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Abstract 
 
 
Cardiovascular diseases are a major challenge for public health. The 
complex biological networks underlying their etiology remain to be 
uncovered. Further studies that identify new actors and mediators are 
required to enable the design of more precise prevention strategies. 
DNA methylation is a mechanism regulating gene expression, and it is 
linked to complex diseases and related traits. Therefore, it is a 
potential source of biomarkers of cardiovascular disease.  

 
We have tackled the associations of DNA methylation with 
cardiovascular diseases and related traits in population-based 
observational studies. We analysed the association between this 
mechanism in peripheral blood cells and both cardiovascular disease 
related exposures and outcomes, and further investigated the clinical 
relevance of some of those findings. For this purpose, we conducted 
epigenome-wide and candidate loci association studies, evaluated their 
predictive value for future cardiovascular risk and used Mendelian 
Randomisation to infer causality. We used three observational cohorts: 
REgistre GIroní del COR, Framingham Offspring Study and Women’s 
Health Initiative. 

 
We identified a non-linear dose-response to physical activity of two 
methylation sites. We found seven loci showing hypomethylation 
related to the cardiovascular risk factors load, excluding age. We 
reported 17 methylation sites associated with prevalent coronary heart 
disease or incident cardiovascular disease, some of them being novel. 
Those 17 biomarkers did not show an added predictive value over the 
established risk factors included in the current cardiovascular risk 
prediction functions. Finally, we could not infer the causality of their 
relationships with cardiovascular disease using a Mendelian 
Randomisation approach. 

 
As a general conclusion, DNA methylation is associated with 
cardiovascular disease related traits and outcomes, although its role in 
the underlying biological networks is complex and remains to be 
explored in further studies. 
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Resumen 
 
 
Las enfermedades cardiovasculares son uno de los principales retos 
para la Salud Pública. Las complejas redes moleculares subyacentes a 
su etiología no han sido esclarecidas. Son necesarios más estudios para 
identificar nuevos actores y mediadores que permitan diseñar 
estrategias preventivas más precisas. La metilación del ADN es un 
mecanismo que regula la expresión génica vinculada a enfermedades 
complejas y factores relacionados. Así, se presenta como una potencial 
fuente de biomarcadores de enfermedad cardiovascular. 
 
Hemos estudiado la asociación entre la metilación del ADN y 
fenotipos cardiovasculares y relacionados en estudios observacionales 
en población general. Hemos analizado la asociación de este 
mecanismo en células de sangre periférica con factores de exposición 
relacionados con enfermedades cardiovasculares y con eventos 
cardiovasculares, así como la relevancia clínica de algunos de estos 
hallazgos. Para ello, hemos realizado estudios de asociación de 
epigenoma completo y de loci candidato, hemos evaluado su valor 
predictivo de riesgo cardiovascular y hemos utilizado la estrategia de 
aleatorización mendeliana para inferir causalidad. Hemos incluido tres 
cohortes observacionales: REgistre GIroní del COR, Framingham Offspring 
Study y Women’s Health Initiative. 
 
Hemos identificado una dosis-respuesta no lineal a la actividad física 
en dos sitios de metilación. Hemos encontrado siete loci con menores 
valores de metilación en relación a la acumulación de factores de 
riesgo independiente de la edad. Hemos descrito 17 sitios de 
metilación asociados a la prevalencia de enfermedad coronaria y la 
incidencia de enfermedad cardiovascular, algunos por primera vez. 
Estos 17 biomarcadores no aportaron un valor predictivo añadido 
sobre los factores de riesgo que se incluyen en las actuales funciones 
de predicción de riesgo cardiovascular. Por último, no hemos podido 
inferir causalidad utilizando la estrategia de aleatorización mendeliana. 
 
Como conclusión general, la metilación del ADN se asocia a fenotipos 
relacionados con las enfermedades cardiovasculares y a eventos, pero 
su papel en las redes moleculares subyacentes es complejo y se 
necesitan más estudios para continuar avanzando en esta línea. 
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Resumo 
 
 
As enfermidades cardiovasculares son un dos principais retos de Saúde 
Pública. As complexas redes moleculares subxacentes á súa etioloxía 
non están claras. Son necesarios máis estudos para identificar novos 
actores e mediadores que permitan deseñar estratexias preventivas 
máis precisas. A metilación do ADN é un mecanismo que regula a 
expresión xénica vencellado a enfermidades complexas e factores 
relacionados. Porén, preséntase coma unha potencial fonte de 
biomarcadores de enfermidade cardiovascular. 
 
Estudamos a asociación entre a metilación do ADN e fenotipos 
cardiovasculares e relacionados en estudos observacionais en 
poboación xeral. Analizamos a asociación deste mecanismo en células 
de sangue periférico con factores de exposición relacionados con 
enfermidades cardiovasculares e con eventos cardiovasculares, así 
coma a relevancia clínica dalgúns destes achados. Para isto, realizamos 
estudos de asociación de epixenoma completo e de loci candidato, 
avaliamos o seu valor predictivo de risco cardiovascular e utilizamos a 
estratexia da aleatorización mendeliana para inferir causalidade. 
Incluímos tres cohortes observacionais: REgistre GIroní del COR, 
Framingham Offspring Study e Women’s Health Initiative. 
 
Identificamos unha dose-resposta non lineal á actividade física en dous 
sitios de metilación. Atopamos sete loci con menores valores de 
metilación en relación á acumulación de factores de risco 
independentes da idade. Describimos 17 sitios de metilación asociados 
á prevalencia de enfermidade coronaria e á incidencia de enfermidade 
cardiovascular, algúns por primeira vez. Estes 17 biomarcadores non 
aportaron un valor predictivo engadido sobre os factores de risco que 
se inclúen nas funcións de predición de risco cardiovascular actuais. 
Por último, non puidemos inferir causalidade utilizando a estratexia da 
aleatorización mendeliana. 
 
Como conclusión xeral, a metilación do ADN asóciase a fenotipos 
relacionados coas enfermidades cardiovasculares e a eventos, pero o 
seu papel nas redes moleculares subxacentes é complexo e máis 
estudos son necesarios para avanzar nesta liña. 
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Resum 
 
 
Les malalties cardiovasculars són un dels principals reptes de salut 
pública. Les complexes xarxes moleculars subjacents no han estat 
totalment definides. Per tant, es fan indispensables més estudis per a 
identificar nous actors i mediadors que permetin dissenyar estratègies 
preventives més precises. La metilació de l’ADN és un mecanisme que 
regula l’expressió gènica vinculat a malalties complexes i factors 
relacionats. Així, es presenta com a una potencial font de 
biomarcadors de malalties cardiovasculars. 
 
Hem estudiat l’associació entre la metilació de l’ADN i fenotips 
cardiovasculars i relacionats en estudis observacionals en població 
general. Hem analitzat l’associació entre la metilació de l’ADN en 
cèl·lules de sang perifèrica amb factors d’exposició relacionats amb 
malalties cardiovasculars i amb esdeveniments cardiovasculars, així 
com la rellevància clínica d’algunes d’aquestes troballes. Per a això, 
hem realitzat estudis d’associació de epigenoma complet i de loci 
candidat, hem avaluat el seu valor predictiu de risc cardiovascular i 
hem utilitzat l’estratègia d’aleatorització mendeliana per inferir 
causalitat. Hem inclòs tres cohorts observacionals: Registre Gironí del 
COR, Framingham Offspring Study i Women‘s Health Initiative. 
 
Hem identificat una dosi-resposta no lineal a l’activitat física en dos 
llocs de metilació. Hem trobat set loci amb menors valors de metilació 
amb relació a l’acumulació de factors de risc independent de l’edat. 
Hem descrit 17 llocs de metilació relacionats amb prevalença de 
malaltia coronària i incidència de malaltia cardiovascular, alguns per 
primera vegada. Aquests 17 biomarcadors no van aportar un valor 
predictiu afegit sobre els factors de risc que s’inclouen en les actuals 
funcions predictives de risc cardiovascular. Finalment, no hem pogut 
inferir causalitat utilitzant l’estratègia d’aleatorització mendeliana. 
 
Com a conclusió general, la metilació de l’ADN s’associa a fenotips 
relacionats amb malalties cardiovasculars i a esdeveniments, però el 
seu paper en les xarxes moleculars subjacents és complex i es 
necessiten més estudis per continuar avançant en aquesta línia. 
  





1. INTRODUCTION 
 

 

 

Illustration by Gérard Dubois 
 

“Dende aquí vexo un camiño  
que non sei adónde vai;  
polo mismo que n’o sei,  

quixera o poder andar.” 

“I can see a road from where I am  
and I don't know were it goes;  

only because I don't know,  
I would like to walk through it.” 

Rosalía de Castro (1837-1885). 
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1.1. Cardiovascular diseases 
 
Cardiovascular diseases are the leading cause of mortality worldwide 
(Figure 1) [1]. They comprise several diseases with different aetiologies 
that affect the heart or blood vessels. The main clinical manifestations 
of these diseases are coronary heart disease, stroke or cerebrovascular 
disease, and peripheral vascular disease. Coronary heart disease (also 
known as ischemic heart disease or coronary artery disease) is 
currently the world’s biggest health threat, and the main pathological 
mechanism responsible for all of these diseases is a progressive 
inflammatory process called atherosclerosis.  

Figure 1. Leading causes of global mortality for 1990, 2007 and 2017 

 
Mortality is measured as Years of Life Lost, explained in Box 1. 

Image modified from [1]. 
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a) Overview of the burden of cardiovascular diseases  
 
Cardiovascular diseases (CVD), which are categorised as non-
communicable diseases (NCD), are complex diseases that result from 
an interplay between genetic, physiological, environmental, and 
lifestyle factors. While some of these factors have been explored by 
many studies in different NCD contexts, the precise underlying 
biological mechanisms that explain their impact on health are still 
being unravelled. There are also thought to be some unknown factors 
that remain to be identified.  
 
Despite medical advances, CVDs have led the global ranking of causes 
of death every year for the last decade. Currently, two of the clinical 
manifestations of CVD, coronary heart disease and stroke, are among 
the top three leading causes of mortality worldwide (Figure 1). Other 
measures of the burden of disease (see Box 1) also highlight these 
diseases as the current biggest threat for global health [1–3].  

The effects of these diseases on health have driven efforts in 
cardiovascular epidemiological research and prevention strategies since 
the mid-20th century. This research is important not only for 
monitoring the trends, distribution, and frequency of CVDs, but also 
for deciphering the causes and mechanisms that trigger them. In fact, 
while CVD had become the main cause of death in the USA of the 
1940s, as recently reviewed, “prevention and treatment were so poorly 
understood that most Americans accepted early death from heart 
disease as unavoidable” [4]. Among those Americans was US 
president Roosevelt, who died of stroke due to untreated hypertension 
and after suffering several cardiovascular events. Closely related to that 

Box 1. Epidemiological indicators used to describe the burden of 
diseases 
 

 YLLs – Years of Life Lost, a metric of the burden of a disease based 
on premature mortality 

 

 YLDs – Years Lost due to Disability, a metric of the burden of a 
disease based on the number of years living with a health condition 
or its consequences 

 

 DALYs – Disability-Adjusted Life Years, a metric of the overall 
burden of a disease considering both YLLs and YLDs 
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event, the Framingham Heart Study (FHS) started in that industrial 
town in the state of Massachusetts in 1948 [5]. The FHS was the first 
epidemiological study of its kind. It identified the first factors found to 
increase cardiovascular risk (CVR), coined the term “cardiovascular 
risk factor” (CVRF), proposed the first CVR functions for predicting 
future events [6,7], and opened the door to preventive medicine and a 
more conscious lifestyle. 
 
Current CVD statistics are alarming, and are predicted to increase in 
the coming decades as the population increases and ages (Figure 2) 
[1,3,8–10]. Similar to the paradigmatic transformation of Western 
societies in the first decades of the 20th century, we have been going 
through a dramatic change as a society since the late 20th century. The 
first half of the past century was characterized by key features for 
health, such as the development of vaccines and antibiotics, 
improvements in hygiene and sanitation, and Public Health actions. In 

Figure 2. Expected trends of acute coronary syndrome (ACS) cases 
from 2005 to 2049 by sex and age group in the Spanish population 

 
*ACS is explained 1.1.b.  

Image from [10]. 
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addition to the Declaration of Human Rights1, this led to an 
epidemiological transition due to a decrease in infectious diseases and 
a subsequent increase in life expectancy and NCDs [11]. Currently, our 
society is facing new challenges related to aging and population 
growth, our behaviour, and our busy and fast lifestyle [8].  
 
Moreover, despite global trends, there are still marked differences 
between societies. Cardiovascular mortality is reaching a plateau in 
many countries with high Socio-Demographic Index (SDI)2, but is still 
increasing in low- and middle-SDI countries [1]. Some low- and 
low/middle- SDI areas are experiencing a double burden of disease, 
with continued high rates of infectious diseases and undernutrition 
(Figure 3) [3].  

                                                 

 

 
1 The Universal Declaration of Human Rights states that, “Everyone has the right to 
a standard of living adequate for the health and well-being of himself and of his 
family, including food, clothing, housing and medical care and necessary social 
services, and the right to security in the event of unemployment, sickness, disability, 
widowhood, old age or other lack of livelihood in circumstances beyond his control” 
(UN General Assembly, 1948.) 
2 SDI, ranging from 0 to 1, measures the level of development of a geographic area 
based on fertility and average income per person and educational attainment. 

Figure 3. Leading causes of DALYs at lowest levels of development, 
2017 

 
Image created from [3].  
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b) Coronary Heart Disease 
 
Coronary Heart Disease (CHD) is the leading specific cause of death 
worldwide [1]. Clinical manifestations of CHD such as myocardial 
infarction, angina and sudden cardiac death are related to 
atherosclerosis (further explained in section 1.1.c). CHD mainly occurs 
from the fifth or sixth decade in men, and from the sixth or seventh 
decade in women (Figure 4) [1].  

Figure 4. Sex differences in global mortality by age, 2017 

 

Image modified from [1]. 
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One of the most common presentations of CHD is Myocardial 
Infarction (MI). The mean worldwide count of YLDs due to MI 
increased by 13.6% between 2007 and 2017 [2]. MI occurs when 
myocardial cells die due to occlusion of a coronary artery, impairing 
blood supply to that area of the heart (known as myocardial ischaemia; 
Figure 5; [12]). Typical symptoms include oppressive chest pain and 
discomfort. In women, it more often manifests itself as unusual 
fatigue, shortness of breath, light-headedness, nausea, or discomfort in 
the lower chest, upper back, or jaw [13]; some of these symptoms can 
also be experienced by men. Also more frequently among women, MI 
can also occur as a silent event (also known as unrecognized MI) [14]. 
According to the Joint ESC/ACC/AHA/WHF Task Force3, to 
diagnose MI, the following features must be observed: 

- Cardiac troponin levels – biomarker of myocardial injury – 
with at least one value above the 99th percentile, with values 
remaining abnormal at the first assessment, and after 3 and 6 
hours (Figure 6).  

- Evidence of the myocardial ischaemia symptoms described 
above. 

- Electrocardiographic changes within 10 min of presentation. 

- New loss of viable myocardium or new abnormal regional 
motion or thickening, as assessed using imaging techniques 
such as magnetic resonance. 

                                                 

 

 
3 ESC, European Society of Cardiology; ACC, American College of Cardiology; 
AHA, American Heart Association; WHF, the World Heart Federation. 

Figure 5. Representative autopsy cases of cardiac rupture as a 
consequence of fatal AMI 

 
Image adapted from [12]. 
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Identification of a thrombus using coronary angiography (or by 
autopsy) would contribute to a conclusive diagnosis. The Task Force 
also classifies MI into five types according to differences in its 
pathology, clinical features and prognosis (see Box 2). Subsequent 
cardiac management and treatment depends on the type of MI [15]. 
 
Acute MI (AMI; MI types I-III) and unstable angina define Acute 
Coronary Syndrome (ACS). If cardiac troponin levels are normal but 
symptoms and electrocardiogram changes suggest acute coronary 
ischemia, AMI is discarded and the acute event suggests unstable 
angina [15]. This outcome occurs after myocardial ischaemia without 
myocardial necrosis at rest (thus, cardiac injury biomarkers are not 
released), and is often the clinical manifestation that precedes an AMI 
[16]. It differs from stable angina (also known as effort angina), which 
is due to transitory impairment of blood flow to the heart, usually after 
physical activity or psychologic stress, and which disappears with rest 
or medication [17]. 

Figure 6. Scheme of early cardiac troponin kinetics in patients after 
acute myocardial injury including acute AMI 

 

Image modified from [15]. 
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c) Atherosclerosis 
 
Atherosclerosis is a complex chronic inflammation of the medium and 
large arteries, resulting in remodelling and narrowing that, in turn, can 
lead to ischemia or necrosis of certain tissues (e.g. the myocardium) 
[18]. This silent process starts early in life, even during foetal 
development [19], with the formation of fatty streaks due to the 
accumulation and oxidation of deposits of cholesterol and other lipids 
in the sub-endothelial space of an artery. Other characteristic features 
include endothelial dysfunction, infiltration of macrophages, 
formation of foam cells, and activation of T-lymphocytes.  
 
The initial fatty streaks evolve slowly to more advanced lesions 
characterized by the formation of a fibrous cap that separates the 
lesion from the lumen. Those with thick regular fibrous cap (stable 
plaques) are less prone to rupture, while those with areas of thinning 
of the fibrous cap due to the accumulation of macrophages and pro-
inflammatory molecules (unstable or vulnerable plaques) are more 
prone to rupture. This causes the formation of a thrombus that may 
occlude the arterial lumen and trigger an acute event [18].  
 
The American Heart Association classically distinguishes six stages of 
atherosclerosis progression based on the type of histological lesion 
(Figure 7; [20]) [21].  

Box 2. Classification of Myocardial Infarction 
 

 Type I, MI resulting from myocardial ischaemia following plaque 
disruption with coronary atherothrombosis* 

 

 Type II, MI resulting from myocardial ischaemia following 
unbalanced oxygen demand/supply unrelated to thrombosis* 

 

 Type III, fatal MI with symptoms suggestive of ischaemia but without 
abnormal cardiac troponin* 

 

 Type IV, MI resulting from myocardial ischaemia following 
percutaneous coronary intervention or stent thrombosis 

 

 Type V, MI resulting from myocardial ischaemia following cardiac 
surgery 

 

*Acute events (AMI) 
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Figure 7. Progression of an atherosclerotic lesion 

 

Image from [18]. 
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1.2. Factors that increase cardiovascular risk 
 
As previously mentioned, the concept of “cardiovascular risk factors” 
(CVRFs) was introduced by the FHS investigators. These are traits 
that increase an individual’s risk of suffering a cardiovascular event 
independently of other traits, and can be modifiable or non-modifiable 
depending on whether we can alter them by changing habits or 
behaviours, or our environment. They can be hereditary, physiological, 
environmental and behavioural factors, and they can interact between 
them.  
 
As Dawber et al. mentioned in their editorial about the FHS, “for 
many years, atherosclerosis and diseases related to it were considered 
to be the inevitable result of the aging process”. Additionally, sex 
differences in CHD have been observed for a long time [22]. The FHS 
first identified high lipid levels, blood pressure, smoking, overweight, 
physical inactivity, and diabetes as factors that increase CVR. They 
also found that these factors have a cumulative effect on CVR [23]. All 
of these factors are indeed major contributors to CVR. For example, 
in the last two decades of the 20th century, the number of CHD deaths 
in the USA decreased by 44% due to improved management of total 
cholesterol levels, systolic blood pressure, smoking, and physical 
inactivity, even despite increased body-mass index and the diabetes 
[24]. Globally, preventative policies have been partly successful in 
controlling some CVRFs such as hypertension and smoking. 
However, the increasing prevalence of some classical and modifiable 
CVRFs, such as obesity or type 2 diabetes (Figure 8), could lead to 
increased incidence of CVD in the near future [8,25].  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Trends in the ratios between observed and expected (SDI-
based) summary measures of exposure according to geographical 
region, for both sexes, 1990-2017 

 

Continued 



1. Introduction 13 

DNA methylation, CVR and MI: an epigenome-wide approach 

 
 

a) Aging 
 
The most important factor for CVR is the person’s age. As mentioned 
above, population aging is one of the causes that explains the current 
and predicted trends in CVD (and NCD in general). As people age, 
their CVR increases exponentially independently of other CVRFs [26]. 
In fact, CVD events are less common at younger ages, and 20- to 40-
year-olds have low CVR, even if they have high-risk CVRF profiles 
[27–30]. In the specific case of CHD, atherosclerosis progresses 
throughout life and its clinical manifestations usually appear from 
middle-age on [31]. 
 
Aging is an extremely complex biological process. The aging-related 
molecular pathways that are involved in cardiovascular health include 
mitochondrial dysfunction, deregulated autophagy, angiogenesis 
impairment, endothelial dysfunction, loss of telomeric DNA, and 
metabolic cascades triggered by growth factors, FOXO factors and 
sirtuins [32]. Understanding the fundamental mechanisms that 
underlie aging could lead to significant improvements in preventive 
and therapeutic strategies for CVD.  
 
Related to aging and CVR, vascular age has been proposed as a tool 
for raising awareness about CVR among young individuals [33]. 
Classically, CVR is expressed as the probability of presenting a 

 
*SEVs: Summary Exposure Values. Image adapted from [8]. 
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cardiovascular event in the following 10 years. As mentioned, CVR is 
low in young individuals, even those individuals with high-risk CVRF 
profile, so it is interesting to express CVR as vascular age, instead of as 
a percentage risk. This is easily understood by patients in primary care 
settings, and has a higher impact on the youngest age groups as they 
can better perceive their CVRF load. Figure 9 shows an example in 
which a 40-year-old individual has moderate absolute risk (8% at 10-
years), but a vascular age of 69 years. Communicating risk to a 40-
year-old individual as absolute risk (“you have an 8% of CVR, which 
corresponds to a moderate risk”) has much lower impact than doing 
so using vascular age (“your chronological age is 40, but your vascular 
age is 69 years old”) [34]. For instance, communicating vascular age 
was shown to improve the control of the lipid profile [35]. 

