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Abstract

In this thesis, we study the automatic translation of documents by taking into account
cross-sentence phenomena. This document-level information is typically ignored by
most of the standard state-of-the-art Machine Translation (MT) systems, which focus
on translating texts processing each of their sentences in isolation. Translating each
sentence without looking at its surrounding context can lead to certain types of trans-
lation errors, such as inconsistent translations for the same word or for elements in
a coreference chain. We introduce methods to attend to document-level phenomena
in order to avoid those errors, and thus, reach translations that properly convey the
original meaning.

Our research starts by identifying the translation errors related to such document-
level phenomena that commonly appear in the output of state-of-the-art Statistical
Machine Translation (SMT) systems. For two of those errors, namely inconsistent
word translations as well as gender and number disagreements among words, we
design simple and yet effective post-processing techniques to tackle and correct them.
Since these techniques are applied a posteriori, they can access the whole source and
target documents, and hence, they are able to perform a global analysis and improve
the coherence and consistency of the translation. Nevertheless, since following such
a two-pass decoding strategy is not optimal in terms of efficiency, we also focus on
introducing the context-awareness during the decoding process itself. To this end, we
enhance a document-oriented SMT system with distributional semantic information
in the form of bilingual and monolingual word embeddings. In particular, these
embeddings are used as Semantic Space Language Models (SSLMs) and as a novel
feature function. The goal of the former is to promote word translations that are
semantically close to their preceding context, whereas the latter promotes the lexical
choice that is closest to its surrounding context, for those words that have varying
translations throughout the document. In both cases, the context extends beyond
sentence boundaries.

Recently, the MT community has transitioned to the neural paradigm. The fi-
nal step of our research proposes an extension of the decoding process for a Neural
Machine Translation (NMT) framework, independent of the model architecture, by
shallow fusing the information from a neural translation model and the context se-
mantics enclosed in the previously studied SSLMs. The aim of this modification is to
introduce the benefits of context information also into the decoding process of NMT
systems, as well as to obtain an additional validation for the techniques we explored.

The automatic evaluation of our approaches does not reflect significant variations.
This is expected since most automatic metrics are neither context- nor semantic-
aware and because the phenomena we tackle are rare, leading to few modifications
with respect to the baseline translations. On the other hand, manual evaluations
demonstrate the positive impact of our approaches since human evaluators tend to
prefer the translations produced by our document-aware systems. Therefore, the
changes introduced by our enhanced systems are important since they are related to
how humans perceive translation quality for long texts.
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Chapter 1

Introduction

1.1 Motivation
Machine Translation (MT) can be defined as the use of a computer to translate a
message from one natural language into another. It is a well-known Natural Language
Processing (NLP) research area which has become quite popular nowadays. MT is
very present in our daily lives. We use it to access information in other languages on
the Internet or to figure out how to say something in languages we do not master for
interaction and communication purposes. We are frequent users of the most popular
online translation services (e.g., Google Translate1, Bing2, Reverso3, or DeepL4) and
we are also used to consuming the MT services provided by social networks (e.g.,
Facebook5 or Twitter6), which allow us to access the published information in our
preferred language. MT is also a common feature in email services, like Gmail7
or Outlook Live8, which use it to facilitate information exchange across language
barriers. MT is present even in telecommunication applications like Skype9, which
offers video chats with real-time speech-to-speech translation services. This extended
use of MT technology makes us familiarized with its advantages and drawbacks.

Although current MT systems have achieved good translation quality, even com-
parable with human translation quality in some cases (Hassan et al., 2018; Wu et al.,
2016), they still hold a known limitation: they work at sentence level. MT sys-
tems translate a document sentence by sentence, taking into account a short context
and ignoring document-level information. On the one hand, Rule Based Machine

1https://translate.google.com
2https://www.bing.com/translator
3http://www.reverso.net
4https://www.deepl.com
5https://www.facebook.com
6https://twitter.com
7https://mail.google.com
8https://outlook.live.com
9https://www.skype.com/

7

https://translate.google.com
https://www.bing.com/translator
http://www.reverso.net
https://www.deepl.com
https://www.facebook.com
https://twitter.com
https://mail.google.com
https://outlook.live.com
https://www.skype.com/
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Translation (RBMT) systems (Bennett and Slocum, 1985) and Statistical Machine
Translation (SMT) systems (Brown et al., 1990; Koehn et al., 2003) apply rules or
statistical models, respectively, to estimate the best translation for a phrase only
looking at most at the sentence context. On the other hand, Neural Machine Transla-
tion (NMT) approaches (Bahdanau et al., 2015), both those based on Recurrent Neu-
ral Networks (RNN) and those exploiting attentional networks (Transformer), work
with vector representations for sentences, only taking into account the intra-sentence
information. In either case, ignoring extra-sentential information is required due to
performance concerns and to the difficulty of properly representing long-distance de-
pendencies. SMT systems rely on local n-gram information, and for NMT systems it
is still an open problem how to represent long sequences of words with fixed-length
vectors. Thus, state-of-the-art systems perform translation assuming that every sen-
tence can be translated in an isolated way.

However, texts contain relationships among words that hold their coherence, co-
hesion, and consistency across sentences. These linguistic properties establish the
connectedness in a text and can be defined as follows (Dijk, 1977; Halliday and
Hasan, 1976; Sanders and Pander Maat, 2006). Coherence is a semantic property
of discourses, based on the interpretation of each sentence relative to the others; it is
what makes a text a unified whole and semantically meaningful. Cohesion refers to
relations that exist within the text; it is the grammatical and lexical linking within a
document that holds it together. And lexical consistency is the quality of compatibil-
ity for the words in a document by, e.g., repeated use of the same words or lemmas.
We consider that a good translation should reflect and maintain these qualities at the
same degree as they appear in the source text. This is the motivation for our work,
which explores techniques to improve the coherence and cohesion levels of the trans-
lations generated by state-of-the-art MT systems. We take as inspiration how human
translators can resolve these phenomena naturally, by using the entire document’s
context information.

Some of the typical mistakes of current MT systems can be linked to the lack of
contextual coherence present in the followed translation approaches. As an example
to illustrate this phenomenon, consider using an MT system to translate a news item
in English about a claim process in some office. The word “desk” can appear several
times and it can be translated into Spanish as “mostrador”, “ventanilla”, “escrito-
rio”, or “mesa”. These Spanish words are not synonyms. Where “mostrador” and
“ventanilla” can both be a counter where a service is offered, “mesa” and “escritorio”
refer to a piece of furniture. So, “desk” is a word with ambiguous translation into
Spanish. Within the context of our example, “mesa” and “escritorio” are not correct
translations for “desk”. We address this as a problem of contextual coherence, because
the aim of our work is to use inter-sentence context to help the system to choose a
more adequate translation without the need of any knowledge from the domain.

Another typical issue is word agreement across translation segments. Coreference
chains confer cohesion to a document, and it is desirable to see this property projected
into the produced translations. Unfortunately, this is a property that is typically
difficult to maintain for MT systems. Also, gender and number agreement between
words is sometimes challenging for current MT approaches. For example, consider
the following set of sentences in a source document in English: “She studied civil
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engineering. [. . . ] The civil engineer was the youngest in the company.” These
sentences can be translated into Spanish as “Ella estudió ingeniería civil. [. . . ] El
ingeniero era el más joven de la empresa.” This translation is correct in Spanish if we
look at it sentence by sentence in isolation. However, it is incorrect if we consider it in
its entirety as part of the same document, since there is no gender agreement between
the translations of “the engineer” and “she”. Taking document context into account,
the correct translation would be “Ella estudió ingeniería civil. [. . . ] La ingeniera era
la más joven de la empresa.”

Our work is motivated by the idea that exploiting discourse information would
help to improve the quality of the resulting machine translations at document level.
All the techniques we explore in this thesis attempt to find the best way to exploit
such kind of information within the current MT frameworks.

1.2 Context
SMT systems (Koehn et al., 2007) were state-of-the-art when the work we present in
this thesis started. Also, the first document-level MT approaches were being built
on the same principles and could be seen as a direct evolution within the SMT sys-
tems (Hardmeier et al., 2012). Thus, since SMT systems were the dominant paradigm
in MT, both at phrase and document level, most of our research was naturally planned
using these approaches.

Nevertheless, NMT systems (Bahdanau et al., 2015) have rapidly risen to become
the new leading paradigm of the MT area, obtaining noticeably better translations
than SMT systems, especially with respect to their fluency (Wu et al., 2016) and in
some cases claiming to reach human parity (Hassan et al., 2018), although there is
still room for improvement (Toral et al., 2018).

Thus, we expanded the initial research plan for this thesis to introduce some of the
approaches tested on SMT systems into an NMT decoding framework. It is important
to reiterate that standard systems from both approaches are usually designed at
sentence or phrase level, sharing the limitation of ignoring inter-sentence contextual
information. Hence, context-aware enhancements for SMT are also desirable for NMT.

1.3 Research Goals
The general goal of the work presented in this thesis is to improve MT quality by
exploring the use of document-level information at different steps of the translation
process in order to fix or prevent some of the errors made by sentence-level MT
systems. In particular, the main goal is to improve machine translation coherence
and cohesion by leveraging the information given by the relations of the words along
a document.

In order to achieve this goal, we define a research strategy with the following steps:

1. Analyzing translation errors related to document-level phenomena and designing
simple methods to tackle them. A first step towards improving document-level
machine translation is to identify those phenomena that confer coherence and
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cohesion to documents and are susceptible to be lost in the MT process. Before
exploring ways to solve such mistakes as part of the MT process, it is interest-
ing to implement a set of simple post-processing techniques and evaluate their
impact.

2. Capturing the semantic information of a document in a useful manner to aid
the MT decoding process. Undeniably, leveraging a document’s semantic context
should help improve the coherence and cohesion levels of its translation. Thus,
it is necessary to explore ways to introduce contextual semantic information
into the MT process. In particular, our final intention is to extend a document-
oriented decoder to incorporate document context semantics.

3. Enhancing an NMT framework using context-aware techniques. To finalize the
work of this thesis, one of our goals is to integrate the explored ideas into the
NMT paradigm.

1.4 Main Contributions
The main contributions of this thesis are directly related to the research goals de-
scribed in the previous section. Our work has resulted in several published works,
mainly as conference papers. In fact, much of the content of this thesis is an update or
extension of the published papers. Our set of contributions and related publications
is as follows:

• Analysis of translation errors related to document-level phenomena and the de-
velopment of a set of simple, yet effective, post-processing techniques to handle
them. Since the particular document-level phenomena they handle are sparse,
we need a manual evaluation to assess their effectiveness because the automatic
evaluation metrics do not capture their improvements. These findings were pub-
lished as a technical report (Martínez Garcia et al., 2014b) and presented in the
SEPLN2014 conference (Martínez Garcia et al., 2014a).

• Demonstrating that bilingual word embeddings are capable of modeling seman-
tic relations that help the SMT process. We observe that the quality of the
translation and alignments previous to building the semantic models are crucial
for the final performance of the embeddings. Word embeddings prove to be
helpful in the task of lexical substitution for words that are ambiguously trans-
lated within a document. This work resulted in a publication in the SSST-8
conference (Martínez Garcia et al., 2014c).

• Showing that the introduction of bilingual word embeddings guides document-
oriented SMT decoders towards more coherent and cohesive translations. Al-
though we only observe a slight improvement in the results of automatic evalu-
ation metrics, the improvement is consistent among metrics and is larger as we
introduce more semantic information into the system, getting the best results
when using the models with bilingual information. This approach was presented
in the EAMT2015 conference (Martínez Garcia et al., 2015).
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• Designing new strategies that guide document-oriented decoders through the trans-
lation search space towards more consistent, coherent, and cohesive translations,
focusing primarily on maintaining lexical consistency. Our strategies based on
word embeddings aid the decoder to assess the compatibility of the possible
translations for ambiguous words with their context. This extension led to
participating in the EAMT2017 conference (Martínez Garcia et al., 2017).

• Enhancing the NMT decoding algorithm to include contextual semantics cap-
tured by a language model based on word embeddings. Our experiments show
how the semantic language models can help NMT systems to produce better
translations. Our approach does not need to modify the training process, so we
do not increase the training time, or document-level annotated data. This work
is under review for publication at the time of submission of this thesis.

1.5 Outline
The remainder of the thesis is organized as follows. In order to contextualize our
research, Chapter 2 revisits the state-of-the-art of the MT research area, focusing
on the main technologies of the SMT and NMT paradigms, both at sentence and
document level. Chapters 3 to 6 present the results of our research.

In Chapter 3, we analyze some of the translation errors related to document-level
phenomena (Section 3.1) and present a set of post-processing strategies to handle
them (Section 3.2).

Afterwards, in Chapter 4, we describe how to introduce word embeddings for
decoding. First, we study the applicability of word embeddings to enhance the MT
process in general (Sections 4.1 to 4.3). Then, we explain a method to enhance a
document-oriented SMT decoder with word embeddings working as Semantic Space
Language Models (Section 4.4).

Next, Chapter 5 describes our extension of a document-oriented SMT decoder to
handle the particular document-level phenomenon of lexical choice consistency for a
translation. We present a new feature function that guides the decoder towards more
lexically consistent translation candidates (Section 5.2), as well as a new strategy to
shortcut the exploration of the search space (Section 5.3).

Chapter 6 presents our approach to extend the usual NMT decoding process to
take into account contextual semantics. In particular, we extend the beam search
decoding algorithm by fusing the discourse information captured by the models we
describe in Chapter 4 to work in tandem with the NMT model.

Finally, Chapter 7 draws the conclusions of the work of this thesis and describes
possible avenues of future work.

Additionally, Appendix A describes a new document-level decoding strategy based
on a swarm optimization algorithm, integrated into the decoder used in Section 4.4
and Chapter 5 as an alternative to its default hill climbing strategy.





Chapter 2

State of the Art

2.1 Machine Translation Background
Machine Translation is one of the earliest problems in Natural Language Processing
and Artificial Intelligence. The origins of MT as a field itself can be dated in the
late 1940s, with the end of World War II and the birth of the first electronic com-
puters in the United States. In the 1950s, the original MT systems were very simple
but obtained promising results. However, after the initial euphoria, there was an
increasing acknowledgment of the linguistic difficulties involved that produced a lack
of productivity in the area during the 1960s. This discouraging atmosphere ended up
with the Automatic Language Processing Advisory Committee (ALPAC) report in
1966 (Pierce and Carroll, 1966). In such document, MT was qualified as useless and
stated as a slower and more expensive procedure than human translation. Therefore,
there was a recommendation not to invest in MT but to do it in other more basic NLP
tasks instead. It was not until the late 1980s, with the rise of more powerful and faster
computers, that the MT field emerged again. Statistical approaches appeared in the
1990s becoming the most successful MT systems until the rise of neural architectures
in 2015.

MT approaches can be classified according to different criteria. According to their
usage, there are systems designed for machine-aided translation, both for human
translation with machine support and for machine translation with human support.
On the other hand, there are fully automated translation systems, which typically
prioritize speed over quality.

Regarding the level of linguistic analysis performed, MT systems can be classified
in direct, transfer, and interlingua. The Vauquois triangle of Figure 2.1 shows this
classification. The direct approach performs a word-by-word or phrase-by-phrase
translation. The transfer approach makes a syntactic and/or semantic analysis of the
input to build an abstract representation of the source. This abstract representation
is then transferred to the abstract representation of the target language, from which
the output is generated. The interlingua approach is similar to the transfer approach

13
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Figure 2.1: The Vauquois Triangle for the classification of MT systems according to
the level of linguistic analysis.

but using a single abstract representation common to all languages.
According to the architecture of the system, we can distinguish between rule-

based systems and empirical systems. Rule-based systems (RBMT) use a set of rules
to describe the translation process. Typically, these rules are established by a group
of human experts and drive the translation process. Although these systems obtain
high quality syntactics of the translated output, the process followed is generally
slow, expensive, not portable, and language dependent. RBMT systems are usually
characterized also by a linguistic transfer process from a syntactic or semantic analysis.

On the other hand, empirical systems are data driven. They get knowledge au-
tomatically, typically from a sentence-aligned parallel corpus. Although it is not a
common procedure, these systems can also include some linguistic analysis too. Since
these systems learn automatically from data, there is no need for human interaction
at least at translation time. Example-based Machine Translation (EBMT), Statistical
Machine Translation (SMT), and Neural Machine Translation (NMT) systems are
all empirical systems. Briefly, the EBMT systems build new translations using trans-
lations compiled previously as a basis. SMT systems consider that each sentence of
the target language is a possible translation of a sentence in the source language and
assign a probability to each of them. NMT systems use artificial neural networks to
predict the likelihood of a sequence of words in the target language given a sequence
of words in the source language.

2.1.1 Statistical Machine Translation
SMT systems assign a probability to every possible translation for each sentence and
choose the final translation by finding the one that maximizes this probability. For-
mally, SMT systems estimate the probability of a target sentence y = (y1, . . . , yN )
being the translation of a source sentence x = (x1, . . . , xM ), and find the best transla-
tion ŷ by selecting the target sequence that maximizes such probability (Brown et al.,
1990):

ŷ = arg max
y

p(y|x)
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Making an analogy with the noisy channel model (Shannon, 1948), that posterior
probability is rewritten with the Bayes’ rule into:

ŷ = arg max
y

p(x|y)p(y)

having already removed the divisor p(x) as it does not affect the result of arg max.
In this reformulation, p(x|y) is the reverse translation probabilistic model. In other
words, it represents the probability of seeing the sequence x of source words as the
translation of the sequence y of target words. Also, the factor p(y) represents a
Language Model (LM) that estimates the probability of seeing the sequence of words
y in the target language. This objective probability can be decomposed using a log-
linear model:

log p(y|x) ∝ log p(x|y)p(y) = log p(x|y) + log p(y)

and re-written in a more general way as the sum of different feature functions fi that
represent probabilistic models that capture different linguistic aspects:

log p(y|x) =
∑
i

wifi(x, y) + C

The probabilistic models fi are trained on large parallel or monolingual corpora,
depending on the feature characteristics. In turn, the weight parameters wi are
tuned on smaller parallel development sets using standard generic algorithms to that
end, such as MERT (Och, 2003), PRO (Hopkins and May, 2011), or adaptations of
MIRA (Crammer et al., 2006) for SMT (Chiang et al., 2008; Watanabe et al., 2007).
These probabilistic models can be applied at different translation unit levels: word,
phrase, or even sentence.

The basic structure of a phrase-based SMT system (Koehn et al., 2003) is shown
in Figure 2.2. First, there is a pre-processing step where the source text is normalized
and tokenized. Then, there is a process of phrase extraction from the parallel cor-
pus used to train the system. In this stage, the source language phrases are aligned
with their corresponding target language ones. From these alignments, a probabilistic
translation model is built capturing the information about the most probable transla-
tions of a given source phrase. Each of these translation pairs is assigned a probability,
estimated by frequency counts in the training corpus. In a similar way, a stochastic
language model is derived from a monolingual corpus to represent the information of
the target language that must be present in a good translation output. Using that
information, the decoder builds several possible translations from a source sentence
and ranks them using a scoring function. This function can be defined using different
language features depending on which characteristics to reinforce in the translation
system. Finally, there could be a post-processing step where some translation errors
can be fixed.

The most commonly used decoding algorithm in phrase-based SMT is the beam
search (Koehn et al., 2003). It constructs the translation of each sentence incremen-
tally: it starts with an empty hypothesis and expands it iteratively with possible
phrases, thus producing diverging hypotheses of varying quality. Since the amount of
possible hypotheses grows exponentially as the sentence building advances, extensive
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Figure 2.2: Structure of a state-of-the-art SMT system.

pruning of the search space must be performed. To this end, two distinct techniques
are applied. First, groups of similar hypotheses are merged in a recombination process
like the one proposed by Och et al. (2001), which consists in discarding the hypoth-
esis with the worst score from any pair of hypotheses that cannot be distinguished
according to the language and translation models. In particular, indistinguishable
hypotheses are essentially those that have translated the exact same part of the input
sentence and their trailing translated words coincide. And second, only a handful of
the hypotheses remaining after the recombination is retained for further expansion.
In particular, those that seem most promising according to the score of the already
constructed part and an estimated score for the remaining part. The set of hypotheses
the algorithm works on conforms the beam, which is of a fixed size, usually small.

2.1.2 Neural Machine Translation
Although SMT systems have shown several advantages, such as training speed and
easy adaptation to new domains, with the pass of time their limitations have also
been identified, such as the generation of local translations that do not model entire
sentences.

Neural Machine Translation arises from the comeback of deep learning methods
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Figure 2.3: Encoder-Decoder NMT system with Attention mechanism.

based on artificial neural networks (NN). Thus, NMT is based on developing neural-
based end-to-end translation systems.

Some first attempts of pure NMT appeared in the late 1990s in Spain. Forcada
and Ñeco (1997) proposed a recursive hetero-associative memory (RHAM) model that
was able to learn general translations from examples. Also, Castaño and Casacuberta
(1997) proposed an NN-based system with promising results. However, these ap-
proaches reported that the size of the neural networks required for the MT task, and
thus also their training time, was excessive for the computation power available at
that time.

Modern pure NMT systems appear in the 2010s integrating word embeddings
(Mikolov et al., 2013a,c) and neural language modeling techniques into MT systems.
The first approaches tried to combine neural components with SMT approaches either
in a chain (Schwenk et al., 2006) or introducing them as a new component of the MT
systems (Devlin et al., 2014). End-to-end neural MT systems are designed from
the “sequence-to-sequence” perspective. They are devised to be able to generate an
output sequence from an input one. Sutskever et al. (2014), Cho et al. (2014a,b), and
Bahdanau et al. (2015) proposed systems that implement a neural architecture based
on two main components: the Encoder and the Decoder (see Figure 2.3). The Encoder
projects a source sentence with variable length into a set of continuous vectors with a
fixed length, and then, the Decoder takes this continuous representation to generate a
target sentence. These systems are trained to maximize the conditional log-likelihood
of the bilingual training corpus:

max
θ

1
N

N∑
n=1

log pθ(yn|xn)

where θ is the set of the model parameters. For an encoder-decoder model the condi-
tional probability of the next word is:

yt = softmax
(

DNN
(
~HTM
t , yt−1, ~Ct

))
(2.1)
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Figure 2.4: Attention mechanism functionality as described by Bahdanau et al.
(2015). The example depicts the soft alignments handled by the NMT
system on a particular sentence.

where DNN represents the deep neural network that conforms the decoder, ~HTM
t is

the hidden state from the decoder, and ~Ct is the context vector from the encoder.
The context vector is the encoder hidden state and represents a summary of the
whole input sentence. Finally, the output is a softmax layer that draws a probability
distribution over the target vocabulary. In these approaches, the encoder and the
decoder are built using Recurrent Neural Networks (RNNs) (Bengio et al., 2013).
These neural nets are designed specifically to deal with sequence problems. They are
able to take into account the previously processed/generated context before generating
the next step in a sequence. RNNs are mainly built using LSTM (Hochreiter and
Schmidhuber, 1997) or GRU (Cho et al., 2014a) neural units. Both of these neuron
types include gating mechanisms that allow the neurons to remember the information
from the previous step with a certain probability.

Introducing bidirectional networks in the NMT systems architecture shows a sig-
nificant improvement. The NMT architecture by Bahdanau et al. (2015) includes a
bidirectional encoder (BiEncoder) that projects the source sentence into a continuous
vector by processing it from left to right but also from right to left, capturing in this
way sentence context from both sides of sentence words.

The main contribution to NMT systems was the introduction of the Attention
Mechanism (Bahdanau et al., 2015). This module regularizes the output projection
by learning soft alignments among the source sentence words and the generated target
words. So, the system not only learns to translate, but it also learns a probability
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distribution of the alignments among the input and the output words. Figure 2.3
depicts the attentional encoder-decoder NMT architecture, and Figure 2.4 shows how
the attention mechanism relates source and target words through a probability dis-
tribution. For these systems, the probability of the following predicted word in a
sequence is calculated as described in Equation 2.1 but being Ĉt a weighted sum of
the annotations where the encoder maps the input sentence. In particular, the context
vector is computed as follows:

Ĉt =
n∑
j=1

αtj~hj

with αtj being the weight:

αtj = exp(etj)∑n
k=1 exp(etk)

where the soft-alignment weights etj reflect how well the inputs around position j and
the output at position t match. They are computed by:

etj = a( ~HTM
t−1 ,

~hj)

depending on the hidden state ~HTM
t−1 previous to generating yt and on the jth an-

notation ~hj of the input sentence. The alignment model a is a feed-forward neural
network which is trained jointly with the rest of the components of the system. These
attention weights then perform normalization on the output taking into account the
alignment information among source and target words.

Typically, in order to generate the target sentence, the NMT systems implement
a beam search algorithm to explore the space of translation candidates and finally
propose the sequence that maximizes the translation probability.

The latest NMT systems propose the use of encoder-decoder implementations
based on the Attention Mechanism (Vaswani et al., 2017). In particular, the Trans-
former architecture claims that attention is all you need to have a good MT system.
The Transformer also follows the encoder-decoder architecture, but it does not in-
clude any recurrent or convolutional network. Instead, this approach implements a
set of techniques that allow knowing the sequence. First, it employs positional em-
beddings to be aware of the position of the tokens in the sequence. Also, it includes
position-wise feed-forward layers, that can be understood as two convolutions with a
kernel of dimension 1. Finally, it implements multi-head self-attention layers. These
layers allow attending to information that comes from different representation sub-
spaces, acting as a set of attention layers working in parallel. The Transformer is the
NMT architecture that achieves the best results across many language pairs nowa-
days, producing very fluent translations and reducing training times. However, it
seems to be sensitive to parameter tuning and to require high usage of memory when
translating (Popel and Bojar, 2018).

Independently of their neural architecture, NMT systems cannot afford an open
vocabulary translation, i.e., they can only perform translations managing a fixed
source and target vocabularies. One of the most used approaches to solve this problem
is sub-unit segmentation by Byte Pair Encoding (BPE). Sennrich et al. (2016) apply
this encoding algorithm to segment infrequent words without taking into account
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any linguistic information, just their character pair frequencies. Some morphological
based segmenting approaches exist (Cotterell et al., 2015; Virpioja et al., 2013) that
have proved to be effective when dealing with morphologically rich languages like
Turkish (Ataman et al., 2017), Basque (Etchegoyhen et al., 2018), or Finnish (Ding
et al., 2016). However, handling open vocabularies is still an open problem for NMT
systems.

NMT systems have proved their high performance in a short time, providing more
fluent translations than SMT systems. However, they also have several limitations.
For instance, they need a huge amount of data to build translation models with
good performance and they seem to be more sensitive to data quality than SMT
systems (Khayrallah and Koehn, 2018; Koehn and Knowles, 2017). Also, similarly
to SMT approaches, they are typically designed to perform translations at sentence
level. They do take into account intra-sentence context information due to the vector
projections they handle, but they are not capable of transferring information across
different sentences, as they handle each sentence in isolation.

