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Abstract 

Chromatin is a complex macromolecule composed by DNA, RNA and DNA-binding 
proteins. Its architecture changes dynamically inside the nucleus of live cells as a mechanism 
to regulate gene expression. Until recent years, the diffraction limit has kept the resolution of 
light microscopy methods in the order of magnitude of  ~250 nm, so that the visualization of 
the chromatin fiber organization at the single nucleosome level (~11 nm) was not possible. 
The development of advanced light microscopy methods, such as localization-based 
microscopy has opened a new field by improving the spatial resolution up to 10 nm, providing 
us with the tools to visualize and analyze the spatial distribution and dynamics of single 
nucleosomes, which are the core elements of chromatin at the mesoscale level. In addition, 
when combined with computational methods, the potential of these localization-based 
microscopy techniques is upscaled. However, there are still major limitations, especially 
regarding to their extension to multi-color imaging, 3D imaging and their application in live 
cell imaging. Therefore, there is still need to improve the experimental procedures and the 
knowledge in data analysis to extract robust quantitative information from localization-based 
microscopy images which would lead us to the discovery of new biological insights. 

In Chapter 1 of this thesis I give an introduction into the current knowledge on chromatin 
structure and dynamics and the state of the art of Single Molecule Localization Microscopy 
(SMLM) methods. Then, in chapters 2, 3 and 4 I present the main results obtained during my 
PhD. In particular, in chapter 2, I describe the development of a multi-color localization-
based microscopy method that reduces significantly the experimental time investment of the 
available methods and achieves low crosstalk between color-channels while keeping the 
spatial resolution at 10 – 50 nm. In chapter 3, I describe the use of mesoscale chromatin 
computational modelling to study the structural conformation of an specific gene related with 
pluripotency (Oct4) in mouse embryonic stem cells (mESCs) and neural progenitor cells 
(mNPCs). In chapter 4, I describe the application of Single Molecule Tracking (SMT), which 
is another single-molecule localization-based microscopy method, to study chromatin 
dynamics at the single nucleosome level in the process of cell differentiation. Finally, in 
Chapter 5, I present a general discussion of the current state and the future of advanced light 
microscopy methods and their application in the quantitative study of chromatin. 

 

 

 

 

 

 



  

VII 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

VIII 
 

Table of contents 
Chapter 1: Introduction ..................................................................... 11 

1.1 Chromatin ........................................................................................................ 11 

1.1.1 Chromatin fiber structure .................................................................................... 12 

1.1.2 Chromatin and cell pluripotency .......................................................................... 15 

1.1.3 Advanced methods to study chromatin structure ................................................ 17 

1.1.4 Chromatin dynamics ............................................................................................ 21 

1.2 Single Molecule Localization Microscopy ....................................................... 25 

1.2.1 Single Molecule Localization Microscopy Basis................................................... 26 

1.2.2 STORM ................................................................................................................. 30 

1.2.3 PAINT ................................................................................................................... 31 

1.2.5 Single Molecule Tracking (SMT) ......................................................................... 32 

Chapter 2: Frequency-multiplexed Super Resolution Microscopy ..... 40 

2.1 Abstract ............................................................................................................ 40 

2.2 Introduction ...................................................................................................... 41 

2.3 Methodology ..................................................................................................... 43 

2.4 Results............................................................................................................... 46 

2.4.1 fm-PAINT ............................................................................................................. 46 

2.4.2 fm-STORM ........................................................................................................... 61 

2.4.3 fm-live ................................................................................................................... 67 

2.5 Discussion ......................................................................................................... 69 

Chapter 3: Mesoscale modelling of chromatin ................................... 72 

3.1 Abstract ............................................................................................................ 72 

3.2 Introduction ...................................................................................................... 73 

3.3 Methodology ..................................................................................................... 74 

3.4 Results............................................................................................................... 76 

3.4.1 Mesoscale modeling of Oct4 reveals a chromatin conformation composed of 
nucleosome clusters whose organization and compaction change upon differentiation76 

3.4.2 Nucleosome clusters in the Oct4 modelled fibers are compatible with nucleosome 
clutches observed genomewide with super-resolution imaging .................................... 82 



  

IX 
 

3.5 Discussion ......................................................................................................... 88 

Chapter 4: Single Molecule Tracking of single nucleosomes .............. 89 

4.1 Abstract ............................................................................................................ 89 

4.2 Introduction ...................................................................................................... 90 

4.3 Methodology ..................................................................................................... 92 

4.4 Results............................................................................................................... 95 

4.4.1 Nucleosome residence time within chromatin increases in differentiation ......... 95 

4.4.2 Nucleosomes exhibit more confined mobility within chromatin upon differentiation
........................................................................................................................................ 97 

4.4.3 Dynamics of both heterochromatic and euchromatic nucleosomes are affected by the 
process of differentiation ............................................................................................. 100 

4.4 Discussion ....................................................................................................... 102 

Chapter 5: Conclusions and perspectives ......................................... 103 

5.1 Advanced microscopy methods and computational modelling to study biological 
multi-component structures ................................................................................ 103 

5.2 Single Molecule Tracking (SMT) for studying transcription and chromatin 
dynamics ............................................................................................................... 111 

Detailed Methods ............................................................................. 119 

DM1.1 Frequency multiplexed Super Resolution Microscopy ........................... 119 

DM1.2 Mesoscale chromatin modelling .............................................................. 128 

DM1.3 Single Molecule Tracking ........................................................................ 133 

References ....................................................................................... 139 

List of publications .......................................................................... 156 



Chapter 1: Introduction: 1.1 Chromatin 
 

10 
 



Chapter 1: Introduction: 1.1 Chromatin 
 

11 
 

Chapter 1: Introduction 
 

1.1 Chromatin 
 

The first scientific findings related with the chromatin fiber date back to the 19th century when 
F. Miescher and A. Kossel performed biochemical measurements that set the basis for the 
study of chromatin components. They already described the acidic “nuclein”, which 
nowadays is known as nucleic acid, and the histone proteins. In those days, Fleming used the 
new light microscopes with low aberrations and observed for the first time the complex 
landscape that is present inside the cell nucleus. He proposed the term “chromatin” to name 
this heterogeneous substance inside the nucleus. This observation predates the discovery that 
DNA carries the genetic information. Since then, an intimate relation has connected 
microscopy and the study of chromatin. New developments in microscopy methods often lead 
to new insights about chromatin. During the 20th century, the field has grown extraordinarily 
and nowadays thousands of researchers are dedicated to studying multiple aspects of 
chromatin. This work has brought a deep knowledge about chromatin and its implications in 
multiple fields like genetics, bioengineering and cancer diagnosis. In addition, multiple 
chromatin components have been described during the past years (Figure 1). However, there 
is still a large gap of knowledge about chromatin architecture at small (Kb-Mb) scales, its 
interactions with different proteins and how chromatin structure and dynamics relate cell 
physiology.  

 

 

Figure 1. Milestones in the history of chromatin structure. Chromatin is a macromolecule 
composed of the DNA chain and a wide variety of proteins, present in the nucleus of eukaryotic cells. 
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The DNA chain, in the case of human cells, has 6.468.109 base pairs, encoding 20.000-25.000 
different genes and, when stretched end-to-end, it measures two meters. One of the main purposes of 
chromatin is to help pack that very long chain of information (the DNA) into the cell nucleus that has 
a much smaller size (tens of microns). Nowadays we know that the fundamental unit of packaging is 
the nucleosome. Adapted from 1.  

The discovery of nucleosome was a turning point in the field of chromatin structure. Instead 
of DNA coated by histone proteins, a new paradigm was established: the DNA chain is 
wrapped around a group of proteins, lately named histones, and both together form the 
nucleosomes, which are the fundamental unit of chromatin (Figure 2). Chromatin fiber can 
be seen as repetitive motifs of nucleosomes connected by open chains of DNA called linker 
DNA. The nucleosomes are formed by four pairs of histones proteins (H2a, H2b, H3, H4) 
and around 147bp of DNA wrapped around them in a left handed helical turn (this 
corresponds to 1.65 turns of DNA around the complex of histones (Figure 2). The 
nucleosomes have a shape close to a disc, with a diameter of around 11nm and a height of 
around 5nm. Without the neutralization of the electrostatic negative charged DNA chain by 
the positive charged nucleosomes, DNA cannot bend that sharply. Since the histones forming 
the nucleosomes are only capable of neutralizing around 60% of DNA negative charges, other 
factors such as the linker histone H1 or cations are required for further folding2. All those 
effects combined lead to an estimated sixfold-length compaction of the DNA. Apart from 
core and linker histones, the post-translational modifications on the histone protein tails also 
plays an important role in defining chromatin structure and function3. 

 

1.1.1 Chromatin fiber structure 
Chromatin organization spans several length scales. We know that chromatin structure 
regulates and is, at the same time, regulated by gene expression, and that its conformation is 
dynamically changing over time. As explained above, the basic unit of chromatin is the 
nucleosome, which is formed by DNA wrapped around four pairs of histone proteins. 
Nucleosomes connected by linker DNA form the beads on a string structure which has been 
well characterized. However, at the mesoscale level, the chromatin fiber architecture remains 
unclear. Hundreds of nucleosome form gene elements and thousands of genes form entire 
chromosomes (Figure 2). 
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Figure 2. Coarse-grained computational model showing chromatin architecture at different 
scales. Adapted from 4. 

Still, the 3D folding of the genome beyond the beads-on-a-string and its relation with gene 
regulation is nowadays one of the most relevant problems in biology. An important limitation 
has been the lack of tools that allow visualizing chromatin at the length scales between 
nucleosomes and chromosomes. Until very recently, it was thought that at the mesoscale, 
corresponding to tens of thousands of base pairs, in the order of magnitude of a single gene, 
chromatin was structured as a 30nm helix (Figure 3a), based on transmission electron 
microscopy images of in vitro reconstituted chromatin fibers5–7 (Figure 3c). At that time two 
alternative models were proposed: one-start 30nm helix (or solenoid5–7) and two-start 30nm 
helix (or zig-zag8) (Figure 3b). 
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Figure 3. Classical view of chromatin architecture. a)  Classical view of chromatin at different 
scales where the nucleosomes form a 30-nm fiber. b) Two options for the 30-nm chromatin fiber. 
With a single start, forming a helix or with two different starting points forming a zigzag structure. a) 
and b) adapted from 9. c) Electron microscopy images of chromatin in vitro, showing the bead on a 
string structure on the left, isolated mononucleosomes on the middle and chromatin spread forming 
the 30nm fiber on the right. Adapted from 1. 

But this helix was never seen in vivo and, since then, other models has been proposed like 
structures with disorganized regions10, and lately the clutches model (Figure 4a), where the 
chromatin is formed by heterogeneous groups of nucleosomes that cluster together11 (Figure 
4a and b). In addition, nucleosome fibers as highly disordered structures resembling a 
‘polymer melt’ has been proposed9 (Figure 9).  
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Figure 4. Nucleosomes arrange. a) Nucleosomes are arranged in heterogeneous clutches along the 
chromatin fiber. Larger and denser clutches form the “closed” heterochromatin. Nucleosome-depleted 
regions separate nucleosome clutches. Adapted from 11. b) Our coarse-grained computational model 
of chromatin showing nucleosome clusters. 

 

1.1.2 Chromatin and cell pluripotency 
Cell potency is defined as the ability of a cell to differentiate into other cell types. It is 
correlated with the potential that the cell has to activate genes. Embryonic stem cells (ESC) 
are considered pluripotent, since they have the capacity to differentiate into multiple lineages. 
In their differentiation process, as they lose potency, they undergo dramatic morphological 
and molecular changes. One of the essential events during this process is the selective 
silencing and activation of specific subsets of genes. In addition, the genome undergoes a 
global reorganization via chromatin remodelling and epigenetic modifications12. All these 
changes are modulated both by the interaction of a wide variety of proteins with chromatin 
and the restructuring of chromatin architecture12,13. There are multiple mechanisms by which 
genome conformation influences cell fate (Figure 5). 
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Figure 5. Four examples of how genome conformation helps to shape cell identity via 
transcription factor induced state transitions. Adapted from 14. a) Acting as a barrier for phenotypic 
change: NANOG transcription factor forms a hub to cluster target genes like Klf2, Sall1 and Irx. This 
increases gene expression.  b) Acting as a primer: groups of transcription factors acting together are 
able to generate chromatin loops. This has an influence in gene transcription. c) Acting as an 
optimizer: transcription factors induce locus contraction at a certain loci in order to achieve spatial 
proximity between the genes (indicated with V) and the enhancers (yellow region). This increase 
individual gene accessibility. d) Acting as a facilitator: tethering of a protein to a promoter generates 
a promoter–enhancer loop formation and activates gene transcription. 
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Apart from the previous examples, chromatin organization is involved in a huge number of 
different processes in order to regulate gene expression, so that it is an essential mechanism 
for the proper functioning of all eukaryotic cells. Moreover, it is involved in the cell fate 
determination of embryonic/adult stem cells and also in the reprogramming process of 
somatic cells undergoing its transition to pluripotent cells. Recently it was shown that 
chromatin is organized in groups of nucleosomes (Figure 6a and b) and that the size and 
compaction of these nucleosome groups is correlated with cell pluripotency11 (Figure 6b and 
c). 

Figure 6. Nucleosomes are distributed in clusters of heterogeneous size and density and those 
properties correlate with pluripotency. a) Super resolution STORM microscopy images of histone 
H2B in mouse embryonic stem cells in 2iLif medium (upper panel) and mouse neural progenitor cells 
(lower panel) b) Density images showing the differences in cluster organization between mESC 2iLif 
and mNPC. Red color correspond to high-density regions and are more abundant in mNPC. c) Box 
plot displaying the median number of nucleosomes per cluster in different types of mouse-ESCs and 
mouse-NPCs. Adapted from 11. 

 

1.1.3 Advanced methods to study chromatin structure 
The lack of suitable tools has hindered progress in understanding chromatin structure. 
Microscopy has been an important tool in studying subcellular compartmentalization and 
organization, including the genome organization. However, until very recently, the diffraction 
limit of light has limited the microscope resolution to about 200-300 nm (depending on the 
wavelength), which is not sufficient to visualize the intermediate and small scales of 
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chromatin, since one single nucleosome is a disk with 11 nm of diameter and 5 nm of height. 
Conventional light microscopy has been used for many decades to study chromatin by 
labelling the DNA with a DAPI staining. Then, with the advent of more sophisticated methods 
like 3D Structure Illumination Microscopy (3D-SIM), there was a quantitative improvement 
in the resolution of the images, reaching around 100 nm, but still far from the size of a single 
nucleosome15. In such 3D-SIM images, two regions with lower and higher chromatin density 
appeared to be distinguishable (likely corresponding to euchromatin and heterochromatin), 
which are known to be related with active and inactive regions of chromatin, respectively16 
(Figure 7a). Another popular approach to study chromatin is electron microscopy, which 
showed the beads on string structure and can achieve a resolution of less than 1 nm, but it 
lacks labelling specificity, multi-color capability and is not suitable for live-cell imaging5,6,8. 
In particular Electron spectroscopic imaging (ESI) has been successfully applied to observe 
chromatin17 (Figure 7b). In those images, more open and more close regions of chromatin 
can be clearly distinguished, likely corresponding to euchromatin and heterochromatin like 
in 3D-SIM images. In addition, due to the much higher resolution of this technique, the 
conformation of the chromatin fiber at the mesoscale level starts to appear, displaying a 10-
nm fiber (Figure 7b). 

Figure 7. Chromatin observed with ESI and 3D-SIM. a adapted from 18, b adapted from 17. a) 
Chromatin visualized with 3D-SIM with a DAPI staining displaying distinct chromatin density 
regions likely corresponding to euchromatin and heterochromatin. b) ESI images displaying open and 
closed chromatin domains corresponding to euchromatin and heterochromatin (left panels) and the 
10-nm chromatin fibers in the zoomed regions (central and right panels). 

In Table 1 below there is a summary of the currently available microscopy methods used for 
the observation of chromatin. 

Table 1. Advanced microscopy methods for visualizing chromatin and their different 
observed conformations. Adapted from 19 

Method Sample Staining Observed 
structure Reference 

Native 
chromatin 

Negative stain, 
shadowing 

One-start helix 
(solenoid) 

5 
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Electron 
Microscopy 

Native 
chromatin 

Negative stain, 
shadowing, Non-

stained 

Two-start helical 
ribbon model 

6 

Reconstituted 
nucleosome 

array 
Negative stain Two-start model 8 

Electron 
Microscopy 

and 
Computation 

Reconstituted 
nucleosome 

array 

Positive stain, 
shadowing 

Heteromorphic 
chromatin fibers 

20 

Cryo-Electron 
Microscopy 

Native 
chromatin - 

Stem conformation 
of 

linker DNA 
segments 

formed by linker 
histones 

21 

Reconstituted 
nucleosome 

array 
- 

Interdigitated 
solenoid 
model 

22 

Reconstituted 
nucleosome 

array 
- 

Two-start zigzag 
model 

with tetra-
nucleosomal unit 

23 

Electron 
spectroscopic 
image (ESI) 

with 
tomography 

Native 
chromatin - 

Open and closed 
chromatin domains 
consisting of 10 nm 

fibres 

17 

Electron 
microscopy 
tomography 

Native 
chromatin 

Osmium ammine-
B stain 

Variable two-start 
helical 

ribbon model 
24 

Native 
chromatin 

Osmium staining 
of 

electron-dense 
precipitate 

produced by 
photoconverted 

DNA-bound 
fluorescent dye 

Heterogeneous 5–
24 nm 

chromatin fibre 
25 

Low-angle X-
ray 

scattering 
(LAXS) 

Isolated nuclei 
and chromatin - Two-start crossed-

linker model 
26 

Small-angle X-
ray 

scattering 
(SAXS) 

Isolated nuclei 
and chromatin - Irregularly folded 

nucleosome fibres 
27 

X-ray 
crystallography 

Reconstituted 
nucleosome - 

Nucleosome 
structure with 
angstrom-level 

resolution 

28 

Reconstituted 
nucleosome 

array 
- Tetranucleosome 

folding unit 
29 
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3D-SIM Native 
chromatin DAPI 

Chromatin 
compartments with 

different density 
16 

Superresolution 
microscopy 

Native 
chromatin 

Fluorescent 
protein, 

fluorescent-
tagged antibody 

Nucleosome 
clutches 

along chromatin 
fibre 

11 

 

The development of new advanced methods, such as localization-based super resolution 
microscopy, has opened a new field, providing us with the tools to visualize and quantitatively 
analyze the spatial distribution of chromatin in fixed and live cells at the single molecule 
level. In addition, those microscopy methods can be used in conjunct with biochemical and 
sequencing methods like chromatin immunoprecipitation combined with massively parallel 
sequencing (Chip-Seq) (Figure 8a), Micrococcal Nuclease combined with sequencing 
(MNASE-Seq) (Figure 8a), Chromosome conformation capture methods like Hi-C (Figure 
8c), or High-throughput DNA Sequencing (Figure 8a), as a correlative approach, to provide 
deeper insights about chromatin30 (Figure 8). For instance, Hi-C has revealed that chromatin 
is organized in Topologically Associated Domains (TADs)31,32 (Figure 8b and c), megabase 
regions in which the DNA within one domain preferentially interacts with itself rather than 
DNA in a neighbouring domain. However, these genomic methods work by averaging 
information over a large population of cells and unlike microscopy, they are not suitable for 
single cell analysis. Lately, TADs and the presence of cooperative DNA interactions33 were 
confirmed by a new localization-based microscopy method called chromatin-tracing34 but 
single cell information revealed that TAD boundaries are not fixed in single cells and these 
boundaries are emergent, statistical properties arising from population averaging. Hence, 
microscopy, due to its ability to probe single cells, is still a powerful tool that can reveal novel 
information not attainable by population based genomic methods. Development of new single 
cell based microscopy tools, thus, holds great promise for enhancing our understanding of 
genome organization.  
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Figure 8. Chromatin structure at the nucleosome level measured with sequencing-based 
methods. a) Chromatin fiber obtained from computational modelling using Hi-C interaction data as 
an input (top panel). ChIP-seq can provide genome-wide positions of chromatin-binding proteins, 
histone modification and nucleosome occupancy. Adapted from 19. b) A cartoon showing the vision 
of the different scales of chromatin as seen from Hi-C contact map measurements point of view. c) A 
cartoon showing the definition of TADs, subTADs and domain boundaries with an example of the 
corresponding Hi-C data. b and c adapted from 35. 

 

1.1.4 Chromatin dynamics 
Genome organization and dynamics play an important role in regulating gene expression. 
Several recent work including super-resolution imaging of nucleosomes and electron 
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tomography imaging of DNA showed that chromatin is a disordered chain formed of 
heterogeneous groups of nucleosomes with a varying range of nucleosome densities11,25. In 
super-resolution images, nucleosome groups (named clutches) were further clustered into 
larger domains (clutch domains) in the size range of hundreds of nanometers in length 
scale11,36. These results shed new light onto the organization of chromatin fiber at the 10-100 
nm length scales. Assembly of nucleosomes into clutches, the compaction level of 
nucleosomes within the clutches as well as the assembly of clutches into clutch domains can 
limit accessibility of DNA to regulatory proteins and polymerases. Hence these structural 
features must be dynamically regulated in order to turn genes on and off in specific cell types.  

Fluorescence Recovery After Photobleaching (FRAP) analysis and single molecule tracking 
(SMT) of histone proteins as well as tracking of individual genomic loci within the nucleus 
indeed showed that chromatin is highly dynamic. Individual genomic loci diffuse within a 
confined space in the nucleus37,38 and this mobility correlates with the transcriptional activity 
of some genomic regions such as enhancers37,39. In some cases, genomic loci can dynamically 
change their positioning over large distances relocating from the nuclear periphery to the 
nuclear interior upon activation40,41. While FRAP analysis showed that nucleosomes are 
highly stable and turn over with slow dynamics42, tracking of individual Halo-tagged histone 
proteins showed that histones also explore their local environment dynamically43,44. Live cell 
super-resolution imaging showed that groups of nucleosomes residing within nanodomains 
(similar in size to clutch domains) are also mobile33,43,45. However, currently how these 
dynamic measurements spanning multiple length scales, from individual nucleosomes to 
large genomic loci, relate to each other is not clear. The advent of these measurements in live-
cells have introduced a new perspective with the proposal of new models that considers the 
chromatin fiber as a dynamic element like, for example, a liquid-like structure (Figure 9). 
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Figure 9. Cartoon showing the higher order structure of chromatin as 10-nm fibers forming domains 
like Topologically Associated Domains (TADs), loops and Lamin Associated Domains (LADs), 
hypothesizing that the compact domains could behave like a liquid drop with dynamic motion. TADs 
would be more mobile than LADs. In addition, it speculates that the binding of transcriptional protein 
complexes to chromatin during transcription might constrain nucleosome fluctuations. Adapted from 
46. 

In addition to chromatin being dynamic, several studies showed that architectural proteins are 
also highly dynamic inside the nucleus47,48. In particular, the dynamics of architectural 
proteins like H1 and HP1 increased in embryonic stem cells (ESCs) as shown by FRAP and 
SMT12,49. Partially based on these FRAP studies, it has been suggested that the ESC 
chromatin is hyperdynamic and devoid of heterochromatin. Super-resolution imaging showed 
that nucleosome clutch size is cell specific and ESCs have smaller, less compacted clutches 
compared to differentiated cells11. Nucleosome clutch size and compaction was further 
impacted by the amount of the linker histone H1 as well as the amount of acetylation on 
histone tails36, suggesting that linker histones and histone post translational modifications 
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play a role in organizing nucleosomes into clutches. How the nucleosome clutch organization 
observed in fixed stem and somatic cells correlate with histone, H1, HP1 and locus dynamics 
measured in live cells is not clear. In addition, the mechanisms that regulate histone and 
chromatin dynamics in different cell types are poorly understood. Finally, it is not clear 
whether the folding of the chromatin fiber into nucleosome clutches is compatible with the 
polymer nature of DNA and the electrostatic interactions of histones, histone tails and linker 
histones with DNA.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction: 1.2 Single Molecule Localization Microscopy 
 

25 
 

1.2 Single Molecule Localization Microscopy 
 

With the advent of super-resolution microscopy, diffraction limit is no longer an impenetrable 
barrier to light microscopy. In the last decade, several techniques have been developed that 
overcome the diffraction limit, extending the spatial resolution of light microscopy to length 
scales as small as 10–20 nm, an order of magnitude improvement over conventional 
fluorescence microscopy (Figure 10). Super-resolution microscopy methods can be broadly 
divided into two categories: those that are based on patterning the illumination light, such as 
Saturated Structured Illumination Microscopy – (S)SIM50 or Stimulated Emission Depletion 
(STED)51, and those that are based on single molecule localization, like Stochastic Optical 
Reconstruction Microscopy – STORM52 and (Fluorescence) Photoactivation Localization 
Microscopy – PALM and fPALM53. A more recent method named Point Accumulation for 
Imaging in Nanoscale Topography (PAINT)54,55 also belongs to this category but will be 
treated apart in an individual section below. Most of these methods have been applied to 
image chromatin and nuclear organization at high resolution56,57.  
 

Figure 10. Super resolution microscopy at a glance. Four super resolution techniques and their 
corresponding resolution. The cartoon represents a microtubule with a diameter of 14nm and the 
different appearance under the microscopy methods. In addition, a two-color image of microtubules 
and clathrin-coated pits, comparing conventional and STORM images is shown. Adapted from 58,59. 
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1.2.1 Single Molecule Localization Microscopy Basis 
Due to the diffraction phenomenon, an infinitesimal point source emitting fluorescence, after 
passing through an optical system (the microscope) and being projected into a detector (the 
camera) will have a shape that is characteristic of each system and is defined as Point Spread 
Function (PSF). This fact limits the spatial resolution of a microscope to:  

Lateral (x, y) resolution: 𝑟 = 	 $
%·'(

  

Axial (z) resolution: 𝑟 = 	 %·$·)
'(*

 

Where λ is the wavelength of the light, n is the refraction index of the medium of propagation 
and NA is the numerical aperture of the objective piece. 

