
Iv
ette

R
od

ríg
u

ez
P

érez
D

O
C

T
O

R
A

L
T

H
E

S
IS

U
P

C
−

D
ecem

ber,
2

0
0

6

UPC CTTC

Unsteady laminar
convection in cylindrical

domains: numerical
studies and application to
solar water storage tanks

Centre Tecnològic de Transferència de Calor
Departament de Màquines i Motors Tèrmics

Universitat Politècnica de Catalunya

Ivette Rodríguez Pérez

Doctoral Thesis





Unsteady laminar convection in
cylindrical domains: numerical studies
and application to solar water storage

tanks

Centre Tecnològic de Transferència de Calor
Departament de Màquines i Motors Tèrmics

Universitat Politècnica de Catalunya

Ivette Rodríguez Pérez

Doctoral Thesis





Unsteady laminar convection in
cylindrical domains: numerical studies
and application to solar water storage

tanks

Ivette Rodríguez Pérez

TESI DOCTORAL

presentada al

Departament de Màquines i Motors Tèrmics
E.T.S.E.I.A.T.

Universitat Politècnica de Catalunya

per a l’obtenció del grau de

Doctor Enginyer Industrial

Terrassa, December, 2006





Unsteady laminar convection in
cylindrical domains: numerical studies
and application to solar water storage

tanks

Ivette Rodríguez Pérez

Director de la Tesi

Dr. Assensi Oliva Llena

Tribunal Qualificador

Dr. Carlos David Pérez-Segarra
Universitat Politècnica de Catalunya

Dr. Jesús Castro González
Universitat Politècnica de Catalunya

Dr. Antonio Lecuona Neumann
Universidad Carlos III de Madrid

Dr. Agustín Macías Machín
Universidad de Las Palmas de Gran Canaria

Dr. Esteve Codina Macià
Universitat Politècnica de Catalunya





The known is finite, the unknown infinite;
intellectually we stand on an isle in the midst

of an illimitable ocean of inexplicability.
Our business in every generation is to reclaim

a little more land

T.H. Huxley. 1887
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Abstract
Thermal storage devices are widely used in many thermal systems and applica-

tions that are characterised by the delay between energy production and consump-
tion, such as thermal solar systems. The improvement in their design and optimisa-
tion is a key aspect in the thermal optimisation of the system, where a good perfor-
mance of the storage tank can represent a considerable increase in the overall effi-
ciency of the installation. In the subject of optimisation of thermal equipment, Com-
putational Fluid Dynamics have been consolidated as an indispensable tool provid-
ing researchers and engineers with a method to test virtually their prototypes with
low effort in time, personnel and resources. This thesis is focused in the numerical
simulation of unsteady laminar convection in cylindrical domains and its applica-
tion to the study of heat transfer and fluid flow that take place in stratified storage
tanks.

The methodology followed for the numerical resolution of the governing equa-
tion of heat and fluid flow in cylindrical coordinates is presented. The particularities
of the discretisation of the equations in these geometries, as well as the solution
procedure for incompressible and transient flow problems is also exposed. Special
emphasis is given to the verification of the code, the appropriateness of the discreti-
sation adopted and the verification of the numerical solution obtained.

This methodology is used for the study of the heat transfer and fluid flow phe-
nomena that take place in stratified storage tanks, including the performance mea-
sures and modelling efforts of these devices. A key aspect in the performance of
the tanks is the quality of the energy stored, which is determined by the degree of
the thermal stratification of the storage tank. Thermal stratification is affected by
several factors such as the mixing due to the inlet streams during load and unload,
the heat losses to the environment, among others. In order to analyse the behaviour
of the fluid under different working conditions and tank configurations, the virtual
prototyping of these devices is carried out. Different parameters for measuring the
performance of the tank are considered. This analysis led to the proposition of a non
dimensional exergy-based parameter as a tool for assessing and comparing storage
tanks. The usefulness of this parameter for quantifying the quality of the energy
stored is also shown.

Furthermore, the thermal behaviour of storage tanks during the static mode of
operation considering the heat losses to the environment is also analysed. The study
is addressed to characterise the cool down of the fluid inside storage tanks for so-
lar thermal systems in the low-to-medium temperature range. The methodology
followed, from the identification of the significant non-dimensional parameters that
define the problem, the formulation of a zonal prediction model, a parametric nu-
merical study by means of detailed multidimensional CFD computations and the
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Abstract

post-processing of the results in order to obtain the correlations for the heat transfer
coefficient and the mean fluid temperature to feed the global model, are exposed in
detail. The zonal model presented, together with the correlations given are in good
agreement with the numerical results and constitute an alternative for the prediction
of the long-term performance of storage tanks during their static mode of operation.
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Chapter 1

Introduction

1.1 Prologue

Thermal storage devices are widely used in most of the thermal system where there
is an intermittent energy source to meet the demand, or in those systems with a
certain delay between production and energy consumption. Many sectors in engi-
neering, such as petroleum, chemical industry, food industry, solar energy systems,
industrial processes, refrigeration and air conditioning, among others, require the
use of thermal storages to optimise the performance of their systems.

It is important the mode of energy storage, i.e. whether the energy is stored:
by means of a heat of reaction in a reversible chemical reaction, by means of sensible
heat in a liquid or solid medium or by means of latent heat as the latent heat required
for a phase change of the storage material. In the latter, the temperature at which
the phase change occurs is of importance because it must be compatible with the
temperature of the system.

Regarding to sensible heat storage, its main characteristic is the heat capacity of
the storage medium. Because of their simplicity and relative low cost, this type of
equipment has emerged as the most widely used in thermal systems. Within the
wide range of sensible storage medium, storage tanks of liquid water are routinely
used in standard thermal solar systems (e.g. solar domestic hot water and heating).
Water, due to its abundance, low cost and good thermal properties (high specific heat
capacity and relative high density) is the most attractive choice as storage medium
in the low-to-medium temperature range.

In most of the solar thermal energy systems, water is heated during the day and
stored for use during the daytime or nighttime, extending the use of solar energy
over a larger part of the day. The main objective of the storing process is to main-
tain the thermodynamic availability of the stored energy to allow its extraction at
the same temperature level at which it was stored. In addition, in low-to-medium
solar energy systems, the moderate range of working temperature involved limits
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Chapter 1. Introduction

Figure 1.1: Schematic of a solar domestic hot water system with a stratified storage

tank.

the storage capacity. Thus, the storage of a large amount of energy requires relative
large tanks. These devices must be therefore, simple in operation, cheap in mainte-
nance and cost and reliable. All these characteristics made stratified storage tanks
the most attractive choice to achieve the best performance with a low cost in most of
solar energy systems.

Thermal stratified storage tanks

The principle of operation of stratified storage tanks is based on the natural process
of stratification. In these devices, the cold fluid is withdrawn from the bottom to be
heated at the heat source, e.g. solar collectors, and returned to the top of the tank
at a relative higher temperature (see Fig. 1.1). As a result, a temperature difference
between the top and the bottom parts of the tank arises with the consequent varia-
tion of the density in the medium. At the inlet zone appears a mixing fluid region
that is gradually pushed down as more fluid enters the tank. As a consequence,
a region with a steep temperature gradient is formed, which is known as the ther-
mocline region. Once the thermocline is developed, it travels down as the charging
process continues, limiting the mixing between the cold and the hot regions. In fact,
the thickness of the thermocline has been used as a means of quantifying how well a
stratified tank has been designed [1, 2]. The higher the mixing at the inlet, the thick
the thermocline zone.

However, during the operation of a solar system, not always the temperature of
the water entering the tank is greater than the temperature of the fluid at the inlet
zone. In those situations, flow entering the tank seeks the level most closest to its
temperature resulting in a buoyant flow that enhances the mixing in the storage
tank.

20



1.1. Prologue

Thermal stratified storage tanks are an effective management technique to im-
prove the efficiency of the system [3, 4]. Stratification improves the overall perfor-
mance of the systems by increasing the efficiency of solar collectors (reducing the
average collector absorber plate temperature). Improvements in yearly performance
of solar energy systems have been reported in the literature [4, 5]. As an example of
this increase in system annual performance due to the stratification of the tank, the
simulation of a domestic hot water system has been done. Simulations have been
carried out with a prediction code named SOLCODE [6] and assuming two situa-
tions: an ideally stratified and a fully mixed tank models. SOLCODE is a pseudo-
transient prediction code developed at the Heat and Mass Transfer Technological
Centre (CTTC) of the Technical University of Catalonia (UPC). SOLCODE is based
on one-dimensional or zero-dimensional models of the components of the systems,
which has the capability of interconnect each component, solving the resulting sys-
tem of equations, and providing long-term predictions results. In the example, the
the system considered has a collector area of 4m2 and a storage device of 0.3m3. The
daily load consumption has been taken as one renovation of the tank per day with
a load profile proposed by [7] and the consumption temperature of 60◦C. The sys-
tem has been modelled for Barcelona climate [8]. Results of the simulations have
shown improvements in annual system solar fraction of the ideally stratified tank
respect the fully mixed around 15%. The advantage of stratified solar tanks, has, of
course, been overestimated in the above calculations. Real storage tanks are neither
perfectly stratified nor perfectly mixed.

Temperature stratification, however, is characterised by its extreme weakness.
There are several factors associated with the loss of stratification in a thermal liquid
storage tank. The most important ones are:

• The mixing produced by the inlet streams during the load or withdrawn phases.
This can be considered the major cause of destratification.

• The heat losses to the ambient through the tank envelope.

• Heat conduction from the hot layers to the cold layers.

• Thermal bridges along the tank walls, which together with heat losses to the
environment produces convective currents that promote mixing.

Due to all the phenomena associated, stratified storage tanks have been subject of
many experimental and theoretical works. Most of these studies have been focused
in the improvement of the degree of thermal stratification: study of the inlet and
outlet ports [9, 10], influence of different kind of diffusers [11, 12, 13, 14, 15, 16],
reduce thermal bridges and heat losses to the ambient [17, 18, 19], influence of the
mass flow rates [20, 21, 22, 23] among others.
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Chapter 1. Introduction

Modelling of thermal storage tanks

The design and optimisation of thermal stratified storage tanks require a profound
knowledge of the thermal and fluid dynamic phenomena involved. The complex
phenomena associated with the behaviour of these devices, make optimised design
a challenge for researchers and designers. In spite of these optimisation difficulties,
designs are very often based on simple mathematical models (analytical method-
ologies based on global mass and energy balances or one-dimensional models), and
expensive experimental trial-and-error analysis using prototypes to provide the nec-
essary information for these models (i.e. heat transfer coefficient in convection, pres-
sure loss coefficient, mixing parameters, etc. ).

The importance of one-dimensional models relays in the fact that they are compu-
tationally more efficient in terms of CPU time cost and suitable for use into overall
energy-system simulation programs which allow long-term studies. For this rea-
son, one-dimensional modelling has been the focus of attention of many researchers.
A great number of simplified models to account for stratification have been devel-
oped. Some of these models are based in the multinode approach [7], being the
degree of stratification determined by the choice of the number of temperature lev-
els. Different modifications to this model to account for the mixing at the inlet ports
such as those proposed by [24], have been later introduced. Other kind of one-
dimensional approaches to account for this mixing have been proposed in the litera-
ture [25, 12, 26, 27]. The main problem of those models is the necessity of empirical-
based information to evaluate mixing at the inlets. Thus, the validity of such results
depends on the accuracy of the experimental coefficients and their suitability for the
models.

On the other hand, detailed models with less use of experimental coefficients are
capable of describing the thermal and hydrodynamic behaviour of the case of study.
Detailed numerical simulations of heat transfer and fluid flow using Computational
Fluid Dynamics (CFD) codes have emerged in the recent years as a powerful alter-
native tool for the prediction of the behaviour of thermal systems and equipment.
These codes can give accurate results and thus, can be used for the assessment of the
design of innovative concepts. In addition, the results of these detailed codes, can
also be used as a source to feed the aforementioned global (or prediction) models.

CFD simulations provide the designer with a way to test the equipment virtually,
which is actually known as Virtual Prototyping. According with the definition given
by [28]:

”Virtual prototype, or digital mock-up, is a computer simulation of a physical
product that can be presented, analysed, and tested from concerned product life-
cycle aspects such as design/engineering, manufacturing, service, and recycling
as if on a real physical model. The construction and testing of a virtual prototype
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1.2. Background

is called virtual prototyping (VP)”

Such virtual prototyping can shorten design/test cycles and reduce costs. This
would enable the analysis of, in the case of storage tanks, the optimum location of
inlet/outlet ports, the improvements obtained using particular kinds of diffusers,
or the thermal behaviour of inner heat exchangers. However, detailed numerical
simulations demand large computational resources.

Numerical simulations of storage tanks can be sometimes very difficult due to
their huge computational cost (three-dimensional transient simulations). Although
the increase in computational power and the improvement of the numerical methods
have been significant over the last few decades, and many engineers and technicians
have started to use CFD codes on their desktop computers, the numerical resolution
of transient three-dimensional CFD problems using standard PCs is still nowadays
computationally very costly.

Taking into account this limitation, and the particularly high cost of fast sequen-
tial computers (which require special hardware with a reduced market), parallel
computing systems seem to be the most attractive option for the near future. This
is especially true considering the emergence of a new class of low cost and loosely
coupled parallel computers: the so-called Beowulf clusters [29] of personal comput-
ers running under Linux Operative System [30]. In order to take advantage of these
“low cost” parallel computers and use them efficiently, parallel algorithms that tol-
erate slow networks are currently being developed.

1.2 Background

The present thesis has been developed at the Heat and Mass Transfer Technological
Centre (CTTC) of the Technical University of Catalonia (UPC). CTTC is devoted to
the mathematical formulation, numerical resolution and experimental validation of
heat and mass transfer phenomena and, at the same time, the application of the ac-
quired know-how to the design and optimisation of thermal systems and equipment.
The knowledge acquired on these topics has allowed the development of a general
purpose CFD code named DPC [31]. DPC is a library for the resolution of combined
heat and mass transfer problems by means of computational fluid dynamics using
finite volume techniques [32, 33, 34, 35, 36, 37].

Within DPC framework, this thesis focuses on the simulation of the unsteady
laminar convection in cylindrical domains and its application to the study of the
heat transfer and fluid flow phenomena that take place in water storage tanks for
solar thermal systems in the low-to-medium temperature range. In the particular
case of the mathematical formulation and resolution of problems in these kind of
domains, the basis of the present work can be found in two main research PhD theses
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Chapter 1. Introduction

conducted at CTTC: the PhD theses presented by A. Ivancic [38] and by J. Mora [39].
The first is devoted to the mathematical formulation and resolution of natural and
forced convection problems applied to cylindrical storage devices. The latter deals
with the development of numerical algorithms for solving problems on sequential or
parallel computers including the resolution of cases in cylindrical coordinates. The
main contributions of these PhD research works on the resolutions of cylindrical
coordinates domains and in particular, on the optimisation and design of storage
tanks, constitute the starting point for the development of the present thesis.