 
 

b) Sex  
 
The second most important non-modifiable CVRF for CVD is the sex 
of the individual. CVD death is more common among women [1], as a 
consequence of a higher incidence of stroke, whereas CHD deaths are 

Figure 9. Cardiovascular risk expressed as vascular age 

 
Image from [34]. 



1. Introduction 15 

DNA methylation, CVR and MI: an epigenome-wide approach 

more common among men [1]. However, CHD may be 
underdiagnosed in women because of its less alarming 
symptomatology. In addition, as mentioned above, women usually 
have CHD and overall CVD events at older ages than men. Moreover, 
CVR estimates that consider both age and sex quite accurately 
differentiate individuals that will have a CVD event from those who 
will not [26].4 Finally, another important sex-related issue for CVR is 
the fact that the effect sizes of other CVRFs differ between women 
and men. Some of these differences will be explained in further detail 
below in the sections on CVRFs. The differences between sexes have 
been attributed to a protective effect of female sex hormones [36].  
 
 

c) Ethnicity 
 
The FHS included Americans of European ancestry, and, in fact, 
traditionally epidemiological studies have not equally represented all 
ethnic backgrounds. However, racial/ethnic groups vary greatly in 
CVR and in the prevalence or magnitude of some CVRFs. For 
instance, African Americans have higher risk of CHD death [37] and 
higher blood pressure and hypertension rates than Americans with a 
different ancestry [38,39]. Similarly, UK citizens with an South Asian 
ancestry also present higher CVR than those of European ancestry 
[40].  
 
 

d) Smoking 
 
Tobacco smoking is a modifiable CVRF that causes endothelial 
dysfunction and increased risk of thrombosis [41]. Smoking was 
shown to increase risk of CVD death, and to have a non-linear dose-
response association with relative risk of CHD, with higher numbers 
of cigarettes smoked leading to higher CHD risk [42]. In Spain, MI 
incidence and death diminished in an 11% after the introduction of a 
partial smoking ban in 2006 [43]. 

                                                 

 

 
4 This capacity to differentiate individuals who will suffer a CVD event from those 
who will not is explained in the next section. It is called discriminative capacity, and 
is measured with the C-statistic index, which ranges between 0.70-0.75 in this 
specific case. 
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Differences in CVR are not only observed between smokers and non-
smokers, but also between current non-smokers who previously quit 
and those who have never smoked. Smokers have higher risk of MI 
and CVD death than former smokers [44,45], and CVR decrease 
quickly after quitting smoking [46]. However, former smokers who 
quit smoking more than 10 years previously still have higher CVR than 
people who never smoked [46]. Also, individuals who began smoking 
at or before 12 years of age have an inverse and linear association 
between aged of onset of smoking and CVD outcomes [47]. 
 
Smoking also leads to higher CVR among individuals exposed to 
second hand smoke, who are reported to have 25-30% higher CHD 
risk than non-exposed individuals [48]. In addition, women who 
smoke during pregnancy expose their children to this CVRF, resulting 
in higher CVR in adulthood than among individuals who had not been 
exposed to maternal smoking as a foetus [49]. 
 
Smoking varies between women and men, with women traditionally 
starting smoking later and smoking fewer cigarettes than men. 
However, the age of onset of smoking and daily doses are currently 
similar in both sexes [36]. In addition to gender differences in smoking 
habit, smoking-related CHD risk is higher in women [50], at least 
when comparing individuals who smoke >20 cigarettes per day 
(known as “heavy smokers”). 
 
Since smoking is a modifiable CVRF, public health and policy actions 
contribute to social awareness of the risks of smoking and its 
prevention. In the Spanish example mentioned above, the partial 
smoking ban not only influenced smokers to smoke less [51], but also 
reduced the prevalence of second hand smokers [52]. 
 
 

e) Dyslipidaemia and abnormal levels of blood lipids 
 
Circulating levels of triglycerides (TG) and cholesterol are a modifiable 
CVRF that is closely related to atherosclerosis. Both lipids are required 
by all cells in the body, and are therefore transported throughout the 
body in the bloodstream, coupled to apolipoproteins because of their 
apolar nature. The joint lipid-apolipoprotein macromolecules are 
called lipoprotein particles, which are grouped in four classes 
depending on their molecular weight: very low density lipoproteins 
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(VLDL), intermediate density lipoproteins (IDL), low density 
lipoproteins (LDL) and high density lipoproteins (HDL). Most 
common dyslipidaemias consist on an elevation of TG levels 
(hypertriglyceridaemia) or an alteration on cholesterol levels 
(hypercholesterolemia and HDL-related alterations). 

 

 Hypertriglyceridaemia 
 
Hypertriglyceridaemia is defined as levels of circulating TG higher 
than 150 mg/dL [53]. Serum TGs are mostly carried by VLDL 
particles, and these TG-rich lipoproteins can enter the arterial wall and 
boost atherosclerosis [54]. A meta-analysis of some of the first studies 
on TG as an independent CVRF reported relative CHD risks of 1.32 
and 1.76 per mmol/l increase in serum TG levels in men and women, 
respectively [55]. Mendelian Randomisation5 studies subsequently 
showed that this is a directly causal association [55–57].  

 

 Hypercholesterolemia 
 
This health condition is characterized by high plasma levels of total 
cholesterol and/or cholesterol carried in LDL particles (LDL-C) or 
non-carried in HDL particles (HDL-C). In some cases it has a genetic 
basis and appears during childhood, known as familial 
hypercholesterolemia. However, most cases can be treated through 
lifestyle changes. 

 

 High total cholesterol levels 
 
The total amount of cholesterol in the blood (in any lipoprotein) 
is directly associated with higher CHD risk. The reference values 
for normal total cholesterol levels are <200 or <240 mg/dL 
according to different guidelines. Measured in men early in their 
adulthood, it has been shown to be strongly related to incident 
CHD and CVD and to CVD death later in life, independently of 
other CVRFs [58]. 
 

                                                 

 

 
5 Mendelian randomisation studies are addressed in 1.3.b. 
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 High LDL-C levels 
 
LDL-C is transported to the cells. Healthy levels of LDL-C are 
<100 mg/dL [59]. High levels of circulating LDL-C are linearly 
and causally associated with higher risk of CHD. Randomized 
controlled trials of therapies for reducing lipid concentrations, 
namely statins, ezetimibe, and PCSK9 monoclonal antibodies, 
have been shown to reduce CHD risk [60], supporting their 
causal role in CHD risk. Mendelian Randomisation studies also 
support this causal association [57].  

 

 Low HDL-C levels and impaired HDL functionality 
 
Cholesterol that exceeds a cell’s needs is transported away from the 
cell in HDL particles and delivered to the liver for metabolization or 
excretion, a process known as reverse cholesterol transport [61]. 
Consistent with this function, HDL-C is inversely associated with 
CHD risk [62], and also has anti-atherosclerotic properties [63]. 
Healthy levels of HDL-C are >50 and >40 mg/dL in women and 
men, respectively, and low HDL-C levels are therefore a CVRF. 
However, an experimental studies using drugs to increase HDL-C did 
not show a corresponding decrease in CHD risk [64], and, along with 
Mendelian Randomisation studies, this result questions the causal 
association between HDL and CHD [57,65]. These findings suggest 
that it is not useful to examine HDL-C levels, so current research 
focuses on qualitative HDL traits to explain its anti-atherogenic role, 
such as cholesterol efflux capacity or HDL’s antioxidant and anti-
inflammatory properties [63]. 
 
Lipid profile varies between sexes: while women usually have a 
healthier lipid profile at younger ages than men, after menopause lipid 
levels increase to higher levels than those observed in men [36]. 
 
While some genetic characteristics can module lipid profile, it is a 
modifiable CVRF. A healthy lifestyle, and specifically a healthy diet, 
can improve it to a more favourable state. For instance, the 
Mediterranean diet, which is especially enriched with virgin olive oil, 
improves the anti-atherogenic functions of HDL [66]. 
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f) Hypertension and high blood pressure 
 
Hypertension is a chronic, symptomless condition that is characterized 
by persistent high blood pressure (BP). More precisely, according to 
European guidelines, it is defined as a resting systolic blood pressure 
(SBP) of ≥ 140 mmHg, or resting diastolic blood pressure (DBP) of 
≥90 mmHg [30]. Both SBP and DBP are linearly related to CVR. 
Antihypertensive treatment lowers risk of stroke, MI, and heart failure 
by 35-40%, 20-25%, and >50%, respectively [67]. Thus, the higher the 
BP, the higher the risk, independently of what BP cutpoints 
(thresholds) are used to define hypertension. Current American 
guidelines have changed these cutpoints to 130 mmHg for SBP and 80 
mmHg for DBP [68]. 
 
Hypertension differs between sexes, with higher incidence in men 
until the sixth decade of life [69]. Also, a large fraction of hypertensive 
individuals are unaware of it, and the disease is insufficiently 
controlled in many who are aware of their condition [70]. Thus, 
improving this CVRF depends on raising social awareness and 
controlling it better. 
 
 

g) Diabetes and high glucose levels 
 
Diabetes is a complex metabolic disease characterized by high levels of 
fasting serum glucose (known as hyperglycaemia). Specifically, diabetes 
is defined as glucose levels of ≥126 mg/dL. Type 1 diabetes results 
from a loss of pancreatic β-cells and impaired insulin production, and 
is usually diagnosed at young age. Conversely, type 2 diabetes (T2D) is 
a consequence of insulin resistance, i.e. impaired cell response to 
insulin, and typically appears in middle age. A third type of diabetes is 
that which occurs in pregnant women who develop hyperglycaemia 
without a previous history of diabetes, and is called gestational 
diabetes.  
 
Diabetes has been shown to increase CHD risk by 2-3 fold [67], 
mainly based on studies of T2D patients [71,72]. However, for the 
first time, the 2017 Global Burden of Disease study disaggregated 
diabetes to better estimate DALYs [3]. Thus, from now on in this 
thesis, when describing diabetes, I will be referring to T2D. 
 



20 Factors that increase cardiovascular risk 

Doctoral thesis UPF / 2019 

Diabetes is closely associated with other CVRFs. On the one hand, 
there is a clear sex differences in CVR among diabetes patients, with 
diabetic women having higher relative risk of CHD and stroke than 
diabetic men (44% and 27%, respectively) [50,73]. On the other hand, 
diabetes is also associated with hypertension, hypertriglyceridemia, low 
HDL-C levels, and obesity, as all of these are related to insulin 
resistance. The metabolic syndrome is defined according to a 
combination of these CVRFs (further explained in 1.2.h). 
 
Despite its complexity and accounting for one of the highest increases 
in DALYs between 2007 and 2017, diabetes is a modifiable CVRF. 
Lifestyle interventions that achieve a small amount of weight loss have 
been shown to decrease diabetes incidence by 58% after 3 year, and by 
34% after 10 years [74–76].  
 
 

h) Overweight and obesity 
 
Obesity is an abnormal accumulation of body fat related to several 
health problems, and is considered a complex medical condition of 
epidemic magnitude [3]. It causes altered lipid and glucose 
metabolism, and impairs respiratory and cardiovascular function and 
structure. The most common measure used to define obesity is body 
mass index (BMI), which is computed from weight and height (BMI = 
weight [kg] / height2 [m]). BMI categories are underweight (<18.5 
kg/m2), normal weight (18.5-24.9 kg/m2), overweight (25.0-29.9 
kg/m2), and obesity (≥30.0 kg/m2). Obesity is further classified in 
three classes based on BMI [77]:  

- class I obesity: 30.0-34.9 kg/m2,  

- class II obesity: 35.0-39.9 kg/m2, and  

- class III obesity: ≥40 kg/m2.  
 
A more specific indicator of obesity is abdominal obesity, based on 
waist circumference, which reflects visceral fat accumulation rather 
than subcutaneous deposits. Visceral fat is linked to inflammation that 
is in turn linked to metabolic diseases and CVD. While there is some 
controversy regarding what cut-off values are appropriate to define 
this indicator, currently individuals with waist circumference >88 and 
102 cm in women and men, respectively, are considered to have 
abdominal obesity [78]. 
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The FHS found that obesity is associated with CVD risk in a dose-
dependent manner: two years with obesity increases risk of CVD-
related mortality by 7% [79]. In addition to the link between obesity 
and the other CVRFs mentioned, there are differences in CVR 
between obese women and men, and obesity accounts for 6% and 5% 
of CHD deaths in women and men, respectively. Obesity-related CVR 
also depends on age, with overweight and obese children having 
higher CVR in adulthood.  
 
The close correlation between obesity, diabetes, lipid profile, and BP 
led to the definition of the metabolic syndrome, which is diagnosed in 
individuals who have a combination of at least three of these 
modifiable CVRFs, as follows [80,81]: 

1. Fasting plasma glucose levels >100 mg/dL. 

2. Hypertriglyceridemia (TG levels >150 mg/dL) 

3. Low HDL-C levels (<50 and 40mg/dL in women and men, 
respectively). 

4. Hypertension (SBP >130 mmHg, DBP >85 mmHg). 

5. Abdominal obesity. 
 
As these traits are each individually related to CVR, metabolic 
syndrome is also unsurprisingly associated with higher risk [82]. 
However, it is still unclear whether the definition of metabolic 
syndrome as defined above provides more information for estimating 
CHD risk than simply the sum of the individual traits [83]. 
 
Obesity is considered a major public health problem due to its 
increasing prevalence [84], which then leads to a higher prevalence 
CVD, diabetes, hypertension, and other chronic diseases such as 
cancer [3]. Thus, it is urgent to implement public health and policy 
actions to counteract this epidemic [25]. 
 
 

i) Physical inactivity and sedentary behaviour 
 
Physical activity (PA) has multiple benefits on health throughout life 
[85,86]. Current international recommendations for physical activity in 
adults are based on aerobic PA, and recommend at least 150 minutes 
of moderate-intensity PA or 75 minutes of vigorous-intensity PA per 
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week [87]. The precise mechanisms triggered by PA are still not well 
understood, although it is known to cause anti-atherogenic adaptations 
in vascular function and structure, and to decrease chronic 
inflammation, independently of other CVRFs [86].6  
 
Insufficient PA is a CVRF as well as a risk factor for other health 
problems related to CVD, such as diabetes or obesity. The FHS 
reported that more sedentary participants were more prone to fatal MI 
events [88]. Conversely, risk of CHD death was found to be inversely 
associated with categories of occupational energy requirement among 
longshoremen [89]. More recently, meta-analyses using continuous PA 
metrics reported that changing from inactivity to meeting the current 
PA recommendations lead to a 23%, 17% and 14% decrease in risk of 
CVD death, CVD, and CHD, respectively [90,91]. Even individuals 
who did not reach the recommended levels had lower CHD risk than 
physically inactive individuals, and at higher doses of PA, the benefits 
for cardiovascular health were higher [91]. Also, the exercise regimes 
used in cardiac rehabilitation of ACS have also been reported to 
reduce risk of CHD death [92,93]. 
 
Traditionally, studies have focused on the benefits of PA compared its 
absent or insufficient activity. However, more recent research has 
addressed sedentary behaviour, assessed as time spent sitting, and 
found that it has an independent effect on CVR, beyond that of 
insufficient PA. Sedentary behaviour is associated with higher risk of 
CHD, CVD and CVD mortality [94–98].  
  
Humans are genetically adapted to a more active lifestyle than we have 
currently, when PA and sedentary behaviour have achieved their 
lowest and higher levels in human history, respectively. PA is 
decreasing and sedentary behaviour increasing even more in younger 
generations, and this trend raises concerns about its impact on general 
health. However, PA is an underused preventive strategy [99], and 
sedentary behaviour is not adequately discouraged. Thus, policy 
makers and health professionals should prioritize actions that target 
more inactive individuals, enhance their adherence to PA, and advise 

them on reducing time spent sitting. Population‐level approaches for 
each age-group should also be pursued [100,101]. However, 

                                                 

 

 
6 PA will be addressed in one of the objectives of this thesis. 
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recommendations should consider that excessive PA may increase risk 
of osteoarthritis [102], sudden cardiac death and AMI in susceptible 
persons [103]. 
 
 

j) Other cardiovascular risk factors 
 
Other lifestyle and environmental factors have been reported to 
modulate CVR, including: diet [104,105], changes in gut microbiota 
[106], alcohol consumption [107], socioeconomic status [108], 

psychological stress [109], lack of sleep [110], and air pollution [111]. 
In addition, other diseases are associated with higher CVR, such as 
chronic kidney disease [112]. Another non-modifiable classical CVRF 
is family history of CVD. While high CVR can be a consequence of a 
family’s cultural factors (i.e. common habits and environment), this 
risk is also partly and independently explained by a hereditary 
component. The Genetics of CVD is further described in a later 
section. 
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1.3. Prediction of the individual cardiovascular 
risk 

 
Prevention of CVD in the general population requires both 
population-based and individual preventive strategies. The first 
approach is based on the modifiable nature of some CVRFs, and as 
already discussed, is achieved by promoting healthy or favourable 
lifestyles via community actions and policies. Conversely, individual 
strategies focus on assessing individuals’ CVR and implementing 
individual prevention strategies, the intensity of which varies according 
to the estimated CVR in order to prevent the occurrence of a first 
event, which may be fatal [34].  
 
 

a) Cardiovascular risk functions 
 
Cardiovascular risk functions are the recommended tool for estimating 
individual cardiovascular risk. In cooperation, the clinician and the 
individual implement preventive measures that are more or less 
intensive depending on the estimated risk [30]. Technological 
advances allow mass population screening, but currently there is no 
evidence to support this as a cost-effective prevention strategy [113]. 
Therefore, screening based on risk estimation is limited to certain 
individuals, in order to concentrate the greater intervention effort on 
individuals with the highest risk. Population screening is done in 
individuals who contact the health system for any reason 
(opportunistic screening), and also in those with a family history of 
CHD events or hypercholesterolemia, or who have clinical CVRFs 
(high risk screening). In both types, the most common approach is to 
use CVR functions and charts, which generally estimate the 
individual’s CVR during the following 10 years [113,114].  
 
CVR functions are equations that estimate the probability of having a 
CHD or CVD event within a certain period of time [34]. The most 
common CVR functions used in clinical and epidemiological settings 
are based on classical CVRFs, as they are strongly and independently 
related to CHD. At this time, no other CVR-associated factors 
improve the predictive capacity of standard CVR functions. The 
resulting probability is the absolute risk, which can be further 
categorized into low, intermediate, high, or very high risk [34]. 
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While the absolute risk provided by the CVR function has a 
straightforward interpretation, in that it represents a percentage, the 
clinician-patient dialogue is considerably more complex. First, the 
clinician cannot anticipate whether their patient will be one of those 
who actually will have a cardiovascular event, out of 100 individuals 
with the same load of CVRFs. In addition, neither this probability nor 
the assigned risk category are always properly understood by the 
patient, such that they immediately and faithfully modify their habits. 
This is especially observed with young patients, who usually have low 
or intermediate risk, even with an unfavourable burden of CVRFs, as 
mentioned in the previous section. In this context, it is highly 
recommended to transmit their predicted risk as a relative risk, i.e. that 
their risk is x times higher than if they had an optimal CVRF profile, 
or as vascular age (Figure 9) [34]. 
 
CVR functions developed for one specific population can generally be 
adapted for another. To do so, the CVR function needs to be 
adequately calibrated, i.e. the CVR estimation must reflect the 
corresponding epidemiological situation in terms of the incidence of 
CHD/CVD and of prevalence of CVRFs. Also, where the 
epidemiology of the disease and/or CVRFs change in the original 
population, the risk function must be recalibrated [34]. CVR functions 
must also be validated, which requires a prospective cohort. Validity is 
assessed using two components: i) accuracy, in which the number of 
predicted events is compared to that observed during follow-up using 
a goodness-of-fit test that informs about the calibration 
(expected=observed); and reliability, which refers to the function’s 
capacity to discriminate individuals who will suffer an event from 
those who will not. The discriminative capacity is calculated using 
metrics such as the c-statistic [115].7  

 

 The Framingham risk function and its adaptations 
 
As mentioned above, the first CVR function was developed by the 
FHS [7], and was updated at the end of the 1990s. [114]. During the 
past two decades, this current version has been adapted and calibrated 
for other populations, such as the Spanish one [116–118]. All of these 

                                                 

 

 
7 Both calibration and discrimination metrics will be further described later. 
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functions estimate the risk of presenting fatal or nonfatal CHD within 
10 years in individuals aged 35-74 years, and are based on: 

- the incidence of CHD in the population (1-S),  

- the individual’s CVRFs load,  

- the population means of the CVRFs load (CVRFp), and  

- the effect of each CVRF on CHD risk (βCVRF). 
 
In population-adapted functions, the incidence of CHD and the 
prevalence of the CVRFs in the original function are substituted with 
their corresponding values in the target population. The effects of 
each CVRF are transferred directly [117]. 