In order to overcome this limit, SMLM methods localize each individual fluorophore 
separately by fitting a function to the intensity profile of each individual PSF (Figure 11a). 
The actual shape of a diffracted limited spot is better approximated by the airy function, but 
most of the localization algorithms work with a 2D Gaussian functions (Figure 11b), which 
is good enough to fit the PSF and find the center position (x,y) of the point emitter and the 
width of the Gaussian curve (Figure 11b and c). 

Figure 11. a) Point Spread Function (PSF). b) 2D Gaussian fitting on the fluorophore intensity profile 
detected by the camera. c) Localization position (x,y) of the fluorophore with high precision 
overlapped with the PSF. Adapted from 60. 

Localization-based microscopy methods take advantage of single molecule detection and 
localization to break the diffraction limit52,53. The position of a single fluorescent probe can 
be localized with very high precision, depending on the number of photons collected from 
the spot61. However, this concept by itself is not sufficient to improve image resolution, since 
biological samples are labelled with a high number of fluorophores whose individual images 
overlap and cannot be distinguished. Therefore, in a densely labelled biological sample, it is 
necessary to separate the emission of many overlapping fluorescent probes in time. Then, if 
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one is able to localize the center position of hundreds of thousands of emitters with high 
precision and reconstruct an image will all those localizations, its resolution will be greater 
than any conventional microscopy method (Figure 12). 

Figure 12. A cartoon showing the basic principle of single molecule localization based 
microscopy. Four acquisition and detection cycles are displayed. Adapted from MicroscopyU Single-
Molecule Super-Resolution Imaging (https://www.microscopyu.com/techniques/super-
resolution/single-molecule-super-resolution-imaging). 

The resolution of this type of images is a complex concept and it is not trivial to determine. 
Of course, it depends on the localization precision (Figure 11b and Figure 13a), which 
ultimately depends on the number of collected photons (or the Signal to Noise ratio of the 
fluorophore), but also on the density of localizations (Figure 13b), the, the size of the 
labelling epitope or the drift of the microscope stage, among others. One experimental 
procedure to estimate the 2D localization precision is by computing the standard deviation 
(σ) of the distribution of multiple localizations of the same single fluorophore (Figure 13a). 
Analytically, the localization precision is given by the expression: 

σ = 	,-*

'
+ /*
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Where s is the standard deviation of a Gaussian function approximating the  PSF of the 
fluorophore in a particular microscope, N the number of detected photons from the 
fluorophore by the camera, a is the pixel size of the camera and b is the standard deviation of 
the background. The first term is related with camera photon shot noise, the second with the 
effect of finite pixel size and the third with the background noise. In the case of very low 
background, the expression can be simplified to: 

σ	 ≈ 	 -
√'

 , 

A localization precision of 10-20nm is typically achieved in a SMLM experiment with a state 
of the art microscope. The way to increase localization precision is to minimize the 
background signal while simultaneously maximizing photon output from the fluorophore. 
This can be achieved by selecting a bright fluorophore, using a sensible camera with low 
readout noise, reducing background fluorescence signal generated in the sample preparation 
or increasing the SNR by using HILO laser illumination62. There are other approaches to 
estimate the localization precision by obtaining the  Cramér-Rao lower bound of the position 
estimation63, and others to directly estimate the image resolution like Fourier ring correlation 
method64. 

The Nyquist criterion quantifies the effects of the localization density on the reconstructed 
image resolution65. It states that two structures separated less than twice the distance between 
localizations, is not resolvable: 

σ'789:-;	<	
2

ρ
0
?
	 

where 𝜌 is the density of localizations and D is the imaging dimension (D=2 for 2D and D=3 
for 3D). Following that criteria, another estimator for the image resolution can be obtained 
from the convolution of the two effects: localization precision and localization density. 

σABBAC;:DA	<,σEFC% + σ'789:-;% 	 
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Figure 13. a) Example of the localization positions originated from a single fluorophores and their 
spatial distributions in x and y that can be fit fitted with a normal distribution. The full width at half 
maximum (FWHM=2.35·σ) can provide a quantitative measurement of the localization precision. b) 
Localization-based microscopy image of microtubules showing the effect of localization density on 
image quality. Adapted from 60. 

In addition, it is also possible to improve the axial resolution. A typical way to extend 
localization-based imaging to the third dimension is by placing cylindrical lens in the imaging 
path66. Due to astigmatism, molecules that are above and below the focal plane will appear 
elliptical and the ellipticity will be either in the horizontal or vertical directions. This method 
can achieve an axial resolution of 50 nm over a range of 800 nm67 (Figure 14a). Typically a 
calibration procedure is required to measure precisely the deformations of the PSF when a 
fluorophore moves up and down from the focal plane67 (Figure 14b). 
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Figure 14. PSF engineering via astigmatic lens to perform 3D SMLM. a) The cylindrical lens 
elongates the shape of the PSFs in an elliptical way in x or y, depending on their relative position to 
the focal plane. b) This method needs a calibration step which will characterize the imaging system. 
This is typically performed with fluorescence beads. Adapted from 67. 

 

1.2.2 STORM 
One of the methods to achieve fluorophore fluorescence separation in time is the use of 
photoswitchable dyes typically associated with a sub-class of super-resolution microscopy 
method known as Stochastic Optical Reconstruction Microscopy or STORM68. These are 
probes whose fluorescence can be switched in a somewhat controlled fashion between bright 
and dark states using laser illumination. At any given frame, most of the fluorophores are in 
a long-lived dark state. Only a small subset of them is stochastically activated into the 
fluorescent state by excitation with the appropriate wavelength of light. As a result, the single 
molecule images of this small subset of molecules do not overlap and their positions can thus 
be determined precisely. By repeating the process of activation, imaging and de-activation 
over thousands of cycles, a super-resolution image can be built from molecule positions69. 
Figure 15 shows a comparison between conventional and STORM microscopy for H2B (a 
histone protein that is constituent of the nucleosomes) imaging, and it shows a procedure to 
analyse the new information obtained with STORM. There is a wide choice of these 
fluorescent probes, ranging from photoactivatable, photoconvertible or photoswitchable 
fluorescent proteins to photoswitchable organic fluorophores70. The quality of the image will 
strongly depend on the fluorophore, specifically on the duty cycle (fraction of fluorophores 
in the on state at a given time), fluorophore brightness and the number of cycles before 
depletion. Depending on the fluorescent probe used, it is possible to achieve a spatial 
resolution in the order of 20–40 nm and a temporal resolution of 0.5–10 s (in live cell 
imaging)71.  
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Figure 15. STORM image of nucleosome arrangement stained via H2B-Alexa647. Comparison 
of conventional fluorescence image (upper) and super-resolution (STORM) image (lower) of core 
histone H2B showing the arrangement of nucleosomes in a fibroblast nucleus. A zoom of the region 
inside the yellow rectangle is shown to the right. A cluster identification algorithm is used to 
automatically group localizations into clusters (colored crosses) and segment nucleosome clutches in 
the super resolution image. Adapted from 72. 
 
 
1.2.3 PAINT 
Point accumulation for imaging in nanoscale topography (PAINT)73 is an alternative 
localization-based super-resolution microscopy method. In this approach, imaging is 
performed using diffusing fluorescent molecules that have a transient interaction with the 
protein of interest. This method does not rely on fluorophore photophysics or imaging buffer 
conditions and more importantly does not suffer from fluorophore depletion due to 
irreversible photobleaching. Initially, PAINT was applied to obtain super-resolved images of 
cell membranes and artificial lipid vesicles. Recently, DNA-PAINT was developed73,74. It 
achieves programmable dye interactions with the biological structure of interest and increases 
the labelling specificity and the number of utilizable fluorophores. Here, stochastic switching 
between bright and dark states is achieved via repetitive, transient binding of fluorescently 
labelled oligonucleotides to complementary docking strands (Figure 16a). In the unbound 
state, only background fluorescence from partially quenched imager strands is observed 
(Figure 16a), because they are diffusing faster than the long exposure time (typically 100ms). 
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However, when binding and immobilization of an imager strand occurs, fluorescence 
emission is detected (Figure 16a). No high laser power is required for this technique, since 
the long exposure times and the typical residence times of the oligos is around 100ms. It is 
also possible to control the dark and bright times, by tuning the binding strength and 
concentration of the imager strand (Figure 16a). DNA-PAINT is highly quantitative75 and 
does not suffer from photobleaching as there is continuous replenishment of imager strands 
from solution. A 2D spatial resolution of less than 10nm can be obtained as shown with 
labelled DNA Origami (Figure 16b). This technology can be used in conjunct with primary 
and secondary antibody labelling making it useful for most fluorescence microscopy 
applications (Figure 16c). Figure 16b, d and e show a comparison between conventional and 
DNA-PAINT localization-based microscopy images. 

Figure 16. DNA-Paint concept. a) Transient binding of dye-labeled DNA strands (imagers) to their 
complementary target sequence (docking site) attached to a molecule. b) DNA Origami imaged with 
DNA-Paint. c) DNA-Paint labelling strategy. d) and e) Tubulins image comparing conventional and 
DNA-Paint imaging. Adapted from 73. 

1.2.5 Single Molecule Tracking (SMT)  
Several experimental techniques have been developed recently for measuring dynamic 
processes in living cells. One of the most used techniques by biologists in last decades is 
fluorescence recovery after photobleaching (FRAP)76. It can be used to study the mobility of 
lipids and proteins in the cell membrane and also in the cell cytoplasm and cell nucleus76,77. 
Other methods to obtain information on the dynamics of molecules in living cells are 
fluorescence correlation spectroscopy (FCS)77, and image correlation spectroscopy (ICS)78. 
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All these techniques provide an ensemble time average of the dynamics of the molecules 
under study. Heterogeneities within the cell that affect the diffusion of the molecules, short-
lived molecular interaction events and molecules that play different roles and thus have 
different type of motion, are in general not accessible with these methods. A different 
approach that combines high spatial and temporal resolution is single molecule tracking 
(SMT). As a localization-based microscopy method, SMT localizes each individual particle 
with a precision of tens of nanometers and one can extract dynamic information of the single 
molecule’s motion. The spatial resolution is given by the localization precision of the 
diffraction limited spots (10-50nm, depending on the imaging conditions) and the temporal 
resolution is given by the camera frame rate.  
 
The advent of new membrane permeable dyes of less than 2nm of diameter than can penetrate 
in a cell nucleus of a living cell79 and its conjugation with Tag technologies, like Halo Tag80, 
provide a non-invasive labelling system that ensures high molecular specificity and the 
possibility of capturing dynamic processes in live cells. With this technology, we are able to 
study both chromatin assembly (with super resolution microscopy) and dynamics (with 
SMT). In addition, single particle tracking has also been used to follow the movement of 
fluorescent tracers such as quantum dots81 (Figure 17a). Apart from the appropriate 
fluorophore, a method to target the protein of interest is needed. This can be achieved via 
different labelling modules, like antibodies (Figure 17b) or recently HaloTAG or SnapTAG 
systems80,82. The movement of these tracers mostly occurs via diffusion and can be hindered 
by the presence of obstacles created by highly compact chromatin structures and nuclear 
crowding. The selection of the probe with the appropriate characteristics is crucial for any 
SMT experiment (Figure 17a and b). 
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Figure 17. Labelling strategies for SMT. a) List of available fluorescent particles. b) List of specific 
labelling modules for biological molecules. Note that with the Halo-Tag system no labelling module 
is required. Adapted from 83. 
 
There are three main steps to follow in order to perform a SMT experiment. The first one is 
to record a video on the microscope capturing the motion of the molecules of interest. Here 
the most important parameters are the laser power (that determines SNR, photobleaching and 
photoswitching) and the camera exposure time (that determines time resolution). For studying 
diffusion (or fast) dynamics, short exposure times are required, in the order of tens of 
milliseconds. Temporal resolution is limited by the maximum camera frame rate and the 
length of the traces by photobleaching. On the other hand, for studying slow dynamics (like 
chromatin unbinding events or residence times) long exposure times are used, in the order of 
hundreds of milliseconds to seconds. The second step is the localization, which is similar to 
SMLM methods and finally the tracking, when the localizations corresponding to the same 
molecule are connected (Figure 18). The algorithms to perform the localization and link the 
tracks are evolving significantly in the last years, and the approaches range from a simple 
nearest neighbour approach84 to more complex ones based on Bayesian inference or assuming 
an a priori motion type for the tracks83. Still all the available techniques are prone to make 
mistakes when connecting the tracks, so there is room for improvement. For biological 
applications, scientist normally choose the simplest option, like nearest neighbour connection 
with certain spatial threshold, like a maximum frame-to-frame jump, avoiding prior 
assumptions and discarding tracks with merging and splitting events.  
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Figure 18. Schematic representation of SMT. Figure shows the acquisition over consecutive camera 
frames, localization of the molecule positions by fitting a 2D Gaussian and tracking step which 
connects the positions in order to generate a trajectory. Adapted from 83. 
 
The length of the trajectory is important as it determines the amount of available information 
for performing downstream analysis. SMT suffers from photobleaching as well as from 
photoswitching of the fluorophores. The perfect SMT fluorophore will be a very bright and 
very stable one, so that it can be tracked ad infinitum with enough laser power to acquire high 
SNR. Reversible photoswitching can be partially amended on the processing step by allowing 
the tracking algorithm to connect the gaps of the trajectories with a certain threshold value, 
like a maximum spatial distance between the PSF and a maximum number of frames without 
localizations. 

Once the trajectories are built one needs to analyse them in order to extract quantitative 
information. In this case, the analysis is different from the super resolution microscopy 
images of fixed structures, where the study is focused just on the spatial distribution. Here, 
time plays a crucial role and so the required analytical tools need to be adapted. SMT data 
analysis is still an immature field. Many new algorithms are continuously appearing, with the 
disadvantage that almost each scientific group uses their own analytical methods, so that there 
is a lack of standardization and it is sometimes difficult to compare the results. Still, there are 
some widely used methods. Mean Square Displacement (MSD) is probably the most relevant 
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one (Figure 19a, b and c). It is based on the analysis of the size of the frame-to-frame jumps 
of single molecules at different time lags (Figure 19a). 

When dealing with thousands of trajectories, there are two common versions of the MSD. 
The Time-MSD (T-MSD) performs a time average of the trajectories assuming that the 
displacements at different times are equivalent (fulfilling the ergodic principle85): 

𝑇𝑀𝑆𝐷(𝑡M/N = 𝑚 · 𝛥𝑡) = 	 0
'RS
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where N is the number of positions of the tracks,  𝑚 · 𝛥𝑡 the discrete temporal sampling of 
the recorded image stack and xj the 2D or 3D positions at each time point. Alternatively, the 
Time-Ensemble average of the MSD (TE-MSD) is the average of the T-MSD computed on 
all the trajectories for a particular condition: 
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where J is the total number of trajectories. For the case of Brownian motion (or perfect 
random diffusion), the MSD can be simplified just by computing the variance of the solution 
of the diffusion equation86 and the MSD scales linearly with the tlag (Figure 19b): 

𝑀𝑆𝐷 = 4 · 𝐷 · 𝑡M/N	 

This is the MSD for Brownian motion of a 2D trajectory, where D is the diffusion coefficient. 
Note that normally the curve does not start at the origin due to the localization precision limit 
inherent to SMT technique. The localization error (σ) can be estimated from the point where 
the MSD curve intersects the y-axis as MSD(tlag=0) = 4·σ2 (Figure 19b). 

The crowded and heterogeneous environment of most of the biological systems introduces a 
new level of complexity in the analysis of SMT data, since molecules can freely diffuse, 
interact with other molecules and experiment molecular crowding or electrostatic barriers87,88. 
Molecules often perform what is defined as anomalous diffusion, better described by a power-
law distribution: 

𝑀𝑆𝐷U𝑡M/NY = 4 · 𝐾 · 𝑡M/Ne , 

where K is a generalized diffusion constant and α is the anomalous exponent, which 
characterize the motion type of the trajectory. α=1 is considered free diffusion or Brownian 
motion, α<1 sub-diffusion or confined motion and α>1 super-diffusion or directed motion 
(Figure 19c). This last motion type, which was extensively observed for active intracellular 
transport along microtubules89, is also better modelled as a ballistic movement87: 

𝑀𝑆𝐷U𝑡M/NY = 4 · 𝐷 · 𝑡M/N + U𝑣 · 𝑡M/NY
%
, 
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where 𝑣 is the speed of transport.  

Confined motion can be modelled as a molecule constrained by physical or other types of 
compartments that can present several geometries at different scales. This behaviour is 
frequently found in molecules diffusing in the complex environment that is the cell nucleus 
of live cells. Figure 19d shows four examples of diffusing molecules that can be found in 
cells presenting different behaviours depending on the geometry of their local environment. 
One example that will be used for the analysis of the trajectories presented in Chapter 4 of 
this thesis is the circle confined diffusion model88, where a particle is confined to an static 
circular region with radius of confinement R and diffusion coefficient that represents the 
short-term mobility Dmicro: 

𝑇𝐸𝑀𝑆𝐷 =	𝑅% · h1 − 𝑒
R1·?jklmn·;opq

r* s 

This equation corresponds to the motion illustrated in Figure 19d but when the circle is not 
moving, so that Dmacro doesn’t play a role. 

Figure 19. Mean Square Displacement (MSD). a) One trajectory showing the frame to frame jumps 
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at the different time lags. b) MSD curve of a random diffusing molecule (blue points) fitted with a 
linear distribution (black line). c) Theoretical definitions of different motion types based on their MSD 
curves. d) Cartoon showing four different subdiffusion behaviours of molecules that can take place in 
the cell nucleus. Clockwise and starting from the top left corner: hop diffusion, alternating between 
microscopic and macroscopic diffusion. Diffusion on cellular nanotubules, like microtubules or actin 
filaments, diffusion in a membrane containing static obstacles and confined diffusion (Dmicro) within 
a moving circle (Dmacro). Adapted from 83,88. 

As it was mentioned before, the nucleus of eukaryotic cells is a very complex environment. 
Until very recently, SMT experiments were performed outside the nucleus, in the cytoplasm, 
mainly because of the difficulty to label target proteins inside the nucleus without harming 
the live cell. In addition, previous labelling probes were too big in comparison with the size 
of the target proteins, such that the labels could affect protein motion. With the advent of new 
developments in the field of probes, we are now able to perform SMT on a wide variety of 
targets inside the cell nucleus. HaloTag technology combined with cell permeable dyes is a 
good example of how these technologies have revolutionized the field (Figure 20a). Some 
advances also recently arised from the technical point of view in the imaging procedure. In 
order to image physiological processes in live cells, one needs to be as less invasive as 
possible to not perturb their normal function. On the other hand, the localization precision (or 
resolution) of localization-based microscopy methods is proportional to the amount of 
photons collected from the fluorescent probes. Thus, imaging approaches to achieve high 
enough signal to noise while maintaining the laser power low enough to not stress the 
biological samples are required. This is the main advantage of highly inclined thin 
illumination (HILO)62, that enhances the signal to noise ratio by not illuminating the 
fluorophores that are out of the focal plane (Figure 20b). Some examples of what can be 
achieved when combining HILO and HaloTag technologies are shown in Figure 20a and b 
for different target proteins and imaging conditions. 
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Figure 20. SMT in the cell nucleus. a) Scheme showing the HaloTag labelling technique. b) HILO 
illumination used in SMT experiments (top panel) and an example trajectory of a protein interacting 
with chromatin at specific sites. Transcription factors interacting with chromatin (lower panel). 
Adapted from 90. b) One example frame of a SMT image stack of H2B taken at 50ms of exposure 
time, where single molecules are displayed. Adapted from 91. c) Various examples of proteins and 
image conditions imaged in the cell nucleus of live cells. At 500 ms of camera exposure time, only 
Sox2 proteins bounded to chromatin are seen. When removing the Sox2 binding domain or imaging 
nuclear localization signal, no single spots are detected. But at 10 ms of exposure time, free diffusing 
NLS is detected.  Adapted from 92.  
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Chapter 2: Frequency-multiplexed Super Resolution 
Microscopy 
 
The content of this chapter is part of P. A. Gómez-García et al., Excitation-multiplexed 
multicolor superresolution imaging with fm-STORM and fm-DNA-PAINT. Proceedings of the 
National Academy of Sciences 115-51, 2018. (see List of publications). 
 

2.1 Abstract 
 

Recent advancements in single-molecule localization-based microscopy have made it 
possible to visualize biological structures and dynamic processes within the cell with 
unprecedented spatial resolution. Determining the spatial co-organization of these complex 
structures, like chromatin, under physiological and pathological conditions is an important 
biological goal. For example, in the context of visualizing the organization of the genome, it is 
important to visualize not only the DNA but also the architectural proteins that shape genome 
organization, including histones, as well as the epigenetic modifications of these histones that 
determine whether a specific region is active or silenced. Hence, visualizing genome 
organization requires tools that can achieve nanoscale spatial resolution in multiple colors in a 
multiplexed manner. Currently, one of the main limitations of this family of techniques is the 
difficulty to extend them to multiple colors, so that multiple target molecules can be imaged 
simultaneously. We developed an approach for simultaneous multi-color super resolution 
imaging which relies solely on fluorophore excitation, rather than fluorescence emission 
properties. By modulating the intensity of the excitation lasers at different frequencies, we 
show that the color channel can be determined based on the fluorophore’s response to the 
modulated excitation. We use this frequency multiplexing to reduce the image acquisition 
time of multi-color super resolution DNA points accumulation in nanoscale topography 
(DNA-PAINT) while maintaining all its advantages: minimal color cross-talk, minimal 
photobleaching, maximal signal throughput, ability to maintain the fluorophore density per 
imaged color, and ability to use the full camera field of view. We refer to this imaging 
modality as “frequency multiplexed DNA-PAINT” or fm-DNA-PAINT. We also show that 
frequency multiplexing is fully compatible with Stochastic optical reconstruction microscopy 
(STORM) super resolution imaging, which we term fm-STORM. Unlike fm-DNA-PAINT, 
fm-STORM is prone to color cross-talk. To overcome this caveat, we further develop a 
machine-learning algorithm to correct for color cross-talk with more than 95% accuracy, 
without the need for prior information about the imaged structure. We expect fm-DNA-Paint 
to have several applications in visualizing the co-organization of multi-protein complexes, 
sub-cellular structures and organelles with high throughput.  
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2.2 Introduction 
 

Multi-color localization-based microscopy is important for determining the relationship 
among the spatial distribution and sub-cellular localization of multiple proteins. However, 
existing multi-color implementations for super-resolution microscopy have important caveats 
including color cross-talk, unavailability of well-performing spectrally distinct 
photoswitchable fluorophores and long acquisition times. One approach for multi-color 
super-resolution microscopy uses fluorophore pairs in which the same reporter is coupled to 
different activators59. In this case, the color is determined based on the wavelength of the 
activation laser. Typically, a cycle of 3-4 camera frames is used in which a short pulse of 
activation laser light is followed by the imaging laser. In each cycle a different activation 
laser is used and the fluorophore localizations are color-coded based on which cycle the 
fluorophore turned on59. This approach is free from chromatic aberrations and the need for 
image registration. In addition, the full camera field-of-view is maintained over multiple 
colors. However, this is a sequential imaging approach, in which the time investment scales 
with the number of colors needed and it is prone to color cross-talk93, since fluorophores can 
also undergo spontaneous blinking or can be activated by the “wrong” activation laser. A 
second approach uses spectrally-distinct photoswitchable reporter dyes94 such that color 
cross-talk can be reduced or eliminated. However, chromatic aberrations can be difficult to 
correct at the nanoscale level95. In addition, there is a limited availability of spectrally distinct 
photoswitchable fluorophores with favorable photophysical properties. An alternative, third 
approach, which also reduces color cross-talk, is the use of spectrally-distinct photoswitchable 
reporter dyes94,96–99. While the multiple colors can be imaged simultaneously to reduce time 
investment, it comes at the expense of a reduced FOV since it requires splitting the camera 
FOV into smaller sub-regions, one for each color to be detected, hence decreasing 
experimental throughput. In addition, there is a limited availability of spectrally distinct 
photoswitchable fluorophores that minimize spectral cross-talk while simultaneously 
maintaining favorable photoswitching properties in the same imaging buffer. As a result, 
sequential imaging approaches are often preferred at the expense of increased image 
acquisition time.  

PAINT is particularly amenable to multi-color super-resolution imaging since the on/off 
“blinking” solely depends on the oligo binding properties such that conventional 
fluorophores can be used. However, these advantages come with the major shortcoming of 
requiring long image acquisition times (tens of minutes up to several hours per color). This 
drawback arises because the unbound diffusing imager strands contribute to background100. 
The image acquisition time is related to the number of detected events per camera frame, 
which is proportional to the imager strand concentration 100. Since increasing the imager 
strand concentration leads to increased background, there is a practical limit to how fast 
images can be acquired with conventional DNA-Paint100. Typically, multi-color DNA-
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PAINT is performed sequentially by using imager strands labeled with the same fluorophore 
and with the target species labeled with orthogonal docking strands74. Therefore, the time 
investment scales linearly with the number of colors in sequential multi-color DNA-PAINT. 
 
Finally, fluorescent molecules can also be discriminated based on their emission spectra in a 
fourth class of multi-color methods that use spectral information101,102. In general, these 
approaches necessitate increasing molecular sparseness to avoid spatio-spectral overlapping 
and in some cases splitting of the camera FOV into sub-regions, lengthening the acquisition 
time or reducing the available FOV. Importantly, spectral fluctuations inherent to single 
molecules103 can limit the applicability of spectrally-resolved super-resolution approaches. 
All these caveats combined together limit the practical application of multi-color super-
resolution imaging in biology. 
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2.3 Methodology 
 

The method relies on the fact that individual fluorophores emit fluorescence directly 
proportional to their absorption cross-section at a given excitation wavelength. Thus, by 
modulating multiple excitation lasers at distinct frequencies, fluorophores with different 
excitation spectra will be excited to a varying degree according to their absorption cross-
section at each given excitation wavelength. The total fluorescence emission from different 
fluorophores is collected on a single detector, in a color-blind fashion, and it is then 
demodulated using Fourier analysis in the frequency domain to retrieve the magnitude of the 
individual fluorophore signals for each color channel. For frequency multiplexing, the 
intensities of all of the excitation lasers were sinewave modulated independently at their own 
unique frequencies using acousto-optic modulators (AOM) (Figure 21a). A frequency range 
of 50-10Hz was used depending on the specific experimental configuration (Detailed 
Methods DM1.1). The different wavelengths were combined and coupled into the 
microscope objective through dichroic mirrors. The emitted fluorescence light was collected 
by the same objective and directed through a set of notch filters to solely reject the laser 
excitation wavelengths used in the experiment (Figure 21a). This configuration yielded 
maximum signal throughput to the EM-CCD detector. 
 
