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Castelló de la Plana, Novembre de 2010.

Josep Planelles Fuster Joan Ignasi Climente Plasencia



ii
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Ignasi Climente per oferir-me la possibilitat de realitzar aquests estudis de
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persones. En aquest sentit, agraeixo als professors Mart́ı Pi i Manuel Bar-
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Introducció

Molts dels esforços realitzats durant les darreres dècades en la industria
dels semiconductors han estat dirigits cap a la miniaturització de disposi-
tius electrònics que permeta incorporar més i més elements lògics en un
xip. Els continus avanços en aquesta direcció són els responsables de que
la denominada llei de Moore es segueixi acomplint hui en dia. Enunciada
en 1965 pel cofundador de l’empresa Intel, Gordon E. Moore, aquesta llei
estableix que la velocitat dels nostres ordenadors es dobla cada dos anys
aproximadament [1]. No obstant, fou el mateix Moore qui recentment va
posar el sostre a aquesta tendència al afirmar que cap al 2020 ens trobaŕıem
amb un obstacle insalvable que aturaria el creixement de la capacitat dels
ordinadors convencionals: les lleis de la f́ısica.

Certament, a mesura que la mida d’un semiconductor es redueix des d’un
cristall continu (bulk) fins un règim molecular, moltes de les seues propietats
observables es veuen alterades. Aix́ı, per exemple, la separació energètica
entre l’estat electrònic ocupat de més alta energia i l’estat buit de més baixa
energia (l’anomenat band gap) es pot arribar a incrementar fins en un pa-
rell d’electronvolts, i el temps de vida mitja de l’excitació permesa de més
baixa energia es redueix entre dos i tres ordres de magnitud [2]. L’evolució,
però, no és continua, i aquest és el fet al qual Moore feia referència. Quan
les dimensions d’un semiconductor s’aproximen a una escala nanoscòpica,
el moviment dels seus electrons de conducció es troba confinat en un espai
suficientment menut per què entren en joc efectes quàntics. En aquestes
condicions, els dispositius han de ser tractats com sistemes quàntics que so-
vint no segueixen les lleis f́ısiques a partir de les quals s’ha constrüıt tota la
tecnologia i els algorismes de la informàtica convencional. Aquest represen-
ta, per tant, el ĺımit f́ısic dels ordinadors conforme els coneixem hui en dia.
En canvi, hi ha moltes esperances posades en l’aparició d’una nova generació
d’ordinadors quàntics que vindrà a suplir i millorar els actuals ordinadors
digitals [3].
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El de la computació quàntica és un exemple més entre les nombroses
promeses tecnològiques responsables de que la recerca i desenvolupament
de materials a escala nanoscòpica haja sigut l’activitat més important en el
camp dels semiconductors durant els últims trenta anys. Aquesta tesi està
dedicada a l’estudi teòric d’un tipus de nanoestructures que es troben en el
centre d’aquest vast creixement tecnològic, els punts quàntics.

Un punt quàntic (en anglès, quantum dot) és una estructura zerodimensi-
onal en la qual el moviment dels portadors de càrrega d’excés (tant electrons
de conducció com forats de valència) està confinat a escala nanoscòpica en les
tres direccions espacials. Com a conseqüència d’aquest confinament quàntic
l’espectre d’energies esdevé discret, i les degeneracions i separacions entre
nivells depenen de la grandària, forma i composició del punt quàntic. Aques-
ta és, de fet, una de les propietats més interessants dels punts quàntics, ja
que ofereix la possibilitat de dissenyar el seu espectre d’energies en el procés
de fabricació.

En aquest sentit, grans avanços han tingut lloc des que els primers
punts quàntics foren obtinguts via mètodes de tipus top-down basats en
l’ús de tècniques litogràfiques i atacs amb agents corrosius [4]. No obstant,
aquests primers punts quàntics tenien més bé una mida mesoscòpica i les
seues propietats òptiques es veien fortament degradades per l’agressivitat
de les tècniques litogràfiques. Uns resultats més prometedors ofereixen les
denominades metodologies bottom-up, les quals permeten la śıntesi de punts
quàntics a escala nanoscòpica mitjançant un control a nivell atòmic dels
processos de creixement i nucleació. Aix́ı per exemple, tècniques de crei-
xement autoordenat aconsegueixen la formació de punts quàntics en forma
de discs [5], lents [6], o fins i tot anells (quantum rings) [7] disposats sobre
una matriu d’un altre material semiconductor. Mentre que les denominades
tècniques de qúımica humida permeten la śıntesi dels punts quàntics més
menuts (sovint anomenats nanocristalls) de diverses formes geomètriques,
com ara esferes i varetes, dispersats en suspensions col·löıdals [8].

A banda de les potencials aplicacions tecnològiques d’aquestes nanoes-
tructures, que s’inclouen en camps de tant ressò com l’anomenada compu-
tació quàntica [9], la criptografia quàntica [10], la fotovoltaica [11] o la lluita
contra el càncer [12], els punts quàntics són l’escenari ideal on observar i ma-
nipular efectes quàntics. El motiu resideix en que a diferència del que ocorre
en àtoms i molècules, els portadors de càrrega d’excés d’un punt quàntic no
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estan sotmesos a la intensa atracció Coulómbica dels nuclis, sinó que es tro-
ben deslocalitzats per tota la nanoestructura. Per tant, aquestos portadors
de càrrega són molt més sensibles a pertorbacions externes, fet que permet
estudiar en un laboratori alts règims de correlació electrònica o confinament
magnètic dif́ıcilment observables en àtoms i molècules.

Probablement, les tècniques més emprades per estudiar experimental-
ment els punts quàntics siguen aquelles basades en espectroscòpia òptica [13,
14], bé mesurant transicions entre les bandes de valència i conducció (inter-
banda), o entre els estats d’una mateixa banda (intrabanda). A part, l’es-
pectroscòpia d’efecte túnel (scanning tunneling spectroscopy) s’ha convertit
en una tècnica vital en l’estudi dels punts quàntics [15]. En aquest tipus
d’experiments es mesura el transport d’electrons a través d’un punt quàntic
feblement acoblat a dos elèctrodes metàl·lics, de manera que controlant la
velocitat en que els electrons són transferits i extrets del semiconductor es
pot estudiar no sols l’espectre monoelectrònic, sinó també estats multie-
lectrònics. En aquest últim cas l’espectroscòpia d’efecte túnel permet obser-
var un dels fenòmens més importants de la f́ısica dels sistemes nanoscòpics,
el denominat bloqueig de Coulomb (Coulomb blockade) [16–18]. Aquest con-
sisteix bàsicament en la supressió del transport a través d’un punt quàntic
degut a que, per afegir un nou electró al sistema, es requereix una aportació
d’energia que compense la interacció electrostàtica d’aquest electró amb els
que ja es troben en el punt quàntic.

Des d’un punt de vista teòric, alguns del conceptes bàsics del comporta-
ment dels materials semiconductors nanoscòpics s’han pogut derivar a partir
d’estudis previs en cristalls macroscòpics. En canvi, algunes observacions ex-
perimentals, moltes de les quals han resultat ser d’un alt interès cient́ıfic i
tecnològic, han requerit la formulació de nous models teòrics que permetin
la seua interpretació. En aquest sentit, una de les majors complicacions que
presenta l’estudi teòric dels punts quàntics resideix en que es troben a mig
camı́ entre el món molecular i el macroscòpic. Açò implica, per una banda,
que no es poden considerar com sistemes infinits on aplicar condicions de
contorn periòdiques, ja que es ben sabut que moltes de les seues propietats
deriven concretament del seua mida finita. Per una altra banda, un punt
quàntic convencional està format per uns quants milers d’àtoms, cosa que
invalida els mètodes atomı́stics ab initio emprats en simulacions moleculars,
ja que aquestos donarien lloc a càlculs computacionalment intractables. Per
aquests motius es habitual l’ús de metodologies emṕıriques més senzilles i
computacionalment més tractables, com ara l’aproximació de massa efectiva
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(EMA) i mètodes k·p. Aquests mètodes que en un principi foren pensats
per estudiar sistemes macroscòpics, s’adapten a l’estudi d’heteroestructures
nanoscòpiques gràcies a l’aproximació de funció envolupant (EFA).

En aquesta tesi s’estudien diversos aspectes de la f́ısica dels punts quàntics
semiconductors fent ús de simulacions teòriques basades en l’aproximació de
massa efectiva i funció envolupant. Els estudis realitzats pretenen anar més
enllà dels efectes derivats directament de confinar portadors de càrrega en
unes dimensions nanoscòpiques, de manera que incorporen l’acció de factors
addicionals en el tractament teòric. Es considera l’acció de camps externs
magnètics i elèctrics, aix́ı com l’anomenat confinament dielèctric, el qual
sorgeix a causa de la diferent constant dielèctrica entre els materials que
conformen els punts quàntics i les matrius en les que es solen dispersar.
Paral·lelament, en ocasions també es considera l’efecte de les interaccions
Coulòmbiques que tenen lloc quan més d’un portador de càrrega d’excés
resideix en el sistema. En concret considerarem sistemes poblats amb un
alt nombre d’electrons en la banda de conducció, i també estats excitònics.
formats per parells electró de conducció i forat de valència.

La present memòria està estructurada de la següent manera:

En el caṕıtol 1 es fa un breu repàs sobre alguns aspectes teòrics de la
f́ısica dels semiconductors amb la intenció d’introduir al lector en el marc
teòric on es desenvolupen els treballs exposats en aquesta memòria. Aix́ı,
es parteix d’una descripció qualitativa de la formació de les bandes d’ener-
gia que conformen l’estructura electrònica d’un cristall, per posteriorment
introduir els formalismes de massa efectiva i funció envolupant. Finalment,
es revisen les tècniques emprades per tractar els sistemes multipart́ıcula,
posant especial esment en el formalisme seguit per descriure els complexes
excitònics. 1

En el caṕıtol 2 s’estudia la resposta a camps magnètics externs per part
de diversos sistemes formats per anells quàntics: dos anells acoblats lateral-
ment, una xarxa periòdica bidimensional d’antianells quàntics i dos anells
acoblats verticalment. Prèviament, es realitza una petita introducció teòrica
sobre com considerar l’efecte d’un camp magnètic extern en el formalisme

1Altres consideracions teòriques addicionals s’aniran exposant al llarg de la memòria
per ser més espećıfiques de cada caṕıtol, o perquè meresquen major atenció degut a la
pròpia contribució del nostre grup de recerca en el seu desenvolupament.
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EMA-EFA, el qual es resumeix en fer ús de l’operador de moment canònic
conjugat on s’inclou el potencial vector del camp. Mentre que els dos pri-
mers estudis es centren en l’evolució magnètica de l’espectre monoelectrònic,
en l’últim cas es considera que el sistema d’anells acoblats verticalment està
poblat amb un elevat nombre d’electrons, fins 40. Per avaluar les energies
i densitats electròniques d’aquest sistema es realitzen càlculs basats en la
teoria del funcional de la densitat (DFT) en aproximació de densitat local
d’esṕın (LSDA).

En el caṕıtol 3 s’estudia l’efecte del confinament dielèctric sobre les pro-
pietats electroòptiques de nanocristalls semiconductors t́ıpicament fabricats
mitjançant tècniques de śıntesi col·loidal. Com a punt de partida s’expo-
sen les contribucions a l’energia dels portadors de càrrega que sorgeixen a
conseqüència del desajust de constant dielèctrica entre els nanocristalls i les
matrius on aquestos es troben immersos. A continuació el caṕıtol està estruc-
turat en tres parts. En la primera s’estudien nanocristalls esfèrics poblats
amb un elevat nombre d’electrons de conducció. Per a dur a terme aquesta
tasca, es desenvolupa un mètode DFT-LSDA que considera una constant
dielèctrica i una massa efectiva dependents de la posició, aix́ı com els efectes
derivats d’una dispersió no parabòlica de la banda de conducció. Poste-
riorment es realitza un estudi de l’efecte del confinament dielèctric sobre
les propietats òptiques de nanocristalls esfèrics. Concretament, s’investi-
ga la possibilitat de formar estats excitònics superficials on els portadors de
càrrega es veuen atrapats en el denominat pou d’autopolarització dielèctrica.
Finalment, en l’última part del caṕıtol es fa un salt cap a l’estudi de nano-
estructures de simetria més baixa que l’esfèrica, els denominats nanorods.
Primer es realitza un estudi comparatiu de l’efecte del medi dielèctric ex-
tern sobre nanocristalls esfèrics i nanorods, on s’observa una resposta molt
més acusada per part dels segons amb importants conseqüències en les se-
ues propietats observables. Aquesta tendència es confirma en l’última part
del caṕıtol, on es realitza un estudi exhaustiu dels efectes del confinament
dielèctric sobre excitons confinats en nanorods homogenis, aix́ı com hetero-
genis on electrons i forats es localitzen preferentment en parts diferents de
la nanoestructura.

En el caṕıtol 4 es realitza un estudi DFT-LSDA de l’estructura electrònica
de nanorods poblats fins amb 20 electrons. En primer lloc, es calculen els
espectres d’energies d’addició al llarg d’un procés en el que un nanocristall
esfèric es va transformant en un nanorod fins arribar a formar un sistema
quasi unidimensional. En segon lloc, s’estudien les transicions de fase que
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experimenta la densitat electrònica de l’estat fonamental a mesura que els
nanorods esdevenen més i més anisotròpics i s’assoleix un major règim de
correlació electrònica.

Finalment, en el caṕıtol 5 es realitza un breu resum de la present memòria
de tesi on també s’enumeren les majors conclusions dels treballs presentats.

El llistat que s’enumera a continuació conforma la col·lecció d’articles
publicats (o enviats a publicar) en revistes cient́ıfiques de caràcter internaci-
onal fruit de la tasca investigadora desenvolupada al llarg d’aquest projecte
de tesi doctoral. Al final d’aquesta memòria s’adjunta una còpia de cada un
d’ells.
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Chapter 1

Introductory theoretical
aspects

The aim of this chapter is to perform a brief description of the theoretical
frame in which the works presented throughout this thesis are developed.
Further specific details that can be found in books or reference papers are
skipped. Others, however, will be introduced in subsequent chapters when
necessary.

Crystal electronic structure

An ideal crystal is a solid material in which the constituent atoms present
an spatial ordering periodic in the three spatial directions. This crystalline
structure is held together through the chemical bonds formed by the va-
lence electrons of the constituent atoms. The remaining core electrons are,
in turn, strongly attracted by the atomic centers forming closed shell elec-
tronic configurations, and therefore do not participate in the bond charge
distribution nor contribute to the electronic properties investigated here.

Let us consider the case of III-V binary compounds like GaAs which crys-
tallize in a zinc-blende structure where the elementary unit cell contains an
atom of each type. In these systems, there are 8 outer electrons per unit cell
which contribute to the chemical bonds. These electrons hybridize to form
molecular orbitals to bind an atom of one type (say Ga) and its four near-
est neighbors (As). As usual, bonding and antibonding orbitals are formed
in this hybridization process, and the valence electrons are distributed in
some of them, leaving others unoccupied, in the most stable configuration.

1



2 Chapter 1: Introductory theoretical aspects

Because there is a large number of unit cells, due to the crystal periodicity,
these molecular orbitals broaden into continuous energy bands which form
the crystal energy spectrum.

Then, the ground state of an ideal semiconductor crystal is formed by
a set of fully occupied bands (valence bands) that are energetically sepa-
rated by the band gap (Eg) from a set of unoccupied bands (conduction
bands). For the case of direct gap semiconductors, as the ones studied here,
the most interesting region of the band structure, namely, the energy top
and bottom of the valence and conduction bands respectively, occurs at the
center of the Brillouin zone (the so-called Γ point). Figure 1.1 shows the
energy dispersion vs. the wave vector k around this region. As illustrated
in the figure, four energy bands, one conduction band and three valence
bands, appear near the band edge. These bands are well separated from the
so-called remote bands, which is why the electro-optical properties of most
direct semiconductors are mainly determined by the physics of these four
bands.

E

k

conduction band

valence bands

one band model

Eg

Figure 1.1: Schematic representation of the energy band structure of a direct gap semiconductor
around the center of the Brillouin region.

In this thesis, interest is paid in studying excited states of the crystal
in which one or more electrons are promoted to the lowest conduction band
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(excess electrons). Such excited configuration can be experimentally per-
formed in semiconductor nanostructures by means of methodologies such
as single-electron charging from metallic reservoirs, doping or optical exci-
tation of electrons from the valence to the conduction band. In the latter
case, empty levels (holes) are also generated in the valence band so that
electron-hole pairs are created. Due to their mutual Coulomb attraction,
the electron-hole pairs can form bound states known as excitons. Thus, the
theoretical treatments carried out along this text are mainly devoted to de-
scribe electrons in the lowest conduction band and occasionally holes in the
highest valence band.

The effective mass approximation

Neglecting spin-orbit coupling and relativistic effects, the electronic states
of an ideal crystal may be obtained from the eigenstates of the following
Hamiltonian:

Ĥ =
∑
i

p̂2i
2mi

+
∑
I

p̂2I
2mI

+
∑
i<j

e2

4πε0|ri − rj |
+
∑
I<J

ZIZJe
2

4πε0|RI −RJ |

−
∑
i,I

ZIe
2

4πε0|RI − ri|
. (1.1)

In this expression, the different terms are respectively, the kinetic en-
ergy of electrons and nuclei, and the electron-electron, nucleus-nucleus, and
electron-nucleus Coulomb interactions. As can be easily deduced, finding
the exact solution to the corresponding eigenvalue equation is not possible
and therefore a set of physically acceptable approximations have to be in-
troduced in order to simplify the problem.

As a first approximation, due to the higher electron velocity, it can be
considered that the nuclei are at rest, and hence, that the electronic motion
can be evaluated for a static nuclear arrangement1. Secondly, it can be con-
sidered that each electron moves under the influence of an averaged electro-
static potential Vcr(r) which describes interactions with the other electrons
in the crystal and with the static nuclei. Such a potential can be viewed

1Electronic and nuclear motions are coupled through the so-called electron-phonon
interaction, which will not be considered here.
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as a three-dimensional lattice of spherically symmetric ionic core potentials
screened by the inner shell electrons, which are further surrounded by the
covalent bond charge distributions. The motion of an electron will be then
given by: [

p̂2

2m0
+ Vcr(r)

]
ψn,k(r) = En,k ψn,k(r). (1.2)

Due to the periodicity of the effective potential Vcr(r), the Bloch theorem
enables to write the electron wave function as

ψn,k(r) = eik run,k(r), (1.3)

here, eik r is a plane wave slowly varying along the crystal, and un,k(r) is a
Bloch function which has the periodicity of the crystal and describes vari-
ations of the wave function within an elementary unit cell. It is labeled by
the wave vector k but also by the set of quantum numbers n corresponding
to the point symmetry of the crystal.

By introducing this ψn,k(r) in the wave equation 1.2 and after some
algebra, one obtains

(
− h̄

2m0
∇2 + Vcr(r) +

h̄2k2

2m0
+

h̄

m0
k p̂

)
︸ ︷︷ ︸

Ĥkp

unk(r) = Enkunk(r), (1.4)

where the terms in brackets constitute the so-called k· p Hamiltonian. When
k = 0 , i.e., the center of the Brillouin zone or Γ point, the solutions of equa-
tion 1.4 form a complete set of functions {un,0, n = 1, 2, 3, . . . }, that allows
one to construct the wave function for any k 6= 0 as a linear combination of
these Bloch functions as follows,

unk(r) =
∞∑
n′
un′0(r)cnn′ . (1.5)

In the above expression, the coefficients cnn′ are known as envelope func-
tions, and are given as the eigenfunctions of an effective Hamiltonian that
is fixed by the details of the band structure of the crystal.

Since interest is here focused on electrons in the conduction band, which
is normally well separated from the valence bands (except in narrow gap
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semiconductors), one can adopt the simplification of studying this energy
band independently (one band model). Thereby, the wave function of an
excited state consisting of an electron in the conduction band is just formed
from a Bloch function and the corresponding envelope function. In other
words, the k· p Hamiltonian is only expanded in an element of the basis 1.5,
which yields

〈un0 | Ĥkp | un0〉 = En0 +
k2

2m0
. (1.6)

This simplified model leads to a parabolic energy dispersion equivalent to
the one of a freely moving electron (E(k) = h̄ k2

2m0
). Actually, as illustrated

in figure 1.1, the region of the conduction band near the k = 0 point has
a roughly parabolic shape. However, the curvature of this parabola differs
from the free electron one and depends on the specific composition and
crystalline structure of the semiconductor crystal. In the effective mass
approximation (EMA) this different curvature is introduced by means of an
empirical parameter called effective mass (m∗e), which is obtained from a
perturbative treatment of the k· p Hamiltonian. Therein, the unperturbed
Hamiltonian and the perturbation are defined as

Ĥ0 = − h̄

2m0
∇2 + Vcr(r), (1.7)

Ĥ′ = h̄2k2

2m0
+

h̄

m0
k p̂, (1.8)

and the energy Enk up to second order of perturbation is

Enk = En0 +
∑

α=x,y,z

k2α
2

[
1

m0
+

2

m2
0

∑
n′

| Pα
nn′ |2

En0 − En′0

]
︸ ︷︷ ︸

1
m∗

e

. (1.9)

In the above expression, the terms in brackets are identified as the inverse
of the electron effective mass (m∗e), where Pα

nn′ is an empirical parameter
determined through experimental measurements or atomistic calculations.
Therefore, within the EMA formalism the conduction band dispersion is
given by

E(k) = En0 +
h̄ k2

2m∗e
, (1.10)

and the effective Hamiltonian yielding the above energy is
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Ĥ =
p̂2

2m∗e
. (1.11)

It is therefore easy to conclude that for the case of an infinite periodic crys-
tal (so-called bulk) the envelope function of the conduction band is a plane
wave, as indicated by the Bloch theorem (equation 1.3).

In summary, within the EMA the electrons in the conduction band of a
crystal are thought of as freely moving particles where the influence of the
crystal electrostatic potential and the interactions with the other electrons
are taken into account by the introduction of the effective mass. The latter
depends on material-specific parameters such as the type of crystal structure,
chemical composition and bonding energies.

Nanoscopic heterostructures: the envelope function
approximation

The theoretical review performed above has been done under the assump-
tion of an infinite crystal. Nevertheless, the present thesis is devoted to
semiconductor heterostructures with nanoscopic sizes. In such systems, the
electron motion is confined inside the nanostructure boundaries, which is
why the energy spectrum becomes quantized into discrete levels and the
ground state is lifted from the bottom of the bulk conduction band.

This spatial confinement is here interpreted as a step-like potential V (r)
whose height is set to mimic the band mismatch (band offset) that takes
place when two materials of different band gap are placed adjacent to each
other and form an heterojunction (see figure 1.2). Then, in order to obtain
the envelope function of an electron in the conduction band states of a
nanostructure the effective Hamiltonian to solve is:

Ĥ =
p̂2

2m∗e
+ V (r) (1.12)

The envelope function approximation (EFA) is the name given to the
mathematical justification of a series of arguments which enable to use the
EMA formalism to study heterostructured nanoscopic materials by means
of Hamiltonians like 1.12 (see for example references [19] and [20]). Among
other premises, the EFA considers that all materials forming the heterostruc-
ture present the same lattice structure and similar lattice constants, which
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Figure 1.2: One-dimensional representation of the spatial potentials V (r) in the conduction and
valence bands that occur at a heterojunction between two dissimilar materials

enables to assign the same Bloch function for the whole system. On the
other hand, due to slower variation of the envelope function with respect
to the Bloch function, the first one can be evaluated independently of the
second one.

One of the strengths of the EMA-EFA formalism is the relative simplicity
to include the effect of additional confinements, such as electric or magnetic
fields, in the theoretical description of the electron motion. As will be shown
in subsequent chapters, this task is often reduced to introducing one-body
potentials in Hamiltonian 1.12. In such cases, the single-particle energies
and envelope functions of the systems under study are here achieved by nu-
merical integration of the corresponding effective Hamiltonian following a
finite differences scheme.

Many-particle systems

Frequently throughout this thesis, systems hosting more than one conduc-
tion band electron or an electron-hole pair are studied. The theoretical
modeling of such systems involves the introduction in the effective Hamil-
tonian of a Coulomb term of type 1/ri,j . As it is well known, this term
greatly hinders the solution of the corresponding eigenvalue equation, this
being more problematic with increasing the number of interacting particles.
In the works reviewed here two methodologies arisen from different founda-
tions have been used to tackle the problem of interacting particle systems.
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On the one hand, configuration interaction (CI) calculations have been
carried out when the number of conduction band electrons is small. Within
this technique, the full interacting Hamiltonian including the Coulomb in-
teraction term,

Ĥ =
∑
i

p̂2

2m∗e
+
∑
i

V (r) +
∑
i<j

e2

4πε0|ri − rj |
, (1.13)

is expanded in a basis of Slater determinants built up from single-particle
functions. Such treatment renders the closest energies and wave functions
to the exact solution. Nonetheless, it becomes computationally intractable
in many-electron regimes. In those cases, density functional theory (DFT)
calculations within the self-consistent formulation of Kohn-Sham have been
carried out to obtain the ground state energy and electron charge density.
A detailed description of these methods to deal with electronic correlations
is not given here since both CI and DFT methodologies are well known and
documented (see for example references [21,22]).

The formalism followed to describe excitonic states is worth to be out-
lined, though. As briefly mentioned, excitons are formed when photons
of energy comparable to the band gap promote electrons from the valence
band, thus creating holes in this band, to the conduction band. Then, the
Coulomb attraction between opposite charges leads to formation of bound
electron-hole pairs. In order to theoretically model excitons, in this thesis
both the electron and the hole have been studied with a one band model,
so that the exciton Hamiltonian can be written as

Ĥ =
p̂2

2m∗e
+

p̂2

2m∗h
+ V e(re) + V h(rh)−

e2

4πε0|re − rh|
, (1.14)

the last term being the attractive Coulomb interaction. Since just two par-
ticles come into play, the exciton energy and wave functions are obtained in
this thesis exclusively by means of CI calculations. In this case, however, the
Hamiltonians are expanded in a basis of Hartree products since they deal
with distinguishable particles not requiring an antisymmetric wave function.

To define the exciton energy, the convention is to put the zero of the
energy at the top of the valence band. Thus, as illustrated in figure 1.3,
in bulk, the total energy of the exciton is simply the energy of the free
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electron-free hole pair (i.e., the band gap) minus the electron-hole Coulomb
attraction (Eeh). However, in a heterostructure the single particle states are
shifted from the bands bottoms due to quantum confinement, so that two
additional components, namely, the electron and hole confinement energies,
have to be included in the exciton energy. Actually, the exciton energy data
presented throughout this text are expressed relative to the bulk band gap,
i.e., Eg has been subtracted to the total exciton energy.

E

k

Eg

Bulk semiconductor

Ex = Eg - Eeh

Eg

Semiconductor nanostructure

Ee

Eh

Ex = Eg + Ee + Eh - Eeh

Figure 1.3: Schematic diagrams showing the different contributions to the exciton energy (EX)
in bulk semiconductors and nanostructures.

Another interesting magnitude in the exciton physics is the binding en-
ergy (Eb). This refers to the electron-hole bond degree and is calculated
as

Eb = Ee + Eh − EX , (1.15)

where Ee,h are the electron and hole confinement energies and EX is the
exciton energy relative to the bulk band gap. In other words, the bind-
ing energy represents the Coulombic correction of a single-particle exciton
energy calculation.
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Chapter 2

Quantum ring complexes in
magnetic fields

Quantum rings (QRs) are semiconductor nanostructures with toroidal, dou-
bly connected, topology which provides them with special quantum proper-
ties, particularly interesting are those related with their response to magnetic
fields. When a QR is populated with excess carriers and is pierced by an
external magnetic field perpendicular to the ring plane, the carriers orbit a
magnetic flux in a closed trajectory, which offers the opportunity to observe
so-called Aharonov-Bohm effects, such as energy oscillations (see, e.g., figure
2.2(b)) [23, 24] or persistent currents in the ring [25–27]. This pure topo-
logical quantum effect, which was theoretically predicted in 1959 [23] and
experimentally confirmed in mesoscopic QRs many years later [28, 29], has
fascinated the physics community over the last two decades [30–32]. The
interest arises, partly, from theoretical motivations, but also from its poten-
tial applications in quantum information systems [33,34].

Nowadays, the advances in experimental synthesis by means of litho-
graphic [35], self-assembly [7,36] or droplet-epitaxy techniques [37,38] enable
the formation of QRs with nanoscale sizes, i.e., in the true quantum limit,
populated with a small number of electrons (see, e.g, the pictures shown in
figure 2.1). This development in growth techniques has been paralleled by
new experimental demonstrations of the Aharonov-Bohm effect by means
of far infrared and capacitance spectroscopy [39], as well as magnetization
measurements [27]. Likewise, although at one time it was thought that
Aharonov-Bohm effect was strictly linked to the presence of a net charge in
the ring, the effect has been predicted [40, 41] and experimentally observed

11



12 Chapter 2: Quantum ring complexes in magnetic fields

Figure 2.1: Atomic force microscopy images of a lithographed QR (left) and self-assembled QRs
(center and right).

through the magneto-photoluminescence spectrum of neutral excitons in
QRs [35] and in type-II QDs [42, 43]. This “optical”Aharonov-Bohm effect
originates in the non-zero exciton electric dipole momentum caused by the
different spatial distribution of the electron and the hole.

Given that the fundamental properties of single QRs are now reasonably
well understood, in the last years the aims of theoretical and experimen-
tal researchers have started focusing on the study of coupled QR entities
and their ability to form molecular states (QR molecules). The present
chapter reviews three studies on the electronic spectrum and magnetic field
response of different QR complexes: two laterally coupled QRs, two verti-
cally stacked QRs and a QR superlattice. Apart from the magnetic field
effect, the chapter stresses the point and translational symmetry properties
of the systems under study as well as the role of the electronic correlation on
the ground state of QR systems populated with many electrons. Previously,
a brief introduction on EMA Hamiltonians accounting for magnetic fields is
given in order to set the theoretical treatment employed to model charged
nanostructures under the effect of external magnetic fields.
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Figure 2.2: Magnetic field evolution of the single-particle spectra of a disk-shaped QD (left panel)
and a QR (right panel). Solid and dashed lines represent the spin up and down levels. While
in the QD the levels forming the first Landau band do not cross each other, the QR spectrum
displays many quasi-periodic crossings between states with different angular momentum.Taken
from Phys. Rev. B 70, 081301 (2004)

2.1 EMAHamiltonian in presence of magnetic fields

When a charged particle is under the influence of an external magnetic
field B the common momentum operator p̂ no longer describes properly the
kinetics of the system. Instead, the Hamiltonian must be rewritten using
the conjugated canonic momentum (p̂ − eA). In this expression e stands
for the electric charge while A is the potential vector which depends on the
direction of the magnetic field and accomplishes B = ∇∧A [44]. Thus, the
EMA Hamiltonian of a single electron confined by a spatial potential V (r)
in presence of a magnetic field is

Ĥ =
1

2m∗
(p̂− eA)2 + V (r), (2.1)

which after expanding the squared term, assuming a gauge ∇A = 0, reads

Ĥ =
p̂2

2m∗
− e

m∗
Ap̂+

e2

2m∗
A2 + V (r). (2.2)

The works presented in this chapter are mainly devoted to study the
effects of magnetic fields applied perpendicular to the ring plane, namely
the z direction. In such cases, it is usual to take the potential vector A =
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B
2 (−y, x, 0) (symmetric gauge) which fulfills the gauge condition ∇A = 0.
Bringing this potential vector into Hamiltonian 2.2 and operating leads to
the following expression (written in Cartesian coordinates),

Ĥ = − h̄2

2m∗
∇2+

e2B2

8m∗
(x2 + y2)︸ ︷︷ ︸

ρ

− eB

2m∗
ih̄

(
x
∂

∂y
− y

∂

∂x

)
︸ ︷︷ ︸

L̂z

+V (x, y, z). (2.3)

Finally, rewriting equation 2.3 in terms of the z component of the angular
momentum operator L̂z and the cyclotron frequency ωc = − eB

m∗ yields

Ĥ = − h̄2

2m∗
∇2 +

1

8
mω2

cρ+
1

2
ωcL̂z + V (x, y, z). (2.4)

Hence, the inclusion of the magnetic field causes the appearance of two
new terms in the EMA Hamiltonian. The linear term has predominant ef-
fects at low-intensity fields or strongly confined systems (e.g., atoms). On
the other hand, the quadratic term has the form of a harmonic potential,
and it will produce noticeable effects when it overtakes the spatial confin-
ing potential V . This condition will be favored at strong fields and weakly
confined systems (e.g., electron gases).

The inclusion of the electronic spin 1 entails two additional terms, namely,
the Zeeman effect term gµBσB (here g is the Landé factor, µB is the Bohr
magneton and σ is the electronic spin) and the spin-orbit coupling term.
The latter is normally neglected in studies of electrons in the conduction
band because this band is mainly formed from s-type orbitals so that the
spin-orbit coupling is very weak [45]. Consequently, the spin-orbit contri-
butions have not been regarded in the works reviewed along the present
chapter.

1In this chapter the electronic spin only plays a role in the DFT calculations of section
2.4.
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2.2 Laterally coupled quantum rings under the ef-
fect of magnetic fields

One of the most appealing properties of semiconductor QDs is their abil-
ity to form coupled entities. When two QDs are close enough they can
become tunnel-coupled, and in the ideal case of two identical dots their in-
dividual energy levels will be in resonance. When this occurs, the states
localized in the individual dots hybridize forming molecular-like states, in
good analogy with atomic molecular bonds [46–48]. However, today is al-
most inconceivable to experimentally grow two identical QDs, which is why
the resonance condition is set normally by means of external electric and
magnetic fields [49,50]. Unlike atomic molecules, these “artificial molecules”
offer the interesting possibility to engineer some of their properties, such as
the bond length, the material, shape and size of the individual components
or the number and nature of carriers, during and after the process of fab-
rication. Consequently, semiconductor artificial molecules have become the
ideal scenario to learn basic physics of molecular systems [51–53].

Vertically and laterally coupled QDs approximately disc-shaped have
been extensively studied since they were proposed as entangled photon emit-
ters [48], and candidate building blocks for the development of scalable
two-qubit logic gates, entering the challenging area of the quantum com-
putation [9]. However, the appearance of QR systems capable to undergo
molecular coupling took place later than their QD counterparts, which is
why the first works focusing on systems of coupled QRs were carried out in
the recent years. Works on complexes formed of vertically coupled [54–65]
and concentric QRs [37, 66–72] have been reported, but at the moment of
realization of the work exposed here, little attention had been yet paid on
systems of laterally coupled quantum rings (LCQRs). This is nonetheless an
interesting problem since LCQRs constitute artificial molecules with unique
topology (two LCQRs may be multiply-connected), what should be reflected
in unique energy structures. Besides, as can be observed in the right pic-
ture of figure 2.1, the formation of pairs of LCQRs in the synthesis of self-
assembled QRs is apparent [73,74].

This section reviews a study of the magnetic field effect on the low-lying
energy levels and wave functions of a single-electron located in two identi-
cal GaAs LCQRs [75]. This kind of self-assembled QRs normally present
much stronger spatial confinement in the axial direction than in the equato-
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Figure 2.3: Confining potential profile in the direction of molecular coupling

rial plane. As a consequence, one can assume the adiabatic approximation
in which the electron motion in the in-plane and vertical directions is de-
coupled. Therein, the bottom of the energy spectrum is formed from the
lowest vertical state and many in-plane states. By this reason, and follow-
ing a common modus operandi [35,39,76], a two-dimensional EMA and EFA
Hamiltonian describing the in-plane confinement is employed to study the
low-lying states of the system of two LCQRs:

Ĥ =
1

2m∗
(p̂+A)2 + V (x, y). (2.5)

Where V (x, y) is the step-like potential that confines the electron within
the lateral limits of the double ring heterostructure (see figure 2.3). The x
direction is taken as the direction of molecular coupling. The external mag-
netic field is applied parallel to the axial and the two in-plane axes. Hence,
three different potential vectors have to be employed. Actually, the choice
of A is limited by the requirement that it should make it possible to sepa-
rate x-y coordinates from z in the Hamiltonian [77]. The following potential
vectors fulfill this condition for each direction of the applied magnetic field
B: ABz = B

2 (−y, x, 0), ABx = B(0, 0, y) and ABy = B(0, 0,−x). Replac-
ing these potential vectors in equation 2.5 yields the Hamiltonian whose
eigenvalues and eigenvectors are analyzed below:

Ĥ(Bz) =
p̂2‖

2m∗
+

B2
z

8 m∗
(x2 + y2)− i

Bz

2 m∗
(x

∂

∂y
− y

∂

∂x
) + V (x, y), (2.6)

Ĥ(Bx) =
p̂2‖

2m∗
+

B2
x

2 m∗
y2 + V (x, y), (2.7)
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Ĥ(By) =
p̂2‖

2m∗
+

B2
y

2 m∗
x2 + V (x, y). (2.8)

Two identical QRs are considered, with an inner radius rin = 12 nm
and outer radius rout = 16 nm. A constant effective mass of m∗ = 0.067 is
employed. In turn, the confining potential is zero inside the QRs (GaAs)
and V0 = 0.262 eV outside (AlGaAs) [78]. The above Hamiltonians are nu-
merically integrated on a two-dimensional grid (x, y) for growing inter-ring
distances d, thus simulating a process of dissociation of the QR molecule.

d = 12 nm

d = 20 nm

d = 26 nm

d = 28 nm

d = 36 nm

d = 38 nm

Figure 2.4: Contours of the charge densities corresponding to the three lowest-lying electron
states (from left to right) of LCQRs with different inter-ring distance d at B = 0. Dotted lines
denote the confinement potential profile.

Let us start by studying the wave function localization in absence of ex-
ternal fields throughout the dissociation process of the molecule. This will
be useful later to analyze the magnetic response of the system. Particularly,
when the magnetic field is applied along the vertical direction, in which
case the field barely squeezes the wave functions. Figure 2.4 illustrates the
charge density of the three lowest-lying electron states for increasing values
of the inter-ring distance d. The dotted lines represent the corresponding
profiles of the confining potential barrier. When the QRs are strongly cou-
pled (d = 12 nm) the system resembles a single elliptical QR. Consequently
one can clearly identify an s-like ground state and two p-like excited states.
As can be seen in the figures, some excess of charge density is placed in
the roomy regions where the two QRs overlap. The available space in these
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regions first increases as the rings are separated which tends to localize the
ground and first excited states in such regions (d = 20 nm) until they even-
tually become the even and odd solutions of a double quantum well (d ∼ 26
nm). For further increased inter-ring distance, an inner arm of the LCQRs
is formed. The ground state tends to localize along it (d = 28 nm), thus
benefiting from a reduced centrifugal energy. Meanwhile, the excited states,
which are not so prone to minimize centrifugal forces due to their p-like sym-
metry, prefer to spread along the external arms of the rings. Finally, when
the rings begin to be detached (d = 36 nm) the tunneling between both
structures tends to localize the ground state mostly in the middle of the
LCQRs, an effect that vanishes as the rings are further separated (d = 38
nm) evolving into the ground state of single QRs. All along the dissociation
process, the second and higher excited states remain relatively insensitive
to changes in the inter-ring distance due to their larger kinetic energy.
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Figure 2.5: Low-lying electron energy levels vs axial magnetic field in LCQRs with different
inter-ring distances.

Figure 2.5 plots the evolution of the low-lying energy levels with an axial
magnetic field Bz for several inter-ring distances. As can be observed, when
the rings are strongly coupled (d = 12 nm) the spectrum displays the usual
Aharonov-Bohm oscillations of a single QR (see, e.g., figure2.2(b)) [32, 77],
except for the anticrossings appearing between sets of two consecutive en-
ergy levels. These anticrossings are a consequence of the lack of perfect
circular symmetry (C∞ point group) of the electron states. As stated ear-
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lier, in this coupling regime the system has a rather elliptical symmetry
(unlike single QRs). Therefore, the pairs of eigenvalues which cross one an-
other correspond to the two irreducible representations of the C2 symmetry
group. As the inter-ring distance increases, the ellipsoid formed by the rings
has a larger eccentricity resulting in larger anticrossings gaps. Furthermore,
the above mentioned trend of the two lowest-lying states to become the even
and odd solutions of a double quantum well, reduces the amplitude of their
oscillations due to a reduced efficiency to trap magnetic flux (see, e.g., the
d = 20 nm panel in figure 2.5). Eventually, when the ground state entirely
localizes along the inner arm of the LCQRs the limit behavior of a QD is
retrieved, as displayed in figure 2.5 for d = 26 nm and d = 28 nm. Finally,
when the rings are detached the spectra resemble that of isolated QRs with
a vanishing disturbance arising from the tunneling between the rings. Note
that in this weak-coupling limit, the period of the Aharonov-Bohm oscilla-
tions is larger than in the strongly coupled limit. This is due to the smaller
area of the inner holes of the individual rings as compared to the elliptical-
like structure.
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Figure 2.6: Low-lying electron energy levels vs in-plane magnetic field in LCQRs with different
inter-ring distances. The field is applied parallel to the dissociation axis. The insets show the
charge densities of the two lowest-lying electron states (from left to right) at B = 20 T.

The effect of external magnetic fields applied along the in-plane direc-
tions produces a less regular response in the energy spectra of the system
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because, in this case, the field reshapes the wave functions. Specifically,
fields applied along the dissociation axis Bx tend to squeeze the electron
wave function in the y direction, whereas the opposite holds for By. Fig-
ures 2.6 and 2.7 show the energy levels against magnetic fields applied along
the x and y directions for the same inter-ring distances discussed earlier.
When the rings are strongly coupled (d = 12 − 20 nm) a common trend to
form pairs of degenerate states is observed as the intensity of both fields is
increased. These are the even and odd solutions of double quantum wells
built up in the longitudinal (Bx) and transversal (By) edges of the ring
structure, whose formation is a direct consequence of the mentioned wave
function modeling by the in-plane fields. The formation of these double-
well solutions, which are illustrated in the insets of figures 2.6 and 2.7 for
the first pair of states, was also predicted for single QRs [77]. However, an
additional feature is present in a pair of LCQRs: the anisotropic spatial con-
finement leads to an anisotropic response to magnetic fields applied along
the x and y directions. An example is the field at which the double well
solutions are formed. Whereas the two lowest-lying states at d = 12 nm
become degenerate at B ∼ 5 T for By, they do so at B ∼ 8 T for Bx. In
intermediate regimes (see, e.g., d = 26 nm), the states which in absence of
external fields have singly-connected wave functions show a QD-like mag-
netic response, i.e., they depend weakly on the external field. Conversely,
the doubly-connected states keep on behaving as in a QR, forming double-
well solutions. Finally, for weakly coupled QRs (d ∼ 38 nm), different limits
are reached depending on the in-plane magnetic field direction. While By

tends to localize the charge density in the vicinity of the inter-ring region,
thus favoring tunneling phenomena, for Bx the states are alternatively lo-
calized in the inner or in the outer edges of the QRs.

To summarize, the electron states of nanoscopic LCQRs have been stud-
ied as a function of the inter-ring distance and external magnetic fields. In
absence of external fields the wave function localization changes dramati-
cally with the inter-ring distance which gives rise to characteristic magnetic
response for different coupling regimes. Moreover, a clearly anisotropic re-
sponse is found for in-plane fields applied parallel or perpendicular to the
LCQRs dissociation direction. These results suggest that magneto-optic ex-
periments on LCQRs may provide valuable information on the strength of
coupling and the orientation of the QR molecule.
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Figure 2.7: The same as figure 2.6 but the field is now applied perpendicular to the dissociation
axis

2.3 Magnetic modulation of two-dimensional su-
perlattices

The study of two-dimensional electron systems, often referred to as two-
dimensional electron gases (2DEGs), affected by magnetic and periodic
spatial confinements has long fascinated the theoretical physics commu-
nity [79–87]. The bewitching features of these systems proceed from the
competition of two characteristic length scales: the lattice constant, which
determines the periodicity of the lattice potential, and the Landau length,
which characterizes the semi-classical magnetic electron orbits. Thereby,
when a 2DEG is pierced by a perpendicular magnetic field, the magnetic
confinement quantizes the system into the well known Landau bands [88].
The interesting point for the present section appears though, when periodic
repulsive islands are grown over the two-dimensional plane. This periodic
spatial confinement splits the Landau bands into subbands, resulting in the
celebrated Hofstadter-Butterfly spectrum [89], a fractal magnetic dispersion
of the electronic spectrum first observed in tight-binding calculations on
2DEGs.

Semiconductor superlattices formed from arrays of QDs, which act as
potential wells for electrons, and antidots (ADs), which act as potential
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Figure 2.8: Confining potential profile along a lattice direction passing through the ARs centers.
Three neighbor spatial unit cells are represented.

barriers (see figure 2.9), have been widely studied [15]. Apart from the
mentioned butterfly-like spectrum, applying perpendicular magnetic fields
on these periodic systems produces various interesting phenomena, includ-
ing the quenching of the Hall effect [90] or the appearance of periodic energy
oscillations versus the magnetic field B (Aharonov-Bohm type) and versus
1/B (Subnikov-de Has type) [91,92]. Periodic systems formed from QRs or
antirings (ARs) remain almost unexplored despite the interesting magnetic
response of these ring-shaped nanostructures. The present section reviews
a study on the electronic properties of AR superlattices under the influence
of perpendicular magnetic fields [93]. The choice of ARs as building con-
stituents of the supperlattice is made with the intention of finding a spatial
confinement regime where an external magnetic field could induce ground
state transitions between states localized in the inner holes of the rings and
states delocalized over the outer region. Such a result would suggest the
possibility of employing self-assembled arrays of ARs as the building blocks
of magnetic field-controlled electron transport devices.

To theoretically model the system of an electron in the two-dimensional
(x, y) plane in presence of a perpendicular magnetic field, a single-particle
Hamiltonian similar to that presented in the previous section (equation 2.5)
is employed. Now, however, V (x, y) represents the periodic potential of
the lattice which is step-like: it has a constant value V0 in the potential
barrier regions and it is set to zero in the potential well regions (see fig-
ure 2.8). The eigenvalue equation of the Hamiltonian is numerically solved
on a two-dimensional grid which defines the spatial unit cell with an AR
located in the center. To this end, proper boundary conditions should be
employed that simulate the magnetic and periodic features of the system.
Here, the main difficulty lies in the fact that while the superlattice is peri-
odic, the Hamiltonian (including the magnetic potential vector) is not. As
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a consequence, common spatial translation operators (T̂ (R) = e−iR·p) do
not commute with the Hamiltonian and usual periodic boundary conditions
cannot be employed. The proper symmetry operations that fulfill the real
symmetry of the present system and, hence, commute with the Hamiltonian
are known as magnetotranslations [94]:

T̂A(R) = e−iR·(p−A). (2.9)

Here R stands for the translation vector, p is the momentum and A the
potential vector. To find the useful boundary conditions, T̂A(R)f(r) should
yield the function f(r) up to a phase factor eiφ,

T̂A(R)f(r) = eiR·A e−iR·p︸ ︷︷ ︸
T̂ (R)

f(r) = eiR·Af(r−R) = eiφf(r), (2.10)

then, regrouping the last two terms leads to

f(r) = e−iφeiR·Af(r−R), (2.11)

which are the practical boundary conditions to impose on the eigenfunctions.
Considering that to describe the uniform perpendicular magnetic field B =
(0, 0, B) the Landau gauge is employed A = B(0, x, 0), the specific boundary
conditions used in the calculations in both in-plane directions are:

f(r) = e−iφf(r−Rx), (2.12)

f(r) = e−iRyB xe−iφf(r−Ry). (2.13)

Where it can be observed that the Landau gauge preserves the translational
symmetry of the periodic potential along the vector Rx = (d, 0, 0) (with
d being the lattice constant) so that x-magnetotranslations are just spatial
translations.

By means of this outlined numerical procedure an InGaAs AR super-
lattice is studied. The rings have inner radii rin = 10 nm and outer radii
rout = 13 nm, and are embedded in an InAs matrix forming a square lattice
of constant d = 45 nm. Thus, the ARs have a radial section of 3 nm acting
as a barrier for the electrons in the InAs matrix due to a conduction band
offset between materials of V0 = 0.3 eV [95, 96]. Also, since the electrons
are placed in the InAs regions, the InAs electron effective mass has been
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a) b) c)

Figure 2.9: The three studied superlattices, formed from a) QDs, b) ARs and c) ADs. Nine
spatial unit cells are represented.

employed, m∗ = 0.03 [97, 98]. As discussed below, the electronic spectrum
of AR superlattices can be interpreted as a superposition of localized states
trapped in the inner AR cores (which act as a QD) and delocalized states
which do not penetrate into the AR regions (the ARs acting as ADs for these
states). By this reason, two additional superlattices are also studied for the
sake of comparison, namely, a superlattice of r = 10 nm InAs QDs (i.e.,
with the same radius as rin in the ARs superlattice) embedded in InGaAs,
and another of r = 13 nm InGaAs ADs (i.e., with radius equal to rout in the
ARs superlattice) embedded in InAs, both with the same lattice constant
d = 45 nm.

The results corresponding to the low-lying states at the Γ point of the
reciprocal lattices are shown in figure 2.10. The superlattice of QDs (panel
(a) in figure 2.10) shows the simplest magnetic dispersion of the energy lev-
els. These evolve as states of small isolated QDs, i.e., the field dependence
is almost exclusively linear. 2 What is more, even though the lattice has C4v

symmetry which reduces to C4 in presence of the magnetic field, the calcu-
lated electron charge densities display axial symmetry with a value nearly
zero at the unit cell border (not shown). This fact reveals that the QD
system does not feel the lattice point nor the translational symmetry and
behaves as a set of isolated circular QDs.

The opposite situation can be found in figure 2.10(c) for the AD super-
lattice spectrum. In this case, the electronic charge density is spread over
the InAs matrix with finite values at the cell border, thus the energy spec-

2Remember from section 2.1 that the quadratic term of the magnetic field has signifi-
cant effects when it takes over the spatial confinement which does not hold for the present
case.
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Figure 2.10: Energy spectra of two-dimensional superlattices (d = 45 nm) for three different
potential profiles as a function of the magnetic field (a) QD, (b) AR and (c) AD. Solid lines in
(b) correspond to states localized within the AR core, and thin lines to states delocalized over the
outer region. The thick solid line in (c) is the border between the weak field (W) and the high
field (H) regimes.

trum reveals the symmetry of the lattice. In the plot, the spectrum has
been divided in two regions by a solid thick line. The region labeled with
W corresponds to the weak magnetic field regime. In this area the periodic
spatial confinement dominates over the magnetic confinement, which is why
the spectrum does not show regularities. On the other hand, in the high
magnetic field regime (the region labeled with H) the magnetic confinement
predominates. Consequently, at first glance this part of the spectrum re-
sembles that of a single QR with the typical Aharonov-Bohm oscillations
due to the non-simply connected topology of the electron domain. How-
ever, some new features appear illustrating the symmetry of the system.
As can be observed, the spectrum forms sets of four levels which cross as
B increases, but at the same time anticross with the other sets of states.
Every set contains one instance of each of the four C4 symmetries, namely,
A, B, E+ and E− whose crossings are allowed by symmetry rules. The anti-
crossings consequently appear when one of these levels approach its similar
from the next set, in such a case crossings are not allowed by symmetry rules.

The spectrum of figure 2.10(b) can be viewed as a superposition of the
QD and AD spectra. The solid lines in the plot represent states completely
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localized within the ARs cores while the thin lines correspond to states delo-
calized over the outer InAs matrix. This spectrum provides evidence for the
sought property. At low magnetic fields, the ground state, which belongs
to the totally symmetric irreducible representation A of C4, is a delocalized
state. It becomes strongly destabilized by increasing the magnetic field due
to the diamagnetic term in the Hamiltonian which has an important effect
on this weakly confined states. On the other hand, the second A-symmetry
state is completely localized within the AR core (lowest solid line in fig-
ure 2.10(b)) and it is almost unaffected by the magnetic field (it behaves
like the M = 0 state of a QD). As a consequence, an anticrossing between
the two A states occurs and leads the ground state to become localized
for magnetic fields higher than 9 T. Therefore, the desired transition from
delocalized to localized electronic states has been proved. To illustrate it,
figure 2.11 shows the electron charge density of the ground state at B = 0
T and B = 15 T.

(a) (b)

Figure 2.11: Contours of the ground state electronic density at (a) B = 0 T and (b) B = 15 T
corresponding to the AR superlattice. Four neighbor spatial unit cells are represented.

In summary, the study of AR superlattices pierced by perpendicular
magnetic fields has demonstrated that the magnetic dispersion of the energy
spectrum can be viewed as a superposition of localized states trapped in the
AR cores and delocalized states which do not penetrate into the AR regions.
Besides, it has been proved that by choosing the appropriate AR geometry
and spacing, a transition from a delocalized to a localized ground state can
be externally controlled by the applied magnetic field. This suggest the
possibility of employing self-assembled arrays of ARs as the building blocks
of magnetic field-controlled transport nanodevices.
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2.4 Many-electron states of vertically coupled quan-
tum rings under perpendicular magnetic fields

Artificial molecules based on two vertically coupled QDs (QDMs) are proba-
bly the type of complexes consisting of coupled zero-dimensional nanostruc-
tures that has generated most research interest hitherto. One of the main
reasons for this is their aforementioned potential applications in solid state-
based quantum computation. To date, several models have been proposed
which make use of the charge and spin degrees of freedom of a small number
of carriers confined in QDMs to develop logical quantum gates (e.g., two
electrons [9, 99], an exciton [48] or a positively charged exciton [100]). In
parallel with this justified interest on the few-body physics of QDMs, during
the last decade a remarkable variety of works have focused their attention
on the study of many-electron states of two vertically coupled QDs. This
interest arose as a consequence of the realization of single-electron tunnel-
ing experiments on vertically coupled QDs which allowed to populate the
dots with a high number of electrons [50, 51, 101–103], thus revealing new
molecular-type phases that were highly sensitive to the inter-dot separation
(molecular coupling), the number of electrons and external magnetic fields.
The fact that these new phases can be monitored in the electron addition en-
ergies has motivated a considerable number of theoretical works that seek to
reproduce addition energy spectra of QDMs as well as to identify the many-
electron configurations as a function of the molecular coupling [51,104–106]
and external magnetic fields [102,103,107–109].