 

 Cardiovascular risk functions in Spain 
 
Many high risk patients are not correctly managed, while lower risk 
individuals receive drug treatment [34]. This observation highlights the 
incorrect or insufficient use of primary prevention strategies in the 
Spanish clinical settings. In fact, only 38% of clinicians admit that they 
calculate CV risk in >80% of patients with at least one CVRF [119]. It 
seems likely that this situation would improve if there was consensus 
on which CVR function to use [120]. However, as stated by the 
Spanish Interdisciplinary Committee on Cardiovascular Prevention, 
“independent of the function used, the important issue is to estimate 
CVR as a strategy for cardiovascular prevention in clinical practice, 
and to apply current guidelines according to clinical criteria and the 
patient’s preferences”. Three main functions are used in Spain (in 
order of increasing use): the SCORE function (and charts), the original 
Framingham CVR function, and the REGICOR function (and charts) 
[120]. Another function adapted to the Spanish population is the 
FRESCO function, which is also listed in the Spanish Guidelines 
mentioned above [27,121].  

 

 The SCORE function and charts 
 
SCORE is a European CVR function developed by the 
Systematic COronary Risk Evaluation (SCORE) Project [122]. Its 
use is recommended by the most recent European guidelines on 
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cardiovascular disease prevention in clinical practice [30], and by 
the Spanish Interdisciplinary Committee on Cardiovascular 
Prevention [121]. SCORE estimates 10-year risk of fatal CVD in 
35- to 64-year-olds. In fact, there are four SCORE functions, 
calculated for regions of Europe with high and low CVR, and 
using two models of estimation, one based on total cholesterol, 
and another on the ratio of total cholesterol to HDL-C. To make 
them more user-friendly, risk estimates based on SCORE are 
displayed as risk charts including 4 risk categories: low (<1%), 
moderate (1%-4.9%), high (5%-9.9%) and very high (≥10%).  
 
While SCORE has been calibrated for the Spanish population 
[28], a recent assessment of its validity (reliability and accuracy) by 
the FRESCO study (see below) found that none of the three 
SCORE functions – the original low-risk SCORE function with 
and without HDL-C and its calibrated version for the Spanish 
population – could accurately predict CVD mortality (it was 
overestimated), indicating that this function needs to be 
recalibrated for the Spanish population. In the FRESCO study, 
the authors note that “it is thus reasonable to also promote the 
use of the functions validated in Spain: Framingham-Wilson 
calibrated by REGICOR and by FRESCO” [123]. 
 

 The REGICOR function and charts 
 
The REGICOR function is an adaptation and calibration of the 
Framingham CVR function for the population of the province of 
Girona (Spain) using data from the REgistre GIroní del COR 
(REGICOR) Cohort [116], in which it has been validated for 
estimated 5- [124] and 10-year [125] CHD risk. It was shown to 
better classify high-CVR patients treated with statins than the 
original Framingham and SCORE functions [126].  
 
The original Framingham risk categories were adapted to low 
(<5%), moderate (5%-9.9%), high (10%-14.9%), and very high 
(≥15%), and the REGICOR estimates are also displayed as risk 
charts [125,127]. This validated adaptation of the Framingham 
CVR function is used in three Spanish autonomous communities 
[120]. 
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 The FRESCO function and charts 
 
More recently, a set of CVR functions were developed and 
validated for the Spanish population in the 35-79 years age range. 
FRESCO means “Spanish risk function of coronary and other 
cardiovascular events”, as it consists of a set of risk functions that 
predict CHD, stroke, and global CVD within 10 years. They use 
implemented CVRF measurements and can be automatically 
calculated by electronic medical records systems. In individuals 
aged ≤74 years old, the FRESCO CHD function discriminates as 
well as the Framingham-REGICOR function, but did not 
overestimate CHD risk in the validation cohort, as Framingham-
REGICOR tended to [27]. 

 
Despite the high value of CVR functions in clinical practice, they all 
have one important limitation, their low sensitivity8. In fact, many 
CHD or CVD events occur in the intermediate risk category, which 
accounts for a large percentage of the population. This low sensitivity 
suggests that these functions have poor predictive capacity in this 
population subset. In addition, CVR functions only consider some 
CVRFs independently of either the length of the exposure to those 
factors or the prescribed treatments. Therefore, it is essential to find 
new factors that improve the predictive capacity of CVR functions, 
especially those that can reclassify individuals who are currently 
classified in the intermediate-risk category [34].  
 
 

b) Cardiovascular biomarkers 
 
Biomarkers are measurable indicators of a biological condition or a 
pharmacologic response to a therapeutic intervention. Depending on 
what they indicate, they can be classified as predictive, diagnostic, 
prognostic, or therapeutic biomarkers.  
 
As mentioned above, risk functions are useful instruments but present 
a low sensitivity, so there is a need to explore potential new 

                                                 

 

 
8 Sensitivity (true positive rate) measures the proportion of true positives that are 
correctly identified as such; here, the proportion of individuals in the correct risk 
category. 
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biomarkers to improve their accuracy and individual risk stratification. 
For this reason, I will focus mainly on predictive biomarkers. The 
evaluation of a new predictive biomarker consists of sequential steps, 
analogous to the developmental phases of a new drug (see Box 3) 
[128,129]. Proof of concept is usually based on the association 
between the biomarker and the outcome in case-control studies. 
Prospective validation replicates the association in prospective cohort 
studies. To evaluate the biomarker’s incremental value for the 
predictive capacity of the risk function, several measures of the 
function’s performance must be considered (see Box 4) [130]. 

Traditionally, research into cardiovascular biomarkers has focused on 
enzymes and serum biomolecules, such as high-sensitivity C-Reactive 
Protein, troponin or brain natriuretic peptide. In recent years, several 
different types of predictive biomarkers have been proposed, but it 
remains to be seen whether including them in a CVR function will 
improve its CVD predictive capacity [131–134].  

 
 

Box 3. Criteria to evaluate novel biomarkers 
 

 Proof of concept: different levels found in individuals with and 
without a certain outcome 

 

 Prospective validation: association with developing the outcome 
 

 Incremental value: predictive information beyond that provided by 
existing biomarkers 

 

 Clinical usefulness: improvement of current clinical action (e.g. 
therapy) 

 

 Clinical outcomes: improvement of outcomes to a healthier state, 
preferably in a randomized trial 

 

 Cost-effectiveness: justification of additional costs 
 

 Ease of use: allowance of its widespread application 
 

 Methodological consensus: standardized measurements to facilitate 
comparison 

 

 Reference/cut-off values: definition of reference values to facilitate 
interpretation 

Adapted from [128,129] 
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 Biomarkers of subclinical atherosclerosis  
 
As atherosclerosis is a progressive and silent disease, biomarkers that 
assess its state of progression using non-invasive imaging techniques 
may partly overcome the limitation of the long delay between the start 
of atherosclerosis and its clinical manifestation decades later [135]. For 
instance, the Multi-Ethnic Study of Atherosclerosis (MESA) Study 
assessed the predictive value of subclinical atherosclerosis and other 
risk markers in a multi-ethnic population [136]. Thus, subclinical 
atherosclerosis biomarkers have been gaining great interest during the 
past decade, thanks to promising advanced imaging technologies such 
as magnetic resonance imaging [124], positron emission tomography, 
and computed tomography. Several measurements are used as a proxy 
of subclinical phenotypes of the disease, such as intracoronary 
calcium, the carotid intima-media thickness, atherosclerotic plaques, 
and the arterial stiffness [115,137]. Some markers are also associated 
with inflammation and stress biomarkers [138–140], or with traits such 
as vitamin D deficiency or telomere length [141,142].  
 

Box 4. Measures of a functions’ performance 
 

 Calibration: how the risk estimation matches the actual incidence 
 

 Calibration graph and Calibration slope 
 

 Hosmer-Lemeshow test 
 

 Discrimination: whether the function differentiates between those 
who will suffer an event and those who will not 

 

 C-statistic (or Area Under the ROC* curve; AUC) 
 

 Discrimination slope 
 

 Reclassification: comparison of risk classifications from the function 
with and without the biomarker 

 

 Reclassification table and reclassification calibration  
 

 Net reclassification Index – NRI  
 

 Integrated Discrimination Index –IDI 
 

*Receiver Operating Characteristic.  
Adapted from [130] 



1. Introduction 31 

DNA methylation, CVR and MI: an epigenome-wide approach 

 Coronary artery calcium  
 
Accumulation of calcium in the internal walls of the coronary 
artery is a direct sign of atherosclerosis, reflects the CVRF 
exposure, and it is strongly related to incident CHD. This trait 
improved risk prediction of the Framingham function, especially 
in individuals with intermediate risk [137,143]. However, it can 
only be detected by a computed tomography scan, which is a 
complex and expensive technique that, moreover, exposes 
patients to high levels of radiation [144]. 

 

 Carotid intima-media thickness 
 
Measuring this biomarker – by ultrasound imaging – is more 
affordable and less aggressive for patients than measuring 
intracoronary calcium [144]. In addition to being associated with 
incident MI and stroke [145], it improves CVR reclassification by 
the Framingham risk function when measured as the maximum 
value in the internal carotid artery [146]. However, measured 
thicknesses differ between observers, ecographic devices, scan 
protocols, softwares, and states of plaque progression [147]. Also, 
slowed progression of this indicator did not reflect a reduction in 
CVD events [148]. Recent studies suggest that quantitative 
measures of plaques (number, thickness, area, and 3-dimensional 
volume) increase the sensitivity of CVR functions more than the 
mere presence or absence of plaques, or the thickness of the 
intima-media [149].  
 

 Arterial stiffness9 
 

Arterial stiffening is a marker of endothelial dysfunction, and 
reflects progression in the formation of atheroma, as well as the 
presence of excessive collagen production and deposition in the 
arterial wall, leading to atherosclerosis progression. Measures that 
reflect arterial stiffness include the arterial distensibility 
coefficient, pulse wave velocity, and the ankle-brachial index, all 
of which are simple, reproducible, and affordable. They have 

                                                 

 

 
9 Arterial stiffness will be addressed in one of the objectives of this thesis. 
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been shown to be associated with CVRF profile and with incident 
CHD events [150–154], but their predictive value for CVR has 
not yet been fully explored [144]. 

 

 Genetic biomarkers 
 
As mentioned above, atherosclerosis and CVD outcomes are complex 
diseases with a genetic component. Scientific and technological 
advances have led to the discovery of specific genetic markers 
associated with cardiovascular health.  
 

 Identification of genetic marks of disease throughout the 
genome 

 
The confluence of human genetics and epidemiology has made it 
possible to investigate variants in the DNA sequence that are 
associated with a disease. The most common analysed genetic 
variants are Single-Nucleotide Polymorphisms (SNPs). A genetic 
polymorphism is “the occurrence in the same population of two 
or more alleles at one locus10, each with appreciable frequency”, 
as defined by Cavalli-Sforza and Bodmer [155]. This “appreciable 
frequency” was arbitrarily set to at least 1% of the population to 
distinguish polymorphisms from rare variants11 [156]. SNPs are 
specific base-pair positions in the genome in which a certain 
nucleotide is present for most individuals of a population (major 
allele), but where at least 1% of individuals have another 
nucleotide (minor allele, which generally is the risk allele) [157]. In 
fact, several alleles can be found at one SNP. 
 
Before the year 2000, the genetic variants related to a disease were 
generally identified by linkage analysis in families with at least one 
index individual presenting the disease and non-affected relatives, 
and by candidate-gene association analyses, typically in case-
control studies. However, the genetic coverage of these studies 
was low and most of the common genetic variability was not 

                                                 

 

 
10 Locus (plural loci) is a fixed position on a chromosome. A genetic variant at a 
given locus is an allele. 
11 Currently, that frequency cutoff is controversial [156,377]. 
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assessed. Since the publication of the full human genome 
sequence with more than 20,000 genes12 [158–160], millions of 
SNPs have been identified throughout the genome by successive 
efforts, including the International HapMap Project [161] and the 
1000 Genomes Project [162]. These projects were the foundation 
of population-based, hypothesis-free approaches to studying the 
genetic epidemiology of complex diseases. 
 

- Genome-wide association studies 
 

A Genome-Wide Association Study (GWAS) is a hypothesis-free 
association study between SNPs distributed throughout the 
genome and a trait of interest. GWAS have allowed researchers to 
identify genetic variants associated with complex diseases in 
populations of hundreds or thousands of individuals [163]. An 
online database summarising information from published GWASs 
is available at (the GWAS catalog: https://www.ebi.ac.uk/gwas/). 
 
Two main factors converged to drive the GWAS era: the 
completion of the HapMap Project (which facilitated the linkage 
disequilibrium-based design of SNP genotyping arrays covering 
most of the known common variability in the human genome), 
and the development of technology to develop and analyse these 
SNP genotyping arrays [164]. The first large-scale association 
study involving thousands of randomly selected SNPs distributed 
across the genome was gene-based and was published in 2002 for 
MI [165]. However, the first collaborative and large GWAS using 
an array with good coverage of the genome was published five 
years later for seven complex diseases (including CHD) [166], and 
the first three GWAS for CHD were also published in 2007. Since 
then, thousands of GWAS of different phenotypes have been 
performed. As of September 2018, the free online Catalog of 
published GWAS13 contains 5,687 publications and 3,567 
associations (https://www.ebi.ac.uk/gwas/diagram) [167]. 

                                                 

 

 
12 Eighteen years after the first drafts of the human genome, we still have not found 
all our genes, and the number varies with the redefinition of “gene” [378].  
13 A high-quality curated collection developed by the US National Human Genome 
Research Institute and the European Bioinformatics Institute from the  European 
Molecular Biology Laboratory. 

https://www.ebi.ac.uk/gwas/
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GWAS are performed in two steps using two independent 
population samples. In the discovery phase, SNPs are 
identified as being potentially associated with the disease, and 
in the replication phase these SNPs are confirmed or rejected 
as being associated with the disease [128]. Testing many 
associations in the same study increases the chance of false 
positive findings, so GWAS requires multiple correction 
approaches, large samples of well-phenotyped individuals, and 
consequently, large international collaborations. Genotype 
imputation has enabled the reconstruction of variants that are 
not directly assessed by the array by comparing each sample to 
a reference panel of sequenced genomes, increasing the 
statistical power of the analysis, and allowing researchers to 
combine results across studies [168,169]. This collaborative 
work between different research groups has highlighted the 
need for data sharing in public databases to speed up research 
on complex diseases [169].  

 
- Next generation sequencing studies  

 
Although GWAS are hypothesis-free approaches, they do not 
assess the entire genome, just the SNPs available in 
commercial arrays. Moreover, they rely on genotype 
imputation, which requires a fully sequenced panel of 
reference genomes. The possibility to sequence the whole 
genome (WGS) using next-generation sequencing technologies 
(NGS) now allows us to identify rare genetic markers (those 
present in <1% of the population). Rare variants may usually 
indicate that mutations at that position modified the gene 
function, and their low frequency in the population may be 
due to negative selection. Mutations can involve either gain- or 
loss-of-function of the gene, which generally have a larger 
effect on disease risk than SNPs, although they can also exert 
smaller effects, as SNPs [170]. 
 
While the cost of sequencing the genome has fallen from tens 
of millions to one thousand dollars, it is still prohibitive to do 
so for larges sample [168]. Selectively sequencing the whole 



1. Introduction 35 

DNA methylation, CVR and MI: an epigenome-wide approach 

exome14 (WES) covers the transcript- and protein-coding 
regions of the genome, which is also very powerful but with 
lower costs. The Exome Aggregation Consortium (EXaC) 
sequenced the exome of 60,706 unrelated individuals from 
four continents [171]. This project has evolved into the 
Genome Aggregation Database (gnomAD), which aims to 
aggregate and harmonize the available exome (n=125,748) and 
genome (n=15,708) sequencing data [172]. Both WGS and 
WES enable Rare Variant Association Studies (RVASs) [173].  
 
The combination of high-throughput sequencing approaches 
and GWASs using genotype imputation enhances the 
possibilities for new accurate discoveries, as reference panels 
now have hundreds of thousands of individuals, and genotype 
imputation will provide a feasible strategy for studying 
sequencing-discovered variants in millions of genotyped 
samples [168]. However, the discovery of loss-of-function 
variants associated with a disease could provide us with very 
relevant information for identifying potential therapeutic 
targets [174,175].  

 
 
 
 Genetic biomarkers and coronary heart disease 

 

Through hypothesis-driven approaches, several genes have been 
found to be related to monogenic familial CHD, many involved 
in lipid metabolism. Examples of monogenic CHD-related genes 

include MEF2A, LPR6, CYP27A1 and ST6GALNAC5 [176]. 
However, the most fruitful sources of CHD-associated common 
variants have been GWASs.  
 

                                                 

 

 
14 The genome sequences that encode functional transcripts and proteins. 
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The first GWASs identified one locus (chromosome 9p21) as 
being consistently associated with CHD [166,177–179]. As 
mentioned above, GWASs have evolved to large international 
collaborations; in the case of CHD, the biggest one is the 
CARDIoGRAMplusC4D Consortium (Coronary ARtery DIsease 
Genome-wide Replication And Meta-analysis plus Coronary 
Artery Disease Genetics) [180]. This consortium has analysed 
>200,000 CHD cases and controls of European ancestry and 
identified 62 loci related to predisposition to CHD that were later 
validated in a different population [181]. Another recent project is 
that from the UK Biobank [182], which analysed 34,541 CHD 
cases and 261,984 controls [183]. Altogether, 163 common 
variants have been related to CHD at a genome-wide level of 
significance (Figure 10) [169]. Online public databases with 
aggregate data on the SNPs-CHD associations are available 
(www.cardiogramplusc4d.org, biobank.ctsu.ox.ac.uk).  

Figure 10. Genes mapping to the CHD risk variants and their 
pathophysiological pathways in atherosclerosis 

 
Image from [169]. 

http://www.cardiogramplusc4d.org/
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More than 300 additional SNPs have false discovery rate15 values 
below 5%, and are therefore suggestive of CHD risk. Most CHD-
related variants have a population frequency of >5%, but have 
weak effects on CHD risk (~18% increase risk per allele on 
average) [169,173]. While risk is proportional to the total number 
of risk SNPs inherited by an individual [184], the combination of 
these SNPs only explain ~30-40% of CHD heritability (i.e. the 
proportion of disease variance that is explained by genetic 
variation) [169]. Some act through CVRFs, e.g. SNPs in PCSK9, 
LDLR and APOE through cholesterol, and SNPs in CYP17A1 
and SH2B3 through hypertension [184].  
 
Regarding WGS and WES, still few studies have assessed CHD 
risk [185]. As expected, the effects of the discovered rare variants 
on CHD are higher than that of discovered common variants. 
One study focused on the region containing the CHD-related 
SNP reported by the first four GWAS (chromosome 9p21) [186]. 
That region was analysed using NGS and the results compared to 
those from the pilot of the 1000 Genomes Project, leading to the 
discovery of rare variants associated with CHD [186]. WES in the 
gene that encodes adiponectin – which has large effects on 
families with insulin resistance – also led to the discovery of rare 
variants associated with CHD [187]. To date, RVASs have found 
at least nine genes with an aggregation of rare variants that 
modulate CHD risk. CHD risk was found to be increased in 
carriers of rare variants within LDLR, LPL, and APOA5A, while 
carriers of rare variants within PCSK9, NPC1L1, ASGR1, 
APOC3, ANGPTL4 and LPA had decreased CHD risk 
[173,188]. NGS efforts will make an important contribution to 
establishing the bases for precision cardiovascular medicine, as an 
alternative to the individual prediction strategies currently used in 
clinical settings [189,190]. 
 
Despite the remarkable findings in cardiovascular genetics, the 
inclusion of individual genetic variants in CVR functions has not 
sufficiently improved their predictive capacity to be implemented 
in clinical care. However, combining several weak-effect common 

                                                 

 

 
15 Statistical method to control the proportion of associations that is expected to be 
false. 
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variants in Genetic Risk Scores (GRSs), and including these 
scores in CVR functions resulted in greater improvements in 
predictive capacity than by including the variants individually 
[170]. This improvement was greater when using a GRS 
developed using novel algorithms applied to summary data and 
imputation from large GWASs in European-ancestry populations. 
It showed that 8% of the population had greater than threefold 
increased CHD risk than the general population [191].  

 

 Deciphering the causal effect of a biomarker on 
CVD: Mendelian Randomisation studies 

 
Despite their potential, observational studies neither denote a causal 
link between the identified exposure (biomarker) and risk of the 
disease, nor explain how they trigger the disease [170]. Ascertaining 
the causality of the association between a biomarker and a disease is a 
condition for defining that biomarker as a potential therapeutic target. 
While we can correct for some confounding factors (either matching 
individuals in the design of the study, or adjusting for them in 
statistical analysis), we cannot discount other potential sources of 
confounding, and therefore we cannot assume causality in the 
association. Randomized controlled trials are the optimal approach to 
assess this, but they are not always possible, and often take years to 
provide results. Mendelian Randomisation (MR) studies are an 
alternative that allow researchers to assess this critical issue, using 
SNPs as proxies for the potentially modifiable biomarker related to 
population health [192]. They are called “Mendelian Randomisation 
studies” because they rely on the first two of Mendel’s laws:  

1. Law of segregation: during meiosis, alleles are segregated so 
that each gamete carries only one allele for each gene. 

2. Law of independent assortment: the segregation of alleles 
for one gene occurs independently to that of any other gene. 