2.2 Document-Level Machine Translation
SMT and NMT systems typically translate documents sentence by sentence, sepa-
rately, ignoring many document-level phenomena. RBMT systems define their trans-
fer rules at most at the sentence level. Thus, although any document usually follows
a structure, they are generally translated as a collection of independent sentences,
ignoring in the process the document-level information. This behavior is pervasive in
the current MT approaches.

Limitations of the sentence-by-sentence translations appear in coherent discur-
sive pieces as news, encyclopedic articles, etc. Potential advantages of working at
document level in these cases could be, for instance, the resolution of lexical inconsis-
tencies between translations of the same word and the agreement among coreferent
mentions of the same entity. Lexical ambiguities could be better resolved by using
the information provided by the surrounding sentences since topical coherence should
be maintained (e.g., if the word “desk” is translated under an administrative topic as
“ventanilla” or “mostrador”, it makes no sense to translate it as “mesa” or “escritorio”
in Spanish).

Moreover, it is difficult to correctly translate coreferent mentions of an entity
without knowing its antecedent one. For instance, if the following sentences appear
in a source document “Maria won the first prize. She was very happy. The winner
was the youngest one.”. It is easy to see that the words “Maria”, “She”, and “The
winner” define a coreference chain, and must agree in number and gender. One of
its possible correct translations into Spanish is “Maria ganó el primer premio. Ella
estaba muy contenta. La ganadora era la más joven.”, where the corresponding target
words in the projected coreference chain are coherent in gender and number. However,
using a state-of-the-art SMT system1 we obtain the following translation “Maria ganó
el primer premio. Ella estaba muy feliz. El ganador fue el más joven.”, where the
agreement in gender is lost in the last sentence.

1By using Google Translate or Bing Translator.
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These are two classic examples of the need for translating a document as a whole,
but the benefits should increase when handing more phenomena related to the dis-
course information within a document.

2.2.1 Document-Level Statistical Machine Translation
The beam search algorithm presented by Koehn et al. (2003) and implemented in the
Moses decoder (Koehn et al., 2007) is considered the state of the art in the SMT
area. Nevertheless, this approach translates each sentence independently, ignoring its
surrounding context within the document. Furthermore, adapting the beam search to
consider linguistic phenomena that go beyond sentence boundaries, such as coreference
or discourse markers, is quite challenging.

Beam search uses the assumption of sentence independence at its very core: it
is key to prune the search space. This pruning is done while decoding and consists
of recombining partial translation hypotheses that seem similar and discarding those
that have a low estimated score. To select the recombinations and to compute the es-
timations it is necessary that the scoring function can be computed by analyzing just
a small preceding context, without exploiting inter-sentence dependencies. For this
reason, works based on beam search that focus on document-level phenomena have
usually resorted to using ad-hoc workarounds to the sentence independence assump-
tion. For instance, pronominal anaphora is tackled by Le Nagard and Koehn (2010)
by, previous to decoding, performing an automatic annotation of pronoun genders by
resolving coreferences with preceding sentences of the source document. Similarly,
pronominal anaphora is approached by Hardmeier and Federico (2010) with a driver
that annotates pronouns with gender and number before decoding each sentence. The
annotation is performed by leveraging the already translated sentences, but allowing
efficient parallel decoding between sentences without coreference dependencies. Limi-
tations of both methods are discussed by Guillou (2012). Tiedemann (2010) employs
a cache of the word translations used in preceding sentences to influence the decoding
decisions of the next sentence. A drawback of this technique is that the cache in-
creases the propagation of translation errors. More refined cache techniques are used
by Gong et al. (2011) and Louis and Webber (2014) for topic cohesion. Carpuat (2009)
and Xiao et al. (2011) address lexical consistency with a post-process to re-translate
source words that were inconsistently translated within a document. Additionally,
Xiao et al. (2011) also propose an alternative two-pass decoding where, previous to
the second decoding pass, undesirable translation options in the phrase table are re-
moved. Similarly, a two-pass technique is also used by Ture et al. (2012) for lexical
consistency but, instead of pruning the phrase table as Xiao et al. (2011), the second
decoding pass uses additional features that analyze counts obtained in the first pass.

Alternatively, several works have extended the model of Koehn et al. (2003) by,
instead of performing workarounds to its limitations, replacing the beam search al-
gorithm altogether. For instance, Arun et al. (2010) use a Gibbs sampler to draw
samples from the posterior distribution. The sampler consists of three operators
that, applied probabilistically, explore the distribution. This allows, in particular,
more general feature functions in the scoring. Nevertheless, as with the approach
of Koehn et al. (2003), this method assumes sentence independence. Moreover, since
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all possible ways of applying the sampler operations are considered at each iteration
of the process, the cost of treating full documents as translation units would be pro-
hibitively high. Langlais et al. (2007) propose a so-called greedy decoder. It is, in fact,
a decoder based on local search that performs a steepest-ascend hill-climbing strat-
egy at sentence level. The idea is to produce an initial translation for the sentence
and then iteratively refine it into a local optimum. The initial translation is either
obtained by the beam search algorithm of Koehn et al. (2003) or by segmenting the
source sentence into the minimal amount of segments and choosing for each of them
the translation option with the highest score in the phrase table. At each iteration, a
new translation for the sentence is produced from the current one by taking the best
translation in its neighborhood, i.e., the best among all possible translations derived
from the current one with a single, simple modification. This approach allows the
decoder to have features with fewer restrictions than the one by Koehn et al. (2003)
since the full sentence translation is available for scoring. Nevertheless, it is still not
possible to have document-level features: it is not feasible to handle full documents
as translation units since each step of the decoding process explores the whole neigh-
borhood, which is in general excessively large for full documents. Hardmeier et al.
(2012) solve this drawback by changing the steepest-ascend hill-climbing strategy for
a first-choice hill-climbing one. In this way, the neighborhood is not fully explored at
each step and instead, it is randomly enumerated until finding a better translation (or
until exhausting a maximum amount of tries). Thanks to this, the decoding is able
to handle full documents as translation units, and thus, it is a suitable framework for
integrating features capturing properties of document-level phenomena. Since this
approach is key to our work presented in part of Chapter 4 and in Chapter 5, we
describe it with greater detail in Section 2.2.2. More recently, Douib et al. (2016)
use a genetic algorithm (Holland, 1973) for decoding full documents. This approach
bears some resemblance to the one by Hardmeier et al. (2012): the process starts
by randomly generating a set of translations and then iteratively improving them by
randomly exploring their neighborhoods. Nevertheless, genetic algorithms also pro-
vide an operation that allows escaping the vicinity of a neighborhood: the crossover
operation randomly combines two translations to obtain a new one, composed entirely
with pieces of either translation.

2.2.2 Docent and Lehrer
Hardmeier et al. (2013) introduced the Docent2 document-level decoder implement-
ing the local search algorithm described by Hardmeier et al. (2012) and building on
the phrase-based SMT model of Koehn et al. (2003). This local search follows a
first-choice hill-climbing strategy and it is performed in a space that can be seen as
a graph: nodes are full-document translations and an edge connects two nodes when
one translation can be transformed into the other by applying a single change opera-
tion (see Figure 2.5). More precisely, the search proceeds as follows. Initially, a node
is chosen as a starting point. Then, at each iteration, the decoder tries to move into
a node adjacent to the current one, but only performs the move when the score of the
destiny adjacent node strictly improves the score of the current one. The adjacent

2Source code available at: https://github.com/chardmeier/docent/

https://github.com/chardmeier/docent/
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Figure 2.5: Example depiction of Docent’s search space and the path it follows
through it (starting at the left-most node, proceeding along the thick,
red-colored edges, and ending at the right-most node, which corresponds
to the final refined translation). The three greyed-out nodes at the top
are not considered during the search, since they are not in the immediate
neighborhood of any of the visited nodes.

nodes are tried in random order,3 possibly with repetitions. The process terminates
when a limit on the amount of iterations is reached, or when a certain amount of suc-
cessive iterations have not found a suitable adjacent node to move into. Therefore,
the three basic ingredients of the search algorithm are (i) the selection of the starting
node, (ii) how adjacent nodes are obtained, and (iii) the scoring function that guides
the search.

For the selection of the starting point, a deterministic and a random method are
proposed. The former consists in simply using Moses to construct an initial transla-
tion. The latter consists of constructing a translation by, first, randomly segmenting
each sentence of the source document into phrases that occur in the underlying phrase
table, and second, for each such segment randomly choosing a translation option from
the phrase table.

For obtaining adjacent nodes, the decoder randomly applies to the current transla-
tion one of the change operations available, thus constructing a translation belonging
to its neighborhood. Three basic change operations are provided: (i) change-phrase-
translation changes the translation of a segment by another one in the phrase table,
(ii) swap-phrases swaps in the target the order of the translations corresponding to
two segments of the same source sentence, and (iii) resegment takes a contiguous
span of segments of the same source sentence, satisfying that their corresponding
translations also appeared contiguously in the target, segments anew the whole span
and, for each resulting segment, chooses a translation option from the phrase table.
Note that, in all the cases, the minimal translation units handled by the decoder are

3The traditional definition of hill climbing does not involve random decisions. In this case,
however, the neighborhood is too big to enumerate, and thus, it is simply explored randomly until
finding one translation with a higher score or exhausting the quota of tries.
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phrases from the phrase table. Also notice that, by repeated applications of these
three change operations, any translation can be transformed into any other trans-
lation, i.e., the available change operations guarantee that the whole search space
is reachable regardless of the starting point.4 Nevertheless, since the search uses a
hill-climbing strategy, the starting point does determine which local maxima are at-
tainable. To be able to search the whole space and reach global maxima, a simulated
annealing strategy (Kirkpatrick et al., 1983) could be used instead. This is discussed
by Hardmeier (2014), who reports problems with using such strategy.

For the scoring, the decoder uses the log-linear model from Koehn et al. (2003). In
particular, the score of a translation is computed as the (weighted) addition of several
feature functions. Seven basic features are provided, implemented to be compatible
with the analogous ones in Moses; roughly: (i) geometric-distortion-model favours
translations that closely follow the phrase order from the source document, (ii) word-
penalty favours translations with fewer words, (iii) oov-penalty favours translations
with fewer out-of-vocabulary words, (iv) phrase-penalty favours translations with more
phrase pairs, (v) ngram-model favours translations that employ usual constructions
of the target language, and (vi) phrase-table favours for each segment of the source
the most usual translations. The latter feature is the only obligatory one, as it
defines the underlying phrase table that determines the search space. Note that all
these basic features assume sentence-independence, as they are inherited from Moses.
Nevertheless, the decoder also takes advantage of the fact that the full-document
translation is available for the scoring, and provides some additional document-level
features.

In the experiments carried out within this thesis, an in-house re-implementation
of this decoder was used. As a homage to Docent, it was named Lehrer.5

2.2.3 Decoding with Ants
As an alternative to the simulated annealing strategy discussed by Hardmeier (2014)
to generalize the hill-climbing decoding strategy of Hardmeier et al. (2012), we have
explored the benefits of using a new strategy building on a different metaheuristic for
optimization problems: ant colony optimization (Colorni et al., 1992; Dorigo et al.,
1996), ACO for short. Intuitively, our method6 consists in reducing the problem of
finding a translation that optimizes the score function to the problem of finding an
optimal path through a graph. Similar reductions have already been considered in
the literature, e.g.: Knight (1999) relates MT decoding to the traveling salesman
problem. Tackling the construction of an optimal path by means of ACO proceeds as
follows (see Figure 2.6). Iteratively, sets of paths (each path corresponding to a full-
document translation) are randomly constructed by ants walking through the graph
(each of its nodes corresponding to a phrase from the phrase table). The randomness

4In fact, this property already holds with swap-phrases and resegment alone. Moreover, note that
change-phrase-translation is subsumed by the case where resegment operates on a span of one single
segment.

5The word “lehrer” is German for “teacher”. Source code available at: https://www.cs.upc.edu/
~emartinez/lehrer.tgz

6Source code available at: https://www.cs.upc.edu/~emartinez/lehrer-aco.tgz

https://www.cs.upc.edu/~emartinez/lehrer.tgz
https://www.cs.upc.edu/~emartinez/lehrer.tgz
https://www.cs.upc.edu/~emartinez/lehrer-aco.tgz
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smart ants want to become writers .
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Figure 2.6: Sketch of the graph constructed for the source sentence “smart ants want
to become writers.” (each of the Spanish phrases corresponds to a node
of the graph; edges are omitted to avoid clutter) and path that an ant
follows through it to form the translation “hormigas inteligente desean
llegar a ser escritores.” with some gender and number disagreements. For
each phrase of the source sentence we show up to 5 translations, listed by
decreasing probability. Note that only 3 two-token phrases (“want to”, “to
become”, and “writers .”) and 1 three-token phrase (“want to become”)
have translations. Also note that the nodes visited in the path translate
each of the 7 source tokens, and do it just once.

of the ant’s movements is influenced by the amount of pheromone in the graph,
which gets updated at the end of each iteration: the pheromone amount is increased
along the best discovered paths, whereas in the rest of the graph it is decreased.
Eventually, the distribution of pheromone is expected to evolve such that all the
ants converge to the same, optimal path through the graph. Nevertheless, unless
certain conditions are met, it cannot be guaranteed that the method will actually
converge to the global optimal solution. If global optimality is not strictly required
and just an approximation is enough, ACO has been shown to obtain good solutions
in competitive runtime for many problem domains (Dorigo and Blum, 2005).

Unfortunately, the experiments conducted to assess this new decoding strategy
have ultimately been unsuccessful: we have been unable to outperform a baseline
Moses. Furthermore, in the best results we have achieved, we used the ACO de-
coding variants that closest resemble the hill-climbing approach of Hardmeier et al.
(2012), but with worse memory requirements and runtime in our case. Our prototype
implementation is not fully optimized yet and has some margin for improvement (e.g.,
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the highly parallelizable nature of ACO could be further exploited), but nevertheless,
it is unlikely that we could get any significant asymptotic improvement.

Appendix A presents a detailed description of the approach, together with a report
on the conducted experiments and the obtained results.

2.2.4 Document-Level Neural Machine Translation
NMT systems have proved their good performance in a short time, beating SMT
systems broadly. However, they inherited the limitation of SMT systems of not being
able to handle extra-sentence context information since they are typically designed to
treat each sentence in an isolated and independent way.

The interest in making NMT systems able to include wider context information in
the translation process has increased in recent years (Jean et al., 2017; Popescu-Belis,
2019), exposing the necessity of exploring new approaches of document-level machine
translation (Läubli et al., 2018).

There are several approaches that tried to extend the context beyond the sen-
tence information by modifying the system’s input. Tiedemann and Scherrer (2017)
concatenate the previous source sentence to the current one, whereas Bawden et al.
(2018) also concatenate the previous predicted target sentence. More sophisticated
approaches propose to modify the NMT model itself to make it able to handle context
information beyond the sentence scope.

Wang and Cho (2016) present an approach to include document-level context into
language modeling by implementing fusion approaches that help the LSTM maintain
separated the inter- and the intra-sentence context dependencies. They report that
using a wider context helps a neural LM capture better the semantics of a document.

There are several approaches that extend the context handled by an NMT tak-
ing into account the previously encoded source sentences. Jean et al. (2017) analyze
whether NMT systems can also benefit from larger contexts. They propose a varia-
tion of an attentional RNN NMT system to model the surrounding text in addition
to the source sentence. They include an additional encoder and attentional model to
encode as context sentence the previous source sentence. Wang et al. (2017a) propose
a cross-sentence context-aware approach that integrates the historical contextual in-
formation within the NMT system in three different ways: by initializing the encoder
or the decoder or both with the history representation, by using the history represen-
tation as static inter-sentence context in combination with the source sentence context
produced by the attention model and, finally, by adding a gating to the amount of
context information used to generate the next word. However, these approaches only
extend the source context but ignore the target side context.

In contrast, Tu et al. (2018) take into account the target side context by using a
lightweight cache-like memory network which stores bilingual hidden representations
as translation history, showing the utility of using this context information.

More recent approaches implement system extensions that handle both source and
target side contexts. While Maruf and Haffari (2018) extend an RNN-based NMT
system using memory networks to capture global source and target document context,
Voita et al. (2018) present a variation of the Transformer that extends the handled
context by taking in the input both the current and previous sentences. And Jean
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and Cho (2019) extend it by including a context-aware regularization.
The importance of document-level neural machine translation is also seen in the

recent WMT20197 news translation shared task, where for the first time a specific
track for document-level MT was included. The systems presented at the shared task
follow the previously explained strategies: introducing the inter-sentence context in-
formation into the NMT system by augmenting the training data including document-
level information, i.e., including coreference information (España-Bonet et al., 2019),
or just by increasing the training-sequence length in order to capture a larger data
context (Junczys-Dowmunt, 2019; Popel et al., 2019; Talman et al., 2019), or in-
troducing variations in the NMT architecture to take into account document-level
information (Stahlberg et al., 2019; Talman et al., 2019).

In summary, many NMT approaches have been explored to include document-wide
context or, at least, to make an NMT system able to handle a wider context than the
intra-sentence one. Some of these approaches only exploit the context information
from the source side ignoring the valuable information from the target side, although
more recent variation proposals also include the target context information. The most
successful approaches propose complex variations in the NMT models by including
new document-oriented modules or regularization mechanisms to model document
context. However, they do not show much success in exploiting the inter-sentence
context information, presenting relative improvements in the final translation quality.

2.3 Automatic Evaluation
Automatic evaluation of machine translation quality deals with computing the sim-
ilarity between an MT system’s output and one or several reference translations for
a given source text. Automatic machine translation evaluation metrics are not only
useful to provide a quality measure for machine translation results but also are an
important guidance for MT development and tuning.

The first approaches for automatic MT evaluation were based on lexical similarity,
that is, designing lexical measures. These measures work by rewarding lexical matches
between automatic translations and a set of reference translations.

The most popular and representative measure here is BLEU. This measure has
been widely accepted as a de facto standard for years but it has several well-known
drawbacks:

1. It has been shown that lexical similarity is neither a sufficient nor a necessary
condition for two sentences to convey the same meaning (Callison-Burch et al.,
2006; Coughlin, 2003; Culy and Riehemann, 2003).

2. It is also the case that BLEU and current BLEU-like metrics (Doddington,
2002; Lavie and Agarwal, 2007) perform well on low-quality machine translation
results, but worse for high-quality ones.

3. It has been shown that BLEU has trouble distinguishing raw, inadequate ma-
chine translation output from fully fluent and adequate translation obtained
from them through professional post-editing (Denkowski and Lavie, 2012b).

7http://www.statmt.org/wmt19/translation-task.html

http://www.statmt.org/wmt19/translation-task.html
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4. In particular, string-based metrics are not able to capture the syntax or semantic
structure of sentences; therefore, they are not sensitive to the improvement of
machine translation systems on these aspects.

5. The reliability of lexical metrics depends very strongly on the heterogeneity and
representativity of reference translations.

6. String-based metrics tend to favour statistical MT systems when compared to
rule-based MT or other paradigms on a particular data set.

In order to cope with these issues, a number of authors have suggested exploit-
ing linguistic information beyond the lexical level to increase robustness. Some have
used additional linguistic knowledge to extend the reference lexicon. For instance,
ROUGE, METEOR, and TER allow for morphological variations via stemming. TER
and METEOR may perform an additional dictionary-based lookup for synonyms and
paraphrases (Denkowski and Lavie, 2012a; Snover et al., 2009b). Russo-Lassner et al.
(2005), Kauchak and Barzilay (2006), Owczarzak et al. (2006), and Zhou et al. (2006)
have also studied the use of automatically-generated paraphrases to find potential
phrase matchings. Surprisingly little work has actually been done in tuning the pa-
rameters of automatic evaluation metrics to correlate with actual assessments of qual-
ity, an exception being the work by Denkowski and Lavie (2012a) just cited.

More recent approaches have been designed focusing on performing a semantic
evaluation rather than only looking for lexical and syntactical features, resulting in
more adequacy-oriented evaluation metrics. The MEANT metrics family (Lo, 2017;
Lo and Wu, 2011; Lo et al., 2014) compute the similarity of the semantic frames and
their role fillers between the human reference and machine translations, relying on
semantic parsers, and some of them weighting the importance of a word by inverse
document frequency when computing the phrasal similarity score. However, although
these metrics correlate well with human accuracy judgements, they are not widely
used. Furthermore, there exist also Adequacy-Fluency oriented metrics (Banchs et al.,
2015; D’Haro et al., 2019) that are designed, although at sentence level, to take into
account the syntactic and the semantic information in a decoupling way in order to
provide a more balanced view of the translations quality.

2.3.1 Automatic Evaluation Metrics
Throughout this thesis, the Asiya8 toolkit by Giménez and Màrquez (2010) and
Gonzàlez et al. (2012) is used to carry out the automatic evaluations. Depending on
the experiment, we use a certain selection of the following metrics on lexical similarity:

• Three metrics that compute some variant of the edit distance by Levenshtein
(1966). First, the word error rate, WER (Nießen et al., 2000), is the mini-
mal amount of changes (i.e., substitutions, deletions, and insertions of tokens)
needed to transform the generated translation into the reference. Second, the
position-independent word error rate, PER (Tillmann et al., 1997), is similar to
WER but does not take into account the token order in the sentences. And

8http://asiya.cs.upc.edu/

http://asiya.cs.upc.edu/
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third, the translation edit rate, TER (Snover et al., 2006, 2009a), is also sim-
ilar to WER but adding as a possible change to shift forward or backward a
phrase within the sentence. Furthermore, TER performs stemming and syn-
onymy lookup when matching tokens from the translation to the reference. We
denote by TERbase the version that performs only exact matching.
Since the previous metrics measure the number of changes needed to coincide
with the reference, their value is lower the closer the translation is to the refer-
ence. In the following chapters, we may append ↓ to the names of these metrics
as a reminder of the fact that lower values are better. This is in contrast to
all the remaining metrics that we describe below, whose values are higher the
closer the translation is to the reference. For them, we will use ↑ as a reminder.

• Two metrics based on lexical precision.9 First, the bilingual evaluation under-
study, BLEU (Papineni et al., 2002), measures the amount of n-grams of varying
lengths in the generated translation that appear in the reference. We use the
variant that considers up to 4-grams and is smoothed as described by Lin and
Och (2004a). And second, the NIST metric (Doddington, 2002) is an evolution
of BLEU which puts more weight on the infrequent n-grams, especially the short
ones. In this case, we score up to 5-grams.

• We also use three metric families based on the F-measure.10 First, the general
text matcher, GTM (Melamed et al., 2003; Turian et al., 2003), has several
variants depending on the value given to the e parameter appearing in the
exponent and the root of its formulation: GTM1 counts the matching unigrams
between the translation and the reference, whereas GTM2 and GTM3 reward
longer matchings. Second, from the ROUGE metric (Lin and Och, 2004b) we
use several of its variants, differing on how the translation and reference are
matched: the ROUGEL looks for the longest common subsequence (allowing
gaps) between them, whereas ROUGEW additionally penalizes gaps; on the
other hand, ROUGES* counts the matching bigrams (allowing gaps) between
them, whereas ROUGESU* additionally counts the matching unigrams. And
third, the METEOR metric (Banerjee and Lavie, 2005; Denkowski and Lavie,
2010) counts the amount of words of the generated translation that match the
reference, either exactly, with stemming, with synonyms, or with paraphrasing,
adding penalties for reorderings.

• The lexical overlap, Ol, is based on the Jaccard coefficient (Jaccard, 1912) to
quantify the similarity between sets. In particular, it is defined as the ratio
of distinct lexical items common to both translation and reference to the total
amount of distinct lexical items among translation and reference together. In
other words, given the set of lexical items in the translation and the analogous

9Remember the standard definitions of precision(T |R) = |T ∩R|/|T | and of recall(T |R) =
|T ∩R|/|R|, where T stands for the set of obtained translation items and R for the set of reference
translation items. Metrics based on either concept usually differ on how T and R are specifically
defined and, especially, how the intersection T ∩R must be handled.

10The F-measure is a combination of precision and recall through their harmonic mean (Rijsbergen,
1979).
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set for the reference, Ol is computed as the division of the cardinal of their
intersection by the cardinal of their union.

On syntactic similarity, we use metrics of two broad families:

• The metrics building on shallow parsing work on annotations for part-of-speech,
word lemmas, and base phrase chunks, all obtained with automatic tools. We
use six distinct metrics of this class. The overlap on part-of-speech, SP-Op(?),
computes the lexical overlap restricted to tokens belonging to a certain part-of-
speech, and averages over all parts of speech. The overlap on base phrase chunk,
SP-Oc(?), is analogous, but working on base phrase chunks instead of parts-of-
speech. Finally, four metrics that use the NIST measure for computing the
accumulated scores over sequences of up to 5 elements, which may be lemmas
(SP-NISTl), parts of speech (SP-NISTp), base phrase chunks (SP-NISTc), or
chunk type and inside/outside/beginning-position labels (SP-NISTiob).

• Three metrics working on the trees obtained through automatic constituent pars-
ing on the translation and reference. The overlap according to part-of-speech,
CP-Op(?), is similar to SP-Op(?), i.e., it computes the lexical overlap according
to the part-of-speech, averaging over all parts of speech. The overlap accord-
ing to phrase constituent type, CP-Oc(?), is similar to SP-Oc(?) but working
on phrase constituents instead of base phrase chunks, which in particular al-
lows to consider phrase embedding and overlap. The syntactic tree matching,
CP-STM (Liu and Gildea, 2005), computes the ratio of matching subtrees of a
certain height, averaging the results for heights from 1 to 9.

Finally, we also use the uniformly-averaged linear combination, ULC (Giménez and
Màrquez, 2008), which combines the values of other metrics to give a general quality
ranking. Thus, its precise definition depends on the list of metrics selected to be
averaged. Furthermore, the reported ULC value for a system is relative to the other
systems appearing in the same ranking. Hence, the exact same system may obtain
different ULC values depending on which other systems it is ranked against. Note
that, in particular, this implies that ULC values are not directly comparable across
evaluations on different sets of systems.



Chapter 3

Towards Document-Level
Machine Translation

In this chapter, we analyze some of the problems of translating texts sentence by sen-
tence ignoring inter-sentence context information. In particular, we focus on frequent
errors made by SMT systems that can be handled by exploiting context information
across sentences. Then, we present a simple approach that uses context information
to improve the coherence and cohesion levels of translations. This approach takes the
form of a post-process strategy, which takes the output of an SMT system, detects
words affected by some of the identified document-level issues, and suggests a better
re-translation.

3.1 Document-Level Phenomena
We analyze SMT system outputs in order to identify and categorize those transla-
tion errors that can be related to document-level phenomena, caused by incorrectly
managing inter-sentence and document-level information.