In any numerical research into heat transfer and fluid flow, verification of the
numerical solutions must be considered as an important aspect in order to produce
reliable results. In this sense, at CTTC a post-processing procedure for the verifica-
tion of the numerical results has been implemented [40]. The numerical results are
submitted to this verification process in order to assess the numerical uncertainty,
necessary to make solutions reliable. This post-processing tool is based on the gen-
eralised Richardson extrapolation for h-refinement studies and on the Grid Conver-
gence Index (GCI) proposed by Roache [41].

As have been commented before, for the numerical simulation of transient phe-
nomena (e.g fluid flow inside storage tanks has, most of the time, three-dimensional
flow configurations), large computational resources are required. In this sense, paral-
lel computing can be an alternative to reduce drastically the huge computational cost
of this kind of simulations. CTTC facilities include a loosely coupled Beowulf cluster
called Joan Francesc Fernandez (JFF). Nowadays, it is compound of 125 CPU’s with
100 Gbytes of RAM memory and 7.25 Tbytes of disk space. Moreover, domain de-
composition techniques have been developed to increase the number of grid nodes
or solve complicated domains. These techniques are suitable for implementing on
parallel computers allowing to solve cases that require a high number of control vol-
umes to obtain accurate solutions. Main contributions on multiblock techniques and
parallel computing algorithms can be found in [34] and the PhD theses of M. Soria
[30] and J. Mora [39].

The solar energy field constitutes one of the main applied research topics at
CTTC. There is an extense know-how acquired on different areas within this frame-
work. The main research works carried out have been on the subjects of passive
solar energy systems (e.g. multifunctional ventilated facades) [42, 43] and on active
solar energy systems with special emphasis on solar collectors [44, 45], storage tanks
[38, 46, 47, 23, 16, 19] and solar cooling [48, 49]. In this sense, the expertise obtained
on this area has allowed the development of specific prediction codes: AGLA [50]
which allows the design and optimisation of multifunctional ventilated facades and,
SOLCODE [6] for the design, optimisation and long-term prediction of active solar
heating systems and its components.

A more extense information about reasearch activities (projects and publications)
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1.3. Outline

carried out within the fundamental working lines at CTTC can be found at [51].

1.3 Outline

The main objective of this thesis is the numerical resolution of heat transfer and
fluid flow problems in cylindrical coordinates and its application to the study of the
unsteady simulation of the convection phenomena in storage devices for solar ther-
mal systems in the low-to-medium temperature range. Next chapter is devoted to
present the methodology employed for the resolution of Computational Fluid Dy-
namics (CFD) and Heat Transfer problems with special emphasis in two and three-
dimensional cylindrical coordinates. First, the basic discretisation of the govern-
ing equations for cylindrical coordinates based on finite volume techniques (FVM)
on staggered grids is presented. Numerical techniques such as the discretisation
schemes, boundary conditions implementations and solution procedure for incom-
pressible and transient flow problems is reviewed. Attention is focused on the most
relevant particularities of the discretisation in cylindrical coordinates: the special
treatment implemented for the singularity that appears at the cylinder centre and,
the periodic boundary condition employed in order to solve cylindrical closed do-
mains. Closing the chapter, code and numerical solution verification techniques are
exposed. In this sense, a post-processing tool based on the generalised Richardson
extrapolation method and on the Grid Convergence Index (GCI) is employed [40].

The third chapter is dedicated to discuss the task carried out in order to verify the
code and the appropriateness of the adopted discretisation for the treatment of the
singularities in cylindrical coordinates domains. Different test cases are submitted
to a process of verification of the numerical solutions by means of the techniques de-
scribed in Chapter 2. After a rigorous post-processing of all cases presented, verified
solutions for two and three dimensional steady-state problems in cylindrical coor-
dinates are provided. The cases solved are: a flow induced by a tangential velocity
at the boundary; the natural convection of a fluid in a cylindrical enclosure heated
from below, and the fluid motion between two concentric rotating cylinders. The
most relevant results for velocity and temperature fields together with their uncer-
tainty estimates are given. Verified numerical solutions provided can be useful as
reference solutions in the process of development of CFD codes in cylindrical coor-
dinates.

Chapter 4 and 5 are focused on the study of transient phenomena in storage tanks.
Chapter 4 is mainly dedicated to the thermal stratification of storage tanks and its
degradation due to the inlet mass flow rates. Part of the contents presented in
this chapter have been published as [23]. The current state-of-the-art in the anal-
ysis of stratified storage tanks is briefly reviewed. Detailed numerical simulations
are carried out in order to study different cases and working conditions. From this
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analysis a new exergy-based parameter in order to quantify the thermal stratifica-
tion inside the storage tank is proposed. The current computational possibilities of
three-dimensional Computational Fluid Dynamics (CFD) simulations, using loosely
coupled parallel computers (Beowulf clusters) for the virtual prototyping of thermal
storage tanks is also shown.

The static operation mode of a storage tank, where heat losses through the walls
is the only mechanism of fluid movement inside the storage, is of particular inter-
est since it represents a frequent state of the tank. In Chapter 5, the transient natural
convection during the cooling process of a storage tank in this operation mode is
analysed. In order to identify the relevant parameters that define this transient natu-
ral convection phenomenon, a non-dimensional analysis of the governing equations
is performed. This analysis has shown that the transient cooling down of the fluid,
taking into account the limiting walls and insulation material, is dominated by the
Rayleigh number (Ra), the aspect ratio (H/D) and a non-dimensional overall heat

transfer coefficient that accounts for the solid walls (Û ).

A global model analysis to characterise the long term behaviour of the tank in-
cluding heat losses to the environment is developed. The global model is based on a
one-temperature level. Heat losses to the environment are described by means of a
transient mean Nusselt number. A parametric study is carried out in order to corre-
late the transient heat transfer coefficient to the relevant parameters. The main tasks
accomplished for the correlation of the results by means of curve-fitting techniques
are described. At the end of the chapter, other model possibilities to account for heat
losses through each wall independently, are also exposed.

A final chapter with the conclusions of the work performed in this thesis, the
main achievements and limitations of the studies carried out, is presented. The
guidelines for future research work in this applied area are also suggested.
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Chapter 2

On the resolution of two and
three-dimensional CFD and
heat transfer problems in
cylindrical coordinates

Abstract. The aim of this chapter is to expose the methodology employed for the resolution of

two and three-dimensional cylindrical coordinates Computational Fluid Dynamics (CFD) and

Heat Transfer problems. The most relevant particularities of the discretisation of the govern-

ing equations in cylindrical coordinates such as the treatment of the singularity at the cylinder

centre or the periodicity at the azimuthal direction are described. Special emphasis has been

given to the process of verification of the code verification and numerical solution. In this

sense, a post-processing tool based on the generalised Richardson extrapolation method and

on the Grid Convergence Index (GCI) is employed.

33



Chapter 2. On the resolution of two and three-dimensional CFD and heat transfer problems
in cylindrical coordinates

2.1 Introduction

Nowadays, numerical methods in heat transfer and fluid flow have been consoli-
dated as a powerful tool for the design/optimisation of thermal systems. Compu-
tational Fluid Dynamics (CFD) codes are being employed on the improvement of
thermal equipment allowing a reduction in terms of developing costs and time. Dif-
ferent commercial CFD codes are available in the market, and many engineers and
technicians are using them in their companies. However, and rather than employing
commercial codes for which the source code is rarely available, the CFD scientific
community usually develops their own codes, thus having a complete freedom of
manipulation.

In this chapter, the main governing equations of fluid flow and heat transfer i.e.
the conservation of mass, momentum and energy equations are presented. These
equations are the necessary tools to deal mathematically with most of engineering
applications. The solution of these equations report a detailed information of the
fluid flow variables involved in the phenomena studied: the velocity vector (~v), the
pressure (p) and the temperature (T ) fields.

In the wide range of applicability of CFD computations, the cases where the phys-
ical phenomena takes place in cylindrical geometries (e.g. tubes, tanks, etc.) are
very common. Considering different discretisation techniques, structured cylindri-
cal grids offer a good agreement in terms of the fitness of the discretisation to the
physical domain and the robustness of the method to be employed on the resolution
of the set of Partial Differential Equations (PDEs). On the other hand, the geometry
of the domain of study has a strong influence in the flow patterns, being suitable to
choose the coordinate system which represent this pattern better.

This thesis is devoted to the study of the transient phenomena that occurs in
solar domestic hot water storage tanks. Thus, governing equations presented here
are written for cylindrical coordinate systems.

The aim of this chapter is to expose the methodology employed for the resolution
of Computational Fluid Dynamics (CFD) and Heat Transfer problems, considering
two and three-dimensional cylindrical coordinates. The discretisation of the gov-
erning equations for cylindrical coordinates, the most relevant particularities of the
discretised equations, formulation of the boundary conditions, numerical schemes
considered, and also the verification of the code and numerical results techniques
are presented.

2.2 Mathematical formulation

The governing equations of heat transfer and fluid flow (i.e. the conservation of
mass, momentum and energy equations) considered along this thesis have been for-
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2.2. Mathematical formulation

mulated considering unsteady two or three-dimensional flow configuration and tak-
ing into account the following hypothesis:

• Incompressible and laminar flow

• Newtonian behaviour

• Physical properties constants with the exception of density variations which
are treated assuming Boussinesq approximation (relevant in buoyancy terms
of momentum equations)

• Viscous dissipation in the energy equation negligible

• Non-participant radiating medium

Under these hypotheses it is possible to cover a wide range of engineering appli-
cations and, in particular, a wide range of operating conditions of solar domestic hot
water storage tanks. The equations for cylindrical coordinates can be written as:

the continuity equation:

1

r

∂(rvr)

∂r
+

1

r

∂vθ

∂θ
+

∂vz

∂z
= 0 (2.1)

the equations of motion (for r, θ and z directions):
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in cylindrical coordinates

where shear stresses are evaluated considering a Newtonian behaviour by means of
Stoke’s law:

τrr = 2µ
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the energy equation:
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Notice that components of the heat flux vector entering the unit of volume by
conduction have been evaluated by means of the Fourier’s law: −→q = −k∇T .

All the above equations (mass conservation, momentum conservation in r, θ and
z directions and energy conservation) can be written as the so called convection-
diffusion equation. For cylindrical coordinates this equation can be expressed as:

transient term︷︸︸︷
∂φ

∂t
+

convective term︷ ︸︸ ︷
1
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Sφ

Equation 2.6 is a balance between the generation, accumulation and transport (by
diffusion or convection) of a generic variable φ. The terms in the convection-diffusion
equation are summarised in Table 2.1 depending of which equation is represented.

2.3 Discretisation of the governing equations

In this thesis the governing equations have been approximated by means of a fully-
implicit finite volume control method (FVM), based on the conservation fluxes of
the primitive variables [1]. The method has been applied on cylindrical staggered
grids. To do so, first the whole domain has been discretised into a finite number of
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2.3. Discretisation of the governing equations

Equation φ Γ Sφ

Mass conservation 1 0 0

Momentum conservation (r) vr
µ

ρ
−

1

ρ

∂pd

∂r
− grβ(T − Tref ) +

v2
θ

r
−

1

ρ

τθθ

r

Momentum conservation (θ) vθ
µ

ρ
−

1

rρ

∂pd

∂θ
− gθβ(T − Tref ) +

vrvθ

r

Momentum conservation (z) vz
µ

ρ
−

1

ρ

∂pd

∂z
− gzβ(T − Tref )

Energy conservation T
k

ρcp

ST

ρcp

Table 2.1: Terms of the generic convection-diffusion equation for cylindrical coor-

dinates system

non-overlapped control volumes (CV). This primary grid has been denoted as the
centred grid. Additionally, three staggered grids have been defined in each direction
of the coordinate system (i.e. for r, θ and z directions). Scalar variables (pd, T ) have
been evaluated at the centred grid, while velocity components (vr, vθ , vz) have been
evaluated on the staggered grids in each direction (r, θ, z). In Fig. 2.1 there is a
representation of the typical control volume for cylindrical coordinates. The value of
the variable at the nodal point P , φP , and the relation with its neighbours φW , φE ,
φS , φN , φB and, φT is represented. The subscript E and W denotes relative position
respect to the nodal point P (E → east, W → west). In the same manner, N , S, T and
B, denote nord, south, top and bottom respectively.

In order to explain the integration of the governing equations in the defined grids,
the general convection-diffusion equation (Eqn. 2.6) has been used. This equation can
be written also as:

∂φ

∂t
+ ∇ · (uφ) −∇ · (Γ∇φ) = Sφ (2.7)

It is useful to consider a total flux J that contains the convective flux (uφ) and the
diffusive flux (−Γ∇φ). Thus,

J = uφ − Γ∇φ (2.8)

With this definition, the convection-diffusion equation 2.7 becomes:

∂φ

∂t
+ ∇ · J = Sφ (2.9)

Equation 2.9 can be integrated for each control volume in the following manner:
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φ

φ

φ

φ

φ

r
θ

z

φ

φ

W

N

B

E

S

T

P

Figure 2.1: Location of nodal points at centred grid and its neighbours for cylin-

drical coordinate system (r, θ, z).

∫

Ω

∂φ

∂t
dΩ +

∫

Ω

∇ · JdΩ =

∫

Ω

SφdΩ (2.10)

Using the divergence theorem for the term
∫
Ω

∇ · JdΩ and approaching the right

hand side term as the average source term of the whole control volume yields:

∫

Ω

∂φ

∂t
dΩ +

∫

∂Ω

J · ndS = SφΩ (2.11)

where ∂Ω is the outer surface of the CV of volume Ω, and n a unit vector normal
to the surface. Expressing the integral term containing the flux vector in Eqn. 2.11 as
a summation of the contribution on each face:

∫

Ω

∂φ

∂t
dΩ +

∑

f

Jf = SφΩ (2.12)

In Eqn. 2.12, Jf represents the integral flux of the variable φ across the face f
(f = w,e,n,s,b,t). According with the representation in Fig. 2.1, e.g., e represents the
interface between nodal points P and E. This integral flux Jf considers both, the
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diffusive and the convective fluxes, of the variable φ at the face f with surface Sf .
In order to integrate each term in the above equation, it is better to consider the
diffusive flux (JD

f ) independently of the convective flux (JC
f ):

Jf = JC
f + JD

f (2.13)

In order to explain the integration of the diffusive and convective fluxes, the
fluxes at the face e will be used as an example.

