	 number	 of	 organ-specific	 mutations.	
These	findings	suggest	that	mosaic	mutations	have	similar	frequencies	to	
germline	 de	 novo	 mutations	 and	 could	 explain	 a	 substantial	 fraction	 of	
unresolved	cases	of	sporadic	and	rare	genetic	disorders,	as	well	as	play	a	
role	 in	 cancer	 predisposition	 syndromes	 (Acuna-Hidalgo	 et	 al.,	 2016;	
Muyas	et	al.,	2019b).	
	
The	 fact	 that	 only	 41	 %	 of	 the	 early	 embryonic	 mosaic	 mutations	 are	
detected	 in	 the	 expressed	 genes	 of	 blood	 reveals	 that	 a	 high	 fraction	of	
early	mosaic	mutations	might	be	missed	by	blood-based	genetic	diagnostic	
tests	 (Muyas	 et	 al.,	 2019b).	 The	 observation	 could	 be	 explained	 by	 the	
asymmetric	cell	doubling	model	during	early	embryogenesis	suggested	by	
Ju	et	al	(Ju	et	al.,	2017),	which	describes	an	unequal	contribution	of	early	
embryonic	cells	to	adult	somatic	tissues.	The	implications	of	these	findings	
demonstrate	 the	 necessity	 of	 developing	 new	 diagnostic	 tests,	 which	
should	characterize	the	majority	of	cell	populations	present	in	the	human	
body.	Such	a	test	could	be	liquid	biopsy	and	the	analysis	of	cell-free	DNA	
as	described	in	chapter	2.		
	
Further	 analysis	 of	 mutational	 signatures	 showed	 an	 association	 of	
embryonic	 mosaic	 mutations	 with	 spontaneous	 deamination	 of	
methylated	 cytosine	 (leading	 to	 C>T	 transitions	 at	 CpG	 dinucleotides),	
which	likely	reflects	a	cell-cycle-dependent	mutational	clock	as	suggested	
by	Alexandrov	et	al	(Alexandrov	et	al.,	2015).		
	
The	 investigation	 of	 mutations	 acquired	 after	 birth	 (tissue-specific	
mutations)	 revealed	 that	 esophagus	 mucosa	 and	 sun-exposed	 skin	
accumulated	mutations	with	the	pass	of	years,	a	fact	that	correlates	with	
environmental	 exposure	 to	 food	 or	 ultra-violate	 (UV)	 light	 during	 life,	
respectively	(Alexandrov	et	al.,	2013).	Moreover,	the	analysis	of	mutations	
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in	 these	 two	 tissues	 showed	 an	 enrichment	 of	 non-silent	 mutations	
(signature	 of	 positive	 selection)	 in	 the	 genes	 NOTCH1	 and	 TP53,	 a	
phenomenon	 that	 was	 not	 found	 in	 any	 other	 tissues	 analyzed	 in	 this	
study.	These	two	findings	(the	relation	of	somatic	mutations	with	age	and	
the	 positive	 selection	 in	 these	 two	 cancer	 genes)	 agrees	 with	 results	
recently	 described	 in	 the	 literature	 (Martincorena	 et	 al.,	 2015,	 2018;	
Yizhak	et	al.,	2019;	Yokoyama	et	al.,	2019),	demonstrating	the	capacity	of	
expression	data	to	be	exploited	as	a	source	to	detect	somatic	mutations.	
Moreover,	 the	 presence	 of	 somatic	mutations	 in	 cancer	 genes	 and	 non-
malignant	 samples	 updates	 the	 vision	 of	 how	 genomes	 and	 cancers	
behave	through	life	and	aging.			
	
The	mutational	 signature	 analysis	 of	 somatic	 mutations	 acquired	 during	
life	across	different	groups	of	tissues	was	able	to	confirm	some	expected	
signatures.	For	 instance,	we	 found	the	UV	signature	 in	sun-exposed	skin,	
which	was	not	present	in	non-sun-exposed	skin	(Alexandrov	et	al.,	2013).	
However,	 we	 also	 discovered	 a	 non-expected	 mutational	 signature	
associated	 with	 the	 food-borne	 carcinogen	 aflatoxin	 in	 tissues	 of	 the	
gastrointestinal	 tract.	 	 Although	 the	 aflatoxin	 signature	 was	 previously	
reported	in	some	liver	cancers	(Alexandrov	et	al.,	2013;	Chawanthayatham	
et	al.,	2017),	we	also	found	it	in	the	tissues	of	the	gastrointestinal	tract	of	
healthy	 individuals	even	after	exclusion	of	 liver.	Therefore,	 this	discovery	
indicates	 that	 aflatoxin-related	mutations	 are	 spread	 in	 many	 tissues	 of	
this	 tract	 that	 are	 in	 contact	 with	 food,	 and	 could	 play	 a	 role	 in	 the	
development	of	cancer	in	more	organs	than	previously	thought	(Muyas	et	
al.,	2019b).	
	