For such purpose, we selected a set of newswire articles. Journalistic texts exem-
plify the translation setting we are interested in, as the discourse in such formal texts
holds a high level of coherence, cohesion, and lexical consistency since their objec-
tive is to describe a series of facts about a certain topic. In particular, we chose the
newsCommentary corpus, which is a free corpus that is released every year for the
WMT translation shared tasks.1 We carried out our analysis on the test set from the
2011 release. It contains documents in English, Spanish, French, German, and Czech.
However, only the English-Spanish parallel corpus was analyzed because our experi-
ments focus on English to Spanish translations. This test set has 110 news items on
different topics, with a total of 3,003 sentences. Each text is labeled with XML tags

1Available at: http://www.statmt.org/wmt13/training-parallel-nc-v8.tgz
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that identify the news title and mark the limits of the document, paragraphs, and
sentences, reflecting the document structure.

To generate automatic translations of the newswire corpus under analysis, we
built a baseline SMT system based on the Moses (Koehn et al., 2003) decoder, us-
ing the Europarl-v7 English-Spanish parallel corpus. Then, in order to recognize
patterns that could help identify errors in the generated translations, we used several
NLP tools2 to analyze the selected source document and, then, the gathered infor-
mation was projected into the machine translations. Special attention was devoted
to annotating the most typical features linked to document-level information, such as
coreference or lexical consistency. Coreference directly correlates with the cohesion
level of a document, while translations of named entities throughout a document are
a direct indicator of its translation quality. Thus, coreference mistakes in the trans-
lations were studied to assess whether the cohesion from the source text had been
transferred to the translation by the SMT system or not. Similarly, the relations of
the same named entity in the source document were followed in the translation to
identify and study those cases in which it varied.

As a result of the analysis, the following errors were identified as the most relevant
translation phenomena related to the lack of document-level information management:

• Inconsistent translation of “ambiguous” words: One of the first detected
errors were mistakes that break the semantic coherence of a document. Taking
the “one-sense-per-discourse” assumption, a translation is better if its words ap-
pear translated in a consistent way, that is, the same source word appears trans-
lated into the same target word or, at least, into words with similar meanings
within a document. In the analyzed translation examples, there were words that
appeared translated into different and semantically incompatible forms within
a document. This kind of error noticeably hinders the final translation quality.

So, we want to identify these words and design a strategy to correct their inco-
herent translations. Choosing the right translation for these ambiguous words
is equivalent to disambiguate the word in its context, but, in contrast to a
word sense disambiguation problem, we are facing here instead a lexical choice
problem, since our aim is to correct the bad translation choices made by the
decoder.

Consider, for example, the English word “desk”. It can be translated into Span-
ish as “ventanilla”, “escritorio”, “mesa”, or “mostrador”, depending on the con-
text where it is used. These translation options cover two basic meanings:
“desk” as a piece of furniture (“mesa” and “escritorio”) and “desk” as a counter
(“ventanilla” or “mostrador”). The aim of our work is to make the decoder
able to translate “desk” homogeneously throughout the document regarding its
context.

2In particular, we employed the tools integrated in the Asiya toolkit (http://asiya.cs.upc.edu),
the PoS tagger provided by the FreeLing library (http://nlp.cs.upc.edu/freeling/) by Padró
et al. (2010), the RelaxCor (http://nlp.cs.upc.edu/relaxcor/) coreference resolutor of Sapena
et al. (2010), and the BIOS (http://www.surdeanu.info/mihai/bios/) named entity recognizer
of Surdeanu et al. (2005).

http://asiya.cs.upc.edu
http://nlp.cs.upc.edu/freeling/
http://nlp.cs.upc.edu/relaxcor/
http://www.surdeanu.info/mihai/bios/
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A general strategy to follow in order to handle this phenomenon is to identify
those words in the source document that appear translated into different forms,
detect wrong translations, and correct them by disambiguating these words in
their contexts thus improving the translation consistency and coherence.
The already mentioned example when translating the word “desk” illustrates
the situation. Another example of this phenomenon is the word “nickname”;
in the context of a news item about the names used among colleagues, this
word can be translated as “denominación”, “sobrenombre”, or “apodo”. Since
“sobrenombre” and “apodo” are synonyms given a context, the option of using
“denominación” is not as accurate as the others. Then, we want to filter out
this option to not use this term in the final translation to improve its lexical
cohesion.

• Incoherent translation of coreference mentions: A word corefers with an-
other in a text if both of them refer to the same entity. It is easy to find this kind
of relation between names and pronouns through a text. If it is a well-formed
text, these words must agree in gender and number, and these relations confer
cohesion to the document. Moving to the side of a document translation, an in-
dicator of its level of coherence is how this intra- and inter-sentential agreement
among the corefered words is preserved. Studying the appearance of correlations
in translations and how the agreement is maintained by the MT systems gave
us hints about handling errors related to this document-level phenomenon. In
particular, we would like to keep the translations coherence through coreference
chains at translation time or fix the disagreements by a post-process strategy.
An example of this phenomenon is the translation of the term “the engineer”. In
a document where the term refers to a woman called Ana, in Spanish it would
become “la ingeniera” and not “el ingeniero”. Another example, in the context
of a news item talking about several councilors in the city hall of Prague, we
find the sentence “. . . the Councilor for the environment, Lukas Plachy. He also
guesses the right meaning.” translated as “. . . la consejera de medioambiente,
Lukas Plachy. Él también adivinó el significado correcto.” This example shows
a disagreement among the noun phrase “la consejera” and the “Él” pronoun. If
the system is able to identify Lukas as a male name, a good translation would
be “. . . el consejero de medioambiente, Lukas Plachy. Él también adivinó el
significado correcto.” where gender agreement is maintained for the mentions
that corefer.
The cohesion level of a translation is directly related to how the source text
coreference information is projected into the produced translation. Monitoring
the gender and number agreement of the coreference chains gives a good idea of
how to identify translation errors that can be handled by using the document
context information.

• Disagreement in gender, number, and person: Going further analyzing
the agreement among words within a document, we realized that SMT systems
can lose agreement among words in a noun phrase, among the persons of a
subject and a verb, or even the verb tense being used in a part of a document.
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A well written text usually does not present gender nor number disagreements
and coherent verbal tenses are used to present different and distinguishable parts
of itself.
We propose to not only design strategies to identify and fix incoherences in
gender or number inside coreference chains, but also to take advantage of the
described scenario and correct agreement errors in the intra-sentential scope or
in the close inter-sentences context which is a more global and simpler problem
than the one we presented related to the coreference information.

We use this categorization to design several strategies to correct translation mis-
takes by using document-level information. Through the rest of this chapter, we
propose and analyze approaches to improve translations without modifying the inner
decoder functionality.

3.2 Post-Process Strategies
Our approach can be broken down into three broad steps: (i) obtaining an initial,
preliminary translation of the document, (ii) locating certain kinds of mistakes in the
translation and identifying possible new translation options for them, and (iii) re-
translating taking into account the new translation options identified in the previous
step.

Step (i) is standard: we use a Moses system to obtain the translation, sentence
by sentence. Step (ii) depends on the goal, i.e., on the kind of phenomenon that is
tackled. In particular, we focus on improving the lexical coherence for those source
words that appear translated into more than one different form and, additionally, on
fixing gender or number incoherences using coreference information. Each of these
goals is tackled by a specific approach; the former is described in Section 3.2.1 and the
latter in Section 3.2.2. Note that the work performed in this step can take advantage
of already having a translation of the whole document. Finally, step (iii) is a re-
translation with Moses performed in either a restrictive or a probabilistic way. The
restrictive re-translation forces3 as the only possible translation the option provided
by step (ii). On the other hand, the probabilistic way suggests4 several possible
translations, the most suitable ones identified in step (ii), and lets the decoder choose
among them and the phrase table options. Notice that the latter approach introduces
more noise because the system is managing more possible translations than in the
restrictive one, sometimes as many as in the initial translation.

In Section 3.2.3 we evaluate the post-processing of lexical inconsistencies, of dis-
agreements, and their combination.

3Forcing a translation is a feature of the Moses decoder that involves an XML markup of the
source sentence with the information of available translation options. For the restrictive approach,
we use the exclusive option of the decoder, which forces Moses to only use the translation option
provided in the XML tag when translating the tagged source word.

4Suggesting a translation is another feature of Moses handled through XML markup. In this case,
for the probabilistic approach we use the inclusive option of the decoder, which makes Moses take
into account the translation options provided in the XML tag when translating the tagged source
word. Each of the provided options has an associated probability and, if the aggregated probability
of all of them is less than 1, then the decoder can also use the phrase table in the remaining cases.
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3.2.1 Lexical Consistency

The strategy that deals with lexical consistency works on source words that appear
translated into more than one different form when translating a document. We focus
on tackling this phenomenon for nouns, adjectives, and main verbs in English, filtering
out determiners, prepositions, auxiliary verbs, and others, that is, we focus on content
words. In particular, we use the part-of-speech tags obtained with FreeLing (Padró
et al., 2010) to do this filtering. For each of the resulting relevant source words,
we use the alignments provided by the Moses’ preliminary translation to link them
to their corresponding target words. Next, for each of the distinct source words in
consideration, we count the number of different translations it has throughout the
document. This counting of target words is done at the lemma level, i.e., we conflate
different translations when their lemmas coincide. For instance, the Spanish target
words “amigo” and its feminine “amiga” would be considered as the same translation
form for “friend” since they share the same lemma. On the other hand, “compañero”
would be considered a different translation than “amigo” since they do not share the
lemma, even if they can be synonyms in certain contexts. Lemmas are also obtained
with FreeLing.

At this point, the process has enough information to identify the words that
have multiple different translations in the document. Finally, we try to identify the
most suitable translations for them. We do that in two different ways, depending on
whether the re-translation step follows the restrictive or the probabilistic approach.
For the former, we only have to obtain one single translation option in each case:
we provide as the translation for each ambiguous word the option with most occur-
rences in the current document, unless there is a tie, in which case we do not suggest
anything to avoid biasing the result in a wrong direction. Note that, although the
most frequent translation option needs not be the correct one, we expect the intra-
sentential context to be enough for the decoder to pick the proper translation in the
majority of cases. Another option would be to pick a random translation as the good
one. Doing this we control the introduced noise but we also lose information given by
the decoder in the available preliminary translation. For the probabilistic approach,
we proceed slightly differently: as before, for each ambiguous word we provide as a
translation the option with most occurrences in the current document, but, in the
case of a tie, in this occasion, we suggest all the tying options (all with the same as-
sociated probability). In this case, we are giving Moses freedom to choose guided by
its language information, but we are also introducing noise because we are managing
more possible translations than in the previous situation.

Looking at a concrete example, if the English source word “desk” appears four
times in the text and it is translated two times as “mesa”, one as “mostrador”, and
another one as “ventanilla”, then the four occurrences of “desk” in the source text
will be marked for re-translation. In this situation, the word “mesa” will be the single
option given in the restrictive and probabilistic approaches, as it is the most frequent
translation. However, if “desk” had another occurrence translated as “mostrador”,
then the restrictive approach would not suggest any re-translation due to the tie be-
tween the two “mesa” and the two “mostrador”, whereas the probabilistic approach
would give both “mesa” and “mostrador” as re-translation options, with 1/2 proba-
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bility each.

3.2.2 Coreference and Agreement
It is easy to find words that corefer in a text. A word corefers with another if both
refer to the same entity. These words must in principle agree in gender and number
since they are representing the same concept (person, object, etc.). For instance, if
“the engineer” appears referring to a woman, the correct translation in Spanish would
be “la ingeniera” and not “el ingeniero”.

An easy manner to measure the coherence of a translation is to look at the pro-
jections of the source coreference chains at the target language text and study the
quality of its translations, for instance, analyzing the gender and number agreement.
We implemented a post-process system that gets the coreference analysis of the source
text and projects its coreference chains to the translation using the alignments gener-
ated by the decoder at translation time. Before starting to design some heuristics to
fix the disagreements inside the words of a coreference chain, we look at the results of
applying our strategy to the texts in the newsCommentary corpus of 2011, where
we can only identify 2 examples where to apply our techniques. Then we moved
to study some Wikipedia articles but we did not succeed either. After our study,
we conclude that we do not have seen enough fixable examples in our texts to start
developing any algorithm or heuristic only in that direction.

However, we find interesting to follow the idea of fixing incoherences in gender
or number but in an intra-sentential scope. This can be seen as a simpler problem
because it is not affected by possible errors given by the coreference resolutor, but as
a wider problem since it can be located within any sentence of the document. Inside
a sentence, since dependencies among words are shorter, the expressions tend to be
translated correctly by standard SMT engines. However, there are larger distance
relationships that are not handled properly by the MT systems, for instance, the
agreement among subject and verb is a larger distance dependency that sometimes is
lost in translation.

We designed a post-process strategy to fix gender and number disagreements. In
order to simplify the problem and to filter out possible noisy situations, we focus on
agreement among words in the same noun phrase (nouns, determiners, and adjectives).
Furthermore, in a second step, we go beyond the study of these types of content words
and also handle the agreement case for subject and verb in a sentence. As a first step,
the post-process analyzes a source document and annotates it with PoS, coreference
chains, and dependency trees using FreeLing. At this point, for the process, the
main data structure is the parse tree since it is the linguistic structure that allows it
to link the elements that need to agree to maintain the text coherence. In particular,
a tree traversal is performed in order to detect nouns in the source. When a noun
is found and its children are determiners and/or adjectives, the matching subtree
is projected into the target via the word alignments. Then, from the target side,
the process checks the agreement among tokens by using the PoS tags. If there is a
disagreement, the correct tag for the adjective or determiner is built using FreeLing,
which allows getting the correct form in the target language for the translation. We
assume that the nouns are mostly translated correctly since they are the part of
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the noun phrase with a higher semantic load. So, our post-process makes adjectives
or determiners agree with a given noun. Finally, the system implements a similar
strategy to check the agreement among the subject and the verb of a sentence. A
tree traversal allows detecting the node that represents the verb of a sentence and the
child corresponding to the subject. The structure is projected into the target via the
alignments and the agreement is verified using the PoS information. If the subject
is a noun, we assume that the verb must be conjugated in the third person plural
or singular depending on the number of the noun; if it is a pronoun, then gender,
person, and number must agree. As before, if there is a disagreement, the correct
form is generated using FreeLing.

In both cases (i.e., determiner–adjective(s)–noun(s) and subject–verb disagree-
ments) the output of the process is a proposed new translation that agrees in gender
and number. As in Section 3.2.1, the actual output depends on whether the re-
translation step follows the restrictive or the probabilistic approach. For the former,
we just provide the new translation. For the latter, we also associate to this new trans-
lation a probability less than 15 that allows the decoder to also take into account the
remaining translation options of the phrase table.

3.2.3 Experiments

Settings

Our baseline English-to-Spanish translation system is a Moses decoder (Koehn et al.,
2007) trained on the Europarl corpus (Koehn, 2005) in its version 7, and using
GIZA++ (Och and Ney, 2003) to obtain the word alignments. It uses a 5-gram
Spanish language model obtained by using SRILM (Stolcke, 2002) with interpolated
Kneser-Ney discounting on the target side of the Europarl-v7 corpus. The feature
weight optimization is done with MERT (Och, 2003) against the BLEU metric (Pa-
pineni et al., 2002) on the newsCommentary2009 development corpus. We use
newsCommentary2011 as test set.

We carry out an automatic and manual evaluation of our post-processes. For
the automatic evaluation we use the Asiya toolkit (Giménez and Màrquez, 2010;
Gonzàlez et al., 2012) with several lexical metrics (TER, BLEU, NIST, METEORex,
and ROUGEL), a syntactic metric based on the overlap of part-of-speech elements
(SP-Op(?)), and an average of a set of 27 lexical and syntactic metrics6 (ULC).
Nevertheless, these measures are not informative enough considering that we only
perform small modifications on the preliminary baseline translations. For this reason,
we confer more relevance to the manual evaluation of the outputs.

5In practice, we set this probability to 0.8 to allow the decoder to consider the rest of translation
options in the phrase table but controlling the introduced noise.

6The full list of metrics averaged in ULC is: WER, PER, TER, TERbase, BLEU, NIST, GTM1,
GTM2, GTM3, METEORex, METEORst, METEORsy, METEORpa, ROUGEL, ROUGEW,
ROUGES*, ROUGESU*, Ol, SP-Op(?), SP-Oc(?), SP-NISTl, SP-NISTp, SP-NISTc, SP-NISTiob,
CP-Op(?), CP-Oc(?), CP-STM.
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System TER↓ BLEU↑ NIST↑ METEORex↑ ROUGEL↑ SP-Op(?)↑ ULC↑

baseline 55.45 26.73 7.34 27.78 29.36 31.53 85.01

lexical
[

restrictive
probabilistic

55.39 26.76 7.34 27.80 29.39 31.60 83.26
55.41 26.73 7.34 27.77 29.38 31.58 85.07

agreement
[

restrictive
probabilistic

55.46 26.66 7.33 27.75 29.41 31.69 85.10
55.45 26.73 7.33 27.75 29.41 31.64 85.05

lex.


rest.
rest.
prob.
prob.

+ agr.


rest.
prob.
rest.
prob.

55.46 26.65 7.32 27.74 29.40 31.68 85.08
55.45 26.73 7.33 27.75 29.40 31.63 85.05
55.48 26.64 7.32 27.74 29.38 31.67 79.28
55.46 26.72 7.32 27.74 29.40 31.63 85.04

Table 3.1: Automatic evaluation of the systems, compared to the Moses baseline
system. The rows for agreement check the agreement among nouns, deter-
miners, and adjectives as well as the agreement among subject and verbs.

Lexical Consistency

Global automatic evaluations of the whole test set are shown in Table 3.1 (lexical
rows), and scores for some individual documents in Table 3.2. Global results present
a very small variability with respect to the baseline. These small variations are
expected: overall, the full test set has 74,753 words in total, and we only introduce
476 changes in the restrictive strategy and 1,064 in the probabilistic. Moreover, recall
that standard evaluation metrics, in general, are not designed to capture phenomena
at document level. The same happens when evaluating individual documents, as
shown in Table 3.2. There we can see score improvements in some of the documents
but not in others; for instance, BLEU for the 1st document improves a 0.2% on the
probabilistic approach with respect to the baseline, but it remains the same for the
2nd document. The scores do not show any systematic preference for a system and
it is necessary a manual evaluation of the outputs.

Table 3.3 presents the results of manually evaluating the output of the post-
processes for the five documents with the most changes proposed by the re-translation.
Recall that all the words tagged for re-translation in the restrictive approach are also
tagged in the probabilistic approach, since the latter handles all the cases of the re-
strictive and, additionally, also introduces tags in the tying situations. For this reason,
as shown in the table, the number of tags for the restrictive approach is always a lower
bound for the probabilistic. Clearly, the same happens for the number of different
words involved in the tags and the number of tagged lines, which are also shown in
the table. In order to see the scope of the introduced changes, the table also presents
the total number of changed lines, the total number of actual changed words, and
how many of those are correct. For reference, the respective BLEU scores are also
listed in Table 3.3. As expected, these scores are very close to the baseline due to
the small number of changes introduced by the post-process. For instance, the 20th
document is the one with the most changes and, yet, only 9 words are modified with
the restrictive approach and 11 with the probabilistic one. In this specific document,
the accuracy of the changes in both approaches is above 50%, and it is higher in
the remaining four documents of Table 3.3, with the restrictive approach reaching
100% in the four of them. For the whole test set, the probabilistic approach obtains
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news item System TER↓ BLEU↑ NIST↑ METEORex↑ ROUGEL↑

1
baseline 68.87 10.79 3.8257 19.66 42.75
restrictive 68.87 10.80 3.8318 19.64 42.52

probabilistic 69.09 10.98 3.8173 19.53 42.44

2
baseline 63.69 20.73 4.2684 24.57 47.21
restrictive 63.69 20.73 4.2684 24.57 47.21

probabilistic 63.69 20.73 4.2684 24.57 47.21

3
baseline 66.79 14.15 4.1891 21.53 42.34
restrictive 66.72 14.16 4.1929 21.54 42.39

probabilistic 65.97 14.23 4.2232 21.69 42.58

4
baseline 67.55 18.69 4.0303 21.81 43.65
restrictive 67.40 18.93 4.0638 22.07 44.11

probabilistic 67.11 18.94 4.0731 22.14 44.31

5
baseline 69.15 13.74 3.7287 20.06 39.99
restrictive 69.15 13.74 3.7287 20.06 39.99

probabilistic 69.06 13.75 3.7319 20.04 40.09

Table 3.2: Automatic evaluation of the lexical consistency experiment on 5 individual
news items, using either the restrictive or the probabilistic approaches, and
compared to the Moses baseline system.

news item System BLEU↑ tags words OK/ch lineTags lineDif

20
baseline 13.40
restrictive 13.56 26 8 5/9 13 6

probabilistic 13.22 45 15 7/11 19 8

25
baseline 14.42
restrictive 14.45 18 4 4/4 16 3

probabilistic 14.52 38 10 5/5 28 7

39
baseline 28.49
restrictive 28.20 16 5 5/5 15 4

probabilistic 28.56 34 11 6/8 25 7

48
baseline 30.05
restrictive 30.06 42 3 3/3 23 10

probabilistic 29.83 53 7 4/5 24 15

49
baseline 25.54
restrictive 25.87 24 5 5/5 17 8

probabilistic 25.83 42 12 7/8 23 10

Table 3.3: Manual evaluation of the systems for lexical coherence, using either the
restrictive or the probabilistic approaches, for 5 individual news items of
the test set. The tags column shows the number of introduced tags, words
shows the number of different words involved in the tags, OK/ch shows
the number of changes made with respect to the baseline translation and
how many are correct (according to our criterion of having one-sense-per-
discourse and the word appearing in the reference), lineTags shows the
number of tagged lines in the source text, and lineDif shows the number
of different lines between the final and the baseline translations.
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accuracies around 80%, and the restrictive about 1% higher.
As an illustrative example of how our system works, we consider a particular

document with a news item about a trial. It contains the phrase “the trial coverage”
translated in first place as “la cobertura de prueba” where the baseline system is
translating wrongly the word “trial” as “prueba” (meaning evidence or proof). Our
post-process has access to the other occurrences of the word “trial” throughout the
document, which is more frequently translated as “juicio”. Thus, “trial” is identified
as an ambiguous word and it gets tagged with the good translation form “juicio”.
Unfortunately, on some occasions, the changes are not as positive. For example, in
another document the word “building” appears five times, being translated three times
as “construcción” and two times as “edificio”. For our system, the first option is better
as long as it appears more times in the translation than the second one. So, it suggests
the decoder to always use “construcción” when re-translating “building”. Doing that,
we produce two changes in the final translation that generate two errors with respect
to the reference translation, although both translation options are synonyms. In
this case, our system moves the translation away from the reference although both
translations should be correct.

Regarding the errors introduced by the systems, we find that they are caused
mainly by bad alignments (which lead to an erroneous projection of the annotated
structures on the source), errors in the part-of-speech tagging, the presence of un-
translated words, or are a consequence of the fact that sometimes the most frequent
translation for a given word in the initial state is wrong.

In general, we observed that the re-translation step performs very local changes,
affecting mostly the tagged words without modifying their immediate context nor the
general sentence structure. However, these few local changes are noticeable to a final
user given the positive feedback from the manual evaluation.

Coreference and Agreement

Global automatic evaluations of the whole test set are shown in Table 3.1 (agreement
rows), where, as in the previous experiment, we cannot observe significant improve-
ments in the usual metrics. Table 3.4 presents scores for some individual documents,
in this case tackling only agreement between nouns and their determiners and adjec-
tives, but not between subject and verb. In this occasion, document by document
we can see encouraging results, e.g., we gain 0.2% in the BLEU score for the 5th
document by just introducing really simple changes.

Table 3.5 presents the manual evaluation of the post-processes for the five docu-
ments with the most changes proposed by the re-translation We observe that these
changes have an impact on the BLEU score of the final translation because, in this
case, the number of changes is higher. For instance, in the 22nd document, there is
a drop of almost 2 points in BLEU after applying the post-process although many
of the changes made after the re-translation are correct. We observe the same be-
haviour in the 27th document, although the rest of the news items show an opposite
trend. According to the manual evaluation, the restrictive system is better than the
probabilistic one and reaches accuracies above 80% in the analyzed documents.

A positive example of the performance of the system is the re-translation of the
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news item System TER↓ BLEU↑ NIST↑ METEORex↑ ROUGEL↑

1
baseline 68.87 10.79 3.8257 19.66 42.75
nn+dets 68.21 11.87 3.8778 19.97 43.02

nn+dets+adj 67.99 11.88 3.8900 20.02 43.10

2
baseline 63.69 20.73 4.2684 24.57 47.21
nn+dets 63.50 20.79 4.2859 24.69 47.59

nn+dets+adj 63.50 20.72 4.2597 24.49 47.52

3
baseline 66.79 14.15 4.1891 21.53 42.34
nn+dets 66.87 14.16 4.1833 21.50 42.25

nn+dets+adj 66.79 14.16 4.1791 21.48 42.36

4
baseline 67.55 18.69 4.0303 21.81 43.65
nn+dets 67.40 18.73 4.0474 21.89 43.77

nn+dets+adj 67.40 18.83 4.0510 21.91 44.02

5
baseline 69.15 13.74 3.7287 20.06 39.99
nn+dets 68.79 13.85 3.7687 20.32 40.29

nn+dets+adj 68.61 13.92 3.7956 20.43 40.14

Table 3.4: Automatic evaluation of the agreement experiment on 5 individual news
items of the test set, comparing the Moses baseline system to the restric-
tive post-process correcting just gender and number disagreements between
nouns and their determiners or between nouns, their determiners, and their
adjectives.

news item System BLEU↑ OK/ch dets adjs verbs

5
baseline 13.74
restrictive 14.06 23/26 17/19 6/7 0/0

probabilistic 13.79 15/26 12/19 3/7 0/0

6
baseline 11.06
restrictive 11.22 19/23 8/11 11/11 0/1

probabilistic 11.10 10/23 4/11 6/11 0/1

22
baseline 16.23
restrictive 14.74 17/25 4/8 13/17 0/0

probabilistic 14.89 10/25 2/8 8/17 0/0

27
baseline 13.15
restrictive 12.35 22/28 14/19 7/8 1/1

probabilistic 12.76 21/28 14/19 7/8 0/1

33
baseline 15.09
restrictive 16.05 18/22 14/16 3/3 1/3

probabilistic 15.97 11/22 7/16 2/3 2/3

Table 3.5: Manual evaluation of the systems for agreement, using either the restrictive
or the probabilistic approaches, for 5 individual news items of the test set.
The OK/ch column shows the number of changes made with respect to
the baseline translation and how many are correct, and these amounts are
broken down into three categories: dets show the same information but
only for changes done over determiners, adjs over adjectives, and verbs
over verb forms.
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source phrase “the amicable meetings”. This phrase is translated by the baseline as “el
amistosa reuniones”, where one can find disagreements of gender and number among
the determiner, the adjective, and the noun. The system detects these disagreements
and after tagging the source with the correct forms and re-translating, one obtains
the correct final translation “las reuniones amistosas”, where we observe also that the
decoder has reordered the sentence.