 
A MR study has a similar basis to a randomized controlled trial at 
conception, as the presence of the genetic variant is the only 
difference between the individuals carrying the biomarker (the 
intervention group) and those who do not (the control group). Thus, 
MR analysis is not affected by confounding or reverse causation. 
However, several assumptions are made [192,193] (Figure 11): 
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1. Relevance: the SNP(s) is/are strongly associated with the 
biomarker 

2. Independence: the SNP(s) is/are not dependent on other 
phenotypes that might act as confounders in the association 
between the biomarker and the disease 

3. Exclusion restriction: the SNP(s) affect(s) the outcome only 
through their effect on the biomarker (lack of horizontal 
pleiotropy) 

While MR methods are currently under development, the basis is 
well-established. First, one or more SNPs associated with the 
biomarker are selected to construct the instrumental variable 
considering the previous assumptions. Usually, at least two SNPs 
are used to combine (and, thus increase) their effect on the 
phenotype. Where only one population provides the information 
about the instrumental variables, the biomarker and the outcome, 
a single sample MR analysis will be performed. Conversely, if one 
population provides the association between the genetic 
instrument and the biomarker, but the association between the 
same genetic instrument and the outcome is obtained from 
another population, a two-sample MR analysis will be done. In this 
case, the instrumental variables must occur in both samples. This 
approach is highly convenient, as multiple independent MR 
analyses can be performed using summary results from GWASs as 
sources, which also provides higher statistical power. However, 
the two samples must represent the same population with no 

Figure 11. Assumptions of Mendelian Randomisation studies 

 
Image modified from [193]. 
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overlap among individuals. Another critical issue is horizontal 
pleiotropy16, which is not always avoidable. Several methods have 
been developed for performing a MR study with horizontal 
pleiotropy, such as the MR Egger regression [192].  
 
If the instrumental variable associated with the biomarker is also 
associated with the disease, the analysis will support the causal 
association between the biomarker and the disease. The contrary 
scenario will suggest that the association between the biomarker 
and the disease is either in the opposite direction (reverse 
causation) or mediated by another biomarker. However, it may be 
also of interest to get information about the magnitude of the 
causal effect, which can be estimated using the Wald ratio – 
dividing the effect of the instrumental variable on the outcome by 
the effect of the instrumental variable on the biomarker [192]. 
 
In the case of CHD, several MR studies have confirmed or 
discarded the causal role of different biomarkers on the disease. 
Many of the causal biomarkers are CVRFs, such as levels of LDL-
C [194] and TG [195], while others are related to inflammation, 
such as interleukin-6 receptor (IL6R) signalling [196]. Among the 
biomarkers that showed no causal association with the disease are 
HDL-C [65], C-reactive protein [197], and adiponectin [198]. 
However, recent findings suggest that while the circulating levels 
of a biochemical factor may not be causally linked to the disease, 
other characteristics of the factor could be. For instance, HDL-C 
is a controversial factor, as several studies discarded its causal 
effect in CHD. However, qualitative traits of HDL have been 
gaining attention in recent years, with some non-peer-reviewed 
results supporting a causal role of very large HDL particles 
(available in bioRxiv, DOI: 10.1101/673939). Finally, MR studies 
are also valuable for predicting the side effects of drugs. For 
example, one MR study showed that PCSK9 loss-of-function 
genetic variants were associated with lower LDL-C levels but also 
with higher risk of diabetes. This study highlighted the need for a 
monitored assessment of the participants in trials, or patients 
treated, with PCSK9 inhibitors to identify this side effect [199]. 

                                                 

 

 
16 Horizontal pleiotropy occurs when one variant has independent effects on 
multiple traits. 
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1.4. Epigenetics and Epigenomics: a layer of 
biological information between genetics and 
lifestyle 

 
As mentioned above, most CHD heritability is not explained by the 
164 SNPs found to be associated with CHD. Apart from the rare 
variants that may be discovered using NGS, some other factors will 
likely explain this “missing heritability”. The term “heritability” refers 
to the variation in a trait observed between individuals in a given 
population at a particular time that is attributable to genetic variability 
in that population. However, heritability does not consider how much 
of that variability is due to genetic factors [200]. Moreover, the 
interactions between genes, and between genes and the environment 
are highly complex and not well-understood yet. Interestingly, 
alterations in gene expression due to mechanisms other than changes 
in the DNA sequence are a promising source of missing heritability; 
they comprise the traits and mechanisms known as “epigenetics”. 
 
 

a) From “Nature versus Nurture” to Epigenetics 
 
Driven initially by scientific curiosity to understand how a zygote 
evolves, the concept of epigenetics was introduced in 1942 by the 
embryologist Waddington, who first used “epigenetics” in the context 
of developmental biology. Some years later he defined it as “the 
branch of biology that studies the causal interactions between genes 
and their products, which brings the phenotype into being” [201]. 
During the following decade, the microbiologist Nanney also referred 
to “epigenetics”, but introduced into its definition the notion of the 
regulation of gene expression [202]. In the 1960s, gene regulation 
models were proposed for both bacteria and more complex organisms 
[203,204], while in the 1970s the component of inheritance was also 
introduced into the definition of epigenetics. Since then, this concept 
has evolved and given rise to a research field, with >13,200 English-
language articles on human epigenetics published in the last 10 years 
(PubMed, August 2019). A recently proposed definition states that 
epigenetics is “the study of molecules and mechanisms that can 
perpetuate alternative gene activity states in the context of the same 
DNA sequence” [205]. 
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Epigenetic processes include cell differentiation, phenotypic 
plasticity17, genomic imprinting and dosage compensation of the X 
chromosome. Genomic imprinting refers to a phenomenon that is 
crucial for normal therian-mammal development in which only one of 
the two copies of an imprinted gene is functional. It is established in 
the germ cells by the epigenetic silencing of genes in a sex-specific 
manner, and is maintained after mitotic division in the somatic cells of 

the new organism [206]. For instance, the hybrid of a male lion and a 
female tiger is a liger, whereas that of a male tiger and a female lion is 
a tigon; the differences in offspring are attributed to imprinting 
differences among sexes [207]. X-chromosome inactivation is another 
epigenetic phenomenon that is critical for ensuring gene dosage 
compensation between sexes in mammals. It consists of random 
epigenetic silencing of one of the two copies of the X chromosome in 
the cells of female embryos. Another example, also in felines, is that of 
a tortoiseshell cat, whose characteristic coat colour is a mosaic of black 
and orange caused by random X-inactivation in each somatic hair cell 
[208]. 
 
Epigenetic changes and mutations that affect epigenetic components 
are common in disease. Thus, unravelling whether these changes 
trigger the disease or play only a “passenger” role will presumably be 
very valuable for diagnosis, prognosis, and therapy. For instance, 
several studies show that epigenetic changes are major drivers of 
oncogenic processes in certain contexts [205]. 
 
 

b) Epigenetic mechanisms 
 
Currently, the most important known carriers of epigenetic 
information are components of heterochromatin18, Polycomb 
proteins, DNA methyl groups, and non-coding RNAs (ncRNAs). The 
first two are related to histone modifications, which, together with 
DNA methylation, are the most widely studied epigenetic traits. 
ncRNAs interact with both histones and DNA methylation, and 
thereby have a key role in epigenetic regulation as part of a complex 

                                                 

 

 
17 The ability of an individual genome to produce different phenotypes in the 
presence of different exposures. 
18 Heterochromatin is a tightly packed form of chromatin; see below. 
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interplay that is not yet completely understood [205]. Given its central 
role in this thesis, I describe DNA methylation in more detail in the 
next section. 

 

 Histone modifications  
 
DNA is compacted to fit into the cell nucleus as chromatin. Histones 
are the proteins that package the eukaryotic19 DNA double-helix into 
structural units called nucleosomes, which are thus composed of DNA 
and histones. Nucleosomes, are the basic repeating units of chromatin, 
and are successively connected by 50 base-pair-long DNA linkers. 
They consist of an octamer of four core histones (two copies of each 
of H2A, H2B, H3, and H4) wrapping approximately 147 base pairs of 
DNA in a little less than two left-handed superhelical turns (Figure 12) 

[209]. Another histone (the linker histone H1) binds at the entry and 
exit points of the DNA wrapped around nucleosomes and is crucial 
for more tightly condensing the chromatin and forming the higher 
order structures [210] then eventually shape a metaphase chromosome 
(Figure 13). Nucleosomes are not only critical for packaging DNA, but 
also for ensuring or impairing the DNA sequence’s accessibility to 
proteins involved in DNA replication, recombination, gene expression 

                                                 

 

 
19 Both archaea and eukaryotes express histones, although the structure of the 
histone-DNA complex is different. 

Figure 12. The nucleosome and core histone tail sequences 

 
Image from [214]. 



44 Epigenetics and Epigenomics: a layer of biological 
information between genetics and lifestyle 

Doctoral thesis UPF / 2019 

and DNA repair [209]. In this regard, chromatin is locally and 
reversibly decondensed by several mechanisms, such as ATP-
dependent nucleosome remodelling and histone modifications [211]. 
 
Histones are rich in positively charged aminoacids, and so are prone to 
interact with acidic cellular components. Their biochemistry allows 
them to bind to the negatively charged DNA backbone, although this 
can result in spurious aggregates. Histone chaperones are proteins that 
guide nucleosome assembly and control their dynamics, regulating 
histones from their synthesis, and, in turn, maintaining chromatin 
homeostasis [212]. However, core histones are characterized by a long 
tail in their N-terminus – also present in the C-terminus of H2A – that 
is prone to reversible post-translational modifications [211,213,214].  
 
Histone chemical modifications include acetylation, methylation, 
phosphorylation, ubiquitilation, sumoylation, ADP-ribosylation, 
deamination, and proline isomerization, and also their corresponding 

Figure 13. First steps of chromatin folding 

 
Image modified from [210]. 
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reverse mechanisms. In addition to the different classes of reversible 
modifications that may occur in histone tails, many amino acid 
residues have been identified for each class; thus, a huge number of 
combinations can occur simultaneously [209]. Moreover, histone 
variants can undergo specific modifications at residues that differ from 
their canonical counterparts [215]. Some histone modifications have 
been found to be inherited, and most regulate gene expression either 
by disrupting the contacts between nucleosomes via the histone tails, 
or by recruiting non-histone proteins. For instance, lysine acetylation – 
the addition of an acetyl group – is common in actively transcribed 
regions, but its methylation – the addition of one, two or three methyl 
groups – can occur in either active or repressed transcription states 
[209]. 

 

 Non-coding RNAs 
 
Non-coding RNAs (ncRNAs) are RNA molecules that are not 
translated into proteins. Transfer RNA (tRNA) and ribosomal RNA 
(rRNA) are well known to be essential for translating messenger RNA 
(mRNA, or transcript) into proteins; they are housekeeping ncRNAs. 
However, there are, presumably thousands of, other RNA molecules 
that do not encode proteins, and the function of many that have 
already been discovered remains unknown. One of the functions of 
the most abundant types is to regulate gene expression at either the 
transcriptional or post-transcriptional level, as well as epigenetic 
control. These RNAs mostly act by overlapping genome sequences, 
and depending on their length they are classified as short (<30 
nucleotides) and long ncRNAs (lncRNAs; >200 nucleotides). 
Recently, circular RNAs (circRNAs) have also been discovered by 
high-throughput techniques [216–218]. 
 
Among the short ncRNAs, microRNAs (miRNAs) and small-
interfering RNAs (siRNAs) are involved in the RNA interference 
(RNAi) pathway, which represses translation by neutralizing target 
complementary transcripts. The largest type of small ncRNA in 
animals is the piwi-interacting RNA (piRNA), which forms a complex 
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with piwi proteins involved in transposon20 silencing and other 
functions (Figure 14). Another important type of short ncRNA is 
small nuclear RNA (snRNA), which is most widely known for 
establishing an RNA-protein complex that removes the introns of a 
precursor mRNA to produce a mature transcript during the post-
transcriptional process of splicing [216,219].  

lncRNAs have not been as well-studied as short ncRNAs, although 
this is changing thanks to RNA-sequencing, an NGS technique. The 
most well-known lncRNA is X-inactive specific transcript (Xist), 
which plays a central role in dosage compensation in human 

                                                 

 

 
20 Transposons are DNA regions that can change its position within the genome, 
which could result in mutations, more commonly duplications, of the genetic 
material. They were discovered in maize by Barbara McClintock in the late 1940s, 
which resulted her being awarded with the Nobel Prize in Physiology and Medicine 
in 1983 – the only woman ever to be awarded with an unshared Nobel prize in that 
category. 

Figure 14. Processing pathways of some short non-coding RNAs  

 
Image from [219]. 
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chromosomes, i.e. the inactivation of one of the two copies of the X 
chromosome when present [220]. Another promising field of research 
is that of circRNAs, which are covalently closed single-stranded RNA 
molecules formed by a specific back-splicing mechanism. They are 
more stable and resistant to degradation as they lack the 5′ terminal 
cap and the 3′ polyadenylated tail. Their functions are still not fully 
understood, but they have been shown to act as sponges for specific 
miRNAs that regulate gene expression [221]. 
 
 

c) DNA methylation 
 
DNA methylation is the most widely studied epigenetic mechanism. It 
consists of the reversible covalent binding of a methyl group to certain 
sites in the genome without altering the DNA sequence. Although 
adenine methylation may occur, DNA methylation in eukaryotes 
typically occurs at the 5th carbon atom in a cytosine ring, which results 
in 5-methylcytosine (5mC) (Figure 15, [222]) [223,224]. From this 
point on, when referring to DNA methylation, I am referring to 5mC. 

 
 
 

Figure 15. Scheme illustrating methylation at cytosine residues 

 

Image adapted from [222]. 
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 DNA methylation sites 
 

This epigenetic mechanism mostly occurs at cytosines that are 
followed by guanines, a dinucleotide known as a CpG site. While more 
than 70% of CpG sites are methylated in vertebrate somatic tissues in 
general, this dinucleotide is quite rare in mammalian genomes, which 
have 5-fold fewer CpG sites than expected from their nucleotide 
composition. This is due to the mutagenic state of 5mC, which can 
spontaneously deaminate into thymine. In fact, this mechanism has 
mostly been lost in other animals such as Drosophila melanogaster, 
Caenorhabditis elegans, and fission and bakers’ yeasts [223,224].  
 

More recently, studies in humans have reported methylation at 
cytosines that are followed by nucleotides other than guanine – non-
CG methylation, mCH, where H is A, C, or T, and have found 
significant numbers of these methylated dinucleotides in pluripotent 
and brain cells. Also, more mCH were observed in the promoter of 
PGC-1α in diabetic than in healthy individuals. However, the biological 
function and molecular mechanisms involved in generating mCH are 
still unclear. [225]. 
 

 DNA methylation writers and erasers 
 

DNA methyltransferases (DNMTs) are the enzymes that transfer the 
methyl group from the cofactor S-adenosyl-L-methionine (SAM) to 
the cytosine. De novo DNMTs establish DNA methylation marks at 
previously unmethylated sites, while maintenance DNMTs preserve 
established DNA methylation marks during DNA replication. In 
mammals, this last process is catalysed by one member of the Dnmt1 
family accompanied by the UHRF1 ligase, while de novo methylation is 
mediated by both the Dnmt3a and Dnmt3b enzymes, which use 
DNMT3L cofactor in germ cells. While the specific mechanisms that 
target Dnmt3 to certain DNA regions are still not fully understood, 
ncRNAs and histone modifications have been linked in this epigenetic 
interplay [223,224].  
 

DNA methylation is a dynamic process that is achieved by two 
mechanisms, DNA replication-dependent passive demethylation, and 
enzyme-mediated active demethylation. The latter is mediated by TET 
methylcytosine dioxygenases, which progressively oxidize 5mC to 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC) [223]. 
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 Functions of DNA methylation  
 
The main functions of DNA methylation are related to the fact that at 
least 70% of vertebrate CpGs are methylated. Most of the genome 
consists of repetitive elements that are enriched in CpG sites. In fact, 
transposons and satellite repeats that occur close to centromeres and 
telomeres are highly methylated. Consequently, DNA methylation in 
these regions confers stability to the genome and preserves its integrity 
by avoiding gene disruption [223,224]. Silencing of transposons has 
been related to ncRNA [223].  
 
Moreover, the promoter regions of genes are enriched in CpG sites –
regions called CpG islands or CGIs in mammals – and this feature is 
critical for regulating gene expression and silencing. Promoters of 
active housekeeping genes are mostly non-methylated 
(hypomethylated), allowing transcription factors binding [223,224]. 
Conversely, the coding regions of active genes are usually methylated 
(hypermethylation), although it is unclear why. It has been proposed 
that this feature facilitates transcription elongation and co-
transcriptional splicing, and that it may repress intragenic cryptic 
promoters. Both hypo- and hypermethylation at promoters and gene 
bodies, respectively, are related to the level of accessibility of the DNA 
to the DNMTs as a consequence of histone modifications produced 
following gene transcription. Similarly, gene silencing results from the 
interplay between DNA methylation-related binding proteins and 
chromatin remodellers and modifiers [223].  
 
Note that there are some exceptions of the general hypomethylated 
state of gene promoters. Stable and lifelong promoter silencing by 
DNA methylation is key for three critical biological processes: X-
chromosome inactivation, genomic imprinting and germline-cell 
specification [223].  

 

 DNA methylation reprogramming 
 
During mammalian development, the epigenome needs to be 
reprogrammed to a totipotent state for the next generation, and 
epigenetic marks are thus erased and remodelled. The epigenome 
undergoes two extensive waves of global demethylation and 
remethylation: one after fertilization and one during gametogenesis. 
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Some exceptional sites can evade demethylation, sites that are related 
to imprinting and transposon repression, and this fact explains 
epigenetic inheritance [223,226]. 
 
In the fertilized zygote, the paternal and maternal genomes undergo 
active – mediated by TET3 – and passive demethylation, respectively, 
until the blastocyst stage. After blastocyst implantation, de novo DNA 
methylation establishes the initial embryonic methylation pattern 
[223,226].  
 
In the epiblast, a subset of stem cells is specified for the germline, and 
the primordial germ cells undergo a two-step DNA demethylation 
process, first passive, then mediated by TET1 and TET2. Then, sex-
specific germ-cell methylation patterns are established. In the case of 
male gametes, DNMT3A and DNMT3L methylate the genome before 
birth. Conversely, the oocyte genome is methylated after meiosis and 
prior to ovulation through the activity of DNMT3A [223,226]. 
 
 
 
 

d) Assessing DNA methylation  
 
Many different methodologies are available for analysing DNA 
methylation, the specific choice depending on the specific biological 
question. Broadly, DNA methylation can be assessed at a global level 
or at DNA methylation sites, either at specific genes or genome-wide. 
Regarding the latter, it is more accurate to use the term “epigenome-
wide”, as epigenetic marks constitute another layer of biological 
information that forms the so-called “epigenome” and analogous with 
the “genome”. Similarly, the DNA methylation marks of a single 
genome constitute a “methylome”. Therefore, this epigenome-wide 
approach to assessing DNA methylation allows researchers to 
decipher methylomes. The gold-standard techniques are based on 
bisulfite treatment of the DNA, which is the basis of high-throughput 
technologies for methylome profiling (see Box 5).  
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 Approaches to assessing DNA methylation 
 

As mentioned, DNA methylation can be assessed at a global level, or 
at DNA methylation sites. The first approach does not give 
information about specific alterations in DNA methylation patterns 
but rather about overall changes, while the other allows one to identify 
differential methylation patterns that may be linked to a functional 
outcome.  

 

 Global DNA methylation 
 

Several techniques have been developed for profiling whole 
genome methylation, but only High-Performance Liquid 
Chromatography (HPLC) and bisulfite-based Polymerase Chain 
Reaction (PCR) methods have been found to provide correlated 
results. The first is based on hydrolysing DNA to separate and 
identify the deoxyribonucleosides according to their ultraviolet 
absorbancies. The ratio of 5mC/dC can be calculated for each 
sample. Bisulfite-based PCR methods used to assess overall DNA 
methylation are based on conservative repetitive elements, mainly 
the long interspersed nuclear element 1 (LINE-1). They involve 
bisulfite treatment (see below) prior to PCR amplification of 
those elements, which are then quantified by pyrosequencing 
[227]. 

Box 5. Basic concepts in genomic technologies 
 

 Probe, also known as oligonucleotide, is a short single-strand DNA 
(or RNA) molecule that is complementary to a specific sequence 

 

 PCR, a basic method to amplify copies of DNA fragments in 
successive temperature-dependant cycles consisting of 
denaturation, annealing, and elongation steps 

 

 Genomic restriction digest, a basic method for obtaining DNA 
fragments using restriction enzymes, which cleave DNA in a 
sequence-specific manner 

 

 DNA sequencing, a process of determining the nucleotide sequence 
using different methods, such as Sanger sequencing or 
pyrosequencing 

 

 Array, a collection of specific probes organized in a grid of 
microscopic spots attached to a solid surface 
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 DNA methylation sites 
 

Differentially methylated sites can be assessed at specific genes or 
epigenome-wide. The most common methods for the first 
approach can be grouped into sensitive or quantitative 
approaches. One sensitive method is the Methylation-Specific 
PCR (MSP), which is based on two sets of primers designed to 
amplify either methylated or unmethylated alleles. This is a rapid, 
highly sensitive technique that is suitable for samples with limited 
quantity and quality. Quantitative methods are based on either 
methylation-sensitive restriction analysis, or bisulfite conversion 
of DNA. The first methods are based on the selective digestion 
of DNA by endonucleases (HspI and MspI) [227], while in the 
latter, both methylated and unmethylated alleles are amplified 
from bisulfite-modified DNA, and the subsequent techniques 
vary in the different methods used [228]. 
 
Thanks to technological advances, most current DNA 
methylation research now uses hypothesis-free approaches. 
Several methods are available based on different techniques 
(genome restriction, immunoprecipitation and bisulfite 
conversion), with the most popular ones using microarray and 
NGS technologies based on bisulfite treatment of the genome. 
Whole Genome Bisulfite Sequencing (WGBS) is probably the 
most powerful and comprehensive method for assessing 
methylomes, and is similar to WGS but with the additional step of 
bisulfite conversion. However, its cost and complex data analysis 
are limiting factors; moreover, many studies do not require the 
whole genome, as not all is methylated. An alternative to WGBS 
is Reduced Representation Bisulfite Sequencing (RRBS), which 
uses restriction enzymes to obtain CpG-enriched fragments of the 
genome for further sequencing [227,229]. Arrays based on 
Illumina probe extension assays – the Infinium 
HumanMethylation450 and Methylation EPIC BeadChips – are 
the most extensively used methods for methylome profiling, as 
they enable one to assess multiple samples at a lower cost, and the 
data analysis is less complex [229]. 
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 Bisulfite conversion-based arrays 
 
Bisulfite conversion methods consist of bisulfite treatment of DNA 
before sequencing to determine DNA methylation patterns at single-
nucleotide resolution. Bisulfite treatment deaminates unmethylated 
cytosines to uracils, which are not present in DNA and so are 
converted into thymines in the subsequent analysis. 5mC residues are 
resistant to bisulfite treatment, so they remain as cytosines, and can 
thus be detected by comparing bisulfite-treated and untreated samples 
[227].  
 
