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Introduction

Delay differential equations (DDEs) are, in somehow, between partial differ-
ential equations (PDEs) and ordinary differential equations (ODEs). They
can be used to describe the dynamics of the model expressed through those
kind of equations. However, the way that the dynamical system evolves in
time is different for a DDE.

There are different types of DDE from constant delay, time-depedent
delay, state-dependent delay, neutral delay, retarded delays, stochastic delay,
etc. The list is large and some of these types can have intersections.

While the theory of existence and uniqueness of initial value problems
(IVP) for ODEs and PDEs is mostly clear and proved, there is still no a
full theory for DDEs. In consequence, some of the tools or methods require
a special care when one tries to translate them into DDEs because it may
happen that the theoretical explanation is still not well-understood. Special
attention needs the theory by J.K. Hale [HVL93] for retarded delays that, in
somehow, covers plenty of the delay situations for a theoretical point of view.
In parallel, numerical methods to integrate IVP-DDE has being investigated
as [BZ13] summarises, at the same time that it proposes new strategies.

Many times the DDE problems are addressed by translation of sim-
ilar results or techniques in ODE or PDE which are commonly more well-
understood. The strong background in ODE theory and numerics for ODEs
in the research group of dynamical systems of Barcelona did to point the
thesis in the use of the ODEs knowledge to understand better the DDEs.

In this thesis three projects are presented. The first one which was par-
tially started before this thesis with Angel Jorba and it has had a working
time at the National Institute of Informatics of Japan with Ken Hayami.
A second one integrally developed at the School of mathematics of Georgia
Institute of Technology with Rafael de la Llave and Jiaqi Yang. And a third
one with Narcis Miguel, Angel Jorba, and Marc Jorba started physically at
the department of mathematics and computer science of Universitat de Bar-
celona and continued remotely at GeorgiaTech, Barcelona, and Milan due to
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the different destinations of the members.

The structure of the thesis is then in four independent, and mostly self-
contained, chapters. Chapter 1 concerns the third project. The origin of it
started in the gap in how the interpretation of jet transport and automatic
differentiation (AD) is. Originally we tried to understand the interpretation
for DDE but we felt the need to get a better understanding in ODE first.
According to our study and the state of the art, it is a novelty in this topic.

Roughly speaking, automatic differentiation gives the derivative of a com-
puter algorithm. In particular, AD applied in a numerical integrator is some-
times called jet transport since it is like the jet at the initial condition is being
transporting via automatic differentiation in the numerical integrator. Hence,
there is no apparently any reason that the high order transported jet through
the integrator should provide an accurate enough jet which will contain the
information of the high order variational flow. What Chapter 1 does is to
proof not only that the jet is accurate, also how accurate is, and gives an
idea of how one can design a suitable stepsize control for jet transport.

We prove that jet transport of order say n is exactly the same like if one
added to the original differential equations all the extra equations, which rep-
resents the (normalised) variational equations up to order n, and we integrate
all the system of equation, in particular, it is the same step by step using
the same stepsize control. Moreover, in a first glance, one could think that
if, for instance, one uses the classical Runge-Kutta 4 it is kind of impossible
to use jet transport of order say n = 5. Our proof says that it is completely
independent of the numerical integrator than one uses. That is, one can use
jet transport of any order with any of the classical method of integration to
get the variational flow of that order, in particular, for all the Runge-Kutta
methods (both implicit and explicit), multistep methods, and Taylor method
which are the most commonly used numerical integrators for ODEs.

As a first application, we have focused on Poincaré mappings and high
order of their derivative, which are in fact the high order variatonal flow.
While the temporal Poincaré maps, sometimes referred as stroboscopic Poin-
caré maps, does not present any limitation, the spatial Poincaré maps, i.e.
those obtained by the use of a spatial section, does. In fact, in this case one
needs to perform a projection to section, even without the use of jet trans-
port. The reason of this projection is simple. Assume, for instance, that the
spatial section condition is requested to the Oth order, then while the Oth or-
der stops when the orbit reach the section, the other orders, which represents
infinitesimal variations of the initial condition may not be reached because
they could have needed to reach the section in a different time. Thus, for
the 1st order on, one needs to ensure that the values are the ones that in



the suitable time lie in the section too. Note that in this projection what
we are doing is to correct in an infinitesimal way the time of each of the
orders to reach the section, which implies to use a temporal jet transport
to correct the non-temporal jet. It is exactly this temporal jet which could
affect the accuracy of the spatial jet and this strongly depends on the order
of the numerical integrator. While methods like Runge-Kutta methods have
a fixed order, others methods like the Taylor method has not, i.e. one can fix
the order as it was requested. Because of that, Taylor method seems to be
the most suitable numerical integrator to perform the high order derivative
of a Poincaré mapping obtained by a spatial section.

Once the high order derivative of the Poincaré mapping are well-understood
we dealt with the high order manifold computation via the parametrisation
method. Part of the examples have already been covered in [JC19] and we
strongly recommend to take a look on it to get a best understanding in the
models behind the examples.

Chapter 2 summarises the results of the first part of the first project
and, in somehow, is a continuation of the master thesis [Gim15] under the
supervision of Angel Jorba. It explains how the jet transport, introduced in
Chapter 1, can be used and theoretical justify the integration of constant
DDE. A numerical integration of constant DDE requires discretise the initial
condition and keep track of enough history in order to get the new values
of the IVP. Because of that discretisation, it may happen that interpolation
can be required. Indeed, when te stepsize of the integration is not fixed,
the interpolation is always needed but even for fixed steps size it may be
required as well, like in the Runge-Kutta methods case. Taylor method
with fixed step for only one constant DDE does not interpolate and the jet
transport applies directly. In general the applicability of the jet transport
will depend on how the interpolation step is performed. For instance, assume
that the Taylor method is used and one uses automatic differentiation to get
the jet that temporal get at an unknown previous time value. Using AD in
polynomial interpolation or Hermite interpolation will not ensure a correct
applicability of jet transport. However, if one uses the polynomial or the
rational barycentric interpolation order-by-order, jet transport in space will
work.

As an application, we discuss the results in [GJS18] which shows, for a
specific model, how the stability of the equilibria of a DDE are the same of
the ODE obtained setting the delay equals to zero, and it is independently
of the delay. However, how much stable or unstable depends on the delay.
By numerical simulations, which use jet transport, to get an approximation
of the stability quantification of equilibria depends on the delay. While the



stability of an equilibrium point requires to study the eigenvalues of a tran-
scendental equation, the use of jet transport allows us to approximate the
most significant eigenvalues of that transcendental equation which quantify
the stability.

Chapter 3 is a more exhaustive application of the tools discussed in
Chapter 2 up to first order, and it is the second part of the first project.
It introduces the delay version of the Poincaré mapping to compute periodic
and quasi-periodic motions. Due to the discretisation of the initial conditions,
the size of the linear system to solve in a Newton approach can become big
specially in the quasi-periodic motions. However, the Poincaré map of a DDE
is a compact operator and, in particular, its spectrum is clustered. The use of
iterative linear solvers allows to consider a matrix-free Newton approach, i.e.
the Jacobian matrix does not need to be computed fully. Moreover, we can
require that each linear system is solve with an accuracy similar to the one
of the right hand side of the linear system because in the Newton approach is
an indicator of how far we are to the zero we want to compute. Specially in
the quasi-periodic case, we can also use preconditioners to speed the conver-
gence of the linear solvers. We illustrates all these ingredient with numerical
simulations which computes the stability and continuation of those objects.

Finally, Chapter 4 contains the second project. It states a posteriori
Theorems which prove the existence and uniqueness of a parametrisation
of a part of the infinite dimensional stable manifold of a state-dependent
delay differential equation (SDDE). The stable manifold of a DDE is infinite-
dimensional and the unstable one is finite-dimensional. There are numerical
results of the unstable one, such as [GMJ17], but the ones for the stable
do not seem to be clear enough. Here we give novel results in perturbation
theory with state-dependency. More concretely, starting with a planar ODE
with stable limit cycle, we add a perturbative term which introduces the
state-dependency. Then we prove the existence and uniqueness of a limit
cycle in the perturbative model and also the slowest stable manifold, which
is contained in the infinite-dimensional manifold. We believe that is the most
relevant part of the manifold because the stable manifold will be governed by
the slowest one. In parallel, we discuss how that manifold can numerically
be computed and we illustrate it with some examples.



Chapter 1

Jet transport for ordinary differential
equations

ACK: This work is a collaboration with Prof. Angel Jorba, Dr. Marc Jorba,
and Dr. Narcis Miguel.

1.1 Introduction

Since the time of Poincaré, it has been known that invariant objects organise
the long time behaviour of dynamical systems. They are the skeleton of the
dynamics, and hence, for a correct understanding of a concrete dynamical
system it is required first to study its invariant objects. The research in
dynamical systems concerns mostly with the existence, and the properties of
invariant manifolds. In order to have a complete picture, both theoretical
and numerical approaches must be undertaken.

A standard tool to study continuous dynamical systems is the use of
suitable Poincaré sections. They allow to decrease the dimension of the
invariant objects (and of the phase space) by one which usually simplifies
the use of analytical and numerical tools. One of the main difficulties when
working with Poincaré maps is the lack of a closed expression for such a map,
so that all the explicit computations have to be done by means of numerical
integration of Ordinary Differential Equations.

The parametrisation method is based on finding a suitable parametric
form for the desired invariant object. For instance, for stable, and unstable
manifolds of a fixed point the manifold is usually represented as a (high
order) Taylor expansion w.r.t. some parameter. The coefficients of this
Taylor expansion are found by solving, order by order, a sequence of linear
equations coming from the invariance equation satisfied by the manifold.

As the parametrisation method deals with high order derivatives of the
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dynamical system at hand, there is an extra difficulty in applying it to Poin-
caré maps. In this chapter we focus on the effective computation of high order
derivatives of stroboscopic maps (a special kind of Poincaré maps) with the
final goal of computing high order approximation of stable/unstable mani-
folds of fixed points of the map (which corresponds to periodic orbits of the
flow). We also require the process to be efficient enough so that extended
precision arithmetic can be used if necessary.

The derivative of the Poincaré mapping can be obtained by automatic
differentiation (AD) which applies to the usual operations and elementary
functions such as square root, trigonometry, etc. Hence, AD can be expressed
as manipulation of formal power series which goes back to L. Euler, a modern
reference is, for instance, the book by D. Knuth [Knu98]. This means that,
given an algorithm (defined by a sequence of mathematical formulas), we can
replace its arithmetic of real numbers by a power series arithmetic, and then,
the same algorithm will produce not only the result but also its derivatives
up to the desired order. In other words, given a computer program that
outputs some results from some initial data, we can replace the floating point
operations by operations with power series (truncated to a given degree, and
with floating point coefficients) to produce the power series of the result w.r.t.
initial data, and/or parameters.

Here we apply these ideas to the computation of the Poincaré map of a
flow. As the numerical integration can be seen as the iteration of a (finite) se-
quence of mathematical expressions, we can replace the computer arithmetic
by a truncated power series arithmetic. This can be done regardless of the
numerical integrator used (Runge-Kutta, Taylor, etc). The use of automatic
differentiation w.r.t. initial data (and/or parameters) of a ODE is what we
called jet transport. Note that this can be viewed as an extension of the
phase space to propagate, in addition to points, the derivatives of the flow.
As the set of derivatives of a function on a point is sometimes called the jet
of derivatives of the function at this point, we refer to this technique as “jet
transport” [AFJ*08, JPN10].

1.2 Automatic differentiation and jet trans-
port

Automatic differentiation is a computational tool to obtain (high order) de-
rivatives of the output of an algorithm [GC91, GW08, Naul2|. This section
summarises the main ideas behind automatic differentiation in its forward
mode. A classical form to introduce automatic differentiation is through the



manipulation of formal power series.

1.2.1 Formal power series in one variable

A formal power series in one variable s is an expression of the form
Z aps”, (1.1)
k=0

where the coefficients a; belong to a field. If f is a C* function defined on
a neighbourhood of 0, we can choose as a;, its k-th normalised derivative,

1
ar = 2/ M(0),

and then eq. (1.1) can be seen as a formal series that encodes the jet of
derivatives of f at 0. The manipulation of formal power series goes back to

L. Euler. A modern reference for the topic is, for instance, the book by D.
Knuth [Knu98|.
To discuss the arithmetic of formal power series, let us define

A=Zaksk, Bszksk, C’chksk.

k=0 k=0 k=0

The basic operations of power series, A + B and AB are defined in a natural
way. If by # 0, the quotient C' = A/B is obtained by writting BC' = A, and
taking the coefficients of degree k at both sides,

bock + blck,l + -+ bkCO = ag.

This implies

1
= b—(ak —bicp—1 — -+ = byco),
0
which allows to compute the coefficients ¢, recursively, starting from ¢y =

a,o/bo.

Let us see how to perform other operations. For instance, let us focus on
C = A* for a € R. We assume a # 0,1 (these two cases are trivial) and
ag # 0. Taking formal derivatives w.r.t. s we obtain C' = aA* ' A’ which
implies C'A = aC'A’. Now we equate the coefficients of degree k — 1 at both
sides to obtain

Z Jjcjag—j =

j=0 J

(k — j)ar—jc;,

k k
i=0
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and, therefore
k—1

Z[ak (a+ 1)jlag—;c;,

7=0

1

Cr =
kao

which allows to compute the coefficients ¢, (k = 1) recurrently starting from
co = aj. We note that this formula includes the inversion (o = —1) and the

square root (a = 1).

The same idea can be used to compute C' = h(A) when h is any function
that satisfies a simple differential equation. This includes log, exp, and the
trigonometric functions. Indeed, for instance, take a(A) = A, 5(A) = 0, and
7(A) =1 in Lemma 1.1 to get the expression for log.

LEMMA 1.1. Let h: I €« R — R be a derivable function verifying
a(A) - W(A) = B(A) - h(A) = v(A)

for A a formal series and for some mappings o, B, and . Then the evalu-
ation C' = h(A), in formal series, is obtained recurrently by

Co = h(ao)
k k—j k—1
= k:ao (Z <7k—j + ;} 5i0k—i_j>jaj - ;jak_jcj> , k=1,
whenever agy # 0.

Proof. By the chain’s rule, C" = I'(A) - A', ie., a(A)-C" = (y(A) + B(A) -
C’) - A’. The product is just the discrete convolution. Thus,

k—1 k k k—j
aoka + Z jak_jcj = Z Oék_ijj = Z (ﬂ}/k—j + Z ﬁk_j_ici)jaj. D

j=1 7=0 7=0 1=0

Remark 1.2. As a formal series A codifies the derivatives of a C'* function f
at, say, 0, the formal series h(A) codifies the derivatives of the composition
ho f at 0. In other words, the operations with formal series can be seen as
the “transport” of the derivatives through these operations.

1.2.2 Formal power series in several variables

In a similar way, we can consider power series of n variables,

A= > ash, (1.2)

m=0 |k|=m



where k € N*, |k| = ky + -+~ + ky,, and s* = s ... sk As before, if f is
a C” multivariate function defined on a neighbourhood of 0, then eq. (1.2)
encodes the jet of partial derivatives at 0.

The arithmetic of multivariate power series is very similar to the case
of one variable. As an example, let us show how to compute C' = A® for
a € R. As before, we assume a # 0,1. We replace s; by s;z (2 is an extra
one-dimensional variable that, at the end, it will be selected equal to 1 to
recover the initial form) and we obtain,

m k
A= Z Apz™, where A, = Z as”.
m=0 |k|=m

Using the same notation for C', we can use the procedure derived in Sec-
tion 1.2.1 to obtain,

1 m—1

> lam = (o + 1)j]An_;C;

J=0

Cm = mAq
where now A; and C; denote homogeneous polynomials of degree j. As the
only required operations are sums and products of homogeneous polynomials
(note that Ay appears in a denominator but it is always a number), the
formula can be carried out easily. In the same way, similar formulas can be
obtained for other operations. As in the one dimensional case, operations
with multivariate formal series can be seen as the “transport” of partial
derivatives through these operations. See, for instance, [HCF*16] for explicit
recurrences in elementary functions.

1.2.3 Truncated power series

The computer implementation of these techniques is done using truncated
power series. For instance, assume we are working with truncated series up to
order, say, M. Then, the equality C' = A® means that C'is a truncated power
series whose coefficients coincide with the ones of A%. Note that this does
not mean that they coincide as functions of their variables (in fact they do
not, since A® contains terms of order higher than M that we are neglecting).

Remark 1.3. From now on, we are going to consider truncated power series
and the equality between to truncated power series will be up to their order.

Note that the efficiency of the operations depends on the efficiency of the
product of homogeneous polynomials. Moreover, note that the complexity
of these operations is very low: for instance, the cost of A® is similar to the
cost of a product of two truncated power series of order M. It is not difficult
to see that this is the complexity of all the standard operations.
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1.3 Numerical integration of the variational
flow

Consider a generic Initial Value Problem (IVP),

T = f(t,x), x(to) = To, (1.3)

where f is smooth and x belongs to a suitable domain of R™. In this section
we first show that the use of jet transport of order 1 on a given numerical
integrator for eq. (1.3) produces ezactly the same results as the ones obtained
by using this numerical integrator on the first order variational equations,

T = f(t,x), x(tg) = zo,

0= D,f(t,x)v, v(ty) = vo, (14)

where v € R™ and vy # 0 is an arbitrary direction. In other words, the two
algorithms coincide.

Remark 1.4. Note that it is enough to consider eq. (1.4) in one arbitrary
direction vg. Indeed, once is proved in particular, it will be proved in the
canonical basis of R™.

Remark 1.5. This result implies that the use of jet transport of order, say,
m = 1, produces exactly the same results as integrating variational equations
of order m. This is seen recurrently on m, using the fact that the variational
flow of eq. (1.4) contains the second variational flow of eq. (1.3) and so on.

To describe the numerical methods in this section we use the notation

y = F(tvy)a y(to) = Yo (15)

to refer either to IVP eq. (1.3) or eq. (1.4). To simplify the presentation,
we assume that F'is smooth enough on a suitable domain. We will focus on
the first step of the methods, using a given time step h. Once it is shown
the equivalence between the jet transport results and the integration of the
variational flow, it is clear that if we apply the same step size control strategy
to both methods we also obtain the same step sizes for the integration.

1.3.1 Runge-Kutta methods

A generic o-stage Runge-Kutta method for the IVP eq. (1.5) is defined by
(see, for instance, [But87, HNrW93|)

K; = F(to + c;hyyo + a1k + - + awﬁa)), i1=1,...,0,

1.6
Y1 = Yo + h(bik1 + -+ bsks), (1.6)
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where a;;, b;, and ¢; are suitable real coefficients, and h is the time step. It is
well known that, if 4 is small enough, these equations have a unique solution
for the vector ;, [HNrW93]. When a;; = 0 for ¢ < j the method is explicit,
which means that the vectors x; can be obtained explicitly. Otherwise the
method is called implicit.

The goal of this section is to show that to use jet transport of order 1 on
the o-stage Runge-Kutta method eq. (1.6) to approximate the solution and
the variational flow of eq. (1.3) is exactly the same as to apply the Runge-
Kutta method eq. (1.6) to the IVP eq. (1.4). To this end, let us introduce the
following notation. If &; denote the values «; of eq. (1.6) corresponding to the
IVP eq. (1.4), then we write k; = (R;, A;) where k; refer to the coordinates
x and &; refer to the coordinates v.

PROPOSITION 1.6. Assume that we are using jet transport of order 1 on the
scheme eq. (1.6) when applied to the IVP eq. (1.3). Then, the r; values
obtained are exactly kj + k;s.

Proof. If we use jet transport of order 1, and then equalities up to first
order, on a Runge-Kutta method applied to the IVP eq. (1.3) we obtain the
equations

o
Ej; + I%;S = f(t[) + Cih,l'o + VgS + h Z ai,j(/_'i;- + A;-S)) .

j=1
This equation is equivalent to
R + Ris = f(to + ¢ih,xo + h Z ai,j“;) +
j=1
D.f <t0 +cih, o+ h Z ai,jR;) (Uo +h Z ai,j’%) S,
j=1 Jj=1

which implies

R; = f(to + Cih, o + h 2 ai,jR;)y

j=1
,%; — Dgcf (to + Cih7 To + h Z ai,jl_i;) (Uo +h Z Cli,jl%;).
j=1 J=1

These are the equations eq. (1.6) for x; = (k;,A;) corresponding to the

IVP eq. (1.4). As the solution is unique [HNrW93], we have that &; = &/,

Y
Rj = R;. ]
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Note that this result implies that a single step of a RK method (either
explicit or implicit) with jet transport of order 1 on eq. (1.3) produces the
same result as a single step of the RK on eq. (1.4). As we want this result to
be close to the exact solution of eq. (1.4), we have to choose a suitable step
size h according to some prescribed threshold value. This will be discussed
later on.

1.3.2 Taylor method

One of the oldest methods for the numerical integration of an IVP like
eq. (1.5) is based on the computation of the Taylor series of the solution.

Yr="Yo + y([)l]h + y([)z]h2 +oee gt y([]p]hp7
where y([)i] denotes the normalised derivative of the solution of eq. (1.5) at t,

[] 1diy
= ——(%o)-
Yo i!dt’( )

The computation of the values y[gi] by taking derivatives to both sides of
the ODE can be a difficult process and, moreover, it produces very complex
expressions for these derivatives so that the resulting method is not very
efficient, specially if high orders are required. However, automatic differenti-
ation can be used to compute these normalised derivatives very efficiently, up
to high orders, giving rise to very efficient implementations of Taylor method
[JZ05].

As before, we can use jet transport on the Taylor method to approximate
the variational flow.

PROPOSITION 1.7. A step of Taylor method with first order jet transport on

the IVP eq. (1.3) produces exactly the same results as a step of Taylor method
on the IVP eq. (1.4).

Proof. The i-th normalised derivative of the orbit of eq. (1.3) is

[z] 1 difl
X g
O gl dpt

Lf (&, ()] (to, x0)-

To apply jet transport of order 1, we replace xy by x¢+ vgs and we propagate
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first derivatives with respect to s,

p_ 1d™
To = oo [f(t, ())](to, o + vo5)
= 14~ t,x(t t D 14~ t.x(t t
= EWU( ,2(t))](to, 7o) + xﬂm[f( ,x(t))](to, 2o)vos
1 di—l 1 dz’—l
= EFU(@ z(t))](to, zo) + EF[DJ@’ ()] (to, zo)vos.

To finish the proof, we note that the term of degree 0 w.r.t. s is the i-th
derivative of the orbit, while the coefficient of s is the i-th derivative of the
variational flow. Hence, given an order and a nonzero time step h, the output
of a step of Taylor integration using jet transport of order 1 on eq. (1.3) gives
exactly the same results as using Taylor method on eq. (1.4). O

1.3.3 Other methods

The same result is true for methods based on linear combination of eval-
uations of the vector field at given points, like multistep methods (either
explicit or implicit). We do not include the details since the proofs are very
similar to the previous ones.

1.4 Applications

One of the first applications of jet transport was the transport of regions of
uncertainty. Due to the change of shape of the first variational propagating
a set of initial conditions, it may cause a loss of accuracy for long term
integrations. In [WDLA™15], the authors have been presented an automatic
method to split the propagated domains to increase accuracy. The method
relies on detecting when the flow expansion w.r.t. initial conditions is no
longer accurate enough and to split the region into two subregions. Each
subregion is further propagated using the same polynomial representation
before the splitting, but centred on different point (on each subregion). See,
for instance, other related work [AFJ*08, AFJ*09, ADLBZB10, PPGM18].

Another application of jet transport has been the computation of colli-
sion probability of satellite [JPN10, MADLZ15]. First the authors look for
close approaches (integration without jets) and then once detected closest
approaches the collision probabilities are computed via propagation of un-
certainties using jet transport.

In other works like [VADLL14] jet transport has been used to get higher
orders and analytic extended Kalman Filters reducing the computational
effort and allows to improve the accuracy.
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Also jet transport allows to find expansions of the solutions of the op-
timal control problem around a reference trajectory. The kind of control
problem should be set as the equations of motion which are affine in the

controls. Examples of such systems are, for instance, in low thrust transfers
[DLABZB14].

In the context of two-point boundary value problems, see [DLALOS|, jet
transport techniques has successfully been used. In this case, a reference
solution is found via classical iterative methods, an expansion around this
reference solution is computed transporting the jet to high orders to find
closed new solutions, obtained via evaluation of the obtained Taylor expan-
sions.

More recently, it is also remarkable that this technique has been used in
the computer assisted proof on the applicability of KAM theory to the figure
8 solution in celestial mechanics, [KS17].

