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Abstract 

 

Despite what was previously considered, the role of RNA is not only to 

carry the genetic information from DNA to proteins. Indeed, RNA has 

proven to be implicated in more complex cellular processes. Recent 

evidence suggests that transcripts have a regulatory role on gene 

expression and contribute to the spatial and temporal organization of the 

intracellular environment. They do so by interacting with RNA-binding 

proteins (RBPs) to form complex ribonucleoprotein (RNP) networks, 

however the key determinants that govern the formation of these 

complexes are still not well understood. In this work, I will describe 

algorithms that I developed to estimate the ability of RNAs to interact 

with proteins. Additionally, I will illustrate applications of 

computational methods to propose an alternative model for the function 

of Xist lncRNA and its protein network. 

 

Finally, I will show how computational predictions can be integrated 

with high throughput approaches to elucidate the relationship between 

the structure of the RNA and its ability to interact with proteins. I 

conclude by discussing open questions and future opportunities for 

computational analysis of cell’s regulatory network. 

 

Overall, the underlying goal of my work is to provide biologists with 

new insights into the functional association between RNAs and proteins 

as well as with sophisticated tools that will facilitate their investigation 

on the formation of RNP complexes. 



 

  



 xv 

Resumen 

 

A pesar de lo que se consideraba anteriormente, el papel del ARN no es 

solo transportar la información genética del ADN a las proteínas. De 

hecho, el ARN ha demostrado estar implicado en muchos procesos 

celulares más complejos. La evidencia reciente sugiere que los 

transcriptos tienen un papel regulador en la expresión génica y 

contribuyen a la organización espacial y temporal del entorno 

intracelular. Lo hacen interactuando con proteínas de unión a ARN 

(RBP) para formar redes complejas de ribonucleoproteína (RNP), sin 

embargo, los determinantes clave que rigen la formación de estos 

complejos aún no se conocen bien. En este trabajo, describiré algoritmos 

que he desarrollado para estimar la capacidad de los ARN de interactuar 

con las proteínas. Además, ilustraré aplicaciones de métodos 

computacionales para proponer una maquinaria alternativa para el Xist 

lncRNA y su red de interacciones. 

 

Finalmente, mostraré cómo las predicciones computacionales pueden 

integrarse con enfoques de alto rendimiento para dilucidar la relación 

entre la estructura del ARN y su capacidad para interactuar con las 

proteínas. Concluyo discutiendo preguntas abiertas y oportunidades 

futuras para el análisis computacional de la red reguladora de la célula. 

 

En general, el objetivo subyacente de mi trabajo es proporcionar a los 

biólogos nuevas ideas sobre la asociación funcional entre ARN y 
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proteínas, así como herramientas sofisticadas que facilitarán su 

investigación sobre la formación de complejos RNP. 
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Preface 

 

In this thesis I will present the work in which I have been directly 

involved during my doctorate studies. The first two projects, presented 

in Chapters I and II, include the development of two algorithms that 

constitute the evolution of the catRAPID algorithm which was 

previously published by Tartaglia’s group. These two methods use as 

features the physico-chemical and structural properties of the protein and 

RNA chains and they make use of neural networks for their prediction 

procedure. In more detail, Chapter I presents the Global Score approach, 

which is a method for classifying interacting from non-interacting 

protein-RNA pairs. Chapter II on the other hand, introduces the 

omiXcore approach, a method for predicting the interaction affinity for a 

protein-RNA pair trained on Enhanced Crosslinking and 

Immunoprecipitation data. Both methods can be used in 

complementarity and they are optimized for long transcripts. The 

Chapter III of this thesis illustrates an application of the Global Score 

method. In more detail, that Chapter focuses on the process of X-

chromosome inactivation by Xist long non-coding RNA and presents the 

hypothesis that Xist uses phase separation to perform its function. 

 

Finally, Chapter IV demonstrates the results of an extensive investigation 

and analysis on the involvement of the RNA structure in its ability to 

bind proteins. Additionally, an evolutionary hypothesis is presented, that 

connects structured mRNAs with the potential of their protein products 

to physically interact with other proteins providing new insights into the 

layers of the cellular regulatory network. 
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In the Discussion part of the current doctoral thesis, I will highlight the 

main findings of Chapters I to IV and their importance in the scientific 

community. I will also propose my new hypothesis that expands the 

results of Chapter IV and I hope that these perspectives will give 

stimulating ideas for future investigation on the field.  
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Introduction 

 

1 Central dogma of molecular biology 

 

DNA lies at the core of molecular biology since is the key 

macromolecule for the continuity of life. It stores the hereditary and 

genetic information that is passed on from parents to children, providing 

instructions for how and when to make the proteins needed to build and 

maintain functioning cells.  

 

DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) are the two 

naturally occurring varieties of nucleic acids, which are macromolecules 

(polymers) made out of units called nucleotides. In eukaryotes, such as 

plants and animals, DNA is found in the nucleus and is typically divided 

into chromosomes. However, in prokaryotes, such as bacteria, the DNA 

is not enclosed in a membranous envelope, although it is located in a 

specialized cell region called the nucleoid and in that case, chromosomes 

are usually smaller and circular. A chromosome may contain tens of 

thousands of genes, each providing instructions on how to make a 

particular product needed by the cell. Additionally, many of these genes 

encode for proteins, meaning that they specify the sequence of amino 

acids used to build a particular polypeptide. Before this information can 

be used for protein synthesis, however, an RNA copy (transcript) of the 

gene must first be made. This type of RNA is called messenger 

RNA (mRNA) and transmits the genetic information from the DNA to 
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the ribosomes, molecular machines that read mRNA and build proteins. 

This progression from DNA to RNA to protein is called the central 

dogma of molecular biology. 

 

Not all genes store information for protein production. For instance, 

some genes encode ribosomal RNAs (rRNAs), which serve as structural 

components of ribosomes, or transfer RNAs (tRNAs) which are the 

RNA molecules that bring amino acids to the ribosome for protein 

synthesis. Still other RNA molecules, such as microRNAs (miRNAs) 

that act as regulators of other genes or a class of large RNA transcripts 

not coding for proteins termed long non-coding RNAs (lncRNAs), have 

provided new perspectives on the important role of the RNA in gene 

regulation. Processes including protein synthesis, RNA maturation and 

transport and transcriptional gene silencing by chromatin structure 

regulation have been shown to be controlled by this class of lncRNAs 

(Bernstein and Allis, 2005). Intriguingly, there seem to be a linear 

relationship between the complexity of an organism and the number of 

non-coding RNAs produced (Taft et al., 2007) suggesting that 

developmental complexity which is not reflected in the number of 

protein-coding genes maybe mediated by non-coding RNAs. However, 

the mechanisms by which non-coding RNAs contribute to this 

complexity is not completely understood. 
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2 Chemistry and Biology of Nucleic Acids 

 

A nucleotide is one of the structural components of DNA and RNA and 

is made up of three parts, a nitrogen-containing ring structure called a 

nitrogenous base, a five-carbon sugar, and at least one phosphate group 

derived from phosphoric acid. The sugar molecule has a central position 

in the nucleotide, with the base attached to one of its carbons and the 

phosphate group (or groups) attached to another (Figure 1). 

 

 

Figure 1) Components of DNA and RNA, including the sugar (deoxyribose or ribose), 
phosphate group, and nitrogenous base. Bases include the pyrimidine bases (cytosine, 
thymine in DNA, and uracil in RNA, one ring) and the purine bases (adenine and 
guanine, two rings). The phosphate group is attached to the 5' carbon. The 2' carbon 
bears a hydroxyl group in ribose, but no hydroxyl (just hydrogen) in deoxyribose. 
[Adapted from Biology. OpenStax CNX] 
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2.1 Nitrogenous bases 

 

Each nucleotide in DNA contains one of four possible nitrogenous bases: 

adenine (A), guanine (G) cytosine (C), and thymine (T). Adenine and 

guanine are purines, meaning that their structures contain two fused 

carbon-nitrogen rings. Cytosine and thymine, in contrast, 

are pyrimidines and have a single carbon-nitrogen ring. RNA 

nucleotides may also contain adenine, guanine and cytosine bases, but 

instead of thymine they have another pyrimidine-derived base called 

uracil (U). As shown in the Figure 1, each base has a unique structure, 

with its own set of functional groups attached to the ring structure. 

 

2.2 Sugars 

 

DNA and RNA nucleotides, apart from having slightly different sets of 

bases, they also have different sugars. The five-carbon sugar in DNA is 

called deoxyribose, while in RNA, the sugar is ribose and differs from 

deoxyribose for a hydroxyl group attached to the 2’-position of the 

pentose sugar (Figure 2).  

 

 

Figure 2) The difference between the ribose found in RNA and the deoxyribose found 
in DNA is that ribose has a hydroxyl group at the 2′ carbon. [Adapted from Concepts 
of Biology, 1st Canadian Edition, Charles Molnar and Jane Gair] 
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2.3 Phosphate 

 

In a cell, a nucleotide before to be added to the end of a polynucleotide 

chain will contain three phosphate groups. When the nucleotide is added 

to a DNA or RNA chain, it loses two phosphate groups and, 

consequently, in a polynucleotide chain each nucleotide has just one 

phosphate group. 