The fluorophores emitted light proportionally to their absorption cross-sections at each 
excitation wavelength. For demodulation, the intensity evolution of the fluorophore within a 
given frame window (m), ranging from 4-6 frames, was transformed to the frequency domain 
(Detailed Methods DM1.1). For a given frame window, m, the Discrete Fourier Transform 
generates m/2 frequency bins and therefore m/2 available color-channels. Hence, a 6 frame 
window enables 3-color imaging (Figure 21b). 
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Figure 21: Frequency multiplexed concept. (a) Schematic of the microscope setup and imaging 
method. An example case of three illumination lasers are shown as sinewave modulated at three 
different frequencies, F/2, F/3 and F/4, where F is the camera frame rate. (b) Representative example 
of data processing. Upper panel: subROI of 6 consecutive frames with one fluorophore present. Middle 
panels: intensity evolution of the selected pixel (white box) in the time domain and amplitudes in the 
frequency domain after a FFT over the 6 frames. Bottom panel: resulting demodulated data split into 
the three different channels. (c) 2-Color, 2D fm-DNA-PAINT image of mitochondria (magenta) and 
microtubules (green). (d) 2-Color 3D fm-DNA-PAINT image of mitochondria and microtubules. 
Zooms on the right show 3D views of the white boxed region. Mitochondria is represented in magenta. 
For the microtubules, the color-coding indicates z-position (from 300 nm in light blue to 500 nm in 
yellow). 

Experiments were performed using a custom microscope based on a Nikon Eclipse Ti body 
(Nikon Instruments). The optical system on the excitation path is formed by a set of dichroic 
mirrors and individual AOM for each laser line. This configuration allows modulating each 
laser independently and combining all of them together to simultaneously illuminate the 
sample. We used HiLo illumination62 for all fm modalities. Just for demonstration of the 
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method, we used fixed and live BSC1 cells where we labelled microtubules, mitochondria 
and/or lysosomes. The data processing was performed by a combination of Insight3 
localization software and custom Python scripts (freely available at Github: 
https://github.com/PabloAu/Excitation-multiplexed-multicolor-super-resolution-imaging-
with-fm-DNA-PAINT-and-fm-STORM).  

For more detailed explanation about the experimental procedures carried on for imaging, 
biological sample preparation, data processing and optical equipment see the Appendix 1: 
Detailed Methods, section DM1.1.  
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2.4 Results 
 

2.4.1 fm-PAINT 
For frequency multiplexed (fm) DNA-PAINT, the intensity evolution of each pixel in the 
time domain, corresponding to 6 consecutive frames acquired at a camera exposure time t = 
16 ms per frame (F=60 Hz), was converted into amplitudes in the frequency domain by 
performing a Fast Fourier Transform (FFT). Those values were then assigned to the 
corresponding pixels on the demodulated images (one value per channel) (Figure 21b). 
After demodulation, fluorophores were localized in their corresponding color channel, in 
which they were already separated spatially and spectrally. The demodulated image stack had 
an effective exposure time of m*t, with m = 6 and  t = 16 ms,  fulfilling the long exposure 
conditions of DNA-PAINT (i.e., ~ 100 ms corresponding to an effective frame rate of 10 
Hz). DNA-PAINT is particularly amenable to frequency multiplexing, since the fluorophore 
functionalized oligo stays bound to its complimentary oligo for a few hundred milliseconds. 
Hence, the bound fluorophore can be detected over multiple frames when imaged at the rate 
of 16 ms per frame, whereas the diffusing molecules are too dim after demodulation to be 
localized (Detailed Methods DM1.1, Figure 22). As a result, the color assignment becomes 
unambiguous. Accordingly, 2-color 2D and 2-color 3D images of microtubules and 
mitochondria, using Cy5-equivalent and Cy3-equivalent as fluorophores, respectively and 
imaged with fm-DNA-PAINT (Figure 21c, d) produced minimal color crosstalk (2.8% 
crosstalk from Cy5 into Cy3 channel and 0.8% crosstalk from Cy3 into Cy5 channel, Detailed 
Methods DM1.1, Figure 23). If desired, the color cross-talk could be further reduced using 
a simple correction approach without compromising the overall detected number of 
localizations (Detailed Methods DM1.1, Figure 23).  
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Figure 22: Effect of diffusing molecules on fm-DNA-PAINT: (a) Individual frames 
corresponding to a bound molecule in fm-DNA-PAINT (left) and the corresponding point spread 
function (PSF) of the molecule after demodulation (right). The PSF is bright enough to be localized 
by the localization algorithm (yellow square). (b) Individual frames corresponding to a diffusing 
molecule in fm- DNA-PAINT (left) and the corresponding point spread function (PSF) of the 
molecule after demodulation (right). The PSF is too dim to be localized by the localization algorithm. 
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Figure 23: Color cross-talk quantification and correction in fm-DNA-PAINT. (a-b) Microtubules 
(green) (a) and lysosomes (magenta) (b) labeled with Cy5-equivalent and Cy3-equivalent dyes alone, 
respectively and imaged in two colors using fm-DNA-PAINT. Images show the results before 
crosstalk correction. The green localizations correspond to the Cy5 channel and the magenta 
localizations correspond to the Cy3 channel. Localizations in a region of interest around the imaged 
structure were quantified in the two channels (white boxes and insets). (c-d) Percentage of 
localizations belonging to the Cy5 (c) or Cy3 (d) channels before color cross-talk correction (yellow 
bars) and after color cross-talk correction (green bars). (e) Two-color super-resolution image of 
microtubules and mitochondria imaged using fm-DNA-PAINT, after crosstalk correction (same image 
shown in main Fig. 1c with the display split into two channels). Upper left panel shows microtubule 
channel only and upper right panel shows mitochondria channel only. Lower panel shows a zoom 
region (highlighted with a white box) of the microtubules, mitochondria and the overlay. 
 
Localization precision determines the final resolution in single molecule based localization 
microscopy. We thus compared the localization precision of fm-DNA-PAINT to 
conventional DNA-PAINT using two different methods52,63,67 (Detailed Methods DM1.1, 
Figure 24). Both methods showed that the localization precision of fm-DNA-PAINT was 
somewhat decreased (by a factor of ~1.4-2) compared to conventional DNA-PAINT. This 
decrease is merely due to the fact that by modulating the excitation lasers, fluorophores are 
excited only half of the duration of a single frame, and thus emit roughly half of the photons 
compared to continuous excitation. The modest decrease in localization precision of fm-
DNA-PAINT is largely compensated by its gain in image acquisition times. Nonetheless, the 
fm-DNA-PAINT localization precisions were close to the reported values for other single 
molecule localization microscopy methods63,104,105. The localization precision can be 
improved by increasing the excitation laser powers so that the effective excitation is similar 
to that of conventional DNA-PAINT.  
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Figure 24: Localization precision comparison between conventional and fm-DNA-PAINT. (a) 
Localization precision calculated by localizing the same fluorophore in multiple frames and 
compared between conventional DNA-PAINT with 100 ms exposure time and fm-DNA-PAINT with 
16 ms exposure time and 6 frame window size, for Cy5 and Cy3 fluorophores. (b)  Comparison of 
the localization precision obtained from Cramer-Rao Lower Bound of the MLE Gaussian fitting. 
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For both (a) and (b) the mean σ ± the standard deviation are indicated in the box plots. Laser 
excitation powers were identical for conventional DNA-PAINT and fm-DNA-PAINT, i.e., 
300W/cm2. The box indicates the 25th (q1) and 75th (q3) percentiles. The whiskers extend to the most 
extreme data value that was not considered an outlier. Outliers are values bigger than  [q3 + 1.5·(q3 – 
q1)] or smaller than [q1 – 1.5·(q3 – q1)]. Around 99.3% (or ±2.7σ) of the data lies within these whiskers 
values. 
 

 

fm-DNA-PAINT is particularly powerful as it is much faster in terms of experimental time 
investment compared to conventional multi-color DNA-PAINT. Multi-color DNA-PAINT 
is typically performed sequentially and requires exchanging the imager oligo strands with 
orthogonal ones 74, which can be cumbersome, introduces drift and adds additional time to 
the experiment. In fm-DNA-PAINT, multiple colors are obtained simultaneously and with an 
effective image acquisition time that is similar to that of one-color DNA-PAINT. There are some 
practical limits that determine the image acquisition time and the available number of color 
channels, such as the separation between the centers of the frequency bins used for 
modulation, the camera frame rate, the signal-to-noise ratio and the overlap between the 
excitation spectra of fluorophores. The number of frequency bins fn (and hence the number 
of color channels) depends on the frame window size used for demodulation (m) (Figure 
25a). For example, a modest estimate of fn=3 can be fit inside a demodulation frame window 
of m=6 frames (Figure 25a), which will maintain a good separation between the frequency 
bins. The effective frame rate depends on the camera frame rate F and the demodulation frame 
window m (Figure 25a). For a frame rate of 60 Hz (used here), it is thus possible to image 
three colors with an effective frame rate of 10 Hz. This frame rate is equivalent to the one 
typically needed for acquiring a single color conventional DNA-PAINT image, improving 
the imaging throughput by three-fold (Figure 25b). Since these acquisition settings do not 
reach the lower limit of photon collection for high localization precision (Figure 24), the 
number of channels can further be increased, while maintaining the same effective frame 
rate, by increasing F and m (Figure 25b).  
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Figure 25: Multi-color fm-DNA-PAINT dramatically improves experimental time investment 
compared to sequential multi-color DNA-PAINT: (a) Scheme showing the available frequency bins 
fn (and thus number of colors) for a given demodulation frame window size m (b) Effective exposure 
time versus the number of color channels for different camera frame rates F. The black line shows 
conventional DNA-PAINT where multi-color imaging is performed sequentially, assuming an 
exposure time of 100 ms per color (i.e., F=10Hz).   

The image acquisition time in DNA-PAINT depends on both the camera frame rate and the 
time needed to collect a sufficient number of localizations to satisfy the Nyquist criterion for 
high image resolution106. DNA-PAINT does not suffer from photobleaching as there is 
continuous replenishment of imager strands from the solution. As a result, the number of 
localizations per frame is constant and hence the cumulative number of localizations 
increases linearly with the number of frames acquired. We experimentally verified that the 
cumulative number of localizations over time was similar for single-color fm-DNA-PAINT 
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(16ms exposure time, m=6) and single-color conventional DNA-PAINT (100 ms exposure 
time) (Figure 26). Therefore, no additional time is needed in fm-DNA-PAINT to accumulate 
equal number localizations as compared to conventional DNA-PAINT. 
 

Figure 2 6 : C u m u l a t i v e  localization density as a function of time. Number of localizations 
per frame in both DNA-PAINT and fm-DNA-PAINT grow linearly with the number of frames, since 
in both cases there is inexhaustible amount of fluorophores. No differences are measured in terms of 
the total localization density as a function of time between conventional and fm-DNA-PAINT. The 
difference in the slopes between the Cy5 and Cy3 channels is only due differences in the 
concentrations of the fluorophores used for the experiments, being higher in the Cy5, 647 nm channel 
than in the Cy3, 561 nm channel.  
 
To assess any potential limits in extending fm-DNA-PAINT to more colors, we first 
estimated the percentage of spatially overlapping PSFs as the number of colors is increased. 
This control is needed since acquiring multiple colors simultaneously on a single detector 
can lead to crowding and spatial overlap between the fluorophores. Reducing the fluorophore 
density to minimize spatial overlap would jeopardize the advantages of the method, as it 
would result in longer image acquisition times to fully reconstruct a super-resolution image. 
As expected, the probability of spatial overlap became significant for more than three colors 
(Figure 27). To then assess the capability of our method to distinguish spectrally distinct 
fluorophores having full spatial overlap, we simulated three sinewave modulated signals and 
combined them so that they spatially overlap on the same pixel, and followed their time 
evolution (Figure 27). In the frequency domain the amplitudes at the different modulation 
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frequencies are fully distinguished and separated into each different component to retrieve 
their unique color (Figure 27).   
 

 
Figure 27: Effect of the spatial overlap between spectrally distinct fluorophores (Cy5-
equivalent and Cy3-equivalente) in fm-DNA-PAINT. (a) Histogram showing the probability of 
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spatial overlap between randomly distributed fluorophores with a PSF of 5x5 pixels (800x800nm) 
and a constant PSF density per frame of 0.1 localization/µm2. The probability of spatial overlap is 
shown for one-to-five color channels. (b) Example of one pixel intensity evolution in time domain 
when three spectrally distinct fluorophores overlap spatially. The three fluorophores are modulated 
with excitation laser frequencies of 10 Hz, 20 Hz and 30 Hz. The red, green and blue lines correspond 
to the sinewave modulation of the three lasers. The black line is the combination of these individual 
sinewaves. The magenta line is the integration of the combined sinewave over each frame (16 ms in 
this case), which is proportional to the pixel intensity signal, due to the response of the three 
overlapping fluorophores to the three sinewave modulations. Note that a 6 frame window size (m=6) 
is used, and thus 6 pixel values are calculated. In the frequency domain the pixel can be properly 
demodulated into the three different color channels. The white square in the demodulated data shows 
the demodulated pixel in the three corresponding channels. The intensity of the pixel on the 
reconstructed (demodulated) image is proportional to the amplitude in that particular frequency in the 
frequency domain. (c) The response of fluorophores to sinewave modulated laser excitation obtained 
from experimental data. The orange line shows the modulated sinewave excitation. The blue 
diamonds are the measured intensity of the fluorophore over 6 frames in response to the sine wave 
excitation. The magenta diamonds are the generated intensity of the fluorophore in the synthetic data 
over 6 frames. The blue and magenta lines are guides to the eye.  
 

Since currently there are only two different types of commercially available DNA-PAINT 
antibodies, we generated synthetic data to further determine the ability of fm-DNA-PAINT 
to acquire more than two-colors. The synthetic data was generated by taking as input a 5x5 
pixel sub-region of interest (subROI) of a PSF from one frame of the single color 
experimental data (Detailed Methods DM1.1). We created multiple PSFs over several 
consecutive frames to simulate the emission of a fluorophore under sinewave modulated 
illumination. We first confirmed that the synthetic data generated for two different 
fluorophores faithfully represented our experimental data (Figure 27). Having validated our 
approach, we next generated 5-color synthetic data in which all 5 different fluorophores were 
spatially mixed together in a color-blind fashion and with spatial overlap (Detailed Methods 
DM1.1, Figure 28). The synthetic data was then demodulated and separated into 5 different 
channels (Figure 29). The fluorophores were correctly assigned to the corresponding 
channels, further demonstrating the capability of the method to separate spectrally distinct 
fluorophores in the presence of spatial overlap (Figure 29). Importantly, these results also 
show that the increased fluorophore density resulting from multiple different fluorophores 
does not affect color discrimination of fm-DNA-PAINT, thus maintaining its advantages in 
terms of image acquisition speed.  
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Figure 28: Synthetic raw data for 5-color fm-DNA-PAINT. 5-color synthetic image generated with 
camera frame rate F=100Hz and fi of 50Hz, 40Hz, 30Hz, 20Hz and 10Hz, assuming that the 
fluorophores have minimal spectral overlap (similar to the 2-color experimental data with Cy5 and 
Cy3). Ten consecutive frames from the synthetic raw data are shown. The brightness of the pixels in 
each frame reflects the integrated intensity of the modulated excitation. The corresponding 
demodulated frames for each channel are shown in Figure 29 below 

Figure 29: Simulations demonstrate the extendibility of multi-color fm-DNA-PAINT to 5-
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color channels. Demodulated frames for each channel from a 5-color synthetic image generated 
with camera frame rate F=100Hz and fi of 50Hz, 40Hz, 30Hz, 20Hz and 10Hz, assuming that the 
fluorophores have minimal spectral overlap (similar to the 2-color experimental data with Cy5 and 
Cy3). The overlapped (combined) image is shown on the lower right panel. 

Despite correct color discrimination, the spatial overlap between fluorophores could still 
distort the reconstructed PSF on the demodulated data if there is partial spectral overlap 
between the fluorophores. For instance, in our experiments, Cy5 absorbs ~10% of the 561nm 
laser. This additional amplitude in the “wrong” modulation frequency will perturb the 
reconstructed PSF, affecting the accuracy of the corresponding localization. To determine 
the magnitude of this effect, we generated semi-synthetic stacks of images taking as input 
the experimental PSFs obtained from the two color fluorophores (Detailed Methods 
DM1.1). In these image stacks, we kept the spatial positions of the PSFs belonging to one- 
fluorophore constant and shifted the PSFs of the second fluorophore (Dshift) allowing for 
spatial overlap (Figure 30 and Figure 31a). The semi-synthetic stacks were demodulated 
and the centers of the PSFs of the shifted fluorophores were localized. We then computed 
the distances from the localized x and y positions to their actual simulated positions (Drelative) 
(Figure 31a). Drelative was only slightly affected (Figure 31b,c, inset) with an overall effect 
for Cy5 of 10.6 nm and 5.9 nm for spatial overlapping and non-overlapping fluorophores, 
respectively, and 6.8 nm and 2.1 nm for Cy3. Thus, overall the distortions due to spatial 
overlap led to a localization error of ~ 5 nm for both channels, which was smaller than the 
average localization precision (Figure 24). We also determined if changes in the relative 
brightness of one fluorophore with respect to the other fluorophore has an impact on the 
localization error in the presence of spatial overlap (Detailed Methods DM1.1, Figure 32a, 
b). Again, the error in localization was minor compared to spatially non-overlapping 
fluorophores for all relative intensity values.  
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Figure 30: Semi-synthetic data to assess the effect of spatial overlap on the localization precision 
of fm-DNA-PAINT. (a) 6 consecutive frames of the semi-synthetic dataset in the absence of spatial 
overlap between the two spectrally distinct fluorophores (Cy5-equivalent, left 6 stripes and Cy3-
equivalent, right 6 stripes) illuminated with lasers at different modulation frequencies (30Hz and 20Hz 
respectively). The camera frame rate is F=60Hz. 168 PSFs per channel were generated. The difference 
in brightness in the frames reflects the integrated excitation intensity for the different modulated lasers. 
(b) Similar as (a) but with an overlapping of 3 pixels between the two color channels. (c) 
Corresponding demodulated frame of the image stack in a for both channels. (d) Corresponding 
demodulated frame of the image stack with spatially overlapping fluorophores in b for both channels. 
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Figure 31: Effect of the spatial overlap between spectrally distinct fluorophores (Cy5-
equivalent and Cy3-equivalente) on localization accuracy in fm-DNA-PAINT. (a) Cartoon 
showing the method used for estimating the perturbation on the localization position produced by the 
spatial overlap of spectrally distinct fluorophores, for overlapping (left) and non-overlapping (right) 
conditions. The green and red circles denote the two different fluorophores, with their real center 
positions marked by the star symbol. Dshift corresponds to the spatial shift between the different 
colored PSFs in the semi-synthetic data. After demodulation, the x,y positions are determined (cross 
symbols) and Drelative (distance between the localized positions and the real positions) is measured. 
Thus, Drelative is a measure of the spatial overlap influence that one color-fluorophore has on the 
localization position of the other color-fluorophore after demodulation. (b) Effect of Cy3 spatial 
overlap on the localization position of the Cy5 channel, for different degrees of spatial overlap, i.e., 
Dshift. The inset shows the combined distribution for all overlapping pixels and all non-overlapping 
pixels. (c) Effect of Cy5 spatial overlap on the localization position of the Cy3 channel, for different 
degrees of spatial overlap, i.e., Dshift. The inset shows the combined distribution for all overlapping 
pixels and all non-overlapping pixels. Although in principle one would expect Drelative to be zero in 
the complete absence of spatial overlap, Drelative is also influenced by the difference in brightness and 
background of the fluorophores. This is because our generated semi-synthetic data uses experimental 
input data including background. Therefore slight variations in the fluorophore brightness and/or 
background will lead to small deviations in the demodulated localization positions.  For the generated 
in-silico data, this effective localization error is around 5.9 nm for Cy5 and 2.1 nm for Cy3. Notice 
that the influence of spatial overlap in the localization position of the fluorophores is larger for Cy3 
than for Cy5, i.e., a factor of 3 for the influence of Cy5 in the position of Cy3 and only a factor of 1.8 
for the influence of Cy3 in the position of Cy5. This result is entirely consistent with the fact that Cy5 
absorbs about 10% of the Cy3 excitation wavelength (561nm) and thus it would induce a larger 
perturbation on the Cy3 channel. In (b) and (c) the box indicates the 25th (q1) and 75th (q3) percentiles. 
The whiskers extend to the most extreme data value that was not considered an outlier. Outliers are 
values bigger than  [q3 + 1.5·(q3 – q1)] or smaller than [q1 – 1.5·(q3 – q1)].  
 
 

 
Figure 32: (a) and (b) Effect of the relative signal between fluorophores on localization accuracy in 
the presence of spatial overlap. In this case, a constant relative distance of +3 pixels between the 
centers of the PSFs was set, such that there is spatial overlap. The relative signal between the PSFs 
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was set by generating semi-synthetic data, in which the Cy5 intensity was kept constant and all pixels 
of Cy3 PSF in the 6 consecutive frames were multiplied by a relative intensity factor (ranging from 1 
to 0.5). The vertical bars are the standard deviation. 
 

2.4.2 fm-STORM 
STORM is another commonly used single molecule localization microscopy method, which 
relies on the use of buffers containing reducing agents and oxygen scavengers in order to 
induce photoswitching in organic fluorophores52. We next set out to implement frequency 
multiplexing in STORM (fm-STORM) using a 4 frame window for the demodulation. In 
this case, unlike fm-DNA-PAINT, the demodulation was performed after the fluorophores 
were localized in each frame. We determined the localization precision of fm-STORM from 
the standard deviation of the localized positions of the same fluorophore over consecutive 
frames. The average localization precision was around 18 nm for both fluorophores, close to 
typical values reported for conventional STORM104 (Figure 33). 

 

 
Figure 33: Localization precision in fm-STORM for A647 and Cy3B fluorophores. Box plot 
showing the experimental localization precisions obtained for 1-Color fm-STORM, for both 
channels, corresponding to A647 and Cy3B. The localization precisions have been calculated from 
the training data sets with camera frame rate F=90Hz, 647nm laser sinewave modulated at f1=45Hz 
and the 561nm laser modulated at f2=22.5Hz. The localization precisions have been determined by 
obtaining the standard deviation of the localizations over multiple consecutive frames of the same 
fluorophore. The box indicates the 25th (q1) and 75th (q3) percentiles. The whiskers extend to the most 
extreme data value that was not considered an outlier. Outliers are values bigger than  [q3 + 1.5·(q3 – 
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q1)] or smaller than [q1 – 1.5·(q3 – q1)]. Around 99.3% (or ±2.7σ) of the data lies within these whiskers 
values.  
 
The stochastic nature of photoswitching in organic fluorophores led to more ambiguity in 
assigning a unique color to each fluorophore in fm-STORM compared to fm-DNA-PAINT, 
giving rise to higher cross-talk between color channels. This ambiguity is due to the broad 
on-off blinking dynamics of the fluorophores, which is difficult to control and leads to 
fluorophores often being detected in less than 4 consecutive frames. Indeed, color cross-
talk quantification showed that around 12% of A647 localizations and 10% of Cy3B 
localizations were miss-assigned to the wrong color channel (Figure 34).  
 

Figure 34: Color cross-talk quantification in fm-STORM. (a, b) Microtubules (green) and 
mitochondria (magenta) labeled with AlexaFluor647 (AF647) alone and Cy3B alone, respectively 
and imaged in two colors using fm-STORM. Images show the two channels before cross-talk 
correction. The green localizations correspond to the AF647 channel and the magenta localizations 
correspond to the Cy3B channel. Localizations in the displayed region of interest were quantified 
in the two channels. (c, d) Percentage of localizations belonging to the AF647 (c) or Cy3B (d) 
channels before color cross-talk correction (yellow bars) and after color cross-talk correction (green 
bars) using the machine learning algorithm. 
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In order to correct for the fm-STORM associated cross-talk between color channels, we 
developed a machine learning algorithm. The algorithm relies on the use of training data 
consisting of biological samples labeled with a single fluorophore and imaged with fm-
STORM (Figure 35). The x-y positions of fluorophores in the training data were first 
determined and localizations were classified as single or multi-frame localizations depending 
on whether they appeared only in one frame or multiple subsequent frames (Figure 35). 
Around 50% of localizations were initially characterized as single frame localizations. The 
localized x-y position of each fluorophore was then used to define a subROI of 4 by 4 pixels 
and the FFT was performed for this subROI to determine the amplitudes belonging to each 
different frequency bin. This data was used to train the support vector classifier (SVC) to 
build decision boundaries separating the multiple color channels (Figure 35, Detailed 
Methods DM1.1, Figure 36). In practice, a percentage of single frame localizations (30-
40%) was in fact multi-frame localizations that failed to be localized in one or more frames 
by the localization algorithm. Hence, these localizations could correctly be classified after 
the FFT as they appeared with higher intensity in one frequency bin (Figure 36a). The true 
single frame localizations (~30% of all localizations) were rejected, as they could not be 
accurately classified (SI Appendix, Methods). Once the decision boundaries were built we 
used them to classify the fluorophores in a multi-color experiment.  
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Figure 35: Workflow of the machine learning algorithm for fluorophore classification in fm-
STORM. The algorithm requires training data sets for each fluorophore and imaging condition, in 
order to build the decision boundary regions for fluorophore classification. Localizations that appear 
in only a single frame and those that appear in multiple frames are categorized in order to be processed 
separately. 
 