Recently, molecular-beam epitaxy techniques have enabled the synthe-
sis of quantum ring molecules (QRMs) in form of vertically stacked layers
of self-assembled QRs [54, 55], where the strain fields favor the nucleation
of upper rings right on top of bottom rings, so that the circular symmetry
of the QR systems is preserved. This achievement, has sparked theoretical
studies on the structure and optical response of vertically coupled QRs of
different complexity and scope, revealing properties different from those of
their QD counterparts [56, 57, 61, 64, 65, 110, 111]. For instance, studies on
the single-electron states of vertical QRMs have shown that the electronic
spectrum of these systems is expected to be more sensitive to the inter-
ring distance than that of coupled QDs [57]. This is because the coupling-
induced energy splitting is as large as that of self-assembled dots, but the
energy spacing between consecutive states in typical self-assembled rings is
smaller than that in dots, the ring-like morphology favoring the stabilization
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of azimuthal states. On the other hand, unlike the QDM case, there exists
a gap in the bibliography concerning the realization of any kind of single-
electron transport experiment capable of achieving the addition energies of
vertical QRMs; this has been carried out for a single QR [112], though. Very
recently, vertically coupled QRs populated with few tens of electrons have
been theoretically studied at zero magnetic field [58, 60], and the electron
addition spectra have been obtained for different coupling regimes and sizes
of the constituents rings.

The work reviewed in this section studies the ground state of two verti-
cally coupled identical QRs forming “homonuclear” QRMs populated with
up to 40 electrons and pierced by a perpendicularly applied magnetic field [59].
This work extends and complements a previous work carried out at zero
magnetic field [58], and addresses the appearance and physical interplay be-
tween the spin and isospin (an analogous magnitude to the bond order in
molecular physics) degrees of freedom as functions of the variation in both
the intensity of the magnetic field and the inter-ring separation.

Modeling systems charged with large number of electrons, as in the
present case, requires the employment of methodologies that minimize the
computational cost such as mean field methods. The numerical results
presented in this section have been obtained by means of density func-
tional theory (DFT) calculations within the local spin density approxima-
tion (LSDA) [22, 113]. The accuracy of the numerical code employed to
carry out these calculations has been assessed for the considered values of
the magnetic field by comparing results with those given by the current spin
density functional theory (CSDFT) [114], which is in principle better suited
for high magnetic fields, and also with benchmark configuration interaction
(CI) methods [106]. The numerical procedure follows the self-consistent
formulation of Kohn-Sham [115] and the single-particle aspects of the elec-
tronic spectrum are modeled within the framework of the effective mass and
envelope function approximations. In this way, the Kohn-Sham equations
written in cylindrical coordinates and atomic units read

[
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(
∂2

∂r2
+

1
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∂
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g∗µBB
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ησ

]
unlσ(r, z) = εnlσunlσ(r, z) .
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Here, the Hamiltonian has been integrated over the azimuthal angle θ and
the electron spin σ. In turn, the single-particle wave functions have been fac-
torized in the form φnlσ(r, z, θ, σ) = unlσ(r, z)e

−ılθχσ, where n = 0, 1, 2, . . .
is the main quantum number, l = 0,±1,±2, . . . represents the projection
of the angular momentum on the symmetry axis (actually, due to the con-
vention commonly adopted for the single-particle wave functions [104] the
projection of the angular momentum is −l) and σ=↑(↓) represents spin-up
(-down) states. To include the effect of an external perpendicular mag-
netic field the vector potential has been chosen in the symmetric gauge,
namely, A = B(−y, x, 0)/2. Additionally, the magnetic Zeeman term has
been also regarded, with g being the gyromagnetic factor, µB = h̄e/(2mec)
the Bohr magneton, ωc = eB/cm∗ the cyclotron frequency and ησ=+1(−1)
for σ=↑(↓). Vcf (r, z) is the spatial confining potential which confines the
electrons inside the double ring structure. This potential has been taken
parabolic in the (x, y) plane with a repulsive step-like core of radius R0

around the origin 3, plus a double quantum well in the z direction:

Vcf (r, z) = Vcf (r) + V (z), (2.15)

Vcf (r) =

{
V0 if r0,

1/2mω2
0 (r −R0)

2 if r > R0.
(2.16)

Representations of the transversal and longitudinal profiles of the aforemen-
tioned confining potential are illustrated in figure 2.12. All the material
parameters specified in the picture remain constant, only the inter-ring dis-
tance d is varied to study QRMs with different molecular coupling.

The remaining terms in equation 2.14 correspond to many-body inter-
action contributions. Thus, Φ is the Coulomb potential which is obtained
by solving the Poisson equation, whereas Vxc and Wxc are the exchange-
correlation potentials in terms of the ground state electronic density ρ(r, z)
and the spin magnetization ζ(r, z) ≡ ρ↑(r, z)− ρ↓(r, z):

Vxc =
∂Exc(ρ, ζ)

∂ρ
|gs ; Wxc =

∂Exc(ρ, ζ)
∂ζ

|gs. (2.17)

According to LSDA the exchange-correlation functional can be expressed
as sum of two local contributions, i.e., Exc(ρ, ζ) ≡ Ex(ρ, ζ) + Ec(ρ, ζ). The

3The convenience of this hard-wall inner potential is endorsed by several works in the
literature [57,116,117].
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Figure 2.12: Radial and longitudinal profiles of the confining potential employed in the calcula-
tions

Dirac exchange functional Ex(ρ, ζ) is employed, which corresponds to a three-
dimensional homogeneous electron gas [118]. Finally, the parametrization
proposed by Perdew and Zunger has been used for the correlation term [119].
To compute the ground state energy and electronic density, the Kohn-Sham
and Poisson equations are iteratively solved in a multi-grid discretization
scheme and using imaginary time methods to speed the convergence process
up (further computational details can be found in Ref. [104]).

The numerical calculations are carried for GaAs coupled QRs considering
different inter-ring distances, d = 2, 4 and 6 nm, with the aim of simulating
different molecular coupling regimes. The GaAs material parameters are
employed, namely, dielectric constant ε = 12.4, effective mass m∗ = 0.067
and effective gyromagnetic factor g∗ = −0.44. For the sake of comparison,
the case of a single QR with the same shape and size as the individual com-
ponents of the QRMs is also addressed.

A good way to tackle the magnetic field response of highly populated
systems is to look at the evolution of the Kohn-Sham orbitals. To this end,
figure 2.13 shows the Kohn-Sham levels for a single ring hosting N=40 elec-
trons as a function of the orbital quantum number l for different values of
the applied magnetic field. The horizontal line in the plots represents the
energy of the highest occupied single-particle orbital (also referred to as the
chemical potential or Fermi level). Thus, the levels lying under this line
conform the electronic configuration of the system. At zero magnetic field,
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Figure 2.13: Kohn-Sham orbitals energies as functions of l for a N=40 single QR. Upward
(downward) triangles denote up (down) spin states. The horizontal lines represent the Fermi
levels. The value of the magnetic field is indicated in each panel.

the levels with ±l are degenerate and the ground state of the system is made
up of states with up to n=3. In this case, all the plotted levels correspond
to symmetric states (hereafter referred to as bonding states) with respect
the z = 0 plane (the antisymmetric states will be represented by empty
triangles). Hence, the labels n = 2 and n = 3 imply that these states de-
velop nodal surfaces along the radial direction but not yet in the vertical
direction. This fact is a direct consequence of the stronger confinement in
the longitudinal direction as compared to that in the radial one.

When the magnetic field is switched on the ±l degeneracy is lifted. As
the intensity of the field is increased the −l states become destabilized and
depopulated in favor of the l states which are stabilized by the field. At
the same time, the states with n 6= 1 become depopulated too, reaching a
situation where only l > 0 states from the first Landau band are occupied.
From here on, the main features caused by increasing the external field
are related with the different Zeeman and exchange potentials experienced
by states with different spin quantum number σ, thus breaking the spin-up
spin-down degeneracy. Finally, as can be observed in the B = 14 T case, the
system becomes fully spin-polarized. This peculiar electronic configuration
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is known as maximum density droplet (MDD) and has been experimentally
observed in a QD under the influence of intense magnetic fields [120].

Figure 2.14: Same as figure 2.13 for a QRM with N = 40 electrons and d = 4 nm. Bonding and
antibonding states are indicated by solid and open triangles respectively.

The electron occupation of the Kohn-Sham orbitals for the case of the
QRMs will obviously be marked by the relative stabilization of the anti-
symmetric (antibonding) orbitals. These will become lower in energy as the
rings are separated, but the extent of this stabilization is strongly dependent
on the axial and longitudinal confinements. For the present study, inter-ring
distances of d = 2 and 4 nm have proven systems showing strong coupling
regime signatures as will be promptly shown. The evolution of the Kohn-
Sham orbitals for the d = 2 nm molecule is qualitatively identical to the
single ring case with only bonding states occupied (results not shown here).
As d is increased until 4 nm a few antibonding orbitals become populated
at small fields (see the top panels of figure 2.14). However, the magnetic
field favors the occupation of higher orbital momentum bonding states and
eventually the system becomes again completely formed from bonding states.

The scenario is quite different for the largest ring separation considered,
namely, d = 6 nm. As illustrated in figure 2.15, a large amount of anti-
bonding orbitals take part in the electronic configuration, which has some
consequences on the magnetic field response of the QRM. The most relevant
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Figure 2.15: Same as figure 2.14 for d = 6 nm

one is the appearance of the fully spin-polarized state at smaller fields: it is
attained at B ∼ 7 T whereas for d = 2 and 4 nm it appears near B ∼ 14 T.
This is a consequence of the energetic proximity between the first bonding
and antibonding bands, which enables formation of a mixed spin-polarized
phase by populating spin-up orbitals of each band.

When antibonding orbitals are populated, the variation of the magnetic
field yields numerous transitions between molecular phases with different
number of electrons in bonding and antibonding states. To label these phases
and quantify the bound strength, the “isospin”quantum number Iz (bound
order in molecular physics) is defined as Iz = (NB −NAB)/2, with NB(AB)

being the number of occupied bonding (antibonding) states. The total spin
(Sz) and isospin phases as functions of the magnetic field are shown in fig-
ure 2.16 for d = 6 nm andN = 8, 16 and 24 electrons. The visible transitions
are more complex than those observed in vertically coupled QDs [102–104],
which is due to the periodic destabilization experienced by the lowest-l oc-
cupied orbitals induced by the magnetic field. This direct consequence of
the Aharonov-Bohm effect makes it rather difficult to find a pattern among
the observed evolutions for the different electronic populations, unlike it
was done for the case of molecules formed from QDs [102–104]. Neverthe-
less, two facts also present in QDMs are worth to be stressed: on the one
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Figure 2.16: Isospin (solid line, left scale) and spin (dashed line, right scale) values as functions
of B for QRMs with d = 6 nm and N =8, 16, and 24.

hand, molecular phase transitions involving changes from ground states with
odd (even) to even (odd) number of electrons in antibonding states involve
∆Iz = +1(−1) flips; on the other hand, quite often the transitions in Sz and
Iz take place simultaneously except obviously when the full spin-polarized
point is reached, from which on the isospin increases in one-unit jumps until
the system is made up of bonding states only.

The electron addition energies (∆2 or Eadd) have also been studied.
These magnitudes can be obtained as

∆2(N) = µ(N)− µ(N − 1). (2.18)

Here, µ(N) is the chemical potential of the N-electron system computed as
follows,

µ(N) = E(N + 1)− E(N) (2.19)

where E(N) is the ground state energy of the N-electron system. Hence, the
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Figure 2.17: Addition energy spectra for QRMs at different magnetic fields and inter-ring
distances d =2, 4 and 6 nm and for a single QR. The value of 2Sz is indicated for each N number
of electrons.

chemical potential is an analogous magnitude to the atomic electron affinity,
while the addition energies mimics differences in electron affinities. The pan-
els in figure 2.17 represent the addition energy spectra for the above studied
QRMs populated with up to 14 electrons under magnetic fields of 0, 3 and 6
T. The case of a single QR is also shown for the sake of comparison. In the
left panels (B = 0 T) one can see that, once more, the spectra of QRMs with
inter-ring distances 2 and 4 nm are qualitatively identical to the single ring
one, showing the usual intense peaks denoting closed shells at N = 2, 6 and
10, and the peaks at N = 4 and 8 corresponding to half-filled shells. The
spectrum for the molecule with d = 6 nm is shown in the top left panel of
the same figure. One can see that, although some of the pronounced peaks
are preserved (in particular those at N = 2 and 8), the ones at N = 4 and
6 no longer exist due to the filling of the first antibonding orbitals. Despite
these differences with the single ring case, the addition spectrum evidences
that 6 nm is not a separation large enough for the QRMs to be in the weak
coupling limit. In such a case, one would expect to find peaks at the same N
values as for the single QR multiplied by 2, i.e., N = 4, 12 and 20, indicating
that the rings are so apart that they behave as isolated entities.

When the magnetic field is tuned in to B = 3 T, the spectra of the
single QR and that of the molecules with d = 2 and 4 nm evolve in a rather
similar way, still showing a shell-like structure. The main difference appears
for small number of electrons (see the peaks of N ≤ 5 in the bottom center
panel of figure 2.17) since the single ring system develops spin-polarized con-
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figurations. This striking phase is attributed to the combined effect of the
magnetic field and a relative strong exchange-correlation interaction charac-
teristic of few-electron QR systems. In turn, for larger inter-ring distances
(d = 6 nm), the occupancy of the first antibonding orbitals washes out the
shell structure and the spectrum becomes flatter and irregular.

As can be observed in the right panels of the same figure, when the mag-
netic field is B = 6 T, the only marked peak is the one at N = 2, with the
rest of the spectra being rather flat as a consequence of the Landau bands
flattening that takes place at high fields (see the previous figures showing
the Kohn-Sham levels). Also, as commented earlier, the occupation of the
antibonding orbitals leads to the fully spin-polarized phase at smaller fields,
which is why the spectrum corresponding to d = 6 nm shows sequential
unit-jumps in 2Sz every time an electron is added to the system.

To summarize, the DFT-LSDA results reported here for vertical QRMs
have shown that in the strong coupling regime the magnetic response of the
Kohn-Sham levels and the addition energies is similar to that of a single QR.
However, when the rings are moved apart and the first antibonding orbitals
are populated, the addition spectra become flatter and irregular and the
system reaches the fully spin-polarized electronic configuration at relatively
low magnetic fields.

Finally, it is worth noting that the reviewed results may be helpful in
the analysis of future tunneling or capacitance spectroscopy measures on
vertically coupled QRs. In such experiments, the evolution of the chemical
potential µ(N) with the magnetic field can be experimentally identified as
the variation in the position of the current peaks as a function of the mag-
netic field, showing irregularities arising from phase transitions [102,103].



Chapter 3

Dielectric confinement of
semiconductor nanocrystals

The beginnings of the 21st century have witnessed significant advances in the
chemical synthesis of nanostructures [8, 121–123]. Such procedures enable
the synthesis of a wide range of semiconductor nanocrystals (NCs) in form
of colloidal suspension (see, e.g., figure 3.1), where the NCs ensembles nor-
mally present very low defects density and size dispersion. Since the QDs
obtained through these colloidal protocols present the smallest sizes that
can be obtained nowadays, the size-dependent spectrum of carriers in these
nanosystems is one of the most identifiable manifestation of quantum con-
finement [14, 124]. Furthermore, the fact that the NCs size and shape, and
hence the electro-optical properties, are easily controlled during the process
of fabrication, confers promising applications to NCs as building blocks of
novel optoelectronic devices. These range from lasers [125] or light-emitting-
diodes (LEDs) [126] to solar cells [127]. Also, the NCs fluorescence emission
is employed in biolabelling due to their superior photostability compared
with the majority of organic dyes [128, 129]. What is more, very recently,
one of the main drawbacks of the optical behavior of colloidal NCs, their
randomly intermittent fluorescence emission (blinking) [130], has been over-
come [131,132], thus boosting their technological prospects [133].

From a purely physical point of view, the research in the field of semi-
conductor NCs has been mainly focused on quantifying the size- and shape-
dependence of their electro-optical properties. With this aim, considerable
work has been carried out probing the electronic states both by optical
spectroscopy [134, 135], as well as by single electron tunneling [136]. How-

37
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a) b)

c) d)

Figure 3.1: Images of several nanosctructures that can be synthesized by means of colloidal
chemistry: a) spherical NC, b) multishell NC, c) nanorods, and d) nanotetrapods.

ever, spatial confinement is not the only source of quantum confinement in
these structures. All the aforementioned technological applications require
the NCs to be buried in matrices like organic solvents, glasses, polymers
or even biological media, which present the common property of having a
much smaller dielectric constant than semiconductor materials. The dielec-
tric constant mismatch between the NC and the environment is the source
of the so-called dielectric confinement.

According to the electrodynamics of continuous media, the carriers con-
fined in a system which includes dielectric mismatches induce the appear-
ance of polarization charges at the dielectric interfaces [88]. These induced
charges have the same (opposite) sign as the source charges when the ma-
terial hosting the carriers has a higher (lower) dielectric constant than the
adjacent material. A schematic representation of the surface charges forma-
tion is shown in figure 3.2. As a consequence of the interaction with these
polarization charges, two new contributions to the energy of carriers arise.
On the one hand, there is a single-particle contribution coming from the
interaction of the carriers with their own induced charges (self-polarization
energy). On the other hand, there are many-particle contributions coming
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from the interaction of a carrier with the charges induced by the other ones
(polarization of the Coulomb interaction).

Figure 3.2: Schematics of the formation of polarization charges induced by a negative charge
distribution located inside a spherical NC. The different sizes of the represented dipoles mimic the
different material polarizability, which is directly related with the dielectric constant. As can be
seen, the different polarizability of the NC and the environment leads to charge accumulation at
the NC surface. When εin > εout the surface charge has a predominant negative sign while it is
positive when εin < εout

The impact of the system-environment dielectric mismatch on the elec-
tronic states of carriers in semiconductor QDs was first studied by L.E.
Brus [137, 138]. In his works, he adapted a set of analytical expressions
from classic electrodynamics to model ideal spherical systems with carriers
confined by infinite barriers, so that, the wave function extension outside
the QD region was zero. This simplification is not always good and over the
years more sophisticated treatments of the dielectric confinement have been
developed to consider non-infinite confining systems and different nanos-
tructure shapes [139–145]. The results reported have demonstrated that the
dielectric confinement can have a strong influence on the properties of QDs,
often suggesting an alternative Coulomb interaction engineering by control-
ling the dielectric character of the environment.

Given the electrostatic nature of the energetic contributions introduced
by the dielectric confinement, the kind and magnitude of its effects are
not the same when a QD is optically excited (forming electron-hole pairs)
than when the dot is populated with several electrons through, for example,
single-electron tunneling techniques:
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� When a QD is populated with an electron-hole pair (exciton), the self-
polarization energy and the polarization of the Coulomb interaction
have opposite signs. As a result, both terms tend to cancel each other
and the effect of the dielectric confinement is minimized. Even so,
a relevant implication of the dielectric mismatch observed in some
nanosystems is the enhancement of the exciton binding energy [138,
146,147]. This effect, which was first pointed by L.V. Keldysh [148] and
later on experimentally confirmed [149,150], has been often suggested
as a way of increasing the binding energy above the thermal (kT )
energy, which is an essential condition to exploit exciton states in
optical devices. On the other hand, several experimental works have
recently suggested that the dielectric confinement plays an important
role in the formation of QD clusters in high-density QD arrays [151–
153].

� When the carriers inside the QDs have the same sign, both dielectric
contributions act in the same direction, consequently the dielectric
confinement effect is more relevant and can even compete with the
spatial confinement in large dielectric constant mismatch regimes. The
first consequence of this high influence is a considerable dependence
of the electronic spectrum with the dielectric constant of the envi-
ronment [138]. Additionally, the dielectric modulation of the electron-
electron interactions can affect a magnitude as important in the physics
of QDs as the Coulomb blockade, yielding quantitative and qualitative
reconstructions in the addition energy spectra [154–157]. Transport
properties can also be altered by the dielectric confinement. Thus, it
has been reported that the electron mobility in nanostructures can be
drastically improved by coating them with high dielectric constant ma-
terials on account of the screening of the Coulomb interactions induced
by these environments [158].

The present chapter reviews a set of seven papers concerning dielec-
tric confinement effects on many-electron spectra and optical properties of
semiconductor NCs. After a brief theoretical introduction on EMA-EFA
formalisms accounting for dielectric mismatch effects, the first part of the
chapter focuses on spherical QDs, either homogeneous or multi-layered, pop-
ulated with many electrons. To study such systems with a high number
of correlated electrons, an extension of the DFT and LSDA is developed
which accounts for dielectric constant and effective mass discontinuities in
a consistent way [159]. The model is subsequently adapted to include the
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non-parabolic dispersion of the conduction band in narrow gap semiconduc-
tors [160].

In second place, the excitonic states of dielectrically mismatched spher-
ical NCs are studied. Special attention is paid to the possible formation
of surface states in which one or both carriers can be localized in the self-
polarization potential well. The transition from volumetric to surface states
is found to bring about implications in the NCs luminescence [161].

Finally, the study of the dielectric confinement is extended to the case of
elongated NCs also known as quantum rods or nanorods (NRs). The reduced
symmetry of these colloidal nanostructures seriously hampers the resolution
of the Poisson equation (see eq. 3.8 in the next section), to the point that up
to the publication of the papers reviewed here, very few theoretical works
are found in the literature tackling the dielectric confinement effect on these
quasi-1D systems [162, 163]. By this reason, a detailed description of the
methodology employed to compute the dielectric confinement contributions
in axial symmetry systems will be given [145]. To conclude the chapter,
the effects of the dielectric environment on the electro-optical properties
of semiconductor NRs will be reviewed. The results will reveal how the
anisotropic shape of these systems has implications on the appearance of
responses to the environment hitherto not observed in spherical NCs [164,
165].
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3.1 Dielectric confinement in the EMA-EFA for-
malism

When there is more than one electron (or hole) confined in a QD, Coulomb
interaction arises. Macroscopically, the interaction between charges in a
dielectric medium is screened by its dielectric constant. However, from a
microscopic point of view, conduction band electrons, together with core
electrons and nuclei, are located in a vacuum, so that no homogeneous
screening dielectric medium is seen by them. Nevertheless, as far as EMA
and EFA are concerned, where the microscopic details of the unit cell are
integrated, the interaction of conduction band electrons with core electrons
and nuclei is averaged as an interaction with a continuous medium able to
be polarized. In other words, EMA recovers for the Coulomb interaction the
macroscopic-like view.

Within the framework of classical electrodynamics, in the simplest case
of two point-charges q1, q2 at r1, r2 in the crystal bulk, the electrostatic
(or Coulomb) potential Φ(r) generated by one charge and the electrostatic
energy W of the system can be obtained as,

Φ(r) =
q1

ε|r− r1|
, (3.1)

W =
q1 q2

ε|r1 − r2|
, (3.2)

where the background dielectric constant ε accounts for the screening of
the bare Coulomb interaction through the macroscopic polarization of the
medium. The equivalent equations for the case of a continuous charge dis-
tribution, as the ones studied here, are

Φ(r) =

∫
ρ(r1)

ε|r− r1|
dr1, (3.3)

W =
1

2

∫ ∫
ρ(r1)ρ(r2)

ε|r1 − r2|
dr1 dr2. (3.4)

In general, the methodologies followed in this thesis to deal with Coulomb
interactions require numerical discretization of the charge distributions. In
this process, the continuous charge can be viewed as a distribution of point
charges qk located at the k points of the discretization grid, and then it
can be written as ρ(r) =

∑
k qk δ(r − rk), where δ(r − rk) is a Dirac delta
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centered at point k. In this way, the corresponding equations to compute
the Coulomb potential and energy can be expressed as

Φ(r) =
∑
i

qi
ε|r− ri|

, (3.5)

W =
1

2

∑
i,j

qi qj
ε|ri − rj |

. (3.6)

The factor 1/2 appearing in equations 3.4 and 3.6 is included in order to
avoid considering twice the interaction between pairs of differential or point
charges respectively. Likewise, it is also necessary to subtract the infinite-
valued self-interaction terms,

lim
r→0

q2i
ε r

, (3.7)

to avoid the interaction of a charge with itself.

The equations introduced above are valid as long as a continuous medium
is considered. However, in the presence of interfaces between media with
different dielectric constants, additional effects of surface polarization on
the effective Coulomb interaction should be also included, and equations
like 3.3 and 3.4 are no longer proper. Instead, the electrostatic potential
and energy must be inferred from the Poisson equation:

∇r(ε(r) ∇rΦ(r
′, r)) = −4πρ(r′). (3.8)

Here, Φ(r′, r) is the electrostatic potential generated by a charge distribution
ρ(r′) in the r points of a system with a position dependent dielectric constant
ε(r). This potential includes the contribution of both the bare Coulomb and
the dielectric polarization of the Coulomb interaction. Equation 3.8 can be
analytically solved for certain simple cases, however, other less symmetric
problems only admit a numerical solution of the Poisson equation, with ap-
propriate boundary conditions.

On the other hand, in the presence of dielectric surface polarization, an
additional self-interaction energy appears. It comes from the interaction of a
charge with its own induced charges. Schematically speaking, the calculation
of this self-energy requires, firstly, the numerical solution of the Poisson
equation (eq. 3.8) for a point charge located at an arbitrary position r′.
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Then, after subtracting the bare Coulomb terms and dividing by two, as in
equations 3.4 and 3.6, one should take the limit

Vs(r) =
1

2
lim
r→r′

Φ(r, r′). (3.9)

In the above equation, Vs(r) is the self-polarization potential which can
be described as the electrostatic potential generated in the point r by the
surface image charges induced by a point charge located in the same position
r. For practical purposes, the self-polarization potential is incorporated in
the Hamiltonian as a single-particle potential whose main features are (see
figure 3.3): i) a constant shift of the energy bottom in the region of higher
dielectric constant, ii) the appearance of a soft repulsive barrier in the regions
of the higher dielectric constant closer to the interface, and iii) a deep narrow
attractive potential well in the lower dielectric constant region just attached
to the interface. The depth of this self-energy potential well is proportional
to the dielectric mismatch, to the point that in strong mismatch regimes
carriers can be trapped in this well, as will be shown in section 3.3, forming
surface states.
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Figure 3.3: Radial profile of the self-polarization potential for a QD of radius R = 5 nm and a
dielectric constant εQD = 4 in air or vacuum ( εout = 1)
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3.2 Dielectric confinement of many-electron col-
loidal nanocrystals

Semiconductor QDs are well known to exhibit a set of discrete energy levels,
which is why they are often considered as artificial atoms [2]. Special men-
tion deserve the chemically synthesized NCs. Unlike self-assembled or litho-
graphic QDs, these NCs have a nearly spherical shape leading to atom-like
symmetries and degeneracies for the electronic states. This issue has been
experimentally probed, clearly showing s- and p-like sets of states [166–169].
To this end, one of the most employed techniques is scanning-tunneling-
spectroscopy (STS) [170]. In such experiments, a metallic tip is positioned
on top of a specific NC, and tunneling current voltage spectrum is acquired
by applying a bias between the tip and the substrate where the dot is placed.
The conductance dI/dV shows, as a function of the voltage, a series of sharp
peaks which correspond to the Nth electron (hole) charging energies µ(N) (or
chemical potentials). In turn, the voltage spacings between these conduc-
tance peaks are related to differences of chemical potentials µ(N) − µ(N−1)
and, therefore, correspond to addition energies. Accordingly, from tunneling
conductance measures one can obtain the addition energy spectra which is,
actually, a usual procedure [171].

Most STS experiments that employ metallic electrodes can resolve the
spectra up to a relatively small number of electrons, so that the d-like shell
is hardly ever observed [166, 167]. However, very recently a new kind of
transport experiment has been reported which employs a carbon nanotube
as the only electrode [172]. The authors of this experiment claim they are
able to monitor the sequential charge of a CdSe NCs with as much as 200
electrons, thus opening the door of the many-electron physics in semicon-
ductor colloidal NCs.

Following these trends, the present section is devoted to study the elec-
tronic and addition energy spectra of spherical NCs populated with a large
number of electrons. The ground state energy is obtained by solving the
Kohn-Sham equations where the exchange correlation contributions are eval-
uated within the local spin density approximation (LSDA). The effects of
dielectric constant and effective mass discontinuities, as well as an energy
dependent effective mass (to account for conduction band non-parabolicity
effects) are under consideration. To this end, the different contributions to
the energy functional, as well as their corresponding potentials entering the
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Kohn-Sham equations are properly modified [159] as shown in the incoming
section.

3.2.1 Consistent extension of the LSDA to account for mass
and dielectric mismatches

In multilayered QDs (as the one in figure 3.1(b)) and also in homogeneous
QDs with finite potential barriers, where the wave function penetrates in
the surroundings, carriers experience different effective masses in different
materials. To compute the kinetic energy of such particles taking into ac-
count the position dependent mass, the most accepted hermitian operator
is the one suggested by BenDaniel and Duke [173]:

T̂ = − h̄
2

2
∇(

1

m∗(r)
∇). (3.10)

From this operator, the kinetic energy functional of the ideal system of N
non-interacting electrons adopted in the Kohn-Sham formalism is

Ts[ρ] =

N∑
i

− h̄
2

2

∫
ψi(r)

∗ ∇
(

1

m∗(r)
∇ψi(r)

)
dr. (3.11)

However, for the case of bounded systems, i.e., systems with zero electronic
density at the boundaries, the kinetic functional can be rewritten as

Ts[ρ] =
N∑
i

∫
h̄2

2m∗(r)
|∇ψi(r)|2 dr. (3.12)

The classic part of the electron-electron interaction enters the effective
Kohn-Sham potential through the Coulomb potential generated by an elec-
tronic charge density. In homogeneous media this potential is calculated
as

Φ(r, r′) =

∫
ρ(r′)

ε|r− r′|
dr′. (3.13)

Nevertheless, as stated earlier, obtaining this potential for systems with an
inhomogeneous dielectric constant requires to solve the Poisson equation:

∇[ε(r)∇Φ(r, r′)] = −4πρ(r′). (3.14)

The corresponding functional is thus given by the expression
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J [ρ] =
1

2

∫
Φ(r, r′) ρ(r) d(r). (3.15)

Within the LSDA, the exchange-correlation functional is separated in
two terms. On the one hand, the exchange contribution is taken from the
Dirac expression for an homogeneous electron gas:

ELSDA
x [ρ, ζ] =

3

8

(
3

π

) 1
3
∫
ρ(r)

4
3

{
[1 + ζ(r)]

4
3 + [1− ζ(r)]

4
3

}
dr, (3.16)

where ζ(r) is the spin magnetization, i.e., ζ(r) = |ρ↑(r)− ρ↓(r)| with ρ↑↓(r)
being the spin-up and spin-down densities. However, as in the case of the
Coulomb interaction, this formula does not account for position dependent
dielectric constant. In this regard, no specific formula has been suggested
hitherto to deal with this problem. A way to overcome this drawback is
proposed here. It consists in defining an effective dielectric constant from
the employed Coulomb functional. To this end, a scaling parameter k is
defined as

k =

∫ ∫ ρ(r) ρ(r′)
ε(r)|r−r′|dr dr

′∫
Φ(r, r′) ρ(r) d(r)

. (3.17)

Here, the denominator is the Coulomb functional properly obtained by solv-
ing the Poisson equation (equations 3.14 and 3.15), while the expression
in the numerator is a sort of Coulomb functional with a position depen-
dent dielectric constant. The effective dielectric constant is then obtained
as ε̃(r) = k ε(r) so that it allows to write the next identity:∫

Φ(r, r′) ρ(r) d(r) =

∫ ∫
ρ(r) ρ(r′)

ε̃(r)|r− r′|
dr dr′. (3.18)

In other words, an effective Coulomb functional for a dielectrically mis-
matched system is obtained by introducing ε̃(r) in the denominator of the
corresponding expression for an homogeneous system. Similarly, this effec-
tive dielectric constant is introduced in equation 3.16, thus obtaining an
expression for the exchange functional which is globally consistent with the
employed Coulomb functional.

On the other hand, the correlation contribution is calculated with the
parametrization proposed by Perdew and Zunger [119] of the Ceperley and
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Alder functional [174]. Therein, the correlation energy Ecorr(ζ, rs) is ob-
tained in terms of the spin magnetization (ζ) and the Wigner-Seitz radius
(rs), i.e., the radius of the sphere occupied by one electron (1/ρ = 4/3 πr3s).
The functional is written in atomic units, namely, Ecorr is obtained in
Hartree and rs should be injected in Bohr radii (a0), and a free mass m0

is implicit for electrons. Hence, to use this same functional for electrons
with masses different than m0 located in media with ε 6= 1, effective atomic
units should be employed. For this purpose, the Wigner-Seitz radius is first
scaled by m∗(r)/ε̃(r) and injected into the functional. Then, the computed
correlation potential and energy, which are obtained in effective Hartree, are
rescaled by m∗(r)/ε̃(r)2 in order to get back true atomic units.

To complete the energetic contributions that conform the energy func-
tional, the dielectric self-polarization interaction potential is obtained as
explained in reference [143] and is added to the spatial confining potential,
which, in turn, is defined by the band offset between adjacent materials.

The ground state charge density and energy are obtained by means of an
iterative process in which the scaling parameter k is self-consistently calcu-
lated. In each step of the process, the Kohn-Sham and Poisson equations are
solved exploiting the spherical symmetry of the systems under study. Thus,
the equations are numerically discretized in a one-dimensional grid extended
far beyond the NC radius. To avoid numerical problems concerning the dis-
cretization of mathematical surfaces presenting abrupt mismatches, in the
computational implementation of the present approach these mismatches
are replaced by continuous variations within an extremely thin layer at the
interface (a monolayer).

The present extension of LSDA is, on the one hand, local in the sense that
the electronic density feels locally the physical properties of the medium,
but, on the other hand, it is consistent with a rigorous non-local calculation
of Coulomb energy in an inhomogeneous medium.

3.2.2 Benchmarking the method

As discussed in the previous section, the way of treating the variable effec-
tive mass does not introduce any approximation on top of the LSDA (as
far as the system is bound, which will always be the case). Therefore, this
section is devoted to check the robustness of the proposed approach to deal
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with the variable dielectric constant. With this aim, addition energies of
electrons and holes in InAs and CdSe QDs are computed simulating embed-
ding media of different dielectric constant. The benchmark to compare with
is a set of configuration interaction (CI) calculations carried out by Orlandi
et al. [155]. These calculations employed a basis set including 1s, 1p, 1d
and 2s single-particle orbitals and were exact up to 7 carriers. Larger QD
populations were calculated within a Hubbard-like approximation, i.e., only
semidiagonal elements of the Hamiltonian were retained.

Figure 3.4: Calculated addition energies for electrons in panels (a) and (c), and holes in panels
(b) and (d) as a function of the number of carriers in a 3.2 nm radius InAs QD. Results in the left
panels correspond to LSDA calculations while the right ones correspond to CI calculations. The
latter have been taken from Orlandi et al. Phys. Rev. B 63, 045310 (2001).

The electron and hole addition energies obtained from LSDA and CI cal-
culations are shown in left and right panels respectively of figure 3.4 for an
InAs QD. In both calculations carriers are subjected to an infinite confine-
ment, which, as stated earlier, is a rough approximation that here is adopted
to mimic the benchmark CI calculations as far as possible. Likewise, the
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same basis functions are employed in both calculations. Different dielectric
matrices are considered which are defined by ε = εQD/εext = 1, 3, 5. As can
be observed in the addition energy spectra obtained from different methods,
both qualitative and quantitative agreements are extremely good. Further-
more, by means of LSDA calculations with a larger basis set it was observed
that the basis set employed in the CI calculations falls short to study the
QD populated with holes. The obtained results revealed that the 19th and
20th holes come to fill 1f orbitals instead of 2s ones. It is worth noting that,
unlike in CI methods, increasing the basis set in LSDA calculations do not
entails an appreciable computational cost.
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Figure 3.5: Comparison of addition spectra for holes in a 2 nm radius CdSe QD computed
using LSDA absolute energy minimum configurations (thick lines) and forcing the dominant CI
configurations (thin lines).

On the other hand, a few reconstructions with respect the CI ground
state configurations are obtained by LSDA calculations when dealing with
holes in CdSe QDs. These reconstructions, which are illustrated in the
addition spectra of figure 3.5, occasionally appear when the CI electronic
configurations are not imposed, and always entail an increment in the total
spin (Sz) of the system. In this regard, it is relevant to notice the large
effective mass employed in the calculations for CdSe holes (m∗h = 1), which
brings the system into a strong correlation regime. In such regimes the
LSDA is known to over-stabilize spin polarized states. Then, it is difficult
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to assign this small disagreement with CI results either to the own LSDA
or to the scaling approximation employed.

In summary, the proposed extension of the LSDA incorporates in an
exact way the presence of position dependent effective masses. Illustrative
calculations have shown that the approach is also very reliable accounting for
dielectric mismatches. Finally, it is important to reiterate that the method
is extremely fast and computationally very little demanding (as much as
LSDA) in comparison with sophisticated CI calculations. Therefore, one
can deal with large many-particle systems in inhomogeneous media without
much effort.

3.2.3 Dielectric control of spin

The determination of the electronic configuration and the total spin of inter-
acting multielectron QDs constitute an attractive and challenging theoretical
problem. The interest arises from the great number of experimental publica-
tions exploring electron and spin transport in semiconductor QDs [15], and
from the current perspectives of spintronics (short for spin-based electron-
ics) to play a relevant role in future solid state-based technologies [175,176].

The electronic configuration of an atom or a QD is determined by the
balance of two factors, namely, the energy between consecutive levels and
the pairing energy. In general, the Aufbau principle of sequential filling
and Hund’s rule of largest spin multiplicity in a shell are followed. How-
ever, QDs present a wide range of externally tunable parameters that can
influence the orbital levels and hence, the electronic configuration and total
spin, often leading to unfulfillments of the Aufbau and Hund rules [177–179].
This kind of orbital manipulation may start during the fabrication process,
by tailoring the size and shape of the QDs, or later, normally by means
of external magnetic fields [180]. Furthermore, since the electrons strongly
interact with each other inside a dot, adding or subtracting extra electrons
to the system may lead to an unexpected electronic configuration and total
spin, in the sense that it is not predicted by the Aufbau and Hund rules.
A clear signature of this system spin dependence on the number of carriers
is the spin-blockade effect, which was theoretically predicted by Weinmann
et al. [181, 182] and later on experimentally observed [183–185]. The effect
is the occasional suppression of the conductance through a QD because the
addition of an extra electron would reconstruct the electronic configuration
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in such a way that it would change the total spin of the system by more
than 1/2, which would be the usual case, thus violating a spin selection rule.

On the other hand, the correlation regime of a QD is an available degree
of freedom to manipulate spin. Since one of the most relevant effects of the
dielectric confinement is precisely to modulate the electron-electron interac-
tions, one may wonder to which extent it is capable to affect the electronic
configuration and total spin of a QD. The present section studies the effect
of the system-environment dielectric mismatch on QD spin transitions. To
this end, the ground state spin phase diagrams are analyzed versus the QD
radius and the dielectric constant of the surrounding medium.

Figure 3.6: Energy difference ∆E (Hartree∗) between spin polarized minus spin least-polarized
electronic configurations vs. QD radius R (a∗0) corresponding to a QD populated with tree (solid
line), four (dashed line) and nine (dotted line) excess electrons. Arrows indicate the phase tran-
sition.

Before delving into the dielectric confinement effect on the QD electronic
configurations, it is worth studying the bare effect of modifying the radius of
a QD. It is well known that as the size of a confining system is increased the
energy spacing between consecutive levels is reduced and, eventually, this
spacing becomes comparable to the energy required to place two electrons
with anti-parallel spin in the same orbital 1. At this point, the system is ex-

1This is a consequence of the different scaling of the quantization and Coulomb energies
with the QD size. Whereas the quantization energy scales as ∼ 1/R2, the Coulomb energy
does it as ∼ 1/R. Therefore, large QDs are mainly governed by Coulomb interactions
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pected to experience transitions from electronic configurations with paired
electrons to unpaired ones presenting larger spins.

In a first set of calculations, this transition process is here reproduced for
a QD populated with 3, 4 and 9 electrons. The dielectric constant and the
effective mass of the electrons are taken constant, namely, the same for the
system and the surroundings. One can then work in effective atomic units,
thus reaching universal results that can be extrapolated to any semiconduc-
tor material. The only parameter introduced in these calculations is the
large height of the confining barrier which is fixed to 14 Hartree∗ (effective
Hartree) 2. For the electronic populations considered, only two configura-
tions, namely, least-polarized and fully polarized, become the ground state.
Figure 3.6 shows the energy difference between these two configurations as
a function of the radius of the QD. 3 Thus, for N=3 the configuration 1s2 1p
is the lowest lying for R < 7a∗0 (a∗0 being the effective Bohr radii) and 1s 1p2

otherwise. For N=4 it is 1s2 1p2 up to R ∼ 5.5a∗0 and then 1s 1p3. Finally,
when N=9, 1s2 1p6 1d is the ground state if R < 8.3a∗0 and 1s 1p3 1d5 if
R is larger. It is worth noting that, despite the higher correlation regime
of the system with 3 electrons, the phase transition to the spin polarized
state takes place at smaller radii for the case of N=4 electrons. The reason
comes from the half-filled shell structure of the fully polarized state of N=4
electrons, which entails extra stabilization of this phase .

From figure 3.6 it can be deduced that semiconductor materials with
small Bohr radii are the best candidates to externally control QD spin tran-
sitions, given that the phase transition takes place at smaller QD radii and,
as a consequence, the resulting energetic change from external manipulation
is larger. Then, in order to show the dielectric modulation of spin, ZnS
QDs are now studied. This wide band gap semiconductor has an electron
effective mass of m∗ZnS = 0.34m0 and a dielectric constant εZnS = 5.7 which
lead to an effective Bohr radius of a∗0 ∼ 17a0. The electron effective mass
outside the QDs is now taken as m∗ext = 1 and the carriers are confined by
a typical potential barrier of 4 eV (14 Hartree∗). The panels of figures 3.7
and 3.8 depict the ground state phase diagrams of ZnS QDs, for the same
electronic populations above studied, as a function of the QDs radii (R)

214 Hartree∗ correspond to 4 eV for the ZnS QDs studied below.
3Although the proofs of the Hohenberg and Kohn theorems apply to the ground

state [186], it can be generalized to the energetically lowest state of each symmetry [187].
Then, the LSDA scheme introduced in section 3.2.1 allows to study several low-lying
electronic configurations with different spin Sz.
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Figure 3.7: Ground state phase diagram of a ZnS QD populated with three electrons vs. the
QD radius R (nm) and the external dielectric constant εext. The schematic boxes diagrams
indicate the electronic configuration in the different regions of the plot. Inset: Energy difference
∆E (meV) of the spin least-polarized minus the spin polarized configuration vs. the external
dielectric constant εext for a fixed value of the QD radius R.

and the dielectric constant of the surrounding medium (εext). The range
of studied radii has been selected from the proximity with the transition
radius in absence of mass and dielectric mismatch (figure 3.6). The line
represented in each panel corresponds to the (R, εext) conditions leading
to a phase transition. Above the line the ground state is spin polarized,
while below it corresponds to the least polarized configuration. These rep-
resentations show that, as announced, phase transitions can be dielectrically
induced for a fixed QD radius, this can be tested by choosing any point of
the transition line and moving horizontally. Such process is illustrated in
the insets of the figures. For instance, the inset of figure 3.7 plots the energy
difference between the least- and fully polarized configurations versus εext
for the case of a 5.5 nm radius QD populated with 3 electrons. On the one
hand, the plot reveals that whereas a freestanding (εext = 1) QD has a fully
polarized ground state (Sz = 3/2), if the same dot is immersed in a solvent
like chloroform with a dielectric constant εext ∼ 4 a transition toward the
least-polarized (Sz = 1/2) configuration occurs. On the other hand, a so-
lution with a dielectric constant of about εext = 2.8 would be able to tune
degeneracy between both electronic configurations. The obtained results for
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N=4 and N=9 electrons (figure 3.8) are qualitatively the same as the case
of N=3, but the changes in spin and/or energy are larger.

Figure 3.8: The same as figure 3.7 but for N=4 (a) and N=9 (b) excess electrons in the QD.

In summary, the ground state phase diagrams presented in this section
have shown that it is possible to switch between high/low spin configurations
by means of an appropriate QD environment. This suggest the use of QD
spin as a sensor of the dielectric response of a given medium.

3.2.4 Many-electron multishell quantum dots

Colloidal procedures of NC synthesis offer the interesting possibility of fab-
ricating multishell QDs, i.e., built of concentric layers (shells) of different
materials [188–192]. The relevance of this growth of external shells around
a NC core arises chiefly from what is known as passivation [193, 194]. At
the surface of a semiconductor NC substantial reconstructions in the atomic
positions occur, leading to the appearance of surface states with energies
lying within the forbidden gap of the crystal bulk. These states can trap
electrons and holes, and degrade the electrical and optical properties of the
material. Passivation is the chemical process by which the surface atoms of
a NC are bonded to another material of a larger band gap, eliminating in
great measure the energy levels inside the gap [2].

More than a decade ago, Eychmüller and coworkers synthesized a re-
markable NC heterostructure, a quantum dot quantum well (QDQW) [188,
189]. It was composed of a central CdS core surrounded by a HgS shell and
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capped with an additional CdS shell. Subsequently, more complex onion-
like NCs have been synthesized by means of alternative precipitation of HgS
and CdS on a CdS central core [190]. The peculiar physics of this kind
of NCs derives from the different band gap of neighboring materials. As
illustrated in figure 3.9, in CdS/HgS systems, the band alignment yields a
potential well in the HgS regions and a barrier in the CdS layers. Thus,
in a CdS/HgS/CdS QDQW the electronic density, coming from either opti-
cal excitation or tunneling from metallic electrodes, is largely confined in a
narrow well which is embedded inside of a NC [195–197]. The relative easy
control of the size and composition of these structures, and therefore, the
possibility of modifying the charge density localization, grants a high degree
of flexibility in tailoring their discrete energy spectra [198–200].
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Figure 3.9: 3D representation of a QDQW (left) and the corresponding radial confining potential
profile (right).

Concerning the theoretical modeling of such heterostructures, given that
the electronic density is mainly localized in regions composed by the smaller
band gap material (HgS), one could think that it is safe to employ the
effective mass and the dielectric constant of this material for the whole mul-
tishell QD. Such a presumption is refuted in the present section. To this end,
several CdS/HgS-based spherical multishell QDs are studied in the regime
of many-electron population. The LSDA methodology introduced in sec-
tion 3.2.1 is employed to calculate the ground state properties of the NCs.
The obtained results prove that a correct description of multishell QDs re-
quires consideration of variable, i.e., position-dependent, effective mass and
dielectric constant. Otherwise, results can even lead one to mistake the
number of electrons that fit in the dots.
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Material m∗0 ε Eg (eV) ∆ (eV)

HgS 0.04 11.4 0.5 0.08
CdS 0.15 5.5 2.5 0.08
H2O 1. 1.78 8 0.08

HgS/H2O CdS/H2O HgS/CdS
V (eV) 4.15 2.8 1.35

Table 3.1: Parameters employed in this section (taken from references [201–203]). Namely,
effective mass (m∗

0), dielectric constant (ε) and spatial confining potential barrier (V ). The band
gap (Eg), and split off (∆) are parameters used in section 3.2.5.

The studied QDs are formed from CdS and HgS, and are always sur-
rounded by water. The material parameters employed in the calculations
are indicated in table 3.1. To simplify the system description, the notation
A/B/A/ . . . x/y/z/ . . . will be employed hereafter. Here A/B/ . . . are the
materials forming the QD, from the inner to the outer shell, and x/y/ . . .
are the corresponding shell thickness in nm. Results are obtained by means
of three different LSDA calculations, namely, one which employs the effec-
tive mass and dielectric constant of the HgS shells for the whole system
(hereafter referred to as unpolarized calculation), another which employs
variable material parameters but neglects the self-energy (polarized calcu-
lation), and finally the polarized calculation including the self-energy (see
section 3.1). The bottom of the HgS conduction band is assumed to be the
origin of energies in all cases.

The first system under study is a QDQW with structure CdS/HgS/CdS
3/2/1. Figure 3.10 shows the chemical potentials µ(N) and electron addi-
tion energies Eadd(N) of this NC (equations 2.18 and 2.19 respectively). As
evidenced by panel 3.10(a), chemical potentials obtained from polarized cal-
culations, either including self-energy or not, are considerably larger than
those obtained from the unpolarized calculation, which leads to disagree-
ment in the number of electrons that can be hosted by the system. The
horizontal lines in the figure at 1.35 eV and 4.15 eV represent the confining
barrier height of the HgS well and the QD respectively. Therefore, data indi-
cate that whereas the unpolarized calculation predict that up to 12 electrons
can be accommodated in the HgS well, the polarization effects restrict this
number to 6 electrons. Similarly, the number of electrons that fit into the QD
is limited to 22 in the polarized calculation while this limit considerably ex-
ceeds 25 electrons in the case of the unpolarized treatment. Concerning the
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Figure 3.10: Chemical potentials (a) and electron addition energies (b) vs. the number of elec-
trons in a QDQW. Solid lines correspond to unpolarized calculations, dotted lines to polarized
calculations, and dashed lines to polarized calculations including self-energy. 2Sz values are indi-
cated by numbers on the addition spectra. Inset: Schematic of the QD structure, CdS regions are
represented in black and HgS regions in white.

addition energies, even though their value is noticeably destabilized by polar-
ization effects [155], no qualitative differences can be observed between the
approaches employed. The profiles obtained indicate the fulfillment of the
Aufbau and Hund rules, the same spin and electronic configurations being
achieved, namely, sequential filling of orbitals 1s, 1p, 1d and 1f. Therefore,
only quantitative differences between approaches are obtained, originated
by the extra polarization work coming from the dielectric confinement.

Two structures are now studied which present two internal quantum wells
and a barrier acting core. The only difference between the structures con-
sidered is the thickness of the intermediate CdS barrier. Thus, in figure 3.11
the chemical potentials and electron addition energies are represented for the
cases of a CdS/HgS/CdS/HgS/CdS system with dimensions 3/2/1/2/1 in
panels (a) and (b), and 3/2/2/2/1 in panels (c) and (d). Apart from quan-
titative discrepancies similar to those previously analyzed, now differences
between methods arise in form of reconstructions of the addition energy
spectra. In the spectrum (b) one essentially observes that, unlike the unpo-
larized spectrum, a third maximum, corresponding to a shell closing, appears
at N=10 electrons for the polarized calculation. This peak corresponds to
the filling of the orbital 2s, whose stabilization is associated with a redistri-
bution of its nodal surface in a barrier region, due to the extra interactions
introduced by dielectric polarization. The extra peak shifts two positions
the subsequent peak in the spectrum. In turn, the inclusion of self-energy
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Figure 3.11: The same as figure 3.10 for the cases of the double well structures depicted in the
insets and specified in the text. If the spin of polarized calculations with and without self-energy
is different, underlined numbers correspond to the calculations including self-energy.

also brings about some ground state reconstructions, even leading to a spin
change (2Sz = 6 vs. 4) at N=14.

The most relevant role of both polarization and self-energy can be seen
in the case of the thicker CdS barrier. Plot 3.11(d) reveals that, in the
few electron region, rather different electron addition spectra are obtained
when polarization as well as self-energy are included. For instance, it can
be highlighted that at N=8 electrons, the spin predicted by the unpolarized
calculation is 2Sz = 0, which turns into 2Sz = 2 as polarization is included,
and recovers a zero value as, additionally, self-energy is incorporated.

To summarize, in this section it has been shown that despite the elec-
tronic density is mainly localized in the well regions of a multishell QD,
disregarding the use of position dependent material parameters in theoret-
ical descriptions gives rise to unsatisfactory results: on the one hand, the
magnitude of chemical potentials and addition energies of the systems are
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underestimated, and on the other hand, the discrepancies can even include
ground state configuration reconstructions, these being specially relevant as
the QD complexity, i.e., the number of sells, increases.

3.2.5 Incorporation of non-parabolicity corrections

In the one-band EMA model the energy dispersion of the conduction band
of a semiconductor is implicitly assumed parabolic, the curvature of the
parabola being related to the electron effective mass:

E(k) =
h̄

2m∗
k2. (3.19)

The E − k relation is however parabolic only near the band edge (Γ point)
of semiconductor crystals [19]. This deviation from a parabolic dispersion
is more pronounced in narrow gap semiconductors due to the larger cou-
pling between the conduction and valence bands, a fact that devalues the
use of the uncoupled approach of the EMA to study this kind of semicon-
ductors [204].

To deal with non-parabolicity, a good alternative to the computationally
more demanding k·p multiband approaches is the use of an energy depen-
dent effective mass as proposed by Kane [205]. Such technique allows one to
work within the framework of the one-band model where the effective mass
is self-consistently adjusted for each energy level. This latter fact entails,
however, the drawback that different Hamiltonians are employed to com-
pute the different eigenvalues, so that the associate eigenfunctions are not
necessarily orthogonal. Still, the energy-dependent effective mass has been
widely employed to study low dimensional systems, ranging from quantum
wells (QWs) [206–210], QDs [211–214] and QRs [215,216], as well as, artifi-
cial molecules [217,218].

In this section the non-parabolicity corrections are incorporated into
the LSDA code introduced in section 3.2.1. Then, the relevance of non-
parabolicity effects on the energies and addition energy spectra of many-
electron QDs is investigated. Comprising different confinement regimes,
the results reveal that the interplay of both non-parabolicity and dielectric
confinement may lead to changes in the electronic structure and addition
energies of QDs built of narrow gap semiconductors, the effect being partic-
ularly relevant in multishell QDs.



3.2 Dielectric confinement of many-electron colloidal nanocrystals 61

In order to introduce the effects of a non-parabolic conduction band,
a position- and energy-dependent effective mass m∗iσ(E, r) is employed to
compute the Kohn-Sham orbitals. The energy-dependence of the effective
mass is given by the Kane equation [205],

m0

m∗(E, r)
= 1 +

2

3
P2

(
2

E + Eg(r)− V (r)
+

1

E + Eg(r)− V (r) + ∆(r)

)
,

(3.20)

where m0 is the free electron mass, P is the Kane parameter, and Eg(r),
V (r), ∆(r) are the position-dependent band gap, confining potential and
spin-orbit parameter, respectively. This formula is rewritten for practical
purposes in terms of the position-dependent effective mass at the bottom of
the conduction band m∗(0, r):

m0
m∗(E,r) − 1

m0
m∗(0,r) − 1

=
(E + Eg(r)− V (r) + 2

3∆(r))(Eg(r)− V (r))(Eg(r)− V (r) + ∆(r))

(Eg(r)− V (r) + 2
3∆(r))(E + Eg(r)− V (r))(E + Eg(r)− V (r) + ∆(r))

.