 

2.4 Polynucleotide chains 

 

At the 5’ end, or the beginning of the chain, the first nucleotide has a 5’ 

phosphate group. At the other end, called the 3’ end, the last nucleotide 

has a 3’ hydroxyl structure. As a consequence of the above structure, the 

polynucleotide chain has directionality which means that it has two ends 

that are different from each other. 

 

DNA sequences are as a rule written in the 5' to 3' direction, meaning 

that the nucleotide at the 5' end comes first and the nucleotide at the 3' 

end comes last. New nucleotides are added to a strand of DNA or RNA, 

at the 3’ end, with the 5′ phosphate of an incoming nucleotide attaching 

to the hydroxyl group at the 3’ end of the chain. This makes a chain with 

each sugar joined to its neighbours by phosphodiester linkages. 
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3 Properties of DNA and RNA 

 

Deoxyribonucleic acid, or DNA, chains are typically found in a double 

helix, a structure in which two matching (complementary) chains are 

stuck together, as shown in Figure 3. The sugars and phosphates lie on 

the outside of the helix, forming the backbone of the DNA. The 

nitrogenous bases that extend into the interior are bound to each other by 

hydrogen bonds. 

 

The two strands of the helix run in opposite directions, meaning that the 

5′ end of one strand is paired up with the 3′ end of its matching strand. 

This is referred to as antiparallel orientation and is important for the copy 

of DNA. The base pairing is highly specific meaning that A can only pair 

with T or U by two hydrogen bonds, and G can only pair with C by three 

hydrogen bonds (Figure 3). Because of the canonical base pairing, the 

sequence of one strand can precisely define the sequence of the other in 

a complementary way.  

 

 

Figure 3) Hydrogen bonding between complementary bases holds DNA strands 
together in a double helix of antiparallel strands. Thymine forms two hydrogen bonds 
with adenine and guanine forms three hydrogen bonds with cytosine. [Adapted from 
Biology. OpenStax CNX] 
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Contrary to the DNA, the RNA in its native state exists in a single-

stranded conformation. This feature allows the RNA to be more dynamic 

and with a higher degree of freedom than the double-stranded DNA. 

Because of its higher flexibility, the RNA is able to form interactions 

along its primary structure. The pattern of the internal interactions for an 

entire RNA molecule is defined as its secondary structure (Doty et al., 

1959). Between the possible base pairing interactions of the four RNA 

bases (Adenine, Cytosine, Guanine and Uracil), only six are stable (AU, 

GU, GC, UA, UG, CG). Accordingly, these are the most common 

interactions within RNA molecules. The GC/CG pairs are the strongest 

and thus the most stable ones since they are formed by 3 hydrogen bonds, 

while the rest four are formed only by 2 hydrogen bonds. The 

consequence of these base pairing interactions, is that the RNA is able to 

form different structural elements of various lengths. These structural 

elements are the following: 

 

- Stems: double-stranded regions. The most stable RNA structural 

motif and usually the longest one. 

- Hairpin-loop: a very common structure which is the combination 

of strong complementary bases separated by unpaired 

nucleotides. 

- Internal-loop: a loop that is internal to consecutive stems and has 

the same number of nucleotides on the left and on the right side. 

- Bulge: a specific sub-class of internal-loop where only one side 

of the loop has unpaired nucleotides while the other is connected 

to the stem. 

- Multibranch-loop: a complex structure composed of different 

sub-loop structured. 
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- Pseudoknots: the most complex structure. Is formed when a loop 

region and bases outside of the loop interact. 

 

4 Physical and Chemical properties of Proteins 

 

Proteins are one of the most abundant organic molecules in living 

systems and have the most diverse range of functions of all 

macromolecules since they are implicated in the majority of cell’s 

processes. Each cell in a living system may contain thousands of proteins 

with varying structures and functions. They are all, however, polymers 

of amino acids, arranged in a linear sequence. Each amino acid has the 

same fundamental structure, which consists of a central carbon atom, 

also known as the alpha (α) carbon, bonded to an amino group (NH2), a 

carboxyl group (COOH), and to a hydrogen atom. Every amino acid also 

has another atom or group of atoms bonded to the central atom known as 

the R group (Figure 4 left).  

In the simplest amino acid, glycine, the R group is hydrogen (–H), but in 

other naturally occurring amino acids, the R group may be an alkyl group 

or a substituted alkyl group, a carboxylic group, or an aryl group. The 

nature of the R group determines the particular chemical properties of 

each amino (that is, whether it is acidic, basic, polar, or nonpolar). In 

total, there are 20 standard amino acids commonly present in proteins. 

Ten of these are considered essential amino acids in humans because the 

human body cannot produce them and they are obtained from the diet 

(Figure 4 centre). 
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Each amino acid is attached to another amino acid covalently by a 

peptide bond, and the resulting chain is known as a polypeptide. The 

sequence and number of amino acids ultimately determine the protein's 

shape, size, and function (Figure 4 right). Each polypeptide has a free 

amino group at one end, called the N terminal or the amino terminal. At 

the other end has a free carboxyl group, also known as the C or carboxyl 

terminal. After protein synthesis (translation), most proteins are 

modified. These are known as post-translational modifications, such as: 

cleavage, phosphorylation, or the addition of other chemical groups. 

Only after these modifications the protein is fully functional. 

 

  

Figure 4: Left) Amino acids have a central asymmetric carbon to which an amino 
group, a carboxyl group, a hydrogen atom, and a side chain (R group) are attached. 
Center) There are 20 amino acids commonly found in proteins, each with a different R 
group (variant group) that determines its chemical nature. Right) Peptide bond 
formation is a dehydration synthesis reaction. The carboxyl group of one amino acid is 
linked to the amino group of the incoming amino acid. In the process, a molecule of 
water is released. 
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5 The protein-RNA interaction event 

 

RNA and proteins are two interconnected molecules, which means that 

they are involved in the regulation of many aspects of each other’s life. 

From their transcription to the end of their life RNAs are coated with 

proteins. The RNA-binding proteins (RBPs) orchestrate all phases of 

post-transcriptional RNA regulation, including splicing, 

polyadenylation, localization, transport, translation, stability and 

degradation (Jankowsky and Harris, 2015). Nevertheless, RNA also has 

a regulatory role on the fate of the proteins. There has been substantial 

work showing that there is a functional crosstalk between RNAs and 

their protein partners (Delaunay and Frye, 2019; Yao et al., 2019). For 

instance, it has been demonstrated that lncRNAs can influence proteins 

by acting as guides, scaffolds, signals or decoys mediating their functions 

including processing, modification, localization stability and translation 

(Wang and Chang, 2011). This relationship results in a very complex 

regulatory interacting network, since different partners are necessary for 

each process and they can either bind simultaneously, subsequently, or 

in a mutually exclusive manner.  

 

Perturbations or mis-regulation of these networks can lead to cellular 

dysfunctions that have been linked with diseases such for instance 

amyotrophic lateral sclerosis (ALS), Creutzfeuld-Jakob, Alzheimer’s, 

and Parkinson’s diseases (Cid-Samper et al., 2018; Marchese et al., 

2017). In this context, it is crucial to study protein-RNA assemblies to 

better understand the etiopathogenesis of specific diseases and to design 
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new therapeutic strategies. Hopefully, due to exciting advances in 

experimental technologies we have obtained a better insight of the 

binding preferences and specificities of ribonucleoprotein complexes. 

These advances include many high-throughput methods, that can 

identify RNAs bound by specific proteins in vivo, methods that can 

predict the RNA binding potential of a protein, and methods that identify 

the RNA binding sites on a genome-wide scale.  

 

  



 12 

5.1 RNA-binding proteins and modes of binding 

 

RBPs are a class of proteins that have the ability to bind RNA. It has 

been estimated that the human genome contains around 2000 RBPs, 

however the estimation of their exact number, nature and function has 

been proven to be a difficult task (Hentze et al., 2018). Many RBPs are 

able to interact with their RNA targets through a set of structurally well-

defined RNA binding domains (RBD). Some examples of these domains 

are RNA recognition motif (RRM), hnRNP K homology domain (KH), 

DEAD motif, double-stranded RNA-binding motif (DSRM) or zinc-

finger domain. These domains can work independently or synergistically 

during the interaction event. They often occur multiple times in the 

sequence and can exist as a combination of different RBDs in order to 

engage RNA, which may happen in sequence and/or structure specific 

manner. 

Although initially RBDs were considered the key factors to recognize 

the RNA targets, recent advances in determining the elements and 

structures of protein-RNA complexes have revealed the existence of a 

high number of interactions that do not require the presence of canonical 

RBDs (Castello et al., 2016; Cirillo et al., 2013). These findings indicate 

that inferring RNA binding from the protein sequence alone is not a 

trivial task and that there are still many open questions about the 

mechanism by which proteins bind RNAs. 
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5.2 Experimental methods to study protein-RNA interactions 

 

There has been a large advance in the methods for studying the physical 

interactions between RNA and protein. Regarding to the target molecule 

of interest, these methods can be classified to (1) RNA-centric methods, 

when they study the proteins that bind a target RNA; and (2) protein-

centric methods, when they analyze the RNAs that bind a target protein. 