Diffusive terms have been approximated using a piecewise-linear profile also
known as second order central differences scheme:

JD
e =

∫

e

J
D · ndS =

∫

e

−Γ∇φ · ndS =

∫

e

−Γ
∂φ

∂r
dS ≈ (2.14)

− Γe

(
∂φ

∂r

)

e

Se ≈ −ΓeSe
φP − φE

δre
= De(φE − φp)

In the above expression the value of the diffusion coefficient Γe is located at the
interface of the control volumes (between neighbouring nodal points E and P ). The
mathematical formulation here presented considers thermophysical properties con-
stants. However, care must be taken in the formulation of the interface between two
different materials. The desired expression for Γe (at the interface) is the one that
leads to the correct flux through the interface. That is, the flux that leaves one con-
trol volume through a particular face must be identical to the flux that enters the next
control volume through the same face.

Convective terms have been approximated as:

JC
e =

∫

e

J
C · ndS =

∫

e

uφ · ndS =

∫

e

ueφdS ≈ ueφeSe = Feφe (2.15)

The critical point is the evaluation of the variable φ at the face of the control vol-
ume. To obtain accurate solutions avoiding convergence problems, different numer-
ical schemes have been reviewed, such as the Upwind Differencing Scheme (UDS),
the Quadratic Upstream Interpolation for Convective Kinematics (QUICK) [2], the
second order accurate Upwind [3] or the SMART scheme [4]. The first and the last
ones have been used along this thesis. For high order numerical schemes (such as
SMART) the deferred correction approach procedure [5, 6] has been implemented.
Thus, the convective flux at the interface has been evaluated as:

Feφe = Feφ
U
e − Fe(φ

U
e − φH

e ) (2.16)

where φU
e is the first order accurate UDS scheme and φH

e is the variable evaluated
using a high order numerical scheme. In the UDS approximation, the value of φ at
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the interface has been evaluated using the value of φ on the upwind side of the face,
depending on the value of the flux Fe. Thus,

φU
e =

{
φP if Fe > 0

φE if Fe < 0
(2.17)

The conditional statement can be compactly written in the following manner:

Feφ
U
e = φP max(Fe, 0) − φE max(−Fe, 0) (2.18)

For the evaluation of φH
e , the SMART scheme has been used in this thesis. This

scheme has a theoretical accuracy order between 1 and 3. The SMART scheme states
that the value of the variable at the face depends on the value of the two nodal points
upstream and the neighbour nodal point downstreams. That is:

φe = f(φu, φc, φd) (2.19)

where φu, φc and φd depends on the flux direction. φu is the second nodal point
upstream, φc is the neighbour nodal point upstream, while φd is the neighbour nodal
point downstream. Then, depending on the flow direction:

φu =

{
φW if Fe > 0

φEE if Fe < 0
(2.20)

φc =

{
φP if Fe > 0

φE if Fe < 0
(2.21)

φd =

{
φE if Fe > 0

φP if Fe < 0
(2.22)

In order to formulate in a compact manner the SMART scheme, it is better to
work with the normalised variables. Thus,

φ =
φ − φu

φd − φu
(2.23)

In a similar way, it is also convenient the introduction of the non-dimensional
distances:

r =
r − ru

rd − ru
(2.24)
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With the above non-dimensional variables, the SMART scheme can be formu-
lated as follows:

φ̄e =






−
r̄e(1 − 3r̄c + 2r̄e)

r̄c(r̄c − 1)
φ̄c 0 < φ̄c <

r̄c

3

r̄e(r̄e − r̄c)

1 − r̄c
+

r̄e(r̄e − 1)

r̄c(r̄c − 1)
φ̄c

r̄c

3
< φ̄c <

r̄c

r̄e(1 + r̄e − r̄c)

1 φ̄c <
r̄c

r̄e(1 + r̄e − r̄c)
< 1

φ̄c otherwise

(2.25)

For the integration of the transient term, ∂φ/∂t, it is assumed that the value of φ
at the centre of the grid volume prevails throughout the control volume. Then,

∫

Ω

t+∆t∫

t

∂φ

∂t
dΩ ≈

(φP − φ0
P )

∆t
ΩP (2.26)

where φP is the value of the variable at the current time step and φ0
P is the value

of the variable at the last time step.
For the source term it is also assumed that the value of the nodal point prevails

over all the control volume:

Sφ = SP (2.27)

Combining all the previous expressions, the discretised convection-diffusion equa-
tion can be written as:

(φP − φ0
P )

∆t
ΩP + (JD

e + Feφ
U
e ) − (JD

w + FwφU
w) + (JD

n + FnφU
n ) (2.28)

− (JD
s + Fsφ

U
s ) + (JD

t + Ftφ
U
t ) − (JD

b + Fbφ
U
b )

= SP ΩP + bde

In Eqn. 2.28, the term bde is the deferred correction approach term to achieve
the high order accuracy precision. This correction has been done by evaluating the
values of the variable at the faces according to the currently available nodal values,

bde = Fe(φ
U
e − φH

e ) − Fw(φU
w − φH

w ) (2.29)

+ Fn(φU
n − φH

n ) − Fs(φ
U
s − φH

s )

+ Ft(φ
U
t − φH

t ) − Fb(φ
U
b − φH

b )
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Thus, rearranging Eqns. 2.28 and 2.29, the algebraic equations have the following
structure:

aP φP =
∑

nb

anbφnb + b (2.30)

where the subscript nb takes the value of the neighbouring points (nb= W , E, S,
N , B, T ). These coefficients can be evaluated as:

aE = De + max(−Fe, 0) (2.31)

aW = Dw + max(Fw , 0)

aN = Dn + max(−Fn, 0)

aS = Ds + max(Fs, 0)

aT = Dt + max(−Ft, 0)

aB = Db + max(Fb, 0)

aP =
∑

nb

anb + Fe − Fw + Fn − Fs + Ft − Fb +
ΩP

∆t

b = SP ΩP + φ0
P

ΩP

∆t
+ bde

The integration of the convection-diffusion equation for all control volumes in the
domain, leads to an algebraic system of equations for a single variable φ. The above
discretisation can be applied for the momentum equations at each direction and for
the energy equation. Mass conservation equation deserves a special attention, which
is explained in the next subsection.

The algebraic system of linear equations resulting for each variable have been
solved in the present work using a Multigrid method [7]. Multigrid methods are
highly efficient techniques for solving the algebraic set of equations. The basic idea
is to use multiple grids to resolve different error frecuencies of the solution on the
appropriate scale. Classic iterative solvers such as MSIP or line-by-line Gauss-Seidel
degrade with the increase of the mesh to be solved. However, these iterative solvers
are efficient reducing high frequency errors. Thus, multigrid methods converts low
frequency errors on the fine grid to high frequency errors on the coarse grid, that can
be dealt with iterative solvers. The overall convergence rate is greatly increased in
this way.

2.3.1 The pressure correction equation. The SIMPLE-like algorithm

In momentum equation for the radial, azimuthal and axial directions, the source
term SP in the coefficient b, contains the pressure gradient, the temperature effects
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over the density (i.e. the Boussinesq’s hypothesis), and the term derived from the
cylindrical coordinate system on their respective directions. Thus, for the resulting
systems of equations it is said to have a coupling between the velocities (i.e. vr, vθ

and, vz), the temperature T , and the pressure p.
In order to solve the velocities components, i.e. the momentum equations in each

direction, a pressure field must to be guessed. Denoting the velocity field obtained
from a guessed pressure field as, e.g. for axial direction, v∗z :

anv∗z,t =
∑

nb

anbv
∗

z,nb + bz + (p∗P − p∗T )St (2.32)

In the above equation, the coefficient bz is defined in the same manner as in Eqn.
2.31, but the pressure gradient has not been included. Notice that velocity and pres-
sure have been denoted as v∗z and p∗. The velocities evaluated with the above expres-
sion, satisfy only the momentum conservation. There is no guarantee about conti-
nuity, unless the correct pressure field is employed. Thus, the objective is to find a
pressure field that satisfy continuity equation. Correcting the guessed p∗ value, is
obtained:

p = p∗ + p′ (2.33)

Here, p′ is called the pressure correction. Introducing the same corrections for the
velocities, in a similar manner, we can write the velocity fields as a function of the
pressure correction, such as:

vz = v∗z + v′z (2.34)

The same applies for the velocities at the radial and azimuthal directions. Sub-
stituting these expressions in the algebraic system of equations for the continuity
equation is obtained:

atv
′

z,t =
∑

nb

anbv
′

znb + (p′P − p′T )St (2.35)

In this point different approaches can be considered. One of these, neglects the
summation term in Eqn. 2.35. This approach is known as the SIMPLE approach
(Semi-Implicit Method for Pressure-Linked Equations) giving,

v′z,t = (p′P − p′T )dt (2.36)

where dt = St/at. Another possibility, is an improvement of the approach pro-
posed above, which considers also the neighbour summation. This approach is
called SIMPLEC (Semi-Implicit Method for Pressure-Linked Equations Consistent)
[8]. Thus, dt is written as:
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dt =
St

at −
∑
nb

anb
(2.37)

The Eqn. 2.35 is the velocity correction formula. Substituting this expression in
Eqn. 2.34, velocity can be written as:

vz = v∗z + dt(p
′

P − p′T ) (2.38)

The last approach has been adopted in the present thesis. To evaluate the pressure
correction, the mass conservation equation has been written properly to formulate
an equation for the pressure correction. Integrating the continuity equation over a
control volume and assuming that density, ρP , prevail over all control volume, and
that velocity components (vr, vθ , and vz) are placed at the faces of the control volume,
the integrated equation reads,

[(ρvr)e − (ρvr)w]r∆θ∆z (2.39)

+ [(ρvθ)n − (ρvθ)s]∆r∆z

+ [(ρvt)n − (ρvz)b]r∆r∆θ = 0

Substituting the velocity components by the velocity correction formulae (such as
Eqn. 2.38), and rearranging terms, a discretisation equation for pressure correction
can be obtained:

aP p′P = aEp′E + aW p′W + aNp′N + aSp′S + aT p′T + aBp′B + b (2.40)

where

aE = ρeder∆θ∆z (2.41)

aW = ρwdwr∆θ∆z

aN = ρndn∆r∆z

aS = ρsds∆r∆z

aT = ρtdtr∆r∆θ

aB = ρbdbr∆r∆θ

aP =
∑

nb

anb

b = [(ρv∗r )e − (ρv∗r )w]r∆θ∆z

+ [(ρv∗θ)n − (ρv∗θ )s]∆r∆z + [(ρv∗z)t − (ρv∗z )b]r∆r∆θ
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It can be observed that if the coefficient b is zero, the values of the guessed veloc-
ities (v∗) in conjuction with the values of the density, satisfy the continuity equation,
and no pressure correction is needed.

To solve the coupling between the equations, first, the system of equations for
the velocities (equation of motion in r, θ and z directions) with the assumption of a
pressure p∗ and a temperature T fields can be solved. Then, with the velocity field
from the previous step, the resolution of the pressure correction system of equations
is done and p′ is obtained. Once p′ has been calculated, velocity and pressure fields
are corrected and thus, the energy equation is solved. Following this iterative pro-
cedure it is possible to uncouple the system of equations. This iterative procedure,
that solves the algebraic system of equations in a segregate manner, has been sum-
marised in the so-called SIMPLE-like algorithm. This algorithm treat the coupling
between pressure and velocity by means of the pressure correction equation com-
mented above. The procedure can be summarised as follows:

1. Guess the pressure field p∗

2. Solve momentum equations to obtain vr∗, vθ∗ and vz∗

3. Solve the p′ equation

4. Correct pressure and velocity fields to obtain p, vr, vθ and vz by means of Eqns.
2.36 and 2.38

5. Solve the equation for temperature T

6. Treat corrected pressure p as a new guessed p∗ and return to step 2 until con-
vergence is reached.

2.3.2 The time marching algorithm

The SIMPLE-like algorithm commented above, allow to evaluate the values of the
variables at a given time instant, from the conditions of the previous time step, t−∆t,
(see temporal discretisation). Time marching can be used in different ways: to ob-
tain a time solution of a transient flow or to obtain a steady-state solution by solving
the evolution of the variables in time until steady-state is reached. In the last situa-
tion, this way of solving the system is called pseudo-transient method. In the case
of a pseudo-transient problem, the solution at each time step must not to be time-
accurate, advancing in time until the steady state is reached.

The resolution of the governing equations in time has been carried out by solving
iteratively all variables at a given time instant. If the problem to be solved is tran-
sient, convergence of the iterative algorithm must to be reached at each time step,
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advancing in time until the criteria to stop simulation is obtained (usually a given
time).

For transient flow, the time step is limited by the truncation error associated with
the discretisation of the time derivatives. In the present thesis, the transient term has
been approximated by a first order time derivative. In order to model the transient
phenomena properly, it is necessary to set ∆t at least one order of magnitude smaller
that the smallest time constant in the system to being modeled. A good way to
judge, a priori, if a properly ∆t has been chosen is, to observe the number of outer
iterations per time step that the iterative algorithm used needs. If the number of
outer iterations is greater than 20-30, the time step is probably, too large. Sometimes,
the first time increments needs a large number of iteraterations to converge. Thus, a
smaller ∆t can be chosen for the first time steps and then this value can be increased
as the time advances.

2.3.3 Particularities of the discretisation in cylindrical coordinates

The main particularities of the discretised set of PDEs in cylindrical coordinates, are
the singularity that results at the cylinder centre (r = 0) and the spatial periodicity
that appears in the azimuthal direction for closed geometries. Hereafter, a brief ex-
planation of these particularities and the treatment carried out to overcome them are
given.

A note on the treatment the singularity at the cylinder centre

On the discretisation of the governing equations at the axis, when the cylinder centre
is within the computational domain, terms like (1/r ∂φ/∂r) or like (∂φ/∂θ) become
undefined causing a singularity at the cylinder centre (r = 0). In order to circum-
vent these difficulties, different numerical strategies for the definition of boundary
conditions at the cylinder axis have been proposed in the literature.

De Vahl Davis [9] suggested a discretisation without nodes at the centre of the
cylinder. This means that the computational domain contains a thin cylinder around
the z-axis. Radial derivatives of the innermost nodal points have been approximated
by a second order forward difference formula. Schneider and Straub [10] proposed to
introduce a cylinder-shape control volume at the axis and radial velocities at points
on the radial face of the control volume have been then calculated. Another method
for dealing with the axis of a cylindrical grid is to employ a mixed Cartesian and
cylindrical grid system (i.e. use a Cartesian grid system at the region near the axis of
the cylinder, and a cylindrical grid away the centre).

A different strategy has been proposed by Hiroyuki et al. [11]. In their work,
they have evaluated radial velocity components at the centre for each θ angle of the
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Figure 2.2: Discretisation at the centre of the cylinder. Axis node and its neigh-

bours nodes.

azimuthal discretisation (i.e. r = 0, θ), as a interpolation of the azimuthal velocity
at the adjacent nodes in θ ± π/2 (i.e. r = ∆r, θ ± π/2). A similar interpolation
has been used for the azimuthal velocity component at the centre, but in this case,
the interpolation has been done with the azimuthal velocities at the adjacent nodes
at θ ± π (i.e. r = ∆r, θ ± π/2). For scalar variables, values at the axis have been
obtained by averaging the values at the adjacent nodes.