Finally, the numerical integration of high order variational flow can be
used to obtain power expansions of Poincaré maps and high order approxim-
ation of invariant manifolds.

1.4.1 Power expansion of Poincaré maps

Assume that we have a flow defined by a smooth ordinary differential equa-
tion on an open subset of R" and that we are using a suitable Poincaré
section to study its flow. To simplify the discussion, we will consider two
separate cases. In what follows, ®(t;ty, (%)) denotes the solution at time ¢
corresponding to the initial data (¢, 2(?)).

Temporal Poincaré sections

This is a common situation when we have a periodically time-dependent ODE
with a period, say, 7" > 0. Then, it is usual to define a Poincaré map P as
the time 7" flow of the ODE, that is, P(x) = ®(7;0,z). Periodic orbits of
period T appear as fixed points of P, P(z*) = x*. The linear stability of the
periodic orbit follows from the monodromy matrix D,P(z*), but to study
nonlinear aspects of the dynamics higher order terms are needed. A typical
example is the analysis of bifurcations [Kuz04].

The power expansion (up to order m) of P at a given point 2 e R™ can
be obtained by evaluating P on z(®) + s, using a jet arithmetic of order m
for the n-dimensional vector of symbols s.
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Spatial Poincaré sections

To simplify the discussion, we focus on an autonomous ODE. This is in fact
the usual situation in which spatial sections are used. Let us assume that the
Poincaré section ¥ is defined by a hyperplane in general position. Let z(®) be
a point on the hyperplane ¥ and let us denote by 7 the normal vector to this
hyperplane. We assume that, after some integration time, say, 7'(z()), the
trajectory comes back to the section, i.e. ®(T(2();0,2®) e . To produce
the expansion, we have to define coordinates on the hyperplane. Without
loss of generality, let us choose (¥ as the origin of coordinates and let us
choose suitable linearly independent unitary vectors vy, ...,v, 1 such that
2O 4 18 4+ -+ U,_18,-1 1S a parametric representation of X.

Now we start the integration of the ODE at the point z(© + v;s; +
<o+ 4+ v,_18,-1 using a jet arithmetic of order, say, m, with the symbols
s=(51,...,8,_1). Note that if we stop the integration at time 7'(x(?)) what
we obtain is the power expansion of the flow at time 7'(x(®) w.r.t. the n — 1
variables that are the coordinates on 2, but this is not the power expansion
of the Poincaré map P: ¥ — Y because this expansion does not lay inside
Y. To produce the power expansion of the Poincaré map up to a given order
m, we stress that the time needed for an orbit to return to the section X
depends on the initial point. This means that the return time also depends
on s, that is, we have to write the return time as a formal series on s,

T(z9 +5) = T(z9) + Z Ts®, (1.7)

whose coefficients 73, are real numbers that have to be determined from the
condition

CD(T(x(O) + 1814+ Up18n-1); 0,20 + vysy + -+ Up_18n-1) € 2. (1.8)

As usual, this condition must hold up to order m in s. In other words, we
expect that the distance between the evaluation of the power expansion of the
Poincaré map and ¥ behaves like O, 1(]s]). As we will see, the coefficients
T, in eq. (1.7) can be computed recurrently, degree by degree. To shorten
the following formulas, we denote Ty = T'(z(®)) and

S=v181+ "+ Vp_1Sn—1-

Let us denote 2 = ®(Ty;0,2) € ¥ and we recall that the ODE is & =
f(z). Let us start by degree m = 1. The flow ®(Tj + Z|k\=1 7570, 20 + 3)
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at time t =Ty + Z\k\:l Tis* can be written as

O(Tp; 0,20 + 5) + D@(Tp; 0,2 + 5) H 76"

\k\*l
=<I>(T0;O,a:(0)) + Z aps® + D, ®(Ty; 0, 2(© Z 78"
|k|=1 |k|=1
) + Z ags® + f(z Z Tes”,
|k[=1 |k[=1

where the values a;, come from the first order expansion of ®(7y; 0,2 + 3)
w.r.t. s,

O(Ty; 0,2 4 5) = 2 + Z ars”®.
|k|=1
Hence, to impose condition eq. (1.8) at first order (at order 0 is already
satisfied) we have to ask that

Z Lar + 7of (1), 7T) = 0,

k=1
where (-, ) denotes the standard scalar product. This condition implies that
<ak7 7’L>
(W), )

From a geometric point of view, this is equivalent to project the directional
derivatives w.r.t. each component of s on the Poincaré section, following the
flow (see Figure 1.1).

Tk — —

~®(T(z (0))+Z|k| L rs%;0,2 + 5)
I\ <I>(T( ©);0,2 + 35)

y N
F(=)
Figure 1.1. Projection of a directional derivative of the flow
on the Poincaré section.

The computation of the higher order terms is more involved. In particular,
it requires to perform integration steps with step sizes that also depend on s.
This introduces a limitation: if, for instance, we have to perform the step size
h = Z|k|:1 75", and the numerical integration has a local truncation error of
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O(hP), then the resulting power expansion in s will have an error of the order
of O(]s|P) and this means that we cannot trust the resulting expansion in s
for orders equal and higher than p. Therefore, we have to limit the degree
of these expansions by the order of the local truncation error. We note that
this is not a limitation for Taylor methods, since the order of integration can
be easily increased to the desired value.

Now let us focus in the computation of high order derivatives, assuming
that the order of the local integration error is large enough for the derivatives
we want to obtain. We proceed in a recurrent way. Assume now that we
have computed the values 74, for |k| < m and we want to compute them for
|k| =m + 1:

KA
A/~
S

0) + Z TkSk + Z Tksk;O,x(O) + 3)

|k|=1 |k|=m+1

= @(T(LE(O)) + Z s 0,20 + 5) +

k=1

D,® <T(Jc(0)) + Z 1650, 20 + §> Z 78"

k=1 |k|=m-+1
m+1

) + Z aps® + flzW) 2 8",
k=1 k|l=m+1

To obtain the last equality note that, as D,® is multiplying Z‘ K|=m+1 T s*
which is already of order m + 1, we have to use the terms of degree 0 of
Dy®, that is, D;®(T(z?);0,2®) which is f(z1)). Therefore, for |[k| = m+1,
imposing condition eq. (1.8) leads to the same expression as before,

<ak> ﬁ>
(fM), i)

Let us summarise how to apply these formulas. We first integrate for a
time T'(x(?) such that the orbit starting at the initial condition z(®) lands
on the Poincaré section Y. This integration can be done with jet transport
so that we obtain ®(T'(z(");0,2 + 5). Then, to compute the return time
eq. (1.7) such that the power expansion of the flow lays inside ¥ up to degree
m, we proceed degree by degree in eq. (1.7): for degree 1, we use first the
formulas above to compute the numbers 7, and then we perform a step of
numerical integration with step

Ty = —
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starting at ®(T(z(©); 0, (% 4 5) to obtain ®(T'(x®) + Dik=1 TES" 0, 70 4 3)
which is a power expansion with its first order terms inside . Next, using
the second order terms w.r.t s in ®(T(zV) + 3, 75";0,2(0 + 5) (the
coefficients of these terms are the values a; above) we compute the values 7y
for |k| = 2 and we perform another numerical integration step,

starting at ®(T(z(V) 43, _; 7s"; 0, (% +5) to obtain the expression ®(T'(z*)+
Z|2k|:1 7570, 2 + 3) with its second order terms inside . This process is
continued up to the desired order.

1.4.2 The parametrisation method

This method was already used for numerical computations in the 80’s by C.
Sim6 (see also [FR81]), but it is remarkable that is also an excellent tool to
prove the existence of invariant manifolds, as shown by X. Cabré, E. Fontich,
and R. de la Llave [CFdIL05]. Here we simply summarise the method from
an algorithmic point of view. A very good exposition of the method can be
found in the book [HCF*16].

Let us start with the case of a 1D invariant manifold. Let us denote
by P the Poincaré map and assume that the fixed point is at zy. Let A be
a real eigenvalue of DP(z) and let s — z(s) be a parametrisation of the
manifold associated to \. We assume that P is analytic and that a suitable
nonresonance condition between A and Spec DP(z) is satisfied, so that the
manifold can be written (locally) as a convergent power series,

2(s) = Z ars”®.

k=0

The invariance condition is
P(z(s)) = z(\s).

We will solve the invariance equation recursively, order by order. It is im-
mediate to check that order 0 is given by the coordinates of the fixed point,
ap = zp and order 1 is given by the eigenvector related to the eigenvalue
A, DP(zp)a; = Aay. To proceed recursively, assume we have computed the
manifold up to order m. We denote by z<,,(s) the power expansion z(s)
truncated to order m, z<,(s) = X<, ays®. Then, the coefficient a,,,; sat-
isfies
(DP(Z()> — )\m+1])am+1 = —bm+1,
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where b,,,1 denotes the coefficient of order m + 1 in the evaluation of the
manifold up to order m, z<,,(s), by the Poincaré map P:

m
Pemir(2em(s) = X bis™ + bas™
k=0

To compute Pc,,11(2<m(s)) we need to evaluate the Poincaré map P on the
(truncated) formal series z<,,(s). This is done by means of jet transport.
From a computational point of view, this is by far the most expensive oper-
ation.

This method can easily extended to compute power expansions of higher
dimensional manifolds. For instance, for a 2D manifold related to two real
eigenvalues A\; and Ay, we look for a parametrisation (s1,s2) — 2z(s1,S2)
and we assume that the needed conditions for the existence of an analytic
manifold are satisfied. Then, the manifold can be written (locally) as a
convergent power series,

z(s1, $2) Z Z apstsk2 where k = (k1, ko) and |k| = ky + ko.

m=0 |k|=m
The invariance equation is

P(z(s1,82)) = 2(A151, A2sa2),

that is solved recursively. As before, orders 0 and 1 are given by the coordin-
ates of the fixed point and the two eigenvectors. Assuming that we have
computed the manifold up to order m, the coefficients for order m + 1 are
given by

(DP(29) — A"\ A2 Id)ay, = —by,
for each k such that k1 + ks = m+ 1 and b, are the coefficients of the terms of

order m + 1 of the evaluation of the manifold up to order m by the Poincaré
map:

Pepi1(z<m(s1, 82)) Z brst'sh? + 2 bpsi sh2.

|k|=0 |k|=m+1

1.5 Examples

In order to illustrate the theory, let us consider two examples whose models
can find in [JC19]. The first one illustrates the computation of the unstable
manifold of a model in celestial mechanics. And the second one the manifold
computation of a chemistry model which involves eigenvalues of with large
opposite values.
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1.5.1 The unstable manifold of L, in the Bicircular
Problem

The (Earth-Moon) Bicircular Problem (BCP) is a restricted version of the
Four Body Problem [Hua60, CRR64]. This model assumes that (while Earth
and Moon move as in the RTBP) Sun and the Earth-Moon barycentre move
along a circular orbit around the centre of mass of the Sun-Earth-Moon sys-
tem, everything in the same plane. The BCP can be regarded as a (periodic)
time dependent perturbation of the RTBP. The associated Hamiltonian func-
tion can be written as

1
Hpop = 5(0; + P, + %) + ype — opy

1_
B KK _mS_m—;(ysiDQ—xcose). (1.9)

TPE pPM rps ag

where the units are taken as in the Earth-Moon RTBP, mg is the mass
of Sun, ag the semimajor axis of Sun, r%, = (v — p)* + y* + 2%, %, =
(2 —p+1)2+ 92+ 2% rbg = (. —25)* + (y — ys)? + 2%, 15 = agcosb,
Yys = —agsinf, = wgt and wg is the mean angular velocity of Sun in these
synodic coordinates.

In the BCP the Lagrangian points are no longer equilibria, they are re-
placed by periodic orbits with the same period as the perturbation. In par-
ticular, the triangular point L, is replaced by three periodic orbits with the
same period as Sun, see [SGJM95, CJ00]. One of these orbits is slightly un-
stable, of linear type saddlexcentrexcentre. The unstable eigenvalue of the
orbit, regarded as a fixed point of the stroboscopic map, is close to 1.098.
Notice that the instability is remarkably mild, that is, an initial condition
on the manifold near to the fixed point needs a large number of iterates to
get far from it. Therefore, to grow numerically the manifold from the linear
approximation is numerically expensive. We can, however, produce a high or-
der approximation of the manifolds and produce large pieces of the manifolds
that can be mapped a few times to get even larger pieces of the manifold,
see Figure 1.2. Let us explain how to produce Figure 1.2: The first thing is
to build a Runge-Kutta-Fehlberg 7-8 with arithmetic of polynomials of one
dimension. Then we apply the parametrisation method to obtain, order by
order, a Taylor expansion of the manifolds. At each step, after we compute
the coefficient of order k, we use the root criterion to estimate the radius
of convergence. We denote by U'T and U~ the two pieces of the unstable
manifold, which have been expanded up to order 54. On the other hand, the
stable pieces, denoted by S* and U™, are expanded up to order 46. Then,
all those Taylor expansions are evaluated to obtain the curves in Figure 1.2.
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Figure 1.2. High order approximations of the stable (S*, S7)
and unstable (U*, U™ ) manifolds attached to the
dynamical equivalent of L, in the Earth-Moon
BCP.

1.5.2 A chemistry problem

Consider an atom that, by some mechanism, ionises i.e. an electron abandons
the atomic core. Depending on some conditions, the electron may be recap-
tured by the atom following the Coulomb’s laws. When this happens, we say
that the electron recollides with its parent ion, see [Cor93, Corl4]. See also
MCU10, MKCU12, KCUM14, KMCU14, NCUW15] for works approaching
this problem from the point of view of the dynamical systems.

Usually the electron is expelled out the core by the action of a laser field.
The effect of the laser is modelled by means of a periodic function. Near the
core, the laser acts as a perturbation of the central problem induced by the
(soft) Coulomb potential

1 1
H=-

2 2
+ -
o P2+ Py) = e o

+ E.x coswt + Eyysinwt, (1.10)
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with a = 1, w = 0.0584, E,. = 0.1, and E; = 0. The dynamical mechanism
that leads to most of the recolliding trajectories is well understood when
the electrons are allowed to move in a one dimensional space (the dynamics
restricted to the invariant subspace {y = 0, p, = 0} of system eq. (1.10). The
stable and unstable manifolds of some key hyperbolic periodic orbit drive
these trajectories to recollide many times, see [KCUM14].

The hyperbolic periodic orbit studied in [KCUM14] has period 2% and
in system eq. (1.10) is located near = 30.5, y = p, = p, = 0. This orbit
is easily found by means of a Newton method on the map defined by the
time-period (%’r) map. The eigenvalues of the monodromy matrix are

1.0598923797401292e+03
2.1924563502992269e+00
4.5610942259513210e-01
9.4349201788190840e-04

so it has a 2D unstable manifold and a 2D stable manifold. There is a
strong unstable direction and a weak unstable direction. The weak one is
the direction contained in the invariant subspace, the one whose related in-
variant manifold drive most of the recolliding orbits in the 1D case. The
strongly unstable direction appears as cause of adding the transversal (to
the polarisation laser) direction. Therefore, the dynamics near the periodic
orbit is dominated by the strongly unstable direction which is transversal to
{y = 0,p, = 0}. Because of the magnitude of the strong eigenvalue, most of
the trajectories nearby the fixed point get expelled away from the atom and
do not return back, at least, in a few laser cycles. It is possible, however to
find thin strips close to the invariant subspace {y = 0,p, = 0} with a lot of
recolliding trajectories. However, numerically, it is challenging to compute
the 2D unstable (stable) manifold due to a remarkable propagation of error.

To illustrate this fact, let us first focus the 1D manifold related to the
“weakly” unstable eigenvalue A = 2.1924563502992269. Here we have to
pay attention to the fact that this manifold is not attracting (recall that
there is another eigenvalue at the point close to 1059.89). To deal with this
error amplification, at each iteration of the Poincaré map we compute (and
accumulate) the norm of the differential so that we have an estimate of the
growth of the error at each step.

As example, we select an initial point on this manifold at 1 unit of distance
from the fixed point. We estimate the error on the manifold (we can use,
for instance, the last terms of its power expansion). Then, using multiple
accuracy, we can monitor the growth of the (estimated) error during the
iterations:
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iter: 0O err: 0.000000e+00

iter: 1 err: 8.466197e-43 dist: 2.199796e+00
iter: 2 err: 8.928646e-40 dist: 4.848533e+00
iter: 3 err: 9.240140e-37 dist: 1.081419e+01
iter: 4 err: 8.411957e-34 dist: 2.553592e+01
iter: 5 err: 2.083436e-32 dist: 1.745048e+01
iter: 6 err: 1.966030e-29 dist: 1.976583e+01
iter: 7 err: 1.310301e-27 dist: 7.533221e+01
iter: 8 err: 1.615796e-27 dist: 1.267686e+02
iter: 9 err: 1.771004e-27 dist: 1.773365e+02
iter: 10 err: 1.873796e-27 dist: 2.275002e+02

The first column is the iterate of a point obtained from the parametrisa-
tion of the manifold, the second column is the accumulated product of the
norms of the differential of the Poincaré map at each point and the third
is the distance to the fixed point. As it happens in many situations, the
instability of this weakly unstable manifold decreases as the move away from
the fixed point. This simplifies the approximation of the manifold up to long
distances.

A conclusion of this experiment is that the propagation of error tends to
soften at some distance of the periodic orbit. This vindicates the computa-
tion of a high order approximation of a parametrisation of the 2D unstable
manifold. This allows us to grow the manifold numerically far away from the
fixed point, avoiding this pathological propagation of error. Let

W Al XA2—>R4,

(with Ay and A, intervals containing the origin) a parametrisation of the
unstable invariant manifold related to ;. This parametrisation verifies the
following invariance equation:

J(W(s1,82)) = W(A1s1, Aasa).

Recall that the unstable eigenvalues are A\; ~ 2.1924563502992269 and
Ao ~ 1059.8923797401292. Computing this 2D manifold (double precision)
up to order 8 takes 0.5s. Using MPFR with mantissa of 128 bits (39 decimal
digits) it takes 1m 19s. Computing up to order 16 requires 15m 26s. Finally,
to compute it up to order 30 using extended precision arithmetic (MPFR
with 192 bits mantissa ~ 57 decimal digits) takes 8h 50m. As in the 1D case,
we use these different approximations to estimate the error on the coefficients
of the expansion. Figure 1.3 shows a representation of this manifold.
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surface
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Figure 1.3. The 2D manifold drawn from the expansion ob-

tained in the parametrisation method.



Chapter 2

Jet transport in delay numerical integrators

ACK: This work is a collaboration with Prof. Angel Jorba and partially with
Dr. Josep Sardanyés.

2.1 Introduction — Splicing condition

To pose the problems, and fix notations let us start considering a constant
delay differential equation (DDE) expressed by

d
Salt) = flt),2(a0),  al)=t—7 (2.1)

with f smooth, and 7 a fixed and positive real number. Clearly the case of
7 = 0 leads to an ordinary differential equation (ODE). After a time scaling,
t = 7s, we can always assume that 7 = 1.

In the case of a finite number of constant delays we can re-scale the time
in such a way that all the delays involved in the DDE are in (0, 1].

The delay term implies that the initial condition needs to live in the space
of mappings defined in the interval [—1,0]. These functions are going to be
assumed to be at least continuous but in practice the assumption will involve
as many regularity as was needed.

If z is a map defined in an interval [t,,t], x:(s) = x(t + s) is a map with
s in [—1,0] and ¢ in [t, — 1,%,]. Therefore an initial value problem for a
delay differential equation (IVP-DDE) consists in finding a solution through
an initial condition u at time 0, denoted by z(0,u), and verifying

70(s) = u(s) with o (t) = (a(t). (2.2)

{%x(t) = f(xz(t), (1))
=

25
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Due to the fact that an arbitrary mapping is represented by a table of value
in a computer, the strategy for a numerical computation is clear; a standard
ordinary differential integrator will used in intervals multiple of [—1,0].

Whenever an evaluation of the function ¢ is required for an unknown
value in its discresation, an interpolation is going to be perform. On the
other hand, an IVP-DDE may also involve discontinuities in the orbit. These
are the two main drawbacks in the numerical integration of a DDE which
are, in general, harder to figure out in the state delay differential equations
(SDDE).

Indeed, since the initial condition lives now in the space of mappings,
but the orbit is shown as a trajectory in the real line, it may happen the
derivative at ¢ = 0 does not coincide with the value of the initial condition.
That is, the solution has a jump in the first derivative, £u(0) # £2(0,u)(0).
If 2%(t) denotes the value at time ¢ of the solution from the left x~(¢) and
from the right z*(¢), then

ii = Dxf<l’,(,0>l' + Dapf(xa(p)(pi

with p* = (2 o a)Ta. For all time value £ such that it is a simple root of
a(t), then the orbit x(0, u) has a jump discontinuity in its second derivative
at £ because ¢~ (&) # T (&).

The repetition of the process leads to the fact that if a jth splicing con-
dition happens, i.e. “£u(0) = £2(0,u)(0) for 0 < i < j, we can ensure that
no jump discontinuities in the jth first derivatives are going to be, and a
standard ODE integration of order j can be used without any trouble.

On the other hand, if no splicing condition is assumed or with not enough
j-range, we are going to have different levels of discontinuities. To be more
precise, fixed 7 > 1 and the initial condition u defined in [—1,0] so that
j;—:llu(()) # jtjj—:lla:((), u)(0) but there is equality for the previous derivatives.
Then the set

ZY = {£ > 0: € is a simple root for a(t) = 0}

consists in all the jump discontinuities in the jth derivative of the solution
through u propagated by the one at time ¢ = 0. In general, the kth level of
jump discontinuities is defined recurrently by

ZF = {¢ > 0: ¢ is simple root for a(t) = ¢ for some ¢ € Z' with 0 <[ < k}

which are the jump discontinuities in the (j + k)th solution derivative.
These regularity obstructions can be accumulated in an infinite number
of points and assumptions on « are commonly imposed. For instance,
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e «(t) <t for all t. Otherwise we required values in the future.

e a(t) # t. That is, it is always required to need to take values in the
past.

o t —at) < M for some M > 0. It means to have a fading memory
which allows us to have a finite segment of past history to store.

In the case of constant delays, «(t) = t — 1, the jump discontinuities are per-
fectly located before any integration step. Indeed, if the splicing condition is
not verified, the kth level of jump discontinuities will happen in {k} therefore
at each time value ¢ = k the orbit becomes smoother.

There are invariant objects where the splicing condition is always true.
Examples of these kind of objects are equilibria, periodic orbits, and tori
whose proofs are done by contradiction.

THEOREM 2.1. The splicing condition is satisfied to all orders for equilibria,
periodic orbits and tori if the flying time is bigger than 1.

Proof. Let us argue for each of the three objects involve in the statement:
Equilibria: If u is an equilibrium, it is a constant function on [—1,0].

Periodic orbits: Given an initial condition u defined in [—1,0], and a
period T' > 1 such that x(0,u)r = w. If u did not verify the splicing
condition, (0, u)r would not do, and neither (0, u)ry which contra-
dicts the fact that the orbit becomes smoother as the time goes far.

Tori: Let K be a mapping defined in T?, and w be a frequency vector in
T9. After a scaling, we can consider P to be the time 1-map. The
invariance equation for a torus is K (0 +w) = P o K(0). If there is 6,
so that K(6p) does not satisfy the splicing condition, it contradicts the
fact that K(6y) = P o K(0y — w), and that each composition with P
the regularity goes up. O

Theorem 2.1 tells us that in a neighbourhood of those invariant objects
the splicing condition will be satisfied as well. This fact allows us to consider
standard ODE methods to compute them under the suitable adaptations in
the context of DDE.

2.2 Interpolation

As it has been pointed out, the initial conditions of a DDE live in the space
of mappings defined in [—1,0]. In order to deal with initial conditions in a
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computer, they are going to be discretised in a finite number of points, see
Figure 2.1.
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Figure 2.1. Table of values (s;,u;);—, of an initial condition

u: [-1,0] — R%

On the other hand, the standard ODE integrators compute an approxim-

ation of the orbit with increments in the time by fixed or controlled stepsize.
If we consider an IVP-DDE like in eq. (2.2), and to exemplify an explicit
Euler method is used, then its iterative scheme with fixed stepsize h = < is

N
given by

Tpi1 = Ty + hf(x,, p(tn)), (2.3)
the1 =t, + h. ’
The value z,, denotes an approximation of the solution at time t,, that is,
Ty, ~ x(0,u)(t,).

In the case of only one constant delay, the stepsize h = % stops ex-
actly at all the jump discontinuity points in case that the initial condition
does not satisfy the splicing condition, and then whenever ¢(t,) lies in these
discontinuities we can take the left or right value.