Figure 36: Machine learning algorithm effectively corrects for color cross-talk in fm-STORM. 
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(a) Training data set plots with decision boundaries, localized in one frame (left plot) and in multiple 
frames (right plot). (b) Pie chart shows percentage of single, multi-frame and rejected localizations 
for Alexa Fluor 647 and Cy3B. Bar plots show percentage of correctly assigned single and multi-
frame localizations. (c) Alexa Fluor 647 localizations on SVC decision boundary plot. (d) Two-color 
image of microtubules (green) and mitochondria (magenta) labeled with Cy3B and Alexa Fluor 647, 
respectively. 

To validate the algorithm for two-color fm-STORM, we labeled individual structures 
(mitochondria or microtubules) in single color with the photoswitchable fluorophores Cy3B 
and/or A647, and imaged them with fm-STORM with the two laser intensities modulated at 
different frequencies (647nm at 45Hz and 561nm at 22.5Hz). After classification using the 
decision boundary, 97% of localizations from multi-frames were correctly classified for the 
A647 channel and this number increased up to nearly 100% in the case of the Cy3B channel 
(Figure 36b-d). The decision boundaries could also be generated using training data from 
three different fluorophores (ATTO488, Cy3B and A647), demonstrating that this approach 
can be readily extended to more than two colors (Figure 37). Overall, the image acquisition 
times of fm-STORM are comparable to or even faster than sequential multicolor imaging 
with activator-reporter pairs (see Discussion) while the cross-talk correction can be 
performed with better accuracy using the machine learning algorithm. Typically, 10-30% 
of crosstalk is present in the standard activator-reporter approaches, depending on the 
fluorophores used and the labeling density107,108  (Figure 38). In order to correct for this 
cross-talk, statistical methods have been developed109, but their performance often depends 
on the amount of cross-talk and the spatial separation between the different structures in the 
image. For the structures imaged here, standard cross-talk correction could correctly classify 
up to only 88% of localizations (Figure 38).  
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Figure 37: Training data for cross-talk correction of three color fm-STORM. (a) Multi- and 
single- frame localizations obtained from a training dataset using ATTO488, Cy3B and AF647 
fluorophores, showing the color-separation in the three channels. (b) Percentage of single-frame, 
multi-frame and rejected localizations for the three fluorophores (pie charts) and the correctly 
classified single- and multi- frame localizations for three fluorophores (bar charts) calculated from a 
sub-set of localizations used for the training data 
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Figure 3 8 : Two-color STORM image of microtubules and mitochondria imaged using the 
activator/reporter approach. Microtubules and mitochondria were labeled with AF405/AF647 
and Cy3/AF647 activator-reporter pairs, respectively. Images are shown after standard cross-talk 
correction. (a) Microtubule channel ( g r een )  and a  zoom- in o f  t h e  white boxed region where 
there are microtubules only, displaying both channels (green and magenta). (b) Mitochondria 
channel (magenta) and zoom in of the white-boxed region where mitochondria can be identified 
(white arrows), displaying both channels (green and magenta). (c) Percentage of correct localizations 
assigned to each channel. Since the two structures are clearly defined and separated, the cross-talk 
calculation can be performed by counting the number of localizations from the two channels in regions 
where only one structure is present (i.e. mitochondria-only or microtubules-only regions).  Yellow 
bars shows the values  before  cross-talk correction and green bars after cross-talk correction using 
statistical approaches. 
 

2.4.3 fm-live 
Finally, to demonstrate the versatility of the frequency multiplexed method, we performed 
three-color live-cell imaging. We prepared live BS-C-1 green monkey kidney epithelial cells 
that were stably expressing eGFP-α-tubulin (microtubules) and mCherry-LAMP1 
(lysosomes), labeled mitochondria with MitoTracker Deep Red FM, and imaged them with 
three excitation wavelengths (488, 561, and 640 nm). With N=3 excitation lasers we selected 
a frame window size m=6 and demodulated the data on a pixel-by-pixel basis as for the fm-
DNA-PAINT approach. The three resulting images from each demodulated image block have 
a temporal resolution of 1/6 the camera hardware frame rate, which is only a factor of two 
slower than the limit using sequential excitation. However, the advantages gained by this 
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frequency-domain approach are that motion discretization artefacts are limited because the 
data is acquired continuously—motion blurring is still present for rapidly-moving objects—
and there is a factor of √2𝑁/2 less noise than an equivalent time-interleaved excitation. 
Representative demodulated wide-field images of the microtubules, lysosomes, and 
mitochondria (Figure 39a-c). The indicated sub-region is shown at various time points across 
a span of 70 seconds for all three channels, demonstrating full compatibility of this technique 
for imaging living cells with high temporal, spatial, and spectral resolution over long periods 
of time. 

 
Figure 39. fm-live images. Simultaneous three-color microscopy of live BS-C-1 cells. a) 
Microtubules stained by the stable expression of eGFP-α-tubulin. b) Lysosomes via the stable 
expression of mCherry-LAMP2. c) Mitochondria labeled with Mitotracker Deep Red FM. Scale bars 
are 10 µm in the main images and 2 µm in the sub-images. Images shown are averages of 10 sequential 
demodulated frames acquired with an effective frame rate of 20 Hz. 
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2.5 Discussion 
 

We have developed a new multi-color super-resolution method that relies entirely on the 
excitation rather than emission properties of fluorophores and implemented it in two 
modalities of single molecule based super-resolution microscopy: fm-DNA-PAINT and fm-
STORM. DNA-PAINT offers multiple advantages in terms of increased localization precision, 
minimal photobleaching, image quantification and multi-color capabilities compared to other single 
molecule super-resolution approaches74,75. However, these advantages come at the expense of image 
acquisition time, making conventional DNA-PAINT extremely slow for multi-color super-
resolution or for multiplexed, high-throughput applications110.  The temporal bottleneck arises 
because of the need of detecting true binding events in a background of diffusing molecules. Faster 
camera speeds, or increased concentration of imager strands in the imaging buffer will lead to an 
effective increase in background and/or false localizations100. Recently, the background problem 
was addressed by combining fluorescence resonance energy transfer (FRET) with DNA-
PAINT100. This approach significantly increases the image acquisition speed, but it also 
makes DNA-PAINT prone to photobleaching and dependent on the photophysics of donor-
acceptor dyes. Our approach of fm-DNA-PAINT preserves all the advantages of conventional 
DNA-PAINT, and importantly, it can acquire multiple colors in the same amount of time 
needed to acquire a single color conventional DNA-PAINT image. 

Importantly, fm-DNA-PAINT does not require color cross-talk correction or the rejection of 
localizations due to color mis-assignment since the long binding times (hundreds of 
milliseconds) of the imager oligos makes color discrimination much less ambiguous. In our 
current implementation, the number of colors was only limited by the commercially available 
oligo-coupled antibodies and as such, there is no fundamental limit to extend this approach 
to more colors with the only requirement that the fluorophores are preferentially excited at 
one unique excitation wavelength. Indeed, our simulations show that even in the case of 
substantial spatial overlap among fluorophores for a five-color acquisition, the demodulation 
step properly assigns each fluorophore to the correct color channel, with minimal distortion 
to the PSF from the spatial overlap and minimal error in localization.  
 
There are some practical limits that determine the acquisition speed and the number of color 
channels such as the separation between the center of the frequency bins used for modulation, 
the overlap between the excitation spectrum of fluorophores, camera frame rate and the signal 
to noise ratio. The number of frequency bins (n) (and hence the number of color channels) 
depends on the number of frames used for demodulation (m). For example, a modest estimate 
of 2 frequency bins (and hence 2 colors) can be fit inside a demodulation frame window of 
m=4 frames, which will maintain a good separation between the frequency bins (Figure 25).  
The effective frame rate depends on the camera frame rate (F) and the demodulation frame 
window (m). For a frame rate of 60 Hz (used here), it is hence possible in practice to image 
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3 colors with an effective frame rate of 10 Hz. This frame rate is equivalent to the frame rate 
typically needed for acquiring 1 color using conventional DNA-Paint, decreasing the 
acquisition time and improving the imaging throughput by 3-fold. The effective frame rate 
can further be improved by increasing the camera frame rate. 

Our calculations for spatial overlap errors were based on experimental data of Cy3- and Cy5-
equivalent fluorophores, which have some spectral overlap (Figure 40). Fluorophores with 
greater overlap in their excitation spectra can be used in fm-DNA-PAINT, but as the spectral 
overlap increases their discrimination in the frequency domain becomes more challenging, 
especially when spatial overlap is also present, in which case PSF distortions may become 
significant. Spectral overlap will ultimately lead to an increase in color cross-talk, 
necessitating correction algorithms like the machine learning algorithm developed here or 
advanced unmixing algorithms111. The need to correct for color cross-talk also has an impact 
on the total imaging time, since cross-talk algorithms typically discard a portion of 
localizations and more localizations must be accumulated to get to the same final Nyquist 
resolution. That being said, since DNA-PAINT uses conventional fluorophores, it is possible 
to choose up to five different fluorophores with spectral separations comparable to those 
between Cy3 and Cy5 (Figure 40). As a result, we expect that fm-DNA-PAINT can easily 
multiplex five different colors in one shot, dramatically enhancing the throughput of this 
method. This enhanced throughput should not only improve multi-color super-resolution 
imaging but also other single molecule based techniques that depend on multiplexing, 
including bar-coding approaches such as MERFISH112 or Oligo-PAINT113. 
 

 
Figure 40 . Absorption spectra of 5 different standard fluorophores for implementation in fm-
DNA-PAINT. Example of 5 different fluorophores with relatively little spectral overlap in their 
absorption spectra. The suitable lasers for differential excitation of each of the fluorophores is 
included in the figure. Notice that there is negligible overlap between AF405, AF488, Cy3 and Cy5, 
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and thus, in principle fm-DNA-PAINT of four colors with minimal color crosstalk and in the presence 
of spatially overlapping fluorophores should be easily obtainable. A somewhat larger spectral overlap 
exists between Cy5 and Cy7, so that excitation of Cy5 by the 640nm laser line would also marginally 
excite Cy7, leading to an additional amplitude of Cy7 in the frequency bin of the Cy5 channel.  
(Adapted from The Spectra Viewer, www.thermofisher.com) 
 
We also showed that our frequency multiplexing scheme can be implemented for multi-color 
STORM. fm-STORM was prone to color cross-talk due to the stochasticity of fluorophore 
photoswitching. The machine learning algorithm we developed could correct for color cross-
talk with high accuracy (>95% correctly classified fluorophores). This algorithm should be 
applicable to correct for color cross- talk that arises in emission based super-resolution 
microscopy when fluorophores with overlapping emission spectra are used114,115, as long as 
the training dataset is generated using the specific experimental configuration, making it a 
versatile approach for correcting color cross-talk in super- resolution imaging.  
 
The speed of fm-STORM is an improvement over the sequential, activator-reporter 
scheme of multi-color STORM imaging94,107. The latter also uses a frame window of 4-6 
frames to ensure that fluorophores belonging to one activator-reporter pair fully switch 
off before the fluorophores belonging to the next activator-reporter pair are switched on. 
This approach is needed to reduce color cross-talk. However, in the activator-reporter 
multi-color STORM case the colors are acquired sequentially (4-6 frame window per color 
channel), whereas in fm-STORM multiple colors can be acquired simultaneously within 
the same frame window. Both methods lead to similar levels of color cross-talk and require 
correction algorithms that discard a similar percentage of localizations. Although from the 
technical point of view frequency multiplexing can be readily implemented in both DNA-
PAINT and STORM, controlling the photophysical properties of multiple fluorophores under 
a single buffer solution remains a challenge. The working principle of DNA-PAINT makes 
this technique much more amenable to frequency multiplexing and thus we expect fm-DNA-
PAINT to become highly useful to the community.  
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Chapter 3: Mesoscale modelling of chromatin 
 

The content of this chapter is part of a manuscript under preparation (see List of 
publications). 

 

3.1 Abstract 
 

Recent experimental data suggest that chromatin structure is complex and highly 
heterogeneous within the nucleus of individual cells. Advanced microscopy methods, like 
localization-based microscopy have been proved powerful and quantitative tools to 
understand a wide variety of features of chromatin structure. STORM was used to observe 
that nucleosomes form heterogeneous groups in vivo, named clutches. Clutches are smaller 
and less dense in mouse embryonic stem cells (mESCs) compared to neuronal progenitor 
cells (mNPCs). Here, using coarse-grained modeling of a 30kb region around the 
pluripotency gene Oct4, we show that the previously observed clutch differences between 
mESCs and mNPCs genome wide can be reproduced at a single gene locus. The 
reorganization of clutches in differentiation is associated with substantial changes in the 
compaction and inter-nucleosome contact probability of the Oct4 fiber that correlate with 
Oct4’s activity in mESCs and mNPCs. In addition, the coarse-grained models of chromatin 
fibers corresponding to specific genomic loci including Oct4 are fully compatible with the 
nucleosome clutches observed in super-resolution images 
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3.2 Introduction 
 

Genome organization plays an important role in regulating gene expression. Several recent 
works, including super-resolution imaging of nucleosomes and electron tomography imaging 
of DNA, highlighted that chromatin is disordered and heterogeneous groups of nucleosomes 
with a varying range of nucleosome densities are present in folded chromatin25,116. In super-
resolution images, nucleosome groups (named clutches) were further clustered into larger 
domains (clutch domains) in the size range of hundreds of nanometers in length scale36,116. 
These results shed new light onto the organization of chromatin fiber at the 10-100 nm length 
scales. Assembly of nucleosomes into clutches, the compaction level of nucleosomes within 
clutches, as well as the assembly of clutches into clutch domains can limit accessibility of 
DNA to regulatory proteins and polymerases. Hence, these structural features must be 
dynamically regulated as genes turn on and off in specific cell types.  

Here, to address these questions and analyze the organizational patterns of nucleosomes 
within clutches in mouse ESCs and NPCs, we used coarse-grained mesoscale models of Kb-
range nucleosome fibers. Mesoscale models of chromatin fibers of the pluripotency gene Oct4 
revealed the presence of nucleosome clusters compatible with the nucleosome clutches 
previously observed genome wide in super-resolution images. The previously observed 
global changes in clutch size and compaction upon differentiation were reproduced in the 
models at the level of a single pluripotency gene locus36,116. These modeling results further 
suggest that the Oct4 fiber undergoes overall compaction in NPCs, especially in regions 
surrounding the Oct4 gene and its super enhancer. Hierarchical looping, corresponding to 
stacks in space of hairpin loop structures117, is further enhanced in NPC Oct4 fibers, 
explaining the formation of larger clutches. The nucleosomes within clutches maintain a 
configuration most compatible with zigzag geometry in both ESCs and NPCs irrespective of 
clutch size.  
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3.3 Methodology 
 

For studying the chromatin structure and relate it with chromatin dynamics and with the 
previous clutches quantifications obtained from STORM images11,36, we make use of a 
coarse-grained computational model. Our mesoscale chromatin model combines 
nucleosomes, histone core tails, linker DNA, and linker histone by coarse-grained units at 
different levels of resolution to create oligonucleosome fibers118,119 (Figure 41). The 
nucleosome core with wrapped DNA and without tails is treated as an electrostatic charged 
object; flexible histone core tails are coarse grained to mimic their atomistic behavior; linker 
DNA connecting nucleosomes is modeled by the Stigler worm-like chain model; and linker 
histones are coarse grained with charged beads for the C-terminal and globular domains 
(Detailed Methods DM1.2). The fiber energy consists of bending, twisting, electrostatic, and 
excluded volume terms. Fiber configurations are sampled by Monte Carlo (MC) simulations 
that survey and approach equilibrium conformations4,118,119 (Detailed Methods DM1.2 and 
Figure 41). 

Figure 41. Mesoscale coarse-grained chromatin computational model. a) Modeling of the 
nucleosome core as a rigid body with 300 pseudo charges. b) The linker DNA connecting two 
nucleosomes is modelled as a discrete chain of beads with electrostatic and mechanic properties. c) 
Basic building block for the chromatin mesoscale model. d) Modeling of post-translational 
modifications like histone tail acetylation. Adapted from 119,120. 

Our nucleosome-resolution chromatin mesoscale model has been already applied to the study 
of many biological problems including gene folding121, combines nucleosomes, histone core 
tails, linker DNA, and linker histones by coarse-grained units at different levels of resolution 
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to create oligo-nucleosome fibers118,119 (Figure 41). Fiber configurations are sampled by 
Monte Carlo (MC) simulations that survey and approach equilibrium conformations4,118,119 
(Detailed Methods DM1.2). 

For more detailed explanation about the coarse-grained chromatin model, see Detailed 
Methods, section DM1.2.  
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3.4 Results 
 

3.4.1 Mesoscale modeling of Oct4 reveals a chromatin conformation 
composed of nucleosome clusters whose organization and compaction 
change upon differentiation 
Recently, using super-resolution microscopy we showed that nucleosome clutches contain a 
median number of around 6 nucleosomes in somatic cells116 corresponding to a genomic 
length scale of a few kilobases. We further showed that the size of the nucleosome clutches 
inversely correlates with the pluripotency level of mouse embryonic stem cells (mESCs), as 
well as human induced pluripotent stem cells (hiPSCs)116. In particular, upon in vitro 
differentiation of mESCs into mNPCs, clutch size increases116. In addition, mutant mESCs 
lacking three isoforms of the linker histone H1 (H1tKO)122 have smaller nucleosome clutches 
compared to wild type mESCs116. These results suggest that nucleosome clutches correlate 
well with the open or closed state of the chromatin fiber and they are remodeled in cellular 
reprograming and differentiation.  

To gain further insights into the chromatin remodeling of mESCs during differentiation36,116, 
we simulated chromatin fibers typical of mESC and mNPC (Figure 42 and Figure 43). To 
define chromatin fibers relevant to stem cell pluripotency and differentiation, we selected a 
specific genomic region of ~30 Kbp that includes an important pluripotency gene, Oct4, 
active in mESCs but silenced in mNPCs123. We sought to capture this gene expression activity 
by differences in clutch patterns and overall compaction. We expected mESC fibers to form 
smaller clutches compared to mNPC fibers based on previous super-resolution data. We used 
publicly available MNase-Seq data of mESCs and mNPCs124 to position the nucleosomes 
(Figure 43b), define the H1 to nucleosome ratio125, and specify the amount of histone tail 
acetylation in the two cell types12 (Detailed Methods DM1.2 and Figure 43b, c). We expect 
these parameters to be important for organizing gene structure4,121,126, clutch organization, 
and DNA compaction36,116 based on previous modeling and experimental results from super-
resolution. Specially, the nucleosome positions obtained from the MNase-Seq data124 
determine the DNA linker lengths and the nucleosome free regions (NFR) (Figure 43b), key 
factors affecting chromatin. To incorporate realistic linker histone H1 densities, we used 
linker histone to nucleosome ratios of 0.5 and 0.8 for mESC and mNPC, respectively, as 
reported previously125. Histone tail acetylation patterns were asigned as determined 
previously12,127 with overall levels of 15% and 10% for mESC and mNPC, respectively, based 
on immunofluorescence measurements (Detailed Methods DM1.2 and Figure 43c).  
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Figure 42. Nucleosome architecture of the Oct4 pluripotency region revealed by computational 
modeling. a) Representative equilibrated structures of chromatin fibers corresponding to the Oct4 
pluripotency region in mESCs (left) and mNPCs (right) obtained from mesoscale modeling are shown. 
Zooms show the nucleosome clusters obtained from DBSCAN analysis of the 3D chromatin fibers. 
The numbers correspond to the identity of the nucleosomes based on their linear sequence along the 
Oct4 region. b) Inter-nucleosome contact probability maps for the fibers shown in panel (a). 
Hierarchical folding (indicated in blue) and hairpin folding (indicated in green) revealed in the inter-
nucleosome contact matrices for representative mESC and mNPC chromatin fibers. These structural 
features were previously defined117 and are determined based on the shape of the nucleosome contact 
density in the map (Methods). In addition to these previously defined features, density corresponding 
to nucleosome clusters are also detected in the maps (red circles). Matrices are normalized by the 
maximal number of contacts seen throughout the trajectory. The matrix densities are 0.007 and 0.024 
for mESC and mNPC, respectively. c) Inter-nucleosome contact probability matrices for the 30 
trajectory ensemble per condition. Contact probability matrices were obtained by normalizing contact 
maps by the maximum number of contacts across each trajectory, for each system, and summing all 
contacts. One representative fiber for each system is shown with yellow nucleosome perimeters for 
the Oct4 region, blue for the super enhancer region, and red for the downstream Oct4 region. The 
dashed red box in the mNPC matrix corresponds to the region downstream of Oct4. The matrix 
densities are 0.0546 and 0.1322 for the ensemble of mESCs and mNPCs, respectively. 
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Figure 43. Computational modeling of chromatin fibers typical of mESC and mNPC. a) Scheme 
of our chromatin mesoscale model for a three-nucleosome system. Each nucleosome core particle is 
modeled by 300 pseudo charges, and coarse grained beads are used for N-terminal tails of the core 
histones H4, H3, H2A, and H2B (5 amino acids per bead), C-terminal tail of the core histone H2A (5 
amino acids per bead), linker histones (6 beads for the globular head and 22 beads for the C-terminal 
domain), and linker DNA (~9 bp resolution), treated with a worm-like chain model. b) Initial 
configurations of the chromatin fibers (with linker histone, H1 shown in cyan, native histone tails in 
blue, and acetylated histone tails in red), displaying 30kbp around the Oct4 gene in mESC and mNPC. 
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Nucleosome positions were obtained from MNase-Seq data analysis124 (Methods). We used a linker 
histone (H1) per nucleosome ratio of 0.5 for mESC and 0.8 for mNPC as reported previously122,128 
and acetylation levels of 10% for mNPC and 15% for mESC located in two islands (indicated with 
red dashed rectangles) based on immunofluorescence results (panel c) and experimental evidence of 
histone acetylation spatial distribution127. c) Quantification plots of H3 and H4 acetylation in mESC 
and mNPC obtained by immunofluorescence12. Bars represent the mean fluorescence intensity values 
with standard deviations. 206 ± 20.5 a.u for H3ac in mESCs, N = 29. 136.1 ± 33.8 a.u for H3ac in 
mNPCs, N = 25. 202.8 ± 13.7 a.u for H4ac in mESCs, N = 33. 141.1 ± 18.3 a.u for H3ac in mNPCs, 
N = 28. 

Both the mESC and mNPC systems were simulated by 30 independent trajectories of 80 
million MC steps each. Visual inspection of the resulting chromatin fibers revealed a 
significant difference in global fiber shape for the different cell types: mNPC fibers were 
more compact than mESC fibers (Figure 42a). Quantitative analysis (Detailed Methods 
DM1.2) confirmed higher sedimentation coefficients (Figure 44a), smaller radii of gyration 
(Figure 44b) and volume (Figure 44c) for the mNPC compared to the mESC. These 
quantitative results are consistent with the visually more compact mNPC fibers. Visual 
inspection of the fibers further revealed nucleosomes grouped together into heterogeneous 
clusters resembling nucleosome clutches previously described in super-resolution images. To 
confirm the visual inspection quantitatively and gain a detailed understanding of nucleosome 
patterns inside the clusters, we further analyzed the 3D fibers using density based spatial 
clustering of applications with noise (DBSCAN)129. This analysis revealed nucleosome 
clusters consisting on average of 6 and 18 nucleosomes per cluster in mESCs and mNPCs, 
respectively (Figure 44d). The nucleosome packing ratio within the clusters was also 
significantly higher in mNPCs compared to mESCs (Figure 44e). Finally, mNPC fibers 
contained fewer nucleosome clusters compared to mESC fibers (Figure 44f), consistent with 
the nucleosome clusters becoming larger in mNPCs.  
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Figure 44. Chromatin fibers undergo compaction upon the process of cell differentiation. The 
bar plots display the results obtained from the analysis of the ensemble of 3000 configurations 
obtained from the mesoscale models of chromatin fibers corresponding to 30kbp around the Oct4 gene 
for mESC and mNPC. For all the plots, mean and standard deviation are plotted. a) Sedimentation 
coefficient of fibers. b) Radius of gyration of the fibers. c) 3D volume of the fibers. d) Average number 
of nucleosomes per cluster (see methods for details about the calculation). e) Packing ratio is the 
number of nucleosome per unit length of 11nm. f) Number of clusters per fiber. 

Inter-nucleosome contact probability matrices for the two selected fibers shown in Figure 1a 
further revealed increased nucleosome contact in mNPCs compared to mESCs (average 
matrix density of 0.007 and 0.024 for mESC and mNPC, respectively) (Figure 42b), 
consistent with the increased fiber compaction and larger nucleosome clusters of mNPCs. 
Interestingly, distant nucleosomes appear to interact within the larger clusters (see cluster A 
of mESCs and cluster B of mNPCs in Figure 42a). Features corresponding to nucleosome 
clusters, hairpin looping and hierarchical looping corresponding to stacks of hairpin loops117 
(Detailed Methods DM1.2) were also evident in the nucleosome contact matrices (Figure 
42b). Hierarchical looping and hairpin features were enhanced in mNPCs compared to 
mESCs. These hierarchical loops and hairpin structures likely explain the formation of larger 
clutches through the contact of distant nucleosomes upon differentiation. By further 
generating inter-nucleosome contact probability matrices for all the 30 fibers per condition 
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(Figure 42c), we further confirmed the presence of enhanced nucleosome contact frequency 
in mNPC fibers (average matrix density of 0.0546 and 0.1322 for the ensemble of mESCs 
and mNPCs, respectively). Interestingly, the highest enhancement in contact probability was 
observed in the region downstream of the Oct4 gene/super-enhancer region (dashed red box 
in Figure 42c), corresponding to a higher-level of compaction for this downstream region. 
Finally, the distance between nucleosomes dimers as well as the triplet and dihedral angle of 
bonded (i.e. consecutive) nucleosomes (Figure 45a-c) were most consistent with a zigzag 
geometry in both cell types. This feature underscores the prevalence of the zigzag secondary 
structure topology117.  

 
Figure 45. Nucleosome cluster geometry analysis for mESC and mNPC. Probability distributions 
in mESC (green) and mNPC (orange) of nucleosome dimer distance (a), triplet angle (b), and dihedral 
angle (c) measured for consecutive (bonded) nucleosomes belonging to the same nucleosome cluster 
over all nucleosome clusters of a single trajectory. 