Microarrays based on bisulfite conversion use locus-specific PCR to 
interrogate hundreds of thousands of chemically differentiated 
cytosines simultaneously [227]. The most common arrays are 
commercialized by Illumina: the Infinium HumanMethylation450 and 
Methylation EPIC BeadChips (hereafter, the 450k array and EPIC 
array, respectively). They use the Infinium Methylation Assay 
chemistry, which is subdivided into the Infinium I and II Assays 
depending on the number of specific probes used per methylation site. 
The Infinium I Assay uses one probe that is specific to the methylated 
site and another for the unmethylated locus, and was the only assay 
used in the first Illumina Methylation array, the Infinium 
HumanMethylation27 BeadChip. In contrast, the Infinium II Assay 
requires only one probe per locus. The combination of both 
chemistries enhances the epigenome coverage of the array (Figure 16) 
[230].  

 
The 450k array covers more than 485,000 methylation sites (482,421 
CpG sites, 3,091 non-CpG sites and 65 random SNPs) [231]. While 
many studies have used this array, it is now no longer commercialized. 
The more recent EPIC array interrogates 853,307 CpG sites, including 
91.1% of the 450K probes [232]. The content of the arrays was 
selected according to the recommendations of a worldwide 
consortium. Probes were randomly assigned to wells in the array – 
whose surface is covered with silica beads – so that each is represented 
by 15-30 beads, which provides multiple measurements for each locus 
[231]. 
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The first steps of the Infinium assay (amplification of bisulfite-treated 
DNA samples up to 1,000-fold; endpoint DNA fragmentation into 
300-600 base-pair fragments; and precipitation and resuspension – 
purification – of the DNA fragments) are performed in microplates, 
with one sample per well. The samples are then transferred to the 
array where they bind to locus-specific probes attached to spherical 
beads embedded in the array surface (hybridization step). Then, single-
labelled base extension of the probes and immunohistochemistry 
staining (XStain step) take place simultaneously. Fluorescent signals 
are imaged on an Illumina scanner using red and green lasers, which 
generates fluorescence intensity data consisting of two files per 
methylation locus per sample, one each for the red and green intensity 
data [230,231].  
 

Figure 16. Scheme illustrating the Infinium Methylation Assay 

 
Image from [231]. 
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Typically, fluorescence data are then processed using bioinformatics 
resources and tools. Quality control and normalization of the data are 
required prior to obtaining a methylation value for each locus and 
each sample [233–235]. The level of methylation for each locus can be 
determined as the ratio between the fluorescence signals of the 
methylated and unmethylated sites. Methylation values for subsequent 
analyses can be expressed as M- or β-values, each of which can be 
converted to the other [236] (see Box 6).  

 
 

e) Identification of DNA methylation biomarkers 
 
As for genetic biomarkers, DNA methylation patterns can be used as 
biomarkers of health outcomes, including cardiovascular diseases, 
leading to the emergence of epigenetic epidemiology in the past 
decade. As in genetic epidemiology, association studies are currently 
the most common approaches for identifying methylome patterns 
related to diseases, exposures or lifestyle/environmental factors. 
Differentially methylation sites can be found using either a hypothesis-
driven approach, i.e. selecting specific loci, or using a hypothesis-free 

𝑀 𝑣𝑎𝑙𝑢𝑒 = log2 (
𝑀𝑖 + 𝛼

𝑈𝑖 + 𝛼
) 

𝛽 𝑣𝑎𝑙𝑢𝑒 =
𝑀𝑖

𝑀𝑖 + 𝑈𝑖 + 𝛼
 

Box 6. How to express methylation values 
 

 M-value, positive values indicate the presence of more methylated 
than unmethylated cytosines, while negative values denote the 
opposite. The M-value is more statistically robust than the β-value. 

 

 β-value, range between 0 (completely unmethylated) and 1 
(completely methylated). The β-value provides a more 
straightforward interpretation than the M-value. 

 

In the equations:  
 

Mi = intensity of methylated probes,  
 

Ui = intensity of unmethylated probes, and  
 

α = constant offset (α=1 and α=100 in the equations for the M- 
and β-value, respectively). 
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approach, i.e. assessing the methylome. The latter is known as an 
Epigenome-Wide Association Study (EWAS), although this term 
should indeed encompass other epigenetic traits. Currently, most 
epigenetics research groups use this approach, and have established 
similar collaborations to those that have characterised GWASs 
research.  

 

 Epigenome-wide association studies 
 
EWASs assess the association between a phenotype of interest and the 
methylation status of cytosines distributed throughout the genome, or 
more precisely, those that are covered by the available commercial 
arrays. Two databases with information on published EWASs are 
available online: the EWAS catalog (http://www.ewascatalog.org/) 
and the EWAS Atlas (http://bigd.big.ac.cn/ewas/index). When the 
phenotype of interest is a disease, these resources can improve our 
understanding of its aetiology and provide new targets for therapeutic 
and prediction purposes. Because of its dynamic chemical nature, 
DNA methylation can be altered throughout life by environmental 
and lifestyle factors, so EWAS results are very informative about the 
interplay between environment/lifestyle, genes, and health status. 
However they are only valid for the particular time point at which 
samples were collected. Consequently, these studies cannot always 
infer the causality of the association, i.e. changes in DNA methylation 
patterns may be either the cause or a consequence of the disease, so it 
will generally be necessary to conduct MR studies and to integrate 
EWAS and GWAS (and ideally transcriptional or proteomic data). 
Other important considerations include the tissue selected for 
collecting the DNA sample, and statistical issues [237–242]. 
 
Blood is the most common source sample for DNA methylation 
profiling. Other tissues can be also processed, although generally only 
one tissue is analysed per study. However, again due to DNA 
methylation specificity and dynamics, not all tissues of an organism 
show the same DNA methylation patterns, nor do all cells. Several 
studies have suggested that blood provides a good proxy for 
methylation in other tissues [237–239]. To overcome cell-type 
confounding, Houseman et al developed an algorithm based on 
reference methylation data to estimate the proportion of different cell 
types in the analysed sample – valid for blood, umbilical cord and 
some brain cells. For instance, the proportions of T lymphocytes, B 

http://www.ewascatalog.org/
http://bigd.big.ac.cn/ewas/index
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lymphocytes, monocytes, Natural Killer lymphocytes and neutrophils 
are inferred for blood samples [243]. Subsequently, other algorithms 
were also developed, some of which do not require any reference 
methylation profiles [241,244]. 
 
EWASs can also be confounded by population characteristics or by 
systematic differences between the compared individuals due to 
sample processing (known as batch effect). It is highly recommended 
that the study design and analysis include potential confounders such 
as age, sex, ethnic background, and smoking behaviour [237]. 
Moreover, high-throughput data allow us to correct for confounding 
using estimated covariates such as principal components or surrogate 
variables [237,245]. 
 
In addition, to obtain results with high statistical power, large samples 
are essential. However, EWAS usually has higher statistical power than 
GWAS for the same sample size, since EWAS uses a continuous 
variable instead of a categorical one [237,239]. Also, since each analysis 
performs multiple comparisons, to reduce the number of false 
positives the results must be corrected for multiple testing using the 
Bonferroni or the false discovery rate (FDR) corrections [240].  
 
The nature of EWAS require the results to be validated [237–240]. As 
in GWAS, EWAS design typically consists of two stages: a discovery 
and a validation stage performed in independent populations. The 
most commonly used strategy is to initially tolerate some false positive 
results in the discovery stage, and to include and analyse them in the 
validation stage [237,239,240]. Additionally, meta-analysing multiple 
studies boosts the total sample size [237,240].  
 
In addition to the differentially methylated cytosines reported by 
EWAS, more recently there has been increasing interest in the 
identification of Differentially Methylated Regions (DMRs). 
Methylation levels are strongly correlated throughout the genome, and 
the functionally relevant findings that have been reported have 
generally been associated with genomic regions. These analyses may 
increase the statistical power of EWAS, and different methods have 
been developed for analysing DMRs, either by aggregating single sites 
or direct methods [239,241,242,246].  
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 DNA methylation as a source of biomarkers of 
cardiovascular diseases and related factors 

 
A famous unplanned “experiment” was the Dutch famine of 1944-45, 
in which individuals exposed to malnutrition in utero and their direct 
descendants in adulthood had higher rates of obesity and 
hypertension, increased CVR, and impaired glucose metabolism. They 
were subsequently found to have different levels of methylation in 
genes related to those outcomes [247]. Conversely, individuals who 
were exposed to malnutrition at a more advanced gestational stage 
only had different levels of methylation in one of those identified 
genes [248]. This is an example of how environmental or behavioural 
factors can modulate cardiovascular-related outcomes via methylation 
changes [242].  
 
Most classical CVRFs have been associated with differential 
methylation patterns in EWAS analyses 
(http://www.ewascatalog.org/; http://bigd.big.ac.cn/ewas/index), 
and there is ongoing research into their biological and clinical 
relevance. For instance, epigenetic differences in monozygotic twin 
pairs accumulate with age, with larger differences in older twin pairs 
[249]. In fact, age is highly related to epigenetics, to the point that the 
concept of “epigenetic age” has been proposed, in which age 
estimators are based on methylation loci (“epigenetic clocks”) [250]. 
Another widely reported factor that alters DNA methylation is 
smoking exposure. The AHRR and F2RL3 genes have been shown to 
be differentially methylated at high levels in different smoking 
contexts [251,252], and methylation at the latter was linked to 
mortality in patients with stable CHD, suggesting a potential 
mechanistic role for DNA methylation.[253].  
 
As observed in other complex diseases [254], current research 
supports the notion that changes in DNA methylation play an 
important role in susceptibility to CVD and in the development of 
atherosclerosis [252]. There is growing evidence to suggest that 
epigenetic modifications actively reshape pathological processes in 
CVD, such as the dedifferentiation of smooth muscle cells or the 
accumulation of senescent cells [255]. The pathogenesis of 
atherosclerosis also involves dynamic epigenetic changes in a cell type- 
and stage-specific manner, which has motivated efforts to decipher 
them for both therapeutic and biomarker purposes [256]. Also, 

http://www.ewascatalog.org/
http://bigd.big.ac.cn/ewas/index
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integrating DNA methylation (ideally epigenetic data) and genetic 
information may provide information for improved CVD prediction, 
as an alternative to classical CVRFs [257]. However, it is still not clear 
whether DNA methylation is a major driver of the pathogenesis of 
CVD, and it cannot be ruled out that methylation changes are a 
consequence of CVD, rather than a cause [242,249,258].  
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1.5. Justification of this thesis 

Despite extensive knowledge of the health impacts of some CVRFs, 
CVD, and specifically CHD, are still the leading cause of mortality and 
morbidity worldwide. In addition, the genetic component of CHD 
that has been identified so far does not completely account for the 
interindividual variation that is not explained by its environmental or 
lifestyle components. Thus, for a better understanding of CVD 
biology, further studies are required to address the source of biological 
inheritance, DNA, and how this genetic information is influenced by 
the environment. 

The layer of biological information that modulates the expression and 
stability of genomes is the Epigenome, which consists of heritable 
traits regulating gene expression that are independent of DNA 
sequence variation. Additionally, some of these epigenetic traits can be 
modified by physiological, behavioural or environmental factors. In 
this regard, epigenetic patterns may partly explain the missing 
heritability of CVD, they may be a biomarker of the so-called 
exposome (environment + lifestyle), and may have an intermediate 
and mediating role between cardiovascular risk factors and CVD risk. 
More specifically, I will focus on the most widely studied epigenetic 
mechanism, DNA methylation. 

On the one hand, a hypothesis-free approach to studying DNA 
methylation throughout the genome – the methylome – has the 
potential to discover new mechanisms or traits underlying CVD. On 
the other hand, a hypothesis-driven approach based on previous 
knowledge allows us to elucidate the precise mechanisms that link the 
candidate genes to the disease. Together, these approaches could 
provide us with new mechanisms and predictive biomarkers for CVD 
and deeper knowledge of the role of DNA methylation in CVD. 
Finally, assessing the causal relationship between a biomarker and a 
disease will provide us with information about the potential role of 
this biomarker as a therapeutic target for preventing or treating that 
disease. 

In this thesis I will address some of these issues to contribute to 
disentangling this complex scenario: 
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a.- Physical activity has been consistently reported in cohort studies to 
be inversely associated with CVD risk. However, the molecular 
mechanisms and pathways that underlie this association are still not 
fully understood. Thus, the first objective of this thesis is to assess the 
association between physical activity and DNA methylation using an 
unbiased, hypothesis-free approach. This study could provide us with 
new insights on molecular mechanisms that may explain the health 
benefits of physical activity.  

b.- The accumulation of CVRFs exponentially increases a person’s risk 
of CVD, and this accumulation could activate molecular mechanisms 
that are inactive when only isolated risk factors are present. In this 
context, the second objective of this thesis is to assess the association 
between the total burden of CVRFs (independently of age) and DNA 
methylation using a hypothesis-free approach. This analysis could 
provide us with new molecular mechanisms related to the 
accumulation of CVRFs that may have an impact on CVD risk.  

c.- There is limited evidence on the association between epigenetic 
signatures and cardiovascular health outcomes. In this thesis, I will 
address the relationship between DNA methylation and CVD risk. 
First, I will perform a systematic review and meta-analysis to 
summarize current knowledge about this relationship. Second, I will 
use a hypothesis-free (EWAS) and candidate gene approach to identify 
DNA methylation biomarkers associated with cardiovascular 
outcomes (AMI, CHD and general CVD). I will also assess the clinical 
utility of the identified CVD-related CpGs as predictive biomarkers 
for CVD by including them in a CVR function. Finally, I will tackle 
the causality of those epigenetic-CVD associations using a Mendelian 
Randomisation approach. 





2. HYPOTHESES AND
OBJECTIVES

Illustration designed by “Vectorarte / Freepik” 

“The most difficult thing is the decision to act, the rest is merely tenacity.” 

Amelia Earhart (1897–1939). 
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2.1. Hypotheses 

DNA methylation is a dynamic chemical modification of the 
nitrogenous base of a nucleotide. Thus, because of its reversible 
nature, it could partly mediate the effects of lifestyle and 
environmental factors on the risk of CVD and CHD. In addition, 
DNA methylation patterns are heritable, so they could partly explain 
the missing heritability and lead to the discovery of new pathogenic 
mechanisms underlying these complex diseases. 

a) Hypothesis 1

 General hypothesis

Lifestyle and environmental factors influence DNA methylation. 

 Specific hypothesis

Physical activity has multiple health benefits, including for 
cardiovascular health. These benefits may be related to differential 
levels of DNA methylation. 

b) Hypothesis 2

 General hypothesis

DNA methylation patterns are associated with individual CVRFs. The 
accumulation of CVRFs, independently of age, could also lead to 
specific DNA methylation signatures. 

 Specific hypotheses

b.1) CVR related to the accumulation of individual and classical
CVRFs influences DNA methylation, independently of age.
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b.2) This DNA methylation signature is associated with subclinical
atherosclerosis and with the incidence of cardiovascular events.

c) Hypothesis 3

 General hypothesis

DNA methylation could partly determine the occurrence of CVD and 
CHD events. 

 Specific hypotheses

c.1) DNA methylation patterns may be associated with both prevalent
and incident cases of CVD and CHD.

c.2) DNA methylation patterns associated with cardiovascular events
may be related to classical CVRFs.

c.3) DNA methylation patterns associated with cardiovascular events
may be biomarkers of cardiovascular and coronary risk.

- Risk scores based on DNA methylation patterns associated
with cardiovascular events may predict future events,
independently of classical CVRFs.

- These risk scores may improve the predictive capacity of
classical CVR functions.

c.4) Some of the DNA methylation marks identified as being
associated with cardiovascular events are causally related to these
complex outcomes.
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2.2. Objectives 

The main objective of this thesis is to use population-based studies to 
identify individual CpGs throughout the genome that show 
differential levels of methylation in association with cardiovascular and 
coronary risk. 

a) Objective 1

 General objective

To identify differential DNA methylation patterns associated with a 
lifestyle factor: physical activity. 

 Specific objective

To identify DNA methylation loci that are related to leisure-time 
physical activity by performing a two-stage epigenome-wide 
association study (Manuscript 1). 

b) Objective 2

 General objective

To identify differential DNA methylation signatures that are 
associated with the accumulation of classical CVRFs.  

 Specific objectives

b.1) To identify differential DNA methylation loci related to CVR by
conducting a two-stage epigenome-wide association study of age-
independent CVR (Manuscript 2).

b.2) To assess whether these DNA methylation signatures are
associated with subclinical atherosclerosis and with the incidence of
cardiovascular events (Manuscript 2).
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c) Objective 3

 General objective

To identify differential DNA methylation patterns associated with 
CVD and CHD and to evaluate their potential as predictive 
cardiovascular biomarkers.  

 Specific objectives

c.1) To identify differential DNA methylation loci related to CVR by
performing a systematic review of evidence on this topic (Manuscript 
3).

c.2) To identify differential DNA methylation loci related to prevalent
cases of CHD and incident cases of CVD and CHD using both a
candidate-gene and an epigenome-wide strategy in population-based
studies (Manuscript 4).

c.3) To assess the associations between these loci and classical CVRFs
in population-based studies (Manuscript 4).

c.4) To determine whether these loci are suitable potential predictive
biomarkers of CVD and CHD (Manuscript 4).

- To construct risk scores based on those loci and assess their
association with future CVD and CHD events in a prospective
cohort study.

- To include those risk scores in a CVR function to evaluate in
a prospective cohort study whether this improves the function’s
capacity to estimate cardiovascular or coronary risk compared to
the classical CVR function.

c.5) To assess the causality of the associations between the identified
DNA methylation loci and CHD using Mendelian Randomisation
studies (Manuscript 4). .



3. MANUSCRIPTS

Illustration by Victo Ngai 

“I was taught that the way of progress was neither swift nor easy.” 

Marie Curie (1867-1934). 
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Figure 17. Graphical abstract of the analysis performed in this thesis 

* AMI, Acute Myocardial Infarction; CHD, Coronary
Heart Disease; CVD, CardioVascular Disease. 
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Fernández S, Aslibekyan S, Marrugat J, Elosua R. 

Physical activity and genome-wide DNA methylation: the 

REGICOR study. Medicine & Science in Sports & 

Exercise. In press. 

Supplemental information is provided in the attached CD 
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3.2. Manuscript 2 
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Age-Independent Cardiovascular Risk, an Epigenome-

Wide Approach: The REGICOR Study (REgistre GIroní 

del COR). Arterioscler Thromb Vasc Biol. 2018;38(3):645-

52. 

Supplemental information is provided in the attached CD 
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atherosclerotic events: A systematic review. 
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“Only when our clever brain and our human heart work together in harmony can 
we achieve our true potential.” 

Jane Goodall (1934). 
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4.1. General overview 

In this thesis, we have addressed the role of DNA methylation in the 
context of complex diseases, namely cardiovascular diseases, and some 
of their determinants. We analysed the association between this 
epigenetic mechanism and cardiovascular determinants (exposures) 
and clinical outcomes, and evaluated the clinical relevance of some of 
these findings. First, we assessed and demonstrated the relationship 
with a well-known lifestyle factor with multiple benefits on health, 
physical activity (PA). We then explored whether DNA methylomes 
were related to cardiovascular risk (CVR), and identified CVR-related 
methylation loci. Next, we moved on to study the association between 
DNA methylation and clinical cardiovascular outcomes, and found 
differentially methylated loci associated with prevalent and incident 
cardiovascular events, some of which were also related to CVR factors 
(CVRFs). In this interplay between DNA methylation and 
cardiovascular health, we demonstrated an association between 
cardiovascular events and polygenic risk scores based on some of the 
identified loci. However, DNA methylation loci identified neither 
improve the predictive capacity of a CVR function, nor were they 
causally associated with clinical cardiovascular outcomes (Figure 18). 

To address the objectives established for this thesis, we used 
population-based studies based on three different cohorts: the 
REGICOR cohort, the Framingham Offspring Study (FOS), and the 
Women’s Health Initiative (WHI) cohort. We performed case-control, 
cross-sectional, and longitudinal studies, and we applied established 
and new statistical methods (e.g. linear, logistic, and Cox regression; 
generalized additive models with smoothing splines; and surrogate 
variable adjustment). We also analysed DNA methylomes using 
standard techniques and methods; i.e. commercial arrays based on 
bisulfite-conversion (Infinium methylation arrays), which allowed us 
to test, simultaneously and at single-nucleotide level, for association 
with thousands of CpGs in hundreds or thousands of individuals. We 
used at least two populations in each analysis, and meta-analysed the 
results to minimize the number of false positive results (Table 2). We 
also combined different approaches to each objective in order to 
maximize the capture of informative results (e.g. PA assessed as 
different combinations of intensities; age-independent CVR assessed 
as the difference between vascular and chronological age and as the 
residuals of the relationship between age and estimated CVR; 
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association studies using hypothesis-free and hypothesis-driven 
approaches; prevalent and incident cardiovascular events).  
 