(3.21)

In the numerical implementation, the above position- and energy-depen-
dent effective mass is introduced in the Kohn-Sham equations. Thereby,
the problem moves from a single differential equation to a set of coupled
differential equations,

(
− h̄

2

2
∇ 1

m∗1sσ(E1sσ, r)
∇+ VKS,σ(ρ, ζ)

)
ϕ1sσ(r) = E1sσϕ1sσ(r)(

− h̄
2

2
∇ 1

m∗1pσ(E1pσ, r)
∇+ VKS,σ(ρ, ζ)

)
ϕ1pσ(r) = E1pσϕ1pσ(r)

... (3.22)(
− h̄

2

2
∇ 1

m∗iσ(Eiσ, r)
∇+ VKS,σ(ρ, ζ)

)
ϕiσ(r) = Eiσϕiσ(r),

which should be self-consistently solved. The procedure starts by solving a
differential equation in which m∗iσ(E, r) is replaced by m∗(0, r). Then, from
the obtained Kohn-Sham orbitals the charge density ρ and spin magnetiza-
tion ζ are computed and subsequently employed to construct the effective
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Kohn-Sham potential VKS,σ(ρ, ζ). In turn, the orbital energies Eiσ enable
to compute the effective masses m∗iσ(E, r) (equation 3.21) entering the ki-
netic energy operators. The set of coupled differential equations are then
built up. In a second step, these equations are solved one by one in order
to get again a set of orbitals and associate energies to build up the set of
differential equations of the next iteration. This process is repeated up to
simultaneous convergence of all differential equations. As stated earlier, the
single-particle Kohn-Sham orbitals obtained from equations with different
effective masses are not necessarily orthogonal. By this reason, to compute
the total charge density a prior orthogonalization is carried out.

Next, we show the quantitative improvement introduced by the non-pa-
rabolicity corrections when dealing with narrow gap semiconductors. To this
end, the experimental results obtained by Banin et al. [219] are reproduced.
They performed scanning tunneling spectroscopy measurements on 2.2 nm
InAs QDs (EInAs

g = 0.354 eV) embedded in an organic solvent from which
the first three electron addition energies can be obtained. Franceschetti
et al. [154] theoretically reproduced these addition energies by means of
atomistic pseudopotential calculations where the dielectric constant of the
environment was taken as a fitting parameter. In this way, they obtained
a good agreement with the experiment employing εout = 6. However, the
LSDA results shown below have been performed with an external dielectric
constant εout = 3, which seems more reasonable for this kind of organic
solvents [220]. The summary of the obtained results is shown in table 3.2.
As evident from data, non-parabolicity corrections work well improving all
parabolic results, the case of Eadd(2) being specially relevant.

Experiment Parabolic LSDA Non-parabolic LSDA

Eadd(1) (eV) 0.14 0.22 0.19

Eadd(2) (eV) 0.52 1.59 0.59

Eadd(3) (eV) 0.14 0.20 0.14

Table 3.2: First three electron addition energies of a 2.2 nm InAs QD obtained from scanning
tunneling spectroscopy, and LSDA calculations with and without non-parabolicity corrections.
The material parameters employed in the calculations are those of InAs bulk, i.e, m∗

QD = 0.023,

εQD = 12.3, EQD
g = 0.354 eV, ∆QD

SO = 0.41 eV, and for the environment, m∗
out = 1, εout = 3,

Eout
g = 8 eV, ∆out

SO = 0 eV. The confining potential of carriers is set to 3.2 eV.

The non-parabolicity corrections are expected to be more important in
the many-electron regime of a QD since higher energy levels come into play.
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Figure 3.12: Ground state energies vs. the number of electrons of a (a) 5 nm radius HgS QD,
(b) 20nm radius HgS QDs, and (c) 5 nm radius QD defined by the HgS parameters except for Eg

which is set to 3 eV. Solid lines correspond to parabolic single particle (sp) calculations, dashed
lines to non-parabolic sp calculations, and dotted lines to parabolic LSDA calculations.

In fact, it has been claimed that the corrections can be of the same order as
many-body interactions [212, 218]. Here, such a possibility is tested for the
case of a HgS QD with 5 nm and 20 nm radii in water. Given that the effec-
tive Bohr radius of HgS is a∗0 = a0ε/m

∗ = 15 nm, both confinement regimes
are present in the rang of QD sizes studied. For the time being the dielectric
confinement is neglected, i.e, the HgS dielectric constant is used for the whole
system. The material parameters employed are the same as those of the pre-
vious section and are outlined in table 3.1. Figure 3.12 shows a comparison
of the QD ground state energies as a function of the electronic population
obtained from three different approaches: a parabolic single-particle calcu-
lation (solid lines), a single-particle calculation employing energy dependent
effective mass (dashed lines), and a parabolic LSDA calculation (dotted
lines). The results go along with expectations. In panel (a) one can observe
how in the strong confinement regime the non-parabolicity corrections can
be as large as the LSDA many-body interactions. However, in the weak
confinement regime (panel (b)) the corrections are negligible. Additionally,
with the aim of demonstrating to which extent the non-parabolicity depends
on the material band gap, in panel (c) are depicted the corresponding re-
sults obtained for a QD described by the same parameters as the small QD
except for the band gap that is set to 3 eV. The figure reveals that, despite
the strong confinement regime, the role played by the non-parabolicity cor-
rections is small, similar to the weak confinement regime case.

Having observed the large stabilization of many-electron states as a con-
sequence of the use of an energy dependent effective mass, now attention is
paid to the fairly sensitive addition energy spectrum. The case of an ho-
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Figure 3.13: Addition energy spectra of a 5 nm radius HgS QD. (a) Parabolic and (b) non-
parabolic LSDA calculations neglecting dielectric polarization, (c) and (d) are their counterparts
with polarization.

mogeneous 5 nm radius HgS QD is first studied with the developed LSDA
method and including dielectric polarization effects. The results are illus-
trated in figure 3.13, where panels on the left- and right-side correspond to
unpolarized/polarized calculations, and the top/bottom row panels corre-
spond to parabolic/non-parabolic ones. As can be observed, including non-
parabolicity and dielectric polarization separately does not yield qualitative
changes with respect the reference (simpler) calculation shown in panel (a).
Whereas the dielectric confinement just produces the aforementioned desta-
bilization of the addition energies [155], the main effect of non-parabolicity
is the reduction of the peaks height due to a smaller interlevel spacing orig-
inating from an increase in the orbital effective masses. By contrast, when
both contributions are simultaneously taken into account (figure 3.13(d)) a
reconstruction is observed. The orbital filling sequence, which in the other
panels is 1s2 1p6 1d10 2s2 1fx, becomes 1s2 1p6 1d10 1fx. This preferential
filling of 1f orbital vs. 2s is produced by two facts. On the one hand, the
dielectric confinement destabilizes the energy of the Kohn-Sham orbitals by
increasing the role of the Coulomb interactions, thus enhancing the non-
parabolicity effect. On the other hand, s-symmetry orbitals (l=0) have a
null centrifugal term l(l+ 1)/m∗r2 while this term is relevant for f orbitals
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(l=3). Hence, the 1f orbital undergoes a larger stabilization of the centrifu-
gal term when the non-parabolicity increases the effective mass and, as a
consequence, it is filled before.
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Figure 3.14: Addition energy spectra of a multishell QD (Structure details can be found in
the text). (a)/(b) Shows results without/with dielectric polarization. Solid lines correspond to
parabolic LSDA calculation and dashed lines to non-parabolic ones.

In the previous section, addition energy spectra of double well multishell
QDs have proven to be quite sensitive to polarization effects coming from
mass and dielectric mismatches. The reason relying on the extra stabiliza-
tion of second shell orbitals (2s, 2p,...) which, depending on the system
conditions, can eventually localize their nodal surface in the barrier regions
of the structure. By contrast, non-parabolicity has been observed to sta-
bilize higher angular momentum orbitals. Therefore, the combined effect
of dielectric polarization and non-parabolicity in these systems is difficult
to anticipate. In figure 3.14 are represented the addition energy spectra of
a multishell QD built of CdS/HgS/CdS/HgS/CdS layers with dimensions
of 3/2/1/2/1 nm. Left/right panels neglect/include dielectric polarization
while solid/dashed lines correspond to parabolic/non-parabolic calculations.
The reference spectrum (unpolarized and parabolic, solid line of panel (a))
shows a regular sequential filling up to N=20 electrons (1s2 1p6 2s2 1d10).
Then, a shoulder emerges at N=22 involving the 2p orbital. This shoulder
disappears when non-parabolicity corrections are included. Again, this is
due to the overstabilization of the 1f centrifugal term compared with that
of 2p orbitals. Apart from this reconstruction, the main effect of the non-
parabolicity is the reduction of the height peak commented above. The 2p
shoulder also vanishes when polarization is taken into account in a parabolic
calculation (solid line in figure 3.14(b)). Furthermore, some “noise”is ob-
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served when filling the 1d shell. Once more, the strongest effect is observed
when both contributions are simultaneously considered (dashed line in panel
(b)). In such a case, the height of the half- and full-filling peaks becomes
similar. What is more, the largest peak at N=20 electrons corresponding to
the 1d shell closure drops out.

In summary, the effects of the conduction band non-parabolicity have
been incorporated into the LSDA approach developed along this chapter.
To this end, an energy-dependent effective mass has been introduced in the
Kohn-Sham equations, which leads to a problem of a set of coupled differ-
ential equations. Using this method, the obtained results have shown that
in narrow gap semiconductor QDs in strong confinement regimes the energy
corrections derived from non-parabolicity can be as large as the many-body
LSDA contributions. In addition, the dielectric polarization has been shown
to stimulate the non-parabolicity effects, leading to the appearance of addi-
tion energy spectra reconstructions, these being mainly due to the different
stabilization of the kinetic centrifugal term experienced by orbitals with dif-
ferent angular momentum.
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3.3 Dielectrically induced surface excitonic states
in spherical quantum dots

Due to the discrete energy level structure, optics of semiconductor QDs is
determined by the concentration of the oscillator strength to sharp exciton
transitions, which makes them attractive for linear and non-linear optical
applications with tunable frequency [134,135]. In any case, these promising
optical applications are based on the formation and/or subsequent recombi-
nation of one or more electron-hole pairs when the energy of the excitation
source is tuned in the system band gap. One of the classic features of QDs
is the shift of the optical band gap as compared with the crystal bulk, which
originates from two usually opposite contributions. On the one hand, the
single-particle band gap is shifted to higher energies due to the quantum
size effect on the electron and hole levels. On the other hand, the Coulomb
attraction between the electron-hole pair created by photoexcitation adds a
redshift correction. Both corrections are size-dependent and generally result
in an overall blueshift of the optical band gap [221].

As widely commented along the present chapter, the energetic contribu-
tions arising from the dielectric constant mismatch between the semiconduc-
tor material and the environment affect the single-particle spectra as well
as the Coulomb interactions. Nonetheless, in the case of an electron-hole
pair, the net charge neutrality of the system yields a reduced dielectric con-
finement effect on the optical band gap. Indeed, the exciton peak remains
almost unaltered by the dielectric constant of the environment in the ideal
case of an infinitely confined exciton in a QD [138,141]. This is not the case
when the QD confining potential barriers are regarded finite [142]. In such
a case, the most common situation, namely, a QD embedded in a matrix of
smaller dielectric constant, leads to a blueshift of the exciton energy with
respect to the case εQD = εout. Still, this correction of the optical gap is
small compared with the quantum size effect or even with the more relevant
increase of the exciton binding energy produced by the dielectric confine-
ment.

A quite different scenario would take place in case that the system con-
ditions are such that allow carriers to be localized in the self-polarization
potential well. Such dielectrically induced surface excitons in spherical QDs
were first predicted by Bányai et al. [139] under the specific conditions of
strong dielectric mismatch regime, low potential height barrier and large
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electron-hole effective mass ratio (m∗h/m
∗
e). The transition to surface states

observed as the QD radius was reduced led to an abrupt redshift of the ex-
citon energies even reaching negative values, i.e., lying within the forbidden
band gap. In this section, the possible formation of excitonic surface states
is explored in two different situations, (i) a spherical QD in air and (ii) a
QD buried in a matrix with a higher dielectric constant. It is shown that
transitions to surface exciton states take place in both situations. This in-
volves an optical band gap redshift with respect to the case of no dielectric
mismatch, and has strong consequences on the electron-hole overlap, and
therefore, on the exciton recombination probability.

Exciton energies and wave functions are obtained by means of configura-
tion interaction (CI) calculations. The employed basis is a set of symmetry
adapted two-particle Hartree products built from the single-particle Hamil-
tonian eigenfunctions. The latter are obtained, both for electrons and holes
within the one-band EMA 4, through numerical discretization of the Hamil-
tonian

Ĥi = −1

2
∇[

1

m∗i (r)
∇] + Vi(r) + Vs, i(r), (3.23)

where i = e, h is a subscript denoting electron or hole respectively, Vi(r) is
the step-like confining potential and Vs, i(r) is the self-polarization potential.
The spherical symmetry of the system allows to factorize the eigenstates in
angular and radial parts, and find the radial solutions of Hamiltonian 3.23
(φnlm(re/h)) in an one-dimensional discretization grid. The 4 lowest-lying
orbitals with angular momentum l = 0, 1, 2 and the 3 lowest-lying orbitals
with l = 3, 4, 5, 6 have been calculated and employed in the CI calculation.
Then, the interacting electron-hole Hamiltonian

Ĥ = Ĥe + Ĥh + V̂eh, (3.24)

in which the Coulomb interaction term V̂eh includes the dielectric polariza-
tion, is expanded in the CI basis set. The exciton energies and wave functions
are finally computed by carrying out a diagonalization of the Hamiltonian
matrix.

4This simplification on the hole description is supported by works reporting that the
exciton ground state of spherical QDs, which is the only studied here, is essentially formed
by a heavy-hole, the contribution of light-hole bands in this state being negligible. [146,202]
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From the calculated exciton wave function Ψ(re, rh) other interesting
magnitudes can be obtained, as the electron (or hole) radial density,

P(re) =

∫
|Ψ(re, rh)|2 r2e r2h sin θe sin θh drh dθe dθh dφe dφh, (3.25)

or the electron-hole overlap,

S2
e−h = |

∫
Ψ(re = rh = r) r2 sin θ dr dθ dφ|2 (3.26)

which is proportional to the exciton recombination probability.
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Figure 3.15: Self-polarization potential profiles for a 5 nm spherical QD of εQD = 4 embedded
in a) air (εout = 1), and b) in a matrix of εout = 15.

The case of a 5 nm radius freestanding QD is first considered. In this
system, the environment presents the smaller dielectric constant and con-
sequently the self-polarization potential well is formed outside, by the QD
border (see figure 3.15(a)). Therefore, the formation of surface states re-
quires overcoming the QD confining barrier. This is not allowed for holes
since the potential barrier height is infinite because these particles cannot be
promoted to vacuum. Hence, only electrons can experience surface states.
To monitor this transition three different potential barrier heights have been
considered for the electron, namely, Ve = 1, 2, and 3 eV. It is worth noting
that the aim of the present study is not to simulate a specific semiconductor
material, but finding the system conditions which can lead to the appear-
ance of surface states. The other material parameters employed in this first
set of calculations are: m∗e,QD = 0.5, m∗h,QD = 10, m∗e,out = m∗h,out = 1 and
εout = 1.
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Figure 3.16: Exciton (E) and binding (Eb) energies, and electron-hole overlap (S2
e−h) vs. εQD,

for a 5 nm freestanding QD, with an electron confining barrier height Ve of 1 eV (left column
panels), 2 eV (center column panels) and 3 eV (right column panels). Solid (dashed) lines include
(exclude) dielectric polarization effects. Insets: Electron (solid lines) and hole (dotted lines) radial
density distribution. The QD border is indicated by a tick in the horizontal axis.

The results are presented in figure 3.16 in form of exciton energies, bind-
ing energies and electron-hole overlap, vs. the QD dielectric constant for the
three aforementioned electron potential barrier heights. As can be seen from
the radial density profiles shown in the insets, the sought transition from vol-
ume to surface electron states takes place. It is also evident that the larger
the confining potential height, the larger the dielectric mismatch required to
confine the electron in the self-polarization potential well. The transition to
surface states is paralleled by a sudden reduction of the electron-hole overlap
and a change of the slope in the exciton energy vs. εQD profile. This redshift
of the optical gap is consequence of the self-polarization well depth, and is
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in good agreement with previous predictions [139]. By contrast, the binding
energy is unaffected by the transition process and only reflects the expected
reduction in module due to the screening of the bare Coulomb interaction
as the dielectric constant of the dot is enhanced. Differences between polar-
ized and unpolarized binding energies essentially show the influence of the
polarization of the Coulomb interaction.

On the one hand, these results are a clear example denying the aforemen-
tioned cancellation of single- and two-body dielectric polarization contribu-
tions to the optical band gap. On the other hand, the conditions required for
freestanding QDs leading to exciton surface states are rather severe, namely,
quite low electron affinity χ (which determines the confining potential height
in a freestanding QD) and not very light electron effective mass m∗e. Not
many semiconductors can fulfill these requirements, SiO2 is here suggested
as a potential candidate (m∗e = 0.5, χ = 0.9 eV, ε = 4 and m∗h = 10, see
references [222–224]). It however presents the inconvenient of having a band
gap of 9 eV (insulator), so that performing optical excitations would require
a really high energy excitation source.

A different scenario is the case of a QD embedded in a medium of higher
dielectric constant, where the self-polarization potential well is formed in the
inner side of the QD border (see, e.g., figure 3.15(b)). To model this system
the same 5 nm radius QD is considered, but now defined by the following
parameters: m∗e = 0.5, εQD = 4, Ve = 1 eV and Vh = 0.5 eV. The effective
masses in the outer medium are assumed to be the same as in the QD due
to the lack of criterion to assign them. The key difference with respect to
the previous case of a freestanding QD is that now, both the electron and
the hole can be confined in the surface well, the heavier particle being more
strongly attracted by this potential due to its smaller kinetic energy. To
observe this influence of the effective mass, two hole effective masses are
regarded now, namely, m∗h,QD = 1 and m∗h,QD = 10, which are slightly and
much heavier than the electron effective mass, respectively.

Before analyzing the CI results of this system, it is worth noting that
single-particle exploratory calculations vs. εout show a gradual localization
of the carriers in the self-polarization well as εout is increased, facing three
different phases: phase 1 (low εout) corresponding to volumetrically dis-
tributed electron and hole, phase 2 (intermediate εout) where the electronic
density is still volumetric while the hole forms a surface state, and phase 3
(large εout) with both carriers being confined in the self-polarization well.
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However, as the strong electron-hole Coulomb attraction (εQD = 4) is in-
corporated into the CI calculation, phase 2 drops out 5. A similar transition
from three-phase to two-phase processes was observed by Bányai et al. [139]
when they carried Hartree-Fock and CI calculations respectively as a func-
tion of the QD radius. These findings denote the relevant role played by the
electronic correlation in determining the formation of exciton surface states.
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Figure 3.17: Same as figure 3.16 but for a 5 nm QD embedded in a higher dielectric constant
environment. Two different hole effective masses are employed, namely, m∗

h,QD = 10 (left panels)

and m∗
h,QD = 1 (right panels).

Thus, only two phases are encountered in which both particles show vol-

5In an alternative system of a QD embedded in a very high dielectric constant envi-
ronment [161], this three-phase scheme is reproduced by CI results as the QD dielectric
constant is increased (not shown).
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umetric or surface distributions simultaneously. This is shown in figure 3.17
for a hole effective mass of m∗h,QD = 10 in the left panels and m∗h,QD = 1 in
the right ones. The quantitative differences in excitonic and binding energies
are a consequence of the different kinetic energy of the hole. Both cases show,
however, similar qualitative responses to εout (increasing the energy redshift
and decreasing binding energy as the dielectric mismatch is increased), as
previously analyzed for a freestanding QD. A relevant difference arise in the
electron-hole overlap representations. While the panel (c1) (m∗h,QD = 10)
resembles those obtained for a freestanding QD in which the transition to
surface excitonic states involves a sudden drop in the electron-hole overlap,
this is not the case in panel (c2) (m∗h,QD = 1). The overlap vs. εout pro-
file illustrated in panel (c1) is rather unexpected since in this system both
particles transit from volume to surface states simultaneously. By contrast,
one may expect profiles like 3.17(c2) showing an almost constant overlap
vs. εout. The anomalous profile of panel (c1) is attributed to the different
accommodation of particles with so different effective masses in the narrow
self-polarization well (see insets in panel (c1)), yielding as a result a small
overlap. However, when both carriers are spread over the QD volume they
feel a weak confinement regime where effective mass differences play a minor
role and show similar density distributions. It can be then concluded that
in the case of a QD embedded in higher dielectric constant environments,
the transition to surface states only has a relevant exciton recombination
probability impact for QD materials with large m∗h/m

∗
e ratios.

In the work reviewed here [161], the effect of a shallow donor impurity
located at the QD center was also considered. The main outcome of the
carriers-impurity interaction is an almost total suppression of the exciton
binding energy and brightness. The electron is strongly dragged by the
impurity while the hole is pushed towards the QD border, favoring the for-
mation of surface states when possible.

In conclusion, contrary to the belief that dielectric confinement has a neg-
ligible effect on the exciton properties of spherical QDs, the results exposed
here reveal instances where the dielectric character of the environment can
strongly influence the intensity and energy of excitonic transitions through
the formation of surface states. According to the studied systems, the condi-
tions to reach surface excitonic states in a freestanding QD are rather severe,
but these seem more feasible in the case of a QD buried in higher dielectric
constant matrices.
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3.4 Dielectric confinement of semiconductor nano-
rods

The studies of the dielectric environment effect reviewed here have been
so far restricted to the case of spherical QDs. Even though the relevance
of the dielectric confinement in determining energetic magnitudes has been
demonstrated, the structural properties and usual sizes of these NCs hin-
der an observation of some other effects. The main reason for this is the
strong spatial confinement regime, in which the Coulomb interactions play
a minor role, being usually a first-order perturbation effect for the low-lying
states [225,226].

Colloidal and epitaxial synthesis procedures enable nowadays the fabrica-
tion of several sorts of nanostructures with shapes other than spherical, such
as nanowires [227,228], nanotubes [229,230] or even nanotetrapods [231,232].
Here the attention is focused on the elongated counterparts of the spheri-
cal NCs, the so-called nanorods (NRs) [233, 234]. The left bottom panel
of figure 3.1 shows a high resolution transmission image of a sample of
CdSe NRs. Although they were synthesized later than spherical NCs, it
was soon realized that the anisotropic shape confers the NRs a series of
improved optical properties relative to spherical NCs. These range from
higher photoluminescence quantum efficiency [233] and faster carrier relax-
ation [235] to strongly polarized emission [236]. Besides, in these elongated
nanostructures the longitudinal confinement may be fairly weak, so that
the dielectric polarization of the Coulomb interactions is expected to play
an important role in the determination of their properties. Indeed, several
studies on quasi-one-dimensional nanostructures have suggested the effects
coming from the dielectric mismatch with the environment as the driving
mechanism to explain some experimental findings. For instance, one can
mention the large variation of the optical gap of CdSe NRs compared to
the transport one [237], the effect on the excitonic energies observed in ZnS
NRs [238] and type-II NRs [239], or the large magnitude of the polarization
anisotropy on linear [240–242] and nonlinear [243] optical phenomena. Also,
the dielectric confinement has been shown to affect electron-hole separation
dynamics in type-II heterostructured NRs [244] as well as coupling between
electrons and longitudinal optical phonons in CdSe NRs. [245]

NRs are the zero-dimensional version of nanowires, where variations in
the dielectric constant of the embedding media have been theoretically stud-
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ied and shown to produce drastic changes in the exciton binding energy and
oscillator strength [150, 246, 247]. Nevertheless, the amount of theoretical
works focusing on environmental effects on semiconductor NRs is rather
scarce. Up to the moment of publication of the works reviewed here, just
two works can be found in the literature [162,163] and yet neglect the con-
tributions from both the longitudinal spatial confinement and the Coulomb
correlations (i.e., they treat the Coulomb interactions as first-order pertur-
bations). Here it will be shown that these assumptions may be inappropriate
when taking the dielectric effects of the environment into account.

This section performs a theoretical study of the dielectric confinement
effect on interacting particles confined in semiconductor NRs. To this end,
a numerical method is developed which allows to calculate the electrostatic
potential in three-dimensional systems with inhomogeneous dielectric con-
stant ε(r) [145]. A comprehensive summary of the method is outlined in
the next section. In short, it is based on the computation of the polar-
ization charges induced at the dielectric interfaces to later calculate the
electrostatic potential generated by the source charges plus these polariza-
tion charges [248,249]. The fully three-dimensional model allows to compare
the behavior of different NC shapes. Thus, several CI results are shown for
two-electrons and an exciton confined in a rod and a spherical dot. Whereas
the main effect of the dielectric environment observed in the dot is the well
known increase of the Coulomb interactions, in the case of the elongated
rod it brings the system into a regime of strong correlation. The wave func-
tions are particularly sensitive to such correlation, which leads to qualitative
changes in the electronic and optical properties of the rods. Additionally,
an exhaustive study about the dielectric confinement effect on the excitonic
properties of NRs is carried out. The case of recently synthesized type-II
heterogeneous NRs is also studied. In these systems the asymmetric loca-
tion of electron and hole charge distributions is demonstrated to magnify
the dielectric confinement effect due to a reduced compensation between
self-energy and Coulomb polarization terms. Finally, the NR response to
longitudinal electric fields is studied. It is shown that the threshold field
required to separate the electrons from holes is strongly dependent on the
dielectric constant of the environment.
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3.4.1 Dielectric confinement computation in axially-symmetric
nanostructures

As introduced in section 3.1, the calculation of the electrostatic potential
in inhomogeneous dielectric media goes through finding a solution of the
Poisson equation 6

∇ [ε(r)∇Φ(r)] = −4πη(r), (3.27)

where Φ(r) is the Coulomb potential generated by the charge density distri-
bution η(r), and ε(r) is the position dependent dielectric constant. Solving
this equation with appropriate boundary conditions yields a Coulomb poten-
tial which is equivalent to the one generated in a vacuum by the joint action
of the source charges η(r) and the charges h̃(r) induced in the medium, i.e.,

Φ(r) = Φs(r) + Φi(r), (3.28)

with Φs(r) and Φi(r) fulfilling

∇2Φs(r) = −4πη(r), (3.29)

∇2Φi(r) = −4πh̃(r). (3.30)

Expanding the left derivative term of equation 3.27 and introducing 3.28, 3.29
and 3.30, leads to the following expression after some algebra,

ε(r)h̃(r) = [1− ε(r)] η(r) +
1

4π
∇ε(r)∇ [Φs(r) + Φi(r)] . (3.31)

The method that will be here used to obtain h̃(r) is a numerical dis-
cretization of the above equation. In the discretization process, the con-
tinuous source charge distribution η(r) is defined by a distribution of point
charges qk localized at the nodes k of the discretization grid. The charge
distribution can be then expressed as

η(r) =
∑
k

qkδ(r− rk), (3.32)

where δ(r− rk) is the Dirac delta function centered at node k.

6Please note that this equation is the same as equation 3.8. Here, however, the explicit
double dependence of the potential on the spatial coordinates, namely, Φ(r′, r), is skipped
for the shake of conciseness. The Greek letter η is also used instead of ρ as the source
charge density to avoid misunderstandings with the radial spatial coordinate ρ.
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Apart from the polarization charges induced at the dielectric interfaces,
other ones are induced by each point charge qk. To visualize this fact, let us
consider the case of a point charge qk placed in a uniform dielectric medium
with constant ε. According to the Gauss theorem, the field generated by
this charge is qk/ε, which means that an induced charge is generated around
the source point charge to accomplish qk + qik = qk/ε [250]. Therefore, the
induced charge around each point charge will have a density

qik = −qk
(
1− 1

ε(rk)

)
δ(r− rk), (3.33)

and the contribution to the total density of polarization charges h̃(r) coming
from the induced charge around the source charges position is then

hSC(r) =
∑
k

−qk
(
1− 1

ε(r)

)
δ(r− rk). (3.34)

On the other hand, a point charge in a homogeneous medium also in-
duces the formation of image charges at infinity q∞. The effect of these
charges is perfectly negligible as is their electrostatic field: ∼ q∞/|r∞ − r′|,
where the denominator (r∞) is infinite while the numerator is finite.

Substituting h̃(r) = h(r)+hSC(r) in equation 3.31 and writing η(r) and
hSC(r) as in expressions 3.32 and 3.34 respectively, one obtains

ε(r)h(r) =
1

4π
∇ε(r)∇ [Φs(r) + Φi(r)] , (3.35)

where h(r) stands for the induced charges other than hSC(r), i.e., those in-
duced at the dielectric interfaces.

Whenever the integration domain V includes all source and induced
charges 7, Φs(r) and Φi(r) can be expressed as

Φs(r) =

∫
V

η(r′)

|r− r′|
dr′, (3.36)

Φi(r) =

∫
V

h(r′) + hSC(r
′)

|r− r′|
dr′. (3.37)

Again, writing η(r) and hSC(r) in the form of point charges distributions
defined by 3.32 and 3.34, the next relation is obtained

7Except for charges induced at infinity.
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Φs(r) + Φi(r) =

∫
V

h(r′)

|r− r′|
dr′ +

∫
V

η(r′)

ε(r′) |r− r′|
dr′, (3.38)

which can be introduced in equation 3.35 finally yielding

h(r)ε(r)− 1

4π
∇rε(r)

∫
V
∇r

(
1

|r− r′|

)
h(r′)dr′

=
1

4π
∇rε(r)

∫
V
∇r

(
1

|r− r′|

)
η(r′)

ε(r′)
dr′. (3.39)

Solving the above equation allows one to calculate the charge-charge in-
teractions and the self-polarization potential of any three-dimensional sys-
tem. The numerical discretization of equation 3.39 yields a linear matrix
equation Ah = B, where B depends only on the source charge and A on
the geometry of the system. The first step in solving this matrix equation
involves the LU factorization of A. Since A does not depend on the source
charge, the LU factorization, which as a matter of fact is the heaviest part
of the calculation, needs to be performed only once, independently of the
source charges evaluated. What is more, it can be seen in equation 3.39 that
h(r) is different from zero only in the regions where ∇ε(r) 6= 0, i.e., in the
dielectric interfaces, where ε(r) varies smoothly between the corresponding
values of the adjacent materials. This reduces the dimension of the equation
system considerably.

Let us now consider the case of axially-symmetric systems as those stud-
ied in next sections. To show the way of computing the many-body in-
teractions in the corresponding inhomogeneous dielectric media, a general
Coulomb matrix element is regarded, 〈ϕ1(r1)ϕ2(r2)|Φ(r1, r2)|ϕ3(r1)ϕ4(r2)〉,
where ϕi(rj) = χi(ρj , zj)e

imiφj are the employed basis functions 8. Parti-
cle 1 is considered as the source charge which generates the potential Ψ on
particle 2. Therefore, the source charge density is written as

η(ρ, z, φ) = χ1(ρ, z)χ3(ρ, z)e
i(m3−m1)φ

= η(ρ, z)ei(m3−m1)φ. (3.40)

Since η is axially-symmetric, so will h (h(ρ, z, φ) = h(ρ, z)ei(m3−m1)φ). This
allows one to compute h in a two-dimensional grid by evaluation of, e.g.,

8Usually the single-particle eigenfunctions of the system.
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the plane φ = 0. h(r) is then obtained by means of numerical discretization
of equation 3.39 in cylindrical coordinates [145]. Next, it is necessary to
calculate the whole effective charges in vacuum, namely, η(r)+hSC(r)+h(r),
producing the same effect as the source charge in the dielectric environment.
Taking expressions 3.32 and 3.34 if is easy to obtain

η(r) + hSC(r) + h(r) =
∑
k

qk
ε(rk)

δ(r− rk) + h(r) =
η(r)

ε(r)
+ h(r). (3.41)

Finally, the Coulomb matrix element can be evaluated as follows:

V =

∫ [
η(r1)

ε(r1)
+ h(r1)

]
1

|r1 − r2|
ϕ∗2(r2)ϕ4(r2)dr1dr2. (3.42)

The calculation of the self-polarization potential is a bit more involved
computationally speaking. As pointed in section 3.1, this potential can be
viewed as the potential felt by a unitary charge located at a given position
r0 due to the charges that it induces in the medium, excluding those induced
directly around the source charge:

Vs(r0) =
1

2

∫
h(r0; r

′)

|r0 − r′|
dr′. (3.43)

Given that in the calculation of the self-polarization potential the source
charge is a point charge, the equation to solve becomes

h(r)ε(r)− 1

4π
∇rε(r)

∫
V
∇r

(
1

|r− r′|

)
h(r′)dr′ =

1

4π
∇rε(r)∇r

(
1

|r− r0|

)
1

ε(r0)
. (3.44)

The self-polarization potential has the same symmetry as the system,
then its calculation (equation 3.43) can be performed in the φ = 0 plane
only. However, the source charge is now a point charge which only preserves
the axial symmetry when located at the symmetry axis (z). In any other
case, the corresponding induced charge distribution does not present axial
symmetry. As a consequence, the evaluation of h(r) (equation 3.44) must
be carried out in three dimensions, which multiplies by nφ (nφ being the
number of discretization points in φ) the dimension of the corresponding
matrix equation. The numerical calculation of the self-polarization poten-
tial is hence computationally demanding, specially if one is interested in
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reproducing properly the narrow potential well generated in the smaller di-
electric constant regions. Still, some strategies can be followed to reduce the
computational time and storage requirements preserving a good calculation
accuracy [145].

3.4.2 Nanorod vs. spherical nanocrystal: dielectric confine-
ment effect

This section compares the effect of the dielectric polarization of the Coulomb
interactions on spherical and axial symmetry zero-dimensional systems. To
this end, two electrons and an exciton confined in a CdSe NC and NR are
studied. The rod is composed of a cylinder of radius R = 2 nm and length
L = 8 nm attached to two hemispherical caps of radius R = 2 nm in the
extremes, giving a total length of Ltot = 12 nm (see figure 3.18). The
spherical NC is chosen to have roughly the same volume, i.e., it has a radius
R = 3.15 nm. The electron and hole single-particle states are described with
EMA Hamiltonians, which in cylindrical coordinates read:

Ĥi = −1

2

(
1

ρ

∂

∂ρ

(
ρ

m∗ρ,i(ρ, z)

∂

∂ρ

)
+

∂

∂z

1

m∗z,i(ρ, z)

∂

∂z
− m2

i

ρ2m∗ρ,i(ρ, z)

)
+Vi(ρ, z),

(3.45)

R

L

R

R

R

Ltot

Figure 3.18: Schematics of the studied NC (left) and NR (right)

where i = e, h is a subscript denoting electron or hole respectively, mi is the
azimuthal angular momentum and Vi(ρ, z) is the step-like confining poten-
tial, which is zero inside the nanostructure and 4 eV outside. The electron



3.4 Dielectric confinement of semiconductor nanorods 81

effective mass is taken isotropic, m∗ρ,e(ρ, z) = m∗z,e(ρ, z). For holes, how-
ever, the mass anisotropy is important, as it is responsible for the heavy
hole-to-light hole ground state transition that occurs as the aspect ratio of
the nanostructure increases. [237,251] In this regard, heavy hole masses are
employed to model the ground excitonic state of the NC while light hole
masses are used for the NR [252].
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Figure 3.19: Two electron ground state properties in a NR (solid line) and a spherical NC (dashed
line) of the same volume, as a function of the dielectric constant of the embedding medium.(a)
Electron-electron interaction energy, (b) configuration mixing in the CI expansion. The inset
represents the Correlation energy.

The dielectric contributions arising from the self-polarization potential
(self-energy) are neglected in the present study because they do not influ-
ence the trends reported here. Indeed, these trends have been supported by
subsequent studies in which a full treatment of the dielectric confinement
is performed [145, 165]. In turn, the dielectric polarization of the Coulomb
interaction has been accounted for with the methodologies outlined in the
previous section. The many-body interactions are then taken into account
by means of a CI procedure. The variational space for the two electrons (ex-
citon) is built from a large number of two-body Slater determinants (Hartree
products) obtained by filling in the single-particle eigenstates in all possible
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ways consistent with symmetry requirements.

The case of the bielectronic system is regarded first. Figure 3.19(a)
shows the electron-electron interaction energies Vee, taken as the difference
between the ground state energy computed by means of a CI and a single-
particle calculation, for the NR and the NC as a function of the dielectric
constant of the environment, the nanostructure dielectric constant being
that of the CdSe bulk, εCdSe = 9.2. As can be seen, the repulsion energy of
both systems evolves similarly, experiencing the well known enhancement of
the Coulomb interactions as the dielectric mismatch is increased. To quan-
tify the amount of Vee that is not captured in perturbative treatments of
the Coulomb interaction, the inset of figure 3.19 shows a sort of correlation
energy defined as Ecorr = Vee − V 0

ee.
9 Here V 0

ee is the expectation value of
the Coulomb repulsion for the dominant configuration in the CI expansion.
The plot reveals the first differences between NR and NC. In absence of di-
electric mismatch the NR correlation energy is more than twice that of the
NCs. This is a signature of the weak confinement regime in the longitudinal
direction of the NR. Differences are however dramatic as the outer dielectric
constant is reduced. Whereas the NC correlation energy remains unaltered,
it experiences a strong increase for the case of the NR, reaching values six
times larger than the NC correlation energy.

Electronic correlations have normally visible effects on the wave func-
tion, which is asserted in the present case. Figure 3.19(b) plots the ground
state wave function configuration mixing, i.e., the weight of the CI expansion
which does not come from the dominant configuration. As evidenced by the
figure, the NR bielectronic wave function is severely affected by dielectric
polarization. The observed enhancement in the NR configuration mixing
as the dielectric mismatch is increased contrasts with the insensitivity of
the NC wave function. This support the use of perturbative treatments of
the Coulomb interactions in studies of spherical NCs [225, 226], but brings
it into question when dealing with semiconductor NRs. Special mention
deserve the study of NRs buried in insulating matrices, i.e, low dielectric
constant matrices, where a full interacting and dielectric confinement treat-
ment seems to be required to properly capture the system properties.

A consequence of the configuration mixing on the wave function is shown

9Properly speaking the correlation energy is defined as the energetic difference between
the Hartree-Fock ground state and the exact many-body solution.
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Figure 3.20: Two electron ground state charge density along the longitudinal axis of a NC (left)
and a NR (right), with (solid line) and without (dotted line) dielectric mismatch. The insets are
schematics of the nanostructures.

in figure 3.20. There, the charge density of one electron is plotted along
the longitudinal axis after integrating the coordinates of the other electron.
Two different dielectric situations are considered, one without dielectric mis-
match (εout = 9.2), and one with a strong mismatch (εout = 1.5). For the
case of the NC no differences are observed, in both cases the charge density
is preferably located at the center of the NC where the spatial confinement
is weaker. The NR charge density however suffers a relevant modification
as a consequence of the dielectric confinement, it develops a valley in the
center of the nanostructure. This is an indication that the dielectric po-
larization is inducing Wigner localization in the NR, which will have direct
implications for transport processes [253] and shell-filling spectroscopy [254].

The dielectric mismatch effects on the excitonic states are addressed
next. The results presented in figure 3.21 go in parallel with the bielec-
tronic case. Thus, the electron-hole Coulomb attraction experiences for both
nanostructures an increase in absolute value as the dielectric mismatch is en-
larged. Again, differences arise in the correlation energy and the wave func-
tion configuration mixing. The latter advice against the use of perturbative
treatments to study optical properties of semiconductor NRs. Furthermore,
the high regime of wave function configuration mixing experienced by the
NR in insulating environments is expected to have strong implications in
the optical properties of NRs. Evidence of this has been observed in large
self-assembled QDs where the electronic correlations have been shown to
enhance the exciton luminescence [255]. Therefore, it is worth studying the
electron-hole recombination probability in the present systems. This mag-
nitude can be calculated from the exciton wave function by means of the
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Figure 3.21: Same as figure 3.19 but for the exciton ground state

dipole approximation and Fermi golden rule [45]

Pgs ∝

∣∣∣∣∣∑
i

cgsi 〈φei |φhi 〉

∣∣∣∣∣
2

P2. (3.46)

Here cgsi is the ground state CI expansion coefficient corresponding to the
Hartree product formed by the electron and hole spin-orbitals φei and φhi .
P is the Kane matrix element. A comparison of the exciton recombination
probability in a NC and a NR is presented in figure 3.22 (a). The first
remarkable issue is the larger NR recombination probability [162], which
agrees with the improved optical properties experimentally observed with
respect to their spherical counterparts [235]. Besides, the NR recombina-
tion probability shows a growing tendency as the outer dielectric constant
is reduced, this being a clear signature of the strong correlations affecting
the wave function.

Finally, we show how Coulomb correlated wave functions are more sen-
sitive to external perturbations than strongly confined ones. To this end, a
longitudinal electric field of 50 kV/cm is applied to the NR and the absorp-



3.4 Dielectric confinement of semiconductor nanorods 85

hν

out = 9.2

out = 2.0

peak
correlation

out

(b)

gap

NR

NC

(a)

ε

ε

ε
 0  50 100  200  250  300 150

E    − E     (meV)

 1.0

 1.4

 1.8

 2.2

 2 3 4 5 6 7 8 9

P
 (

ar
b.

 u
ni

ts
)

Figure 3.22: (a) Exciton recombination probability for a NR (solid line) and a NC (dashed line)
vs. the dielectric constant of the embedding medium. (b) Simulated absorption spectrum for the
NR under the effect of a moderate electric field in the longitudinal direction. The spectra with
and without dielectric mismatch are offset for clarity.

tion spectrum is simulated. Regarding the effect of an static electric field in
the theoretical simulation just entails to include the term −eF z (e being
the charge of the carrier, F the electric field module and z the longitudinal
spatial coordinate) in the single-particle Hamiltonians (equation 3.45). The
electric field breaks the parity symmetry thus enabling optical transitions
from the first excited state. In turn, the absorption spectrum is obtained
from A(E) =

∑
j Pj δ(E − Ej), where E is the incident photon energy and

Pj is the recombination probability of the j-th exciton state, with energy
Ej . The NR spectra for two different dielectric media are represented in fig-
ure 3.22 (b). As can be seen, in the absence of dielectric mismatch only the
fundamental transition takes place. However, when the dielectric confine-
ment comes into play an additional small peak appears in the spectrum 10.
This new peak arises from recombination of the first excited state, which
in absence of dielectric mismatch is still negligible as it involves the low-
est single-electron orbital (1se), which is quasi-gerade, and the first excited

10The quantitative redshift experienced by the fundamental transition is modified upon
inclusion of the self-polarization interactions neglected here. Actually, in the next section
it will be shown that in the case εNR > εout the dielectric confinement induces a blueshift
of this peak.
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single-hole orbital (2sh), which is quasi-ungerade. The correlations induced
by the dielectric mismatch are therefore behind the appearance of this peak,
since they lead to strong mixing of the 1se 2sh and 1se 1sh configurations.
The large overlap between the orbitals of the latter configuration yields a
finite electron-hole recombination probability. A similar electric field per-
turbation may be generated by molecular dipoles in the vicinity of the rod,
which suggests that dielectrically confined NRs are suited structures for
sensing applications.

In conclusion, the results reported here provide compelling evidence that
the dielectric confinement experienced by semiconductor NRs has larger con-
sequences than in the predominantly studied case of spherical NCs. The
dielectric polarization effects go beyond energetic magnitudes increasing the
correlation regime and the wave function configuration mixing. This latter
fact has been shown to have visible consequences on the optical and trans-
port properties of NRs, including improved luminescence and sensitivity.

3.4.3 Dielectric environment effects on the optical properties
of nanorods

The numerical results presented in the previous section have revealed that
the overall NR response to the dielectric environment differs from that of
spherical QDs, and hence, deserves a deep understanding of the possible con-
sequences it can have on the optical properties of these high-performance
light emitters. For this purpose, the present section carries out a wide study
of the dielectric confinement of excitons in semiconductor NRs. Different
NR aspect ratios are regarded, from the nearly spherical to the quasi one-
dimensional limits. Furthermore, the case of heterogeneous NRs showing
type-II band alignment is studied. The long-lived spatially charge-separated
state developed by these systems upon excitation is shown to enable strong
dielectric mismatch effects. Finally, the application of an external electric
field along the NR longitudinal direction is simulated. It is shown that the
response of the system to the electric field is strongly subjected to the di-
electric mismatch with the environment.

The numerical methodologies employed to achieve the results presented
here are essentially the same as those outlined in the previous section with
two main differences. The first one is the inclusion of the self-polarization
potential in the single-particle spectra description. Thereby, a full treat-
ment of the dielectric confinement is performed. The second one is the use
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of a different basis set of single-particle functions to build up the Hartree
products in which the exciton Hamiltonian is expanded. The chosen basis
consists in a set of floating 1s-Gaussian functions expressed as

gi,x(r) = e−αx(r−Ri)
2
. (3.47)

The Gaussians are radially centered and equally spaced along the NR lon-
gitudinal axis, i.e., Ri = zik. Previously, the exponents αx(x = e, h, for
electron and hole) are variationally fitted in a sphere calculation where a
single Gaussian function is employed. A numerical basis set formed by the
single-particle Hamiltonian eigenfunctions as used in previous section would
be better adapted to the spatial confinement and hence would yield lower
exciton energies. However, using equidistant floating Gaussian enables a
uniform saturation along the NR as well as a continuously homogeneous de-
scription of the system, from the spherical limit to the extremely elongated
one. Moreover, the use of Gaussian functions allows an analytical evalua-
tion of most of the integrals involved in the construction of the Hamiltonian
matrix, which considerably reduces the computational time.

The electron-hole recombination probability is also studied here. No-
netheless, since large aspect ratio NRs are considered where the energy
separation between the ground state and the low-lying excited states is
just a few meV, thermal population effects are taken into account to com-
pute the recombination probability. To this end, a Boltzmann distribution,
pl(T ) = N(gl/go)e

−∆El/kT , for the exciton states population is incorporated
in the formula 3.46. Here, T is the temperature, gl (g0) is the degener-
acy factor of the state l (ground state), ∆El the energy difference between
the state l and the ground state, and k the Boltzmann constant. N is the
normalization constant, which ensures that the sum of all exciton states
population is equal to one.

Finally, the electric dipole moment data presented in figure 3.26 are
computed as

µ =

∫
[ρh − ρe] z dv, (3.48)

where ρe,h are the electron and hole ground state densities.

Homogeneous CdSe NRs are first considered. The rods have a constant
radius of R = 2 nm whereas the total length is varied to simulate different
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longitudinal confinements. Exciton ground state energy, binding energy, and
recombination probability results are reported in figure 3.23 for media with
different dielectric constant εout (εNR = 9.2). As can be seen in plot (a),
for a given environment, the exciton energy first experiences a significant
stabilization as the rod is elongated and then an asymptotic value is at-
tained. This behavior, which has been observed in optical and transport gap
measurements [237, 256], reflects the relaxation of the longitudinal spatial
confinement. The asymptotic regime is usually identified with a quasi-1D
system, where only radial confinement is present, and it explains the success
of quasi-1D models in reproducing experimental observations [162].

ex
c

a)

LcR R

outε    =2

outε    =3

outε    =5

outε    =9.2

outε    =25

b

b)

c)

E
   

   
 (

eV
)

 0.44

 0.48

 0.52

 0.56

 0.6

 0.64

 5 9  13  17  21  25  29
 1

 2

 3

 4

 0.1

 0.2

 0.3

E
  (

eV
)

P 
(a

rb
. u

ni
ts

)

 0

L (nm)

Figure 3.23: (a) Exciton ground state energy, (b) binding energy and (c) recombination proba-
bility (T=30 K) of CdSe NRs with variable length embedded in different dielectric media. Inset:
schematic of the NR geometry.
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A similar relaxation is observed in figure 3.23(b) for the binding energy.
The plot also illustrates the dielectric enhancement of Eb mentioned on nu-
merous occasions in this text.

Despite the observed gain in binding energy when εNR > εout, figure
3.23(a) reveals that insulating environments blueshift the exciton energy by
up to 50 meV. This results from prevalence of the self-polarization interac-
tion over the Coulomb polarization, being that, as introduced in section 3.1,
both contributions work in opposite directions in neutral excitonic systems.

Soon after their first synthesis, a striking observation of the NRs physics
was the large difference between the measured optical and the quasi-particle
(or transport) gap [237]. The large stabilization of the optical gap could not
be explained in terms of the bare Coulomb attraction between electron and
hole, so that it was assigned to the binding energy amplification induced
by the environment through dielectric polarization [162]. In this regard, it
is worth noting that the dielectrically destabilized exciton observed in fig-
ure 3.23(a) does not contradict this experimental finding. The reason is that
while both gaps (optical and transport) include the self-polarization effects,
only the optical one experiences the stabilization caused by the Coulomb
polarization.

The dielectric environment has been shown to modify the spectral posi-
tion of the NR excitonic transition. Now the effects on the intensity of the
associated spectral peak are investigated. With this purpose, figure 3.23(c)
plots the electron-hole recombination probability computed at T=30 K. The
trends observed in the figure can be essentially outlined as: (i) the recombi-
nation probability increases with the NR length, (ii) insulating environments
enhance the recombination probability, and (iii) this enhancement is larger
for long NRs. All these observations are originated in the high configuration
mixing regime already noted in the previous section, which is favored as the
longitudinal spatial confinement is weakened and the dielectric mismatch is
increased. In addition, it can be seen that for long NRs the thermal popula-
tion of excited states become important and the ground state recombination
probability saturates towards the quantum wire limit.

Let us turn to study the case of heterogeneous NRs similar to those syn-
thesized in references [239, 257]. The rods are composed of a central CdSe
cylinder (core) of radius R = 2 nm and length LCdSe

c attached to two exter-
nal shells of CdTe. The shells in turn are formed by a hemispherical cap of



90 Chapter 3: Dielectric confinement of semiconductor nanocrystals

radius R = 2 nm and a cylinder of length LCdTe
c (see figure 3.24(c) inset).

Bringing all the parts together yields two shells of length LCdTe
s = R+LCdTe

c

and a total NR length L = 2LCdTe
s + LCdSe

c . These heterostructured sys-
tems are known to display a type-II band alignment [239, 257–259], where
electrons are preferably located in CdSe regions and holes in CdTe regions.
To reproduce this situation, a band offset in the interface between both
materials has been included in the numerical calculations. For electrons a
band offset of 0.42 eV has been taken while for holes an inverse band offset
of 0.57 eV is employed [260]. Since the material parameters of CdSe and
CdTe do not offer significant differences, the CdSe effective mass and di-
electric constant have been taken for the whole NR. Thus, the system just
presents the dielectric interface between the whole NR and the environment.

The same optical magnitudes studied for homogeneous NRs are pre-
sented in figure 3.24 for the case of type-II NRs composed of a CdSe core
of length LCdSe

c = 4 nm and CdTe shells whose length LCdTe
s is increased

along the horizontal axis of the graphics. As in the case of homogeneous
NRs, for a given environment the exciton energy (panel (a)) shows an initial
stabilization and later it reaches an asymptotic value; in this case this limit
just reflects the relaxation of the longitudinal confinement felt by the holes,
though. Likewise, the response to the outer dielectric constant is qualita-
tively the same observed for CdSe NRs but now the module of the induced
shifts is twice larger, reaching values as large as 100 meV. The origin of
this larger dielectric effect on the exciton energies lies in the asymmetric
location of the electron and the hole, which leads to a less effective can-
cellation between the energetic contributions of the dielectric confinement.
Thus, whereas the Coulomb polarization is weaker than in CdSe NRs, as
reflected in the smaller binding energies illustrated in figure 3.24(b), the
self-polarization interaction has the same effect in both systems. On the
whole, this translates into enhanced dielectric mismatch effects.

At this point it is worth noting that the effect of the dielectric con-
finement predicted in figure 3.24(a) is consistent with the main trends re-
ported in reference [239], where the photoluminescence spectra of similar
CdTe/CdSe/CdTe NRs were compared for solvents with different dielec-
tric constant. A blueshift of the exciton emission energy by tens of meV
was observed under low dielectric constant environments. This confirms
the prevalence of the self-interaction potential over the polarization of the
electron-hole Coulomb interaction.
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Figure 3.24: Same as figure 3.23 but for type-II NRs

The electron-hole recombination probability is illustrated in figure 3.24(c).
The first difference observed with the case of homogeneous NRs is the impor-
tant reduction of the recombination probability due to the smaller electron-
hole overlap [257]. Also, a decreasing tendency is observed now as the rods
are elongated. This is because the length increase comes from longer CdTe
shells, so that the hole lies further of the electron leading to additional reduc-
tion of the electron-hole overlap. The response to the dielectric environment
is also quite different from the CdSe NRs. Whilst insulating environments
still enhance the recombination probability, this is a constant effect for all
the NR lengths considered, unlike the homogeneous NRs case. The reason is
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that in type-II NRs increasing the length of the CdTe regions do not entails
an increase in the wave function configuration mixing as it just relaxes the
hole spatial confinement.

outε    =9.2
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ε    =2out

ε    =25out

c
CdSe

L    =6nm sL    =2.5nm
CdTe

; L    =19nmc
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Figure 3.25: Electron (solid lines) and hole (dashed lines) charge densities along the longitudinal
axis of type-II NRs.

Next it is shown how the particular linear structure of the studied type-II
nanorods enables the observation of a striking effect of the dielectric confine-
ment. It consists in the reshaping of the exciton wave function by means of
changing the dielectric constant of the embedding medium. Such a process
is illustrated in figure 3.25, where the electron (solid line) and hole (dashed
line) density profiles along the NR longitudinal axis are plotted. Left (right)
panels correspond to NRs of dimensions LCdSe

c = 6 nm and LCdTe
s = 2.5 nm

(LCdSe
c = 19 nm and LCdTe

s = 3 nm). As can be observed in the left panels,
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no noticeable effects arise in the case of the shorter NR. By contrast, as the
longer NR is embedded in strong insulating media, the electron moves from
the rod center to the CdTe shells. For a strong enough dielectric mismatch,
the electron density even develops a deep valley at the center of the NR
(see e.g. εout = 2, bottom right panel in figure 3.25). This transition of
the electron density takes place as a consequence of the enhancement of the
electron-hole attraction caused by the dielectric polarization of the Coulomb
interaction. It does not appear in the shorter NR because the longitudinal
spatial confinement avoid it, however, as the central CdSe core is elongated
the longitudinal confinement felt by the electron is overtaken by the attrac-
tive Coulomb interaction and the electron is dragged by the hole towards
the material interface.