Each method has particular advantages and drawbacks, and thus their 

selection must be tailored to the relevant biological question. 

 

5.2.1 RNA-centric methods 

 

In RNA-centric approaches, the goal is to identify the binding positions 

of a broad spectrum of RBPs on a specific transcript or set of transcripts 

and can be subdivided in to two categories (Marchese et al., 2016): 

 

• in vitro approaches, where a tagged RNA construct is generated and 

bound to a solid support. Cell lysate is prepared and proteins from 

lysate are captured using the tagged RNA in vitro.   

 

• in vivo approaches, where the target RNA is crosslinked to specific 

interacting RNA-binding proteins in living cells using UV, 

formaldehyde or other cross-linkers. Cells are lysed and the RNA-

protein complexes captured from solution. 
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In both cases, the complex is washed to remove non-specific interactions, 

and finally mass spectrometry is most commonly used to identify the 

bound RBPs.  

5.2.2 Protein-centric methods 

Protein-centric methods start with a protein of interest to characterize its 

interaction with RNA. These approaches can be then classified as in vitro 

or in vivo assays. 

Several new in vitro methods allow the screening of interactions between 

proteins and libraries of randomly generated RNA sequences. For the 

interaction analysis they combine the use of microarray and microfluidic 

platforms with molecule fluorescent labelling and RNA sequencing 

technologies. RNAcompete for instance, is a high-throughput in vitro 

binding assay that captures a more complete specificity profile by 

quantifying the relative affinity of an RBP to a pre-defined set of 250,000 

RNA fragments (Ray et al., 2017). 

On the contrary, it is common of in vivo assays to either directly purify 

the protein to find associated RNAs or use selective chemical 

modification of RNA in a way that relies on its association with the 

protein of interest (McHugh et al., 2014). 
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The overwhelming majority of studies that identify RNAs bound to a 

given protein employ CLIP-seq, term that embraces a set of methods 

based on UV-crosslinking followed by protein immunoprecipitation and 

sequencing. The UV-crosslinking consist in radiate an in vivo sample 

with UV light at approximately 254nm to create covalent bonds between 

RNA and protein (Smith and Aplin, 1966). Then the RNA is fragmented 

by a RNase treatment and the protein of interest is immunoprecipitated 

together with its associated cross-linked RNAs. These RNAs are then 

reverse transcribed, PCR amplified and finally high throughput 

sequenced to retrieve reads that uniquely map to the genome. 

Bioinformatics analysis is then used to map reads back to their transcripts 

of origin and identify protein binding sites (Kishore et al., 2011; Zhang 

and Darnell, 2011). 

 

In order to overcome limitations of the first employed CLIP-seq protocol 

such as the DNA mutations caused by UV light (König et al., 2012), a 

vast number of alternative methods have been proposed and from which 

PAR-CLIP, iCLIP and eCLIP are the most common.  

• In PAR-CLIP (photoactivatable ribonucleoside CLIP) protocol, 

cells are preincubated with photo-reactive ribonucleosides, 

which enables the use of UVA light (365 nm) for crosslinking 

(Spitzer et al., 2014). Interactions are isolated and the protein 

linkages are removed allowing RNA purification and reverse 

transcription, while mutations are left by the linkages at the 

interaction points. After sequencing, these characteristic 

mutations are easily identified against the reference sequence, 

allowing single-nucleotide resolution of binding events. 
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Unfortunately, this protocol is restricted to conditions that allow 

RNA alteration such as cell culture and single-celled organisms. 

 

• iCLIP (individual-nucleotide resolution CLIP) can be used in 

most experimental systems (Konig et al., 2011). It uses a 3’ 

exonuclease to degrade protein-bound RNA. This enzyme 

digests the isolated RNA but stops at the cross-linked protein. An 

adapter is then ligated to this position. In order to recover 

truncated cDNA, which may constitute a large fraction of the 

total cDNA fragments, a single adaptor is ligated to the 3′-end of 

RNA fragments before reverse transcription. After 

circularization, re-linearization, reverse transcription and 

sequencing, the presence of this adapter in the sequence 

immediately follows the exact binding site in the RNA.  

 

• In the case of eCLIP (enhanced CLIP) notably, adaptors are 

ligated first at the 3′-end of RNA and next at the 3′-end of the 

cDNA, hence bypassing a relatively low-yield circularization 

step (Van Nostrand et al., 2016). In addition, eCLIP includes a 

parallel analysis of the size-matched input (SM-input) control to 

identify the most abundant non-specific RNA fragments 

contributing to background signal. 

 

A common difficulty in CLIP-seq methods is the amount of 

immunopurified cross-linked RNA, which can become a problem due to 

poor crosslinking efficiency or low RNA–ribonucleoprotein complex 

abundance. If sufficient UV cross-linked complexes can’t be purified 

then the standard method is RIP-seq, which conceptually can be thought 
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as a CLIP-seq method without the removal of non-crosslinked RNAs, 

but with the expense of lower signal-to-noise ratios. 

 

More recently two protein-centric methods appeared that do not require 

protein purification or UV cross-linking and rely on RNA chemical 

modifications. In TRIBE method, the RBP of interest is coupled to the 

catalytic domain of the Drosophila RNA-editing enzyme ADAR and the 

fusion protein is expressed in vivo (McMahon et al., 2016). RBP targets 

are marked with novel RNA editing events and identified by RNA 

sequencing. In RNA-tagging protocol the RBP is fused to the enzyme 

poly(U) polymerase, which adds poly(U) tails to bound RNAs. These 

tagged RNAs are then identified from a pool of total RNA using both 

targeted and high-throughput assays. 

 

5.3 Computational methods to study protein-RNA 

interactions 

 

Despite the technical advances mentioned above, the experimental time, 

effort, and expenses have created a demand for computational methods 

that can predict the binding partners or sites in RNA-protein complexes. 

Computational tools are particularly useful to predict potential 

ribonucleoprotein associations and to narrow down a list of interaction 

partners for experimental validation, inexpensively and quickly. 
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The majority of these tools make use of features that can be derived either 

from the sequence of the protein and RNA or from the structure. 

Respectively, depending on the kind of features exploited, the 

computational methods can be classified as sequence-based and/or 

structured-based methods. Sequence based methods take advantage of 

the information collected within primary sequences of protein and RNA. 

In general, statistical analysis of a large collection of sequences (training 

data) known to be involved in an interaction leads to the creation of a 

model that is further used to identify novel binding partners or binding 

sites. In contrast, structure-based methods use the geometric shapes of 

protein and/or RNAs to derive this information. Both methodologies 

however can return binary predictions (binding or not binding) or scored 

based predictions (e.g. affinity of interaction) 

 

5.3.1 Sequence-based features of proteins and RNA 

 

The methodologies that fall in this category extract features and 

properties for each molecule (protein/RNA) looking at their primary 

sequence. The most common features that they use are: 

 

• Amino acid composition 

The simplest way to encode a sequence of amino acids, each of which 

can have 20 different values, is by standard binary encoding also known 

as one-hot encoding, which encodes each amino acid into a 20-

dimensional binary vector 𝜈(𝛼). This vector, representing an amino acid 

of type 𝛼, is defined by a binary encoding, with 𝑣(𝑖) = 1	if 𝑖 = 𝑎, and 
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zero otherwise. A sequence S of length N is thus represented with an 

array of numerical values of size 20N (Baldassi et al., 2014; Jones et al., 

2012).  

 

• Chemical and Physical Features  

There are more than hundred different physicochemical features for each 

amino acid. Especially, hydrophobicity, structural disorder and polarity 

are relevant to characterize the RNA-binding ability of proteins and thus 

the use of the corresponding scales is quite common among 

computational tools. Methods that consider this kind of information 

usually translate the sequence of amino acids to a sequence of values 

derived from the corresponding physicochemical scale, or make use of 

encoding methodologies such as for instance encoding by Composition, 

Transition and Distribution (CTD) (Govindan and Nair, 2011). 

 

• Sequence Similarity  

Sequence similarity (also referred to as sequence conservation) is 

frequently used for RNA-binding site prediction. The BLAST and PSI-

BLAST programs are used to compare the similarities among various 

protein sequences. Generally, multiple sequence alignment (MSA) were 

obtained by comparing query sequences against the NCBI non-

redundant database and if the homologous sequences are known to be 

RNA-binding, then the query protein can also be regarded as an RNA-

binding protein (Kumar et al., 2008). 
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• Evolutionary Information   

Evolutionary information has often been introduced in functional site 

predictors in recent studies, including RNA-binding site prediction. 

Previous studies showed that Position-Specific Scoring Matrix (PSSM) 

(an important form of evolutionary information) greatly improved the 

performance of RBPs prediction. PSSMs were used widely in pervious 

prediction studies because they provide the likelihood of a particular 

residue substitution based on evolutionary information (Fernandez et al., 

2011). 