Previous experiences at CTTC about the treatment of the singularity at the axis
have been reported in the PhD thesis of A. Ivancic [12]. In his work, an additional
control volume for momentum equation in radial direction to ensure information
about vr was introduced. After that, different cases were solved in order to verify this
approach. However, in the present thesis, a different approach has been adopted.

In the approach adopted, no additional or ’special’ control volumes at the centre
are required. Once the grid has been generated, the values of the different variables
have been prescribed at the centre as a boundary condition. To do so, first of all,
Cartesian velocity components at the nearest nodes to the centre have been deter-
mined (see Fig. 2.2).

~vpi = vx,pi
~i + vy,pi

~j + vz,pi
~k i = 1, 2, 3... (2.42)

where,

vx,pi = vr,pi cos θpi − vθ,pi sin θpi (2.43)

vy,pi = vr,pi sin θpi + vθ,pi cos θpi (2.44)

vz,pi = vz,pi (2.45)
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Velocity vector at the cylinder centre (~vc) has been then calculated as the average
value of the Cartesian components of velocity at the nearest nodes (~vpi).

~vc = vx,c
~i + vy,c

~j + vz,c
~k (2.46)

vx,c =
Nθ∑

i=1

vx,pi∆θpi/2π (2.47)

vy,c =

Nθ∑

i=1

vy,pi∆θpi/2π (2.48)

vz,c =

Nθ∑

i=1

vz,pi∆θpi/2π (2.49)

Once the velocity components of the vector at the cylinder centre have been ob-
tained, their values can be written for cylindrical coordinates as:

vr,c = vx,c cos θc + vy,c sin θc (2.50)

vθ,c = −vx,c sin θc + vy,c cos θc

vz,c = vz,c

The values of the velocity components at each θ angle is introduced as bound-
ary conditions of the momentum equations at each direction (radial, axial and az-
imuthal).

The discretisation at the centre proposed, overcomes in a simpler manner the
main difficulties of the different approaches found in literature (i.e. no additional or
special CV’s are necessary; different values of the velocity vector at the centre, de-
pending of the θ angle considered; use of Cartesian and cylindrical grids at different
zones of the domain; among others). The main advantage is that only one velocity
vector is calculated at the centre of the cylinder, being the components of the velocity
at each discretisation angle θ evaluated from this vector. The appropriateness of this
approach is discussed in the next chapter.

A note on periodic boundary conditions

In three-dimensional cylindrical coordinate systems, when there are no boundaries
in the azimuthal direction (i.e. cylindrical domains), the domain is considered spa-
tially periodic. From the numerical integration of the governing differential equa-
tions over the discretised domain, the resulting set of the algebraic system of equa-
tions is characterised for having a cyclic heptadiagonal coefficient matrix that is usu-
ally solved with specific algorithms [13, 14, 15]. An alternative to this methodology

48



2.3. Discretisation of the governing equations

is the discretisation of the domain introducing a false boundary at the azimuthal di-
rection and conveniently formulating a spatially periodic boundary condition. This
is the strategy that has been followed in this thesis. A brief explanation is hereafter
presented.

Once the domain has been discretised, four control volumes have been added
at the outer boundary in the azimuthal direction (θ = 2π). These supplementary
control volumes have been overlapped onto the corresponding ones at the inner
domain boundary (θ = 0).

The way the information has been transferred between the overlapped nodes is
schematically represented in Fig. 2.3. In the figure, Nθ corresponds to the total num-
ber of nodal points in the azimuthal direction for the centred grid, once the four CV’s
have been added. Considering the staggered location of the velocity components,
two treatments can be distinguished: one for scalar variables pd and T and velocity
components vr and vz (Fig. 2.3a) and a different one for the azimuthal velocity vθ

(Fig. 2.3b). Taking into account the array indexation presented in Fig. 2.3, the spatial
boundary condition in the azimuthal direction can be summarised as follows:

From the two innermost control volumes of the overlapping zone (corre-
sponding to j = 3, 4, Nθ− 4, Nθ− 5), the values of the variables vr, vz , T
and pd are directly transferred to the corresponding overlapped nodes:

φ(i, 1, k) = φ(i, 2, k)
φ(i, 2, k) = φ(i, Nθ − 4, k)
φ(i, 3, k) = φ(i, Nθ − 3, k)

φ(i, Nθ − 2, k) = φ(i, 4, k)
φ(i, Nθ − 1, k) = φ(i, 5, k)
φ(i, Nθ, k) = φ(i, Nθ − 1, k)

(2.51)

For the particular case of vθ , in the staggered mesh in azimuthal direction,
the transfer information is given by:

φ(i, 1, k) = φ(i, Nθ − 5, k)
φ(i, 2, k) = φ(i, Nθ − 4, k)

φ(i, Nθ − 1, k) = φ(i, 5, k)
φ(i, Nθ − 2, k) = φ(i, 4, k)

(2.52)

This strategy assesses that the numerical solution obtained from the integration
of the governing equations is the same as the one that could be obtained without the
definition of this spatially periodic boundary condition. In this sense, the number
of control volumes considered to define the overlapping zone has been selected in
order to maintain the order of accuracy of the numerical solutions when convective
terms are evaluated using third order numerical schemes.
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(a) (b)

Figure 2.3: Treatment of radial and azimuthal velocity components in the periodic

zone. (a) Radial velocity component. (b) Azimuthal velocity component.

2.4 Verification of the code and numerical solutions

(V&V)

As computational fluid dynamics is fast becoming a tool in the engineering design
process, the numerical uncertainty assessment is necessary to make solutions reli-
able. Many papers have been published concerning the quantification of errors and
uncertainties in CFD simulations [16, 17, 18, 19, 20, 21]. Adopting the semantics pro-
posed by Roache [22], two main concepts can be distinguished: the verification of
the code and the verification of the numerical solutions. Code verification is referred
to the identification of programming errors, while verification of the numerical so-
lutions accounts for the quantification of the remaining sources of computational
errors, mainly corresponding to the discretisation errors.

In the process of code verification and verification of calculations, the post-proce-
ssing procedure proposed by Cadafalch et al.[23] has been used. This post-processing
tool is based on the generalised Richardson extrapolation for h-refinement studies and
on the Grid Convergence Index (GCI) proposed by Roache [16]. A brief description
of this procedure is given below. For more details see [23].

2.4.1 Concepts and definitions

Richardson extrapolations method states that the error in a numerical solution can
be expressed as [24, 25]:

eD(x) = φ0(x) − φ(x) = α1h + α2h
2 + α3h

3 + .... (2.53)

where φ0(x) is the exact numerical solution and φ(x) is the numerical solution ob-
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tained with a grid size h and, αi (i = 1, 2, 3..), are coefficients which can be function
of the coordinates but independent on h in the asymptotic range. For a sufficiently
small value of h (i.e. when h → 0), the local discretisation error, eD(x), can be ap-
proximated in terms of the numerical solution φ(x) obtained with the mesh spacing
h, and the leading term of the truncation error as:

eD(x) = φ0(x) − φ(x) = C(ah)p(x) (2.54)

where p(x) is the order of the numerical scheme used, C is a coefficient inde-
pendent of h but can be function of the space or time and, a that is the mesh ratio
[18]. Richardson extrapolation uses calculations on multiple set of grids. The grid
size of each solution can be expressed as a function of the grid size of the finest one
(h1 = href ) as:

hi = aihref i = 1, 2, 3, .. (2.55)

where the subscript i = 1 represents the finest grid. Expression 2.54 can be writ-
ten for each grid solution (p.e. for three grid solutions) giving a set of equations:

φ0(x) − φ1(x) = Cp(a1h)p(x) (2.56)

φ0(x) − φ2(x) = Cp(a2h)p(x)

φ0(x) − φ3(x) = Cp(a3h)p(x)

being a1 = 1, the above system of equations (Eqn. 2.56) can be solved for the
three grids and the values for p, cp and φ0(x) can be obtained . The solution of the
above system of equations gives:

p(x) =
ln[(φ2(x) − φ3(x))/(φ1(x) − φ2(x))]

ln a2
− f(p) (2.57)

f(p) =
ln[((a3/a2)

p(x) − 1)/(a
p(x)
2 − 1)]

ln(a2)
(2.58)

φ0(x) =
a

p(x)
2 φ1(x) − φ2(x)

a
p(x)
2 − 1

(2.59)

For a constant grid refinement ratio (i.e. a3/a2 = a2 = r), Eqn. 2.58 equals zero
and Eqn. 2.57 can be solved directly. Otherwise Eqns. 2.57 to 2.59 need to be solved
iteratively. Thus, substituting Eqn. 2.59 into Eqn. 2.54 for the finest grid, gives:

eD(x) =

∣∣∣∣
φ1(x) − φ2(x)

rp(x) − 1

∣∣∣∣ (2.60)
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Roache [16] incorporates a safety factor Fs and define the Grid Convergence
Index (GCI) for the fine grid solution as:

GCI(x) = Fs

∣∣∣∣
φ1(x) − φ2(x)

rp(x) − 1

∣∣∣∣ (2.61)

The value of the safety factor must be taken depending on the number of grid
solutions available. For two grid solutions, a conservative value of Fs = 3 is recom-
mended, while for three or more grids solutions Fs = 1.25 seems to be adequate.
The calculation of the order of accuracy and the GCI by Eqns. 2.57 and 2.61 implies
that the solutions of the three set of grids have monotonic convergence to the exact
numerical solution as the grid is refined. That is, the ratio (φ2(x) − φ3(x))/(φ1(x) −
φ2(x)) > 0. Richardson extrapolations for cases with oscillatory convergence needs
further investigations and is beyond the scope of this thesis [18, 21].

2.4.2 Post-processing tool

The post-processing procedure implemented by Cadafalch et al. [23] processes the
numerical solutions for all variables of the problem, obtained from three consecu-
tive levels of discretisation in an h-refinement study with a constant mesh ratio of
r = 2. The value of the mesh ratio is fixed in Eqn. 2.57 by doing a2 = r = 2.
Other h-refinement ratios could be considered, just changing this value in Eqn. 2.57,
but always maintaining constant the mesh ratio (Eqn. 2.58 equals zero). Numeri-
cal solutions are interpolated at the post-processing grid. The post-processing grid
is assigned to the coarsest one of the three levels of refinement considered. In or-
der to minimise the introduction of errors during interpolation, third order accurate
Lagrangian interpolations are used.

The most relevant parameters arisen from this procedure are the uncertainty due
to the discretisation (GCI), the observed order of accuracy of the numerical solution
(p), and the percentage of nodes where the application of the post-processing pro-
cedure has been possible (called Richardson nodes (Rn[%])). Richardson nodes are
those where (φ2(x) − φ3(x))/(φ1(x) − φ2(x)) > 0.

Global and local estimators of the GCI and p are obtained for the finest mesh and
for each dependent variable of the problem. Global estimates, especially useful for
reporting results of the verification process in a compact manner, are evaluated by
means of a volume weighted average. In order to evaluate the GCI (Eqn. 2.61) the
value of the order of accuracy introduced in the formula is the global observed order
of accuracy of the solution. For the GCI evaluation, a safety factor of Fs = 1.25 is
taken.

It has been shown in previous works [23, 26] that GCI estimates are credible
when the global observed order of accuracy (p) for each variable approaches its the-
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oretical value (e.g. 2, in second order differencing schemes), and when the number
of the Richardson nodes is high enough. In this thesis, local and global estimators
have also been useful in order to find out the appropriate grid parameters such as
determine the zones where the discretisation mesh requires additional refinement,
as is further commented.

2.5 Conclusions

The governing equations for the resolution of heat transfer and fluid flow in three-
dimensional cylindrical coordinates have been presented. A detailed description of
the discretisation employed on the development of a CFD and heat transfer code has
been exposed. Special emphasis has been done on the singularity treatment at the
cylinder centre and on the spatial periodicity at the azimuthal direction. The post-
processing procedure followed in the assessment of the numerical solutions, in order
to quantify errors and uncertainties, has been also exposed.

Nomenclature

cp specific heat (J/kgK) Rn Richardson nodes (%)
eD exact global discretisation error

(%)
T temperature (K)

GCI Grid Convergence Index (%) t time (s)
g acceleration of gravity (m/s2) Nθ total number of nodes in the az-

imuthal direction
k thermal conductivity (W/mK) u magnitude of velocity vector

(m/s)
pd dynamic pressure (Pa) vr radial velocity component (m/s)
p observed order of accuracy vθ azimuthal velocity component

(m/s)
q̇ heat flux (W/m2) vz axial velocity component (m/s)
r radial coordinate (m) z axial coordinate (m)

Greeks
α thermal diffusivity (m2/s) ν kinematic viscosity (m2/s)
β thermal expansion coefficient

(K−1)
θ azimuthal coordinate (rad)

φ dependent variable ρ density (kg/m3)
µ dynamic viscosity (kg/ms) τ stress tensor (N/m2)
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Chapter 3

Verification of the code and
verified numerical results on
cylindrical coordinates

Abstract. In this chapter the tasks carried out in order to verify the code and the numeri-

cal solutions are presented. Different cases are submitted to a process of verification of the

numerical solutions. The appropriateness of the adopted discretisation and the verification

procedure are discussed analysing two problems with analytical solution: a uniform flow

through a cylindrical domain and a laminar Couette flow. Verified computations for two and

three-dimensional steady-state problems in cylindrical coordinates are provided: a flow in-

duced by a tangential velocity at the boundary; a natural convection in a cylindrical enclosure

heated from below, and the fluid motion between two concentric rotating cylinders. The most

relevant results for velocity and temperature fields, together with their uncertainty estimates

of the discretisation are given.
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Chapter 3. Verification of the code and verified numerical results on cylindrical coordinates

3.1 Introduction

The most important aspects in the verification of the code and numerical solutions
during the process of a code development have been analised in the present chapter.
The numerical solutions of different test cases in cylindrical coordinates have been
submitted to a rigorous process of verification applying the techniques described in
Chapter 2.

In the process of development or improvement of a CFD code there are several
aspects to be taken into account. Once a mathematical model (governing equations)
is considered in the modelisation of a given physical phenomena, the main job of
a CFD code developer is to convert the set of partial differential equations (PDEs)
to algebraic equations and to solve them using a computer. This conversion in-
volves the discretisation of the PDEs, the programming of the code, the numerical
algorithm, the criteria for finishing the convergence procedure, and the computer
accuracy. Once this process is finished, it is important to submit the code and the
calculations to a process of verification [1].