The electron localization near the external shells evidences a regime
where the role of the longitudinal spatial confinement is outweighed by the
dielectric confinement. Moreover, important implications follow from this
phenomenon, such as enhanced sensitivity of the exciton near the CdSe/CdTe
interface and reduced coupling to impurities and defects in the center of the
rod.

The use of an external electric field along the longitudinal direction has
been pointed in the recent years as a proper way to modulate the photolu-
minescence emission of NRs [261–263]. On the one hand, the electric field
tends to separate electrons from holes thus reducing their overlap and al-
lowing to switch on/off the NR emission. On the other hand, the rate at
which this separation appears is known to be affected by the quantum con-
finement, which is related to the quantum confined Stark effect. Having
observed above the strong influence of the dielectric environment in NRs at
zero field, here is probed how it modifies the exciton response to longitudinal
electric fields.

Figure 3.26 panels show the evolution of three optical magnitudes vs. the
intensity of the electric field, namely, (a) the exciton ground state energy,
(b) the electron-hole recombination probability, and (c) the electric dipole
moment. These excitonic magnitudes have been computed for an homoge-
neous CdSe NR of total length L = 25 nm embedded in different dielectric
media. An overview of the results is enough to conclude that there exists an
electric field from which the system suddenly changes its behavior. This field
is identified as the field required to carry out the electron-hole separation.
The consequences of the carrier separation are the redshift of the exciton
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Figure 3.26: (a) Exciton ground state energy, (b) recombination probability and (c) electric
dipole moment vs. the longitudinal electric field for 25 nm length CdSe NRs embedded in different
dielectric media.

energy, so-called Stark shift, and a sudden reduction of the recombination
probability and dipole momentum. It is worth mentioning that the abrupt
response to the electric field is consistent with the rapid switches observed in
optical spectroscopy experiments [263], where also a redshift of the excitonic
signal is observed before it goes out.

The results presented in figure 3.26 also demonstrate the strong impact
of the dielectric environment in the system response to electric fields. Thus,
it can be observed that the electric field required to split the carriers out
becomes larger as the outer dielectric constant is reduced. This being an-
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other consequence of the increase in exciton binding energy product of the
dielectric confinement.

The influence of longitudinal electric fields on excitons confined in type-
II NRs was also studied obtaining the same trends as in homogeneous NRs.
The only difference relied on the weaker electron-hole interaction experi-
enced in this kind of systems, which was why smaller electric fields were
required to separate the carriers and this process took place more gradually.

In conclusion, along this section evidence has been shown of the strong
influence of the dielectric environment on the optical properties of semicon-
ductor NRs. In homogeneous NRs insulating media blueshift the exciton
photoluminescence peak by tens of meV, enhance electron-hole recombina-
tion rates and increase the electric field required to separate electrons from
holes. In type-II NRs, the same effects hold, but now greatly enhanced due
to the asymmetric charge distribution of electrons and holes, which reduces
the compensation between self-interaction and electron-hole Coulomb po-
larization. In these systems, a strong dielectric mismatch may move the
electron charge density from the center of the core towards the heterostruc-
ture interface. This result has straightforward implications in the physical
response of the NRs, and it shows that the dielectric confinement can be
used -in addition to spatial confinement- to manipulate the shape and size
of type-II excitons.

Finally, it should be noted that the phenomena reported in the present
and previous section are not exclusive of CdSe/CdTe NRs. They can be
extended to rods made of different materials as long as the appropriate di-
electric confinement regime is attained.
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Chapter 4

Electronic structure of
many-electron semiconductor
nanorods

Synthesis of colloidal NRs usually starts from metallic or semiconductor pre-
cursors in form of spherical NCs. Then the anisotropic form is created by
inducing preferential growth along one crystalline direction(e.g., the special
c-axis in wurzite nanocrystals) [233, 234, 264]. Throughout this process the
nanostructure shape experiences a transition from quasi-spherical to quasi-
one-dimensional symmetry which has strong consequences on the electronic
properties of the system. On the one hand, due to the change in the spatial
confinement of carriers the electronic shell structure is altered. The orbitals
s, p, d, . . . showing atomic-like degeneracies in the precursors give way to a
low-lying spectrum essentially formed by states with null angular momen-
tum ml = 0, which approach in energy as the rod is elongated and tend to
form the first band of an infinite quantum wire (see, e.g., figure 4.1). On the
other hand, the relaxation of the longitudinal confinement entails a transi-
tion from strong to weak confinement regime in which, as shown in previous
chapter, the electronic correlations play an important role. Monitoring this
change of symmetry and confinement regime in the electron addition energy
spectra is the aim of this chapter.

Also, the present chapter is devoted to electron systems placed in very
long quantum rods in which the electron-electron interactions dominate over
the kinetic energy. In such a high correlation regime, phase transitions take
place from charge-density waves (CDW) with N/2 peaks in the electronic
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density distribution to spin-density waves (SDW) showing Wigner crystal-
lization, i.e., N peaks in the electronic density, and broken spin-density sym-
metry. Further, a fully spin polarized phase is reached at very low electronic
densities.

Finally, even though most of the numerical results presented in this chap-
ter have been obtained by means of DFT-LSDA calculations, a brief digres-
sion about the computation problems arisen in the study of long NRs by
means of diagonalization procedures is outlined at the end of the chapter.
Different options are suggested to minimize this problematics through the
use of basis functions from mean field calculations, as well as a variational
potential-configuration interaction scheme.

4.1 Dot to wire transition in the nanorod addition
energy spectrum

The electronic structure of CdSe NRs is studied here thorough a process
in which a spherical NC is elongated to form a large aspect ratio NR. To
this end, DFT-LSDA calculations are carried out in order to compute the
addition energy spectra. The numerical approach is the same as outlined
in section 2.4 at zero magnetic field and modified to account for a NR-like
confining potential. As in the previous chapter, the NRs consist of a cylinder
of radius R = 2 nm and variable length L, attached to two hemispherical
caps of radius R = 2 nm. Now, however, discontinuities in material param-
eters are disregarded. Then the CdSe parameters (m∗e = 0.13, ε = 9.2) are
employed for the whole system.

The bottom of the single-particle spectrum is shown in figure 4.1 as a
function of the NR length. A preliminary analysis of this spectrum will
help to achieve a subsequent understanding of the addition energies. As can
be observed, the energy levels profiles go along with symmetry predictions.
At L = 0 nm the system shows spherical degeneracies, namely, s, p and
d orbitals, given that the levels with ml = ±1 (solid lines) and ml = ±2
(dashed lines) are doubly degenerate. As the rod is elongated one can see
how a great deal of excited ml = 0 states are stabilized below the ml = ±2
and ±1 ones, converging toward the lowest conduction band of an infinite
wire. Likewise, signatures of formation of the second (ml = ±1) and third
(ml = ±2) bands can be seen in the figure. These three bands were experi-
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Figure 4.1: Bottom of the single-particle energy spectrum for a CdSe NR of growing length L.
Dotted, solid and dashed lines correspond to states with azimuthal angular momentum ml = 0, ±1
and ±2 respectively.

mentally identified in tunneling spectroscopy measures where, nevertheless,
no traces of the longitudinal quantization were resolved [237].

The addition energies of up to 20 electrons are depicted in figure 4.2.
From top to bottom the plotted lines correspond to the spectra of a NR
with L = 0 up to L = 22 nm in steps of ∆L = 2 nm. Also, the different
spectra have been offset 400 meV in order to group all the results within a
single figure. As announced, the addition energies undergo profiles closely
linked to the single-particle spectra. Thus, the L = 0 nm profile show the
typical maxima at N = 2, 8 and 18 electrons corresponding to the filling of
the s, p and d shells. However, such a patterned profile is removed as the
NR length is increased and more and more ml = 0 states lie at the bottom
of the energy spectrum.

Another consequence of the NR elongation is the reduction in the peaks
height due to the smaller energy spacing between consecutive levels as evi-
dent from figure 4.1. Looking back at this figure, one can also observe that
for long NRs the energy spacing is tiny at the bottom of the spectrum and
it grows in energy as one moves toward more excited states. This fact has
visible consequences in the addition spectra as the system is populated with
electrons, i.e., higher energy states are occupied. Let us consider, for in-
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Figure 4.2: Addition energies vs. the number of electrons for NRs of growing length L. From
top (L = 0 nm) to bottom (L = 22 nm) the NR length is increased in steps of ∆L = 2 nm.
Consecutive spectra have been offset 400 meV. The three lowest spectra correspond to NRs in the
very low density regime with lengths L = 40, 45 and 55 nm.

stance, the line L = 22 nm in figure 4.2. It shows an almost flat profile at
low electronic populations and wrinkles as N is increased.

The three lines represented at the bottom of figure 4.2 correspond to NRs
of L = 40, 45, and 55 nm. In such a high aspect ratio systems quantum
effects coming from the longitudinal confinement are negligible, so that the
flat profile of the addition energies just reveals a constant Coulomb blockade
effect more typical of metallic nanostructures [265]. Then, it is easy to de-
duce that tunneling spectroscopy measurements of so long NRs would lead
to appearance of conductance peaks at constant shifts of the applied bias as
it was observed in large Si nanowires [266].
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As the main conclusion of the presented results, it can be said that for
CdSe NRs with aspect ratio larger than 6 the addition spectra will become
featureless, just showing a sawtooth-like profile in the many-electron regime.

4.2 Phase transitions in quasi-1D high correlation
regimes

It is well known that a one-dimensional electron gas (1DEG) experiences
transitions between different phases as its electronic density is reduced [267–
273]. To show this process, let us consider the case of an infinite wire of
variable width. As long as this width exceeds the mean inter-particle sepa-
ration, the 1DEG is expected to behave as a Fermi liquid. However, it has
been theoretically predicted [274], and some experimental findings can be
interpreted along this line [275], that as the wire width is further reduced
the electron gas becomes spin polarized. Actually, in 1D systems this tran-
sition is predicted to occur in the laboratory frame, unlike higher dimension
systems [276]. Before this spin polarized state appears, an intermediate
transition takes place yielding a phase that shows a periodic modulation
of the spin density (spin symmetry breaking) resembling antiferromagnetic
order. This phase is referred to as spin-density-wave (SDW).

In turn, since most of the experimentally realized 1D nanostructures are
finite, the study of interacting electrons in quasi one-dimensional (Q1D) sys-
tems has attracted enormous theoretical interest. Such systems have been
mainly modeled using 2D DFT calculations in which anisotropic potentials,
both harmonic [268–271] and infinite [272], are used to simulate the spa-
tial confinement. Apart from the spin symmetry breaking, the transition to
SDW is paralleled in finite systems by a change in the number of maxima
appearing in the electronic density profiles. Specifically, the system under-
goes a Wigner crystallization [277, 278], in which the electrons behave like
classical density charges arranged in the system to avoid each other as much
as possible.

In this section, the low-density limit in which the aforementioned phase
transitions are expected to happen is explored for the case of realistic struc-
tures carrying out a full 3D theoretical treatment [279]. To this end, long
but finite NRs are studied within the DFT-LSDA formalisms. The results
are represented in figure 4.3 in form of density profiles along the longitudinal
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NR direction. There, solid lines depict the total charge density, while dashed
and dotted lines correspond to spin-up and -down densities. Four NRs of
lengths L =10, 40, 45 and 55 nm have been considered and populated with
N = 4,6 and 8 electrons. At first glance, a general feature can be observed
in all the charge density profiles shown in the picture, namely, the trend
to accumulate charge at the NR edges. A similar behavior was already no-
ticed in the calculation of reference [272], where infinite step-like potentials
where used to confine the electrons. Conversely, the charge density profiles
obtained in reference [268] show a trend to concentrate charge density at
the center of the Q1D system due to the harmonic confinement used.
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Figure 4.3: Electron density profiles along the NR longitudinal direction. Different NR lengths
L and electronic population N are considered, the correspondence is pointed above and aside the
panels. The total density is shown in solid lines, while the spin-up and -down densities are shown
in dashed and dotted lines. CI total densities are also shown in crosses for the cases of L = 10 nm
(left panels).

In order to check the reliability of the DFT density profiles showing
charge accumulation at the NR edges, the results obtained for the shorter
NR were compared with CI calculations. The obtained CI density profiles
are superimposed in crosses on the left column panels of figure 4.3. It is
evident from the figure that these benchmark calculations lead to the same
density profiles and confirm the charge accumulation at the NR edges, which
can be probably attributed to minimization of electron-electron interactions.

Figure 4.3 shows that for NRs with L = 40 nm and N = 4, 6 and 8
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electrons, the charge density profiles present similar features, forming what
is known as charge-density-wave (CDW). This phase is characterized by a
N/2 number of maxima in the density profile and same spin-up and -down
densities (i.e., preserved spin symmetry). When the NR is a bit longer
(L = 45 nm), the less diluted populations, namely, N = 6 and 8 electrons,
still show the CDW. However, the NR with N =4 electrons has experienced
a transition to a SDW, clearly showing N maxima in the density profile
(Wigner crystallization) as well as spin densities that can be viewed as mir-
ror images of each other. At this point, it should be noted that this spin
symmetry breaking is a peculiarity of spin-dependent DFT calculations. CI
calculations in such a low density regime have demonstrated that when the
SDW is attained an internal-space spin order shows up [273]. Hence, the
spin density breaking can be identified as a tendency of the mean field to
mimic such an internal ordering.

Finally, for the longest studied NR (L = 55 nm), the system with N = 8
electrons still shows a CDW, while the N = 6 one has changed to a SDW
with 6 relative maxima in the charge density. In turn, the most diluted sys-
tem (N = 4) presents the abovementioned full spin polarized ground state.
The existence of this phase should be tested with different methodologies.
The reason is the well known trend of LSDA to overestimate exchange and
correlation energies in low density regimes, thus favoring stabilization of po-
larized configurations [280]. Therefore, the obtained polarized phase may
just be considered as a signature of attainment of the extremely diluted
regime.

To summarize, a full 3D study of realistic long NRs has demonstrated
that in the low density regime these systems can undergo ground state transi-
tions between different phases previously predicted in simpler Q1D systems.

4.3 Modeling nanorods in high correlation regimes

The most accurate methodologies to account for the two-particle interac-
tions are achieved through diagonalization of the many-body Hamiltonian
in a basis set of non-interacting configurations. This is the so-called con-
figuration interaction method (CI) which has been already mentioned and
employed along this text. Disadvantages of using this approach arise from
the high computational cost. Specially critical becomes the CI study of
many-body systems in high correlation regimes, such as long NRs, where
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the bottom of the spectrum presents a high density of states. To achieve a
good description of such systems as well as a proper energy convergence, a
high number of functions need to be included in the basis set, thus expo-
nentially increasing virtual memory and computation time requirements.

The key to minimize this problematics is the optimization of the CI basis
set. In this regard, a common modus operandi in studies of QD systems,
where convergence problems do not usually arise, is to employ the eigenfunc-
tions of the single-particle Hamiltonian coming in the many-body one. This
approach has been followed in sections 3.3 and 3.4.2 of the present thesis to
study spherical NCs and NRs with moderate aspect ratios. However, as the
NRs are elongated, more and more basis functions have to be regarded to
achieve the convergence criteria.

A way of reducing the number of required basis functions can be found
in Quantum Chemistry. Conventionally, quantum chemical methods start
from the Hartree-Fock (HF) single determinant ground state and then add
correlations by means of CI or others methods [281]. Thereby, the orbitals
arising from the HF calculation are employed to build up the full interacting
Hamiltonian matrix. The advantage of using these orbitals is that, contrary
to single-particle functions, they include in somehow the electron-electron
interactions averaged in the Coulomb and exchange terms, and hence, are
better adapted to the real interacting system. In the same way, employing
DFT functions, i.e., Kohn-Sham orbitals, yields a further improvement of
the basis set since they incorporate electronic correlations through the cor-
responding functional. Examples using these functions as basis set to model
nanostructures can be found in the literature [71,282,283].

Figure 4.4: Examples of mean field potentials obtained form HF (left), DFT (center), and the
variationally optimized triangular potential (right).
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A simpler approach to improve the basis functions is suggested here for
the case of two electrons confined in long NRs. It is based in the use of an
external potential which mimics the perturbation experienced by the single-
particle functions when Coulomb interactions come into play [284]. In both
HF and DFT calculations, these Coulomb interactions are introduced as an
external potential (mean field potential) in a single-particle Schrödinger-like
equation. Examples of these mean fields are shown in figure 4.4 for the case
of two electrons confined in a NR of aspect ratio 6. As can be seen, both
potentials have a common feature: they destabilize the central region of the
NR thereby alienating the electrons. The same effect can be produced by a
simple potential with triangular form as the one presented in the right plot
of figure 4.4. Unlike the HF and DFT mean fields, which are self-consistently
optimized, the suggested triangular potential is optimized by variational fit-
ting of the triangle height. This double variational scheme has been shown
to outperform mean-field-CI approaches in NRs yielding robust results [284].
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Chapter 5

Resum i conclusions

En aquesta tesi s’ha utilitzat l’aproximació de massa efectiva i funció envo-
lupant per a estudiar les propietats optoelectròniques d’una ampla varietat
de nanoestructures semiconductores, moltes de les quals són hui en dia as-
solibles en un laboratori. Dintre del formalisme de la massa efectiva la
descripció d’un portador de càrrega (electró o forat) d’excés, aquell que no
forma part de l’estructura interna del cristall almenys temporalment, es re-
alitza incorporant en una constant la pertorbació electrostàtica generada
pel conjunt d’àtoms i electrons que conformen el cristall. Aquesta cons-
tant és l’anomenada massa efectiva, la qual es determina emṕıricament a
través de mesures experimentals o càlculs teòrics derivats de tractaments
atomı́stics. Mitjançant aquesta parametrització, el model descriu el movi-
ment d’un electró en un cristall com el d’un electró al buit on l’efecte del
potencial cristal·ĺı es veu reflectit en una massa distinta, és a dir, en una
diferent dispersió energètica front el vector d’ona. La quantització apareix
llavors degut al confinament del moviment d’aquesta part́ıcula dintre dels
ĺımits de la nanoestructura.

La senzillesa conceptual d’aquest model va acompanyada d’un tracta-
ment matemàtic que requereix un cost computacional moderat quan es
compara amb altres models teòrics utilitzats en la f́ısica de semiconductors,
com ara, models tight binding o aquells basats en l’ús de pseudopotencials.
Aquest fet permet incloure factors addicionals en el modelatge dels siste-
mes sota estudi, com per exemple, l’efecte de camps externs o la interacció
Coulòmbica entre portadors de càrrega en excés. En aquesta tesi s’ha modi-
ficat l’Hamiltonià de massa efectiva per incloure l’efecte de camps magnètics
i elèctrics externs, i s’han tingut en compte els efectes de l’entorn dielèctric
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sobre els estats dels portadors de càrrega. Les equacions de valors pro-
pis sorgides dels corresponents Hamiltonians han segut resoltes mitjançant
mètodes d’integració numèrica en un esquema de diferencies finites. Aques-
ta tasca ha segut realitzada per a sistemes amb simetria esfèrica, ciĺındrica
i per sistemes bidimensionals en coordenades cartesianes.

La presència de més d’un portador de càrrega d’excés en un nanocristall,
originada bé mitjançant excitacions òptiques o càrrega d’electrons des d’un
elèctrode metàl·lic, també ha segut considerada en aquest treball. Per des-
criure la interacció Coulòmbica entre els portadors de càrrega s’ha fet ús de
dues tècniques ben conegudes en l’àmbit de la qúımica quàntica. Quan s’ha
considerat un redüıt nombre de part́ıcules, l’Hamiltonià de massa efectiva
incloent els termes d’interacció entre part́ıcules ha segut expandit en una
base de determinants d’Slater o productes de Hartree formats per funcions
monoelectròniques. Posteriorment la matriu resultant ha segut diagona-
litzada. Aquesta metodologia, coneguda com interacció de configuracions,
resulta massa costosa computacionalment quan creix el nombre de part́ıcules
interactuants. En aquestos casos s’ha fet ús de la teoria del funcional de la
densitat (DFT), dins del formalisme autoconsistent introdüıt per Kohn i
Sham, per a obtenir l’energia i la densitat de l’estat fonamental dels siste-
mes multipart́ıcula.

En el primer caṕıtol s’han investigat els efectes de camps magnètics
externs sobre els estats d’electrons confinats en complexes d’anells quàntics.

� En primer lloc s’ha estudiat l’evolució de l’espectre monoelectrònic
d’una molècula d’anells quàntics acoblats lateralment front a camps
magnètics aplicats en les tres direccions espacials. Els resultats presen-
tats han mostrat que al llarg d’un procés de dissociació de la molècula,
la resposta del sistema a un camp magnètic perpendicular al pla mo-
lecular ve marcada per la distribució de les densitats de càrrega en
absència de camp. Cosa que no ocorre quan la direcció del camp apli-
cat es troba en el pla molecular. Aix́ı, la forta anisotropia observada
en la resposta magnètica d’aquest tipus de sistemes suggereix l’ús de
mesures magnetoòptiques per a determinar l’orientació i grau d’aco-
blament molecular.

� En segon lloc s’ha investigat l’efecte d’un camp magnètic axial en
l’espectre d’energies d’una xarxa bidimensional infinita formada per
antianells quàntics. S’ha mostrat com l’espectre d’energies de la xarxa
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d’antianells està format per una sèrie d’estats localitzats en els forats
interiors dels anells juntament amb altres estats deslocalitzats en la
matriu de la xarxa. Finalment s’ha mostrat que el camp magnètic ex-
tern és capaç d’induir transicions entre un estat fonamental localitzat
i un deslocalitzat, suggerint l’ús d’aquestes xarxes bidimensionals com
dispositius que controlen el transport d’electrons mitjançant camps
magnètics.

� En tercer lloc, mitjançant càlculs DFT s’ha estudiat un sistema for-
mat per dos anells quàntics acoblats verticalment poblats amb un alt
nombre d’electrons. L’evolució magnètica dels orbitals de Kohn-Sham
i els espectres d’energies d’addició han mostrat que quan els anells es
troben en règims de fort acoblament molecular el sistema es comporta
bàsicament com un anell äıllat. En canvi, a mesura que la distància
entre anells va creixent, un major nombre d’orbitals antienllaçants co-
mença a estar poblat. Les conseqüències de la participació d’aquestos
orbitals antisimètrics en l’estat fonamental es tradueix en l’aparició
d’una sèrie d’anomalies en els espectres d’energies d’addició, l’assoli-
ment d’un estat fonamental completament polaritzat d’esṕın a baixos
camps magnètics i l’observació de transicions entre fases amb dife-
rent esṕın i isosṕın a mesura que s’incrementa la intensitat del camp
magnètic.

En el segon caṕıtol de la tesi s’ha realitzat un ampli estudi dels efectes
de l’entorn dielèctric sobre els estats electrònics i les propietats òptiques de
nanocristalls col·löıdals. El denominat confinament dielèctric sorgeix a con-
seqüència del desajust de constant dielèctrica entre els promitjarmaterials
semiconductors i els dissolvents on els nanocristalls són t́ıpicament dipo-
sitats, de manera que els portadors de càrrega indueixen la formació de
càrregues de polarització superficials. Al llarg d’aquest caṕıtol s’ha eviden-
ciat que si es vol assolir una correcta descripció d’un sistema immers en un
medi dielèctric, cal incloure les interaccions amb les càrregues superficials
indüıdes pel desajust de constant dielèctrica.

La primera part del caṕıtol s’ha centrat en l’estudi de nanocristalls
esfèrics carregats amb un alt nombre d’electrons. Per a modelar aquests
sistemes s’ha desenvolupat un mètode basat en la DFT on els corresponents
funcionals energètics han segut modificats per a incloure de manera apropia-
da paràmetres materials dependents de la posició. Posteriorment, el mètode
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ha segut adaptat per tal d’incorporar les correccions de no parabolicitat
de la banda de conducció, mitjançant l’ús d’una massa efectiva dependent
de l’energia. Els resultats obtinguts amb el corresponent codi numèric es
resumeixen a continuació:

� S’han constrüıt diagrames de fase on les configuracions d’esṕın de l’es-
tat fonamental d’un nanocristall carregat amb un moderat nombre
d’electrons són representades en funció del radi dels nanocristalls i la
constant dielèctrica del medi extern. Aquestes representacions mos-
tren com per a un radi donat és possible induir transicions d’esṕın
canviant el caràcter dielèctric del medi extern.

� S’ha evidenciat que l’ús de paràmetres materials dependents de la po-
sició té una alta influència a l’hora de determinar potencials qúımics i
energies d’addició de nanocristalls multicapa. Els primers són subes-
timats en un càlcul no polaritzat, conduint fins i tot a errors a l’hora
de determinar el nombre d’electrons que caben en un nanocristall o en
les capes que el formen. D’altra banda, les energies d’addició calcu-
lades amb paràmetres constants o dependents de la posició presenten
diferències tant quantitatives com qualitatives, aquestes últimes esde-
venen especialment rellevants a mesura que creix el nombre de capes
que conformen el nanocristall.

� En nanocristalls formats per materials semiconductors de band gap
estret i en règim de confinament fort, les correccions energètiques de-
rivades de la no parabolicitat de la banda de conducció han resultat
ser del mateix ordre que les interaccions interelectròniques. Aix́ı ma-
teix, s’ha mostrat com l’ús d’una massa efectiva dependent de l’energia
també té efectes en els espectres d’energies d’addició. D’una banda,
l’altura dels pics es veu redüıda degut a l’aproximació energètica en-
tre els nivells com a conseqüència de l’augment de la massa efectiva.
D’altra banda, la no-parabolicitat pot comportar l’aparició de recons-
truccions en l’espectre degut a la major estabilització del terme cinètic
centŕıfug d’orbitals amb major moment angular. Aquestos efectes es
veuen amplificats pel confinament dielèctric.

Posteriorment s’han estudiat els efectes del confinament dielèctric sobre
els estats excitónics de punts quàntics esfèrics. S’ha posat èmfasi en determi-
nar les condicions que conduirien a una possible formació d’estats excitónics
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superficials on l’electró i/o el forat esdevenen localitzats en el pou d’autopo-
larització. Aquestes condicions han resultat ser bastant severes en cas que
els nanocristalls es troben a l’aire, en canvi, la formació d’estats superficials
ha resultat més factible quan els nanocristalls estan immersos en una ma-
triu amb una major constant dielèctrica. La transició d’estats volumètrics
a superficials generalment s’ha vist acompanyada d’una abrupta disminució
de la probabilitat de recombinació i de l’energia de l’excitó.

La part final del tercer caṕıtol ha estat dedicada a estudiar els efectes del
medi dielèctric en nanoestructures finites amb simetria axial conegudes com
nanorods o quantum rods (varetes quàntiques). S’ha proposat un mètode
numèric per calcular els efectes del confinament dielèctric en sistemes tri-
dimensionals de qualsevol simetria. Aquest consisteix en el càlcul de les
càrregues de polarització indüıdes en la interfase dielèctrica, per a obtindre
posteriorment el potencial electrostàtic generat pel conjunt dels portadors
de càrrega i les càrregues de polarització. Mitjançant l’ús d’aquesta meto-
dologia s’ha mostrat que l’entorn dielèctric afecta als portadors de càrrega
confinats en nanorods a diferents nivells de com ho fa en el cas de punts
quàntics esfèrics. A continuació s’enumeren els resultats més rellevants ob-
tinguts en aquesta secció:

� En una comparació nanorod vs. nanocristall esfèric s’ha observat que
mentre l’efecte més rellevant de l’entorn dielèctric en el nanocristall és
l’augment d’intensitat de les interaccions Coulòmbiques, en el cas del
nanorod el confinament dielèctric incrementa en gran mesura el paper
de la correlació electrònica i fa créixer la mescla de configuracions en
la funció d’ona. Com a conseqüència:

Metodologies que incorporen les interaccions Coulòmbiques en for-
ma de pertorbacions sobre el sistema de part́ıcules no interactuants
queden invalidades per realitzar amb elles l’estudi de les propietats
electroòptiques de nanorods semiconductors.

La mescla de configuracions prodüıda pel confinament dielèctric
pot fins i tot induir la cristal·lització Wigner.

El confinament dielèctric fa créixer la probabilitat de recombinació
excitónica i la sensibilitat a pertorbacions externes dels nanorods.

� S’ha mostrat com l’entorn dielèctric pot modificar la posició energètica
i intensitat de l’emissió excitónica dels nanorods.
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� En nanorods tipus-II s’ha mostrat que la diferent localització de l’elec-
tró i el forat contribueix a amplificar l’efecte dielèctric en les energies
excitóniques. En aquestos sistemes el confinament dielèctric ha resul-
tat inclús capaç de remodelar la forma de la funció d’ona a través de
l’augment de l’atracció Coulòmbica entre electró i forat.

� Finalment s’ha evidenciat que el camp elèctric requerit per separ electró
i forat del centre d’un nanorod depèn considerablement de la constant
dielèctrica del medi extern.

En l’últim caṕıtol de la tesi s’ha realitzat un estudi de l’evolució dels
espectres d’energies d’addició al llarg d’un procés on un nanocristall esfèric
s’ha anat allargant fins formar un sistema quasi unidimensional. Els re-
sultats obtinguts (mitjançant càlculs DFT) han mostrat com els espectres
d’energies d’addició van perdent l’estructura de capes a mesura que el sis-
tema esdevé més anisotròpic, fins arribar a un punt on únicament s’observa
una estructura tipus dents de serra. També s’ha mostrat com sota règims
d’alta correlació l’estat fonamental multipart́ıcula experimenta transicions
a fases que presenten localització Wigner en la densitat electrònica amb
trencament de la simetria d’esṕın.



Appendix A

Signatures of molecular
coupling in the optical
spectra of laterally coupled
quantum dots

Excitons in QDs represent a particularly attractive candidate to be used
as a quantum bit (qubit) due to their long coherence time, compared to
their radiative lifetime, which enables manipulation using ultrafast laser
pulses [285, 286]. However, for an isolated dot, such approaches are limited
to one or two qubit operations [287]. More complex processes can be achieved
exploiting the molecular properties of coupled QD systems [288,289]. Thus,
one of the most promising exciton-based scheme for quantum computation
has been proposed in a pair of vertically stacked QDs, where the exci-
tons form an entangled state via a molecular tunneling interaction between
them [48]. Nevertheless, as usual in practical implementations of theoretical
promises, several experimental drawbacks need to be overcome to set up
such device. The first one comes from the implicit randomness of the QD
fabrication protocols, which makes it difficult to couple two identical QDs
with identical quantum levels. Consequently, it is necessary to make use of
external fields to bring the levels of the individual dots into resonance. In
this regard, the use of electric fields applied along the bond direction has
been proved a good method to induce the molecular coupling in systems of
vertically coupled QDs [290–293]. Therein, the molecular regime is identi-
fied in the exciton emission spectrum as the appearance of an anticrossing
between two peaks, arising from a bright exciton with spatially direct char-
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acter and a dark indirect exciton, as the electric field is tuned (see, e.g.,
figure A.1) [291,294].

Figure A.1: Characteristic anticrossing between direct and indirect excitons in the electric field
evolution of the emission spectrum of vertically coupled QDs (taken from Krenner et al., Phys.
Rev. Lett. 94, 057402 (2005)). Insets: Electron (grey) and hole (black) charge distributions
at different values of the electric field. At the resonance point the formation of bonding and
antibonding orbitals is illustrated.

Unfortunately, the use of electric fields to model the coupling degree be-
tween the QDs has the objection of the long time required to switch this
field. An alternative way to exploit molecular states that overcomes this
inconvenient is based on the use of charged exciton species (trions) [100]. In
such schemes, advantage is taken from the different electric field values at
which the molecular regime is attained for a single particle (say the electron)
and for the three-particle complex (the negative trion, X−) [100, 293, 295].
An initial electron in one of the dots is considered as the qubit, and the op-
tical excitation, which can be accomplished in a subpicosecond scale, as the
mechanism to switch the resonance. Then, with the electric field tuned into
one of the two resonance values (either e− or X−), it would be possible to
switch the coupling of the dots by pulsed light via formation of a trion state.
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On account of these potential applications in solid state quantum com-
putation, the optical spectra of both neutral and charged exciton complexes
in two vertically coupled QDs have been extensively studied (for an overview
see reference [296], and references therein). However, for applications, one
would normally prefer to couple QDs laterally. The reason is that in such sys-
tems the realization of gating between the QDs is expected to be straightfor-
ward when compared to the vertically coupled case, where gating, although
feasible, is technically very demanding. Nonetheless, the preparation of lat-
erally coupled QDs also entails experimental complications since classical
growth techniques of self-assembled QDs normally generate a random spa-
tial distribution of the dots. Therefore, to get a reliable control over the
interdot distances it is necessary to employ another kind of methods [297]
usually combined with lithographic techniques. On the other hand, the op-
tical spectrum of laterally coupled QDs has been much less studied than the
one of their vertical counterparts [61,298–302], and although the signatures
of molecular coupling in the electric field evolution of the exciton emission
have been theoretically established [61], these have been rarely observed
in experiments [298, 299]. The reason relies on the small contact surface
between the constituent QDs which usually have a conical-like shape (see
figure A.2).

This apendix focuses on the theoretical simulation of the photolumi-
nescence spectra of two laterally coupled QDs modulated by an external
electric field. The study is motivated by a set of micro-photoluminescence
measurements carried out by experimental collaborators on samples of two
InGaAs/GaAs QDs [303]. Therein, some of the gathered spectra showed
an anomalous electric field evolution which can be though as an indication
of molecular coupling. Supporting this suspicion by means of theoretical
calculations is the main goal of this study. The project, however, was still
in progress at the moment of redaction of the present thesis, so that in this
section just an overview of the work carried out hitherto will be given with-
out providing conclusive results.
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Experiment

The pairs of QDs were grown by means of droplet epitaxy techniques on
a GaAs matrix (see reference [297] for more detailed information). Each
dot in the pair has a mean diameter of 37 ± 4 nm and, as can be seen in
figure A.2, different heights with distributions centered at 5.3± 0.9 nm and
6.6 ± 1.6 nm. In turn, the interdot distance from peak to peak is of the
same order as the diameter of one of the dots. Due to the different size of
both quantum dots, an external field is used to bring the single QD levels
into resonance, thus inducing the molecular coupling . With this aim, two
lateral gates were deposited on top of the sample surface which allows one
to apply an electric field precisely along the direction of molecular coupling.

d

Figure A.2: Atomic force microscopy image (left) and structural profile along the molecular axis
direction (right) of a pair of QDs (taken from Alonso-González et al. Cryst. Growth Des. 9, 2525
(2009)).

The emission properties of several pairs of QDs were investigated as a
function of the applied electric field. In the collected spectra (a sample
is shown in figure A.3), a few sets of signals can be observed which are
assigned to the radiative recombination of exciton and negatively charged
exciton complexes. The formation of negatively charged species at low volt-
ages is attributed to the residual presence of electron donor impurities of
As in the QDs surroundings. Furthermore, an electron migration process
is observed as the voltage is tuned in both positive and negative values
with the consequent disappearance of the signals coming from negatively
charged complexes. As a result, the spectra shows a sort of staircase-like
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evolution which has been previously observed in single-dot spectroscopy ex-
periments [304,305].

E(eV)

Voltage (V)

Figure A.3: Photoluminescence spectrum (the energy axis is reversed) of a pair of laterally
coupled QDs as a function of the applied voltage (proportional to the electric field).

The signals appearing in figure A.3 also reveal an anomalous behavior:
at positive voltages the exciton and negative trion signals develop a redshift
(note that in this figure the energy axis is reversed) which does not take
place at negative voltages. This asymmetric evolution can be tentatively
interpreted on the basis of the formation of molecular coupling as follows.
On the one hand, the origin of the redshifts at positive voltages is though to
be related with anticrossings arising from molecular states formed through
electron tunneling [292, 298]. On the other hand, a similar formation of
molecular states at negative voltages would entail tunneling of the hole (see
figure A.4). Therefore, the lack of redshifts at positive voltages can be rea-
soned by the large effective mass of the hole, which would greatly reduce
the tunneling and hence the anticrossing.
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Theoretical calculations

In order to theoretically reproduce the experimental results, the emission
spectra of neutral and charged exciton complexes have been computed. The
electron and hole (heavy-hole) single-particle states are calculated within
a two-dimensional EMA model, whereas the many-particle interactions are
computed through CI calculations. Thus, the 2D Hamiltonian for a system
of Ne electrons and Nh holes can be written as,

Ĥ =

Ne∑
i=1

Ĥe +

Nh∑
k=1

Ĥh +

Ne∑
j>i

1

ε|re(i)− re(j)|

+

Nh∑
l>k

1

ε|rh(k)− rh(l)|
−

Ne∑
i=1

Nh∑
k=1

1

ε|re(i)− rh(k)|
. (A.1)

In the above equation the last three terms represent the Coulomb interac-
tions between the carriers, while the first two correspond to the electron and
hole single-particle Hamiltonians. The latter have been taken as,

Ĥj =
p̂2

2m∗j
+

1

2
m∗j ω

2
j

[
min

(
(x+

d

2
)2 + y2 +∆, (x− d

2
)2 + y2

)]
− ej Fx x

(A.2)

where the subindex j = e, h denotes electron or hole parameters. The first
term of equation A.2 is the kinetic energy operator, the second one is the
spatial confining potential and the last one corresponds to an electric field
applied along the molecular axis, here taken in the x direction.

To mimic the peculiar geometry of the system under study, the spatial
confining potential has been modeled as two parabolas whose centers are
separated in the x direction by the interdot distance d (see figure A.4 cen-
ter). Thereby, the parabolic profile partly recovers the effect of the vertical
confinement neglected in the 2D treatment. In addition, to simulate the
different height of the individual QDs, the potential bottom of one of the
dots (the left one) is offset by an amount of ∆ eV. In this way, at zero field,
the carriers will be preferably placed in the right dot. However, as shown in
figure A.4, when the electric field is switched on, the electrons (holes) can be
promoted to the left dot at positive (negative) electric field values beyond



119

the resonance point.

Figure A.4: Schematic representations of the electric field effect on the confining potential
profiles along the x direction and the single-particle states. The most stable electron (hole) charge
distributions are plotted in light (dark) gray.

In order to compute the CI energies and wave functions of the excitonic
complexes, the single-particle function basis set is taken from the eigenfunc-
tions of the electron and hole single-particle Hamiltonians (equation A.2).
Then, if there is more than one electron or hole, all the possible Slater
determinants are formed, including spin degrees of freedom. Next, Hartree
products between the electron and hole Slater determinants (or spin-orbitals
if there is only one electron or one hole) are built up. The few-body Hamil-
tonian (equation A.1) is then spanned on this basis and finally diagonalized.

The emission spectra are calculated from the CI energies and wave func-
tions within the dipole approximation and Fermi’s golden rule. The recom-
bination probability from an initial state |i〉 to a final state |f〉 with one less
electron-hole pair (for example, the |i〉 state of X− and the |f〉 state of a
single electron), at an energy of the emitted photon Ehγ , is given by

Pf←i(Ehγ) = (〈f | ~µ |i〉)2 δ (Ei − Ef − Ehγ) , (A.3)

where ~µ is the transition dipole momentum and Ei(j) is the energy of the
initial (final) state. In the experiment, a non-resonant excitation is carried
out, which means that if the radiative recombination rates are faster than
the time required for the excitonic complexes to be relaxed at the ground
state, emission from excited states can take place. Actually, this was the
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case in previous experiments on vertically coupled QDs [293] and it is though
to occur in the present measurements (see figure A.3). Therefore, to the-
oretically reproduce this emission from multiple states, transitions from all
possible initial |i〉 and final |f〉 states have been estimated.

Figure A.5 shows a simulated emission spectrum for an exciton in a rang
of electric fields near the anticrossing region corresponding to an electron
tunneling process. Specifically, the spectrum corresponds to a pair of QDs
separated by an interdot distance d = 30 nm, where the left one has been
destabilized by ∆ = 30 meV. These two parameters determine to a large ex-
tent the electric field at which the anticrossing takes place. To illustrate this,
let us consider the electric field effect on the energy (the so-called Stark shift)
of the lowest electron single-particle state in both QDs. In the right one, the
Stark shift can be approximated as Ee

QDr
(Fx) = Ee

0 +
d
2eFx, with E

e
0 being

the energy at zero field. On the other hand, in the left dot one should bear
in mind that Ee

0 has been shifted by ∆, hence, Ee
QDl

(Fx) = Ee
0 +∆− d

2eFx.
As illustrated in figure A.1, the anticrossing in the exciton spectrum occurs
when two states that only differ on the electron location become degener-
ate1, this is, the electronic states in both QDs have the same energy or, in
other words, Ee

QDr
= Ee

QDl
. Under this condition it is easy to see that the

anticrossing will occur at a field Fx = ∆
d e , apart from deviations arising from

two-body interactions.

Therefore, and given that the interdot distance d should agree with the
experimental one, the parameter ∆ is modified in order to tune the electric
field value of the anticrossing. For the case studied in figure A.5, it was
intended to reproduce a possible experimental anticrossing of the exciton
signal observed at quite large electric fields (around 12 kV/cm), which is
why the QDs are so different, ∆ = 30 meV. As a consequence of this large
asymmetry, only signals coming from excitons hosting the hole in the bigger
dot are observed for the energy range shown in the spectrum. Apart from
the anticrossing of the exciton signal, qualitatively similar to the one previ-
ously observed in vertically coupled QDs, new features are observed in the
spectrum which can be ascribed to the lateral geometry of the system [61].
The first one is the finite Stark shift displayed by the direct exciton emis-

1Additionally, in vertically coupled QDs, molecular coupling through hole states tun-
neling has also been observed [100]. The corresponding anticrossing, however, takes place
at opposite electric field values and is less pronounced than the electronic due to the
larger hole effective mass. By this reason, this kind of molecular coupling is not expected
to occur in laterally coupled QDs where the surface contact is much smaller.
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Figure A.5: Computed exciton photoluminescence spectrum for a pair of QDs as a function of
the electric field. The line width is proportional to the exciton recombination probability (intensity
of the emission), dotted lines correspond to dark states. The insets illustrate the predominant
configurations of the CI exciton wave function.

sion, which denotes the formation of a dipole momentum inside the large
QD, namely, the electron and the hole are spatially separated inside the
same dot. This feature is not observed in systems of vertically coupled QDs
due to the stronger confinement of such dots in the electric field direction
(see, e.g., the insets of figure A.1). Secondly, the anticrossings with indirect
excitons involve not only s-shell states, but also p- and d-shells, which are
lowered in energy by the electric field. As a consequence, new resonances
appear that can be the cause of the set of redshifted signals framed with a
dotted square in figure A.5.

The negative trion photoluminescence spectrum for the same pair of
QDs is illustrated in figure A.6. In great measure, the spectrum shows the
same signals previously observed in experiments and calculations on ver-
tically coupled QDs [100, 293], but again distorted by the induced dipole
momentum inside the large dot. Even so, one of the main features of both
positive and negative trion spectra is observed, the x-like crossing developed
by the recombinations of a direct (two electrons in the same dot) and an
indirect (each electron in a different dot) singlet states. Also, signatures of
anticrossings with excited dark states can be observed at higher fields in the
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Figure A.6: Computed negative trion photoluminescence spectrum for the same pair of QDs as
figure A.5. The line width is proportional to the recombination probability (intensity of the emis-
sion). The insets illustrate the predominant configurations of the initial CI trion wave function,
and the final single-electron wave function involved in the transition.

spectrum. On the other hand, the remaining signal developing a large an-
ticrossing corresponds to the recombination of an indirect spin triplet trion
state. The global redshift developed by all the signals as the electric field is
increased agrees with the experimental observation shown in figure A.3.

In conclusion, even though the computed spectra have some similitudes
with the measured ones, the search for a conclusive confirmation of the
presence of molecular coupling in the experimental samples is still underway.
Work is in progress both theoretically and experimentally. For example,
new optical measures have shown more possible traces of coupling in signals
arising not only from the exciton and trion recombinations but also from
biexcitons.
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[14] D. E. Gómez, M. Califano and P. Mulvaney. Optical properties of
single semiconductor nanocrystals. Phys. Chem. Chem. Phys., 8, 4989
(2006).

[15] J. P. Bird. Electron transport in quantum dots. kluwer Academic
Publishers (2003).

[16] L. P. Kouwenhoven, A. T. Johnson, N. C. Van der Vaart, C. Harmans
and C. T. Foxon. Quantized current in a quantum-dot turnstile using
oscillating tunnel barriers. Phys. Rev. Lett., 67, 1626 (1991).

[17] M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost,
G. A. C. Jones and D. G. Hasko. Measurements of Coulomb blockade
with a noninvasive voltage probe. Phys. Rev. Lett., 70, 1311 (1993).

[18] F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L. Camp-
man and A. C. Gossard. Single-electron charging in double and triple
quantum dots with tunable coupling. Phys. Rev. Lett., 75, 705 (1995).

[19] G. Bastard. Wave mechanics applied to semiconductor heterostruc-
tures. John Wiley and Sons Inc., New York (1998).

[20] M. G. Burt. Fundamentals of envelope function theory for electronic
states and photonic modes in nanostructures. J. Phys.: Condens.
Matt., 11, 53 (1999).

[21] A. Szabo and N. S. Ostlund. Modern quantum chemistry: introduction
to advanced electronic structure theory. Dover Pubns (1996).



BIBLIOGRAPHY 125

[22] R. G. Parr and W. Yang. Density-Functional Theory of Atoms and
Molecules. Oxford University Press, Oxford (1989).

[23] Y. Aharonov and D. Bohm. Significance of Electromagnetic Potentials
in the Quantum Theory. Phys. Rev., 115, 485 (1959).

[24] J. Planelles, J. I. Climente and J. L. Movilla. Aharonov-Bohm effect
for pedestrians. Symmetry, Spectroscopy and SCHUR, Proceedings of
Prof B.G, Wybourne Commemorative Meeting, 1–8 (2006).

[25] N. Byers and C. N. Yang. Theoretical Considerations Concerning
Quantized Magnetic Flux in Superconducting Cylinders. Phys. Rev.
Lett., 7, 46 (1961).

[26] F. Bloch. Josephson Effect in a Superconducting Ring. Phys. Rev. B,
2, 109 (1970).

[27] N. A. J. M. Kleemans, I. M. A. Bominaar-Silkens, V. M. Fomin, V. N.
Gladilin, D. Granados, A. G. Taboada, J. M. Garćıa, P. Offermans,
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[297] P. Alonso-González, J. Mart́ın-Sánchez, Y. González, B. Alén,
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Magnetic-field control of ground-state transition from delocalized-to-localized electronic density

in antiring superlattices
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The electronic properties of strongly modulated antiring superlattices pierced by a uniform axial magnetic

field are studied theoretically. The one-band effective-mass Hamiltonian in the envelope function approxima-

tion, with appropriate boundary conditions, is integrated numerically. We show that the low-lying electronic

states of the antiring superlattice can be viewed as a superposition of localized states trapped in the antiring

core and states that are delocalized in the surrounding matrix, which do not penetrate into the antiring region.

We demonstrate that by choosing the antiring geometry and spacing properly, a transition from delocalized to

localized ground state can be controlled by a magnetic field applied externally.

DOI: 10.1103/PhysRevB.73.113306 PACS number�s�: 73.21.�b, 73.21.Cd, 73.21.La

In the last two decades, advances in nanofabrication and
crystal growth techniques have inspired a considerable
amount of both theoretical and experimental work aimed at
furthering our understanding of the physics governing the
behavior of two-dimensional electron systems modulated by
a periodic repulsive/attractive potential �antidot �AD�/
quantum dot �QD� superlattice� subject to a perpendicular
magnetic field.1 The modulation of the potential leads to a
mixing of Landau bands which split up into subbands,2 the
spatial dispersion of these magnetic minibands being related
to observed maxima of magnetoresistence.3 Various interest-
ing phenomena have been observed in AD lattices pierced by
a uniform perpendicular magnetic field, including the
quenching of the Hall effect,4 periodic oscillations versus
magnetic field B �Aharonov-Bohm type� and versus 1/B

�Shubnikov-de Haas type�.5

On the other hand, tailoring sizes, shapes, and composi-
tions of the building block nanocrystals is a fundamental
issue, as these parameters control the electronic and physical
properties of the sample. This fact has induced an intensive
research so that QDs with geometries including pyramids,
truncated pyramids and lens can be obtained using a self-
assembly growth technique.6 More recently ring-shaped
QDs, often referred to as quantum rings �QR� have also been
synthesized7 and even concentric double rings8 and QD em-
bedded in QR9 have been obtained.

The spatial confinement of a nanocrystal comes from the
band-offset at the nanocrystal-surrounding matrix hetero-
junction, which produces a steplike potential influencing the
dynamics of carriers �electrons and holes�. We talk of a quan-
tum dot �QD� or an antidot �AD� depending on the sign of
the band-offset. Thus, if the surrounding matrix material acts
as a barrier, the carrier can be spatially confined within the
well-acting nanocrystal, and we refer to this nanocrystal as a
QD. In contrast, if the nanocrystal acts as a quantum bump
for the carriers, i.e., a finite barrier region surrounded by
connected well regions, we refer to it as an AD. In a similar
way, we can define quantum rings �QR� and antirings �AR�.

In the present paper we study the electronic properties of
AR superlattices pierced by a uniform axial magnetic field.
QD and AD superlattices are also calculated for the sake of

comparison. We consider strongly modulated superlattices,
as most synthesized artificial crystals are of this type, and we
focus our study on the very bottom of the energy spectrum,
namely the quantum limit. We will show that the low-lying
electronic states of the AR superlattice can be viewed as a
superposition of localized states trapped within the AR core
�which acts as a QD� and delocalized states which do not
penetrate into the AR region �the ARs acting as ADs for
these states�. Two domains will be clearly observed in the
energy versus magnetic field plot, where either the spatial
periodic potential or the magnetic field potential terms be-
come dominant �weak and high magnetic regime�. In particu-
lar we will show that by properly choosing the geometry, a
ground state transition between localized/delocalized elec-
tronic density can be controlled by an externally applied
magnetic field, this fact suggesting the possibility of employ-
ing self-assembled arrays of ARs as the building blocks of
magnetic field-controlled transport nanodevices.

The Hamiltonian for an electron in the two-dimensional
�x ,y� plane, in the presence of a magnetic field, reads �in

a.u.�,

H =
1

2m* �p + A�2 + V�x,y� , �1�

where m* stands for the effective mass, A is the vector po-
tential and V�x ,y� represents periodic potential of the lattice,

which is steplike: It has a constant value V0 in the AR and it
is zero both in the AR-core and outside the AR, the AR being
located at the center of the unit cell.10

The eigenvalue equation of the above-mentioned Hamil-
tonian has been solved numerically using the finite-
difference method on the two-dimensional grid �x ,y�. This

discretization yields an eigenvalue problem of a huge asym-
metric sparse matrix that has been solved in turn by employ-
ing the iterative Arnoldi factorization.11

Concerning boundary conditions, it should be pointed out
that despite V�x ,y� being periodic, translations in the �x ,y�

plane do not commute with the Hamiltonian as they do not
commute with the kinetic energy operator. This mathematical
property, which can be easily checked, reveals the fact that if
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one were to transport an electron from one point of a peri-
odic lattice pierced by an axial magnetic field to an equiva-
lent one, it would be necessary to exert a Lorentz force along
the way �in order to cancel out the effect of the magnetic
field, so that the electron is in an equivalent state of motion
at the new site�. But if the field is homogeneous, the physical
system is mapped back onto itself. In order to obtain an
operator representing that symmetry and, therefore, commut-
ing with the Hamiltonian operator, one has to compose the
translation with the inverse of the associated gauge transfor-
mation, which is classically related to the shift in kinetic
momentum that must be provided, in addition to the shift in
position, in order to leave the electron in an invariant condi-
tion. This symmetry is referred to as magnetotranslation:12

T̂�R� = e−iR·�p−A�. �2�

We have that T̂�R�f�r� should yield f�r� up to a phase factor

ei�. Therefore,

T̂�R�f�r� = eiR·Af�r − R� = ei�f�r� , �3�

i.e.,

f�r� = e−i�eiR·Af�r − R� �4�

is the practical boundary conditions we should impose on the
eigenfunctions.

Concerning the vector potential A employed to describe
the uniform axial magnetic field B= �0,0 ,B�, we assume the

Coulomb condition �A=0. The remaining freedom still
present allows us to implement two different gauges: The
symmetric gauge A=B /2�−y ,x ,0�, and the Landau gauge

A=B�0,x ,0�. The latter preserves the translational symmetry

of the periodic potential along the vector R= �d ,0 ,0� �with d

being the lattice constant� so that x-magnetotranslations are
just translations �i.e., R ·A=0 in Eq. �4��. As the physics
must be gauge-independent the twofold implementation
helps to check the codes that are employed.

The resulting computational scheme is very convenient
and general as it can be employed in the high, intermediate,
and weak magnetic regime �i.e., from l�d up to l�d, with l
representing the Landau radius and d the lattice constant�.