 

5.3.2 Structure-based features 

 

• The Secondary Structure (SS)  

 The secondary structure (SS) provides local and geometric patterns, 

which can be obtained in two ways: i) if the structure is available, the 

real SS could be obtained by publicly accessible databases, like the 

Protein Data Bank (PDB); ii) if not, protein or RNA SS can be predicted 

by a vast number of methods. For instance, in the case of RNA, there two 

main approaches that can infer the SS, thermodynamics-based 

approaches, such as Vienna package and phenomenological potentials 

such as CROSS (Delli Ponti et al., 2017; Gruber et al., 2015). 

 

• Accessible Surface Area (ASA)  

The accessible surface area (ASA) or solvent-accessible surface area 

(SASA) is the surface area of a biomolecule that is accessible to a 

solvent. Since binding residues tend to be exposed in order to interact, 
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calculation of solvent accessibility focus on predicting the binding-site 

of the interaction. The relative ASA could be calculated if the molecular 

structure is available or predicted otherwise (Faraggi et al., 2014). 

 

The Table 2 summarizes some of the most popular computational 

methods for the identification of RNA-binding proteins and protein-

RNA interactions. 

 

5.3.3 Methodological Approaches 

 

5.3.3.1 Machine – learning 

The majority of the computational methods to study protein-RNA 

interactions use machine-learning. The term “machine learning” refers 

to a broad list of computational algorithms able to derive from a data set 

relevant prediction patterns that are not known in advance. In this sense, 

the algorithm “learns” the underlying rules from the data itself.  

 

Machine-learning algorithms can be divided into unsupervised and 

supervised super-classes. An unsupervised algorithm tries to make sense 

out of un-labelled data by extracting features and patterns on its own, 

common examples include the Principle Component Analysis and the k-

means clustering. Interestingly, unsupervised clustering is important for 

the analysis of single-cell RNA sequencing (scRNA-seq) data as it 

provides large catalogues detailing the transcriptomes of individual cells 

and to define cell types. 



22 

In contrast, supervised algorithms predict an output based on labelled 

data. Then they can use this output to evaluate their performances by 

comparing it with the training data. The most widely used algorithmic 

methodology are the support vector machines (SVMs), that have as their 

fundamental basis the estimation of a threshold that can maximally 

separate the labelled classes of the training set into the feature space. An 

example is RNApred which combines amino acid composition and 

PSSM profiles and uses the SVM method to discriminate between RBPs 

and non-RBPs (Kumar et al., 2011). 

5.3.3.2 Artificial Neural networks and deep learning approaches 

In recent years, advanced algorithms based upon Artificial Neural 

Networks (ANNs) are becoming increasingly popular in studying RNA-

protein interactions at a transcriptome wide level (Zhang et al., 2016). 

As the name suggests, ANNs were inspired by the biological function of 

neurons as they operate in image processing (Cao et al., 2018). In the 

context of ANNs, a “neuron” takes multiple data inputs (analogous to 

neurotransmitters within a synapse) and applies a weight to each signal 

to provide information for the so-called activation function. Depending 

on the application, the output may be either binary or continuous. A 

neural network can be constructed by grouping many such computational 

neurons in layers, so that the output from one neuron may be used as the 

input in the next layer. The layers between the input and output units are 

referred to as “hidden”, as the values within are not observed at the input 

or output data.  
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Deep Neural Networks (DNNs) can be understood as an ANN consisting 

of several non-linear layers, that is, the activation function is nonlinear, 

and the neural network may contain loops or cycles between layers. The 

deep learning architecture seeks to cyclically optimize the weight 

parameters in each layer. One of the first attempts on integrating deep-

learning concepts in bioinformatics was the DeepBind approach that 

allows prediction of sequence specificities of DNA and RNA-binding 

proteins (Alipanahi et al., 2015). 

 

The success of machine learning and deep learning approaches on 

predicting interactions between transcripts and proteins is largely 

dependent on the availability of large training datasets which usually 

come from multiple experiments (i.e. the RNA sequence specificities for 

an RBP of interest). Thus, a major limitation of these approaches comes 

when the training data has limited size or is biased. In the first scenario, 

when the size of the training data is small, the model will under-fit, 

meaning that the model hasn’t seen and trained on enough data, thus 

being unable to make accurate predictions. On the other hand, when the 

training data is biased towards some specific data points, will lead the 

model to overfit, which essentially means that the function of the 

algorithm has closely fitted to a limited set of data points and cannot 

successfully generalize. Consequently, there is a huge discussion and 

research in order to regularize the predicting methods and avoid 

overfitting and underfitting. 
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5.3.4 The catRAPID approach  

 

catRAPID is an algorithm that was developed in our group to evaluate 

the interaction propensities of polypeptides and nucleotide chains 

(Bellucci et al., 2011). The features that it uses are the physicochemical 

properties of the two chains as well as structural information, that in the 

case of the RNA, is predicted by Vienna package (see chapter 5.3.2), 

while in the case of the protein is derived directly from the sequence. 

catRAPID  was trained on a large set of protein–RNA pairs available in 

the Protein Data Bank (Berman et al., 2000) to discriminate interacting 

and non-interacting molecules and can be applied to predict the protein 

associations with coding and non-coding RNAs. When the input 

sequences exceed the length compatible with the computational 

requirements (i.e.: protein length > 750aa or RNA length > 1200 nt), 

catRAPID cannot be directly used to calculate the interaction propensity. 

To overcome this limitation, a procedure called fragmentation was 

developed, which cuts polypeptide and nucleotide sequences into 

fragments followed by the prediction of the individual interaction 

propensities. Chapters I and II present two complementary methods for 

integrating the individual scores coming from the fragments into one 

representative score. 

 

  



 25 

 

Table 2. List of Computational Methods for the Identification of Protein–RNA 
Interactions 

  

Prediction Examples Advantages Disadvantage References 

Binding 
motif 
(RNA) 

MEME de 
novo binding 
site discovery 

High-throughput 
data are required 
as input 

(Bailey et al., 2009)  

SeAMotE Sequence 
complexity is a 
limitation 

(Agostini et al., 2014) 

Binding 
residue 

Pprint Evolutionary 
information 

RNA-binding 
domains cannot be 
identified 

(Kumar et al., 2008) 

BindN+ (Wang et al., 2010) 

RNAbindR+ (Walia et al., 2014) 

Domain 
(protein) 

HMMER Domain 
recognition 

Annotation of 
RNA-binding 
domains are 
required 

(Finn et al., 2011) 

catRAPID  

signature 

Annotation of 
RNA-binding 
domains are 
not required 

Single amino acid 
resolution has not 
been implemented 

(Livi et al., 2016) 

RNA–
protein 
interaction 

catRAPID Runs on high-
throughput 
data 

RNA < 1200 nt (Agostini et al., 
2013b; Bellucci et al., 
2011) Protein < 750 aa 

RPISeq High 
sensitivity 

Low specificity (Muppirala et al., 
2011) 

Max 100 
sequences per run 
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6 Beyond the Protein-RNA complex: Membrane-less 

organelles 

Organization of the densely packed intracellular environment requires 

compartmentalization. This is particularly important for gene expression 

as coordinated processes must occur in an ordered fashion. In eukaryotic 

cells, double stranded DNA (dsDNA) is sequestered in the nucleus and 

packaged by histones. Within the nucleus, DNA is organized into 

heterochromatin and euchromatin to control the relative access to the 

transcriptional machinery. Transcribed mRNA undergoes splicing, 

polyadenylation, and capping prior to export to the cytoplasm. Each of 

these processes is under spatiotemporal control that ensures correct 

processing and localization. 

Just as membrane-enclosed organelles (e.g., nuclei, mitochondria, 

endoplasmic reticulum, golgi apparatus) serve to organize biological 

processes into discrete cellular domains, non-membrane enclosed 

domains organize biological activities throughout the cell. These 

assemblies have been conceptualized as Ribonucleoprotein (RNP)-

containing hubs. There, complex biochemical reactions take place and 

are referred to as membrane-less organelles (MLO) due to their ability to 

concentrate factors associated with a biological process. MLOs have 

been found either to the nucleus or in the cytoplasm. Several of those that 

occur in the nucleus include the nucleoli, nuclear Speckles and Cajal 

bodies while common examples in the cytoplasm are the processing-
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bodies (P-bodies) and the stress granules (Brangwynne et al., 2011; Nott 

et al., 2015). 

Regardless of their sub-cellular location, there are three basic principles 

underlying the formation of membrane-less organelles. They arise from 

a phase separation of proteins or proteins and nucleic acids from the 

surrounding milieu. They remain in a liquid state but with properties 

distinct from those of the surrounding matter and importantly, proteins 

exchange with these bodies in a matter of seconds opposite to what is 

observed in stable complexes, supporting the notion of constant access 

within these highly concentrated molecular assemblies (Brangwynne, 

2013; Brangwynne et al., 2011, 2009; Weber and Brangwynne, 2012). 

In addition to the aforementioned principles, various MLOs appear 

inherently structured with cores surrounded by shells, suggesting not just 

RNP aggregation but the existence and maintenance of higher-order 

structures as a result of liquid-liquid phase separation (LLPS) of different 

components (Feric et al., 2016; Jain et al., 2016; Wheeler et al., 2016).  