Regarding the errors introduced by the system, we observe again that many of
them are caused by wrong analysis. For instance, in the sentence “all (the) war cries”
which should be translated as “todos los gritos de guerra”, the dependence tree shows
that the determiner depends on the noun “war” and not on “cries”, so, according to
this relation, our method identifies that the determiner and the translation do not
agree and produces the wrong translation “todos (la) guerra gritos”.

These results also show that for our approach it is easier to detect and fix dis-
agreements among determiners or adjectives and nouns than among subjects and their
related verbs. In general, this is because our current system does not take into account
subordinated sentences, agent subjects, or other complex grammatical structures, and
therefore the number of detected cases is smaller than for the determiner–adjective–
noun cases.

Chaining both Post-Processes

In order to complete this set of experiments, we run sequentially both systems. Global
automatic evaluations of the whole test set are shown in Table 3.1 (lex.+agr. rows),
where again it is only possible to observe a very small variability with respect to the
baseline. Table 3.6 shows the results of a manual evaluation for 5 documents with
the most suggested changes, following the same format as in the previous experiment.
Once again, we observe small variations in BLEU scores, but we see that when the
systems introduce changes, they are able to fix more translations than the ones they
damage. Also as before, it is easier to detect and fix disagreements among determiners,
adjectives, and nouns than those regarding verbs because it is more difficult to detect
disagreements with verbs and also these kinds of errors are less frequent than gender-
number disagreement among elements in a noun phrase.

3.3 Conclusions
Most of the current MT systems are designed to translate documents sentence by
sentence ignoring the contextual information, generating then translation outputs
with different kinds of errors that hinder the coherence and cohesion levels.

Section 3.1 analyzes and presents a categorization of the most noticeable transla-
tion errors related to document-level information in the sense that they may be easy
to fix using context information. In particular, lexical consistency and gender and
number agreement at intra- and inter-sentence scope are described.

Once we have identified and described the phenomena we are interested to han-
dle, in Section 3.2 we explored a methodology to include document-level information
within a translation system without changing the decoding mechanism. The method
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news item System BLEU↑ OK/ch dets adjs verbs

20

baseline 13.40
restrictive + restrictive 13.38 17/19 14/15 3/3 0/1
restrictive + probabilistic 13.44 14/19 11/15 2/3 1/1

probabilistic + restrictive 13.21 16/17 13/14 3/3 0/0
probabilistic + probabilistic 13.44 12/17 10/14 2/3 0/0

25

baseline 14.42
restrictive + restrictive 14.68 12/19 9/13 3/6 0/0
restrictive + probabilistic 15.09 15/19 10/13 5/6 0/0

probabilistic + restrictive 14.39 10/17 6/11 4/6 0/0
probabilistic + probabilistic 14.82 13/17 8/11 5/6 0/0

39

baseline 28.49
restrictive + restrictive 30.02 20/22 14/16 6/6 0/0
restrictive + probabilistic 29.59 18/22 13/16 5/6 0/0

probabilistic + restrictive 29.94 19/21 14/16 5/5 0/0
probabilistic + probabilistic 29.59 17/21 13/16 4/5 0/0

48

baseline 30.05
restrictive + restrictive 29.57 6/6 5/5 1/1 0/0
restrictive + probabilistic 29.60 4/6 4/5 0/1 0/0

probabilistic + restrictive 29.57 6/6 5/5 1/1 0/0
probabilistic + probabilistic 29.60 4/6 4/5 0/1 0/0

49

baseline 25.54
restrictive + restrictive 25.82 9/11 3/4 6/7 0/0
restrictive + probabilistic 26.02 9/11 3/4 6/7 0/0

probabilistic + restrictive 25.63 8/11 3/4 5/6 0/1
probabilistic + probabilistic 26.02 9/11 3/4 5/6 1/1

Table 3.6: Manual evaluation of chaining both post-processes (first applying the dis-
ambiguation post-process and, afterwards, checking for the agreement),
using either the restrictive or the probabilistic approaches, and compared
to the Moses baseline system. The OK/ch column shows the number of
changes made with respect to the baseline translation and how many are
correct, and these amounts are broken down into three categories: dets
show the same information but only for changes done over determiners,
adjs over adjectives, and verbs over verb forms.

performs a two-pass translation. First, a translation is generated by means of a base-
line SMT system. Afterwards, incorrect translations according to predefined criteria
are detected and new translations are suggested. The re-translation step uses this
information to promote the correct translations in the final output.

A common post-process is applied to deal with lexical coherence at document level
and intra- and inter-sentence agreement. The source documents are annotated with
linguistic processors and the interesting structures are projected on the translation
where inconsistencies can be uncovered. In order to handle lexical coherence, we devel-
oped a post-process that identifies words translated with different meanings through
the same document, described in Section 3.2.1. For treating disagreements, we de-
veloped a post-process that looks for inconsistencies in gender, number, and person
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within the structures determiner–adjective(s)–noun(s) and subject–verb, described in
Section 3.2.2.

Because we are treating sparse phenomena, an automatic evaluation of our sys-
tems does not give us enough information to assess the performance of the systems.
A detailed manual evaluation of both systems shows that we only introduce local
changes. The lexical-coherence-oriented post-process induces mostly correct transla-
tion changes when using our restrictive system, improving the final coherence of the
translation. Furthermore, for the post-process focused on the analysis of the number
and gender agreement, it achieves more than 80% of accuracy over the introduced
changes in the manually-evaluated news documents. We also observed that some of
the negative changes are consequence of bad word alignments which introduce noise
when proposing new translations.



Chapter 4

Word Embeddings in
Machine Translation

Recently, distributed representation models have been used successfully in many nat-
ural language processing tasks. These models have proved to be robust and powerful
to predict semantic relations between words. However, they are unable to handle
lexical ambiguity as they conflate word senses of polysemous words into one common
representation1. This limitation is already discussed by Wolf et al. (2014), who also
propose an extension of the learning architecture that jointly trains two monolingual
models for a language pair. In this way, they are able to capture meanings across
the two languages. This is a refinement of the observation of Mikolov et al. (2013b),
who noticed that even when training the two monolingual models independently they
can be related through a linear mapping: this allows the authors to use the language
of the pair with the best linguistic resources to improve dictionaries or phrase tables
for the language with the poorer resources. We also exploit language pairs, but in
contrast to these approaches, our goal is to use word alignments between the two cor-
pora to create bilingual tokens and, in this way, disambiguate the lexicon and obtain
a bilingual vector model with more precise semantics.

We use the word2vec package presented by Mikolov et al. (2013a) to build mono-
lingual and bilingual word embeddings and then evaluate the acquired representations
on three different tasks: (i) predicting semantically related words, (ii) performing a
cross-lingual lexical substitution task, and (iii) guiding the decoding in a translation
task. The latter evaluation is the most relevant for our ultimate ends, as it assesses
the appropriateness of the models for the purpose of translation.

1More recent embedding approaches like BERT Devlin et al. (2019) are able to produce contex-
tualized word embeddings, although they still consider only sentence level context.
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4.1 Semantic Models Using word2vec
We use the implementation of the Continuous Bag-of-Words (CBOW) algorithm in
the word2vec package to build our models. This algorithm uses a neural network
to predict a word given a set of its surrounding words, where the order of the words
in the history does not influence the projection. This is in contrast to the other
algorithm available in word2vec for building the models, Skipgram, which trains
a neural network to predict the context of a given word. We choose to use CBOW
because we want to apply these models in the translation task and the CBOW training
mechanism is closer to that, i.e., predict an adequate (translated) word taking into
account a set of (translated) context words.

In order to enrich the semantic information encoded in the models, we transform
the training data to hold information from both the source and target languages
together. In particular, we use an aligned parallel corpus to extract a new training
corpus of word pairs: (wi,S |wi,T ). For instance, if the words house and casa are
aligned in the parallel corpus, we consider the new form house|casa. In this way,
we hope to better capture the semantic information that is implicitly contained by a
text and its translation. For example, we expect to be able to distinguish among the
different meanings of the word desk by considering its corresponding forms in Spanish,
i.e., differentiate between desk|mesa, desk|mostrador, desk|escritorio, and any others.

The training has been performed under the following settings. We build the bilin-
gual training data set from parallel corpora in the English-Spanish language pair avail-
able in Opus2 (Tiedemann, 2009, 2012). In particular, we select the Europarl-v7,
United Nations, Multilingual United Nations, and Subtitles-2012 corpora,
which total 584 million words for English and 759 millions for Spanish. These corpora
have been automatically aligned to obtain the word alignment information necessary
for our bilingual models. We choose the one-to-one alignments to avoid noise and rep-
etitions in the final data. Monolingual models are built with the Spanish or English
side of these same corpora. Finally, regarding the word2vec training parameters, we
consider several configurations for the dimensionality of the vectors and the context
window size.

4.2 Accuracy of the Semantic Model
We first evaluate the quality of the models based on the task of predicting related
words. A bilingual test set is manually built from the Semantic-Syntactic Word
Relationship test set of Mikolov et al. (2013a) by attaching to each English word
its Spanish translation, according to a native Spanish speaker. This test set contains
19,544 questions, divided into 8,869 semantic and 10,675 syntactic questions. For the
monolingual models, we use the same test set projected to either the English or the
Spanish side.

The evaluation task consists in predicting a word given a pair of related words and
a question word. Intuitively, the task can be understood as solving analogies, such
as:

2http://opus.lingfil.uu.se/

http://opus.lingfil.uu.se/
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Model Vector dimensions Context window size
300 600 1,000 2 5 10

English 31.24% 33.53% 33.34% 31.97% 33.53% 32.68%
Spanish 11.42% 12.30% 12.16% 12.54% 12.30% 14.15%

English-Spanish 21.96% 23.68% 23.41% 19.50% 23.68% 25.54%

Table 4.1: Accuracy of the vector models filtered to the 30,000 most frequent vocab-
ulary entries, when varying the vector dimensions (with the size of the
context window fixed to 5) and when varying the context window size
(with the dimension of the vectors fixed to 600). The 600 and 5 columns
coincide by definition.

Athens is to Greece as Paris is to ?

which in the word vector setting becomes the equation:

Paris − Athens + Greece = ?

with its expected solution being France or, rather, a vector that is closest to the word
embedding of France. In that example, the words provided by the English test set are
the pair Athens Greece and the question is Paris. In our English-Spanish bilingual
scenario, the same example is represented by the pair Athens|Atenas Greece|Grecia
and the question Paris|París, and in this case the task is to predict France|Francia.

The previous analogy is an example of a semantic question. The syntactic ques-
tions of the test set follow the same scheme, but relating words through syntactic
transformations. For instance:

good is to better as bad is to ?

with the expected solution being the comparative worse.

4.2.1 Results
First of all, we evaluate how the training parameters affect the quality of our models.
Table 4.1 shows the effect of varying the vector dimensionality in terms of accuracy,3
with the vocabulary of each model filtered to its 30,000 most frequent entries. We
observe the benefit of using more than 300 dimensions, but there is no clear gain in
using more than 600 dimensions in any of the models. Regarding the context window
size, the same Table 4.1 shows that we obtain the best results for the English model
when using a window of 5, whereas a window of 10 is optimal for the Spanish model.
In the case of the bilingual model, we also observe an improvement of the accuracy
when increasing the size of the context window, showing how a larger context helps
the model disambiguate word senses.

3All the accuracy values are computed over the questions of the test set whose words are known
to the model in consideration. The percentage of questions of the test set with known words for the
English model is 64.67%, for the Spanish model 44.96%, and for the English-Spanish model 13.74%.
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Model Overall Semantic Syntactic

English 32.47% 19.17% 38.57%
Spanish 10.24% 15.15% 8.70%

English-Spanish 23.68% 25.63% 22.60%

Table 4.2: Accuracy of the vector models per question category.

Table 4.2 shows the accuracy results for our models of 600-dimensional vectors
and trained with a context window size of 5, both overall for the whole test set and
broken down into the subcategories of semantic and syntactic questions. Notice that,
compared to Table 4.1, without filtering vocabularies the models achieve a slightly
worse accuracy. This is because, although using the whole vocabulary improves the
coverage, it also decreases the precision: each subspace is populated by more vectors
(e.g., because more synonyms are present), making it harder for the correct word
embedding to be the closest one. An analogous problem will manifest later in the
results of the cross-lingual lexical substitution task in Section 4.3.2, where considering
the 5 closest embeddings will prove to be more accurate than focusing exclusively on
the single closest one.

We observed that the low accuracies achieved by the Spanish models are due to the
noise in the training data, such as multiple spellings or synonyms for some words, e.g.,
“Kazakhstan” appearing as “Kazajistán”, “Kazajstán”, or “Kazakstán”. Accuracy
decrease may also be caused by the compromises made during the translation of the
test set, e.g., “faster” becoming “rápido” instead of “más rápido” since we are not
considering multi word expressions. In the bilingual case, the accuracy is lower than
for English due to the coverage problem inherited from the Spanish data and the noise
from word alignments.

4.3 Cross-Lingual Lexical Substitution Task
We now evaluate the semantic models through the effect they can have in a scenario
resembling translation. In particular, we implement a cross-lingual lexical substitution
task inspired by the one carried out in SemEval-2010.4 To this end, first, we identify
the content words of an English test set which are translated into Spanish in more
than one different way by a Moses system. We call these words ambiguous. Then, the
task consists in choosing the adequate Spanish translation for each of the ambiguous
words. In our case, the correct choice is given by the reference translation of the test
set.

To give an example, the word “desk” appears several times in a news item about
a service to attend grievances against exaggerated rents. This word in such context
has the meaning of a service counter or table in a public building, such as a hotel.5
The correct translation to that meaning in Spanish would be the word “mostrador” or
“ventanilla”. But in the output of the SMT system, besides the correct translations,

4http://semeval2.fbk.eu/semeval2.php?location=tasks#T24
5Definition taken from Collins Concise English Dictionary.

http://semeval2.fbk.eu/semeval2.php?location=tasks#T24
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Model Top 1 Top 5

Spanish CBOW 47.71% 65.44%
Skipgram 47.71% 59.19%

English-Spanish CBOW 62.39% 85.49%
Skipgram 62.39% 78.36%

Table 4.3: Accuracy of the vector models in the cross-lingual lexical substitution task,
when suggesting either the top 1 (i.e., only the best) or the top 5 (i.e., the
five best) Spanish translation options.

we can also find “desk” translated as “mesa” or even as “escritorio” in the same
document. Since the reference translation contains “ventanilla”, only this word will
be considered correct in the evaluation.

We tackle the problem of choosing the adequate translation for each occurrence
of an ambiguous word as follows. Given one of such occurrences, we first compute
a vector representing its context in the target side: we take the 2 previous and 2
following words in the target, look for their word embedding in our models, and
combine them with a vector addition. Note that, clearly, when accessing a bilingual
model it is necessary to retrieve the source word aligned to the target word in question
in order to build the pairs (wS |wT ) needed for querying the model. Next, we score
each translation option seen within the document. This score is the cosine similarity
between the computed context vector and the word embedding of the translation
option in consideration. Finally, we choose the translation option with highest score
as the best option for that particular occurrence of the ambiguous word.

4.3.1 Settings
Our English-to-Spanish translation system is a Moses decoder (Koehn et al., 2007)
trained on the Europarl-v7 corpus (Koehn, 2005) and using GIZA++ (Och and
Ney, 2003) to obtain the word alignments. The Spanish language model is an inter-
polation of several 5-gram language models obtained using SRILM (Stolcke, 2002)
with interpolated Kneser-Ney discounting on the target side of the Europarl-v7,
United Nations, newsCommentary2007-2010, AFP, APW, and Xinhua cor-
pora as given by QuEst (Specia et al., 2013).6 The feature weight optimization is
done with MERT (Och, 2003) against the BLEU metric (Papineni et al., 2002) on
the newsCommentary2009 development corpus. We use newsCommentary2011
as test set.

4.3.2 Results
Table 4.3 shows the results of the evaluation of our bilingual model in comparison to
our monolingual model trained in Spanish. In this case, we consider models trained
with both the CBOW and the Skipgram algorithms of word2vec, using 600 dimen-

6Resources are available at: https://www.quest.dcs.shef.ac.uk/wmt13_qe.html

https://www.quest.dcs.shef.ac.uk/wmt13_qe.html
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sions for the vectors and a context window size of 5. We use a stop-word list to skip
some adverbs, common verbs, the prepositions and conjunctions as ambiguous words
to avoid noise in the results. For our test set, 8.12% of the words are ambiguous
and, in average, there are 3.26 translation options per ambiguous word. The mono-
lingual model has, in average, a coverage of 90.97% per document and the bilingual
one 87.53%, which over the ambiguous words become 87.37% for the monolingual and
83.97% for the bilingual.

The two word2vec algorithms have the same performance for this task when
they suggest only the best option: an accuracy of 47.71% for the monolingual model
and 62.39% for the bilingual one. So, bilingual models are encoding considerably more
semantic information than monolingual models in the Top 1 setting. Furthermore,
the bilingual model is able to outperform a frequentist approach, since always using
the most frequent translation option for this task leads to 59.76% of accuracy.

Accuracies are significantly improved when more options are taken into account.
This is expected since, for instance, synonym translations are considered mistakes
when they turn up in the Top 1 setting, leading to underestimating those accuracy
results (Mikolov et al., 2013b). More precisely, when looking at the accuracy at
Top 5, CBOW achieves 65.44% with the monolingual model and 85.49% with the
bilingual one, whereas the Skipgram models have, approximately, 6 less points in
the monolingual case and 7 in the bilingual one. These results indicate that CBOW
bilingual models are capturing better the semantics and that considering more than
one option can be important in the full translation task. Furthermore, the models
improve over the 59.76% accuracy of the frequentist approach, except for the Skipgram
monolingual model, which nevertheless achieves a similar accuracy.

4.4 Translation Task with Semantic Space Language
Models

We now focus on the usage of word embeddings within the Lehrer document-oriented
decoder. Intuitively, the decoder uses these models in analogy with the standard lan-
guage models, but working on vectors representing words and their contexts instead
of n-grams of words. Thus, when using monolingual word embeddings, the approach
mimics a language model computed over semantic information from the target doc-
ument, whereas in the case of the bilingual vector models, the approach mimics a
language model over semantic information from both the target and the source sides.
In any case, the expected effect is to promote translation choices that are semantically
similar to the target context.

More precisely, we follow the use of word vector models as a Semantic Space
Language Model (SSLM) by Hardmeier et al. (2012). In that work, the authors use
latent semantic analysis7 (Bellegarda, 2000; Foltz et al., 1998) to build their word
vector models and proceed as follows to reward word choices that are semantically
close to their context. For each word w in a document translation candidate, a score

7This technique uses the analysis of relationships among a set of documents and their terms to
create a simplified matrix that represents the word counts per paragraph. This approach assumes
that two close words occur in similar pieces of text.



4.4. Translation Task with Semantic Space Language Models 51

is computed based on the cosine similarity between the vector representation of w
and the sum of the vector representations of the n target words that precede w in
the document translation. The similarity is then converted into a probability by a
histogram lookup, as proposed by Bellegarda (2000). The non-content words and
the words unknown to the model are handled specially, both when computing their
associated score and when considering them as part of the context of any later word.
Formally, the score for w is:

score(w|~h) =


punigram(w) if w is a stop word
α · psimilarity(cossim(µ(w),~h)) if w ∈ dom(µ) is not a stop word
ε otherwise

(4.1)
where ~h is the vector representing the preceding context of w (i.e., the sum of the
vector representations of the n previous non-stop known words in the document trans-
lation), punigram maps each stop word to its relative frequency in the training corpus,
α is the proportion of content words in the training corpus, psimilarity takes the cosine
similarity computed by cossim and maps it from the range [−1, 1] into a probability
in [0, 1] according to a given histogram, µ represents the word vector model mapping
words to their associated vector representations, with dom(µ) being its domain, and
ε is a small fixed probability. The final score for the document translation candidate
is the sum of the natural logarithm of the score of each of its words. The logarithm is
required to properly fit in the log-linear scoring model from Koehn et al. (2003) used
by the decoder.

The value chosen by Hardmeier et al. (2012) for the parameter n is 30 to make it
possible that the context used in the computations crosses sentence boundaries. Other
parameters are offered by the SSLM implementation to alter its basic scheme described
above. For instance, it is possible to ignore casing differences when accessing either
the stop-word list or the vector model, to perform bilingual queries into the vector
model by taking the source words aligned with the target word in consideration, or to
use a transformation different from a histogram when mapping the cosine similarities
to probabilities. For the latter, we use the mapping where psimilarity(x) is x when
x > 0 and 1 otherwise. In this way, the cosine similarity of words that are semantically
distant from their context (in particular, when the vectors are π/2 radians or more
apart) does not contribute to the final score, since its natural logarithm after such
psimilarity mapping is 0. This idea is similar to how the translation model of the
decoder scores out-of-vocabulary words.

4.4.1 Settings

We use as SMT baseline for English-to-Spanish translation the Moses system de-
scribed in Section 4.3.1. Regarding the document-level decoder, we use a Lehrer
baseline system with the following configuration. First, the enabled features coincide
with the ones of the Moses baseline system, except for lexical reordering, which is not
implemented. Second, its feature weights are tuned with MERT (Och, 2003) against
the BLEU metric (Papineni et al., 2002) on the newsCommentary2009 develop-
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ment corpus.8 This tuning is run on a Moses decoder with the exact same feature
configuration as the Lehrer baseline. Third, the decoding is set to use the output of
the Moses baseline system as initial translation. Finally, the remaining parameters
are left to their default values recommended by Hardmeier (2014).

We consider three variants of the Lehrer system having the document-level SSLM
as an additional feature function. The word vector models used for SSLM are the ones
built with the CBOW algorithm, using a context window size of 5 and 600-dimensional
vectors for the monolingual Spanish model and, due to memory constraints, 200-
dimensional vectors for the bilingual English-Spanish model. We denote these system
variants as Lehrer+SSLMmo, Lehrer+SSLMbi, or Lehrer+SSLMbi&mo depend-
ing on whether the monolingual, the bilingual, or both models are in use, respectively.
For tuning the weights of the SSLM features of these system variants, we resort
to performing manual grid searches with the newsCommentary2009 development
set.9 This is because, even though Stymne et al. (2013) reported some initial success
on automatic feature weight optimization on Docent, weight optimization for the
document-level features still persists as a hard problem (Smith, 2015). For instance,
Figures 4.1, 4.2, and 4.3 show the evolution of the feature weights during three of
the experiments10 on MERT tuning that we conducted. The first two correspond to
tuning only sentence-level features on Lehrer and Moses, respectively, and both
end successfully and with similar results. The latter figure corresponds to tuning also
the document-level SSLM features on Lehrer and, in this case, ends unsuccessfully:
the process exhausts its quota of iterations without having converged.

Finally, the experiments are conducted over the newsCommentary2010 test set.

8For completeness, the used weight are as follows: 〈0.142478, 1030〉 for geometric-distortion-model,
−0.305865 for word-penalty, 100 for oov-penalty, 0.0928037 for phrase-penalty, 0.157589 for ngram-
model, and 〈0.092929, 0.071066, 0.0911327, 0.0461362〉 for phrase-table. Notice that they do not add
up to 1, since the 1030 and 100 values are not obtained through the tuning process but are left to
their default configuration (Hardmeier, 2014).

9The grid search is performed by trying weights for SSLM at regularly-spaced values, leaving the
remaining feature functions with their MERT-tuned values of the Lehrer baseline. After an initial
exploration, the most promising region is further analyzed with finer-spaced values. When combining
the monolingual and the bilingual models together, the cartesian product of their possible values is
considered for the grid search. The resulting non-normalized weights for the additional feature
functions are as follows: 0.03 for the +SSLMbi variant, 0.015 for the +SSLMmo, and 〈0.03, 0.015〉
for their combination +SSLMbi&mo.

10For these experiments, we use newsCommentary2009 as development set, and trim the phrase
table such that each source phrase only contains, at most, its 30 entries with highest p(tgt|src)
probability. Also, Lehrer is configured to start the decoding with a random initial translation and
to perform 106 hill-climbing steps with a maximum quota of 105 consecutive unsuccessful steps.
When introducing the document-level SSLM features, the number of steps is lowered to 2 · 105 due
to time constraints. Finally, since we are interested in ruling out the small amount of documents
of the development set as the cause for non-convergence, we also conduct tunings on Moses with a
limited development set: we use only the first 136 sentences of the set, to match the 136 documents
available when tuning on Lehrer. This limited set is the one in use for Figure 4.2. In the three
presented figures, the initial weights of the features are uniformly distributed. We also conducted
unsuccessful MERT tuning experiments for SSLM where the initial weight distribution corresponded
to the grid-optimized values.
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Figure 4.1: MERT on Lehrer on sentence-level features. The plots depict the evo-
lution of the weights for the tuned feature functions (from top to bottom:
geometric-distortion-model, word-penalty, phrase-penalty, ngram-model,
and the 4-score phrase-table) and also the evolution of the respective ob-
tained BLEU score (bottom). The process has already converged at its
17th iteration (of a maximum of 25).
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Figure 4.2: MERT on Moses, with analogous interpretation as Figure 4.1. The pro-
cess has already converged at its 10th iteration.
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Figure 4.3: MERT on Lehrer, with analogous interpretation as Figure 4.1, but
adding the document-level features SSLMbi and SSLMmo to be tuned.
The process reaches its final 25th iteration without having converged.

4.4.2 Results
Table 4.4 shows the automatic evaluation obtained with the Asiya toolkit (Gonzàlez
et al., 2012) for several lexical metrics and their ULC average. The results show only
small differences between the systems. However, these differences roughly reflect the
impact of our word embeddings in the translation process and are fairly consistent
across metrics. Nevertheless, the differences are only statistically significant11 between
the Lehrer and Lehrer+SSLMbi systems. We observe that Lehrer systems have
in general a positive trend in their performance as long as we introduce models with
more information (from only monolingual to bilingual).

Looking a little bit closer at each system, first note that switching from the
sentence-based Moses decoder to the document-based Lehrer baseline does not
lead to a clear change: the scores of the PER, BLEU, and METEORpa metrics im-
prove, whereas WER, TER, and NIST worsen, with the ULC global ranking showing
a slight preference of 0.07 points for the Lehrer system. A similar phenomenon takes
place when comparing the Lehrer baseline with the Lehrer+SSLMmo variant: the
latter only improves in WER, TER, NIST, and ULC, but gets worse scores in the
others. On the other hand, using bilingual models seems to cause a clearer improve-
ment: Lehrer+SSLMbi obtains the best scores in all the metrics except for WER
and PER, where it is surpassed by other Lehrer variants. In particular, it improves

11According to bootstrap resampling (Koehn, 2004) over BLEU and NIST metrics with a p-value
of 0.1.
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System WER↓ PER↓ TER↓ BLEU↑ NIST↑ METEORpa↑ ULC↑

Moses 59.54 39.95 53.70 27.52 7.3229 50.02 49.92
Lehrer 59.67 39.72 53.78 27.58 7.3127 50.08 49.99
+SSLMbi 59.38 39.84 53.49 27.60 7.3491 50.13 50.22
+SSLMmo 59.58 39.83 53.70 27.57 7.3194 50.07 50.00
+SSLMbi&mo 59.37 39.97 53.49 27.48 7.3436 50.10 50.07

Table 4.4: Automatic evaluation of the systems. The ULC is computed over the other
metrics of the table.