Overall, this thesis supports the important role of DNA methylation 
in cardiovascular health, and provides new insights into the biology 
underlying the effects of PA and CVR on health, and the biology 
underlying cardiovascular events. 

Figure 18. Graphical abstract of this thesis 

 

*MVPA, Moderate-Vigorous Physical Activity; CVRF, CardioVascular Risk 
Factor; EWAS, Epigenome-Wide Association Study; AMI, Acute Myocardial 

Infarction; CHD, Coronary Heart Disease; CVD, CardioVascular Disease. 
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4.2. Physical activity as a modulator of DNA 
methylation 

 
We hypothesized that physical activity (PA) triggers changes in DNA 
methylation patterns. We analysed and demonstrated a relationship 
between PA and DNA methylation in blood cells using a hypothesis-
free, two-stage cross-sectional EWAS approach performed in three 
independent populations. We found two CpG sites that showed 
differential methylation in association with PA, particularly moderate 
and vigorous PA (moderate- and vigorous-intensity aerobic PA, 
MVPA), which is the currently recommended intensity [87]. 
Specifically, the methylation levels of the CpGs showed a non-linear 
dose-response relationship with PA, mainly at high levels of MVPA. 
 

a) Rationale and previous evidence 
 
It is well-known that PA has multiple benefits for health [259–261], 
including cardio-metabolic health [85]. For the healthy adult 
population, current guidelines recommend at least 150 minutes of 
moderate-intensity aerobic PA (MPA) or 75 minutes of vigorous-
intensity aerobic PA (VPA) per week, or an equivalent combination of 
both (MVPA) [87]. PA includes any movement that results in energy 
expenditure, and thus it is not limited to exercise, which is planned to 
improve physical fitness. At the physiological level, PA increases 
oxygen uptake, heart rate, blood flow, glucose metabolism, and 
lipolysis, as well as other responses [262]. However, its effects at the 
molecular level are not yet clearly understood, and the mechanisms for 
acute responses to exercise may be different to those for chronic 
adaptations to regular exercise. Previous studies suggest that different 
signals generated during muscle contraction result in a cascade that 
activates and/or represses certain pathways that regulate gene 
expression and protein synthesis or degradation [262]. In this context, 
DNA methylation and epigenetic mechanisms may be susceptible to 
the influence of PA. Also, DNA methylation changes related to PA 
may be tissue-specific. 
 
There is some evidence of a relationship between PA and DNA 
methylation in different human tissues, both in a healthy and chronic 
disease context. Observational studies assessing the association 
between DNA methylation and regular PA show a weak association 
between these variables, although they were based on candidate gene 
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and global methylation studies, and had some limitations, mainly low 
statistical power [263,264].  
 
Most evidence comes from interventional studies analysing different 
tissues, such as blood, skeletal muscle and adipose tissue. There is 
limited evidence of DNA methylation changes in peripheral blood 
cells in relation to an exercise intervention, although these changes 
were accompanied by transcriptional changes [265]. Very recently, 
Jacques et al performed a systematic review of studies assessing 
epigenetic changes (DNA methylation, miRNAs and histone 
modifications) in skeletal muscle following a single exercise session 
and a long-term training intervention (weeks to months) in healthy 
populations. They found that candidate-gene methylation studies 
mostly focused on PGC-1α, which is involved in regulating 
mitochondrial biogenesis and lipid metabolism. They also noted 
consistent reports that only one acute session of exercise led to dose-
dependent hypomethylation of the promoter regions of that gene, 
accompanied by an increase in mRNA levels. The authors also 
concluded that, while studies that used an EWASs approach showed 
highly heterogeneous results, they also showed a consistent moderate 
effect size across the studies [266]. Regarding adipose tissue, DNA 
methylation changes were also reported after an exercise program, but 
these changes only overlapped transcriptomic changes in some genes 
after a long-term intervention [267,268]. These studies reported 
consistent hypomethylation and increased gene expression at 115 
genes in adipose tissue and 64 genes in muscle. These genes various 
key pathways, including those related to glucose metabolism, fatty-acid 
synthesis, and central signalling cascades initiated by MAPK and JAK-
STAT. 
 
Simultaneously to our study (Manuscript 1), other evidence has been 
published that was not reviewed by Jacques et al. Interestingly, a study 
among PA-discordant adult twin pairs found no link between PA and 
epigenetic age based on leukocyte methylomes, although the authors 
acknowledged several limitations, such as small sample size [269]. 
Also, a study based on WGS of bisulfite-converted DNA from skeletal 
muscle samples from sedentary (n=8) and physically active (n=8) 
healthy older men found hundreds of PA-related DNA methylation-
regulated genes involved in insulin sensitivity, glycolysis, oxidative 
stress resistance, and muscle regeneration [270]. Regarding DNA 
methylation changes in blood cells following acute exercise, a pilot 
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EWAS reported that exercise induced differences in DNA 
methylation of Natural Killer cells from five healthy women [271]. 
Finally, a prospective population-based EWAS reported several CpG 
sites related to PA including household chores [272]. We included this 
study in ours during the peer- review process, as both are population-
based EWASs. However, we did not validate any of their findings, 
probably because there are several important differences between the 
two studies, such as the study design, the assessment and classification 
of PA, and the statistical analyses. Overall, although several epigenetic 
changes in response to exercise have been identified, the field of 
exercise epigenetics is still in its infancy, and the downstream 
physiological or health-related consequences require further work 
[266].  
 
Finally, although PA has been shown to be associated to some clinical 
outcomes in a non-linear dose-response manner, previous studies have 
not considered non-linear associations [91,273–277]. For example, 
even low levels of PA are associated with reduced CHD risk, but this 
risk reduction tends to reach a plateau as levels of PA increase [91]. 
This pattern is not directly consistent with our observation of changes 
in DNA methylation at high levels of PA (more exactly, MVPA). 
Altogether, these studies highlight the importance of analysing both 
the linear and non-linear association between PA and clinical and 
biological phenotypes. 
 
 

b) CpG sites related to physical activity: potential role 
in molecular networks 

 
The CpG sites that showed non-linear association with MVPA were 
an intergenic CpG (cg24155427) and a CpG located within the gene 
body21 of DGAT1 (cg09565397). We observed that at high doses of 
MVPA, the higher the dose, the lower the M-values at the identified 
CpG sites; i.e. in the upper range of exposure, these CpGs are less 
methylated in individuals with higher doses of MVPA than in 
individuals with lower doses of MVPA. These patterns were observed 
in the REGICOR populations, and although they remained significant 

                                                 

 

 
21 A gene body comprises introns and exons; i.e. the transcriptional region, 
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after meta-analysing the p-values, they were not observed in the FOS 
analyses. This could be due to the use of different validated 
questionnaires and/or to differences between the Spanish and 
American populations. 
 
cg24155427 maps to an intergenic region of chromosome 1, more 
specifically to a CpG shelf22 downstream of CGI chr1:31246010-
31246280. This CpG site was reported to be differentially methylated 
in association with various immune- and inflammation-related states: 
smoking [278], systemic lupus erythematosus [279], aging in 
neutrophils of HIV patients [280], and chronic fatigue syndrome [281]. 
Part of the 3’ sequence of NKAIN1 is located within the CpG-
upstream region up to 10,000 bp. NKAIN1 encodes a protein that 
interacts with the sodium/potassium-transporting ATPase, NKAIN1 
(sodium/potassium-transporting ATPase interacting 1). In a GWAS 
meta-analysis of five longitudinal studies in individuals of European-
ancestry, a SNP in this gene was found to be associated with BMI 
[282]. With this information, we cannot hypothesise either about the 
potential role of epigenetic regulation in this genomic region, or about 
its functional implications. Validation studies are required to confirm 
that this CpG is related to PA, and to explain its role in the complex 
molecular networks triggered by PA and its potential clinical value. 
 
Conversely, the information and data available for cg09565397 
support the impact of PA on lipid homeostasis, with DNA 
methylation as a potential mediating mechanism. This CpG is located 

in the enhancer
23

 region chr8:145,542,969-145,543,100 of DGAT1. 
One SNP close to this gene was reported to be associated with body 
height [283]. However, differential methylation at this CpG was not 
found to be associated with any trait in currently available EWASs. 
DGAT1 encodes an enzyme involved in triacylglycerol synthesis – 
diacylglycerol O-acyltransferase 1, DGAT1 [284]. TG metabolism has 
been linked to PA, with regular aerobic PA decreasing TG levels in the 
blood [285]. Therefore, it is interesting to observe, in a population-
based study of PA, a differentially methylated CpG located in a cis-

                                                 

 

 
22 A CpG shelf is a genomic region located within 2-4 kilobases up- or downstream 
of a CpG island. 
23 An enhancer is a regulatory region of the genome that is prone to the binding of 
transcription factors. 
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regulatory element of a gene related to TG metabolism. In addition, 
another mechanism may link DGAT1 levels to PA. DGAT1 has been 
shown to participate in the AMP-activated protein kinase (AMPK) 
cascade [286], a critical network for response to energetic and 
mitochondrial stress in eukaryotes. PA is one of the factors that leads 
to AMPK activation, triggered by low cellular ATP to increase ATP 
generation, diminish ATP consumption, and promote mitochondrial 
biogenesis. Some preclinical models suggest that the AMPK cascade 
underlies some of the benefits of PA [287]. Interestingly, exercise has 
been suggested to induce epigenetic regulation of PRKAA2, a gene 
encoding a catalytic subunit of AMPK [288]. 
 
At the molecular level, the 5mC at these CpGs may alter transcription 
factor binding, thus regulating gene expression. This may be 
particularly true for cg09565397, which is located within an enhancer 
element; regulation of transcription factor binding may in turn 
modulate TG levels. However, we cannot speculate about the 
functional consequences of any of the differentially methylated CpGs 
(whether they result in repression or enhancement of gene expression) 
because we are still at an early stage of research into the regulatory 
networks of epigenetic, transcriptional, and signalling factors and the 
intertwined relationships between the genes and their products – the 
so-called regulome. Importantly, one study analysing the effects of 
5mCpG on the DNA binding specificities of hundreds of human 
transcription factors found that these effects are broader than 
previously reported, and that methylation can promote the binding of 
transcription factors in many cases [289]. In addition to the youth of 
regulome research, the methylation/unmethylation of these MVPA-
related CpGs may have different functional outcomes in different 
tissues, and this is probably the case for cg09565397 because 
enhancers are usually tissue-specific [290].  
 
 

c) Clinical relevance of the identified CpG sites 
 
Overall, our findings suggest that the recommended dose of PA and 
MVPA produce changes related to differential DNA methylation in 
the general adult population. The translational potential of PA-related 
epigenetic markers could allow us to establish personalized exercise 
routines that modulate the epigenome and, in turn, contribute to the 
prevention of several chronic diseases, or to control their progression 
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[264,291]. However, currently there is only scarce evidence about the 
complex biological network that is triggered by PA and results in a 
functional outcome; the following limiting issues should be 
considered. As stated by Rönn and Lind in an editorial on this topic, 
for future studies “to get a picture of the overall regulatory effect of 
exercise on the epigenetic profile in human tissues and on metabolism, 
we need to consider several different tissues at the same time point 
and try to understand how they interact” [292]. Moreover, we need to 
consider a more complete picture of the epigenome, including and 
integrating DNA methylation, non-coding RNA, histone 
modifications, and transcriptome. 
 
In this regard, although certain PA intensities or regimes are related to 
DNA methylation changes, we cannot infer whether these changes are 
beneficial for health in themselves, or whether they simply mediate the 
beneficial effects of PA on health. We also need to take into account 
the fact that different individuals respond differently to the same dose 
of PA [293], and this type of biomarkers could shed some light on the 
mechanisms explaining this inter-individual variability.  

 

 

Highlights of Objective 1 
 

 PA was associated with blood DNA methylation in a two-stage cross-
sectional EWAS 

 

 Two differentially methylated sites were associated with MVPA in a 
non-linear dose-response way 

 

 One of the CpGs suggests that TG metabolism is involved in the 
mechanisms triggered by PA 
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4.3. DNA methylation and cardiovascular risk 
factors load 

 
Since CVRFs are known to be individually related to DNA 
methylation, we hypothesized that the accumulation of CVRFs may 
have a cumulative effect on the methylome. However, when 
considering accumulated CVRFs, we excluded age because of its 
impact on susceptibility to complex diseases, and because of the close 
relationship between epigenetic mechanisms and aging. For this 
purpose, we defined two approaches, one using the difference 
between vascular and chronological age, and another using the 
residuals of the linear association between estimated CVR and age. 
Using a two-stage cross-sectional EWAS design, we found an 
association between age-independent estimated CVR and the blood 
methylome in individuals from two independent populations. We 
found eight differentially methylated sites that were associated with 
age-independent CVR, all of which were related to individual classical 
CVRFs, and all but one to at least smoking. We integrated these sites 
into polygenic risk scores, and assessed whether these scores were 
predictive of subclinical atherosclerosis and incident cardiovascular 
and coronary events.  
 
 

a) Rationale and previous evidence 
 
Classical CVRFs are widely known to trigger cardiovascular events as 
well as subclinical intermediate phenotypes. The cumulative and 
synergistic effect of CVRFs on cardiovascular health is well 
documented [294], as is the fact that CVR increases throughout life 
[26] (see sections 1.1.a and 1.2.a). Risk functions usually estimate the 
global effect on CVR of the accumulation of classical CVRFs as an 
absolute CVR (probability of having a clinical cardiovascular event, 
usually in the following 10 years; section 1.3.a). However, the entire 
picture of the molecular mechanisms and networks that mediate the 
crosstalk between CVRFs and physiological outcomes has not been 
completely developed. Since most classical CVRFs are individually 
associated with DNA methylation patterns, the accumulation of 
CVRFs is also very likely to be related to specific DNA methylation 
patterns. Both CVR and DNA methylation are highly influenced by 
aging, although age-independent CVR resulting from the confluence 
of other CVRFs may help to decipher molecular mechanisms linking 
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DNA methylation and CVR other than those that are directly related 
to aging. 
 
A growing number of EWASs focused on classical CVRFs have been 
published in the past decade, and we now have broad evidence on 
DNA methylation loci that are related to CVRFs. For instance, in the 
REGICOR study, a recent doctoral thesis addressed the association 
between DNA methylation and some individual classical CVRFs, 
including smoking, lipid levels, and obesity [295]. Regarding smoking, 
using the REGICOR cross-sectional study sample as a discovery 
population, Sayols-Baixeras found a reversible exposure-time-
dependent relationship between smoking and DNA methylation, and 
confirmed several methylation loci that had previously been reported 
to be related to smoking, such as cg05575921 in AHRR, which we 
also found in the second and third objective of this thesis (see below). 
They also identified one additional novel CpG [296]. Since the 
publication of these findings, other EWASs on smoking have been 
performed, and the EWAS databases now contain thousands of 
entries for “smoking” (7,654 entries in the EWAS catalog, 14,273 sites 
in the EWAS Atlas), reported by 46 publications according to a search 
performed on 27th August 2019. Concerning serum lipid levels, a two-
stage EWAS in the REGICOR cross-sectional study sample 
(discovery) and the FOS sample (validation) confirmed previously 
reported methylation loci related to lipids, as well as six new gene-
mapping sites [297]. In the EWAS catalog there are 698 entries for 
“lipids”, while the EWAS Atlas contains 10 sites and 5 publications 
for “blood triglyceride levels”, one site and one publication for “blood 
LDL levels”, one site and one publication for “total cholesterol”, and 
seven sites and three studies for “blood HDL levels”. As a final 
example, and from the REGICOR study, a two-stage EWAS in the 
cross-sectional study sample (REGICOR and FOS) identified 94 
CpGs that were related to both obesity and BMI, 70 of which were 
novel findings [298]. In the EWAS catalog there are 7 and 1,211 
entries for “obesity” and “BMI”, respectively, while in the EWAS 
Atlas, there are 8,134 and 1,797 sites, and 7 and 17 publications, 
respectively.  
 
At the time of writing this thesis, no study had assessed the association 
between vascular age and DNA methylation. Interestingly, during 
publication of the article addressing the second objective of this thesis, 
another study by the Atherosclerosis Risk in Communities (ARIC) 
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consortium reported that epigenetic aging of blood cells (mentioned in 
section 1.4.e) is a predictor of both subclinical atherosclerosis 
(assessed as carotid intima-media thickness) and incident 
cardiovascular events, independently of chronological age and classical 
CVRFs [299]. This finding supports the notion that age-independent 
CVR is related to DNA methylation, and that other variables different 
from individual classical CVRFs could potentially be used as CVR 
markers. In addition, DNA methylation at specific sites has also been 
analysed in association with subclinical atherosclerosis assessed as 
intima-media thickness or pulse wave velocity [300–302]. Our findings 
suggest that the synergistic effects of CVRFs (excluding chronological 
age) influence DNA methylation and that the resulting marks could 
potentially be combined as markers of both subclinical atherosclerosis 
and of the risk of incident cardiovascular events.  

b) CpG sites associated with age-independent
cardiovascular risk: potential role in molecular
networks

We identified eight age-independent CVR-related CpGs that, when 
combined in polygenic risk scores, are predictive of incident CVD. 
Four of these are intergenic (cg12547807, cg27537125, cg05951221, 
and cg21566642) and are related to smoking, consistent with previous 
findings [278,303]. cg12547807 is also associated with BMI. The first 
two CpGs map to regulatory regions of chromosome 1: cg12547807 
to the enhancer at chr1: 9,473,003-9,474,074 and cg27537125 to the 
promoter-associated DMR region chr1:25,348,676-25,349,815. The 
last two CpGs are located in the CGI chr2:233,283,397-233,285,959, 
and are thus considered to be the same locus for the purpose of 
constructing the risk scores. The genomic location of these four CpGs 
indicates that it would be interesting for future studies to also analyse 
DMRs.  
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The other four CpGs (cg19939077, cg18608055, cg05575921 and 
cg00574958) map to gene sequences (the gene bodies of PPIF, 
SBNO2, and AHRR, and the 5’UTR24 of CPT1A, respectively): 

- PPIF encodes peptidylprolyl isomerase F (also known as
cyclophilin D), which is involved in ischemia/reperfusion injury,
heart failure, arterial thrombosis, cardiac hypertrophy,
atherosclerosis, and diabetes [304]. cg19939077 maps to the
promoter-associated regulatory region chr10:81,106,660-81,108,439
located within the upstream shore25 of the CGI chr10:81107082-
81107488. Previous EWASs reported it to be associated with
smoking [278] (validated in our study) and alcoholism [305,306].
We also found it to be associated with BMI.

- SBNO2 expresses a component of the pathways leading to the
anti-inflammatory effect of IL-10 [307]. cg18608055 maps to the
promoter-associated regulatory DMR chr19:1,130,697-1,131,291
located within the upstream shore of the CGI chr10:81107082-
81107488. It was previously found to be associated with smoking
[278] and BMI [308,309] (consistently with our study), as well as
with C-reactive protein [310] and the cardiovascular biomarker
GDF-15 [311]. In this last study it was also non-significantly
hypomethylated in individuals that had suffered a MI, which is
consistent with our findings in relation to age-independent CVR.

- AHRR is the most epigenetically regulated smoking-related gene
[251]. It encodes the aryl-hydrocarbon receptor (AhR) repressor
(AhRR), which is involved in repressing the AhR signalling cascade
(activated when bound by toxins from cigarette smoke) [312] and
other signalling pathways (e.g. NF-κB). AHRR was also found to
be a tumour suppressor and a modulator of inflammatory
responses [313]. Its target, AhR, is a transcription factor that
integrates environmental, microbial, metabolic and endogenous
signals to control adaptation to the cellular environment. It

24 The 5’UTR is the untranslated region located upstream of a protein-coding 
sequence on a transcript, which encompasses a sequence recognized by the 
ribosome for translation initiation. 
25 A CpG shore is a genomic region located within 2 kylobases up- or downstream 
of a CpG island. 
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modulates several biological processes in complex contexts that are 
relevant for pathological conditions (e.g. inflammatory, 
autoimmune, neoplastic, metabolic, and degenerative diseases) 
[314]. cg05575921 maps to an enhancer located in the downstream 
shore of the CGI chr5:373,842-374,426. Its methylation status was 
shown to be linked to smoking status, and had the strongest 
association in most EWASs assessing blood methylation in relation 
to smoking [278,296,303]. This CpG also accurately discriminates 
between current and never smokers [315,316], and was associated 
with prenatal exposure to maternal smoking [317], high smoking-
related morbidity (such as lung cancer) [318–320] and all-cause 
mortality [318,321]. 

 
- CPT1A encodes carnitine palmitoyltransferase 1A, which is critical 

for allowing long-chain fatty acids to enter into the mitochondria 
for subsequent oxidation [322]. cg00574958 lies close to SNP 
rs78442314, and maps to the downstream shore of the CGI 
chr11:68,608,155-68,609,419 and to CGI chr11:68,364,198-

68,364,338 (the latter predicted by hidden Markov models)
26

. 
Consistently with our findings, this CpG was previously associated 
with metabolic syndrome [323], diabetes [324,325], BMI 
[309,326,327], and lipid levels [328–331]. 

 
We found that all eight of these CpGs were hypomethylated in 
association with age-independent CVR. Several studies suggest that 
smoking results in upregulated AHRR expression [332–338], which 
can also be inferred from our results, as the CpG we found in this 
gene is highly associated with smoking but is not related to any other 
CVRF. The lack of the methyl group at this site, which maps to an 
enhancer, may promote the binding of transcription factors that 
enhance gene expression.  
 