In the process of code verification the main job is to find programming bugs or
mistakes that could have been introduced in its development. The common strategy
is to submit the code to different kind of tests for which their solution is known. The
nature of those tests can be diverse. The most desirable ones are those for which an
analytical solution of the set of PDEs is known. However, the main inconvenient in-
herent of these tests is, that analytical solutions can be found mainly when quadratic
terms become null, being not the most useful ones to exercise all terms of the set
of PDEs. Another group of problems are those that although they do not have an
analytical solution, they have been widely treated in the literature and are specially
relevant to industrial and technical applications. An illustrative well known exam-
ple of these kind of problems, usually defined as benchmarks, is the case proposed by
Jones [2] consisting in a buoyancy-driven flow in a square cavity with differentially
heated walls. De Vahl Davis [3, 4] summarised the results obtained by different re-
search groups, and a benchmark solution was accepted. These solutions are nowadays
being widely employed with the same level of confidence that an analytical solution
may have. The third possible strategy that has been proposed recently consists in
the obtention of an analytical solution by means of the Method of Manufactured So-
lutions (MMS) [5, 6, 7]. This method consists in the generation of an exact solution
of some PDEs constructed by solving the problem backwards. This means that first,
a preferable solution that exercises all terms in differential equations is chosen, and
after that this solution is passed through the set of PDEs to find the source terms
that satisfies them. The constructed solution does not necessarily correspond to a
physical problem but concerns to a mathematical exercise.

Once a given problem is selected to verify the code, its numerical solution has to
converge to the analytical or reference solution as the computational errors are re-
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3.1. Introduction

duced. These errors can be due to the convergence criteria, the accuracy of the com-
puter, the geometrical and numerical discretisation, and to the presence of possible
bugs or mistakes. If the first three causes are minimised, the remaining computa-
tional error is caused by programme mistakes that have to be detected.

Once the code is verified, it is ready to be employed on the numerical simula-
tion of CFD and Heat Transfer phenomena. However, numerical solutions have to
be verified. If the computer accuracy and convergence criteria are good enough, the
remaining sources of computational errors are mainly due to the discretisation er-
rors. Different strategies have been proposed to estimate the errors, such as those
proposed by Roache [8], Becker and Rannacher [9], and Cadafalch et al. [10].

On the process of code verification of three-dimensional cylindrical coordinates
CFD codes, there is a certain difficulty to find reference solutions in the literature
to be employed in this task. Analytical solutions such as the Hagen-Poiseuille flow,
the steady circular Couette flow [11, 12] and the uniform flow through a cylindrical
domain can be mentioned. Benchmark problems that can be found in the literature
are mainly for two or three-dimensional problems in rectangular domains and only a
few of these are available for cylindrical geometries [13, 3, 14]. One of these cases, for
which some theoretical and experimental contributions are provided, is the natural
convection in a cylindrical enclosure heated from below, also known as the Rayleigh-
Bénard problem [14, 15]. However, the information presented in these works, such as
the critical Rayleigh number at which convection starts, or different flow structures
depending on the non-dimensional numbers of the problem, are insufficient for a
detailed verification of the code.

The main objective of this chapter is to expose the methodology employed on the
development and verification of a three-dimensional cylindrical coordinates CFD
code, and to present verified solutions together with their uncertainty estimates. The
first involves the resolution of two cases which analytical solution is known. The lat-
ter considers the resolution of three cases: i) a r−θ coordinates test case proposed by
De Vahl Davis [16] consisting in a flow induced by a tangential velocity at the bound-
ary, ii) the natural convection in a cylindrical enclosure heated from below (Rayleigh-
Bénard problem), and iii) the fluid motion between two concentric cylinders, one
of them (the innermost) rotating with angular velocity ω (Couette flow with Taylor
vortices). An h-refinement criteria and the post-processing procedure commented in
previous chapter have been used to verify numerical solutions. As this procedure
has still not been employed on the verification of three-dimensional cylindrical co-
ordinates discretisation problems, its appropriateness has also been demonstrated,
widening in this sense its range of applicability.
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Chapter 3. Verification of the code and verified numerical results on cylindrical coordinates

3.2 Verification of the code

In the present chapter, the h-refinement study carried out for each test case solved, has
been usually performed to five, instead of three, consecutive meshes. Thus, the post-
processing procedure commented in section 2.4 has been applied three times, once
for each set of three consecutive solutions. Numerical results reported, together with
their uncertainty estimates, are given for meshes which the obtained estimates are
credible. As has been commented in previous chapter, estimators are credible when
for a high percentage of Richardson nodes, the observed order of accuracy of the so-
lution for each variable approaches its theoretical value. In this sense, it is important
to point out, that meshes adopted for the resolution of each case have been cho-
sen according to the results of the verification process. That is, other discretisation
meshes have also been solved but solutions have been rejected due to non-credible
estimators.

In order to demonstrate the applicability of this post-processing tool, two cases
with analytical solutions have been analysed: a uniform parallel flow through a
cylindrical geometry (Case A1) and a laminar Couette flow (Case A2). Two main
aspects are hereafter discussed: i) the use of the tool in the process of code verifica-
tion, pointing out its utility in the selection of the appropriate discretisation grid or
numerical schemes or in detecting possible programming bugs and; ii) the use of the
tool in the verification of the numerical solutions, defining their uncertainty due to
discretisation. To carry out the second one, the exact global absolute discretisation
error (eD), defined as the absolute difference between the evaluated and the ana-
lytical solution weighted by the volume, has been compared with the uncertainty
estimate (GCI) obtained from the post-processing procedure.

3.2.1 Case A1: Uniform flow through a cylindrical geometry.

The case consists in a uniform parallel flow through a cylindrical domain. Con-
sidering that the flow is not aligned to r or θ coordinates, this problem is specially
addressed to the analysis of the singularity treatment at the axis (r = 0). Taking into
account the geometry and flow conditions shown in Fig. 3.1, the analytical solution
to this case is:

~v = u sinα~j + u cosα ~k (3.1)

For the resolution of the governing equations, the boundary conditions imposed
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Figure 3.1: Case A1: Uniform flow. Geometry.

have been defined by the analytical solution 3.1. That is,

vr = u sinα sin θ
vθ = u sinα cos θ
vz = u cosα




 for θ ≤ 0 ≤ 2π; r = D/2 (3.2)

∂~v

∂n
= 0 for 0 < r < D/2; z = 0 ; z = H (3.3)

In the case solved, the value of the flow angle (α) has been set to: α = π/4.
The non-dimensional analysis of the governing equations (see section 2.2) and

the boundary conditions show that the non-dimensional group that define the case
is the Reynolds number (Re = ρuD/µ), being u the fluid velocity. Thus, two different
situations have been solved, considering Reynolds numbers of: Re = 100 and Re =
1000.

The computational domain has been discretised for the radial, azimuthal and
axial directions using regular meshes of nxnx(5/8n) control volumes. Then, the h-
refinement study has been performed for five levels of refinement: n= 8, 16, 32,
64 and 128. That means, e.g. for the third level of refinement corresponding with
n = 32, the mesh solved has been of 32x32x20 CVs. Aiming a comparison between
numerical schemes, the first order accuracy Upwind Differencing Scheme (UDS) and
the high order of accuracy SMART scheme have been used for the evaluation of the
convective terms.

All the numerical results are presented in a non-dimensional form: v∗r = vr/u,
v∗θ = vθ/u, v∗z = vz/u . Due to the flow configuration, the greater difficulty in solving
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Re = 100

v∗

r
v∗

θ
v∗

z

grid Rn p GCI eD Rn p GCI eD Rn p GCI eD

n3/n2/n1 [%] [%] [%] [%] [%] [%] [%] [%] [%]

8/16/32 76 −0.51 55 1.73 73 0.21 20 3.25 69 1.5 0.034 0.046

16/32/64 93 0.56 5.7 0.61 92 0.4 14 1.5 75 1.2 0.026 0.029

32/64/128 95 0.8 0.19 0.08 96 0.9 0.2 0.04 84 1.07 0.016 0.018

Re = 1000

v∗

r
v∗

θ
v∗

z

grid Rn p GCI eD Rn p GCI eD Rn p GCI eD

n3/n2/n1 [%] [%] [%] [%] [%] [%] [%] [%] [%]

8/16/32 78 −0.3 28 2.1 75 0.4 11 3.5 63 1.6 0.038 0.081

16/32/64 93 0.56 6.0 0.84 89 0.4 15 1.6 64 0.85 0.069 0.059

32/64/128 96 0.88 0.28 0.09 94 0.83 0.90 0.16 86 0.95 0.033 0.035

Table 3.1: Case A1: Uniform parallel flow. Post-processing verification results.

Re = 100 and Re = 1000. Numerical scheme UDS for convective terms and

central differences for diffusive terms.

this case remains on the treatment of the mathematical singularity at the cylinder
center. Thus, higher discrepancies are expected to occur at this location.

In Tables 3.1 and 3.2 results of the post-processing procedure for each of the nu-
merical schemes used on the evaluation of the convective terms (UDS and SMART)
are shown. The results given are for both Reynolds numbers considered. The values
for the percentage of the Richardson nodes (Rn), the observed order of accuracy (p),
the global GCI and the global exact discretisation error (eD) obtained using the ana-
lytical solution, are given for each set of three consecutive meshes on the h-refinement.
Each mesh is represented by the grid parameter n. The values for the GCI and the
eD have been normalised using the reference velocity.

As can be observed, as the level of refinement increases, the higher is the number
of the Richardson nodes obtained. As convective terms are dominant in the flow
nature, the observed order of accuracy must tends to the theoretical value of the
numerical scheme used to evaluate those terms. That is, 1 for the UDS scheme and
between 1 and 3 for the SMART scheme. Notice that in both cases (Tables 3.1 and
3.2) as the mesh is refined the order of accuracy tends to its theoretical value. The
number of Richardson nodes obtained with the SMART scheme is lesser than those
obtained with the UDS scheme. This is because the SMART scheme increases the
number of nodes converging in an oscillatory manner.

Comparison of the exact discretisation error eD and the GCI shows the good
prediction of this estimator. As has been commented before (section 2.4), previous
experience has shown that the credibility of GCI estimates depends basically on
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Re = 100

v∗

r
v∗

θ
v∗

z

grid Rn p GCI eD Rn p GCI eD Rn p GCI eD

n3/n2/n1 [%] [%] [%] [%] [%] [%] [%] [%] [%]

8/16/32 68 1.6 9.20 0.71 55 1.8 0.65 2.77 91 1.8 0.022 0.016

16/32/64 73 1.9 0.94 0.07 70 1.1 4.10 1.33 93 1.8 0.006 0.004

32/64/128 77 1.9 0.19 0.01 87 1.6 0.65 0.04 98 1.9 0.001 0.001

Re = 1000

v∗

r
v∗

θ
v∗

z

grid Rn p GCI eD Rn p GCI eD Rn p GCI eD

n3/n2/n1 [%] [%] [%] [%] [%] [%] [%] [%] [%]

8/16/32 65 1.7 8.00 0.73 54 1.5 1.01 2.72 86 1.8 0.025 0.017

16/32/64 71 2.0 0.78 0.07 74 1.4 2.79 1.33 92 2.0 0.006 0.004

32/64/128 76 2.0 0.16 0.01 90 1.7 0.42 0.03 98 1.9 0.001 0.001

Table 3.2: Case A1: Uniform parallel flow. Post-processing verification results.

Re = 100 and Re = 1000. Numerical scheme SMART for convective terms and

central differences for diffusive terms.

a good estimation of the order of accuracy of the numerical solution, and on the
number of grid nodes where the application of the post-processing procedure has
been possible (i.e. Richardson nodes).

An example of a wrong uncertainty estimation can also be observed in Table
3.1. When using the UDS scheme, e.g. for the third level of refinement (n = 32)
and radial velocity vr, even though the number of Richardson nodes is high enough
(Rn = 76%), the observed order of accuracy (p = −0.51) does not agree with the
theoretical one (p = 1). The negative value of the observed order of accuracy could
means that solution obtained it is not in the asymptotical range. In this case, GCI
overpredicts the discretisation error (GCI = 55% vs eD = 1.73%).

Figure 3.2 shows the mean relative error weighted by the volume fraction as a
function of the number of control volumes for both Reynolds numbers. As can be
seen, deviations from analytical solution tends to decrease as the level of refinement
increases for both numerical schemes. Notice also, that the mean relative errors ob-
tained when using the high order of accuracy SMART scheme are lower than those
obtained with the first order accuracy scheme for the same grid.
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SMART

Figure 3.2: Case A1: Uniform flow. Mean relative error of the velocity vector

weighted by the volume fraction as a function of the number of control volumes.

Solid line, Re = 100; dashed line, Re = 1000.

3.2.2 Case A2: Laminar Couette flow.

The fluid motion in the gap between two infinite concentric cylinders, one or both
are rotating along their common axis, is known as the Couette flow. There are sev-
eral flow regimes existing in an incompressible fluid between two concentric rotating
cylinders. Hydrodynamic instabilities and flow transition between regimes are de-
termined for the Reynolds number of the two cylinders, the geometry, and the initial
conditions [11, 12]. The flow regimes consist of different spatial and temporal pat-
terns. According to [17] most flows are non-stationary and non-axisymmetric, except
for the simplest flow regimes of the circular Couette flow and the Couette-flow with
Taylor vortices.

An schematic of the problem geometry is shown in Fig. 3.3. For low-Reynolds
numbers, an analytical solution can be obtained. Being ωi and ωo the inner and
outer cylinder angular velocities, the analytical steady state solution for this Couette
problem is:

vθ(r) = riωi
r0/r − r/r0

r0/ri − ri/r0
+ r0ω0

r/ri − ri/r

r0/ri − ri/r0
(3.4)

This solution corresponds to a set of vortices forming concentric annulus for az-
imuthal velocity. The radial and axial velocities (vr and vz), become zero for the
whole domain.

The dimensionless numbers that define the problem are: the Reynolds num-
bers (referred to the inner and outer cylinder), Rei = ρriωi(ro − ri)/µ and Reo =
ρroωo(ro − ri)/µ; and the radius ratio (ri/ro). The case solved here has been reported
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Figure 3.3: Case A2: Laminar Couette flow. Geometry

by [18] and corresponds with a Rei = 350 and Reo = −690 (negative Reynolds num-
ber represents a cylinder with clockwise rotation), and a radius ratio of ri/ro = 0.883.

Boundary conditions imposed have been azimuthal velocities at the boundaries
(r = ri and r = ro) defined by Eq. 3.4, while derivatives of the dependent variables
at the z-direction (z = 0 and z = H) have been taken null (∂φ/∂z = 0).

vr = 0
vθ = ri ωi

vz = 0




 for r = ri; ∀ {θ, z} (3.5)

vr = 0
vθ = ro ωo

vz = 0




 for r = r0; ∀ {θ, z} (3.6)

∂φ

∂n
= 0 for z = 0 ; z = H ; ∀{ri < r < r0, θ} (3.7)

Due to the one-dimensional flow structure (radial and axial velocity components
are zero for the steady state solution), the number of control volumes at z- direction
and at θ-direction have been fixed to 20. Hence, the h-refinement study has been
performed for regular meshes of n control volumes in radial direction with n = 6,
12, 24, 48 and 96.
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Figure 3.4: Case A2: Laminar Couette flow. Steady state solution contours for

non-dimensional (a) azimuthal velocity vθ, (b) dynamic pressure pd (right) at an

arbitrary azimuthal plane. Rei = 350, Reo = −690.