 

3.4.2 Nucleosome clusters in the Oct4 modeled fibers are compatible with 
nucleosome clutches observed genome-wide with super-resolution imaging 
The DBSCAN analysis of the modeled 3D fibers is consistent with previous super-resolution 
data that revealed that nucleosomes form heterogeneous clutches in vivo. However, given 
that the super-resolution images have lower resolution and are genome-wide with no 
sequence specificity compared to the modeled fibers, to directly relate the model fiber 
configurations to previous experimental super-resolution data, we simulated super-resolution 
images from the modeled fibers using the simulation package SuReSim130 (Detailed 
Methods DM1.2 and Figure 46a). Since the chromatin fiber generated by the model is 3D 
but our super-resolution images are 2D, we performed 1000 2D random projections on each 
resulting super-resolution localization list (Detailed Methods DM1.2 and Figure 46a). We 
applied a distance based clustering algorithm116 to group the fluorophore positions in the 
simulated super-resolution images and segment nucleosome clutches as previously described 
(Detailed Methods DM1.2 and Figure 46a). This analysis confirmed the presence of 
nucleosome clutches in the 2D projections of the simulated super-resolution images from the 
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3D model (Figure 46a and Figure 47a-b). We compared the identity of the nucleosomes in 
the segmented clutches to that of 3D clusters determined by DBSCAN analysis for Clusters 
A and B in the example simulated fiber shown in Figure 1a. As expected, depending on the 
2D projection, the clutches contained all or only a subset of the nucleosomes in the 3D clusters 
(Figure 47a-c). Similarly, in some 2D projections, nucleosomes found within different 3D 
clusters could merge into the same clutch (Figure 47c).    

Figure 46. Mesoscale modeling of chromatin fibers recapitulates super-resolution images of 
nucleosomes. a) Workflow showing the procedure for generating super-resolution images from a 
given computational chromatin fiber. First, the nucleosome positions within the 3D fibers (chromatin 
fiber) are converted into localized x, y, z positions of nucleosomes (referred to as SMLM localizations, 
SMLM: Single Molecule Localization Microscopy) with SuReSim. Then the localizations are rotated 
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1000 times in 3D by randomly picking an angle and axis of rotation to obtain random 2D projections. 
Finally, the 3D coordinates of the localizations are projected in a 2D slice with a maximum depth of 
400 nm. The 2D localizations are then rendered as a super-resolution image (SMLM image) by 
representing each localization as a Gaussian with a fixed width of 9 nm. The color coding corresponds 
to the density of localizations. Finally, cluster analysis is performed to segment the localizations based 
on their spatial proximity. Each cluster is pseudo color-coded with a different color. b-c) Histogram 
of nucleosome packing density (i.e. number of nucleosomes per clutch area) (b) and histogram of the 
number of nucleosomes per clutch (c) computed from the cluster analysis of the simulated super-
resolution images of Oct 4 in mESCs (yellow) and mNPCs (orange). 
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Figure 47. Comparison of nucleosome cluster analysis in 3D fibers by DBSCAN and nucleosome 
clutch analysis in simulated super-resolution images: (a) Example mESC Oct4 fiber from the 
mesoscale model shown in Figure 1. Two nucleosome clusters identified in the DBSCAN analysis are 
shown in the zoom: Cluster A containing 8 nucleosomes and Cluster B containing 6 nucleosomes. (b) 
Percentage of simulated super-resolution images in which a subset of the nucleosomes identified in 
Cluster A (top) or Cluster B (bottom) are also found within the same segmented nucleosome clutch. 
(c) Two example simulated super-resolution images in which nucleosome clutches are segmented and 
pseudo color coded. The white dots represent the true positions of all nucleosomes from which the 
super-resolution images were simulated. The cyan and red crosses correspond to the nucleosomes 
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identified in Cluster A and Cluster B, respectively. In the left example, Cluster A and Cluster B 
nucleosomes appear in separate clutches whereas in the right example they appear in the same clutch 
due to 2D projection effects and the lower spatial resolution of the super-resolution images. 

The compaction level of nucleosomes within clutches (6.2·10-3 ± 3.5·10-3 Nucleosomes/µm2 
for mESCs and 11.5·10-3 ±  6·10-3 Nucleosomes/µm2 for mNPCs) (Figure 42b), and the 
number of nucleosomes per clutch (6.4 ± 4.7 Nucleosomes/clutch in mESCs compared to 
16.4 ± 11.3 Nucleosomes/clutch in mNPCs) (Figure 46c) were higher in mNPCs compared 
to mESCs36,116. Despite the above mentioned differences between the 3D model and the 
simulated images, remarkably, the number of nucleosomes per clutch in the two cell types 
was in close agreement with the DBSCAN results obtained from directly analyzing the 3D 
fibers at higher resolution (Figure 44d). Previous super-resolution experimental data showed 
a median number of ~3 and ~6 nucleosomes per clutch averaged globally over the entire 
chromatin of mESCs and mNPCs, respectively. The number of nucleosomes per clutch is 
lower in the experimental data compared to the model, which may reflect differences in the 
global clutch configuration versus the local Oct4 gene clutch configuration. The experimental 
data may also potentially underestimate the number of nucleosomes per clutch due to labeling 
inefficiencies particularly in more compact regions. Nonetheless, the comparison of 
experimental data and simulated images to the model revealed that the global changes in 
clutch conformation of mESCs and mNPCs are representative of specific changes to the 
clutch conformation of a model pluripotency gene like Oct4. In fact, these differences in 
clutch conformation are likely even more prominent in specific genomic regions that change 
their expression level upon differentiation compared to genome-wide differences in clutches. 
In addition to differences in the number and compaction of nucleosomes in clutches, 
significant differences were also observed for the number of clutches per fiber (Figure 48a), 
the clutch area (Figure 48b), and the nearest neighbor distance between clutches (Figure 
48c) in the two cell types.  

 
Figure 48. Analysis of the simulated super-resolution images of Oct4 locus in mESCs and 
mNPCs. a) Histogram of the number of clutches per fiber. b) Histogram of clutch area. c) Histogram 
of nearest neighbor distance between clutches. 

Overall, our results show a heterogeneous chromatin fiber conformation both globally and at 
the level of specific pluripotency genes, manifested as heterogeneous groups of nucleosome 
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clutches. In addition, we reveal the presence of folding motifs like hierarchical looping, which 
are cell-type specific and dynamically change upon cell differentiation.   
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3.5 Discussion 
 

Recent high-resolution imaging experiments including super-resolution fluorescence 
microscopy and electron tomography have revealed a complex picture of chromatin structure, 
in which chromatin is composed of 10-nm fibers that form nucleosome clusters (or clutches) 
of different levels of nucleosome density17,36,116. The level of chromatin fiber compaction 
likely influence the activation or repression of key lineage and pluripotency genes during 
development. For this reason, it is paramount to study these chromatin fiber features in 
somatic and stem cells. We showed that chromatin structure can be directly measured and 
modelled using complementary techniques: super resolution imaging and coarse-grained 
computation. Specifically, using mesoscale modeling of large nucleosome assemblies 
incorporating realistic nucleosome positions based on MNase-Seq data with experimentally 
measured linker histone and acetylation densities, we showed that the nucleosome cluster 
differences of a model pluripotency gene (Oct4) correlate with the global state of clutch 
conformation seen in mESCs and mNPCs by super-resolution experiments. Furthermore, the 
enhanced chromatin compaction during differentiation is directly related to changes in 
nucleosome positioning, amount of linker histones, and acetylation patterns. Each one of 
these physical parameters can be independently varied in the mesoscale model to generate 
experimentally testable hypotheses about the most important mechanisms responsible for 
nucleosome clutch formation and reorganization in differentiation. Ongoing work, for 
example, is showing that nucleosome positions, in particular, are a dominant factor in 
determining cluster patterns. The model further revealed that the changes to cluster size upon 
differentiation are likely due to increased hairpin and hierarchical looping, which ultimately 
might contribute to the silencing of Oct4 in mNPCs. Despite dramatic reorganization of the 
clutches upon differentiation, the nucleosome geometry within clutches is unaffected and 
most consistent with zigzag secondary-structure fiber topology.  
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Chapter 4: Single Molecule Tracking of single 
nucleosomes 
 

The content of this chapter is part of a manuscript under preparation (see List of 
publications). 

 

4.1 Abstract 
 

We recently showed that nucleosomes in folded chromatin fibers in vivo form heterogeneous 
groups, named nucleosome clutches. Nucleosome clutches are smaller and less densely 
compacted in embryonic stem cells (ESCs) compared to neuronal progenitor cells (NPCs), in 
correlation with the more open chromatin state of ESCs. Here, we use Single Molecule 
Tracking (SMT) to measure the local nucleosome dynamics and correlate them with the super 
resolution images of chromatin in ESCs and NPCs11,36. We use Slow (500ms of exposure 
time)- and Fast-SMT (15ms of exposure time) to show that nucleosome turn over and local 
dynamics within the chromatin fiber correlate with the structural features observed in super-
resolution data and the mesoscale models. Nucleosomes are less stable, turn over faster, and 
explore larger areas in mESCs compared to mNPCs. The local dynamics correspond to the 
motion of individual nucleosomes within chromatin rather than the motion of large chromatin 
domains. Finally, the amount of linker histone H1 places the largest constraint on the local 
motion of nucleosomes whereas it is less important for nucleosome turn over at longer time 
scales. These results give a detailed picture of nucleosome dynamics in different cell types 
and link nucleosome dynamics to structural differences in nucleosome organization in 
different cell types as observed by super-resolution microscopy and further corroborated by 
coarse-grained modeling. 
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4.2 Introduction 
 

One outstanding biological question that will benefit from the development and application 
of advanced imaging technologies is the relationship between chromatin structure, dynamics 
and gene activity. Chromatin is a complex of DNA and histone proteins, which helps compact 
and spatially organize the genetic code within the small space of the nucleus. Applying super 
resolution microscopy, previous work in the lab showed that nucleosomes within folded 
chromatin fibers are organized in heterogeneous groups named nucleosome clutches, unlike 
the textbook model that suggested a much more ordered and hierarchical folding of 
nucleosomes. Nucleosome clutches are smaller and less densely compacted in embryonic 
stem cells (ESCs) compared to neuronal progenitor cells (NPCs), in correlation with the more 
open chromatin state of ESCs. We also applied modelling of the Oct4 region (Chapter 3) 
showing a correlation between chromatin structure and cell pluripotency. Here we use Single 
Molecule Tracking (SMT) to compare the chromatin structure and local nucleosome 
dynamics with the super resolution images of chromatin fiber in ESCs and NPCs. 

Fluorescence Recovery After Photobleaching (FRAP) analysis and single molecule tracking 
(SMT) of histone proteins, as well as tracking of individual genomic loci within the nucleus 
demonstrated that chromatin is highly dynamic. Individual genomic loci diffuse within a 
confined space in the nucleus37,38,131 and this mobility correlates with the transcriptional 
activity of some genomic regions such as enhancers37,39. In some cases, genomic loci 
dynamically reposition over large distances, for example by relocating from the nuclear 
periphery to the nuclear interior upon activation40,41. While FRAP analysis showed that 
nucleosomes are highly stable and turn over slowly42, tracking of individual Halo-tagged 
histone proteins showed that histones also explore their local environment dynamically43,44. 
Live cell super-resolution imaging showed that chromatin domains that are hundreds of 
nanometers in size are also mobile33,43,45. However, how these dynamic entities spanning 
multiple length scales, from individual nucleosomes to large genomic loci, relate to each other 
and what are the associated mechanisms of their folding and dynamics, remain unknown.  

In addition to chromatin fluidity, several studies showed that architectural proteins are also 
highly dynamic inside the nucleus47,48. In particular, the dynamics of architectural proteins 
like H1 and HP1 increase in embryonic stem cells (ESCs) as shown by FRAP and SMT12,49. 
Based in part on these FRAP studies, it has been suggested that the ESC chromatin is 
hyperdynamic and depleted of heterochromatin132. Super-resolution imaging showed that 
nucleosome clutch size is cell-type specific, and that ESCs have smaller, less compact 
clutches compared to differentiated Neuronal Progenitor Cells (NPCs)116. We further noted 
that nucleosome clutch size and compaction depends on the amount of linker histone H1116, 
as well as the amount of acetylation on histone tails36, suggesting that linker histones and 
histone post translational modifications play a role in organizing nucleosomes into clutches. 
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How the nucleosome clutch organization in fixed stem and somatic cells correlate with 
nucleosome dynamics in live cells remains unclear. In addition, the mechanisms that regulate 
nucleosome and chromatin dynamics in different cell types are poorly understood.  

Fast- and Slow-SMT revealed that histone H2B is dynamic in vivo and explores its local 
environment within the chromatin fiber. The smaller and more open clutches of ESCs 
compared to the larger and more compacted clutches of NPCs correlate with different histone 
dynamics observed in the two cell types. Histone residence times within chromatin are only 
weakly dependent on the amount of linker histone H1. The extent of the local histone mobility 
within the chromatin fiber, on the other hand, mainly depends on the amount of H1. These 
results offer a rich picture of nucleosome dynamics and link nucleosome dynamics to 
structural differences in nucleosome organization in different cell types.      
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4.3 Methodology 
 

Single Molecule Tracking experiments consist on four main steps: the labeling, the imaging, 
the single molecule localization and track reconstruction and the quantitative analysis of the 
trajectories. The selected experimental conditions for each of those steps have a significant 
impact on the measurements, so for each specific objective, in our case the study of chromatin 
dynamics at different time scales, one needs to choose different experimental designs. 

We generated mESC or mESCs- H1tKO (triple knock out of the linker histone H1) 133 cell 
lines stably expressing H2B fused to Halo-tag at low levels  and used 10 picomolar 
concentration of Janelia Fluor 549 (JF549)-tagged Halo ligand to sparsely label H2B 
molecules within the nucleus (Figure 49a, b). NPCs were obtained from the differentiation 
of mESC with retinoic acid treatment. Importantly, for the SMT experiments we used low 
light illumination levels throughout the experiments (Detailed Methods DM1.3) and avoided 
a pre-photobleaching step typically used in SMT 92 to not compromise cell viability. Further, 
by labeling DNA with Hoechst and taking a snapshot of the nuclei before and after SMT, we 
ensured that the nuclei were stable during the imaging process. In addition, for the 2-Color 
SMT experiments, we combined this Halo-Tag-H2B-JF549 labeling strategy with Telomeres 
or Centromeres fused to GFP. 

We performed the SMT experiments on a N-STORM 4 microscope (Nikon Instruments) 
equipped with an incubator (Okolab) for maintaining live cells at 37ºC and 5%-CO2 
conditions. For the case of 2-color experiments, we used a Dual-view system that uses a 
dichroic mirror for splitting the camera field of view into two, one for each channel. In order 
to capture the fast and slow dynamics of chromatin, we performed experiments with short (15 
ms) and long (500 ms) camera exposure time, respectively. For both conditions, we 
maintained the laser power as low as possible to not stress the cells, while still having good 
enough 2D localization precision of the single molecules (around 40 nm).  

First, using slow-SMT (at 500 ms of exposure time), we determined the residence times of 
H2B in mESCs, mESCs- H1tKO, and mNPCs (Detailed Methods DM1.3). As a control, we 
also measured residence times in fixed cells to determine experimental limitations in 
measuring residence times, which is mainly limited by photobleaching and tracking errors. 
Positions of tracked molecules were distributed randomly within the nuclei and hence there 
was no spatial bias in the sampling of H2B molecules (Figure 49b). 

Then, to characterize H2B mobility at short time scales, we carried out fast-SMT (at 15 ms 
of exposure time) (Detailed Methods DM1.3) and detected three different motion types in 
the H2B trajectories (Figure 49c and Figure 50b): i) confined motion, likely corresponding 
to H2B stably incorporated into nucleosomes, ii) Brownian diffusion, likely corresponding to 
free H2B not incorporated into nucleosomes, and (iii) switching behavior between confined 
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motion and Brownian diffusion (butterfly motion), likely corresponding to transient 
destabilization of the nucleosomes134–136 (see Detailed Methods DM1.3). 

For the localization and tracking we used TrackMate84, which is an open-source plugin for 
Fiji137. The localization was performed by 2D Gaussian fitting on the diffraction limited spots 
of the single molecules, and the tracking, using the simplest approach, just by connecting the 
nearest neighbor localizations with a certain maximum jump threshold from frame to frame, 
depending on the imaging conditions (Figure 49b and c). 

Figure 49. Workflow for the fast-SMT experiments and analysis. a) Cartoon showing the tagging 
and labeling strategy for SMT. Histone H2B was tagged with Halo-tag and sparsely labeled using 
Halo ligand conjugated to Janelia Fluor (JF)-549 dye. b) Data is acquired with 15 ms exposure time, 
single molecules are identified in each frame (magenta circles, left panel), their position determined 
by fitting to a Gaussian and molecules are connected from one frame to the next frame to generate 
trajectories (red, right panel) using TrackMate84 plugin in ImageJ. c) Trajectories are classified into 
three different motion types (confined, Brownian/directed and butterfly) based on the alpha coefficient 
of the power law fit to the MSD versus time curve. Colors are just used to represent the different 
trajectories. 
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We developed our custom software for track analysis. It is a Matlab code (available at 
https://github.com/PabloAu/Single-Molecule-Tracking-Analysis), that makes use of some 
functions of @msdanalyzer138. In short, first we classify each trajectory based on their motion 
type (Figure 49c). Then, from the ensemble of the confined trajectories, which correspond to 
H2B histone incorporated into nucleosomes constituting the chromatin structure, we compute 
the radius of confinement by fitting the circle confined diffusion model to the TE-MSD88. For 
the estimation of the diffusion coefficient, we used the first 3 points of each T-MSD curve 
corresponding to each individual trajectory and fitted them with a linear distribution139,140. 
Finally, the residence time of the unbinding (or turn over) dynamics was computed by fitting 
a double exponential decay function to the survival H2B fraction on the long exposure dataset. 

For more detailed explanation about the experimental and analytical procedures carried on 
for studying chromatin dynamics, see Detailed Methods DM1.3. 
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4.4 Results 
 

4.4.1 Nucleosome residence time within chromatin increases in 
differentiation 
Given our super-resolution and modeling results that reveal dramatic structural reorganization 
of the chromatin fiber both globally and at specific genes during differentiation, we wanted 
to explore how the local dynamics of individual nucleosomes within clutches change upon 
differentiation and how these dynamics relate to the structural changes observed. Using SMT, 
we measured H2B dynamics in mESCs, mESCs-H1tKO and mNPCs that were obtained upon 
differentiation of the Halo-H2B expressing mESCs using retinoic acid treatment (Detailed 
Methods DM1.3). 

H2B residence time was lower in all three cell types compared to fixed cells, suggesting that 
H2B is dynamic and likely turns over in vivo (Figure 50a). H2B residence time was shortest 
in mESCs-H1tKO and progressively increased in wild type mESCs and mNPCs, suggesting 
that H2B is more stable in differentiated cells (Figure 50a). The H1 to H2B ratio is higher in 
mNPCs compared to mESCs125, as a result H1 may play a role in stabilizing H2B and 
increasing its residence time within chromatin. However, interestingly, knocking out three 
isoforms of the linker histone had a significant but subtle effect on H2B residence time (25.8 
± 1 seconds for mESCs and 16.2 ± 0.7 seconds for mESCs-H1tKO, Figure 50a), pointing to 
factors besides H1 in increasing H2B’s residence time. These results are consistent with 
previous FRAP analysis of H2B turnover in wild type and mESC-H1tKO141. 
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Figure 50. Nucleosomes have shorter residence time and move more dynamically within 
chromatin in mESCs compared to mNPCs. a) Residence times measured using Slow-SPT (500ms 
exposure time) in fixed cells (cyan), mNPCs (orange), mESCs (yellow) and mESC-H1tKO (mESCs 
in which three isoforms of H1 has been knocked out) (purple). Values were obtained from the double 
exponential decay function fitting of the survival fraction distribution of the trajectories over time. 
Mean and 95% Confidence Interval values are plotted. N= 245, 3200, 2593 and 887 trajectories were 
used for the analysis for fixed cells, mNPC, mESC and mESC-H1tKO, respectively. b) Proportion of 
trajectories showing confined, Brownian/directed or a mixture of confined and Brownian/directed 
(butterfly) motion. N=4021, 5295 and 2436 trajectories for mNPC, mESC and mESC-H1tKO were 
used, respectively. c) Mean Square Displacement (MSD) versus time plot for the different cell types. 
The ensemble MSD average of all the displacements for each time lag and the standard deviation are 
displayed. A circle confined diffusion model was used to fit the Time Ensemble (TE)-MSD (dashed 
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lines) and the average diffusion coefficient and radius of confinement were obtained for each cell 
type. For fixed cells, all the tracks were used without filtering (N=284 trajectories). For the rest, only 
the confined trajectories were used (N=543, 860 and 370 trajectories for mNPC, mESC and mESC-
H1tKO, respectively).  

 

4.4.2 Nucleosomes exhibit more confined mobility within chromatin upon 
differentiation 
Our fast-SMT experiments allowed us to characterize H2B mobility at short time scales. The 
majority of H2B trajectories belonged to the confined motion category in all three cell types 
(Figure 50b). As a control, we also tracked transcription factors including Oct4 and CTCF 
and as expected find them to be more dynamic compared to H2B (Figure 51). To determine 
the extent of local nucleosome mobility, we analyzed the radius of confinement of H2B from 
the sub-population of H2B molecules that exhibited confined motion. This analysis showed 
a radius of confinement of 50 nm in fixed cells, which corresponds to the localization 
precision of our measurements (Figure 50c). In living cells, the radius of confinement was 
larger compared to fixed cells for all cell types (Figure 50c), underscoring the dynamic nature 
of nucleosomes during their residence time within chromatin. The radius of confinement was 
largest in mESCs-H1tKO (157 ± 6 nm), lacking linker histone, and progressively decreased 
in mESCs (115 ± 3 nm) and mNPCs (82 ± 1.5 nm) (Figure 50c). We observed large 
differences in the radius of confinement between mESCs-H1tKO and wild type mESCs 
(Figure 50c), suggesting that the local dynamics of chromatin bound H2B is mostly 
constrained by the presence of linker histone H1.  
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Figure 51. Transcription factors are more dynamic than H2B. Mobility of transcription factors 
compared to H2B analyzed in mESCs. a) Histogram of diffusion coefficients for the different proteins 
fitted with a bi-modal Gaussian distribution. All the tracks from all the motion types were used. N= 
5355, 2247 and 1219 trajectories for H2B, CTCF and Oct4 were analyzed, respectively. b) Radius of 
confinement obtained by fitting the circle confined diffusion model to the TE-MSD curves of confined 
tracks for each protein. Mean and 95% confidence interval values are plotted. N= 860, 464 and 269 
trajectories were used for H2B, CTCF and Oct4, respectively. c) Percentage of different motion types 
present for the different proteins. N= 5355, 2247 and 1219 trajectories for H2B, CTCF and Oct4 were 
analyzed, respectively. 

To further confirm that these dynamics correspond to local motions of nucleosomes within 
the chromatin fiber, rather than the motion of large chromatin domains, we tracked telomeres 
and centromeres using SMT (Figure 52). Telomeres are at the ends of chromosomes and can 
likely move more freely than other chromatin domains embedded within chromosomes. In 
mouse, their length varies between 50–150 kbp142 (or 100–750 nucleosomes) and their 
volume correlates with their length143. These measurements showed that at these short time 
scales (i.e. tens of milliseconds), telomere and centromere mobility was much smaller than 
H2B and comparable to the mobility measured in fixed cells (Figure 52b, c). While the 
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mobility of telomeric H2B (i.e. H2B overlapping with telomeres) was slightly lower than 
non-telomeric H2B, even telomeric H2B mobility was substantially higher than the mobility 
of large telomeric regions (Figure 53). At longer time scales (i.e. tens of seconds), telomeres 
and centromeres showed dynamic behavior, exploring areas ranging from 0.5x0.5 µm2 to 
1.5x1.5 µm2, consistent with previous studies131,144. Hence, large chromatin domains are 
relatively immobile at short time scales compared to H2B and the latter likely corresponds to 
the mobility of individual nucleosomes themselves or small groups of nucleosomes within 
the chromatin fiber.  

Figure 52. Telomere motion takes place at much slower timescales compared to nucleosome 
motion. a)  Upper panel shows telomere trajectories (red) overlapped on a maximal projection image 
of telomeres. The tracks were cropped so that their track length is in the same scale as for H2B 
trajectories for visualization purposes. Lower panel shows the corresponding H2B trajectories from 
the 2-color SMT experiment. White arrows indicate example trajectories where telomeres and 
nucleosomes overlap. A maximum spatial threshold of 250nm between the telomere trajectory and 
the H2B trajectory position was imposed in order to assign a nucleosome trajectory to a telomeric 
region. b) TE-MSD curves comparing H2B in live cells to telomeres, centromeres and H2B in fixed 
cells. Telomere and centromere MSD curves overlap with MSD curve of H2B in fixed cells, whereas 
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H2B in live cells is more dynamic. N=284, 9135, 10660 and 11752 trajectories were used for fixed 
cells, telomeres, centromeres and H2B respectively. c) Histogram of frame to frame jump distribution 
for telomeres (orange), centromeres (green) and H2B in live cells (cyan). N=11752, 9135 and 10660 
trajectories were analyzed for H2B, telomeres and centromeres, respectively. 

 

 
Figure 53. TE-MSD curves for telomeres, telomeric H2B and non-telomeric H2B. N= 9135, 87 
and 9312 trajectories for telomeres, telomeric H2B (H2B tracks overlapping with a telomeric region) 
and non-telomeric H2B (H2B tracks not overlapping with a telomeric region) were analyzed, 
respectively. 