Conversely, as explained in section 4.2.b, with the currently available 
data and literature, we cannot anticipate the biological outcomes of 

                                                 

 

 
26 While the other reported CGIs are those in the UCSC Genome Browser and 
derived using algorithms based on the definition of CGI proposed by Gardiner-
Garden and Frommer in the late 1980s [379], these CGIs are based on a non-
human-exclusive and more modern definition and predicted with probability scores 
constructed using hidden Markov models [380]. 
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any of the other seven CpGs because of the complexity and tissue-
specificity of the regulome. Interestingly, four of the CpGs map to 
regulatory regions, two are part of the same CGI, and the other lies in 
a highly CpG-enriched region (the shore of a CGI). This suggests that 
these regions are important for controlling gene expression in the 
presence of a combination of CVRFs. Moreover, the genes that are 
subject to this epigenetic regulation are related to processes or 
pathways that are important for the development of atherosclerosis 
and CVD such as inflammation, fatty acid catabolism, and 
multifunctional pathways. 
 
 

c) Clinical relevance of the identified CpG sites 
 
Our findings suggest that the confluence of several CVRFs is related 
to differential DNA methylation independently of age in the general 
adult population. Importantly, we provide new evidence indicating 
that polygenic risk scores including epigenetic marks related to CVRF 
load are predictive of clinical cardiovascular events. While the 
identified epigenetic markers are not as clearly predictive of subclinical 
atherosclerosis, they still highlight the potential of further exploring 
the interaction between CVR-related DNA methylation and markers 
of atherosclerosis. Another important issue is that, while most of the 
DNA methylation markers identified were related to smoking, their 
association with CVD remained significant even after adjusting for 
smoking. Thus, DNA methylation may more accurately reflect 
smoking exposure than standard questionnaires. 
 
Our point in the section 4.2.c about the clinical relevance of PA-
related methylation markers may also be extrapolated to that of the 
markers associated with age-independent CVR. The translational 
potential of CVR-related epigenetic markers may allow clinicians and 
epidemiologists to predict the CVR of individuals more accurately. 
Thus, they may also improve clinical decision making about the 
management of CVRFs and intermediate cardio-metabolic 
phenotypes, and could also be used as research tools to explore 
atherosclerosis pathogenesis. Although DNA methylation from whole 
blood cells is a fairly accurate proxy for that in other tissues 
[317,334,339], it would be interesting to study, at the same time point, 
the methylome of other tissues that commonly altered in the presence 
of CVRFs. In addition, other layers of information shaping the 
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regulome should be considered, and the functional consequences of 
those changes should be explored. 
 
It is necessary to further assess their potential as targets for new 
therapies, and to determine the causality of the observed associations. 
Our results indicate that the direction of these associations may go 
from the load and synergistic effects of CVRFs to the clinical 
outcomes, with DNA methylation as one of the potential mediating 
mechanisms. This hypothesis is more plausible smoking, which 
triggers epigenetic modifications, but the scenario where all the 
CVRFs act synergistically may be more complex, and the direction of 
the association between DNA methylation and the CVR may vary 
depending on the CVRF or the methylation loci. We cannot rule out 
the possibility that specific DNA methylation patterns can influence 
either the presence of some CVRFs (e.g. biochemical traits) or their 
effects on downstream molecular and physiological pathways. This 
possibility was described for TG levels, precisely for the CpG in 
CPT1A that we also found to be related to age-independent CVR and 
TG levels [329,330]. In the MR study by Sayols-Baixeras et al both 
directions of the association were confirmed. 

 

 

Highlights of Objective 2 
 

 Age-independent CVRF load was associated with blood DNA 
methylation in a two-stage cross-sectional EWAS 

 

 Eight differentially methylated sites were found, all of which were 
related to individual classical CVRFs 

 

 Their genomic location suggests that they may control the 
expression of genes related to key atherosclerosis processes, such as 
inflammation, fatty acid catabolism, and multifunctional pathways 

 

 Genetic risk scores including these CpGs were found to be associated 
with incident CVD, independently of classical CVRFs 
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4.4. DNA methylation and cardiovascular 
disease 

 
For the last objective of this thesis, we studied the relationship 
between DNA methylation and cardiovascular outcomes. We first 
performed a systematic review of the topic, and then explored the 
association between DNA methylation and clinical cardiovascular 
outcomes, using both EWAS and hypothesis-driven approaches 
based on data from three independent populations. The latter 
approach encompassed the loci found to be differentially methylated 
in association with age-independent CVR (Manuscript 2), as well as 
the genes identified by the systematic review to be consistently 
differentially methylated in relation to atherosclerosis. In both the 
EWAS and candidate gene approaches, we found differentially 
methylated loci associated with prevalent and incident 
cardiovascular outcomes, some of which were also related to 
classical CVRFs. We confirmed that polygenic risk scores based on 
loci that are differentially methylated in association with incident 
CVD were also related to risk of cardiovascular events. However, 
these scores did not improve the predictive capacity of the classical 
risk functions, and we could not determine whether the CpGs were 
causally associated with CHD.  
 
 

a) Rationale and previous evidence 
 
Different approaches have been used to study the association 
between DNA methylation and CVD in distinct tissues and 
populations, and using distinct study designs. Revising published 
evidence on the relationship between DNA methylation and 
atherosclerotic outcomes, we found that most studies that matched 
our eligibility criteria assessed DNA methylation using candidate 
gene association designs, some reporting consistent associations for 
some genes (ESRα, ABCG1, FOXP3, IL-6). Studies assessing global 
methylation levels showed inconsistent results, while those that 
interrogated the whole methylome using Illumina arrays identified 
84 genes as consistently differentially methylated (52 in the same 
direction: hyper- or hypomethylated). One-third of these genes had 
been linked to obesity by GWAS, and in silico functional analysis 
identified several diseases and functions linked to inflammation, 
metabolism and cardiovascular disease. Limited work has been done 
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on the association between DNA methylation and incident CVD, 
either using only global methylation levels [340], or reported DNA 
methylation markers that provided only moderately improved 
predictive value over classical CVRFs [341]. 
 
More than two years after the online search performed for the 
systematic review, the number of articles returned using the same 
search terms [“DNA methylation” AND (“Coronary heart disease” 
OR “Ischemic heart disease” OR “Myocardial infarction” OR 
“Cardiovascular risk” OR “Vascular age”)] has increased from 96 to 
163 (August 29th, 2019), including some notable ones. Three 
interesting non-prospective EWASs have been reported, although 
they have some limitations. Nakatochi et al performed a case-control 
EWAS to examine the association between blood methylomes and 
MI in a population of elder Japanese men. They found two CpGs in 
genes containing MI-related SNPs although the CpGs were 
independent of these SNPs [342]. Wang et al conducted a cross-
sectional EWAS comparing (intra-individually) different vascular 
tissues in six patients with CHD who underwent coronary artery 
bypass surgery, and found loci that are enriched in pathways related 
to immune responses and metabolism [343]. In cardiac samples 
from 11 individuals with heart failure (HF), Pepin et al reported that 
DNA methylation is a key mechanism in the metabolic 
reprogramming that occurs in ischemic HF, providing biomarkers 
that distinguish ischemic HF from other HF aetiologies of [344]. 
 
In addition, non-prospective NGS studies analysing blood 
methylomes have also been performed using RRBS. In one study 
carried out in patients with heart failure and age- and sex-matched 
controls, Li et al identified three differentially methylated genes 
[345]. More recently, one NGS-based analysis in 32 young MI 
patients found differential methylation profiles between MI patients 
with and without recurrent events within one year of the first event. 
The loci they identified are involved in pathways such as cardiac 
function, and repair and response to injury. Interestingly, individuals 
with recurrent cardiac events showed hypermethylation at DGAT1 
(a gene that we found in the objective addressing PA and DNA 
methylation) [346]. 
 
Regarding prospective studies, some associations between DNA 
methylation and CHD have been discovered in the second step of 
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studies exploring its association with CVRFs [347,348]. Also, in the 
ARIC study epigenetic age was predictive of fatal CHD, peripheral 
artery disease, and heart failure, independently of chronological age 
and other traditional CVRFs [299]. More importantly, 
simultaneously to our study, some differential methylation studies of 
incident CVD as the primary outcome have been performed using 
different analytical strategies, and have provided different findings 
[349–351]. Westerman et al analysed DMRs and epigenetic modules 
in association with CVD in two of the samples we also studied (FOS 
and WHI), and identified mechanisms related to development and 
monocyte biology [349]27. Currently, they are aggregating the results 
into a direct predictor of CVR, which is being validated in the 
REGICOR case-control study in collaboration with us (unpublished 
data). Ward-Caviness et al provided more insights into the 
association between DNA methylation and incident MI using three 
different cohorts. They found nine CpGs that were further shown 
to be related to the metabolism of some amino acids, and that are 
moderately predictive of MI events [350]. Finally, Agha et al recently 
published a powerful multi-centre meta-analysis of leukocyte- and 
450k-based EWASs of incident CHD in nine population-based 
cohorts from the USA and Europe (sample size >11,000 
individuals). They reported 52 CpGs related to incident CHD that 
mapped to regulatory regions of lncRNA regions, and provided 
evidence supporting the causality of the associations [351]. Taken 
together, these and our findings (summarized in Table 3) highlight 
the complexity of the epigenetic mechanisms involved in the 
intricate networks underlying CHD, and CVD in general. They also 
highlight the challenge of establishing a consensus on the best 
analytical approach for comparing and integrating data from 
different studies. 
 

Table 3. Summary of CpGs related to CHD in EWASs. 

CpG Chr* 
Position 

(bp) 
Gene Study 

cg21609024 1 53,795,111 LRP8 [350] 

                                                 

 

 
27 Note that this work is still under the revision for publication in a peer-reviewed 
journal. 

Continued 
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cg10073091 1 55,352,301 DHCR24 [350] 

cg11955541 1 145,040,160 PDE4DIP [350] 

cg03458344 1 170,964,477 C1orf129 [350] 

cg00699486 6 166,144,768 Intergenic [350] 

cg07311024 12 75,785,089 GLIPR1L2 [350] 

cg08193363 13 32,605,254 FRY [350] 

cg23074119 14 78,174,751 
ALKBH1; 
C14orf156 

[350] 

cg23541257 19 18,096,662 KCNN1 [350] 

cg12766383 1 19,403,306 UBR4 [351] 

cg07475527 1 24,864,545 Intergenic [351] 

cg10702366 1 60,070,383 FGGY [351] 

cg07015775 1 86,174,125 ZNHIT6 [351] 

cg00466121 1 86,174,151 ZNHIT6 [351] 

cg00355799 1 244,109,212 Intergenic [351] 

cg23245316 2 3,260,005 TSSC1 [351] 

cg03467256 2 10,556,515 HPCAL1 [351] 

cg13822123 2 54,197,256 PSME4 [351] 

cg26470101 2 173,099,597 Intergenic [351] 

cg06639874 2 238,417,703 MLPH [351] 

cg14029912 3 5,027,616 Intergenic [351] 

cg22617878 3 10,417,183 ATP2B2 [351] 

cg07289306 3 44,039,357 Intergenic [351] 

cg06582394 3 121,902,622 CASR [351] 

cg00393373 4 10,456,597 ZNF518B [351] 

cg08853494 4 76,439,657 
RCHY1; 
THAP6 

[351] 

cg02155262 4 178,363,707 AGA [351] 

cg02683350 5 178,658,501 ADAMTS2 [351] 

cg19935845 6 32,074,856 TNXB [351] 

cg14010194 6 42,152,817 GUCA1B [351] 

Continued 
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cg21018156 6 134,061,814 Intergenic [351] 

cg05892484 7 2,143,507 MAD1L1 [351] 

cg24977276 7 74,105,270 GTF2I [351] 

cg24423782 7 129,410,417 MIR182 [351] 

cg02321112 7 156,810,523 Intergenic [351] 

cg25497530 7 158,059,944 PTPRN2 [351] 

cg26042024 8 135,610,009 
ZFAT; 

ZFATAS 
[351] 

cg05820312 8 141,468,672 TRAPPC9 [351] 

cg14185717 9 16,864,746 BNC2 [351] 

cg13827209 9 101,912,842 TGFBR1 [351] 

cg19227382 10 73,521,606 
CDH23; 
C10orf54 

[351] 

cg07436807 10 90,712,767 ACTA2 [351] 

cg10307345 11 18,771,567 PTPN5 [351] 

cg17556588 11 32,854,320 PRRG4 [351] 

cg24318598 11 70,034,186 ANO1 [351] 

cg03031868 13 47,371,523 ESD [351] 

cg18598861 14 24,635,529 IRF9 [351] 

cg20000562 14 36,978,633 SFTA3 [351] 

cg04987302 14 57,476,116 Intergenic [351] 

cg22871797 15 22,992,526 CYFIP1 [351] 

cg25196881 15 39,780,412 Intergenic [351] 

cg26467725 15 92,647,041 SLCO3A1 [351] 

cg06596307 15 99,405,016 IGF1R [351] 

cg24447788 19 795,310 Intergenic [351] 

cg01751802 19 11,309,639 KANK2 [351] 

cg09777776 19 24,269,890 ZNF254 [351] 

cg06442192 19 48,059,856 ZNF541 [351] 

cg02449373 19 49,256,123 FUT1 [351] 

cg22618720 20 55,959,549 Intergenic [351] 

Continued 
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cg08422803 21 46,341,067 ITGB2 [351] 

cg20545941 22 43,821,227 MPPED1 [351] 

cg25103337 1 9,293,583 H6PD Manuscript 4 

cg19893751
†
 2 45,029,285 Intergenic Manuscript 4 

cg21566642 2 233,284,661 Intergenic Manuscript 4 

cg11643285 3 16,411,667 RFTN1 Manuscript 4 

cg17238319 3 16,428,391 RFTN1 Manuscript 4 

cg08122652 3 122,281,939 
PARP9; 
DTX3L 

Manuscript 4 

cg00076653 4 15,341,878 C1QTNF7 Manuscript 4 

cg05575921 5 373,378 AHRR Manuscript 4 

cg21429551 7 30,635,762 GARS Manuscript 4 

cg19390658 7 30,636,176 GARS Manuscript 4 

cg09165129
†
 7 137,524,369 DGKI Manuscript 4 

cg00574958 11 68,607,622 CPT1A Manuscript 4 

cg19314882 11 117,391,953 DSCAML1 Manuscript 4 

cg14597545 15 73,074,210 ADPGK Manuscript 4 

cg03636183 19 17,000,585 F2RL3 Manuscript 4 

cg07817505
†
 19 17,972,324 

RPL18AP3; 
SNORA68; 

RPL18A 
Manuscript 4 

cg06500161 21 43,656,587 ABCG1 Manuscript 4 
*Chr, chromosome. †CpG must be considered with caution (see incident CHD). 

 
 

b) DNA methylation and cardiovascular outcomes 
in incident and prevalent cases  

 
DNA methylation patterns associated with cardiovascular outcomes 
may differ between individuals with prevalent and incident disease. 
DNA methylation changes may occur before the event, either as a 
driving factor or as a result of other changes. However, other 
methylome changes could be caused by the response to the acute 
event, or to the medical treatment received. Therefore, we reasoned 
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that analysing both sides of the path could allow us to better 
understand cardiovascular epigenetics in general, with implications 
for the improved clinical risk assessment. By using EWAS and 
candidate gene strategies, we have identified novel methylation loci 
associated with prevalent AMI and CHD, as well as new loci related 
to incident CHD and CVD, some of which are differentially 
methylated in association with both prevalence and incidence. 
Additionally, not all of them were further shown to be associated 
with classical CVRFs, suggesting that other related factors and 
pathways may be important in the development of CHD and CVD. 

 
 

 CpG sites related to both prevalent and incident 
CVD  

 
Three CpGs that we also found to be differentially methylated in 
association with age-independent CVR (intergenic cg21566642, the 
AHRR-regulator cg05575921, and the CPT1A-regulator 
cg00574958) were consistently linked to prevalent AMI and CHD, 
and to incident CVD. Also, three other CpGs were consistently 
related to both prevalent and incident events: cg06500161, 
cg21429551 and cg19390658, which are located in ABCG1 and 
GARS. ABCG1 encodes a transporter involved in lipid homeostasis 
[352,353]. GARS encodes the glycyl-tRNA synthetase, and is thus 
critical for translation; variants in this gene have also been found to 
be related to mitochondrial dysfunction [354].  
 
All six CpGs were further related to classical CVRFs, and highlight 
smoking and lipid metabolism as determining factors. Altogether, 
the findings for these CpGs suggest that they reflect specific 
regulomic mechanisms where gene expression mediates the 
synergistic effect of CVRFs on cardiovascular health, resulting in 
acute events. This intermediary role may occur at any age in the case 
of the three CpGs that we also found in objective 2 of this thesis. 
The fact that these CpGs were not differentially methylated in 
association with incident CHD could be due to differences between 
the WHI and the FOS populations or the low number of CHD 
events in FOS. 

 
 



198 DNA methylation and cardiovascular disease 

Doctoral thesis UPF / 2019 

 CpG sites related to prevalent CHD  
 

Four additional CpGs were related to prevalent CHD and also to 
classical CVRFs: cg03636183, cg00076653, cg11643285 and 
cg17238319, which map to F2RL3, C1QTNF7 and RFTN1. Finally, 
other two CpGs were associated with prevalent CHD but not with 
CVRFs: cg14597545 and cg19314882, which map to ADPGK and 
DSCAML1, respectively.  
 
- F2RL3 encodes a protease-activated receptor that is key for 

platelet activation and cell signalling. The CpG we identified is 
widely reported to be associated with smoking [251,296], as we 
also found in the analysis of CVRFs. It has also been linked to 
all-cause and cardiovascular mortality [253,355,356]. 
 

- C1QTNF7 encodes a member of the CTRP family of adipokines 
related to metabolic dysfunction in the context of obesity [357].  
 

- RFTN1 encodes a protein of lipid rafts, which are specialized 
cell-membrane microdomains that are enriched in signalling 
molecules. It is involved in regulating platelet signalling by adding 
long chain fatty acids to the protein, a reversible modification 
known as palmitoylation [358]. 

 
- ADPGK encodes a glucokinase that catalyses the ADP-

dependent phosphorylation of glucose in the first step of 
glycolysis. Its role is relevant during ischemia/hypoxia, as it 
would save ATP, the primary source of energy in glucose 
catabolism [359]. 

 
- DSCAML1 encodes a cell surface adhesion protein that is 

involved in neuronal differentiation. A recent study found that a 
SNP in this gene is related to glycated serum protein, a measure 
of glycaemia [360].  

 
The fact that these six CpGs were not related to incident events 
suggests that they may not cause the CHD event, but rather are a 
consequence of it. This may be especially true for the two CpGs that 
were not related to any CVRF (regulating ADPGK and DSCAML1 
expression). However, the CpGs that were further associated with 
CVRFs question this hypothesis, and thus highlight the complexity 
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of the molecular network underlying physiological functions that 
affect cardiovascular outcomes. 

 

 CpG sites related to incident CHD and CVD  
 

The CpGs found to be related to incident CHD were not associated 
with CVRFs: cg19893751, cg09165129 and cg07817505. In the 
EWAS on incident CHD, we could not correct the genomic 
inflation28 of the results in the WHI sample, so these three CpGs 
must be considered with caution and must be validated in further 
analyses. 
 
Apart from the CpGs already described, other two CpGs were 
related to incident CVD: cg08122652 and cg25103337, which are 
located within PARP9/DTX3L and H6PD, respectively.  
 
- PARP9/DTX3L is involved in immune response [361], and 

participates in the pro-inflammatory IFN-γ signalling that 
controls macrophage activation [362]. Interestingly, the CpG we 
found has recently been linked to lower risk of incident CHD 
[348].  
 

- H6PD encodes one enzyme involved in the pentose phosphate 
pathway, which is critical for glucose metabolism. Over-
activation of this pathway was shown to trigger vascular 
inflammation linked to hyperglycaemia [363]. Deficiency of the 
enzyme was also found to be inversely associated with 
atherosclerosis and CHD [364,365].  

 
Taken together, the findings on the association with incident events 
suggest that those methylation signatures may be causally related to 
CVD. The loci that are not related to traditional CVRFs also 
support the relevance of inflammation in the development of CHD. 
 

                                                 

 

 
28 Statistical inflation is an important concern in association analyses that perform 
multiple comparisons. Genomic inflation is reported by calculating the genomic 
inflation factor lambda, and can be visualized using quantile-quantile (QQ) plots. 
The higher the inflation is, the higher the false positive rate. 
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Table 4 summarizes the genomic location and features of the 17 
CpGs. Interestingly, 15 of them map to gene sequences, mostly the 
gene body, while two map to the 5’UTR and one to the promoter. 
Five are located within enhancer elements, and three within 
regulatory regions associated with promoters (one cell-specific). 
Overall, these observations suggest that these regions control the 
expression of these genes in the context of cardiovascular events, 
some before the event, and others as a consequence of the event. 
Furthermore, the regulated genes are related to processes that are 
important for CHD and CVD, such as inflammation. However, as 
explained in section 4.2.b and 4.3.b, due to the complexity and 
tissue-specificity of the regulome we cannot predict the biological 
outcome of the differential methylation status of the cardiovascular-
related CpGs based only their genomic features and product 
function. 
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c) Clinical relevance of the identified CpG sites 
 
DNA methylation biomarkers related to cardiovascular outcomes have 
great potential for use in preventive and clinical medicine. For 
instance, an assay has recently been developed for detecting 
cardiomyocyte death (which occurs in MI events or in abnormal 
cardiac physiology and development) based on methylation levels in 
cardiomyocytes. These methylation biomarkers enable to quantify 
cardiomyocyte DNA in circulating cell-free DNA derived from dying 
cells [366]. Despite recent advances in cardiovascular epigenetics, 
more studies with novel methodologies are required to identify 
powerful methylation biomarkers.  