From the observations described above, a picture emerges suggesting 

that the material and the interactions among the molecules in a given 

MLOs determines its biological functionality. Importantly, MLOs can 

lose their liquid-like characteristics by transitioning into a more rigid and 

gelatinous state (Qamar et al., 2018). Indeed, evidence is accumulating 

indicating that both aberrant formation of MLOs and imbalances 

between liquid-like and solid-like states of particular MLO components 

could be crucial for the cause of many diseases. For instance, many 

neurodegenerative diseases (i.e., Parkinson’s Disease, PD; Amyotrophic 
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Lateral Sclerosis, ALS; Frontotemporal Lobar Degeneration, FTLD), 

amyloidoses, prion diseases as well as a number of inherited myopathies 

are presently characterized as stress-induced protein conformational 

disorders or proteinopathies (Wolozin, 2012). 

6.1 Phase separation – Protein Characteristics 

Different groups have attempted the identification of the protein 

components of membrane-less organelles (Andersen et al., 2005; Boke 

et al., 2016; Fong et al., 2013; Jain et al., 2016) and define the molecular 

determinants of phase separation. These studies suggest that 

multivalency, which refers to the effective numbers of adhesive 

domains/motifs that provide specificity in intra- as well intermolecular 

interactions, is a defining feature of proteins (and perhaps RNA 

molecules) that drive phase transitions. Multivalency can come about in 

at least one of three ways:  

(i) folded proteins, with well-defined interaction surfaces, can

form oligomers that engender multivalency of other

associative patches, which participate in stereospecific

interactions,

(ii) folded domains can be interspersed by flexible spacers to

generate linear multivalent proteins and

(iii) intrinsically disordered regions (IDRs) can serve as scaffolds

for multiple, distinctive short linear motifs.
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The common conclusion however, of the majority of these studies is that 

the list of proteins that phase separate into droplets is enriched in low 

complexity amino acid composition domains (LCDs) including tandem 

repeats (TRs) of individual amino acids or amino acid motifs, such as 

polyglutamine (polyQ) and polyasparagine (polyN) domains (Altmeyer 

et al., 2015). These LCD-containing proteins belong to the general class 

of intrinsically disordered proteins (IDPs) and can undergo liquid-liquid 

phase separation more readily, either self-aggregating or upon binding to 

nucleic acids or other proteins as in many liquid-like RNP granules 

where IDRs can aid in their assembly (Decker et al., 2007; Gilks et al., 

2004; Reijns et al., 2008). It is important to note that IDPs are about a 

third of the eukaryotic proteome (Dunker et al., 2015; Toretsky and 

Wright, 2014; van der Lee et al., 2014). Hence, we can speculate that 

many unique and uncharacterized liquid droplets could exist and efforts 

in order to characterize them will help in our understanding of the 

organization of matter in the cell.  

6.2 Phase separation – The RNA view 

Despite the flurry of all these studies demonstrating the importance of 

IDPs in the process of phase separation, the role of RNAs is yet less 

understood. MLOs frequently contain nucleic acids, especially RNA and 

the proteins associated with them often possess RNA-binding domains 

or motifs (Boeynaems et al., 2017; Jain et al., 2016), suggesting that the 

RNA has an important role in the formation of MLOs. On the one hand, 

many nuclear MLOs form in coordination with transcription of specific 

RNAs. For instance, the assembly of nucleoli is coordinated by pre-
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rRNA transcription (Falahati et al., 2016) and nuclear paraspeckles are 

formed exclusively from NEAT1 transcription sites (Clemson et al., 

2009). The function of these RNAs has been summarized with the term 

“architectural RNAs” (arcRNAs) (Yamazaki et al., 2018) and by 

dynamically regulating their transcription and turnover, the formation 

and dissolution of nuclear MLOs can be achieved. On the other hand, the 

formation of cytoplasmic MLOs is probably primarily governed by the 

availability of existing RNPs, proteins, or RNAs serving structural 

functions. However, regardless of whether RNA itself scaffolds the 

formation of MLOs or becomes recruited into an existing network, its 

content affects the properties of assembled MLOs, such as for instance 

the material exchange rates as well as their rigidity and their shape 

(Audas et al., 2016; Elbaum-Garfinkle et al., 2015; Jain and Vale, 2017; 

Langdon et al., 2018; Van Treeck et al., 2018; Zhang et al., 2015). More 

accurately, RNAs facilitate LLPS of particular IDR-containing proteins 

by reducing the protein concentration needed for their phase-separation 

(Burke et al., 2015; Lin et al., 2015; Molliex et al., 2015). For example 

in the case of fragile X-associated tremor/ataxia syndrome (FXTAS), our 

group reported that FMR1 is responsible for the sequestration and finally 

co-aggregation with TRA2A (Cid-Samper et al., 2018). This 

sequestration is depended to the presence of CGG repeats present in the 

3’ UTR of FMR1. TRA2A shows diffuse pattern in cells that do not 

overexpress those repeats while opposite and granular patterns are 

identified in a FXTAS permutation carrier with overexpressed CGG 

repeats. 

Overall, a main driver that influences this formation is concentration. 

Interestingly, a recent study showed that several RBPs implicated in 
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neurodegeneration, phase-separate in vitro in concentrations similar to 

those physiologically found in the nucleus (Maharana et al., 2018). On 

the contrary, inside cellular nucleus the same proteins remained diffused 

even under cellular stress conditions, that would drive their condensation 

into cytoplasmic stress granules. The authors showed that in vitro high 

amounts of short, nonspecific RNAs keep prion-like RBPs soluble. 

Conversely, longer RNAs that can form higher order secondary 

structures and which specifically bind RBPs promote phase-separation. 

For example, highly structured RNAs such as Neat1 act as scaffolds that 

promote the nucleation of condensates in the high–RNA concentration 

environment of the nucleus. A similar scenario may apply for stress 

granules in the cytoplasm, which contain large amounts of structured 

polyadenylated mRNAs (Cerase et al., 2019). 

6.3 The role of RNA structure 

RNAs form various structural elements, often in well-defined contexts, 

such as short and long stems, hairpins, helical regions, tetra-loops, or G-

quadruplexes, which contribute to the overall complexity of the three-

dimensional space a given RNA can obtain (Miao and Westhof, 2017). 

In addition, these structural motifs also attract non-specific protein 

binders, potentially through interactions with IDRs or Prion like 

Domains (PrLDs) (Jankowsky and Harris, 2015). Importantly, since the 

number of putative RNA sequence motifs that could be recognized by 

proteins vastly exceeds the number of known RNA-binding proteins it is 

likely that RNA structure plays a more decisive role than the sequence 

context in discriminating protein-RNA interactions (Singh and 
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Valcárcel, 2005). Indeed, particular protein domains that bind nucleic 

acids recognized structure over sequence identity (Ding et al., 2014; 

Taliaferro et al., 2016). For example, evolutionary conserved as well as 

repetitive sequences in the lncRNA NEAT1 were shown to be essential 

for protein binding resulting in nuclear paraspeckle formation (Yamazaki 

et al., 2018). Moreover, structural changes in specific mRNAs can 

influence MLO identity. More specifically, protein droplet identity was 

not only established through intermolecular mRNA-mRNA interactions, 

but particular RNA structures selectively exposed or masked RNA 

sequences capable of interacting with other RNAs, thereby directing 

mRNAs into specialized MLOs. Formed MLOs further became 

stabilized through additional interactions with RRM- and IDR-

containing proteins (Langdon et al., 2018). 

A particular RNA structure is only partially determined by primary 

sequence context as it represents an equilibrium of possible structures 

(Lorenz et al., 2016), which can be affected by various parameters. 

Charge, temperature, ion concentrations, nucleotide modifications (Ries 

et al., 2019) and interactions with proteins allow major changes of RNA 

structure in response to, for instance, environmental signals or stress 

conditions (Boccaletto et al., 2018). It follows that the propensity of 

RNAs to self-assemble and form higher-order structures is likely one of 

the defining properties for its influence on LLPS and MLO dynamics 

(Sanchez de Groot et al., 2019) 
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Chapter I – Global Score: Quantitative predictions of protein 

interactions with long noncoding RNAs.

The long-noncoding RNA Xist, the master regulator of the Mammalian 

female-specific process of X Chromosome Inactivation (XCI) was 

identified almost 25 years ago. At the onset of X inactivation, Xist 

spreads in cis on the future inactive X and triggers gene silencing by 

recruitment of repressive DNA and chromatin modifiers. We are still just 

beginning to understand Xist network of interactions. In fact, five 

genomic and proteomic studies recently revealed a quite heterogeneous 

list of Xist binding proteins indicating that there remain much to learn 

about how and with which partners it interacts. 

The catRAPID Global Score method based on the catRAPID fragment 

algorithm (Cirillo et al., 2013) was applied to identify specific and direct 

associations. It was an ongoing project when I first joined Tartaglia’s lab 

where Davide Cirillo had started the research on exploring the protein 

interactome of Xist. I was involved in a series of data analysis of that 

project mainly to validate our predictions for Spen, Hnrnpk, Lbr, Ptbp1 

and Hnrnpu/Saf-A proteins using the eCLIP data. The computational 

method and pipeline in this work was applied to the study of other 

lncRNAs in other works. 