In a first set of calculations we consider small GaAs ARs
of radii ri=10 nm and re=13 nm, embedded in an InAs ma-
trix and forming a square superlattice of constant d=45 nm,
the AR being located at the center of the unit cell. The GaAs
material acts as a barrier for the electrons in the InAs matrix.
Due to the diffusion of material we actually assume that the
ARs embedded in the InAs are made of InGaAs instead of
pure GaAs. Thus, a conduction-band offset reduced to
0.3 eV �from the value of 0.9 eV for InAs/GaAs
interfaces13� and an effective mass m*=0.03, corresponding
to the InAs,14 are employed.15 For the sake of comparison, a
superlattice of r=10 nm InAs QD embedded in InGaAs and
a superlattice of r=13 nm InGaAs AD embedded in InAs
with the same lattice constant d=45 nm have been calculated
for different values of the externally applied magnetic field.
The results corresponding to the low-lying states at the �

point of the reciprocal lattice are shown in Fig. 1. The sim-
plest set of results corresponds to the QD lattice �Fig. 1�a��.
A few well-separated levels appeared in the range of energies
that was studied. The field dependence of these energy levels
is almost exclusively linear. This behavior stems from the
confinement of the electronic density in the small well-acting
QD. It is the ratio between the radius of the maximum charge
density in the lowest Landau level and the radius of the
maximum of the radial charge density in a given quantum
dot state that decides whether only the linear Zeeman term or

FIG. 1. Energy spectra of nanocrystal superlattices �d=45 nm� for three different potential profiles as a function of the magnetic field �a�

QD, �b� AR, and �c� AD. Solid lines in �b� correspond to states localized within the AR core. The thick solid line in �c� is the border between

the weak field �W� and the high field �H� regimes.
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also the quadratic term of the magnetic field are significant.16

In this case only the linear term is significant. The symmetry
of the lattice is C4v

at B=0 being reduced to C4 in the pres-
ence of a magnetic field. However, the electronic density of
the calculated states reveals axial symmetry with a value of
nearly zero at the unit cell border. In other words, the studied
system does not feel the lattice point and translational sym-
metries and behaves as a set of isolated circular QDs.17

The situation is the opposite in the AD energy spectrum
�Fig. 1�c��. In this case, the electronic density of the calcu-
lated states does not penetrate into the AD region; instead it
is spread over the unit cell, outside the AD region, with finite
values at the cell border, thus revealing the symmetry of the
lattice. At first glance, the spectrum resembles that of an
isolated QR with typical Aharonov-Bohm crossings stem-
ming from the nonsimply connected nature of the electron
domain. However, important differences should be stressed.
On the one hand, we can observe two regions, the high and
weak field regimes �regions labeled W and H in Fig. 1�c�,
above and below the solid thick line�. In the W region the
lattice potential dominates and the energy spectrum does not
show regularities. In the H region a high degree of regularity
is observed in the energy spectrum. Crossings similar to
those occurring in QR, but also anticrossings coming from
the lattice symmetry, split the low-lying part of the spectrum
into noncrossing sets of four states. Within each set, the
states repeatedly cross one another as B increases. Every set
contains one instance of each of four C4 symmetries, namely,
A, B, E+, and E−.18

Figure 1�b� shows the AR spectrum. It can be viewed as a
superposition of the QD and AD spectra. The solid lines
represent states completely localized within the AR core
while the thin lines correspond to delocalized states �the
electronic density of which does not penetrate into the AR
core�. Note that at low magnetic field values, the ground
state, which belongs to the totally symmetric irreducible rep-
resentation A of C4, is a delocalized state. It becomes
strongly destabilized by increasing the magnetic field. The
second A-symmetry state is completely localized within the
AR core �lowest solid line in Fig. 1�b�� and it is almost
unaffected by the magnetic field �it behaves like the M =0
state of a QD�. As a consequence, an anticrossing between
these two A states occurs and leads the ground state to be-
come localized for magnetic fields higher than B=9 T. In

order to show the electronic density ground state transition
from delocalized to localized, the electronic density of the
ground state at B=0 and B=15 T is represented in Fig. 2.

Coming back to Fig. 1�b� we can see, at higher energies,
several solid lines corresponding to localized states. The fig-
ure shows several anticrossings they undergo. As a conse-
quence, the high field regime AR energy spectrum does not
look as regular as the AD one �Fig. 1�c��.

Finally, we calculate a larger superlattice of unit cell edge
d=145 nm. At its center we locate the InGaAs AR of radii
ri=25 nm and re=35 nm. The AR is also embedded in an
InAs matrix. Therefore, here we use the same effective mass
and band-offset parameters as before. The results are sum-
marized in Fig. 3. The inset represents a close-up view of the
selected area. As the unit cell of this new lattice is wider than
the one studied previously, the magnetic flux piercing it is
larger and so the oscillation frequency increases strongly.
Nevertheless, the basic picture described in Fig. 1�b� is
present here too. The energy spectrum looks like a superpo-
sition of those of AD and QD. The AD-like states are
strongly destabilized by the magnetic field and show a para-
bolic collective destabilization profile. On the other hand, the
QD-like states are much less influenced by the field. There-
fore, as the magnetic field increases, the initially more ex-
cited low-lying localized QD-like states anticross the delo-
calized AD-like states, come into the bottom of the energy
spectrum and converge towards the low Landau levels.

In summary, in the present paper we study the electronic
properties of strongly modulated AR superlattices pierced by
a uniform axial magnetic field. We focus our study on the
quantum limit and show that the low-lying electronic states
can be viewed as a superposition of localized states trapped
within the AR core and delocalized states, which do not pen-
etrate into the AR region. We have demonstrated that by
choosing the AR geometry and spacing properly, a transition
from a delocalized to a localized ground state can be con-
trolled by the externally applied magnetic field. This sug-
gests the possibility of employing self-assembled arrays of
ARs as the building blocks of magnetic field-controlled
transport nanodevices.

Financial support from MEC-DGI Project No. CTQ2004-
02315/BQU and UJI-Bancaixa Project No. P1-B2002-01 is
gratefully acknowledged.

FIG. 2. Electronic densities of the ground state at �a� B=0 T and

�b� B=15 T corresponding to the smaller unit cell �d=45 nm� AR

superlattice. Four neighbor unit cells are represented.
FIG. 3. Energy spectrum of the wide unit cell AR superlattice

�d=145 nm�. Inset: Close-up view of the marked region.
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A consistent extension of local spin density approximation �LSDA� to account for mass and

dielectric mismatches in nanocrystals is presented. The extension accounting for variable effective

mass is exact. Illustrative comparisons with available configuration interaction calculations show

that the approach is also very reliable when it comes to account for dielectric mismatches. The

modified LSDA is as fast and computationally low demanding as LSDA. Therefore, it is a tool

suitable to study large particle systems in inhomogeneous media without much effort. © 2006

American Institute of Physics. �DOI: 10.1063/1.2356791�

I. INTRODUCTION

Quantum dot �QD� devices where the Coulomb interac-

tion is exploited to control charge injection at the single-

electron level have been achieved in recent years.
1,2

This has

a huge technological interest. For example, the operation of

QD memory devices basically consists of storing �program-

ming�, holding �retention�, and removing �erase� charges in

the QD by means of the device gate voltage.
3

The impor-

tance of the single-electron transistors relies on the extremely

low power required for their operation �of the order of nano-

watts�. A key quantity that characterizes transport into a QD

is the addition energy, i.e., the energy Eadd�N� required in

order to place an extra electron into a dot that is initially

occupied by N−1 particles. Such quantity, analogous to elec-

tron affinity in atomic physics, can be measured experimen-

tally as a function of N. Thus, when the conductance is mea-

sured as a function of an applied gate voltage Vg, a series of

conductance peaks appears. Each peak corresponds to an ad-

ditional electron in the dot, and the spacings between the

conductance peaks �Vg are proportional to the change in the

chemical potential of the dot as an additional electron enters.

This conductance peak spacing is mainly determined by the

charging energy and it is known as Coulomb blockade.
4

The

possibility to measure addition spectra of quantum dots by

single-electron capacitance
5

or transport spectroscopy
6

stimulated many ground-state calculations. The most rigor-

ous, and computationally very demanding, exact diagonal-

ization can only be applied to few-electron systems. Larger

systems require less-demanding methods, such as the density

functional theory �DFT�. The practical limitations of this

method comes from the not exactly known exchange-

correlation potential, but general experience is that DFT re-

sults are quite reliable
7

and they have contributed substan-

tially to an understanding of quantum dot addition spectra.
8,9

As pointed out above, single-electron transistors require

extremely low power for their operation. This opens the way

to their possible integration in bioenvironments. The integra-

tion in these environments is generally incompatible with the

large power dissipation of current microelectronic transis-

tors, which are orders of magnitude larger. Colloidal chem-

istry techniques allow QDs to be synthesized in the form of

semiconductor spherical nanocrystals, with very low defect

densities and size dispersion. These QDs can also be fabri-

cated as multishell structures,
10

i.e., built of concentric layers

�shells� of different semiconductors with the shell thickness

down to a single monolayer. The size of the nanocrystals and

the composition of layers can be easily manipulated in the

process of fabrication, which makes it possible to tailor to a

large extent their discrete energy spectra.
11

These QDs can

be embedded in various kinds of matrices, such as glasses
12

or organic and biological materials
13

being very promising

for applications, in particular, for the integration of nanoelec-

tronic devices in biological environments.
14

It has been also

shown that these QDs embedded in low-dielectric-constant

matrices can be built into single-electron transistors
1,14

and

that capacitance or tunneling spectroscopies can be used to

obtain their addition spectra.
15–17

A specific characteristic of

organic environments is their huge dielectric mismatch with

typical inorganic semiconductor QD structures. When QDs

are embedded in such materials, the formation of polariza-

tion charges at the interface may strongly influence confine-

ment and charging energies and modify the distribution of

charge carriers inside the QD. Therefore, the effects of the

large mass and dielectric mismatches cannot be overlooked

in the interpretation of single-electron charging phenomena

in these dots. These effects have been incorporated for

spherical few-electron QDs by employing diagonalization

procedures within a Hubbard-like approximation, whereby

only the semidiagonal elements of the Hamiltonian matrix

are retained.
18,19

Some attempts to incorporate these effects

in the local density approximation �LDA�, which allows to

deal with large systems, have also been reported.
20,21

In the

present paper we extend, in a consistent way, the successful

local spin density approximation �LSDA� to account for

quantum dot mass and dielectric mismatches. The paper isa�Electronic mail: josep.planelles@exp.uji.es
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organized as follows: the next section presents the formula-

tion of the method. Next, illustrative comparisons with more

sophisticated calculations available are carried out, and some

concluding remarks end the paper.

II. THEORY

A. Outline of density functional theory

Density functional theory
22,23

�DFT� in the self-

consistent formulation of Kohn and Sham
24

has proven to be

a particularly powerful tool to study large electron systems in

the presence of correlation. According to Hohenberg and

Kohn
25

and its generalization by Levy,
26

the exact ground-

state energy of a many-body system is a unique functional of

the electron density n�r�. Although DFT was initially devel-

oped in a spin-independent formalism, effects of spin polar-

ization were later incorporated in the so-called spin density

functional theory �SDFT�.
27

In this approach the total energy

is a functional of the spin-up and spin-down densities n
�
�r�,

where �= �+,−� labels the spin. Equivalently, the energy is a

functional of the total density n�r�=n+�r�+n−�r� and spin

polarization ��r�= �n+�r�−n−�r�� /n�r�. The ground state is

found by minimizing the energy functional, leading to the

well known Kohn-Sham equations,

�−
�

2

2m
�

2 + VKS,��n,����i��r� = Ei��i��r� , �1�

with

VKS,��n,�� = Vconf�r� +� dr�
n�r��

�r − r��
+

�Exc�n,��

�n
�
�r�

, �2�

the last term being the exchange-correlation contribution.
28

For a finite system with nonuniform density n�r�, the

assumption that, locally, the exchange-correlation energy can

be obtained by applying uniform-electron-gas results

exc�n�r� ,��r�� to infinitesimal portions of the nonuniform

electron distribution is commonly made:

Exc�n,�� =� drn�r�exc�n�r�,��r�� . �3�

The functional Exc�n ,�� can in turn be divided into ex-

change and correlation contributions,

Exc�n,�� = Ex�n,�� + Ec�n,�� . �4�

In the local approximation, the exchange part is given by

the Dirac exchange energy functional, corresponding to a

homogeneous electron gas,

Ex�n,�� =
Cx

2
� drn�r�4/3	�1 + ��r��4/3 + �1 − ��r��4/3
 ,

�5�

where Cx=
3

4 �3/��1/3. It can be rewritten as

Ex�n,�� =� drn�r��x�n,�� . �6�

All approximations introduced so far should be compen-

sated by a proper selection of the correlation term Ec�n ,��. In

the local approximation,

Ec�n,�� =� drn�r��c�n,�� . �7�

There are different parametrizations for this term. In our

calculations we have selected the commonly employed Per-

dew and Zunger functional,
29

which is expressed in terms of

the �adimensional� spin polarization � and the Wigner-Seitz

parameter rs, rs being the radius of an effective sphere in-

cluding a single electron, 1 /n=4�rs
3 /3.

B. Variable mass

In multishell QDs and also in homogeneous QDs embed-

ded in a weak confining medium �allowing the electronic

density to penetrate in the surroundings�, the electron expe-

riences different masses in different materials. We may say,

alternatively, that the effective electron mass m*�r� has a

multisteplike profile.

For a position-dependent mass, the appropriate Hermit-

ian kinetic energy operator is given by
30

T̂ = −
�

2

2
� � 1

m�r�
� � . �8�

The corresponding functional in the Kohn-Sham formulation

should then be

T̂s�n� = �
i

occ

� dr	i�r�*
� �−

�
2

2m�r�
� 	i�r�� . �9�

For bounded systems, i.e., for systems with zero electronic

density at the boundaries, it may be rewritten as

T̂s�n� = �
i

occ

� dr
�

2

2m�r�
��	i�r��2. �10�

It is worth remembering that the effective mass model, used

to describe the electronic structure of QDs, integrates the

microscopic details of the QD building block material lattice.

Therefore, one cannot go into details of this unit cell with the

model. This means, in particular, that the abrupt change of

mass occurring when going from the QD to the surrounding

matrix, or from shell to shell in a multishell QD, should be

understood in a weak sense �an abrupt mismatch at the math-

ematical surface separating two materials may be a too se-

vere imposition�. Indeed, it is known that a dielectric mis-

match so severe leads to a divergence in the single-particle

self-polarization potential. This divergence produces a pa-

thology in the Schrödinger equation not allowing it to be

integrable.
31

In order to bypass this drawback, the abrupt

mismatch is replaced by a continuous variation of the dielec-

tric constant within a thin layer at the interface with a thick-

ness down to a lattice constant.
31–33

In this paper we assume

this kind of smooth mismatch for all physical variables in-

volved, namely, effective mass, dielectric constant, and con-

fining potential �this last given by the band offset of the

adjacent materials�.
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As the effective mass does not come into Coulomb and

exchange functionals, we do not consider these functionals

for now. However, the correlation functional depends on the

�dimensional� Wigner-Seitz radius rs and some scalings

should be introduced, as we show next.

Correlation is an analytical functional �c�rs ,�� written in

atomic units, i.e., �c �hartree� and rs�r� �Bohr radius a0�, �

being adimensional. A free mass m0 is implicit for electrons.

We may use, though, this very same functional for electrons

with masses other than m0 if we employ effective atomic

units throughout. In such a case, the functional, as it is, will

yield correlation energy in effective hartree if we inject rs in

effective Bohr radii. In order to get back true atomic units,

we should multiply �c by m* /

2, where m*=m /m0 is the

effective mass of the electron and 
 is the dielectric

constant.
34

This simple reasoning gives us the key to deal with vari-

able mass systems: we should use true atomic units through-

out, just making sure, at each r, that both �c and its argument

rs are properly scaled by m*�r� /
�r�2 and m*�r� /
�r�, re-

spectively.

C. Variable dielectric constant

Dielectric constant comes into Coulomb, exchange, and

correlation functionals. The classical Coulomb term in

vacuum,

��r� =� dr�
n�r��

�r − r��
, �11�

should be replaced by the one coming from the integrations

of the Poisson equation,

��
�r� � ��r�� = − 4�n�r� . �12�

More involved is the exchange, as it is nonclassical. It

can be obtained, in a homogeneous medium, in terms of the

spin density matrices n
�
�r1 ,r2� as

22

Ex�n+,n−� =
1

2
� � dr1dr2

1

r12

��n+�r1,r2��2 + �n−�r1,r2��2� .

�13�

If the dielectric constant of the homogeneous medium 


is not unity as in a vacuum, we should replace r12 with 
r12

in the above equation. Next, by assuming homogeneous elec-

tron gas, which allows us to write the density matrix in terms

of plane waves, we may end up with Eq. �5� �it should be

divided by 
 if this constant is not unity�.

The question arises in case 
 changes from a point to

another. In a first attempt one may just replace �x�n ,�� with

�x�n ,�� /
�r� in Eq. �6�. However, it is not consistent with the

Coulomb functional, since Eq. �12� is not equivalent to


�r��2
��r�=−4�n�r�. However, we may define the scaling

parameter

� =

� dr�n�r�/
�r��� dr��n�r��/�r − r���

� dr��r�n�r�

�14�

and an effective local dielectric constant 
̄�r�=�
�r� that al-

lows to write the next identity,

� dr��r�n�r� =� � drdr�
n�r�n�r��


̄�r��r − r��
. �15�

Therefore, scaling �x�n ,�� by ��
�r��−1 is globally consistent

with the employed Coulomb functional. For the same rea-

sons, we will replace 
�r� by ��
�r�� in the scaling factors

coming into the correlation functional �c.

The present extension of LSDA is, on one hand, local in

the sense that the electronic density feels locally the physical

properties of the medium, but, on the other hand, it is con-

sistent with a rigorous calculation of Coulomb energy in an

inhomogeneous medium.

III. ILLUSTRATIVE CALCULATIONS

As discussed in the previous section, if the permittivity

is a constant, we may account for variable mass without

introducing any approximation on top of LSDA �as far as the

system is bounded, which will always be the case�. There-

fore, we devote this section to check the robustness of the

proposed approach dealing with a variable permittivity. To

this end, we have written a code for spherical quantum dots

and calculated the very sensitive addition energies of elec-

trons and holes in InAs and CdSe nanocrystals embedded in

media with different dielectric constants. Our benchmark to

compare with is a set of full configuration interaction �FCI�

calculations carried out by Orlandi et al.
18

The calculations

employ an orbital basis set including 1s, 1p, 1d, and 2s

orbitals
35

and are exact up to seven particles. Larger QD

populations up to 20 particles are calculated within a

Hubbard-like approximation, i.e., only semidiagonal ele-

ments of the Hamiltonian are retained.

The present implementation of our approach for spheri-

cal multishell QDs uses a multistep function for the dielectric

constant, for the confining potential, and for the effective

mass, where, as discussed above, the abrupt mismatches are

replaced by continuous variations within an extremely thin

layer at the interface with a thickness down to a lattice con-

stant. Mathematically, we do it by adding a set of Fermi

functions as follows:

X�r� = �
l=1

n shell

X�l��1 −
1

1 + exp	�r − Ri�l��/a



�� 1

1 + exp	�r − R f�l��/a

 , �16�

where X�r� is either the multistep dielectric constant 
�r�, the

confining potential Vconf�r�, or the effective mass m*�r�, Ri

and R f are the initial and final shell radii, and a the corre-

sponding interface thickness.
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Kohn-Sham �Eq. �1�� and Poisson �Eq. �12�� equations

have been solved numerically using the finite-difference

method on the one-dimensional grid in spherical coordinates.

The discretization scheme on a grid, extended far beyond the

QD radius, yields either eigenvalue problems �Kohn-Sham�

or linear systems of equations �Poisson� of asymmetric huge

and sparse matrices that have been solved by standard matrix

methods. The scaling parameter � is self-consistently calcu-

lated. The iterative process ends when complete self-

consistency is achieved.

The geometries and parameters employed in our calcu-

lations are those of Ref. 18, namely, a 2 nm radius CdSe QD

�me
*=0.11 for electrons, mh

*=1 for holes, and 
QD=10� and a

3.2 nm InAs QD �me
*=0.023 for electrons, mh

*=0.41 for

holes, and 
QD=10.9�; both QDs are subjected to an infinite

confinement and embedded in three different dielectric me-

dia defined by 
=
QD /
ex=1,3 ,5.

The results for addition energies of electrons in

CdSe/ InAs QDs are represented in Figs. 1�a� and 2�a� and

should be compared with Figs. 1�a� and 2�a� of Ref. 18. As

we can see, both qualitative and quantitative agreements are

extremely good. The same agreement is achieved for addi-

tion energies of holes in InAs QD, Fig. 2�b�, which should be

compared with its partner in Ref. 18. Finally, addition ener-

gies of holes in CdSe QD are represented in Fig. 1�b� �to be

compared with its partner in Ref. 18�. The agreement is per-

fect if we allow the configurations that can be inferred from

Ref. 18 �see Fig. 1�b�� to converge. However, a full research

of the absolute energy minimum leads us to find out, just in

this case of holes in CdSe, a few reconstructions. All of them

TABLE I. Disagreements between CI and LSDA: Holes in CdSe QD. The

dominant CI configuration, the most stable LSDA configuration, and the

relative energy spacing between these two configurations at LSDA level are

shown.

CI configuration LSDA configuration �E �%�


=3

1s21p2 1s1p3 1.0


=5

1s21p2 1s1p3 1.7

1s21p61d 1s1p31d5 0.2

1s21p61d2 1s21p31d5 0.1

1s21p61d3 1s21p41d5 0.01

FIG. 1. Calculated addition energies �a� for electrons and �b� for heavy

holes as a function of the number N of particles in the dot �addition spec-

trum�. Results are shown for a CdSe QD. Each curve corresponds to a

different value of 
=
QD /
ex.

FIG. 2. Calculated addition energies �a� for electrons and �b� for heavy

holes as a function of the number N of particles in the dot �addition spec-

trum�. Results are shown for an InAs QD. Each curve corresponds to a

different value of 
=
QD /
ex.
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are summarized in Table I, and the comparison of addition

energies corresponding to both hole sequential fillings can be

seen in Fig. 3. As we can see, the agreement with Ref. 18 is

absolute also for holes in CdSe and 
=1. For 
=3 we find

out a single reconstruction, the fourth hole comes into a

1s1p3 configuration instead of a 1s21p2. Our calculations

show that the 1s1p3 configuration is �just� 20 meV more

stable than 1s21p2 �less than 1% of the total energy�. It is

worth stressing that holes in CdSe have an effective mass

mh
*=1. Therefore, the kinetic energy is small and the orbital

levels turn out to be quite close, so that correlation plays a

crucial role. On the other hand it is known that in high cor-

relation regime LSDA shows a tendency to stabilize high

spin. Then, it is difficult to assign this small disagreement

with exact FCI results either to the own LSDA or to the

scaling approximation employed. Finally, for 
=5 we find

four reconstructions. Again, as can be seen in Table I the

energetic differences between configurations are small.

In summary, a consistent extension of LSDA to account

for mass and dielectric mismatches is presented in this paper.

We prove that the extension to account for variable effective

mass is exact. Some illustrative comparisons with more so-

phisticated CI calculations available show that our approach

is also very reliable accounting for dielectric mismatches.

Finally, it is worth stressing that the proposed extension of

LSDA is extremely fast and computationally very low de-

manding �just as much as LSDA� in comparison with sophis-

ticated CI calculations, so that one may deal with large

many-particle system in inhomogeneous media without

much effort.

ACKNOWLEDGMENTS

Continuous support from MEC-DGI Project Nos.

CTQ2004-02315/BQU and FIS2005-01414, UJI-Bancaixa

Project No. P1-B2002-01, and Generalitat de Catalunya

2005SGR00343 is gratefully acknowledged.

1R. C. Ashoori, Nature �London� 379, 413 �1996�.
2L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots �Springer, Berlin,

1998�.
3B. De Salvo, G. Ghibaudo, G. Pananakakis, P. Masson, T. Baron, N. Buf-

fet, A. Fernandes, and B. Guillaumot, IEEE Trans. Electron Devices 48,

1789 �2001�.
4D. V. Averin and K. K. Likhraev, in Mesoscopic Phenomena in Solids,

edited by B. L. Altshuler, P. A. Lee, and R. A. Webb �North-Holland,

Amsterdam, 1991�.
5R. C. Ashoori, H. L. Störmer, J. S. Weiner, L. N. Pfeiffer, S. J. Pearton, K.

W. Baldwin, and K. W. West, Phys. Rev. Lett. 68, 3088 �1992�; R. C.

Ashoori, H. L. Störmer, J. S. Weiner, L. N. Pfeiffer, K. W. Baldwin, and

K. W. West, ibid. 71, 613 �1993�.
6S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kou-

wenhoven, Phys. Rev. Lett. 77, 3613 �1996�.
7J. Kainz, S. A. Mikhailov, A. Wensauer, and U. Rössler, Phys. Rev. B 65,

115305 �2002�.
8S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 �2002�.
9M. Pi, D. G. Austing, R. Mayol, K. Muraki, S. Sasaki, H. Tamura, and S.

Tarucha, in Trends in Quantum Dots Research, edited by P. A. Ling �Nova

Science, New York, 2005�; D. G. Austing et al., in Nano-Physics and

Bio-Electronics: A New Odyssey, edited by T. Chakraborty, F. Peeters, and

U. Sivan �Elsevier, New York, 2002�.
10H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, and U.

Wiesner, Nano Lett. 5, 113 �2005�; M. Darbandi, R. Thomann, and T.

Nann, Chem. Mater. 17, 5720 �2005�; A. Mews, A. V. Kadavanich, U.

Banin, and A. P. Alivisatos, Phys. Rev. B 53, R13242 �1996�; D. Schooss,

A. Mews, A. Eychmüller, and H. Weller, ibid. 49, 17072 �1994�; A.

Mews, A. Eychmüller, M. Giersig, D. Schooss, and H. Weller, J. Phys.

Chem. 98, 934 �1994�.
11G. W. Bryant and W. Jaskólski, Phys. Status Solidi B 224, 751 �2001�; J.

Planelles, J. G. Díaz, and J. Climente, Phys. Rev. B 65, 245302 �2002�; J.

Planelles, J. Climente, J. Díaz, and W. Jaskólski, J. Phys.: Condens. Matter

14, 12537 �2002�; J. Climente, J. Planelles, J. Díaz, W. Jaskólski, and I.

Aliaga, ibid. 15, 3593 �2003�.
12U. Woggon, Optical Properties of Semiconductor Quantum Dots

�Springer, Berlin, 1996�.
13See, e.g., M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivi-

satos, Science 281, 2013 �1998�; W. C. W. Chan and S. Nie, ibid. 281,

2016 �1998�.
14A. P. Alivisatos, Science 271, 933 �1996�; MRS Bull. 23, 18 �1998�.
15U. Banin, Y. W. Cao, D. Katz, and O. Millo, Nature �London� 400, 542

�1999�.
16B. Alperson, I. Rubinstein, and G. Hodes, Appl. Phys. Lett. 75, 1751

�1999�.
17D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. Mceuen,

Nature �London� 389, 699 �1997�.
18A. Orlandi, M. Rontani, G. Goldoni, F. Manghi, and E. Molinari, Phys.

Rev. B 63, 045310 �2001�.
19A. Orlandi, G. Goldoni, F. Manghi, and E. Molinari, Semicond. Sci.

Technol. 17, 1302 �2002�.
20J. Sée, P. Dollfus, and S. Galdin, J. Appl. Phys. 92, 3141 �2002�.
21M. Şahin and M. Tomak, Phys. Rev. B 72, 125323 �2005�; Physica E

�Amsterdam� 28, 247 �2005�.
22R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Mol-

ecules �Oxford University Press, Oxford, 1989�.
23E. Lipparini, Modern Many-Particle Physics �World Scientific, Hacken-

sack, NJ, 2003�.
24W. Khon and L. J. Sham, Phys. Rev. 140, A1133 �1965�.
25P. Hohenberg and W. Khon, Phys. Rev. 136, B864 �1964�.
26M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 �1979�.
27U. von Barth and L. Hedin, J. Phys. C 5, 1629 �1972�.
28It should be emphasized that the Kohn-Sham equation �Eq. �1�� should be

solved in a geometrically unrestricted scheme, i. e., the symmetry of the

solution should not be constrained by the symmetry of the confinement. In

such a case, symmetry broken ground states may be found for large values

of the Wigner-Seitz parameter rs �strong correlation regime�. However, in

general, a symmetry restricted DFT scheme gives reliable approximations

to the exact ground-state energies and densities.
29J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 �1981�.
30D. BenDaniel and C. B. Duke, Phys. Rev. 152, 683 �1966�.
31L. Bányai and S. W. Koch, Semiconductor Quantum Dots �Word Scien-

tific, Singapore, 1993�.

FIG. 3. Comparison of addition spectra for heavy holes in CdSe QD as a

function of the number N of particles in the dot, computed using LSDA

absolute energy minimum configurations �thick lines� and dominant CI con-

figurations �thin lines�. Each curve corresponds to a different value of 


=
QD /
ex. For 
=1 both configurations come to be identical.

073712-5 Pi, Royo, and Planelles J. Appl. Phys. 100, 073712 �2006�

Downloaded 01 Feb 2010 to 84.124.83.4. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



162 Publications

32
F. Stern, Phys. Rev. B 17, 5009 �1978�.

33
P. G. Bolcatto and C. R. Proetto, J. Phys.: Condens. Matter 13, 319

�2001�.
34

Actually, one does not inject rs into �c, but n�r�. In such a case, we should

inject it in effective units, i.e., by scaling n�r� �a.u.� by a factor �
 /m*�3.

35
Using our approach we have seen that this basis set is appropriate for

electrons in the two QDs studied. In the case of holes this basis set is large

enough up to 18 holes. The 19th and 20th holes come then to fill 1f

instead of 2s. However, in order to carry out proper comparison, we have

used the same basis set as in Ref. 18.

073712-6 Pi, Royo, and Planelles J. Appl. Phys. 100, 073712 �2006�

Downloaded 01 Feb 2010 to 84.124.83.4. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



163

Effective mass and dielectric constant mismatch effects in spherical multishell quantum dots

M. Royo and J. Planelles
Departament de Ciències Experimentals, Universitat Jaume I, Box 224, E-12080 Castelló, Spain

M. Pi
Departament ECM, Facultat de Física and IN 2 UB, Universitat de Barcelona, E-08028 Barcelona, Spain

�Received 21 September 2006; published 9 January 2007�

The role of effective mass and dielectric mismatches on chemical potentials and addition energies of many-

electron multishell quantum dots �QDs� is explored within the framework of a recent extension of the spin

density functional theory. It is shown that although the gross electronic density is located in the wells of these

multishell QDs, taking position-dependent effective mass and dielectric constant into account can lead to the

appearance of relevant differences in chemical potential and addition energies as compared to standard calcu-

lations in which the effective mass and the dielectric constant of the well is assumed for the whole multishell

structure.
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Over a decade ago, Eychmüller and coworkers1,2 opened
the door to the nano-heterostructures called quantum dot
quantum wells �QDQW�. These primal spherical multishell
nanostructures were composed of a CdS central core sur-
rounded by an HgS shell, a little thicker than a monolayer,
capped with additional CdS. The synthesis route was based
on the chemical control of the composition of the shells as
the structure was grown layer by layer, so that the thickness
of the core, well, and clad can be varied during the course of
the synthesis. The basic physics of QDQWs derives from the
band gap differences between neighboring materials leading
to a radial confinement profile for carriers both in the con-
duction and in valence bands. Thus, in a CdS QD with an
HgS quantum well inside, the electronic density, coming
from either optical excitations or electronic levels charging,
is localized in the HgS well.3 The relatively easy control of
the size and composition of these structures and, therefore,
the possibility of modifying the charge density localization,
grants a high degree of flexibility for tailoring the discrete
energy spectra of these systems.4 More recently, Al-Sayed
and coworkers,5 by means of alternative precipitation of HgS
and CdS on a CdS central core, successfully obtained spheri-
cal nanoparticles containing two HgS quantum wells sepa-
rated by a double CdS barrier. This work, together with other
multishell synthesis reported in recent years,6,7 prompt mul-
tishell nanostructures as firm candidates to become versatile
components of electronic devices.

Theoretical studies on spherical multishell systems at the
monoelectronic or excitonic level employing atomistic tight-
binding models8 or macroscopic-like methods, such as the
one-band effective mass approach9,10 and the more accurate
multiband approaches,11 have been reported. The influence
of a magnetic field on the electron and hole energy spectra of
multishell QDs has also been been reported.12 Nevertheless,
not many works on charging electrons in spherical multishell
quantum dots have been carried out. We mention the work by
Banin et al.,13,14 who studied an electronically charged core/
shell InAs/ZnSe spherical nanocrystal spectroscopically.
Some of the features observed in this heterostructure were
theoretically reproduced by Dai et al.15 using unrestricted
Hartree-Fock-Roothaan calculations, including up to nine
electrons.

In a recent paper,16 we developed a method, within the
framework of the spin density functional theory �SDFT�, ca-
pable of studying many-electron spherical QDs including ef-
fective mass and dielectric mismatches. In a multishell QD,
an electron feels different effective masses and dielectric
constants in the different layers. In systems composed of
CdS and HgS, the electronic density is mainly concentrated
in the HgS wells. This fact might lead one to think that it is
safe to employ the effective mass and dielectric constant of
the HgS for the whole multishell QD. In the present work we
will show that a correct description of such systems requires
consideration of a proper variable, i.e. position-dependent,
effective mass, and dielectric constant. SDFT results, which
employ the effective mass and dielectric constant of the well
for the whole QD �hereafter referred to as unpolarized cal-
culation� and those with position-dependent parameters �po-

larized calculation�, show differences in chemical potential.
This leads to differences in the number of electrons coming
into the HgS well and also differences in addition energies,
in some cases reflecting distinct ground state electronic con-
figurations in either the polarized or the unpolarized case.
Differences increase with the number of layers of the multi-
shell QD.

A fully detailed description of the method employed can
be found in Ref. 16. In short, it is an extension of the
SDFT,18 which includes �i� position-dependent effective
mass by replacing the standard kinetic energy operator

−
�

2

2m*�
2 by −

�
2

2 � � 1

m* � �, corresponding to the case of variable

effective mass, �ii� polarization of the Coulomb interaction
arising from the dielectric mismatch, by numerically inte-
grating the Poisson equation ����r����r��=−4�n�r�; �iii�

Self-energy, also coming from the dielectric mismatch, by
incorporating the mono-electronic self-polarization potential
according to the equations reported in Ref. 19. This dielectric
confinement and the spatial confinement potentials are the
genuine single-particle components of the Konh-Sham po-
tential; �iv� the effect of dielectric mismatch on exchange by
means an appropriate scaling of the exchange functional,
which is consistent with the Coulomb functional employed;
and finally, �v� the correlation functional is also modified to
incorporate the position-dependent parameters properly by
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means of a consistent scaling of the Perdew-Zunger analyti-
cal functional employed.20

The material parameters employed in our calculations,
namely electron effective masses mHgS

* =0.04, mCdS
* =0.15,

mH2O
* =1, dielectric constants �HgS=11.4, �CdS=5.5, �H2O

=1.78, and band offsets VHgS/CdS=1.35 eV, VHgS/H2O

=4.15 eV, and VCdS/H2O=2.8 eV are taken from Refs. 10 and

17. The bottom of the HgS conduction band is assumed to be
the origin of energies. We have carried out calculations from
one up to 25 electrons, the orbital basis set employed includ-
ing orbitals 1s, 1p, 1d, 1f , 2s, and 2p.

Figure 1�a� shows the calculated chemical potential21 vs
the number of electrons of one of the multishell QDs synthe-
sized by Al-Sayed et al.5 The heterostructure is represented
in the inset. It is built of an internal CdS core of radius
3.2 nm, a middle well-acting HgS shell with a thickness of
0.8 nm and an external 0.4 nm thick CdS clad. The QD is
surrounded by water.

Chemical potentials obtained from the polarized calcula-
tions, either including self-energy or not, indicate that up to
two electrons can come into the HgS well, while unpolarized
calculations already yield a chemical potential for the single-
electron QD exceeding the HgS/CdS confining barrier. The
two horizontal lines in Fig. 1 at 1.35 and 4.15 eV represent
the confining barrier height of the HgS well and the QD,
respectively. Therefore, Fig 1�a� indicates that while the po-
larized calculations predict that the QD can accept up to a
maximum of 16 electrons, the limit of electrons that can
come into the QD yielded by the unpolarized calculations
exceeds 25. Concerning addition energies �see Fig. 1�f��, no
qualitative differences can be seen between the two ap-
proaches employed. The profiles obtained indicate the fulfill-
ment of the Afbau and Hund rules, the same spin and elec-
tronic configurations being achieved by all approaches. As a
consequence, no appreciable quantitative differences are
found when the single-particle self-energy is included, as it
almost cancels completely out. Only quantitative differences
between polarized and unpolarized calculations can be seen
that reveal the extra polarization work.

Since, as pointed out above, it is relatively easy to control
the layer thickness in a multishell QD experimentally, we
then calculate several multishell structures, including one or
more HgS wells separated by CdS barriers of different
widths in order to illustrate the relevance of including
position-dependent effective mass and dielectric constant in
the calculation of chemical potentials and additions energies.
The notation A /B /A /. . . x /y /z / . . . that will be employed
hereafter means a QD built of an x nm radius internal core of
material A covered by successive y ,z , . . . nm thickness shells
of materials B /A / . . .. In all cases the medium surrounding
the QD is water.

Figure 1�b� and 1�g� correspond to CdS/HgS/CdS 3/2 /1
multishell QD. The same general trends as in the previous
case are found here. Namely, the same spin and electronic
configuration are achieved by all approaches, all of them
yielding qualitatively similar addition energies, these reveal-
ing the fulfillment of the Afbau and Hund rules, but quanti-
tative differences related to the polarization work. Finally,
relevant differences in chemical potentials between the po-

larized and unpolarized approach are found, the self-energy
playing a minor role.

We deal next with double quantum wells. We first con-
sider HgS/CdS/HgS/CdS 3.5/3 /2 /1 QD, whose well-
acting core is separated from the second well by a barrier, the
last shell also being barrier-acting �see Figs. 1�c� and 1�h��.
As above, the main differences between polarized and unpo-
larized approaches can be found when calculating chemical
potentials. Thus, while the unpolarized calculation predicts
that all 25 electrons come into the HgS wells, the polarized
calculation already does not allow the 11th electron to come
into the wells, as the chemical potential of this QD populated
with 11 electrons exceeds the well-confining potential height.
The addition energy profile reveals a peculiar change of
maxima positions with respect to the other QDs that have
been studied. This is the outcome of a different orbital se-
quential filling 1s ,2s ,1p ,1d. . . �instead of 1s ,1p ,1d. . .�
which has its origins in a relative stabilization of the 2s or-
bital that locates its radial node in the barrier region. Regard-
ing differences between polarized and unpolarized calcula-
tions, a first qualitative difference between them appears at
Eadd�2�, which is not a maximum if polarization is included,

this fact being related to the extra stability of the 2s orbital
originated by polarization.

The last two structures we consider are QDs with
double quantum wells having a barrier-acting core
�CdS/HgS/CdS/HgS/CdS�, the only difference between

them being the thickness of the intermediate CdS barrier.
Figure 1�d� and 1�i� show the result for 3 /2 /1 /2 /1 while
Fig. 1�e� and 1�j� correspond to 3/2 /2 /2 /1. Besides the dis-
crepancies in chemical potential between polarized and un-
polarized calculations, qualitatively similar to the previously
outline for the other QDs studied, now differences arise in
the addition energy plot. In the case of the thinner CdS bar-
rier, Fig. 1�i�, the third big maximum appears at a different
number of electrons N in the unpolarized and polarized case,
which is the result of a different sequential filling,
1s2 ,1p6 ,1d10 ,1f6, vs 1s2 ,1p6 ,2s2 ,1d10 ,1f4, originated by an
extra stabilization of the 2s orbital coming from polarization.
It should also be mentioned that self-energy gives rise to a
few ground-state reconstructions that are reflected in small
changes in the addition energy profile, even leading to a spin
change �2Sz=6 vs 4� at N=14.

The most relevant role of both polarization and self-
energy can be seen in the case of the thicker CdS barrier.
Thus, Fig. 1�j� reveals that, in the region of few electrons, a
quite different Eadd vs N profile results when polarization is
included, this profile undergoing a further relevant change as
the self-energy is accounted for. We can mention, for ex-
ample, that at N=8 electrons, the spin predicted by the un-
polarized calculation is 2Sz=0, which turns into 2Sz=2 as
polarization is included, and recovers a zero value as, addi-
tionally, self-energy is incorporated.

In short, we have shown that despite the fact that the
electron density may be mainly concentrated in the wells of
a multishell QD, position-dependent effective mass and di-
electric constant should be employed for a proper calculation
of chemical potentials and addition energies, this being spe-
cially relevant as the QD complexity, i.e. the number of
shells, increases.
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FIG. 1. Chemical potentials

�left� and addition energies �right�

vs the number N of electrons, cor-

responding to the QDs outlined in

the insets �black for CdS and

white for HgS�. Solid line: unpo-

larized calculation. Dotted line:

polarized calculation. Dashed line:

polarized calculation including

self-energy. The horizontal solid

lines at 1.35 and 4.15 eV illustrate

the confining barrier height for the

HgS well and the QD, respec-

tively. 2Sz values are indicated by

numbers on the addition spectra.

If the spins of the polarized calcu-

lation with and without self-

energy are different, underlined

numbers correspond to the calcu-

lation including self-energy.
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Theory of dielectrically induced surface excitonic states in spherical quantum dots
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The formation of quantum dot �QD� excitonic surface states induced by dielectric mismatch is theoretically

explored in spherical nanocrystals embedded in very high and in very low permittivity media. It is found that

the transition from volume to surface exciton states �V→S� always parallels a sudden drop of exciton bright-

ness if the QD is embedded in low dielectric constant media. This is not the case of a QD buried in high

permittivity media. In this case, the V→S transition is monitored by a reduction in exciton brightness or not

depending on the mh
* /me

* ratio between the effective masses of electron and hole. The presence of a hydrogenic

donor impurity at the QD center can drastically reduce the electron-hole density overlap and thus the excitonic

binding energy and the drop of brightness that parallels the formation of surface states.

DOI: 10.1103/PhysRevB.76.115312 PACS number�s�: 71.35.Cc, 73.21.La, 73.22.�f, 73.20.At

I. INTRODUCTION

Most of the active key components of modern information
technologies rely on semiconductor devices with electronic
or optoelectronic functions. It is believed that quantum bits,
which are generic quantum mechanical two-level systems,
will become the basic building blocks of this technology in
the next future. One possible realization of these two-level
systems is an exciton ground state in a quantum dot �QD�.1

The formation of QD excitons or electron-hole e-h pairs and
e-h recombination leading to photoluminescence has re-
ceived a great deal of attention in the literature.2 A very
interesting feature of semiconductor QDs spectra is the shift
of excitonic peaks as compared to bulk values. This origi-
nates from two usually opposite contributions. On the one
hand, the single-particle band gap is shifted to higher ener-
gies due to the quantum size effect. On the other hand, the
Coulomb attraction between the e-h pair created by photoex-
citation adds a redshift correction. Both corrections are size
dependent and generally result in an overall blueshift of the
optical band gap as compared to the bulk.3 Since the pioneer-
ing work by Brus,4,5 the influence of QD surface dielectric
polarization on energy and density distribution of carriers has
been taken into account for a proper comparison between
theory and experiments. This surface polarization is espe-
cially strong for QDs in a glass matrix, liquid solution, air, or
a vacuum, where the background dielectric constant of the
QD and the surrounding medium are substantially different.
Two contributions to the energy originate from the dielectric
mismatch, namely, single-particle contributions coming from
the interaction of carriers with their own induced charges
�self-polarization energy� and two-particle contributions
coming from the interaction of a carrier with the charge in-
duced by the other one �polarization of the Coulomb inter-
action�. By assuming infinitely �or very� high confinement
barriers and steplike dielectric functions, the dielectric mis-
match corrections on excitonic energies in spherical QDs al-
most totally cancel each other out.4,6–9 However, dielectric
mismatch corrections on excitonic energies no longer cancel
out if finite confining barrier heights are considered.10 Under
specific conditions, the attractive self-polarization potential
well originated from the dielectric mismatch is even able to

confine carriers in surface states.11–15 Dielectrically induced
exciton surface states in semiconductor QDs were predicted
for the first time by Bányai et al.11,17 using a model where
electron and hole are confined in a QD by a common low
potential height barrier and have a large effective e-h mass
ratio mh

* /me
*=10, the QD being subject to a strong dielectric

mismatch �QD /�out=10.
In this Brief Report, we explore the possible formation of

excitonic surface states in two different situations, �i� a
spherical QD in air, where the hole confining barrier height is
much higher than the electron one, and �ii� a QD buried in a
matrix with a higher dielectric constant �in this case, as is
usual, we will assume that the confinement barrier height for
holes is about 1 /2 that corresponding to electrons�. We will
show that in both cases, a dielectric mismatch-induced tran-
sition from a volume to a surface state involving an optical
band gap redshift �with respect to the case of no dielectric
mismatch� can be reached under specific conditions. Rel-
evant differences between the two cases are found. Thus, in
case �i�, only the electron can be confined in the self-
polarization potential well, beyond the QD border. However,
the hole, despite its heavier mass, as it is subject to a higher
confining barrier, cannot overcome the spatial confinement
and remains within the QD but close to the border due to the
e-h attraction. The transition from volume to surface states
can be monitored in this case by a sudden change in the
overlap between electron and hole wave functions, i.e., by a
decrease in the exciton brightness. A quite different situation
holds in case �ii� because the self-polarization potential well
is now located on the inner side of the QD border so that no
spatial confining barrier prevents localization of particles in
it. In this case, we find that the transition from volume to
surface states can be monitored by a reduction in the exci-
tonic brightness or not, depending on the mh

* /me
* ratio. In

addition, the influence of an on-center shallow donor impu-
rity on the binding energy and oscillator strength of the fun-
damental exciton is also addressed. It results in an almost
total suppression of binding and brightness.

II. THEORY AND COMPUTATIONAL DETAILS

We deal with the fundamental exciton of spherical QDs. It
has been reported2,16 that this exciton basically involves the
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fundamental 1Se electron and 1S3/2 hole states. Then, the
hole in the fundamental exciton has a strong heavy-hole
character, being well described by the one-band model. The
missing small contribution of the light holes in the exciton
configuration interaction �CI� expansion is expected to be
negligible. This simplification on the hole description leads
to a computational workable approach. Also, the electron-
hole spin-exchange interaction that splits the optically active
exciton ground state into a few states,2,18,19 the lowest of
which is optically passive, has been neglected in the present
study. Then, to account for excitonic states, we first solve the
one-particle effective-mass Schrödinger equation,

H = −
1

2
� � 1

m*�r�
� � + V�r� + Vs�r� , �1�

where the first term is the generalized kinetic energy opera-
tor, V�r� represents the spatial confining potential, and Vs�r�

stands for the self-polarization potential. The calculation of
this potential is carried out by employing a dielectric func-
tion profile that changes smoothly within a thin interface �of
the order of a lattice constant� between the semiconductor
QD and its surroundings.10,20 This approach bypasses the
�unphysical� self-polarization potential divergences that arise
at the interface when a steplike dielectric profile is
employed17,21 and avoids the lack of size scaling of the non-
divergent regularization method.11,17

The radial parts of the exact single-particle eigenfunctions
�n�m�re/h� are determined numerically on the grid extending

far beyond the dot radius R. Hartree products of the basis
functions �n�m�re� ·�n���m�

�rh� are then used to construct CI

expansions �LM =� j� j of the symmetry-adapted e-h con-
figurations, where L and M are the total and z-component
angular quantum numbers, respectively. The e-h Hamiltonian
containing Coulomb interaction and polarization terms10 is
then diagonalized in the CI basis set. As a result, we get
two-particle wave functions �LM�re ,rh� and energies E�L�.

We carry out full CI employing a very large orbital basis set
�n�m including the n=4 lowest-lying orbitals with �=0,1 ,2
and the n=3 lowest-lying orbitals with �=3,4 ,5 ,6. The
same basis set is employed for electron and holes, this basis
set being by far larger than that required to achieve the ac-
curacy shown in the figures.

From the wave function, we can define the electron radial

density P�re�,

P�re� =� ���re,rh��2re
2
rh

2 sin �e sin �hdrhd�ed�hd�ed�h,

�2�

the hole radial density P�rh� in a similar way, and the e-h

overlap Se-h
2 ,

Se-h
2 = �� ��re = rh = r�r2 sin �drd�d��2

, �3�

which is proportional to the oscillator strength of the
electron-hole state.16,22–24

III. RESULTS AND DISCUSSION

Case (i): QD in air or a vacuum. We first investigate the
role of image charges on the excitonic properties of a free-
standing QD. Our model consists of a spherical R=5 nm
radius nanocrystal. We employ the following parameters:25

me,QD
* =0.5, me,out

* =mh,out
* =1, mh,QD

* =10, and �out=1. Since
we cannot promote holes into a vacuum, we will assume an
infinite height for the spatial confining barrier of a hole when
a QD is in air or a vacuum. As for electrons, we consider the
QD electroaffinity as the barrier height Ve.

We have carried out three series of calculations of the
overlap Se-h

2 and excitonic E and binding Eb energies26 vs
�QD ranging from 1 up to 50, corresponding to Ve=1, 2, and
3 eV. The results are summarized in Fig. 1, together with
partner calculations with �out=�QD, i.e., in the absence of
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FIG. 1. Excitonic E and binding Eb energies and e-h overlap

Se-h
2 of a R=5 nm, me,QD

* =0.5, mh,QD
* =10 freestanding QD with a

confining barrier height Ve of 1 eV 	�a1�, �b1�, and �c1�
, 2 eV

	�a2�, �b2�, �c2�
, and 3 eV 	�c1�, �c2�, �c3�
, as a function of the

QD dielectric constant �QD. Solid �dashed� lines include �exclude�

dielectric polarization effects. Insets: electron �solid line� and hole

�dotted line� radial density distributions 	Eq. �2�
 �the QD border is

indicated by a tick in the horizontal axis�. Panels �d1�–�d3� and

�e1�–�e3� correspond to �b1�–�b3� and �c1�–�c3� when a hydrogenic

donor impurity is located at the QD center.
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dielectric mismatch effects, that will help to analyze the ob-
tained results.

Figures 1�c1�–1�c3� show sudden changes of e-h overlap
Se-h

2 that parallel the transition from volume to surface exci-
ton states, as can be seen in the corresponding insets. This
transition is also reflected as a change of sign of the slope in
the excitonic energy vs �QD profile 	Figs. 1�a1�–1�a3�
, while
it is not reflected in the binding energy plots 	Figs. 1�b1�–
1�b3�
, whose profile vs �QD is very smooth. Differences
between polarized and unpolarized excitonic energies 	see
Figs. 1�a1�–1�a3�
 basically reflect self-polarization effects,
while differences between polarized and unpolarized binding
energies 	see Figs. 1�b1�–1�b3�
 essentially show the influ-
ence of the polarization of the Coulomb interaction, as we
have verified in a series of calculations �not shown�. Our
results are an extreme example denying the cancellation of
single- and two-particle polarization contributions to the ex-
citonic energy. Also, they lead to the conclusion that the
main effect of single-particle self-polarization is the produc-

tion of a redshift in the optical band gap, while the polariza-

tion of the Coulomb interaction basically enhances the exci-

ton binding energy. Figure 1 additionally reveals that the

conditions for the QD materials to yield exciton surface

states when the QD is in air or a vacuum are rather severe,

namely, quite low electroaffinity � and not very light elec-

tron effective mass me
*. Not many semiconductors can fulfill

this requirement. We may mention SiO2 as a possible candi-

date �me
*=0.5, �=0.9 eV, �=4, and mh

*=10, see Refs.

27–30�.
Next, we study the same QD doped with a hydrogenic

donor impurity at its center. This impurity exerts the most

relevant influence for low values of the dielectric constant by

binding the electron while repelling the hole, thus leading to

a drop in excitonic binding energy31 and brightness 	see pan-

els �d1�–�d3� and �e1�–�e3� in Fig. 1
. Our calculations also

reveal that the heavier the electron effective mass is, the

closer its density distribution bound to the impurity site is.

Accordingly, an acceptor impurity attracts the heavier hole

very close to the QD center and creates an effective neutral

entity that leads the electron to behave as an almost indepen-

dent particle in the QD.

Case (ii): QD embedded in a medium with a larger di-

electric constant. We consider, as above, a spherical 5 nm

radius QD defined by the following parameters: me,QD
* =0.5,

�QD=4, Ve=1 eV, and Vh=0.5 eV, the ratio Ve /Vh simulat-

ing typical alignments of different materials. Two different

effective masses for holes have been considered, namely,

mh,QD
* =1 and 10, slightly and much heavier than me,QD

* , re-

spectively. This QD is embedded in a fictitious medium with

a dielectric constant ranging from �out=�QD up to �out=50.

The effective masses in this medium are assumed to be the

same as in the QD since we have no criterion to assign them.

The key difference with respect to the previous case �i� of

a QD in air is that now, the self-polarization potential has the

attractive well located on the inner side of the QD border.

Then, both particles can be confined in it, the heavier particle

being more strongly attracted by this well due to its smaller

kinetic energy. This is in contrast with the above case �i�
where the hole �the heavier particle� was unable to overcome

its large confining potential barrier, while the electron �the

lighter particle�, confined by a shorter wall, could jump to
the self-polarization potential well. Indeed, in case �ii�, our

exploratory single-particle calculations vs �out showed a

gradual localization of the carriers in the self-polarization

well, facing three different phases: namely, phase 1 �low �out�
corresponding to volumetrically distributed electron and

hole, phase 2 �intermediate �out� where the electronic density

distribution is still volumetric while the hole forms a surface

state, and phase 3 �large �out� in which both electron and hole

are located in the surface well. However, as the strong e-h

attraction ��QD=4� is incorporated into the CI calculation,

phase 2 drops out.32 Thus, only two phases are encountered,

in which both particles show volumetric or facial distribu-

tions simultaneously. This is shown in Fig. 2, which shows

the overlap Se-h
2 , excitonic E, and binding Eb energies of the

considered QD with mh,QD
* =1 and 10 vs �out ranging from

�out=�QD up to �out=50. The quantitative differences in ex-

citonic and binding energies in either case are a direct con-

sequence of the quite different kinetic energy of the hole.

Both cases show, however, similar qualitative trends �in-

creasing band gap redshift and decreasing Eb vs an increas-

ing dielectric mismatch�, which is in turn similar to the be-

havior already shown for a QD in air �see Fig. 1�. A relevant

difference arises in the overlap vs �out profile. While Fig.