In	conclusion,	 in	 this	chapter	we	have	described	how	RNA-seq	data	 from	
multiple	 tissues	 and	 individuals	 have	 been	 used	 to	 generate	 a	 high-
resolution	landscape	of	mosaic	mutations	acquired	during	different	stages	
of	 embryogenesis	 and	 life,	 as	 well	 as	 to	 assign	 the	 occurrence	 of	
embryonic	mutations	to	specific	germ	layers	or	tissues.	Our	findings	have	
significant	 implications	 for	 clinical	 diagnostics,	 as	 samples	 from	 the	
tissue(s)	affected	by	a	mosaic	mutation	are	often	unavailable.	In	summary,	
our	 study	 reveals	 a	 surprisingly	 high	 number	 of	 embryonic	 mosaic	
mutations	 in	 coding	 regions,	 implying	 novel	 hypotheses	 and	 diagnostic	
procedures	 for	 investigating	 genetic	 causes	 of	 diseases	 and	 cancer	
predispositions	(Muyas	et	al.,	2019b).	
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Final	discussion		

	

In	this	thesis	we	have	developed	methods	to	distinguish	different	types	of	
errors	from	real	variants	and	somatic	mutations.	The	relevance,	impact	in	
downstream	 analysis	 and	 the	 impossibility	 of	 filtering	 some	 systematic	
errors	 with	 conventional	 methods	make	 ABB	 a	 valuable	 tool	 to	 achieve	
highly	 accurate	 variant	 calls	 in	 somatic	 and	 germline	 studies.	Moreover,	
we	have	demonstrated	that	the	use	of	unique	molecular	identifiers	(UMIs)	
or	 barcodes	 is	 highly	 effective	 to	 remove	 PCR	 and	 sequencing	 errors,	
which	 can	 impair	 the	 detection	 limit	 and	 accuracy	 of	 somatic	mutations	
detected	at	very	low	variant	allele	fraction	(VAF).		
	
Our	 variant	 calling	 strategy,	 which	 uses	 barcode	 information	 to	 detect	
ultra-rare	somatic	variants	 in	cfDNA,	 is	useful	 to	monitor	cancer	patients	
pre-,	during	and	post-treatment	and	correlates	with	 treatment	response.	
This	 approach	 also	 permits	 to	 detect	 minimal	 residual	 diseases	 (MRD)	
below	 the	 DNA	 input	 limits	 classically	 found	 in	 cfDNA	 analysis	 (few	
thousands	 of	 haploid	 genome	 equivalents),	 and	 represents	 a	 potential	
prognosis	 tool	 to	predict	 recurrence	of	disease.	Studies	 in	other	cancers,	
with	bigger	cohorts	and	higher	number	of	mutations	per	individual	might	
expand	 the	knowledge	of	 cfDNA	applications	 in	 clinical	 research	and	will	
bring	the	personalized	medicine	to	a	new	era.		
	
Finally,	 the	use	of	 previous	 knowledge	has	 allowed	us	 to	 investigate	 the	
mutational	 integrity	 of	 human	 genome	 of	 healthy	 individuals	 through	
embryogenesis	and	life.	The	high	number	of	embryonic	mosaic	mutations	
in	coding	 regions	entails	novel	hypotheses	and	diagnostic	procedures	 for	
investigating	genetic	causes	of	disorders	and	cancer	predisposition.	
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CONCLUSIONS	

1. Impact	and	detection	of	systematic	errors

1.1. Our	 novel	 genotype	 callability	 estimator	 based	 on	 allele	 balance	
bias	 (ABB)	 identifies	 systematic	 variant	 calling	 errors	 not	 found	by	
other	 measures	 and	 can	 improve	 the	 accuracy	 of	 germline	 and	
somatic	variant	sets	as	well	as	disease	association	studies	in	families	
or	large	cohorts.	

1.2. Up	 to	 4%	 of	 the	 positions	 called	 as	 germline	 variants	 and	 8%	 of	
positions	 called	 as	 somatic	mutations	 by	 state-of-the	 art	methods	
show	high	ABB	scores	(indicative	of	systematic	errors).	

1.3. Sanger	 validation	 of	 random	 variants	 showed	 that	 ABB	 correlates	
with	the	likelihood	to	identify	false	positive	SNVs.	

1.4. Systematic	 errors	 are	 highly	 enriched	 in	 low	 complexity	 and	
repetitive	regions,	although	they	are	also	found	in	other	parts	of	the	
genome	that	standard	filters	cannot	distinguish.	