 

4.4.3 Dynamics of both heterochromatic and euchromatic nucleosomes are 
affected by the process of differentiation 
Overlaying the H2B motion trajectories on Hoechst images of DNA allowed us to further 
explore the differences in the local nucleosome dynamics between heterochromatic and 
euchromatic regions of the different cell types (Figure 54a). We sub-categorized the H2B 
trajectories based on their overlap with high or low intensity regions in the Hoescht images, 
corresponding to more heterochromatic or more euchromatic regions, respectively (Figure 
54a). This analysis showed that the nucleosomes in heterochromatic regions were more 
confined than those in euchromatic regions in all three cell types (Figure 54b). The more 
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confined mobility of heterochromatic nucleosomes was further confirmed by tracking H2B 
that overlapped with telomeres. H2B tracks overlapping with telomeres showed on average 
more confined mobility compared to those trajectories that did not overlap with telomeres 
(Figure 53). Interestingly, there were significant differences between the radius of 
confinement of both heterochromatic and euchromatic nucleosomes among the three cell 
types: euchromatic nucleosomes of mESCs-H1tKO were the least confined and the 
heterochromatic nucleosomes of mNPCs were the most confined (Figure 54b). Hence, our 
results demonstrate that the mobility of both the heterochromatic and euchromatic 
nucleosomes are affected by differentiation (Figure 54b).  

Figure 54. Mobility of both euchromatic and heterochromatic nucleosomes change upon cell 
differentiation. a) Image of a mESC labeled with Hoestch33342 showing the cell nucleus (yellow 
region of interest, ROI). Euchromatin (low intensity) and heterochromatin (high intensity, black ROIs) 
regions and the corresponding H2B trajectories within each region (red) are shown. b) Bar plot 
showing the radius of confinement estimation from circle confined diffusion model for H2B moving 
within euchromatic (red) and heterochromatic (black) regions in the different cell types. Mean and 
95% Confidence Intervals are plotted. Only confined trajectories were used (N= 543, 860 and 370 
trajectories for mNPC, mESC and mESC-H1tKO, respectively). 
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4.4 Discussion 
 

To determine how the changes in nucleosome clutch organization in the process of cell 
differentiation impacts nucleosome dynamics in living cells, we used SMT to measure the 
dynamics of individual nucleosomes in mESCs, H1TKO-mESCs and mNPCs and compared 
these dynamics to those of larger genomic regions. Our experiments showed profound 
changes in nucleosome residence times and local nucleosome motion in mESCs, mESCs-
H1tKO, and mNPCs consistent with the measured structural changes. Nucleosome motion 
was more constrained within heterochromatic regions composed of large, compacted 
nucleosome clutches compared to euchromatic regions. The residence time and local mobility 
of both hetero- and euchromatic nucleosomes also depended on cell type as nucleosomes of 
differentiated cells containing larger and more compacted nucleosome clutches were more 
stable than nucleosomes of mESCs. The measured dynamics likely correspond to movement 
of individual nucleosomes within their local chromatin fiber as larger genomic regions like 
telomeres and centromeres were immobile at these short time scales. The measured 
nucleosome dynamics may correspond to nucleosome sliding as well as other types of 
nucleosome destabilization within chromatin. Interestingly, the local, confined motion of 
nucleosomes within the chromatin fiber was most affected by knock-out of the linker histone 
H1. The mESCs-H1tKO also had the smallest nucleosome clutches as measured using super-
resolution microscopy116. Hence, the presence of a large number of tightly compacted 
nucleosomes within clutches, which are likely stabilized by the linker histone, can potentially 
constrain nucleosome motion. The residence time of nucleosomes, on the other hand, was 
affected by factors other than linker histone since the residence time was moderately affected 
in mESCs-H1tKO. It will be interesting to further probe the molecular mechanisms 
responsible for nucleosome stability and local motion. Measuring the impact of these 
dynamics on transcription factors binding to chromatin and gene activation will further help 
unravel the relation between genome organization and function. 
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Chapter 5: Conclusions and perspectives  
 

5.1 Advanced microscopy methods and computational modelling 
to study biological multi-component structures 
 

Since the appearance of localization-based microscopy methods in the first decade of the 21st 
century, new developments to improve or extend their performance has been constantly 
arising145. Those new advancements were focused on: increasing the spatial resolution146–149, 
extending the SMLM techniques to 3D imaging66,150, imaging thick samples151,152, applying 
them to live-cell imaging65,71, increasing the number of targets to be imaged 
simultaneously74,94,108, reducing the acquisition time153–155 and reducing the cost of the 
equipment required for these type of experiments156,157. Nowadays, a huge amount of 
different methods belongs to the localization-based microscopy family each with their 
corresponding pluses and minuses. One of the most important features of any microscopy 
method is its 2D and 3D spatial resolution. Figure 55 below shows a representation of the 
resolution of some of most used advanced microscopy methods at the present. 
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Figure 55. Diagram representing the spatial resolution of the available advanced light 
microscopy methods. The diagram displays the x-y and z resolution of the most used advanced 
microscopy techniques at the present. Adapted from 145. 

The suitability of a particular SMLM method depends on the specific biological problem to 
be studied. For example, sometimes it is not necessary to use SMLM if the structural 
information at the nanoscale level is not required. Figure 56 below show the main features, 
divided into three important characteristics: imaging depth, temporal resolution, and light 
intensity, (with advantages and limitations) of the most used advanced microscopy methods 
at the present. 
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Figure 56. Technical overview of the available advanced light microscopy methods. The diagram 
displays the most used advanced microscopy techniques at the present. Left panel is arranged based 
on the imaging depth (z) of each technique. Center panel, is arranged depending on the acquisition 
speed (or temporal resolution). In right panel, the methods are sorted according to the required 
illumination intensity that is correlated with photo-damage, limiting the live-cell possibilities of 
certain techniques. Note that there is often a compromise between the different features of the 
performance of the presented methods. Adapted from 145.  

In our project, we tackled two of these common objectives of the field by presenting a multi-
color approach with low cross-talk between channels (less than 5%), that reduces significantly 
the experimental time of imaging. While we demonstrated the proof-of-concept of this 
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method with two colors, our simulations show that it can be easily extended to 5 (if not more) 
colors. Experimental implementation of 5-color fm-DNA-PAINT is an important next goal. 
In addition, fm-DNA-PAINT can be further multiplexed by sequential imaging of 5-colors at 
one time, opening the door to imaging tens or hundreds of targets in a short period of time. 
Furthermore, the combination of our method with other multiplexed approached like 
Exchange-PAINT74, which has been demonstrated to be capable of imaging up to ten different 
targets but at the cost of being very time demanding, would increase the multiplexing ability 
of fm-PAINT and decrease the acquisition time of Exchange-PAINT, potentially allowing to 
image several tens of channels.  

We believe that fm-DNA-PAINT will be very valuable for several biological applications 
that require high-throughput multi-color imaging, including discerning the spatial 
organization of multi-protein complexes, organelle-organelle contacts and chromatin 
structure-function relationship. The application of this methodology to study chromatin is 
particularly attractive. Chromatin consists of multiple components including DNA, histone 
proteins, and histone epigenetic modifications. Ability to simultaneously image all these 
components in one shot in high-throughput will open the door for understanding how 
epigenetic modifications shape chromatin structure in several cell types, as well as how these 
spatial organization is remodelled in physiological (differentiation, cellular reprograming) or 
pathological (cancer, neurological disorders) processes.   

The improvement in the throughput of multi-color super-resolution imaging will open the 
door for high-content screening experiments using super-resolution microscopy110, enabling 
to address questions related with chromatin structure and its cell-to-cell heterogeneity by 
imaging and analysing multiple components of a population of hundreds to thousands of cells. 
In the future, fm-DNA-PAINT, in combination with these improved imager oligos can 
potentially enable 5-color, live-cell super-resolution microscopy.  

Another compelling application of our technique would be in image-based “spatial 
transcriptomics” methods like MERFISH112,158, which measure both the gene expression and 
spatial distribution of the corresponding RNAs within the cell context. Introducing excitation-
based frequency multiplexing can extend the throughput while maintaining the full camera 
field of view and leaving aside the use of systems based on dichroic mirrors to split 
fluorescence emission light into multiple paths. In that line, we envision our method to be 
applicable to spatial genomics and proteomics measurements where a large-scale study of the 
whole genome activity or all the proteins produced or modified in a biological system are 
studied. One family of widely used methods for genomics and proteomics experiments consist 
on performing immunoassays, where the target biomolecules are labelled with antibodies 
tagged with fluorescent probes159. Lately, these measurements were also applied to 
pharmacology and molecular diagnosis of diseases160. While several decades ago they used 
to be done sequentially, nowadays the field is going towards multiplexed approaches able to 
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detect multiple targets simultaneosly159,161,162. The modern version of these approaches is 
based on the new optical labelling reagents, like microbeads or nanoparticles, that can be 
engineered with different fluorescent coats that absorb light at a wide wave length spectrum 
and emit a specific fluorescence signal on each wavelength to be recognized as a particular 
antigen159,161. Typically, probes are excited one at a time, while different lasers provide 
different intensities of light to identify the probe. In that way, more than 10 different targets 
can be measured in the same biological sample159,161,162. Our method can help to extend the 
maximum number of targets of these methods by introducing excitation frequency 
modulation, which provides information about the absorption of each probe, giving another 
layer of barcoding. Finally, the fm-live and fm-DNA-PAINT can be combined in a correlative 
approach to visualize both dynamics and structure of cellular components, like the cargo 
transport of lysosomes in microtubules163 or collagen export from the endoplasmic 
reticulum164. 

Since the publication of our work165, some other solutions came up to deal with the main 
limitation of DNA-PAINT SMLM imaging technique, which is the very long experimental 
time consumption (typically between 20 to 60 minutes of acquisition per image). In one 
approach, Wade et al., presented an alternative for multi-color DNA-PAINT which is also 
based on multiplexing the channels on frequency, but instead of modulating the illumination 
source, they introduced different sizes of the binding domains of the DNA strands (imager 
strands), so that the different probes have their own characteristic affinity with their specific 
conjugated strands (docking strands). This produces a unique binding-unbinding rate for each 
probe that can be decoupled in the frequency domain by post-processing of the data154. This 
method has been used to image 4 colors in vitro with DNA Origami samples or 2 colors in 
situ with Hela cells. In addition, the length of the docking oligo was varied, therefore changing 
the binding duration of the imager oligo and give an additional dimension of barcoding. The 
combination of frequency and temporal barcoding could image 124 colors in vitro using 
DNA-origami. While this method is an attractive approach for multi-color imaging, its 
cellular implementation has significant limitations. Controlling the precise number of 
docking oligos on the DNA-origami structures is straight forward, however, achieving the 
same precise control for labelling antibodies with docking strands is much more challenging 
since the antibody conjugation is highly stochastic. In addition, since reducing the binding 
time of an imager oligo is not desirable as it introduces background by making it difficult to 
discriminate bound versus unbound, freely diffusing oligos, the temporal barcoding approach 
favors longer acquisition times. As such, the demonstration of this freguency/time barcoding 
approach was limited to only 2 colors in cells. Fm-DNA-PAINT does not suffer from these 
limitations and we believe it can be readily expanded to more colors in cells than the current 
state-of-the art of 2 colors.  
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In another recent work, Schueder et al. presented an improvement for conventional DNA-
PAINT, which they called Speed-optimized DNA-PAINT155. It is based on the optimization 
of the DNA strands to speed up the hybridization of the imager oligo to the docking oligo for 
shortening the apparent blinking time of the fluorophores and hence reducing the total time 
needed for imaging. They claim to reduce the acquisition by an order of magnitude155, but in 
order to achieve this, a specific (optimum) DNA strand is required, so it is limited to one-
color imaging or a sequential approach for multi-color imaging. Its performance regarding 
the experimental time reduction of one order of magnitude has been shown in vitro with DNA 
Origami structures. Whereas for in situ, they just demonstrate an improvement in volumetric 
imaging, meaning 2D imaging of targets that are few micrometers away from the coverslip155. 
They claim that the improved imaging conditions of the method allows to obtain the data in 
the same acquisition time as in the classical DNA-PAINT case, but with a reduced 
background signal, increasing SNR and thus the localization precision. It is straightforward 
to combine this new Speed-optimized DNA-PAINT approach with our fm-DNA-PAINT, to 
exploit the benefits of both methods: simultaneous multi-color acquisition with low crosstalk 
and fast DNA-PAINT imaging with an increase in the localization precision of the single 
molecules. In the future, such a combination can potentially enable multi-color live-cell 
super-resolution imaging. 

In my view, the knowledge in molecular biology will continue progressing in parallel with 
new developments in advanced light microscopy methods166. Another important trend in the 
field is the use of correlative approaches, where light microscopy is combined with genome 
sequencing167–169, electron microscopy imaging170,171, chromatin conformation capture 
methods like Hi-C168 or other biochemical measurements172 (Figure 57). These methods will 
help to determine the structure of chromatin at its different scales and tackle one of the core 
and most difficult questions in the field that is the connection between structure and 
physiological function. In particular, the correlative super resolution electron microscopy 
techniques (CSREM) provide structural information with sub-nanometer resolution and 
specificity at the protein level (Figure 57c). For the case of light microscopy and biochemical 
methods, one of the main advantages is the connection between single cell and population-
based measurements. Furthermore, SMLM, contact maps and computational methods can be 
used together167,173 (Figure 57a, b and d). In addition, other correlative approaches has been 
recently developed like SMLM and Atomic Force Microscopy (AFM)174,  which measures 
the precise spatial localization of single molecules together with high-resolution AFM images 
in a biologically relevant context, establishing a connection between the structure at the 
nanoscale level and the physiological function. Our fm-STORM and fm-DNA-PAINT 
approaches could be also combined with the methods described above, to increment the 
number of specific biological targets. 
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Figure 57. An overview of light microscopy correlative approaches to study chromatin. a) 
Chromatin Tracing is a method to image a piece of the chromosome of 30Mbp by sequentially imaging 
segments of 30kbp with localization-based microscopy. It allows single-cell measurements and 
population-based. The information of the distance maps is directly comparable with contact maps, 
showing chromatin domains at different scales. Instead of measuring the interactions, chromatin 
tracing measures the spatial distance. Adapted from 169. b) Hi-M is another localization-based 
microscopy approach able to measure both gene expression and chromatin conformation at an specific 
locus. Adapted from 168. c) Correlative approaches of super resolution and electron microscopy 
provide sub-nanometer resolution and specificity. On the left, EM image of the nucleus overlapped 
with SR image of mitochondria. On the right, EM image of the nucleus overlapped with SR image of 
H2B histone to study chromatin structure. Adapted from 171,175. d) Hi-CO genome mapping combines 
modeling with biochemical measurements to study the hierarchical chromatin architecture at the 
nucleosome scale. It revealed distinct nucleosome folding motifs in the yeast genome like α-
tetrahedron, β-rhombus and other motifs related with epigenetic modifications. Adapted from 172. 

Finally, SMLM has been demonstrated to be a powerful tool for the visualization of cellular 
structures with unprecedented spatial resolution (typically 10-20nm for 2D imaging). But, in 
order to further extract quantitative information, cutting-edge data analysis for each cellular 
context must be applied to process the super resolved images11,36,176–178. The future of SMLM 
also goes through the development of new computational methods for the analysis of SMLM 
data. In that context, turning super resolution microscopy into a more quantitative method, 
with the ability to precise counting of molecules is a main objective of the field179,180.  
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In summary, the new technical developments in microscopy and the new approaches that 
combine them with other techniques coming from biochemistry or computation will shed 
light into a large number of unknowns of molecular biology. They will allow scientist to 
connect the different scales and decipher the whole picture of hierarchical mechanisms that 
govern the function of a cell. In particular, I envision advanced microscopy methods to be 
essential quantitative tools for a complete understanding of one of the most important 
remaining question in the field: how gene regulation works. 
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5.2 Single Molecule Tracking (SMT) for studying transcription 
and chromatin dynamics 
 

Single Molecule Tracking of proteins in the nucleus of live cells with high spatiotemporal 
resolution was not possible until very recently83. It came with the advent of new fluorescent 
dyes that are bright and small enough, and permeable to the cell membrane and with the 
development localization-based microscopy methods. It has revolutionized the field of 
molecular biology, since for the first time, researchers are able to observe and quantify 
dynamics at the single molecule level, without restraining to ensemble measurements of 
populations with methods like FRAP. Another recent alternative techniques capable of 
monitoring chromatin dynamics are FLIM-FRET Microscopy181, where the level of 
chromatin compaction at different chromosomal regions can be measured and monitored 
dynamically with high precision and nanoscale resolution, but the 3D motion of chromatin is 
not captures, or Hi-D38, that is able to reconstruct a map of chromatin movement as an optical 
flow field from a series of confocal fluorescence images, but is not able to measure single 
nucleosome dynamics. 

Still, given its single protein and highly quantitative capabilities, nowadays a growing number 
of scientist are using SMT for a wide variety of distinct applications. It has been proven that 
in the case of sparsely labeled scenarios, SMT outperforms the rest of the available methods38. 
Transcription, for example, is regulated at multiple levels, including the structure of 
chromatin and the dynamic binding of transcription factors to their target promoters. Thanks 
to the quick technological progress of SMT methods, we are gaining profound insights into 
the mechanisms of gene regulation via chromatin structure and transcription factor 
dynamics182. With the ability to label and track specific proteins and gene locus 
simultaneously in live cells, we can observe and measure the physiological events that 
happens before, during and after transcription at the single molecule level. 

In these recent years, SMT allowed to characterize the behavior and elucidate important 
mechanisms related with chromatin organization and gene transcription. It is important to 
note that a detailed characterization of chromatin dynamics is required as a benchmark in 
order to study its interactions with DNA-Binding proteins, which ultimately regulate the 
entire gene transcription machinery. Recently, it has been shown that chromatin domains are 
dynamic and its mobility correlates with the relative position of each specific region inside 
the cell nucleus and with the chromatin state43 (Figure 58). 
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Figure 58. Chromatin domain dynamics measured with SMT. a) Chromatin dynamics at the single 
nucleosome level are defined by measuring the frame to frame jump size of individual nucleosomes. 
b) A scheme for the calculation of heat maps of chromatin dynamics and an example nucleus. c) A 
cartoon representing the mobility of chromatin domains and the trajectories obtained from SMT of 
single nucleosomes. d) Chromatin mobility heatmaps for HeLa (control), TSA-treated, and RAD21-
KD cells. Adapted from 43. 

In addition, the interaction of transcription factors with chromatin at the single molecule level 
was recently reported. The nuclear exploration of Tet repressors (TetRs) was measured with 
SMT (Figure 59a). It was found that their target search mechanism is based on 3D diffusion 
interspersed with transient interactions with non-cognate sites of chromatin (Figure 59b). 
The distribution of the residence times of nonspecific interactions is broad, so that the 
distinction between specific and nonspecific protein-chromatin interactions in terms of 
duration is not apparent. In addition, it is thought that the searching process is determined by 
the low association rate to nonspecific sites, rather than free diffusion183 (Figure 59a and b). 
Multifocus SMT comes with the ability of imaging 9 focal planes simultaneously at the 
expense of photon flux per fluorophore reduction, since an optical grating splits the emission 
fluorescence signal into 9 different paths92,184. The combination of this method and ChIP-exo 
mapping was used to study the association of Sox2 and Oct4 to their enhancer in ESCs 
(Figure 59c). They found that there is a hierarchy in the process of enhanceosome assembly 
where Sox2 is favored to engage the target chromatin site first, followed by assisted binding 
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of Oct492. In addition, they confirmed that Sox2 target search consist on both 3D diffusion 
and 1D sliding along open chromatin (facilitated diffusion)92 (Figure 59d). 

Figure 59. Nuclear exploration and interaction with their binding sites of TetR and Sox2 
transcription factors measured with SMT. a) Images of LacI locus and Tet repressor protein (TetR) 
nuclear exploration. In the bottom right subpanel, blue dots represent unspecific binding sites and the 
yellow, specific interactions of TetR with chromatin. b) Top panel shows a scheme of TetR target 
search strategy, where the fraction of protein behaving in a certain manner and the binding time (or 
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chromatin affinity) are represented. Bottom panel shows a scheme with the general DNA Binding 
Protein (DBP) target search mechanism, alternating between free 3D diffusion in the nucleus and 
unspecific binding to chromatin and sliding motion. Adapted from 183. c) Sox2 transcription factor 
association to chromatin kinetics measured with 3D multifocus SMT. Top left panel shows a scheme 
with the experimental microscopy approach for the association kinetics. Bottom panel shows a 
rendering of a nucleus with the Sox2 3D trajectories and three examples of different behaviors 
presented in the motion of the TF. The frame to frame jump histogram was computed for the ensemble 
of each population and fitted with a mathematical model to extract quantitative information about 
association kinetics (searching time, searching efficiency, diffusion coefficients, etc) (top right panel). 
d) A drawing with a representative model of TF target search that sustains the measurements. e) 
Results obtained from 2D SMT at long exposure times to measure the dissociation kinetics by fitting 
a double exponential decay curve to the survival distribution of the tracks. Sox2 and different Sox2 
constructs with mutations on the DNA-binding surface (Sox2-TAD, Sox2M, Sox2D), have different 
residence times and stable binding percentage. Adapted from 92. 

Finally, with 2D SMT assays and new analytical methods for SMT data analysis based on 
asymmetry coefficient of the angles of the protein trajectories, it was found that different 
DNA-binding proteins present different target search strategies136 (Figure 60). While c-Myc 
behaves like a global explorer, P-TEFb behaves like a local explorer136 (Figure 60a). That 
implies that c-Myc would be equally distributed around every chromatin site, while P-TEFb 
would present a heterogeneous spatial distribution in the nucleus, so for each P-TEFb protein, 
the efficiency of the chromatin target search depends on its initial position136 (Figure 60b 
and c). They propose a model in which the local environment (the local chromatin structure) 
influence on the dynamics of TFs136 (Figure 60b). 
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Figure 60. SMT reveals that two DNA-Binding Proteins (c-Myc and P-TEFb) present distinct 
target search strategies in the nucleus. a) Some examples of trajectories of c-Myc (local explorer) 
and PTEF-b (global explorer). b) A drawing representing the global explorer and its target (right) and 
the local explorer with two target (left). c) Two graphs representing the Mean first passage time 
(MFPT) as a function of the initial distance to the target, and the Probability of interaction with target 
1 before interacting with target 2, as a function to the relative distance between the searcher and the 
targets, for both c-Myc and P-TEFb transcription factors. Adapted from 136. 

However, how to integrate all those measurements related with chromatin and gene 
transcription into one single picture is not clear. Even some of the main results and 
conclusions arising from SMT experiments are partially discrepant44, especially those ones 
regarding the binding-unbinding rates and the bound-to-unbound fraction of TFs44,48,92,185–187, 
the TFs strategy to efficiently reach their specific target site81,92,136,188–190, or the chromatin 
physical state that determines its structure and behavior191,192. In my view, a full 
characterization of chromatin dynamics at its different scales will serve as a benchmark to 
make the SMT measurements of TFs more meaningful. In addition, it will allow to relate 
those in vivo findings from SMT with modeling of chromatin and TFs dynamics193 and with 
the new models of chromatin organization, like the recently proposed liquid-liquid phase 
separation structure (LLPS)194. In our project, we provided new measurements and 
quantifications to characterize and correlate chromatin dynamics and structural properties at 
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the single nucleosome level (Figures 42, 46, 50, 52 and 54). We observed that TFs like Oct4 
and CTCF present a more mobile motion than H2B and a bigger proportion of tracks 
combining confined and Brownian/directed motion, which we called “butterfly” motion. 
Those trajectories could correspond to TFs interacting with chromatin while searching for 
their target site and therefore they should be analyze deeply in future works. Furthermore, we 
measured the dynamics of single nucleosomes during the process of cell differentiation, 
showing that this motion corresponds to local nucleosome dynamics rather than large 
chromatin domain motion, since large regions of chromatin, like Telomeres or Centromeres, 
composed of 100-750 nucleosomes, present slower mobility than single nucleosomes at the 
millisecond time scale. This suggest that, like chromatin structure, chromatin dynamics also 
happen at multiple scales. In order to fully connect chromatin structure, dynamics and 
function, those relations, from the single nucleosome level to the whole chromosome, passing 
by the mesoscale level and the gene level, must be bridged. 

Another current limitation of the SMT field is the lack of robust and standardized analytical 
methods to extract quantitative information from the experiments. The guidelines for the 
experimental side of the SMT field are well established and the technical limitations are well 
known. Short track length, irreversible photo bleaching, reversible photo switching, drift of 
the microscope stage, limited SNR due to background or low fluorophore signal or an 
excessive number of molecules on the field of view that hinders the precise localization of 
the diffraction limited spots. I expect all those to be progressively overcome by the design of 
better probes, the improvement of microscope set-ups, the increase in camera sensitivity, the 
establishment of new labelling strategies and the appearance of new experimental 
procedures186. However, how to extract quantitative information from the recorded data is 
still under revision. Nowadays, it is a common practice that each group develop their own 
algorithms and codes to tackle each specific biological problem. This scenario hinders the 
comparison of the results coming from different researchers and the connection between SMT 
and other measurements from other fields. There is a necessity to standardize robust analytical 
methods so that quantitative results arising from SMT experiments are more meaningful. 
There are already some basic tools, like the Mean Square Displacement (MSD) that were 
established during the late 20th for the study of solid particles diffusing in liquid 
mediums87,195–199, and that can be directly applied to study protein motion in the cell nucleus. 
However, this new context requires new solutions, since the nucleus is a complex 
environment where anomalous diffusion and interactions of different nature, like 
electrostatic, mechanical, chemical or volume exclusion interactions, are constantly 
happening between biomolecules. To resolve this issue, new computational models of 
chromatin (Figure 61a and b) and their relation with the dynamics of chromatin loci and 
transcription factors200, new algorithms to analyze the data201, like Bayesian approaches for 
connecting the dots of the trajectories202 or new analytical tools to study molecules motion 
under weak ergodic conditions85 (Figure 61c), are being developed. 
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Figure 61. Perspectives of computational modeling and SMT data analysis methods for the 
quantitative study chromatin and transcription. a) Chromatin polymer model and computational 
simulation to study the target search strategy of DNA-Binding proteins (DBPs). The model is setup 
with polymer (p) and anchor (a) particles, connected by harmonic springs. Binders (b) are introduced 
to generate bridges between anchor particles, forming loops. Finally, Tracers (t) interact non-
specifically with both the polymer (p) and the anchor (a) particles203. b) A drawing that represent a 
model where chromatin is condensed into different states facilitated by the presence of linker histone 
H1. Chromatin forms compact phase-separated domains that corresponds to the clutches observed 
with localization-based microscopy. Adapted from 191. c) A method to analyze the motion of 
biomolecules in a fractal environment. Left panel shows an example of a trajectory exhibiting 
dynamics at different time scales, with a short-lived transient immobilization event (highlighted in 
yellow). Right panel the x (blue) and y (yellow) frame to frame jump displacements. The transient 
interaction correspond to a decrease in the size of the displacements. Adapted from 85. 