System news item
12 37 35 107 41 97

Moses 11.94 37.46 30.73 30.77 37.55 26.96
Lehrer 12.56 38.28 31.23 30.81 37.33 26.80
+SSLMbi 12.02 38.21 32.19 33.03 37.61 27.48
+SSLMmo 11.99 38.18 31.87 31.38 37.79 27.65
+SSLMbi&mo 12.27 37.85 32.15 31.38 37.21 27.57

Table 4.5: Scores of the automatic evaluation of the different systems using the BLEU
metric on some individual documents from the test set.

0.30 points in ULC with respect to the Moses baseline and 0.13 with respect to the
Lehrer baseline. This seems in contradiction with the statistical significance test,
which only detected a difference of Lehrer+SSLMbi against the Lehrer baseline,
but not against the Moses one. The cause for this apparent discrepancy is that the
NIST value for the former baseline is worse than the value for the latter. Finally,
the variant using both monolingual and bilingual embeddings together obtains mixed
results: according to the ULC ranking, the scores of Lehrer+SSLMbi&mo seem to
be at a midpoint between the Lehrer+SSLMmo and Lehrer+SSLMbi systems.

In summary, we conclude from these results that the semantic information cap-
tured by our vector models helps the document-level translation decoder. This be-
haviour is coherent with the previous evaluation of the models shown in Sections 4.2
and 4.3, where bilingual models outperformed their monolingual Spanish counterpart.
Also, this is an expected behaviour since the systems including the bilingual SSLM
models are the ones that include source context information which is more reliable
than the target context information which is being generated from the same system
that the SSLM want to improve.

Table 4.5 shows the BLEU scores for some particular documents with some in-
teresting cases. These results reflect the behaviour of our systems. We found some
documents where the Lehrer systems cannot improve the Moses translation. For in-
stance, the phrase “the portrait” appears in a document about a famous photographer.
Its correct translation would be “el retrato” according to the reference, although “el
cuadro” would be also a correct translation depending on the context. Moses trans-
lates it as “el cuadro” and Lehrer systems suggest the reference translation but also
introduce a new incorrect option “el marco”. On the other hand, we find many ex-



56 Chapter 4. Word Embeddings in Machine Translation

amples where word vector models are helping. For instance, in the example of desk
that we mentioned in Section 4.3, it is translated as mostrador, mesa, and escritorio
by Moses. Using the Lehrer baseline, it appears translated as escritorio and mesa.
That shows how Lehrer is controling the coherence level of the translation. Using
the Lehrer extended with the monolingual model, it appears as escritorio, mesa, and
taquilla. The word vector language model helps the system change one translation op-
tion for a more correct one. Finally, using the bilingual vector model, we observe the
word translated as mostrador, mesa, and taquilla, obtaining here 2 good translations
instead of only one. This shows how the bilingual information helps to obtain better
translations. We observe how monolingual vector models improve the Lehrer base
translation and, at the same time, how the bilingual information helps to improve the
translation and even obtain better results than the ones with the Moses baseline.

4.5 Conclusions
We have presented an evaluation of word vector models trained with neural net-
works. First, we build monolingual and bilingual models using the word2vec pack-
age. Then, we evaluate the models carrying out two different evaluation tasks. One
to assess the quality of the semantic relationships enclosed in the models and, in the
second one, we test the models to see their capability to select a good translation
option for a word that appears translated in more than one sense in a first translation
of a document. The results of these evaluations show that the CBOW bilingual model
performs better than the Skipgram one in our test set, achieving 85.49% and 78.36%,
respectively, for the accuracy at Top 5. Also, the bilingual model achieves better
results than the monolingual one, with a 65.44% of accuracy for the best monolingual
model trained with CBOW against the 85.49% for the bilingual model under the same
conditions. These results indicate that word embeddings can be useful for translation
tasks.

We also evaluated our word vector models inside a machine translation system. In
particular, we chose the Lehrer decoder since it works at document-level and allows
a fast integration of word embeddings as semantic space language models. This option
allows us to assess the vector models quality in a specific translation environment.
The experiments we carried out showed that word vector models can help the decoder
improve the final translation. Although we only observe a slight improvement in the
results in terms of automatic evaluation metrics, the improvement is consistent among
metrics and is larger as we introduce more semantic information into the system. That
is, we get the best results when using the models with bilingual information.

Summing up, the evaluation has shown the utility of word vector models for
translation-related tasks. However, the results also indicate that these systems can
be improved.



Chapter 5

Lexical Consistency in
Statistical Machine
Translation

Here we focus on granting the “one sense per discourse” assumption. Chapters 3
and 4 have presented our first attempts to that end, building on standard SMT
systems but without modifying their internal architecture. We now focus on a specific,
significant document-level phenomenon: lexical consistency. We tackle it by designing
and integrating new strategies within the decoder itself.

As pointed out in Section 3.1, lexical consistency in a translation can be increased
by translating a word always in the same way. However, even though term repetition
may improve the coherence of the text, it can also mar the translation by making
it more monotonous and tedious. Instead of that, we are going to allow certain
variability as long as the translated words are consistent with their context. In this
scenario, using word vector models helps maintain such consistency as they can give
a measure of semantic distance between a word and its context.

5.1 Approach
We strive to obtain lexically consistent translations, only allowing term variations as
long as they are semantically similar to their surrounding context (see Figure 5.1). To
this end, we need a document-oriented decoder, since identifying translation incon-
sistencies requires access to the entire document translation. The approach by Hard-
meier et al. (2012) detailed in Section 2.2.2 is a suitable framework for our purposes.
Inspired by the SSLMs and with these aims, we introduce a new feature function that
uses a Semantic Space to measure the Lexical Consistency (SSLC) of a document
translation. Following the idea of a not strict lexical consistency, the SSLC uses word
embeddings to measure how suitable the translation of a word is taking into account
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desk

desk

desk

desk
mostrador

ventanilla

mostrador

mostrador

mostrador

mostrador

mostrador

mostrador

mostrador

ventanilla

mesa

escritorio

Figure 5.1: Example where the source document (left) is translated with differing
options for the word “desk”. The greyed-out target document (top) is
undesirable for us since the translation options used for “desk” are incon-
sistent. Moreover, the specific options “mesa” and “escritorio” are not
adequate in Spanish assuming that the context of the document is related
to a service attending rent grievances: they are not likely to occur in such
setting. The other two target documents (right and bottom) are valid for
us. Notice that the bottom one also uses multiple translation options, but
both “mostrador” and “ventanilla” are adequate for the context.

its context and the other translation options seen through the document.
However, the SSLC may not be enough to help the decoder obtain better trans-

lations in terms of consistency. Recall from Section 2.2.2 that the decoding performs
a hill climbing in a translation search space. At each step, the decoder explores
the neighborhood of the current translation by randomly applying to it one of the
available change operations. The default operations perform simple modifications
such as changing the translation of a phrase, swapping phrase-pairs, or re-segmenting
the data. Unfortunately, these simple operations do not aid directly in our goal of
reaching more lexically consistent translations. The reason for this fact is twofold.
On the one hand, to increase the consistency it is in general necessary to perform
multiple changes within the document and, since the default change operations only
perform one change at a time, it would take several steps to fix one of the lexical
choice inconsistencies. On the other hand, since hill climbing only performs a step
when it strictly increases the score, each of the intermediate steps that try to fix
an inconsistency would need to increase the score. Here arises the necessity of in-
troducing a new change operation. We implement the Lexical Consistency Change
Operation (LCCO) that shortcuts the process by, at a single step, performing multiple
simultaneous changes that fix inconsistent translations of the same source word.



5.2. Semantic Space Lexical Consistency Feature 59

5.2 Semantic Space Lexical Consistency Feature
Intuitively, SSLC scores each occurrence of an inconsistently translated source word
with a value in [−∞, 0]. This value is intended to measure how worse (in terms of
adequacy) the current translation option is when compared to the other translation
options seen in the document. We consider a translation option to have better ade-
quacy the more semantically similar it is to the context surrounding the occurrence
being scored. We compute this semantic similarity as a cosine similarity between
two vectors: (i) the word embedding of the translation option and (ii) the vector
representation of its context within the target document. A vector representation of
the context is obtained in our case as the sum of all its word vectors. Recall that
the aim of SSLC is not to enforce a strict lexically consistent translation, since we
allow lexical inconsistencies when they are semantically similar to their surrounding
context.

As a first step, we need to define one basic property: when two words must be
considered to be the same word. To this end, we use a criterion looser than the strict
identity: we allow to conflate words having distinct casing and differing on certain
kinds of inflection. This is necessary to properly identify ambiguous words; for in-
stance: if “desk” is being translated into Spanish as “mostrador” whereas “desks” is
being translated as “mesas”, we want to identify that the common stem of “desk”
and “desks” is obtaining two distinct translated stems. More precisely, we define
a normalization process for words, and consider two words to be the same one if,
and only if, their normalized forms coincide. Formally, we introduce the functions
normsrc and normtgt which take as input a source or target word, respectively, and
return a normalized version of it. In our settings, normsrc and normtgt are imple-
mented by, first, lower-casing the word and, then, by stemming it with the Snow-
ball library1 for the appropriate language. For example, with English source we get
normsrc(Penguins) = penguin, where “P” has been lower-cased to “p” and the plural
suffix “s” has been erased by the stemming.

Second, to formalize SSLC we still need some preliminary artillery. Let the source
and target documents be the sequences of words s1, s2, . . . , sN and t1, t2, . . . , tM ,
respectively, for some N,M > 0. Recall that source and target words are aligned
with an arbitrary relation, say T . In particular, one source word may be aligned to
zero, one, or more target words, and conversely, one target word may be aligned to
zero, one, or more source words. We focus only on the one-to-one aligned words, i.e.,
source words that are aligned to just one target word and, in turn, such target word
is only aligned with that source word. We denote by τ this one-to-one sub-relation of
T , hence τ : {1, . . . , N} → {1, . . . ,M} is a partial, injective mapping that associates
to a source word index its corresponding target word index. τ is partial since it is not
defined for those source word indexes aligned to zero or more than one target words,
and it is injective since we only consider target words aligned to exactly one source
word.

In order to identify inconsistently translated words, we first need to identify all
occurrences of the same source word. To this end, let occ : {1, . . . , N} → 2{1,...,N}
be the function that associates to each source word index i the set of indexes of the

1http://snowballstem.org/

http://snowballstem.org/
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source words that have the same normalized form as si, i.e.:

occ(i) = {j ∈ {1, . . . , N} | normsrc(sj) = normsrc(si)}

Observe that i ∈ occ(i) always holds. Additionally, we need to obtain the target word
indexes aligned to the source word indexes in occ(i). To this end, we use τocc(i) to
denote the set of target word indexes resulting of applying τ to each source word
index in occ(i), skipping those for which τ is undefined. Finally, we say that the ith
source word is inconsistent in the current translation, denoted incons(i), if the source
words sj that have the same normalized form as si have been translated into more
than two distinct normalized targets. Formally:

incons(i) =
(∣∣{normtgt(tj) : j ∈ τocc(i)}

∣∣ > 2
)

We are now in the position to define the associated score for inconsistent words.
First, let µ be the mapping defined by the word vector model in use by the decoder.
Recall that these models are a projection that maps words to vectors in a certain
space Rn, for some n > 0. Second, let C > 0 be the size of the context to either side
of the target word, possibly crossing sentence boundaries. The vector representation
for the context of the jth target word is defined as the sum of the word embeddings
around j:

ctxt(j) =
∑

k∈{max(1,j−C),...,j−1,j+1,...,min(j+C,M)}
µ(tk)

And third, the score associated to the ith source word, denoted score(i), computes
the difference between two similarities: the similarity of the current translation option
tτ(i) and its context ~c := ctxt(τ(i)) minus the similarity of ~c and the translation option
which is closest to ~c, i.e., the tk whose similarity to ~c is maximal, with k ∈ τocc(i).
More precisely:

score(i) =

0 if i /∈ dom(τ) ∨ ¬incons(i)
sim(~c, µ(tτ(i)))− max

k∈τocc(i)
sim(~c, µ(tk)) otherwise

where sim of two vectors is the natural logarithm of their cosine similarity linearly
scaled to the range [0, 1], i.e.:

sim(~a,~b) = ln
(

1
2

~a ·~b
‖~a‖‖~b‖

+ 1
2

)
(5.1)

Note that sim ranges in [−∞, 0], with −∞ corresponding to the case where the vectors
are diametrically opposed (semantically distant) and 0 to the case where they have
the same orientation (semantically close).

The final SSLC score for the whole document simply adds together the individual
scores:

∑N
i=1 score(i).

As a final remark, notice that for ease of presentation we have assumed that the
word vector model is monolingual. If it were bilingual, the expressions like µ(tj)
would be µ(tj , sτ−1(j)) instead. Also, unknown words for the vector model, i.e., words
w such that µ(w) is undefined, are ignored when computing the scores, and not taken
into account when considering the C-sized context of the target words.
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Figure 5.2: Sketch of the behaviour of LCCO. The source document (left) has both
“desk” and “house” translated into different forms (middle). LCCO se-
lects “desk” as the inconsistent source word to fix, and chooses its second
occurrence as the translation (the encircled “ventanilla”) to use in its
remaining occurrences. The target document resulting from the LCCO
modifications (right) has a consistent translation for “desk”.

5.3 Lexical Consistency Change Operation
Intuitively, LCCO first randomly selects an inconsistently translated source word,
then, randomly chooses one of its translation options used in the document, and
finally, re-translates its occurrences throughout the document to match the chosen
translation option (see Figure 5.2). This random behaviour is important to allow the
hill climbing performed by the decoder to properly explore the neighborhood.

In order to formalize LCCO we need a more refined view of the source and target
documents than in Section 5.2. Nevertheless, we will reuse some of the previous
definitions where possible. Since the decoder works with phrases as its minimum
translation units, the documents are processed as sequences of phrases. Hence, we
now consider that all the si and tj are phrases instead of words. The definition of τ
is still the same as before, although we can now guarantee that it is a total bijection
since the decoder works with phrase-pairs. The functions normsrc and normtgt are
similar to before but have phrases as input and output instead of single words. Also,
we consider that they normalize each word of the input phrase individually and, in
particular, that they preserve the number of words in the phrase.

The goal of LCCO is to change the translation of inconsistently translated words
but, since the decoder works with phrases, we focus on only changing those inconsis-
tent words appearing in 1-word phrases. This does not hinder our goals, as the other
change operations of the decoder can resegment the data and, in this way, isolate for
LCCO any inconsistent words appearing in multi-word phrases. For this reason, let
us now consider a more restricted definition of occ that only deals with indexes of
source phrases having a single word. That is, for any i ∈ {1, . . . , N} we have:

occ(i) = {j ∈ {1, . . . , N} | normsrc(sj) = normsrc(si) ∧ |sj | = 1}

where |sj | is the number of words in the source phrase sj . Note that i /∈ occ(i) = ∅ if
the source phrase si has more than one word. Using this redefined occ, we can keep
the same definition for τocc and incons as before.

LCCO works as follows. First, it selects a source phrase index i ∈ {1, . . . , N} such
that incons(i) is true. This is done by uniformly drawing that i from the following
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set:
{k ∈ {1, . . . , N} | incons(k) ∧ ∀k′ ∈ occ(k) : (k ≤ k′)}

where the universally-quantified condition is simply used to pick one single represen-
tative from each set occ(k), in particular, the one with the least index (although any
other would work too). Using such representatives is important to guarantee that the
selection is uniform on the distinct inconsistent source phrases, without biasing the
selection towards the ones with most occurrences in the source document. Second, it
selects a specific occurrence j ∈ occ(i) of that source phrase and considers tτ(j) as the
translation to use in the other occurrences. This is done by uniformly drawing that j
from the following set:

{k ∈ occ(i) | ∀k′ ∈ occ(i) : (k ≤ k′ ∨ normtgt(tτ(k)) 6= normtgt(tτ(k′)))}

where the universally-quantified condition is, again, simply used to pick a single rep-
resentative (the one with the least index, although any other would work too) from
each subgroup of occ(i) whose corresponding target phrases have an identical nor-
malized form. As before, the use of representatives guarantees that the selection is
not biased towards the translation options with most occurrences in the document.
Finally, the new document translation t′1, t

′
2, . . . , t

′
M is obtained by setting for each

k ∈ {1, . . . ,M}:

t′k :=


tk if k /∈ τocc(i)
tk if k ∈ τocc(i) ∧ normtgt(tk) = normtgt(tτ(j))
tk if k ∈ τocc(i) ∧ @t ∈ ρ(sτ−1(k)) : normtgt(t) = normtgt(tτ(j))
t else, with random t ∈ ρ(sτ−1(k)) such that normtgt(t) = normtgt(tτ(j))

where ρ maps a source phrase to the set of target phrases that are its possible transla-
tions according to the phrase table in use by the decoder. Note that t′k and tk coincide
in the three first cases of the definition. In the first one, this is simply because the
target phrase index k is not aligned through τ to any of the source phrase indexes in
occ(i) that are being affected. The second and third cases do involve an affected index
k, but in the second one we already have a target phrase with the same normal form
as the desired tτ(j) and in the third case the phrase table has no translation option for
the corresponding source phrase sτ−1(k) with the same normal form as tτ(j). In other
terms, in the second case it is unnecessary to perform any change since we already
have the desired translation, whereas in the third one it is not possible to perform the
change. The third case would never arise if normsrc had been defined as the identity.
The fourth and final case is the only one that alters the kth target phrase: it involves
an affected index k, containing a translation tk with different normal form than the
desired tτ(j), and the phrase table contains some translation options for sτ−1(k) with
the same normal forms as tτ(j). Thus, in this fourth case it suffices to set t′k to a t
uniformly drawn from the available options in the phrase table.

5.4 Experiments
We conduct English-to-Spanish translation experiments building on the settings de-
tailed in Chapter 4. In particular, we reuse the baseline Moses and Lehrer systems
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from Sections 4.3.1 and 4.4.1, respectively, and for a more complete comparison we
consider again the three Lehrer system variants from Section 4.4.1 that implement
the SSLM with monolingual and bilingual word embeddings. Furthermore, here we
also use the same development and test sets as the ones specified there.

Besides the systems inherited from the previous chapter, we introduce several new
variants of Lehrer implementing the SSLC feature function and further ones with
the LCCO change operation. Overall, we analyze the performance of 17 systems,
comprising the standard baseline Moses from Section 4.3.1, the following 8 variants
of Lehrer:
• the baseline Lehrer system from Section 4.4.1,

• the three systems from Section 4.4.1 that implement the SSLMs within Lehrer
using either the bilingual (+SSLMbi), the monolingual (+SSLMmo), or both
(+SSLMbi&mo) embeddings,

• two new systems implementing our SSLC feature within Lehrer using the
same bilingual embeddings as the SSLMbi in Section 4.4.1 (+SSLCbi) and its
combination with both SSLM features (+SSLMbi&mo+SSLCbi), and

• two new systems implementing our SSLC feature using the same monolingual
embeddings as the SSLMmo in Section 4.4.1 (+SSLCmo) and its combination
with both SSLMs (+SSLMbi&mo+SSLCmo),

and another 8 new analogous variants of Lehrer+LCCO (which we denote with
equivalent names).

We tried several values for the context size parameter C and decided to fix C = 15
for the experiments as a good trade off between performance and results and to assure
that the context is beyond sentence scope. To avoid extra noise in the process, we
use a list of stop-words that are filtered out from the scoring of the SSLC and not
considered for changing by the LCCO. Thus, the scoring and changes are only applied
to content words.

For tuning the weights of the document-level features in the +SSLC system vari-
ants, we again resort to performing manual grid searches due to the difficulty com-
mented in Section 4.4.1 of applying automatic methods (see Figure 5.3).2 For the
+LCCO variants, we additionally perform a manual grid search to optimize the
weights for the change operations in use. In particular, we adjust the weights for
the default change operations (change-phrase-translation, swap-phrases, and reseg-
ment) and for LCCO in the Lehrer+LCCO system, and use the resulting weights
in all its variants.3

2The grid search is performed along the same lines as the one in Section 4.4.1. The resulting
non-normalized weights for the document-level features in the extensions of the Lehrer system
variants of Section 4.4.1 are as follows: 0.01 for the new +SSLCbi variant, 0.006 for +SSLCmo,
〈0.03, 0.015, 0.01〉 for +SSLMbi&mo+SSLCbi, and 〈0.03, 0.015, 0.03〉 for +SSLMbi&mo+SSLCbi.
When adding LCCO, we re-tune again the document-level features, obtaining: 0.035 for +SSLMbi,
0.011 for +SSLMmo, 〈0.035, 0.001〉 for +SSLMbi&mo, 0.25 for +SSLCbi, 0.06 for +SSLCmo,
〈0.035, 0.001, 0.2〉 for +SSLMbi&mo+SSLCbi, and 〈0.035, 0.001, 0.08〉 for +SSLMbi&mo+SSLCbi.

3The tuned weights for the change operations are 0.45 for change-phrase-translation, 0.1 for swap-
phrases, 0.4 for resegment, and 0.05 for LCCO. For comparison, the weights for the default change
operations alone, as reported by Hardmeier (2014), are 0.8 for change-phrase-translation, 0.1 for
swap-phrases, and 0.1 for resegment.
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Figure 5.3: MERT on Lehrer, with analogous interpretation as Figure 4.3, but
adding the document-level feature SSLCbi to be tuned. The process
reaches its final 25th iteration without having converged.

5.4.1 Automatic Evaluation
We carry out an automatic evaluation using again the Asiya toolkit (Gonzàlez et al.,
2012) and the same metrics as in Section 4.4.2.

In Tables 5.1 and 5.2 we show the performance of the systems. On the development
set, results without LCCO show that bilingual information in SSLM appears to be
more helpful than monolingual, but also seems that both kinds of models can work
together to improve the final system output, as already seen in Section 4.4.2. Looking
at the results for both SSLC systems, there are almost no noticeable differences with
respect to baseline Lehrer. The best results have been obtained combining all the
information: bilingual and monolingual SSLMs with either of the SSLCs. When
introducing LCCO, we observe more or less the same trends as before, except that
combining SSLC and SSLM does not seem to provide the same benefit. On the test
set we observe a similar behaviour, although differences among system scores are
smaller. In this occasion both SSLC appear to improve the baseline Lehrer. Note
that, as in the development set, both SSLC seem to work better in combination with
SSLM, even though now the trend is reversed in some of the metrics, like BLEU.

As a general remark, the differences between most of the systems are not statisti-
cally significant.4 Several causes contribute to this effect. On the one hand, a pairwise

4According to bootstrap resampling (Koehn, 2004) over BLEU and NIST metrics with a p-value
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System WER↓ PER↓ TER↓ BLEU↑ NIST↑ METEORpa↑ ULC↑

Moses 64.17 43.10 58.28 24.27 6.8264 46.84 49.96
Lehrer 64.30 43.34 58.34 24.28 6.8199 46.92 49.84
+SSLMbi 64.05 42.90 58.08 24.35 6.8451 46.93 50.26
+SSLMmo 64.21 43.18 58.28 24.27 6.8272 46.89 49.95
+SSLMbi&mo 63.96 42.83 58.01 24.36 6.8535 46.91 50.35
+SSLCbi 64.33 43.36 58.38 24.26 6.8165 46.90 49.79
+SSLCmo 64.34 43.34 58.37 24.24 6.8182 46.91 49.79
+SSLMbi&mo+SSLCbi 63.91 42.79 57.99 24.39 6.8607 46.95 50.43
+SSLMbi&mo+SSLCmo 63.93 42.79 57.99 24.37 6.8629 46.95 50.42

Lehrer+LCCO 64.30 43.33 58.36 24.27 6.8194 46.92 49.83
+SSLMbi 63.99 42.85 58.04 24.38 6.8489 46.94 50.34
+SSLMmo 64.23 43.21 58.29 24.27 6.8247 46.91 49.93
+SSLMbi&mo 63.98 42.84 58.04 24.35 6.8480 46.92 50.32
+SSLCbi 64.30 43.31 58.36 24.25 6.8189 46.89 49.81
+SSLCmo 64.29 43.32 58.35 24.27 6.8194 46.91 49.84
+SSLMbi&mo+SSLCbi 64.00 42.85 58.06 24.34 6.8460 46.93 50.30
+SSLMbi&mo+SSLCmo 63.99 42.80 58.03 24.36 6.8510 46.92 50.35

Table 5.1: Automatic evaluation of the systems on the development set. The ULC is
computed over the other metrics of the table.

System WER↓ PER↓ TER↓ BLEU↑ NIST↑ METEORpa↑ ULC↑

Moses 59.54 39.95 53.70 27.52 7.3229 50.02 49.91
Lehrer 59.67 39.72 53.78 27.58 7.3127 50.08 49.98
+SSLMbi 59.38 39.84 53.49 27.60 7.3491 50.13 50.21
+SSLMmo 59.58 39.83 53.70 27.57 7.3194 50.07 49.99
+SSLMbi&mo 59.37 39.97 53.49 27.48 7.3436 50.10 50.06
+SSLCbi 59.63 39.75 53.77 27.61 7.3152 50.07 50.00
+SSLCmo 59.66 39.74 53.78 27.59 7.3125 50.07 49.98
+SSLMbi&mo+SSLCbi 59.36 39.96 53.50 27.50 7.3436 50.07 50.07
+SSLMbi&mo+SSLCmo 59.36 39.96 53.51 27.51 7.3470 50.08 50.08

Lehrer+LCCO 59.67 39.76 53.77 27.57 7.3081 50.07 49.94
+SSLMbi 59.32 39.88 53.45 27.61 7.3518 50.14 50.24
+SSLMmo 59.60 39.79 53.71 27.58 7.3195 50.09 50.01
+SSLMbi&mo 59.29 39.86 53.43 27.60 7.3554 50.15 50.27
+SSLCbi 59.70 39.75 53.81 27.59 7.3097 50.07 49.94
+SSLCmo 59.63 39.76 53.77 27.59 7.3114 50.07 49.97
+SSLMbi&mo+SSLCbi 59.32 39.89 53.46 27.57 7.3508 50.12 50.20
+SSLMbi&mo+SSLCmo 59.35 39.90 53.47 27.57 7.3481 50.12 50.18

Table 5.2: Automatic evaluation of the systems on the test set. The ULC is computed
over the other metrics of the table.
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comparison of all the system outputs shows that the amount of different sentences is
only between 8% and 42%. On the other hand, SSLC and LCCO deal with very sparse
phenomena, and thus, they cannot have a huge impact on the automatic metrics. For
instance, in average, LCCO is applied on 8% of the documents5 on the development
and test sets, and in those cases it comprises between 4% and 9% of the total amount
of change operation applications.6 Nevertheless, this does not necessarily hinder our
goals, as consistent lexical selection improvements can also be introduced by the de-
fault change operations (although taking more search steps in decoding than LCCO,
as the latter performs several modifications at once), which are promoted by SSLC.