The values ¢(t,) are always known if the stepsize is fixed in the scheme
given in eq. (2.3). However, for other strategies when the stepsize is not
fixed or even when to compute each step requires the use of unknown values.
The latter one is common for Runge-Kutta methods. To illustrate it, let us
consider a popular explicit Runge-Kutta method with 4 stages and order 4
whose Butcher’s Tableau is in table 2.1.
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0 k1 = f(xo,(to))
s 13 Ko = flzo + 2k1, 0t + %))
% 0 % R3 = f(l’() + 51{2, gO(t[) + %))
110 0 1 Ky = f(xg + hes, p(to + h))
% % % % x1=x0+%(ﬁl+2/{2+2m3+m4)

t, =to + h.
Table 2.1. RK4 equations..

Therefore even if the stepsize is fixed, to compute the x’s may require to
know some values in the history of its trajectory that are in fact not known
in the table of values, like Figure 2.2 illustrates.

- - - » interpolated

—  known

Figure 2.2. Points needed to known for 4 steps of a Runge-
Kutta 4 with fixed stepsize..

The general interpolation problem states as follows: Given a table of val-
ues (;, ;)5 of a real continuous mapping ¢ defined in a close real interval.
The goal is to give the value ¢(t). Without loss of generality we can always
assume to < -+ < tp_q.

In a numerical implementation is required to keep the history of the orbit
in order to evaluate ¢(t) of eq. (2.2) in potentially unknown values but at the
same time the new steps must be saved to provide values of () for further
times. Figure 2.3 illustrates the fact that a previous history given by a table
of values (pt;, px;) and the current history with an incomplete table of values,
(cty, cx;).

In the following sections we describe several, though standard, interpol-
ation techniques, and we show that in all of them the spatial jet transport
applies. That will imply that the automatic differentiation provides a jet
transport such that at each step the spatial jet will coincide with the exten-
ded system involving all the derivatives.
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—> pointer
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Figure 2.3. Previous (pt, px) and current (ct, cx) history with
distinction in jump discontinuities..

2.2.1 Polynomial interpolation

Let (t;, i)~y be a table of values of a smooth mapping ¢. The polynomial
interpolation consists in finding a polynomial, let us say p, of degree at most
n that interpolates ¢ at the nodes t;, i.e.,

pti) =wi;, 0<i<n.
The problem is well-posed in the sense that it has a unique solution that

depends continuously on the data. The solution can be written in the well-
known Lagrange form

[Tt —t)

b = Dot L0 = (2.4

The polynomial ¢; is called Lagrange polynomial corresponding to the node
t;, and it satisfies that ¢;(¢;) = d;; where §;; denotes the Kronecker delta.
The Lagrange interpolant acts as a linear mapping w.r.t. the ¢;’s. There-
fore the spatial jet transport will apply, i.e. the operations performs by the
automatic differentiation in the Lagrange interpolant will be exactly the same
as perform the Lagrange interpolant in each order of the jet independently.

PROPOSITION 2.2. The spatial jet transport applies to the polynomial inter-
polation.
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Proof. If @; + ¢;s, then

S 6s + B0 = 2 2l + X Bibs(0)s = p(6) + (D)5, O

Polynomial interpolation is sensitive to the Runge phenomenon which
means that adding more nodes may give a worst approximation of the real
mapping ¢. It has other shortcomings that must be pointed out such as its
computation is numerically unstable or each evaluation of p(¢) has a computa-
tional cost ©(n?) additions, and multiplications. Although other approaches
to get the same polynomial p(t), expressed in a different manner, can provide
a linear cost. For instance, the Newton’s approach, and its Newton tableau
of divided differences [DB08]. But if we have several mappings in the same
nodes, it might get a slightly better performance because ¢;’s in eq. (2.4) are
the same.

In the case of the IVP-DDE, the jump discontinuity points constraints
the number of nodes that are allowed to use in a neighbourhood of those
points. Thus, the polynomial interpolation may give bad approximations
close to the jump discontinuities at the beginning of the orbit.

2.2.2 Rational barycentric interpolation

Let (t;,¢:)1~ be a table of values, and ((t) == H;:& (t —t;). If we define the
barycentric weights
1 1
w;j = 0<j<n, (2.5)

T T T )

k#j

then the Lagrange polynomials in eq. (2.4) can be rewritten as

n—1

p(t) = (1) ),

j=0

Wi
t—t,

t—t;

Due to the fact that 1 = Z}Z& ¢;(t), the rational barycentric interpolation is
expressed by

(2.6)

Similarly to Proposition 2.2, we also prove Proposition 2.3.
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PROPOSITION 2.3. The spatial jet transport applies to the rational barycentric
interpolation.

To implement the rational barycentric interpolation, the barycentric weights
must be chosen. The first attempt is to consider the ones corresponding to
equidistant nodes that according to [BT04] they are

wy = 2" (b — a)' " (~1) (” N 1)

J

when ¢ is defined in the general interval [a, b]. These choice is ill-conditioned
in the sense that changes in the input may generate big changes [TWO91].

One of the easiest nodes that gives easy weights are the Chebyshev points
of the second kind

II; = 11} = cos(km/(n — 1)), 0<k<n (2.7)

Notice that IIg > -+ > II,_;, and II; = —II, 14 for any 0 < k < [21].

And then it is enough to store [”—“] Chebyshev nodes and the n values by

®.
Since IIj are in [—1,1], the affinity defined by

o [-11] > [ab], s %((a—b)s+a+b) (2.8)

allows to get the values in the t-range solving ¢, = ¢(sx). In other words,
the interpolation is done for the mapping ¢ o ¢~!. Then eq. (2.6) becomes

(D%, (D" on
2(5—110 " Z s—II Z

t 1<j<” e 1<]<n S — IInflfj 2(8 — II[))
Plt) = —— 1y S
+

—_— +
2(s —1Iy) s —1II, : s—1II,-1—; 2(s—1IIp)

1< 5= 1 noE<j<n

(2.9)
with t = ¢(s). It has linear computational complexity, ©(n), and linear space
complexity, 2(n), due to the Chebyshev nodes. Other well-known nodes are
the Chebyshev of first type defined by

I = I} = cos(n(k+1/2)/n), 0<k<n.

In this case, Ip > -+ > I, 4, and Iy = —I, 1 4 for all 0 < k < [n/2]. In
this case it is enough to store [n/2] Chebyshev points, and its n values by .
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If N is even, eq. (2.6) becomes

n 2—1— i n/2
(- 1)] / j90y+ P HJI—/%
0<j<n/2 n/2<j<n n=l=j
p(t) =
; In/2—1—j o Linpe
I e PR Y o et
0<j<n/2 I negi<n n=l=j
with ¢ = ¢(s).

In both cases, it was proved in [BBN99| that eq. (2.9) they do not have
any pole in the interval [—1, 1] as well as it has exponential convergence on
an ellipse with foci £1 and sum of its major and minor axes equal to 2p with
p> 1.

2.2.3 Chebyshev interpolation

It consists in express a function ¢ defined on an arbitrary interval [a,b]
as a linear combination of Chebyshev polynomials. Those polynomials are
defined, in the real case, recurrently by

Then ¢ is approximated by

EO Z ), with t = ¢(s), (2.10)

where ¢ is defined in eq. (2.8). The coefficients ¢;’s are obtained for the
evaluation of ¢, = @o¢*(sx) with s, = cos(m(k+1)/n) nodes for 0 < k < n.

More precisely,
J(k +
A__ngkcos( >> (2.11)

The coefficients ¢;’s in eq. (2.11) can be compute quickly using the discrete
cosinus transform of type III, known as DCT-III, and its corresponding in-
verse DCT-II whose computational complexities can be in ©(nlogn).

To evaluate eq. (2.10) in an arbitrary ¢ inside the interval of definition
of ¢, one can use Clenshaw’s recurrence formula [Cle62] whose complexity is
linear, ©(n).
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Proposition 2.4 tells us that the spatial jet transport (the one w.r.t. ;’s)
can be used in the Chebyshev interpolation. Its proof is immediate because,
in terms of points ¢y, the Chebyshev interpolation is just a (linear) change
of variables.

PROPOSITION 2.4. The spatial jet transport applies to the Chebyshev inter-
polation.

2.2.4 Choosing the interpolation strategy

The previous interpolation methods are well-known in the community of nu-
merical analysts. Lagrange interpolant requires ©(n?) for each evaluation of
the polynomial p(t), its computation is numerically unstable which implies
the use of small number of nodes, and well-balance nodes around the un-
known time value to approximate. However, in the case of a non-splicing
condition for an IVP-DDE, it may happen that its interpolation for values
close to the jump discontinuities are either non-accurate or does not have
well-balanced nodes.

The other two methods; rational barycentric, and Chebyshev, are defined
in a closed real interval which allows us to have under control the jump
discontinuities whenever they become known. In terms of computational and
space complexities, rational barycentric interpolation is better. In fact the
proof of the rational barycentric interpolation in [BBN99| uses convergence
result of the Chebyshev interpolation. Another issue to point out is the
choice of the nodes. The Chebyshev of second kind, eq. (2.7), contains the
extreme of the interval which allows to do a special treatment in case that
some of the those were a jump discontinuity.

2.3 Runge-Kutta methods with delay

Among all the Runge-Kutta methods, those admitting an automatic stepsize
control have become popular. Several versions with slight changes can be
found in the literature. Here, we are going to show a simple example which
computes two different RK with different order and uses the one with higher
order to give a prediction of the stepsize for the next step. We want to
identify in which steps the jet transport plays an important role or not.

ALGORITHM 2.5 (RK p < g with controlled stepsize).

* Inputs: tolerance tol, Ny < |h| < hipmee, matrix (b;) € R(o,0),
vectors (aq,...,a,), (¢1,...,¢s) and (dy,...,d,,), and an initial value
(to, xo).
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. Compute

i1
ki = (20 + 1 Y byky,p(to +a;h)), 1<i<o,
j=1

where the values ¢(ty + a;h) are interpolated by the history.

Compute approximations with respective order p and ¢ by
o1 g2
xﬁ” = Z CiKi, and a:?) = Z d;K;.
i=1 i=1

(2)

. Assign § — ||z{" — 2.

. If tol < 6, then h < 0.9h(tol /5)"/1.

4.1. If |h| < hypn, error message and exit.

4.2. Tterate the process with the new value h.

. If 6 < tol, then

2
x0<—x0+x§),

t() < to + h,
h < 0.9hmin{1.2, (tol/§)"/?}.

5.1. If hynas < |B|, then h < huash/|l.

Algorithm 2.5 needs some remarks:

Some of the coefficients of the Butcher’s tableau can be found extens-
ively in the literature like [Ver78, HNrW93].

The values ¢(ty + a;h) in item 1 are approximated by, for instance,
some of the interpolation methods in section 2.2.

The norm in item 3 must be adapted in case of jet transport.
The value 0.9 in items 4 and 5 are safety factor.

Formally, in item 5 the approximation xgl) should be used instead of
x?’ since we are using an approximation of order ¢ to check the ap-

proximation of order p < q.
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Algorithm 2.5 is just a sketch of the steps for an explicit RK with controlled
stepsize and slightly modifications are possible depending on the specific
IVP-DDE to solve. There are other strategies to solve an IVP-DDE such as
the RETARD in [HNrW93, I1.17]. In that case, the integrator is based on a
modification DOPRI5 with dense output [DP86]. A dense output consists in a
o-stage RK with ¢’/ — o extra stages to get the expression of the polynomials
b;(0) so that the polynomial

p(0) = xo + hi bi(0)k; (2.12)

verifies |p(0) —x (2o +0h)|= O(h?*1). In other words, points nearby z, can be
approximated by polynomials and an error depending on the stepsize. The
polynomials b;(0) are independent of the points of the orbit. That implies
that the linear combination in eq. (2.12) applies for the jet transport as well.

More sophisticated integrators explained in [BZ13] seems to be candidates
for jet transport, although we did not check them in detail all of them. A
special attention needs RADAR explained in [GHO1, GHO8|. It is an implicit
RK method based in Radau ITA, [HW10], with control in jump discontinuities
by extending the Newton needed in each of the iterations.

2.4 Taylor method

The splicing condition in an IVP-DDE like eq. (2.2) depends on the initial
condition. The interpolation may be required, and in such a case, it must be
done in the space of temporal jets. That is, the output of the interpolation
must a Taylor expansion at the time that is requested.

A first observation is that there are some situations where the interpol-
ation may not be needed. For instance, when there is only a constant delay
and the step size is fixed.

However, in general, interpolation will be required. Similar to Figure 2.3,
now we need to be able to keep the history (pt,px) at the same time that
the current history (ct, cx) must be prepared for further time steps.

Now, before the jet transport, the values in pxr and cx are vectors of
temporal jets of order p in an arbitrary d-dimensional space. Depending on
the interpolation nodes, some values in pxr and cx may coincide. Following
the notation in Figure 2.4 let us give a pseudo-code to deal with the potential
jump discontinuities.

ALGORITHM 2.6.



37

* Given a past history (pt, px) with length plen < njets, and a current
history (ct, cx) with length clen < njets.

1. Interpolate order-by-order, pzl! for 0 < j < p.
2. Once the boundary time is reached,

2.1. pt < ct and pr < cx (swapping the pointers).
2.2. Force cty < pteen.

2.3. plen < clen and clen < 0.

3. If at some moment the clen is equal to njets, reallocate the memory.

The item 1 in Algorithm 2.6 deserves a special attention. The first at-
tempts were to differentiate as many times as were needed the Lagrange or
Newton polynomial or even the Hermite polynomial, [DB08], but we real-
ised, using interval arithmetic, that the numerical error is, in general, really
bad for the higher order terms of the temporal jet. That is related with
the fact that differentiation is a notoriously ill-posed problem due to of the
lack of information in the discretesed problem. The solution was to use the
interpolation order-by-order as independent functions.

[Pl| - -+ |cxlO] o) - |ezlrl
d d ! o @ d 4 o cx
pxy p‘rplen . CTy CT1ep,
pz[mm[m
1 1 3 1 1
pxy PTe, cry cx
pren alpl] -+ |ogl0] clen 2001] - |ealp]
DT —ees{ PT1 <o+ | PTplen <o [PTnjets cx —e» CIT s CXclen cor |CTnjets
pt —= ptl e ptplen T ptnjets ct —= ct1 te Clelen ce Ctnjets
ingl i doubl i ipl i
single pointer — double pointer —s= triple pointer ~ -------- same value

Figure 2.4. Previous history (pt,pr) and current history
(ct, cz) with their normalised p-order Taylor coef-
ficients pzl! and ezl for 0 < j < p.

If the splicing condition of the initial condition was not satisfied up to
the order used by the Taylor integrator, the jump discontinuity points must
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be detected and use their left or right values of the temporal jet since the
radius of convergence is defined respective for negative or right values as it
illustrates Figure 2.5.

S Nay N AD A
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= Initial data : Intermediate data o Boundary data o Final data

Figure 2.5. Tllustrations of a Taylor integration with half of
the convergence disk at the jump discontinuity
points.

2.5 An application — time lags in saddle-node
remnant

An equilibrium point of a DDE like eq. (2.1) is a map «* defined in [—1, 0]
such that there is solution for the IVP-DDE like eq. (2.2) through z* and
£2(0,2*)(t) = 0 for all ¢. In other words, z* must be a constant function so
that

f(z*, z*) = 0.

In the constant delay case, the fixed points of the ODE obtained with no
lags (those assigned to zero) will still be in the DDE one.

The stability is given, in the case of constant delay, by the study of the
characteristic equation

det(\Md — D, f(z*,2*) — e *D, f(z*,2*)) = 0, Ae C. (2.13)

Different phenomena can happen. For instance, the stability may change
depending on the delay values. It was showed in [GJS18] that a system
describing the density-dependent reproduction of a single specie with time
lags preserves exactly the same equilibria with the same stability but with a
different quantity values.
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PROPOSITION 2.7. The model with parameters k > 0 and € > 0 given by

%(t) = ka(t — 7)*(1 — 2(t)) — ex(t) (2.14)
has constant functions x4 = (1 + /1 —4¢e/k)/2, and xy = 0 defined in
[—7,0]. They are the only equilibrium points of eq. (2.14) whose stabilities
are independent of the delay 7. For 0 < e/k < 1/4, xq is exponentially stable,
x4 is stable, and x_ is unstable, due to a real eigenvalue. At e/k = 1/4, the
equilibria x_ and x, merge to x = 1/2 in a saddle-node bifurcation, and
become complex for e/k > 1/4.

Proof. The equilibrium points are the constants functions that are roots of
the right hand side of eq. (2.14). That is, the same points z, discussed in
the previous Section, but its stability must be analyzed studying the tran-
scendental eigenvalue problem for A [HVL93],

—kx? — e+ 2k(1 - ac*)a:*e*)‘T —A=0,
which is equivalent to
(ka2 — )7’ 4 2k(1 — 21T — AT = 0. (2.15)

Defining the values p = (—ka? — &)1, ¢ = 2k(1 — z4)z,7, and 2z = AT,
then the Theorem 1 in [Hay50] says that if 0 < ¢/k < 1/4 the stability of
xy is subjected to the conditions —e < min{1/7,0}, and 0 < ((tana;)? +
1)'/2 while the stability of - is subjected to —kzy < min{1/7, —2¢}, and
—2¢ < ((a1/7)? + (kz+)*)Y? where in these conditions a; denotes the root of
a = ptana such that 0 < a < 7.

In particular, the stability of the real point x, does not depend on the
delay 7 > 0 and the conditions of being stable or unstable are the same as for
the model without time lags. That is, zo = 0 is exponentially stable if, and
only if, —e < 0, and x4 is exponentially stable if, and only if, 2¢ — kx4 < 0.

We have only shown whether the equilibrium points g, x4 are stable or
not but we did not quantify their stability. However, we can apply Lemma 1
in [Hay50] to transform eq. (2.15) into s = ce®, where s = —(\ + kx4)7, and
c = —2e1ef+7 whenever 0 < ¢/k < 1/4. Since ¢ < 0 we conclude that the
stability of x4 is governed by a real eigenvalue such that x, is stable and = _
is unstable. In other words, the bifurcation at ¢/k = 1/4 is also a saddle—
node (s-n) bifurcation for the delayed model. The difference arises in how
strong is the (un)stability at (z_)z, depending on 7. When 0 < ¢/k < 1/4,
it is quantified by the real number A = —kzy — s/7 being s the real solution
of ?e* = s%,s < 0. After the bifurcation, i.e. e/k > 1/4, the stability of
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x4+ is determined by the eigenvalue with maximum real part of eq. (2.15).
According to Theorem 1.2 in [Nisl6] x4 are unstable regardless of the value
of 7> 0. O]

While Proposition 2.7 shows that the equilibria, and their stability co-
incide with those when 7 = 0, it does not say anything about how much
stable or unstable are those equilibria. Preliminary simulations shows that
there is a difference in the time needed before the extinction depending on
the delay 7. Indeed, for larger 7 more time is needed to extinct the specie as
Figure 2.6 shows. The dynamics near x = 1/2 after the saddle-node is slow
and it can be seen as a passage near a saddle equilibrium point with complex

coordinates. It depends on the size of the real part of the eigenvalue in the
saddle.

g=g.+1078 £=g,+10° e=g,+10"
1.0 1.0 1.0

BT
WSS S
S anon

SuNvm—no
S A
R I
S o
Comvn—=wmo
a A
WSS S
Sunon

SN m=wmo

0.8 0.8 0.8
extinction

without

~
~

T

0.6 | time lag 0.6

xt) x(t) b x(t)

0.4 0.4 0.4

0.6

extinction

with time lag

0.2 0.2 0.2

0 0 0
0 100000 200000 300000 400000 0 10000 20000 30000 40000 0 1000 2000 3000 2000

time time time

Figure 2.6. Extinction times near the saddle-node remnant for
different delay time in eq. (2.14). As large delay
is longer, more transient time is needed.

To study the dominant eigenvalue when x4 become complex, we must
study the characteristic equation in a neighbourhood of (z,7) = (1/2,0). Let
us fix a small value § > 0 so that ¢/k = (1 + 6)/4. Then z; = (1 + iV/9)/2
are complex numbers and eq. (2.13) in eq. (2.14) at the points 24 becomes

1+V6—(1+8)e ™ + 20k =0. (2.16)

The values (7,A) = (0,2¢ — kxy) verifies eq. (2.16). The derivative w.r.t.
A at that point is 2/k, which is always a non-zero value. Then there exists
a unique analytic mapping 7 — A(7;9) satisfying eq. (2.16) and an explicit
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computation leads to

2 3 2 2
Re A(7;0) =kg—k2(5z+é)7+k3(£+5—+é)7—

1 > "2 7))
256% 352 36 1
k<5+16+8 16)3!
1256° 20750 6% 1318 36+
K O BT ST o).
" (32 Ty T 3 2)4! +0(™)

These approximations leads to the following result proved in [GJS18].

PROPOSITION 2.8. In fact, Re A\(7;0) = kdg(7;0) for some analytic mapping
g with g(0;0) # 0.

Proof. Tt is enough to prove it in a neighbourhood of § = 0. As the mapping
A(7;0) is analytic, let us proceed by induction on the order of the derivative.
Indeed, ReA(0;6) = k§/2 and if now we assume that Re $2(7;d) can be

' ort
factorised by kd for all i < j, then Re $2(7;0) is the sum of a combination

of Re %(7’; d) with ¢ < j, and the jth partial derivative of eq. (2.16) with
respect 7 that always has kd as a factor. ]

| e 410" | e +10° | e +10°8

0
0.05
0.1
1
1.5
2

)

10

2.000000e—04
1.950620e—04
1.902566e—04
1.259111e—04
1.037753e—04
8.748623e—05
4.255738e—05
2.175476e—05

2.000000e—06
1.950639e—06
1.902602e—06
1.259258e—06
1.037899e—06
8.749986e—07
4.256552e—07
2.175921e—07

2.000000e—08
1.950642e—08
1.902602e—08
1.259259e—08
1.037901e—08
8.750000e—09
4.256559e—09
2.175926e—09

Table 2.2. The greatest real part of eigenvalues of x4+ when

ge=1/4and k = 1.

Table 2.2 shows the values of Re A\(d,7) for different values of ¢ and 7,
computed by solving numerically eq. (2.16), that is, integrate 7 units of time
the constant DDE, propagate the first variational equation and look for the
eigenvalue with larger real part.

Note the similarity between columns of this table, which is due to the
form of Re A(d, 7), Proposition 2.8. Moreover, as the derivative of Re A(, 7)
at 7 = 0 is negative, we have that the real part of the eigenvalue becomes
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smaller as 7 increases. Hence, we expect a longer transition time when a
small delay is added.

107 T T T
o4 =10
0/4=10"6 ——
106 5/4 =10~
L 107 .
&
—~ 104
N
10? \\
10% L h

107191072 107® 10771075 1075 10=* 1073
log,y Re Appag
Figure 2.7. The values Re A(d, 7) vs. the time spent near x =

1/2 for three values of 0: /4 = 107* (cyan), §/4 =
1079 (green), and §/4 = 1078 (violet).

By means of a numerical integration, we quantify the time that a traject-
ory is close to = = 1/2 for several values of 7. More concretely, we compute
the time needed to go through = = 1/2 as the difference between the first
time ¢ that verifies |2 (¢)| < 107" and |z(t) — 1/2| < 0.005, and the first one
that does not verify it. Figure 2.7 displays, in log scale, the relation between
the values Re A(d,7) and the time taken to go through = = 1/2. Note that
the plot shows the expected result for a linear system, in which the passage
time near a saddle is proportional to the inverse of the largest real part of
the eigenvalues of the saddle. As we are close to an equilibrium point, it is
clear that the linear part dominates the dynamics, and this implies a longer
transition through = = 1/2.

Hence, this justifies the results displayed in Figure 2.6 in the sense that
7 involves a longer delayed transition near to the saddle-node remnant. In
this figure three different values of ¢ are studied beyond, but close to the
bifurcation. Specifically, we plot, for each case, a time series for the model
given by the associated ODE in eq. (2.14) (violet trajectory 7 = 0), and
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six other trajectories applying increased time lags. For example, using ¢ =
g+ 1078 the time delay with 7 = 0 is t ~ 6 x 103, while for 7 = 10 this time
becomes t ~ 3.75 x 10°. The dependence between the time delays and the
distance to the bifurcation value for different time lags (including 7 = 0) is
displayed in Figure 2.8. Panel (a) displays the results in a linear-linear scale
while (b) shows the same results in a log-log plot. Note that the time lag
does not modify the inverse square-root law. Indeed, the increase of 7 > 0
in delaying times with respect to the model without time lags is linear. This
relation is represented in Figure 2.9, where the time differences for the model
with 7 = 0 is plotted as a function of 7.