In our project, we provided a benchmark for the connection between experimental data 
obtained from localization-based microscopy and complex state of the art modelling of 
chromatin. The analysis of SMLM simulated images from the chromatin fiber models of 
ESCs and NPCs recapitulated the tendencies measured experimentally and allowed us to test 
the impact of different parameters (acetylation, levels of linker histone and nucleosome free 
regions) on nucleosome clutch formation. For example, we saw in the models that the 
nucleosomes are arranged in discrete heterogeneous groups (previously named clutches11) 
and that Nucleosome Free Regions (NFRs) are essential for the formation of those clutches. 
In the future, it would be interesting to validate this prediction of the model by varying NFR 
in a controllable manner within the chromatin fiber. Such experiments will require the 
development of more precise tools that can allow modifying one aspect of nucleosome 
organization (e.g. amount of NFRs) without affecting other aspects. Furthermore, in our 
models, the number of nucleosomes per clutch, which is a measure of local chromatin 
compaction, correlates with cell pluripotency following the same trend as the experimental 
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data, but the absolute values of the number of nucleosome per clutch obtained from the 
experiments were slightly underestimated. 

In summary, the recent technical developments have allowed tracking single molecules in the 
nucleus of live cells with high spatial and temporal resolution. However, until now, the SMT 
measurements provided just a collection of sparse findings. In order to understand large and 
complex biological processes, like the dynamic conformation of chromatin structure and its 
relation with gene transcription, apart from the improvement of the experimental methods, 
the field still needs to establish a benchmark for quantitative and meaningful probing. From 
my point of view, the most important steps to achieve it are a deep characterization of 
chromatin at the different spatiotemporal scales and the development of a framework of 
standardized and robust algorithms to extract comparable information from the experimental 
data.  
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Detailed Methods 
 

DM1.1 Frequency multiplexed Super Resolution Microscopy 
 
Sample preparation for fm-DNA-PAINT and fm-STORM: 
BSC1 cells were cultured at 37ºC with 5% CO2. Cell culture consisted of complete growth 
medium (Minimum Essential Medium Eagle with Earle’s salts and nonessential amino acids 
plus 10% (v/v) FBS, 2 mM L-glumine, and 1 mM sodium pyruvate). For the imaging 
experiments, cells were plated on 8-well Lab-Tek 1 coverglass chamber (Nunc) at a seeding 
density of 20000–50000 cells per well. After 24 hours of incubation, cells were fixed with 
fixation buffer consisting of 3% paraformaldehyde and 0.1% of glutaraldehyde in PBS at 37ºC 
during 10 minutes. The background fluorescence of glutaraldehyde was quenched by 0.1% of 
NaBH4 solution in PBS during 7 minutes at room temperature. After fixation, blocking buffer 
solution was applied (3% (w/v) BSA, 0.2% TritonX-100 (Fisher Scientific) (v/v) in PBS) for 
60 minutes. 

For immunofluorescence, cells were labeled with the appropriate primary and secondary 
antibodies. For fm-DNA-PAINT, rabbit-anti-alpha-tubulin primary antibody (ab18251 
Polyclonal, AbCam)  at  a  dilution  of  1:150  and  mouse-anti-TOM20  primary  antibody  
(WH0009804M1 Monoclonal, Sigma Aldrich) at a dilution of 1:150 in blocking buffer were 
used to label microtubules and mitochondria, respectively. For secondary antibodies, oligo-
functionalized goat- anti-mouse (1:100 dilution in blocking buffer) and goat-anti-rabbit 
(1:100 dilution in blocking buffer) secondary antibodies included in the Ultivue-2 kit 
(Ultivue, Inc) were used.  For fm- STORM, rabbit-anti-TOM20 (sc-11415, Santa Cruz 
Biotechnologies) and rat-anti-alpha-tubulin (MAB1864-I, Clone YL1/2, Merck), primary 
antibodies were used at a dilution of 1:150 and 1:150 in blocking buffer to label mitochondria 
and microtubules, respectively. Donkey-anti-rabbit conjugated with Cy3b/AF405 and 
donkey-anti-rat conjugated with AF647/AF405 were used as secondary antibodies. The 
secondary antibodies were custom labeled with the fluorophore pairs as previously 
described89. The training dataset for the cross-talk correction algorithm implemented for fm-
STORM was prepared and imaged in the exact same way with the exception that only one 
primary and appropriate secondary antibody was used to label a single structure. fm-DNA-
PAINT was performed in an imaging buffer with high ionic phosphate strength provided in 
Ultivue-2 kit. fm-STORM was performed in an imaging buffer containing GLOX solution 
as oxygen scavenging system (40 mg/mL Catalase [Sigma], 0.5 mg/ml glucose oxidase, 
10% Glucose in PBS) and MEA 10 mM (Cysteamine MEA [SigmaAldrich, #30070-50G] in 
360mM Tris-HCl). 
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Optical setup: 
Imaging was performed on a custom-built inverted Nikon Eclipse Ti microscope (Nikon 
Instruments). The excitation module is equipped with four excitation laser lines: 405 nm (100 
mW, OBIS Coherent, CA), 488 nm (200 mW, Coherent Sapphire, CA), 561 nm (500 mW 
MPB Communications, Canada) and 647 nm (500 mW MPB Communications, Canada). The 
laser beams intensities were sinewave modulated through AOMs (AA Opto Electronics 
MT80 A1,5Vis) at different frequencies ranging from 50 Hz to 10 Hz, depending on the 
modality and on the imaging conditions. The different wavelengths were combined and 
coupled into the microscope objective through dichroic mirrors. The same objective (Nikon, 
CFI Apo TIRF 100x, NA 1.49, Oil) was used for illumination and for collecting the 
fluorescence signal. The focus was locked through the Perfect Focus System (PFS, Nikon). 
Fluorescence emitted signal then passed through a notch filter “Quad Band” 
(ZT405/488/561/647rpc-UF2, Chroma Technology) that blocks just the excitation laser lines. 
Imaging was performed on an EM-CCD camera (Andor iXon X3 DU-897, Andor 
Technologies). The pixel size after the 100X magnification was 160 nm. 

We note that chromatic aberrations affect all super-resolution multicolor approaches that use 
spectrally different reporter dyes, including the frequency multiplexed imaging 
implementation reported here. Chromatic aberrations lead to a shift in the center position of 
the localizations between different channels that is on the range of tens of nanometers (~ 10-
40 nm), depending on the wavelengths and the imaging conditions204. Fiducial markers like 
beads can be used to correct for this offset, and typically yield alignment precisions below or 
comparable to the localization precision204.  

fm-DNA-PAINT imaging conditions: 
Imaging for fm-DNA-PAINT modality was performed using highly inclined (HiLo) 
illumination62 with an excitation intensity of ~300W/cm2 for the 561nm and 647nm laser 
lines. Camera frame rate of 60 Hz was used for the experiments with a field of view of 
128x128 pixels (20 µm x 20 µm). The 647 nm and 561 nm lasers were modulated with 
sinusoidal waves at 30 Hz and 20 Hz, respectively. For 3D imaging, a cylindrical lens was 
used to encode the z position of the molecules into the PSF shape67. 

 

fm-STORM imaging conditions:  
Imaging for fm-STORM modality was performed using HiLo illumination62 with an 
excitation intensity of ~1.8kW/cm2 for the 561nm and the 647nm laser lines, and ~1kW/cm2 
for the 488nm laser line. The 405nm laser line was used in continuous illumination mode for 
the reactivation of the fluorophore  pairs. The  405nm  laser  intensity  follows  a  ramp  
(ranging  from  ~10W/cm2   to ~25W/cm2), in order to maintain a relatively constant density 
of fluorophores per frame. Camera frame rate of 90 Hz was used for the experiments with a 
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field of view of 128x128 pixels (20 µm x 20 µm). 647 nm and 561 nm lasers were modulated 
with a sinewave at 45 Hz and 22.5 Hz. For the 3-color data sets, the 647nm, 561nm and 
488nm lasers were modulated at 45 Hz, 30 Hz and 15Hz, respectively. 

fm-DNA-PAINT data analysis: 
Demodulation of the raw data was carried out using a custom written Pyhton code (available 
at https://github.com/PabloAu/Excitation-multiplexed-multicolor-super-resolution-imaging-
with-fm-DNA-PAINT-and-fm-STORM ). For the demodulation, packages of 6 frames (frame 
window size, m) were used in order to maintain the long effective exposure time required for 
DNA-Paint (we chose 100 ms). The intensity evolution of each pixel from these 6 frames 
were transformed to the frequency domain using a one-dimensional Discrete Fourier 
Transform for real input: 

𝑋w = 	∑ 𝑥) · 𝑒
−𝑖2𝜋𝑘 · )

SSR0
𝑛 = 0 ; 		𝑘 = 	0, … ,𝑚 − 1, 

where, X0,…,Xm-1 are the Fourier Transformed output values in the discrete frequency 
domain, x0,…,xm-1 are the real discrete input values from time domain, and m is the total 
number of real input values (equal to the frame window size). 

The Discrete Fourier Transform presents symmetry. X0 and Xm/2 are real values. The rest of 
the output values from the DFT are specified by (m/2)-1 complex numbers, because the 
remaining output values are the conjugated ones. Therefore, a 6 frame window size (m = 6), 
will provide 3 frequency bins and thus 3 available channels (Figure 25). The X0 corresponds 
to DC component and contains no valuable information, while the AC components encode 
the amplitudes at which the fluorophore absorbs each excitation laser, and hence reveal the 
spectral characteristics of that localization. 

For this calculation, we used the efficient Fast Fourier Transform algorithm (FFT). The 
absolute values of the amplitudes in the frequency domain were used to assign a pixel value 
to its channel on the demodulated data, corresponding to each frequency bin in use. With a 
frame window of 6 frames and a camera frame rate of F=60Hz, we had 30Hz, 20Hz and 10Hz 
frequency bins available. We obtained the demodulated data for two channels, corresponding 
to 30 Hz (for 647 nm channel) and 20 Hz (for 561 nm channel). Insight3 (a kind gift of Bo 
Huang, UCSF) was used to localize the fluorescent molecules in each channel of the 
demodulated frames by performing a simple Gaussian fitting (2D) or elliptical Gaussian 
fitting (3D) as previously described67.  

Given that the percentage of correct fluorophore assignment was always higher than 96% for 
fm-DNA-PAINT, a crosstalk correction step was not required. Nevertheless, a simple 
additional step can be used to further reduce the crosstalk (Figure 23). In this step, 
localizations in both color channels were identified if they appeared in the same frame within 
a distance of 80 nm. We computed the sum of intensity values within a 3x3 pixels subROI 
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around the center of each of these localizations in the demodulated data and compared the 
intensities between both channels. Since the integrated intensity is directly related to the 
amplitudes of the frequency bins in the frequency domain, we used this information to assign 
the localization to the correct color channel. This step further reduces the crosstalk to less 
than 1% in the Cy5 channel and less than 3% in the Cy3 channel (Figure 23). 

Localization precision calculation: 
We determined the localization precision in two ways. First, from the experimental data we 
measured the standard deviations of clusters of localizations originated from a single 
fluorophore52,67. To generate traces over several frames of the same fluorophore, a spatial 
threshold between consecutive frames of 55 nm was set. A minimum track length of 8 frames 
was set in order to have enough points to properly estimate the localization precision (Figure 
24a). Second, we calculated the localization precision by obtaining the Cramér-Rao lower 
bound (CRLB) of the x and y position parameters from the Maximum Likelihood Estimation 
Gaussian 2D fitting of the single molecules, as previously described63. We used the software 
provided in reference63 and followed the suggested procedure. We estimated a σpsf of around 
1 pixel, so we used a box size of 7x7 pixels (2x3σpsf  + 1) around each localization. We 
calculated first σx and σy and then the x-y localization precision (Figure 24b) by: 

𝜎 = ,𝜎�% + 𝜎7%	 

For fm-DNA-PAINT, 2 sine-wave modulated lasers were used with a maximum laser power 
of ~300W/cm2 and an exposure time of 16 ms. For regular DNA-PAINT a continuous 
illumination with constant laser power of ~300W/cm2 with an exposure time of 100 ms was 
used. The somewhat lower localization accuracy of fm-DNA-PAINT as compared to regular 
DNA-PAINT is simply due to the fact that we use modulated excitation, so that fluorophores 
are excited half of the duration of a single frame, and thus emit roughly half of the photons 
compared to continuous excitation. Note that given the low laser power excitations used for 
fm-DNA-PAINT, the SNR could be increased and the subsequent localization precision could 
be improved, simply by increasing the laser powers.  

The localization precision for fm-STORM data was estimated following the first approach 
since it accounts for the experimental conditions and it is well-accepted in the literature52,67.  

Synthetic data: 
We first generated sinewaves for each channel frequency (f), depending on camera frame rate 
(F) and frame window size (m). The sinewaves were then integrated within the time limits of 
consecutives frames to obtain an effective integrated intensity per frame (Figure 27b). We 
used this information to generate synthetic data, taking as input a 5x5 pixels subROI of a PSF 
from one frame of single-color experimental data. Then, 5x5 pixels stacks were generated by 
multiplying the PSF by the effective integrated intensity per frame over several consecutive 
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frames. In this way, we could simulate the emission of a fluorophore under sinewave 
modulated illumination. Figure 27 shows a comparison of the intensity evolution over time 
of 2-color synthetic data with that of 2-color fm-DNA-PAINT experimental data, showing 
excellent agreement between synthetic and experimental data and validating our approach. 
We followed a similar procedure for generating the 5-color synthetic data (Figure 28 and 29). 
In that case, we used fi =50Hz, 40Hz, 30Hz, 20Hz and 10Hz, F=100Hz and m=10. The 5 
different types of PSFs were spatially mixed, such that spatial overlap could occur. We ranged 
the spatial distances between the centers of each PSF from 20 pixels (for non-overlapping 
conditions) to 0 pixels (i.e., full spatial overlap). Note that this synthetic data has been 
generated under the assumption of spectrally distinct fluorophores and have minimum overlap 
in their absorption spectra.  

Semi-synthetic data: 
A 5x5 pixels stack over 6 consecutive frames around the center of a PSF from the fm-DNA-
PAINT experimental data was extracted. We performed this procedure for the two different 
color-fluorophores. In the experimental data, the 647nm laser was modulated at f = 30 Hz for 
Cy5, and the 561 nm laser was modulated at f = 20Hz for Cy3. Those 5x5 PSFs were 
replicated 168 times per color, and spatially distributed in order to generate semi-synthetic 
stacks of images. Several stacks were created, with different relative distances between the 
centers of the PSFs of both color channels (Figure 31a), ranging from +4 pixels to -4 pixels 
for spatially overlapping fluorophores and +5 pixels or larger (or -5 pixels or smaller) for the 
non-overlapping ones. An example of the semi-synthetic data is shown in Figure 30. In order 
to generate the background that also fluctuates with the sine-wave modulated lasers 
illumination, we took a similar 5x5 pixels stack over the same 6 consecutive frames of the 
experimental data on a background region, i.e., devoid of fluorophores. We then added the 
background associated to each frame in the corresponding synthetic frame.  

The 6-frame semi-synthetic stacks were demodulated to generate 2 demodulated frames, one 
per channel. Then the centers of the PSFs in those demodulated frames were localized by 
fitting a 2D Gaussian and the distances from the retrieved localization positions (x,y) to the 
real, simulated positions (the pixel where the center of the PSF was positioned) was computed 
(Drelative in Figure 31). Plots of Drelative as a function of spatial overlap (Dshift) were generated 
to estimate the effect of Cy3 spatial overlap on the Cy5 channel (Figure 31b) and effect of 
Cy5 spatial overlap in the Cy3 channel (Figure 31c). Moreover, to estimate the effect of 
fluorophore brightness on the perturbations to the localization positions for spatially 
overlapping fluorophores (set to +3pixels), we generated stacks by varying the relative 
brightness of one color-fluorophore with respect to the other. For this, all the pixels within 
the 5x5 PSF corresponding to Cy3 (561nm channel) were multiplied by a reduction a factor 
ranging from 0.5 to 1 (Figure 32). 
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fm-STORM data analysis: 
Background was subtracted using a median filter. Fluorescent molecules were localized in the 
raw data using Insight3 and performing a simple Gaussian fitting. Localizations were 
subsequently classified as single-frame or multi-frame localizations. If a fluorophore that 
appeared in one frame did not move by more than half a pixel (80 nm) in the subsequent 
frame, it was taken as the same fluorophore and classified as multi-frame. A frame window 
size was chosen for the demodulation, depending on the desired number of channels and 
imaging conditions. We used a 4 frame window size for 2-color imaging and a 6 frame 
window size for 3-color imaging. A 4x4xm voxel region around the centroid 
(x,y,f)→(x,y,f+m) coordinate of a localization was sliced from the background-suppressed 
camera data. First, we calculated the mean intensity value of the 16 pixels in the subROI for 
each raw frame within the frame window, from which we end up with a m-length vector of 
time-domain data. On these data we performed a one dimensional discrete real-valued Fourier 
Transform, which yields (m/2) AC components and 1 DC component in the frequency 
domain. We used the Python’s rfft function from scipy.fftpack205. Lastly, the absolute values 
from the FFT for the different frequency bins on the frequency domain were calculated and 
recorded. Based on the natural logarithm of these values, the localizations were classified into 
a specific channel. We used the natural logarithms of the demodulated amplitudes rather than 
the raw values; the distributions of the latter are highly skewed with amplitudes clustered near 
the origin, while the distributions of the former are more symmetric and can be approximated 
to first order as rotated asymmetric normals. To perform the channel assignment, decision 
boundaries were generated by a machine learning algorithm based on a support vector 
classifier (SVC) (see below Machine learning algorithm for crosstalk correction). The 
performance of an SVC is typically improved with standard-scaled data that has mean=0 and 
standard deviation=1, but we find that scaling the amplitudes of our data using only a natural 
logarithm yields very good results.  

Machine learning algorithm for crosstalk correction: 
Training data sets were acquired using one-color biological samples, which were labeled with 
the same dyes used for the two-color imaging and imaged in exactly the same way as the two-
color samples. The training data was demodulated and the intensities around the localizations 
corresponding to 4 x 4 pixels subROI were used to define 2D decision boundary regions for 
those two dyes. The same procedure can be applied for three or more colors. The boundary 
regions were defined using an SVC. In particular, we used the SVC class contained in the 
Scikit-learn206  Python package, which uses libsvm and liblinear libraries207,208 for the 
computations. SVC are well established supervised learning methods used for classification 
in high dimensional spaces, using training data points in the decision function (called support 
vectors) and that can use different kernel functions to construct the decision function. 
Therefore, it can perform multi-class classification on a dataset, taking two inputs: the training 
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datasets and the sample data. SVC implements the one-against-one approach209 . We used the 
Radial Basis Function (RBF) as kernel function defined by the following equation: 

𝐾U𝑥:, 𝑥 Y = 	 𝑒R�·‖�kR���
*
, 

where xi and xj are the support vectors and γ defines how large the influence of a single 
training example is. We used γ parameter in “auto” mode. SVC uses training datasets vectors 
x and an array of class labels y as inputs. The boundary regions are generated by the decision 
function: 

𝑠𝑔𝑛(∑ 𝑦:𝛼:𝐾(𝑥:, 𝑥) + 	𝜌)
:<0 ), 

where ρ is the independent term and the αi are coefficients between 0 and C209. C is an input 
parameter that trades off misclassification against simplicity of the decision boundaries. We 
used a fixed value of C=1.0. For generating the boundary regions and the fluorophore 
classification of the multi-color images, we identify and eliminate data that correspond to 
localizations which appear in only a single frame in the N-frame demodulation window. 
These localizations are readily identified by recognizing that a single-frame event in the time 
domain is effectively a Dirac function, which has a uniform distribution of amplitudes across 
the frequency domain, and hence will appear along the equal-amplitude y=x line in a two-
color measurement and the equivalent functions in higher-dimensional space. Furthermore, 
these single- frame events typically have low amplitudes relative to multi-frame events, 
and so appear in a distinct region of the log-log amplitude plot compared to multi-frame 
events. This undistinguishable population of localizations appeared with a circular shape 
centered around (6,6) on the 2D single-frame localizations diagram that plots the logarithm 
of the intensities. We used a rejection radius of 0.8 to reject these localizations. We also 
eliminate a subset of localizations that appear along the equal-amplitude line with high 
amplitudes. These localizations appear in both the training data and the experimental data for 
multiple fluorophores, and so yield no distinct information about the species of molecule 
underlying that localization. This last step has an additional advantage of preventing the SVC 
from over-fitting during training. We defined an acceptance ratio parameter that can be 
changed accordingly from 0 to 1, to achieve a compromise between the percentage of rejected 
localizations and the final crosstalk between different channels. We used an acceptance ratio 
of 0.96. The classifier was trained on a randomized sample of 60% of the total training data, 
with 20% reserved for cross-validation of the SVC and a further 20% used to generate 
performance scoring metrics. 

fm-live: 
We utilized an array of three continuous-wave lasers at 488 nm (Sapphire 150 mW, Coherent 
Inc.), 560 nm (500 mW, MPB Communications), and 647 nm (500 mW, MPB 
Communications), each modulated by its own acousto-optic modulator (all MT80-A1.5-Vis, 
AA Optoelectonics). The modulated beams are combined on appropriate dichroic mirrors and 
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relayed to the annulus of the back aperture of a 1.49NA obkective via a 400-mm focal-length 
lens located 400 mm from the back focal plane and a quad-band dichroic mirror 
(ZT405/488/561/647rpc-UF2, Chroma Inc.). This illumination configuration generates a 
highly oblique light sheet that is axially nearly diffraction-limited. Fluorescence from the 
entire objective field of view is transmitted through the major dichroic mirror and further 
spectrally filtered with an appropriate notch filter (ZET405/488/561/647m-TRF, Chroma 
Inc.) before being imaged onto a back-illuminated, cooled EMCCD (iXon Ultra 897 EMCCD, 
Andor Scientific). The frame clock signal from the EMCCD functions as the master clock for 
the AOM modulation signals. 

Each AOM is driven by an 80-MHz carrier signal that is amplitude modulated at a fixed 
integer fraction of, and synchronized to, the camera frame clock: the 488-nm laser is 
modulated at f/2, the 560-nm laser is modulated at f/3, and the 647-nm laser is modulated at 
f/6. These frequencies are selected so that they are centered within the frequency bins 
generated by an FFT with a sampling rate equal to the camera frame rate clock and a number 
of time bins equal to twice the number of lasers. Because the data we record is purely real, by 
symmetry considerations the negative frequency components of the FFT are simply the 
complex conjugates of the positive frequency components, and so we save computational 
operations by only calculating the DC and positive frequency components, yielding a total of 
4 frequency bins. The DC component is equivalent to the sum of all color channels, and is 
not used. Each other frequency bin nominally contains the signal from a single excitation 
laser. 

We typically record living cells for up to 5 minutes per experiment at effective demodulated 
frame rates ranging from 15 to 25 Hz depending on the desired field of view, where a larger 
image size results in a slower frame rate. Significant photo-bleaching of the Mitotracker Far 
Red dye becomes apparent after a few minutes of imaging at the optical powers that we use, 
while the photobleaching in the microtubule and lysosomes channels is moderate. 

The data presented thus far was recorded at low excitation powers and with maximum 
detected photon fluxes of fewer than 600 counts per pixel integrated over all color channels, 
implying that our approach is compatible with live-cell imaging. We used living BS-C-1 cells 
stably expressing eGFP-alpha-tubulin (microtubules) and mCherry-LAMP1 (lysosomes) and 
additionally labeled mitochondria with MitoTracker Deep Red FM to obtain three different 
colored organelles. We imaged the cells for five minutes with three excitation wavelengths 
(488, 561, and 640 nm) and detected the fluorescence using an EMCCD camera operating at 
a frame rate of 90 Hz. With N = 3 excitation lasers we selected blocks of 2·N = 6 camera 
frames and demodulated the data on a pixel-by-pixel basis. The resulting images from each 
demodulated image block have a temporal resolution of 1/6 the camera hardware frame rate, 
which is only a factor of two slower than the limit using sequential excitation. However, the 
advantages gained by this frequency-domain approach are that motion discretization artefacts 
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are greatly limited because the data are acquired continuously, together with an additional 
factor of 2𝑁/2 less noise than an equivalent time-interleaved excitation. Representative 
demodulated images of microtubules, lysosomes, and mitochondria are shown in Figure 39, 
respectively, together with zoom-ins at various time-points across all three channels. The 
simultaneously obtained multicolor movies display the rich and different dynamics of each 
organelle without any visible photo-toxic effect on the cells, demonstrating full compatibility 
of this technique for imaging living cells with high temporal and spatial resolution over long 
time periods. 
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DM1.2 Mesoscale chromatin modelling 
 

Mesoscale modeling of mESC and mNPC chromatin fibers: 
To simulate fibers representative of chromatin in mouse embryonic stem cells (mESC) and 
neuronal progenitor cells (mNPC), we analyzed publicly available data to determine 
nucleosome positions, linker histone (LH) density, and histone-core tail acetylation levels. 
We consider the Oct4 genomic region, known for being upregulated in non-differentiated 
cells. We simulate the region of Chr17 spanning 35626358bp to 35657661bp (corresponding 
to mm9 reference). The Oct4 chromatin fiber length is ~31 Kbp and contains 121 
nucleosomes in mESC and 151 nucleosomes in mNPC.  