These results make necessary a human evaluation of the translations, since we
expect that the few changes induced by SSLC and LCCO will be appreciated by
humans.

5.4.2 Human Evaluation
We carry out two distinct evaluation tasks. The first one tries to assess the quality
of the different systems, working with and without LCCO. The second one is a small
document-level evaluation task that compares the adequacy of the lexical choices
between pairs of system variants that differ on whether they use LCCO or not.

For the first evaluation task, we select a common subset of sentences from the test
set translated by the Moses system and by the 8 variants of the Lehrer system.
More precisely, we randomly choose 100 sentences with at least 5 and at most 30
words, and with at least 3 different translations among all the considered system
outputs. We set up an evaluation environment where 3 native Spanish annotators
with a high English level have been asked to rank the output of all the systems for
each of the 100 selected sentences, from best to worst general translation quality
and with possible ties. System outputs were presented in random order to avoid
system identification. The same evaluation procedure is also carried out with the 8
variants of Lehrer+LCCO. Table 5.3 shows the results obtained, where each entry
of the table contains the mean number of times that the row system is better/worse
than the column system according to the annotators, the remainder being ties. For
the ranking with Lehrer variants, the annotators agreed 70% of the time when
ranking two distinct outputs, and for Lehrer+LCCO, they agreed 72% of the time,7
respectively reaching κ = 0.4362 and κ = 0.4623 (Fleiss, 1971) showing in both cases
a “moderate” inter-annotator agreement (Landis and Koch, 1977).

of 0.05. In particular, the only statistical differences found are between Lehrer+LCCO and its
variants +SSLMbi and +SSLMbi&mo and, additionally, between its variant +SSLMbi&mo and the
variants +SSLCbi and +SSLCmo.

5The LCCO is, in fact, applied on all the documents multiple times, but most applications are
unsuccessful (i.e., unable to improve the score, and thus, rejected by the hill climbing). The reported
amount corresponds to the percentage of documents where there has been, at least, one successful
application of LCCO during the translation process.

6Similarly to the previous footnote, the two reported percentages are computed over the successful
applications of the change operations only, disregarding the vast majority of the unsuccessful ones.

7These agreements are computed as follows. For each pair of annotators, for each pair of systems,
and for each sentence in the sample where the two systems have produced distinct output, we consider
that the annotators agree if they have given the same relative ranking to both outputs, otherwise
they disagree. The reported amounts are simply the percentage of agreements among the total.
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ID System 1 2 3 4 5 6 7 8 9
1 Moses - 39 / 39 44 / 43 35 / 45 38 / 48 37 / 41 43 / 39 36 / 47 40 / 46
2 Lehrer 39 / 39 - 28 / 32 24 / 28 37 / 40 11 / 14 14 / 11 35 / 45 34 / 44
3 +SSLMbi 43 / 44 32 / 28 - 36 / 33 34 / 34 33 / 34 37 / 29 23 / 34 23 / 34
4 +SSLMmo 45 / 35 28 / 24 33 / 36 - 31 / 35 31 / 30 32 / 26 27 / 38 26 / 39
5 +SSLMbi&mo 48 / 38 40 / 37 34 / 34 35 / 31 - 42 / 36 44 / 36 18 / 27 20 / 25
6 +SSLCbi 41 / 37 14 / 11 34 / 33 30 / 31 36 / 42 - 13 / 8 34 / 43 36 / 45
7 +SSLCmo 39 / 43 11 / 14 29 / 37 26 / 32 36 / 44 8 / 13 - 31 / 47 33 / 47
8 +SSLMbi&mo+SSLCbi 47 / 36 45 / 35 34 / 23 38 / 27 27 / 18 43 / 34 47 / 31 - 21 / 18
9 +SSLMbi&mo+SSLCmo 46 / 40 44 / 34 34 / 23 39 / 26 25 / 20 45 / 36 47 / 33 18 / 21 -

ID System 1 2 3 4 5 6 7 8 9
1 Moses - 40 / 38 44 / 45 39 / 43 41 / 49 36 / 40 39 / 40 40 / 46 44 / 42
2 Lehrer+LCCO 38 / 40 - 32 / 40 23 / 32 28 / 38 14 / 19 13 / 19 31 / 41 35 / 38
3 +SSLMbi 45 / 44 40 / 32 - 38 / 39 21 / 26 40 / 36 36 / 36 21 / 28 24 / 26
4 +SSLMmo 43 / 39 32 / 23 39 / 38 - 36 / 37 31 / 27 32 / 26 34 / 36 37 / 36
5 +SSLMbi&mo 49 / 41 38 / 28 26 / 21 37 / 36 - 39 / 34 40 / 35 18 / 24 22 / 23
6 +SSLCbi 40 / 36 19 / 14 36 / 40 27 / 31 34 / 39 - 16 / 13 35 / 40 36 / 35
7 +SSLCmo 40 / 39 19 / 13 36 / 36 26 / 32 35 / 40 13 / 16 - 37 / 44 37 / 37
8 +SSLMbi&mo+SSLCbi 46 / 40 41 / 31 28 / 21 36 / 34 24 / 18 40 / 35 44 / 37 - 21 / 19
9 +SSLMbi&mo+SSLCmo 42 / 44 38 / 35 26 / 24 36 / 37 23 / 22 35 / 36 37 / 37 19 / 21 -

Table 5.3: The two pairwise system comparisons done in the human evaluation. Each
entry is the mean % of times a row system is evaluated better/worse than
the column system (in bold if the better times are more than the worse
ones).

From the results in Table 5.3, we can say that Lehrer and Lehrer+LCCO are
equivalent to Moses: they have a few ties, and either system is considered better than
the other in roughly the same amount of cases. On the other hand, most non-baseline
variants of Lehrer and Lehrer+LCCO surpass Moses on wins. Translations from
the systems including the combination of several features appear to be preferred in
general; for instance, annotators prefer the combination SSLMbi&mo over SSLMbi or
SSLMmo alone. Another interesting detail is that the SSLC systems seem analogous
to the corresponding Lehrer and Lehrer+LCCO baselines, as they have many
ties (although the SSLC systems have a slight advantage on wins). Also, SSLCbi and
SSLCmo seem analogous, with SSLCbi having a slight win advantage over SSLCmo.
This fact shows that bilingual information has helped SSLC more than monolin-
gual information. Both combinations of SSLMbi&mo with either of the SSLCs also
seem analogous. As final remarks, the SSLMbi&mo+SSLCbi variants of Lehrer
and Lehrer+LCCO systematically beat the other systems, and the non-baseline
Lehrer and Lehrer+LCCO variants beat their respective baseline variant (except
for Lehrer+SSLCmo).

The second, small evaluation task is a comparison between three system pairs with
and without LCCO: the baseline, +SSLCbi, and +SSLMbi&mo+SSLCbi variants of
Lehrer against the analogous variants of Lehrer+LCCO. We selected 10 docu-
ments with lexical changes introduced by LCCO, and asked an annotator to choose
the translation with best lexical consistency and adequacy, given the source and two
translated documents obtained by a system pair. The annotator preferred the trans-
lations of the variants with LCCO 60% of the time, and 20% of the time considered
the translations of either system to have the same quality. So, systems with LCCO
provided better translations according to the annotator regarding lexical consistency
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source: [...] Due to the choice of the camera and the equipment, these
portraits remember the classic photos. [...] The passion for the
portrait led Bauer to repeat the idea [...]

reference: [...] Son retratos que, debido a la selección de la cámara y del
material recuerdan la fotografía clásica. [...] La pasión por los
retratos de Bauer le llevó a repetir la idea [...]

Moses: [...] Debido a la elección de la cámara y el equipo, estos retratos
recordar el clásico fotos. [...] la pasión por el cuadro conducido
Bauer a repetir la idea [...]

Lehrer+LCCO: [...] Debido a la elección de la cámara y el equipo, estos retratos
recordar el clásico fotos. [...] la pasión por el retrato conducido
Bauer a repetir la idea [...]

Figure 5.4: Systems translation example with (in)consistent lexical choices.

and adequacy.
To conclude, we provide in Figure 5.4 a translation example from a news item

about a photographer and his portraits work. Moses has not translated consistently
an occurrence of the word “portrait” (the one in italics) which wrongly becomes
“cuadro” (painting) instead of the correct choice “retrato”. Without LCCO, only the
baseline, +SSLMbi, and both SSLC variants of Lehrer correctly produce “retrato”
instead of “cuadro”. With LCCO, on the contrary, all the system variants are able
to produce the consistent translation.

5.5 Conclusions
Through this chapter we have presented two new document-level strategies that aid
MT systems in producing more coherent translations by improving the lexical consis-
tency of the translations during the decoding process. In particular, we have developed
a new document-level feature function and a new change operation for a document-
level decoder. The SSLC feature function scores the lexical selection consistency of
a translation document. To this end, it uses word embeddings to measure the ade-
quacy of word translations given their context, computed on words that have been
translated in several different forms within a document. The change operation helps
the decoder explore the translation search space by performing simultaneous lexical
changes in a single translation step. Since it is able to modify several words at a time,
even across sentences, it boosts the process of correcting the lexical inconsistencies.

Results show that, although differences among systems are not statistically signif-
icant for the automatic evaluation metrics, they are noticeable for human evaluators
that prefer the outputs from the enhanced systems.
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Document-Aware Neural
Machine Translation
Decoding

NMT systems represent the current state-of-the-art for MT technologies. With re-
gard to document-aware MT, there are several approaches that successfully enhance
NMT systems to take into account document-level information, as already reviewed in
Section 2.2.4. These systems usually propose modifications to the neural architecture
and require the training data to be annotated with document-level information, such
as the document boundaries. The main benefit of these approaches is that the neural
translation models they obtain are better tuned and able to handle document-level
information. However, their design makes it necessary to train the entire system every
time a new type of document is to be translated, and also, the training data with the
document-level annotations that they require is still scarce.

Through this chapter, we explore an alternative to introducing inter-sentence in-
formation in an NMT system without changing the neural translation model architec-
ture. Furthermore, our approach neither needs a costly training process with scarce
document-level tagged data. Roughly, we modify the beam search algorithm to allow
the introduction of a Semantic Space Language Model (SSLM, recall Section 4.4)
working in shallow fusion with a pre-trained NMT model. We analyze the impact of
the associated parameters on the final translation quality. We obtain consistent and
statistically significant improvements in terms of BLEU and METEOR and observe
how the fused systems are able to handle synonyms to propose more adequate transla-
tions as well as help the system to disambiguate among several translation candidates
for a word.

69
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6.1 Fusion of an NMT System and an SSLM
In order to better explain how to fuse an NMT and an SSLM, firstly, we revisit the
most used fusion techniques and, afterwards, we detail our particular approach for
shallow fusion.

6.1.1 Deep, Shallow, Cold, and Simple Fusion
Fusion techniques have shown to be successful in several natural language tasks to
merge information from two different neural models. In general, they combine infor-
mation from two different models before producing the final output.

There are four main fusion techniques: deep, shallow, cold, and simple fusion.
All of them extend the conditional probability learned by one model introducing the
information from a second one, where the specific method that is used to combine
both models is the main differentiator between the approaches. These techniques are
motivated by how SMT integrates the information from different feature functions
that represent different probabilistic models. In particular, recall from Section 2.1.1
that the posterior probability p(y|x) maximized by an SMT system is decomposed
using a log-linear model as the weighted sum of the different feature functions:

log p(y|x) =
∑
i

wifi(x, y) + C

and that p(y|x) can be expressed as follows after applying the Bayes’ rule:

p(y|x) ∝ p(x|y)p(y)

thus decomposing the translation probability as the combination of an inverse trans-
lation model, represented by p(x|y), and a target language model, p(y).

Deep fusion (Gülçehre et al., 2015, 2017) proposes a method to merge a translation
model and a language model by introducing a gating mechanism that learns to balance
the weight of the additional language model. In particular, Gülçehre et al. (2017)
explain how to combine a pre-trained RNN language model with a pre-trained NMT
system. They introduce a controller network with gating units that dynamically
adjusts the weight for the RNN LM at each time step. They concatenate the hidden
state from each neural model and introduce the weight outputted by the controller
network to produce the final system output, estimating the next word in a sequence
by computing (cf. Equation 2.1):

yt = softmax
(

DNN
([
~HTM
t ; gt ~HLM

t

]
, yt−1, ~Ct

))
(6.1)

where DNN represents any deep neural network, [ ~HTM
t ; gt ~HLM

t ] is the concatenation
of the hidden state ~HTM

t from the translation model and the hidden state ~HLM
t from

the neural language model scaled by the weight gt outputted from the gating mech-
anism at time t. As usual, the output is a softmax layer over the target vocabulary
depending also on the previously generated target word yt−1 and the context vector
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Figure 6.1: Sketch of the deep fusion approach. It merges the hidden representation
of the NMT decoder and the neural language model before predicting the
next translated word at each time step, with gt controlling the contribu-
tion from the language model.

~Ct from the NMT encoder. Finally, gt takes as input the hidden state from the LM
and is defined as follows:

gt = σ
(
~v> ~HLM

t + b
)

where σ is a logistic sigmoid function and ~v and b are learned parameters. The con-
troller network is trained over a development set by only freezing the weights of the
neural LM, allowing the decoder to use the NMT full signal and the signal from the
NLM with an adjusted magnitude. The controller mechanism will learn the impor-
tance of each model to produce the next translated word. In summary, deep fusion
allows for guiding the NMT model to produce more suitable translations regarding
the development data and the language model domain information. Notice that in
this approach the language model and the NMT model share the target vocabulary
and also both models are trained independently. Figure 6.1 illustrates how deep fusion
works.

Shallow fusion (Gülçehre et al., 2017) is a simpler approach that follows the same
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Figure 6.2: Sketch of the shallow fusion approach. It combines the scores from the
NMT decoder and the neural language model probabilities before pre-
dicting the next translated word at each time step, with the parameter λ
controlling the contribution from the language model.

idea as deep fusion but, in contrast, proposes the combination of the probabilities
from the two models at inference time (see Figure 6.2). To this end, it changes the
decoding objective function to integrate an LM prediction. Recall from Section 2.1.1
that the usual decoding objective function for an MT system can be written as:

ŷ = arg max
y

log p(y|x)

whereas the shallow fusion variation introduces the LM in a manner inspired by the
SMT log-linear model:

ŷ = arg max
y

(
log p(y|x) + λ log pLM (y)

)
(6.2)

where pLM is a language model trained on monolingual target data and λ is its weight.
This formulation is a simpler version of the deep fusion since, instead of integrating
a trainable neural controller mechanism, it combines the output probability distribu-
tions of the two models by using a parameter λ that is tuned by a grid search on a
development set. The LM used by Gülçehre et al. (2017) is an LSTM-based RNN
language model, but could be any model that generates as output a probability dis-
tribution on the discrete space of the target vocabulary shared with the translation
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model. This fusion technique is the starting point we use to develop our combination
of an SSLM within an NMT model.

Both deep and shallow fusion mechanisms use pre-trained LM and NMT models
that were trained independently. This fact can hinder the system performance, but
can also be seen as an advantage due to the flexibility it confers.

Cold fusion (Sriram et al., 2018) goes a step beyond the previous fusion techniques.
It proposes to implement a deep fusion where the NMT model is trained from scratch
including the LM as a fixed part of the network. This allows the NMT to better
model the conditioning on the source sequence while the target language modeling is
covered by the LM. These changes to deep fusion are reflected in the final formulation
of the approach (cf. Equations 2.1 and 6.1):

yt = softmax
(

DNN
([
~HTM
t ;~gt ◦ ~hLMt

]
, yt−1, ~Ct

))
where ~hLMt is the result of processing the logit output of the language model by a
deep neural network. Note that this parameter stands in place of the hidden state
~HLM
t of the LM that is used in deep fusion. Also, the controller ~gt is, on this occasion,

a fine-grained gating mechanism (Yang et al., 2017) defined as:

~gt = σ
(
W
[
~HTM
t ;~hLMt

]
+~b
)

Note that, in contrast to deep fusion, the controller mechanism also depends on the
hidden state ~HTM

t from the translation model, and that σ is, in this case, applied
element-wise. This formulation allows having a different gating value for each hidden
node of the language model’s state, resulting in greater flexibility for the fusion model
to consider different aspects from the language model. Sriram et al. (2018) demon-
strated the superior performance of cold fusion on a speech recognition task, but did
not apply it to a translation task. The main advantage of cold fusion is to allow for
building an adapted NMT model taking into account the target language modeling
of a neural language model. However, it forces the training of an entirely new system
when moving into a different domain modeled by a new different language model.

Simple fusion (Stahlberg et al., 2018) is the latest approach. It arises as an alterna-
tive simple method to use monolingual data for NMT training. Roughly, it integrates
the shallow fusion technique in training time. This approach trains a translation
model to predict the probability added to an LM prediction. Similarly to cold fusion,
it trains an NMT model from scratch while combining the scores from the translation
model and a pre-trained fixed LM. However, simple fusion does not integrate any con-
troller mechanism as deep or cold fusion do. Formally, two variants of simple fusion
are defined, with the PostNorm variant being:

yt = softmax
(
~STMt

)
· pLM (yt)

and the PreNorm one being:

yt = softmax
(
~STMt + log pLM (yt)

)
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where ~STMt is the output of the translation model projection layer before softmax.
Thus, PostNorm combines the ~STMt transformed into a probability distribution via
a softmax with the LM probabilities, whereas PreNorm applies normalization after
combining ~STMt with the logarithmic probabilities of the LM.

In contrast to deep or cold fusion, simple fusion benefits from not needing a gating
network to balance the translation and language models. However, it proposes a more
sophisticated model than the one of shallow fusion, since a translation model in simple
fusion has to be trained with a fixed LM. The shallow fusion approach allows to use
different LMs depending on the domain of the document to translate, without the
need to change the base translation model or conduct a new training process.

6.1.2 Shallow Fusion of an NMT System and an SSLM
The extension of the NMT decoding process at document level we propose through
this section benefits from the shallow fusion technique. In particular, it exploits the
flexibility of being able to combine a general NMT model with a more domain specific
language model to guide the NMT system towards a more adequate translation. In
our approach, this other model is an SSLM used to introduce inter-sentence context
information into the NMT decoding process. An additional advantage of shallow
fusion is that it is one of the less time consuming fusion techniques in terms of training
time, since it only needs to adjust the λ weight for the language model by a grid-
search on development data, avoiding a long training on a large amount of data.
Furthermore, this technique can be easily applied to any NMT model, either RNN-
based or purely attention-based neural models.

Formally, we substitute the language model probability pLM (y) in the decoding
function of shallow fusion by the SSLM associated probability (cf. Equation 6.2):

ŷ = arg max
y

(
log p(y|x) + λ log pSSLM (y)

)
where pSSLM (y) represents the probability that the SSLM model estimates for a
generated sentence y. That probability is the product of the individual probabilities
associated by SSLM to each of the words of y, which we compute as detailed in
Equation 4.1 when psimilarity is defined as a linear scale from the range [−1, 1] to the
range [0, 1] (cf. Equation 5.1, where that scale has an additional ln).

Since SSLM requires the preceding context ~cyt
of the next word yt to be gener-

ated in order to estimate its probability, we need to modify the beam search of the
NMT decoding that produces the translation of a sentence. We implement a cache
mechanism to take into account the context information from the previously gener-
ated words, extending beyond sentence boundaries. In particular, the cache allows to
add together the word embeddings from the previously generated words to obtain ~cyt

.
However, the NMT model requires not only an estimate for a given target word, but
a distribution probability over the entire target vocabulary space. Thus, it must be
computed for each word yi in the target vocabulary. Unfortunately, such an approach
would have a high computational cost. Following the ranking/filtering approaches
of Jean et al. (2015) and Wang et al. (2017b), we speed up this computation by fil-
tering the words to score by the SSLM. In particular, it is only computed on the N
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Figure 6.3: Sketch of the shallow fusion of an SSLM and an NMT inside the beam
search algorithm. In this example, the process re-scores the N = 5 best
candidates from the NMT model using the scores from the SSLM.

target words with the highest probabilities from the NMT model, that is, only the
N best candidates from the NMT model are considered by the SSLM. Figure 6.3
depicts how the filtering process works in combination with the shallow fusion of the
NMT and the SSLM models during the beam search. As a final remark, notice that
although our system does not need any document-level annotation, it will understand
any set of sentences in its input as a document.

6.2 Experiments
6.2.1 Settings
Our baseline NMT model follows the encoder-decoder architecture with attention
of Bahdanau et al. (2015) and it is built using the OpenNMT-lua toolkit (Klein
et al., 2017). We use a 4-layered bidirectional RNN encoder and a 4-layered RNN-
based decoder with 800-dimensional hidden layers. Word embeddings are set to 500
dimensions for both source and target vocabularies. Stochastic gradient descent is
used as optimizer algorithm for training, setting an initial learning rate of 1 and
a learning decay of 0.7 after epoch 10 or if there is no loss improvement over the
validation set. Training data is distributed on batches of 64 sentences and we use a
0.3 dropout probability between recurrent layers. Finally, a maximum sentence length
of 50 tokens is used for both source and target sides and the vocabulary size is 50,000
for both target and source languages. The system is trained on the Europarl-v7
parallel corpus, analogously to the SMT baseline system from Section 4.3.1, using the
newsCommentary2009 corpus as validation set. The system at epoch 20 is to be
shallow fused with the SSLM.



76 Chapter 6. Document-Aware Neural Machine Translation Decoding

We implement the shallow fusion of the SSLM and an NMT as an extension of
the attentional encoder-decoder NMT baseline. The SSLM is the one we described
and used in Section 4.4.1 with monolingual Spanish data. We use newsCommen-
tary2011 as test set.

6.2.2 Analysis with Oracles
We implement three oracles to assess the potential impact of our techniques. The
oracles behave as our fused approach, but leverage the reference translation to bias
the decoding towards the word choices that are present in the reference. The goal
of Oracle1 and Oracle2 is to assess the utility of the information enclosed in the
Word Vector Model (WVM) used by the SSLM, i.e., to check whether the semantic
information of SSLM can help in producing better translations. Oracle3 mimics
our fused decoding approach and its goal is to evaluate the potential gain of using
an SSLM in combination with an NMT. In other words, with Oracle3 we check
how much the SSLM can help the NMT disambiguate between its best translation
candidates, thus obtaining an upper bound for the improvements that can be achieved
by shallow fusing an SSLM and an NMT system.

Oracle1 proceeds offline as follows: once a sentence has been translated, for each
target word t it (i) uses the attention information to map that t to its corresponding
source word s and, in turn, maps that s to its corresponding target word r found in the
reference, and (ii) it replaces the target word t by r whenever t 6= r and, furthermore,
r is among the M words that are closest to t (with respect to cosine similarity)
according to our WVM. Note that the use of attention in step (i) to map between
target and source words is not as straightforward as the alignment information in an
SMT system. In particular, we consider that a target word t and a source word s

are one-to-one mapped, denoted t 1←→ s, when the following holds: the attention from
t to s is maximal among the attentions from that t to any source word s′ and also
among the attentions from any target word t′ to that s, i.e., t 1←→ s if and only if
att(t, s) = max{att(t′, s′) : t′ = t ∨ s′ = s}, where att(., .) denotes the attention value
between two words. We use an analogous definition for the one-to-one mapping s 1←→ r
between the source and reference words. Thus, for the target word t in consideration,
step (i) tries to find the word r of the reference satisfying t

1←→ s
1←→ r, for some

source word s. Table 6.1 and Figure 6.4 show the results for Oracle1. We observe
that the WVM encodes semantically-valid candidates close together, as there is a
noticeable improvement in the BLEU score even when considering just the M = 5
closest candidates. Also, the accuracy of the oracle’s translations increases with the
numberM of considered closest words. This is expected since augmenting the number
M also increases the coverage of the target vocabulary. In the limit, whenM allows to
encompass the whole 50K-word vocabulary, Oracle1 simply rewrites the translation
into the reference as far as the attention information allows, reaching an increase of
+8.02 in BLEU score.

Oracle2 works as Oracle1 but proceeds online with the beam search. That
is, when a hypothesis of the beam is to be extended with a new target word t, the
oracle (i) analyzes the attention information to identify the actual word r used in the
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Figure 6.4: BLEU score of Oracle1 (left, bullets), Oracle2 (left, line plots), and
Oracle3 (right, line plots), as a function of the threshold a (Oracle2
and Oracle3) and for several values of the parametersM (Oracle1 and
Oracle2) and N (Oracle3). For Oracle1 and Oracle2, increasing
the value ofM beyond 1,000 does not affect the obtained scores noticeably.

System BLEU↑ METEOR↑ N M a

baseline 30.77 49.86 - - -
Oracle1 38.79 57.85 - 1,000 -
Oracle2 37.32 54.35 - 1,000 0.1
Oracle3 33.25 51.74 3 - 0.2

Table 6.1: Automatic evaluation of the oracle systems, together with the value used
for their respective parameters.

reference to translate the source word s that t corresponds to and (ii) replaces t with
r under the same circumstances as before (i.e., when t 6= r and r appears in the list of
M words closest to t according to our WVM). In this occasion, however, the attention
information needed in step (i) to deduce the one-to-one mappings between the target
and source is not fully available, as the target sentence is still being generated. For
this reason, we need to add a minimal threshold a for the attention and refine our
criterion as t 1,a←→ s if and only if t 1←→ s∧ att(t, s) ≥ a. Thus, for the target word t in
consideration, step (i) tries to find the word r of the reference satisfying t 1,a←→ s

1←→ r,
for some source word s. Table 6.1 and Figure 6.4 present also the results for Oracle2.
The results are analogous to those of Oracle1, but with lower scores. This difference
of score between both oracles is almost negligible for the smallest values of M and a,
but the distance widens as either M or a increases. This shows that our definition
of 1,a←→ is a proper approximation to obtain the mappings when not having the full
attention information, as the permissive value a = 0.1 does not seem to be affected
by noisy alignments for low values of M . This is because the oracle only replaces
words by other semantically-close words (e.g., by synonyms), and thus, each of the
substitutions preserves the meaning of the replaced word even if in some occasions the
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computed alignment is not adequate. Conversely, by increasing M the oracle handles
lists of candidates that are more semantically distant, and thus, in combination with
the uncertainty of the alignments, the system introduces more errors.

Oracle3 proceeds online with the beam search like Oracle2, just differing on
the criterion used to replace the target word t by the corresponding reference word
r: the replacement is done when t 6= r and, moreover, r appears among the N best
candidates proposed by the NMT model. Note that this oracle does not use in any
way the WVM underlying the SSLM: it simply assumes that such model will properly
promote the correct word (i.e., the reference word) whenever it is present among the
N top candidates of the NMT. Table 6.1 and Figure 6.4 present also the results for
Oracle3, which show that there is some margin for improvement for the fused system
with respect to the NMT working in isolation. In contrast with Oracle2, Oracle3
produces more errors the more candidates that it considers, i.e., the greater the value
of N is. Also, considering alignments with lower probabilities only helps when the
value of N is small. In particular, considering more candidates by increasing N needs
a stronger (i.e., higher) attention threshold a in order to filter out noisy substitutions.
Nevertheless, in that more restrictive configuration of a, the results for the various
values of N tend to converge.