(a) 18000 T T (b) 105
T=0 —— T=0 —=—0
T=1 —%— T=1 —a—
|_°’ T=2 —¥K— T=2 —=—
< =5 I—(D T=5 —»—
=10 —8— N 4| =10
2 12000 |- s 10 T=15 —=—
e 2
= ©
5 £
<! 3
o i=}
E 6000 ©
= £
'_
0 10°

Figure 2.8. Dependence of extinction times (7%) on the dis-
tance to bifurcation threshold, ¢ = ¢ —e.. (a)
Time to extinction, T, at increasing parameter ¢
above the bifurcation value ¢.. Notice that this
extinction time diverges near the bifurcation value
(results shown in a linear-linear plot). (b) Inverse
square-root law also found in the system with no
time lags (violet curve). Notice that the same
power-law is found by including time lags. Here
for all of the values of 7 analysed the time to ex-
tinction scales accordingly to T, ~ ¢ ~1/2 .
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Figure 2.9. Linear dependence between the time that traject-

ories spend in the slow passage near the saddle-
node remnant and the time lag 7. The points
indicate the difference between the delayed trans-
ition for the system with no time lag and with dif-
ferent time lags, computed as T.(7) — T.(7 = 0),
while the solid line is the linear regression. We dis-
play these results for three different values of the
bifurcation parameter € beyond the bifurcation
value ¢, plotting this difference between times at
increasing lag times, 7.



Chapter 3

Numerical methods for periodic and
quasi-periodic motions

ACK: This work is a collaboration with Prof. Angel Jorba and partially with
Prof. Ken Hayami at National Institute of Informatics (NII) of Japan.

3.1 Introduction

Once we have the numerical integrators which provide the first order flow, we
can use it to compute invariant objects by the use of the Poincaré mapping in
its delay version. In the constant case the phase space of a delay differential
equation (DDE) is an infinite space. Hence, from a numerical point of view,
the Poincaré needs to be discrete. As consequence, the size of the linear
system to solve in a Newton approach may be quite large. However, the
Poincaré mapping will be, in general, a compact operator, which implies
that its spectrum will be clustered and we can use iterative methods to solve
the linear system.

3.2 Iterative solver for linear systems

Iterative methods for the solution of linear systems of equations have become
famous in the last decades. In particular, the methods based on Krylov
projection. They include popular methods such as Conjugate Gradients,
MINRES, QMR, CGS, LSQR, Bi-CGSTAB, GMRES, ... [Saa03] We are go-
ing to focus on GMRES which has demonstrated to be quite robust for a
variety of problems. However, we tested some of the other ones, such as
Bi-CGSTAB, with worst performance and accuracy.

The classical iterative methods, such as Jacobi or Gauss-Seidel, require
to have access to specific parts of the matrix. If for instance, the matrix is

45
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generated by some recurrence expression, or it has a specific structure, the
classical iterative solvers are good in terms of performance and resources.
However, there are plenty of situations where to know a specific part of
the matrix is not feasible. This is the case for the kind of problems we
are interested; the computation of periodic orbits and tori for an arbitrary
constant DDE.

3.2.1 Krylov subspace

Let Ax = b be a linear of equations. Assume that we are able to solve a
simpler system of the form Kxy, = b and we take xy as an approximation
for &. The goal is to perform an iteration procedure. Hence, let z be the
correction of the original system so that

A(xg+ 2z) = b.

This leads to a new linear system Az = b — Axy where we can apply again
the same simpler solver to figure out the linear system

Kzy=0b—- Ax,.

Now the new approximation becomes x; = xy+2z(. The correction procedure
can be applied for x; again, leading to an iterative method of the form

Tiy1 =T; +z,=x; + Kﬁl(b — Aa:l) (31)

The basic idea behind this process is that we are considering the simpler
matrix K as a preconditioner of the original one. That is, the linear system
we are trying to solve is

(K~'A)z = K~'b.
By eq. (3.1), we can consider the iteration as
i1 = b+ ([ - Oé»LA>CL'Z =x; + 7 (32)

with r; = b — a; Ax; is the weighted residual. The latter expression contains
x; as well as r;, and it hinders its study. Let us focus on the residuals, which
should be small in case of that the iteration tends to the solution.

b— a1 Az = b— a1 Az — i Ary

whose expression leads to

i+1
Ty = (I — Oéi+1A)T7; = H(I — Osz)’f‘() = R+1(A, Oi)’l"o.

j=1
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P, ;1 is a polynomial of degree i + 1 that verifies P;1(0) = 1. If we want to
have guaranteed the convergence for all initial residual r(, we should require
|l —a;A|l <1 for all j.

Going back to eq. (3.2), we have

i J
Tip1 =Tog+ - --+T; =7+ Z H(I — OzkA)’l"o € /Ci—H(A; ’I"()) (33)

j=1k=1

where, by definition, K*1(A;ry) = span{ry, Arg,..., Are} is a (i + 1)-
dimensional vectorial space called Krylov subspace. In general, we are going
to consider a; = 1 for all j. But the weighted residual with some extra con-
siderations provides the first machinery to consider rational Krylov subspace
[BG15]. However, it seems to require a more computational effort and to
make some decisions in the implementation such as the choice of the poles
which may strongly depend on the equation to study.

Due to eq. (3.3), all the vectors x; lives in a Krylov subspace with the same
base vector ro. We want to generate a projection to these Krylov subspaces
and solve the projected linear system, which is going to be an approximation
of the real solution. There are different kind of projections that leads to
different iterative solvers such as FOM, GMRES, MINRES, CG, ... [Saa03].

Ritz-Galerkin: Find x;, so that v, L @y + KF(A; 7).

Petrov-Galerkin: Find x; so that r, L xy + £ with £ a k-dimensional
space.

Minimum norm residual: Find xj so that ||r||2 is minimal over the space

xo + KF(A;m).

Minimum norm error: Find x; in AT (zo+ K*(AT; 7)) so that ||z, —x||2
is minimal.

The Generalised Minimum RESidual, GMRES, consists in the minimisa-
tion of the residual (in Euclidian norm) over the space g + KF(A4;7rq). It
generates, at each iteration, a new unit vector orthogonal to the previous
ones and join with the previous generated vector give a base for the new
Krylov subspace.

3.2.2 The GMRES and the Arnoldi process

The Arnoldi process provides a systematic orthonormal basis of the Krylov
subspace in such a way that the basis increases the dimension at each new
iteration. Algorithm 3.1 summarises all this process.
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ALGORITHM 3.1 (Arnoldi process).

*x Notation: To solve an n-by-n linear system Ax = b. Let V; be an
n-by-k matrix and Hy,1x be a (k + 1)-by-k matrix such that

(a) AV = Vig1 Hyy1p-

(b) Vi1 = [Vk ka] and Vj, = [vl 'vk] is an n-by-k matrix.
VIV, = I but, in general, V, VI # I,.

H, = [Ik O] Hi 1, and Hy, is a k-by-k upper Hessenberg.

)
()
(d)

(e) Hy = VI AV}, but, in general, V, H,V,I # A.
* Input: 1<j <k, Vjand Hjq ;.

* Qutput: V) and Hjig 1.

1. If j =1, then vy «— vy/||v4].

2. vj «— Av;.

3. 1 [Jvjall-

4. hj < Viv,.

5. V41 < vjp1 — Vjh;.

6. 72— [lvjl]-

7. If , <0.7177, then

7.1. h,j+1 <« ‘/ijjJrl.
7.2. Vjt1 < Vj41 — V;'hj-i-l-

73. hj<—hj+hj.
8. 1 — |lvjall-
9. If hjy1,; = 0, return.
10. vj41 < vj41/hjt1,-
Algorithm 3.1 needs some remarks to be pointed out:

e The initial vector v; should be the residual ry = b — Az except when
we consider a restarting iterative method.
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e The item 7 tries to prevent the loss of orthogonality due to round-off
as it has been suggested in, for instance, [DGKS76].

e All the operations that requires the use of the matrix A are just matrix
times a vector and it can be obtained by the use of jet transport.

e The columns of the matrix V), contains an orthonormal basis of the

Krylov KF1(A; vy).
e In case of exit by item 9, the solution is exactly in K7(A4;vy).

The Arnoldi process provides an orthonormal basis of the Krylov subspace
and a factorisation of the matrix A. In order to minimise the residual vector,
we can use such a factorisation as follows:

1b— Az|[; = [|b — A(zo + Viy)|2

= ||ro — AViyl|2
= |10 = Vir1 He1,1Y |2
= |"/;cj-;-l(’|r0‘|v1 — Vi1 Hig1,69) |2 (3.4)

= [lllroller = Her1yl[2-

where in eq. (3.4) we use that a left orthonormal matrices are invariant under
the Euclidian norm. Hence,

inf |b — Axl||; = inf ||||ro|ler — Hi+1.4Y]2- (3.5)
) yeRk

zexo+K(A;ro

The matrix H;, = [I k O] Hj, 11 is upper Hessenberg and a new column and
row are added in each new iteration independently of the previous values of
the matrix. Therefore, just a Givens rotation of the new information and a
forward substitution are needed to compute the infimum in eq. (3.5).

3.2.3 Restarting GMRES

GMRES always convergence and, in fact, the sequence of residual (r;) is
always decreasing. But while the maximum number of iterations are upper
bounded by the dimension of A, let us say n. Typically n is really large and
we do not want to reach a lot of iterations. Because of that, the restarted
GMRES, denoted by GMRES(m), consists in perform m iterations and re-
start the process by an initial vector v; which is a linear combination of the
previous ones. When the restarted GMRES is applied, the convergence is
not guaranteed and the residual may stagnate.
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3.2.4 Preconditioners

It has been shown that empirically the GMRES and many other iterative
solvers, convergence faster if the spectrum of A is clustered and A is well-
conditioned. The preconditioning process consists in providing a matrix M
such that it approximates the matrix A and it is easy to solve linear systems.
There are two kind of preconditioning;:

Left: Solve M~'Ax = M~'b whose solution is also of Ax = b.

Right: Solve AM 'y = b whose solution provides the solution of Az = b
by & = M~ 1y.

3.2.5 Iterative solvers in recurrence solutions

A direct solver, such as those based in LU or QR, has no the features to have
control of the residual or error values to solve the linear system accordingly
to a prescribed tolerance. But iterative solvers have, in general, that feature
because at each step they try to provide a better approximation of the linear
system of equations.

In a recurrence method, such as Newton method or fixed point method,
a finite sequence of linear systems must be solved. Not all of these linear
system require the same accuracy for the recurrence method. That needs a
specific stopping criterion. For instance, in a Newton method, we can try to
force the quadratic convergence by the stopping criterion

b — Ay s < max(tol /2, |b]3102),

being tol the Newton tolerance.

3.3 Periodic motions in constant delay differ-
ential equations

The theory of existence and uniqueness is well established for IVP-DDE, like
eq. (2.2), with constant delays. A periodic orbit in the DDE setting is an
initial condition u defined in [—1,0] so that the solution of the IVP-DDE
through u verifies that after a finite time bigger than 1, it returns exactly to
u. That is, there is t* > 1 such that z(0,u)y = u.

The mapping, denoted by P, that takes an initial condition in [—1,0]
and provides its integration up to a time bigger than 1 has been proved to be
compact [HVL93]. Such those mappings are commonly called time-maps or
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Poincaré maps. The Theorem 2.1 tells us that locally to the periodic orbits
the splicing condition is going to be satisfied.

As in the ODE case, we can distinguish two situations. When a temporal
section is involved in the definition of P, or when it involves a spatial section.
We have already proved that the jet transport applies to the delay integrators,
and in particular to the interpolation steps. Hence there are only few things
that make a difference w.r.t. the ODE case.

Firstly, the condition to ensure the fixed point in the Poincaré map must
be done in the space of mappings defined in [—1,0]. That implies that a
numerical simulation will need a discretisation of those mappings and the
equality will be imposed in terms of their table of values. In other words, if

(s5,u;)!—4 is a table of values of the initial condition, and v = P(u) so that

(s5,v4)"4 is its table of values (in the same nodes s;), then we require u; = v,
for all 0 < i < n. As consequence the number of unknowns will be increased
by a factor n.

Secondly, the fact that the fixed point in the time-map must done between
table of values will generate an extra effort (specially for the spatial section)
to adjust the tables in the same nodes.

Finally, the linear a approximation of the time-map will also be compact
so its spectrum is going to be clustered and iterative solvers to generate a
matrix-free Newton scheme will improve the performance and it is going to
be the problem numerically feasible.

3.3.1 Poincaré sections

As in the ODE there are essentially two kind of Poincaré sections. The
temporal ones and the spatial ones. Each of those need a special attention.

Temporal section

This is the standard section for systems having a dependency on time that
is periodic with a known period, let us say p. Then, periodic orbits must
have a period t* multiple of p. In such a case, the Poincaré section is given
by t =0 (mod p) and the Poincaré mapping consists in the time-p map.

Depending on the interpolation strategy of the DDE integrator, it may
happen that one needs to integrate further more to ensure to get enough
information to interpolate at the nodes required for the time-p map.

In terms of the jet transport, there is no any extra step to make into
account. Indeed, because the interpolation applies to jet transport and the
DDE integrators are based on the ODE ones which has been proved that
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they works correctly with the jet transport. If the section is temporal, the
time-p map allows us to get the spatial jet during the integration.

Spatial section

This is the situation when the period is not known. A smooth manifold
will be considered as a section, for instance continuous affine mappings or
even just fixing a coordinate. These manifolds will be defined in the set of
mappings defined in [—1,0] and assuming extra hypothesis, one proves that
the Poincaré mapping defining in such manifolds is compact [SZ18].

As in the ODE the process is as follows:

1. Integrate the IVP until the number of crossing to the spatial section
have been reached.

2. Look for the time (after the crossings) in such a way the orbit lie in
the section.

3. Fit function defined in [—1, 0] in the same nodes as the initial condition.

4. In case of jet transport, project the values in the section as well.

3.3.2 Stability, continuation and bifurcation detection

The eigenvalues of the Poincaré map says information about the stability
of the periodic orbit and allows to perform a continuation and bifurcation
detection in a similar manner as it has been done in ODE context like those
explained in [1J90].

Since a matrix-free Newton method is available, the study of the stability
can be matrix-free as well. Among all the packages to compute eigenvalues of
a matrix one of the most commonly used is the ARnoldi PACKage [LSY98].
It allows to solve large-scale Hermitian, non-Hermitian, standard or gener-
alised eigenvalues problems computing a few, eigenvalues with user-specified
features. Due to the compactness of the operator, only the ones with higher
modulus are needed to study the stability.

At the same time it works also for bifurcation detection since, in general,
a finite number of eigenvalues are needed to detect them.

3.3.3 Numerical experiments

Spatial section

The next example illustrates that the method is independent of the model if
an integrator compatible with jet transport is available. In particular, it can
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be applied for several delays as well. Let us consider the equation studied
by [Nus78] and more recently in [KL12] where the existence of the periodic
orbit has been proved for some values of the parameters.

Cé—gtj(t) = —(Alx(t —71) + Aozt — 1) + A3z (t — 7'3))(1 + z(t)) (3.6)

Let us take the values Ay = Ay = 2.5, A3 = 0.25, 71 = 1.65, 7, = 0.35, and
73 = 1 where the existence of a periodic orbit is guaranteed.

The initial condition u at time ¢, = 0 is the integration of the orbit
through cos(t) at ¢ty up to a final time 4. The initial condition is discretesed
in a table of values (s;, ui)?ial. The spatial section consists in fixing the last
coordinate after four crosses. The Hairer integrator RETARD has been used
with a relative and absolute tolerance 10714, A speed-up factor of 5.5 of the
matrix-free version w.r.t. the full matrix.

—_

ot
"“""‘HMN
e

\\/\ / |
\\
—0.5 \ W

Figure 3.1. Stable periodic orbit of eq. (3.6) with A\; = Ay =
95, A = 0.25, 71 = 1.65, 75 = 0.35 and 75 = 1.
The final period is around 3.5894.
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Spatial section and continuation
Let us consider the DDE

dx 1+a(t—1)2
2 (t) = —ax(t - 1)%. (3.7)
It has an equilibrium point zy = 0. It has a Hopf bifurcation for o = /2,
[ILELR97]. That means that a family of periodic orbits rise nearby to that
bifurcations. Since these periodic orbits have an unknown period, a temporal
section is unfeasible.

Let X be the spacial section defined by

Y ={ueC([-1,0],R): u(—1) = 0}

Taking an initial guess u € X near to the equilibrium point and with « close
to m/2, let us say, o = 1.57. The matrix-free Newton approach allows to
compute a period 4 periodic orbit, Figure 3.2, via an integrator based on a
RKT78F method.

Now, the standard pseudo-arc-length continuation method w.r.t. « leads
to a continuation method of the initial periodic orbit previously computed.
Notice that in this scheme the derivatives obtained by jet transport must be
project to the section but not the part corresponding to the new equation that
refers to the condition for a. Figure 3.3 shows the result of the continuation
and the branch detection of several bifurcations.

Temporal section and continuation

Let us consider a periodic perturbation of period 27 /7 of a DDE.

dx 1+t —1)>

TE@) = —ax(t — 1)1 1) + e(sin(7t) + cos(7t)). (3.8)

It has a periodic orbit of period 27/7 close to € = 0 and = = 0 which can be
continuated as Figures 3.4 and 3.5 illustrate.

3.4 Quasi-periodic motions in constant delay
differential equations

Let P be a smooth discrete system defined in the T™ x C' with C' denotes the
space of continuous mappings in [—1,0]. A quasi-periodic motion associated
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Figure 3.2. Periodic orbit close to the Hopf bifurcation (o =
1.57) of the equilibrium z¢ = 0 of eq. (3.7).

to this system with a Q-linearly independent vector w in T™ is a periodic
mapping K : T™ — (' verifying the invariance equation

PoK =T,0K, (3.9)

where T}, is a linear operator defined in C' by T,,(K(0)) = K(0 + w). In fact,
it is a linear homeomorphism with inverse T__,.

The stability of the invariant object associated to K, that is an m-
dimensional torus, is given by the study of the spectrum T, o DP o K.
It always has 1 as eigenvalue and if A is an eigenvalue, then A exp(27ikw) is
also an eigenvalue for all k € Z, see [Jor01].

In the case of constant delay differential equation we are going to focus on
the case m = 1. The discrete system P is obtained by the use of the Poincaré
mapping (via temporal or spatial section). Since the Poincaré mapping for
DDE is a compact mapping, its differential is clustered and the operator
T_,0DPo K will also have a clustered spectrum in circles around the origin.
There are three situations where the quasi-motions appears:

1. Quasi-perturbation of an equilibrium point.
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Figure 3.3. Continuation w.r.t. a of eq. (3.7).

2. Non-resonant periodic perturbation of a periodic orbit.
3. Neimark-Sacker bifurcation.

In each of the different case, slightly modifications in the methods are re-
quired. To explain each of these changes, let us start from the easiest one to
the hardest.

3.4.1 Quasi-perturbation of an equilibrium point

Let us consider a smooth constant DDE like

dz
—(8) = Fa(t),2(t = 1),6:(1), 02(0), €),

(3.10)
0:;(t) = 6 +wit, i=1,2

where f depends periodically on 6;(¢) and 65(t) for 0 < ¢ « 1, 8 6 ¢
[0,27), wy/we is an irrational number and it has a zero for € = 0. Then by

fixing the section «9&0) = 0, the return map P is defined as follows: Given
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Figure 3.4. Continuation w.r.t. « in eq. (3.8).

an initial condition u defined in [—1,0] and @ in [0,27) we apply the time
27 /wy map over the data (x0,9§0),0§0)) = (u,0,0). Thus, (v,0 + w,1) with

w = 27w /wsy is obtained and we can write all the process simply by

T =P(0, ),
0=0+uw.

Matrix-free Newton approach
The function to find a zero K is
F(K(0)) = P(§,K(0)) —T,(K(0)), for all 6. (3.11)

To apply the Newton method to the equation eq. (3.11) we need to decide
the computer representation of the unknown to be able to operate with the
differential matrix and to solve the linear system.

We are going to use the discrete Fourier transform to represent the un-
known K. That is an extra layer of discretisation; the first one is for the
table of values in the segment [—1,0] and the second one, for each of those
values, we associate a discrete Fourier series.
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Figure 3.5. Continuation w.r.t. ¢ in eq. (3.8).

The use of discrete Fourier series admits two representations; one as a
mesh points and the other one as Fourier coefficients. Depending on the
operation to perform is better to have the object in one or the other repres-
entation. For instance, in eq. (3.11) is easier to perform the evaluation by P
with K as a mesh points because, in general, the DDE is expressed in points.
On the other hand, the shift by w, that is the evaluation of T}, is easy to
have it in Fourier coefficients.

The two different representations are just a change of basis, i.e. a linear
isomorphism. The Fast Fourier Transform is a well-known algorithm to apply
that linear mapping (or its inverse), with a computational complexity in
©(nlogn). Therefore the unknowns will be either in values or in coefficients.
That gives 4 versions of eq. (3.11), each of them with an equivalent solution
(just changing the basis). Indeed, let us assume that P is evaluated in
points, T,, in coefficients and FFT means to take coefficients and to give its
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representation in points. Then,

Fyp=P—FFToT, o FFT™' (
Fpoc = FFT 'oP —T,0FFT! (from points to coeffs.
Fep = PoFFT —FFT T, (

Fo.=FFT 'oPoFFT -T, (from coeffs. to coeffs.).

from points to points

);
)

’ 3.12
from coeffs. to points), ( )

Notice that their differentials are just affected by matrix multiplications, and
the different versions differs in the condition number. Intuitively, the version
c2c may give a differential matrix with worst condition number because it
involves values possibly smaller due to the decaying Fourier coefficients in
smooth mappings. In any of the cases, we are able to arrive to a matrix-free
Newton approach using the jet transport in P since all the other mappings
involved in F' are linear mappings w.r.t. the representation of the unknown
K.

It is important to remark that the study of the stability must be done in
the same basis, that is, the one for Fpy, or Fio..

Preconditioning

A discrete system like eq. (3.11) coming from a DDE has the operator 7", o
DF o K(0) spectrum in circles centred at the origin and accumulated to
it. Therefore we are going to consider the following left preconditioners to
eq. (3.12) for a restarted GMRES linear iterative solver

My, = FFToT,, 0o FFT™!, M, = FFT oT,,
MPQC = TUJ © FFT_17 Mc2c = Tw-

They lead respectively to
My, = FFToT , o FFT 'oP — I,

p2p
M 5iFpe = FFToT_, o FFT ' oP — 1, (3.13)
Mg Fuop =T, o FFT 'oP o FFT —1, '
M Fo. =T ,oFFT 'oPoFFT —1I,
whose differentials are the same just changing P by D, P.
3.4.2 Periodic perturbation of a periodic orbit
Let us consider the constant DDE
dx
—(t) = f(x(t),x(t —1),04(1), ¢),
L) = F((),2lt = 1), 6:(0),) -

Bs(t) = 05 + wat,
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where f depends periodically on 65(t) for 0 < ¢ « 1, 950) € [0,27), it has a
(known) periodic orbit with period w; for ¢ = 0 and w;/w, is an irrational
number.

Assume that the known periodic orbit for ¢ = 0 has frequency w; and
it has been obtained by a Poincaré mapping F, via a temporal or a spatial
section ¥y. To give a discrete system for the invariance equation like eq. (3.9)
be distinguish two cases for 0 < ¢ « 1.

Temporal section

In this case the discrete system is exactly like in eq. (3.10), P is given by the
27 /wy integration of eq. (3.14). But the initial guess for the Newton will be
the known periodic orbit for e = 0 instead of the equilibrium point.

Spatial section

Now the frequency w is also an unknown. So there is the freedom to impose an
extra equation to ensure the convergence of the invariance equation eq. (3.9).
That extra equation must be a constraint that it has to be able to be satisfied.
We know that for ¢ = 0, Fy: X9 — > has a fixed point in the space of
function defined in [—1,0]. Then the unknowns K and w are obtained finding
a zero of the mapping

where, P is defined by similarly the 27/wsy integration of eq. (3.14) with
0 < e « 1. The condition for w is given by g which can be, for instance, a
condition the K(0) € .