Nucleosome positions were obtained from the database NucMap210, that includes the analysis 
of 798 experimental MNase-Seq data from 477 samples across 15 species. We used the 
nucleosome positions obtained with the DANPOS algorithm211 on the MNase-Seq data of 
mESC and mNPC reported by Mieczkowski et al124. The list of linker lengths and nucleosome 
free regions (NFRs) for each system can be found in the Supplementary Information excel 
file. LH density was set to 0.5 LH per nucleosome for the mESC fibers, and to 0.8 LH per 
nucleosome for the mNPC fibers, as reported previously by Skoultchi and coworkers122,128. 
The LHs were distributed uniformly to fulfill these densities. That means 1 LH every 2 
nucleosomes, and 4 LHs every 5 nucleosomes for mESC and mNPC, respectively. Based on 
immunofluorescence data (Figure 43b), the concentration of histone core tail acetylation of 
H3 and H4 was set to 10% for the mNPC systems and 15% for the mESC systems to 
reproduce the 1.5 ratio of acetylation levels in mESC versus mNPC. Since histone acetylation 
are distributed in clusters127, we distributed the acetylated nucleosomes in both systems in 
two islands of similar size before and after the genes of interest. Specific positions of 
acetylation can be found in the Supplementary Information excel file (also shown in 
Supplementary Figure 1c for one of the islands).   

The starting configuration of each fiber (Figure 43b) corresponds to the ideal zigzag 
conformation oriented with the fiber axis parallel to the z-axis, as we have shown this 
conformation to be the lowest energy212.  We use our mesoscale chromatin model (Figure 
43a) to simulate 30 independent trajectories of 80 million Monte Carlo (MC) steps for the 
Oct4 system. Briefly, our model combines nucleosomes, histone core tails, linker DNA, and 
linker histone by coarse-grained units at different levels of resolution to create 
oligonucleosome fibers. The model has evolved over 18 years and validated against growing 
experimental data126,213–215. The nucleosome core with wrapped DNA and without tails is 
treated as an electrostatic charged object, coarse grained from the crystal structure of the 
nucleosome core particle at 1.9 Å resolution216; its surface is represented with 300 Debye-
Hückel pseudo-charges computed by our DISCO algorithm to approximate the electric field 
of the atomistic nucleosome obtained by the Poisson Boltzmann formulation217. Flexible 
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histone core tails are coarse grained with the Levitt-Warshel united-atom bead model218 as 1 
bead per 5 amino acids, and each bead charge is calculated by the DISCO algorithm219. Folded 
histone tails, mimicking acetylated tails, are modeled with increased stretching, bending, and 
torsional force constants by a factor of 100220. Linker DNA connecting nucleosomes is 
modeled by the Stigler worm-like chain model in which each bead represents ~9 bp221. 
Finally, linker histone H1E is coarse grained similar to histone tails with the Levitt-Warshel 
united-atom bead model and with charges calculated with DISCO222. The globular head is 
modeled with 6 beads and the C-terminal domain with 22 beads; the N-terminal domain is 
neglected since it has minor role in chromatin organization. 

Standard energy terms and various local and global MC sampling moves are used to improve 
the conformational sampling. The total energy function contains stretching terms for linker 
DNA, histone tails, and linker histone that maintain equilibrium distances; bending terms for 
linker DNA, histone tails, and linker histone; twisting terms for linker DNA; electrostatic 
Debye-Hückel terms to represent all charge-charge interactions within chromatin; and 
excluded volume terms for all beads, described with a Lennard-Jones potential. The MC 
moves include local translation, local rotation, and global pivot rotations for linker DNA 
beads or nucleosomes, and a regrowth for histone tails214. Acceptance of the first three moves 
is based on the regular Metropolis criteria223 while acceptance of the tail regrowth move is 
made according to the Rosenbluth criteria224. Full details concerning the energy terms, 
parameter values, and sampling can be found in Arya and Schlick214 and in Bascom and 
Schlick126.  

Convergence of the systems is monitored by determining the evolution along the trajectory 
of global variables like the sedimentation coefficient and the root mean squared deviation of 
the nucleosomes with respect to the initial structure, and by monitoring local variables like 
the distance between the first and last nucleosome and evolution of angles formed by three 
adjacent (in sequence) nucleosomes. The last 100 structures of each trajectory corresponding 
to the last 10 million MC steps are used to analysis, producing configurational ensembles of 
3000 structures for the Oct4 system. 

Chromatin structure analysis of coarse-grained model: 
The sedimentation coefficient (Sw,20), in units of Svedbergs, is used to describe the 
compaction of the fiber. It is defined by the expression: 

𝑆�,%� = U(𝑆0 	−	𝑆�) ∗ 𝐿𝐻CF)C 	+	𝑆�Y ∗ �1	 +	�
𝑅0
𝑁�
�^^

1
𝑅:``:

�, 

where S0 is the sedimentation coefficient for a mononucleosome with LH bound (12 S)225, S1 
is the sedimentation coefficient for a mononucleosome without LH (11.1 S)226, LHconc the 
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concentration of LH in the fiber, R1 the spherical radius of a nucleosome (5.5 nm), NC the 
number of nucleosomes in the fiber, and Rij the distance between two nucleosomes i and j. 

The radius of gyration, which describes the overall dimension of the polymer chain, is 
measured as the root mean squared distance of each nucleosome from the center of mass 
according to the relation: 

 𝑅N% =
0
'C
	∑ (𝑟 −	𝑟SA/))%'

`<0 , 

where Nc is the number of nucleosomes, rj the center position of the nucleosome core j, and 
rmean  the average of all core positions227.  

Fiber volumes are calculated using the AlphaShape function of Matlab, which creates a 
nonconvex bounding volume that envelops the nucleosomes. Surfaces are visually inspected 
to ensure that they represent correctly the fiber morphology. This is because non cylindrical-
like shapes may not well be estimated. In that case, the AlphaShape object can be manipulated 
to tighten or loosen the fit around the points to create a nonconvex region.  

Packing ratio is used to describe the compaction of the fiber and is measured as the number 
of nucleosomes contained in 11 nm of fiber. It is determined according to the relation:  

	
𝑃𝑎𝑐𝑘𝑖𝑛𝑔	𝑟𝑎𝑡𝑖𝑜 = 00·'�

B:5A�_MA)N;�
, 

where NC is the number of nucleosomes and the fiber length is calculated using a cubic 
smoothing spline function native from Matlab. 

Nucleosome clusters are quantified by determining the average number of nucleosomes per 
cluster and average number of clusters using the Density-based clustering algorithm 
DBSCAN228, as implemented in Matlab. DBSCAN is designed to discover clusters in noisy 
data by partitioning the observations (the n-by-n internucleosome distance matrix) into 
clusters.  

The algorithm identifies three kinds of points: core, border, and noise points, based on a 
threshold for a neighborhood search radius (epsilon) and a minimum number of neighbors in 
the given neighborhood (minpts). Any point x in the data set with a neighbor count greater 
than or equal to minpts is selected as a core point. Alternatively, if the number of neighbors 
is less than minpts, but the point x belongs to an epsilon neighborhood of some core point z, 
the point is identified as a border point. Finally, if a point is neither a core nor a border point, 
it is identified as a noise point and not assigned to any cluster. 

The algorithm is implemented as follows: 

1. From the input data set, select the observation x1 and assign it to cluster 1. 
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2. Find the set of points within the epsilon neighborhood of the current point. 
a. If the number of neighbors is less than minpts, label the current point as noise. Go 

to step  
b. Otherwise, label the current point as a core point belonging to cluster 1. 

3. Iterate over each neighbor (new current point), and repeat step 2 until no new 
neighbors that can be labeled as belonging to the current cluster are found. 

4. Select the next observation x2 as the current pint and increase the cluster count by 1. 
5. Repeat steps 2-4 until all points in the input data set are assigned. 

If the distance between two border points belonging to different clusters is smaller than 
epsilon, DBSCAN merges the two clusters into one. The minpts and epsilon parameters were 
chosen based on the heuristic provided by the algorithm developers129. Minpts was selected 
as 3 nucleosomes as it is recommended to be at least ≥ D + 1, where D is the number of 
dimensions in the data set. However, this parameter does not significantly affect the overall 
results of the clustering129. The radius, epsilon, was selected as 20 nm based on the fiber 
dimensions. 

Contact Probability matrices: 
Nucleosome contact matrices describe the fraction of MC steps that the core, histone tails, or 
linker DNA of a nucleosome i are in contact (within 2 nm) with any of these elements of a 
nucleosome j. For a single fiber contact map, contacts are counted along the corresponding 
trajectory and normalized by the maximum number of contacts across all frames to determine 
the probabilities, which are then plotted in logarithmic scale. For the contact matrices of the 
30-trajectory ensemble, all probabilities of each independent trajectory are summed before 
plotting.   
 
Contact probability matrices are used to characterize fiber internal folding motifs. Specific 
fold patterns can be identified by the density features 117. Local inter-nucleosome interactions 
(i ± 2, 3), corresponding to the canonical zigzag topology, locate near the diagonal of the 
matrices; medium-range interactions (i ± 4, 5, 6) indicative of hairpin- and sharp kinks-type 
folds are evidenced by regions perpendicular to the main diagonal; and long-range contacts ( 
i ± 7, >7), indicative of hierarchical looping, are evidenced by regions parallel to the main 
diagonal.   

Zigzag geometry inside the clutches: 
For representative trajectories of mESC and mNPC, we studied the zigzag geometry inside 
the clutches. Specifically, we calculated for consecutive nucleosomes (bonded) belonging to 
the same clutch the probability distribution of the dimer distance, distance between two 
consecutive nucleosomes (nucleosome i and nucleosome i+1); the triplet angle, angle formed 
by three consecutive nucleosomes (nucleosome i, nucleosome i+1, and nucleosome i+2); and 
the dihedral angle, angle between two planes about nucleosomes i+1 and i+2 defined by four 
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consecutive nucleosomes (nucleosome i, i+1, i+2, and i+3). As we are interested in the zigzag 
geometry, consecutive nucleosomes belonging to the same clutch but connected by a 
nucleosome free region instead of a typical linker DNA were not considered in the 
statistics. (Figure 45) 
 

SMLM Image generation: 
We used SuReSim software for the generation of synthetic SMLM images130 (Figure 46a). 
We imported the final 3D nucleosome positions of each fiber obtained from the mesoscale 
chromatin modeling to SuReSim and generated a list of x-y-z positions of fluorophore labeled 
nucleosomes taking into account fluorophore blinking and precision in determining each 
fluorophore’s position. We input a discrete list with the 3D coordinates of the nucleosome 
centers obtained from the mesoscale computational model. We generate the images using 
realistic parameters that resemble the experimental conditions 11. We used a localization 
precision of 10 nm, an epitope length of 10 nm with a random 3D angle distribution with 
standard deviation of 50 º, a labeling efficiency of 75%, a localization efficiency of 80%, and 
a ratio of 2 fluorophores per antibody. We simulated 10.000 frames in order to obtain a 
number of localizations per cluster in the same range as in our experimental measurements. 

We performed 1000 random 3D projections of the localizations using a custom-written 
Matlab code. Then we projected those images in 2D, taking into account that a maximum 
slice of 400 nm will be detected by the microscope. (Figure 46a). 

 

Simulated SMLM images Cluster analysis: 
For cluster quantification, we used a previously described method 11. The localization lists 
were binned to construct discrete localization images with pixel size of 10 nm. These were 
convoluted with a 5x5 pixels kernel to obtain density maps and transformed into binary 
images by applying a constant threshold, such that each pixel has a value of either 1 if the 
density surpasses the threshold value and 0 if not. We used a threshold of 0.008 
localizations/nm2. The x-y coordinates in the binary image were grouped into clusters using 
a distance-based algorithm. Cluster sizes were calculated as the standard deviation of x-y 
coordinates from the centroid of the cluster. In addition, we used an estimated localization 
precision of 10 nm and a minimum number of molecules so that a group is consider a clutch 
of 10 localizations. 
 
The synthetic super resolution images of the fibers were rendered using a custom-written 
software (Insight3, provided by Bo Huang, University of California). (Figure 46a). 
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DM1.3 Single Molecule Tracking 
 

Cell culture conditions and generation of cell lines: 
All mouse embryonic stem cells (mESC) were grown in a humidified incubator at 37°C - 5% 
CO2 and were cultured on gelatin (#ES-006-B, Merck) coated plates, with serum Lif medium 
[DMEM, 15% FBS, 1% penicillin/streptomycin (#15140122, Thermo Fisher), 1% GlutaMax 
(#35050061, Thermo Fisher), 1% sodium pyruvate (#11360070, Thermo Fisher), 1% MEM 
non-essential amino acid (#11140050, Thermo Fisher), 0.2% 2-Mercaptoethanol 
(#31350010, Thermo Fisher) and 1000 U/ml LIF ESGRO (#ESG1107, Merck)].  
 
Neural progenitor cells (NPCs) were generated by plating 44000 cells/cm2 in gelatin coated 
Lab-Tek I (#155411, Nunc) chambers 24 hours prior to the start of differentiation. Cells were 
differentiated for 3 days in culture with Retinoic Acid containing medium (50% Neurobasal 
(#21103-049, Thermo Fisher), 50% DMEM/F12 (#21331020, Thermo Fisher), 1× 
penicillin/streptomycin, 1× GlutaMax, 2% B27 (#17504044, Thermo Fisher), 1% N2 
(#17502048, Thermo Fisher), and 1 µM Retinoic Acid (#R2625, Sigma-Aldrich). Medium 
was changed every day. mESC H1tKO were a kind gift from Dr. Arthur Skoultchi122. mESC 
CTCF_Halotag (A7 clone) were a kind gift from Dr. Rafael Casellas (NIH, Bethesda). mESC 
Halotag_Oct4 were generated by our collaborator Prof. Eran Meshorer (HUJI, Israel) by 
inserting Halotag sequence at the 5’ of endogenous Oct4 gene with CRISPR-Cas9, a single 
guide RNA (AAGGTGGGCACCCCGAGCCGGGG) and a donor vector carrying Halotag 
sequence flanked by Oct4 5’ and 3’ homology arms. 
 
mESC H2B-Halotag were generated by lentiviral infection of mESC (GS1 129Sv) and mESC 
H1tKO122 with a lentiviral plasmid encoding for H2B_Halotag under EF1a promoter 
(p1494_EF1a_H2B_Halotag) following The RNAi Consortium (TRC) low throughput viral 
production protocol (https://portals.broadinstitute.org/gpp/public/resources/protocols).  
 
Transduced cells were selected for hygromycin resistance (#10687010, Thermo Fisher). Cells 
expressed H2B-Halotag at levels comparable or lower than endogenous H2B.   
 
mESC H2B_Halotag + Cenpa_GFP or + Trf1_GFP were generated by lentiviral infection of 
mESC H2B_Halotag cells with pLENTI_Cenpa_GFP or pLENTI_Trf1_GFP as described 
above. Transduced cells were selected by cell sorting of GFP positive cells (FACS Aria) 96h 
post transduction.  
Lentiviral vector expressing C-terminally Halo-tagged H2B was generated by Gibson cloning 
by preamplifying Halotag from pFN205K HaloTag EF1a-neo Flexi (Promega) and H2B from 
pSNAP-H2B (#N9179S, New England Biolabs) and cloning them into p1494 plasmid with 
Hygromycin resistance and EF1a promoter.   



Detailed Methods: DM1.3 Single Molecule Tracking 
 

134 
 

 
Lentiviral vectors expressing C-terminally eGFP-tagged Cenpa and Trf1 under EF1a 
promoter were generated by Genscript custom gene service by subcloning Cenpa ORF 
(#OMu00596C, NM_007681.3) and Trf1 ORF (#OMu19848C, NM_009352.3) into 
pLENTI-dCas9-VP64_GFP backbone.  
 
Cell labelling for Single molecule tracking imaging: 
For SMT experiments in mESC, cells were plated at a 31000 cells/cm2 density in Lab-TekI 
chambers 24 hours before imaging. For SMT experiments in NPCs, cells were differentiated 
as described above and imaged after 3 days of differentiation. Cells were labelled with 2 pM 
and 5 pM of JF549-Halotag ligand (kind gift from Dr. Luke Lavis) diluted in grow or 
differentiating medium. Cells were incubated in presence of the dye for 30 min in the 
incubator and subsequently washed once in Phenol red free medium with Hoescht (1:1000 
dilution) for 15 min in the incubator. Cells were finally washed once with Phenol red free 
medium for 5 min in the incubator.  
 
For SMT imaging of living cells, cells were kept in Phenol Red free grow or differentiation 
medium. For SMT imaging of fixed cells, right after labelling, samples were fixed for 10 min 
at RT in PFA 4 % (#43368, Alfa Aesar), diluted in PBS, and washed 3 times in PBS.  JF549-
Halo ligand diluted in phenol red free resting medium for 30 min in the incubator. Cells were 
washed once for 15 min in the incubator with fresh medium and then once for 5 min. JF 
labeled ligands were kindly provided by Dr. Luke Lavis (Janelia Research Campus). 
 
Imaging: 
Imaging was performed in an N-STORM 4.0 microscope (Nikon Instruments) equipped with 
an Okolab cage incubator system set at 37ºC, 5%CO2 and controlled humidity. Images were 
taken with a 100X 1.49 oil objective and an EMCCD camera Andor iXon Ultra 897 (Oxford 
Instruments). This combination provides an effective pixel size of 160 nm. We used HILO 
illumination62 and a quad-band beam splitter ZT405/488/561/640rpc (Chroma Technology 
Corporation). The Perfect Focus System (PFS) equipped on the NSTORM microscope was 
used during the acquisition.  

Two imaging conditions were set to measure separately fast and slow dynamics. The fast 
dynamics experiments were perform with 15 ms of camera exposure time, a 561 nm laser 
power of ~ 200 W/cm2 and 10 pM concentration of JF-549-Halo fluorophore in the labeling 
step. For the slow dynamics, we used 500 ms of camera exposure time, a 561 nm laser power 
of ~ 25 W/cm2 and 4 pM concentration of JF-549-Halo fluorophore. For the fast SMT at 15 
ms, we acquired 3000 frames (45 seconds), and for slow SMT videos at 500 ms of exposure 
time, 600 frames (5 minutes).  



Detailed Methods: DM1.3 Single Molecule Tracking 
 

135 
 

Apart from the JF, Hoesch33342 was used for staining chromatin. This allows to identify 
regions of more condensed chromatin and to precisely segment each cell nucleus subROI. In 
both cases, we imaged four frames of Hoesch33342 at the end of each SMT video, using the 
405nm laser at a very low power (~ 5 W/cm2) with 2 s of camera exposure time. In order to 
classify the trajectories as euchromatic or heterochromatic, the sub regions were defined by 
manually drawing subROIs based on Hoestch33342 fluorescence intensity, which correlates 
with chromatin compaction. In addition, a brightfield image of each FOV was taken before 
and after the imaging procedure, to control for apparent cell displacement or cell dead during 
the experiment. Cells were imaged on their corresponding phenol red free resting medium. 

2-color imaging: 
A Dual-view system based on a dichroic mirror was used for the 2-Color SMT experiments. 
The camera was splitted in two FOVs of 256x256 pixels (40x40 µm) each.  

A calibration with fluorescent TetraSpeck Microspheres (ThermoFisher Scientific) was 
performed before and after the experiments to align both channels with a precision below 10 
nm. A second order 2D polynomial transform function was calculated from the beads 
localizations of both channels36. Then the alignment of the trajectories on both channels was 
perform by using a linear affine transformation. 

The H2B trajectories were divided in two groups based on their overlapping with Telomere 
trajectories. To do so, a maximum spatial distance of 250 nm between the positions of both 
trajectories (Telomeres and H2B) was set to identify telomeric H2B. Note that both 
trajectories should overlap also in time, meaning that they are present on the same frame. 

Tracking: 
TrackMate84 was used for localization and tracking of the single molecules. For the 
localization step, we used the LoG detector with sub-pixel localization enabled and for the 
tracking step, the Simple LAP tracker with a maximum frame gap of 2 frames. 

The images were segmented by manually selecting the nuclear areas from Hoesch33342 
signal, corresponding to each cell nucleus. We performed this tracking procedure on each 
individual nucleus separately. 

Different input parameters were used for each imaging condition. The intensity threshold for 
the localizations was defined to minimize false localizations: 150 for the 500 ms data, and 70 
for the 15 ms data. In both cases the Linking max distance was set to 400 nm and the gap-
closing max distance to 200 nm. The estimated blob diameter of the diffraction-limited spot 
was set to 800 nm (5 pixels). The list of trajectories were save as an xml file for their analysis. 

Trajectory analysis: 
The trajectories were analyzed using a custom written Matlab code, that makes use of some 
functions from @msdanalyzer138. It is publicly available at https://github.com/PabloAu/Single-
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Molecule-Tracking-Analysis. First, it filters the trajectories based on their track length. For the 
analysis of the trajectories from 15ms exposure time, only those tracks longer than 4 frames 
were analyzed. For the 500ms data, all the trajectories were analyzed and 1 frame 
localizations were consider to be binding events lasting 500ms. Then it classifies the 
trajectories in different motion types. After having the subgroups, the code computes 
quantitative analysis on the trajectories for extracting multiple measures. Finally, it compares 
the results from the different cell conditions. 

The MSD curves where obtained as a time average from the trajectories (T-MSD), assuming 
that the displacements at different times are equivalent fulfilling the ergodic principle85: 

𝑇𝑀𝑆𝐷 =	
1

𝑁 −𝑚 · ^ U𝑥`U𝑡: + 𝑚 · 𝑡M/NY −	𝑥`(𝑡:)Y
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The time ensemble average of the MSD (TE-MSD) is the average of the T-MSD computed 
on all the trajectories for a particular condition: 
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1
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Where tlag is the exposure time of the experiment, in our case 15ms.  

TEMSD was plotted as a discrete bar plot showing the average and standard deviation for 
each time lag point (Figure 50, 52 and 53).  

Trajectory classification: 
The trajectories were classified into two different subgroups based on their motion type: 
Confined and Brownian/Directed. This was done by fitting a power law function to each 
individual TMSD curve83: 

𝑇𝑀𝑆𝐷 = 4 · 𝐷 · 𝑡M/Ne , 

where D is the diffusion coefficient and tlag is the time lag between the different time points 
of the track. α is called the anomalous coefficient. Trajectories with α < 1 were considered as 
Confined and with α ≥ 1 as Brownian/Directed.  

In addition, a third group of trajectories performing both confined motion and free diffusion 
where identified and separated. First, we iterate through all the trajectories searching for 
frame-to-frame jumps that are bigger than the mean frame-to-frame jump of the track plus a 
spatial threshold multiplied by the standard deviation of the frame to frame jump of the track. 
We used 1.5 for that spatial threshold. In addition, the total distance travelled by butterfly 
trajectories must be bigger than a distance threshold multiplied by the mean frame-to-frame 
jump of the track. We used a value of 8 for that distance threshold. Once identified, the 
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butterfly trajectories were segmented into their multiple Confined and Brownian/Directed 
parts based on their geometrical properties. A Brownian/Directed segment must fulfill the 
condition that a minimum percentage of its points lie outside the polygon (convex hull) 
formed by the points of previous and posterior segments of the trajectory. We used a 
minimum percentage of outside points of 30%. In addition, we imposed a minimum linearity 
to the Directed/Brownian segments. Linearity was calculated by dividing the distance 
between the first and last point of a certain segment by the sum of displacements of all the 
individual jumps of that segment. We iterated using segments of 3 points and used a linearity 
ratio threshold of 0.8 so that a segment is considered Brownian/Directed type (see Figure 49 
and software at https://github.com/PabloAu/Single-Molecule-Tracking-Analysis) 

Diffusion: 
For an accurate calculation of the diffusion coefficient of the confined trajectories, only the 
first 3 points of each T-MSD curve corresponding to each trajectory were fitted with linear 
distribution139,140: 
 

𝑇𝑀𝑆𝐷 = 4 · 𝐷 · 𝑡M/N + 𝑜𝑓𝑓𝑠𝑒𝑡 
 

A threshold on the coefficient of determination R2 ≥ 0.8 was set to filter out the bad fits. Since 
the distribution of the diffusion coefficients (D) follows a log-normal distribution229, the 
Log10(D) was used for a proper visualization of the different subpopulations of trajectories. 
Consequently, a Gaussian Bi-modal distribution was fit of that Log10(D) distribution. 
 
Circle confined diffusion model: 
The radius of confinement of the whole population of trajectories was estimated by fitting a 
confined circle diffusion model to the time ensemble of the confined trajectories88: 

𝑇𝐸𝑀𝑆𝐷 =	𝑅% · h1 − 𝑒
��·�jklmn·�opq

 * s + 𝑂, 

where R is the radius of confinement and Dmicro the diffusion coefficient at short time scales. 
O is an offset value that comes from the localization precision limit of SMLM techniques. In 
this case, we have estimated a localization precision of around 50nm from the experimental 
data 

Residence Times: 
The residence times of H2B bound to chromatin were extracted from the 500 ms data, which 
measures chromatin dynamics on a higher time scale. In this case, all the trajectories were 
analyzed, considering that a one-frame localization is a binding event which has a residence 
time of 500 ms. The dissociation kinetics were estimated from the track length of each 
individual trajectory. First, the track duration distribution is transformed into the survival 
fraction of molecules defined by 1 – Cumulative Distribution Function of the track lengths 
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(1-CDF). Then, we fit a two-component exponential decay function to the survival 
fraction44,92,230: 

𝐹(𝑡) = 	𝑓 · 	𝑒Rw£·; + (1 − 𝑓) · 𝑒Rw*·;, 

where f is the fraction belonging to each population, k1 the short-live component associated 
with unspecific chromatin binding and k2 the long-live component associated with specific 
chromatin binding. 

In addition, a photobleaching correction was performed by fitting a double exponential to the 
evolution of the number of localizations over time during the experiment92. 

𝑁(𝑡) = 	𝑓5 · 	 𝑒Rw¤£·; + (1 − 𝑓5) · 𝑒Rw¤*·; 

Then, the corrected residence times are obtained from the following relation: 

𝑘SA/-9�A¥ = 	𝑘CF��AC;A¥ +	𝑘5MA/C�:)N , 

where kmeasured is the dissociation rate constant estimated directly from the experimental 
data, kb is the photobleaching kinetics constant and kcorrected is the dissociation rate constant 
after correction. Note that k is in s-1 units and the residence times are inversely proportional.  

For a further control, fixed cells were imaged under the same experimental conditions, 
obtaining similar values for the different cell types, which were larger than those of live cells, 
assuring that measured residence times are related with protein instability due to live cell 
activity. 
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