In summary, Oracle1 shows that the WVM of the SSLM properly clusters
semantically-valid candidates close together, Oracle2 that incomplete attention in-
formation does not hinder the oracle’s ability to approximate the alignments, and
Oracle3 that there is a wide enough margin for improvement when fusing the sys-
tems.

6.2.3 Results
Our system has two main hyperparameters: the number N of NMT translation op-
tions that are used in the fusion, and the weight of the semantic language model λ.
Table 6.2 and Figure 6.5 show the results of the automatic evaluation of the different
variations of the presented fused system. The figure shows how the maximum quality
is achieved around λ = 0.15, independently of the number N of re-scored candidates.
All of our systems are able to improve the baseline for every value of N that we ex-
plored, achieving a statistically significant improvement of +0.23 in BLEU score and
+0.31 in METEOR. Nevertheless, there is still room for further gains since, as seen
in Table 6.1, Oracle3 is able to increase +2.48 BLEU and +1.88 METEOR points.

We observe in Table 6.2 that the scores improve as long as we increase the value
of N until it seems to stabilize for N ≥ 4. Furthermore, comparing the outputs for
λ = 0.15, the translations that the system produces with N = 4 only differ in 95
sentences with respect to those for N = 5 and in 107 for N = 7, while having 1,407
sentences out of 3,003 that differ with respect to the baseline. Also, the translations
for N = 5 are almost exactly the same as with N = 7, differing only in 30 sentences,
whereas the translations for N = 7 and N = 10 coincide. These facts support that
the systems with N ≥ 4 are converging towards an equivalent output. Looking into
these differences, we realize that they manage different synonyms that may or not be
in the reference. Like translating “I have to” as “Tengo” or “Voy a tener” which can
be equivalent depending on the context.
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Figure 6.5: BLEU score of the fused system as a function of the weight λ, for several
values of the parameter N .

N BLEU↑ METEOR↑ #unknown

- 30.77 49.86 5901
2 30.88 50.17 4632
3 † 30.98 50.14 4501
4 † 31.00 50.15 4475
5 † 31.00 50.14 4459
7 † 31.00 50.14 4463
10 † 31.00 50.14 4463

Table 6.2: Automatic evaluation of the fused systems for varying values of the param-
eter N and with λ = 0.15, together with the amount of unknown words
in their output. The first row corresponds to the baseline. † marks sys-
tems that are significantly different to the baseline with a p-value of 0.05,
according to bootstrap resampling (Koehn, 2004).

We also observe that with larger values of N , the translations tend to be noisier or
less adequate with respect to the source. For instance, “Offices need a kindergarten
nearby, architects have understood.” is translated as:

“las Oficinas necesitan una guardería cercana, los arquitectos han comprendido”
(N=4)

“las oficinas de las oficinas de asistencia necesitan una guardería cercana.” (N=7)
Notice in the second one the useless repetition of the translation for “Offices” and the
appearance of the extra concept of assistance (“asistencia”) that does not appear in
the source sentence. Also, the information regarding the architects is missing in the
second translation. Two important error types in NMT systems, word omission and
new word creation, are exacerbated with large values for N .

Another example of more accurate translation occurs when translating “According
to Meteo France”. The best system using N ≥ 5 translates this as “Según Francia”
losing the reference to the meteorological company. In contrast, using N = 4, the
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system is able to generate a more accurate translation “Según Meteo Francia”. This
analysis reflects the noise introduced by increasing the number of re-scored translation
candidates by the system. In other words, it is important to have enough candidates
to see more adequate translations, but there is a trade-off that the system needs
to maintain between the number of new options and the noise introduced by these
re-scored options.

Finally, we observe that the increase in the translation quality is also related to
the decrease in the number of unknown words generated by the system. Since we use
complete tokens without BPE (Sennrich et al., 2016) or SentencePiece (Kudo and
Richardson, 2018) as translation units, several tokens are unknowns to the system. In
general, the number of generated unknown words with the shallow fusion approach
drops almost a 25% with respect to the unknown words generated by the baseline.
For instance, the worst case-scenario sentence “I’m rather a novice in Prague politics
responded Lukas Kaucky.” is translated by the baseline as:

“Más bien soy un 〈unk〉 en la política de Praga, 〈unk〉 a Lucas 〈unk〉.”
whereas our fused system is able to produce:

“Más bien soy un novato en la política de Praga, respondió a Lucas 〈unk〉.”
generating good translations for “novice” and “responded”. These examples illustrate
how fusing the SSLM with the NMT model helps the latter to disambiguate between
the considered translation candidates for a word.

Finally, we pursue a little manual evaluation with 3 native-Spanish speakers with
fluent English. We select a common subset of sentences from the test set translated by
the baseline NMT and by the fused system with N = 4 and λ = 0.15. We randomly
choose 100 sentences with at least 5 and at most 30 words with different translations.
The annotators were asked for each of the 100 selected sentences to rank the output of
both systems according to their general translation quality, allowing to rank them as
tying. System outputs were presented in random order to avoid system identification.
The annotators find 49% of the time that the translation from the fused system is
better than the baseline, and they consider the quality of both translations to tie
19% of the time. They agreed 67% of the time, reaching a κ = 0.4733 (Fleiss, 1971)
showing a “moderate” inter-annotator agreement (Landis and Koch, 1977). These
results support that fused systems are able to improve the translations’ quality.

6.3 Conclusions
We have presented a new approach that extends NMT decoding by introducing in-
formation from the preceding context on the target side. It fuses an attentional RNN
with an SSLM by modifying the computation of the final score for an element of the
target vocabulary inside the beam search algorithm. It is a flexible approach since
it is compatible with any NMT architecture, and it allows to combine pre-trained
models.

A preliminary, positive assessment of the potential improvement in the translation
quality when introducing target context semantics has been conducted with oracles.
The final validation of the implemented systems has resulted in improvements in the
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BLEU and METEOR scores of up to +0.23 and +0.31, respectively, for English-to-
Spanish translations. We have analyzed the impact of the different parameters of the
system on these scores, observing that it is important to maintain a trade-off between
the number of re-scored candidates, the SSLM weight, and the noise that will be
introduced in the final translations. It is remarkable that our systems are able to
propose valid translations where the baseline fails to choose one, making the number
of unknown words drop while the translation quality increases. Also, a small manual
evaluation has shown that humans tend to prefer the fused system outputs.





Chapter 7

Conclusions

Through this thesis, we explored several techniques to enhance MT systems by intro-
ducing global context information from a document.

We began by analyzing the most notable translation errors related to document-
level phenomena and developed the set of post-processing strategies described in
Chapter 3. In particular, these post-processes try to correct disagreements of gen-
der and number and to improve lexical consistency over a preliminary full-document
translation generated by an SMT system. These simple approaches showed the bene-
fits of using document context information to promote correct translations according
to the final users’ criterion, even if not to the evaluation of the automatic metrics.
A drawback of using a two-pass decoding strategy is that it limits the attainable
performance. Furthermore, the post-processes require a set of additional NLP tools,
like the ones included in FreeLing or the coreference resolutor RelaxCor, that are
language-dependant and too resource-hungry to adapt to online decoding.

Our next step was to explore a set of methods to tackle this kind of document-level
phenomena at translation time. We looked for a technique that would allow us to
introduce the semantics from the context into the decoding process. Word embeddings
emerged in the field as a solution to manage document semantics. Our analysis of
these models, discussed in Chapter 4, proved that they can be helpful in the task
of maintaining lexical choice consistency through the translation of a document by
modeling the context of the words. This was especially so with the models having
bilingual tokens. Additionally, we introduced the studied word embedding models
inside the decoding process of the Lehrer document-oriented SMT decoder as the
basis for Semantic Space Language Models. SSLMs capture the previous context for
each word in a document and measure the deviation between the current word and its
preceding context, promoting translations with consistent semantics. However, the
integration of this information at decoding time did not show significant improvements
according to the automatic evaluation metrics. We further analyzed these systems
in Chapter 5, together with two new document-level strategies designed to aid MT
systems to produce more coherent translations by improving their lexical consistency.
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In particular, these two strategies consisted in a new document-level feature function
and a new change operation integrated into Lehrer, working in tandem at decoding
time to bias the exploration of the search space towards more consistent translations.
To this end, they use word embeddings to measure the adequacy of word translations
given their context. Once again, automatic evaluation metrics did not help us assess
the impact of the implemented techniques. Nevertheless, a human evaluation showed
a preference for the systems enhanced with the SSLM or the additional features over
the baselines.

Our work concluded by applying the SSLM technique with word embeddings to
the NMT framework as explained in Chapter 6. We followed a known fusion approach
to perform this integration because fusing NMT models with neural LMs has been
shown to be useful for several NLP tasks. The shallow fusion technique, in particular,
represented a suitable method to combine the information from an NMT model and
an SSLM. The combination required us to modify the usual beam search algorithm
followed by NMT systems in order to keep track of the previously generated words,
i.e., the context that has to be fed into an SSLM when re-scoring the best translation
candidates proposed by the NMT model. Our approach presented a twofold novelty.
On the one hand, it introduced context information from the target side, whereas
most of the neural document-oriented approaches only take into account the source
side context. On the other hand, it presented a modification for the NMT framework
that was compatible with any architecture for the NMT system core. Since we only
modified how the system combines probabilities when exploring the translation search
space, we allowed using any neural architecture without the necessity of designing new
models with a higher number of parameters to learn and adjust. We implemented
three oracles that showed a promising potential improvement in the translation quality
when introducing target context semantics into the NMT decoding process. Our
approach achieves small improvements in the automatic metrics, but is nonetheless
the preferred system according to the conducted human evaluation. When analyzing
the impact of the different parameters of the system, we observed that it is important
to maintain a trade-off between the number of re-scored candidates, the SSLM weight,
and the noise that will be introduced in the final translations. Finally, it is remarkable
that our systems are able to propose valid translations where the baseline fails to
choose one, making the number of unknown words drop while the translation quality
increases.

7.1 Future Work
There is still margin of improvement to reach document-aware MT systems that
perform well, both in terms of computing performance and the quality of their outputs.
Several new research paths arise from the work we explored through this thesis.

For instance, we are interested in exploring other decoding strategies that can take
as input full documents and that try to optimize an objective function evaluated on
whole documents. The ACO-based proposal we presented only obtains average results
at sentence level, but further variants of the ACO metaheuristic are explored in the
literature and their applicability to document-level MT might be more suitable and
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should be studied. Furthermore, other standard metaheuristics beyond the already
tried simulated annealing (Hardmeier, 2014), genetic algorithms (Douib et al., 2016),
and ACO could also be considered for guiding the document-aware decoding process.

A recurrent issue we observed throughout all the conducted experiments is the
limited capability of the automatic metrics to capture and measure the translation
improvements at document level. Although we are aware of some existing evaluation
metrics that take into account some discourse information, like the one by Giménez
et al. (2010) or the MEANT family (Lo, 2017; Lo and Wu, 2011; Lo et al., 2014),
we think it would be desirable to study how to design an effective automatic metric
able to assess the translation quality by taking into account inter-sentence context
information. One idea to explore in this line would be to design an evaluation metric
that takes into account the semantics of the inter-sentence context captured by doc-
ument embeddings, learnt directly from document-annotated data or computed from
pre-trained word embeddings. Then, such semantic information could be combined
with lexical information like n-gram matching. In order to weight the contribution
of each part, it might be possible to train a regressor or a small neural network on
the annotations from manual evaluation tasks, and in this way learn the relevance
that humans assign to each part when assessing the translation quality. The benefit
of such a metric would be twofold. On the one hand, it would aid the development of
document-level MT systems by facilitating the assessment of their outputs. On the
other hand, an additional benefit of tackling the scoring of translations at document-
level is that automatic parameter optimization for document-aware decoders would
be improved. Thus far, there are only limited results for tuning Docent through
MERT or PRO (Smith, 2015; Stymne et al., 2013) and, in those cases, the optimiza-
tion is done against BLEU. Such metric is based on lexical similarity against a set of
references and does not directly capture any document-level phenomenon. Therefore,
the outputted weights optimized in this way need not properly correlate with such
phenomena. It would also be interesting to study whether alternative automatic op-
timization approaches such as SPSA (Simultaneous Perturbation Stochastic Approxi-
mation) (Lambert and Banchs, 2006; Spall, 1992) can successfully tune Docent, and
how sensitive they are to the presence of the different discourse-level features.

Furthermore, we left as future work a thorougher evaluation of the used word em-
beddings. We look forward to explore the effect of using other kinds of word embed-
dings like the ones presented by Madhyastha et al. (2014) or the newer BERT (Devlin
et al., 2019) and ELMO (Peters et al., 2018) embeddings that use the notion of intra-
sentence context to learn the distributed representations of words, and compare their
performance with the vector models presented in this dissertation.

Regarding document-level NMT, future work will include but not be limited to
the following research suggestions:

• In order to better attain the improvements reachable by our oracles, we want
to analyze the validity of the cosine similarity as a measure and use other alter-
natives such as CSLS (Cross-domain Similarity Local Scaling) (Lample et al.,
2018), or other margin-based scores instead (Artetxe and Schwenk, 2019).

• Study the benefits of introducing context information into different NMT ar-
chitectures. We find necessary to study the enhancement of recurrent- or
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Transformer-based NMT systems to observe how document-level information
affects the performance of each type of architecture. This experimentation will
shed light on the best approach to enhance an NMT model with context infor-
mation. In particular, we want to study how the inter-sentence information can
affect the quality of attention-based translation systems and also to use BPEed
input to compare the positive effect on unknown words that we observed. These
two studies will improve the quality of the systems as a whole (both baseline
and fused).

• Assess the benefits of using document-level information to perform a better
domain adaptation of the translation models. In this line, we propose to com-
bine general-purpose NMT systems with SSLMs trained on data from different
domains.

• Design new neural architectures able to model document context beyond the k
previously seen sentences. Following the works of Wang et al. (2017b) and Voita
et al. (2018), we propose as first step to study how to extend their work to model
a wider context.

• Study the different effects of introducing wider context information in the source
side (encoder), target side (decoder), or both, and state the benefits of each one
in order to understand the effect of each kind of context into the final translation
quality. In our approach we explore the use of inter-sentence information only
on the target side. We would like to carry out a comparative among systems
that handle context at different points of the model and from source and target
sides in isolation or simultaneously.

• Extend the decoding algorithm used by NMT systems to change the exploration
of the translation search space from sentence to document level. The approach
we exposed in Chapter 6 proposes a particular extension of the beam search
algorithm used to build the translation output. However, we are interested in
studying new search algorithms able to explore a document translation search
space compatible with the NMT decoding framework.

These research ideas appear as a natural continuation for the work we developed in
this thesis, both on SMT and NMT systems. This work gave a mature starting point
to design new MT approaches able to handle document-level information regardless
of the system core technology.

As final remark, it will be interesting to explore the applicability of the presented
techniques into other NLP tasks by redefining the concept of context, for instance,
inside a chat bot or in an automatic generator of reviews.
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Appendix A

Decoding with Ants

Here we detail the ACO-based decoding algorithm briefly introduced in Section 2.2.3.
We also provide an analysis of the asymptotic time complexity of the approach and
describe the experiments conducted to assess its behaviour, together with the obtained
results. To ease the presentation, we formalize the algorithm at sentence-level. Its
generalization from sentence-level to document-level requires just a few changes: the
input would be a sequence of sentences, and the sole additional restriction for the
ants is that the translations they produce must not change the order of the sentences
nor intersperse their phrases.

A.1 Decoding Method
The decoding method builds on the phrase-based SMT model of Koehn et al. (2003)
and a particular sort of ACO: the MAX−MIN Ant System implemented in the
Hyper-Cube Framework (Blum and Dorigo, 2004; Stützle and Hoos, 2000).

From phrase-based SMT we take several underlying ingredients. First, the input
of the problem is a source sentence S, that is, a sequence s1.s2 . . . sN of words, with
N > 0. Second, translations are scored with a combination of feature models com-
parable to those implemented in Moses (Koehn et al., 2007), i.e., translation model,
language model, distortion model, and phrase and word penalties. Third, the universe
of possible translations of S is obtained from the phrase table associated to the trans-
lation model, that is, from a function pt mapping source phrases to the set of target
phrases that are possible translations for them. And fourth, tackling the problem of
translating consists in (i) segmenting S into a sequence of phrases occurring in pt,
(ii) reordering that sequence of phrases, and (iii) choosing a translation option from
pt for each phrase, all while maximizing the score. To ease the presentation, we make
two assumptions on pt. On the one hand, we assume that out-of-vocabulary words in
the source sentence have already been identified and inserted into pt with an untrans-
lated target. That is, if a word sj satisfies that no phrase si . . . sj . . . sk of S, with
1 ≤ i ≤ j ≤ k ≤ N , belongs to dom(pt), then sj is considered an out-of-vocabulary
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Algorithm 1 Decoding a sentence with ant colony optimization.
Input: a source sentence S.
(1) Generate graph G for the sentence S, initializing all pheromone values to the

midpoint τmid := (τmin + τmax)/2.
(2) Initialize trb, tbs as fictitious translations with score −∞.
(3) Initialize bsUpdate to false and convergenceFactor to 0.
(4) For i from 1 to I do:

(a) Generate translation tia for each ant a ∈ {1, . . . , A}.
(b) Set tib to be the translation with highest score among ti1, . . . , tiA.

Set trb to be the translation with highest score among ti1, . . . , tiA, trb.
Set tbs to be the translation with highest score among ti1, . . . , tiA, tbs.

(c) Update pheromone according to the translations tib, trb, tbs and the vari-
ables bsUpdate and convergenceFactor.

(d) Set convergenceFactor to 1
|T |
∑
Tj∈T

|τj−τmid|
(τmax−τmin)/2 .

(e) If convergenceFactor > C do:
(i) If bsUpdate is true, then perform a restart as follows:

• Set all pheromone values to τmid.
• Set trb to a fictitious translation with score −∞.

(ii) Set bsUpdate to ¬bsUpdate.
Output: translation tbs.

word and pt is altered such that pt(sj) = {sj}. On the other hand, even though pt is
a partial function, we assume that undefined entries are mapped to an empty set of
translation options. So, for any phrase si . . . sj of S, with 1 ≤ i ≤ j ≤ N , we assume
pt(si . . . sj) = ∅ when si . . . sj /∈ dom(pt).

From ACO we take the general optimization strategy, which is summarized in
Algorithm 1. In this setting, a translation of S is identified with a path that an
ant has followed through the so-called construction graph (see Figure A.1). In our
case, each node of the graph corresponds to a translation option from pt for a phrase
si . . . sj of S, and thus, a path through the graph defines a sequence of translations
of phrases of S. Not all paths are valid translations: they must satisfy that each
source word si is translated by exactly one node of the path. The ants walk guided
by a probability distribution, which is based on certain heuristic information and the
amount of pheromone that the ants leave on the construction graph. The place where
pheromone is deposited is formalized as the pheromone model T , which is a collection
of pheromone trail parameters Ti, each with a value τi. A usual definition of T is
to have a parameter Ti associated to either each edge of the construction graph or
to each node. The general overview of the process is straightforward: a swarm with
a given amount A > 0 of ants is released onto the construction graph to obtain A
translations, these translations are used to update the pheromone, and this process
is repeated until reaching a termination criterion; the final output is the translation
with highest score that has been constructed. Our implementation uses as termination
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smart ants want to become writers .

1 2 3 4 5 6 7
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quieren convertirse en
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quieren
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a
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a convertirse en
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para convertirse en
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convertirse en

ser

convertido en

se convierta en

hacerse

escritores

los escritores

autores

los autores

redactores
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.

Figure A.1: Sketch of the construction graph for the source sentence “smart ants want
to become writers.” (each of the Spanish phrases corresponds to a node
of the graph; edges are omitted to avoid clutter) and path that an ant
follows through it to form the translation “hormigas inteligente desean
llegar a ser escritores.” with some gender and number disagreements. For
each phrase of the source sentence we show up to 5 translations, listed
by decreasing probability. Note that only 3 two-token phrases (“want
to”, “to become”, and “writers .”) and 1 three-token phrase (“want to
become”) have translations. Also note that the nodes visited in the path
translate each of the 7 source tokens, and do it just once.

criterion a given amount I > 0 of iterations, although different criteria—such as, for
example, a time budget—could be used.

One of the most important aspects of ACO is the handling of pheromone. In
our case, the value of each pheromone trail parameter is kept within a given range
[τmin, τmax] throughout the process and it is initially set to the midpoint τmid := (τmin +
τmax)/2. One of the benefits of having the value of each Ti restricted to [τmin, τmax] is
that a convergence of the pheromone distribution can easily be identified. It suffices
to compute a factor in [0, 1] and compare it to a given threshold C ∈ [0, 1), with
0 corresponding to the initial, uniform distribution of pheromone and 1 to the case
where the value of each Ti has already reached either τmin or τmax. When convergence
is detected, the algorithm escapes this situation by restarting itself, which consists
in resetting the pheromone of each Ti back to its initial value τmid. Nevertheless,
not all the obtained information is lost during the restart: the algorithm keeps track
of the best translation found since the beginning of the process (called the best-so-
far or bs) and uses it to bias the pheromone distribution during a few iterations



108 Appendix A. Decoding with Ants

Variable Value when bsUpdate is false and convergenceFactor is in: Value when
name [0, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1] bsUpdate is true

κib 1 2/3 1/3 0 0
κrb 0 1/3 2/3 1 0
κbs 0 0 0 0 1

Table A.1: Value associated to the variables κib, κrb, κbs of the pheromone update.

between the instant when convergence is detected and the instant when the restart
is actually performed. In this way, both old and new information get combined when
ants construct translations during convergence. In general, the pheromone update
performed at the end of each iteration consists in, first, evaporating a given fraction ρ
(called the learning rate) of the value of each pheromone trail parameter, and second,
increasing the value of pheromone trail parameters involved in the construction of
(at most) three translations: the best one found in the current iteration (called the
iteration-best or ib), the best one found since the beginning of the process (i.e., the
best-so-far or bs), and the best one found since the last time that the process was
restarted (called the restart-best or rb). Resulting amounts of pheromone below τmin
are increased to τmin and amounts above τmax are decreased to τmax. More precisely,
for each pheromone trail parameter Ti ∈ T , with i being an edge or node of the
construction graph depending on the chosen definition, its new pheromone value is:

max{τmin,min{τmax, (1− ρ) · τi + ρ · (κ′ib + κ′rb + κ′bs)}}

where the term κ′ib is 0 when i is not part of the path followed to define the iteration-
best translation and, otherwise, it is κib as detailed in Table A.1, analogously for the
term κ′rb corresponding to the restart-best translation and the term κ′bs corresponding
to the best-so-far translation.

We have considered three distinct variants of the decoding method, which we
denote as ACODec, ACODecmono

indep, and ACODecmono
share . In ACODec, the pheromone

trail parameters are associated to each edge of the construction graph and ants are
free to walk along the edges in any order, as long as the paths they follow correspond
to valid translations. ACODecmono

indep and ACODecmono
share follow the same general scheme

as ACODec, but modify it on two fronts. On the one hand, instead of having ants
define full translations, they work incrementally: ants take their translations from the
previous iteration, erase a part of each of them, and then fill in the holes. On the other
hand, we simplify the problem by forcing ants to always walk in monotonic order,
that is, the translations they create must keep the order of phrases from the source
sentence. To be able to obtain arbitrarily-reordered translations, the phrases of each
translation are later permuted with a local search like the one presented by Hardmeier
et al. (2012). The main benefit of having ants advance in monotonic order is that we
can easily shift the pheromone trail parameters from the edges to the nodes (thus,
pheromone only models decisions concerning segmentation and translation, but not
concerning reordering) and reduce the size of the construction graph (edges can be left
implicit). The single difference between ACODecmono

indep and ACODecmono
share is that in the

former each ant has an independent translation to work on, whereas in the latter all
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ants share a common translations to work on. The following sections detail for each
approach the generation of the construction graph (step 1 of Algorithm 1) and the
definition of the ant paths and their associated translations (step 4.a of Algorithm 1).

As a final remark, note that we have assumed that ACODec, ACODecmono
indep, and

ACODecmono
share start uninformed. Nevertheless, it is also possible to precompute a

translation t as starting point for the process. In such case, step 2 of the algorithm
initializes trb and tbs to t. Additionally, ACODecmono

indep and ACODecmono
share also set

t01, . . . , t
0
A to t, such that in the very first iteration each ant already has a previous

translation to work on.

A.1.1 Detailed Steps of ACODec
Step 1 – Graph Construction and Pheromone

The directed graph G = 〈V,E〉 is constructed as follows. Each node of V corresponds
to a translation option of a single segment of the source sentence. To represent it,
we use tuples of the form 〈i, j, t〉 as nodes, where i and j satisfy 1 ≤ i ≤ j ≤ N
and identify a segment of the source sentence and t is a target phrase that translates
this segment. We use cover(〈i, j, t〉) to denote the set {i, . . . , j} and target(〈i, j, t〉)
to denote t. Additionally, V contains one extra node used as the special starting
point for the ants: start = 〈0, 0, ε〉, where ε is the empty sequence. Note that start
identifies a fictitious segment of the source sentence, which is assumed to cover a
single non-existing word at index 0. Overall, the set of nodes of G is:

V = {start} ] {〈i, j, t〉 | 1 ≤ i ≤ j ≤ N ∧ t ∈ pt(si . . . sj)}

The set E of directed edges is a subset of V × V , not containing the following unde-
sirable and useless edges. First, we do not need an edge connecting any two nodes
whose segments overlap, as no ant is allowed to walk along such an edge since those
nodes cannot appear together in a translation. We say that two nodes n, n′ overlap,
denoted by overlap(n, n′), when the source segments they specify overlap, i.e., when
cover(n) ∩ cover(n′) is non-empty. Second, we omit those edges that exceed a given
maximum distortion D ≥ 0. The distortion is a measure on how much the source
segments are reordered in the respective translation. It is computed as the amount
of source words separating the end of one segment from the beginning of the next
segment; formally: distortion(n, n′) = |min(cover(n′)) − (max(cover(n)) + 1)|. Note
that, as expected, the distortion is 0 when the segment of the second node starts just
after the segment of the first node. Third, we also discard edges directed towards
start, since such node is only used as starting point for the ants and should not be
visited mid-sentence. Overall, the set of directed edges of G is:

E = {〈n, n′〉 ∈ V 2 | ¬overlap(n, n′) ∧ distortion(n, n′) ≤ D ∧ n′ 6= start}

Note that for edges of the form 〈start, n′〉 we also impose distortion(start, n′) ≤ D.
This is because we also want the beginning of the sentence to respect the maximum
distortion.