The differential matrix of eq. (3.15) has the form

_ m = Nc - Nd 1 _
orP oT.,
o — Lw | | =] ||™
DF =
dg dg 1
0K (0) Ow

with n. being the mesh size for # and n, being the mesh size for the interval
[—1,0]. Notice that by the use of jet transport in the block m-by-m is still
feasible to consider a matrix-free Newton method and the preconditioning of
section 3.4.1 in that sub-block will work as well.
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3.4.3 Experiments

In order to quantify how good are the preconditioning of the matrix-free New-
ton method, let us a consider a quasi-periodic time-dependent perturbation
of a constant DDE like in eq. (3.10)

de, . ot —1)2+1 £ L
E@) = —3.6z(t - 1)m(t -1t +1 * sin(6;) + sin(6y) + 3’ =10
oy . db,. 5-1
AL e T

We use the discrete system eq. (3.11) and the 4 different expressions to find
the zeros of eq. (3.12). Moreover, we want to show if the preconditioning
versions eq. (3.13) give a better performance. To this end, tables 3.1 to 3.3
reports speed-factor between the preconditioning matrix-free iterative solver,
and a direct solver for different number of Fourier coefficients. This means
the quotient of the CPU time between the an LU solver of the linear systems
and the preconditioned GMRES. Also the speed-factor between the precondi-
tioned and the non-preconditioned solvers. In table 3.2 shows the CPU-time
of the direct and preconditioned linear solvers.

direct /precond noprecond /precond
nc‘ M H p2p ‘ p2c ‘ c2p ‘ c2c H p2p ‘ p2c ‘ c2p ‘ c2c
64| 1088 || 1.22 | 1.08 10.94|0.92| - — | 13.19| -

128 | 2176|192 127|137 |1.01| 1.14 | 3.74 | 1.87 | 4.49
256 | 43521212 ]1.45]1.47]1.08(0.96 |3.20| 2.00 | 5.15
512 | 4352399271 1.11|1.14 |1 0.96 | 2.53 | 2.55 | 6.16
1024 | 17408 || 4.54 | 3.32 | 1.72 | 1.26 || 1.40 | 2.50 | 1.77 | 16.80

Table 3.1. Speed factor with number of Fourier coefficients nc
and matrix size M.

3D visualisation

Inspired in the hyper-cycle model [GJS18] and references therein let us con-
sider the eq. (3.16).

o(t) = 107 2(t)y(t — 1)/1 — z(t)/1 + 103 sin(6s),

y(t) = 107 *2(t)z(t — 1)/2 — y(t)/2 + 1073 cos(6s),

() = 107y (H)a(t — 1) /3 — y(t)/3 + 10 3(sin(6,) + sin(26,)),  (3.16)
V5 -1

01(15) =W = 1, eg(t) = Wy = B
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direct precond
nc‘ MH p2p ‘ p2c ‘ c2p ‘ c2c H p2p ‘ p2c ‘ c2p ‘ c2c

64| 1088 | 0.31 0.32 0.36 0.36 0.31 | 0.20 | 0.39 | 0.25
128 | 2176 || 1.84 1.37 2.06 1.52 1.10 | 0.66 | 1.50 | 1.00
256 | 4352 7.80 5.82 8.73 6.52 | 4.22 | 2.29 | 5.99 | 3.98
512 | 4352 | 32.28 | 24.09 | 36.48 | 27.09 | 16.41 | 8.71 | 23.93 | 16.12

1024 | 17408 || 150.25 | 112.31 | 163.67 | 124.54 || 66.15 | 33.72 | 95.98 | 72.41

Table 3.2. CPU-time in minutes number of Fourier coeffi-
cients nc and matrix size M.

direct noprecond /precond
nc ‘ M H p2p ‘ p2c ‘ c2p ‘ c2c H p2p ‘ p2c ‘ c2p ‘ c2c

64] 1088] 2 | 2 | 2 | 2 [3/3]3/2[3/3]3/2
128 2176 | 3 | 2 | 3 | 2 || 3/3|3/2(3/3]3/2
256 | 4352 3 | 2 | 3 | 2 | 3/3|3/2|3/3|3/2
512| 4352 3 | 2 | 3 | 2 | 3/3|3/2|4/3|3/)2
1024 [ 17408 || 3 | 2 | 3 | 2 | 4/3|3/2|4/33/2

Table 3.3. Number of Newton iterations number of Fourier
coeflicients nc and matrix size M.

It has a torus nearby the equilibrium point. Once K: T — C([—1,0],R?)
has been computed imposing the invariance equation of the discrete system
like eq. (3.9), we can go back to the continuous DDE and represent the
invariant object 7' defined in T2. We want to represent 7" in a mesh, that is,
T(0:,6}) € R? with 0! = 27i/ny, 0 < i < ny, and 6} = 27j/ny, 0 < j < ny.
We have obtained T'(6%,0) = K (6)(0). If we follow the flow ¢ units of time,
the angles 0, and 6y, then we obtain T'(0% + wyt, wot). Therefore, solving the
linear system for (¢, )
0 + wit = o,

9‘; = u}gt.

We can get the initial condition K'(¢) and solve the IVP-DDE of eq. (3.16)
integrating ¢ units of time, and obtaining T'(6%, 6?).
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Figure 3.6. (x,y, z) torus visualisation of eq. (3.16).
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Chapter 4

State-dependent perturbation of an ODE

ACK: This work is a collaboration with Ms. Jiaqi Yang and Prof. Rafael de
la Llave during my stays at School of Mathematics in Georgia Institute of

Technology, Atlanta GA, USA.

4.1 Introduction

We are going to consider simple models, that is planar Ordinary Differential
Equations (ODEs) and we will assume the existence of a limit cycle. We are
going to show that all the solutions present in the undelayed model persists
when we add a state-dependent delayed perturbation.

We notice that adding that kind of perturbation, which is a very singular
one, the nature of the differential equations changes; the unperturbed ODE
is always finite dimensional while the perturbed one is always an infinite
dimensional problem since it becomes a State-dependent Delay Differential
Equation (SDDE).

Such kind of models appear in several concrete problems in natural science
such as circuits, neuroscience, and population dynamics. However, we still
have to look into it more carefully.

The main idea of this chapter is that we bypass the general theory of
existence for solutions of the SDDE by establishing the existence of some
finite dimensional families of solutions, which resemble the solutions of the
original system.

Although we are not going to give details here, preliminary results show
that the method explained here can be extended to higher dimensional prob-
lems with a more careful study.

65
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4.1.1 Overview and comments on the results

In order to summarise the main results of this chapter, let us give an informal
overview of the method and let us provide some useful comments.

It is known that in a neighbourhood of a limit cycle of a planar ODE, let
us say # = X (z), we can find a mapping K: T x [—1,1] — R? a frequency
wp # 0, and a speed rate \g in such a way that for all § and s, the function

z(t) = K(0 + wot, se™?) (4.1)

solves the ODE. The fact that All the solution of the form eq. (4.1) are
solutions of the original ODE is equivalent to the solve a functional equation
(also called invariance equation) for K, wy, and Ao. Efficient methods to
study the resulting functional equation were presented in detail in [HdIL13].

After a state-dependent perturbation of the initial planar ODE, we impose
solution of the SDDE are of the form

z(t) = K o W (0 + wt, se™). (4.2)

It leads to a functional equation for W, w, and A, which is also called invari-
ance equation.

The goal will so be to solve such an invariance equation using techniques
of functional analysis to get the unknown embedding W, the unknown new
frequency w and the unknown new speed rate \. Initially the unknowns are
expected to be close to the identity, to wy and to Ay respectively.

The equation is rather degenerate and its treatment needs several steps.
Firstly, we will express W (0, s) as an asymptotic expansion in power of s
to a finite order, and then, we will formulate a fixed point problem for the
remainder. Some technical problems are going to arise, such as, the match-
ing between the domains of definitions. Nevertheless, similar problems have
appeared in the theory of centre manifolds [Car81].

The main results of the chapter is Theorem 4.12 which establish that if
the perturbation is small enough and given an approximate solution of the in-
variance equations with some non-degeneracy conditions, then there is a true
solution nearby. Sometimes this kind of Theorem formulation is referred as
a posteriori format and it allows to provide an approximate enough solution
to validate the real solution even if it has been obtained by a non-rigorous
method. To this end, we are going to specify a numerical algorithm in order
to compute the perturbed limit cycles and its 2D manifold.

It is important to point out that by solving the invariance equation, one
actually obtains a parametrisation of the limit cycle and its isochrons (the
2D manifold of the limit cycle for the unperturbed case). In other words,
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K oW (#,0) parametrises the limit cycle and for a fixed 6, K o W (0, s) para-
metrises the manifold of the point K o W (#,0) on the limit cycle.

We remark the existence of previous related work [HVL93, chapter 10] to
the persistence of limit cycles but they were studied with a different methods.
They have also studied stable manifolds of periodic orbits of SDDEs, however,
what they obtained is an infinite dimensional manifold, while we study the
submanifold of such a infinite dimensional manifolds which corresponds to
the slowest contraction rate. We did not find any reference describing the
computation of that stable submanifold, whereas the unstable (and finite
dimensional) manifold has been occasionally studied [GMJ17].

The notions of approximate solutions and that of solutions close to the
approximate ones, requires to specify a norm in the space of functions. In
works like [HdIL13], it was natural to specify analytic norms. However, we are
going to use finitely differentiable functions due to the fact that we conjecture
that the solutions we are producing are not more than finitely differentiable
when we have a non-constant SDDE.

A rather subtle point is that we do not obtain local uniqueness of the
solution. The reason is that the proof for the remainder of the invariance
equation involves cutting off the perturbation and the solution may depend
on the cut-off function. Both the finite regularity and the lack of uniqueness
due to the introduction of cut-off functions are reminiscent to the effects
found in the study of centre manifolds [Car81, LanT73].

4.2 Unperturbed case

Following the results in [HdIL13] we establish and fix the notation for the
unperturbed case which is going to use later on for the SDDE case. Let so
be an analytic planar ODE 2 = X(z) having a hyperbolic limit cycle. In
other words, if ®(¢; () denotes its flow of the through the initial condition
7o in R?, then we are assuming that there is Ky: T — R?, and a frequency
wp # 0 such that ®(t; Ky(0)) = Ko(wot). Furthermore K = Ky(T) is an
exponentially attracting set with speed rate Ay, that is,

d(®(t;y), K) < Cle ot

for some C' > 0 and y close enough to /.

Under the previous assumptions it was proved in [HdIL13, Theorem 3.2]
the existence of an analytic local diffeomorphism K: T x [—1,1] — R? such
that

(wWolp + Aos0s)K(0,s) = X o K(0,5). (4.3)
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They provided an effective method to compute such frequency wy, speed rate
Ao, and K.

4.2.1 Numerical computation

The next Algorithm 4.1 from [HdAIL13] reproduces the steps to get, by a
quasi-Newton method with still a quadratic convergence, the frequency wy,
the contraction rate A\g and the analytic parametrisation K: Tx[—1,1] — R?
of an arbitrary analytic planar ODE with a hyperbolic limit cycle. Since the
resulting parametrisation K will be locally analytic, we can express K as
a power series of the form K(,s) = >, K;(0)s’ and then look for all the
coefficients in s so that the invariance equation, eq. (4.3), is satisfied.

ALGORITHM 4.1. Quasi-Newton method

* Input: T = X(l’) in R2, K(@, 8) = Ko(e) + K1(9>b08, Wo > 0, )\0 eR
and scaling factor by > 0.

* Qutput: K(6,s) = Z;':Ol K;(0)(bys)’, wy and Ag such that || E| « 1.
1. B X oK — (wylp + Nosds) K.

2. Solve DKE = E and denote E = (E\, Es).

3. 0« §) E1(0,0)df and n < §, 8,E(6,0) df.

4. By «— E, — 0 and Fy «— Fy —1s.

5. Solve (wydy + A\gsds)Wy = Ej imposing Sé W1(6,0)do = 0.

6. Solve (wody + Aosds)Wa — AgWa = By imposing §, 0,5 (6, 0) df = 0.
7. W = (W, Ws).

8. Update: K « K + DKW, wy <« wo + o and A\g < Ao + 7.

9. Iterate (1) until convergence in K, w and A. Then undo the scaling by.
Algorithm 4.1 requires some practical remarks to be pointed out:

i. Initial quess. Ky: T — R2 will be the periodic orbit of the ODE with
frequency wy. It can be obtained by a Poincaré section method or any
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other standard technique. An approximation for K;: T — R2 and )
can be obtained when one solves the variational equation

DX o Ko(0)U(0) = WO%U@,

U(0) = Ids.

Hence if (e*/“0 K(0)) is the eigenpair of U(1) such that \g < 0, then
K1 (0) = U(0) K, (0)e o0/,

Stopping criterion. As any Newton method a possible stopping could
be when either || E| or max{||DKW/||,|o|, |n|} is smaller than a given
tolerance.

Uniqueness. If K(0, s) is a solution, then K (6+6y, bys) is also a solution
for fixed 6y, by € R. The value of 6y can be chosen in such a way that
supy || Ko(6+6p)|| is reached and then give Ky(6+6y) as part of the input.
The value by is used as a scaling factor to be sure that the mappings
K are comparable. Heuristically a good chosen of by can be done as
follows: 1°") Run the simulation with by = béo) the inverse of a power of
the radix of the arithmetic and a not too small tolerance to get a first
approximation of K(6,s). 2") Take by ~ 0.90" || Kp_1[l/"™ " and
run it again with a smaller tolerance. Here, ||-||, is computed through
a mesh for § and 0.9 is a security factor.

Convergence. It has been proved in [HdIL13] that even to be a quasi-
Newton method, it still has quadratic convergence.

To solve the namely cohomological equations (5) and (6) in Algorithm 4.1
strongly depends on the numerical representation of periodic functions. In
[HAIL13, §4.3.1] there are two results to solve them, whose integral version is
not efficient from a numerical point of view but useful for theoretical purpose.
For completeness, let us quote the result without proof.

PROPOSITION 4.2 (Fourier version, [HAIL13]). Let E(6,s) = 3, ; Eje*™*s/.

o [f Eyg = 0, then (wdy + Asds)u(f,s) = E(0,s) has solution u(f,s) =

Dk Uik ™) and

« otherwise.

Ejy, oy
wjp, = {m if (4, k) # (0,0)

for all real oc. Imposing Sé u(6,0)dd = 0, then a = 0.
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o [fEg =0, then (wdp+ Asds — Nu(0,s) = E(0,s) has solution u(f,s) =
Dk ure™ T and

Uip = )\(j—l)j-k%riwk Zf (]a k) 7 (1?())
! leY otherwise.

for all real ov. Imposing S(l) 0su(0,0)df = 0, then o = 0.

PROPOSITION 4.3 (Integral version, [HIL13]). Let E(0,s) = 3, E;(0)s’ and
Aw < 0.

o If Sé Ey(0)df = 0, then (wdy + Asds)u(8,s) = E(0,s) has solution

u(f,s) =a+ 1 J‘) Ey(o)do — foo (E;(0 + wt, se™) — Ey(0 + wt)) dt

w Jo 0
or, equivalently,
1 (? 1 S 1 '
u(,s) = a+ —J Ey(o)do — — Z —J E;(0 + 2)eVe dz

_ oA w
w Jo wj>11 e 0

for all real . Imposing Sé u(0,0)d = 0, then o = %Sé OFEy(0)dh. And
it is the only solution in C°(T x [—1,1]).

o If Sé E1(0)df = 0, then (wdp + Asds — Nu(0, s) = E(0, s) has solution

0

(), s) — F B0 — wt) dt + [a L1 f Ei(0) da]s

0 w Jo

- J e (B0 +wt, se™) — By(0 + wt) — seMEy(0 + wt)) dt
0

or, equivalently,

1 ' 2A/w 1 ’
u(@,s) :mL E0(0—2)6 / dz + |:OZ+;J;) El(a)da]s
1 Z 8—] 1 E;(6 + 2)e*i=DMw gz
w1 —elU-DNw 7
j=2

for all real . Imposing Sé Osu(6,0)df = 0, then o = %S(l) OF,(0)do.
And it is the only solution in C*(T x [—1,1]).

The solution of the linear system in item 2 of Algorithm 4.1 can be done
by power matching.
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LEMMA 4.4. Let A(0,s)x(0,s) = b(0,s) be a linear system. Assume that it is

equivalent to
(Z Ak(G)s’“) Dl @i(0)s" = > bi(6)s".

k=0 k=0 k=0

Then x(0) is obtained recurrently by solving the linear system

Ao(0)z1(8) = br(0) — 3 A0z, ().

j=1

4.3 Formulation of the perturbed problem

Let us consider a planar SDDE like
z(t) = X(x(t),ex(t)), z(t) = z(t —r(z(t))), (4.4)

where X is analytic, z(t) is in R, 0 < ¢ « 1, and r is real-valued, positive,
and analytic mapping called delay map.

Formally, eq. (4.4) is a state-dependent perturbation of the ODE for ¢ =
0. Thus, it can be rewritten like

#(t) = X(2(t),0) + P(x(t), #(1), €. (4.5)

where, by definition, e P(z,7,¢) = X (x,e2) — X(z,0).

Let us assume that the ODE, the one for ¢ = 0, has a hyperbolic limit
cycle in the finite dimensional phase space. We want to find the 2D family of
solutions of eq. (4.4) which resembles the 2D dimensional family of the ODE.
More concretely, we are going to provide the slowest invariant manifold.

Note that this is a much simpler problem than developing a general the-
ory of existence and solutions of SDDE, which is a rather difficult problem.
Although we are facing a very singular perturbation.

4.3.1 Limit cycle and its isochrons

Under the assumption that for & = 0, the ODE eq. (4.5) has a stable limit
cycle. There will so be a stable manifold for such a limit cycle. Moreover,
in a neighbourhood of the limit cycle, points have asymptotic phases. Thus,
points sharing the same asymptotic phase as p on the limit cycle gives the
stable manifold for the point p. Therefore, the stable manifold of the limit
cycle is foliated by the stable manifolds for points on the limit cycle, which
is sometimes referred as stable foliations.
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In other fields [GucT75], such a stable manifold for points on the limit cycle
are called isochrons. In order to distinguish from the infinite dimensional
stable manifolds in [HVL93], we are going to use the term isochrons.

As we have already discussed, there is a local parametrisation (K, wp, Ag),
for e = 0 in eq. (4.5), which can be computed by Algorithm 4.1. It verifies
the invariance equation eq. (4.3). In particular, K is periodic in 6, i.e. K(0+
1,5) = K(6,s). Thus if T denotes the universal cover of T = [0,1), we can
extend K and rename it again as K: T x [-1,1] — R2. Tt also verifies that
fixed (0,s) € T x [—1,1], eq. (4.2) is a solution of the ODE.

For a geometric point of view, K can be interpreted as a change of co-
ordinates, under which the original vector fields is equivalent to the vector
field given by (wg, A\gs) in the space T x [—1, 1]. Hence, we could have started
with this vector field and then added some perturbation to it. Hence eq. (4.5)

can be seen as ,
(%) - <;\i)(;7) +€Q((£77]>7(£7/\7I/),€).

However, for a numerical implementation we need to keep the change of
coordinates given by the local diffeomorphism K so we will keep the model
eq. (4.5).

In order to show if the limit cycle and its isochrons persist when 0 < ¢ « 1,
we look for a parametrisation of eq. (4.5) using the knowledge when ¢ = 0.
More precisely, we look for a new frequency w # 0, close to wy, a new speed
rate A < 0, close to Ag, and an_embedding W which is a mapping from a
subset of T x R to a subset of T x R such that eq. (4.2) is now a solution
of eq. (4.5). Hence K o W (6, s) gives us a parametrisation of the limit cycle
as well as of the stable foliations in a neighbourhood of the limit cycle. The
embedding W must verify a periodicity condition

WO+ 1,s)=W(0,s)+({), (4.6)

and it must be define in a subset of T x R so that its composition with K is
always well-defined.

4.4 The well-defined invariance equation

Let us substitute the potential solution eq. (4.2) into eq. (4.5), let us take
t = 0, and let us use the fact that DK is invertible. Then eq. (4.2) is a
solution if, and only if, W, w, and \ satisfy

(wdy + \sO)W (0, s) = <>\0WC:((]9, S)) +eY(W(0,s),W(0,s),e).  (4.7)
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Where W5(0,s) denotes the second component of W (#,s), W is the term
affected by the delay whose expression is

W(G, §) =W (0 —wroKoW(8,s),se rokeWEs)) (4.8)
and
Y(W(0,5),W(0,5),2) = (DK o W(0,5)) " P(K o W(B,5), K o W(B, 5),).

Notice that eq. (4.7) assumes (K, wp, Ag) to be known and only (W, w, \) are
unknowns.

In order to match the domain of W with the composition by K, it cannot
be defined on T x [—1,1] (or an arbitrary interval like [—a,a] due to the
scaling factor by). Indeed, the second component of W leads to

|Se—)\'r’oKoW(9,s)| - |S’

because A is supposed to be close to Ay < 0 and r(z) only gives positive values
for all x. Therefore, W, and consequently V[N/, cannot have s belonging to
a finite interval. To figure it out s must be defined on the whole real line.
That is, we look for the function W: T x R — T x R.

The collateral downside of s being in the whole real line is that now
eq. (4.7) may not always be well-defined. Similar drawbacks arises in the
study of centre manifolds [Car81]. It needs a special care, and thanks to
the discussions with R. de la Llave and J. Yang, we decided to use cut-off
functions which allows to consider extensions of functions.

Let us consider, momentously, a well-defined invariance equation (by ex-
tensions) similar to eq. (4.7).

(Wi + AsOs)W (6, 5) = ( ) +eY(W(0,5),W(0,s),e).  (4.9)

Wo
AOWQ(Q, S)

where now Y is defined on (T x R)? x R, into R? and W defined in eq. (4.8)
is now renamed by

W(G, s) = W(0 —wroK oW(b,s),se MKWy (4.10)

where 7 o K is defined on T x R into R,.

The use of the cut-off functions leads to a dependency of the unknowns
(W, w, A) to such a cut-off. However, we are going to see that W has the same
asymptotic expansion in s. On the other hand, these cut-off functions will
not be needed to use for a numerical simulations, as we are going to point
out later.
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4.4.1 Extensions of functions

Following the standard practise in theory of centre manifolds for ODEs
[Car81]. Let us detail the extensions in egs. (4.9) and (4.10).

e For ro K defined on T x [—1,1] into R, , we define the mapping r o K
on T x R which agrees with r o K on T x [—1, 1], and is zero outside

N 22
of T x [—1,1].

e Similarly, for Y defined on ('ﬁ' x [~1,1])? x R,, we define Y on ('ﬁ' X
R)? x Ry which match with Y on (T x [—3,3])? x Ry, and is zero
outside (T x [—1,1])? x R,.

More precisely, let ¢: R — [0,1] be a C* cut-off function defined by

1if || < 4,
= 4.11
o) {o if o] > 1. (4.11)
Then
roK(0,s) =roK(0 s)p(s),
and

V(W (0,5), W(0,5),e) = Y(W(0,5), W (0,5),)p(Wa(0, 5))$(Wa(6, ).

4.4.2 Finite system of invariance equations

To study the solution of the invariance equation eq. (4.9), let us consider the
unknown W admits a formal form like

W(0,s) =W°0) + W0)s + ni Wi (0)s’ + W=(0,s). (4.12)

Jj=2

Where Wi: T — T xR for 0 < j <n, and W>: T x R — T x R. Then by
power matching in eq. (4.9) we obtain a finite sequence of invariance equa-
tions. Due to the fact that w and A are also unknowns we have the freedom
to impose some extra conditions. These conditions will be a periodicity con-
dition to fix w and a normalisation to fix A. The former will be imposed at
the same time W0 is being computed and the latter with W?!. Inductively,
W7 can be obtained and finally W> will require a special attention since it
has (0, s) instead of only § and the cut-off will play an important role.
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At this point, we can point out that eq. (4.6) leads to

WO +1) =W°0) + (§),
WO +1) = W), 1<j<n, (4.13)
W=(0,s) =W~(0,s).

which justify the use fact that WY needs to be treated separately. However,
it is not a problem for Y in eq. (4.9). Indeed, for all § and s,

Y(W(8,s)+ (1), W(8,s),e)

Y (W(,s
Y (W (8,s),

Oth invariance equation and the periodicity condition

Solving the next nonlinear invariance equation eq. (4.14) gives a condition
for W,

[w@ _ (8 fo)]wo(e) - (“60> LT O0), TOG:w),e),  (4.14)

where

WO(;w) = WO (0 — wro K o W(H)).

On the other hand, the periodicity condition of W (6, s) in eq. (4.13) leads to
a condition for other unknown w. Concretely, because of Proposition 4.3,

w=uwp+ 5J1 Y (W(0), WO(H;w),s) do. (4.15)

1st invariance equation and the normalisation

At this step W' and X\ want to be obtained. The invariance equation is now
a relative eigenvector problem.