2�c1� �mh,QD
* =10� resembles Figs. 1�c1�–1�c3�, in which the

transition from volume to surface excitonic states involves a

sudden Se-h
2 drop and therefore a sudden reduction in the
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FIG. 2. Same as Fig. 1 but for a R=5 nm, �QD=4 QD with Ve

=1 eV, Vh=0.5 eV, and me,QD
* =0.5, and two different hole effective

masses, namely, mh,QD
* =10 	�a1�, �b1�, and �c1�
 and mh,QD

* =1

	�a2�, �b2�, and �c2�
, as a function of the dielectric constant of the

environment �out. Panels �d1� and �d2� correspond to �c1� and �c2�

when a hydrogenic donor impurity is located at the QD center.
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exciton brightness, this is not the case in Fig. 2�c2� �mh,QD
*

=1�. Since in the present case �ii� the transition from volume

to surface state holds simultaneously for electron and hole,
one may expect profiles like Fig. 2�c2�, revealing an almost
constant overlap vs �out. Then, the plot in Fig. 2�c1� looks
like an anomaly that deserves an explanation. Indeed, the
parameters me

*=0.5, mh
*=10, R=5 nm, and �QD=4 yield

quite a small effective Bohr radius, thus revealing that both
electron and hole are in the weak confinement regime, the
�volumetric� electron and hole density distributions being
similar 	see insets in Fig. 2�c1�
. However, once the trapping
of particles in the narrow, deep self-polarization potential
well occurs, both particles feel different spatial confinement.
The heavier particle becomes strongly localized in the well,
whereas the lighter one has a relevant leaking outside it 	see
insets in Fig. 2�c1�
, yielding as a result a smaller overlap. In
other words, in contrast to case �i� where the transition from
volume to surface states always parallels a sudden decrease
in brightness, in case �ii�, this transition only has relevant
brightness impact for QD materials with large mh

* /me
* ratios.

Also, the influence of a hydrogenic donor impurity is ad-
dressed. As above, it attracts the electron toward the QD
center and repels the hole 	see Figs. 2�d1� and 2�d2�
, result-

ing in a negligible binding energy and a strong reduction in

oscillator strength.

In a last series of calculations, we explore the possibility

of surface exciton formation in QDs built of higher dielectric

constant materials. Now we set, as above, R=5 nm, me
*

=0.5, mh
*=1 and 10, Ve=1 eV, and Vh=0.5 eV. The permit-

tivity of the external medium is set very high, �out=100, and

we calculate the e-h overlap Se-h
2 and binding energy Eb vs

�QD. The results are shown in Fig. 3. As previously dis-

cussed, sudden changes in overlap reflecting transition from

volume to surface exciton states only occur for large mh
* /me

*

ratios. As can be seen in Fig. 3�b1� �corresponding to a large

mh
* /me

* ratio�, small �large� �QD values yield surface �volume�
excitonic states with small �large� overlaps, in agreement

with previous reasoning. However, intermediate �QD values

are characterized by extremely small overlaps that parallel an

anomalous minimum in the binding energy 	Fig. 3�a1�
. This

behavior occurs because, in this range of QD dielectric con-

stants, the electron and hole single-particle densities are dis-

tributed as in the above mentioned phase 2, but now the e-h

Coulomb attraction is not strong enough to drop phase 2 out,

so we get a “broken” exciton in which the hole is localized in

the self-polarization potential well, whereas the electron

spreads over the whole QD volume 	see insets in Fig. 3�b1�
.
The small overlap and the decrease in the exciton binding

energy are a direct consequence of the e-h spatial separation

in this phase, which does not exist 	see Figs. 3�a2� and 3�b2�

unless the effective masses of electron and hole are very

dissimilar. Finally, Figs. 3�c1� and 3�c2� show the influence

of a hydrogenic donor impurity located at the QD center. We

see that the �D+ ,X� exciton can approximately be described

as D0+h, i.e., a neutral electron-impurity pair and an almost

independent hole, as it is revealed by the negligible binding

energy calculated.

IV. CONCLUDING REMARKS

We have shown that the dielectric properties of the QD

environment can strongly influence the brightness of con-

fined excitons, as well as excitonic and binding energies, due

to the formation of surface states. While a sudden decrease in

exciton brightness parallels the formation of surface excitons

in the case of a QD in air or a vacuum, only QD materials

with a large mh
* /me

* ratio present a considerable reduction in

exciton brightness when the QD is buried in a large dielectric

constant medium. Our calculations also reveal33 that the con-

ditions to reach surface exciton states in this last case are less

severe than if the QD is surrounded by air or a vacuum. A

shallow donor impurity located at the QD center leads to an

almost total suppression of exciton binding and brightness.
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An extension of the spin density functional theory simultaneously accounting for dielectric

mismatch between neighboring materials and nonparabolicity corrections originating from

interactions between conduction and valence bands is presented. This method is employed to

calculate ground state and addition energy spectra of homogeneous and multishell spherical

quantum dots. Our calculations reveal that corrections become especially relevant when they come

into play simultaneously in strong regimes of spatial confinement. © 2007 American Institute of

Physics. �DOI: 10.1063/1.2803722�

I. INTRODUCTION

The conduction band of semiconductors shows a nearly

parabolic dispersion at the surroundings of the � point and is

commonly described by the one-band model, the interactions

with the remaining bands being included in the electron ef-

fective mass. This is a sensible approach for wide-gap semi-

conductors. However, the small gap between the conduction

and valence bands in narrow gap semiconductors has impor-

tant nonparabolicity effects on the conduction band disper-

sion that warrant an improvement of the model. The use of

an energy-dependent effective mass, as proposed by Kane,
1,2

allows us to study narrow gap semiconductors still within the

framework of the one-band model. Nevertheless, as the ef-

fective mass is self-consistently adjusted for each energy

level, different kinetic energy, and therefore Hamiltonian op-

erators, are employed to compute the different eigenvalues,

so that the associate eigenfunctions are not necessarily or-

thogonal. In order to deal with orthogonal eigenfunctions,

the electron effective mass is kept constant and a power se-

ries expanded dispersion relation is incorporated into the ki-

netic energy term of the Hamiltonian yielding a fourth �or

higher� order differential Schrödinger-like equation.
3

Al-

though this approach has been successfully employed to

study donor states in spherical quantum dots �QDs�,
4

it will

be accurate only to the extent that the truncated power series

succeed in describing the dispersion relation.

The energy-dependent effective mass, leading to nonor-

thogonal eigenfunctions, has been employed to study the

electronic structure
5

and optical excitations
6,7

of quantum

wells �QWs�. Intersubband spin-density excitations in QWs

have been addressed using the Kohn–Sham equations with

energy-dependent effective mass.
8

Extensive single particle

studies of different shaped QDs,
9–11

quantum rings,
12

and

artificial molecules
13

have also been carried out. Recently,

the energy-dependent effective mass approach has repro-

duced experimental effective masses obtained from optical

transition energies in QWs
14

and provided quantitative inter-

pretations of capacitance voltage spectroscopy

experiments.
15

Nonparabolicity has larger effects in the strong confine-

ment regime and for excited states, where the energetic cor-

rection can even exceed the electron-electron interaction.
9

A

recent spin density functional theory
16

�SDFT� study of a QD

molecule with six electrons
17

shows that the energy-

dependent effective mass correction is comparable to the ex-

change energy that is obtained. Since the energy-dependent

effective mass corrects the kinetic contribution to the total

energy, minor effects coming from nonparabolicity could be

expected in the weak confinement regime. In the present pa-

per we incorporate nonparabolicity corrections into our

SDFT code,
18–20

which also accounts for polarization and

self-polarization coming from dielectric mismatch between

neighboring materials. We then explore the relevance of non-

parabolicity corrections on the addition energies of homoge-

neous and multishell QDs subjected to different confinement

regimes. We will show that the interplay of both dielectric

mismatch and nonparabolicity effects may lead to relevant

changes in the electronic structure and addition energies of

QDs, the effect being particularly relevant in multishell QDs.

II. THEORY AND COMPUTATIONAL DETAILS

The formulation of the extension of the SDFT which

accounts for position-dependent effective mass, polarization

of the Coulomb interaction, and self-polarization coming

from the dielectric mismatch between the QD and its sur-

rounding medium �and also between neighboring materials

in the case of multishell QDs� can be found in Ref. 18 and

will not be outlined here for the sake of conciseness. For the

present study we also implemented energy-dependent effec-

tive masses in a similar way to that reported in Ref. 17. It is

worth pointing out that the use of orbital energy-depending

masses is just an effective way of incorporating the pertur-

bation produced by the valence bands on the conduction

electron levels �the scheme we proposed here can be vieweda�Electronic mail: josep.planelles@qfa.uji.es
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as an approximation to the multiband calculation�. Therefore,

it is equivalent to leaving the kinetic energy operator as it is

and introducing the appropriate perturbation external poten-

tial. As a consequence, same exchange-correlation functional

should be employed in parabolic and nonparabolic calcula-

tions. In our implementation we basically include mi�
* �Ei� ,r�

instead of m*�r� in the Kohn–Sham �KS� equation, i.e., a

single differential equation is replaced by a set of coupled

differential equations

�−
�

2

2
�

1

mi�
* �Ei�,r�

� + VKS,��n,����i��r� = Ei��i��r�

�1�

that are solved up to simultaneous convergence. In the earlier

equation n is the total density and � represents the spin po-

larization. In terms of the spin-up and spin-down densities

n
�
�r� �where �= �+,−� labels the spin� they can be written as

n�r�=n+�r�+n−�r� and ��r�= �n+�r�−n−�r�� /n�r�, respec-

tively.

The energy-dependent effective mass in Eq. �1� is given

by the Kane formula
1,2

m0

m*�E,r�
= 1 +

2

3
P

2� 2

E + Eg�r� − V�r�

+
1

E + Eg�r� − V�r� + ��r�
� , �2�

where m*�E ,r� is the energy- and position-dependent effec-

tive mass, m0 is the free electron mass, P is the Kane param-

eter, and Eg�r�, V�r�, ��r� are the position-dependent band

gap, confining potential, and spin-orbit parameter, respec-

tively. For a practical implementation, we employ the rela-

tionship between the position- and energy-dependent effec-

tive mass m*�E ,r� and the position-dependent effective mass

at the bottom of the conduction band m*�0,r�,

m0

m*�E,r�
− 1

m0

m*�0,r�
− 1

=

�E + Eg�r� − V�r� +
2

3
��r���Eg�r� − V�r���Eg�r� − V�r� + ��r��

�Eg�r� − V�r� +
2

3
��r���E + Eg�r� − V�r���E + Eg�r� − V�r� + ��r��

. �3�

Many implementations
2,9–13,17

approximate the left-hand side

of Eq. �3� by m*�0.r� /m*�E .r�. Here we use Eq. �3� as it is.

In order to achieve a solution to the set of differential

Eq. �1� we start by solving a single differential equation

where mi�
* �Ei� ,r� is replaced by m*�0,r�. From the �i��r�

orbitals and Ei� energies thus obtained we compute the total

density n, spin polarization �, and effective masses

mi�
* �Ei� ,r� and build up the set of differential Eq. �1�. In a

second step, we solve these differential equations one by one

to get the couple orbital and associate energy ��i��r�, Ei��

from the i�th differential equation. Then, from the new set of

energies we get the next energy- and position-dependent ef-

fective masses mi�
* �Ei� ,r� and from the new orbitals the next

total density n and spin polarization � are obtained. The pro-

cess is repeated up to simultaneous convergence of all dif-

ferential equations. We can build the first order density ma-

trix from a set of nonorthogonal orbitals or equivalently, we

may first orthogonalize them and then construct the density

matrix. We follow the second procedure in our code.

The good performance of our method computing addi-

tion energies of QDs with nearly parabolic conduction band

has already been tested.
18

Additionally, the use of energy-

dependent effective masses has widely recognized as an ap-

propriate effective way of incorporating the perturbation pro-

duced by the valence bands on the conduction energy levels

�see the earlier section�. Nevertheless, it is worth testing

these approaches working together on a narrow-gap semi-

conductor QD. Certainly, the amount of experimental data on

addition energies of spherical narrow-gap QDs in the pres-

ence of relevant dielectric mismatch with the environment is

rather scarce. We employ here experimental results by Banin

et al.
21

on a 2.2 nm radius InAs QD embedded in an organic

environment which first three experimental addition energies

have already been very well reproduced by means of heavy

atomistic pseudopotential calculations.
22

In these calcula-

tions the dielectric constant of the organic environment was

taken as a fitting parameter, yielding a value �out=6. In our

test we have assumed, though, a value �out=3, which seems

more reasonable for this kind of environment.
23

The remain-

ing parameters employed are those of bulk InAs, namely

mQD
* =0.023, �QD=12.3, Eg

QD=0.354 eV, �SO
QD=0.41 eV, and

for the external medium mout
* =1, �out=3, Eg

out=8 eV, �SO
out

=0 eV. Finally, the confining potential is assumed to be V

=3.2 eV, the same as in Ref. 22. Parabolic/no-parabolic cal-

culations predict �experimental data in parentheses� �1,2

=0.22/0.19�0.14� eV, �2,3=1.59/0.59�0.52� eV, and �3,4

=0.20/0.14�0.14� eV. We see in this example that nonpara-

bolic corrections work well improving all parabolic results,

the improvement of �2,3 being especially relevant. The ob-

tained results also show that our nonparabolic approach sup-

plied with bulk parameters compares well with reported ex-

perimental data by Banin et al.
21

Further improvement may

be reached by fitting.

III. RESULTS AND DISCUSSION

We study the ground state and addition energies of

spherical QDs built of narrow gap semiconductors versus the

number N of electrons. Spherical nanocrystals are commonly

094304-2 Planelles, Royo, and Pi J. Appl. Phys. 102, 094304 �2007�
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synthesized in colloidal solutions. This technique allows the

smallest QDs with sizes of very few nanometers to be pro-

duced. The QDs can be either homogeneous or onionlike,

i.e., built up of concentric layers �shells� of different semi-

conductors with controllable shell thicknesses down to a

single monolayer. In the present paper, we consider both ho-

mogeneous HgS nanocrystals and multishell double quantum

well CdS/HgS/CdS/HgS/CdS, similar to those experimen-

tally synthesized in Ref. 24. Then, in all cases the surround-

ing medium of the QD is considered to be water. The param-

eters employed in our calculations for the different materials,

namely effective masses, dielectric constants, band gaps,

split-off parameters, and spatial confining potentials are the

same as those employed in Ref. 25 and are shown in Table I.

The bottom of the HgS conduction band is assumed to be the

origin of energies in all cases. We have carried out calcula-

tions from 1 up to 25 electrons, using an orbital basis 1s, 1p,

1d, 1f , 2s, and 2p.

A. Homogeneous nanocrystal

In this section we consider HgS QDs with 5 and 20 nm

radii in water. From the HgS effective Bohr radius, a0
*

=a0� /m*=15 nm, we see that the confinement regime of the

small/large QD is strong/weak. For the time being the polar-

ization coming from the dielectric mismatch is disregarded

in our calculations, i.e., we use the dielectric constant of the

QD for the whole system. We carry out three series of cal-

culations versus the number N of electrons in the QD ranging

from 1 up to 25. These are �i� independent particle �IP� cal-

culations employing a parabolic effective mass; �ii� IP calcu-

lations with energy-dependent masses; and �iii� interacting

electrons at the SDFT level with a parabolic effective mass

�excluding dielectric mismatch effects�. The results for the

small and large QD, as representative of strong/weak con-

finement regime, are summarized in Figs. 1�a� and 1�b�.

Solid lines represent IP with parabolic mass, dashed lines

correspond to IP including nonparabolicity corrections, and

dotted lines refer to interacting particles with parabolic ef-

fective mass. The obtained results go along with expecta-

tions, i.e., nonparabolicity corrections increase with the num-

ber of electrons in the QD; in the strong confinement regime

these corrections can be as large as the corrections originat-

ing from the electron-electron interaction �Fig. 1�a�� while in

the weak confinement regime they are negligibly small �Fig.

1�b��. The inset in Fig. 1�b� shows the evolution of the

energy-dependent effective masses in the low-lying 1s, 1p,

1d, 1f , and 2s states versus the number N of electrons in the

QD. Solid/dashed lines correspond to strong/weak confine-

ment regimes. The results reveal that higher energy states

have larger effective masses and that the electron effective

mass increases almost linearly with N �within the range stud-

ied here�, these changes in effective masses being relevant

only in the strong confinement regime. Interestingly, correc-

tions coming from nonparabolicity and from electron-

electron interactions are of opposite signs. In the strong con-

finement regime where nonparabolicity corrections are

relevant �Fig. 1�a��, these corrections partially cancel out

TABLE I. Parameters employed in this paper �taken from Ref. 25�. Namely,

effective mass �m0
*�, dielectric constant ���, band gap �Eg�, split of ���, and

spatial confining potential barrier �V�.

Material m0
*

�

Eg

�eV�

�

�eV�

HgS 0.04 11.4 0.5 0.08

CdS 0.15 5.5 2.5 0.08

H2O 1 1.78 8. 0.08

HgS/H2O CdS/H2O HgS/Cds

V �eV� 4.15 2.8 1.35

FIG. 1. Ground state energy vs number N of electrons of a �a� 5 nm radius

HgS QD, �b� 20 nm radius HgS QD, and �c� 5 nm radius QD defined by the

HgS material parameters except for Eg that is set to 3 eV. Solid lines cor-

respond to the parabolic IP calculations, dashed lines to IP including non-

nonparabolicity corrections, and dotted lines to parabolic SDFT. The inset

encloses the energy-dependent effective masses of the 5 nm radius HgS QD

�solid lines� and 20 nm radius HgS QD �dotted lines� corresponding to the

low-lying KS orbitals.
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with the electron-electron interaction corrections, so that cal-

culations including both corrections yield energies close to

those of the simple IP parabolic approach. In other words, it

appears that simple parabolic IP calculations yield a reason-

able, at least qualitative, description of the QD electronic

structure in the strong confinement regime. In the weak con-

finement regime, where Coulomb interactions cannot be ex-

cluded for a reasonable description of the QD electronic

structure, nonparabolicity corrections are negligibly small

�see Fig. 1�b��, and it seems they can safely be ignored, at

least for a qualitative description.

In order to show the extent to which these corrections

can influence the electronic structure of QDs built of wide-

gap semiconductor materials, we carried out a third series of

calculations for a QD described by the same parameters as

the small HgS nanocrystal except for the band gap that was

set to 3 eV. Then, this QD is in the �same� strong confine-

ment regime where nonparabolicity corrections become

large. However, the results obtained reveal, as expected, that

despite the strong confinement regime, nonparabolicity cor-

rections are much smaller than those coming from Coulomb

interactions �see Fig. 1�c��. The behavior observed is there-

fore similar to narrow gap semiconductor QDs in the weak

confinement regime �Fig. 1�b��.

So far we have excluded polarization coming from the

dielectric mismatch and focused on total energies, the calcu-

lations revealing that nonparabolicity corrections are not

small in the strong confinement regime, although no particu-

lar situations have been found in which these corrections

play a fundamental role. Next, we consider a QD in the

strong confinement regime, carry out calculations of the

quite sensitive addition energy,
26

and allow polarization ef-

fects to come into play. To this end, we study the small 5 nm

radius HgS QD in water again and estimate addition energies

including and excluding polarization effects coming from the

dielectric mismatch between the QD and its surrounding me-

dium �hereafter we will refer to these calculations as polar-

ized and unpolarized� and with/without nonparabolicity cor-

rections. The calculations are summarized in Fig. 2. Panels

on the left- and right-hand side show unpolarized/polarized

calculations. Top row panels correspond to parabolic effec-

tive mass while those in the middle row include corrections

from nonparabolicity. As earlier, for the sake of comparison,

we enclose a series of calculations on a wide-gap semicon-

ductor QD �panels at the bottom of Fig. 2�. Thus, the calcu-

lations shown in the panels in the middle and bottom rows

correspond to QDs defined with the same parameters and

geometry except for the band gap �set to 0.5 and 3.0 eV,

respectively�. The unpolarized calculations with parabolic ef-

fective mass, assumed to be the reference, are shown in Fig.

2�a�. We see that polarization and nonparabolicity correc-

tions in isolation do not yield qualitative changes in the ad-

dition energy profile �Figs. 2�b� and 2�d�, respectively�. In all

three panels �a�, �b�, and �d�, one can neatly recognize that

the shell filling is done according to the Afbau and Hund

rules. Large peaks reveal complete shell filling, small peaks

show half filling. Then, the observed filling sequence is

1s21p61d102s21fx. Only when both corrections are simulta-

neously included, can a reconstruction be observed. The or-

bital 2s is not filled before 1f �see Fig. 2�e��. The reconstruc-

tion disappears if the QD is built of a wide-band

semiconductor material �Figs. 2�c� and 2�f��. The earlier

mentioned reconstruction originates from the following facts.

On the one hand, polarization corrections increase the orbital

energies, thus enhancing the nonparabolicity corrections. On

the other hand, s-symmetry orbitals �l=0� have a null cen-

trifugal term l�l+1� /m*r2 while this term is relevant for f

orbitals �l=3�. When nonparabolicity corrections come into

play and increase the effective masses, 1f undergoes a larger

stabilization than 2s, and it is filled first. This is not the case

for the wide-gap semiconductor QD because it has small

FIG. 2. Calculated addition energy spectra of a 5 nm

radius HgS QD. �a� With a parabolic mass. �b� Includ-

ing nonparabolicity corrections. �c� Same as �a� except

that the QD material Eg is set to 3 eV. �d�, �e�, and �f�

Same as �a�, �b�, and �c� but also including polarization

coming from the dielectric mismatch between neighbor-

ing materials.

094304-4 Planelles, Royo, and Pi J. Appl. Phys. 102, 094304 �2007�

Downloaded 01 Feb 2010 to 84.124.83.4. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



177

nonparabolicity corrections, that never allow 1f to reach an

energy lower than that of 2s. Then 2s is again filled first �see

Fig. 2�f��.

In summary, in addition to exceptional situations where

the interplay of nonparabolicity and polarization corrections

may yield reconstructions and thus changes in the addition

energy profile, the main effect that nonparabolicity correc-

tions produce on the addition energy spectrum is a reduction

in the height of the peaks �see e.g., Fig. 2�b� versus Fig. 2�a��

as the result of a higher degree of closeness of the orbital

energies originating from an increase in the effective mass.

B. Multishell quantum dots

In the previous section we found a reconstruction in the

addition energy spectrum originating from the relative close-

ness of orbital energies and the differential nonparabolicity

effects on energy levels with distinct angular momentum

quantum number l. Double quantum wells are good candi-

dates for a nonregular energy spectrum. Thus, in this section

we consider a multishell CdS/HgS/CdS/HgS/CdS spherical

QD double QW like those synthesized in Ref. 24. The pa-

rameters employed in our calculations can be found in Table

I. It is no straightforward task to unambiguously define the

confinement regime of these heterogeneous systems in which

the electronic density is mainly concentrated in the wells, but

it seems reasonable to assume that the volume of the wells

will basically determine it.

We consider two systems with different confinement

strengths defined by the following core radius and shell

thickness, 3 /2 /1 /2 /1 and 10/5 /2 /5 /1 nm, respectively,

and carry out polarized/unpolarized calculations with/

without the inclusion of nonparabolicity corrections. The re-

sults can be seen in Fig. 3. Panels �a� and �b� in Fig. 3

correspond to the stronger spatial confinement while panels

�c� and �d� correspond to the weaker confinement. Solid/

dashed lines refer to parabolic/nonparabolic effective

masses.

First we analyze the smaller �strong confined� system.

The reference addition energy spectrum �unpolarized and

parabolic, solid line in Fig. 3�a�� shows a regular sequential

filling up to 20 electrons �1s21p62s21d10�. Then, a shoulder

emerges at N=22 involving the 2p orbital. This shoulder

disappears when nonparabolicity corrections are included

�dashed line in the same panel�, which reveals a regular fill-

ing of the 1f orbital, due to the fact that 1f�l=3� undergoes a

larger energy stabilization coming from nonparabolicity cor-

rections than 2p�l=1�, this fact being mainly related to the

centrifugal term. Except for this reconstruction, unpolarized

calculations with and without nonparabolicity corrections

yield similar addition spectra. The main difference is a re-

duction in the height of the peaks when corrections are taken

into account. This reduction comes from a higher degree of

closeness of the orbital energies as the effective masses in-

crease, due to nonparabolicity effects.

When polarization is taken into account in the parabolic

mass calculation �solid line in Fig. 3�b�� no relevant changes

in the addition energy spectrum can be seen. We may men-

tion the disappearance of the shoulder at N=22 and some

“noise” when filling orbital 1d. However, when both polar-

ization and nonparabolicity corrections are simultaneously

taken into account �dashed line in Fig. 3�b�� severe changes

in the addition energy spectrum occur. On the one hand, full-

and half-filling peaks become similar in height. On the other

hand, the largest peak at N=20 corresponding to the full

filling of orbital 1d drops out.

The shell structure of the larger multishell QD is not

neatly apparent in the addition spectrum. However, the ref-

erence unpolarized and parabolic addition energy spectrum

�solid line in Fig. 3�c�� still shows peaks at N=2�1s2�, N

=5�1s21p3�, N=8�1s21p6�, N=10�1s21p62s2�, N

=15�1s21p62s21d5�, and N=20�1s21p62s21d10�, although the

profile is far from being as regular as the one for the smaller

multishell QD �solid line in Fig. 3�a��. When nonparabolicity

corrections are taken into account �dashed line in Fig. 3�c��

the most significant change observed is a peak flip from N

=15 �corresponding to the filling 1s21p62s21d5� up to N

=14 �when corrections are included and that corresponds to

1s21p62s21d5�. Additionally, as in all previously studied ex-

amples, the height of the peaks are reduced due to a higher

FIG. 3. Calculated SFDT addition energy spectra of a

multishell CdS/HgS/CdS/HgS/CdS spherical QD

double QW with core radius and shells of �a�

3/2 /1 /2 /1 nm, �b� same as �a� but also including po-

larization coming from the dielectric mismatch, �c� core

radius and shells of 10/5 /2 /5 /1 nm, and �d� Same as

�c� but also including polarization. Solid lines represent

calculations with parabolic effective mass. Dashed lines

indicate that nonparabolicity corrections are included.
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degree of closeness of orbital energies coming from an in-

crease in effective mass induced by nonparabolicity.

Accounting for polarization while employing a parabolic

mass does not introduce qualitative changes in the addition

energy spectrum �solid line in Fig. 3�d�� except, as earlier,

for the shift from N=15 to N=14 of the half filling of 1d.

Finally, in contrast with the results corresponding to the

smaller �more strongly confined� multishell QD, by includ-

ing both polarization and nonparabolicity corrections, no se-

vere changes occur in the spectrum �dashed line in Fig. 3�d��.

This is related to the fact that both corrections are smaller in

larger systems.

IV. CONCLUSIONS

In this paper we have studied the relevance of correc-

tions coming from nonparabolicity on the ground state and

addition energies of homogeneous and multishell spherical

QDs and their interplay with effects coming from the pres-

ence of dielectric mismatch. To this end we employ a SDFT

approach modified to include polarization coming from the

dielectric mismatch between neighboring materials and non-

parabolicity originating from the interaction between con-

duction and valence bands. This approach basically translates

into a set of coupled differential equations that are solved up

to simultaneous convergence.

Our calculations show that homogeneous QDs built of

narrow gap semiconductor materials show large nonparabo-

licity energy corrections if the QD regime of spatial confine-

ment is strong. In such a case, these corrections are of the

same order and opposite sign as corrections coming from

electron-electron interaction and partially cancel each other

out, so that the simple parabolic IP approach yields reason-

able, at least qualitative, results. A similar conclusion applies

to the addition energy spectra. Since most of the spherical

QDs are chemically synthesized in colloidal solutions, in our

calculations we have incorporated the polarization originated

by the dielectric mismatch between the QD and its surround-

ings that we consider to be water �and also between different

materials in the case of multishell QDs�. Our results reveal

that the interplay of polarization and nonparabolicity correc-

tions may yield reconstructions in the addition energy spec-

trum. Our analysis points out two reasons for this. On the

one hand, polarization increases orbital energies thus enhanc-

ing nonparabolicity corrections. On the other hand, the dif-

ferent centrifugal terms felt by orbitals with different angular

momentum quantum number l include the effective mass in

the denominator. As a result, nonparabolicity corrections

may even flip the orbital energy and the filling sequence of

orbital with different l. As a major conclusion we can say

that the calculations on addition energy spectra of multishell

QDs is the scenario where corrections play a prominent role.

The most significant changes arise in the stronger spatial

confinement when the dielectric mismatch effects are also

relevant and come into play together with nonparabolicity

corrections.
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Abstract.

The conduction band electron states of laterally-coupled semiconductor quantum rings are
studied within the frame of the effective mass envelope function theory. We consider the effect
of axial and in-plane magnetic fields for several inter-ring distances, and find strong changes in
the energy spectrum depending on the coupling regime. Our results indicate that the magnetic
response accurately monitors the quantum ring molecule dissociation process. Moreover, the
anisotropic response of the electron states to in-plane magnetic fields provides information on
the orientation of the quantum ring molecule.

1. Introduction

Quantum rings (QRs) stand as an alternative to quantum dots (QDs) as zero-dimensional
structures for eventual use in nanotechnology devices. The main differences between the
physics of QRs and that of QDs follow from the doubly-connected geometry of the rings,
which provides them with a characteristic electronic shell structure, magnetic field response
and transport properties.[1, 2, 3] While much attention has been devoted in the last years to
the study of ’artificial molecules’ made of coupled QDs (see e.g. Refs.[4, 5, 6] and references
therein), only recently their QR counterparts have started being addressed. A number of
experimental and theoretical works have studied vertically-coupled[7, 8, 9], and concentrically-
coupled[10, 11, 12, 13] QRs. Conversely, to our knowledge, laterally-coupled quantum rings
(LCQRs) have not been investigated yet. This is nonetheless an interesting problem: on the
one hand, LCQRs constitute ’artificial molecules’ with unique topology (two LCQRs may be
triply-connected), what should be reflected in unique energy structures; on the other hand, the
formation of pairs of LCQRs in the synthesis of self-assembled QRs is apparent.[14] Therefore,
one could investigate LCQRs experimentally by probing spectroscopically the reponse of selected
individual entities from a macroscopic sample of self-assembled QRs, as done e.g. in Ref.[15] for
single QRs.

In this work we study the conduction band single-electron energy levels and wave functions
of a pair of nanoscopic LCQRs, as a function of the distance between the two constituent QRs.
Particular emphasis is placed on the effect of external magnetic fields, applied along the axial and
two transversal in-plane directions, which lead to characteristic magnetic responses depending
on the strength of the inter-ring coupling regime.
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2. Theoretical considerations

Since usual QRs have much stronger vertical than lateral confinement,[2] we calculate the low-
lying states of LCQRs using a two-dimensional effective mass-envelope function approximation
Hamiltonian which describes the in-plane (x − y) motion of the electron in the ring. In atomic
units, the Hamiltonian may be written as:

H =
1

2m∗
(p + A)2 + V (x, y) (1)

where m∗ stands for the electron effective mass and V (x, y) represents a finite scalar potential
which confines the electron within the lateral limits of the double ring heterostructure. Here
we define x as the direction of dissociation of the LCQRs. A is the vector potential, whose
value depends on the orientation of the magnetic field B. Actually, the choice of A is limited
by the requirement that it should make it possible to separate (x − y) coordinates from z in the
Hamiltonian.[16] Within the Coulomb gauge, for a field applied along z (axial magnetic field),
this is fulfilled e.g. by ABz

= (−y, x, 0)1

2
B. For an in-plane magnetic field applied along x (y),

this is fulfilled e.g. by ABx
= (0, 0, y)B (ABy

= (0, 0,−x)B). Replacing these values of the
vector potential in Hamiltonian (1) we obtain:

H(B
z
) =

p̂2

‖

2m∗
+

B2

z

8 m∗
(x2 + y2) − i

B
z

2 m∗
(x

∂

∂y
− y

∂

∂x
) + V (x, y), (2)

H(B
x
) =

p̂2

‖

2m∗
+

B2

x

2 m∗
y2 + V (x, y), (3)

H(B
y
) =

p̂2

‖

2m∗
+

B2

y

2 m∗
x2 + V (x, y). (4)

The eigenvalue equations of Hamiltonians (2-4) are solved numerically using a finite-
difference method on a two-dimensional grid (x, y) extended far beyond the LCQR limits. This
discretization yields an eigenvalue problem of a huge asymmetric complex sparse matrix that is
solved in turn by employing the iterative Arnoldi factorization.[17]

In this work we investigate nanoscopic laterally-coupled GaAs QRs embedded in an
Al0.3Ga0.7As matrix. We then use an effective mass m∗=0.067 and a band-offset of 0.262 eV.[18]
The pair of rings which constitute the artificial molecule have inner radius r

in
= 12 nm and outer

radius r
out

= 16 nm, and the separation between their centers is given by the variable d.

3. Results and discussion

3.1. Zero magnetic field

We start by studying the electron wave function localization in LCQRs for increasing inter-ring
distances, from the strongly coupled to the weakly coupled regime (a process we shall hereafter
refer to as dissociation of the quantum ring molecule), in the absence of external fields. Figure
1 illustrates the wave functions of the three lowest-lying electron states for several values of d.
The corresponding profiles of the confining potential barrier are also represented using dotted
lines. When the QRs are strongly coupled (d = 12 nm), one clearly identifies a s-like ground
state and two p-like excited states. The states localize along the arms of the LCQRs, as if in a
single elliptical QR, with some excess charge deposited in the region where the two QRs overlap.
As the inter-ring distance increases, the available space in the overlapping regions first increases.
This tends to localize the ground and first excited states in such regions (d = 18 nm) until they
eventually become the even and odd solutions of a double quantum well (d ∼ 26 nm). For further
increased inter-ring distance, an inner arm of the LCQRs is formed. As a result, the ground
state tends to localize along it (d = 28 nm), thus benefiting from a reduced centrifugal energy.
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Meanwhile, the first excited state, which is not so prone to minimize centrifugal forces due to
its p-like symmetry, prefers to spread along the external arms of the rings. Finally, for longer
inter-ring distances, the QRs start detaching. When the rings are close to each other, tunneling
between the two structures is significant and the ground state remains localized mostly in the
middle of the LCQRs (d = 36 nm), but it soon evolves into the ground state of single QRs, with
a tunneling acting as a small perturbation (d = 38 nm). All along the dissociation process, the
second and higher excited states remain relatively insensitive to changes in d due to their larger
kinetic energy.

d = 12 nm

d = 20 nm

d = 26 nm

d = 28 nm

d = 36 nm

d = 38 nm

Figure 1. (Color online). Contours of the wave functions corresponding to the three lowest-
lying electron states (from left to right) of LCQRs with different inter-ring distance d at B = 0.
Dotted lines denote the confinement potential profile.

3.2. Effect of external magnetic fields

We next study the response of the electron energy levels to external magnetic fields. In general,
the magnetic response can be understood from the B = 0 charge distribution described in the
previous section. This is particularly clear in the case of an axial magnetic field, where the
field barely squeezes the wave functions shown in Fig.1. To illustrate this, let us analyze Figure
2, which depicts the low-lying energy levels against B

z
for several inter-ring distances. For

d = 12 nm, the picture resembles the usual Aharonov-Bohm spectrum of single QRs,[1, 16]
save for the anticrossings appearing between sets of two consecutive energy levels. These are
due to the fact that the electron states no longer have circular (C∞) symmetry as in single
QRs, but rather elliptical (C2) one. Therefore, the pairs of eigenvalues which cross one another
correspond to the two irreducible representations of the C2 symmetry group. As d increases
and the confining potential elongates, the anticrossing gaps become larger. Moreover, as the
two lowest-lying states tend to become the even and odd solutions of a double quantum well,
they become nearly degenerate and, being less efficient to trap magnetic flux, the amplitude
of their energy oscillations is reduced (see panel corresponding to d = 20 nm in Fig. 2). In
the next stage, around d = 28 nm, the ground state localizes to a large extent along the
middle arm of the LCQRs and it takes essentially a singly-connected shape, thus preserving a
QD-like magnetic response. On the other side, the first excited state tends to retrieve the p-like
symmetry. Therefore, its energy and magnetic behavior become similar to that of the second QD
excited state. In the last stage, when the QRs are already detached and the ground state wave
function starts delocalizing among the two structures (d = 36 − 38 nm), the magnetic response
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is essentially that of a single QR with a perturbation arising from the tunneling between the
rings, which rapidly diminishes with d. Notice that in this weak-coupling limit, the period of
the Aharonov-Bohm oscillations is larger than in the strongly coupled limit. This is due to the
smaller area of the inner holes of the individual rings as compared to that of the strongly coupled
structure.
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Figure 2. Low-lying electron energy levels vs axial magnetic field in LCQRs with different
inter-ring distance.
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Figure 3. (Color online). Low-lying electron energy levels vs in-plane magnetic field in LCQRs
with different inter-ring distance. The field is applied parallel to the dissociation axis. The insets
show the wave functions of the two lowest-lying electron states (from left to right) at B = 20 T.

Figures 3 and 4 show the energy levels against in-plane magnetic fields directed along the x

and y directions, respectively. B
x

is applied along the dissociation axis and it tends to squeeze
the electron wave function in the y direction. The opposite holds for B

y
. In both cases, when the
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QRs are strongly coupled (d = 12 − 20 nm) the effect of the field is to form pairs of degenerate
energy levels. These are the even and odd solutions of double quantum wells building up in
the longitudinal (B

x
) or transversal (B

y
) edges of the ring structure, as illustrated in the insets

of the figures for the lowest-lying states. The formation of double well solutions at moderate
values of in-plane magnetic fields has been also reported for nanoscopic single QRs.[16] An
additional feature is however present in LCQRs, because the asymmetric confinement in the x

and y directions leads to anisotropic magnetic response. As a result, for instance, one observes
that the values of the field at which the double quantum well solutions are obtained are much
smaller for B

y
than for B

x
. Thus, the two lowest-lying states at d = 12 nm become degenerate

at B ∼ 5 T for B
y
, while they do so at B ∼ 8 T for B

x
. Another difference in the spectrum is

the presence of crossings between given energy levels for B
x

(e.g. between the first and second
excited states), which are missing for B

y
. This is because the two p-like states of the strongly

coupled QRs are non-degenerate at zero magnetic field, due to the eccentricity of the LCQR
system, and the applied field may reverse their energy order depending on the direction. When
the coupling between the LCQRs is intermediate (d ∼ 26 nm), the states which at B = 0 have
singly-connected wave functions behave as in QD, i.e. they depend weakly on the external field.
On the contrary, the doubly-connected states keep on behaving as in a QR, i.e. they tend to
form double quantum well solutions. Finally, for weakly coupled QRs (d ∼ 38 nm), different
limits are reached depending on the in-plane magnetic field direction. B

y
strongly enhances

tunneling between the two QRs, so that the lowest-lying states are double well solutions mostly
localized in the vicinity of the tunneling region (see insets in Fig. 4). Conversely, for B

x
double

well solutions localized either in the inner or in the outer edges of the QRs alternate (see insets
in Fig. 3).

0 5 10 15 20
100

120

140

160

180

200

B (T)

E
 (

m
e

V
)

d = 12 nm

0 5 10 15 20
100

120

140

160

180

200

B (T)

E
 (

m
e

V
)

d = 20 nm

0 5 10 15 20
80

100

120

140

160

180

B (T)

E
 (

m
e

V
)

d = 26 nm

0 5 10 15 20
80

100

120

140

160

180

B (T)

E
 (

m
e

V
)

d = 28 nm

0 5 10 15 20
100

120

140

160

180

B (T)

E
 (

m
e

V
)

d = 36 nm

0 5 10 15 20
100

120

140

160

180

200

B (T)

E
 (

m
e

V
)

d = 38 nm

Figure 4. (Color online). Low-lying electron energy levels vs in-plane magnetic field in LCQRs
with different inter-ring distance. The field is applied perpendicular to the dissociation axis.
The insets show the wave functions of the two lowest-lying electron states (from left to right) at
B = 20 T.

4. Conclusions

We have studied the electron states of nanoscopic LCQRs as a function of the inter-ring distance
and external magnetic fields. The wave function localization at B = 0 changes dramatically
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depending on the inter-ring distance, and this gives rise to characteristic magnetic responses
for strong, intermediate and weak coupling regimes. Moreover, a clearly anisotropic response is
found for in-plane fields applied parallel or perpendicular to the LCQRs dissociation direction.
These results suggest that probing spectroscopically the magnetic response of electrons in LCQRs
may provide valuable information on the strength of coupling and the orientation of the QR
molecule.
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Dielectric control of spin in semiconductor spherical quantum dots
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The ground state electronic configuration of semiconductor spherical quantum dots populated with

different numbers of excess electrons, for different radii and dielectric constants of the embedding

medium is calculated and the corresponding phase diagram drawn. To this end, an extension of the

spin density functional theory to study systems with variable effective mass and dielectric constant

is employed. Our results show that high/low spin configurations can be switched by appropriate

changes in the quantum dot embedding environment and suggest the use of the quantum dot spin as

a sensor of the dielectric response of media. © 2008 American Institute of Physics.

�DOI: 10.1063/1.2952070�

I. INTRODUCTION

Control over single, localized spins has long been recog-

nized as a relevant issue in fabricated nanostructures and

devices.
1

The new building blocks for such devices are quan-

tum dots �QDs�, i.e., semiconductor nanostructures that con-

fine carriers in all three spatial dimensions. A very precise

fabrication process allows the strength of the QD confine-

ment to be tailored while a gate voltage can tune its count-

able number of electrons.
2

The great flexibility in designing

QDs with precise properties has attracted a large amount of

research both in science and technology in the last decade,
3

leading QDs to be employed in many technological applica-

tions such as optical switches,
4

light-emitting diodes,
5

pho-

tovoltaic cells,
6

etc. Recently, colloidal spherical quantum

dots have also proven to offer high performance in biological

and medical applications.
7

A specific characteristic of bio-

logical and, in general, organic environments is their huge

dielectric mismatch with typical inorganic semiconductor

QD structures. When QDs are embedded in such environ-

ments, the formation of polarization charges at the interface

may strongly influence confinement and modify the distribu-

tion of charge carriers inside the QD. The effects of dielectric

mismatches therefore cannot be overlooked in the theoretical

description.
8

Thus, enhancement of the electron-electron

Coulomb interaction, which arises from polarization effects,

is found to induce reconstructions of the electronic configu-

rations as the dot is filled with carriers.
9–12

There are various parameters that influence the elec-

tronic configuration in semiconductor quantum dots, such as

the number of electrons, the shape and strength of the con-

fining potential and external fields. The key ingredient for

manipulating the way of spin filling is the tuning of orbital

degeneracies. One can have, for example, a triplet state with

two parallel spin electrons in two different but nearly degen-

erate orbitals. The excited state is then a spin singlet having

the same orbital configuration but with antiparallel spins.

Manipulation of orbital degeneracies in quantum dots is

usually carried out by magnetic fields in the relatively low

range of magnetic field strengths. Among others, we may

mention studies on triplet-singlet transitions induced by a

magnetic field.
13

In the high magnetic field range the inter-

action effect becomes more important than the effect of

quantum mechanical confinement because all the electrons

are confined to the lowest Landau level. This gives rise to a

fully spin-polarized state.

A remarkable many-particle phenomenon observed in a

quantum dot, when tuning ground-state degeneracy between

triplet- and singlet-spin states, is the so-called integer Kondo

effect.
14

This effect is also predicted as coming from degen-

eracy tuned by disorder
15

and can occur for impurities and

quantum dots that have a spin of 1, or higher.
16

We focus our attention on the role of dielectric mismatch

in QD spin transitions. We draw the ground state spin phase

diagram of a semiconductor spherical quantum dot populated

with different numbers of electrons versus the dielectric re-

sponse of the embedding media. To this end, we work within

the spin density functional theory �SDFT� framework. Par-

ticularly, we use a method we recently developed
11

and

tested
11,12

that is capable of studying many-electron spherical

QDs including effective mass and dielectric mismatches be-

tween the QD and the surrounding medium. Our results evi-

dence the possibility of switching between high/low spin

configurations by changing the QD embedding environment,

and suggest the use of QD spin as a sensor of the dielectric

response of a given medium.

II. THEORY AND COMPUTATIONAL DETAILS

Calculations are carried out within the framework of the

density functional theory �DFT� in the self-consistent formu-

lation of Kohn and Sham.
17

This theory has proven to be

particularly powerful for studying large electron systems in

the presence of correlation.
18,19

According to Hohenberg and

Kohn
20

and its generalization by Levy,
21

the exact ground-

state energy of a many-body system is a unique functional of

the electron density n�r�. DFT was initially developed in a

spin-independent formalism. Later, effects of spin polariza-

tion were incorporated into the so-called SDFT.
22

In this ap-

proach the total energy is a functional of the spin-up and

spin-down densities n
�
�r�, where �= �+,−� labels the spin.

Equivalently, the energy is a functional of the total densitya�Electronic mail: josep.planelles@qfa.uji.es.
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n�r�=n+�r�+n−�r� and spin-polarization ��r�= �n+�r�

−n−�r�� /n�r�. The ground state is found by minimizing the

energy functional, leading to the well-known Kohn–Sham

equations. Although the original proof of Hohenberg and

Kohn
20

applies only to the ground state, it can be generalized

to a large class of excited states, namely the energetically

lowest state of each symmetry.
23

For example, it can be ap-

plied to the lowest state of a spherical QD with specific

quantum numbers L, S, M, and MS of the total orbital and

spin angular momenta. This allows us, in particular, to study

several low-lying electronic configurations with different MS

and to draw the spin phase diagram of the ground state of a

semiconductor spherical quantum dot populated with differ-

ent numbers of electrons versus a given control parameter.
24

Since the calculations in this paper concern spherical

QDs embedded in media with different dielectric constants

and, additionally, carriers have different effective masses in

the QD and the surrounding environment, we have to extend

the SDFT to include variable effective mass and dielectric

constants. We have recently carried out this extension and

built the corresponding code. A fully detailed description of

it can be found in Ref. 11. In short, it is an extension of the

SDFT,
22

which includes �1� position-dependent effective

mass by replacing the standard kinetic energy operator

−��2
/2m���2 by −��2

/2�� ��1 /m����, corresponding to the

case of variable effective mass. �2� Polarization of the Cou-

lomb interaction arising from the dielectric mismatch, by nu-

merically integrating the Poisson equation ����r����r��=

−4�n�r�. �3� Self-energy, also coming from the dielectric

mismatch, by incorporating the monoelectronic self-

polarization potential according to the equations reported in

Ref. 25. This dielectric confinement and the spatial confine-

ment potentials are the genuine single-particle components

of the Kohn–Sham potential. �4� The effect of dielectric mis-

match on exchange by means of an appropriate scaling of the

exchange functional, which is consistent with the Coulomb

functional employed. And finally, �5� the correlation func-

tional is also modified to incorporate the position-dependent

parameters properly by means of a consistent scaling of

Perdew–Zunger analytical functional that was employed.
26

By using this code, we have thus drawn the ground state

spin phase diagrams versus the QD radius R and the dielec-

tric constant �ext of the surrounding medium. We have per-

formed the calculations in the case of ZnS QD populated

with N=3, 4, and 9 electrons, although, as discussed later,

the qualitative trends obtained can be generalized to other

materials and different numbers of electrons. The material

parameters employed in our calculations, namely the elec-

tron effective mass mZnS
� =0.34 and dielectric constant �ZnS

=5.7, are taken from Ref. 27. Spherical QDs are often pre-

pared in water solutions ��H2O=1.78� and polymeric media

�dielectric constants ranging from �=2 up to �=25 have

been reported for these media
28,29

�. Thus, in our calculations,

the external dielectric constant �ext of the surrounding me-

dium ranges from �ext=1, corresponding to air or a vacuum,

up to �ext=50. We assume an external effective mass mext
�

=1 and a 4 eV confining potential barrier height.
30

III. RESULTS AND DISCUSSION

The electronic configuration of an atom or a QD is de-

termined by the balance of two factors, namely, the energy

difference between consecutive orbitals and the pairing en-

ergy. In general, the Aufbau principle of sequential filling

and the Hund rule of largest spin multiplicity in a shell are

followed. However, as pointed out earlier, QDs can be tai-

lored with precise properties, such as their radius. This fact

allows the spin filling to be manipulated by tuning the energy

gap between consecutive orbital levels.

We therefore start our study by exploring the critical

radius leading to a change in the electronic configuration. In

a first set of calculations we consider the same effective mass

and dielectric constant for the QD and the surrounding me-

dium. This allows us to work in effective atomic units and

thus yield universal results. The only parameter included in

these calculations is the height of the confining barrier,

which is fixed to a value as large as 14 e.u. �effective Har-

tree�. 14 e.u. corresponds to 4 eV for ZnS. We carry out

calculations for a range of radii from 3 up to 12 effective

Bohr radius a0
� and a number of electrons N=3, 4, and 9. The

results thus obtained are summarized in Fig. 1, where the

energy difference �E �e.u.� between fully spin-polarized mi-

nus least spin-polarized configurations is plotted versus the

QD radius R /a0
�.

In all the cases that were studied, only two configura-

tions, namely least-polarized and fully polarized, become the

ground state. Thus, for N=3 the configuration 1s21p is the

lowest lying for R�7a0
� and 1s1p2 otherwise. For N=4 it is

1s21p2 up to R�5.5a0
� and then 1s1p3. Finally, when N=9,

1s21p61d is the ground state if R�8.3a0
� and 1s1p31d5 if R is

larger.

One may wonder whether configurations others than

least-polarized and fully polarized can lie the lowest. How-

ever, this does not hold for the cases that were studied. In

order to show this in the most challenging case of N=9 elec-

trons, in the inset in Fig. 1 we plot the difference �E be-

tween the energy of configurations 1s1p31d5, 1s21p31d4, and

FIG. 1. Energy difference �E �e.u.� between spin polarized minus spin

least-polarized electronic configurations vs QD radius R �e.u.� correspond-

ing to a QD populated with three �full line�, four �dashed line�, and nine

�dotted line� excess electrons. Arrows indicate the transition phase. Inset:

Energy difference �E �e.u.� between the electronic configuration 1s1p31d5

�full line�, 1s21p31d4 �dashed line�, and 1s1p61d2 �dotted line� minus

1s21p61d vs QD radius R �e.u.�. The arrow indicates the transition phase.
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1s1p61d2, on the one hand, and 1s21p61d, on the other, ver-

sus the QD radius. It can be seen that, for short effective

radii, the larger the polarization is, the greater the resulting

energy will be, while the opposite holds for large radii. There

is, however, a central region where the energy ordering of

configurations is neither one nor the other. Nevertheless, it

can also be seen that only the spin least-polarized 1s21p61d

and the fully spin-polarized 1s1p31d5 configurations become

the ground state.

Finally, since Fig. 1 is drawn in effective units, it is

straightforward to conclude that QDs built of materials with

small Bohr radii are the best candidates to be used for dielec-

tric control of spin because the transition between configu-

rations occurs at shorter radii and the energetic change re-

sulting from QD manipulation is larger. In order to show the

dielectric control of spin we chose QDs built of ZnS. It is a

wide-gap semiconductor material, so that the conduction-

valence coupling is negligible, i.e., nonparabolicity correc-

tions can be safely neglected. This material has an effective

Bohr radius of a0
��17a0 and an effective energy �1 e.u.� of

�10−2 a.u. We then consider, first, the case of N=3 excess

electrons and proceed as follows. From Fig. 1 we can see

that the transition between configurations occurs at about

7a0
�, i.e., �6 nm for ZnS. Thus, working within the range of

radii between 4 and 8 nm, we calculate the energy of the

relevant configurations of N=3 excess electrons ZnS QD

embedded in media with a dielectric constant ranging from 1

up to 50. From these calculations we determine the ground

state configuration for each pair �R ,�ext�. From this the phase

diagram shown in Fig. 2�a� can be drawn. The line in this

figure corresponds to the phase transition. Above the line the

spin-polarized 1s1p2 configuration is the lowest lying, i.e.,

the ground state, while below it the ground state corresponds

to the least-polarized 1s21p configuration.

The physical source of dielectric control is polarization

coming from the dielectric mismatch between the QD and

the surroundings. In order to show this, we select the critical

QD radius corresponding to the degeneracy of the two con-

figurations when the QD is buried in a medium without di-

electric mismatch ��ext=�QD�. We then replace the external

medium by another with a lower dielectric constant ��ext

��QD�. The resulting dielectric mismatch leads each electron

in the QD to induce a negative polarized charge at the QD

border, thus enhancing the Coulomb interaction between car-

riers. This means that pairing energy is also enhanced and

therefore the polarized configuration is preferred. In a similar

way, the situation �ext	�QD leads to a decrease in the Cou-

lomb interaction and consequently to a decrease in the pair-

ing energy so that a transition toward least-polarized con-

figurations now occurs. This can be shown in Fig. 2�a� by

choosing any point on the transition line and then moving

left �toward smaller dielectric constants�. By so doing we

find the fully spin-polarized configuration. Nevertheless,

moving right, and thus increasing �ext, we find the other

least-polarized configuration.

The inset in Fig. 2�a� corresponds to a 5.5 nm radius ZnS

QD. In this inset we have drawn the energy difference �meV�

between the spin least- and fully polarized configuration ver-

sus �ext. This plot allows us to see, for example, that a “dry”

5.5 nm radius ZnS QD, i.e., this QD in air ��ext=1�, has a

fully polarized ground state configuration �S=3 /2�. How-

ever, if this QD is embedded in a polymeric solution of di-

electric response, for example, �ext=4, a transition toward

the least-polarized �S=1 /2� configuration occurs. A solution

with a dielectric constant of about 2.8 is able to tune degen-

eracy between both lowest-lying electronic configurations.

Figures 2�b� and 2�c� display the phase diagrams corre-

sponding to N=4 and N=9 excess electrons. The results and

diagrams obtained are qualitatively the same as in the case of

N=3 electrons, but the changes in spin and/or energy are

FIG. 2. Ground state phase diagram of a ZnS QD populated with three �a�,

four �b�, and nine �c� excess electrons. Schematic diagrams for electronic

configurations label the regions of existence �below/above the transition

line� in the QD radius R �nm� vs the external dielectric constant �ext phase

diagram. Insets: Energy difference �E �meV� of the spin least-polarized

minus spin full polarized configuration vs the external dielectric constant

�ext for a fixed value of the QD radius R �indicated at the top right of the

inset�. The arrow indicates the transition phase.
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larger. In the case N=4, the configurations involved have

spins S=1 and S=2, while for N=9 a change in the dielectric

environment can yield a transition between S=1 /2 and S

=9 /2.

IV. CONCLUDING REMARKS

This paper is devoted to studying the role of dielectric

mismatch in QD spin transitions. To this end, spin phase

diagrams of QDs populated with different numbers of elec-

trons versus the dielectric constant of the QD surroundings

have been calculated. Our results show that it is possible to

switch between high/low spin configurations by means of an

appropriate QD environment and suggest the use of QD spin

as a sensor of the dielectric response of a given medium.

ACKNOWLEDGMENTS

Financial support from UJI-Bancaixa Project No. P1-

1B2006-03 �Spain� is gratefully acknowledged. Generalitat

Valenciana FPI �M.R.� grant is also acknowledged.