Cirillo, Davide, Mario Blanco, Alexandros Armaos, Andreas Buness, 

Philip Avner, Mitchell Guttman, Andrea Cerase, and Gian Gaetano 

Tartaglia. 2017. “Quantitative Predictions of Protein Interactions with 

Long Noncoding RNAs.” Nature Methods 14 (1): 5–6. 

https://doi.org/10.1038/nmeth.4100.  



Cirillo D, Blanco M, Armaos A, Buness A, Avner P, Guttman 
M, et al. Quantitative predictions of protein interactions with 
long noncoding RNAs. Nat Methods. 2017 Jan 29;14(1):5–6. 
DOI: 10.1038/nmeth.4100

https://www.nature.com/articles/nmeth.4100
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Chapter II – omiXcore: Predicting Protein-RNA interaction 

affinity based on eCLIP data. 

 

omiXcore was developed during the second year of my PhD and was 

published in Bioinformatics in 2017. This approach is the latest addition 

in the catRAPID suite and aims to work specifically with large 

transcripts including coding and non-coding RNAs. As in the case of 

Global Score (Cirillo et al., 2016) approach, omiXcore was based on the 

catRAPID fragment algorithm (Cirillo et al., 2013) which includes the 

division of the polypeptide and nucleotide sequences in overlapping 

fragments when their lengths exceed the system limitations.  

 

The non-linear implementation captures the contribution of the 

individual scores coming from the fragments while providing an 

integrated and unique score that resembles the interaction affinity of a 

protein – RNA pair. omiXcore was trained on the  enhanced UV 

CrossLinking and ImmunoPrecipitation (eCLIP) (Van Nostrand et al., 

2016) data from the ENCODE project. The use of eCLIP read counts that 

were normalized to transcript’s expression levels, allowed the training of 

the algorithm on a score in a continuous range that approximates the 

interaction affinity. 

 

Similarly to Global Score, omiXcore has wide applicability on transcripts 

without length restrictions and the pre-compiled library that is available 

through the webserver, allows for further exploration of long intergenic 

RNAs and candidate prioritization for further experimental validation. 
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Chapter III – A hypothesis: X Chromosome silencing through 

phase-separation 

Phase separation allows for functional compartmentalization in the cell, 

resulting in droplets where key factors are concentrated, thereby 

facilitating biochemical processes (see Introduction). Proteins with 

intrinsically disordered or low complexity domains interact to form 

‘hubs,’ which are ensembles of phase-separated molecules with 

hydrogel-like properties (Shin and Brangwynne, 2017). The assembly of 

phase separated compartments is facilitated by the presence of RNA 

(Molliex et al., 2015). Many proteins with disordered regions interact 

with RNA (Castello et al., 2013a; Livi et al., 2016), suggesting that the 

diversity of lncRNA sequences, expression patterns, and protein-binding 

properties might contribute to specifying compositionally and 

functionally distinct phase-separated compartments. Two examples 

include MALAT1 and NEAT1 lncRNAs that are important for the 

assembly of two phase-separated bodies in the nucleus, speckles, and 

paraspeckles, respectively.  

This study was motivated by recent advances in the characterization of 

phase-separation in the cell. Also here I used predictions carried out with 

Global Score approach (Chapter I) to propose that the X chromosome 

heterochromatisation in female mammals is facilitated by the process of 

liquid-liquid phase-separation. This work occupied the 3rd and 4th year of 

my PhD and was published in Nature Structural and Molecular Biology 

during 2019. 
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Chapter IV – RNA structure drives protein interaction 

The structure of RNA molecules is known to be involved in gene 

regulation through RNA stabilization and localization (Goodarzi et al., 

2012) while it is also known to be critical to the biogenesis and function 

of many noncoding RNAs. During the second half of my PhD I 

investigated the relationship between RNA secondary structure and its 

ability to bind proteins in multiple low- and high-throughput data. 

Interestingly and independently of the experimental data I used (PARS, 

DMS, microarray, X-ray, NMR, eCLIP, PAR-CLIP, HITS-CLIP and 

iCLIP), the algorithms that I employed (catRAPID and RPISeq as well 

as CROSS to mimic SHAPE data) or the organism I studied (PDB 

database), I found that the number of protein contacts correlates with the 

RNA structural content. This interconnection suggests that the stable and 

less variable conformations of structured RNAs create well-defined 

binding sites that promote specific interactions, with functional roles in 

gene regulation. 

To validate the results of my analysis, the senior post-doc of Tartaglia’s 

lab, Natalia Sanchez de Groot, introduced an experiment showing that a 

structured mRNA, Hsp70, has the ability to reorganize the composition 

of a protein aggregate. 

This work that was co-authored by Natalia and me was published in 

Nature Communication in 2019. 
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Chapter V – Discussion 

In this thesis, I presented two distinct but intimately connected topics: 

the ability of RNA molecules to interact with proteins and their potential 

to phase-separate in processes such as the X chromosome inactivation.  

The first topic occupied two separate periods of my PhD. During the first 

period which expanded during the first two years, I was involved in the 

development of methods to characterize ribonucleoprotein associations 

(Chapters I, II). In the second period, I combined my predictions with 

findings that I obtained through the analysis of multiple and 

heterogeneous experimental data with the purpose to investigate the 

association of RNA secondary structure with its ability to bind proteins 

(Chapter IV).  

The second subject of my thesis presents my hypothesis on the process 

of the X chromosome inactivation. This study was motivated by recent 

advances in the characterization of phase-separation in the cell. Here I 

used predictions carried out with Global Score approach (Chapter I) to 

propose that the X chromosome heterochromatisation in female 

mammals is facilitated by the process of liquid-liquid phase-separation 

(Chapter III).  

The link between the two topics is particularly relevant if one considers 

that Xist lncRNA is an RNA with very well conserved and structured 
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regions that promote stable and specific interactions with proteins (Delli 

Ponti et al., 2018). A high percentage of Xist direct interactors (40%), as 

identified in the first Chapter, are predicted to contain IDRs or have 

partners that have high intrinsic disorder potential. This local increase in 

local concentration of disordered proteins, directly or indirectly 

associated with Xist, is suggested to promote phase separation of the Xist 

RNA and its protein interacting network from the surrounding milieu 

(Cid-Samper et al., 2018).  

 

Computational methods: An essential source of information 

 

The role of protein-RNA interactions has been intensively studied for its 

centrality in transcriptional and post-transcriptional events  (Bernhardt, 

2012; Keren et al., 2010). RNA-binding proteins (RBPs) are present in 

every aspect of RNA biology, from transcription, pre-mRNA splicing 

and polyadenylation to RNA modification, transport, localization, 

translation and turnover. The RBPs not only influence each of these 

processes, but also provide a link between them (Hilleren et al., 2001; 

Kyburz et al., 2006; Millevoi et al., 2006; Rigo and Martinson, 2008). 

Proper functioning of these intricate networks is essential for the 

coordination of complex post-transcriptional events, and their 

perturbation can lead to diseases. The human genome harbors around 

2000 genes encoding known RBPs or proteins annotated to contain at 

least one RNA-binding domain RBD (Castello et al., 2013b; Hentze et 

al., 2018). Nonetheless, the number of proteins with identified RNA-

binding ability, either possessing canonical or non-canonical RBDs, is 

increasing and the fact that some proteins are able to bind to RNA with 



 67 

domains or regions that are not specifically evolved to this precise 

purpose is quite intriguing (Castello et al., 2016; Livi et al., 2016). 

Additionally, the recent discovery of a plethora of RNAs, including long 

non-coding RNAs (lncRNAs) and other previously uncharacterized 

transcripts  (Iyer et al., 2015) like NEAT1 (Yamazaki et al., 2018) or 

SAMMSON (Vendramin et al., 2018), demanded a re-examination of 

biological processes and biological networks to include these new 

effectors in the established protein-centric landscape  

 

Nonetheless, relying exclusively on experimental approaches in order to 

characterize the elements of the above-mentioned biological networks 

could result in misleading assumptions. For instance, despite the recent 

advances of CLIP-seq approaches (see Introduction), it remains difficult 

to simultaneously detect the many RBPs bound to a single transcript and 

the RNA regions that are likely to be involved in the binding. The reason 

behind that is that CLIP-seq protocol and procedure, similarly to any 

other  RNA-seq experimental approach, suffer from sensitivity or 

specificity biases due, in part to noise in the employed experimental 

approaches but also due to known inaccuracies in the experimental 

protocols (Chakrabarti et al., 2018). In more detail, HITS-CLIP and 

PAR-CLIP suffer from limited sensitivity due to the loss of cDNAs 

truncated at crosslink sites (Chakrabarti et al., 2018). On the other hand 

eCLIP achieves low specificity since the protein-RNA complex is not 

validated and because the blind cutting from the membrane, when 

normalizing the enrichment scores by the size-matched input (SMI), 

generates artefacts (Chakrabarti et al., 2018). 
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With all the above in mind, computational models represent an important 

source of information that can be exploited to identify hidden trends, 

interpret experimental results and understand the basics of molecular 

recognition. Computational tools have the advantage to perform 

exhaustive analyses and extract distinctive features fast and inexpensive, 

facilitating the design of new experiments. Experimental studies and 

computational analyses, such as those presented in this thesis, aim to 

provide compelling insights into the rules that govern RNP formation.  