[wag + (3 \ _O )\O>]W1(0) — Y (0,0, W e), (4.16)

where V' (0, \, W, ¢) is the coefficient of s in Y and it is linear in the unknown
W1, That is,

Y O0,NWe) = AO)WL(0) + B(O; \)IW(0), (4.17)
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where
A(0) = —wD,Y (WO(0), Wo (9), )DWO(H)D(TO—K) o W)
+ DY (W°(0), W°(0), )7

B(0; ) = e KO D,y (W0 (6), WO(0), ),
WL0) = W0 —wr o K o WO(8)).

(4.18)

Among all the possible conditions for A, we want that one that is close
enough to Ag but A # Aq.

1
J W, () do = p, p # 0. (4.19)
0

Due to the scaling factor for W, we can always choose p = 1.

jth invariance equation, the inductive step

If now 2 < j < n, the only unknown is W/ and its invariance equation is

wop+ (N0 Y Wie) = V0, WO, W) + RIB: N, (4.20)
0 A — Ao

where R’ is a function of § which depends only on W°, Wt ... WJ=! and
Y7 (6, W Wi ¢) is the coefficient of s7 in Y which is linear in W7. That is,

Y2 (0,W°, Wi, ) = A(O)WI (), (4.21)
where A(f) is given in eq. (4.18).

Remainder invariance equation and the extensions

To get the invariance equation for the unknown W= (0, s) in eq. (4.12), we
are going to use a cut-off function. That is, the invariance equation is

S 0 - —
lwﬁg + (O \s — AO)]W (0,5) =eY (W~,0,s,¢), (4.22)

where Y~ extends a function Y= which is defined like
YO (W>,0,5,6) =Y (W7,0,5,¢)d(s),
n—1 )
Y>(W>7 97 S, 5) = ?(W<97 5)7 W(Ha 8)7 8) - Z ?’L<9)317 (423)
i=0

— 10
Y(0) = il 0st

with ¢ being a cut-off like in eq. (4.11).

(?<W(07 S)? W(@, S)? 5>>|s=07




7

4.4.3 The need of the extensions for finite orders

Let us emphasise that to find the low order terms, W, ..., W/, the extensions
were not needed if € is chosen to be small enough. Indeed we take the initial
guess for zero order term as W°(0) = (§), the error for this initial guess is
of order . Then by Theorem 4.11, the true solution W9 is within a distance
of order € from W?°(9). Therefore, we can assume that sup,z [W3(0)| < 3,
by taking € small enough.

Recall the invariance equation for W0, eq. (4.14), with above assumption,
we are reduced to the case without extension, since

ro K(WO(0)) =ro K(W°(0)),
Y (WO(0), Wo(0;w),£) = Y (WO(0), WO(0;w), £).

where,

WO(0;w) = WO (0 — wr o K(WO(0))).

Then we can rewrite eq. (4.14) as:

[w&a - (8 fo)]wo(e) - (“60) LY (W), WO B:w),e).  (4.24)

Similar argument will work for the equations for Wt and W7's if we look at
expressions of Y in eq. (4.17), Y’ in eq. (4.21), and form of RJ.

4.5 The strategy

The formulation of a system of invariance equations in section 4.4.2 allows
to obtain recurrently the expression of W (#,s) in eq. (4.12) and also the
frequency w fixed by the periodicity condition in eq. (4.15) and the speed
rate A which is fixed by a normalisation like eq. (4.19) among all the other
possible A choices.

We have then all the ingredients to provide a proof of the existence and
uniqueness of W(#,s) of the form eq. (4.12) so that eq. (4.2) will give a
parametrisation of the slowest manifold of the limit cycle for the SDDE in
eq. (4.5). Moreover, we can also specify the steps for a numerical computa-
tion.

Firstly, we are going to address the specifications for the numerical com-
putation via Algorithms 4.5 and 4.6 as well as the difficulties therein. We
advance that the main problem will be the computation of W, its compos-
ition with K and the getting, via jet transport, of the right hand side of
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eq. (4.16) and (4.20). In particular, for the numerical simulation we can
avoid to consider the remainder invariance equation, eq. (4.22), as well as
the extensions.

Finally, the formal proofs are going to be detailed in section 4.7. Ba-
sically, we will see that we can always choose € in eq. (4.5) small enough
such that all the invariance equations in section 4.4.2 can be expressed as
a contractive mapping. Thus, it justifies the fixed-point approach in Al-
gorithms 4.5 and 4.6.

4.6 Numerical computation — perturbed case

We compute all the coefficients in s of the truncated expression W (6, s)
order by order. The zero and first orders require a special attention due to
the fact that the values w and A are obtained in respectively in s and s?.
The condition that allows to obtain w comes from the periodicity condition
eq. (4.15). However, the periodicity condition tells us that W will not be a
periodic function. It can be figured out if one define the periodic mapping
WO(h) = W°@) — (9). The condition for \ is given by the normalisation
condition eq. (4.19). As in the unperturbed case, we are allowed to use a
scaling factor. Because of that the value of p can be taken equal to 1.

Algorithm 4.5 sketches the fixed-point procedure to get W° and w. In
this case the initial condition will be wy (the value for ¢ = 0) for w and (§)
for W0(0) since W (0, s) is closed to the identity.

ALGORITHM 4.5 (s case). Let W0(0) = W° (0 — wr o K(W°(9))).

*» Input: &= X(2)+eP(2,7,¢),0<e <1, K(0,s) = Z;”:_Ol K;(0)(bos)?,
b0>0,w0>0,and>\0<0.

« Output: W: T — R? and w > 0.
1. WO(A) « 0 and w «— wy.

2. WO(h) — <g> 1o ().

3. Solve DK oW°(0)n(0) = e P(KoW?9(6), KOW(G), g). Let n = (0, m2).
4. o — Sé n(0) df and w — wy + a.

5. Solve wdyW?(#) = 11 (0) — o imposing Sé Wo(0)db = 0.
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6. Solve (wdy — Ao)W2(0) = na(6).
7. Tterate item 2 until convergence in W° and w.

Assuming that we have obtained the W and the w, we are able to com-
pute the higher orders whenever € was small enough to ensure the contraction.
Algorithm 4.6 sketches the steps to compute (W, \) and W" for n > 2. The
initial guesses are \g for A, (9) for W' and (§) for W"™. In both cases it is
required to solve a linear system of the form of the Lemma 4.4 as well as
similar cohomological equation like in the unperturbed case.

ALGORITHM 4.6 (s' case and s™ case with n > 2).
Let W(0,s) =W (0 —wro K(W(,s)), se MKW E)),

* Input: & = X(2)+eP(z,%,6),0 <e « 1, K(0,s) = 2]/ o K (0)(bos),
bo > 0, wy > 0, Ao < 0, W(0,5) = X"7) Wi(0)(bs)?, b> 0, and w > 0.

* OQutput: either W!': T — R*> and A <0 or W": T — R
1. Wn(g) < 0.
st Ifn =1, W) < (0,1) and X < .

2 W(0,s) (g) L WO0) + 3 W (6)(bs)

) — DK oW (8,s) 'P(K o W(8,s), K o W(0,s),e).
o (W(0,5))j5=0. Let n = (11,10).

st Ifn =1, then A < Ao + § 72(6) df.

3. Y(W(0,s

4. n(f) —e¢

5. Solve (wdy + nA\)WH(8) = n1(6).
6. Solve (wdp + nA — Xg)W3(0) = n2(6).
7. Iterate item 2 until convergence. Then undo the scaling b.

Both Algorithms 4.5 and 4.6 need explanations about different non-
trivial parts, such as, the effective computation of W, the numerical com-
position of K with W, and also with W, the effective computation of the
step in item 4 in Algorithm 4.6, the stopping criterion and the choice of the
scaling factor. On the other hand, there are steps that we can use the same
methods in the unperturbed case, such as, the solution of linear systems like
item 3 in Algorithm 4.6 or the solution of the cohomological equations.
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4.6.1 Stopping criterion

Algorithms 4.5 and 4.6 require to stop the iterations until their convergences
have been reached. Since we are in a fixed-point scheme, namely ;.1 = ¢(z;)
with ¢ having a contraction rate 0 < ¢ < 1. Let us define

. ||$z+1 - SClH

qr = ) l = 2.
|21 — 211

Clearly ¢ — ¢ as | — . Thus, if ¢ > 0.5, we stop when ||z; — z;_1]| < €.

Otherwise, t2-||lz; — x| <e.

4.6.2 Scaling factor

As in the unperturbed case if W (6, s) is a solution, then W (0 + 6, bs) will be
a solution too. A difference from £ = 0 case is that now K o W and K o W
are required to be well-defined. That means the second component of W and
W must lie in [—1, 1] in norm. Stronger conditions are

DIWE@IsP <1, and Y WHO)|||s] < 1.

j=0 320

In the iterative scheme of Algorithm 4.6, these series become finite sums
and a condition for the value b > 0 is led by the upper-bound min{s*, 5*}
where s* is the value so that p(s) = 1 with p(s) the polynomial in s with
positive coefficients given by |[WJ(#)||. And similarly for 3* with ||[W](6)]|.
Notice that if s° bg/s been computed, the solution of s* and 5* exist because
(W2(0)|| < 1, |[W2(0)]] < 1 and the polynomials are strictly positive for
5= 0.

4.6.3 Numerical composition of periodic maps

One of the hardest part of Algorithms 4.5 and 4.6 are the compositions
between K with W and with W. Due to the step item 4 of the Algorithm 4.6
the composition should be done so that the output is still a polynomial
in s. To this end, we suggest to use an Automatic Differentiation (AD)
approach [HCF16, GWO08|. If W = (W;, W) are the components in R?
then

m—1
KoW(f,s) = > K;(Wi(0,5)) (boWa(0,s)). (4.25)

j=0
It can be evaluated with m — 1 polynomial products and m — 1 polynomial
sums. The hard part is to compute K; o Wy(6, s), in fact K;(0 + W1(6, s)).
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That is, fixed 6 the problem is reduced to compute the composition of a
periodic mapping K; with a polynomial in s of order 0 < k < n. We are
going to see that such a composition can be done with a complexity ©(k*).
Hence, for a fixed 6, the computational complexity to compute eq. (4.25) will
be ©(mk*).

Let K () be an arbitrary function and let ¢(s) = Zf:o q;s’ be polynomial
of a fixed order £ = 0. We want to compute the polynomial p .= K o g up
to order k. Assume that we are able to compute g(qy) with a bounded
computational cost for a finite collection function g of the same type of
K. The chain rule gives us a procedure to compute the coefficients of p(s).
Indeed, one can build a table like Table 4.1 following the generation rule in
Figure 4.1. That is, given (as input) the first row, the first column and the
entry as = “q(s). The entries a; with 2 < j <i <k + 1 are given by

d d

—(ai_17j)|5:0 + —q(O)ai_u_l). (426)

1
- j(ds ds

a'ij =

Then the coefficients of p(s) are p; = 3, ajldd—;lK(qO) for 0 < j <k

K(qo) d%K(QO) dTZzK(CJo) j;—i—llK((Jo) %K(QQ
Po 1 0
P1 0 Lals) 0
P2 0 30 1n
0
Dk—1 0 ﬁﬂ ﬁm ﬁu 0
D 0 20 Zo 20 1o

Table 4.1. Composition of a function with a polynomial.

Notice that one does not need to save all the entries of the Table 4.1 to
compute only the coefficients p;. Moreover for each entries in the ith row
with ¢ = 2,..., k, one only needs to consider polynomials of degree k —i — 1.
Overall the extra memory is at least 2k(k —1).

On the other hand, the number of arithmetic operations following the
rule eq. (4.26) are given by the Proposition 4.7.
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d
-%q(O) ds ls=0

i
j

Figure 4.1. Generation rule for entries in Table 4.1 with j =
2,... k.

PROPOSITION 4.7. Let K(0) be a real-periodic function and let q(s) be a real
polynomial of degree k. Given %K(q(@)) for 5 = 0,...,k. The polyno-
mial K o q can be performed with at least $k(k — 1) extra memory, ©(k*)
multiplications and additions.

Proof. Notice that k(k+ 1) multiplications and (k + 1)? additions are needed
to perform the product of two polynomials of degree k. Also k multiplications
are needed to perform the derivative of a polynomial of degree k multiplied
by a scalar. In order to bound the number of operations we must distinct
three different situations of the Table 4.1.

k—2

1. The column a3 2. D, (k—i+1) = %(k2 + k — 6) multiplications.
i=1

2. The diagonal ag 3. -

k—2

o Y (k—j—1)(k—j+1)+1= £(2k*—3k*+ k—6) multiplications.
j=1
k—2
o M (k—j—1)241= L2k — 9k + 19k — 18) additions.
j=1
3. The rest.
—2 k=2
S i Dt ) (h—im2) 41— L(7Th* — 563 +
j=1li=75+1
71k? + 38k — 24) multiplications.
—2 k-2
. Z > (k—i—=1)?+(k—1)+1 = 5 (5k* — 36k +85k* — 102k + 72)
j=1li=75+1
additions.
Overall 5k* + ©(k*) multiplications and $5k* + ©(k®*) additions. O

The case of K compose with W requires the jet propagation of an expo-
nential which is obtained by a recurrence. Concretely, e(s) = sexp¢(s) has
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coefficients eg = 0, e; = exp gy and
13
ejr1 == ) (J = k)gj—rers1, J=1
k=0
which has a linear contribution w.r.t. the degree of the polynomial g.
The next Theorem 4.8 summarises the previous explanations. It assumes
that 4 K (qo) of Table 4.1 are given as input. Once we fix the computational

o
representation of a periodic function we will be able to express these map-

pings.

THEOREM 4.8. For a fized 6, the computational complexity to compute the
compositions K(0,s) = 377 ! K;(0)(bys)’ between W (0, s) = Zf;é Wi (0)(bs)’
and W (0, s) is ©(mk?), and space Q(k?) assuming ;%Kj(WP(@)) as input for
i=0,.. . k—1.

Fourier representation

A mapping K: T — R is called periodic when K (6 + 1) = K(6) for all 6
in T. In order to get a computer representation of that kind of maps we
can either take a mesh in 6 = (6;);%, ' and their evaluations by K, K =
(Iv( k)}:,igl € R™ or we can take advantage of the periodicity and represent it
in a trigonometric basis. The Discrete Fourier Transform (DFT) is defined
when 0), = (k/ng)1%," by K = (Kk)"ef e C™ so that

ng—1
= ) Kje ki (4.27)
j=0
or equivalently by
~ 1 ™
K. = — lek/ne 4.28
E= o ; (4.28)

In the real case the complex numbers K satisfies a symmetry namely Her-
mitian symmetry, i.e. Ky = K} _, which implies K, is real and when 7’Lg is
even Kne /2 is also real. Then We can define real numbers (ag; ag, by);2 ”9/ =15

ng is odd or (ag, an,2; ar, bk)k ! ! defined by
ap = Rng, Upy/2 = ReKng/Q, ap = 2Re[A(k and by, = —2[A(k
with 1 < k < |ng/2]. Thus, K can be approximated by
[ro/2]—

K(0) = % + n29/ cos(mngl) + Z ay cos(2mkl) + by, sin(2wkd)  (4.29)
k=1
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where the coefficient a,,/» only appears when ng is even. Therefore eq. (4.29)
is equivalent to eq. (4.27) but rather than 2ny real numbers, only half of
them are needed. Henceforth, any real periodic mapping K is computational
storage by an array of length ng whose values are represented either in mesh
points or in Fourier coefficients. Fast Fourier Transform (FFT), which is
just a faster algorithm to implement the DFT in the sense that rather ©(n3)
computational complexity it can be performed with ©(nglogny), is applied
to change from one representation to the other. There are different ways to
order these Fourier coefficients in the array depending on the main important
thing to be optimised in terms of performance of the FFT, and if it is intended
to offer the option of FFT for several angles. For instance, [FJ05] uses in its
function fftw plan r2r _1d the following order of the Fourier coefficients in
a real array (vg, ..., Upy—1)-

Vo = ap,
v = 2ay and v, = —2b,  for 1 <k < |ngy/2],

Ung/2 = Ongy/2

where the index ny/2 is only taken into consideration if, and only if, ngy is
even. Another standard order is just (ag, an,/2; ar, by) in sequential order or
(ap; ak, by) if ng is odd.

Norms and smoothness

The functions W/ in Algorithm 4.6 are not expected to be analytic due to
the composition with the delay function (even if it is analytic). Fourier series
are good for the analytic and finite differentiability case. Among the most
effective norms in Fourier series are the weighted ¢! norms. For instance,

Lno/2)~1 .
[l = 25 (g = k)" + ") i
k=0
= 2(16/2)" any2| + 2(n6)" |aol+
1 [me/21=1
5 2 ((no— k)" + k") (ai +07)"%,
k=1

where the coefficient ng/2 only appears if, and only if, ny is even. The
smoothness of K can be approximated in terms of how the Fourier coefficients
decay. Riemann-Lebesgue’s Lemma tells us that if K" is real, continuous, and
periodic, Kj — 0 as k — o0, and in general if K is m times differentiable,
then |Ky| < C/|k|™ for k # 0 and some constant C' > 0. To determine
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approximately m when it is small, we can use the continuous Littlewood-
Paley Theorem [dILP02] which states that K is in a-Hdlder space with o €
R, if, and only if, for each n > 0 there is constant C' > 0 such that for all

A% JNE)
ot

Composition in Fourier

< Ct.
L*(T)

Composition of real Fourier series may require to know the values not in
the standard equispaced mesh. A direct composition of real Fourier series
requires a computational complexity ©(n2). However it can be performed
with ©(ng logng) by the NFFT3, see [KKP09]. It allows to express K: T — R
with the same coefficients in eq. (4.27), and perform its evaluation in an even
number of nonequispaced nodes (919):9:_01 c T by

ng—
K(6,) = Z Kje_Qﬂ'i(j—nG/Q)(ek_l/Q)‘ (4.30)

The corrections of 0, in eq. (4.30) is because NFFT3 considers T = [—-1/2,1/2)
rather than [0,1). It uses some window functions for a first approximation
as a cut-off in the frequency domain and also for a second approximation as
a cut-off in time domain. It takes under control (by bounds) these approx-
imations to ensure the solution is a good approximation. Joining these result
with Proposition 4.7 we can rewrite Theorem 4.8 as

THEOREM 4.9. The computational complexity to compute the composition

K(0,s) =37, o K (0)(bos)’ between W (0, s) = Zk 1VVJ( )(bs)?, and W (0, s)
Zk % W7(0)(bs)? in Algorithm 4.6 with K;, W7 and Wi expressed with ng
Foumer coefficients is ©(mking + mknglogng).

Automatic Differentiation in Fourier

For the s° case, i.e. Algorithm 4.5, the composition of Fourier series is
needed. However, for the other orders we need to perform the composition
with a polynomial in s with coefficient Fourier series and the output must
be an object of the same kind, i.e. a Taylor-Fourier expansion.

Theorem 4.8 tells us that the composition K o W(6,s) can numerically
be done independently of the periodic mapping representation. Nevertheless,
differentiation is a notoriously ill-posed problem due to of the lack of inform-
ation in the discretesed problem. Thus, Table 4.1 is a good option when no
advantage of the computer periodic representation exists or k « m.
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Using the representation eq. (4.29), we can use the jet propagation of sine
and cosine by recurrence. That is, if ¢(s) is a polynomial, then sin ¢(s) and
cos q(s) are given by sg = sin g, ¢y = cosqo and for j > 1,

1’3

Sj = 32(] — k)qj-rcr, == Z J = k)aj—ksk. (4.31)

k=0 jk 0

Therefore the computational cost to obtain the sine and cosine of a polyno-
mial is linear w.r.t. its degree.

Theorem 4.10 says that the composition of K with W or W are rather
than ©(mking+mknglogng) like in Theorem 4.9 just ©(mkn?). Therefore if
k « m, the approach given by Theorem 4.9 has a better complexity although
Theorem 4.10 will be more stable for larger k.

THEOREM 4.10. The computational complexity to compute the composition
K(0,s) =272, o K (0)(bos) between W (0, 5) = Zf;é Wi (0)(bs)? and W (6, s) =
Z?:é W7(0)(bs)? in Algorithm 4.6 with K;, W7 and W7 expressed with ng

Fourier coefficients is ©(mkn2).

4.7 The main Theorems

The next two Theorems establish first the existence of the limit cycle and then
the existence (and also uniqueness) of the rest of the expression of W (6, s)
with the form like eq. (4.12). Both results are given in a posteriori format.
In particular, it gives by free the continuation method. Theorem 4.12 shows
that at each order we loose differentiability in the solution. We conjecture
that the solution will be C* as ¢ — 0. Although we did not prove that, we
have numerically seen that for further order we need more Fourier coefficients
as well as € must be smaller at each new order.

THEOREM 4.11 (Limit Cycle). For any given integer L > 0, there is g > 0
such that when 0 < & < o, there exist an w # 0 and an L-times differentiable
map W°: T — T x R, with Lth derivative Lipschitz, which solve eq. (4.14).

Moreover, for an initial guess (w°, W) satisfying the periodic condition
i eq. (4.15) and the invariance equation eq. (4.14) with an error function E°,
there exist a unique (w, W) nearby solving the same equations ezactly with
bounds

20— 10l < CE 5 O<i<L  (432)
< OB o (139

W’ —w]
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for some constant C' possibly depending on €, wy, Xo, [, L, and bounds of
WO criniw. In fact, WO has derivatives up to any order.

THEOREM 4.12 (Isochoron). For any given integers N = 2 and L = 2+ N,
there is €9 > 0 such that when 0 < & < &, there exist w # 0, A < 0, and
W:TxR— TxRoftheform

N—
W (b, s)=w6) + Wwie Z 0)s’ + W= (6, s).

which solve the equation eq. (4.9).

Where W°: T — T x R is L times differentiable with Lth derivative
Lipschitz. For 1 < j < N, Wi: T — T x R is (L — 1) times differentiable
with (L — 1)th derivative Lipschitz and W= is of at least Nth order in s and
is (L —2 — N) times differentiable in 6 and s, with (L —2 — N)th derivative
Lipschitz.

Moreover, if (W2, WO N WL W= satisfy the invariance equations
eq. (4.14), eq. (4.16), and eq. (4.22), with error functions E°(), E'(9), and
E>(0,5s), respectively, then there are w, W°(0), X\, W(0), W=>(0,s) which
solve eqs. (4.14), (4.16), and (4.22). Therefore, eq. (4.9) is solved by w, A,
and W(0,s) as in eq. (4.12) of above form. For 0 <1< L — 3, we have

W (0, s) Z WH(0)s? — W20, s)||cn
4.34
N-1 ‘ A N 1*ﬁ ( )
O(ZI|EJ||co|slj+||E>||o,N|s| ) ,
j=0
w —w’| < C|E®|co,
A =X < C|EY o, (4.35)

for some constant C' depending on e, wgy, Ao, N, I, L, and bounds for
WO psrip and [WHO|-1inip.

Section 4.4.3 tells that for small € (we did not quantify it), we do not
need the extension in the invariance equations for the finite order. Therefore,
once the two previous theorem were proved, we would also have the next two
results.

COROLLARY 4.13. When ¢ is small enough, eq. (4.4) admits a limit cycle
close to the limit cycle of the unperturbed equation. If w, WY solve the in-
variance eq. (4.24), then K oW°(0) gives a parametrisation of the limit cycle
of eq. (4.4), i.e. for any 0, K o W°(0 + wt) solves eq. (4.4) for all t.
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We can also find a 2-parameter family of solutions close to the limit cycle:

COROLLARY 4.14. For small ¢, there are isochrons for the limit cycle of equa-
tion eq. (4.4). Ifw, \, and W : T x R T x R solves the extended invariance
eq. (4.9), then there exists 0 < so < 3, such that K o W(0,s), |s| < so gives
a parametrisation of the isochrons in a neighbourhood of the limit cycle, i.e.
for any 0 and s, with |s| < so, K o W (0 + wt, se’t) solves eq. (4.4) for all
t=0.

4.7.1 Overview of the proof

We are going to consider an operator for each of the orders so that they
are going to satisfy the invariance equations in eq. (4.9). In particular, the
operator for the Oth order must involves the periodicity eq. (4.15), the 1st
order will fix the speed rate via a normalisation condition eq. (4.19).

To define such contractions, we must fix suitable spaces and norms. We
conjecture the solution can only be finite differentiable. Hence, we will con-
sider the space of functions from a Banach space Y to another one X with
uniformly bounded continuous Lth derivative, denoted by CL(Y, X), and
whose norm is

[fllor = Orgjaéigg|ll?]f(£)l|y®mx-

It becomes a Banach space as well as the closed subset, denoted by C%, of
CF with elements bounded by the constant B > 0. We will also denote
CL+Lip(y) X)) the subspace of C with Lth derivative Lipschitz. In that case,

its norm is defined as the maximum between the one in C* and

IDEf(&) = DEf(&)llyerx

Lip DY f = sup
§1#&2 ||§1 - §2||Y
Similarly, O™ is the closed subset of the space CE+1P whose elements are

bounded by B > 0.