The structure of the steady circular flow pattern is shown in Fig. 3.4. In the
figure, as axial and radial velocity components are zero, are only plotted the non-
dimensional azimuthal velocity component (vθ∗ = vθ/vθ,i) and pressure.

In Table 3.3, results of the post-processing verification procedure are given. As
can be seen, estimation of the order of accuracy is around 2 with a 100% of Richard-
son nodes. The imposed boundary conditions imply that only diffusive forces are
present. Thus, the observed order of accuracy must tends to the theoretical one for
a central difference scheme (p = 2). The exact discretisation error, eD, obtained
from the analytical solution is well estimated by the GCI . The agreement observed
between both numerical and analytical solutions is adequate even for the coarsest
grid.
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v∗θ = vθ/vθi

grid Rn p GCI eD

n3/n2/n1 [%] [%] [%]

6/12/24 100 2.0 2.8x10−2 2.4x10−2

12/24/48 100 2.0 7.4x10−3 5.9x10−3

24/48/96 100 2.0 1.8x10−3 1.5x10−3

Table 3.3: Case A2: Laminar Couette flow. Post-processing verification results.

Numerical scheme SMART for convective terms and central differences for diffusive

terms.

In addition, another steady circular Couette flow case has been solved, variying
the Reynolds number and the radius ratio. This situation corresponds to Reynolds
numbers for the inner and outer cylinders of: Rei = 20 and Reo = 0 and a radius
ratio ri/ro = 0.667. Results obtained for this situation have been similar to the afore-
mentioned case. This means that, for all the levels of refinement the order of accuracy
has been 2 with approximately a 100% of Richardson nodes, being the GCI for the
finest mesh of 1.3x10−3 %.

3.2.3 Further remarks

Results of the cases with analytical solution presented have shown that the estima-
tors predicted by the post-processing procedure agree well with the exact computa-
tional error (eD), being adequate its application on cylindrical coordinates cases. On
the other hand, the errors introduced with the treatment of the boundary conditions
imposed at the cylinder center (case A1) decreases with the refinement of the mesh.

Furthermore, the application of this post-processing procedure has been help-
ful during the development of the code to find out pre-existing code bugs or mis-
takes, that forces the obtention of solutions with observed order of accuracy differ-
ent than the expected theoretical value (e.g. inappropiate arrays indexation) or even
for selecting an appropriate boundary condition treatment. For example, during
the development of the code, in the formulation of the spatially periodic boundary
condition in the azimuthal direction, two control volumes were considered for the
overlapping zone (see section 2.3.3). However, the observed order of accuracy of the
numerical results when the high order numerical scheme SMART was used tended
to 1. Discrepancies with the expected value of the order of accuracy were found in
a wrong treatment of this condition. In this case, differences were due to the man-
ner that convective terms were evaluated in the overlapping zone (forcing a first
order of accuracy scheme). As a result, to assure an accurate solution, four control
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volumes, instead of two, have been added in the overlapping zone. The approach
implemented has allowed to calculate the whole domain with the same order of ac-
curacy.

Considering the results obtained with the cases with analytical solution studied,
this post-processing procedure is applied, hereafter, in the verification of the numer-
ical solutions of different cases in cylindrical coordinates.

3.3 Verified numerical results of different test cases

Three problems have been selected: a r − θ induced flow by a tangential velocity
at the boundary (Case B1); the natural convection in a cylindrical enclosure heated
from below (Rayleigh-Bénard problem) (Case B2); and the fluid motion between two
concentric rotating cylinders (laminar Couette flow with Taylor vortices) (Case B3).
For each particular case, the value of the governing parameters, dimensionless num-
bers, specific boundary conditions, and the discretisation employed are presented.
All cases have been solved using an h-refinement criteria, and uncertainty estima-
tors have been obtained from the post-processing procedure. In all cases, verified
numerical solutions for the highest level of refinement are provided.

3.3.1 Case B1: Induced flow by a tangential velocity at the bound-
ary.

The fluid motion induced by the movement of the outer boundary of the cylinder
in the circumferential direction proposed by De Vahl-Davis [16] has been analysed.
One half of the domain is moving clockwise and the other half counterclockwise (see
Fig. 3.5a). Being ω the tangential velocity of the boundary of a cylinder of height H ,
boundary conditions can be written as follows:

vr = 0 at r = R ; ∀{θ, z}

vθ = −w at r = R ; ∀{−π/2 < θ < π/2, z}

vθ = w at r = R ; ∀{π/2 < θ < 3π/2, z}

vθ = 0 at r = R ; θ = π/2 or 3π/2 , ∀{z}
∂~v

∂z
= 0 at z = 0 , z = H , ∀{θ, r}

(3.8)

With the objective to compare the numerical solution with the one reported by
De Vahl Davis, two Reynolds numbers (Re = ρωR/µ) have been analysed: Re = 1
and Re = 10.
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Figure 3.5: Case B1: Induced flow by a tangential velocity at the boundary. (a)

Geometry. (b) Half computational domain and mesh details (number of grid nodes

and concentration).

The steady state solution of this problem is two-dimensional (r-θ directions), be-
ing axial velocity component (vz) zero. Taking into account this particularity, in the
discretisation of the domain at z-direction, the number of control volumes has been
fixed to 20 and the length of the domain in this direction has been arbitrary (H). For
r-θ directions, the mesh has been concentrated around the vertical diameter (x = 0, y,
see Fig. 3.5b), and at the external radius where azimuthal velocity gradients are the
largest. To do this, the domain has been divided into different zones (marked with
Roman numbers in Fig. 3.5b) introducing a higher number of nodes where has been
considered necessary. Moreover, in these zones the mesh has been concentrated by
means of a tanh-like function with a concentration factor of 1 or 2 depending on the
zone. In r-direction, the concentration factor for zones IV , V and V I has been set
to 1, while for the zones close to the wall (I , II and III) it has been set to 2. In θ-
direction, for zones I , III , IV and V I , a concentration factor of 1 has been adopted.
All these zones where the mesh has been concentrated are marked with black trian-
gles in Fig. 3.5b.

Once the domain is discretised, the h-refinement study has been performed for
meshes of nx(8/5n)x20 control volumes with five levels of refinement (n = 10, 20,
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Figure 3.6: Case B1: Induced flow by a tangential velocity at the boundary.

Re = 1. (a) Radial velocity along the vertical diameter (x = 0, y) for different

grids (n). (−−) Dashed line, n = 10; (− · −) dash-dot line, n = 20; (· · ·) dotted

line, n = 40; (− · ·−) dash-dot-dot line, n = 80; (−) solid line, n = 160; (N) De

Vahl Davis solution (15x24) [16]. (b) Streamlines for n = 80 (80x128x20 grid)

40, 80, 160). This means that for n = 80, the domain has been solved for a grid of
80x128x20 control volumes in the r-θ plane. Numerical results are presented in a
non-dimensional form: v∗r = vr/ω, v∗θ = vθ/ω.

Velocities along the vertical diameter (x = 0, y) for all grids and Re = 1 are plot-
ted in Fig. 3.6a. As can be seen, the deviation around the axis tends to decrease as
the grid is refined, and differences between meshes 4 and 5 become visually negli-
gible. De Vahl Davis solution is also shown. Numerical results do not adjust well
with De Vahl Davis solution, but as has been mentioned in his work, these results
did not correspond with a grid independent solution (the grid used in his work has
been of 15x24 control volumes). This solution has been only taken as an illustrative
result to point out the necessity of computation verification. In Fig. 3.6b, streamlines
distribution obtained for the level of refinement n = 80 is shown as an illustrative
result of the flow pattern.

Results of the verification process for both Reynolds number are shown in Ta-
ble 3.4. As for the steady state solution of the case (axial velocity vz becomes zero),
results arising from the post-processing procedure are given only for radial and az-
imuthal velocity components. For the level of refinement n = 160, in both cases, a
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Re = 1

v∗r v∗θ
grid Rn p GCI Rn p GCI

n3/n2/n1 [%] [%] [%] [%]

10/20/40 78 1.4 1.10 85 1.3 1.90

20/40/80 87 1.5 0.34 89 1.7 0.25

40/80/160 94 1.7 0.07 91 1.7 0.05

Re = 10

v∗r v∗θ
grid Rn p GCI Rn p GCI

n3/n2/n1 [%] [%] [%] [%]

10/20/40 79 1.2 2.10 88 1.3 3.00

20/40/80 88 1.5 0.36 94 1.9 0.33

40/80/160 94 1.7 0.09 90 1.8 0.10

Table 3.4: Case B1: Induced flow by a tangential velocity at the boundary. Post-

processing verification results. Numerical scheme SMART for convective terms and

central differences for diffusive terms. (For table description see section 2.4).

high percentage of Richardson nodes has been achieved. The observed order of ac-
curacy of the solution agree well with the theoretical one considering the numerical
scheme used for the convective terms (SMART). Global GCIs estimate an uncertainty
due to discretisation lower than 0.1% for all variables and both Reynolds numbers.

The results of the non-dimensional radial velocity and non-dimensional azimuthal
velocity are given in Table 3.5. The values for the non-dimensional radial veloc-
ity component have been obtained along vertical plane (x = 0, y) and for the non-
dimensional azimuthal velocity component along horizontal plane (x, y = 0). All
the results shown are given for the highest level of refinement (i.e. for n = 160) and
both Reynolds numbers considered. Notice that velocities are given together with
their uncertainty estimates (error band), corresponding to the GCI values calculated
for the mesh for which the results are given (n = 160, see Table 3.4).
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. Re = 1 Re = 10

r v∗r ± 0.07% v∗θ ± 0.05% v∗r ± 0.09% v∗θ ± 0.10%

−0.95 −0.300 0.887 −0.298 0.888

−0.85 −0.617 0.662 −0.633 0.663

−0.75 −0.636 0.439 −0.683 0.441

−0.65 −0.641 0.222 −0.699 0.225

−0.55 −0.644 0.015 −0.704 0.019

−0.45 −0.645 −0.177 −0.703 −0.172

−0.35 −0.646 −0.346 −0.698 −0.343

−0.25 −0.647 −0.484 −0.690 −0.485

−0.15 −0.649 −0.584 −0.681 −0.591

−0.05 −0.650 −0.645 −0.674 −0.655

0.05 0.648 0.645 0.657 0.655

0.15 0.645 0.584 0.638 0.592

0.25 0.640 0.484 0.619 0.487

0.35 0.636 0.346 0.602 0.344

0.45 0.634 0.177 0.589 0.172

0.55 0.632 −0.015 0.579 −0.020

0.65 0.630 −0.222 0.575 −0.227

0.75 0.630 −0.439 0.576 −0.443

0.85 0.627 −0.662 0.581 −0.664

0.95 0.312 −0.887 0.292 −0.888

Table 3.5: Case B1: Induced flow by a tangential velocity at the boundary. Velocity

components for Re = 1 and Re = 10. Non-dimensional radial velocity component

at vertical plane (x = 0, y) and non-dimensional azimuthal velocity component at

horizontal plane (x, y = 0). Level of refinement n = 160.
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3.3. Verified numerical results of different test cases

3.3.2 Case B2: Rayleigh-Bénard problem.

The fluid flow inside a vertical cylinder of aspect ratio A = H/D, heated from be-
low is also known as Rayleigh-Bénard convection. Because of natural convection
inside enclosures plays an important role in many technical applications (solar en-
ergy, crystal growth, micro-electronics), this phenomenon has been widely treated
in literature [19, 14, 15, 20]. The boundary conditions that close the problem can be
summarised as follows:

~v = 0
T = Th

}
for z = 0; ∀ {r, θ} (3.9)

~v = 0
T = Tc

}
for z = H ; ∀ {r, θ} (3.10)

~v = 0
∂T

∂n
= 0

}
for r = D/2; ∀ {θ, z} (3.11)

where Tc and Th are the imposed temperatures at top and bottom walls respec-
tively ( being Th > Tc).

From the non-dimensionalisation of the governing equations and boundary con-
ditions arise that the natural convection of the fluid inside the cavity is characterised
by three dimesionless numbers:

Rayleigh number, Ra =
ρgβ(Th − Tc)H

3

αµ

Prandtl number, Pr =
µ

ρα

aspect ratio, A =
H

D

(3.12)

The onset of convection takes place when the Rayleigh number reach certain crit-
ical value (Ra > Racr). For low Rayleigh numbers (Ra < Racr), the fluid is stratified
and heat transfer is driven only by conduction. For aspects ratios lower than 1, con-
vection sets with axisymmetric flow configuration and as the Rayleigh number in-
creases, a transition from axisymmetric to three-dimensional non-axisymmetric con-
vection occurs (Ra > Racr,3D). If the Rayleigh number exceeds this critical value, the
axisymmetric solution is unstable and bifurcates to the stable non-axisymmetric one
[14, 15]. For aspects ratios greater than 1, convection is always non-axisymmetric.

In the present thesis, the problem has been solved for an aspect ratio A = 0.5, a
Prandtl number of Pr = 6.7 and for different Rayleigh numbers in the range within:
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Figure 3.7: Case B2: Rayleigh-Bénard problem. (a) Geometry. (b) Mesh and

computational domain

Ra = 2200 ÷ 15000. No fluid motion at t = 0 and initial temperature T0 = Tc have
been imposed. Adiabatic lateral walls and non-slip conditions for all walls have been
assumed.

Considering the flow structure, non-uniformly distributed meshes of nx(6/7n)xn
control volumes have been used to solve the case. In this sense, the computational
domain has been divided into different zones, increasing the grid nodes distribution
near the walls and on the axis (see Fig. 3.7). Moreover, it has been also consid-
ered necessary to concentrate the grid at the central zones, this means, at z-direction
(zones IV , V and V I) and at r-direction (zones II , V and V III). Those zones are
marked with a black triangle and the concentration factor has been set to 1. In the
azimuthal direction a regular distribution of nodes has been adopted. Details of the
number of grid nodes and concentration areas are given in Fig. 3.7.

As has been commented before, depending on the boundary conditions differ-
ent flow regimes can be obtained: i) axisymmetric and ii) non-axisymmetric flow
configuration. For axisymmetric flow configuration, and depending also on initial
conditions, two equivalent solutions can be found [15], one with upflow and one
with downflow at the center of the cavity. According to the initial conditions im-
posed in this work, the axisymmetric flow pattern obtained consist of one-toroidal
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Figure 3.8: Case B2: Rayleigh-Bénard convection. Axialsymmetric flow configu-

ration. Ra = 2800. (a) Axial velocity (vz) and (b) temperature contours.

roll with downflow at the center of the cylinder. As an illustrative example of the
axisymmetric flow configuration, the axial velocity (vz) and temperatures contours
for this situation are shown in Fig. 3.8.