 

From local to global predictions of protein-RNA interactions  

 

We previously developed catRAPID to predict the interaction propensity 

of protein and RNA sequences using their physico-chemical properties 

(Bellucci et al., 2011). The method, which was designed to complement 

experimental studies, has an average accuracy of 78% in predicting 

binding partners and works for transcripts shorter than 1000 nt due to the 

difficulty of modelling the structure of larger sequences. Indeed, the size 

of the configuration space makes structural predictions difficult for 

thermodynamic approaches (HafezQorani et al., 2016; Lange et al., 

2012). 

 

Previous pilot projects indicate that division of sequences into sub-

elements is useful to identify contacting regions (Cirillo et al., 2013; 

Zanzoni et al., 2013). By fragmenting protein and RNA sequences, it is 

possible to detect the binding sites of Fragile X mental retardation 

protein FMRP, TAR-DNA binding protein 43 TDP-43 and 
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Serine/Arginine splicing factor 2 SRSF2 (Agostini et al., 2013a, 2013b). 

Yet, when proteins bind with low affinity to multiple regions of RNA 

sequences, identification of binding regions cannot be directly exploited 

to predict the binding strength between two molecules. For instance, 

Histone-lysine N-methyltransferase Ezh2 is predicted to associate with 

Xist in several sites within the repetitive region A, but the interactions 

have low interaction propensities (Agostini et al., 2013a). 

As described above, while the division of the sequences into sub-

elements can be very useful to successfully detect potential binding sites, 

there is a major limitation when trying to estimate an overall interaction 

score for long RNA sequences. This is partially due to the lack of 

sophisticated and accurate thermodynamic approaches able to predict the 

folding of large RNA molecules. For instance, RNAstructure (Reuter and 

Mathews, 2010) and Vienna (Gruber et al., 2015), which are the golden 

standards for RNA secondary structure prediction, are limited by the 

length of the sequence, with their accuracy dropping for sequences larger 

than 700-1000 nucleotides (Hajiaghayi et al., 2012). Even if they are 

forced to process larger sequences, the computational times are so huge 

that make these approaches unsuitable for high throughput analysis. This 

drawback, makes the fragmentation procedure essential for maintaining 

trustable folding information and thus, the estimation of the overall 

interaction score should be based on the individual fragments and on the 

knowledge that is encoded in each of them. The key problem though, for 

predicting global features form local properties, is the integration of the 

individual signals. While knowledge of features encoded by fragments 

is informative, the overall context should be taken into account to 

accurately predict folding propensities and interaction abilities. 
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Obtaining an overall score is of high importance for those that wish to 

prioritize targets when designing experiments for further validation. A 

simple solution for integrating the signal from all individual fragments 

could be the estimation of their mean, median or maximum score. 

However, we demonstrated that these simple functions are suboptimal 

and fail to integrate all individual interaction propensities in one 

representative score (Figure 1). With that in mind, we proposed that the 

function to be applied on the individual scores should be non-linear with 

the aim to capture the individual contributions of each fragment on the 

overall binding estimation. At that point, there were two distinct but 

related questions that needed to be answered. The first one was whether 

a given protein – RNA pair has the potential to interact or not and the 

second one was with what affinity would they interact. Chapters I and II 

present my approaches to answer the above two questions. These two 

non-linear implementations integrate the information contained in the 

interaction propensities of the individual protein and RNA fragments.  

The first approach, called Global Score, aimed to answer the first of the 

two aforementioned questions. Since the objective of this project was to 

classify protein-RNA pairs into interacting or non-interacting, Global 

Score was trained and validated using different sets of binding (positives) 

and non-binding (negatives) protein-RNA pairs. The classification into 

positives and negatives allowed to make predictions independently of the 

statistical distributions of experimental affinities, which are intrinsically 

linked to each individual technique, thus ensuring wide applicability of 

the approach. Additionally, Global Score output is a score in a 

contiguous range [0,1] which ensures flexibility in the training phase, as 
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the use of a binary score would increase the number of unclassifiable 

cases (in between the two states).  

 

 

Figure 1) Xist interactions with RBPs reported by  (Chu et al., 2015; McHugh et al., 
2014; Minajigi et al., 2015) (proteomic studies) as well as (Moindrot et al., 2015; 
Monfort et al., 2015) (genomic studies). For each set of protein and RNA fragments, 
we measured mean, median and maximum of the interaction propensities calculated 
with catRAPID (Bellucci et al., 2011). Global Score outperforms catRAPID-based 
analyses for large lncRNAs  

 

The second approach I developed is called omiXcore (Armaos et al., 

2017). This method aimed to provide an overall estimation of the 

interaction affinity for a given protein – RNA pair and can be used in 

complementarity with Global Score. It was trained and validated on, by 

that time available and recently published, eCLIP data. 

 

It is important to note that the use of the raw number of reads as a proxy 

of affinity has been proven to be inaccurate since eCLIP experiments 
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suffer from biases related to the abundances of transcripts (Chakrabarti 

et al., 2018). The reason behind that is that the number of RNA-seq reads 

generated from a transcript is directly proportional to its relative 

abundance in the sample (Trapnell et al., 2012). Thus, we introduced a 

normalization step on the eCLIP number of reads to the expression levels 

before generating the training and validation sets. 

 

In conclusion, these two methods presented in this thesis have been 

developed in an interesting moment of the post-genomic era. New 

exciting technological advances on the characterization of protein – 

RNA complexes have been developed such as for instance the eCLIP 

protocol (Van Nostrand et al., 2016) or Proximity-CLIP protocol 

(Benhalevy et al., 2018). Experimental and computational approaches 

have started to unveil the complexity of our genomes and RNA-protein 

interactions emerged as key events in a large number of regulatory 

processes (Hentze et al., 2018). I believe that my methods will provide 

valid assistance for the interpretation of experimental results and propose 

potential candidates to those that investigate the key players on the 

formation of RNP-complexes. 

 

New insights into the compartmentalization inside the cell 

 

Phase separation is now appreciated as a pervasive form of organization 

in the cell (Boeynaems et al., 2018). Emerging work suggests that this 

behavior may facilitate complex organization of assemblies with 

different hierarchies of shells and cores (Jain et al., 2016). The resulting 
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biological consequences can be quite diverse and in fact there are many 

insights that continue to arise. For instance even the RNA, independent 

of protein, can assemble into liquid-like droplets, opening new 

dimensions of phase separation biology that have yet to be explored (Jain 

and Vale, 2017). In that context and motivated by the similarities with 

other, well studied, RNA mediated processes, I proposed in this thesis 

my hypothesis in the context of X chromosome inactivation. I suggest 

that Xist, together with its direct and indirect partners, promotes phase 

separation. These similarities can be summarized accordingly: 

• Xist foci are similar in size and morphology to paraspeckles and

stress granules;

• Xist contains nucleotide repeats that are present in scaffold RNAs

and promote protein sequestration;

• Xist interactome contains components of paraspeckles and stress

granules and is significantly enriched for structurally disordered

proteins with a strong propensity for phase separation;

• Most importantly, binding partners of Xist and Neat1 diffuse in a

liquid-like manner.

However adequate experiments should be conducted in order to better 

understand if and how Xist undergoes phase separation with its protein 

partners. Doubtless though, the number of cellular phase-separated body 

types appears to be growing and we are beginning to understand some 

fundamental facts about them. In fact, many questions remain to be 

answered: 
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• How many are the phase-separated body types and how do they 

interact with each other? 

• How structured and dynamic are the assemblies and how 

heterogeneous are they with respect to composition and function?  

• Do these phase-separated bodies have unique compositions or do 

they share components? What makes one distinct from another?  

As for example, two mRNA-processing bodies, P-bodies and 

stress granules, share a number of common components, but also 

have distinct protein species (Parker and Sheth, 2007; 

Ramaswami et al., 2013; Teixeira and Parker, 2007).   

• Concerning evolution, how did phase-separated bodies evolve 

and if they are evolvable, what is it about them that evolves? Is 

the evolution and selection of some, for example LCD-

containing, proteins associated with the evolution of droplets? 

 

Towards our understanding of cell’s regulatory network 

 

RNA structure promotes protein binding. 

 

The last Chapter of my thesis presents findings on the relationship 

between RNA secondary structure and the ability to bind proteins. In this 

work, I suggested the existence of regulation layer between structured 

mRNAs and their protein products. All the analyses I performed were 

coming from multiple and heterogenous sources (more than 10 

experimental approaches), a fact that make my observations very robust.  
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My results indicate that RNA structure is crucial for many processes, 

which is not completely unexpected. In fact, many RNA related 

processes, such as for instance transcript stabilization are relatively 

independent from the primary sequence and instead they may be linked 

to RNA structure (Goodarzi et al., 2012). Another example are the class 

of non-coding RNAs where it has been shown that the RNA structure has 

a critical role in their function such as for instance in the case of Xist 

(Pintacuda et al., 2017) and NEAT1 (Yamazaki et al., 2018, p. 1). 