To prove the convergence of the fixed-point method for the invariance
equations in section 4.4.2, we will use a well-known result in [Lan73, Pro-
position A2] quoted in Lemma 4.15. It can be interpreted as C1 P (Y, X)
is closed under pointwise weak topology on X.

LEMMA 4.15 (Lanford, [Lan73]). Let (un)nen be a sequence of functions on a
Banach space Y with values on another one X admitting derivatives up to
kth order. If for all n and y

i. |Diu,(y)|| <1 forallj =0,1,2,... k.
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ii. D*u,, is Lipschitz with Lipschitz constant 1.
iti. (un(y)) converges weakly to a unit u(y).
Then,
1. w has a Lipschitz kth derivative with Lipschitz constant 1.

2. Diu,(y) converges weakly to D'u(y) for all y and j =1,2,... k.

N.B.: For all (yi,...,y;) € Y& the sequence (D7u,(y)(y1,-..,Y;))
converges in the weak topology to D’u(y)(yi,- .. ,v;)-

The interpolation inequalities will allow us to prove C°-contractions for
each of the operator involves in the system of invariance equations. For
completeness, let us quote the statement as a Lemma.

LEMMA 4.16 ([dILO99]). Let U be a conver and bounded open subset of a
Banach space E, F is a Banach space. Let r, s, t be positive numbers, 0 <
r<s<tandp= Z—j There is a constant M,,, such that if f € C'(U,F),
then

If

o < M| Fl £l

4.7.2 Proof for the limit cycle, Theorem 4.11

Proposition 4.3 gives an explicit solution for the invariance equation eq. (4.14)
of WY which is solvable because eq. (4.15). Therefore let us define the oper-
ator I'" (which depends on €)

'(a,2)
Fo(av Z)<9> = Fg(a7 Z)(Q)
I3(a, Z)(0)
wo + & S Y1(2(0), Z(6; 0), ) db (4.36)
= | o (wof +¢ Y 1(Z(0), Z(o;a), ) do)

el MY (Z(0 — at), Z(0 — at;a),e) dt

Then if T° has a fixed point (a*, Z*), then eq. (4.14) is solved, at the same
time that periodic condition eq. (4.15) is satisfied.
Let D° = I° x C; ™" be the domain of I'? where for a constant B® > 2,
I° = {aeR: |a— w| < |wol/2},

COL+Lip = {fe Oé:mp(ﬁwj xR): f(O+1)= f(0)+(}), for all 6}.
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Let us first remark that it makes sense to consider a C! space. Assume, for
a moment, that (w,W°) satisfies the invariance equation, eq. (4.14). Then
K oWV gives a parametrisation of the limit cycle, and, in particular, it solves
the SDDE

LR o WOH(t) = X(K o WO(O(L)), K o WOB(1)), ),
L0(t) = w.

Hence, if W9 is L-times differentiable, the RHS is L-times differentiable,

then also the LHS. Since K is a local diffeomorphism, W9 is (L + 1)-times

differentiable. In fact, it is differentiable up to any order.
Now, let us split the conditions of Lemma 4.15 in different steps.

LEMMA 4.17. There is € > 0 such that for all 0 < e < €9, T%(D°) = D°.

Proof. Notice that Y1(Z(6), Z(0;a), ) is uniformly bounded in D°. Let ¢ be
small enough so that I'{(a, Z) is in I°. On the other hand, for all (a, Z) € D°,

(a, Z)(0 + 1) =T%a, 2)(0) + 1,
T9(a, Z)(0 + 1) = TY(a, Z)(6).

N

It remains to bound the derivatives of I') and I'§.

iFO(a Z)(0) =

do (wo + £Y1(2(0), Z(0; ), €)).

1
(a, Z)

Fad di Bruno’s formula (see [AR67]) for 2 < n < L, £19(a, Z)(6) will be
a polynomial of a common factor m, each term will contain products of
derivatives of Y, Z, and r o K up to order (n — 1). By the smoothness of
Yy, and r o K, for (a, Z) € D°, if we choose B to be larger than 2, then for
small enough ¢, T'Y(a, Z)(0) on T has derivatives up to order L bounded by
B and Lth derivative Lipschitz with Lipschitz constant less than BY.

To establish bounds for the derivatives of Fo(a Z)(0), we apply a similar
argument. For 1 <n < L, 22Y5(Z(0 — at), Z(0 — at; a), <) will be a polyno-
mial with each term a product of derivatives of Y, Z, and r o K up to order
n. With regularity of Yy, and 7 o K, for (a, Z) € D°, |59"_ (Z(6—at), Z(0—
at),e)| will be bounded. Therefore, for small enough e, I'Y(a, Z) has deriv-
atives up to order L bounded by B0 and its Lth derivative is Lipschitz with
Lipschitz constant less than B°.

If we take £{ such that above conditions are satisfied at the same time,

then for e < &), we have T°(D°) < DV. O
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LEMMA 4.18. There is €3 > 0, such that for all 0 < ¢ < &9 the operator T° in
eq. (4.36) is a contraction with the norm in D° defined by

d((a,2),(d',Z") = |la—d'| + || Z — Z'|| . (4.37)
Proof. We must show that there is 0 < pp < 1 such that
d(T%(a, Z),T°(a’, Z')) < pod((a, 2), (', Z")). (4.38)

By definition, d(T'%(a, Z),1%(d’, Z")) is equal to

Mi(a, Z2) = TY(a’, Z')| + |(T3(a, Z) = T3(d’, Z"),T5(a, Z)) = T3(d, Z2")) [
(4.39)
More explicitly,

f [Yi(Z &) = Y1(Z'(9), 2'(6;d'),¢)] d@‘ (4.40)

plus the maximum between

“’(ﬂlr%l 7) r0<a1 Z,)]+

sup
< (4.41)
f [Vi(z &)~ Vi(Z(0), o1 d'),2)] do,
and
5supj MY (Z(0 — at), Z(0 — at;a),e)—
. (4.42)

Yo(Z'(0 —d't), 2'(0 — d't; d), e)] dt'.

Let us start giving a (non-sharp) bound for the difference |V (Z(6), Z(6;a), c)—
Y1(Z'(9), Z'(0;a’), )| which is equal to

V1 (2(0), 2(0 — ar o K o Z(0)),€) — Y1(Z'(6), Z'(0 — d'7 o K 0 Z'(6)),¢)).

(4.43)
Adding and subtracting terms, eq. (4.43) is bounded by
Y1(2(6), 2(6),2) = Y1(2'(6), Z(6), )|+ (tr)
Y1(Z'(0), 20 —aro K o Z(0)),e) — Y 1(Z'(0), Z'(6 —ar o K o Z(0)), )|+
(£2)
Y1(Z'(0),Z' (0 —aroKoZ(0)),e) =Y (Z'(0), 70 —droKoZ()),e)|+
(43)

Y1(Z'(0),Z' (0 —droKoZ(0),e) Y (Z'(0),7Z0—droKoZ(h)), ?y)
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By the mean value Theorem, then

(1) <D Y1l Z = Z'|ce,
(62) < 1D2Y1 ]|l Z = Z'|co
(ts) < |DY 1]l DZ | llr o K| — '],

and

(a) < |DY 1l DZ |l [IID(r 0 K)llo| Z = Z']]cc.

Because of the assumption that (a, Z) and (a/,Z’) are in the set D°, then
Y1(Z(0),Z(0;a),e) — Y1(Z'(0),Z'(0;a’),¢)] is finally bounded by

IDY 1lloe[ (2 + Bl [|D(r o K) o)1 Z = Z'||oc + B°||r o K ||oc|a — a'[]. (4.44)
In particular, [T%(a,Z) — T%(d’, Z’)| in eq. (4.39) is bounded & times by
eq. (4.44) due to its explicit expression in eq. (4.40).

To bound [|TY(a, Z) —T9(a’, Z")||o, in eq. (4.39), let us bound the expres-
sion eq. (4.41) adding and subtracting the term

0

€ RV / > /

T | 20 Z s do
1 9

eq. (4.41) turns out to be bounded by

7] f V1(2(6). Z(6).) b — V1(Z/(6), 269). )| db
T%(a, Z) —TYa', 2"))| (4.45)

Y. (Z'(0 Z/ 0:a db

|F1(a,Z)F(1J( 20| [ J [Y1(Z'(0),Z'(0;a'),e)| db + |wo|

which, because eq. (4.44) and the definition of [T%(a,Z) — I'%d/, Z")| in
eq. (4.40), is bounded by (and so also ||T%(a, Z) — T9(a’, Z')||»)

elwol + %[Vl + e[T9(a’, Z')|

Mo zriwz] (4.4

For eq. (4.42) we are going to proceed as before. In this case, adding and
subtracting, the term |Yo(Z(0 — at), Z(0 — at;a),e) — Yo(Z'(0 — a't), Z'(0 —



a't;a’), )| is bounded by

Vo(Z(0 — at), Z(0 — at:a),e) — Yo(Z' (0 — at), Z(0 — at; a), )|+

Vo(Z' (0 — at), Z(0 — at;a),e) — Yo(Z' (0 — a't), Z(0 — at; a), )|+

|Yo(Z'(0 —d't), Z(0 —at —ar o K o Z(0 — at)),e)—
Yo(Z'(0 —a't), Z' (0 —at —ar o K o Z(0 — at)), e)|+

Yo(Z'(0—a't),Z' (0 —at —aro K o Z(0 — at)),e)—
Yo(Z'(0—a't),Z' (0 —ad't —aro K o Z(0 — at)), )|+

Yo(Z' (0 —a't),Z' (0 —d't —aro K o Z(0 — at)),e)—
Yo(Z'(0—a't),Z' (0 —ad't —aroKoZ—at)),e)|+

Yo(Z'(0—a't),Z' (0 —d't —a'roKoZ(f — at)),e)—
Yo (Z'(0—a't),Z' (0 —a't —a'roKoZ (0 —at)),e)|+

Yo(Z' (0 —a't),Z' (0 —d't—aroKoZ (0 —at)),e)—

Yo(Z'(0—a't),Z' (0 —a't—aroKoZ(0—dt),e)l

By the mean value Theorem, then

and

(€7) S| D2Y ol | DZ'|[5 10| D(r o K)ol — .

(1) <ID1Y2llol| Z = Z' e

(62) <t D2Yo|eo | DZ||eola — o],

(s) < D2Y2llocll Z = 27,

(1) < t|D2Y 5| DZ||eola — ],

(€5) < N D2Y 2| DZ [ ]| © K| ool — o],

(bs) < || D2Y 2| DZ [l [| D(r o K)ol Z = 2|,

93

Under the assumption that (a, Z) and (a’, Z’) are in D°, we obtain the bound

IDY 2]l [ (2 + Bl [| D(r o K)loo)|Z = 2| oo+

(B°|7 o K|l + tB°(2 + B|d/||| D(r o K)||«0))|a — d'|].

(4.47)
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We can have a bound for eq. (4.42) because of the observation that for Ay < 0,

w0 1 @ 1
J Mt dt = — and f teMt dt = -
0 | Aol 0 Ao

Thus, [|[T9(a, Z) — T9(a’, Z')|| is finally bounded by

e ’HDYzHoo[(HBO\aHID(NK)H ) Z = Z' o+
0. ~ I B 0y 7/ /
(B°lr o Kl + e |(2+B |d[[[D(r o K)||))la — d'l].
(4.48)

Due to eqs. (4.44), (4.46), and (4.48), we have arrived to an expression like
A(Iw, 2), T, 2)) < el — | + & Z — 2]

where

|wol + €Y1l + !F?(a’,Z’N) B |D72|oo}

=eBro K|, ||DY 1
o= B TR 1071 (1+ B s o

BY  _ R
+5—A2 |IDY 3]0 (2 + B°|d||[D(r o K) ),
0

and

o =e(2+ Bofa/\HD(r o K)|s) [D?loo (1 +
DYQOO]
Xl |

Since a, a/, TY(a, Z), and T'Y(a’, Z') are all in I°, their absolute value can be
bounded by 3|w|. Thus,

Jwol + &[[ V1] + [T9(a’, Z)|
T (a, Z)IY (o, 27))

ey 19wl 42Tl DY
Cl:gBOTOK"”['DYl'” ol ol

+e2—)\2|\DY2Hw(4 +3B%|wo||[D(r o K)||o),

and

2 = 5004 3Bl Do K)o | 107, 2l le 1Bl |
2 9|CL)0| |)\0|
Because ¢; and ¢, are bounded by ¢ multiplied by some constants, they can
be made small with € small. Therefore, if ¢ is sufficiently small, we can
find a pp < 1, such that eq. (4.38) is true and then T in eq. (4.36) is a
contraction. O
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Remark 4.19 (for Lemma 4.18).
e |[DY]|,, are interpreted as the maximum of || D;Y ||, for i, j € {1,2}.
e If r(z) = 7 > 0 is constant, then the bounds for ¢; and ¢y become

2 — T|)\0‘
A2 ’

19|wo| + 45\\71]\00
9wo|

¢, =eB’ lT||D71||w + | DY 3|0

and

— . 19 4e|lY DY
Oy = 25[‘DY1‘W ‘w0| + 6|| 1”00 B H 200]

9ewol Aol

We have shown that taking an 0 < ¢ < min{e!, €9} with £} coming from
Lemma 4.17 and &} from Lemma 4.18, then for all (w® W°()) € D°, such
as w = wp and W20(9) = (§). There is a (unique) limit by I'°. This limit is
actually in D as well. Note that this does not contradict the non-uniqueness

due to the phase shift because we have fixed a phase.
For the second part of Theorem 4.11, we know that

d((wO,Wo’O), (W,WO)) _ lcli_I)Elod((w07W070)> (FO)k(w07W0,O))

< Do) d (W’ WOO) T, W)y 4)
k=0
1
L —po

It remains to estimate d((w® W°), T%(w?, W?)) by || E°|s. The error func-
tion for an initial condition (w°, W) is defined as the error of the invariance
equation, eq. (4.14). That is, ' = (EY, EY) with

B%0) = [0 (o 3 ) [0 - () - e rerie), 00,0

Then d((w, W), T%w?, W) is bounded by

< d((w®, W), TO(w°, WO0))

1
wo + EJ 71(W0’0(9), WO’O(H; wo), g)dl — WO+ (4q)

0

1 0 __ ~
- 2 Y VVO’O ”f0,0 ., .0 d _”70,0 0
(£2)

sup 5J Y (W9 — W), W09 — wt; W), e) dt — WQO’O(Q)'. (l3)

OeT 0
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Then
(01) < Ll E7(6) db|,
) < ot (| By ao] + [ sty a]). @)

(£3) < sup
0

J M B0 — W't) dt‘.
0

Since T'Y(w?, W) is in 1Y and W? is bounded by B°, then

2
g/ < BO
5 < sup< "

Je E90) do

0

Ll E9(9) d@D |

Combining it with eq. (4.49), we arrive to a bound which only depends on ¢,

B°, wo, Ao, and the ones for py coming from Lemma 4.18,

d((wO,WO’O)( WO)) 1 l|w0|+2+2Bo

L—p |wol

Finally to get eq. (4.32) we use the interpolation inequality as follows

1_,

n
WO = W0 < e(l, L)W = WO o™ WO = WO,

< o(l, L)W — WO F (2B%)1,

for some constant ¢(l, L) > 0.

4.7.3 Proof for the isochrons, Theorem 4.12

1st order proof; W! and )\

Using Proposition 4.3 in eq. (4.16) we can consider the operator I'" defined

by

b, F,F)0) = (T
r

)\0+5S0 2(0,0, F,)df
= gggo MY ( 0+wtbFs)dt

I8 + G180 |

(4.50)

C(b, F) + £ 0V, (0,b, F,e) — [§2 Vy(0,b, F,e) ] Fy(o) do

(4.51)

Y
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where

1 0
Cb,F)=1— ff J Yy(0,b, F,e) do df
W Jo Jo

STy 1 6
+ —[J Y, (0,b, F¢) d@]f J Fy(o) do db
WlJo 0o Jo

is a constant to ensure that ['i(b, F) satisfies the normalisation condition
considered in eq. (4.19), i.e. Sé Ti(b, F)(0)do = 1.

Therefore a fixed-point for the operator I'! verifies the invariance equa-
tion, eq. (4.16) and the normalisation condition in eq. (4.19).

Let D' = I' x CF™P be the domain of I'" where for a constant B! > 0,

(4.52)

={beR: |b— No| < |No|/3},

ClL+Lip o {f e Cg:“”%’ﬁ‘fﬁ‘ xR): f(0+1)=f(#), and fl f2(0) do = 1}'
0

Formally I' should be a subset of C since we have an eigenvalue problem.
However, \g is real and since we are interested in the slowest manifold, it
will be enough to consider I! as subset of R.

Similarly to section 4.7.2, we split the conditions in Lemma 4.15.

LEMMA 4.20. There is €} > 0 such that for all 0 < e < e}, TY(D') = D',

Proof. First of all, since 72(9, b, F',¢) is bounded, for small € let us say e,
we can have I'}(b, F) in I*.

Because of the periodicity in the already known W and the periodicity
w.r.t. the first component of 7 o K, then 71(9 + 1,b,F,¢e) = 71(9,1), Fe).
And also

L3(b, F)(0 4+ 1) = T3(b, F)(6).

To see the boundness of the nth derivative of T3 (b, F')(#), with 0 < n < L,
ie., of

ar ©o "
wf‘ (b, F)(0) = —EL e’ %Y (0 + wt, b, F,e)dt.

By the dominated convergence Theorem, it suffices to see aen L v (0+wt, b, Fe)

is bounded. By Faa di Bruno’s formula (see [AR67]), ao_n_ (0 + wt, b, Fe)
is bounded because the smoothness of Y, r o K, and WO(Q), whenever F
is in CL, "M, Furthermore, due to the same argument, < pTag A TL(b, F)(6) is
Llpschltz
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To see the periodicity of T}(b, F')(6), we first compute its derivative, i.e.,

d%rl(b F)(0) = w?g(e,b, Fe) -2 < L 1 Y4(0,b,F,¢) d&) Fy(0)

W

which is periodic. Hence, to show periodicity of T'3(b, F')(6), it suffices to see
that T(b, F)(0) = Ti(b, F)(1), which is true because Sé Fy(0)dd = 1. The
choice of the constant C(b, F') ensures the normalisation condition, that is,
§o T30, F)(0)do = 1.

Now for 2 <n < L

d" el dn=b
TP = | T )

dor
l_1 d(n—l)
(L Y,(0,0, F¢) d9) WFQ(G)]’

which will be bounded due to the smoothness of Y, 7"O—K and WO (0), as
well as because F' is in O, """, Similarly, we conclude -2 A TL(b, F)(6) to
be Lipschitz.

Since € appeared in front of all the expressions of the derivatives, there is
€5 > 0 depending on derivative bounds of Y, 7 o K, BY, and B'. Such a e, can
be chosen uniformly of the choice of (b, F) € D'. Therefore (I'y(b, F),T}(b, F))

L—1+Li :
can be C'p; P for all £ < min{e;, €2} = &}. O

deL 1

LEMMA 4.21. There is €1 > 0, such that for all 0 < ¢ < &} the operator 't in
q. (4.51) is a contraction with the norm in D' defined by

d((b, F), (', F')) = [b = V| + [[F' = F[|oo. (4.53)
Proof. We must show that there is 0 < p; < 1 such that
AT (b, F), TN, F)) < md((b, F), (¥, ). (4.54)

By definition, d(I''(b, F),T1(¥, F")) can be bounded by

1
. f V0.6, Fe)— Y 0.1, F c) d@‘ (4.55)

0

plus the maximum between

gsup
0eT

o0
f MY (0 + wt, b, Fre) — V(0 + wt, b, F'. ¢) dt', (4.56)
0
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and

f Y,(0,b,F,c) — Ul Y, (0,0, F¢) d@] (o) do—

0 0

sup —
PeT |W|

(4.57)

0 1
f Yoo, F' ) + U Y, (0,0, F'¢) d@]Fz’(a) da|+
0 0

IC(F,b) — C(F', V).

Because of eq. (4.17), Y has the form
Y(0,\ W' e) = AO)W(0) + B(O; NW(0 — wr o K o WO(0)).

Introducing the notation

An(0) Ap(0) ) Bii(6;A) Bia(6; )
A(9) = <A21(9) Agg(@)) , and B(#;\) = ( 0\ 0\ ) .

Then ?1(9, A, W1 g) can explicitly be expressed as
V10,0 W' &) =Ap (0)W(0) + Ap(0)WL(0)
+ BH(Q; /\)Wll(e —wrokKo WO(Q))
+ Ba(0; AWy (0 — wr o K o W°(6)),
and
V(0,0 W', &) =As ()W} (6) + An(0) W3 (6)
+ By (0; WO — wr o K(W°(6)))
+ Boy(0; Wy (0 — wr o K(W°(6))).

Since b and V' are in I', we estimate
IB(0:0) o < €32 K 1= | DY |,

and

|B(8;0) — B(8; 1) < | DoY oo 5K 70K [ — 0.

Hence a bound for H?l(ﬁ, b, F,e) — 71(9, b, F' ¢)| and for its components
will be
[ Al F = Flloo + [ B(O; b) [ oo | F = F' oo + [ B(6; b) = B(6; ) oo F |
< (|4l + 30K DY o) | F = Floo+
BY|DyY [spe™ 5Kl |70 K b — b| (4.58)
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Similarly H?i(@, b, F, )| and its components, is bounded by
B (| Al + =82 | DY),
Now we can bound eq. (4.55) as
IT1(b, F) —T1(t/, F')| < ceq. (4.58). (4.59)
To bound |T'i(b, F) — (¥, F")| let us just adding, and subtracting terms
to get
MY (0 + wt, b, F,e) — V(0 + wt, b, F',e) =
Y10+ wt, b, Fe) — Y, (0 +wt, b, F' &)+
(¥ — eb/t)?i(ﬁ + wt, V', F' e).
Since b and b’ are in I', then | § e — "t dt| < 35[b—b'|. Hence, [['}(b, F) —
0
(v, F")| is finally bounded by

3¢
2| Aol

4 ok —
(1Afloo + =521 Kl2 | DY ) [ F = F'll oo+

3B —4)o|roK]| Eva 7 3 3HAHOO /
—_— reRlel Dy Y K b—1b
e | PR (1o R+ ) + S5 - v

Finally, [T'3(b, F')—T3%(¥', F’)| can be bounded similarly, in this case, by adding
and subtracting by the term

1
J Y,(0,b, F,¢) dOF' (o)
0

which leads to a bound for the integrals in eq. (4.57)

(1 +2BY) (| Ao + e~ 3l Kle | DY) | F = F')|,
B' (1 + BY|DoY | we 3K 70 Ko |b — 0], (4.60)

The same previous bound allows to estimate |C(F,b) — C'(F’,V')| and then

is,

2
eq. (4.57) < ﬁeq. (4.60).

Combine all the estimations above, we can find constants ¢; and ¢y such that,
d(TH (b, F), TV, F")) < e(cr|b = V| + col|F — F'|| ).

Therefore, for small enough e, we will have a contraction. O
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With the two previous lemmas we have proved that taking an 0 < € <
min{e, e3} where 7 comes from lemma 4.20 and ¢} from lemma 4.21, then
for all (A, W0(6)) € D!, for instance \° = \g and W'0(0) = (9) there is a
unique limit in C° by the operator I'" which solves eq. (4.16).