The non-axisymmetric flow consists of two symmetric rolls ascending along the
cylinder walls with downstream at their symmetry plane. Details of the flow struc-
ture for this situation are shown in Fig. 3.9, where the axial velocity (vz) and temper-
ature contours are plotted.

For the set of cases solved, the onset of convection has been detected to occur at
Ra = 2245. This result is in good agreement (≈ 0.6%) with the values obtained from
linear stability theory for the non-slip boundary conditions, that predicts a critical
value for the Rayleigh number of Racr = 2260, for an aspect ratio A = 0.5 [21]. The
transition from the axisymmetric to non-axisymmetric flow structure has been de-
tected beyond Ra = 8000. However, detailed studies for determining this transition
point have not been carried out in the present work.

Numerical solutions of all cases considered corresponding with the different Ray-
leigh numbers selected (in the range Ra = 2200÷15000), have been submitted to the
process of verification using five levels of refinement (n = 7, 14, 28, 56 and 112). In
all cases, convective terms have been evaluated by means of the SMART scheme,
while for diffusive terms a central difference scheme has been used.

Hereafter, the results for the axisymmetric and non-axisymmetric flow configu-
rations are given. All the results presented are in non-dimensional form, according
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Figure 3.9: Case B2: Rayleigh-Bénard convection. Non-axisymmetric flow config-

uration. Ra = 15000. (a) Axial velocity (vz) and (b) temperature contours.

the non-dimensionalisation of the governing equations considered. That is, non-
dimensional coordinates, velocities and temperatures are defined according to: r∗ =
r/H ; z∗ = z/H ; ~v∗ = ~v/(α/H); Θ = (T − Tc)/(Th − Tc).

Axialsymmetric flow pattern results

As has been commented before, axisymmetric flow configurations have been ob-
tained for a range of Rayleigh numbers between Ra = 2800÷8000. As an illustrative
example of the solutions obtained, the dimensionless components of the velocities
and temperatures are plotted for the different levels of refinement for Ra = 2800 in
Fig. 3.10. The results shown in the figure correspond with two different planes, at
r∗ = 0.5 and z∗ = 0.5, according with Fig. 3.11.

As can be observed, even for the coarsest meshes, high concordance between the
solutions for the different meshes is obtained. Differences between levels of refine-
ment, corresponding with grid parameter n = 56 and n = 112, are visually negligible
for all variables.
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Figure 3.10: Case B2: Rayleigh-Bénard convection. Ra = 2800. Results of the

h-refinement study (a) Non-dimensional radial velocity component at r∗ = 0.5.

(b) Non-dimensional temperature at r∗ = 0.5. (c) Non-dimensional axial velocity

component at z∗ = 0.5. (d) Non-dimensional temperature at z∗ = 0.5

Results of the verification process for cases in this range, for radial and axial
velocity components (v∗r and v∗z ) and for temperature variable are given in Table 3.6.
Since the steady state solution in this range is axisymmetric, azimuthal velocity com-
ponent obtained has been zero (vθ = 0). Thus, verification results for this velocity
component are meaningful. Highly satisfactory results have been obtained for all
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Figure 3.11: Case B2: Rayleigh-Béenard convection. Schematic of representation

of velocity components in an arbitrary axial plane

cases in the range studied. In all cases a great number of Richardson nodes has been
obtained, even for medium grid (n = 28). The order of accuracy of the solution in
all cases tends to its theoretical value (between 1 and 3 for SMART scheme), as the
mesh is refined.

In Table 3.7, the results of the non-zero non-dimensional velocity components (v∗r
and v∗z ) and temperature (Θ) are given. Velocities and temperature are given at the
vertical (r∗ = 0.5, z∗) and horizontal middle lines (r∗, z∗ = 0.5) of an arbitrary axial
plane (r, z) (see Fig. 3.11).

All the numerical results presented, together with their uncertainty estimates,
have been obtained for the the highest level of refinement (n = 112). To a better
understanding of the flow pattern obtained in this range (one roll with downflow
at the cylinder axis), in Fig. 3.12 are represented velocity vector and temperature
profiles for Ra = 2800, for an arbitrary axial plane.

78



3.3. Verified numerical results of different test cases

Ra = 2800

v∗r v∗z Θ

grid Rn p GCI Rn p GCI Rn p GCI

n3/n2/n1 [%] [%] [%] [%] [%] [%]

7/14/28 90 2.0 1.30 94 1.5 3.00 96 1.7 0.088

14/28/56 92 1.9 0.36 94 1.8 0.48 97 1.9 0.015

28/56/112 93 2.2 0.06 94 2.2 0.06 96 2.7 0.001

Ra = 4000

v∗r v∗z Θ

grid Rn p GCI Rn p GCI Rn p GCI

n3/n2/n1 [%] [%] [%] [%] [%] [%]

7/14/28 80 1.7 3.50 94 1.2 7.60 80 1.7 0.100

14/28/56 91 1.8 0.71 93 1.8 0.86 87 2.0 0.020

28/56/112 96 1.9 0.14 96 1.9 0.17 87 1.9 0.006

Ra = 6000

v∗r v∗z Θ

grid Rn p GCI Rn p GCI Rn p GCI

n3/n2/n1 [%] [%] [%] [%] [%] [%]

7/14/28 78 1.7 5.30 88 1.4 8.50 80 1.7 0.110

14/28/56 91 1.8 1.10 93 1.8 1.20 88 1.7 0.032

28/56/112 96 1.9 0.22 96 1.9 0.24 92 1.8 0.007

Ra = 8000

v∗r v∗z Θ

grid Rn p GCI Rn p GCI Rn p GCI

n3/n2/n1 [%] [%] [%] [%] [%] [%]

7/14/28 84 1.5 7.70 86 1.4 10.0 76 1.8 0.120

14/28/56 92 1.8 1.39 91 1.7 1.60 90 1.7 0.034

28/56/112 96 1.9 0.28 95 1.9 0.30 93 1.9 0.007

Table 3.6: Case B2: Rayleigh-Bénard problem. (Ra = 2800 ÷ 8000). Post-

processing verification results. Numerical scheme SMART for convective terms and

central differences for diffusive terms.
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Table 3.7: Case B2: Rayleigh-Bénard convection. Numerical solution and un-
certainty estimates for Rayleigh numbers Ra = 2800, 4000, 6000, 8000. Non-
dimensional radial velocity (v∗r ) and temperature (Θ) at r∗ = 0.5 and non-
dimensional axial velocity (v∗z ) and temperature (Θ) at z∗ = 0.5. (For details see
Fig. 3.11). Level of refinement n = 112

Ra = 2800

z∗ v∗r ± 0.06% Θ ± 0.001% r∗ v∗z ± 0.06% Θ ± 0.001%
0.00 0.000 1.0000 0.00 −11.214 0.2643
0.05 2.473 0.9203 0.05 −11.085 0.2672
0.15 4.669 0.7656 0.15 −10.071 0.2898
0.25 4.386 0.6335 0.25 −8.168 0.3328
0.35 2.734 0.5340 0.35 −5.628 0.3914
0.45 0.554 0.4587 0.45 −2.803 0.4587
0.55 −1.566 0.3916 0.55 −0.120 0.5262
0.65 −3.230 0.3203 0.65 1.977 0.5841
0.75 −4.128 0.2390 0.75 3.101 0.6243
0.85 −3.897 0.1477 0.85 2.982 0.6435
0.95 −1.937 0.0499 0.95 1.416 0.6462
1.00 0.000 0.0000 1.00 0.000 0.6455

Ra = 4000

z∗ v∗r ± 0.14% Θ ± 0.006% r∗ v∗z ± 0.17% Θ ± 0.006%
0.00 0.000 1.0000 0.00 −21.324 0.2070
0.05 5.151 0.8839 0.05 −21.087 0.2107
0.15 9.521 0.6699 0.15 −19.225 0.2395
0.25 8.623 0.5287 0.25 −15.748 0.2922
0.35 5.073 0.4667 0.35 −11.098 0.3618
0.45 0.730 0.4418 0.45 −5.844 0.4418
0.55 −3.293 0.4150 0.55 −0.671 0.5259
0.65 −6.370 0.3661 0.65 3.614 0.6058
0.75 −8.005 0.2880 0.75 6.134 0.6691
0.85 −7.529 0.1835 0.85 6.113 0.7042
0.95 −3.751 0.0626 0.95 2.953 0.7116
1.00 0.000 0.0000 1.00 0.000 0.7108
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Table 3.7: Case B2: Rayleigh-Bénard convection. Numerical solution and un-
certainty estimates for Rayleigh numbers Ra = 2800, 4000, 6000, 8000. Non-
dimensional radial velocity (v∗r ) and temperature (Θ) at r∗ = 0.5 and non-
dimensional axial velocity (v∗z ) and temperature (Θ) at z∗ = 0.5. (For details see
Fig. 3.11). Level of refinement n = 112

Ra = 6000

z∗ v∗r ± 0.22% Θ ± 0.007% r∗ v∗z ± 0.24% Θ ± 0.007%
0.00 0.000 1.0000 0.00 −34.600 0.2045
0.05 8.317 0.8522 0.05 −34.158 0.2099
0.15 15.173 0.5957 0.15 −30.755 0.2500
0.25 13.436 0.4710 0.25 −24.686 0.3172
0.35 7.676 0.4550 0.35 −17.072 0.3940
0.45 0.926 0.4695 0.45 −8.964 0.4695
0.55 −5.203 0.4696 0.55 −1.203 0.5428
0.65 −9.891 0.4349 0.65 5.355 0.6171
0.75 −12.448 0.3551 0.75 9.506 0.6864
0.85 −11.798 0.2314 0.85 9.769 0.7329
0.95 −5.932 0.0796 0.95 4.806 0.7465
1.00 0.000 0.0000 1.00 0.000 0.7462

Ra = 8000

z∗ v∗r ± 0.28% Θ ± 0.007% r∗ v∗z ± 0.3% Θ ± 0.007%
0.00 0.000 1.0000 0.00 −46.752 0.2080
0.05 10.849 0.8352 0.05 −46.060 0.2151
0.15 19.615 0.5626 0.15 −40.811 0.2673
0.25 17.094 0.4601 0.25 −31.841 0.3488
0.35 9.555 0.4709 0.35 −21.287 0.4319
0.45 0.969 0.5014 0.45 −10.826 0.5014
0.55 −6.706 0.5118 0.55 −1.325 0.5605
0.65 −12.555 0.4835 0.65 6.650 0.6219
0.75 −15.799 0.4026 0.75 11.936 0.6880
0.85 −15.054 0.2662 0.85 12.507 0.7395
0.95 −7.621 0.0920 0.95 6.236 0.7574
1.00 0.000 0.0000 1.00 0.000 0.7575
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Figure 3.12: Case B2: Rayleigh-Bénard convection. Ra = 2800. Axisymmetric

flow structure. (a) Velocity field. (b) Temperature profile.

Non-axisymmetric flow pattern results

The results of the verification process for the non-axisymmetric configuration are
given in Table 3.8. The verification process corresponds with Ra = 15000. In this
case, since all velocity components have non-zero values, the verification process
has been carried out for the three components of the velocity vector and the tem-
perature. For the coarsest meshes, high discretisation errors are obtained. However,
as the mesh is refined these errors tends to decrease. For the finest level of refine-
ment, the observed order of accuracy has acceptable values with a high percentage
of Richardson nodes which makes reliable the discretisation errors obtained with the
finest mesh.

The non-axisymmetric velocity vector and temperature field at different planes
for Ra = 15000 are represented in Fig. 3.13. In order to construct the flow patterns
plotted, first the flow symmetry plane has been located. Thus, velocity vector and
temperature profiles are given for this plane and its perpendicular one.

The verified solutions obtained with the highest level of refinement (the finest
mesh, n = 112), for each velocity component and temperature together with their
uncertainty estimates, are given in Table 3.9 . In the table, radial velocity component
is evaluated at (r∗ = 0.5, z∗) lines of both planes, while azimuthal and axial velocity
components at (r∗, z∗ = 0.5).
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v∗r v∗z v∗θ Θ

grid Rn p GCI Rn p GCI Rn p GCI Rn p GCI

n3/n2/n1 [%] [%] [%] [%] [%] [%] [%] [%]

7/14/28 78 1.5 40.0 70 1.4 51.0 40 1.5 24.0 69 0.9 10.0

14/28/56 69 1.5 35.0 78 1.4 14.0 88 1.3 20.0 77 1.4 1.50

28/56/112 77 1.7 6.10 75 1.6 5.30 70 1.8 2.90 72 1.5 0.53

Table 3.8: Case B2: Rayleigh-Bénard convection. Ra = 15000. Post-processing

verification results. Numerical scheme SMART for convective terms and central

differences for diffusive terms.
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Figure 3.13: Case B2: Rayleigh-Bénard convection. Ra = 15000. Non-

axisymmetric flow structure at different planes. (a) Velocity field and (b) tem-

perature profile at the symmetry plane. (c) Velocity field and (d) temperature

profile at the plane perpendicular to the symmetry plane.
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radial velocity component v∗

r

symmetry plane perpendicular plane

z∗ v∗

r
± 6.1% Θ ± 0.53% v∗

r
± 6.1% Θ ± 0.53%

0.00 0.00 1.000 0.00 1.000

0.05 −7.95 0.790 10.89 0.911

0.15 −14.67 0.459 21.82 0.750

0.25 −13.17 0.354 22.56 0.625

0.35 −7.59 0.352 17.01 0.549

0.45 −0.77 0.352 7.73 0.520

0.55 5.68 0.338 −3.43 0.529

0.65 10.89 0.310 −14.56 0.564

0.75 13.97 0.253 −22.91 0.597

0.85 13.38 0.172 −24.33 0.518

0.95 6.62 0.063 −12.85 0.204

1.00 0.00 0.000 0.00 0.000

axial velocity component v∗

z

symmetry plane perpendicular plane

r∗ v∗

z
± 5.3% Θ ± 0.53% v∗

z
± 5.3% Θ ± 0.53%

0.00 −15.28 0.394 −15.28 0.394

0.05 −15.77 0.393 −14.73 0.398

0.15 −16.97 0.388 −8.84 0.423

0.25 −19.00 0.380 −0.67 0.454

0.35 −21.56 0.369 7.34 0.484

0.45 −24.78 0.352 15.22 0.521

0.55 −28.83 0.324 23.68 0.571

0.65 −33.11 0.282 32.36 0.641

0.75 −35.25 0.232 38.46 0.729

0.85 −30.77 0.195 36.03 0.807

0.95 −14.33 0.190 17.51 0.835

1.00 0.00 0.192 0.00 0.835

azimuthal velocity component v∗

θ

symmetry plane perpendicular plane

r∗ v∗

θ
± 2.9% Θ ± 0.53% v∗

θ
± 2.9% Θ ± 0.53%

0.00 0.00 0.394 0.00 0.394

0.05 0.11 0.393 −0.11 0.398

0.15 0.34 0.388 −0.29 0.423

0.25 0.56 0.380 −0.42 0.454

0.35 0.78 0.369 −0.54 0.484

0.45 0.95 0.352 −0.66 0.520

0.55 0.08 0.324 −0.77 0.571

0.65 1.15 0.282 −0.81 0.641

0.75 1.15 0.232 −0.69 0.729

0.85 1.03 0.195 −0.38 0.807

0.95 0.54 0.190 −0.04 0.835

1.00 0.00 0.192 0.00 0.835

Table 3.9: Case B2: Rayleigh-Bénard convection. Ra = 15000. Numerical solu-

tions and uncertainty estimates. Non-dimensional radial velocity and temperature

for the flow symmetry plane and for its perpendicular one.
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Further results