 

 CpGs as potential predictive biomarkers of CVD  
 

The CpGs found to be associated with cardiovascular events are 
expected to provide complementary information to that offered by 
classical CVRFs, mainly those that are associated with incident events. 
Thus, the CpGs identified could be used as predictive markers of 
future CV events. They could be included in CVR functions to 
evaluate whether they add predictive value over that provided by 
CVRFs. However, considering their effect sizes, a more powerful 
approach would be to integrate them into risk scores. Thus, only one 
variable would be added to the CVR function but would capture all 
the epigenetic marks linked to this type of event.  
 
We adhered to AHA and European recommendations on assessing 
the value of risk scores as CVR biomarkers [128,129]. The risk scores 
based on CpGs that are differentially methylated in relation to incident 
CVD were also predictive of 10-year risk of an event, independently of 
the classical CVRFs. However, they did not improve the capacity of 
the Framingham risk function to discriminate events, nor did they 
improve the reclassification of the individuals into risk categories. This 
could be due to uncomplete capture of the variability, their dynamic 
performance throughout life, or to their redundant encrypted 
information. Whatever the reason for this lack of improvement, it is 
not surprising to find biomarkers that do not improve CVR functions. 
For instance, in the REGICOR study, the inclusion of SNP-based risk 
scores in a CVR function did not improve the discrimination capacity 
of classical risk functions. However, Lluíis-Ganella et al showed a 
more accurate reclassification when including risk scores that capture 
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genetic variants, and the reclassification was especially improved in the 
intermediate risk category [367]. In this case, the markers were 
constant throughout life.  
 
In the first study assessing DNA methylation and MI (a two-stage 
case-control EWAS) [341], the authors also evaluated the improve 
performance of MI risk prediction when including the differentially 
methylated region within ZBTB12 and the LINE-1 hypomethylation 
patterns they found. Interestingly, they reported improved 
discrimination between MI cases and controls and better prediction 
accuracy (discrimination improved but not significantly). The study 
design was not prospective, the sample size was smaller, and 
discrimination was assessed by comparing the Area Under the 
Receiver Operating Characteristic Curves; more importantly, instead 
of creating risk scores, they clustered individuals into four classes 
using an algorithm based on the methylation of the DMR in ZBTB12 
plus a fifth class based on LINE-1 methylation. The five classes were 
included in the new MI risk-prediction model. These methodological 
differences could explain why the clinical utility of methylation 
biomarkers reported by this study is not consistent with ours. More 
recently, Ward-Caviness et al developed an epigenetic fingerprint based 
on the nine CpGs they identified, and showed that it moderately 
discriminated incident MI cases, although they did not evaluate 
whether this lead to an improvement over classical CVRFs [350]. 
Westerman et al have developed risk scores based on the methylation 
profiles they found in their previous study [349], and their potential as 
predictors is being assessed using new complex methods that consider 
heterogeneity across populations (unpublished data). In addition, 
epigenetic-based aging metrics have been shown to predict CVD, 
although they do not provide clinically meaningful improvements in 
discrimination [368,369].  
 
Compared to other work on CVR estimation using DNA methylation 
markers, overall our findings show that CVR prediction and the 
discovery of novel predictive biomarkers remains challenging. CVR 
due to DNA methylation could either be redundant, or could provide 
complementary information to existing risk metrics, such as genetic 
scores [191] or those based on classical CVRFs. A better approach 
would probably be to integrate different layers of biological 
information to predict CHD and CVD. For instance, a recent study 
using machine learning techniques in the Framingham population 
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showed the potential of using an integrated genetic-epigenetic-
phenotypic approach as an alternative to the conventional one based 
only on CVRFs [257]. 

 

 CpGs as potential therapeutic targets and 
prognostic biomarkers of CVD  

 
Deciphering the causality of the associations identified in objective 3 
of this thesis would have allowed us to identify novel targets for 
therapeutic studies, as well as prognostic markers that are useful for 
the choice of clinical intervention. However, we only had access to 
one public meQTLs database, the Accessible Resource for Integrated 
Epigenomic Studies (ARIES) [370], but not genotype data for any of 
the three populations included in this thesis. Studies analysing the 
causality of the associations between DNA methylation markers and 
cardiovascular outcomes, such as the recently published meta-analysis 
by Agha et al, genotyped the samples used in the EWASs to identify 
meQTLs [351]. The ARIES database only contains data for the 
intergenic cg21566642 and the F2RL3-regulator CpG we found. For 
both CpGs, only one genetic variant was available, so the genetic 
information available for the two-sample MR studies consisted of only 
one SNP. Our findings did not suggest a causal relationship between 
any of the two CpGs and CHD. However, cg21566642 was found to 
be differentially methylated in association with incident CVD, which 
suggest that demethylation at this CpG occurs before the event. Both 
CpGs were related to CVRFs, which suggests that their methylation 
status could mediate between CVR and cardiovascular outcomes.  
 
As already mentioned in section 4.3.c, the CpG we found in CPT1A-
regulator to be related to both prevalent CHD and incident CVD was 
previously shown to be associated with TG levels in both directions of 
the causal path, i.e. its methylation level may influence TG levels or be 
determined by them. This supports the idea that differential 
methylation at this CpG is determined prior to the cardiovascular 
outcome. Also, the prospective associations support the inference of 
causality for the CpGs in AHRR, ABCG1, GARS, PARP9/DTX3L 
and H6PD. All these non-conclusive findings underline the complex 
network connecting DNA methylation and other mechanisms 
regulating gene expression, CVRFs and cardiovascular outcomes. 
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Highlights of Objective 3 
 

 Blood DNA methylation levels were associated with prevalent CHD 
and incident CVD using EWAS and candidate gene strategies 

 

 Seventeen differentially methylated sites were found in total, many 
related to individual classical CVRFs 

 

 Their genomic location supports their role as regulators of the 
expression of genes related to important processes in CVD, such as 
inflammation, metabolism, and multifunctional pathways 

 

 Risk scores including these CpGs were associated with incident CVD 
independently of classical CVRFs. However, the Framingham risk 
function did not show any improvement in predictive capacity when 
these risk factors were included 

 

 MR studies to assess the causality of the associations between the 
identified CpGs and clinical outcomes were not conclusive 
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4.5. Strengths and limitations 
 
This thesis has several strengths and limitations that are common to 
the different objectives, as described below. 
 

a) Strengths 
 
1. Large population-based studies. The samples analyzed represent 

the general adult population, both men and women in the samples 
used for all three objectives of the thesis (REGICOR and FOS). 
All samples are large, ranging from hundreds to thousands of 
individuals, which increases the statistical power of our analyses 
and the validity of the results.  

 
2. Standardized and validated instruments, methods and 

procedures have been used to collect and determine clinical, 
biological, sociodemographic, lifestyle and anthropometric 
variables. 

 
3. Bisulfite conversion-based methylation arrays and 

standardized quality controls, processing and analyses for 
DNA methylation studies. We used a standardized analysis and 
quality control pipeline to analyze the association between DNA 
methylation and the traits of interest; to minimize false positive 
findings, the analyses included at least two populations. 

 
4. Blood samples as the DNA source. Whole blood is one of the 

most easily accessible sample types, it requires less invasive 
methods, and has been proposed as a good proxy for methylation 
levels in other tissues [317,334,339]. Moreover, differences in 
leukocyte composition, which could confound changes in DNA 
methylation, have been shown to have only a very limited impact 
on EWAS findings [371].  

 
5. Established protocols for removing confounding. In all 

analyses, we considered the effect of cell type heterogeneity [243] 
and unknown omics-related sources of confounding (surrogate 
variables) [245]. In some analyses we also adjusted for other 
confounder variables.  
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6. Multiple approaches to address the objectives of this thesis. 
These include different types of PA analyzed, an age-independent 
definition of CVR, complementary epigenome-wide and candidate 
gene association studies, and complementary approaches focused 
on prevalent and incident cardiovascular outcomes. 

 
7. Meta-analyses of the observed results. We meta-analysed the 

results from the association studies, and assessed the consistency of 
the effect sizes and the direction of the associations across studies. 

 
8. Corrections for multiple comparisons and genomic inflation. 

We applied a very conservative approach, namely the Bonferroni 
correction, to minimize false positive results. We also applied novel 
methodologies to reduce genomic inflation in EWAS analyses 
(bacon R function). 

 
9. Assessment of the clinical relevance of our results. Some of the 

epigenetic biomarkers we identified were combined in risk scores 
to evaluate their potential as predictors of cardiovascular events. 

 
 

b) Limitations 
 

 Limitations in the study design and samples 
 

1. Blood samples as the DNA source. Although the nature of 
blood makes it the preferred source for DNA methylation 
studies, some DNA methylation signatures are tissue- or cell-
specific. We could miss those present in other important 
tissues related to the phenotypes of interest, such as muscle, 
adipose, or cardiac tissue.  

 
2. DNA methylation assessed at one time point. Sample 

collection at multiple time points would enable us to elucidate 
DNA methylation changes over time.   

 
3. Lack of quantitative measurements of some of the 

exposures and covariates. PA and smoking were self-
reported through validated questionnaires. Biochemical traits 
such as lipid and glucose levels and BP were also self-reported 
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for the prevalent MI cases in objective 3 due to the acute 
nature of the event. 

 
4. Heterogeneity between the results observed in the 

different populations in each study. We conducted fixed-
effects meta-analyses, which does not allow for heterogeneity 
between studies. However, we assessed the consistency of the 
effect sizes and the direction of the associations.  
 

5. Populations from Western countries. Individuals with 
different ethnic origins may show differences in the DNA 
methylation markers we found. 

 
6. Difficulty in determining causality. The case-control and 

cross-sectional designs preclude causal inference. Therefore, 
we used MR studies to assess causality in objective 3, although 
this study design also has some limitations (see below).  

 
7. Lack of AMI information in other populations. In the 

Framingham population, information about the incidence of 
CHD events was not further stratified into subtypes of events 
such as AMI, unstable angina, and stable angina. Therefore, we 
did not have access to information about AMI events in all 
populations, in order to compare methylation changes related 
to this more severe outcome.  

 

 Analytical and technical limitations 
 
1. Use of 450k versus EPIC arrays. One third of the CpGs analysed 

in the REGICOR case-control could not be assessed in the FOS 
population because the methylation arrays used had different 
numbers of interrogated CpGs.  

 
2. DNA methylation measured using β-values instead of M-

values in objective 3. M-values better identify differentially 
methylated CpG sites than β-values, which are the measures 
currently recommended by Illumina. However, the analyses using 
M- or β-values provided similar and consistent results.  

 
3. Inflation in the results of the WHI sample with CHD data 

from objective 3. We could not reduce this inflation using the 
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bacon R package. However, the CpGs identified in this sample 
were also related to CHD in the FOS population.  

 
4. Unavailability of genotype data for the populations included 

in this thesis. We intended to perform MR studies to address 
causality, but there is still limited availability of meQTL datasets. 
The lack of valid genetic instrumental variables has hampered our 
ability to assess the causality of the associations discovered. 

 
5. Batch effect. We used appropriate methods to correct for non-

biological sources of variation, such as methylation data 
standardization by batch, removal of outlier values, using robust 
multivariate models, or adjusting for surrogate variables. However, 
technical heterogeneity is an intrinsic limitation of studies with 
high-throughput data. While several methods have been proposed 
to remove or minimize this heterogeneity, there is no consensus on 
which is the most accurate, and it may vary depending on the study. 
Also, biological heterogeneity can be confused with batch effects 
and removed in error [372].  
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Illustration by Evelien Jagtman 

 

“The future belongs to those who believe in the beauty of their dreams.” 

Eleanor Roosevelt (1884-1962). 
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To better understand the interplay between DNA methylation, 
cardiovascular risk and cardiovascular outcomes, the following 
questions should be prioritized in further research: 
 
1. What about potential DNA methylation patterns that cannot 

be tested in a second sample?  
 

450k arrays are no longer commercialized, but much of the 
available DNA methylation data has been generated using them, 
which prevents researchers from validating data obtained from 
EPIC arrays (explained in section 1.4.d). This limitation may be 
solved by methods that impute DNA methylation levels at specific 
sites based on neighbouring data (similar to those used in GWAS 
analyses), or that at least speed up the validation of potential loci. 
 
 

2. Is differential DNA methylation a major driver of 
cardiovascular and coronary outcomes? Or is it a “passenger” 
instead of a driver of the disease?  

 
To date there have been few MR studies of the causal association 
between DNA methylation loci and different traits, generally 
because of the scarcity of samples with both DNA methylation 
data and genotype data. In this regard, it is essential to identify 
meQTLs and then share these data via a database that is openly 
accessible to the scientific community. 
 
 

3. Are PA-related loci also associated with incident 
cardiovascular events? 

 
We have only addressed the association between PA and DNA 
methylation, but have not assessed the clinical value that the 
identified signatures may provide to support the benefits of PA for 
health. It is necessary to assess their potential as predictors of 
incident CVD. 
 
 

4. Does differential DNA methylation play an intermediate role 
between lifestyle or environmental factors and cardiovascular 
outcomes? 
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MR studies would provide insights into the causality of CpG-CVD 
associations. Also, analyses of the association between CpG sites 
and individual CVRFs inform us about the role of DNA 
methylation as a potential intermediate mechanism underlying the 
effects of CVRFs on cardiovascular health. This scenario is 
plausible for exposure variables such as smoking, PA or 
environmental pollutants. However, it could be that DNA 
methylation causally determines a specific CVRF and that this 
influences cardiovascular health through a different molecular 
mechanism. Integrating causation and mediation analyses would 
provide more insights into this complex interplay. 
 
 

5. What is the relationship between DNA methylation and other 
lifestyle, environmental, and physiological factors? 

 
Little is known about the impact of diet on DNA methylation. 
Also, there is growing research into patterns of DNA methylation 
signatures that arise following prenatal exposure to various factors. 
All of these potential associations could also be important for 
cardiovascular outcomes. Thus, there is a need for further 
epidemiological and epigenomic research on these factors. 

 
 
6. What is the relationship between DNA methylation and other 

cardio-metabolic traits? 
 
The associations between DNA methylation and conditions such as 
diabetes, metabolic syndrome, hypertension, and subclinical 
atherosclerosis, are not well understood yet. In the REGICOR 
study, we are currently addressing some of these associations. 

 
 
7. How can we estimate cardiovascular risk more accurately? 

 
There have been few, and unsuccessful, efforts to assess the utility 
of new biomarkers in clinical settings by including them in CVR 
functions. Different approaches to estimating CVR should be 
explored. Machine learning algorithms that combine data from 
different layers of information and different populations and 
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samples have promising potential for individualized preventive 
medicine. 
 
 

8. Are DNA methylation-based predictors of age useful for 
predicting cardiovascular outcomes? 
 
Several DNA-methylation-based predictors of age have been 
developed, such as the epigenetic age estimators proposed by 
Horvath [373] and Hannum et al [374]. These authors have studied 
the associations between these predictors and CVR and 
cardiovascular outcomes [250,375,376]. In the REGICOR study, 
we have conducted a preliminary analysis in which we included 
these predictors in CVR functions, with negative results. However, 
further efforts based on other estimators are required. 

 
 
9. Which DNA methylation signatures are associated with the 

assessed phenotypes in subgroups of the general population? 
 
All of our studies have been conducted in the general adult 
population. However, older individuals may have different DNA 
methylation loci associated with different exposures, CVRFs, CVR, 
and cardiovascular outcomes. Moreover, population subgroups 
with cardio-metabolic diseases such as diabetes, hypertension, 
dyslipidaemia, and obesity may experience different methylome 
changes. Finally, in individuals with other diseases such as cancer, 
mental disorders, or immunodeficiency, the DNA methylation loci 
that are associated with cardiovascular health may be different. 
Further research in different subgroups is needed. 
 
 

10. Which specific DNA methylation patterns are disease drivers 
and where are they located in the genome? 
 
The CpG sites identified should be interpreted at the genomic 
information level in order to better understand DNA methylation 
mechanisms, i.e. whether the causal CpG sites are located within 
CGIs, whether these map to a promoter region, etc. While 
differentially methylated CpG sites involved in the causal pathway 
to cardiovascular outcomes may lie anywhere in the genome, they 
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probably tend to map to certain genomic contexts. In this regard, 
analysing differentially methylated regions may complement the 
information provided by single-nucleotide sites. This would require 
implementation and standardization of the methods. 

 
 
11. Which patterns of differential DNA methylation are inherited 

in cardiovascular outcomes? 
 

The methylation or demethylation of a specific loci may not only 
be triggered by modifiable factors, but may also be inherited and 
transmitted to the next generation. There is a need for new 
methods to distinguish inherited methylome marks from those 
that are dependent on the environment. 
 
 

12. Do those differential patterns correlate with biological 
changes in other layers of molecular information? 

 
Deciphering DNA methylation patterns associated with 
cardiovascular health is only one layer of the complex underlying 
molecular network. Integrating these patterns with those identified 
in other layers of biological information would provide a broader 
picture of what is taking place within our cells in the non-disease 
state, and what changes in the disease state. Apart from DNA 
methylation, other important layers include genetics, 
chromatin/histone changes, ncRNA profiles, transcriptome, 
proteome, and metabolome. Integrating these layers requires new 
and standardized methodology. 
 
 

13. Can DNA methylation loci be influenced by the microbiome 
and the virome? What about acute infections? 

 
To understand the biological networks underlying cardiovascular 
diseases, in addition to integrating molecular mechanisms and 
traits, we also need data on the microbiome and virome in order to 
clarify this complex scenario. In addition, acute infections may 
affect epigenetic mechanisms that modulate CVR, especially 
infection by microorganisms that require components of the host 
cell (such as RNA viruses).  
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14. Are DNA methylation loci potential therapeutic targets? 
 
As for the previous question, the most interesting loci that could be 
targeted for therapeutic purposes would be those with biological 
outcomes that are consistent between different information layers. 
At this point, MR studies are required to disentangle the direction 
of the associations, in order to consider or discard a biomarker as a 
potential therapeutic target.  
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(Source: Women in Science: Fifty Fearless Pioneers Who Changed the World) 

 

“If we assume we have arrived, we stop searching, we stop developing.” 

Jocelyn Bell Burnell (1943). 
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a) General conclusion 1 
 
We identified differential DNA methylated signatures in blood cells 
associated with a lifestyle factor: physical activity.  
 

 Specific conclusions 
 
a.1) We report two CpGs, cg24155427 and cg09565397, that showed 
differential methylation levels in association with leisure-time physical 
activity. 
 
a.2) These two CpGs showed a non-linear dose-response relationship 
with moderate- and vigorous-intensity physical activity, which is 
recommended by current health guidelines. Specifically, at high levels 
of physical activity, higher doses of moderate-vigorous physical 
activity were associated with lower methylation levels at those CpGs. 
 
a.3) cg09565397 maps to DGAT1, which is involved in triglyceride 
metabolism. Therefore, this finding supports the impact of physical 
activity on lipid homeostasis, with DNA methylation as a potential 
intermediate mechanism.  
 

b) General conclusion 2 
 
We identified differential DNA methylation patterns in blood cells 
related to the cardiovascular risk factors load estimated by 
cardiovascular risk independent of age.  
 

 Specific conclusions 
 
b.1) We report eight CpGs that showed hypomethylation related to 
age-independent cardiovascular risk. 
 
b.2) All eight CpGs were also related to classical cardiovascular risk 
factors. All but one were related to smoking, supporting its impact on 
both DNA methylation and cardiovascular risk. Four were associated 
with body mass index, two as novel findings. 
 
b.3) These CpGs map to three intergenic regions, and to the genes 
AHRR, CPT1A, PPIF, and SBNO2, which are involved in processes 
such as inflammation, lipid metabolism, and multifunctional pathways.  
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b.4) Two CpGs were located in the same genetic region, so we 
combined seven of them into CpG-based risk scores, which were 
predictive of incident CVD independently of classical cardiovascular 
risk factors. The risk scores were also associated with measures of 
subclinical atherosclerosis. 
 
 

c) General conclusion 3 
 
We identified differential DNA methylation patterns in blood cells 
associated with cardiovascular and coronary heart diseases and 
evaluated their validity as predictive biomarkers of incident CVD.  
 

 Specific conclusions 
 
c.1) Via a systematic review of this topic, we identified loci with 
differential DNA methylation related to cardiovascular risk, namely 52 
genes with methylation levels with the same reported direction of 
association in at least two epigenome-wide association studies. These 
genes can now be included in candidate-gene strategies to analyse their 
association with cardiovascular outcomes. 
 
c.2) We report seventeen CpGs that had differential methylation levels 
related to prevalent coronary heart disease and incident cardiovascular 
and coronary heart disease. Some of these CpGs are novel findings 
and map to C1QTNF7, RFTN1, ADPGK, DSCAML1, GARS and 
H6PD. 
 
c.3) Most of these CpGs were also associated with classical 
cardiovascular risk factors. Some others highlight processes such as 
inflammation and multifunctional pathways.  
 
c.4) Based on the results of our analysis, we constructed CpG-based 
risk scores, which we found to be related to incident CVD 
independent of classical cardiovascular risk factors. However, these 
scores did not improvement the capacity of risk functions to 
predictive cardiovascular risk. 
 
c.5) The results of the Mendelian Randomisation studies performed to 
assess the causality of the associations were non-conclusive. 
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“If you obey all the rules, you miss all the fun.” 

Katharine Hepburn (1907-2003). 

 

Pepe was one of my grandfathers, whom I never met. He was a 
peasant, and I have been told he was a really intelligent man and a 

book-devourer. He was taken miles away from home to fight in the 
Spanish Civil War, but he ended up practicing as a physician's assistant 

on the front line of combat because he was diagnosed with a heart 
murmur. Once back in Xuño, our hometown, he continued treating 

patients. What a coincidence that heart diseases have shaped both his 
career and mine!



 

 

 