1G. A. Prinz, Science 282, 1660 �1998�.
2S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kou-

wenhoven, Phys. Rev. Lett. 77, 3613 �1996�.
3
Semiconductor Spintronics and Quantum Computation, edited by D. D.

Awschalom, D. Loss, and N. Samarth �Springer, Berlin, 2002�; Y. Masu-

moto and T. Takagahara, Semiconductor Quantum Dots �Springer, Berlin,

2002�; A. D. Yoffe, Adv. Phys. 50, 1 �2001�; L. Jacak, P. Hawrylak, and A.

Wójs, Quantum Dots �Springer, Berlin, 1998�; T. Chakraborty, Quantum

Dots �Elsevier, Amsterdam, 1999�.
4C. Wang, M. Shim, and P. Guyot-Sionnest, Science 291, 2390 �2001�.
5S. Coe, W.-K. Woo, M. Bawendi, and V. Bulović, Nature �London� 420,

800 �2002�.
6W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425

�2002�.
7J. M. Klostranec and W. C. W. Chan, Adv. Mater. 18, 1953 �2006�.
8J. L. Movilla and J. Planelles, Phys. Rev. B 71, 075319 �2005�; J. L.

Movilla, J. Planelles, and W. Jaskólski, ibid. 73, 035305 �2006�; J.

Planelles and J. L. Movilla, ibid. 73, 235350 �2006�; J. L. Movilla and J.

Planelles, ibid. 74, 125322 �2006�; F. Rajadell, J. L. Movilla, M. Royo,

and J. Planelles, ibid. 76, 115312 �2007�.
9A. Orlandi, M. Rontani, G. Goldoni, F. Manghi, and E. Molinari, Phys.

Rev. B 63, 045310 �2001�; A. Orlandi, G. Goldoni, F. Manghi, and E.

Molinari, Semicond. Sci. Technol. 17, 1302 �2002�.
10A. Franceschetti and A. Zunger, Phys. Rev. B 62, 2614 �2000�.
11M. Pi, M. Royo, and J. Planelles, J. Appl. Phys. 100, 073712 �2006�.
12M. Royo, J. Planelles, and M. Pi, Phys. Rev. B 75, 033302 �2007�; J. Appl.

Phys. 102, 094304 �2007�.
13S. Tarucha, D. G. Austing, Y. Tokura, W. G. van der Wiel, and L. P.

Kouwenhoven, Phys. Rev. Lett. 84, 2485 �2000�.
14S. Sasaki, S. De Franceschi, J. M. Elzerman, W. G. van der Wiel, M. Eto,

S. Tarucha, and L. P. Kouwenhoven, Nature �London� 405, 764 �2000�.
15M.-H. Chung, Phys. Rev. B 70, 113302 �2004�.
16L. Kouwenhoven and L. Glazman, Phys. World 14, 33 �2001�.
17W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 �1965�.
18R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Mol-

ecules �Oxford University Press, Oxford, 1989�.
19E. Lipparini, Modern Many-Particle Physics �World Scientific, Singapore,

2003�.
20P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 �1964�.
21M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 �1979�.
22U. von Barth and L. Hedin, J. Phys. C 5, 1629 �1972�.
23O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 �1976�.
24Please note that, as in the case of unrestricted Hartree–Fock, SDFT wave

functions are MS but not S adapted.
25J. L. Movilla and J. Planelles, Comput. Phys. Commun. 170, 144 �2005�.
26J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 �1981�.
27D. Dorfs, H. Henschel, J. Kolny, and A. Eychmüller, J. Phys. Chem. B

108, 1578 �2004�.
28A. Issac, Ch. von Borczyskowski, and F. Cichos, Phys. Rev. B 71,

161302�R� �2005�.
29J. Lee, B. Yang, R. Li, T. A. P. Seery, and F. Papadimitrakopoulos, J. Phys.

Chem. B 111, 81 �2007�.
30The height for the spatial confining barrier of a QD in a vacuum should be

set to the QD electroaffinity and, for a QD embedded in a given medium,

to the corresponding band offset. In our calculation this height is always

very large, and we deal with the ground state. Then, as the numerical

results are insensitive to relatively small changes in the height of this very

high spatial confining barrier, we have always assumed the same 4 eV

height.

014313-4 Planelles, Rajadell, and Royo J. Appl. Phys. 104, 014313 �2008�

Downloaded 01 Feb 2010 to 84.124.83.4. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



189

Isospin phases of vertically coupled double quantum rings under the influence

of perpendicular magnetic fields

M. Royo,1 F. Malet,2,* M. Barranco,2 M. Pi,2 and J. Planelles1,†

1Departament de Química Física i Analítica, Universitat Jaume I, Box 224, E-12080 Castelló, Spain
2Departament ECM and IN2UB, Facultat de Física, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

�Received 30 July 2008; published 7 October 2008�

Vertically coupled double quantum rings submitted to a perpendicular magnetic field B are addressed within

the local spin-density-functional theory. We describe the structure of quantum ring molecules containing up to

40 electrons considering different inter-ring distances and intensities of the applied magnetic field. When the

rings are quantum mechanically strongly coupled, only bonding states are occupied and the addition spectrum

of the artificial molecules resembles that of a single-quantum ring, with some small differences appearing as an

effect of the magnetic field. Despite the latter’s tendency to flatten the spectra, in the strong-coupling limit,

some clear peaks are still found even when B�0 that can be interpretated from the single-particle energy levels

similarly as in the zero magnetic field case, namely, in terms of closed-shell and Hund’s-rule configurations. By

increasing the inter-ring distance, the occupation of the first antibonding orbitals washes out such structures

and the addition spectra become flatter and irregular. In the weak-coupling regime, numerous isospin oscilla-

tions are found as functions of B.

DOI: 10.1103/PhysRevB.78.165308 PACS number�s�: 73.21.�b, 85.35.Be, 71.15.Mb, 75.75.�a

I. INTRODUCTION

Systems made of correlated electrons confined in semi-
conductor nanoscopic dot and ring structures, the so-called
quantum dots �QDs� and rings �QRs�, respectively, have been
the subject of intense theoretical and experimental researches
�see, e.g., Refs. 1 and 2 and references therein�. From the
latter point of view, for quantum dots, it has been proved3 the
possibility to tune over a wide range the number of electrons
contained in the system, as well as to control both the size
and the shape of the dots by means of external gate
voltages—a goal that has not been achieved yet for ring ge-
ometries due to the higher complexity of their fabrication
process,4–6 which involves several experimental techniques
such as atomic force microscopy,7 strain-induced
self-organization,4 and droplet molecular-beam epitaxy.8

The interest of QRs arises from their peculiar behavior in
the presence of a perpendicularly applied magnetic field �B�,
which is very distinct from that observed in QDs and shows
up as an oscillatory behavior of their energy levels as a func-
tion of B. This property, together with the fact that in narrow
enough QRs the electrons experiment a nearly one-
dimensional Coulomb repulsion, leads to the integer and
fractional Aharonov-Bohm effects usually associated with
the appearance of the so-called persistent currents in the
ring.9 These quantum-interference phenomena have been ex-
perimentally reported10 and have motivated a series of theo-
retical works whose number is steadily increasing �see, e.g.,
Refs. 11–16 and references therein�.

One of the most appealing possibilities offered by elec-
tron systems confined in semiconductor heterostructures is
their ability to form coupled entities, usually referred to as
“artificial molecules,” in which the role of the constituent
“atoms” is played by single-quantum dots or rings and that
have analogies with natural molecules such as the hybridiza-
tion of the electronic states forming molecularlike orbitals. In
addition, these artificially coupled systems present important

advantages such as a tunable “interatomic” coupling by
means of, e.g., the modification of the relative position/size
of the constituents. This fact has, besides its intrinsic interest,
potential relevance to quantum information processing
schemes since basic quantum gate operations require control-
lable coupling between qubits. In this sense, artificial mol-
ecules based on two coupled QDs called quantum dot mol-
ecules �QDMs� have been proposed as scalable
implementations for quantum computation purposes and
have received great attention from the scientific community
in the last years �see, e.g., Refs. 17–26 and references
therein�.

Also, molecular-beam epitaxy techniques have recently
allowed the synthesis of quantum ring molecules �QRMs� in
the form of concentric double QRs �Refs. 27 and 28� and
vertically stacked layers of self-assembled QRs.29,30 The op-
tical and structural properties of the latter have also been
characterized by photoluminescence spectroscopy and by
atomic force microscopy, respectively. This has sparked the-
oretical studies on the structure and optical response of both
vertically and concentrically coupled QRs of different com-
plexity and scope, revealing properties different from those
of their dot counterparts due to the nonsimply connected ring
topology. For instance, studies on the single-electron spec-
trum of vertical QRMs �Refs. 31 and 32� have shown that the
electronic structure of these systems is more sensitive to the
inter-ring distance than that of coupled QDs. As a conse-
quence, in ring molecules, quantum tunneling effects are en-
hanced since less tunneling energy is required to enter the
molecularlike phase. Also, the consideration of “hetero-
nuclear” artificial molecules constituted by slightly different
QRs offers the interesting possibility to control the effective
coupling of direct-indirect excitons33 by means of the appli-
cation of a magnetic field and taking advantage of the fact
that charge tunneling between states with distinct angular
momentum is strongly suppressed by orbital selection rules.
To this end, some authors have considered the case of QRMs
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made of strictly one-dimensional zero-thickness QRs and
have used diagonalization techniques to address the few-
electron problem.31,33–35 The simultaneous effect of both
electric and magnetic fields applied to a single-electron
QRM has also been studied36 �see also Ref. 31�, and the
optical response of QRMs where the thickness of the con-
stituent QRs is taken into account has been obtained.37 In
addition, the spatial correlation between electron pairs in ver-
tically stacked QRs has been shown to undergo oscillations
as functions of the magnetic flux, with strongly correlated
situations between ground states �gs’s� with odd angular mo-
mentum turning out to occur even at large inter-ring
distances.34 More recently, the structure of a QRM made of
two vertically stacked quantum rings has been addressed at
zero magnetic field for a few tens of electrons within the
local spin-density-functional theory �LSDFT� neglecting38

and incorporating39 the vertical thickness of the constituent
QRs.

In this work we address the gs of two thick vertically
coupled identical quantum rings forming “homonuclear”
QRMs populated with up to 40 electrons and pierced by a
perpendicularly applied magnetic field. We extend in this
way our previous study,39 addressing the appearance and
physical interplay between the spin and isospin23 degrees of
freedom as functions of the variation in both the intensity of
the magnetic field and the inter-ring separation. Modeling
systems charged with such large number of electrons re-
quires the employment of methodologies that minimizes the
computational cost. Here we have made use of the
LSDFT,13,15 whose accuracy for the considered values of the
magnetic field has been assessed24 by comparing the ob-
tained results for a single QD with those given by the
current-spin-density-functional theory,40 which is in principle
better suited for high magnetic fields and also with exact
results for artificial molecules.41

This paper is organized as follows. In Sec. II we briefly
introduce the LSDFT and the model used to represent the
vertical QRMs. In Sec. III we discuss the obtained results for
some selected configurations and a summary is given in Sec.
IV.

II. DENSITY-FUNCTIONAL CALCULATION FOR MANY-

ELECTRON VERTICAL QUANTUM RING

HOMONUCLEAR MOLECULES

The axial symmetry of the system allows one to work in
cylindrical coordinates. The confining potential Vcf�r ,z� has
been taken parabolic in the xy plane with a repulsive core
around the origin, plus a symmetric double quantum well in
the z direction, each one with width w, depth V0, and sepa-
rated by a distance d. To improve on the convergence of the
calculations, the double-well profile has been slightly
rounded off as illustrated in Fig. 2 of Ref. 24. The potential
thus reads Vcf�r ,z�=Vr�r�+Vz�z�, where

Vr�r� = V0��R0 − r� +
1

2
m�0

2�r − R0�2
��r − R0� ,

Vz�z� = V0�
1

1 + e�z+d/2+w�/� −
1

1 + e�z+d/2�/�
if z � 0

1

1 + e�z−d/2�/� −
1

1 + e�z−d/2−w�/�
if z � 0,�

�1�

with �=2�10−3 nm and ��x�=1 if x�0 and zero other-
wise. The convenience of using a hard-wall confining poten-
tial to describe the effect of the inner core in QRs is endorsed
by several works in the literature.42 We have taken R0

=10 nm, V0=350 meV, 	�0=6 meV, and w=5 nm. These
parameters determine the confinement for the electrons to-
gether with the distance between the constituent quantum
wells that is varied to study QRMs in different inter-ring
coupling regimes.

For small electron numbers �N�, it is justified to take �0 to
be N independent. However, in a more realistic scheme its
value should be tuned according to the number of electrons
contained in the system, relaxing the confinement as the lat-
ter is increased. In the case of quantum dots it has often been
used a N−1/4 dependence that arises from the r expansion
near the origin of the Coulomb potential created by a two-
dimensional uniform positive charge distribution �jellium
model� and that it is generalized to the case of quantum dot
molecules as �0=
NB

−1/4 with NB being the number of elec-
trons filling bonding �B� orbitals �see below�. The rationale
for this generalization is given in Ref. 25. It is clear that the
mentioned N dependence would be harder to justify for QRs,
and in fact no alternative law is known for a single QR that
could be generalized to the case of QRMs. For this reason, in
this work, we have taken �0 to be N independent, which is to
some extent less realistic for the largest values of N we have
considered.

Considering the N-electron system placed in a magnetic
field parallel to the z axis, within LSDFT in the effective
mass, dielectric constant approximation, the Kohn-Sham
equations24,43 in cylindrical coordinates read

�−
1

2
� �

2

�r2 +
1

r

�

�r
−

l2

r2 +
�

2

�z2� −
�c

2
l +

1

8
�c

2
r2 + Vcf�r,z� + VH

+ Vxc + �Wxc +
1

2
g�

�BB��
��unl��r,z� = nl�unl��r,z� ,

�2�

where the single-particle �sp� wave functions have been
taken to be of the form �nl��r ,z ,� ,��=unl��r ,z�e−ıl�

�
�
,

where n=0,1 ,2 , . . ., l=0, �1, �2, . . . with −l being the pro-
jection of the single-particle orbital angular momentum on
the symmetry axis, and �= ↑ �↓� representing spin-up
�-down� states. The vector potential has been chosen in the
symmetric gauge, namely, A=B�−y ,x ,0� /2; �B=	e / �2mec�
and �c=eB /c are, respectively, the Bohr magneton and the
cyclotron frequency and �

�
= +1 �−1� for �= ↑ �↓�; VH�r ,z�

is the direct Coulomb potential and Vxc=�Exc�n ,m� /�n 	gs and
Wxc=�Exc�n ,m� /�m 	gs are the variations in the exchange-
correlation energy density Exc�n ,m� in terms of the electron
density n�r ,z� and of the local spin magnetization m�r ,z�
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n↑�r ,z�−n↓�r ,z� taken at the gs. Exc�n ,m�
Ex�n ,m�
+Ec�n ,m� has been built from three-dimensional homoge-
neous electron gas calculations; this yields a well-known44

simple analytical expression for the exchange contribution
Ex�n ,m�. For the correlation term Ec�n ,m� we have used the
parametrization proposed by Perdew and Zunger.45 Details
about how the Kohn-Sham and the Poisson equations have
been solved can be found in Ref. 43. Notice the use of ef-
fective atomic units 	=e2

/�=m=1 in Eq. �2�, where � is the
dielectric constant and m is the electron effective mass. In
units of the bare electron mass me one has m=m�me with the
length unit being the effective Bohr radius a0

�=a0� /m� and
the energy unit the effective Hartree H�=Hm�

/�
2. In the nu-

merical applications we have considered GaAs quantum
rings, for which we have taken �=12.4 and m�=0.067; this
yields a0

��97.9 Å and H��11.9 meV with the effective
gyromagnetic constant g�=−0.44.

To label the gs configurations �“phases”� we use an
adapted version of the ordinary spectroscopy notation,41

namely, 2S+1Lg,u
� , where S and L are the total 	Sz	 and 	Lz	,

respectively. The superscript + �−� corresponds to symmet-
ric �antisymmetric� states under reflection with respect to the
z=0 plane bisecting the QRMs and the subscript g�u� refers
to positive �negative� parity states. All of these are good
quantum numbers even in the presence of an axial magnetic
field. By analogy with natural molecules, symmetric and an-
tisymmetric states are referred to as B and antibonding �AB�
orbitals, respectively. We have defined the “isospin” quantum
number Iz �bond order in Molecular Physics� as22,24,41 Iz

= �NB−NAB� /2 with NB�AB� being the number of occupied
bonding �antibonding� sp states.

III. RESULTS

Due to the large number of variables needed to character-
ize a given QRM configuration �electron number, magnetic
field, and inter-ring distance�, we limit ourselves to present
results in a limited range of values for such variables, aiming

at discussing calculations that might illustrate the appearance
of some properties of the systems under study. For the sake
of comparison, we have also addressed one single QR sym-
metrically located with respect to the z=0 plane with the
same thickness �5 nm� and radial confinement as the coupled
rings.

Figure 1 shows the Kohn-Sham sp levels for one single
ring hosting N=40 electrons as a function of l for different
values of the applied magnetic field. As it is well known,
these levels are �l degenerate at B=0. In this particular case,
the gs has Sz=1, and it is made up of symmetric �with re-
spect to z=0� sp states with up to n=3. In the noninteracting
single-electron model, in which the Coulomb energy is not
considered and consequently the sp wave functions factorize
into a r-dependent and a z-dependent part with associated
quantum numbers nr and nz, i.e., unl�r ,z�→Unr

�r�Znz
�z�, one

would say that the gs is made up of sp states with nz=0 and
radial quantum numbers up to nr=3.

When B�0, the �l degeneracy is lifted and, on the other
hand, the l�0 sp levels become progressively depopulated
in favor of those with l�0 as the magnetic field increases
until eventually �at about �4 T� only l�0 orbitals are filled.
At this point, only a few states with n=2 are occupied and
the ring has Sz=0. From this value of B, the simultaneous
filling of increasingly higher-l states and those close to l=0
gives rise to configurations containing only states with n=1
and with large values of the total spin �e.g., Sz=9 for B

=8 T�. Eventually, the system becomes fully spin polarized
at B�13.5 T. It is worth noticing the conspicuous bending
of the “Landau bands” �sets of bonding or antibonding states
characterized by the same n and spin and different value of l�
instead of displaying a fairly flat region, as it happens when
the in-plane confinement is produced by a jelliumlike
potential13 but not with our present choice of a
N-independent parabola. It is also worth to stress that, due to
the much stronger confinement in the vertical direction as
compared to that in the radial one, only symmetric states are
occupied.
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Analogously, the energy levels corresponding to QRMs
with N=40 and inter-ring distances d=2, 4, and 6 nm are
shown in Figs. 2–4. One can see the gradual evolution of the
system as d increases; indeed, at d=2 nm the spectrum is
very similar to that of the single ring with only bonding sp
states being occupied. As d increases, a few antibonding or-
bitals become populated at small B’s, as one can see from the
top panels of Fig. 3, corresponding to d=4 nm; but eventu-
ally, for increasing values of B, the QRMs have again ground
states where only bonding states are populated as can be seen
from the bottom panels of the same figure. For this inter-ring
distance, the fully spin-polarized state is reached at B

�13.75 T. Finally, for the largest ring separation consid-
ered, namely, d=6 nm, a large amount of antibonding orbit-
als becomes occupied giving rise to small Iz’s instead of the
fairly large isospin values found for similar configurations at
smaller distances �compare the bottom panels in Fig. 4 with

those in Figs. 2 and 3�. In particular, the fully spin-polarized
gs is found at about B�7 T with Iz=2, whereas for d=2 and
4 nm it appears near B=14 T and has the maximum possible
isospin value, namely, Iz=20. At d=6 nm, the maximum-
spin state naturally consists of two distinct bands: one made
up of bonding and another of antibonding states. These con-
figurations are the QRM analogs of the maximum density
droplet �MDD� configurations found for QDMs at similar
inter-dot distances called, respectively, MDDB and MDDAB

in Ref. 25. Increasing further the magnetic field causes the
progressive occupation of higher-l orbitals, which provokes
the depopulation of the antibonding band and the consequent
increase in Iz. For the highest considered magnetic field �B
�14 T�, some antibonding orbitals are still occupied yield-
ing Iz=17.

These results are a consequence of the evolution with d of
the energy difference between bonding and antibonding
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states �SAS, which accurately varies as a function of the
inter-ring distance according to the law �SAS=�0e−d/d0 al-
ready found for QDMs.22 In our case, from the difference in
energy of single-electron �bonding and antibonding� QRMs
we have obtained �0=82 meV and d0=1.68 nm,39 values
which have turned out to be unaffected by the applied mag-
netic field. Clearly, the value of 	�0 as compared to �SAS,
which allows discerning between the strong �	�0��SAS�
and the weak �	�0��SAS� quantum-mechanical coupling
regimes, has a crucial influence on the actual filling of bond-
ing and antibonding sp states at a given inter-ring distance.
Indeed, increasing �0 while keeping the double-well struc-
ture constant may favor the population of antibonding orbit-
als for large enough values of N.24 This can be understood
from the noninteracting electron model, in which the single-
electron energies are the sum of two independent terms: one
arising from the z localization and characterized by the quan-
tum number nz and another, which increases as �0 does,
arising from the r localization and depending on l and the
radial quantum number nr. If N is large enough, the QRMs
can minimize their energy by populating antibonding states
with low values of nr and l instead of going on populating
bonding states with higher quantum numbers. This explains
why some antibonding states were filled even for d=2 nm at
B=0 and N=40 for the QRMs of Ref. 39, where �0 was
taken to be 15 meV, a value almost three times larger than
the one considered in the present work.24

This particular structure of the bonding and antibonding
bands at high magnetic fields may have some observable
effects on the far-infrared response of QRMs. Indeed, since
the dipole operator cannot connect bonding with antibonding
sp states, for QRMs in the weak-coupling limit, one would
expect the dipole spectrum to display additional fragmenta-
tion in the characteristic edge modes of the ring geometry13

due to the contribution of the antibonding electron-hole pairs
�see, e.g., the bottom panels of Fig. 4�.

Figure 5 shows the evolution with d of the gs energy and
the molecular phase of QRMs made up of N=8 electrons and

submitted to magnetic fields of different intensities. Notice
that even moderate values of B give rise to ground states
with large total angular momentum, which increases as the
magnetic field does. For this reason, we have denoted it by
its actual value instead of employing the usual notation with
upper Greek letters except for the cases with Lz=0. Similar
conclusions can be drawn for all the values of the magnetic
field we have considered; on the one hand, for the studied
inter-ring distances, the energy of the molecular phases in-
creases with d due to the enhancement of the energy of the
bonding states,43 which dominates over the decrease in the
Coulomb energy—for larger distances the constituent QRs
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are so apart that eventually this decrease dominates and the
tendency is reversed. On the other hand, one can see that the
first phase transitions are always found at the largest inter-
ring distances since, as happens for QDMs in the few-
electron limit, they are due to the replacement of an occupied
bonding sp state with an empty antibonding one. This also
explains why in most of the cases, and especially for the
highest magnetic fields, the total angular momentum of the
QRMs in the weakest coupling regime is reduced. The filled
antibonding orbitals have lower l’s than the replaced bonding
states.

We have determined the magnetic field that gives rise to
ring molecules with fully spin-polarized gs and show it in
Fig. 6 as a function of N for different inter-ring distances
going from the strong to the weak quantum-mechanical cou-
pling regimes. The isospin value of each configuration is also
indicated. The number of electrons, N=8�M with M

=1–5, was chosen with the aim of producing closed-shell
structures at B=0 in the weak-coupling limit. One can see
that the results for d=2 and 4 nm are very close with only
noticeable differences for N=32. This can be understood
from the bottom panels of Figs. 2 and 3, which show that for
rather large magnetic fields only bonding orbitals are occu-
pied for both ring separations. Contrarily, from Fig. 4 one
can see that in weaker coupling regimes the filling of anti-
bonding states favors the fully spin-polarization of the
QRMs at low B intensities as compared to those needed
when the rings are closer to each other, which explains the
differentiated results corresponding to d=5 and 6 nm in Fig.
6.

When antibonding orbitals are populated, the variation in
the magnetic field yields numerous transitions between dif-
ferent molecular phases with different isospin that are more
complex than these observed in vertically coupled QDs. This
particular behavior is mainly due to the periodic destabiliza-
tion suffered by the lowest-l occupied orbitals induced by the
magnetic field, which is a direct consequence of the
Aharonov-Bohm effect, and makes it rather difficult to find a
pattern among the observed evolutions for the different elec-
tronic populations. The spin and isospin phases as functions
of the magnetic field are shown in Fig. 7 for d=6 nm cor-

responding to N=8, 16, and 24. It can be seen that in all
cases at B=0 the QRMs have Iz=2 and Sz=1; when B is
increased, nonmonotonic spin and isospin oscillations with
�Iz= �1 and �Sz= �1 and 2 appear, respectively. Two
facts, also present in QDMs,24,25 are worth to be stressed: on
one hand, molecular phase changes from − �+� to + �−�
ground states �recall that, as explained in Sec. II, this sign is
related to the symmetry of the molecular configuration� in-
volve �Iz= +1 �−1� flips; on the other hand, quite often the
transitions in both magnitudes take place simultaneously ex-
cept obviously when the QRMs reach the full spin-
polarization point, from which on the isospin increases in
one-unit jumps until the system is made up of only bonding
states.

The comparison of the isospin phases for QRMs with d

=4 and 6 nm is presented in Fig. 8 for N=32 and 40. Clearly,
the highest values of Iz appear for the smallest inter-ring
distances, as expected from the single-particle levels shown
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in Fig. 3, corresponding to d=4 nm and N=40, in which
only a few antibonding orbitals are occupied for low values
of B. Indeed, one can see from the bottom panels of Fig. 8
that, for this inter-ring distance, magnetic fields of about 5 T
are enough to yield configurations with the maximum isospin
value N /2, whereas for the QRMs with d=6 nm such values
of B still correspond to small Iz’s due to the large amount of
filled antibonding states.

We have also calculated the addition energies defined by

�2�N� = E�N + 1� − 2E�N� + E�N − 1� , �3�

with E�N� being the total energy of the N-electron system for
QRMs made of up to 14 electrons at different inter-ring dis-
tances submitted to several magnetic fields as functions of N.
For the sake of comparison, we have also calculated �2�N�
for the corresponding single rings. The results for B=0, 3,
and 6 T are shown in Figs. 9–11, respectively, in which the
bottom panels correspond to the single ring.

From Fig. 9 one can see that at zero magnetic field the
single-QR addition spectrum presents the usual intense peaks
at N=2, 6, and 10 with zero total spin and those at N=4 and
8 with Sz=1 satisfying the Hund’s rule. Similar results are
found for the QRMs with d=2 and 4 nm, indicating that such
systems behave as a single ring owing to the strong
quantum-mechanical coupling corresponding to these inter-
ring distances �notice that, except for N=13, the spin values
coincide for all the configurations�. This fact contrasts with
the results found for the vertical ring molecules of Ref. 39,
where at d=4 nm the spectrum clearly reflected an interme-
diate coupling situation due to the filling of the first anti-
bonding orbitals. As commented before, for the systems
studied in the present paper such states are only occupied for

larger inter-ring separations �or N’s of the order of 30�.
The spectrum corresponding to d=6 nm is shown in the

top panel of the same figure. One can see that, although some
of the marked peaks are preserved, in particular those at N
=2 and 8, the ones at N=4 and 6 no longer exist. Notice that
for 6 electrons the spectrum presents now a minimum and
also a new peak is found at N=5. This intricate structure can
be understood from the corresponding single-particle energy
levels. Indeed, it appears that the QRMs with N�4 are made
up of only bonding states with the first antibonding state
being filled when N=5. From N�7, the QRMs have always
occupied both B and AB orbitals but, however, the interme-
diate six-electron configuration has again only symmetric
states. This alternate behavior evidences that 6 nm is not a
separation large enough for the QRMs to be in the weak-
coupling limit but rather corresponds to an intermediate re-
gime. Notice also that, from the results of Ref. 39, in the
weak-coupling limit one would expect to find clearly marked
peaks at the same N values as for the single ring multiplied
by 2, i.e., at N=4, 12, and 20, indicating that the rings are so
apart that they behave as isolated entities. We have checked
that, for our QRMs to present such spectrum, we should
consider inter-ring distances of about 10 nm. The different
spin values for d=6 nm as compared to those in the strong-
coupling regime can also be explained from the sp levels.
For example, the 2Sz=3 assignation of the QRM with N=5 is
due to the above-mentioned filling of an antibonding �spin up
with l=0� orbital replacing the spin-down 	l	=1 state occu-
pied for d=2 and 4 nm. Analogously, the configuration with
Sz=1 �instead of Sz=0� for N=10 can also be explained from
the sp levels. In the strong-coupling limit, the QRM is
formed by the spin-degenerated sp levels with l=0, 	1	, and
	2	, but this closed-shell configuration is prevented by the
filling of the antisymmetric orbitals at d=6 nm. Finally, the
reverse situation occurs at N=8, where the closing of the
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antibonding l=0 and 	1	 shells contrasts with the Hund’s-rule
configurations found for the strongly coupled molecules.

Figure 10 shows the addition energies corresponding to
the situation in which a magnetic field of 3 T is applied to the
rings. Like what is found at B=0, the spectrum of the single
system and of the molecules with d=2 and 4 nm are rather
similar. Notice the different energy scales with the most re-
markable difference being the salient minimum that appears
for the single QR at N=5. For the above-mentioned inter-
ring distances, peaks with Sz=0 are found at N=2, 4, 8, 10,
and 12, as well as a peak at N=6 with Sz=2, although they
are not as clearly marked as at B=0. It turns out that, even in
the presence of a magnetic field, when the single-particle
energy levels no longer display the �l degeneration, the
QRMs can adopt configurations that are somehow analog to
these characteristics of the situation at B=0, namely, the
closed-shell ones and those fulfilling the Hund’s rule. Indeed,
for, e.g., d=4 nm and N=10, the ring molecule is made up
of the spin-degenerate bonding states with l=0–4 �instead of
those with 	l	=0–2 of the B=0 case�. Similarly, at N=6 the
occupied orbitals are the spin-up and -down ones with l=1
and 2, and the spin-up ones with l=0 and 3 �instead of the
spin-degenerate states with 	l	=0 and 1 filled at zero mag-
netic field�. For larger inter-ring separations, the occupancy
of the first antibonding orbitals washes out these structures
and the addition spectrum becomes flatter and irregular. One
can notice also the different spin assignations between the
single and the coupled systems especially for the lowest-
populated configurations. In particular, the single QRs with
N�5 turn out to be fully spin polarized, which can be attrib-
uted to the combined effect of the magnetic field and a rela-
tively strong exchange-correlation interaction characteristic
of few-electron single-quantum rings. The relatively higher
spin values at d=6 nm for N�7 are due to the filling of the
antibonding states.

Finally, the addition energies for B=6 T are shown in
Fig. 11. It can be seen that in all cases the only clearly
marked peak is the one at N=2, with the rest of the spectra
being rather flat, following the trend observed at B=3 T.
Nevertheless, some weak peaks are still found and can be
interpretated as in the previous cases, e.g., the one at N=8
for d=4 nm with 2Sz=2. The system fills the spin-up and
-down states with l=2–4 and the spin-up ones with l=1 and
5. One can also notice that the faint peak of the four-electron
configurations of both the single ring and the QRM with d

=2 nm becomes a minimum at larger inter-ring distances.
Concerning the spin, the single QRs and the QRMs with d

=2 and 4 nm turn out to be fully polarized for N�7, 5, and
3, respectively, whereas the filling of the antibonding states
favors the fully spin polarization of molecules with the larg-
est ring separation for all the considered electron numbers.

IV. SUMMARY

Within the local spin-density-functional theory, we have
addressed the ground state of quantum ring molecules con-
taining up to 40 electrons, with different inter-ring distances,
submitted to perpendicular magnetic fields. In the strong-
coupling regime the energy levels and the addition energies

of the QRMs are similar to those of a single QR, although
some differences are found due to the effect of the magnetic
field, which has a tendency to wash out the clearly marked
peaks characteristic of the B=0 case as well as to yield flatter
addition spectra. However, even at B�0, some peaks are
still present and they can be interpretated as in the zero mag-
netic field case.

When the ring separation is increased until the first anti-
bonding orbitals are occupied, the addition spectra become
irregular and the ring molecules are fully spin polarized at
relatively low magnetic fields. The filling of such states
yields isospin oscillations as functions of B increasing in
one-unit jumps once the corresponding molecular configura-
tions reach the maximum spin value.

Despite the lack of experimental results to compare ours
with, we believe that the ones herewith presented may be
helpful in the analysis of future experiments on vertically
coupled QRs concerning, e.g., the realization of single-
electron transistor measurements, where the evolution of the
chemical potential ��N� with the magnetic field can be ex-
perimentally identified as the variation in the position of the
current peaks as a function of the applied field, showing
irregularities arising from phase transitions.
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The interaction between electron-electron and electron-hole pairs in semiconductor nanorods embedded in

dielectric media is investigated using a configuration-interaction method. Contrary to spherical quantum dots of

similar volume, the dielectric confinement is shown to bring nanorods into a regime of strong configuration

mixing. The wave functions are particularly sensitive to such mixing, which leads to qualitative changes in the

electronic and optical properties of the rods.
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Semiconductor quantum rods or nanorods �NRs� are col-
loidal quantum dots with strong radial confinement and vari-
able length.1,2 Even though NRs were first synthesized long
after spherical nanocrystals �NCs�, it was soon realized that
their anisotropic shape posed many benefits for optical and
transport applications.3 This prompted a large number of
studies, often revealing characteristic physical phenomena
which stem from the weak longitudinal confinement, for NRs
bridge the gap between zero-dimensional and one-
dimensional quantum-confined systems.4–10

Similar to NCs, NRs are usually embedded in insulating
media, whose dielectric constant is much lower than that of
the semiconductor structure. This dielectric mismatch gives
rise to a so-called dielectric confinement, which greatly
enhances the Coulomb interactions inside the
semiconductor.11,12 In spherical NCs, however, owing to the
strong quantum confinement, Coulomb interactions are usu-
ally a first-order perturbation effect for the low-lying states.13

Furthermore, a strong spatial confinement leads to compen-
sations between electron and hole charge distributions,14,15

so that the optical properties are barely affected by the di-
electric environment.

None of these restrictions apply to NRs, where the longi-
tudinal confinement may be fairly weak. Indeed, the dielec-
tric confinement has been held responsible for the large
variation in the optical gap of CdSe NRs as compared to the
transport one.7,16 What is more, NRs are the zero-
dimensional counterpart of quantum wires, where variations
in the dielectric confinement have been shown to induce
drastic changes in the binding energy and oscillator strength
of excitons, thus enabling Coulomb interaction
engineering.17–19 One may then wonder to which extent the
single-particle and perturbational treatments of Coulomb in-
teractions that dominate the literature of NRs �Refs. 6–10�
provide a valid description of the optoelectronic properties.

In this work, we perform a theoretical study of the effect
of the dielectric confinement on interacting particles �two
electrons or one electron and one hole� confined in a semi-
conductor NR. A numerical procedure is used which allows
us to estimate the effect of the dielectric environment for
arbitrary three-dimensional potentials, thus addressing realis-
tic geometries. Electron correlations are then accounted for
exactly using an effective mass-configuration-interaction
�CI� scheme. We go beyond energetic effects and illustrate
the influence of the dielectric confinement on the wave func-
tion, as well as on derived properties such as the electron-
hole recombination probability.

The fully three-dimensional model allows us to compare
the behavior of rods with that of spherical dots. In the ab-
sence of dielectric mismatch, both systems may be well de-
scribed by a perturbational model of the Coulomb interac-
tion. However, with increasing mismatch, electronic
correlations in the rod can reach very high values. This is
made possible by the rod shape. The small radius makes the
charge confined inside very sensitive to the external dielec-
tric medium, while the weak longitudinal confinement ren-
ders the system prone to configuration mixing. It then fol-
lows that the physics of NRs in dielectric surroundings is far
from the strong confinement picture. Signatures of the severe
configuration mixing, such as enhanced exciton emission, the
appearance of new optical modes, or Wigner localization of
few-electron states, are predicted.

The electron and hole single-particle states are described
with effective-mass Hamiltonians which, in cylindrical coor-
dinates and atomic units, read as20
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where i=e ,h is a subscript denoting electron or hole, respec-

tively. mi is the azimuthal angular momentum and V̂i�� ,z� is
the spatial confinement potential, which is zero inside the
nanostructure and Vi

out outside. m
�,i
� �� ,z� and mz,i

� �� ,z� are the
position-dependent effective masses in the plane and along
the vertical direction. For electrons we use isotropic masses
m

�,e
� �� ,z�=mz,e

� �� ,z�. For holes, however, the mass aniso-
tropy is important, as it is responsible for the heavy-hole to
light-hole ground-state transition that occurs as the aspect
ratio of the nanostructure increases.7,21 Thus, for heavy holes
we use m

�,h
� =1 / ��1+�2� and mz,h

� =1 / ��1−2�2�, while for
light holes we use m

�,h
� =1 / ��1−�2� and mz,h

� =1 / ��1+2�2�.
Here �1 and �2 are the Luttinger parameters.21 Hamiltonian
�1� is integrated numerically using a finite differences
scheme.

In order to determine the electrostatic potential
VCoulomb�r�, in a medium with spatially inhomogeneous di-
electric constant ��r�, we rewrite the Poisson equation in
terms of volumetric source charges plus induced polarization
charges,
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�
2VCoulomb�r� = − 4����r� + �p�r�� . �2�

Here ��r� is the source charge density, which is obtained
from the electron eigenstates of Eq. �1�, and �p�r� is the
polarization charge density, which we calculate with a
method equivalent to the induced charge computation one
proposed by Boda et al.22 The Coulomb interaction is then
taken into account by means of a CI procedure. The two-
electron �exciton� states are built as a linear combination of a
large number of Slater determinants �Hartree products� ob-
tained by filling in the single-particle eigenstates in all pos-
sible ways consistent with symmetry requirements, granting
energy convergence within 0.1 meV.23 The fully interacting

Hamiltonian is diagonalized, exploiting orbital and spin
symmetries.24

In our calculations, we study a typical CdSe NR. The rod
is composed by a cylinder of radius R=2 nm and length L

=8 nm attached to two hemispherical caps of radius R

=2 nm in the extremes, giving a total length of Ltot

=12 nm �see inset in Fig. 2�. For comparison, we also study
a spherical NC with roughly the same volume, i.e., R

=3.15 nm. The material parameters are me
��� ,z�=0.13 inside

the structure and 1 outside and ��1 ,�2�= �1.66,0.41� inside
and �1.0, 0.0� outside.25 The confinement potential of the
outer media is set to Ve

out=Vh
out=4 eV. The dielectric con-

stant is fixed at ��r�=9.2 inside and we vary the outer value
�

out to simulate the effect of different surrounding media. For
NRs, the ground state is assumed to be a light hole,7,21 so the
CI is built on a subspace of light-hole states. Conversely, for
spherical NCs we use heavy holes.

I. ELECTRON-ELECTRON INTERACTION

We start by investigating the two-electron case. Figure
1�a� compares the electron-electron repulsion energy Vee for
the ground state of the NR and the NC as a function of the
dielectric mismatch. As can be seen, the repulsion energy in
the NR experiences a similar enhancement to that of the
spherical NC. For a usual surrounding medium of �

out=2.0,
Vee is over three times larger than the value one may expect
neglecting the dielectric confinement. To quantify the
amount of Vee which is not captured by simple perturbational
descriptions of the interaction, in the figure inset we depict
the correlation energy defined as Ecorr=Vee

0 −Vee. Here Vee
0 is

the expectation value of the Coulomb repulsion for the domi-
nant configuration in the CI expansion. At this point, we
observe a first difference between NRs and NCs. In the ab-
sence of dielectric mismatch, Ecorr is about twice larger for
the NR. This is due to the weak confinement in the long axis
direction. Furthermore, with increasing mismatch the ratio
increases up to six, revealing much stronger correlation ef-
fects in NRs as compared to NCs.

Since the effect of correlations on the wave function is
even more pronounced than that on the energies, in Fig. 1�b�
we analyze the amount of configuration mixing experienced
by the ground state, i.e., the weight of the CI expansion
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which does not come from the dominant Slater determinant.
The different behavior of NCs and NRs is now striking. The
configuration mixing is minor for the spherical dot,13 but it
becomes very large for dielectrically confined NRs.

The influence of the configuration mixing on the ground-
state wave function is apparent in Fig. 2. In the figure, we
represent the charge density of one electron along the verti-
cal axis of the nanostructure after integrating over the coor-
dinates of the second electron, for a spherical NC �left� and a
NR �right�. Solid and dotted lines are used for the cases with
and without dielectric confinement. While the NC wave
function remains essentially unaltered by the dielectric con-
finement, the NR wave function develops a valley in the
center of the structure. This is a clear indication that Wigner
localization is taking place in the NR, which will have direct
implications for transport processes26 and shell-filling
spectroscopy.27

II. ELECTRON-HOLE INTERACTION

Next we investigate the effect of the dielectric confine-
ment on the exciton ground state. The results summarized in
Fig. 3 are qualitatively the same as in the two-electron case,
but correlations are now even stronger because of the large
mass of the holes. Thus, in Fig. 3�a� one can see that the
dielectric confinement enhances the electron-hole attraction
�binding� energy Veh at a similar rate for NRs and NCs.28

However the correlation energies are several times larger in
the case of NRs �figure inset�, for they undergo a sizable
amplification with increasing dielectric mismatch. The effect
of correlations is mostly felt through the wave function. As
can be seen in Fig. 3�b�, for a typical dielectric medium of

�
out=2.0, the exciton ground state in the spherical NC is

essentially given by the dominant Hartree product �an elec-
tron and a hole in the lowest single-particle orbitals�, which
validates the perturbation treatment. By contrast, the NR
ground state contains over 30% of excited configurations ad-
mixed through Coulomb correlations. Obviously, this strong
mixing modifies the exciton wave function. This has impor-
tant effects on the optical properties of the NR which are not
captured by usual perturbational descriptions. In what fol-
lows, we illustrate some of these effects.

In large size quantum dots, it has been shown that corre-
lations enhance the exciton luminescence.29 We can show
that this effect is also present in dielectrically confined NRs
by calculating the electron-hole recombination probability,
by means of the dipole approximation and a Fermi golden
rule30

Pgs � 	

i

ci
gs��i

e��i
h	2

P
2. �3�

Here ci
gs is the ground-state CI expansion coefficient cor-

responding to the Hartree product formed by the electron and
hole spin orbitals �i

e and �i
h. P is the Kane matrix element.

Figure 4�a� shows the exciton recombination probability in a
NR and a NC as a function of the dielectric mismatch. As
expected, the recombination probability in the NR is always
larger than that in the NC.16 In addition, with increasing
dielectric mismatch, the luminescence of the NR increases
up to 40%: a clear signature of the strong correlations affect-
ing the wave function.

Correlated wave functions are more sensitive to environ-
mental perturbations than strongly confined ones. A manifes-
tation of this is shown next. We simulate the absorption spec-
trum of a NR A�E�=
 jP j	�E−E j�, where E is the incident
photon energy and P j is the recombination probability of the
jth exciton state, with energy E j. The NR is subject to a
moderate electric field of 50 kV/cm along the vertical direc-
tion, which breaks the parity symmetry, thus enabling optical
transitions from the first-excited exciton state. Figures 4�b�

out

NR

NC

co
rr

(a)

(b)

out

eh

23456789

ε

E
(m

eV
)

−350

−300

−250

−200

−150

−100

−50

0

5

10

15

20

25

30

35

%
co

n
fi

g
u

ra
ti

o
n

m
ix

in
g

V
(m

eV
)

−40

−30

−20

−10

0

23456789

ε

FIG. 3. �Color online� Same as Fig. 1, but for the exciton ground

state.

hν

out = 9.2

out = 2.0

peak
correlation

out

(b)

gap

NR

NC

(a)

ε

ε

ε

0 50 100 200 250 300150

E − E (meV)

1.0

1.4

1.8

2.2

23456789

P
(a

rb
.

u
n
it

s)
FIG. 4. �Color online� �a� Recombination probability of the

ground-state exciton as a function of the dielectric constant of the

surrounding medium, in a NR �solid line� and a NC �dashed line� of

the same volume. �b� Absorption spectrum of the NR under a weak

electric field, in the absence and presence of dielectric confinement.

The spectra are offset for clarity. The high-energy peak at �
out

=2.0 arises from Coulomb correlations.

STRONG CONFIGURATION MIXING DUE TO DIELECTRIC… PHYSICAL REVIEW B 79, 161301�R� �2009�

RAPID COMMUNICATIONS

161301-3



202 Publications

compares the absorption spectrum without and with dielec-
tric mismatch. In the absence of dielectric mismatch, when
correlations are weaker, only the fundamental transition is
visible. The first-excited transition is still negligible, as it
involves the lowest single-electron orbital �1se�, which is
quasigerade, and the first-excited single-hole orbital �2sh�,
which is quasiungerade. In the presence of dielectric mis-
match a new transition appears. This transition corresponds
to the first-excited exciton state because now the correlations
lead to a strong mixing of the 1se2sh and 1se1sh configura-
tions, the latter orbitals having a large overlap. A similar
response may be originated by molecular dipoles in the vi-
cinity of the rod, which suggests that dielectrically confined
NRs are suited structures for sensing applications.

In conclusion, we have shown that the dielectric confine-
ment of colloidal NRs leads to non-negligible configuration
mixing effects, which are not captured by the usual single-
particle or perturbational descriptions of Coulomb interac-

tions. The configuration mixing induces important changes in
the few-body wave function, which have visible conse-
quences on the optical and transport properties of NRs, in-
cluding improved luminescence and sensitivity. Our results
indicate that the optical properties of NRs may be engineered
by controlling the regime of Coulomb interaction. Even
though the calculations were carried out for a 12-nm-long
CdSe NR, the findings apply also to different materials and
correlations will be even more relevant for longer NRs.

ACKNOWLEDGMENTS

We wish to thank G. Goldoni for helpful comments. Sup-
port from MCINN project under Project No. CTQ2008-
03344, UJI-Bancaixa project under Project No. P1-1B2006-
03, the Ramon y Cajal program �J.I.C.�, a Generalitat
Valenciana FPI grant �M.R.�, and Cineca Calcolo Parallelo is
acknowledged.

*josep.planelles@qfa.uji.es
1 X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kada-

vanich, and A. P. Alivisatos, Nature �London� 404, 59 �2000�.
2 S. Kan, T. Mokari, E. Rothenberg, and U. Banin, Nature Mater.

2, 155 �2003�.
3 U. Woggon, J. Appl. Phys. 101, 081727 �2007�, and references

therein.
4 H. Htoon, J. A. Hollingsworth, R. Dickerson, and V. I. Klimov,

Phys. Rev. Lett. 91, 227401 �2003�.
5 M. A. El-Sayed, Acc. Chem. Res. 37, 326 �2004�.
6 D. Steiner, D. Katz, O. Millo, A. Aharoni, S. Kan, T. Mokari,

and U. Banin, Nano Lett. 4, 1073 �2004�.
7 D. Katz, T. Wizansky, O. Millo, E. Rothenberg, T. Mokari, and

U. Banin, Phys. Rev. Lett. 89, 086801 �2002�.
8 J. Hu, L. W. Wang, L. S. Li, W. Yang, and A. P. Alivisatos, J.

Phys. Chem. B 106, 2447 �2002�.
9 J. Li and L. W. Wang, Nano Lett. 3, 101 �2003�.

10 J. Li and L. W. Wang, Nano Lett. 3, 1357 �2003�.
11 L. E. Brus, J. Chem. Phys. 80, 4403 �1984�.
12 V. A. Fonoberov, E. P. Pokatilov, and A. A. Balandin, Phys. Rev.

B 66, 085310 �2002�.
13 N. A. Hill and K. B. Whaley, Phys. Rev. Lett. 75, 1130 �1995�;

A. Franceschetti and A. Zunger, ibid. 78, 915 �1997�.
14 M. Lannoo, C. Delerue, and G. Allan, Phys. Rev. Lett. 74, 3415

�1995�.
15 P. G. Bolcatto and C. R. Proetto, Phys. Rev. B 59, 12487 �1999�.
16 A. Shabaev and Al. L. Efros, Nano Lett. 4, 1821 �2004�.
17 L. V. Keldysh, Phys. Status Solidi A 164, 3 �1997�.
18 G. Goldoni, F. Rossi, and E. Molinari, Phys. Rev. Lett. 80, 4995

�1998�.
19 E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masu-

moto, Phys. Rev. B 62, 7420 �2000�.

20 In Eq. �1�, we have considered that the mixing of heavy-hole and

light-hole subbands is weak. For the low-lying states of the

structures, we study that this can be shown to be true.
21 P. C. Sercel and K. J. Vahala, Phys. Rev. B 44, 5681 �1991�.
22 D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisen-

berg, Phys. Rev. E 69, 046702 �2004�.
23 For the NR, the CI basis is built from the 28 �12� lowest single-

hole �electron� spin orbitals with mi=0�i=e ,h�, the eight �four�

lowest with mi= 
1, and the four lowest with mh= 
2. For the

NC, we use the eight �six� lowest spin orbitals with mi=0, the

six �four� lowest with me= 
1, the four �two� lowest with me

= 
2, and the two lowest with mh= 
3.
24 Electron-hole exchange and self-energy interactions are ne-

glected as they do not influence the trends we report here. In

particular, self-energy corrections consist roughly in a shift of

the corresponding single-particle energy spectra, yielding minor

effects on the Coulomb interactions. This is due to the nearly flat

profile of the self-polarization potential in the medium with

larger dielectric constant �see, e.g., L. Brus, J. Chem. Phys. 79,

5566 �1983��, which here is the NR.
25 U. E. H. Laheld and G. T. Einevoll, Phys. Rev. B 55, 5184

�1997�.
26 J. S. Meyer and K. A. Matveev, J. Phys.: Condens. Matter 21,

023203 �2009�.
27 L. Jdira, P. Liljeroth, E. Stoffels, D. Vanmaekelbergh, and S.

Speller, Phys. Rev. B 73, 115305 �2006�.
28 It is worth noting that our estimated enhancement of Veh for the

NR �265 meV at �
out=1.75� is in the range of experimental

measurements ��240–300 meV� �Ref. 7�.
29 S. Corni, M. Brasken, M. Lindberg, J. Olsen, and D. Sundholm,

Phys. Rev. B 67, 045313 �2003�.
30 L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots �Springer-

Verlag, Berlin, 1998�.

CLIMENTE et al. PHYSICAL REVIEW B 79, 161301�R� �2009�

RAPID COMMUNICATIONS

161301-4



203

IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 215801 (5pp) doi:10.1088/0953-8984/21/21/215801

Correlation in narrow nanorods: a
variational potential–configuration
interaction scheme

J Planelles, J I Climente, M Royo and J L Movilla

Departament de Quı́mica-Fı́sica i Analı́tica, UJI, Box 224, E-12080 Castelló, Spain
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Abstract

Full configuration interaction calculations for two electrons in narrow semiconductor nanorods

are carried out employing different orbital basis sets. It is shown that the usual configurations

built from single-particle states cannot yield a correct singlet–triplet energetic order regardless

of the basis size, as they miss the correlation energy. Mean-field optimized orbitals partially

correct this drawback. A new approach is introduced, based on a simple variational procedure,

which yields robust results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum dots (QDs) are artificial semiconductor structures

with sizes a few tens of nanometers. They are often modeled

as local perturbations of the periodic crystal field of the

semiconductor surrounding matrix, using envelope function

and effective mass approximations to describe their electronic

structure [1, 2]. Within this approach the details of the

unit cell are integrated out, so that only a macroscopic

(or envelope) description of the system remains. Thus,

the interaction between conduction electrons and atomic

core electrons and nuclei is averaged as the interaction

with a continuous polarizable medium. Likewise, Coulomb

interaction between carriers is assumed to be screened by the

dielectric constant of the QD bulk material [3]. The large

value of the semiconductor dielectric constant coming into

the Coulomb term (typically 10–14), along with the small

value of the electron effective mass coming into the kinetic

energy term, often lead to situations in which the separation

between discrete single-particle (SP) levels exceeds by far

the characteristic interaction energy between particles. As a

consequence, SP descriptions of the many-body problem may

be used, treating the Coulomb interaction between conduction

electrons as a perturbation [4–6].

A better account of the two-particle interaction can

be achieved through diagonalization of the many-body

Hamiltonian in the basis set of non-interacting configurations.

This is the so-called full configuration interaction (FCI)

method, which plays a central role in quantum chemistry [7].

FCI provides benchmark results for the ground state energy

and wavefunction, as well as for the description of excited

states, as it is inferred from the McDonald theorem [8].

The drawback of the approach is its computational cost,

originating from its often slow convergence. The key for

convergence is the selection of a suitable monoelectronic basis

set. As showed by Löwdin and Shull [9], the basis of natural

orbitals is the one which requires the fewest configurations to

achieve a given accuracy in the energy. Natural orbitals are

the orbitals that diagonalize the one-particle density matrix.

Therefore, exact natural orbitals should be extracted from

the FCI wavefunction. Alternatively, one may use single-

particle (SP) orbitals, i.e. the eigenfunctions of the one-

body operator coming into the many-body Hamiltonian. This

approach is quite common in few-electron and excitonic QD

calculations, where convergence problems do not usually

arise [4, 5, 10].

In this paper, however, we identify a QD system where

correlation energies are so strong that the basis choice becomes

critical for overcoming slow convergence issues. Namely, we

study narrow rod-shaped QDs (nanorods, NRs) [11, 12]. As

recently shown, the large aspect ratio of these semiconductor

structures is responsible for some remarkably strong Coulomb

interactions [13–15]. Here we demonstrate that, even in the

simplest case of two interacting electrons, the CI method based

0953-8984/09/215801+05$30.00 © 2009 IOP Publishing Ltd Printed in the UK1
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on SP orbitals (SP-CI) fails to converge. Indeed, for long rods

it predicts a triplet ground state, thus violating a fundamental

theorem for two-body exact functions [16]. To solve this

problem, we follow quantum chemistry CI methods and

replace the regular SP orbitals by effective orbitals obtained

through mean-field calculations, either Hartree–Fock (HF-

CI) [7] or Kohn–Sham density functional theory (KS-CI) [17].

The suitability of using these mean-field optimized orbitals is

discussed and compared with a new, simpler approach based

on a two-fold variational procedure.