As for its implication in the protein interactivity, RNA structure is known 

to impact RBP binding and regulation (Hiller et al., 2007; Li et al., 2010; 

Warf et al., 2009). RBPs can be classified according to their RNA mode 

of binding in two distinct categories; RBPs that bind double-stranded and 

RBPs that bind single-stranded regions of RNAs. In the first scenario 

RBPs bind paired nucleotides, a fact that makes the presence of RNA 

structure mandatory. Examples include  DGCR8 and DICER1, important 

in siRNA and microRNA biogenesis (Macias et al., 2012; Rybak-Wolf 

et al., 2014). According to the second and most common scenario 

however, RBPs favor reduced base-pairing of the motif itself, but 

interestingly they show preference for structure at the flanking positions 

(Dominguez et al., 2018). In other words, single stranded RBPs bind 

unpaired regions that are exposed in loops or other secondary structure 

elements (Lunde et al., 2007). For example, large hairpin loops allow 

binding of multiple KH domains to the RNA as has been observed in a 

crystal structure of NOVA1 (Teplova et al., 2011) and in SELEX 

analysis of PCBP2 (Thisted et al., 2001). 
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Clearly from both scenarios discussed above, the presence of structured 

regions in the RNA molecule facilitates the binding with proteins and 

positively contributes to the formation of stable binding sites, even when 

these regions don’t overlap with the actual binding sites. On the contrary, 

complete lack of structure would perturbate or disfavor the protein 

binding, since it is linked to more flexible and variable conformations, 

thus a shorter residence of proteins. Moreover, it should be considered 

that presence of a native fold favors the formation of stable and well-

defined binding sites that promote functional roles and, in turn, 

evolutionary selection (Seemann et al., 2017).  

 

I hope that the results discussed in Chapter IV will provide motivation 

for further computational and experimental research in order to give 

answers to multiple open questions that have been raised: 

 

• How far from a structured region does the binding site take place? 

Is there a minimum distance between them?  

• Moreover, do different RNA motifs require the same amount of 

structural content to promote protein binding?  

• From the evolutionary point of view, did the RNA structure 

evolve in order to make accessible specific binding sites and 

oppositely to mask others that would be evolutionary 

unnecessary or even dangerous? 

New insights into the layers of cellular regulatory network. 
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Highly contacted proteins participate in many cellular processes and thus 

require to be tightly controlled (Jeong et al., 2001; Mitchell and Parker, 

2014). Proteins, however are just the last element in the chain (see 

Introduction) which means that there might exist a regulation layer at the 

transcriptional level, providing control over the encoded proteins. 

Motivated by this hypothesis, I concluded to the second important 

finding of Chapter IV. More precisely, highly structured RNAs and thus 

highly contacted, tend to code for proteins that have as well many protein 

contacts. This observation is very significant as it reveals new aspects on 

cellular regulatory network and shows the tight relationship between the 

structure of mRNAs and the implication of their protein products in 

cellular processes. 

My speculation at this point is that the aforementioned regulatory 

network might start even during transcription. Following up an intuition 

on the regulation layers described above, I suspected that there could be 

some control at the transcriptional level. Indeed, highly structured RNAs 

are highly contacted by proteins, thus they might require control even 

before they are transcribed. In other words, the genes from which these 

RNAs are transcribed should be tightly controlled. The obvious 

hypothesis is that these genes might be controlled by a large number of 

transcription factors.  

The big image behind this hypothesis, is that products (proteins) that are 

implicated in many functions should be also regulated from their begging 

of their life. In detail, I speculate that genes, whose transcription is 

controlled by a large number of transcription factors, produce RNAs that 
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are highly structured in order to be highly contacted by proteins and thus 

their life to be tightly controlled. These RNAs in turn encode for proteins 

that are associated with multiple functions. RNA binding proteins, 

chaperone proteins and stress granule proteins are some common 

examples of protein groups that are linked with complex processes 

(Boeynaems et al., 2018; Ganassi et al., 2016; Hentze et al., 2018) and 

that makes them candidate groups to investigate.  

There has been an extended part in the introduction of the current thesis 

dedicated to the importance of RBPs. Similarly, chaperone proteins as 

discussed in the paper I authored and presented in Chapter IV, have an 

important molecular role. Between other functions, they promote folding 

of proteins into the native state (Wang and Chang, 2011) and organize 

the assembly of phase separate RNP assemblies (Mateju et al., 2017) . In 

the same way, stress granule proteins are a natural choice for the analysis 

since they as well, are implicated in multiple functions such as for 

instance the modulation of the formation of granules as a response to 

stress. This procedure should be carefully controlled, since perturbation 

of this formation might lead to neurodegenerative diseases and some 

cancers (Jain et al., 2016).  

An optimal choice as a reference set is represented by genes from 

genomic regions that show an increased copy number variation (CNV) 

that is linked to ‘benign’ clinical interpretation. CNVs are regions of the 

genome that are duplicated or deleted in some individuals in a 

population. When the variation of a genomic region is not linked to 

pathogenic phenotypes we can assume that genes falling in these areas 
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do not require tight control, because perturbations of their relative 

abundances are tolerable by the cellular mechanism. The aforementioned 

fact makes this set of genes (termed ‘Benign CNV’) an ideal background 

set to test my hypothesis. It is important to note however, that on the 

contrary to the ‘Benign CNV’ set, the prevailing hypothesis of genes in 

CNV regions that show pathogenic phenotype, is that it is due to their 

dosage sensitivity and thus I suspect that their expression to be subject 

of higher regulation. 

 

In Figure 2, I present my preliminary results that seem to be quite 

encouraging and in the line with my hypothesis. Obviously, extensive 

analysis is required to prove whether the proposed structure of cellular 

regulatory network exists. This network has proven to be more 

complicated and sophisticated than initially thought to be. Thus, every 

step we do towards characterizing is crucial to understand the underlying 

processes that govern it and which perturbations are source to the 

pathogenesis of several diseases and disorders.  

 



 80 

 

Figure 2) Comparison between four sets of genes at gene, mRNA and protein level. The 
four sets under comparison are i) genes coding for Heat Shock Proteins (HSP), ii) genes 
coding for Stress Granule proteins (SGP) (Jain et al., 2016), iii) genes coding for RBPs 
(Hentze et al., 2018) and iv) Benign CNV genes. A. Number of transcription factors 
binding at the promoter of each gene (log scale), B. Structural content measured by 
dimethyl sulfate modification (DMS) (Rouskin et al., 2014), C. Number of protein 
contacts for the transcribed mRNAs measured by enhanced CrossLinking and 
ImmunoPrecipitation (eCLIP) (Van Nostrand et al., 2016), D. Physical interactions of 
the corresponding coded proteins, collected from BioGRID; p values estimated with t- 
test.  
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Conclusions 

The work carried out during my PhD can be divided in two separate 

stages. The first involving the development of core algorithms and the 

fine-tuning of these on a number of well-studied cases. The second 

consisting of an expansion of the current approaches to perform large-

scale analysis and the ability to derive general information on post-

transcriptional regulatory mechanisms. Collectively, the thesis can be 

summarized in the following Chapters:  

• I. The development of catRAPID Global Score, which is a

sequence-based predictor that expands the applicability of

catRAPID method to transcripts larger than 1000nt. The method

exploits the physico-chemical information derived from the

primary structure of transcripts and proteins to distinguish

interacting from non-interacting pairs protein-RNA. This method

was trained on data coming from multiple and heterogenous

sources in order to ensure its wide applicability on the

identification of specific and direct associations.

• II. The development of catRAPID omiXcore, which is as well an

expansion of catRAPID method. It inherits the fragmentation

procedure from catRAPID fragments approach and uses a non-

linear implementation to capture the individual contributions

coming from the fragments. Is a method that can be used in

complementarity with catRAPID Global Score since its aim is to

provide a unique score that resembles the interaction affinity of a

protein – RNA pair. For that reason it was trained on the
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enhanced UV CrossLinking and ImmunoPrecipitation (eCLIP) 

(Van Nostrand et al., 2016) data from the ENCODE project. 

• III. The application of the catRAPID Global Score approach to

investigate the direct interactors of Xist long non-coding RNA in

a study that presents the hypothesis that Xist uses phase

separation to perform its function. In order to formulate this

hypothesis, we gathered evidence from the literature and from

computational analysis and we showed that Xist assemblies are

similar in size, shape and composition to phase-separated

condensates.

• IV. The investigation of the relationship between the structure of

an RNA and its ability to interact with proteins. Analyzing in

silico, in vitro and in vivo experiments, we find that the amount

of double-stranded regions in an RNA correlates with the number

of protein contacts. This relationship -which we call structure-

driven protein interactivity- allows classification of RNA types,

plays a role in gene regulation and could have implications for

the formation of phase-separated ribonucleoprotein assemblies.

We validate our hypothesis by showing that a highly structured

RNA can rearrange the composition of a protein aggregate. We

report that the tendency of proteins to phase-separate is reduced

by interactions with specific RNAs.
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