Similar to eq. (4.49)

(0, W), (A W) < —
L=t

And we must provide an estimation of d((A°, W), T*(A%, W0)) in terms
of the norm of the error function of the invariance equation eq. (4.16), i.e.
|EY| where E' = (E}, E}) is

d((A°, W), THA?, Wh0)). (4.61)

E\(6) — [wag - (3 Y AO)}WW(@) _ VN5

with Y (6, \, W, ¢) given in eq. (4.17). Thus d((A°, W), TL(X°, W9)) ad-

mits a first estimation

1
Ao + gf V(0,0 W0, £)df — \°|+ (41)
0
sup|W,"%(0) + €J e)‘OtYi(G +wt, A0, W0 ¢) dt‘—i— (£2)
0eT 0
0
sup|C' (A%, W) 4 EJ 7;(0, D e
9eT w Jo
L (£3)
[ J Y, (0, X0, W0 ¢) d&] W,%(0) do — W;»O(e)’.
0
Then
1
@) <|| E30) a8, (since [ W2°(0) 49 = 1)
0
and

0
(L) < f MENO + wt) dt‘.
0

To bound (¢3), let us start making the following observation

0
1 J EXo)do = W,°(0) — W, °(0)+

w Jo

0_ 0 o
A~ o J W, (o) do — EJ Y;(a, AW e do.
0

w w Jo
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I : : 1,01y _ 11710 11771, _
n particular, since W, (1) = W,7(0) and §, W, (0) df = 1, then
1 1
f Ey(0)do = N0 — X\ — 5J Yo (0, \°, W0 2) db.
0 0

Thus, it turns out that we can consider equivalent expressions in (¢3). More
precisely,

0 1
£ f Yoo, 0, W0 &) — U Y, (0, \°, W0 ¢) d@] W) do =
0

w Jo

0 1
ff Y, (o, A, W g) + ! U EY0)do — (\° — Ao)]Wzl’o(O') do =
W lJo

w Jo

1 0 1 1 0
WyP(0) — Wy °(0) — = f EXo)do + - f EL(0) do f W, %) do.
0 0

W Jo

With the previous identities applied now in C(\° W10), which is defined in
eq. (4.52), it is equal to

—Ll [W;O(Q) W,°(0)— 1f EX0) do+ Ll E3(6) dQﬁWQ’O(U) da} df

= W,%(0) JJEl ——J E(0) d@f f W, (o) do.

We have then arrived to

J f El(o J Ha) daW, (o) do do—

J "Bl o) Ll EL(9) dOW2(0) do

0

= —sup
|W‘ PeT

which gives us the bound (/3) < Qﬁifl |EY|| since W0 e CFFHP,
Combining the previous bounds for (¢;), (¢3) and (¢3) we get a bound for
eq. (4.61), that is,

2+ 2B?
(W) T T) < AO,HEluoo (1+ 225 )iBi.

2+ 2B!
B + [ B3 -
< il + (14 22 B

Therefore, we can find a constant C, depending on ¢, B!, w, and )y such
that eq. (4.61) holds and so also eq. (4.35).

(4.62)
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Finite order proof; W/

For a theoretical propose, we do not need to formally proof the existence and
uniqueness of W7 with j > 2 to proe the higher order terms. However, we
are going to specify the operator, its domain and the fact that for small ¢,
it will become a C%-contraction. At this moment, we know (w, W?), (A, W)
and W' with 0 <4 < j (induction hypothesis). We are going to find 7. To
obtain the invariance equation to be satisfied for W7, which we put earlier in
equation eq. (4.20). We consider the jth order terms in eq. (4.9). Note that

the coefficient for s7 in W (8, s), is
—wDW(0 —wro K o WY#))D(ro K)o W°(0)W7(9)
Therefore, Vj(é, N\, WO Wi g)is of the form:

DY (W(0), W (8), &)W (6)—
wD,Y (W2(8), W (0),e) DW(0 — wr o K o W()D(r o K) o WO(0)W7 (6).

We also note that R7(f; \) will be some expression in the derivatives of
Y evaluated at (W°(), W(@), ¢), multiplied with W° ... WJ~! Therefore,
RI(0; \) will have the same regularity as W7=!. We will see inductively by
the following argument that W7 is (L — 1) times differentiable with (L —1)th
derivative Lipschitz.

We define the following operator I,

—e{ et (?]1(9 +wt,G,e) + R{(0 + wt; \)) dt )

I(G)(0) = : T '
(G)(9) (_5 SSO e(A]*)\Q)f(Y%(& +wt, G,e) + RY(0 + wt; \)) dt

whose domain of definition is for B? > 0
CrP = (fe CLTMY(T, T x R): f(0+ 1) = f(0)},

Assume that we have already obtained W* in C* for 0 < k < j, we have
the following:

LEMMA 4.22. There is €] > 0 such that for all 0 < & < €], Fj(CijHLip) c
oL—1+Lip
y .

This follows from that A < 0 and (Aj—X¢) < 0 for j = 2 and the regularity
of WO,...,W7, Y’ and R/, and all the derivative could be bounded thanks
to the £ in front of them. Since it is very similar to the analysis of W and
W1, we will omit the detailed proof here.

We also know that IV is a C° contraction for small e.
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LEMMA 4.23. There is €} > 0 such that for all0 < £ < &, TV is a contraction
in C° distance.

This follows easily from that A < 0 and (Aj — A\g) < 0 for j > 2, and

Y is linear in W/, Thus, similarly to Lemma 4.18 or Lemma 4.21 there is
0 < p; < 1, such that

IT(G) = T(G) oo < 115G = G'|co

Taking any initial guess W7° € €7, we would take W7°(f) = (3), the
sequence (I7)"(W7°) has a limit in €7, we denote it by WJ. W7 is a fixed
point of operator IV and it solves eq. (4.20). WY is unique in the sense
of Y close to the initial guess, by the contraction argument. We will see
quantitative estimates below.

We know that

1
L= pj

W7 = W7 < [WE = T2 (W) .

With similar argument as in the error estimation of W° and W, we have

1

WE%(0) = T{ W) 0)] < 5 1] e
, o L
[W32(0) = 3 W)(0)] < — -1 Bale
Therefore, we have
Wi - witl, < L (L - B ) < Ol (163
T—p; \ AT A=A

We stress that in above, C' depend on j, €, and the SDDE, however, C' does
not depend on W70,
Remainder proof; W~

From now on, we will write:
W (0,s) =WS(0,s) + W~=(0,s), (4.64)

where W<(6,s) = Z;.Vgol W3(0)s’. Theoretically it is enough to take N = 2
although one may want to get for larger N’s in practical computations. To
make the analysis feasible, we do a cut-off to the equation satisfied by W~ in
eq. (4.22). Tt is needed in our method. This is not too restrictive. Indeed, we
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have seen when we apply our results to the original locally defined problem in
section 4.4.3, what happens for s with large absolute value is not important.

Now let ¢(t) = (6 + wt, se™) be the characteristics, we define an operator
as follows:

0
I (H)(0,s) = —5L ((1) 60)\015) Y= (H,c(t),e)p(se) dt. (4.65)

A fixed point of I'” solves the extended invariance equation, eq. (4.22).
The domain of I'”, denoted by D~, consists in the space of continuous func-
tions H: T x R — T x R, where 996 H;(0,s), i = 1,2, exists for all (0,s)

in T x R if I + m < L> and moreover it has a bounded norm | - |> N with
bound B > 0. The norm is defined by

sup |00 H (0, 5)||s|"N=™) if m < N,

H B (0,s)eTxR
|Hp>n = max Lo .
I+m<L>,i=1,2 sup |0y0T H;(0, s)| if m > N.
(0,5)eTxR

(4.66)

Under above notations in eq. (4.64), we have

~

W(g, S) = W(e —wrokKo W(97 S), e—)\moW(e,s))
= WS (9 —wrokKo I/V(H7 3)7 e*’\WOW(&S))
+ >(0 —wroKo W(e’ S), e—AmiKoW(G,s)),

and we define
W= (0,s) = W~ (—wroKo(WS+W?7)(0,s), ef)\mo(W<+W>)(9,s)). (4.67)
LEMMA 4.24. There is e7 > 0 such that for all0 < e <e7, I'"(D”) < D~.

Proof. We must prove that for i« = 1,2, and [ + m < L~, the derivatives
240mT7 (H)(0, s) exist and also that [ (H)| >y is bounded by the constant
B. Let us define, similarly to eq. (4.67),

(0,5) = H(O — wro K o (W< + H)(0, 5), se KW =H0)

We first claim that if |H| > y < B, then we can find a constant C, which
does not depend on the choice of H, Such that for [+ m < L™, i = 1,2, and
for all (0,s) e T x [—1,1],

{!aéa:@ﬁw,s)

| < C|s|M=™) if m < N,
0LomH, (6, s)| < C

) (4.68)
if m>N,
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where C' may vary from line to line. But we will take C' to be the maximum
of all C’s at each steps. To prove the previous claim, let us notice that
|H| > n < B implies that for [ + m < L~ and (6,s) € T x R,

|0b0m H,(0,5)] < Bls|N—™) if m < N,
|00 H,(0,5)| < B if m> N.

Then

|H(0,5)] < B|s|Ne M roRKeWS+1)(05)

By boundedness of r o K, we have |H;(0,s)| < C|s|V.

%H (0,s) = 0pH; (0 —wro Ko (WS + H)(Q,s),se‘AWO(WSJFH)((’vS)).
(1-wD(roK)o (W= + H)(0,5)0(W= + H)(0,s))
+ 0, Hi (0 —wr o K o (W= + H)(8, ), se A eEeW=+D(0:9)).
s(=N)D(ro K)o (W= + H)(8,5)0g(W= + H)(8, s)e KW= HD(0:s)

Then, we have
‘ 0

o0 < Bls|Ne IRl (14w D(r oK) a0 00(WS + H)|lo) +

ﬁz(ea 8)

B|s|¥ 1 ANDIEEL | M| D(r o K) |coe N1 [ 0g(WS + H) oo

The regularity of W<, H, r o K lead to
0 ~
00

Above C may depend on B, but it will not depend on the choice of H € D~.
Similarly,

H(0,s)] < Ols|V.

THL(0,5) = (0~ wr oK o (W= + H)(9,5), se™ oW =000

(—w)D(ro K)o (WS + H)(0,s)0(W= + H)(0, )

+ 0 H;(0 —wro Ko WS + H)(#,5),s o AroKo(WS+H)(0,s 9).
(14+s(=A\)D(roK)o(WS+H)(0,s)0(W=<+ H)(0,s))e ~XroKo(W<S+H)(6,s)
Then,

‘i
0s

B|S|N—16—>\(N—1)HTOKHOO

F]z(ev S) <

+ Bls|Ne MR (X 4 |w]) [D(r o K) oo 0, (WS + H) oo
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Since we have |s| < 1, regularity of W< and H lead to

0 ~
Os H; (0, s)
where C' does not depend on the choice of H as long as |H|> y < B. The
proof of the claim is then finished by induction.

Now we observe that we can bound the integrand in the operator I'~,
eq. (4.65). Indeed, we claim that there exists a constant C, such that if
|H| 1>~ < B, then |[Y(H,0,s,€)d(s)|>n < C .

Note that by definition of the cut-off function ¢, it suffices to consider

e [—1,1]. Also

< OsfN !

N-1
Y (H,0,5¢) = V(WS + H)(0,s), (W= + H)(6,s),¢) — Y Y (6)s",
i=0
where
1o
~ il ost
Adding and subtracting terms in above expression turns out Y~ (H, 6, s,¢)
to be equal to

Y (0) (YW= + H)(0,5), (W= + H)(0,5),2))|s=0.

—_——

7(<W<+H)(978)a(WS+H)(978)75)_ (g )
— — 1
?<W<<678)7ﬁ7é(678)75)_ (E )
Y(WS(0,s), WS(0 —wro K o WS(8, s), se "eEW=0:5)) )4 ’
Y (WS(,s), WS(0 —wro K o WS(6, 5), se NeEW=0:9)) o)
N-1 l
~ N Y(0)s', (&)
1=0

with
I/Vé(é’, s) = WS (9 —wrokK o (WS + H)(0,s), se_’\mo(WSJrH)(e’s)).
Let us establish bounds for (¢1), (¢s), and ({3).
1 —m—~——
(61) :f DY (1=t)W=S(0, s)+t(WS+H)(0,s), (W= + H)(0,s),)H (6, s)

0

+ DY (WS(8,s),(1 — )W=(0,5) + t(W< + H) (0, 5),¢) H (B, s)dt.
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By the regularity of Y and W<, and |H| > v < B, using that H satisfy
eq. (4.68), we conclude that ||(¢1)¢(s)|>n < C.
Similarly (¢5) is equal to

1 -
J DyY (WS(8,5), WS (6—wr o Ko(WS+LH) (6, 5), se R W00 ).
0

[(9 WSO —wroKo(WS+tH)(®,s),s AWO(WgHH)(@ﬁ)),&?)
(—w)D(ro ) o (WS +tH)(0,s)+
OWS(O —wroKo(WS+tH)(0,s), se_’\rOKO(W<+tH)(9’S)),6)
se MKW 0.9 D (0K o (WS + tH)(0, 5)(—\) | H (6, s) dt,

Similar to (¢1) case, we have that H(@g) o(8)|l >~ <

For (¢3), let us notice that > ;' Y (6)s’ is the truncated Taylor expansion
at s = 0 for

V(W=S(0,5), WS(0 — wro K(WS(0, 5)), se KWV=0D) o) (4.69)

According to Taylor’s Formula with remainder, see [LdIL10], we just need
to show that for m < N

aN—m a_l am
0sN=m 0gt 0s™

eq. (4.69),

and for m > N, l

am o

&S—mw%),
are bounded for all 6, |s| < 1, and [ +m < L>. This is true if we assume that
the lower order term has more regularity, more precisely, L — 1 > L~ + N.
We will take L= = L — 1 — N to optimise regularity. Therefore, we have
|(¢3)p(s)| >~ < C and the claim is proved.

Hence, according to eq. (4.65), if m < N, for small £, we have that

|0p03" T (H)(0,5)] < e

0

0
f 6—/\0t0|8|N—m6>\(N—m)t€)\mt dt' < B|S|N_m,
if m > N, for small €, we have that

0
10507 (H) (0, 8)| < e f e MOt dt‘ < B,

0

Therefore, for small ¢, |[I'7(H)| > v < B, when |H| > y < B. O
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LEMMA 4.25. There is €5 > 0 such that for all 0 < e <e3, I'” in eq. (4.65)
is a contraction in | - o defined in eq. (4.66).

Proof. Recall that |H|ox = supy, |H(6,5)|[s| ™. We consider
[=(H)(0,s) =T~ (H')(0, s)
o0
e [(5 ) O7 0.0 — Y acl, yse

0

Known the low order terms let us denote W = WS+ H and W/ = WS+ H'.
Then

Y= (H,c(t),e) — Y7 (H', c(t), €)
=Y (W(e(t), W(e(t),e) = Y (W'(c(t), W'(c(t)), ).

with c(t) = (0 + wt, seM).
Note that for all @, s,

W (0,s) —W'(0,s)| = |H(0,s) — H(0,s)] < |H— H|>n|s".

And adding and subtracting terms we have that I/IN/(H, s)— VV’(G, s), which
is equal to

W (0 —wroKoW(0,s),se oKW Es))_
W' (0 —wroKoW'(d,s), se_’\miKOW/(a’s))

is bounded uniformly in € and s by
‘W(G —wroK o W(h,s), se XKW Os))_

W0 —wroK oW(0,s), se MR WEs)) 4

'W’(@ —wroKoW(0,s), SG—AWTOW(Gvs))_

W' (0 —wroK o W(0,s), se MRWEs)) 4

'W’(@ _wroKo W/((g, S), Se—AWoW(G,s))_

W0 — wio K o W0, 5), 5 KW' @) < My H — H' o n]s],
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where

My = IR (| DWS |+ [DH )| Do B)lloeo] + Al sle ™7 1),

Then,
0
L= (H)(0,s) =7 (H')(6,5)] < €| H — H’o,N!S\NJ eIV G (se)dt,
0

where

M = [D\Y | + | DoY | My,

Now, notice that by definition of D!, we have that \ € [%, %’\0], then ANV —

Ao < 0if N = 2. Under this assumption, we have for all 6, s,

eM

= (H)(6,5) =T (H) (0, 9)] < =575

|H = H'[onls|".

If £ is small enough, we have for all 0, s,
= (H)(0,5) =T (H') (0, 5)| < | H — H'|o,v]s]™.
Hence for small enough ¢,
|0 (H) = 7 (H ) oy < pll H = H'flo.n,

and I'” becomes is a contraction. Note that smallness condition for € only
dependson N, B7, j=0,...,N—1,w, \,Y,and ro K. O

Now for any initial guess W=, the sequence (I'>)"(W>") in the function
space D~ , will converge pointwise to a function W=, which is indeed a fixed
point of I'>, by [Lan73|, we know that W= is (L~ — 1) times differentiable,
with (L~ — 1)-th derivative Lipschitz.

It remains to do the error analysis. Now the error function is defined as

- )\ O > > >
B 0) = [win s (71,05 )| - v 0.0, 5.00000),

along the characteristics c(t) = (6 + wt, se*), we have

E>(c(t)) — [wa(, + (AOS LY )\0>]W>’0(c(t)) — Y (WO, e(8), ) b(se™).

Hence,
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Based on proof of Lemma 4.24, we know that |E~ |y is bounded, therefore,
for the maximum norm,

=07 = WOl € B olsl®,
and then
1
0= 100~ V)
If we take account of error estimations in egs. (4.50), (4.62), (4.63), and
(4.70), we see that [ = 0 case of eq. (4.34) is proved. Inequality in eq. (4.34)
for [ # 0 is obtained using interpolation inequalities. Indeed, the norm

[W (0, 5) =W (0) = WH(0)s — W00, 5) e

W= = W=y < [E Jonls™. (4.70)

is bounded by

N-1
[sPIW? =W e + W = W0 <

J]=

— o

N—
. . 1— l B
ch’S‘JHE]HCoL727N +C>(‘3’N”E>HO,N)1 =l
j=0

for some constants ¢; and ¢~ independent of W70 for 0 < j < N, W>0 &0
and \°. Taking their maximum we get the upper bound eq. (4.34).

4.8 Numerical experiment

The van der Pol oscillator [vdP20] is an oscillator with non-linear damping
governed by the second-order differential equation [HG15].

The state-dependent perturbation of the van Der Pol oscillator has the
form

a(t) = y(t),
g(t) = p(1 — x(t)*)y(t) — 2(t) + ex(t —r(x(t))),

with, for instance, u = 1 and € = 107*. For the delay function r(x) we
are going to consider two case. A pure state-dependent delay case or just a
constant delay case. That is, r(z) = e** or just r(z) = 8 with 5 = 0.006.

The first step consists in computing the change of coordinate K, the
frequency wq of the limit cycle and its speed rate A\g < 0 for ¢ = 0. A limit
cycle close to (z,y) = (2,0) with frequency wy = 0.1500760842377394 and
Ao = —1.0593769948418550 allows to run Algorithm 4.1 and so generate its
isochrons in Figure 4.2.

(4.71)
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Figure 4.2. Limit cycle and its isochrons for the unperturbed,
eq. (4.71).

4.8.1 State-dependent delay perturbation

Using Algorithm 4.5 for the state-dependent r(x) = 3e**, with a tolerance of
10~ in double-precision we obtain W9 and w = 0.1500677573762797. We
notice a speed factor of 2.25 using the NFFT3 w.r.t. to the simulation with
a direct implementation of the Fourier composition, that is, the one that we
use in section 4.6.3 for the orders s/ with j > 1 but with polynomials of
degree 0.

After that we can go forward and use Algorithm 4.6 compute the W1,
and A that with the same tolerance we get A = —1.0569382672350053. Then
using the criterion in section 4.6.2 for the scaling factor we can reach the
first 4 next orders whose isochrons are plotted in Figure 4.3. In that case the
mean speed factor using the two different numerical composition of Fourier
series, that is Theorems 4.9 and 4.10 is around 1.3 of the former approach.
Both two approaches differ essentially in round-off or value smaller than the
tolerance requested.

4.8.2 Constant delay perturbation

Our method also applies to the constant delay case r(z) = 8. In particular,
in some aspects the constant delay case is simpler. Indeed the expression of
W is just W(0,s) = W(0 —wp, se=). However the composition w.r.t. K is
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still needed to do it with jet transport for the step item 4 of Algorithm 4.6.

In this simulation and with the same tolerance of 10~ in double-precision,
we get w = 0.15600677573212776, A = —1.0569382495053311 and 10 order in
less than 4 minutes. Figure 4.3 shows the isochrons for the constant delay
case.

state delay constant delay
4 T T T T 4 T T T T
(K O W)o (K o W)()
3 3
2 2 b W
1F 1L H’M
> 0F > 0t
\
-1 - -1 &
M N
. J) -3 =
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-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
x x

Figure 4.3. Limit cycle and its isochrons for the perturbed
case KoW of eq. (4.71) with state-dependent map
r(x) = Be**, and constant map r(z) = 5.
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Conclusions and future work

In reference to the introduction of Chapter 2, this thesis is a splicing point
in the author’s life.

Thanks to that point, we have had the chance to write down a formal
interpretation of the notion of jet transport in high order variational flows.
In particular, we have proved in Chapter 1 that independently of the nu-
merical method that integrates an ordinary differential equation (ODE) with
their variational equations, that is, the ODE itself and the (normalised) vari-
ation w.r.t. the initial conditions or parameters are exactly the same like
integrating the same initial ODE with jet transport, not only at the end of
the integration also in the intermediate steps. That justifies, for instance,
stepsize control of the integrator with jets.

We have provided formal proofs for the classical methods of integration
such as Runge-Kutta methods and Taylor method. Despite of the simplicity
in the proofs, we did not find any so clear proofs for this result which seems
to be basic to understand the jet transport in higher orders. The good un-
derstanding of the jet transport in numerical integrators allowed to consider
the Poincaré map of an arbitrary ODE and its high order derivatives which
are exactly obtained via jet transport on the numerical integrator.

There are two kind of Poincaré maps; the ones that are obtained by a
temporal section and the ones coming from a spatial section. The former
do not present any trouble in the use of jet transport but the latter have a
limitation in use of jet transport. In essence the problem is due to the fact
that the spatial derivatives and the temporal ones are mixed in this case.
That implies that the integrator must be able to capture the same order of
differentiability that is being requested in the jet transport. While Runge-
Kutta methods and other similar methods have a limitation in the order,
Taylor method can be performed in any temporal order and then it allows
to agreed with the one for jet transport.

Because of the exactness in the use of jet transport, we can claim that
the computation of the parametrisation method via jet trasnport in multi-
precision arithmetic is exactly the same than if we added the full system of
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variational equations in the integration.

The result in this project opens many new ones that can be understanding
by the use of jet transport. For instance, normal forms in higher orders,
control theory in higher orders, accurate integrator with suitable stepsize
control, and parametrisation method of tori in higher dimension as well as
its continuation.

In Chapter 2, we have seen that the use of an interpolation method, based
on a linear combination of the spatial points applies for jet transport which
means that the results in Chapter 1 can be extended for delay differential
equations (DDEs). In that chapter, we have focused on the constant delay
case and we explained in detail the results in [GJS18] which proofs theoretic-
ally the equilibrium points and their stability are the same as the DDE which
takes the delay equals to zero for a specific kind of constant DDE. However,
these kind of results do not quantify the stability and after some preliminary
simulations we thought to be interested in providing a further study in the
quantification of the stability in terms of the delay. Using the jet transport
we avoided to solve the transcendental characteristic equation, which allows
to quantify the stability in its solution with major real part.

Chapter 3 continues the results in Chapter 2 and they are applied in the
numerical computation of periodic and quasi-periodic solutions as well as in
their stability and continuation. In that context the linear system to solve
in a Newton approach can become large but due to the compactness of the
Poincaré map in the DDE the iterative linear solver and the corresponding
preconditioners have become a good alternative to use a matrix-free Newton
method.

Because of the timings in the results (which are different in the writ-
ing of the thesis), we establish as coming projects the use of the results of
Chapters 1 and 2 for the parametrisation of constant DDEs of (un)stable of
(quasi)periodic orbits for higher orders, Lyapunov exponents, etc. In the case
of manifold computation for DDEs, we know in advance that the unstable
manifold will be finite dimensional and the stable one will be infinite dimen-
sional but some of the directions will be more important than others, and
they can be quantify by the associated element in the spectrum. Therefore,
as we have done in Chapter 4 it makes sense to firstly focus on the slowest
stable direction.

Chapter 4 has been allowed us to get the parametrisation of the slowest
stable manifold of state-dependent delay differential equations (SDDEs) that
are obtained as a perturbation of an ordinary differential equations. Although
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it is a perturbation result, it turns on again the field of SDDE that in the last
years have been a kind of stuck. We strongly believe that the novel techniques
developed in Chapter 4 opens a lot of potential new results, specially due to
its a postertor: formulation. In particular, new research directions will be in
the existence and computation of the full infinite stable manifold, the use of
Lindstedt series for SDDEs, and bifurcation theory.

Besides all the potential new projects coming from the previous chapters,
we would like to mention other projects that we are working on now and
we expect to have results soon. For instance, the project with A. Jorba and
J.P. Lessard for the existence of choreographies for state-dependent motion
of bodies whose speed of gravitational interaction is finite. The one with
R. Calleja, A. Celletti, R. de la Llave for the rigorous proof of torus in the
spin-orbit problem with tidal torque. And also the one with J. Jaquette and
A. Jorba about rigorous integrators.
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