2. Theory

The Hamiltonian of interacting conduction electrons in a QD

reads

H =
∑

i

T (i) + vc(i) +
∑

j<i

1

ǫri j

=
∑

i

h(i) +
∑

j<i

g(i, j),

(1)

where T = − 1
2m∗ ∇

2 is the kinetic energy operator, vc the

spatial confining potential, m∗ the effective mass and ǫ the

dielectric constant.

In order to carry out a CI calculation, one first has to

select a given one-electron basis set {φp}
M
p=1 and then build all

possible N-body Salter determinants �α = det{φ1φ2 · · · φN }

out of them. In a second step, the projection of Hamiltonian (1)

onto the basis set of Slater determinants (or onto a subset

of spin- and symmetry-adapted configurations) is carried out

yielding matrix elements 〈�α|H|�β〉. The last step is the

diagonalization.

For practical purposes the one-electron basis set is taken

as orthogonal, although many-body approaches based on

overlapping orbitals, as for example the generalized valence

bond (GVB), have been successfully developed in quantum

chemistry [7, 18]. A possible orbital choice is the SP states,

i.e. the eigenfunctions of the one-electron Hamiltonian h. We

must select a finite basis set. The natural choice is the M

lowest-energy eigenvectors. This truncation of the basis set

implies a projection of Hamiltonian (1) onto the corresponding

FCI space yielding a model Hamiltonian that, in second

quantization language, reads

HSP =

M
∑

p

εpa+
p ap +

M
∑

pqrs

gpqrsa
+
p a+

q ar as, (2)

where εp = h pp is the pth eigenvalue of h, gpqrs is

the two-electron integral and a+
p , aq the usual fermion

creator/annihilator operators.

Alternatively, we may employ another M-dimensional

orthogonal basis set {χp}
M
p=1. In this case, Hamiltonian (1)

turns into

HX =

M
∑

pq

h pqa+
p aq +

M
∑

pqrs

gpqrsa
+
p a+

q ar as, (3)

where off-diagonal h pq terms arise because χp is no longer an

eigenfunction of h.

We may consider {χp} as related to a given vm f (r) poten-

tial operator which is added and subtracted to Hamiltonian (1),

H =
∑

i

h(i) + vm f (i) − vm f (i) +
∑

j<i

g(i, j)

=
∑

i

(

h(i) + vm f (i) +
∑

j<i

g(i, j) − vm f (i)

)

=
∑

i

f (i) +
∑

j<i

ḡ(i, j). (4)

Now we determine {χp} from the eigenvalue equation

f (r)χp(r) = ε̄pχp(r) and rewrite equation (3) as

HX =

M
∑

p

ε̄pa+
p ap +

M
∑

pqrs

ḡpqrsa+
p a+

q ar as . (5)

HF, DFT and, in general, any mean-field calculation are

particular cases of this procedure. For example, in HF,

ε̄p = h pp +

M
∑

q

(

〈pq|
1

ǫr12

|pq〉 − 〈pq|
1

ǫr12

|qp〉

)

. (6)

Note that h pq + v
m f
pq = 〈p|h + vm f |q〉 = ε̄p〈p|q〉 = ε̄pδpq .

Within the framework of this procedure, our approach to

deal with strongly correlated regimes is the use of a variational

potential, i.e. a potential depending on parameters that allow

optimization of the orbital basis set in the CI process.

The advantage of adding a mean-field potential is that,

contrary to the SP orbitals which disregard electron–electron

interaction, HF orbitals include it somehow averaged in

the Coulomb and exchange terms, and KS orbitals further

account for some of the correlation through the corresponding

functional. This has proved useful in describing many-electron

QDs [19, 20]. In our approach, all terms in Hamiltonian (1) are

treated on an equal footing to optimize the potential and hence

the orbital basis set.

It is worth noting that the projected Hamiltonian (3) is not

defined by the selected orbital basis set but rather by the linear

space that it generates. Thus, for example, in [19], where HF

spin orbitals of an N-electron system are expressed as a linear

combination of a set of K SP states, a FCI expansion which

employs either K -dimensional basis set yields identical result.

The advantage of the strategy presented in [19] relies on a

further truncation of the HF basis set.

3. Results and discussion

We carry out calculations for the lowest-lying singlet and

triplet states of a two-electron semiconductor CdSe NR. The

rod is composed of a cylinder of radius R = 20 Å and variable

length L, attached to two hemispherical caps of the same radius

R at the extremes. The material parameters are effective mass

m∗ = 0.13, dielectric constant ǫ = 9.2 and confining potential

vc = 4 eV. The dominant electronic configurations for the

studied singlet and triplet states are σ 2
1 and σ1σ2, respectively,

where σ1, σ2 are the lowest-lying and first excited orbitals

with zero z-component of the angular momentum (Mz = 0).

2
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Figure 1. FCI calculations, employing a 1-6-1 SP basis set, of the
singlet (solid line) and triplet (dashed line) states of a R = 20 Å
two-electron semiconductor CdSe NR versus the length L . Inset:
close-up of the large L region.

We have checked that, as expected, already in the case of a

short NR, many σ (Mz = 0) SP states lie energetically below

the first π (Mz = ±1) energy level, and that higher angular

momentum states are much more excited. Then we employ a

basis set 1-n-1 in the CI calculations, i.e. a basis set including

the n lowest-lying σ and the lowest-lying degenerate pair of π

orbitals, the last orbital pair making, in all studied cases, a very

small contribution to the singlet and triplet CI wavefunctions.

Figure 1 shows a series of SP-CI calculations (basis set 1-

6-1) of the singlet and triplet states of a R = 20 Å two-electron

semiconductor CdSe NR versus L. At first glance, the results

seem reasonable. At L = 0 (a sphere) the singlet state lies

energetically far below the triplet state, and the contributions

to the CI expansion of configurations other than the dominant

one are extremely small. As L increases, the energetic

singlet–triplet gap �TS decreases, the contribution of excited

configurations to the CI wavefunction increases and, in the

large L limit, a singlet–triplet degeneration occurs. However,

a closer view reveals that beyond L = 170 Å the triplet

state becomes the ground state (see inset in figure 1). This

fact is a violation of a known theorem, attributed to Wigner,

stating that any general two-particle Hamiltonian including

a symmetric and real potential energy operator has a singlet

ground state [16]. Therefore, the result is qualitatively wrong.

One may relate the failure to the truncation of the orbital basis

set. In order to check it, we ran a series of SP-CI calculations

of the singlet–triplet energy gap �TS in an L = 200 Å NR

versus the size n of the (1-n-1) basis set. The results, shown

in figure 2, do not allow any finite n yielding the theoretically

expected singlet ground state.

We now turn our attention to the wavefunction. The inset

in figure 2 shows a profile of the FCI singlet (solid line) and

triplet (dashed line) charge densities along the NR vertical axis.

We can observe that the triplet and, to a lesser extent, the

singlet state develop a valley in the electronic density profile

around the rod center. The presence of this valley allows

the interacting electrons to reduce the repulsion energy, hence

stabilizing the states. This groove is already present in the

independent-particle description of the triplet state (through the

σ2 orbital), but not in the singlet ground state, where it is a

Figure 2. FCI singlet–triplet energy gap �TS, corresponding to a
CdSe R = 20 Å, L = 200 Å NR, calculated with a SP 1-n-1 basis
set versus n. Inset: ρ = 0 profile of the FCI singlet (solid line) and
triplet (dashed line) charge densities along the NR z-axis.

pure correlation effect [15]. In the case of a poor correlation

description, the singlet valley is not deep enough and the triplet

is more stable, leading to the triplet ground state predicted

above.

Since the singlet state has gerade symmetry and only

double excitations to ungerade orbitals may contribute to

the formation of the central valley in the density profile of

the singlet, we explore the possibility of carrying out a CI

expansion using gerade orbitals with an in-built valley. A

first attempt is to follow a recent approach proposed by

Abolfath and Hawrylak of using HF orbitals [19]. However,

the approach is useless in our case, because in this scheme

HF orbitals are expanded in terms of a (large) SP basis set

and, as shown in figure 2, even an extremely large (finite) SP

basis set cannot prevent the singlet–triplet reversal. Note that

gerade/ungerade HF orbitals would be linear combinations of

gerade/ungerade SP orbitals. Therefore, no gerade HF orbital

developing a valley can be obtained as a linear combination

of SP orbitals. We then take a different approach and

carry out numerical HF calculations, build a many-electron

Hamiltonian (5) out of the M lowest-lying HF eigenvectors

and repeat the calculations shown in figure 1 with this new

orbital basis set. In particular, the results collected in figure 3

correspond to a 1-6-1 HF basis set. One can see that HF-

CI outperforms SP-CI. Indeed, at L = 170 Å, HF-CI clearly

predicts a singlet ground state. All the same, a singlet–triplet

crossing is observed shortly after L = 200 Å, indicating that

the basis set is still insufficient.

We investigate in some more detail the large L region.

To this end, we consider a L = 200 Å NR, and carry out

calculations employing a large basis set (1-10-1). In the

first instance we run mean-field HF and KS (in the local

density approximation) calculations. The corresponding mean-

field potentials are represented in figure 4 left and center,

respectively. We see that both have a similar shape, i.e. a profile

versus z resembling a symmetric hill with the top at the rod

center. In figure 4 (right) we show a simplified potential vtri,

composed of a triangle of height H along the NR z-axis. All

3
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Figure 3. FCI calculations, employing a 1-6-1 HF basis set, of the
singlet (solid line) and triplet (dashed line) states of a R = 20 Å
two-electron semiconductor CdSe NR versus the length L . Inset:
close-up of the large L region.

three potentials have a common feature: they destabilize the

central region of the NR. In the case of HF and KS, the mean-

field potentials are optimized in a self-consistent procedure. As

far as the third potential is concerned, we optimized the height

H of vtri variationally, i.e. we perform FCI calculations with

states obtained as eigenvectors of a modified SP Hamiltonian,

which adds vtri(H ) to the confining potential, and then select

variationally the best H . This optimization is shown in figure 5

for a n = 10 basis set. We represent singlet and triplet

FCI energies versus the triangle height H . For comparison,

horizontal lines representing HF-FCI and KS-FCI are enclosed.

Several relevant conclusions that may be drawn from this

figure: (i) all three potentials recover the correct singlet/triplet

energetic ordering; (ii) orbital optimization affects the singlet

state far more than the triplet; (iii) from the variational

principle and McDonald’s theorem, we conclude that vKS

outperforms vHF and the variational potential vtri outperforms

both vHF and vKS. The good performance of vKS is remarkable

in view of its typical failures in very-few-electron systems [21].

Also, we note that in this system HF-CI gives better results than

the SP-CI scheme, contrary to the expectations of [19] for a

small number of electrons. The singlet–triplet �TS gap yielded

by vHF, vKS and vtri through the FCI calculations are 0.2, 1.4

and 3.5 meV, respectively.

As pointed out in section 1, the correlation energies in

the QD system under study are so strong that the choice of

Figure 5. FCI optimization of the variational triangle-like vtri(H)

potential versus its height H , in the case of a R = 20 Å, L = 200 Å
CdSe NR, employing a 1-10-1 basis set. Singlet (dots) and triplet
(crosses) energies are represented. Horizontal solid (singlet) and
dashed (triplet) lines representing HF-FCI (dark lines) and KS-FCI
(light lines) are also enclosed.

Figure 6. ρ = 0 z-profiles of the lowest-lying SP, HF, KS and
variationally optimized (vtri) orbitals in the NR investigated in
figure 5. Solid, dashed and dotted lines are used for the lowest, first
excited and second excited orbital, respectively.

a single-particle basis set becomes critical for a correct CI

description. This is nicely shown in figure 6, where the

ρ = 0 z-profiles of the orbitals with largest contribution

Figure 4. Mean-field HF (left), KS (center) and variationally optimized vtri (right) potentials of a R = 20 Å, L = 200 Å two-electron CdSe
NR.
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Figure 7. FCI singlet–triplet gap �TS obtained with SP, vHF and vtri

versus L of a R = 20 Å two-electron semiconductor CdSe NR. The
inset shows the differences between the calculated SP and vHF and
the vtri singlet–triplet gaps.

to the CI are illustrated. The lowest-lying (σ ) SP orbital

shows a prominent maximum at the NR center. Therefore, the

a priori dominant σ 2 configuration of the lowest-lying two-

body singlet state incorporates a strong Coulomb repulsion.

Meanwhile, the same figure shows that HF and KS optimized

orbitals present a central plateau instead. The observed plateau

is the result of the mean-field optimization which, as pointed

out in section 2, accounts for two-body interactions in an

averaged way. In our approach, all terms in the many-body

Hamiltonian are treated on an equal footing to optimize the

orbital basis set and, as shown in figure 6, the result of the

CI optimization yields a lowest-lying σ orbital with a valley

at the NR center. Consequently, the σ 2 configuration already

provides a qualitatively correct description of the central valley

displayed by the two-body singlet ground state (see inset in

figure 2). Similar arguments can be made for the low-lying

excited orbitals, also shown in figure 6.

In the next step, in order to show the performance of our

approach compared with standard mean-field calculations, we

consider again the 1-6-1 basis set employed in figures 1 and 3,

run calculations optimizing vtri in the region 100 Å � L �

250 Å, and compare the results yielded by vtri with the SP-CI

and HF-CI methods. The combined results are summarized

in figure 7, where the FCI singlet–triplet gap �TS obtained

from SP, vHF and vtri versus L, is represented. One can see

that only in the case of vtri is the correct null asymptotic limit

of the singlet–triplet gap obtained. In the inset, the difference

between the calculated SP or HF gaps and the benchmark one

(vtri) is displayed. The inset shows that, within this region,

the gap error is approximately constant for both approaches. It

mainly comes from a deficient description of the singlet state

(see figure 5).

To close this section we would like to note that the poorly

correlated description of SP-CI is exclusive to NRs with a

large aspect ratio. As a matter of fact, SP-CI calculations for

a R = 50 Å, L = 200 Å (total length 300 Å) CdSe NR

employing a 1-6-1 basis set yields the correct singlet–triplet

order, contrary to the R = 20 Å NR we have analyzed in detail.

4. Conclusion

We have shown that the FCI correlation energy of two electrons

in quasi-one-dimensional NRs calculated with the usual orbital

basis set of numerical eigenfunctions of the one-electron

operator h arising in the many-body Hamiltonian (SP-FCI

scheme) leads to the wrong singlet–triplet energetic order.

Irrespective of basis size, the correlation energy of the NR

is very sensitive to the choice of orbitals. Thus, mean-field-

CI approaches that somehow take into account an averaged

electron–electron interaction in the orbital optimization can

partially correct this drawback. A new CI scheme is proposed

in which the mean-field potential is replaced by a simple

triangular potential, with the triangle height as a variational

parameter. The latter approach outperforms mean-field-CI

schemes, yielding robust results.
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The transition bridge between zero-dimensional quantum dots and one-dimensional quantum wires is ex-

plored theoretically by means of the construction of the addition energy spectra of nanorods with different

lengths. Spin density-functional theory supplemented with full configuration interaction calculations are carried

out. The addition energy spectra are qualitatively related to the single particle correlation diagram. The tran-

sition from charge-density waves to spin-density waves, characterizing the Wigner crystallization in the low

density limit is shown.

DOI: 10.1103/PhysRevB.80.045324 PACS number�s�: 73.21.�b, 71.15.Mb, 73.22.Gk, 85.35.Be

I. INTRODUCTION

Nanorods �NRs� constitute the bridge between zero-
dimensional quantum dots �QDs� and one-dimensional quan-
tum wires �QWs�. Investigations of the transition regime
from QDs to QWs are of particular interest in the case of
colloidal semiconductor nanocrystrals because size and
shape control enables the synthesis of NRs with precise
length and diameter,1 so that by tuning the aspect ratio one
can follow the transition from zero- to one-dimensional sys-
tems.

By changing the gate voltage attached to a nanocrystal,
tunnel conductance and capacitance measures yield a peak
every time the number of electrons in the QD increases by
one. The spacing of peaks or addition spectrum, reflects dif-
ferences between the ground states with different number of
electrons. This shell filling is a neat manifestation of
quantum-mechanical degeneracy. While for large dots con-
taining many electrons, oscillations in the spectrum are peri-
odic because the single-electron charging energy is deter-
mined classically by the total dot capacitance, for a dot
containing few electrons both, quantum effects reflecting the
symmetry of the confining potential and electron-electron in-
teractions, lead to modifications of the oscillations so they
are no longer periodic,2 thus revealing the shell structure of
the dot.

Tunneling spectra of single CdSe NRs of radii and lengths
ranging between 1.8–3.2 and 11–60 nm, respectively, have
been reported.3 The spectra were measured with the tip at a
distance avoiding charging effects. On the basis of a theoret-
ical formalism for QWs, the observed peaks were assigned to
low-lying conduction bands with azimultal angular momen-
tum mz=0,1 ,2, but no discretization of these bands origi-
nated from confinement was resolved. Similar InAs NR
spectra with not well resolved conduction band states has
also been published.4 Not many experimental addition spec-
tra of short NRs can be found in the literature. Long and
wide Si NWs display a uniform peak height and width and
equidistant spacing in the current vs gate voltage spectrum5

while shorter thinner Si NRs show a more irregular spectra,6

thus revealing a shell structure.
Theoretical understanding of QD addition spectra usually

rely on isotropic and anisotropic harmonic confining

potentials.2,6,7 Thus, two-dimensional �2D� harmonic QDs
has a 2, 4, 6, 8… degeneracy pattern yielding high peaks in
the addition energy spectrum at N=2,6 ,12,20. . . electrons,8

this structure being partially destroyed by elliptical deforma-
tion of the QD.9 On the other hand, the confining potential of
a spherical colloidal nanocrystal, typically synthesized by
wet chemistry methods, is better represented by a steplike
hard wall potential,10 which corresponds to the band gap
difference between neighboring materials. This confining po-
tential yields a 2, 6, 10… degeneracy pattern which shows
up at N=2,8 ,18. . . electrons. NRs are an elongated variant
of colloidal QDs,1 i.e., may be considered as a QD with a
highly anisotropic confining potential, which is resposible
for some remarkably strong Coulomb interactions.11,12 Then,
the transition from QD to NR is not only characterized by a
symmetry change of the confining potential, but additionally
by a transition from strong to weak confinent regime. Moni-
toring this change of symmetry and confining regime in the
addition spectra is the aim of this work. We carry out local
spin-density-functional theory calculations supplemented
with full configuration interaction �FCI� computations. An
interesting 2D model calculation, correlating the addition
spectra of squared and rectangular boxes with the same area,
shows the abovementioned double transition.13 Our calcula-
tions, which correspond to a truly three-dimensional �3D�
NR system of constant section and variable length, display a
different addition energy pattern, as it corresponds to differ-
ent confining potentials, but converges toward qualitative
similar profiles in the limit of weak confining regime. In the
low-density limit we also find a transition from charge-
density waves �CDW� with N /2 peaks in the density profile
vs the NR axis and preserved spin symmetry to spin-density
waves �SDW� with N peaks �Wigner crystallization� and bro-
ken spin symmetry.14 Further, the fully spin polarized state is
reached.15

II. THEORY

Local spin density functional theory �LSDFT�, which has
given satisfactory results in the study of related
structures,8,13,18,19 is employed in the present work. Numeri-
cal integration of the Kohn-Sham equations is carried out.
Details of the method followed are described in Ref. 8. The
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exchange-correlation functional is taken as a sum of the
Dirac exchange functional of a homogeneous electron gas
and the correlation functional parametrized by Perdew and
Zunger.20 The electron effective mass and the dielectric con-
stant, screening the electron-electron interaction, are as-
sumed to be equal to that of the NR bulk material.21 The
confining potential is the same we used in a previous study
of NRs,22 namely, zero within the NR composed by a cylin-
der of radius R and variable length L, attached to two hemi-
spherical caps of the same radius R, and Vout elsewhere.
Some FCI calculations are carried out for N=4,6 ,8 electrons
and L=10 nm, in order to confirm the density profiles ob-
tained with LSDFT. As we will see, in these cases only mz

=0 orbitals come into play. Then, we select a basis set of
orthogonalized floating spherical Gaussian functions. The
original nonorthogonal spherical Gaussian functions g�r�

=e−��r − Ri�
2

are defined by the exponent � and the position Ri

where they are centered. The exponent � is fitted variation-
ally in a L=0 NR �sphere� calculation in which a single
Gaussian function is employed. The floating Gaussian func-
tions are centered along the NR axis, equally spaced, so that
they saturate the space. The number of Gaussians is in-
creased up to convergence in energy. The same density of
Gaussian functions along the NR axis is employed in all
calculations. Once the primitive Gaussian functions are es-
tablished, orthonormalization yielding a new basis set which
most closely resemble the original basis functions, i.e., a
symmetric orthogonalization employing S−1/2, the inverse of
the original basis set metrics square root, is carried out.23

With this orthonormal basis set, the many-body Hamiltonian
reads in second quantization language,

H = �
pq

M

hpqap
+
aq + �

pqrs

M

gpqrsap
+
aq

+
aras, �1�

where ap
+, aq are fermion creator and annihilator operators,

and hpq and gpqrs the one- and two-electron integrals. Except
for the contribution of the potential energy coming from the
confining potential to the single-electron integrals, which is
calculated numerically, all integrals are computed
analytically.23

In order to carry out FCI calculations, once the one-
electron basis set ��p�p=1

M is selected, we build all possible
N-body Slater determinants �

�
=det��1�2 . . .�N� out of

them. In a second step, we project Hamiltonian �1� onto the
basis set of Slater determinants yielding matrix elements
��

�
�H��

�
�. Finally, we proceed with the diagonalization.

III. RESULTS AND DISCUSSION

We study the electronic structure of CdSe NRs. The ge-
ometry, described in the previous section, is defined by the
NR radius, fixed to R=2 nm, and the length, which we range
from L=0 up to L=55 nm. The material parameters em-
ployed are those of the bulk material,24 namely, effective
mass m�=0.13 and dielectric constant �=9.2. The height of
the confining potential is set to Vout=4 eV.

In Fig. 1 we show the low-lying single particle noninter-
acting energy �sp� levels obtained within the effective mass

approach formalism. We represent sp energy vs NR length L.
Dotted lines correspond to orbitals with mz=0, full lines to
mz= �1 and dashed lines to mz= �2. At L=0 we can see the
typical spherical 1–3–5… degeneracy �2–6–10… including
spin�. As L�0, the symmetry reduces from spherical to
axial, with just one- and two-dimensional irreducible repre-
sentations, i.e., with just nondegenerate and twofold degen-
erate orbitals �degeneration 2 and 4 including spin�. In the
figure one can also see how very excited mz=0 orbitals at
L=0 stabilize as L increases, converging toward the lowest
conduction band of the infinite wire. This accumulation of
mz=0 states looks similar to the formation of Landau bands
in the Fock-Darwin energy spectra vs magnetic field. Addi-
tionally, despite only two mz= �1 and one mz= �2 levels
are included in Fig. 1, one can envisage the formation of the
second conduction band and the bottom of the third one.
These bands correspond to the ones observed in Ref. 3. Also,
the figure allows us to determine degeneracy/
quasidegeneracy vs L, which shows up as peak patterns in
the addition energy spectra. Thus, one can foresee that for
L=0 �sphere� the consecutive electron charging up to N

=20 yields three strong peaks at 2, 8, and 18 electrons, while
in the case of L=20 nm a featureless addition energy spec-
trum will be obtained. As can be seen in Fig. 2, these quali-
tative trends are fully confirmed by the LSDFT calculations,
where exchange and correlation are included. In this figure
we represent addition energies �2�N�=E�N+1�−2E�N�
+E�N−1�, with E�N� being the ground state total energy of
the N-electron NR system, vs the number N of electrons for
NRs of different length. From top to bottom, we represent
L=0 up to L=22 nm in steps of �L=2 nm. Addition ener-
gies are given in eV. However, in order to group all the
results within a single figure, the different profiles have been
offset 400 meV. For example, addition energies for L=0
should be subtracted by an amount of 4.4 eV.

As pointed out above, Fig. 2 qualitatively reproduces the
degeneracy pattern observed in Fig. 1. Thus, for L=0, in
addition to three main peaks at N=2, 8, and 18 electrons,
which correspond to the filling of the three lowest shells, one
can see secondary, less intense, peaks at N=5 and N=13
electrons, corresponding to half fillings. As shown in Fig. 1,
as the NR gets longer, excited mz=0 levels fall below the
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FIG. 1. Energy of the lowest NR sp noninteracting energy levels

�eV� vs the NR length L �nm�. Dotted, full and dashed lines corre-

spond to orbitals with azimutal quantum number mz=0, mz= �1,

and mz= �2, respectively.
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low-lying mz= �1 one, and occupied orbitals become closer
in energy, i.e., the density of states increases. This leads to a
change in peak pattern and a general lowering of the addition

energies �see Fig. 2�. For long NR, e.g., L=20 nm, we also

see in this figure that the spectrum starts almost flat at low N

and wrinkles as this number increases. It is related to a

growth in the energy gap between neighboring levels of the

mz=0 lowest band as we move toward higher energies, i.e.,

as we fill the NR with a larger number of electrons �see Fig.

1�. For very large L we reach the Wigner crystallization limit

and, as expected, an almost flat curve for all N �see bottom of

Fig. 2�. We will turn our attention to this limit later on in the

paper.

Details of the addition spectra vs L can be understood

with the help of Fig. 1. For example, as can be seen in this

figure, if we fill with N=18 electrons an L=2 nm NR, we

have the following electronic configuration:

02 02 14 02 14 24, where the exponents represent the num-

ber of electrons filling the orbital whose mz-modulus is being

powered. This configuration will show main peaks at N

=2,4 ,8 ,10,14,18 electrons �filled shells� and secondary

peaks at N=6,12,16 �half fillings�. This result is confirmed

in Fig. 2, although this figure also reveals that the peak at

N=18 does not exist. Coming back to Fig. 1, one can see that

at L=2 nm there is a quasidegeneration of the first mz

= �2 and the fourth mz=0 levels, so that instead of an elec-

tronic configuration 24 one may think of �2,0�4, which does

not yield a main peak in the addition energy spectrum at N

=18.

As a main result of this set of calculations one may con-

clude that for CdSe NRs, with a shape ratio larger than 6, the

addition energy spectra will become featureless. Since CdSe,

with an effective mass of 0.13 and a dielectric constant of

9.2, has an effective Bohr radius of about 3.8 nm, one can
foresee that semiconductor materials such as InAs, with ef-
fective Bohr radius about ten times larger, will display fea-
tures revealing a given degeneracy pattern until much larger
shape ratios.

We further explore the low-density limit. A comprehen-
sive study on phase diagrams for interacting fermions in one-
dimensional periodic potentials25 brings a description of the
electron system in terms of fields representing fluctuations in
the spin and charge densities. The existence of localization
and magnetic transitions in the low-density limit, have also
been reported for infinite26 and finite27 wires defined by har-
monic confinement potentials. In order to explore here the
low-density limit of free standing NRs we calculate the LS-
DFT ground state of long but finite NRs. The obtained results
are summarized in Fig. 3, where total �full thick line�, spin
up �dashed line�, and spin down �dotted line� density profiles
vs the NR axis, for NR lengths L=40, 45, and 55 nm, and

populations N=4,6 ,8 electrons, are represented. For the

sake of comparison, results for a short L=10 nm NR are also

enclosed. In this case, also the total density profile coming

from FCI calculations �+� is shown. The reason of these FCI

calculations is to confirm the observed concentration of total

density distribution toward the ends of the NR. A similar

behavior was already noticed in the model calculation of

Ref. 13, in which LSDFT calculations were carried out, and

contrast with the results in Ref. 27, where the total density is

more pronounced at the center, due to the harmonic confine-

ment employed in this last study. The same concentration of

total density distribution toward the ends of the NR can also

be seen in 16, where CI calculations of an effective one-

dimensional �1D� model is performed. In this last calcula-

tion, the CI expansion employs the numerical sp eigenfunc-

tions of the single-electron Hamiltonian. Provided the

recently reported difficulties concerning CI calculations

based on sp orbitals owing to a lack of saturation of the

space along the axis of quasi-1D systems,12 we have checked

the obtained results with FCI calculations, as outlined in the

previous section, which employ a basis set ensuring satura-

tion along the NR axis. Comparison in Fig. 3 confirms the

observed trend in the density profile of NR given by LSDFT

calculations, which is probably related to the minimization of

the electron-electron repulsion.

Figure 3 shows that for L=40 nm and N=4, 6, and 8, the

so-called charge-density waves, with N /2 maxima in the

density profile and same spin up and down density profiles

�i.e., with preserved spin symmetry� appear. At L=45 nm,

the more diluted N=4 electron system shows up another

phase while less diluted, N=6 and 8 electron systems remain

in the CDW phase. This phase, referred to as spin-density

wave, shows N maxima in the density profile and broken

spin symmetry.14 This corresponds to a Wigner-like crystal-

lization, in which the electrons behave like classical density

charge arranged within the NR to avoid each other as much

as possible. This phase transition, referred to as spin-Peierls

transition, is paralleled by a pronounced increasing of the

Fermi gap.27 We also observe this opening. For example, for

N=6, the ratio between the occupied bandwidth �energy dif-

ference between the lowest and highest occupied levels� and

the Fermi gap �energy difference between the highest occu-

2
(N

)
[e

V
]

∆

N

0

1

2

3

4

2 4 6 8 10 12 14 16 18

5

FIG. 2. Addition energy spectra �eV� for NR of increasing

length L vs the number N of electrons. Increasingly larger NRs are

represented from top to bottom, starting with L=0 �spherical QDs�

up to L=22 nm NR, in steps �L=2 nm. The different profiles have

been offset 400 meV. The three almost flat profiles at the bottom

correspond to the low-density NRs of length L=40, 45 and 55 nm.
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pied and lowest unoccupied levels� is 1.17 at L=45 nm

�CDW phase� and 0.51 at L=55 nm �SDW phase�. At L

=55 nm the N=8 system still remains in the CDW one while

the most diluted N=4 system undergoes a transition to a

fully spin polarized state.15

IV. CONCLUDING REMARKS

We have investigated the electronic structure of semicon-

ductor NRs. Most calculations employ LSDFT. A few FCI

calculations supporting LSDFT results have been also per-

formed. We study the transition from zero-dimensional QDs,

with well defined energy levels, to one-dimensional QWs,

with energy bands in one dimension. We monitor this transi-

tion with the addition energy spectrum which reveals

changes in degeneracy and the increasing role of the

electron-electron interactions as L increases. The obtained

addition spectra are qualitatively related to the sp correlation

diagram vs the NR length L. The limit of low-density is

explored and the transition from CDW to SDW and, further,

to the fully spin polarized phase is shown and discussed.
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Spain

E-mail: josep.planelles@qfa.uji.es

Abstract. We theoretically study the effect of the dielectric environment on the

exciton ground state of CdSe and CdTe/CdSe/CdTe nanorods. We show that

insulating environments enhance the exciton recombination rate and blueshift the

emission peak by tens of meV. These effects are particularly pronounced for type-

II nanorods. In these structures, the dielectric confinement may even modify the

spatial distribution of electron and hole charges. A critical electric field is required to

separate electrons from holes, whose value increases with the insulating strength of the

surroundings.
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1. Introduction

Semiconductor nanocrystals are high-performance light emitters under intense

investigation because of their applications in a wide range of fields, including lasing

technology, quantum optics, solar energy capture and biomedicine [1]. Due to their

nanoscopic size, the electronic structure of the carriers bound in these crystals is

mainly determined by quantum confinement [2, 3]. For this reason, recent progress

in size [4], shape [5] and composition [6] control of nanocrystals has boosted their

technological prospects [7]. Nanorods (NR) or quantum rods are a clear example

of this progress. Their elongated shape results in an anisotropic spatial confinement

of carriers which is responsible for a series of improved optical properties relative to

spherical quantum dots. These range from higher photoluminescence quantum efficiency

[8] and faster carrier relaxation [9] to strongly polarized emission [10]. Furthermore,

recent advances in vapor-liquid-solid methods have enabled the synthesis of layered

semiconductor NRs [11, 12, 13, 14]. In these systems the heterogeneous composition

allows the formation of band structures where electrons and holes are preferably located

in different spatial regions, forming what is known as type-II quantum dots. Upon

excitation, these systems develop a long-lived charge-separated state which makes them

attractive for photovoltaic applications [13, 15].

Spatial confinement is not however the only source of quantum confinement in

these structures. Nanocrystals are usually embedded in insulating materials, whose low

dielectric constant adds a severe dielectric confinement. In spherical quantum dots, the

strong isotropic confinement originates similar electron and hole charge distributions.

As a result, the influence of dielectric confinement for excitons is weakened [16, 17], the

main effect being an increase of the binding energy [18, 19]. One may wonder if this is

also the case in NRs, where the presence of a weak confinement direction could lead to a

different behavior. Indeed, several studies on quasi-one-dimensional nanostructures have

suggested the dielectric mismatch between semiconductor materials and the environment

as the driving mechanism to explain some experimental observations. For example, we

can mention the large variation of the optical gap of CdSe NRs compared to the transport

one [20], the effect on the excitonic energies observed in ZnS NRs [21] and type-II

NRs [22], or the large magnitude of the polarization anisotropy on linear [23, 24, 25]

and nonlinear [26] optical phenomena. Dielectric confinement has also been shown to

affect the dynamics of the electron-hole separation in type-II heterostructured NRs [27]

as well as the coupling between electrons and longitudinal optical phonons in CdSe

NRs [28]. From the theory side, a few works have investigated excitons in dielectrically

confined CdSe nanorods, but they neglected either the longitudinal confinement [29] or

the self-interaction with the polarization charges [30].

In this work, we perform a theoretical study of the effects of the dielectric

confinement on the excitonic properties of semiconductor NRs. We consider

homogeneous CdSe NRs as well as recently synthesized linear CdTe/CdSe/CdTe

heterostructured NRs subject to different dielectric environments. We use a fully 3D
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effective-mass and envelope-function Hamiltonian which allows us to model sophisticated

geometries. The contributions coming from the dielectric mismatch are accounted for

using a numerical procedure, and the electron-hole correlations –which are important

for long NRs– are treated by carrying full configuration interaction (FCI) calculations.

Our results show that in semiconductor NRs the dielectric confinement modifies

the energy and intensity of the exciton photoluminescence. The influence is particularly

important in type-II NRs, where the asymmetry between the electron and hole charge

distribution enables strong dielectric mismatch effects. In this kind of structures, the

electronic density shows a striking response to changes in the dielectric constant of the

environment. In insulating environments, the enhanced electron-hole attraction moves

the electron density from the center of the NR to the CdTe/CdSe interfaces. Last, we

study the effect of longitudinal electric fields on the excitonic states of the NRs. Our

results show that a threshold field is required to separate electrons from holes. The value

of this critical field is strongly dependent on the dielectric constant of the environment.

2. Theory and computational details

In the effective mass approximation the exciton Hamiltonian can be expressed as

H = H0
e (re) +H0

h(rh) + Veh(re, rh), (1)

where H0
e,h(re,h) are single-particle Hamiltonians and Veh(re, rh) is the electron-hole

Coulomb interaction. To describe the single-particle spectra we assume the following

Hamiltonian in cylindrical coordinates and atomic untits

H0
i = −

1

2m∗

i

∇
2
i + V c

i (ρi, zi) + V sp(ρi, zi)− qiFzi. (2)

Here i = e, h is a subscript denoting electron or hole respectively, mi is the effective

mass that we assume to be constant in the whole system, V c
i (ρi, zi) is the step-like

spatial confining potential, and V sp(ρi, zi) is the self-polarization potential arising from

the interaction of each carrier with its own polarization charges, generated on the NR

interface as a consequence of the dielectric constant mismatch with the environment.

The last term of the Hamiltonian (2) describes the effect of an electric field F applied

along the NR longitudinal axis, with qi standing for the electric charge of the carrier.

Exciton energies and wave functions are obtained by means of FCI calculations,

i.e., as the eigenvalues and eigenfunctions of the projection of Hamiltonian (1) onto

the two-body basis set of all possible Hartree electron-hole products. Since the low-

energy single-particle spectrum of large aspect ratio NRs only includes orbitals with

zero azimuthal angular momentum [31] we use a single-particle basis set of 1s-gaussian

functions

gi,x(r) = exp
[

−αx(r−Ri)
2
]

, (3)

to obtain the exciton energies and wave functions. The exponents αx (x = e, h for

electron and hole, respectively) are fitted variationally in a sphere calculation where a
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single gaussian function is employed. The gaussian functions are radially centered and

equally spaced along the NR longitudinal axis, i.e., Ri = zik. We employ a large enough

number of gaussian functions per nm of the NR axis to saturate the space and guarantee

energy convergence ‡. Once the set of gaussian functions are obtained, we proceed to

a symmetric orthogonalization in order to reach a set of orthonormal functions which

most closely resemble the original basis set, both for electrons and holes. Then we

build up all possible Hartree electron-hole products that expand the FCI space in which

Hamiltonian (1) is projected.

In order to calculate the electron-hole interaction term (the electron-hole exchange

is neglected as it does not influence the reported trends) of the FCI matrix elements

〈φe
iφ

h
j |Veh|φ

e
kφ

h
l 〉, (4)

we first obtain an electron charge density η(re) = φe ∗
i φe

k and then calculate the

electrostatic potential that this charge distribution generates onto the hole. To calculate

this potential in a medium with spatially inhomogeneous dielectric constant ε(r), we

rewrite the Poisson equation in terms of the source charges plus the induced polarization

charges:

∇
2V (rh) = −4π [η(re) + ηp(re)]. (5)

Here ηp(re) is the polarization charge density, which we calculate with a method [34]

equivalent to the induced charge computation one proposed by Boda et al. [35] The

self-polarization potential appearing in the single-particle Hamiltonian (2) is calculated

following a similar scheme but taking a point source charge and scaling the potential

by a factor 0.5 due to the self-interaction nature of this term. We refer the reader to

reference 32 for further details on the inclusion of these contributions.

In addition to energy and carrier density distribution, we calculate the ground state

electron-hole recombination probability and electric dipole moment. For the first one,

we use the dipole approximation and Fermi golden rule [36]

P ∝

∣

∣

∣

∣

∣

∣

∑

ij

cij 〈φ
e
i |φ

h
j 〉

∣

∣

∣

∣

∣

∣

2

p0(T ). (6)

Here cij are the exciton ground state FCI expansion coefficients, φe
i and φh

j are

symmetrically orthogonalized gaussian functions whose Hartree products constitute the

basis set for the FCI expansion and 〈φe
i |φ

h
j 〉 the corresponding overlap. Since we deal

with large aspect ratio NRs in which the energy separation between the ground state

and the low lying excited states is just a few meV, to compute the exciton ground

state recombination probability we consider thermal population effects. To this end,

‡ A numerical basis set formed by the single-particle Hamiltonian eigenfunctions [30] would be better

adapted to the spatial confinement and hence would yield lower exciton energies, closer to experimental

values. [32, 33] However, we have chosen to use equidistant floating gaussians because, in contrast to

the numerical eigenfunctions, they enable a uniform saturation along the NR as well as a continuously

homogeneous description of the system, from the spherical limit to the extremely elongated one.
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we assume the Boltzmann distribution pl(T ) = N(gl/g0)exp (−∆El/kT ) for the exciton

states occupation at temperature T , with gl (g0) as the degeneracy factor of the state

l (ground state), ∆El the energy difference between the state l and the ground state,

and k the Boltzmann constant. N is the normalization constant, which ensures that

the sum of all exciton states population is equal to one. Finally, for simplicity, we omit

the influence of local fields induced by the dielectric mismatch on the exciton-photon

interaction. One can check that their influence in nanorods [29] is qualitatively the same

as that resulting from the polarization charges we investigate.

On the other hand, we calculate the electric dipole moment as

µ =
∫

[ρh − ρe] z dv, (7)

where ρe,h are the electron and hole ground state densities.

3. Results and discussion

3.1. Type-I NRs

We start by studying homogeneous CdSe NRs of different lengths. The rods are

composed of a cylinder with radius R = 2 nm and length Lc, attached to two

hemispherical caps of radius R = 2 nm at the extremes, yielding a total length

L = 2R+Lc (see figure 1 inset). CdSe material parameters are used [37]. Thus, electron

and hole effective masses are m∗

e = 0.13 and m∗

h = 0.4. The latter corresponds to the

longitudinal mass of a light-hole, since the hole ground state in long NRs is essentially a

light-hole [20], For this system, the variational gaussian coefficients are αe = 0.0016 and

αh = 0.0020. The dielectric constant inside the NR is fixed to εin = 9.2, while outside

εout is varied in a wide range, in order to simulate the effect of surrounding media with

different insulating strength. Carriers are confined inside the NR by a typical potential

barrier of 4 eV.

Figure 1(a) represents the exciton ground state energy as a function of the NR

length L for embedding media of different insulating strength. For a given environment,

we see that the exciton initially experiences a significant energy stabilization, and an

asymptotic value is finally attained. This behavior, which has been observed in optical

and tunneling gap measurements [20, 38], reflects the relaxation of the longitudinal

spatial confinement. The asymptotic regime is usually identified with a quasi-1D system,

where only radial confinement is present, and it explains the success of quasi-1D models

in reproducing experimental observations [29].

A similar relaxation is observed in figure 1(b) for the exciton binding energy as the

NR is elongated. The plot also reproduces the effect of the dielectric environment

previously observed in spherical and cubic nanocrystals [18, 19], i.e., due to the

polarization of the Coulomb interaction, low dielectric constant environments increase

the electron-hole attraction, and hence, the binding energy.

Despite this gain in binding energy, figure 1(a) reveals that insulating environments

blueshift the exciton energy by up to 50 meV [34]. This result is driven by the
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Figure 1. a) Exciton ground state energies (relative to the bulk CdSe gap), b)

binding energies and c) recombination probabilities (T = 30 K) in homogeneous NRs

with variable length L embedded in different dielectric media. Crosses correspond to

calculations. Lines are guides to the eyes. Different line shapes correspond to different

dielectric constants. The correspondence is shown in the bottom panel. Upper inset:

Exciton energy differences between the cases with εout 6= εin and the case εout = εin.

Lower inset: schematic of the NR geometry.

self-polarization interaction and can be interpreted as follows. Due to the dielectric

mismatch, the confined carriers induce polarization charges on the NR surface. When

the NR is embedded in a medium of lower (higher) dielectric constant, εin > εout

(εin < εout), the sign of the induced charges is the same (opposite) as that of the source

charges. This means that the self-interaction between source and induced charges, V sp,

is repulsive (attractive). Conversely, the electron-hole Coulomb polarization interaction

is attractive (repulsive). While these two contributions tend to compensate each

other [18, 19], the cancelation is not exact. In all the cases we study, the self-interaction

term prevails. For insulating environments (εin > εout), this translates into a blueshifted

exciton.

Note that the blueshift in figure 1(a) does not contradict the large reduction of
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the optical gap observed experimentally in dielectrically confined NRs [20, 29]. This is

because the optical gap was compared with the transport gap. Both gaps are subject to

the self-interaction potential, but only the optical one includes electron-hole Coulomb

polarization effects.

The inset in figure 1(a) shows the difference between the exciton energy with and

without dielectric mismatch as a function of the NR length. The energy difference first

decreases, and it becomes mostly insensitive to the length once the aspect ratio is larger

than two. The initial decrease is due to the relaxation of the longitudinal (dielectric)

confinement, and the plateau that follows suggests that the weaker confinement barely

affects the balance between self-interaction and Coulomb polarization.

We next investigate the effect of the dielectric environment on the electron-hole

recombination probability. The results obtained at T = 30 K are illustrated in

figure 1(c). It follows from the figure that (i) the recombination probability increases

with the NR length, (ii) the dielectric confinement enhances this probability and (iii)

this enhancement is larger for long NRs. All these results can be rationalized in terms

of the strong correlation regime induced by the softened spatial and the dielectric

confinements [30]. In all cases, for long rods thermal population of excited states

becomes important and the recombination probability saturates towards the quantum

wire limit.

3.2. Type-II NRs

In this section we study heterogeneous NRs similar to those synthesized in references 13

and 22. The rods are composed of a central CdSe cylinder (core) of radius R = 2 nm

and length LCdSe
c attached to two external shells of CdTe. The shells in turn are formed

by a hemispherical cap of radius R = 2 nm and a cylinder of length LCdTe
c (see figure 2(c)

inset). Bringing all the parts together yields two shells of length LCdTe
s = R + LCdTe

c

and a total NR length L = 2LCdTe
s + LCdSe

c . These heterostructured systems are known

to display a type-II band alignment [12, 13, 14, 22], where electrons are preferably

located in CdSe regions and holes in CdTe regions. To reproduce this situation, in

our calculations we include a band offset in the interface between both materials. For

electrons we take a band offset of 0.42 eV and for holes we take an inverse band offset of

0.57 eV [39]. Since the material parameters of CdSe and CdTe do not offer significant

differences, we take CdSe effective mass and dielectric constant for the whole NR. Thus,

we just consider the dielectric interface between the whole NR and the external matrix.

In figure 2(a) we show the exciton ground state energies for type-II NRs composed

by a CdSe core of length LCdSe
c = 4 nm and CdTe shells of increasing length LCdTe

s .

Different embbeding media are considered. As in the case of homogenous NRs, for

a given environment the exciton experiences an initial energy stabilization and later

it reaches an asymptotic value. Also, the same qualitative response to the dielectric

environment is observed. However, the magnitude of the energy shifts originated by the

dielectric confinement is now about twice that of type-I NRs, reaching values as large as
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Figure 2. Same as figure 1 but for type-II NRs.

100 meV (see figure 2(a) inset). The reason is that the spatial separation of electron and

hole charge distributions in type-II nanostructures weakens the Coulomb polarization

term, as reflected in the smaller binding energies displayed in figure 2(b), but not the

self-polarization. This leads to greatly enhanced dielectric mismatch effects.

At this point it is worth noting that the effect of the dielectric confinement predicted

in figure 2(a) is consistent with the main trends reported in reference 22, where the

photoluminescence spectra of similar CdTe/CdSe/CdTe NRs were compared for solvents

with different dielectric constant. A blueshift of the exciton emission energy by tens of

meV was observed under low dielectric constant environments (figure 7 in their work).

This confirms the prevalence of the self-interaction potential over the electron-hole

Coulomb one. The irregular differences between the energy shifts originated by the two

low dielectric constant solvents of reference 22 are probably connected with microscopic

effects, which are beyond our continuum model.

The inset in figure 2(a) shows the difference between the exciton energy with and
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without dielectric mismatch as a function of the NR length. As in type-I NRs, the

increasing anisotropy has a weak influence.

Figure 2(c) shows the electron-hole recombination probability of type-II NRs at

T = 30 K. As can be observed, the probability is much smaller than in type-I NRs due to

the charge separation, which was already noted in related experiments [12]. In addition,

contrary to type-I NRs (figure 1(c)), the recombination probability now decreases with

the NR lenght. This is because the length increase comes from longer CdTe shells, so that

the hole lies further away from the electron, which leads to an additional reduction of the

electron-hole overlap. The effect of the dielectric environment is also quite different from

the homogeneous NR case. Insulating environments still enhance the recombination

probability, but: (i) the enhancement does not vary with L, because the size increase of

the CdTe shells does not entail an increase in the role of the electron-hole correlations,

and (ii) the relative enhancement is many times larger. For example, at L = 25 nm

the recombination probability for εout = 2 is ∼ 3.5 times that of εout = 9.2, compared

to ∼ 1.2 times in type-I NRs. This is another manifestation of the important role of

dielectric mismatch in type-II structures.

outε    =9.2

ε    =5out

ε    =2out

ε    =25out

c
CdSe

L    =6nm sL    =2.5nm
CdTe

; L    =19nmc
CdSe

L    =3nms
CdTe

;

Longitudinal NR axis

Figure 3. Electron (solid lines) and hole (dashed lines) densities along the longitudinal

axis, for type-II NRs of LCdSe

c
= 6 nm and L

CdTe

s
= 2.5 nm (left), and L

CdSe

c
= 19 nm

and L
CdTe

s
= 3 nm (right). The dielectric constants of the surroundings are indicated

on the left of each row.

Next we show that the strong influence of dielectric confinement in type-II NRs may

even reshape the exciton wavefunction. Figure 3 illustrates the electron (solid line) and

hole (dashed line) density profiles along the NR longitudinal axis. Left (right) panels

correspond to NRs of dimensions LCdSe
c = 6 nm and LCdTe

s = 2.5 nm (LCdSe
c = 19 nm

and LCdTe
s = 3 nm) embedded in media of different insulating strength. No noticeable
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effects arise in the case of the shorter NR. By contrast, as the longer NR is embedded in

strong insulating media, the electron moves from the rod center to the CdTe shells. For

a strong enough dielectric mismatch, the electron density even develops a deep valley

at the center of the NR (see e.g. εout = 2, bottom right panel in figure 3). The driving

force of this behavior is the increase of the electron-hole interaction by means of the

polarization charges. As the CdSe core is elongated, this attractive potential starts

dominating over the longitudinal spatial potential felt by the electron, which is then

dragged by the hole towards the material interface. This phenomenon is favored for

long CdSe cores and short CdTe shells.

The electron localization near the external shells evidences a regime where the

role of the longitudinal spatial confinement is taken over by the dielectric confinement.

Moreover, important implications follow from this phenomenon, such as enhanced

sensitivity of the exciton near the CdSe/CdTe interface and reduced coupling to

impurities and defects in the center of the rod.

3.3. Electric field effect

In the last few years both theoretical [40] and experimental [41, 42] studies have pointed

out interesting properties for technological devices arising from the application of an

external electric field along the longitudinal direction of NRs. The electric field separates

electrons from holes, thus reducing the radiative recombination probability. The rate

at which this happens is known to be affected by the quantum confinement, which is

related to the quantum confined Stark effect. Having observed the strong influence of

dielectric confinement in NRs at zero field, we next probe how it modifies the exciton

response to longitudinal electric fields.

In figure 4 we study the electric field effect over the exciton ground state energy (a),

electron-hole recombination probability (T = 30 K) (b) and dipole moment (c), for a

homogeneous CdSe NR of length L = 25 nm in different media. As can be seen, there is

a critical electric field from which the system evolves in a different way. This is the field

required to induce the electron-hole separation. The separation is reflected by a redshift

of the exciton energy (figure 4(a)), a sudden reduction of the exciton recombination

probability (figure 4(b)) and an abrupt increase of the dipole moment (figure 4(c)). The

abrupt response to the electric field is consistent with the rapid switches observed in

optical spectroscopy experiments [42].

Figure 4 proves that the dielectric confinement has important effects on the exciton

response to electric fields. The critical field required to separate electrons from holes

increases significantly with the insulating strength of the environment. This is due to

the abovementioned modulation of the exciton binding energy.

We next illustrate the electric field effect on type-II NRs. Results are shown in

figure 5 for a NR of LCdSe
c = 19 nm and LCdTe

s = 3 nm (total length L = 25 nm).

The same trends as in homogeneous NRs are observed, but now, since the electron-

hole interaction is weaker, smaller fields are required to separate both particles and
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Figure 4. a) Exciton ground state energies (relative to the bulk CdSe gap), b)

recombination probabilities (T = 30 K) and c) dipole moments of a L = 25 nm

homogeneous NR vs. the applied electric field. The dielectric constants of the media

are indicated by the lines in panel b).

this process takes place more gradually. In any case, the influence of the dielectric

environment on the exciton response to electric fields is still felt, and it can increase the

critical field value over an order of magnitude. The anomalous evolution observed at

small fields in the recombination probability (figure 5(b)) is explained as follows. The

electric field breaks the double-degeneracy of the hole states localized in the CdTe caps.

Since in figure 5(b) we just show the ground state recombination probability, the initial

increase comes from the thermal depopulation of the first excited state in favor of the

ground state.

Finally, we focus our attention on the evolution of the exciton charge density

under the influence of electric fields. In homogeneous NRs no noticeable effects arise.

Electron and hole remain in the center of the rod until the field splits them up towards

opposite NR ends (not shown). Conversely, type-II NRs display an interesting interplay

between the electric field and Coulomb polarization effects, whose effect on the charge
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Figure 5. Same as figure 4 but for a type-II NR with L
CdSe

c
= 19 nm and L

CdTe

s
= 3

nm.

distribution is summarized in figure 6. A small electric field (F = 20 kV/cm) suffices to

localize the hole in the CdTe shell near the negative electrode. The electron localization

is however strongly dependent on the dielectric environment. In the absence of dielectric

mismatch (εout = 9.2) it is centered, revealing a compensation between the electric field

and electron-hole interactions. For εout = 2, Coulomb interaction dominates and the

electron moves towards the hole (in spite of the electric field), and the opposite occurs

for εout = 25. With increasing electric field (F = 100 kV/cm), the electron is forced

to move towards the positive electrode, but this is still difficult if the environment is

strongly insulating (εout = 2). Once again, this behavior comes from the modulation of

the exciton binding energy by the dielectric confinement.

4. Conclusions

We have shown that the dielectric confinement has significant effects in the excitonic

properites of semiconductor NRs. In type-I NRs, low dielectric constant environments

blueshift the exciton photoluminescence peak by tens of meV, enhance electron-hole
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Figure 6. Electron (solid lines) and hole (dashed lines) densities along the longitudinal

axis, for a type-II NR of LCdSe

c
= 19 nm and L

CdTe

s
= 3nm subject to electric fields of

20 and 100 kV/cm. The dielectric constants of the different media are enclosed on the

top-left corner of each row.

recombination rates and increase the electric field required to separate electrons from

holes. The two latter effects are direct consequences of the enhanced correlation regime

and exciton binding energy, while the former is a consequence of the exciton self-

interaction with the induced polarization charges.

In type-II NRs, the same effects hold, but now greatly enhanced due to the

asymmetric charge distribution of electrons and holes, which reduces the compensation

between self-interaction and electron-hole Coulomb polarization. In these systems, a

strong dielectric mismatch may move the electron charge density from the center of the

core towards the heterostructure interface. This result has straightforward implications

in the physical response of the NRs, and it shows that the dielectric confinement can

be used -in addition to spatial confinement- to manipulate the shape and size of type-II

excitons.

To experimentally confirm the electronic density localization trends reported here,

we propose using wave function mapping techniques, such as near-field scanning optical

microscopy [43]. Alternatively, the diamagnetic shift of NRs subject to transversal

magnetic fields will discriminate excitons with an electron localized in the center or

near the shells of the NR. We close by noting that the phenomena reported in this work

are not exclusive of CdSe/CdTe NRs. They can be extended to rods made of different

materials as long as the appropiate dielectric confinement regime is attained.
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