Taking into account the computational cost for solving three-dimensional domains,
sometimes the hypothesis of axisymmetric flow (r-z) seems to be appropriate to ob-
tain computational time savings. In this sense, and in order to investigate the in-
fluence of this assumption in the numerical solutions, the studied range of Rayleigh
numbers has also been solved under this hypothesis. The Nusselt number has been
taken as a representative solution variable. Nusselt number has been defined as:

Nu =
4(H/D)2

π

0.5D/H∫

0

2π∫

0

r∗
(

∂T ∗

∂z∗

)

z∗=0,H

dr∗dθ (3.13)

The results of the Nusselt number as a function of the Rayleigh number obtained
with the assumption of three-dimensional and axisymmetric flow configurations are
shown in Table 3.10. For Rayleigh numbers up to Ra = 8000, coincident results of
the Nusselt number have been obtained. This agree with the previous results, where
axisymmetric flow patterns have been observed. In this range (Ra = 2200÷8000), as
has been commented before, azimuthal velocity can be considered negligible respect
to v∗r and v∗z velocity components, being acceptable the hypothesis of axisymmetric
flow. Beyond Ra = 8000, fluid bifurcates to a non-axisymmetric flow pattern, and
Nusselt number considering 3D flow is greater than the calculated for the axisym-
metric hypothesis.

Ra 3D Axisymmetric

2200 1.0000 1.0000

2800 1.1773 1.1775

3000 1.2378 1.2377

4000 1.4931 1.4931

5000 1.6855 1.6855

6000 1.8343 1.8344

8000 2.0522 2.0522

15000 2.6506 2.4672

Table 3.10: Case B2: Rayleigh-Bénard problem. 3D vs. axisymmetric computa-

tions. Nusselt number for different Rayleigh numbers. Pr = 6.7 and aspect ratio

A = 0.5. Level of refinement n = 112.

The values of the mean Nusselt number has been also compared with the ob-
tained by Müller [14]. These results are shown in Fig. 3.14. Differences between the
present work and the reported by [14] are possibly due to the numerical errors of a
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Figure 3.14: Case B2: Rayleigh-Bénard convection. Mean Nusselt number as a

function of Rayleigh number for H/D = 0.5.

too-coarse grid used still far of a mesh independent solution (the grid used in [14]
was a regular mesh of 24 mesh points in each direction).

3.3.3 Case B3: Laminar Couette flow with Taylor vortices.

This case is similar to the laminar Couette flow described before (Case A2). Two
concentric cylinders of radius ri and ro, corresponding to the inner and outer radio
respectively, and height H , one of both rotating with certain velocity (see Fig. 3.3).
For the particular case of the outer cylinder fixed, Taylor [22] examined the fluid in-
stabilities and found, following the linear theory, that as the inner cylinder velocity
increases, a cellular pattern developed, in which the fluid traveled around the cylin-
der in vortices. He proposed a parameter to characterise this instability criterion.
There are many definitions for the Taylor’s number, here we use:

Ta =
ωi(r0 − ri)

ν

√
r0 − ri

ri
(3.14)

where ωi is the angular velocity of the inner cylinder of radius ri. Taylor found
for the geometry of his study case, that formations of vortices occurs for Ta > 41.3
and the transition to turbulence does not appear until Ta = 1708.

The instabilities that appear in the fluid are due to the destabilising effect of the
centrifugal force, being in competition with the effect stabilising of the viscous drag
force. The gradient of centrifugal force due to variations of kinetic momentum give
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3.3. Verified numerical results of different test cases

velocity gradients, so rolls appear inside the fluid if centrifugal force is greater than
viscous drag force. The steady state fluid pattern is characterised by the formation
of vortices in the axial plane [11, 12].

The onset of the Taylor vortices instabilities (Tacr) depends not only on the Taylor
number but also on the cylinders angular velocity ratio ωo/ωi, on the aspect ratio
H/(ro − ri) and on the radius ratio ri/ro.

The boundary conditions that defines this case are:

vr = 0
vθ = ri ωi

vz = 0




 for r = ri; ∀ {θ, z} (3.15)

vr = 0
vθ = 0
vz = 0




 for r = r0; ∀ {θ, z} (3.16)

∂φ

∂n
= 0 for z = 0 ; z = H ; ∀{ri < r < r0, θ} (3.17)

In the present study, the case have been solved for a Taylor number of Ta = 100,
an aspect ratio of H/(ro − ri) = 7.5 and for a radius ratio of ri/ro = 0.5.

Due to the complex configuration of the flow at the r-z plane, and with the objec-
tive of selecting an appropriate discretisation, it has been necessary to consider pre-
viously several discretisation meshes. In this sense, the post-processing procedure
described in section 2.4 has been very helpful. For the selected discretisation mesh,
more nodes in the axial direction than in the other ones, have been introduced. The
mesh has been also intensified at the end walls where the variables gradients are the
largest. In this zone, near the end walls, the mesh has been concentrated by means
of a tanh-like function with a concentration factor of 1.

The h-refinement study has been performed for meshes of (5/4n)xnx(2n) control
volumes. Considering the high number of control volumes to solve accurately the
case, four levels of refinement, instead of five has been considered (n = 8, 16, 32
and 64). The SMART scheme has been used to evaluate convective terms while the
central different scheme has been used for the diffusive ones.
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v∗r v∗z v∗θ
grid Rn p GCI Rn p GCI Rn p GCI

n3/n2/n1 [%] [%] [%] [%] [%] [%]

8/16/32 72 2.5 0.11 70 2.2 0.27 65 3.1 0.12

16/32/64 92 1.7 0.08 87 1.8 0.11 92 1.9 0.13

Table 3.11: Case B3: Laminar Couette flow with Taylor vortices. Post-processing

verification results. Numerical scheme SMART for convective terms and central

differences for diffusive terms.).
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Figure 3.15: Case B3: Laminar Couette flow with Taylor vortices. Illustrative flow

pattern. (a) Radial velocity component v∗r , (b) Azimuthal velocity component v∗θ ,

(c) Axial velocity component v∗z , and (d) Velocity vector. All the plots are for an

arbitrary axial plane.
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Figure 3.16: Case B3: Laminar Couette flow with Taylor vortices. Axial profiles

at five non-dimensional radial positions. Level of refinement n = 64. (a) Non-

dimensional radial velocity (b) Non-dimensional axial velocity.

The boundary conditions imposed and geometry selected, force the formation of
Taylor vortices in the axial plane. When the steady state is reached, the flow con-
figuration is axisymmetric. Azimuthal velocity of the inner cylinder has been taken
as the reference velocity in the variables normalisation. Thus, non-dimensional ve-
locities are: vr∗ = vr/(riωi), vθ∗ = vθ/(riωi), vz∗ = vz/(riωi). The non-dimensional
radius and height have been normalised by using as reference length the annulus
gap, that is: r∗ = r/(ro − ri) and z∗ = z/(ro − ri).

The results of the verification post-process are given in Table 3.11. For the finest
mesh, a high level of Richardson nodes for all variables has been achieved, being
the order of accuracy of the solution greater than 1.7 (order of accuracy for SMART
scheme between 1 ÷ 3). The GCI also shows a good behaviour, for all variables.

Being the solution axisymmetric, the steady state non-dimensional velocity com-
ponents profiles and velocity vector for an arbitrary plane in the azimuthal direction
are shown Fig. 3.15. In this figure, the effects of the boundary conditions imposed
at the end walls (z∗ = 0; 7.5), can be observed. Notice also, that the fluid vortices
are anti-symmetric respect to middle plane of the cylinder (z∗ = 3.75). This can also
be observed in Fig. 3.16, where the axial profiles for v∗r and v∗z are plotted at radial
positions of r∗ = 1.1, 1.3, 1.5, 1.7 and 1.9, for the finest mesh (level of refinement
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n = 64). The values of the non-dimensional variables along these radial positions,
together with their uncertainties estimators, are given in Table 3.12.

v∗

r
± 0.08%

z∗ r∗ = 1.1 r∗ = 1.3 r∗ = 1.5 r∗ = 1.7 r∗ = 1.9

0.375 −0.0169 −0.0492 −0.0609 −0.0393 −0.0109

1.125 0.0451 0.1216 0.1451 0.0948 0.0274

1.875 −0.0252 −0.0664 −0.0778 −0.0494 −0.0136

2.625 0.0132 0.0348 0.0418 0.0270 0.0741

3.375 −0.0137 −0.0372 −0.0453 −0.0306 −0.0920

4.125 −0.0137 −0.0372 −0.0453 −0.0306 −0.0920

4.875 0.0132 0.0348 0.0418 0.0270 0.0741

5.625 −0.0252 −0.0664 −0.0778 −0.0494 −0.0136

6.375 0.0451 0.1216 0.1451 0.0948 0.0274

7.125 −0.0169 −0.0492 −0.0609 −0.0393 −0.0109

v∗

z
± 0.11%

z∗ r∗ = 1.1 r∗ = 1.3 r∗ = 1.5 r∗ = 1.7 r∗ = 1.9

0.375 0.0616 0.0563 0.0010 −0.0436 −0.0359

1.125 0.0073 0.0083 0.0005 −0.0067 −0.0043

1.875 −0.0225 −0.0213 −0.0014 0.0151 0.0156

2.625 0.0051 0.0032 −0.0002 −0.0041 −0.0007

3.375 −0.0267 −0.0236 0.0007 0.0176 0.0154

4.125 0.0267 0.0236 −0.0007 −0.0176 −0.0154

4.875 −0.0051 −0.0032 0.0002 0.0041 0.0007

5.625 0.0225 0.0213 0.0014 −0.0151 −0.0156

6.375 −0.0073 −0.0083 −0.0005 0.0067 0.0043

7.125 −0.0616 −0.0563 −0.0010 0.0436 0.0359

v∗

θ
± 0.13%

z∗ r∗ = 1.1 r∗ = 1.3 r∗ = 1.5 r∗ = 1.7 r∗ = 1.9

0.375 0.6541 0.2584 0.1621 0.1115 0.0392

1.125 0.8516 0.6381 0.5057 0.3853 0.1485

1.875 0.7110 0.3387 0.2089 0.1342 0.0471

2.625 0.7947 0.5213 0.4124 0.3157 0.1178

3.375 0.7400 0.4063 0.2968 0.2164 0.0782

4.125 0.7400 0.4063 0.2968 0.2164 0.0782

4.875 0.7947 0.5213 0.4124 0.3157 0.1178

5.625 0.7110 0.3387 0.2089 0.1342 0.0471

6.375 0.8516 0.6381 0.5057 0.3853 0.1485

7.125 0.6541 0.2584 0.1621 0.1115 0.0392

Table 3.12: Case B3: Laminar Couette flow with Taylor vortices. Numerical

solutions and uncertainty estimates for non-dimensional radial, axial and azimuthal

velocities at different non-dimensional radius. Level of refinement n = 64.
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3.4 Conclusions

The aim of this chapter has been three-fold: to verify the code developed in order
to solve cases in three-dimensional cylindrical coordinate domains, to test the post-
processing procedure for the verification of the numerical solutions and, to obtain
verified solutions of test cases in this kind of domains. In this sense, different cases
in two and three-dimensional cylindrical coordinates have been presented. The nu-
merical solution of the cases analysed have been submitted to a detailed process
of verification. Two main aspects have been emphasized: i) the use of the post-
processing procedure in the process of the code verification pointing out its utility
in the selection of the appropriate discretisation and numerical schemes employed
and; ii) the applicability of this procedure in the numerical solution verification of
three-dimensional cylindrical coordinates problems.

In two of the cases presented (case A1 and cas A2), both with analytical solu-
tion, the estimators obtained have been compared with the exact discretisation error
showing a good prediction of this value by the CGI for a high number of Richard-
son nodes. Furthermore, the order of accuracy has shown a trend to its theoretical
value. This also gives criteria about the appropriateness of this procedure for the
verification of three-dimensional cylindrical coordinates CFD simulations. The de-
tailed process of verification has been useful in order to select an appropriate mesh
distribution and also in detecting programming bugs during the process of code de-
velopment.

Solutions of three selected CFD and heat transfer problems have been also pre-
sented: an induced flow by a tangential velocity at the boundary, the Rayleigh-
Bénard problem and the laminar Couette flow with Taylor vortices. Each problem
has been described in detail and the most relevant numerical solutions for the ve-
locity and temperature fields, together with their uncertainty estimators have been
provided. In all cases, the estimators obtained have shown a good behaviour with a
high percentage of Richardson nodes and an order of accuracy of the solution around
its theoretical value. Verified numerical solutions for three-dimensional cylindrical
problems presented, can be used as reference solutions in the process of verification
of CFD and heat transfer codes.

Nomenclature

D cylinder diameter (m) Ra Rayleigh number
eD exact global discretisation error

(%)
Re Reynolds number
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GCI Grid Convergence Index (%) Rn Richardson nodes (%)
g acceleration of gravity (m/s2) T temperature (K)
H cylinder height (m) T0 initial temperature (K)
n grid parameter Ta Taylor number
Nu Nusselt number Tref reference temperature (K)
p observed order of accuracy u magnitude of velocity vector

(m/s)
Pr Prandtl number vr radial velocity component (m/s)
R cylinder radius (m) vθ azimuthal velocity component

(m/s)
ri inner cylinder radius (m) vz axial velocity component (m/s)
ro outer cylinder radius (m) z axial coordinate (m)
r radial coordinate (m)

greeks
α thermal diffusivity (m2/s) ρ density (kg/m3)
β thermal expansion coefficient

(K−1)
ω angular velocity (s−1)

η radius ratio ωi inner cylinder angular velocity
(s−1)

µ dynamic viscosity (kg/ms) ωo outer cylinder angular velocity
(s−1)

Θ Non-dimensional temperature θ azimuthal coordinate (rad)
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