We associate to each directed edge e ∈ E a pheromone trail parameter Te, with
its value τe initialized to the amount τmid.
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Step 4.a – Ant Paths and Associated Translations

A path through the graph G is a sequence p = n0.n1 . . . nm of nodes of V , with
0 < m ≤ N , satisfying these conditions: (i) it begins with start, i.e., n0 = start,
(ii) the nodes are pairwise non-overlapping, (iii) the directed edge 〈ni, ni+1〉 is in
E for each i ∈ {0, . . . ,m − 1}, and (iv) the nodes cover the whole sentence, i.e.,
cover(p) := cover(n0) ] cover(n1) ] . . . ] cover(nm) coincides with {0, . . . , N}. To
construct such a path p, an ant proceeds by starting at start and then walking along
edges while guaranteeing that the path conditions (i)-(iii) are met. The ant proceeds
until (iv) is also met, at which point the followed path p straightforwardly corresponds
to a valid translation for the source sentence: target(n1) . . . target(nm).

The main difficulty of constructing a path is how an ant performs a step, in
particular, how it chooses an out-edge among all the out-edges of the current node.
Consider a partially constructed path p = n0.n1 . . . nk, with 0 ≤ k < N and satisfying
(i)-(iii) but not (iv). To proceed, the ant has to choose one of the out-edges of node
nk. Note that, possibly, not all out-edges in E are valid, since some might lead to
nodes overlapping with the nodes already in p, thus creating a conflict concerning
(ii). Let E|p be the out-edges of nk that avoid such overlap, i.e.:

E|p = {〈nk, n〉 ∈ E | cover(p) ∩ cover(n) = ∅}

We further prune this set to preemptively avert paths that would lead the ant into
a dead end. In particular, we do not want to reach a situation where the remaining
untranslated parts of the sentence cannot be segmented or would require steps ex-
ceeding the maximum distortion D. For the latter goal, we use the same conservative
method as in Moses: we do not allow a jump forward when the index immediately
following the segment corresponding to the destination node of the jump is further
than D from any preceding untranslated word in the sentence. Formally, let u be the
least index of a still-uncovered word, i.e., u = min({1, . . . , N} \ cover(p)), then the
pruned set is:

E‖p =
{
〈nk, n〉 ∈ E|p |

(
∃V̄ ⊆ V : segmentation(V̄ , {1, . . . , N} \ cover(p.n))

)
∧(

u ∈ cover(n) ∨ (|u− (max(cover(n)) + 1)| ≤ D)
)}

where segmentation(V̄ , X) tests whether the given collection of nodes are pairwise
non-overlapping and fully cover the given set of source word indexes, i.e.:

segmentation(V̄ , X) =
(
∀n̄1, n̄2 ∈ V̄ : (n̄1 6= n̄2 ⇒ ¬overlap(n̄1, n̄2))

)
∧(

X =
⊎
n̄∈V̄ cover(n̄)

)
This concludes the identification of the candidate edges for the current step, but

it still remains to assess their quality so that the ant can bias the selection towards
the most promising ones. To this end, each edge e = 〈nk, n〉 ∈ E‖p has an associated
weight we defined as:

we = α · τe + (1− α) · h(n, {1, . . . , N} \ cover(p))

where α ∈ [0, 1] is a given constant and h(n, Y ) ∈ [0, 1] is a heuristic measure on the
quality of choosing node n to extend the partial path when having the source words at
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the indexes of Y still untranslated. This heuristic is based on the future cost of Koehn
et al. (2003), which estimates the score attainable on the untranslated parts of the
sentence. More precisely:

h(n, Y ) = max(futures(Y, {n}))−min(futures(Y, ∅))
max(futures(Y, ∅))−min(futures(Y, ∅))

where futures(Y,Z) is the following set of score estimates:{∑
n̄∈V̄ estimate(n̄) | Z ⊆ V̄ ⊆ V ∧ segmentation(V̄ , Y )

}
with estimate(n̄) measuring the score of using the translation option target(n̄) for the
segment cover(n̄) of the source sentence. The function estimate is computed as an
approximation of the models conforming our score function, except for the distortion
model (Koehn et al., 2003). When the set futures has only one element, we assume
h(n, Y ) = 1 to avoid a division by 0.

Finally, the probability of each edge e ∈ E‖p of being selected by the ant in the
current step is:

pe = we∑
e′∈E‖p

we′

Nevertheless, the ant first decides whether the selection of an edge among all the
candidates in E‖p is to be deterministic (the one with maximal weight we) or ran-
dom (following the probabilities pe). The case is decided randomly: with a given
probability q0 (called the determinism rate) the deterministic decision is performed.

Once an edge e ∈ E‖p has been chosen, the partial path p is extended with the
destiny node of e. This extension clearly still satisfies (i)-(iii) due to how E‖p has
been defined.

A.1.2 Detailed Steps of ACODecmono
indep and ACODecmono

share

Step 1 – Graph Construction and Pheromone

Even though similar to the construction graph of ACODec, the one for ACODecmono
indep

and ACODecmono
share is simpler. In particular, the set of nodes is the same except for

the start node, which is now not needed. Also, the pheromone trail parameters in
this case are associated to nodes instead of edges. Finally, the set of edges could, in
principle, simply contain the edges of the form 〈〈i, j, t〉, 〈j + 1, k, t′〉〉 that are needed
for monotonic steps. Nevertheless, since edges do not have any associated data and
are not needed for any special purpose, we leave them implicit in our implementation.

Step 4.a – Ant Paths and Associated Translations

A path through G is, in this occasion, a sequence p = n1 . . . nm of nodes of V ,
with 0 < m ≤ N , satisfying that (i) the nodes are pairwise non-overlapping and
(ii) the nodes cover the whole sentence, i.e., cover(p) := cover(n1) ] . . . ] cover(nm)
coincides with {1, . . . , N}. To construct such a path, first, each ant a takes a path
from the previous iteration (when available), erases a part of it, and fills it again
with a new monotonic translation for the created hole. Second, the sequence of nodes
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〈2, 2,hormigas〉 〈1, 1, inteligente〉 〈3, 3,desean〉 〈4, 5, llegar a ser〉 〈6, 7, escritores .〉

〈2, 2,hormigas〉 〈1, 1, inteligentes〉 〈3, 4, gustaŕıa〉 〈5, 5,hacerse〉 〈6, 7, escritores .〉

source:
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Figure A.2: Following the example in Figure A.1, the ant creates a hole of length ` = 3
in the path p of the translation from the previous iteration (the hole is
depicted as the stricken-through nodes). The affected source indexes for
such hole are K = {1, 3, 4, 5}, which are partitioned into groups of serial
indexes as K1 = {1} and K2 = {3, 4, 5}. For the first group K1, the ant
fills the hole with the single node 〈1, 1, inteligentes〉. For the second group
K2, it uses the two nodes 〈3, 4, gustaría〉 and 〈5, 5,hacerse〉. In this latter
case, according to the graph in Figure A.1 it would also have been possible
to fill the hole with one single node (e.g., 〈3, 5, aspiran a convertirse en〉)
or with three individual nodes.

thus obtained by the ant a is permuted to produce a new (possibly non-monotonic)
sequence. The permutation is performed by means of a local search like the one
by Hardmeier et al. (2012), which runs for a pre-defined amount R of steps. From
the resulting permuted sequence we directly obtain the translation tia associated to
the ant a in the current iteration i.

It only remains to detail the tasks performed by the ant a. Its first task is to locate
a previous path p to work on. In the case where trb is a fictitious translation with −∞
score, there is no such path because the process is either at the very first iteration
or at an iteration immediately following a restart. Otherwise, in ACODecmono

indep the
ant a uses as p the path of its own translation ti−1

a from the previous iteration, and
in ACODecmono

share the ant a uses as p the path of the translation with highest score
among all the translations ti−1

1 , . . . , ti−1
A from the previous iteration. From this point

onward, ACODecmono
indep and ACODecmono

share behave identically.
The second task of the ant is to create a hole in p (see Figure A.2). This consists

in splitting the sequence p into p1.p2.p3, where p1 and p3 are to be preserved whereas
the source words at the set of indexes K = cover(p2) are to be monotonically re-
translated. The split of p is performed randomly: the length ` for the infix p2 is the
minimum between the length |p| of the whole sequence and a value chosen uniformly
from a given range {`1, . . . , `2}, the length for the prefix p1 is chosen uniformly from
{0, . . . , |p| − `}, whereas the length of the suffix p3 is univocally determined by the
previous ones. In the special case where the ant has no previous path p to work on,
we simply assume |p1| = |p3| = 0 and K = {1, . . . , N}, i.e., as if the ant had created
a hole covering the whole path.

Third, let K be partitioned into maximal sets K1, . . . ,Kk of serial indexes, i.e.,
the Kj ’s are non-empty, pairwise disjoint subsets of K, their union coincides with K,
and each of them is of the form {j0, . . . , j1} such that j0−1, j1 +1 /∈ K. Furthermore,
we assume that they are ordered, i.e., max(Kj) < min(Kj+1). Intuitively, p2 was a
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hole in the translation, whereas each Kj is a part of this hole when projected onto
the source.

Finally, to produce the desired path p1.p
′
2.p3, the ant iteratively grows p′2 from an

empty sequence of nodes by processing the Kj ’s in order. For each Kj , it proceeds
as follows: while the set P := Kj \ cover(p′2) is non-empty, the ant appends to p′2 a
node n ∈ V chosen among those ones that cover only indexes of P and cover at least
min(P ). The selection of the node n follows the same ideas as to how an ant chooses
an edge in ACODec. In particular, the set of candidate nodes V |P is defined like:

V |P = {n ∈ V | min(P ) ∈ cover(n) ⊆ P}

and each node n ∈ V |P has an associated weight wn defined as:

wn = α · τn + (1− α) · h(n, P )

where h is the same heuristic as in ACODec, transformed into a probability as follows:

pn = wn∑
n′∈V |P wn′

The ant chooses a node from V |P either deterministically (the one with maximal
weight wn) or randomly (following the probabilities pn), and which strategy to use is
decided with a given probability q0 (i.e., determinism rate) for the former.

Note that, in contrast to ACODec, the ants ignore the maximum distortion D.
This is not a problem in practice, since translations are usually quite monotonic,
and thus, patching a hole monotonically has little chances of exceeding the limit D.
Nevertheless, if it did happen, the hill-climbing reordering could correct the violation.

A.2 Time Complexity
For the asymptotic time complexity of ACODec, first note that the amount |V | of
nodes in the graph G is in O(N · L · T ), where L is the maximum length of a source
phrase in pt, i.e., L = max{j − i + 1 : 1 ≤ i ≤ j ≤ N ∧ si . . . sj ∈ dom(pt)}, and
T is the maximum amount of translation options in pt for any source phrase, i.e.,
T = max{|pt(si . . . sj)| : 1 ≤ i ≤ j ≤ N}. Second, the amount |E| of edges in G is
bounded by |V |2, but a tighter bound can be obtained by taking into account the
maximum distortion D that restricts the connectivity of the graph. In particular,
each node of G is connected with out-edges to at most outdegree = (2 ·D + 1) · L · T
other nodes. Thus, |E| is in O(|V | · outdegree) = O(N · L2 · T 2 · D). This bound
also holds for the size |G| of the graph, since |E| is the factor that dominates it.
Clearly, the construction of the graph can be done with time linear in |G|. The time
each iteration takes can be bounded as follows. For each ant, the time needed for
constructing its path is proportional to the amount of source words and the maximum
out-degree of the graph, so it is in O(N · outdegree · H(N)), where H(.) denotes
the time it takes to compute the heuristic information as a function of the source
sentence length. Reconstructing a translation from a path is straightforward, but we
also need to compute its associated score. We use F (.) to denote the time it takes to
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compute the score as a function of the sentence length. This length must take into
account the source and the produced target. Nevertheless, the size of the target can
be bounded by the size of the source multiplied by a factor depending on pt, and
since pt is part of the scoring, we assume that any increase in size in the target side
is already handled by F . So, reconstructing a translation from a path and scoring
it takes time in O(N + F (N)), which is equivalent to O(F (N)) since F is at least
linear. Since we use A ants, obtaining all the paths, reconstructing the associated
translations, and scoring them takes time in O(A · (N · outdegree ·H(N) + F (N))).
The time needed for updating the pheromone is not completely subsumed in the
previous expression, as the whole graph must be traversed for the evaporation. Thus,
the time each iteration takes is in O(A · (N · outdegree · H(N) + F (N)) + |G|) =
O(N · outdegree · (A ·H(N) +L ·T ) +A ·F (N)). Since the process is iterated I times,
the overall time complexity is O(I · (N · outdegree · (A ·H(N) + L · T ) +A · F (N))).
Assuming L, T,D to be fixed constants, this reduces to O(I ·A · (N ·H(N) +F (N))).

A similar analysis can be made for ACODecmono
indep and ACODecmono

share . In this case,
since we do not actually generate the edges of the graph, |G| is in O(N ·L ·T ) and the
same bound holds for the time complexity of generating G. The time each iteration
takes can be bounded as follows. For each ant, the time needed for incrementally
constructing its path is proportional to the amount of source words and the maximum
amount of options for each step, so it is inO(N ·L·T ·H(N)). Obtaining the translation
from that path, scoring it, and reordering it through R steps of hill climbing takes
time in O(N + F (N) +R · F (N)) = O(R · F (N)). This is a very loose upper bound,
as the scoring in hill climbing is optimized by doing incremental computations in
each step, as proposed by Hardmeier et al. (2013). Since we use A ants, obtaining
all the paths, reconstructing the associated translations, and scoring and reordering
them takes time in O(A · (N · L · T ·H(N) +R · F (N))). The time for updating the
pheromone is completely subsumed in the previous expression. Since the process is
iterated I times, the overall time complexity is O(I ·A · (N ·L ·T ·H(N) +R ·F (N))),
and assuming L, T to be fixed constants it reduces to O(I ·A · (N ·H(N)+R ·F (N))).

A.3 Experiments
We perform English-to-Spanish translation experiments under settings comparable
to the ones of Section 4.4.1, but with three modifications. First, since the size of
the phrase table is crucial in the performance of our ACO approaches, we filter it to
only retain for each source phrase, at most, the T = 30 target phrases with highest
p(tgt|src) probability. We do not alter the value of other related parameters that
also affect performance, such as the maximum length L = 7 of the source phrases of
the phrase table or the maximum distortion D = 6 of the distortion model. Second,
we reuse the baseline Moses system, but disabling its lexical reordering feature.
The rationale for this modification is that the other systems do not implement an
equivalent feature function, and we want to compare the systems when facing the exact
same optimization problem (i.e., the problem of finding the best translation according
to a scoring function shared by all the systems). We perform a new feature weight
optimization for this Moses system variation, using MERT (Och, 2003) against the
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System q0 C [τmin, τmax] α

ACODec 0.8828125 0.999 [0.001, 0.999] 0.671875
ACODecmono

indep 0.8671875 0.99999 [0.0001, 0.9999] 0.796875
ACODecmono

share 0.7734375 0.99999 [0.0001, 0.9999] 0.671875

Table A.2: Grid-tuned parameter values of the three ACO variants.

System WER↓ PER↓ TER↓ BLEU↑ NIST↑ METEORpa↑ ULC↑

Moses 59.44 40.08 53.80 27.28 7.3262 49.97 53.12
Lehrer 61.71 41.31 56.10 24.78 7.0516 48.26 48.65
ACODec 62.30 43.48 57.41 21.99 6.8666 46.69 44.63
ACODecmono

indep 60.46 41.85 55.19 24.73 7.1326 48.51 49.27
ACODecmono

share 60.09 41.14 54.76 25.67 7.2125 48.95 50.67

Table A.3: Automatic evaluation of the systems working on sentences. The ULC is
computed over the other metrics of the table.

BLEU metric (Papineni et al., 2002) on the newsCommentary2009 development
corpus. Third, we reuse the baseline Lehrer system, but initialized randomly instead
of using precomputed Moses translations, with a maximum quota of 107 steps instead
of 105, and using the feature weights obtained with the MERT-tuning for Moses that
we just mentioned. We still use newsCommentary2010 as test set.

We consider three ACO systems, one for each of the decoding variants, and for all
of them we use the same features and weights as the Moses system. Regarding the
parameters specific to ACO, we have identified several non-problematic ones during
preliminary experiments, and we have chosen for them values that are similar to the
ones in the literature: 10 for the number A of ants and 0.1 for the learning rate ρ. We
fix the number I of iterations to 500 as a trade-off between the computation speed and
the quality of the obtained results. For the monotonic variants, we fix a limit of R =
104 steps for the hill-climbing reordering and {`1 = 1, . . . , `2 = 12} as the range for the
length of the holes. We perform a grid search to tune the remaining parameters: for
the determinism rate q0 and the fraction α that pheromone contributes to the weights
we explore the range [0, 1] at regularly-spaced values, whereas for the convergence
threshold C and the pheromone range [τmin, τmax] we just vary the amount of decimal
places of their values (these variables are defined like C := 1 − 10−x, τmin := 10−y,
τmax := 1− 10−y, and thus, it suffices to test possible values for the positive naturals
x and y). Table A.2 shows the obtained values.

Table A.3 shows the result of the automatic evaluation of the systems when trans-
lating the whole test set sentence by sentence. Moses obtains the best results in all
the metrics and, of the remaining systems, ACODecmono

share systematically outperforms
the rest. Except for the pair Lehrer and ACODecmono

indep, the differences between the
systems are statistically significant.1 Besides this automatic evaluation against the

1According to bootstrap resampling (Koehn, 2004) over BLEU and NIST metrics with a p-value
of 0.05.
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Figure A.3: Normalized scores obtained on each sentence of the test set by each of
the compared systems. The score is normalized by dividing by the score
of the baseline Moses; lower is better. The abscissa is sorted to make
the plot for Lehrer (black line) increasing.
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Figure A.4: Same as Figure A.3, but adding together into a single data point the
scores of all sentences belonging to the same document.
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Figure A.5: Critical difference plots for the scores obtained by the systems on the
sentences of the test set, both when considering each score individually
(left) and when adding together the scores of all sentences belonging
to the same document (right). The horizontal axis shows the average
ranking of the systems; lower is better. Bold horizontal bars connect
systems that are not statistically different for a significance level of 0.05.
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reference translations, we also evaluate the systems by comparing the scores of their
output as computed by the systems themselves, i.e., we directly compare the score
given to the produced translations by the feature functions in use when decoding.
Figure A.3 depicts the final scores obtained by each system in each sentence and Fig-
ure A.4 presents the same data, but aggregated into fewer data points. In both plots,
the scores are normalized by dividing by the score of the respective Moses output.
Therefore, since plain scores are negative numbers, all the normalized scores become
positive. Furthermore, lower normalized values are better. In the latter figure it is
possible to observe that ACODec obtains worse translations than Lehrer, and that
the score of the translations of ACODecmono

indep and ACODecmono
share follow the same trend

as the ones of Lehrer, with a slight advantage for ACODecmono
share . More precisely,

Lehrer is outperformed by ACODec in 12.01% of the sentences, by ACODecmono
indep in

54.92%, and by ACODecmono
share in 62.76%; when aggregating the sentences into their re-

spective documents as done in Figure A.4, Lehrer is outperformed by ACODec only
in 0.84% of the cases, by ACODecmono

indep in 46.22%, and by ACODecmono
share in 87.39%. To

confirm these observations on the score trends, we test statistical differences2 between
the systems (if any) for subsets of the considered inputs. To that end, all systems are
compared simultaneously using Friedman’s test and afterwards, provided that such
test rejects in all cases the hypothesis that the systems perform equally, all possible
pairwise comparisons are performed using the Nemenyi post-hoc test (García and
Herrera, 2008). The obtained results are displayed in Figure A.5. The shown ranking
confirms the findings described above and note that only the results of Lehrer and
ACODecmono

indep for aggregated scores cannot be considered statistically different. This
is in agreement with the evaluation performed with automatic metrics.

The performance of our ACO systems degrades when using full documents as
input, leading to Lehrer outperforming the three ACO variants in the automatic
metrics (see Table A.4). The same tendency can also be observed when looking
at the final scores of the translations as computed by the feature functions in use.
Figures A.4 and A.6 correspond to experiments that only differ in that the former has
translated each document sentence by sentence whereas the latter has treated each
document as a unit. In the latter figure, the normalized score of Lehrer in (almost)
every document is a lower bound for—thus better than—the three ACO variants.
More precisely, Lehrer is not outperformed by ACODec in any of the documents,
by ACODecmono

indep in only 0.84%, and by ACODecmono
share in 5.04%. To confirm these

observations on the score trends, we again test statistical differences (see Figure A.7)
and obtain once more an agreement with our analysis and with the automatic metric
evaluation.

Table A.5 summarizes the resource usage3 of the systems when translating the
whole test set, proceeding both sentence by sentence and treating each document as
a unit. The best runtimes in both scenarios are obtained by Lehrer, with ACODec

2All tests are performed with R’s scmamp package (Calvo and Santafé, 2016).
3All the measurements have been taken on a computer cluster with heterogeneous machines. Its

nodes have CPUs from the IntelR© XeonR© family (E5450, 5150, 5160, X5550, X5650, X5660, X5670,
X5675, E5-2470, and E5-2450 v2) and from the AMD OpteronTM family (2350). Although the
performance varies from one machine to another and thus runtimes are not directly comparable, the
differences are amortized by the amount of executions taken into account for the averages presented
in Table A.5.
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System WER↓ PER↓ TER↓ BLEU↑ NIST↑ METEORpa↑ ULC↑

Moses 59.44 40.08 53.80 27.28 7.3262 49.97 55.97
Lehrer 62.25 41.66 56.74 24.33 6.9813 47.95 50.64
ACODec 67.05 45.16 61.99 18.30 6.3776 43.65 40.25
ACODecmono

indep 64.76 45.01 60.15 19.99 6.4822 44.84 43.04
ACODecmono

share 64.07 43.76 59.09 21.34 6.6264 45.82 45.43

Table A.4: Automatic evaluation of the systems working on full documents, except
for Moses, which is the same as in Table A.3. The ULC is computed over
the other metrics of the table.
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Figure A.6: Normalized scores obtained on each document of the test set by each of
the compared systems. The score is normalized by dividing by the score
of the baseline Moses; lower is better. The abscissa is sorted to make
the plot for Lehrer (black line) increasing.
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Figure A.7: Critical difference plot for the scores obtained by the systems on the
documents of the test set, with same interpretation as Figure A.5.
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Input kind System CPU (seconds) RAM (GiB)

Sentence

Moses 29.67 8.73
Lehrer 2.70 7.49
ACODec 7.42 7.49
ACODecmono

indep 197.06 7.48
ACODecmono

share 198.38 7.48

Document

Moses – –
Lehrer 18.97 7.50
ACODec 122.94 8.14
ACODecmono

indep 606.84 7.49
ACODecmono

share 588.27 7.49

Table A.5: Mean resource usage of the systems when decoding the test set, working
either with sentences or with full documents as input.

Input kind Tokens Nodes Edges

Sentence 24.88 1,235.81 586,536.37
Document 520.37 25,848.27 12,268,486.90

Table A.6: Mean amount of tokens per input of the test set and corresponding mean
size of the graphs constructed by ACODec.

achieving a performance close to it when working on sentences. Runtimes for the
monotonic ACO variants are significantly higher than for all the other systems, mainly
due to the R hill-climbing steps that each ant performs per iteration. With respect
to the memory usage, note that it is quite uniform across the systems since it is
dominated by the size of the language model loaded as a feature function. Although
Moses shows the highest memory usage, it is probably just caused by implementation
details. On our systems, the only remarkable datum is that ACODec uses 0.65 GiB
of additional memory when working on full documents: this extra space is required
since the size of the graphs in this scenario increases significantly with respect to
working with individual sentences (see Table A.6). As expected, this increase is
not so noticeable for the monotonic ACO variants thanks to the edge elision when
constructing the graphs.

To conclude, we show an illustrative example of how the decoding behaves on an
input sentence. As a reference, Figure A.8 shows how the score of that sentence trans-
lation evolves through time when using Lehrer. Figure A.9 depicts the analogous
score evolution with each of the three ACO decoding variants. Note that ACODec
converges 8 times (each time can be identified by the sudden jump in the convergence
factor, from almost 1 to almost 0), that the mean scores of the translations produced
by the A-ant swarm remains rather flat throughout the process, but that the maxi-
mum score of each iteration slightly improves over time until convergence is detected.
On the other hand, ACODecmono

indep and ACODecmono
share do not converge as fast since they

use a higher value for C (the former converging just once and the latter twice) and
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Figure A.8: Evolution of the score as a function of the iteration (in logarithmic scale)
when decoding with Lehrer.

both the mean and maximum scores of each iteration improve over time until conver-
gence is detected (the maximum plateauing during some intervals). Also note that
ACODecmono

indep and ACODecmono
share are, roughly, two orders of magnitude slower than

ACODec. The runtimes for ACODecmono
share shown in the figure are not very stable at

the beginning of the process due to the heavy load of the machine at the time of the
execution. As a closing remark, the final scores for this input sentence obtained with
each decoding approach are as follows: Moses reaches −120.97, Lehrer −121.11,
ACODec −124.11, ACODecmono

indep −121.86, and ACODecmono
share −121.80.
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Figure A.9: Evolution of the score as a function of the iteration when decoding with
ACODec (top), ACODecmono

indep (middle), and ACODecmono
share (bottom).


	Introduction
	Motivation
	Context
	Research Goals
	Main Contributions
	Outline

	State of the Art
	Machine Translation Background
	Statistical Machine Translation
	Neural Machine Translation

	Document-Level Machine Translation
	Document-Level Statistical Machine Translation
	Docent and Lehrer
	Decoding with Ants
	Document-Level Neural Machine Translation

	Automatic Evaluation
	Automatic Evaluation Metrics


	Towards Document-Level Machine Translation
	Document-Level Phenomena
	Post-Process Strategies
	Lexical Consistency
	Coreference and Agreement
	Experiments

	Conclusions

	Word Embeddings in Machine Translation
	Semantic Models Using word2vec
	Accuracy of the Semantic Model
	Results

	Cross-Lingual Lexical Substitution Task
	Settings
	Results

	Translation Task with Semantic Space Language Models
	Settings
	Results

	Conclusions

	Lexical Consistency in Statistical Machine Translation
	Approach
	Semantic Space Lexical Consistency Feature
	Lexical Consistency Change Operation
	Experiments
	Automatic Evaluation
	Human Evaluation

	Conclusions

	Document-Aware Neural Machine Translation Decoding
	Fusion of an NMT System and an SSLM
	Deep, Shallow, Cold, and Simple Fusion
	Shallow Fusion of an NMT System and an SSLM

	Experiments
	Settings
	Analysis with Oracles
	Results

	Conclusions

	Conclusions
	Future Work

	Bibliography
	Decoding with Ants
	Decoding Method
	Detailed Steps of ACODec
	Detailed Steps of the Monotonic Variants

	Time Complexity
	Experiments