1.5. Sites	prone	to	systematic	errors	are	highly	enriched	in	public	variant	
databases,	especially	 in	dbSNP,	demonstrating	 that	variant	 callsets	
created	 consistently	 by	 a	 defined	 and	 reproducible	 pipelines	 and	
parameter	setting	are	preferable	for	most	analysis	purposes.	

1.6. Systematic	 errors	 resulting	 in	 false	 genotype-phenotype	
associations	can	be	identified	by	ABB	in	case-control	studies.	

2. Monitoring	 cancer	 patients	 pre-,	 during	 and	 post-treatment	 using

cell-free	DNA

2.1. Circulating-tumor	DNA	 (ctDNA)	 fractions	 correlated	 positively	with	
the	gross	tumor	volume.	

2.2. ctDNA	 dynamics	 during	 treatment	 showed	 a	 clear	 dosage	
dependency	 under	 radiochemotherapy	 treatment,	 suggesting	 that	
surveilling	 the	 fluctuations	of	ctDNA	 in	 the	plasma	could	be	a	new	
way	to	monitor	the	patient’s	response	to	treatment	and	might	also	
help	to	adjust	the	ongoing	treatment	regime.	
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2.3. The	presence	of	minimal/molecular	 residual	 disease	 in	 the	plasma	
in	the	first	follow-up	after	treatment	predicts	cancer	recurrence.	

	
2.4. DNA	 from	 human	 papilloma	 virus	 (here	 termed	 circulating	 virus	

DNA,	cvDNA)	 is	detectable	 in	 the	plasma	of	 some	HNSCC	patients,	
showing	 the	 same	dynamic	properties	 as	 the	 ctDNA.	This	 suggests	
the	 usability	 of	 circulating	 HPV	 DNA	 as	 a	 post-treatment	 test	 to	
predict	disease	recurrence.	

	
2.5. Our	 barcode	 correction	 strategy	 is	 able	 to	 detect	 and	 correct	 PCR	

and	 sequencing	 errors,	 allowing	 as	 to	 detect	 somatic	 variants	 at	
ultra-low	allele	frequency.	

	
2.6. To	compensate	for	the	low	number	of	haploid	genome	equivalents	

recovered	 in	 cfDNA	 analysis	 from	 a	 few	 ml	 of	 plasma,	 our	 MRD	
strategy	 collapses	 the	 information	 of	 all	 targeted	 variants	 per	
individual	 to	 increase	 the	 sensitivity	 to	 detect	 tumor	 fragments	 at	
very	low	fraction.	

	

3. Mosaic	mutations	in	healthy	individuals	

	
3.1. We	developed	an	algorithm	to	detect	and	call	somatic	mutations	in	

RNA-seq	 samples	 with	 a	 precision	 and	 recall	 of	 85	 %	 and	 71	 %,	
respectively.	
	

3.2. Our	multi-tissue,	multi-individual	approach	estimates	the	embryonic	
mosaic	mutation	(EMM)	rate	around	1.32	x	10-8	per	nucleotide	per	
healthy	 individual,	 which	 corresponds	 to	 an	 average	 of	 0.5–1	
mutations	in	the	exome	of	newborns.		

	
3.3. EMMs	 are	 as	 frequent	 as	 germline	 de	 novo	 mutations	 and	 could	

explain	 a	 substantial	 fraction	 of	 unsolved	 sporadic	 diseases	 and	
cancer	predisposition	syndromes.	

	
3.4. Only	41	%	of	the	early	EMMs	are	detected	in	the	expressed	genes	of	

blood,	 revealing	 that	 a	 large	 fraction	 of	 early	 mosaic	 mutations	
could	 be	 missed	 by	 blood-based	 genetic	 diagnostic	 tests,	 and	
implying	the	necessity	to	develop	novel	diagnostic	procedures.	
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3.5. EMMs	 are	 dominated	 by	 a	 mutational	 signature	 associated	 with	
spontaneous	deamination	of	methylated	cytosines	and	the	number	
of	cell	divisions.	

	
3.6. The	 single-tissue	 mutational	 rates	 of	 sun-exposed	 skin	 and	

esophagus	 mucosa	 showed	 significant	 correlation	 with	 age,	
supporting	the	idea	that	tissues	heavily	exposed	to	carcinogens	(UV	
and	 food)	accumulate	 lots	of	mutations	during	 life	even	 in	healthy	
individuals.	

	
3.7. The	 cancer	 genes	 TP53	 and	NOTCH1	 present	 positive	 selection	 in	

sun-exposed	skin	and	esophagus	mucosa	of	cancer-free	individuals,	
a	phenomenon	not	observed	in	other	tissues.		

	
3.8. Mutations	 acquired	 after	 birth	 in	 normal	 tissues	 of	 the	

gastrointestinal	 tract	 seem	 to	 be	 associated	 with	 the	 food-borne	
carcinogen	aflatoxin.	
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